

Włodzisław Duch and Jacek Mańdziuk (Eds.)

Challenges for Computational Intelligence

Studies in Computational Intelligence, Volume 63

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)
Artificial Neural Networks in Vehicular Pollution
Modelling, 2007
ISBN 978-3-540-37417-6

Vol. 42. Bernd J. Krämer, Wolfgang A. Halang (Eds.)
Contributions to Ubiquitous Computing, 2007
ISBN 978-3-540-44909-6

Vol. 43. Fabrice Guillet, Howard J. Hamilton (Eds.)
Quality Measures in Data Mining, 2007
ISBN 978-3-540-44911-9

Vol. 44. Nadia Nedjah, Luiza de Macedo
Mourelle, Mario Neto Borges,
Nival Nunes de Almeida (Eds.)
Intelligent Educational Machines, 2007
ISBN 978-3-540-44920-1

Vol. 45. Vladimir G. Ivancevic, Tijana T. Ivancevic
Neuro-Fuzzy Associative Machinery for Comprehensive
Brain and Cognition Modeling, 2007
ISBN 978-3-540-47463-0

Vol. 46. Valentina Zharkova, Lakhmi C. Jain
Artificial Intelligence in Recognition and Classification
of Astrophysical and Medical Images, 2007
ISBN 978-3-540-47511-8

Vol. 47. S. Sumathi, S. Esakkirajan
Fundamentals of Relational Database Management
Systems, 2007
ISBN 978-3-540-48397-7

Vol. 48. H. Yoshida (Ed.)
Advanced Computational Intelligence Paradigms
in Healthcare, 2007
ISBN 978-3-540-47523-1

Vol. 49. Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling
(Eds.)
Evolutionary Scheduling, 2007
ISBN 978-3-540-48582-7

Vol. 50. Nadia Nedjah, Leandro dos Santos Coelho,
Luiza de Macedo Mourelle (Eds.)
Mobile Robots: The Evolutionary Approach, 2007
ISBN 978-3-540-49719-6

Vol. 51. Shengxiang Yang, Yew Soon Ong, Yaochu Jin
Honda (Eds.)
Evolutionary Computation in Dynamic and Uncertain
Environment, 2007
ISBN 978-3-540-49772-1

Vol. 52. Abraham Kandel, Horst Bunke, Mark Last (Eds.)
Applied Graph Theory in Computer Vision and Pattern
Recognition, 2007
ISBN 978-3-540-68019-2

Vol. 53. Huajin Tang, Kay Chen Tan, Zhang Yi
Neural Networks: Computational Models
and Applications, 2007
ISBN 978-3-540-69225-6

Vol. 54. Fernando G. Lobo, Cláudio F. Lima
and Zbigniew Michalewicz (Eds.)
Parameter Setting in Evolutionary Algorithms, 2007
ISBN 978-3-540-69431-1

Vol. 55. Xianyi Zeng, Yi Li, Da Ruan and Ludovic Koehl
(Eds.)
Computational Textile, 2007
ISBN 978-3-540-70656-4

Vol. 56. Akira Namatame, Satoshi Kurihara and
Hideyuki Nakashima (Eds.)
Emergent Intelligence of Networked Agents, 2007
ISBN 978-3-540-71073-8

Vol. 57. Nadia Nedjah, Ajith Abraham and Luiza de
Macedo Mourella (Eds.)
Computational Intelligence in Information Assurance
and Security, 2007
ISBN 978-3-540-71077-6

Vol. 58. Jeng-Shyang Pan, Hsiang-Cheh Huang, Lakhmi
C. Jain and Wai-Chi Fang (Eds.)
Intelligent Multimedia Data Hiding, 2007
ISBN 978-3-540-71168-1

Vol. 59. Andrzej P. Wierzbicki and Yoshiteru
Nakamori (Eds.)
Creative Enivornments, 2007
ISBN 978-3-540-71466-8

Vol. 60. Vladimir G. Ivancevic and Tijana T. Ivacevic
Computational Mind: A Complex Dynamics Perspective,
2007
ISBN 978-3-540-71465-1

Vol. 61. Jacques Teller, John R. Lee and Catherine
Roussey (Eds.)
Ontologies for Urban Development, 2007
ISBN 978-3-540-71975-5

Vol. 62. Lakhmi C. Jain, Raymond A. Tedman and Debra
K. Tedman (Eds.)
Evolution of Teaching and Learning Paradigms in
Intelligent Environment, 2007
ISBN 978-3-540-71973-1

Vol. 63. Włodzisław Duch and Jacek Mańdziuk (Eds.)
Challenges for Computational Intelligence, 2007
ISBN 978-3-540-71983-0

Włodzisław Duch
Jacek Mańdziuk
(Eds.)

Challenges for Computational
Intelligence

With 119 Figures, 19 in colour and 6 Tables

Prof. Włodzisław Duch
Department of Informatics
Nicolaus Copernicus University
Ul. Grudziadzka 5
87-100 Torun
Poland
E-mail: wduch@is.umk.pl
and
Division of Computer Science
School of Computer Engineering
Nanyang Technological University
Singapore 639798

E-mail: ASWDuch@ntu.edu.sg

Prof. Jacek Mańdziuk
Faculty of Mathematics
and Information Science
Warsaw University of Technology
Plac Politechniki 1
00-661 Warsaw
Poland

E-mail: mandziuk@mini.pw.edu.pl

Library of Congress Control Number: 2007925677

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN 978-3-540-71983-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting by SPi using a Springer LATEX macro package
Printed on acid-free paper SPIN: 12047871 89/SPi 5 4 3 2 1 0

Preface

W�lodzis�law Duch1,2 and Jacek Mańdziuk3

1 Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
2 School of Computer Engineering, Nanyang Technological University, Singapore
Google:Duch

3 Faculty of Mathematics and Information Science, Warsaw University of
Technology, Warsaw, Poland
mandziuk@mini.pw.edu.pl

In the year 1900 at the International Congress of Mathematicians in Paris
David Hilbert delivered what is now considered the most important talk ever
given in the history of mathematics. In this talk Hilbert outlined his philos-
ophy of mathematics and proposed 23 major problems worth working at in
future. Some of these problems were in fact more like programs for research
than problems to be solved. 100 years later the impact of this talk is still
strong: some problems have been solved, new problems have been added, but
the direction once set – identify the most important problems and focus on
them – is still important.

As the year 2000 was approaching we started to wonder if something like
that could be done for the new field of Computational Intelligence? Can we
define a series of challenging problems that will give it a sense of direction,
especially to our younger colleagues? Obviously the situation of a new, rapidly
growing field, does not resemble that of the ancient queen of science, and no-
one has such a deep insight into its problems as David Hilbert had at his time,
but without setting up clear goals and yardsticks to measure progress on the
way, without having a clear sense of direction many efforts will be wasted.
Some period of rather chaotic exploration of new mathematical techniques
developed in neural, fuzzy and evolutionary algorithms was necessary, leading
to many new directions and sub-branches of Computational Intelligence. Good
mathematical foundations have been gradually introduced in the last decade.
However, some of the problems CI experts attempted to solve as well as some
of the methods used were of the same type as pattern recognition, operation
research or some branches of statistics were working on 40 years earlier. For
example, introduction of basic results from approximation theory has led to
the development of basis set expansion techniques and Gaussian classifiers,
and the old ideas of wide margins and kernels developed into the support
vector machines. Although these ideas were known for decades they have been

VI W�lodzis�law Duch and Jacek Mańdziuk

greatly developed on the theoretical, as well as on the practical algorithm and
software fronts.

New CI techniques are frequently better at solving the optimization, ap-
proximation, classification, clusterization or other pattern recognition prob-
lems, but is Computational Intelligence just an improved version of pattern
recognition? How do we define CI as a branch of science? How do we measure
progress in CI?

The first idea that one of us (WD) wanted to pursue in order to find an
answer to some of these questions was to organize a millenium special issue of
the IEEE Transactions on Neural Networks (TNN) devoted to challenges in
Computational Intelligence. For many reasons this project has been delayed
and eventually, at the suggestion of Jacek Zurada, the head editor of TNN
journal at that time, turned into a book project. Unfortunately numerous
duties did not allow Jacek to participate personally in realization of this
project but we are deeply grateful for his initial help and encouragement. Our
hope was that this book will provide clear directions and the much-needed
focus on the most important and challenging research issues, illuminate some
of the topics involved, start a discussion about the best CI strategies to solve
complex problems, and show a roadmap how to achieve its ambitious goals.
Obviously such a book could not be written by a single author, it had to be
written by top experts in different branches of CI expressing their views on
this subject.

In the call for contributions we wrote:

Computational Intelligence is used as a name to cover many existing
branches of science. Artificial neural networks, fuzzy systems, evolu-
tionary computation and hybrid systems based on the above three dis-
ciplines form a core of CI. Such disciplines as probabilistic reasoning,
molecular (DNA) computing, computational immunology, rough sets
or some areas of machine learning may also be regarded as subfields
of the Computational Intelligence. CI covers all branches of science
and engineering that are concerned with understanding and solving
problems for which effective computational algorithms do not exist.
Thus it overlaps with some areas of Artificial Intelligence, and a good
part of pattern recognition, image analysis and operations research.
In the last few years the annual volume of CI-related papers has been
visibly increasing. Several ambitious theoretical and application driven
projects have been formulated. Counting only the number of published
papers and ongoing research topics one can conclude that there is an
undisputed progress in the field. On the other hand besides the sheer
numbers of published papers and ongoing research projects several
fundamental questions concerning the future of Computational Intel-
ligence arise. What is the ultimate goal of Computational Intelligence,
and what are the short-term and the long-term challenges to the field?
What is it trying to achieve? Is the field really developing? Do we

Preface VII

actually observe any progress in the field, or is it mainly the increase
of the number of publications that can be observed?
We believe that without setting up clear goals and yardsticks to mea-
sure progress on the way, without having a clear sense of direction
many efforts will end up nowhere, going in circles and solving the same
type of pattern recognition problems. Relevant topics for invited book
chapters include the following subjects:
• defining the short-term and/or long-term challenges for Computa-

tional Intelligence, or any of its subfields (e.g. advanced human-
computer interaction systems, the brain-like problem solving
methods, efficient scene analysis algorithms, implementation of
very complex modular network architectures), and the ultimate
goal(s) of CI;

• describing recent developments in most ambitious, ongoing re-
search projects in the CI area, with particular attention to the
challenging, unsolved problems;

• discussion on creative artificial agents and societies of agents, their
relation to neural computing, evolving connectionist learning par-
adigms, biologically plausible adaptive intelligent controllers, effi-
cient and automatic large-scale problem decomposition and similar
issues;

• discussion on potential, intrinsic research limitations in the field
(e.g. the curse of dimensionality problem, or complexity and scal-
ability issues in the brain modeling and in the real-life problem
domains);

• discussion on cross-fertilization between the subfields of CI, neu-
rosciences and cognitive sciences;

• plausibility of and alternatives to the CI-based methods for solving
various research problems, both theoretical and practical ones.

The book should provide clear directions and the much-needed fo-
cus on the most important and challenging research issues, illuminate
some of the topics involved, start a discussion about the best CI strate-
gies to solve complex problems, and show a roadmap how to achieve
ambitious goals. The attempt to address some of the topics listed
above should be especially helpful for the young researchers entering
the area of CI.

The work on the book has not been easy, as the prospective authors showed
a strong tendency to write about their current projects or making the state-
of-the-art reviews. We have not always been completely successful in enforcing
the focus on grand challenges and “forward thinking”; the judgment is left to
the readers. So finally here it is, 17 chapters on many aspects of CI written
by 16 authors. The first chapter tries to define what exactly is Computational
Intelligence, how is it related to other branches of science, what are the grand

VIII W�lodzis�law Duch and Jacek Mańdziuk

challenges, what the field could become and where is it going. In the sec-
ond chapter “New Millennium AI and the Convergence of History” Jürgen
Schmidhuber writes about recurrent networks and universal problem solvers,
the great dream of Artificial Intelligence, speculating about the increased pace
of future developments in computing.

In the next 6 chapters challenges for CI resulting from attempts to model
cognitive and neurocognitive processes are presented. “The Challenges of
Building Computational Cognitive Architectures” chapter by Ron Sun is fo-
cused on issues and challenges in developing computer algorithms to simu-
late cognitive architectures that embody generic description of the thinking
processes based on perceptions. In the fourth chapter, “Programming a Paral-
lel Computer: The Ersatz Brain Project” James Anderson and his colleagues
speculate about the basic design, provide examples of “programming” and sug-
gest how intermediate level structures could arise in a sparsely connected mas-
sively parallel, brain like computers using sparse data representations. Next
John G. Taylor in “The Brain as a Hierarchical Adaptive Control System”
considers various components of information processing in the brain, choos-
ing attention, memory and reward as key elements, discussing how to achieve
cognitive faculties. Soo-Young Lee proposes “Artificial Brain and OfficeMate
based on Brain Information Processing Mechanism”, capable of conducting es-
sential human functions such as vision, auditory, inference, emergent behavior
and proactive learning from interactions with humans. Stan Gielen’s chapter
“Natural Intelligence and Artificial Intelligence: Bridging the Gap between
Neurons and Neuro-Imaging to Understand Intelligent Behavior” addresses
some aspects of the hard problems in neuroscience regarding consciousness,
storage and retrieval of information, the evolution of cooperative behavior and
relation of these questions to major problems in Computational Intelligence.
The final chapter in this part, written by DeLiang Wang, is devoted to the
“Computational Scene Analysis”, analysis and understanding of the visual
and auditory perceptual input.

The next three chapters present a broad view of other inspirations that
are important for the foundations of Computational Intelligence. First, the
chapter “Brain-, Gene-, and Quantum Inspired Computational Intelligence:
Challenges and Opportunities”, by Nikola Kasabov discusses general princi-
ples at different levels of information processing, starting from the brain and
going down to the genetic and quantum level, proposing various combina-
tions, such as the neurogenetic, quantum spiking neural network and quan-
tum neuro-genetic models. Robert Duin and Elżbieta Pȩkalska contributed
“The Science of Pattern Recognition. Achievements and Perspectives”, writ-
ing about challenges facing pattern recognition and promising directions to
overcome them. In the “Towards Comprehensive Foundations of Computa-
tional Intelligence” chapter W�lodzis�law Duch presents several proposals for CI
foundations: computing and cognition as compression, meta-learning as search
in the space of data models, (dis)similarity based methods providing a frame-
work for such meta-learning, quite general approach based on compositions of

Preface IX

transformations, and learning from partial observations as a natural extension
towards reasoning based on perceptions.

The remaining five chapters are focused on theoretical issues and specific
sub-areas of CI. Witold Pedrycz writes about “Knowledge-Based Clustering
in Computational Intelligence” governed by the domain knowledge articu-
lated through proximity-based knowledge hints supplied through an interac-
tion with experts, and other such forms of clustering. Věra Kůrková addresses
the problem of “Generalization in Learning from Examples” exploring the
relation of learning from data to inverse problems, regularization and repro-
ducing kernel Hilbert spaces, and relating that to broader philosophical issues
in learning. Lei Xu presents another theoretical chapter, “Trends on Reg-
ularization and Model Selection in Statistical Learning: A Perspective from
Bayesian Ying Yang Learning”, integrating regularization and model selection
and providing a general learning procedure based on solid foundations. Jacek
Mańdziuk writes about “Computational Intelligence in Mind Games”, dis-
cussing challenging issues and open questions in the area of intelligent game
playing with special focus on implementation of typical for human players
concepts of intuition, abstraction, creativity, game-independent learning and
autonomous knowledge discovery in game playing agents. Xindi Cai and Don-
ald Wunsch focus on “Computer Go: A Grand Challenge to AI”, providing
a survey of methods used in computer Go and offering a basic overview for
future study, including their own hybrid evolutionary computation algorithm.
The final chapter of the book, “Noisy Chaotic Neural Networks for Combi-
natorial Optimization”, written by Lipo Wang and Haixiang Shi, addresses
the problem of using neural network techniques to solving combinatorial op-
timization problems and shows some practical applications of this approach.

We hope that the readers, especially the younger ones, will find in these
chapters many new ideas, helpful directions for their own research and chal-
lenges that will help them to focus on unsolved problems and move the whole
field of Computational Intelligence forward.

We would like to thank Mr Marcin Jaruszewicz, a Ph.D. student of JM,
for his assistance in formatting.

Editors:

W�lodzis�law Duch and Jacek Mańdziuk

Singapore, Warsaw, December 2006

Contents

Preface
W�lodzis�law Duch, Jacek Mańdziuk . V

What Is Computational Intelligence and Where Is It Going?
W�lodzis�law Duch . 1

New Millennium AI and the Convergence of History
Jürgen Schmidhuber . 15

The Challenges of Building Computational Cognitive
Architectures
Ron Sun . 37

Programming a Parallel Computer: The Ersatz Brain Project
James A. Anderson, Paul Allopenna, Gerald S. Guralnik, David
Sheinberg, John A. Santini, Jr., Socrates Dimitriadis, Benjamin B.
Machta, and Brian T. Merritt . 61

The Human Brain as a Hierarchical Intelligent Control
System
JG Taylor . 99

Artificial Brain and OfficeMate based on Brain Information
Processing Mechanism
Soo-Young Lee . 123

Natural Intelligence and Artificial Intelligence: Bridging the
Gap between Neurons and Neuro-Imaging to Understand
Intelligent Behaviour
Stan Gielen . 145

Computational Scene Analysis
DeLiang Wang . 163

XII Contents

Brain-, Gene-, and Quantum Inspired Computational
Intelligence: Challenges and Opportunities
Nikola Kasabov . 193

The Science of Pattern Recognition. Achievements
and Perspectives
Robert P.W. Duin, Elżbieta P ↪ekalska . 221

Towards Comprehensive Foundations of Computational
Intelligence
W�lodzis�law Duch . 261

Knowledge-Based Clustering in Computational Intelligence
Witold Pedrycz . 317

Generalization in Learning from Examples
Věra K̊urková . 343

A Trend on Regularization and Model Selection in Statistical
Learning: A Bayesian Ying Yang Learning Perspective
Lei Xu . 365

Computational Intelligence in Mind Games
Jacek Mańdziuk . 407

Computer Go: A Grand Challenge to AI
Xindi Cai and Donald C. Wunsch II . 443

Noisy Chaotic Neural Networks
for Combinatorial Optimization
Lipo Wang and Haixiang Shi . 467

What Is Computational Intelligence
and Where Is It Going?

W�lodzis�law Duch

Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5, Toruń,
Poland, and School of Computer Engineering, Nanyang Technological University,
Singapore

Summary. What is Computational Intelligence (CI) and what are its relations with
Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with
“computational intelligence” in their title shows that at present it is an umbrella for
three core technologies (neural, fuzzy and evolutionary), their applications, and sel-
ected fashionable pattern recognition methods. At present CI has no comprehensive
foundations and is more a bag of tricks than a solid branch of science. The change
of focus from methods to challenging problems is advocated, with CI defined as a
part of computer and engineering sciences devoted to solution of non-algoritmizable
problems. In this view AI is a part of CI focused on problems related to higher
cognitive functions, while the rest of the CI community works on problems related
to perception and control, or lower cognitive functions. Grand challenges on both
sides of this spectrum are addressed.

1 Introduction

What exactly is Computational intelligence (CI)? How is it related to other
branches of computer science, such as artificial intelligence (AI), classi-
fication, cognitive informatics, connectionism, data mining, graphical meth-
ods, intelligent agents and intelligent systems, knowledge discovery in data
(KDD), machine intelligence, machine learning, natural computing, parallel
distributed processing, pattern recognition, probabilistic methods, soft com-
puting, multivariate statistics, optimization and operation research? This is a
very confusing issue, hotly debated, but with no consensus in sight. Compu-
tational intelligence became a new buzzword that means different things to
different people.

Branches of science are not defined, but slowly develop in the process of
sharing and clustering of common interests. Even well-established sciences
have problems with clear definition: for example, one of the best definition
of physics is “physics is what physicist do”. Herbert Simon, one of the AI

W�lodzis�law Duch: What Is Computational Intelligence and Where Is It Going?, Studies in

Computational Intelligence (SCI) 63, 1–13 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

2 W�lodzis�law Duch

fathers, answered the question “What is artificial intelligence?” writing “We
define it in terms of the tasks that are done” [1]. Computational Intelligence
experts focus on problems that are difficult to solve using artificial systems,
but are solved by humans and some animals, problems requiring intelligence.
Specific interests also focus on methods and tools that are applicable to this
type of problems. Starting with seminal papers, special sessions, growing into
separate conferences and specialized journals, different branches of CI evolve
in many directions, frequently quite far from original roots and inspirations.
New communities are formed and need to establish their identity by defining
borders distinguishing them from other scientific communities.

Artificial Intelligence (AI) was the first large scientific community, estab-
lished already in the mid 1950s, working on problems that require intelli-
gence to be solved. Its evolution has been summarized in the 25th anniversary
issue of the AI Magazine by Mackworth [2]: “In AI’s youth, we worked hard
to establish our paradigm by vigorously attacking and excluding apparent
pretenders to the throne of intelligence, pretenders such as pattern recogni-
tion, behaviorism, neural networks, and even probability theory. Now that we
are established, such ideological purity is no longer a concern. We are more
catholic, focusing on problems, not on hammers. Given that we do have a com-
prehensive toolbox, issues of architecture and integration emerge as central.”

IEEE Computational Intelligence Society defines its subjects of interest
as neural networks, fuzzy systems and evolutionary computation, including
swarm intelligence. The approach taken by the journals and by the book
authors is to treat computational intelligence as an umbrella under which more
and more methods are slowly added. A good definition of the field is there-
fore impossible, because different people include or exclude different methods
under the same CI heading. Chess programs based on heuristic search are
already in the superhuman computational intelligence category, but they do
not belong to CI defined in such a way. In the early days of CI some experts
tried to explicitly exclude problems requiring reasoning. Take for example this
definition: “A system is computationally intelligent when it: deals only with
numerical (low level) data, has a pattern recognition component, and does
not use knowledge in the AI sense” [3].

As in the case of Artificial Intelligence the need to create strong iden-
tity by emphasizing specific methods defining Computational Intelligence as
a field should be replaced by focus on problems to be solved, rather than
hammers. Below some remarks on the current state of CI are made, based on
analysis of journals and books with “computational intelligence” in their title.
Then a new definition of CI is proposed and some remarks are made on what
should the computational intelligence field really be in future. Finally grand
challenges to computational intelligence are discussed.

2 CI Journals

The name “Computational Intelligence” has been used for over 20 years,
although only recently it has gained a widespread popularity and somewhat

What Is Computational Intelligence and Where Is It Going? 3

different flavor. There are already at least 10 journals with “Computational
Intelligence” in the title and the number of journals with “intelligent” or
“intelligence” in the title is far greater.

The quarterly journal Computational Intelligence. An International Jour-
nal (Blackwell Publishing, since 1984) is the oldest among CI journals. It is
focused on typical artificial intelligence problems, related to higher cogni-
tion: logic, reasoning, planning, complex agents, language understanding, rule-
based machine learning and reinforcement learning. In the description of the
journal it is clearly stated that: “This leading international journal promotes
and stimulates research in the field of artificial intelligence (AI). ... The jour-
nal is designed to meet the needs of a wide range of AI workers in academic
and industrial research.” The main focus areas include AI applications in en-
tertainment, software engineering, computational linguistics, web intelligence,
business, finance, commerce and economics. Unfortunately this journal makes
an impression that computational intelligence is just another name for artifi-
cial intelligence.

The Journal of Computational Intelligence in Finance (Finance & Tech-
nology Publishing, since 1993) was focused on the financial applications of CI
predictive methods, but seems to have vanished by now.

The International Journal of Computational Intelligence and Organi-
zations (Lawrence Erlbaum Associates, since 1996) is a quarterly journal
focusing on theories, methods and applications of computational intelligence
in organizations. This journal “publishes original, high-quality articles deal-
ing with the design, development, implementation and management of neural
networks, genetic algorithms, fuzzy logic, uncertain reasoning techniques, and
related machine learning methods as they apply to organizations. Application
of alternative techniques and comparisons to other artificial intelligence mod-
els, nonparametric statistics, and decision trees are encouraged. The emphasis
is on how computational intelligence is being applied to decision making
and problem solving in organizations.” Note that this journal (unfortunately
conspicuously absent in the Internet) encourages comparisons of results with
alternative techniques that may be used to solve the same problem.

The Journal of Advanced Computational Intelligence and Intelligent
Informatics (Fuji Technology Press, since 1997) is published bimonthly. This
journal focuses on “the synergetic integration of neural networks, fuzzy logic
and evolutionary computation”, and building intelligent systems for industrial
applications. Except for the standard fuzzy, neural and evolutionary compu-
tation triad, “hybrid systems, adaptation and learning systems, distributed
intelligent systems, network systems, multi-media, human interface, biologi-
cally inspired evolutionary systems, artificial life, chaos, fractal, wavelet analy-
sis, scientific applications and industrial applications” are also mentioned.

The International Journal of Computational Intelligence and Applications
(World Scientific, since 2001) is “dedicated to the theory and applications
of computational intelligence (artificial neural networks, fuzzy systems, evo-
lutionary computation and hybrid systems). The main goal of this journal

4 W�lodzis�law Duch

is to provide the scientific community and industry with a vehicle whereby
ideas using two or more conventional and computational intelligence based
techniques could be discussed.” Areas include neural, fuzzy and evolu-
tionary computation, pattern recognition, hybrid intelligent systems, sym-
bolic machine learning, statistical models, image/audio/video compression
and retrieval, encouraging “new ideas, combining two or more areas, such
as neuro-fuzzy, neuro-symbolic, neuro-evolutionary, neuro-symbolic, neuro-
pattern recognition, fuzzy-evolutionary, evolutionary-symbolic, fuzzy-
evolutionary, evolutionary-symbolic, fuzzy-symbolic, etc.”

The International Journal of Computational Intelligence (World Enfor-
matika Society, since 2004) is a quarterly open access journal with a double-
blind international review system. It is “focusing on theories, methods and
applications in computational intelligence”. There is no explanation what is
meant by CI, just a statement that it deals “with any area of computational
intelligence research”. So far most papers in this journal are on various applica-
tions using a mixture of neural, fuzzy, and bio-inspired optimization methods.

The International Journal of Computational Intelligence Research
(Research India Publications, since 2005) is a free online journal. In descrip-
tion of its aims the connection with biology is stressed: “Computational intel-
ligence is a well-established paradigm, where new theories with a sound bio-
logical understanding have been evolving. The current experimental systems
have many of the characteristics of biological computers and are beginning to
be built to perform a variety of tasks that are difficult or impossible to do with
conventional computers.” CI is considered to be heterogeneous field involving
“such technologies as neurocomputing, fuzzy systems, probabilistic reasoning,
artificial life, evolutionary algorithms, multi-agent systems etc.” All of these
of course performed using conventional computers.

The International Journal of Computational Intelligence Theory and Prac-
tice (Serials Publications, since 2006) “aims at publishing papers addressing
theories, methods and applications in artificial neural networks, fuzzy systems,
evolutionary computation, intelligent agents, hybrid systems and other areas
of artificial intelligence”. No links to papers are provided, and no papers on
classical AI have been published so far.

The Journal of Computational Intelligence in Bioinformatics (Research
India Publications, 2006) covers “artificial intelligence and computational
intelligence theory and their applications in bioinformatics”. This journal tries
to cover all “advances in computational molecular/structural biology, encom-
passing areas such as computing in biomedicine and genomics, computational
proteomics and systems biology, and metabolic pathway engineering”. The
topics covered include many CI methods.

The IEEE Computational Intelligence Magazine (published by the IEEE
Computational Intelligence Society, since 2006) covers “applications oriented
developments, successful industrial implementations, design tools, technology
reviews, computational intelligence education, and applied research”. It also
provides an overview of interesting CI topics in special issues.

What Is Computational Intelligence and Where Is It Going? 5

The Computational Intelligence and Neuroscience (Hindawi Publishing,
since 2007) is a new open access journal for “the interdisciplinary field of neural
computing, neural engineering and artificial intelligence, where neuroscien-
tists, cognitive scientists, engineers, psychologists, physicists, computer scien-
tists, and artificial intelligence investigators among others can publish their
work in one periodical that bridges the gap between neuroscience, artificial
intelligence and engineering.” This journal has a definite profile. “Artificial”
probably means here “computational”, and in most journal descriptions these
words are treated as synonyms.

In the last year five new “computational intelligence” journals have been
established. Unfortunately they all seem to be oriented towards methods
rather than grand challenging problems to be solved. Some journals add fash-
ionable topics like wavelet analysis, chaos, fractals, other go in the direction
of AI, mentioning agents and reasoning as the main topics. The oldest CI
journal happens to be a good old-fashioned AI in disguise.

For historical reasons these journals accept as valid CI topics selected
statistical and mathematical techniques, such as Bayesian networks, prob-
abilistic reasoning, rough sets and rough logic, basis set expansion meth-
ods for function approximation, support vector machines, kernel methods, or
statistical natural language processing methods, while many other methods,
including various statistical and logical approaches to clusterization, classi-
fication, approximation, first and higher-order logic in reasoning, numerical
optimizations techniques, approximation theory, or search techniques used to
solve the same type of problems as the “valid CI methods”, are beyond their
scope. One can predict with confidence that many other journals called “Com-
putational intelligence in xxx” will appear in near future. Thus analysis of the
topics covered by CI journals does not allow for clear understanding of what
CI is or should be.

3 CI Books

Perhaps books with “Computational Intelligence” will define the field better
than journal descriptions. So far there are only a few textbooks with this
title. The oldest one, Computational Intelligence – A Logical Approach [4],
is a typical symbolic AI book focusing on logic and reasoning. The authors
acknowledge that “Artificial intelligence is the established name for the field
we have defined as computational intelligence”, but think that “the term
‘artificial intelligence’ is a source of much confusion” and therefore propose
to change the name, creating even greater confusion. In the first chapter
they write: “Computational intelligence is the study of the design of intelli-
gent agents. [...] The central scientific goal of computational intelligence is to
understand the principles that make intelligent behavior possible, in natural or
artificial systems”. This could make their view of CI rather broad, because
there are many approaches to analyze and model such systems. Unfortunately

6 W�lodzis�law Duch

they focus only on reasoning as computation, and logic as the basis for rea-
soning, forgetting that symbols have first to be derived from real perceptions,
and therefore pattern analysis cannot be avoided.

In the book Computational Intelligence for Decision Support similar defi-
nition is given: “Computational intelligence is the field of studying how to
build intelligent agents” [5]. This obviously does not include most of what
is discussed by CI community, presented at conferences, and published in CI
journals. People with AI background evidently tend to see CI through the
perspective of intelligent agents.

The book Computational Intelligence: An Introduction [6] defines CI as
“the study of adaptive mechanisms to enable or facilitate intelligent behavior
in complex and changing environments. As such, computational intelligence
combines artificial neural networks, evolutionary computing, swarm intelli-
gence and fuzzy systems”. These are the main topics covered in the book,
leaving aside many other CI topics.

Finally, the book Computational Intelligence: Principles, Techniques and
Applications [7] contains a whole chapter in which the author tries to come up
with a definition of CI by adding more and more methods to the core set that
includes fuzzy, neural and evolutionary computations. This book covers also
possibilistic reasoning, belief calculus, fuzzy Petri nets, and various combina-
tions of these methods. It is perhaps the most ambitious attempt to define
computational intelligence, discussing many exotic approaches, but still it falls
short of covering all major tracks of any large conference on computational
intelligence, for example it completely ignores kernel methods and basis set
expansion networks.

Springer Studies in Computational Intelligence series has published already
many books covering various aspects of CI. IEEE Computational Intelligence
Society sponsors a book series on computational intelligence that is published
by IEEE Press/Wiley. Several books apply CI techniques to specific areas, for
example Computational Intelligence in Design and Manufacturing [8], Compu-
tational Intelligence in Software Quality Assurance [9], Computational Intel-
ligence in Control Engineering [10], Computational Intelligence in Economics
and Finance [11] and many others. They all tend to see computational intel-
ligence as “a consortium of data-driven methodologies which includes fuzzy
logic, artificial neural networks, genetic algorithms, probabilistic belief net-
works and machine learning” [11]

The Artificial Intelligence Portal in Wikipedia defines Computational
intelligence (CI) as “a branch of the study of artificial intelligence. Compu-
tational intelligence research aims to use learning, adaptive, or evolutionary
computation to create programs that are, in some sense, intelligent. Compu-
tational intelligence research either explicitly rejects statistical methods (as
is the case with fuzzy systems), or tacitly ignores statistics (as is the case
with most neural network research). In contrast, machine learning research
rejects non-statistical approaches to learning, adaptivity, and optimization.”
According to this view CI is a part of AI focused on learning, but ignoring

What Is Computational Intelligence and Where Is It Going? 7

statistical methods. If CI is what computational intelligence experts do, this
view is obviously false: kernel methods and Bayesian approaches are statis-
tical learning techniques that are very much part of their bag of tools. AI
experts have initially explicitly excluded all pattern recognition methods that
CI community is very much interested in, so CI cannot be a part of classi-
cal AI.

4 What Should Computational Intelligence Really Be?

For many CI experts biological inspirations are very important, but even if
biology is extended to include all neural, psychological, and evolutionary inspi-
rations this will only cover the main themes (neural, fuzzy and evolutionary)
that the CI community works on. The whole Bayesian foundations of learn-
ing, probabilistic and possibilistic reasoning, other alternative approaches to
handle uncertainty, kernel methods, information geometry and geometrical
learning approaches, search algorithms and many other methods have little
or no biological connections. Some neural methods are obviously more neural
then others, with basis set function expansion methods having more to do with
approximation theory than neurobiological inspirations. CI experts have a ten-
dency to use only their own tools, for example only evolutionary algorithms
for optimization, although there are many other methods for optimization
with well-proven convergence properties. In real world applications we cer-
tainly should not restrict our toolbox to selected methods, but search for the
best tools to solve the problem. If a straightforward numerical solution is pos-
sible the problem is not interesting to the CI community, but if intelligence is
required to solve it all useful methods should be considered.

Physics studies nature and cannot be defined by its experimental or theo-
retical tools; the same is true for other branches of science. Computer science
studies computable processes and information processing systems. What does
computational intelligence study? CI studies problems for which there are
no effective algorithms, either because it is not possible to formulate them
or because they are NP-hard and thus not effective in real life applications.
This is quite broad definition: computational intelligence is a branch of
science studying problems for which there are no effective com-
putational algorithms. Biological organisms solve such problems every
day: extracting meaning from perception, understanding language, solving
ill-defined computational vision problems thanks to evolutionary adaptation
of the brain to the environment, surviving in a hostile environment. These
problems require intelligence to solve but they may also be approached in dif-
ferent ways. Defining computational intelligence by the problems that the field
studies has the advantage of removing the need to restrict the types of meth-
ods used for solution. Different fields obviously overlap with each other, and
thus some problems will be of interest mainly for CI experts, while other prob-
lems will be of interests to experts in other fields. For example, optimization

8 W�lodzis�law Duch

problems tackled by evolutionary, swarm, ant and other algorithms are of
interest to operational research community. What problems are typical for
computational intelligence?

A good part of CI research is concerned with low-level cognitive func-
tions: perception, object recognition, signal analysis, discovery of structures
in data, simple associations and control. Methods developed for this type of
problems include supervised and unsupervised learning by adaptive systems,
and they encompass not only neural, fuzzy and evolutionary approaches but
also probabilistic and statistical approaches, such as Bayesian networks or ker-
nel methods. These methods are used to solve the same type of problems in
various fields such as pattern recognition, signal processing, classification and
regression, data mining. Higher level cognitive functions are required to solve
non-algorithmizable problems involving systematic thinking, reasoning, com-
plex representation of knowledge, episodic memory, planning, understanding
of symbolic knowledge. These problems are at present solved in a best way
by AI community using methods based on search, symbolic knowledge rep-
resentation, reasoning with frame-based expert systems, machine learning in
symbolic domains, logics and linguistic methods. There is little overlap bet-
ween problems solved using low and high-level mental functions, although
they belong to the same broader category of non-algorithmizable problems.

From this point of view AI is a part of CI focusing on problems that
require higher cognition and at present are easier to solve using symbolic
knowledge representation. It is possible that other CI methods will also find
applications to these problems in future. The main overlap areas between low
and high-level cognitive functions are in sequence learning, reinforcement and
associative learning, and distributed multi-agent systems. All tasks that req-
uire reasoning based on perceptions, such as robotics, automatic car driving,
autonomous systems require methods for solving both low and high-level cog-
nitive problems and thus are a natural meeting ground for AI experts with
the rest of the CI community.

The idea that all intelligence comes from symbol manipulation has been
perhaps misunderstood by AI community. Newell and Simon who originated
this idea [12, 13] wrote about physical symbols, not about symbolic vari-
ables. Physical symbols are better represented as multi-dimensional pat-
terns representing states of various brain areas. Symbolic models of brain
processes certainly do not offer accurate approximation for vision, control or
any other problem that is described by continuous rather then symbolic vari-
ables. Approximations to brain processes should be done at a proper level
to obtain similar functions. Symbolic dynamics [14] and extraction of finite
state atomata from recurrent networks [15] may provide useful information on
dynamical systems, and may be useful in modeling transition between low-to
high level processes.

The division between low and high-level cognitive functions is only a rough
approximation to the processes in the brain. Embodied cognition has been

What Is Computational Intelligence and Where Is It Going? 9

intensively studied in the last decade, and developmental ideas showing how
higher processes emerge from the lower ones have been embraced by robotics
people. Even in linguistics it is now commonly acknowledged that real meaning
comes from body-based metaphors [16], and the same is true for such abstract
areas as mathematics [17]. New CI methods that go beyond pattern recog-
nition and help to solve AI problems may eventually be developed, starting
from distributed knowledge representation, graphical methods and spreading
activations networks. The dynamics of such models will probably allow for
reasonable symbolic approximations, although this is still an open problem.

It is instructive to think about the spectrum of CI problems and various
approximations needed to solve them. Neural network models are inspired by
brain processes and structures at quite low single-neuron level, while sym-
bolic AI models are inspired by processes at the highest level. The brain has
a very specific modular and hierarchical structure, it is not one huge neural
network. Perceptron model of a neuron has only one internal parameter, the
firing threshold, and a few synaptic weights that determine neuron-neuron
interactions. Single neurons probably influence brain information processing
in quite insignificant way. Larger neural structures, such as microcircuits or
neural cell assemblies, could also be used as basic processors for neural mod-
eling. They have more complex internal states and more complex interactions
between elements, but connectionist systems are not trying to approximate
these process in any systematic way [18]. A network of networks, hiding the
complexity of its processors in a hierarchical way, with different emergent
properties at each level, will have progressively more internal knowledge and
more complex interactions with other such systems. At the highest level mod-
els of whole brains with an infinite number of potential internal states and
very complex interactions may be obtained. Discussion of such transition from
neurons to brains and to societies is presented in [19].

Computational intelligence is certainly more than just the study of the
design of intelligent agents, it includes also study of all non-algoritmizable
processes that humans (and sometimes animals) can solve with various
degree of competence, and the engineeering approaches to solve such prob-
lems using hardware and software systems. CI should not be treated as a
bag of tricks without deeper foundations. Competition to solve CI problems
using approaches developed in other fields should be invited. Knowledge and
search-based methods should complement the core CI techniques in problems
requiring reasoning. Goldberg and Harik [20] see computational intelligence
more as a way of thinking about problems, calling for a “broader view of
the scope of the discipline”. They have analyzed limitations to progress in
computational manufacturing design, finding the models of human behav-
iors to be most useful. Although this is certainly worthwhile, defining clearly
the problems that CI wants to solve and welcoming all methods that can
be used in such solutions, independent of their inspirations, is even more
important.

10 W�lodzis�law Duch

5 Grand Challenges to Computational Intelligence

AI has focused on many specific approaches to problem solving, useful for
development of expert systems, neglecting its initial ambitious goals. Although
a number of grand challenges for AI has been formulated, starting with the
famous Turing Test for machine intelligence, these goals were perhaps reach-
ing too far and thus were not realistic. Meaningful dialog in natural language
requires a very-large knowledge base and efficient retrieval of knowledge struc-
tures. While the CyC project [21] has created huge knowledge base manually
coding it over a period of more than 30 years the retrieval mechanisms that
it offers are too inefficient to use it in large-scale dialog systems. A grand
challenge for CI community is to propose more efficient knowledge represen-
tation and retrieval structures, perhaps modeled on the associative memory
of the brain, perhaps using different knowledge representations for different
purposes [22]. Vector and similarity-based models cannot yet replace complex
frames in reasoning processes. Semantic networks have never been used in a
large scale dialog systems, although in principle they could provide efficient
association and inference mechanisms.

Feigenbaum [23] proposed a reasoning test which should be simpler for
computers than the Turing Test. Instead of a general dialog that has to be
based on extensive knowledge of the world, this test is based on the expert
knowledge in a narrow domain. Reasoning in some field of mathematics or
science by human expert and by an artificial system should be evaluated by
another expert in the same field who will pose problems, questions, and ask
for explanations. This could be achieved with super-expert systems in various
domains, giving some measures of progress towards intelligent reasoning sys-
tems. The World Championship for 1st Order Automated Theorem Proving
organized at the Conference on Automated Deduction (CADE) could be or-
ganized not only between computers, but could also involve humans, although
much longer time to complete the proofs may be required. Other grand AI
challenges [23] are concerned with large-scale knowledge bases, bootstraping
on the knowledge resources from the Internet and creating semantic Internet.
The 20-questions game could also be a good challenge for AI, much easier
than the Turing test, requiring extensive knowledge about objects and their
properties, but not about complex relations between objects. In fact some
simple vector-space techniques may be used to play it [22], making it a good
challenge not only for AI, but also for the broader CI community.

What would be a good grand challenge for non-AI part of computational
intelligence? This has been the subject of a discussion panel on the challenges
to the CI in the XXI century, organized at the World Congress on Compu-
tational Intelligence in Anchorage, Alaska, in 1998. The conclusion was that
a grand challenge for CI is to build an artificial rat, an artificial animal that
may survive in a hostile environment. The intermediate steps require solution
to many problems in perception, such as object recognition, auditory and
visual scene analysis, spatial orientation, memory, motor learning, behavioral

What Is Computational Intelligence and Where Is It Going? 11

control, but also some reasoning and planning. The ultimate challenge may
be to build not only an animal, but a human-like system that in addition to
survival will be able to pass the Turing test.

Imagine the future in which superintelligence based on some form of com-
putations has been realized. In the long run everything seems to be possible,
but what we would like it to do and like it to be? Computational intelligence
should be human-centered, helping humans not only to solve their problems,
but also to formulate meaningful goals, leading to a true personal fulfillment.
It should protect us starting from birth, not only monitoring the health haz-
ards, but also observing and guiding personal development, gently challenging
children at every step to reach their full physical as well as mental potential.
It should be a technology with access to extensive knowledge, but it also
should help humans to make wise decisions presenting choices and their pos-
sible consequences. Although it may seem like a dangerous utopia perhaps
deeper understanding of developmental processes, cognitive and emotional
brain functions, real human needs, coupled with technology that can recognize
behavioral patterns, make sense of observations, understand natural language,
plan and reason with extensive background knowledge, will lead to a better
world in which no human life is wasted. Intelligence with wisdom is perhaps
an ultimate goal for human-oriented science. Such utopia is worth dreaming
of, although we are still very far from this level (see some speculations on this
topic in [24, 25, 26]).

A long-term goal for computational intelligence is to create cognitive sys-
tems that could compete with humans in large number of areas. So far this
is possible only in restricted domains, such as recognition of specific patterns,
processing of large amount of numerical information, memorization of numer-
ous details, high precision control with small number of degrees of freedom,
and reasoning in restricted domains, for example in board games. Brains are
highly specialized in analysis of natural patterns, segmentation of auditory
and visual scenes, and control of body movements, mapping perceptions to
actions. Despite great progress in computational intelligence artificial systems
designed to solve lower level cognitive functions are still far behind the natural
ones. Situation is even worse when higher-level cognitive functions, involving
complex knowledge structures necessary for understanding of language, rea-
soning, problem solving or planning, are considered. Human semantic and
episodic memory is vastly superior to the most sophisticated artificial sys-
tems, storing complex memory patterns and rapidly accessing them in an
associative way.

So far CI understood as a collection of different methods had no clear
challenges of the AI magnitude. Improving clusterization, classification and
approximation capabilities of CI systems is incremental and there are already
so many methods that it is always possible to find alternative solutions. At the
technical level fusion of different CI techniques is considered to be a challenge,
but attempts to combine evolutionary and neural methods, to take just one
example, have a long history and it is hard to find results that are significantly

12 W�lodzis�law Duch

better than those achieved by competing techniques. The challenge is at the
meta-level, to find all interesting solutions automatically, especially in difficult
cases. Brains are flexible, and may solve the same problem in many different
ways. Different applications – recognition of images, handwritten characters,
faces, analysis of signals, mutimedia streams, texts, or various biomedical data
– usually require highly specialized methods to achieve top performance. This
is a powerful force that leads to compartmentalization of different CI branches.
Creation of meta-learning systems competitive with the best methods in var-
ious applications is a great challenge for CI.

If we recognize that CI should be defined as the science of solving non-algo-
rithmizable problems using computers or specialized hardware the whole field
will be firmly anchored in computer and engineering sciences, many technical
challenges may be formulated, and important biological sources of inspiration
acknowledged. Focusing on broad, challenging problems instead of tools will
enable competition with other methods for various applications, facilitating
real progress towards even more difficult problems. It should also allow for
greater integration of CI and AI communities working on real-world problems
that require integration of perception with reasoning. Broad foundations for
CI that go beyond pattern recognition need to be constructed, including solv-
ing problems related to the higher cognitive functions (see [27], this volume).
Inspirations drawn from cognitive and brain sciences, or biology in general,
will continue to be very important, but at the end of the road CI will become
a solid branch of science on its own standing.

Acknowledgement. I am grateful for the support by the Polish Committee
for Scientific Research, research grant 2005-2007.

References

[1] H.A. Simon, Artificial Intelligence: Where Has it Been, and Where is it
Going? IEEE Transactions on Knowledge and Data Engineering 3(2):
128-136, 1991.

[2] A.K. Mackworth, The Coevolution of AI and AAAI, AI Magazine 26(4):
51-52, 2005.

[3] J.C. Bezdek, What is computational intelligence? In: Computational In-
telligence Imitating Life, pp. 1–12, IEEE Press, New York, 1994.

[4] D. Poole, A. Mackworth and R. Goebel. Computational Intelligence – A
Logical Approach. Oxford University Press, New York, 1998.

[5] Z. Chen, Computational Intelligence for Decision Support. CRC Press,
Boca Raton, 2000.

[6] A.P. Engelbrecht, Computational Intelligence: An Introduction. Wiley,
2003.

[7] A. Konar, Computational Intelligence: Principles, Techniques and Appli-
cations. Springer 2005.

What Is Computational Intelligence and Where Is It Going? 13

[8] A. Kusiak, Computational Intelligence in Design and Manufacturing.
Wiley-Interscience, 2000.

[9] S. Dick and A. Kandel, Computational intelligence in software quality
assurance. Series in Machine Perception and Artificial Intelligence, Vol.
63, World Scientific 2005.

[10] R.E. King, Computational intelligence in control engineering, Marcel
Dekker Inc., NY, 1999.

[11] S.H. Chen, P. Wang, and P.P. Wang Computational Intelligence in Eco-
nomics and Finance. Advanced Information Processing Series, Springer
2006.

[12] A. Newell and H.A. Simon, Computer science as empirical enquiry: Sym-
bols and search. Communications of the ACM 19(3), 113–126, 1976.

[13] A. Newell, Unified Theories of Cognition. Cambridge, MA: Harvard
University Press 1990.

[14] D. Lind, B. Marcus, Symbolic Dynamics and Coding, Cambridge
University Press, 1995.

[15] H. Jacobsson, Rule extraction from recurrent neural networks: A taxon-
omy and review. Neural Computation, 17(6), 1223–1263, 2005.

[16] G. Lakoff, M. Johnson. Metaphors We Live By. University of Chicago
Press, 2nd ed, 2003.

[17] G. Lakoff, R. Núnez, Where Mathematics Comes From: How the
Embodied Mind Brings Mathematics into Being. Basic Books 2000.

[18] A. Clark, R. Lutz (eds), Connectionism in Context. Springer-Verlag,
Berlin, 1992.

[19] W. Duch and J. Mandziuk, Quo Vadis Computational Intelligence? In:
Machine Intelligence: Quo Vadis? Advances in Fuzzy Systems – Applica-
tions and Theory (eds. P. Sincak, J. Vascak, K. Hirota), World Scientific,
pp. 3–28, 2004.

[20] D.E. Goldberg and G. Harik, A Case Study in Abnormal CI: The Design
of Manufacturing and Other Anthropocentric Systems. International
J. Computational Intelligence and Organizations, 1, 78-93, 1996.

[21] D. Lenat and R.V. Guha, Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Addison-Wesley 1990.

[22] J. Szymanski, T. Sarnatowicz and W. Duch, Towards Avatars with Arti-
ficial Minds: Role of Semantic Memory. Journal of Ubiquitous Computing
and Intelligence (in print)

[23] E.A. Feigenbaum, Some Challenges and Grand Challenges for Computa-
tional Intelligence. Journal of the ACM 50(1), 32–40, 2003.

[24] R. Kurzweil. The age of spiritual machines: When computers exceed
human intelligence. Penguin, New York, NY, 1999.

[25] J. McCarthy, The Future of AI–A Manifesto. AI Magazine 26, 39–40,
2005.

[26] L. Perlovsky. Knowledge Instinct. Basic Books, 2006.
[27] W. Duch, Towards comprehensive foundations of computational intel-

ligence. In: Duch W, Mandziuk J, Eds, Challenges for Computational
Intelligence. Springer, pp. 261–316, 2007.

New Millennium AI and the Convergence
of History

Jürgen Schmidhuber

TU Munich, Boltzmannstr. 3, 85748 Garching bei, München, Germany &
IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland
juergen@idsia.ch - http://www.idsia.ch/~juergen

Summary. Artificial Intelligence (AI) has recently become a real formal science:
the new millennium brought the first mathematically sound, asymptotically optimal,
universal problem solvers, providing a new, rigorous foundation for the previously
largely heuristic field of General AI and embedded agents. At the same time there
has been rapid progress in practical methods for learning true sequence-processing
programs, as opposed to traditional methods limited to stationary pattern associa-
tion. Here we will briefly review some of the new results, and speculate about future
developments, pointing out that the time intervals between the most notable events
in over 40,000 years or 29 lifetimes of human history have sped up exponentially,
apparently converging to zero within the next few decades. Or is this impression
just a by-product of the way humans allocate memory space to past events?

1 Introduction

In 2003 we observed [84, 82] that each major breakthrough in computer sci-
ence tends to come roughly twice as fast as the previous one, roughly match-
ing a century-based scale: In 1623 the computing age started with the first
mechanical calculator by Wilhelm Schickard (followed by machines of Pascal,
1640, and Leibniz, 1670). Roughly two centuries later Charles Babbage came
up with the concept of a program-controlled computer (1834-1840). One cen-
tury later, in 1931, Kurt Gödel layed the foundations of theoretical computer
science with his work on universal formal languages and the limits of proof
and computation. His results and Church’s extensions thereof were reformu-
lated by Turing in 1936, while Konrad Zuse built the first working program-
controlled computers (1935-1941), using the binary system of Leibniz (1701)
instead of the more cumbersome decimal system used by Babbage and many
others. By then all the main ingredients of ‘modern’ computer science were in
place. The next 50 years saw many less radical theoretical advances as well as
faster and faster switches—relays were replaced by tubes by single transistors
by numerous transistors etched on chips—but arguably this was rather pre-
dictable, incremental progress without earth-shaking events. Half a century
Jürgen Schmidhuber: New Millennium AI and the Convergence of History, Studies in Compu-

tational Intelligence (SCI) 63, 15–35 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

16 Jürgen Schmidhuber

later, however, Tim Berners-Lee triggered the most recent world-changing
development by creating the World Wide Web (1990).

Extrapolating the trend, we should expect the next radical change to man-
ifest itself one quarter of a century after the most recent one, that is, by 2015,
when some computers will already match brains in terms of raw computing
power, according to frequent estimates based on Moore’s law, which suggests
a speed-up factor of roughly 1000 per decade, give or take a few years. The
remaining series of faster and faster additional revolutions should converge in
an Omega point (term coined by Pierre Teilhard de Chardin, 1916) expected
between 2030 and 2040, when individual machines will already approach the
raw computing power of all human brains combined (provided Moore’s law
does not break down—compare Stanislaw Ulam’s concept of an approach-
ing historic singularity (cited in [40]) or Vinge’s closely related technological
singularity [113] as well as the subsequent speculations of Moravec [48] and
Kurzweil [40]). Many of the present readers of this article should still be alive
then.

Will the software and the theoretical advances keep up with the hardware
development? We are convinced they will. In fact, the new millennium has
already brought fundamental new insights into the problem of constructing
theoretically optimal rational agents or universal Artificial Intelligences (AIs,
more on this below). On the other hand, on a more practical level, there
has been rapid progress in learning algorithms for agents interacting with
a dynamic environment, autonomously discovering true sequence-processing,
problem-solving programs, as opposed to the reactive mappings from sta-
tionary inputs to outputs studied in most traditional machine learning (ML)
research. In what follows, we will briefly review some of the new results, then
come back to the issue of whether or not history is about to “converge.”

2 Overview

Since virtually all realistic sensory inputs of robots and other cognitive sys-
tems are sequential by nature, the future of machine learning and AI in general
lies in sequence processing as opposed to processing of stationary input pat-
terns. Most traditional methods for learning time series and mappings from
sequences to sequences, however, are based on simple time windows: one of the
numerous feedforward ML techniques such as feedforward neural nets (NN)
[4] or support vector machines [112] is used to map a restricted, fixed time
window of sequential input values to desired target values. Of course such
approaches are bound to fail if there are temporal dependencies exceeding the
time window size. Large time windows, on the other hand, yield unacceptable
numbers of free parameters.

If we want to narrow the gap between learning abilities of humans and
machines, then we will have to study how to learn general algorithms instead
of such reactive mappings. In what follows we will first discuss very recent

New Millennium AI and the Convergence of History 17

universal program learning methods that are optimal in various mathematical
senses. For several reasons, however, these methods are not (yet) practically
feasible. Therefore we will also discuss recent less universal but more feasible
program learners based on recurrent neural networks.

Finally we will return to the introduction’s topic of exponential speed-up,
extending it to all of human history since the appearance of the Cro Magnon
man roughly 40,000 years ago.

3 Notation

Consider a learning robotic agent with a single life which consists of discrete
cycles or time steps t = 1, 2, . . . , T . Its total lifetime T may or may not be
known in advance. In what follows, the value of any time-varying variable Q
at time t (1 ≤ t ≤ T) will be denoted by Q(t), the ordered sequence of values
Q(1), . . . , Q(t) by Q(≤ t), and the (possibly empty) sequence Q(1), . . . , Q(t−
1) by Q(< t).

At any given t the robot receives a real-valued input vector x(t) from the
environment and executes a real-valued action y(t) which may affect future
inputs; at times t < T its goal is to maximize future success or utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ)

∣∣∣∣∣ h(≤ t)

]
, (1)

where r(t) is an additional real-valued reward input at time t, h(t) the ord-
ered triple [x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and
Eμ(· | ·) denotes the conditional expectation operator with respect to some
possibly unknown distribution μ from a set M of possible distributions. Here
M reflects whatever is known about the possibly probabilistic reactions of the
environment. For example, M may contain all computable distributions [104,
105, 42, 36]. Note that unlike in most previous work by others [38, 109], but
like in much of the author’s own previous work [97, 83], there is just one life,
no need for predefined repeatable trials, no restriction to Markovian interfaces
between sensors and environment [76], and the utility function implicitly takes
into account the expected remaining lifespan Eμ(T | h(≤ t)) and thus the
possibility to extend it through appropriate actions [83, 86, 90, 87].

4 Universal But Incomputable AI

Solomonoff’s theoretically optimal universal predictors and their Bayesian
learning algorithms [104, 105, 42, 36] only assume that the reactions of the
environment are sampled from an unknown probability distribution μ con-
tained in a set M of all enumerable distributions—compare text after equation
(1). That is, given an observation sequence q(≤ t), we only assume there exists

18 Jürgen Schmidhuber

a computer program that can compute the probability of the next possible
q(t+1), given q(≤ t). Since we typically do not know this program, we predict
using a mixture distribution

ξ(q(t + 1) | q(≤ t)) =
∑

i

wiμi(q(t + 1) | q(≤ t)), (2)

a weighted sum of all distributions μi ∈M, i = 1, 2, . . ., where the sum of the
positive weights satisfies

∑
i wi ≤ 1. It turns out that this is indeed the best

one can possibly do, in a very general sense [105, 36]. The drawback is that
the scheme is incomputable, since M contains infinitely many distributions.

One can increase the theoretical power of the scheme by augmenting M by
certain non-enumerable but limit-computable distributions [80], or restrict it
such that it becomes computable, e.g., by assuming the world is computed by
some unknown but deterministic computer program sampled from the Speed
Prior [81] which assigns low probability to environments that are hard to
compute by any method. Under the Speed Prior the cumulative a priori prob-
ability of all data whose computation through an optimal algorithm requires
more than O(n) resources is 1/n.

Can we use the optimal predictors to build an optimal AI? Indeed, in the
new millennium it was shown we can. At any time t, the recent theoretically
optimal yet uncomputable RL algorithm Aixi [36] uses Solomonoff’s univer-
sal prediction scheme to select those action sequences that promise maximal
future reward up to some horizon, typically 2t, given the current data h(≤ t).
One may adapt this to the case of any finite horizon T . That is, in cycle t+ 1,
Aixi selects as its next action the first action of an action sequence maximiz-
ing ξ-predicted reward up to the horizon, appropriately generalizing eq. (2).
Recent work [36] demonstrated Aixi’s optimal use of observations as follows.
The Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the
sense that its average utility value converges asymptotically for all μ ∈M to
the optimal value achieved by the (infeasible) Bayes-optimal policy pμ which
knows μ in advance. The necessary condition that M admits self-optimizing
policies is also sufficient. Furthermore, pξ is Pareto-optimal in the sense that
there is no other policy yielding higher or equal value in all environments
ν ∈M and a strictly higher value in at least one [36].

What are the implications? The first 50 years of attempts at “general AI”
have been dominated by heuristic approaches [52, 69, 111, 47]. Traditionally
many theoretical computer scientists have regarded the field with contempt for
its lack of hard theoretical results. Things have changed, however. Although
the universal approach above is practically infeasible due to the incomputabil-
ity of Solomonoff’s prior, it does provide, for the first time, a mathematically
sound theory of AI and optimal decision making based on experience, iden-
tifying the limits of both human and artificial intelligence, and providing a
yardstick for any future approach to general AI.

Using such results one can also come up with theoretically optimal ways
of improving the predictive world model of a curious robotic agent [89]. The

New Millennium AI and the Convergence of History 19

rewards of an optimal reinforcement learner are the predictor’s improvements
on the observation history so far. They encourage the reinforcement learner
to produce action sequences that cause the creation and the learning of new,
previously unknown regularities in the sensory input stream. It turns out that
art and creativity can be explained as by-products of such intrinsic curiosity
rewards: good observer-dependent art deepens the observer’s insights about
this world or possible worlds, connecting previously disconnected patterns in
an initially surprising way that eventually becomes known and boring. While
previous attempts at describing what is satisfactory art or music were infor-
mal, this work permits the first technical, formal approach to understanding
the nature of art and creativity [89].

Using the Speed Prior mentioned above, one can scale the universal app-
roach down such that it becomes computable [81]. In what follows we will men-
tion ways of introducing additional optimality criteria that take into account
the computational costs of prediction and decision making.

5 Asymptotically Optimal General Problem Solver

To take computation time into account in a general, optimal way [41] [42,
p. 502-505], the recent asymptotically optimal search algorithm for all well-
defined problems [35] allocates part of the total search time to searching the
space of proofs for provably correct candidate programs with provable upper
runtime bounds; at any given time it focuses resources on those programs
with the currently best proven time bounds. The method is as fast as the
initially unknown fastest problem solver for the given problem class, save for
a constant slowdown factor of at most 1 + ε, ε > 0, and an additive problem
class-specific constant. Unfortunately, however, the latter may be huge.

Practical applications may not ignore the constants though. This motivates
the next section which addresses all kinds of optimality (not just asymptotic
optimality).

6 Optimal Self-Referential General Problem Solver

The recent Gödel machines [83, 86, 90, 87] represent the first class of math-
ematically rigorous, general, fully self-referential, self-improving, optimally
efficient problem solvers. In particular, they are applicable to the problem
embodied by objective (1), which obviously does not care for asymptotic
optimality.

The initial software S of such a Gödel machine contains an initial problem
solver, e.g., one of the approaches above [36] or some less general, typical sub-
optimal method [38, 109]. Simultaneously, it contains an initial proof searcher
(possibly based on an online variant of Levin’s Universal Search [41]) which
is used to run and test proof techniques. The latter are programs written in a

20 Jürgen Schmidhuber

universal programming language implemented on the Gödel machine within
S, able to compute proofs concerning the system’s own future performance,
based on an axiomatic system A encoded in S. A describes the formal utility
function, in our case eq. (1), the hardware properties, axioms of arithmetics
and probability theory and string manipulation etc, and S itself, which is
possible without introducing circularity [83].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the
Gödel machine rewrites any part of its own code in a computable way through
a self-generated executable program as soon as its Universal Search variant has
found a proof that the rewrite is useful according to objective (1). According to
the Global Optimality Theorem [83, 86, 90, 87], such a self-rewrite is globally
optimal—no local maxima!—since the self-referential code first had to prove
that it is not useful to continue the proof search for alternative self-rewrites.

If there is no provably useful, globally optimal way of rewriting S at all,
then humans will not find one either. But if there is one, then S itself can find
and exploit it. Unlike previous non-self-referential methods based on hard-
wired proof searchers [36], Gödel machines not only boast an optimal order
of complexity but can optimally reduce (through self-changes) any slowdowns
hidden by the O()-notation, provided the utility of such speed-ups is provable
at all.

Practical implementations of the Gödel machine do not yet exist though,
and probably require a thoughtful choice of the initial axioms and the initial
proof searcher. In the next sections we will deal with already quite practical,
non-optimal and non-universal, but still rather general searchers in program
space, as opposed to the space of reactive, feedforward input / output map-
pings, which still attracts the bulk of current machine learning research.

7 Supervised Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks [4] with feedback con-
nections that are, in principle, as powerful as any traditional computer. There
is a very simple way to see this [74, 79]: a traditional microprocessor may be
viewed as a very sparsely connected RNN consisting of very simple neurons
implementing nonlinear AND and NAND gates, etc. Compare [100] for a more
complex argument. Early RNNs [34, 1, 60] did not exploit this potential power
because they were limited to static inputs. However, most interesting tasks
involve processing sequences that consist of continually varying inputs. Exam-
ples include robot control, speech recognition, music composition, attentive
vision, and numerous others.

The initial RNN enthusiasm of the 1980s and early 90s was fueled by the
obvious theoretical advantages of RNNs: unlike feedforward neural networks
(FNNs) [115, 70], Support Vector Machines (SVMs), and related approaches
[112], RNNs have an internal state which is essential for many tasks involving
program learning and sequence learning. And unlike in Hidden Markov Models

New Millennium AI and the Convergence of History 21

(HMMs) [125], internal states can take on continuous values, and the influence
of these states can persist for many timesteps. This allows RNN to solve tasks
that are impossible for HMMs, such as learning the rules of certain context-
free languages [16].

Practitioners of the early years, however, have been sobered by unsuccess-
ful attempts to apply RNNs to important real world problems that require
sequential processing of information. The first RNNs simply did not work very
well, and their operation was poorly understood since it is inherently more
complex than that of FNNs. FNNs fit neatly into the framework of tradi-
tional statistics and information theory [99], while RNNs require additional
insights, e.g., from theoretical computer science and algorithmic information
theory [42, 80].

Fortunately, recent advances have overcome the major drawbacks of tradi-
tional RNNs. That’s why RNNs are currently experiencing a second wave of
attention. New architectures, learning algorithms, and a better understanding
of RNN behavior have allowed RNNs to learn many previously unlearnable
tasks. RNN optimists are claiming that we are at the beginning of a “RN-
Naissance” [92, 85], and that soon we will see more and more applications of
the new RNNs.

Sequence-processing, supervised, gradient-based RNNs were pioneered by
Werbos [116], Williams [121], and Robinson & Fallside [65]; compare Pearl-
mutter’s survey [56]. The basic idea is: a teacher-given training set contains
example sequences of inputs and desired outputs or targets dk(t) for certain
neurons yk at certain times t. If the i-th neuron yi is an input neuron, then
its real-valued activation yi(t) at any given discrete time step t = 1, 2, . . . is
set by the environment. Otherwise yi(t) is a typically nonlinear function f(·)
of the yk(t− 1) of all neurons yk connected to yi, where by default yi(0) = 0
for all i. By choosing an appropriate f(·), we make the network dynamics
differentiable, e.g., yi(t) = arctan(

∑
k(wikyk(t − 1)), where wik is the real-

valued weight on the connection from yk to yi. Then we use gradient descent to
change the weights such that they minimize an objective function E reflecting
the differences between actual and desired output sequences. Popular gradi-
ent descent algorithms for computing weight changes �wik ∼ ∂E

∂wik
include

Back-Propagation Through Time (BPTT) [116, 121] and Real-Time Recurrent
Learning (RTRL) [65, 121] and mixtures thereof [121, 77].

The nice thing about gradient-based RNNs is that we can differentiate
our wishes with respect to programs, e.g., [75, 74, 79]. The set of poss-
ible weight matrices represents a continuous space of programs, and the object-
ive function E represents our desire to minimize the difference between what
the network does and what it should do. The gradient ∂E

∂w (were w is the
complete weight matrix) tells us how to change the current program such
that it will be better at fulfilling our wish.

Typical RNNs trained by BPTT and RTRL and other previous approaches
[50, 51, 107, 43, 61, 64, 10, 56, 55, 12, 13, 121, 77, 78, 122, 114, 45, 62], however,
cannot learn to look far back into the past. Their problems were first rigorously

22 Jürgen Schmidhuber

analyzed in 1991 on the author’s RNN long time lag project [29, 30]; also
compare Werbos’ concept of “sticky neurons” [117]. The error signals “flowing
backwards in time” tend to either (1) blow up or (2) vanish: the temporal
evolution of the back-propagated error exponentially depends on the weight
magnitudes. Case (1) may lead to oscillating weights. In case (2), learning to
bridge long time lags takes a prohibitive amount of time, or does not work
at all. So then why bother with RNNs at all? For short time lags we could
instead use short time-windows combined with non-recurrent approaches such
as multi-layer perceptrons [4] or better Support Vector Machines SVMs [112].

An RNN called “Long Short-Term Memory” or LSTM (Figure S1) [32]
overcomes the fundamental problems of traditional RNNs, and efficiently
learns to solve many previously unlearnable tasks involving: Recognition of
temporally extended patterns in noisy input sequences [32, 17]; Recognition
of the temporal order of widely separated events in noisy input streams
[32]; Extraction of information conveyed by the temporal distance between
events [15]; Stable generation of precisely timed rhythms, smooth and non-
smooth periodic trajectories; Robust storage of high-precision real numbers
across extended time intervals; Arithmetic operations on continuous input
streams [32, 14]. This made possible the numerous applications described fur-
ther below.

We found [32, 17] that LSTM clearly outperforms previous RNNs on tasks
that require learning the rules of regular languages (RLs) describable by deter-
ministic finite state automata (DFA) [8, 101, 5, 39, 126], both in terms of
reliability and speed. In particular, problems that are hardly ever solved by
standard RNNs, are solved by LSTM in nearly 100% of all trials, LSTM’s
superiority also carries over to tasks involving context free languages (CFLs)
such as those discussed in the RNN literature [108, 120, 106, 110, 67, 68]. Their
recognition requires the functional equivalent of a stack. Some previous RNNs
even failed to learn small CFL training sets [68]. Those that did not and those
that even learned small CSL training sets [67, 6] failed to extract the general
rules, and did not generalize well on substantially larger test sets. In contrast,
LSTM generalizes extremely well. It requires only the 30 shortest exemplars
(n ≤ 10) of the context sensitive language anbncn to correctly predict the
possible continuations of sequence prefixes for n up to 1000 and more.

Kalman filters can further improve LSTM’s performance [58]. A combi-
nation of LSTM and the decoupled extended Kalman filter learned to deal
correctly with values of n up to 10 million and more. That is, after training
the network was able to read sequences of 30,000,000 symbols and more, one
symbol at a time, and finally detect the subtle differences between legal strings
such as a10,000,000b10,000,000c10,000,000 and very similar but illegal strings such
as a10,000,000b9,999,999c10,000,000. This illustrates that LSTM networks can work
in an extremely precise and robust fashion across very long time lags.

Speech recognition is still dominated by Hidden Markov Models (HMMs),
e.g., [7]. HMMs and other graphical models such as Dynamic Bayesian
Networks (DBN) do have internal states that can be used to model memories

New Millennium AI and the Convergence of History 23

of previously seen inputs. Under certain circumstances they allow for learning
the prediction of sequences of labels from unsegmented input streams. For
example, an unsegmented acoustic signal can be transcribed into a sequence of
words or phonemes. HMMs are well-suited for noisy inputs and are invariant
to non-linear temporal stretching—they do not care for the difference bet-
ween slow and fast versions of a given spoken word. At least in theory, how-
ever, RNNs could offer the following advantages: Due to their discrete nature,
HMMs either have to discard real-valued information about timing, rhythm,
prosody, etc., or use numerous hidden states to encode such potentially rel-
evant information in discretized fashion. RNNs, however, can naturally use
their real-valued activations to encode it compactly. Furthermore, in order
to make HMM training tractable, it is necessary to assume that successive
inputs are independent of one another. In most interesting sequence learning
tasks, such as speech recognition, this is manifestly untrue. Because RNNs
model the conditional probabilities of class occupancy directly, and do not
model the input sequence, they do not require this assumption. RNN clas-
sifications are in principle conditioned on the entire input sequence. Finally,
HMMs cannot even model the rules of context-free languages, while RNNs
can [17, 16, 18, 94, 59].

LSTM recurrent networks were trained from scratch on utterances from
the TIDIGITS speech database. It was found [3, 25, 26] that LSTM obtains
results comparable to HMM based systems. A series of experiments on disjoint
subsets of the database demonstrated that previous experience greatly reduces
the network’s training time, as well as increasing its accuracy. It was there-
fore argued that LSTM is a promising tool for applications requiring either
rapid cross corpus adaptation or continually expanding datasets. Substantial
promise also lies in LSTM-HMM hybrids that try to combine the best of
both worlds, inspired by Robinson’s hybrids based on traditional RNNs [66].
Recently we showed [28, 27] that LSTM learns framewise phoneme classi-
fication much faster than previous RNNs. Best results were obtained with a
bi-directional variant of LSTM that classifies any part of a sequence by taking
into account its entire past and future context.

Gradient-based LSTM also has been used to identify protein sequence
motifs that contribute to classification [31]. Protein classification is important
for extracting binding or active sites on a protein in order to develop new
drugs, and in determining 3D protein folding features that can provide a
better understanding of diseases resulting from protein misfolding.

Sometimes gradient information is of little use due to rough error surfaces
with numerous local minima. For such cases, we have recently introduced
a new, evolutionary/gradient-descent hybrid method for training LSTM and
other RNNs called Evolino [96, 119, 93, 95]. Evolino evolves weights to the non-
linear, hidden nodes of RNNs while computing optimal linear mappings from
hidden state to output, using methods such as pseudo-inverse-based linear
regression [57] or support vector machine-like quadratic programming [112],

24 Jürgen Schmidhuber

depending on the notion of optimality employed. Evolino-based LSTM can
solve tasks that Echo State networks [37] cannot, and achieves higher acc-
uracy in certain continuous function generation tasks than gradient-based
LSTM, as well as other conventional gradient descent RNNs. However, for
several problems requiring large networks with numerous learnable weights,
gradient-based LSTM was superior to Evolino-based LSTM.

8 Reinforcement-Learning / Evolving Recurrent Neural
Networks

In a certain sense, Reinforcement Learning (RL) is more challenging than
supervised learning as above, since there is no teacher providing desired out-
puts at appropriate time steps. To solve a given problem, the learning agent
itself must discover useful output sequences in response to the observations.
The traditional approach to RL is best embodied by Sutton and Barto’s book
[109]. It makes strong assumptions about the environment, such as the Markov
assumption: the current input of the agent tells it all it needs to know about
the environment. Then all we need to learn is some sort of reactive mapping
from stationary inputs to outputs. This is often unrealistic.

More general approaches search a space of truly sequence-processing pro-
grams with temporary variables for storing previous observations. For exam-
ple, Olsson’s ADATE [54] or related approaches such as Genetic Program-
ming (GP) [9, 11, 73] can in principle be used to evolve such programs by
maximizing an appropriate objective or fitness function. Probabilistic Incre-
mental Program Evolution (PIPE) [71] is a related technique for automatic
program synthesis, combining probability vector coding of program instruc-
tions [97] and Population-Based Incremental Learning [2] and tree-coded pro-
grams. PIPE was used for learning soccer team strategies in rather realistic
simulations [72, 118].

A related, rather general approach for partially observable environments
directly evolves programs for recurrent neural networks (RNN) with internal
states, by applying evolutionary algorithms [63, 98, 33] to RNN weight mat-
rices [46, 124, 123, 53, 44, 102, 49]. RNN can run general programs with
memory / internal states (no need for the Markovian assumption), but for
a long time it was unclear how to efficiently evolve their weights to solve
complex RL tasks. Recent work, however, brought progress through a focus on
reducing search spaces by co-evolving the comparatively small weight vectors
of individual recurrent neurons [21, 22, 20, 23, 19, 24]. The powerful RNN
learn to use their potential to create memories of important events, solving
numerous RL / optimization tasks unsolvable by traditional RL methods [23,
19, 24]. As mentioned in the previous section, even supervised learning can
greatly profit from this approach [96, 119, 93, 95].

New Millennium AI and the Convergence of History 25

9 Is History Converging? Again?

Many predict that within a few decades there will be computers whose raw
computing power will surpass the one of a human brain by far (e.g., [48, 40]).
We have argued that algorithmic advances are keeping up with the hard-
ware development, pointing to new-millennium theoretical insights on uni-
versal problem solvers that are optimal in various mathematical senses (thus
making General AI a real formal science), as well as practical progress in
program learning through brain-inspired recurrent neural nets (as opposed to
mere pattern association through traditional reactive devices).

Let us put the AI-oriented developments [88] discussed above in a broader
context, and extend the analysis of past computer science breakthroughs in
the introduction, which predicts that computer history will converge in an
Omega point or historic singularity Ω around 2040.

Surprisingly, even if we go back all the way to the beginnings of modern
man over 40,000 years ago, essential historic developments (that is, the sub-
jects of the major chapters in history books) match a a binary scale marking
exponentially declining temporal intervals, each half the size of the previous
one, and even measurable in terms of powers of 2 multiplied by a human life-
time [91] (roughly 80 years—throughout recorded history many individuals
have reached this age, although the average lifetime often was shorter, mostly
due to high children mortality). Using the value Ω = 2040, associate an error
bar of not much more than 10 percent with each date below:

1. Ω − 29 lifetimes: modern humans start colonizing the world from Africa
2. Ω − 28 lifetimes: bow and arrow invented; hunting revolution
3. Ω − 27 lifetimes: invention of agriculture; first permanent settlements;

beginnings of civilization
4. Ω−26 lifetimes: first high civilizations (Sumeria, Egypt), and the most im-

portant invention of recorded history, namely, the one that made recorded
history possible: writing

5. Ω − 25 lifetimes: the ancient Greeks invent democracy and lay the foun-
dations of Western science and art and philosophy, from algorithmic pro-
cedures and formal proofs to anatomically perfect sculptures, harmonic
music, and organized sports. Old Testament written, major Asian reli-
gions founded. High civilizations in China, origin of the first calculation
tools, and India, origin of the zero

6. Ω − 24 lifetimes: bookprint (often called the most important invention
of the past 2000 years) invented in China. Islamic science and culture
start spreading across large parts of the known world (this has sometimes
been called the most important event between Antiquity and the age of
discoveries)

7. Ω − 23 lifetimes: the largest and most dominant empire ever (perhaps
including more than half of humanity and two thirds of the world econ-
omy) stretches across Asia from Korea all the way to Germany. Chinese

26 Jürgen Schmidhuber

fleets and later also European vessels start exploring the world. Gun pow-
der and guns invented in China. Rennaissance and Western bookprint
(often called the most influential invention of the past 1000 years) and
subsequent Reformation in Europe. Begin of the Scientific Revolution

8. Ω − 22 lifetimes: Age of enlightenment and rational thought in Europe.
Massive progress in the sciences; first flying machines; start of the indus-
trial revolution based on the first steam engines

9. Ω−2 lifetimes: Second industrial revolution based on combustion engines,
cheap electricity, and modern chemistry. Birth of modern medicine through
the germ theory of disease; genetic and evolution theory. European coloni-
alism at its short-lived peak

10. Ω−1 lifetime: modern post-World War II society and pop culture emerges.
The world-wide super-exponential population explosion (mainly due to
the Haber-Bosch process [103]) is at its peak. First commercial computers
and first spacecraft; DNA structure unveiled

11. Ω − 1/2 lifetime: 3rd industrial revolution based on personal computers
and the World Wide Web. A mathematical theory of universal AI emerges
(see sections above) - will this be considered a milestone in the future?

12. Ω−1/4 lifetime: This point will be reached in a few years. See introduction
13. ...

The following disclosure should help the reader to take this list with a grain
of salt though. The author, who admits being very interested in witnessing
the Omega point, was born in 1963, and therefore perhaps should not expect
to live long past 2040. This may motivate him to uncover certain historic
patterns that fit his desires, while ignoring other patterns that do not.

Others may feel attracted by the same trap. For example, Kurzweil [40]
identifies exponential speedups in sequences of historic paradigm shifts iden-
tified by various historians, to back up the hypothesis that “the singularity is
near.” His historians are all contemporary though, presumably being subject
to a similar bias. People of past ages might have held quite different views.
For example, possibly some historians of the year 1525 felt inclined to predict
a convergence of history around 1540, deriving this date from an exponential
speedup of recent breakthroughs such as Western bookprint (around 1444),
the re-discovery of America (48 years later), the Reformation (again 24 years
later—see the pattern?), and other events they deemed important although
today they are mostly forgotten.

In fact, could it be that such lists just reflect the human way of allocat-
ing memory space to past events? Maybe there is a general rule for both the
individual memory of single humans and the collective memory of entire soci-
eties and their history books: constant amounts of memory space get allocated
to exponentially larger, adjacent time intervals further and further into the
past. For example, events that happened between 2 and 4 lifetimes ago get
roughly as much memory space as events in the previous interval of twice the
size. Presumably only a few “important” memories will survive the necessary

New Millennium AI and the Convergence of History 27

compression. Maybe that’s why there has never been a shortage of prophets
predicting that the end is near - the important events according to one’s own
view of the past always seem to accelerate exponentially.

A similar plausible type of memory decay allocates O(1/n) memory units
to all events older than O(n) unit time intervals. This is reminiscent of a bias
governed by a time-reversed Speed Prior [81] (Section 4).

References

[1] L. B. Almeida. A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. In IEEE 1st International Con-
ference on Neural Networks, San Diego, volume 2, pages 609–618, 1987.

[2] S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. In A. Prieditis and S. Russell, editors, Machine
Learning: Proceedings of the Twelfth International Conference, pages
38–46. Morgan Kaufmann Publishers, San Francisco, CA, 1995.

[3] N. Beringer, A. Graves, F. Schiel, and J. Schmidhuber. Classifying
unprompted speech by retraining LSTM nets. In W. Duch, J. Kacprzyk,
E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biologi-
cal Inspirations - ICANN 2005, LNCS 3696, pages 575–581. Springer-
Verlag Berlin Heidelberg, 2005.

[4] C. M. Bishop. Neural networks for pattern recognition. Oxford Univer-
sity Press, 1995.

[5] Alan D. Blair and Jordan B. Pollack. Analysis of dynamical recognizers.
Neural Computation, 9(5):1127–1142, 1997.

[6] M. Boden and J. Wiles. Context-free and context-sensitive dynamics in
recurrent neural networks. Connection Science, 2000.

[7] H.A. Bourlard and N. Morgan. Connnectionist Speech Recognition: A
Hybrid Approach. Kluwer Academic Publishers, 1994.

[8] M. P. Casey. The dynamics of discrete-time computation, with applica-
tion to recurrent neural networks and finite state machine extraction.
Neural Computation, 8(6):1135–1178, 1996.

[9] N. L. Cramer. A representation for the adaptive generation of sim-
ple sequential programs. In J.J. Grefenstette, editor, Proceedings of
an International Conference on Genetic Algorithms and Their Applica-
tions, Carnegie-Mellon University, July 24-26, 1985, Hillsdale NJ, 1985.
Lawrence Erlbaum Associates.

[10] B. de Vries and J. C. Principe. A theory for neural networks with time
delays. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages 162–168.
Morgan Kaufmann, 1991.

[11] D. Dickmanns, J. Schmidhuber, and A. Winklhofer. Der genetis-
che Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenen-
praktikum, Institut für Informatik, Lehrstuhl Prof. Radig, Technische
Universität München, 1987.

28 Jürgen Schmidhuber

[12] J. L. Elman. Finding structure in time. Technical Report CRL Technical
Report 8801, Center for Research in Language, University of California,
San Diego, 1988.

[13] S. E. Fahlman. The recurrent cascade-correlation learning algorithm. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, pages 190–196. Morgan
Kaufmann, 1991.

[14] F. A. Gers and J. Schmidhuber. Neural processing of complex contin-
ual input streams. In Proc. IJCNN’2000, Int. Joint Conf. on Neural
Networks, Como, Italy, 2000.

[15] F. A. Gers and J. Schmidhuber. Recurrent nets that time and count. In
Proc. IJCNN’2000, Int. Joint Conf. on Neural Networks, Como, Italy,
2000.

[16] F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn sim-
ple context free and context sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340, 2001.

[17] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Con-
tinual prediction with LSTM. Neural Computation, 12(10):2451–2471,
2000.

[18] F. A. Gers, N. Schraudolph, and J. Schmidhuber. Learning precise
timing with LSTM recurrent networks. Journal of Machine Learning
Research, 3:115–143, 2002.

[19] F. Gomez and J. Schmidhuber. Evolving modular fast-weight networks
for control. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, edi-
tors, Artificial Neural Networks: Biological Inspirations - ICANN 2005,
LNCS 3697, pages 383–389. Springer-Verlag Berlin Heidelberg, 2005.

[20] F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD
thesis, Department of Computer Sciences, University of Texas at Austin,
2003.

[21] F. J. Gomez and R. Miikkulainen. Incremental evolution of complex
general behavior. Adaptive Behavior, 5:317–342, 1997.

[22] F. J. Gomez and R. Miikkulainen. Solving non-Markovian control tasks
with neuroevolution. In Proc. IJCAI 99, Denver, CO, 1999. Morgan
Kaufman.

[23] F. J. Gomez and R. Miikkulainen. Active guidance for a finless rocket
using neuroevolution. In Proc. GECCO 2003, Chicago, 2003. Winner
of Best Paper Award in Real World Applications. Gomez is working at
IDSIA on a CSEM grant to J. Schmidhuber.

[24] F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn
deep memory POMDPs. In Proc. of the 2005 conference on genetic and
evolutionary computation (GECCO), Washington, D. C. ACM Press,
New York, NY, USA, 2005. Nominated for a best paper award.

[25] A. Graves, N. Beringer, and J. Schmidhuber. Rapid retraining on speech
data with LSTM recurrent networks. Technical Report IDSIA-09-05,
IDSIA, www.idsia.ch/techrep.html, 2005.

New Millennium AI and the Convergence of History 29

[26] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connectionist
temporal classification: Labelling unsegmented sequence data with re-
current neural nets. In ICML’06: Proceedings of the International Con-
ference on Machine Learning, 2006.

[27] A. Graves and J. Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Net-
works, 18:602–610, 2005.

[28] A. Graves and J. Schmidhuber. Framewise phoneme classification with
bidirectional LSTM networks. In Proc. Int. Joint Conf. on Neural
Networks IJCNN 2005, 2005.

[29] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Techni-
sche Universität München, 1991. See www7.informatik.tu-muenchen.de/
˜hochreit; advisor: J. Schmidhuber.

[30] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.
In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001.

[31] S. Hochreiter and K. Obermayer. Sequence classification for protein
analysis. In Snowbird Workshop, Snowbird, Utah, April 5-8 2005. Com-
putational and Biological Learning Society.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[33] J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[34] J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proc. of the National Academy of
Sciences, 79:2554–2558, 1982.

[35] M. Hutter. The fastest and shortest algorithm for all well-defined
problems. International Journal of Foundations of Computer Science,
13(3):431–443, 2002. (On J. Schmidhuber’s SNF grant 20-61847).

[36] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Springer, Berlin, 2004. (On J. Schmidhuber’s
SNF grant 20-61847).

[37] H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science, 304:78–80, 2004.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learn-
ing: a survey. Journal of AI research, 4:237–285, 1996.

[39] Y. Kalinke and H. Lehmann. Computation in recurrent neural net-
works: From counters to iterated function systems. In G. Antoniou and
J. Slaney, editors, Advanced Topics in Artificial Intelligence, Proceed-
ings of the 11th Australian Joint Conference on Artificial Intelligence,
volume 1502 of LNAI, Berlin, Heidelberg, 1998. Springer.

[40] R. Kurzweil. The Singularity is near. Wiley Interscience, 2005.

30 Jürgen Schmidhuber

[41] L. A. Levin. Universal sequential search problems. Problems of Infor-
mation Transmission, 9(3):265–266, 1973.

[42] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity
and its Applications (2nd edition). Springer, 1997.

[43] T. Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term
dependencies in NARX recurrent neural networks. IEEE Transactions
on Neural Networks, 7(6):1329–1338, 1996.

[44] O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robots in simulated
and real environments. Artificial Life, 2(4):417–434, 1995.

[45] C. B. Miller and C. L. Giles. Experimental comparison of the effect
of order in recurrent neural networks. International Journal of Pattern
Recognition and Artificial Intelligence, 7(4):849–872, 1993.

[46] G. Miller, P. Todd, and S. Hedge. Designing neural networks using
genetic algorithms. In Proceedings of the 3rd International Conference
on Genetic Algorithms, pages 379–384. Morgan Kauffman, 1989.

[47] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[48] H. Moravec. Robot. Wiley Interscience, 1999.
[49] D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning

through symbiotic evolution. Machine Learning, 22:11–32, 1996.
[50] M. C. Mozer. A focused back-propagation algorithm for temporal seq-

uence recognition. Complex Systems, 3:349–381, 1989.
[51] M. C. Mozer. Induction of multiscale temporal structure. In

D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances
in Neural Information Processing Systems 4, pages 275–282. Morgan
Kaufmann, 1992.

[52] A. Newell and H. Simon. GPS, a program that simulates human thought.
In E. Feigenbaum and J. Feldman, editors, Computers and Thought,
pages 279–293. McGraw-Hill, New York, 1963.

[53] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve
autonomous robots: Different approaches in evolutionary robotics. In
R. A. Brooks and P. Maes, editors, Fourth International Workshop on
the Synthesis and Simulation of Living Systems (Artificial Life IV),
pages 190–197. MIT, 1994.

[54] J. R. Olsson. Inductive functional programming using incremental pro-
gram transformation. Artificial Intelligence, 74(1):55–83, 1995.

[55] B. A. Pearlmutter. Learning state space trajectories in recurrent neural
networks. Neural Computation, 1(2):263–269, 1989.

[56] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5):1212–
1228, 1995.

[57] R. Penrose. A generalized inverse for matrices. In Proceedings of the
Cambridge Philosophy Society, volume 51, pages 406–413, 1955.

[58] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman
filters improve LSTM network performance in problems unsolvable by
traditional recurrent nets. Neural Networks, (16):241–250, 2003.

New Millennium AI and the Convergence of History 31

[59] J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman
filters improve LSTM network performance in problems unsolvable by
traditional recurrent nets. Neural Networks, 16(2):241–250, 2003.

[60] F. J. Pineda. Recurrent backpropagation and the dynamical approach to
adaptive neural computation. Neural Computation, 1(2):161–172, 1989.

[61] T. A. Plate. Holographic recurrent networks. In J. D. Cowan
S. J. Hanson and C. L. Giles, editors, Advances in Neural Information
Processing Systems 5, pages 34–41. Morgan Kaufmann, 1993.

[62] G. V. Puskorius and L. A. Feldkamp. Neurocontrol of nonlinear dynami-
cal systems with Kalman filter trained recurrent networks. IEEE Trans-
actions on Neural Networks, 5(2):279–297, 1994.

[63] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Dissertation, 1971. Pub-
lished 1973 by Fromman-Holzboog.

[64] M. B. Ring. Learning sequential tasks by incrementally adding higher
orders. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances
in Neural Information Processing Systems 5, pages 115–122. Morgan
Kaufmann, 1993.

[65] A. J. Robinson and F. Fallside. The utility driven dynamic error propa-
gation network. Technical Report CUED/F-INFENG/TR.1, Cambridge
University Engineering Department, 1987.

[66] Anthony J. Robinson. An application of recurrent nets to phone proba-
bility estimation. IEEE Transactions on Neural Networks, 5(2):298–305,
March 1994.

[67] P. Rodriguez, J. Wiles, and J Elman. A recurrent neural network that
learns to count. Connection Science, 11(1):5–40, 1999.

[68] Paul Rodriguez and Janet Wiles. Recurrent neural networks can learn
to implement symbol-sensitive counting. In Advances in Neural Infor-
mation Processing Systems, volume 10, pages 87–93. The MIT Press,
1998.

[69] P. S. Rosenbloom, J. E. Laird, and A. Newell. The SOAR Papers. MIT
Press, 1993.

[70] D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed
Processing, volume 1. MIT Press, 1986.

[71] R. P. Sa�lustowicz and J. Schmidhuber. Probabilistic incremental pro-
gram evolution. Evolutionary Computation, 5(2):123–141, 1997.

[72] R. P. Sa�lustowicz, M. A. Wiering, and J. Schmidhuber. Learning team
strategies: Soccer case studies. Machine Learning, 33(2/3):263–282,
1998.

[73] J. Schmidhuber. Evolutionary principles in self-referential learn-
ing. Diploma thesis, Institut für Informatik, Technische Universität
München, 1987.

[74] J. Schmidhuber. Dynamische neuronale Netze und das fundamentale
raumzeitliche Lernproblem. Dissertation, Institut für Informatik, Tech-
nische Universität München, 1990.

32 Jürgen Schmidhuber

[75] J. Schmidhuber. An on-line algorithm for dynamic reinforcement learn-
ing and planning in reactive environments. In Proc. IEEE/INNS Inter-
national Joint Conference on Neural Networks, San Diego, volume 2,
pages 253–258, 1990.

[76] J. Schmidhuber. Reinforcement learning in Markovian and non-
Markovian environments. In D. S. Lippman, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information Processing Systems
3 (NIPS 3), pages 500–506. Morgan Kaufmann, 1991.

[77] J. Schmidhuber. A fixed size storage O(n3) time complexity learning
algorithm for fully recurrent continually running networks. Neural Com-
putation, 4(2):243–248, 1992.

[78] J. Schmidhuber. Learning to control fast-weight memories: An alterna-
tive to recurrent nets. Neural Computation, 4(1):131–139, 1992.

[79] J. Schmidhuber. Netzwerkarchitekturen, Zielfunktionen und Ketten-
regel. Habilitationsschrift, Institut für Informatik, Technische Univer-
sität München, 1993.

[80] J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities
and nonenumerable universal measures computable in the limit. Inter-
national Journal of Foundations of Computer Science, 13(4):587–612,
2002.

[81] J. Schmidhuber. The Speed Prior: a new simplicity measure yielding
near-optimal computable predictions. In J. Kivinen and R. H. Sloan,
editors, Proceedings of the 15th Annual Conference on Computational
Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence,
pages 216–228. Springer, Sydney, Australia, 2002.

[82] J. Schmidhuber. Exponential speed-up of computer history’s defining
moments, 2003. http://www.idsia.ch/˜juergen/computerhistory.html.

[83] J. Schmidhuber. Gödel machines: self-referential universal problem
solvers making provably optimal self-improvements. Technical
Report IDSIA-19-03, arXiv:cs.LO/0309048, IDSIA, Manno-Lugano,
Switzerland, 2003.

[84] J. Schmidhuber. The new AI: General & sound & relevant for physics.
Technical Report TR IDSIA-04-03, Version 1.0, cs.AI/0302012 v1,
February 2003.

[85] J. Schmidhuber. Overview of work on robot learning, with publications,
2004. http://www.idsia.ch/˜juergen/learningrobots.html.

[86] J. Schmidhuber. Completely self-referential optimal reinforcement learn-
ers. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Arti-
ficial Neural Networks: Biological Inspirations - ICANN 2005, LNCS
3697, pages 223–233. Springer-Verlag Berlin Heidelberg, 2005. Plenary
talk.

[87] J. Schmidhuber. Gödel machines: Towards a technical justification of
consciousness. In D. Kudenko, D. Kazakov, and E. Alonso, editors,
Adaptive Agents and Multi-Agent Systems III (LNCS 3394), pages 1–23.
Springer Verlag, 2005.

New Millennium AI and the Convergence of History 33

[88] J. Schmidhuber. Artificial Intelligence - history highlights and out-
look: AI maturing and becoming a real formal science, 2006.
http://www.idsia.ch/˜juergen/ai.html.

[89] J. Schmidhuber. Developmental robotics, optimal artificial curiosity, cre-
ativity, music, and the fine arts. Connection Science, 18(2):173–187,
2006.

[90] J. Schmidhuber. Gödel machines: fully self-referential optimal universal
problem solvers. In B. Goertzel and C. Pennachin, editors, Artificial
General Intelligence. Springer Verlag, in press, 2006.

[91] J. Schmidhuber. Is history converging? Again?, 2006. http://www.
idsia.ch/˜juergen/history.html.

[92] J. Schmidhuber and B. Bakker. NIPS 2003 RNNaissance workshop on
recurrent neural networks, Whistler, CA, 2003. http://www.idsia.ch/
˜juergen/rnnaissance.html.

[93] J. Schmidhuber, M. Gagliolo, D. Wierstra, and F. Gomez. Evolino for
recurrent support vector machines. In ESANN’06, 2006.

[94] J. Schmidhuber, F. Gers, and D. Eck. Learning nonregular languages:
A comparison of simple recurrent networks and LSTM. Neural Compu-
tation, 14(9):2039–2041, 2002.

[95] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training
recurrent networks by EVOLINO. Neural Computation, 2006, in press.

[96] J. Schmidhuber, D. Wierstra, and F. J. Gomez. Evolino: Hybrid neu-
roevolution / optimal linear search for sequence prediction. In Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), pages 853–858, 2005.

[97] J. Schmidhuber, J. Zhao, and N. Schraudolph. Reinforcement learning
with self-modifying policies. In S. Thrun and L. Pratt, editors, Learning
to learn, pages 293–309. Kluwer, 1997.

[98] H. P. Schwefel. Numerische Optimierung von Computer-Modellen. Dis-
sertation, 1974. Published 1977 by Birkhäuser, Basel.

[99] C. E. Shannon. A mathematical theory of communication (parts I and
II). Bell System Technical Journal, XXVII:379–423, 1948.

[100] H. T. Siegelmann and E. D. Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77–80, 1991.

[101] H.T. Siegelmann. Theoretical Foundations of Recurrent Neural Net-
works. PhD thesis, Rutgers, New Brunswick Rutgers, The State of New
Jersey, 1992.

[102] K. Sims. Evolving virtual creatures. In Andrew Glassner, editor, Pro-
ceedings of SIGGRAPH’94 (Orlando, Florida, July 1994), Computer
Graphics Proceedings, Annual Conference, pages 15–22. ACM SIG-
GRAPH, ACM Press, jul 1994. ISBN 0-89791-667-0.

[103] V. Smil. Detonator of the population explosion. Nature, 400:415, 1999.
[104] R. J. Solomonoff. A formal theory of inductive inference. Part I. Infor-

mation and Control, 7:1–22, 1964.

34 Jürgen Schmidhuber

[105] R. J. Solomonoff. Complexity-based induction systems. IEEE Transac-
tions on Information Theory, IT-24(5):422–432, 1978.

[106] M. Steijvers and P.D.G. Grunwald. A recurrent network that performs
a contextsensitive prediction task. In Proceedings of the 18th Annual
Conference of the Cognitive Science Society. Erlbaum, 1996.

[107] G. Sun, H. Chen, and Y. Lee. Time warping invariant neural networks.
In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural
Information Processing Systems 5, pages 180–187. Morgan Kaufmann,
1993.

[108] G. Z. Sun, C. Lee Giles, H. H. Chen, and Y. C. Lee. The neural network
pushdown automaton: Model, stack and learning simulations. Techni-
cal Report CS-TR-3118, University of Maryland, College Park, August
1993.

[109] R. Sutton and A. Barto. Reinforcement learning: An introduction.
Cambridge, MA, MIT Press, 1998.

[110] B. Tonkes and J. Wiles. Learning a context-free task with a recurrent
neural network: An analysis of stability. In Proceedings of the Fourth
Biennial Conference of the Australasian Cognitive Science Society, 1997.

[111] P. Utgoff. Shift of bias for inductive concept learning. In R. Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learning, volume 2,
pages 163–190. Morgan Kaufmann, Los Altos, CA, 1986.

[112] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[113] V. Vinge. The coming technological singularity, 1993. VISION-21 Sym-
posium sponsored by NASA Lewis Research Center, and Whole Earth
Review, Winter issue.

[114] R. L. Watrous and G. M. Kuhn. Induction of finite-state languages using
second-order recurrent networks. Neural Computation, 4:406–414, 1992.

[115] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[116] P. J. Werbos. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1, 1988.

[117] P. J. Werbos. Neural networks, system identification, and control in
the chemical industries. In D. A. Sofge D. A. White, editor, Handbook
of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages
283–356. Thomson Learning, 1992.

[118] M. A. Wiering, R. P. Salustowicz, and J. Schmidhuber. Reinforce-
ment learning soccer teams with incomplete world models. Autonomous
Robots, 7(1):77–88, 1999.

[119] D. Wierstra, F. J. Gomez, and J. Schmidhuber. Modeling systems with
internal state using Evolino. In Proc. of the 2005 conference on genetic
and evolutionary computation (GECCO), Washington, D. C., pages
1795–1802. ACM Press, New York, NY, USA, 2005. Got a GECCO
best paper award.

New Millennium AI and the Convergence of History 35

[120] J. Wiles and J. Elman. Learning to count without a counter: A case
study of dynamics and activation landscapes in recurrent networks. In
In Proceedings of the Seventeenth Annual Conference of the Cognitive
Science Society, pages pages 482 – 487, Cambridge, MA, 1995. MIT
Press.

[121] R. J. Williams. Complexity of exact gradient computation algorithms for
recurrent neural networks. Technical Report Technical Report NU-CCS-
89-27, Boston: Northeastern University, College of Computer Science,
1989.

[122] R. J. Williams and J. Peng. An efficient gradient-based algorithm for
on-line training of recurrent network trajectories. Neural Computation,
4:491–501, 1990.

[123] B. M. Yamauchi and R. D. Beer. Sequential behavior and learning in
evolved dynamical neural networks. Adaptive Behavior, 2(3):219–246,
1994.

[124] Xin Yao. A review of evolutionary artificial neural networks. Interna-
tional Journal of Intelligent Systems, 4:203–222, 1993.

[125] S.J. Young and P.C Woodland. HTK Version 3.2: User, Reference and
Programmer Manual, 2002.

[126] Z. Zeng, R. Goodman, and P. Smyth. Discrete recurrent neural networks
for grammatical inference. IEEE Transactions on Neural Networks, 5(2),
1994.

The Challenges of Building Computational
Cognitive Architectures

Ron Sun

Rensselaer Polytechnic Institute, Troy, New York, USA
rsun@rpi.edu

http://www.cogsci.rpi.edu/∼rsun

Summary. The work in the area of computational cognitive modeling explores
the essence of cognition through developing detailed understanding of cognition
by specifying computational models. In this enterprise, a cognitive architecture is
a domain-generic computational cognitive model that may be used for a broad,
multiple-domain analysis of cognition. It embodies generic descriptions of cogni-
tion in computer algorithms and programs. Building cognitive architectures is a
difficult task and a serious challenge to the fields of cognitive science, artificial intel-
ligence, and computational intelligence. In this article, discussions of issues and chal-
lenges in developing cognitive architectures will be undertaken, examples of cognitive
architectures will be given, and future directions will be outlined.

1 Introduction

While most work in computational intelligence takes an engineering approach,
the field of cognitive modeling, with cognitive architectures in particular, takes
a scientific approach — focusing on gathering empirical data and developing
models that serve as scientific theories and scientific explanations of the data.
It does so through an iterative hypothesis-test cycle. A cognitive architec-
ture provides an essential framework to facilitate more detailed modeling and
understanding of various components and processes of the mind.

Building cognitive architectures is a difficult challenge. In this article, dis-
cussions of issues and challenges in developing cognitive architectures will
be undertaken, examples of cognitive architectures will be given, and future
directions will be outlined. In the next section, the question of what a cognitive
architecture is is answered. In section 3, the importance of cognitive architec-
tures is addressed. In section 4, some background regarding the relation bet-
ween artificial intelligence and cognitive science is provided. Then, in section
5, an example cognitive architecture is presented in detail and its applications
to cognitive modeling and artificial intelligence described. In section 6, the sig-
nificant challenges related to building cognitive architectures are articulated.
Finally, section 7 concludes this article.
Ron Sun: The Challenges of Building Computational Cognitive Architectures, Studies in

Computational Intelligence (SCI) 63, 37–60 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

38 Ron Sun

2 What is a Cognitive Architecture?

A cognitive architecture is a broadly-scoped, domain-generic computational
cognitive model, capturing the essential structure and process of the mind,
to be used for a broad, multiple-level, multiple-domain analysis of cognition
[18, 35].

Let us explore this notion of architecture with an analogy. The architecture
for a building consists of its overall framework and its overall design, as well as
roofs, foundations, walls, windows, floors, and so on. Furniture and appliances
can be easily rearranged and/or replaced and therefore they are not part of
the architecture. By the same token, a cognitive architecture includes overall
structures, essential divisions of modules, essential relations between modules,
basic representations and algorithms within modules, and a variety of other
aspects [37]. In general, an architecture includes those aspects of a system that
are relatively invariant across time, domains, and individuals. It deals with
processes of cognition in a structurally and mechanistically well defined way.

In relation to understanding the human mind (i.e., cognitive science), a
cognitive architecture provides a concrete framework for more detailed model-
ing of cognitive phenomena, through specifying essential structures, divisions
of modules, relations between modules, and so on. Its function is to provide
an essential framework to facilitate more detailed modeling and exploration
of various components and processes of the mind. Research in computational
cognitive modeling explores the essence of cognition and various cognitive
functionalities through developing detailed, process-based understanding by
specifying computational models of mechanisms and processes. It embodies
descriptions of cognition in computer algorithms and programs. That is, it
produces runnable computational models. Detailed simulations are then con-
ducted based on the computational models. In this enterprise, a cognitive
architecture may be used for a broad, multiple-level, multiple-domain analy-
sis of cognition.

In relation to building intelligent systems, a cognitive architecture specifies
the underlying infrastructure for intelligent systems, which includes a variety
of capabilities, modules, and subsystems. On that basis, application systems
can be more easily developed. A cognitive architecture carries also with it the-
ories of cognition and understanding of intelligence gained from studying the
human mind. Therefore, the development of intelligent systems can be more
cognitively grounded, which may be advantageous in many circumstances.

3 Why are Cognitive Architectures Important?

While there are all kinds of cognitive architectures in existence, in this article I
am concerned specifically with psychologically oriented cognitive architectures
(as opposed to software engineering oriented “cognitive” architectures): their

The Challenges of Building Computational Cognitive Architectures 39

importance and their applications. Psychologically oriented cognitive archi-
tectures are particularly important because (1) they are “intelligent” systems
that are cognitively realistic (relatively speaking) and therefore they are more
human-like in many ways, and (2) they shed new light on human cognition and
therefore they are useful tools for advancing the understanding of cognition.
Let us examine the importance of this type of cognitive architecture.

For cognitive science, the importance of such cognitive architectures lie
in the fact that they are enormously useful in terms of understanding the
human mind. In understanding cognitive phenomena, the use of computational
simulation on the basis of cognitive architectures forces one to think in terms
of process, and in terms of detail. Instead of using vague, purely conceptual
theories, cognitive architectures force theoreticians to think clearly. They are
therefore critical tools in the study of the mind. Researchers who use cognitive
architectures must specify a cognitive mechanism in sufficient detail to allow
the resulting models to be implemented on computers and run as simulations.
This approach requires that important elements of the models be spelled out
explicitly, thus aiding in developing better, conceptually clearer theories.

An architecture serves as an initial set of assumptions to be used for further
modeling of cognition. These assumptions, in reality, may be based on either
available scientific data (for example, psychological or biological observations),
philosophical thoughts and arguments, or ad hoc working hypotheses (includ-
ing computationally inspired such hypotheses). An architecture is useful and
important precisely because it provides a comprehensive initial framework for
further modeling in a variety of task domains.

Cognitive architectures also provide a deeper level of explanation. Instead
of a model specifically designed for a specific task (often in an ad hoc way),
using a cognitive architecture forces modelers to think in terms of the mecha-
nisms and processes available within a generic cognitive architecture that are
not specifically designed for a particular task, and thereby to generate expla-
nations of the task that is not centered on superficial, high-level features of
a task (as often happens with specialized, narrowly scoped models), that is,
explanations of a deeper kind. To describe a task in terms of available mech-
anisms and processes of a cognitive architecture is to generate explanations
centered on primitives of cognition as envisioned in the cognitive architecture,
and therefore such explanations are deeper explanations. Because of the nature
of such deeper explanations, this style of theorizing is also more likely to lead
to unified explanations for a large variety of data and/or phenomena, because
potentially a large variety of tasks, data, and phenomena can be explained
on the basis of the same set of primitives provided by the same cognitive
architecture. Therefore, using cognitive architectures leads to comprehensive
theories of the mind [18, 2, 35].

In all, cognitive architectures are believed to be essential in advancing
understanding of the mind [1, 18, 35]. Therefore, building cognitive architec-
tures is an important enterprise for cognitive science.

40 Ron Sun

On the other hand, for the fields of artificial intelligence and computational
intelligence (AI/CI), the importance of cognitive architectures lies in the fact
that they support the central goal of AI/CI — Building artificial systems that
are as capable as human beings. Cognitive architectures help us to reverse
engineer the only truly intelligent system around — the human mind. They
constitute a solid basis for building truly intelligent systems, because they are
well motivated by, and properly grounded in, existing cognitive research. The
use of cognitive architectures in building intelligent systems may also facilitate
the interaction between humans and artificially intelligent systems because of
the similarity between humans and cognitively based intelligent systems.

It is also worth noting that cognitive architectures are the antithesis
of expert systems: Instead of focusing on capturing performance in nar-
row domains, they are aimed to provide broad coverage of a wide variety
of domains [11]. Business and industrial applications of intelligent systems
increasingly require broadly scoped systems that are capable of a wide range
of intelligent behaviors, not just isolated systems of narrow functionalities.
For example, one application may require the inclusion of capabilities for
raw image processing, pattern recognition, categorization, reasoning, decision
making, and natural language communications. It may even require planning,
control of robotic devices, and interactions with other systems and devices.
Such requirements accentuate the importance of research on broadly scoped
cognitive architectures that perform a wide range of cognitive functionalities
across a variety of task domains.

4 AI and Cognitive Science

Artificial intelligence (or computational intelligence) and cognitive science
have always been overlapping. Early in their history, that overlap was consid-
erable. Herbert Simon once declared that “AI can have two purposes. One is
to use the power of computers to augment human thinking. The other is to use
a computer’s artificial intelligence to understand how humans think.” Con-
versely, ever since the time when cognitive science was first created (that is,
the time when cognitive science society was formed), artificial intelligence has
been identified as one of the constituting disciplines. However, over time, the
two disciplines have grown apart. The difficulty of many computational prob-
lems tackled by AI has led it to often adopt brute-force, optimality-oriented,
or domain-specific solutions that are not cognitively realistic. Conversely, the
need for experimental controllability, detail-orientedness, and precision has
often led cognitive scientists to focus on some problems that AI would not
consider as interesting problems.

One important question is whether cognitive science is relevant to solving
AI/CI problems at all. Many cognitive scientists believe so. The human mind
is one of the most flexible, general, and powerful intelligent systems in exis-
tence. Therefore, a good way to solving many AI/CI problems is a cognitive

The Challenges of Building Computational Cognitive Architectures 41

approach. Consequently, another important question is whether sub-optimal,
“satisficing” methods or algorithms that are often revealed by cognitive science
research are useful to AI/CI. Many cognitive scientists would say yes. It may
be argued that in AI/CI, too much focus has been devoted to the search for
domain-specific, brute-force, and/or optimal solutions [34]. Both robustness
over a broad range of problems and computational efficiency (and tractability)
are essential to long-term success of AI/CI as a field that generates general
theories and general frameworks. Real-world problems are complex and they
often include many different aspects, which require broad functionalities in
order to be solved in a robust manner. All of these requirements above point
to cognitively based approaches toward developing computational models, as
human cognition is thus far the best example of intelligent systems that are
robust and efficient.

In the reverse direction, can AI/CI contribute to our understanding of
human cognition? The answer is clearly yes. AI/CI addresses many problems
central to human cognition, usually in an mathematically/logically motivated
or optimal way. AI/CI solutions thus often reflect fundamental mathemati-
cal/logical constraints and regularities underlying the problems, which should
be relevant and applicable to all approaches to those problems, including those
adopted in human cognition. Therefore, in that sense, they shed light on pos-
sible details of cognitive processes and mechanisms, and may lead to better
understanding of these problems in general.

5 An Example of a Cognitive Architecture

5.1 An Overview

Below I will describe a cognitive architecture CLARION. It has been described
extensively in a series of previous papers, including [43, 42], and [35, 36].
CLARION is an integrative architecture, consisting of a number of distinct
subsystems, with a dual representational structure in each subsystem (implicit
versus explicit representations). Its subsystems include the action-centered
subsystem (the ACS), the non-action-centered subsystem (the NACS), the
motivational subsystem (the MS), and the meta-cognitive subsystem (the
MCS). The role of the action-centered subsystem is to control actions,
regardless of whether the actions are for external physical movements or for
internal mental operations. The role of the non-action-centered subsystem is
to maintain general knowledge, either implicit or explicit. The role of the moti-
vational subsystem is to provide underlying motivations for perception, action,
and cognition, in terms of providing impetus and feedback (e.g., indicating
whether outcomes are satisfactory or not). The role of the meta-cognitive sub-
system is to monitor, direct, and modify the operations of the action-centered
subsystem dynamically as well as the operations of all the other subsystems.

Each of these interacting subsystems consists of two levels of representation
(i.e., a dual representational structure): Generally, in each subsystem, the

42 Ron Sun

top level encodes explicit knowledge and the bottom level encodes implicit
knowledge. The distinction of implicit and explicit knowledge has been amply
argued for before (see [23, 28, 5, 35]). The two levels interact, for example, by
cooperating in actions, through a combination of the action recommendations
from the two levels respectively, as well as by cooperating in learning through
a bottom-up and a top-down process (to be discussed below). Essentially, it
is a dual-process theory of mind [4]. See Figure 1.

This cognitive architecture is intended to satisfy some basic requirements
as follows. It should be able to learn with or without a priori domain-specific
knowledge to begin with [23, 42]. It also has to learn continuously from on-
going experience in the world. As indicated by Medin et al. [13], Nosofsky
et al [19], and others, human learning is often gradual and on-going. As sug-
gested by Reber [23], Seger [28], Anderson [1], and others, there are clearly
different types of knowledge involved in human learning (e.g., procedural vs.
declarative, implicit vs. explicit, or sub-conceptual vs. conceptual). Moreover,
different types of learning processes are involved in acquiring different types
of knowledge [1, 10, 31, 42]. Finally, unlike ACT-R or SOAR, it should more
fully incorporate motivational processes as well as meta-cognitive processes.
Based on the above considerations, CLARION was developed.

reinforcement

goal setting

filtering
selection
regulation

goal structure

drives

MS MCS

NACSACS

non–action–centered
implicit representation

non–action–centered
explicit representation

action–centered
explicit representation

action–centered implicit
representation

Fig. 1. The CLARION Architecture. ACS stands for the action-centered subsys-
tem, NACS the non-action-centered subsystem, MS the motivational subsystem, and
MCS the meta-cognitive subsystem

The Challenges of Building Computational Cognitive Architectures 43

5.2 Some Details

The Action-Centered Subsystem

First, let us focus on the action-centered subsystem (the ACS) of CLARION
(cf. [1, 31]). The overall operation of the action-centered subsystem may be
described as follows:

1. Observe the current state x.
2. Compute in the bottom level the Q-values of x associated with each of all

the possible actions ai’s: Q(x, a1), Q(x, a2), . . ., Q(x, an).
3. Find out all the possible actions (b1, b2,, bm) at the top level, based on

the input x (sent up from the bottom level) and the rules in place.
4. Compare or combine the values of the selected ai’s with those of bj ’s (sent

down from the top level), and choose an appropriate action b.
5. Perform the action b, and observe the next state y and (possibly) the

reinforcement r.
6. Update Q-values at the bottom level in accordance with the Q-Learning-

Backpropagation algorithm.
7. Update the rule network at the top level using the Rule-Extraction-

Refinement algorithm.
8. Go back to Step 1.

In the bottom level of the action-centered subsystem, implicit reactive
routines are learned: A Q-value is an evaluation of the “quality” of an action
in a given state: Q(x, a) indicates how desirable action a is in state x (which
consists of some sensory input). The agent may choose an action in any state
based on Q-values. To acquire the Q-values, the Q-learning algorithm [48] may
be used, which is a reinforcement learning algorithm. It basically compares
the values of successive actions and adjusts an evaluation function on that
basis. It thereby develops reactive sequential behaviors [36].

The bottom level of the action-centered subsystem is modular; that is, a
number of small neural networks co-exist each of which is adapted to a specific
modality, task, or group of input stimuli. This coincides with the modularity
claim [6, 10, 8] that much processing is done by limited, encapsulated (to some
extent), specialized processors that are highly efficient. These modules can be
developed in interacting with the world (computationally, through various
decomposition methods; e.g., [44]). Some of them, however, are formed evolu-
tionarily, that is, given a priori to agents, reflecting their hardwired instincts
and propensities [8].

In the top level of the action-centered subsystem, explicit conceptual
knowledge is captured in the form of symbolic rules. See [36] for details. There
are many ways in which explicit knowledge may be learned, including inde-
pendent hypothesis-testing learning and “bottom-up learning” as discussed
below.

44 Ron Sun

Autonomous Generation of Explicit Conceptual Structures. Humans are
generally able to learn implicit knowledge through trial and error, without
necessarily utilizing a priori knowledge. On top of that, explicit knowledge can
be acquired also from on-going experience in the world, through the mediation
of implicit knowledge (i.e., bottom-up learning; see [35, 31, 10]). The basic
process of bottom-up learning is as follows: if an action implicitly decided by
the bottom level is successful, then the agent extracts an explicit rule that
corresponds to the action selected by the bottom level and adds the rule to the
top level. Then, in subsequent interaction with the world, the agent verifies
the extracted rule by considering the outcome of applying the rule: if the
outcome is not successful, then the rule should be made more specific and
exclusive of the current case; if the outcome is successful, the agent may try
to generalize the rule to make it more universal [14].1

After explicit rules have been learned, a variety of explicit reasoning meth-
ods may be used. Learning explicit conceptual representation at the top level
can also be useful in enhancing learning of implicit reactive routines at the
bottom level (e.g., [42]).

Assimilation of Externally Given Conceptual Structures. Although CLAR-
ION can learn even when no a priori or externally provided knowledge is
available, it can make use of it when such knowledge is available [27, 1]. To
deal with instructed learning, externally provided knowledge, in the forms
of explicit conceptual structures such as rules, plans, categories, and so on,
can (1) be combined with existent conceptual structures at the top level (i.e.,
internalization), and (2) be assimilated into implicit reactive routines at the
bottom level (i.e., assimilation). This process is known as top-down learning.
See [36] for more details.

The Non-Action-Centered Subsystem

The non-action-centered subsystem (NACS) may be used for representing
general knowledge about the world (i.e., constituting the “semantic” memory
as defined in, e.g., [21]), for performing various kinds of memory retrievals and
inferences. Note that the non-action-centered subsystem is under the control
of the action-centered subsystem (through its actions).

At the bottom level, associative memory networks encode non-action- cen-
tered implicit knowledge. Associations are formed by mapping an input to
an output. The regular backpropagation learning algorithm may be used to
establish such associations between pairs of inputs and outputs [26].

On the other hand, at the top level of the non-action-centered subsys-
tem, a general knowledge store encodes explicit non-action-centered knowl-
edge (cf. [32]). In this network, chunks are specified through dimensional
values (features). A node is set up in the top level to represent a chunk. The
chunk node connects to its corresponding features represented as individual

1 The detail of the bottom-up learning algorithm can be found in [43].

The Challenges of Building Computational Cognitive Architectures 45

nodes in the bottom level of the non-action-centered subsystem (see [32, 33]
for details). Additionally, links between chunks encode explicit associations
between pairs of chunks, known as associative rules. Explicit associative rules
may be formed (i.e., learned) in a variety of ways [36].

During reasoning, in addition to applying associative rules, similarity-
based reasoning may be employed in the non-action-centered subsystem.
During reasoning, a known (given or inferred) chunk may be automatically
compared with another chunk. If the similarity between them is sufficiently
high, then the latter chunk is inferred (see [36] for details; see also [32, 33]).

As in the action-centered subsystem, top-down or bottom-up learning may
take place in the non-action-centered subsystem, either to extract explicit
knowledge in the top level from the implicit knowledge in the bottom level
or to assimilate explicit knowledge of the top level into implicit knowledge in
the bottom level.

The Motivational and the Meta-Cognitive Subsystem

The motivational subsystem (the MS) is concerned with drives and their
interactions [47], which leads to actions. It is concerned with why an agent
does what it does. Simply saying that an agent chooses actions to maximizes
gains, rewards, reinforcements, or payoffs leaves open the question of what
determines these things. The relevance of the motivational subsystem to the
action-centered subsystem lies primarily in the fact that it provides the con-
text in which the goal and the reinforcement of the action-centered subsystem
are set. It thereby influences the working of the action-centered subsystem,
and by extension, the working of the non-action-centered subsystem.

A bipartite system of motivational representation is in place in CLARION.
The explicit goals (such as “finding food”) of an agent (which is tied to the
working of the action-centered subsystem) may be generated based on internal
drive states (for example, “being hungry”). (See [36] for details.)

Beyond low-level drives (concerning physiological needs), there are also
higher-level drives. Some of them are primary, in the sense of being “hard-
wired”. For example, Maslow [12] developed a set of these drives in the form
of a “need hierarchy”. While primary drives are built-in and relatively unal-
terable, there are also “derived” drives, which are secondary, changeable, and
acquired mostly in the process of satisfying primary drives.

The meta-cognitive subsystem (the MCS) is closely tied to the moti-
vational subsystem. The meta-cognitive subsystem monitors, controls, and
regulates cognitive processes for the sake of improving cognitive perfor-
mance [17, 30]. Control and regulation may be in the forms of setting goals
for the action-centered subsystem, setting essential parameters of the action-
centered subsystem and the non-action-centered subsystem, interrupting and
changing on-going processes in the action-centered subsystem and the non-
action-centered subsystem, and so on. Control and regulation can also be
carried out through setting reinforcement functions for the action-centered

46 Ron Sun

subsystem. All of the above can be done on the basis of drive states in the
motivational subsystem. The meta-cognitive subsystem is also made up of two
levels: the top level (explicit) and the bottom level (implicit).

5.3 Accounting for Cognitive Data

CLARION has been successful in accounting for and explaining a variety of
psychological data. For example, a number of well known skill learning tasks
have been simulated using Clarion that span the spectrum ranging from simple
reactive skills to complex cognitive skills. The simulated tasks include serial
reaction time (SRT) tasks, artificial grammar learning (AGL) tasks, process
control (PC) tasks, categorical inference (CI) tasks, alphabetical arithmetic
(AA) tasks, and the Tower of Hanoi (TOH) task [35]. Among them, SRT
and PC are typical implicit learning tasks (mainly involving implicit reactive
routines), while TOH and AA are high-level cognitive skill acquisition tasks
(with a significant presence of explicit processes). In addition, we have done
extensive work on a complex minefield navigation (MN) task, which involves
complex sequential decision making [42, 43]. We have also worked on an orga-
nizational decision task [38], and other social simulation tasks, as well as meta-
cognitive tasks. While accounting for various psychological data, CLARION
provides explanations that shed new light on cognitive phenomena. This point
can be illustrated by the following example.

For instance, in [46], we simulated the alphabetic arithmetic task of [22].
In the task, subjects were asked to solve alphabetic arithmetic problems of
the forms: letter1 + number = letter2 or letter1 − number = letter2, where
letter2 is number positions up or down from letter1 (depending on whether
+ or − was used; for example, A + 2 = C or C − 2 = A). Subjects were given
letter1 and number, and asked to produce letter2.

In experiment 1 of [22], during the training phase, one group of subjects
(the consistent group) received 36 blocks of training, in which each block
consisted of the same 12 addition problems. Another group (the varied group)
received 6 blocks of training, in which each block consisted of the same 72
addition problems. While both groups received 432 trials, the consistent group
practiced on each problem 36 times, but the varied group only 6 times. In the
transfer phase, each group received 12 new addition problems (not practiced
before), repeated 3 times. The findings were that, at the end of training,
the consistent group performed far better than the varied group. However,
during transfer, the consistent group performed worse than the varied group.
The varied group showed perfect transfer, while the consistent group showed
considerable slow-down. See Figure 2.

In experiment 2, the training phase was identical to that of experiment 1.
However, during the transfer phase, both groups received 12 subtraction (not
addition) problems, which were the reverse of the original addition problems,
repeated 3 times. The findings were that, in contrast to experiment 1, during

The Challenges of Building Computational Cognitive Architectures 47

0

500

1000

1500

2000

2500

3000

3500

End of Training Transfer
TASK

LC experiment 1 (human data)

consistent
varied

R
es

po
ns

e
T

im
e

(m
se

c)

Fig. 2. Experiment 1 of the letter counting task (from [22])

transfer, the consistent group actually performed better than the varied group.
Both groups performed worse than their corresponding performance at the
end of training, but the varied group showed worse performance than the
consistent group. See Figure 3.

How do we make sense of this complex pattern of data? Simulations were
conducted based on CLARION. The CLARION simulation captured the data
pattern, and provided detailed, process-based explanations for it. See the
simulation data in Figure 4, which is to be compared with Figure 2. Dur-
ing the training phase of experiment 1, the simulated consistent group had
a lower response time, because it had more practice on a smaller number
of instances, which led to the better performing bottom level in the action-
centered sub-system, as well as better performing instance retrieval from the
top level of the non-action-centered subsystem.2 Because they were better
performing, the bottom level of the action-centered subsystem and the top
level of the non-action-centered subsystem were more likely to be used in
determining the overall outcome of the simulated consistent group, due to

2 The bottom level in the action-centered subsystem of the simulated consistent
group performed more accurately because of a more focused practice on a few
instances by the consistent group (compared with the varied group). The top
level of the non-action-centered subsystem of the simulated consistent group was
more accurate for the same reason.

48 Ron Sun

0

2000

4000

6000

8000

End of Training Transfer

R
es

po
ns

e
T

im
e

(m
se

c)

TASK

LC experiment 2 (human data)

consistent
varied

Fig. 3. Experiment 2 of the letter counting task (from [22])

0

500

1000

1500

2000

2500

3000

3500

End of Training Transfer

R
es

po
ns

e
T

im
e

(m
se

c)

LC experiment 1 (model data)

consistent
varied

TASK

Fig. 4. Simulation of experiment 1 of the letter counting task

The Challenges of Building Computational Cognitive Architectures 49

the competition among different components.3 Because these two components
had lower response times than other components,4 a lower overall response
time resulted for the simulated consistent group.

CLARION also matched the transfer performance difference between the
two groups in experiment 1 (as shown in Figure 4). During the transfer phase
of experiment 1, the performance of the simulated consistent group was wors-
ened, compared with its performance at the end of training; the transfer per-
formance of the simulated consistent group was in fact worse than that of
the simulated varied group. This is because the simulated consistent group
relied more on the bottom level of the action-centered subsystem and the
non-action-centered subsystem during training and therefore, the activations
of its counting rules (in the top level of the action-centered subsystem) were
lower. As a result, it took more time to apply the counting rules during trans-
fer, which it had to apply, due to the fact that it had to deal with a different set
of instances during transfer. The performance of the simulated varied group
hardly changed, compared with its performance at the end of training, because
it relied mostly on the counting rules at the top level of the action-centered
subsystem during training (which was equally applicable to both training and
transfer). As a result, its counting rules had higher activations, and therefore
it performed better than the simulated consistent group during transfer. See
[46] for all the related statistical analysis.

As indicated by Figure 5, which is to be compared to Figure 3, the simu-
lation also captured accurately the human data of experiment 2. During the
transfer in experiment 2, due to the change in the task setting (counting down
as opposed to counting up), the practiced rule for counting up was no longer
useful. Therefore, both simulated groups had to use a new counting rule (for
counting down), which had only the initial low activation for both groups.
Similarly, both simulated groups had to use a new instance retrieval rule (for
“reverse retrieval” of chunks such as “A + 2 = C”), which also had only the
initial low activation in both cases.5 Both simulated groups performed worse
than at the end of training for the above reason.

Moreover, this simulation captured the fact that the varied group per-
formed worse than the consistent group during transfer (Figure 5). This dif-
ference was explained by the fact that the simulated consistent group had

3 We looked at the data, and indeed there were a lot more retrievals from the
non-action-centered subsystem by the simulated consistent group than the sim-
ulated varied group [46]. The data also showed a higher selection probability of
the bottom level of the action-centered subsystem in the simulated consistent
group [46].

4 It is either inherently so, as in the case of the bottom level of the action-centered
subsystem, or due to more frequent use (and consequently higher activation), as
in the case of the top level of the non-action-centered subsystem.

5 Chunks were used in “reverse retrieval” during the transfer phase of experiment 2,
because of the reverse relationship between the training and the transfer instances
used in this experiment.

50 Ron Sun

0

2000

4000

6000

8000

End of Training Transfer

R
es

po
ns

e
T

im
e

(m
se

c)

TASK

LC experiment 2 (model data)

consistent
varied

Fig. 5. Simulation of experiment 2 of the letter counting task

more activations associated with instance chunks (such as “A + 2 = C”)
than the simulated varied group, because the simulated consistent group had
more practice with these chunks. Therefore, the simulated consistent group
performed better than the simulated varied group in this phase.

CLARION provides some interesting interpretations of the human data.
For example, it attributes (in part) the performance difference at the end of the
training between the consistent and the varied group to the difference between
relying on implicit knowledge and relying on explicit rules. Moreover, the
CLARION simulation was far more accurate than the ACT-R simulation [9].
This fact suggests, to some extent, the advantage of CLARION.

In all of these simulations, the simulation with the CLARION cognitive
architecture forced one to think in terms of process, and in terms of details.
For instance, in the simulation described above, we investigated detailed com-
putational processes involved in performing this task, in particular the roles
of the two levels, and generated some conjectures in this respect.

CLARION also provides a deeper level of explanation. For example, in the
case of simulating the alphabetic arithmetic task, explanations were provided
in terms of action-centered knowledge or non-action-centered knowledge, in
terms of explicit knowledge or implicit knowledge, or in terms of activations
of representational units (in explaining response time differences), and so on.
They were deeper because the explanations were centered on lower-level mech-
anisms and processes.

Due to the nature of such deeper explanations, this approach is also
likely to lead to unified explanations, unifying a large variety of data and/or

The Challenges of Building Computational Cognitive Architectures 51

phenomena. For example, all the afore-mentioned tasks have been explained
computationally in a unified way in CLARION.

5.4 A Model for Autonomous Intelligent Systems

CLARION also serves as a model for building autonomous intelligent systems
(that is, intelligent agents). We tried to apply CLARION to a few reasonably
interesting tasks in this regard, including learning minefield navigation.

As described in [43], CLARION was used to tackle a complex simulated
minefield navigation task. The task setting was as shown in Figure 6. The
CLARION based agent had to navigate an underwater vessel through a mine-
field to reach a target location. The agent received information only from a
number of instruments, as shown in Figure 7. The sonar gauge showed how
close the mines were in 7 equal areas that range from 45 degrees to the left
of the agent to 45 degrees to the right. The fuel gauge showed the agent
how much time was left before fuel ran out. The bearing gauge showed the
direction of the target from the present direction of the agent. The range
gauge showed how far the target was from the current location. Using only
this sparse information, the agent decided (1) how to turn and (2) how fast
to move. The agent, within an allotted time period, could either (a) reach
the target (which is a success), (b) hit a mine (a failure), or (c) run out
of fuel (a failure). The agent was under severe time pressure, so it had to be
reactive in decision making, and it had no time for reasoning, episodic mem-
ory retrieval, and other slow cognitive processes. This task was thus quite

obstacles

agent

target

Fig. 6. Navigating through mines

52 Ron Sun

Fig. 7. The navigation input. The display at the upper left corner is the fuel gauge;
the vertical one at the upper right corner is the range gauge; the round one in the
middle is the bearing gauge; the 7 sonar gauges are at the bottom

difficult. CLARION based agents were applied to learning this task, starting
from scratch, without any a priori knowledge. CLARION learned to reach a
high level of performance through such autonomous learning. See Figure 8 for
learning curves. As shown in the figure, CLARION based agents outperformed
regular reinforcement learning (Q-learning) significantly, due to the synergy
between the two levels of the ACS.

6 The Challenges Ahead

Let us look into some general and specific challenges in developing cognitive
architectures in relation to cognitive science and AI/CI.

In general, building cognitive architectures is an extremely difficult task,
because (1) a cognitive architecture needs to be compact but yet compre-
hensive in scope, (2) it needs to remain simple yet capture empirical data
accurately, (3) it needs to be computationally feasible but also consistent
with psychological theories, (4) it needs somehow to sort out and incorporate
the myriad of incompatible psychological theories in existence, and so on.

6.1 The Challenges from Cognitive Science

Some have claimed that grand scientific theorizing have become a thing of
the past. What remains to be done is filling in details and refining some
minor points. Fortunately, many cognitive scientists believe otherwise. Many
researchers in cognitive science are pursuing integrative approaches that
attempt to explain data in multiple domains and functionalities [2, 35]. In
cognitive science, as in many other scientific fields, significant advances may
be made through discovering (hypothesizing and confirming) deep-level prin-
ciples that unify superficial explanations across multiple domains, in a way

The Challenges of Building Computational Cognitive Architectures 53

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000

S
uc

ce
ss

es
 p

er
 B

lo
ck

 o
f 2

0

Episode

Clarion
Q

(a) The 30-mine learning curves.

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000

S
uc

ce
ss

es
 p

er
 B

lo
ck

 o
f 2

0

Episode

Clarion
Q

(b) The 60-mine learning curves.

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000

S
uc

ce
ss

es
 p

er
 B

lo
ck

 o
f 2

0

Episode

Clarion
Q

(c) The 10-mine learning curves.

Fig. 8. Learning curves for 10-mine, 30-mine, and 60-mine settings

54 Ron Sun

somewhat analogous to Einstein’s theory that unified electromagnetic and
gravitational forces or String Theory that provides even further unifications
[7]. Such theories, based on cognitive architectures, are exactly what cognitive
science needs.

Cognitive scientists are actively pursuing such theories and, hopefully, will
be increasingly doing so. Integrative models may serve as antidotes to the
increasing specialization of research. Cognitive architectures that integrate a
broad range of cognitive functionalities go against this trend of increasing spe-
cialization, and help to fit pieces together again. As voiced by many cognitive
scientists, the trend of over-specialization is harmful and the reversal of this
trend is a necessary step toward further advances [40]. Developing integrative
cognitive architectures is thus a major challenge and a major opportunity.

In developing cognitive architectures, first of all, it is important to keep
in mind a broad set of desiderata. For example, in [3] a set of desiderata
proposed by Newell [18] was used to evaluate the ACT-R cognitive archi-
tecture versus conventional connectionist models. These desiderata include
flexible behavior, real-time performance, adaptive behavior, vast knowledge
base, dynamic behavior, knowledge integration, natural language, learning,
development, evolution, and brain realization. These were considered func-
tional constraints on cognitive architectures. In [37], another, broader set of
desiderata was proposed and used to evaluate a wider set of cognitive archi-
tectures. These desiderata include ecological realism, bio-evolutionary real-
ism, cognitive realism, and many others (see [37] for details). The advantages
of coming up with and applying these sets of desiderata include (1) avoid-
ing overly narrow models, (2) avoiding missing certain crucial functionalities,
and (3) avoiding inappropriate approaches in implementing cognitive archi-
tectures. One can reasonably expect that this issue will be driving research in
the field of cognitive architectures in the future. The challenge is to come up
with better, more balanced sets of desiderata.

Related to that, some general architectural principles also need to be exam-
ined. For example, it was claimed that the strengths of ACT-R derive from
its tight integration of the symbolic and the subsymbolic component [2]. On
the other hand, it has been argued [45] that the strength of CLARION lies in
its partitioning of cognitive processes into two broad categories: implicit and
explicit processes (as well as other categories). It is important to explore such
broad issues. It is a challenge to methodically explore such issues and reach
some theoretically convincing and practically useful conclusions.

The validation of details of a cognitive architecture has been a difficult,
but extremely important, issue. There have been too many instances in the
past that research communities rushed into some particular model or some
particular approach toward modeling cognition and human intelligence, with-
out knowing exactly how much of the approach or the model was veridical.
This often happens at the prompt of overly enthusiastic funding agencies or
governmental panels. Often, without much effort at validation, claims are
boldly made about the promise of a certain model or a certain approach.

The Challenges of Building Computational Cognitive Architectures 55

Unfortunately, we have seen quite a few setbacks in the history of cognitive
science as a result of this cavalier attitude. As in any other scientific fields,
painstakingly detailed work needs to be carried out before sweeping claims
can be made. This issue of validation of cognitive architectures poses a serious
challenge, because a myriad of mechanisms are involved in cognitive architec-
tures, and their complexity is high. Detailed validation has been extremely
difficult. This challenge needs to be met by future research in this field.

Another challenge is how one can come up with a well constrained cog-
nitive architecture with as few parameters as possible while accounting for a
large variety of empirical data and observations [24]. Complex models have
always invoked suspicion. An exaggerated argument against generic models
was examined in [15]: “A good scientist can draw an elephant with three
parameters, and with four he can tie a knot in its tail. There must be hun-
dred of parameters floating around in this kind of theory and nobody will
ever be able to untangle them”. Counter-arguments to such objections can be
advanced on the basis of the necessity of having complex models in under-
standing the mind, as argued in [15, 16, 18, 35], and so on. However, it should
be clearly recognized that over-generality, beyond what is minimally necessary,
is always a danger. Models may account well for a large set of data because of
their extreme generality, rather than capturing any deep structures and reg-
ularities underlying cognitive processes in the human mind. This situation is
to be avoided, by adopting a broad perspective, philosophical, psychological,
biological, as well as computational, and by adopting a multi-level framework
going from sociological, to psychological, to componential, and to biological
levels, as argued in more detail in [39]. Techniques have been developed to
accomplish this end and more work is needed (see, e.g., [24]).

While emphasizing the importance of being able to capture and explain
the nuances of cognitive data, we also need to emphasize the importance
of full functionality in cognitive architectures, which often does not get the
attention it deserves in cognitive science. As mentioned before, cognitive archi-
tectures need to incorporate all of the following functionalities: perception,
categorization and concepts, memory, reasoning, decision making, planning,
problem solving, motor control, learning, language and communication, meta-
cognition, and others. This issue has been raised very early on, but is still a
major challenge for cognitive science [18, 3].

6.2 The Challenges from/to Artificial Intelligence

In the context of AI/CI, there have been various criteria proposed for
evaluating cognitive architectures. Langley and Laird [11] proposed a set of
useful criteria, including the following: (1) generality, versatility, and taska-
bility, (2) both optimality and scalability (time/space complexity), (3) both
reactivity and goal-directed behavior, (4) both autonomy and cooperation,
(5) adaptation, learning, and behavioral improvements, and so on. To improve
cognitive architectures in each of these aspects is a challenge by itself.

56 Ron Sun

These are challenges from the perspective of AI/CI to the field of cognitive
architectures.

To develop better cognitive architectures, we need better algorithms, which
we may find in various subfields within AI/CI. It is extremely important that
AI/CI researchers come up with better and better algorithms, for various
functionalities such as information filtering, information retrieval, learning,
reasoning, decision making, problem solving, communication, and so on. Only
on the basis of such key algorithms that are continuously improving, better
and better cognitive architectures may be built correspondingly.

In particular, we need better natural language processing capabilities, more
powerful and more comprehensive learning algorithms, more efficient planning
algorithms, and so on. Each of these types of algorithms could potentially sig-
nificantly improve cognitive architectures, and cognitive architectures cannot
be advanced without these algorithms. These are significant challenges from
the field of cognitive architectures to AI/CI researchers.

AI/CI researchers also need to develop better computational methods
(algorithms) for putting the pieces together to form better overall architec-
tures. Various pieces have been, or are being, developed by various subfields
of AI/CI (including neural networks, reinforcement learning, and so on). Now
it is the time to put them together to form a more coherent, better inte-
grated, and better functioning cognitive architecture. Better computational
algorithms are needed for this purpose. That is another place where AI/CI
researchers can come in. It will be a long and incremental process — the chal-
lenge is to continuously improving upon the state of the art and to come up
with architectures that better and better mirror the human mind and serve a
variety of application domains at the same time.

Cognitive architectures need to find both finer and broader applications,
that is, both at lower levels and at higher levels. For example, some cog-
nitive architectures found applications in large-scale simulation at a social,
organizational level. For another example, some other cognitive architectures
found applications in interpreting not only psychological data but also neu-
roimaging data (at a biological level). A review commissioned by the US
National Research Council found that computational cognitive modeling had
progressed to a degree that had made them useful in a number of application
domains [20]. Another review [25] reached similar conclusions. Both reviews
provided descriptions of some examples of applications of cognitive architec-
tures. Inevitably, this issue will provide challenges for future research (applied,
as well as theoretical) in cognitive architectures.

7 Concluding Remarks

Although progress has been made in recent decades in advancing the work on
cognitive architectures, there is clearly a long way to go before we fully under-
stand the architecture of the human mind and thereby develop computational
cognitive architectures that successfully replicate the human mind.

The Challenges of Building Computational Cognitive Architectures 57

An example cognitive architecture has been presented. However, it will
be necessary to explore more fully the space of possible cognitive architec-
tures [41], in order to further advance the state of the art in AI/CI and in
cognitive science. It will also be necessary to enhance the functionalities of
cognitive architectures so that they can be capable of the full range of intel-
ligent behaviors. Tasks of gradually increasing complexity should be tackled.
Many challenges and issues need to be addressed, including those stemming
from cognitive science and from AI/CI, as discussed above.

We can expect that the field of cognitive architectures will have a profound
impact, both in terms of better understanding cognition and in terms of devel-
oping better artificially intelligent systems. As such, it should be considered a
grand challenge and correspondingly a significant amount of collective research
effort should be put into it.

Acknowledgement

This work was carried out while the author was supported in part by ONR
grant N00014-95-1-0440 and ARI grants DASW01-00-K-0012 and W74V8H-
04-K-0002. Thanks are also due to Xi Zhang and Bob Mathews for their
collaborations on related research.

References

[1] J. R. Anderson, (1983). The Architecture of Cognition. Harvard
University Press, Cambridge, MA

[2] J. Anderson and C. Lebiere, (1998). The Atomic Components of Thought.
Lawrence Erlbaum Associates, Mahwah, NJ.

[3] J. Anderson and C. Lebiere, (2003). The Newell Test for a theory of
cognition. Behavioral and Brain Sciences, 26, 587-640

[4] S. Chaiken and Y. Trope (eds.), (1999). Dual Process Theories in Social
Psychology. Guilford Press, New York.

[5] A. Cleeremans, A. Destrebecqz and M. Boyer, (1998). Implicit learning:
News from the front. Trends in Cognitive Sciences, Volume 2, Issue 10,
406-416.

[6] J. Fodor, (1983). The Modularity of Mind. MIT Press, Cambridge, MA.
[7] G. Greene, (1999). The Elegant Universe. Norton, New York.
[8] L. Hirschfield and S. Gelman (eds.), (1994). Mapping the Mind: Domain

Specificity in Cognition and Culture. Cambridge University Press,
Cambridge, UK.

[9] T. Johnson, (1998). Acquisition and transfer of declarative and proce-
dural knowledge. European Conference on Cognitive Modeling, pp. 15-22.
Nottingham University Press, Nottingham, UK.

58 Ron Sun

[10] A. Karmiloff-Smith, (1986). From meta-processes to conscious access:
Evidence from children’s metalinguistic and repair data. Cognition. 23.
95-147.

[11] P. Langley and J. Laird, (2003). Cognitive architectures: Research issues
and challenges. Unpublished manuscript.

[12] A. Maslow, (1987). Motivation and Personality. 3rd Edition. Harper and
Row, New York.

[13] D. Medin, W. Wattenmaker, and R. Michalski, (1987). Constraints and
preferences in inductive learning: An experimental study of human and
machine performance. Cognitive Science. 11, 299-339.

[14] R. Michalski, (1983). A theory and methodology of inductive learning.
Artificial Intelligence. Vol.20, pp. 111-161.

[15] G. Miller, E. Galanter, and K. Pribram, (1960). Plans and the Structure
of Behavior. Holt, Rinehart, and Winston, New York.

[16] M. Minsky, (1985). The Society of Mind. Simon and Schuster, New York.
[17] T. Nelson, (Ed.) (1993). Metacognition: Core Readings. Allyn and Bacon.
[18] A. Newell, (1990). Unified Theories of Cognition. Harvard University

Press, Cambridge, MA.
[19] R. Nosofsky, T. Palmeri, and S. McKinley, (1994). Rule-plus-exception

model of classification learning. Psychological Review. 101 (1), 53-79.
[20] R. W. Pew and A. S. Mavor (eds), (1998). Modeling Human and Organi-

zational Behavior: Application to Military Simulations. National Acad-
emy Press, Washington, DC.

[21] M. R. Quillian, (1968). Semantic memory. In: M. Minsky (ed.), Semantic
Information Processing. MIT Press, Cambridge, MA. pp. 227-270.

[22] M. Rabinowitz and N. Goldberg, (1995). Evaluating the structure-process
hypothesis. In: F. Weinert and W. Schneider, (eds.) Memory Performance
and Competencies. Lawrence Erlbaum, Hillsdale, NJ.

[23] A. Reber, (1989). Implicit learning and tacit knowledge. Journal of
Experimental Psychology: General. 118 (3), 219-235.

[24] T. Regier, (2003). Constraining computational models of cognition.
In: L. Nadel (ed.), Encyclopedia of Cognitive Science, pp. 611-615.
MacMillan Reference Ltd. London.

[25] F. Ritter, Shadbolt, N., Elliman, D., Young, R., Gobet, F., and Baxter,
G., (2003). Techniques for Modeling Human Performance in Synthetic
Environments: A Supplementary Review. Human Systems Information
Analysis Center, Wright-Patterson Air Force Base, Dayton, OH.

[26] D. Rumelhart, J. McClelland and the PDP Research Group, (1986).
Parallel Distributed Processing: Explorations in the Microstructures of
Cognition. MIT Press, Cambridge, MA.

[27] W. Schneider and W. Oliver (1991), An instructable connectionist/
control architecture. In: K. VanLehn (ed.), Architectures for Intelligence,
Erlbaum, Hillsdale, NJ.

[28] C. Seger, (1994). Implicit learning. Psychological Bulletin. 115 (2),
163-196.

The Challenges of Building Computational Cognitive Architectures 59

[29] H. Simon, (1957), Models of Man, Social and Rational. Wiley, NY.
[30] J. D. Smith, W. E. Shields, and D. A. Washburn, (2003). The comparative

psychology of uncertainty monitoring and metacognition. Behavioral and
Brain Sciences, in press.

[31] W. Stanley, R. Mathews, R. Buss, and S. Kotler-Cope, (1989). Insight
without awareness: On the interaction of verbalization, instruction and
practice in a simulated process control task. Quarterly Journal of Experi-
mental Psychology. 41A (3), 553-577.

[32] R. Sun, (1994). Integrating Rules and Connectionism for Robust Com-
monsense Reasoning. John Wiley and Sons, New York, NY.

[33] R. Sun, (1995). Robust reasoning: Integrating rule-based and similarity-
based reasoning. Artificial Intelligence. 75, 2. 241-296.

[34] R. Sun, (2001). Does connectionism permit rule learning? INNS/ENNS/
JNNS Newsletter, No.44, pp. 2-3. 2001.

[35] R. Sun, (2002). Duality of the Mind. Lawrence Erlbaum Associates,
Mahwah, NJ.

[36] R. Sun, (2003). A Tutorial on CLARION. Technical report, Cognitive
Science Department, Rensselaer Polytechnic Institute. http://www.
cogsci.rpi.edu/rsun/sun.tutorial.pdf

[37] R. Sun, (2004). Desiderata for cognitive architectures. Philosophical Psy-
chology, 17 (3), 341-373.

[38] R. Sun and I. Naveh, (2004). Simulating organizational decision
making with a cognitive architecture Clarion. Journal of Artificial
Society and Social Simulation, Vol.7, No.3, June, 2004. http://jasss.soc.
surrey.ac.uk/7/3/5.html

[39] R. Sun, L. A. Coward, and M. J. Zenzen, (2005). On levels of cognitive
modeling. Philosophical Psychology, 18 (5), 613-637.

[40] R. Sun, V. Honavar, and G. Oden, (1999). Integration of cognitive sys-
tems across disciplinary boundaries. Cognitive Systems Research, Vol.1,
No.1, pp. 1-3.

[41] R. Sun and C. Ling, (1998). Computational cognitive modeling, the
source of power and other related issues. AI Magazine. Vol.19, No.2,
pp. 113-120.

[42] R. Sun, E. Merrill, and T. Peterson, (2001). From implicit skills to
explicit knowledge: A bottom-up model of skill learning. Cognitive Sci-
ence. Vol.25, No.2, 203-244.

[43] R. Sun and T. Peterson, (1998). Autonomous learning of sequential tasks:
experiments and analyses. IEEE Transactions on Neural Networks, Vol.9,
No.6, pp. 1217-1234.

[44] R. Sun and T. Peterson, (1999). Multi-agent reinforcement learning:
Weighting and partitioning. Neural Networks, Vol.12, No.4-5. pp. 127-
153.

[45] R. Sun, P. Slusarz, and C. Terry, (2005). The interaction of the explicit
and the implicit in skill learning: A dual-process approach. Psychological
Review, 112 (1), 159-192.

60 Ron Sun

[46] R. Sun and X. Zhang, (2003). Accessibility versus action-centeredness
in the representation of cognitive skills. Proceedings of the Fifth Inter-
national Conference on Cognitive Modeling, pp. 195-200. Universitats-
Verlag Bamberg, Bamberg, Germany.

[47] F. Toates, (1986). Motivational Systems. Cambridge University Press,
Cambridge, UK.

[48] C. Watkins, (1989). Learning with Delayed Rewards. Ph.D Thesis,
Cambridge University, Cambridge, UK.

Programming a Parallel Computer: The Ersatz
Brain Project

James A. Anderson1, Paul Allopenna2, Gerald S. Guralnik3, David
Sheinberg4, John A. Santini, Jr.1, Socrates Dimitriadis1, Benjamin B.
Machta3, and Brian T. Merritt1

1 Department of Cognitive and Linguistic Sciences, Brown University, Providence,
RI, 02912, USA

2 Aptima, Inc., 12 Gill Road, Suite 1400, Woburn, MA, 01801, USA
3 Department of Physics, Brown University, Providence, RI, 02912, USA.
4 Department of Neuroscience, Brown University, Providence, RI, 02912, USA

Summary. There is a complex relationship between the architecture of a computer,
the software it needs to run, and the tasks it performs. The most difficult aspect
of building a brain-like computer may not be in its construction, but in its use:
How can it be programmed? What can it do well? What does it do poorly? In the
history of computers, software development has proved far more difficult and far
slower than straightforward hardware development. There is no reason to expect
a brain like computer to be any different. This chapter speculates about its basic
design, provides examples of “programming” and suggests how intermediate level
structures could arise in a sparsely connected massively parallel, brain like computer
using sparse data representations.

1 Introduction

We want to design a suitable computer architecture – hardware and software
– for the efficient execution of the applications now being developed that will
display human-like cognitive abilities. We base our fundamental design on
a few ideas taken from the neurobiology of the mammalian cerebral cortex,
therefore we have named our project the Ersatz Brain Project. We gave it
this name because, given our current state of knowledge, our goal can only
be to build a shoddy second-rate brain. Even so, such a computer may be
a starting point for projects that realize systems with the power, flexibility,
and subtlety of the actual brain. We suggest that a “cortex-power” massively
parallel computer is now technically feasible, requiring on the order of a million
simple CPUs and a terabyte of memory for connections between CPUs.

We approach this problem from the point of view of cognitive computa-
tion. There is little attempt to make a detailed “biologically realistic” neuro-
computer. We are proposing instead a “cortically inspired” computing system
James A. Anderson et al.: Programming a Parallel Computer: The Ersatz Brain Project, Studies

in Computational Intelligence (SCI) 63, 61–98 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

62 James A. Anderson et al.

specifically for cognitive applications. Mammalian cerebral cortex is a remark-
ably uniform, large structure that seems to do much of the work of cognition,
though other structures are involved. We know a good deal about the details
of human cognition and the operations it performs. Our belief is that these
operations will be performed most efficiently by a computer system based to
at least some degree on the design of cerebral cortex.

However, the brain has severe intrinsic limitations on connectivity, speed,
and accuracy and some computational strategies may simply be forced on
the system by hardware limitations. In many respects we have a dual compu-
tational system, one system old, highly evolved, highly optimized, basically
associative, perceptually oriented, memory driven, and alogical, and, a second
system, recent, oddly contoured, unreliable, “symbolic” and “rule based”. (See
Sloman [1] for a cognitive science perspective.) We suggest a successful brain-
like computer system should include aspects of both systems, since they are
complementary and work effectively together, as the remarkable, very rapid
success of our own species indicates.

2 Essentials of the Ersatz Approach

The human brain is composed of on the order of 1010 neurons, connected
together with at least 1014 connections between neurons. These numbers
are likely to be underestimates. Biological neurons and their connections are
extremely complex electrochemical structures that require substantial com-
puter power to model even in poor approximations. The more realistic the
neuron approximation, the smaller is the network that can be modeled. Worse,
there is very strong evidence that a bigger brain is a better brain, thereby
increasing greatly computational demands if biology is followed closely. We
need good approximations to build a practical brain-like computer.

2.1 The Ersatz Cortical Computing Module and the Network
of Networks

Received wisdom has it that neurons are the basic computational units of the
brain. However the Ersatz Brain Project is based on a different assumption.
We will use the Network of Networks [NofN] approximation to structure
the hardware and to reduce the number of connections required [2, 3, 4].

We assume that the basic neural computing units are not neurons, but
small (perhaps 103− 104 neurons) attractor networks, that is, non-linear net-
works (modules) whose behavior is dominated by their attractor states that
may be built in or acquired through learning [5, 6, 7]. Basing computation
on module attractor states – that is, on intermediate level structure – and
not directly on the activities of single neurons reduces the dimensionality of
the system, allows a degree of intrinsic noise immunity, and allows interac-
tions between networks to be approximated as interactions between attrac-
tor states. Interactions between modules are similar to the generic neural

Programming a Parallel Computer: The Ersatz Brain Project 63

net unit except scalar connection strengths are replaced by state interaction
matrices. (Fig. 1) The state interaction matrix gives the effect of an attrac-
tor state in one module upon attractor states in a module connected to it.
Because attractors are derived from neuron responses, it is potentially possi-
ble to merge neuron-based preprocessing with attractor dynamics. The basic
Network of Networks system is composed of very many of these basic modules
arranged in a two-dimensional array. (Fig. 2).

2.2 Cortical Columns

The most likely physiological candidate for the basic component of a modular
network is the cortical column. Cerebral cortex is a large two-dimensional
layered sheet, with a repetitive structure. One of its most prominent anatomical
features is the presence of what are called columns, local groups of cells oriented
perpendicular to the cortical surface. There are several types of columns present
at different spatial scales. A recent special issue of the journal Cerebral Cortex
was devoted to cortical columns, their functions, and their connections. The
introduction by Mountcastle [8] provides a useful summary of the two types of
columns that will most concern us:

“The basic unit of cortical operation is the minicolumn . . . It contains
of the order of 80–100 neurons, except in the primate striate cortex, where

Fig. 1. Generic Network of Networks module structure

Fig. 2. Network of Networks 2-D modular architecture

64 James A. Anderson et al.

the number is more than doubled. The minicolumn measures of the order
of 40–50 μm in transverse diameter, separated from adjacent minicolumns by
vertical cell-sparse zones which vary in size in different cortical areas. Each
minicolumn has all cortical phenotypes, and each has several output channels.
. . . By the 26th gestational week the human neocortex is composed of a large
number of minicolumns in parallel vertical arrays.” ([8], p. 2)

Minicolumns form a biologically determined structure of stable size, form
and universal occurrence. What are often called “columns” in the literature are
collections of minicolumns that seem to form functional units. Probably the
best-known examples of functional columns are the orientation columns in V1,
primary visual cortex. Vertical electrode penetrations in V1, that is, parallel
to the axis of the column, found numerous cells that respond to oriented
visual stimuli with the same orientation [9]. The cells in a column are not
identical in their properties and, outside of orientation, may vary widely in
their responses to contrast, spatial frequency, etc. Clusters of minicolumns
make up functional columns:

Mountcastle continues, “Cortical columns are formed by the binding
together of many minicolumns by common input and short range horizontal
connections. The number of minicolumns per column varies probably because
of variation in size of the cell sparse inter-minicolumnar zones; the number
varies between 50 and 80. Long-range, intracortical projections link columns
with similar functional properties. Columns vary between 300 and 500 μm in
transverse diameter, and do not differ significantly in size between brains that
may vary in size over three orders of magnitude . . . Cortical expansion in
evolution is marked by increases in surface area with little change in thick-
ness” ([8], p. 3).

If we assume there are 100 neurons per minicolumn, and roughly 80 mini-
columns per functional column, this suggests there are roughly 8,000 neurons
in a column.

2.3 Connectivity

Besides modular structure, an important observation about the brain in gen-
eral that strongly influences how it works is its very sparse connectivity
between neurons. Although a given neuron in cortex may have on the order of
100,000 synapses, there are more than 1010 neurons in the brain. Therefore,
the fractional connectivity is very low; for the previous numbers it is 0.001
per cent, even if every synapse connects to a different cell. Connections are
expensive biologically since they take up space, use energy, and are hard to
wire up correctly. The connections that are there are precious and their pat-
tern of connection must be under tight control. This observation puts severe
constraints on the structure of large-scale brain models. One implication of
expensive connections is that short local connections are relatively cheap com-
pared to longer range ones. The cortical approximation we will discuss makes

Programming a Parallel Computer: The Ersatz Brain Project 65

extensive use of local connections for computation in addition to the sparse,
accurately targeted long-range connections.

2.4 Interactions between Modules

Let us discuss in a little more detail how to analyze interactions between
small groups of modules. The attractor model we will use is the BSB network
(Anderson, 1993) because it is simple to analyze using the eigenvectors and
eigenvalues of its local connections.

The BSB model (Fig. 3.) was proposed several years ago as a simple feed-
back nonlinear neural network [6]. Its dynamics broke conveniently into a
linear and a non-linear part. The analysis assumed it was a recurrent feed-
back network (See Fig. 3). An input pattern, f , appears on an interconnected
group of neurons, say from a sensory input. There is vector feedback through
a connection matrix, A, weighted by a constant α and an inhibitory decay
constant, γ, with amount of inhibition a function of the amplitude of the
activity. The state of the system is x(t). The system is linear up to the point
where the LIMIT operation starts to operate. LIMIT(x(t)) is a hard limiter
with an upper and lower threshold. Sometimes it is useful to maintain the
outside input f(0) at some level; sometimes it is useful to remove the outside
input. The constant δ performs this function.

The basic algorithm for BSB is:

x(t + 1) = LIMIT (αAx(t) + γx(t) + δf(0)) (1)

In the nonlinear BSB network with growing activity, the state of the system
will reach an attractor state based on the LIMIT function, usually the corner
of a hypercube of limits. In practice, if f is an eigenvector the final BSB
attractor state is close to the direction of f .

Activity can increase without bound or go to zero. The transition from
increasing activity to decreasing activity is under control of α, γ and, the
eigenvalues of A. These parameters provide a way of controlling network
behavior.

Fig. 3. Basic BSB module

66 James A. Anderson et al.

Fig. 4. Two modules linked by an associative pattern feedback loop. C and D are
state interaction matrices between the two modules

Let us consider the implications of connections from other structures. In
particular, we know two relevant facts about cortex: (1) one cortical region
projects to others and, (2) there are back projections from the target regions
to the first region that are comparable in size to the upward projections.
Therefore let us consider the anatomy shown in Fig. 4. The upward associa-
tion, C, can have almost any pattern as an output association. The downward
association has an eigenvector of A, f , at its output, perhaps mixed with other
eigenvectors. Hebbian learning operating at the start and finish of the loop
will tend to learn f as an eigenvector of the entire loop because it is present
at both input and output. These loops are reminiscent of the Bidirectional
Associative Memory [BAM] of Kosko [10]. Analysis again is easy if f is an
eigenvector. Let us assume δ is zero, as before. Analysis is the same as in
the basic model, except that we now have a new term in the BSB equation
corresponding to the contribution from the loop. (Fig. 4.)

We can also propose a computational mechanism for binding together a
multi-module input pattern using local connections. If two modules are driven
by two simultaneously presented patterns, f and g, associative links between
f and g can be formed, increasing the gain of the module and therefore the
likelihood that later simultaneous presentation of the patterns will lead to
module activity reaching a limit. (Fig. 5) Local pattern co-occurrence will
form local pattern associative bonds, letting larger groupings act as a unit,
that is, a unit that increases and decreases in activity together. Large-scale
patterns will tend to bind many module activities together since learning takes
place embedded in a larger informational structure.

2.5 Interference Patterns and Traveling Waves

Because we have suggested many important connections are local, much
information processing takes place by movement of information laterally from

Programming a Parallel Computer: The Ersatz Brain Project 67

Fig. 5. Two coupled modules receiving a pair of linked input patterns, f and g

Fig. 6. Two patterns move laterally across an array and form an interference pat-
tern, and can learn the resulting feature combination

module to module as shown in Fig. 6. This lateral information flow requires
time and some important assumptions about the initial wiring of the mod-
ules. There is currently considerable experimental data supporting the idea
of lateral information transfer in cerebral cortex over significant distances.
The lateral information flow allows the potential for the formation of the fea-
ture combinations in the interference patterns, useful for pattern recognition.
There is no particular reason to suggest that modules just passing information
are in attractor states; for pattern transmission it is better if they re not.

Coincidences, where two patterns collide are of special interest. Since the
individual modules are nonlinear learning networks, we have here the potential
for forming new attractor states when an interference pattern forms, that is,
when two patterns arrive simultaneously at a module over different pathways.
(Fig. 6.)

There have been a number of related computational models specifically
designed for vision that have assumed that image processing involves lateral
spread of information. An early example is Pitts and McCulloch [11] who
suggested, “A square in the visual field, as it moved in and out in successive
constrictions and dilations in Area 17, would trace out four spokes radiating
from a common center upon the recipient mosaic. This four-spoked form, not
at all like a square, would the be the size-invariant figure of a square (p. 55).”

68 James A. Anderson et al.

In the 1970’s Blum [12] proposed the “grassfire” model where visual contours
ignited metaphorical “grassfires” and where the flame fronts intersected pro-
duced a somewhat size invariant representation of an object. The propagating
waves are computing something like the medial axis representation, that
is, the point on the axis lying halfway between contours [13].

There are many examples of traveling waves in cortex. Bringuier, Chavane,
Glaeser, and Fregnac [14] observed long range interactions in V1 with an
inferred conduction velocity of approximately 0.1 m/sec. Lee, Mumford,
Romero, and Lamme [15] discuss units in visual cortex that seem to respond
to the medial axis. Particularly pertinent in this context is Lee [16] who dis-
cuses medial axis representations in the light of the organization of V1. In
psychophysics, Kovacs and Julesz [17] and Kovacs, Feher, and Julesz [18]
demonstrated threshold enhancement at the center of circle and at the foci
of ellipses composed of oriented Gabor patches forming a closed contour.
These models assume that an unspecified form of “activation” is being spread
whereas the Network of Networks assumes that pattern information (a vec-
tor) related to module attractor states is being propagated. We feel that
the traveling wave mechanism and its generalizations may have more general
applications that vision.

2.6 Ersatz Hardware: A Brief Sketch

How hard would it be to implement such a cortex-like system in hardware?
This section is a “back of the envelope” estimate of the numbers. We feel
that there is a size, connectivity, and computational power sweet spot about
the level of the parameters of the network of network model. If we equate an
elementary attractor network with 104 actual neurons, that network might
display perhaps 50 well-defined attractor states. Each elementary network
might connect to 50 others through 50x50 state connection matrices. There-
fore a cortex-sized artificial system might consist of 106 elementary units with
about 1011 to 1012 (0.1 to 1 terabyte) total strengths involved to specify con-
nections. Assume each elementary unit has the processing power of a simple
CPU. If we assume 100 to 1000 CPU’s can be placed on a chip there would
be perhaps 1000 to 10,000 chips in a brain sized system. These numbers are
within the capability of current technology.

Therefore, our basic architecture consists of a large number of simple CPUs
connected to each other and arranged in a two dimensional array. (Fig. 7).
A 2-D arrangement is simple, cheap to implement, and corresponds to the
actual 2-D anatomy of cerebral cortex. An intrinsic 2-D topography can also
make effective use of the spatial data representations used in cortex for vision,
audition, skin senses and motor control.

2.7 Communications

The brain has extensive local and long-range communications. The brain is
unlike a traditional computer in that its program, dynamics, and computations

Programming a Parallel Computer: The Ersatz Brain Project 69

Fig. 7. A 2-D array of modules with simple local connectivity. The basic Ersatz
architecture

are determined primarily by strengths of its connections. Details of these rel-
atively sparse interconnections are critical to every aspect of brain function.

Short-range connections

There is extensive local connectivity in cortex. An artificial system has many
options. The simplest connections are purely to its neighbors. Expanding local
connectivity to include modules two or three modules away, often seems to
work better but is more complex to build.

Long-range connections

Many of the most important operations in brain computation involve pattern
association where an input pattern is transformed to an associated output
pattern that can be different from the input. One group of units connects to
other groups with precisely targeted long-range connections.

CPU Functions

The CPUs must handle two quite different sets of operations. First, is com-
munications with other CPUs. Much of the time and effort in brain-based
computation is in getting the data to where it needs to be. Second, when the
data arrives, it is can then be used for numerical computation.

3 Topographic Computation

The cortex, and, in imitation, our computational model is a 2-D sheet of
modules. Connections between modules, slow and expensive in the brain, as

70 James A. Anderson et al.

we have noted, perform the computation. Therefore topographic relationships
between modules and their timing relationships become of critical compu-
tational significance. We suggest that it is possible to use the topographic
structure of the array to perform some interesting computations. Indeed,
topographic computation may be a major mechanism used to direct a
computation in practice, and, therefore, a tool that can be used to program
the array.

The next three sections will describe some uses of topographic organization
to (1) Arithmetic fact learning; (2) Information integration; (3) Filtering based
on spatial organization; (4) Formation of spatial assemblies of modules within
and across layers. This discussion is obviously highly speculative, but suggests
the kinds of intermediate level structures that may be useful in a practical,
programmable, and flexible brain-like computer.

4 Example: Arithmetic in Humans Using Topographic
Control

A few years ago, we suggested a model for elementary arithmetic fact learn-
ing [19] that showed that it was possible to perform what appeared to be
“symbolic” elementary arithmetic operations by using topographically orga-
nized spatial weighting functions. Because this kind of mechanism is sugges-
tive of how an array of modules might be programmed topographically, we
review it here even though the array of modules in the arithmetic model was
one-dimensional. We will expand the array to two dimensions in the next sec-
tions. In addition the problem itself illustrates a few of the peculiarities of
real-world cognitive computation.

When a computer multiplies two single digit integers, it performs a
sequence of formal operations based on logic, the definitions of integers and the
rules of binary arithmetic. Humans do multiplication very differently, using
a combination of estimation and memory. The human algorithm might be
formalized as something like “Choose the product number (that is, a num-
ber that is the answer to some multiplication problem) that is about the
right size.” For example, the most common error for 9x6 is 56. More careful
inspection of the experimental data indicates a complex associative structure
working along with estimation, Errors for 9x6 are frequently “off by one”
multiples of 6 or of 9, for example, 48 or 63. These effects do not seem to arise
because of errors in the application of formal logic to the computation.

The error rate for elementary multiplication facts in college-educated
adults is as high as 8% in some studies. Such a high rate is remarkable consider-
ing that several years are devoted to practicing arithmetic facts in elementary
school, at a time when learning of other complex material – language, for
example – is fast and accurate. However, there are also some positive aspects
to such an error prone algorithm. For example, errors in elementary arith-
metic are usually “close” to the correct answer. Sometimes being “close” is

Programming a Parallel Computer: The Ersatz Brain Project 71

good enough to do the job and more useful than the gross magnitude errors
that malfunctioning computers can make.

Attempts by cognitive scientists to model human number performance
have generally assumed the presence of an important “perceptual” part to
the internal human number representation. In many experiments, numbers
act more like “weights” or “light intensities” than abstract quantities. There
is also evidence (Hadamard [20]) that higher mathematics as actually done
by mathematicians or physicists is often more perceptual than abstract. The
classic theorem-proof process is primarily used to check for errors and as a
way of convincing others that results are correct. These ill-defined sensory
and perceptual aspects of mathematics as it is practiced go by the name
“mathematical intuition.”

4.1 The Data Representation for Number

The most difficult problem in any application of neural networks is converting
the input data into the state vectors that can be manipulated by network
dynamics. Data representation often has more influence on system perfor-
mance than the type of learning algorithm or the form of the network. There
are few explicit rules that determine what the best data representations are
for a particular problem. For example, there is constant intrinsic tension
between accuracy and generalization since generalization to be useful requires
an appropriate response to an unlearned pattern. Good generalization is crit-
ically dependent on the needs of the specific application, system history, and
the data representation. In practice, generalization needs to be learnable and
controllable so the same network can generalize one way at one time and in a
different way with different task requirements.

A combination of computer simulations and inference from experimental
data has suggested one useful data representation for number. The starting
point for our formal system will therefore be a suggestion for the representa-
tion of number in a neural network or in a one-dimensional array of modules.

Topographic representations of parameters are very common in the ner-
vous system. For example, in vertebrates, the early stages of the visual corti-
cal representation are topographic in that the image on the retina is roughly
mapped onto the two dimensional cortex. A topographic map of the visual
field is used in vision in animals as diverse as humans and the horseshoe crab,
Limulus. There are many other topographic maps in vertebrate cortex, for
example, somatosensory maps of the body surface and frequency of sound in
audition.

In a neural network, one useful form of such a topographic representation
is called a bar code, as shown in Fig. 8. The value of the parameter repre-
sented depends on the location of a group of active units on a linear array of
units. The price paid for this useful data representation is low precision and
inefficiency in use of units. If a single parameter is represented only as a loca-
tion then many units are required to represent a value that a single unit could

72 James A. Anderson et al.

Fig. 8. Location of the active units on a linear array of units codes the magnitude
of a parameter

represent by an activity level. Such a physical mapping is also inherently low
precision, with precision determined by the number of units devoted to repre-
senting the parameter. Such a representation technique, and its variants are
most naturally implemented in a system that is composed of many relatively
inexpensive units and that is performing a function that is only secondarily
concerned with high accuracy. Some nanocomponent based computing devices
will fall into this category, as does, of course, the nervous system.

Such a representation can convey an essentially continuous range of values.
However, in cognition we often use discrete entities – words, concepts, or num-
bers – to represent many different but somehow related examples. Much of the
computational power of human cognition arises from its ability to keep only
enough information about the world to be useful, and no more. For example,
every physical example of a table is different in detail from every other one,
but the word “table” often captures the essence of the commonalities of the
group and the individual details can be discarded. With our network model,
we can couple a continuous underlying data representation with a nonlinear
attractor neural network with discrete attractors.

4.2 Simple Arithmetic Operations

Learning numbers is only the beginning of arithmetic. If we want to build a
useful computational system, we have to be able to direct the computation
to give answers to specific problems without further learning. Therefore, our
first job is to specify the operations that we would reasonably expect an
“arithmetic” network to perform. Let us suggest several primitive candidate
operations for our computing system.

Counting seems to be present in all human societies of which we have
knowledge and evidence for it goes far back into prehistory. There is good
evidence that nonhuman primates and many higher mammals can count up
to small integers. Formally, we can represent the counting function as two
related operations: starting with a digit, add one to it, that is, increment,
and, the symmetrical operation, subtract one, that is, decrement. Another
valuable arithmetic related function is comparison of two numbers, that is, the

Programming a Parallel Computer: The Ersatz Brain Project 73

equivalent of the formal operations greater-than or lesser-than. Another
useful operation is round-off, that is, two and a bit more can be reported as
“about two.”

Therefore we will suggest that five operations form a useful starting point:

• increment (add 1)
• decrement (subtract 1)
• greater-than (given two numbers, choose the larger)
• lesser-than (given two numbers, choose the smaller)
• round-off to the nearest integer

4.3 Programming Patterns for the Simple Operations

The digits in order are represented as adjacent locations in the array, that is,
the spatial locations follow the order of magnitudes: 1 next to 2, 2 next to 3,
3 next to 4, and so forth. If we use the bar coded data representation we have
discussed (Fig. 9), it is surprisingly easy to find programming patterns that
work. This robustness arises because we are dealing with qualitative properties
of the geometry of representation, that is, representational topology.

In a previous paper [3] a way was suggested to control a network using a
vector programming pattern that multiplied term by term the state vector
derived from the input data. The number data representation we are using
– the overlapping bar codes suggested earlier – contains enough information
about the relations between digits to perform these operations.

The overall architecture of the system we have been describing is presented
in Fig. 10. The system has two branches. One is connected to the physical
world thorough the sensory systems. The other forms the “abstract” branch
and chooses the desired arithmetic manipulation. An operation is chosen. This
operation is associated with a programming pattern. In the other branch of
the computation, information from the world is represented as a bar code.
The two vectors are multiplied term by term. BSB attractor dynamics are

Fig. 9. Bar coded data representation for number magnitude. Bars are arranged
spatially in order of magnitude as in the number line

74 James A. Anderson et al.

Fig. 10. Numerical computation involves merging two components. The left branch
contains the program patterns and the right branch contains input quantities. The
attractor network generates the output

then applied. The state vector then evolves to an attractor that contains the
answer to the problem.

We can present intuitive arguments to support the particular program-
ming patterns used. Consider counting, that is, the “Increment” operation.
If we start from a particular location on the topographic map, we know
that one direction on the map corresponds to larger numbers, the other to
smaller. Therefore, if we differentially weight the map so that nearby larger
numbers are weighted more strongly, the system state can be encouraged to
move toward the attractor corresponding to the next largest digit. (The heavy
dashed line in Fig. 11.)

The “greater-than” operation can also be done with differential weighting
of the input data, so large digits reach attractors before small digits as shown
in Fig. 12.

Round-off is performed slightly differently. A bar for an intermediate value
is generated at a location between the two digits. The network then moves to
the attractor with the largest overlap with the input data bar. The two other

Programming a Parallel Computer: The Ersatz Brain Project 75

Fig. 11. The programming pattern for “Increment” weights the input digit and
shifts it to the next attractor to the right

Fig. 12. The programming pattern for “Greater-Than” weights the larger digit
more heavily and drives the state vector to that attractor

operations – less-than and decrement – are simple reflections of the patterns
for greater than and increment.

There are some important properties of the operation of the program that
are worth mentioning. For example, when the ‘greater-than’ program runs, it
displays what is called a symbolic distance effect in cognitive psychology.
The time to an attractor is a function of the difference in magnitude between
the two numbers being compared, that is, the larger of the pair (9, 1) is reaches
its termination state faster than the larger of (5, 4). In our model, this effect
is driven by the magnitude representation in the data representation. The
intrusion of statistical and perceptual components into what appears at first to
be a purely abstract computation is to be expected from our approach, though
perhaps a result not welcomed by purists since it would seem to have no place
in logic. Notice also that the topographic map is effectively a realization of
the number line analogy for integers.

Although these programming techniques work reliably for the digits one
through ten, they are appallingly slow, limited in precision and dynamic range,
and are clearly of no value for constructing a practical computing system
that works with precise numbers. But, then, humans are not very good at
arithmetic either.

76 James A. Anderson et al.

Fig. 13. Four bar codes

5 Example: Sensor Fusion Using Topographic Arrays

One potential application of our Ersatz Brain architecture is to sensor
fusion. Sensor fusion involves integration of information from different types
of sensor into a unified interpretation.

Suppose we have a set of four numerical sensor readings. We can do quite
a bit with these values alone, for example, using them as a set of features
for object recognition. However, this is not really sensor fusion since the sen-
sor data is not integrated but used as information to determine a previously
learned classification. This may not be possible if there is no previous classi-
fication, that is, in unsupervised learning.

Spatializing the data, that is letting it find a natural topographic organiza-
tion that reflects the relationships between multiple data values, is a technique
of great potential power, though an unfamiliar one. It is, however, a natural
and effective way to compute in a two dimensional cortex and our two dimen-
sional Ersatz architecture.

Assume we have four parameters that we want to represent in the activity
pattern that describes a single entity (Fig. 13).

Our architecture assumes local transmission of patterns from module to
module according to the Network of Networks model assumptions. Modules
have multiple stable attractor states. Patterns are transmitted laterally from
module to module. When two different patterns arrive at a module simultane-
ously, there is the possibility for a new pattern to be generated in the module,
now representing the feature coincidence as a new part of the module’s reper-
toire of attractor states. Standard learning rules plus the non-linear network
can perform this operation. There may be many two parameter interference

Programming a Parallel Computer: The Ersatz Brain Project 77

Fig. 14. Formation of simple interference patterns

patterns, the straight lines in Fig. 14. Each pair of input patterns gives rise
to an interference pattern, a line perpendicular to the midpoint of the line
between the pair of input locations.

5.1 Higher Level Features

In addition to the interference patterns representing coincidences between
pairs of patterns there are often places where three or even four features
coincide at a module. (Fig. 15) The higher-level combinations represent partial
or whole aspects of the entire input pattern, that is, they respond to the
Gestalt of the pattern. In this sense they have fused a number of aspects of
the input pattern and represented it as a new activity pattern at a specific
location.

5.2 Formation of Hierarchical “Concepts”

One intriguing aspect of this coding technique is the way it allows for the for-
mation of what look a little like hierarchical concept representations. Suppose
we have a set of “objects”. For a simple demonstration, assume we have three
parameter values that are fixed for each object and one value that varies
widely from example to example. After a number of examples are seen, the
system develops two different spatial codes. (Fig. 16).

In the first, a number of high order feature combinations are fixed since
their three input “core” patterns never change. In the second, based on the
additional spatial relations generated by the widely different examples, there
is a varying set of feature combinations corresponding to the details of each
specific example of the object. If the resulting spatial coding is looked at by
an associative system, then two kinds of pattern can be learned.

78 James A. Anderson et al.

Fig. 15. Formation of higher-level feature combinations

Fig. 16. Mechanism for formation of hierarchical structure

The first learned pattern corresponds to an unchanging core and might
correspond to an abstraction of the commonalities of many examples. The
second learned set of patterns corresponds to the core, plus the examples
– patterns associated with each specific learned parameter set. All the spe-
cific examples are related by their common core pattern. This dichotomy has
considerable similarity to the subordinate-superordinate relationships charac-
terizing information stored in a hierarchical semantic network (Murphy [21]).

We have spatialized the logical structure of the hierarchy. Because the
coincidences due to the “core” (three values) and to the “examples” (all four
values) are spatially separated, we have the possibility of using the “core” as
an abstraction of the examples and using it by itself as the descriptor of the
entire set of examples Many of the control mechanisms suggested for cortex,

Programming a Parallel Computer: The Ersatz Brain Project 79

most notably attention, are held to work by exciting or inhibiting regions of
the cortical array.

6 Example: Selective Filtering of Vowels

Let us consider a test problem for some of our topographic based ideas on a
real bit of biological signal processing. Let us consider how to build a geomet-
ric data representation inspired by one of the perceptual invariances seen in
human speech.

6.1 Formant Frequencies in Speech Perception

The acoustic signals due to a vowel (and other phonemes) are dominated by
the resonances of the vocal tract, called formants.

The resonant peaks are sometimes not very sharp and not very large. Vocal
tracts come in different sizes, from men, to women, to children. Resonant peaks
change their frequency as a function of vocal tract length.

Remarkably, this frequency shift – which can be substantial between a
bass male voice and a small child – causes little problem for human speech
perception. The important perceptual feature for phoneme recognition seems
to be the based more on the ratios between the formant frequencies than on
their absolute values. This relationship is what we would expect if a vocal
tract simply increased in size without changing its shape. Then differences in
vocal tract length approximately multiply the resonances by a constant.

We can see these properties using a classic set of data [22, 23] for the
formant frequencies of vowels. Table 1 gives the average frequencies (in hz)
of the formants F1, F2, and F3 for three vowels as spoken by men, women
and children. The value of the formant for women is given the value 1.00. It
can be seen the absolute values of the frequency of the formants for the same
vowel vary about 30% between men women and children. If we look instead
at the ratios of the formants the picture changes. Table 2 presents the values
for the ratios of f1 and f2 and f2 and f3 for the same three vowels. Note the
ratios vary only by a few percent over different vocal tract sizes. The ratio of
formants is more constant than the absolute values of frequency.

6.2 Data Representation

We know from many sources there is a roughly logarithmic spatial mapping of
frequency onto the surface of auditory cortex, what is sometimes called a tono-
topic representation. A logarithmic spatial coding has the effect of translating
the all the parameters multiplied by the constant by the same distance.

It might be easy to simply compute ratios of frequencies and use those
values as inputs to a speech processor. However, there might be advantages to

80 James A. Anderson et al.

Table 1. Average Formant Frequencies (Hz) and Ratios of Formant Frequencies for
Men, Women and Children for Three Vowels. Data taken from Watrous [22] derived
originally from Peterson and Barney [23]

[i] [æ] [u]
Men f1 267 (0.86) 664 (0.77) 307 (0.81)

Women f1 310 (1.00) 863 (1.00) 378 (1.00)

Children f1 360 (1.16) 1017 (1.18) 432 (1.14)

Men f2 2294 (0.82) 1727 (0.84) 876 (0.91)

Women f2 2783 (1.00) 2049 (1.00) 961 (1.00)

Children f2 3178 (1.14) 2334 (1.14) 1193 (1.24)

Men f3 2937 (0.89) 2420 (0.85) 2239 (0.84)

Women f3 3312 (1.00) 2832 (1.00) 2666 (1.00)

Children f3 3763 (1.14) 3336 (1.18) 3250 (1.21)

Table 2. Ratios Between Formant Frequencies (Hz) for Men, Women and Children.
Data taken from Watrous [22] derived originally from Peterson and Barney [23]

[i] [æ] [u]
Men f1/f2 0.12 0.38 0.35

Women f1/f2 0.11 0.42 0.39

Children f1/f2 0.11 0.43 0.36

Men f2/f3 0.78 0.71 0.39

Women f2/f3 0.84 0.72 0.36

Children f2/f3 0.84 0.70 0.37

using a more brain-like approach. The transformations are not quite as simple
as simple ratio invariance, the system is intrinsically noisy, the stimuli show
substantial variability both within and between speakers (for example, there
are many different accents), and the system is adaptive.

6.3 Representational Filtering

Our specific goal is to enhance the representation of ratios between “formant”
frequencies, and to de-emphasize the exact values of those frequencies. That
is, we wish to make a kind of filter using the data representation that responds
to one aspect of the input data.

Let us start by assuming our usual information integration square array
of modules with parameters fed in from the edges.

We start by duplicating the frequency representation three times along the
edges of a square. Multiple frequency maps are common in the auditory system
(See Talavage et al. [24] for an fMRI study of tonotopic maps in humans.).

Programming a Parallel Computer: The Ersatz Brain Project 81

Fig. 17. The location of the point equidistant from f1, f2 and f3 contains information
about the ratios between them

We will start by assuming that we are interested in locations where three
frequency components come together at a single module at the same time.
Figure 17 shows the point equidistant from f1 on the bottom edge, f2 on the
side, and f3 on the top along with a few geometrical relations between the fre-
quencies. We conjecture that this means the module may form a new internal
representation corresponding to this triple coincidence. If we assume initially
pattern transmission between modules is isotropic we then look for module
locations equidistant from the locations of initial triple sets of frequencies.
These points will be the modules that lie at the center of a circle whose cir-
cumferences contains the three points containing the three different frequency
components, one from each side.

There are multiple combinations of the three formant frequencies. With
three frequencies, the three possibilities are (f1,f2,f3), (f1,f3,f2), (f2,f1,f3),
(f2,f3,f1), (f3,f1,f2), and (f3,f2,f1). Each triple combination produces a slightly
different geometry.

Depending on what triple (location of the frequency combination) is used,
different points are activated. Therefore a three “formant” system has six loca-
tions corresponding to possible triples. (We discuss in Section 8 the possibility
of forming linked assemblies of active modules to function as a higher-level
data representation.)

Figure 18 shows the points (marked with dots) that are equidistant from
various combinations of frequencies. There are actually a lot more possible
combinations possible involving both lower and higher order conjunctions,
but we will start by only looking at triples.

The positions of the coincidences shift slightly if the frequency marks are
translated by a uniform amount, corresponding in our model system to a
change in vocal tract length giving rise to a shift in frequencies.

82 James A. Anderson et al.

Fig. 18. Coincidence locations for various combinations of f1. f2. and f3

Fig. 19. (Top) Modules with triple coincidences for two sets of frequency patterns,
f1, f2, and f3 and g1, g2, and g3

Because the geometry of the triple coincidence points varies with the loca-
tion of the inputs along the edges, a different set of frequencies will give rise
to a different set of coincidences. Figure 19 shows the set of triple coincidences
for another set of frequencies. Note that one triple coincidence for the second
set of frequencies lies outside the array.

Programming a Parallel Computer: The Ersatz Brain Project 83

7 Sparse Connectivity and Sparse Coding

7.1 Full Connectivity

Let us make some general, and highly speculative comments about the
development of possible useful intermediate level structures for brain like
computation.

Most neural network learning models assume full or nearly full connectivity
between layers of units. Units are most often arranged in layers because it is an
arrangement that pays homage to the neuroanatomy of mammalian cerebral
cortex where cortical regions project to other cortical regions over long-range
projection pathways through the white matter. Full connectivity means that
a unit in a layer projects to, and it projected to, by all the units in layers
above and below it.

Fully connected systems can be analyzed with standard mathematical
techniques. They can perform a number of powerful information processing
operations, and, combined with simple local learning algorithms such as the
Hebb rule, they can be used to build adaptive systems with a number of useful
applications in both engineering and science. The number of connections in
fully connected systems grows very rapidly, order n2, where n is the number
of units.

7.2 Sparse Connectivity

Although many neural net models assume full or high connectivity, the actual
cerebral cortex is sparsely connected, that is, each neuron projects to rel-
atively few others given the potential number they could connect to, even in
projections from one cortical region to another. (See Section 2.3).

7.3 Sparse Coding for Data Representation

Besides sparse connectivity, there is reasonably strong experimental evidence
that sparse coding is used for data representation in the cortex, that is,
information is represented by the activities of relatively few units. A review by
Olshausen and Field [25] comments, “In recent years a combination of exper-
imental, computational, and theoretical studies have pointed to the existence
of a common underlying principle involved in sensory information processing,
namely that information is represented by a relatively small number of simul-
taneously active neurons out of a large population, commonly referred to as
‘sparse coding.”’ ([25], p. 481). Many of these ideas first emerged in a classic
paper by Barlow [26].

There are numerous advantages to sparse coding. Olshausen and Field
mention that sparse coding provides increased storage capacity in associative
memories and is easy to work with computationally. Among other virtues,

84 James A. Anderson et al.

sparse coding also “makes structure in natural signals explicit” ([25], p. 481)
and is energy efficient (see [27])

“Higher” regions (for example, inferotemporal cortex) seem to show a
greater degree of sparse coding than lower ones (for example, V1). Cells in
the higher levels of the visual system also have less spontaneous activity than
lower regions, for example, cells in inferotemporal cortex are silent much of
the time until they find a specific stimulus that piques their interest.

7.4 Sparse Coding Combined with Sparse Representation

Fig. 20 shows a cartoon version of a system that shows both sparse coding
(three active units in input layer 1, four in layer 2, and two in output layer 3)
and sparse connectivity.

Instead of trying to derive very general pattern association systems like
back propagation, using high connectivity, let us see if we can make a learning
system that starts from the assumption of both sparse connectivity and
sparse coding.

Such extreme restrictions on connectivity and representation do not seem
at first to form a very promising information processing system. We suspect
this is why it has not been looked at seriously as a nervous system model,
even though it seems to fit the qualitative structure of the cortex better
than the high connectivity assumptions that underlie common neural network
models.

7.5 Paths

In sparse systems, selectivity can come from other sources than a precise
pattern of connection strengths. A useful notion in sparse systems is the idea

Fig. 20. A sparsely connected, sparsely coded three layer system

Programming a Parallel Computer: The Ersatz Brain Project 85

of a path. A path connects a sparsely coded input unit with a sparsely coded
output unit. Paths have strengths just as individual connections do, but
the strengths are based on the entire path, from beginning to end, which may
involve several intermediate connections. A path may have initial strength zero
or start with a nonzero strength due to initial connectivity. The concept of a
path is related to useful ways to structure initial wiring of the nervous system.
Connections that are likely to be valuable are sketched in initially. Learning
can then tune and sharpen the pre-existing connections. This strategy seems
to be present in sensory systems. For an example, see a recent discussion of
the development of different aspects of the visual system [28].

Consider a path with several intermediate units. If there is no initial trans-
mission of activity through the path, there will be no learning. If, however,
when the input unit becomes active and gives rise to even low activity at
the output unit, learning can take place and the path can become stronger.
Continued learning will further strengthen that particular path. If the path is
feedforward, connections earlier in the path cannot be changed properly with-
out additional assumptions, for example, some form of backward information
flow. Cortical regions generally project both forward and backwards.

7.6 Initial Biases in Connectivity

For a simple system with scalar weights by far the best, though unrealistic,
strategy would be to somehow construct independent paths for each single
unit association.

If many independent paths were desirable, then a useful initial construction
bias for such a sparsely connected system would be to make available as
many potential paths as possible. This bias differs significantly from back
propagation, where there are almost always fewer units in the hidden layers
than in the input and output layers, therefore fewer potential paths. (Many
of the most important statistical properties of back propagation arise from
the fact that there are a relatively small number of hidden layer units [7].)
In a fully connected system, adding more units than contained in the input
and output layers would be redundant. This is not so in sparser systems. For
example, there is a huge expansion in number of units moving from retina to
thalamus to cortex. A million input fibers drive 200 million V1 neurons.

7.7 Sparseness in Systems Using the Network of Networks

Suppose we assume that modules, not single units, are connected. Simple
scalar activity is not, by nature, selective. Activity arising from different
sources cannot be told apart; there is no “tag” giving its source. But if we
use the Network of Networks approximations, activity along a path is not a
scalar. Activity is now not simple unit activity but module activity. Pat-
terned activity in a single module connected to another single module, can
give rise to a selective pattern associator.

86 James A. Anderson et al.

Fig. 21. About the simplest arrangement of interconnected modules. The S’s are
matrices and A,B, etc. are patterns

For ease in analysis, let us assume the pattern associator is the simplest
kind, the linear associator. Because we aiming for the development of correct
associations over entire paths in a system using non-linear modules, we suspect
the exact details of the network associators are not important.

If a pattern A on module a is input to Layer 1, (see Fig. 21) the activity,
B, on b is given by the matrix-vector product, SabA. We assume as part of
the Network of Networks architecture that there are reciprocal connections
between modules. If pattern B is present on module b of layer 2, the activity
on A is given by SbaB. This loop between a and b is similar to a Bidirectional
Associative Memory [10].

If pattern A on a and pattern B on b are simultaneously present, the
increment in strengths are given by standard Hebb learning, that is,

ΔSab ∼ BAT and ΔSba ∼ ABT (2)

If no other pattern associations are stored in the connection matrices, after
learning, if pattern A is present at module a, something like pattern B will
appear at module b. The sparsely represented association (the only activity
is on a and b) has been learned.

7.8 Multiple Patterns

Unlike scalar connections between units, a single connection between modules
can learn multiple associations.

In the simplest situation, suppose we look at modules a and b as before,
but assume that a and b can display two different patterns, A and C on
a and B and D on b. Subject to the usual limitations of simple pattern
associators, (that is, it works best if A and B, and C and D, are orthogonal)

Programming a Parallel Computer: The Ersatz Brain Project 87

Fig. 22. Two network of networks paths with a common segment

such a network can easily learn to associate A with B and C with D using
the same connections. We can use pattern selectivity to overcome some of the
limitations of scalar systems.

We can also work with more complex systems. Consider a multilayer path
with a common segment as in Fig. 22. We want to associate patterns on two
paths, a-b-c-d and e-b-c-f with link b-c in common.

First, even though parts of the path are physically common they can be
functionally separated if the paths use different module patterns.

Second, because the paths can be functionally separated by their pattern
selectivity, pattern information propagating backwards can now be used to
sharpen and strengthen one path without interfering with the strengths of
another path. The next section gives a very simple example.

7.9 Backwards Projections

There is no reason to assume that the backward projections and the forward
projections must have the same strength. All that may be required initially for
sparse systems is that modules produce activity along all points in the path,
backwards and forwards. We can analyze a simple arrangement of active,
sparsely connected modules, part of a sparse representation, using elementary
outer-product Hebb learning.

First consider the two associative chains, up and down, a > b > c > d
and d > c > b > a.

We assume supervised learning, that is, the desired patterns on a and d
are present at input and output.

We will first consider outer-product learning in the weak signal linear
range of operation of the system. As the path gets strong, we conjecture
that modules in the path will develop internal states corresponding to the
association activation patterns, that is, attractors.

88 James A. Anderson et al.

Consider the two intermediate modules b and c on the path. Patterns on
b and c are the result of information moving upwards from the input layer
and downwards from the output layer, that is, initially with clamped patterns
on a and d, with patterns e and f zero.

Activity on c = Tbcb + Udcd (3)
Activity on b = Saba + Tcb (4)

If the activities on b, c and d are non-zero patterns, we have the ability to
use simple Hebb learning to change the strengths of coupling between modules
using their connection matrices so as to change the associative path strength
connecting the pattern on a with the pattern on d.

There are two active modules connected to b, up from a and down from c.
The change in upward coupling between a and b, through Sab is given by

Δ(coupling Sab) ∼ baT (5)

The change in upward coupling between b and c is

Δ(coupling Tbc) ∼ cbT (6)

and between c and d is

Δ(coupling Ucd) ∼ dcT (7)

We assume initial coupling is small, but sufficient to allow some patterns
to emerge at b and c, that is, get through the path, weakly. After multi-
ple learning events, the weak initial connections are small relative to later
learning, and we can compute overall coupling between modules a and d.

If pattern a is presented at layer 1.and the pattern on d is zero, then the
generated pattern on module

d ∼ (Ucd)(Tbc)(Sab)a (8)

∼ (dcT)(cbT)(baT)a (9)
∼ d (10)

The downward associations learn in the same way so that if the supervised
pattern d occurs it will produce a constant times pattern a. Note the poten-
tial for a BAM-like associative loop. These results are well known from the
properties of simple associators. The properties of the system are subject to
the capacity limitations of simple associators and the size of the vectors and
matrices being associated.

The other leg of the association (Fig. 22), the pattern on e linked with
the one on f , potentially can learn independently. It uses a different set of
intermodule connections. One final state after extensive path learning might
consist of a different set of activities on b and c, and, ultimately, different
attractor states developing on b and c from learning on the other path.

Programming a Parallel Computer: The Ersatz Brain Project 89

Note that the somewhat arbitrary activities developing on b and c – the
pattern sum of initial upward and downward connections – serves as a random
‘hidden layer’ link between input and output patterns. The argument holds
for more intermediate layers and more associations, as long as sparse initial
paths both up and down exist.

The system gets more complex as more patterns are learned. We know
there are many regular topographic mappings in the cortex, particularly in
the sensory systems. Our hunch is that some of the statistical abstraction and
“concept forming” properties of associators may develop in the intermediate
layers based on representational topography combined with learning in sparse
systems. For example, it is possible, even likely, that sharing paths would
be expected and computationally valuable in associations having a degree of
sensory, perceptual or conceptual similarity. This issue remains to be explored.

7.10 Other Mechanisms

There are numerous other mechanisms that will be required to make this
speculative, sparse system work in practice. For example, we have not con-
sidered here the important gain control mechanisms common in cortex that
could limit the total number of active columns in a region. Besides generalized
regional gain control, there is some evidence that active columns correspond-
ing to a complex object in monkey inferotemporal cortex can inhibit other
columns [29].

With sparse data representations and sparse connectivities, Hebb learning
has the potential to form selective paths that can be used for general associa-
tive learning in Network of Networks systems. Both upward and downward
paths can be used together. Because the modules are non-linear, with limits
on activities and inhibition, stability of learning and dynamics is not likely to
be a problem.

In both multilayer and single layer systems the potential exists for active
feedback loops. Self-exciting loops may be useful intermediate level computa-
tional building blocks, as we suggest next.

8 Module Assemblies

The brain shows large differences in scale. Understanding how neurons work
together in groupings of larger and larger size is perhaps the key to under-
standing brain function. We have already suggested one intermediate level of
structure in the modules comprising the Network of Networks. We can take
this idea a bit further where we speculate about the possibility of the forma-
tion of stable module assemblies as the next higher step in intermediate
level representation.

90 James A. Anderson et al.

Fig. 23. Active modules for two different frequency patterns. (See Section 6.) These
distinct frequency patterns have the potential to form distinct module assemblies

In Section 6, we showed that the information integration model as dis-
cussed in the context of vowel filtering, produced a stimulus dependent series
of nearby excited modules. (See Fig. 23).

Suppose we bind together those nearby excited modules through associa-
tive linkages so they can learn to become mutually self excited in a group.
An intermediate-level representation can arise we call a module assembly,
which we discuss next.

8.1 Physiological Data from Cortex

We reviewed some of the properties of cortical columns in Section 2. It is hard
to study detailed functional properties of columns. However, optical imaging
of intrinsic cortical signals has now allowed visualization of structures of the
size of cortical columns. The spatial resolution of this difficult technique can
be a factor of 50 or more better than fMRI and gets into the size region
where perhaps we can see some of the kinds of specialization for cortical
computation that we need to see. A small body of intrinsic imaging work has
been done on inferotemporal cortex [IT] in primates. As the highest visual

Programming a Parallel Computer: The Ersatz Brain Project 91

area, IT contains the results of previous processing presumably in a form that
is congenial for further use. Several groups have studied the organizational
properties of inferotemporal cortex (area TE) from a computational point
of view (See Tsunoda et al., [29]; Tanaka, [30, 31]). They proposed a model
for inferotemporal cortex function that is in rough harmony with the basic
architecture we assume for the Ersatz Brain.

Tanaka’s early work on inferotemporal cortex used (1) computer simplified
stimuli and (2) microelectrode recordings. Cells in area TE respond to few
stimuli and have relatively little spontaneous activity. Once Tanaka found an
image that drove a cell, the next step was to perform a series of abstractions
of it until an optimal simplified image – a “critical feature” – was found that
adequately drove the cell but further simplifications of it did not. Cells in a
small region of TE tended to have similar critical features. For example, a
number of cells in a small region might respond to various “T-junctions.” The
T-junctions would be different from each other in detail, but seemed to be
examples of a basic ‘T’ structure. Regions of similar responses seemed to have
roughly the size (300 μm) and character of the functional columns found in
cortex. Nearby “columns” had quite different critical features. There was no
sign of the continuous gradation of angle of best response found, for example,
in orientation columns in V1.

From four to about a dozen columns were excited by presentation of com-
plex objects and seemed to represent a complex percept. Such sets of obser-
vations led both Tanaka and Tsunoda et al. to propose a sparsely distributed,
column based model of image recognition. From [29]:

“. . . objects are represented by combination of multiple columns in a
sparsely distributed manner. The region activated by a single object image
is only 3.3 ± 2.5% of the entire recording area (number of examined object
images, 37). . . . These results are consistent with feature-based representa-
tion, in which an object is represented by the combined activation of columns
each responding to a specific visual feature of the object.” ([29], p. 835).

8.2 “Cell Assemblies” and the Formation of Module Assemblies

If two modules are reciprocally associatively linked, we have a situation simi-
lar to the Bidirectional Associative Memory. If there are multiple interacting
modules, we have the potential to form other interesting and complex asso-
ciatively linked structures through Hebb learning, what we will call module
assemblies, in harmony with what is seen in IT.

The source for this idea is the cell assembly, first proposed by Donald
Hebb in his 1949 book Organization of Behavior [32]. What has become known
as the Hebb Rule for synaptic coupling modification was originally proposed
specifically to allow for the formation of cell assemblies.

A cell assembly is a closed chain of mutually self-exciting neurons. Hebb
viewed the assembly as the link between cognition and neuroscience. When
an assembly was active, it corresponded to a cognitive entity, for example,

92 James A. Anderson et al.

a concept or a word. Although the idea is an appealing one, it is hard to
make it work in practice because it is difficult to form stable cell assemblies.
Two common pathological situations are (a) no activity in the network after a
period due to inadequate gain around the loop and, (b) spread of activity over
the entire network since neurons in a realistic model system will participate
in multiple assemblies and activity spread will widely. It is possible to control
this behavior to some degree by making strong assumptions about inhibition,
but the resulting systems are not robust.

As we mentioned, a key assumption of the Network of Networks model is
that the basic computing elements are interacting groups of neurons. Module
activity is not a scalar but a pattern of activity, that is, a high dimensional
vector. Connections between modules are in the form of interactions between
patterns. There is an intrinsic degree of selectivity. Patterns are less likely to
spread promiscuously.

Because of this increased selectivity it might be possible that several
nearby modules can become linked together to form loops through Hebb learn-
ing and can remain stable structures. We showed in Section 2 that associa-
tively connecting modules together can increase the feedback coefficients in
both modules (Figs. 4, 5.).

We can make speculations about the local density of connections in neo-
cortex. Data from Lund et al. [33] suggests substantial connectivity over a
region of one or two millimeters. Recurrent collaterals of cortical pyramidal
cells form relatively dense projections around a pyramidal cell. The extent of
lateral spread of recurrent collaterals in cortex seems to be over a circle of
roughly 3 mm diameter [34]. If we assume that a column is roughly a third of
a mm, there are perhaps 10 columns per mm2. A 3 mm diameter circle has
an area of roughly 10 mm2, suggesting that a column could project locally to
perhaps 100 nearby columns.

Let us assume that the intralayer connections are sufficiently dense so that
active modules a little distance apart can become associatively linked.

Consider the set of four active modules, a,b, c,d, in Fig. 24. Assume they
are densely connected locally. That will imply that a is connected to b, c to
d, etc. Suppose that a,b, c,d are forced to hold a particular pattern by some
outside mechanism, say another brain region, an outside supervising input, or
perhaps frequent co-occurance. Then the analysis we just performed on sparse
paths with simple associators suggests that associative links between modules
will develop.

However, the path closes on itself. If the modules a,b, c,d are simultane-
ously active and are associatively linked, then if a is present, after traversing
the linked path a > b > c > d > a, the pattern arriving at a will be a con-
stant times the pattern on a. If the constant is large enough and the starting
pattern is still present, there is the potential for feedback loop gain greater
than one. The same analysis holds true for traversing the loop in the opposite
direction, that is, a > d > c > b > a. Limitations on maximum activity in
each module will stabilize activity as it becomes large so activity in the loop

Programming a Parallel Computer: The Ersatz Brain Project 93

Fig. 24. Scheme for formation of a module assembly. Patterns flow around the
loop based on local pairwise associations

will not increase without bounds. All the modules in the loop are likely to
reach attractors in synchrony after extensive learning.

Timing considerations become of critical importance. Adjusting travel time
through the strength of associative connections is a potentially promising way
to control loop dynamics. Note that critical timing relationships also appeared
earlier when we discussed for formation of high order feature coincidences to
form selective filters. The parameters that control module dynamics are also
a potential source of control.

We should note that the capacity of these seemingly impoverished sparse
systems can be very large. For example, suppose columnar sized regions are
about one third mm in diameter. Then one mm2 contains roughly 10 columns
and a cm2 contains roughly 1,000 columns. If something like 10 columns
become active to specify an object in a one cm2 piece of cortex, there are
roughly (1000)10 or 1030 possible different combinations of 10 active columns.
If we assume in addition that each column has 10 attractors, we increase the
number of potential combinations of states shown by those 10 active columns
by 1010 for a total number of states of a one cm2 chunk of cortex to as much as
1040 distinct states, a large enough number to satisfy almost any conceivable
need, especially when we consider that there may be on the order of a million
columns in a human cortex.

8.3 Multi-layer Assemblies

We can speculate on the extension of idea of module assemblies to multiple lay-
ers. Now we can perhaps see the outlines of a dynamic, adaptive computational
architecture that becomes both feasible and interesting. The basic notion is
that local module assemblies form, perhaps at each layer. Sparse connections
between each layer learn to link the assemblies through associative learning.

94 James A. Anderson et al.

Fig. 25. Linkages between modules in a layer and from layer to layer may become
bound into a more complex structure

The individual sparse paths now can work together to form complex multi-
level entities. We might end up with something like that shown in Fig. 25,
tightly connected module assemblies within a layer, sparsely linked together.
This rings (loops in layers) and strings (sparse connections between layers)
sparse architecture becomes a way to get multi-area activation patterns bound
together through common dynamics.

Computation and learning from this point of view is based on the formation
of sparsely interconnected between layers, less sparsely interconnected at a
layer, module assemblies working with sparsely represented data.

8.4 Combinations

A natural way for learning to progress with this approach is to build com-
binations of module assemblies. Early learning, we conjecture, might form
small module assemblies. Fig. 26 shows two such module assemblies that occur
together. They can become bound together by learning through co-occurrence
(Fig. 27).

As learning progresses, groups of module assemblies will bind together
through the linkage mechanisms we have discussed. The small initial assem-
blies perhaps can act as the “sub-symbolic” substrate of cognition and the
larger assemblies, symbols and concepts. Because of sparseness smaller com-
ponents might be largely independent of each other and not interfere with each
other. Cognitive learning would then come to have something of the aspect
of an erector set or Legos, where the parts start by being independent and
then get bound together with associative epoxy to form a sturdy higher-level
spatially extended assembly. Note that there are more associative connections
possible in the bound system than in the parts because there are many more
possible paths. An interesting conjecture is that larger assemblies (words?

Programming a Parallel Computer: The Ersatz Brain Project 95

Fig. 26. Suppose we have two previously formed assemblies

Fig. 27. Co-occurrence between assemblies can cause the structures to become
associatively bound, forming a new more complex linked structure

concepts?) can be stable or more so than their component parts because of
extensive cross-linkages.

This process looks somewhat like what is called compositionality. (Geman
[35]). The virtues of compositionality are well known. It is a powerful and
flexible way to build information processing systems because complex mental
and cognitive objects can be built from previously constructed, statistically
well-designed pieces.

What we are suggesting in this discussion is a highly speculative pos-
sible model for the dynamics, intermediate level structure, and learning in
a potentially compositional system. Note however, that this system is built
based on constraints derived from connectivity, learning, and dynamics and
not as a way to do optimal information processing.

96 James A. Anderson et al.

Perhaps compositionality as we see it manifested in cognitive systems is
more like a splendid bug fix than a carefully chosen computational strategy.

References

[1] Sloman, S.: Causal Models: How People Think About the World and Its
Alternatives. Oxford University Press, New York (2005)

[2] Anderson, J.A., Sutton, J.P.: If We Compute Faster, Do We Understand
Better? Behavior Research Methods, Instruments, and Computers. 29
(1997) 67–77

[3] Anderson, J.A. Arithmetic on a Parallel Computer: Perception Versus
Logic. Brain and Mind. 4 (2003) 169–188

[4] Strangman, G., Sutton, J.P.: The Behaving Human Neocortex as a Net-
work of Networks. In: Hecht-Nielsen, R., McKenna, T. (eds.): Theories
of the Cerebral Cortex. Springer, New York (2003) 205–219

[5] Hopfield, J.: Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities. Proceedings of the National Academy of
Sciences. 79 (1982) 2554–2558

[6] Anderson, J.A.: The BSB Network. In: Hassoun, M.H. (ed.): Associative
Neural Networks. Oxford University Press, New York (1993) 77–103

[7] Anderson, J.A.: An Introduction to Neural Networks. MIT Press,
Cambridge, MA (1995)

[8] Mountcastle, V.B. Introduction. Cerebral Cortex. 13 (2003) 2–4
[9] Hubel, D.H.,Wiesel, T.N.: Receptive Fields, Binocular Interactions, and

Functional Architecture in the Cat’s Visual Cortex. Journal of Physiol-
ogy. 148 (1962) 106–154

[10] Kosko, B.: Bidirectional Associative Memory. IEEE Transactions on Sys-
tems, Man, and Cybernetics. 18 (1988) 49–60

[11] Pitts, W., McCulloch, W.S.: How We Know Universals: The Perception
of Auditory and Visual Forms. In: McCulloch, W.S. (ed., 1965): Embod-
iments of Mind. MIT Press, Cambridge, MA (1947/1965) 46–66

[12] Blum, H.J.: Biological Shape and Visual Science (Part I). Journal of
Theoretical Biology. 38 (1973) 205–287

[13] Kimia, B., Tannenbaum A., Zucker, S.W.: Shapes, Shocks and Deforma-
tions {I}: The Components of Shape and the Reaction-Diffusion Space.
International Journal of Computer Vision. 15 (1995) 189–224

[14] Bringuier, V., Chavane, F., Glaeser, L., Fregnac, Y.: Horizontal Propa-
gation of Visual Activity in the Synaptic Integration Field of Area 17
Neurons. Science 283 (1999) 695–699

[15] Lee, T.-S., Mumford, D., Romero, R., Lamme, V.A.F.: The Role of Pri-
mary Visual Cortex in Higher Level Vision. Vision Research. 38 (1998)
2429–2454

Programming a Parallel Computer: The Ersatz Brain Project 97

[16] Lee, T.-S.: Analysis and Synthesis of Visual Images in the Brain. In:
Olver, P., Tannenbaum, A. (eds): Image Analysis and the Brain. Springer,
Berlin (2002) 87–106

[17] Kovacs, I., Julesz, B.: Perceptual Sensitivity Maps Within Globally
Defined Shapes. Nature. 370 (1994) 644–6

[18] Kovacs, I., Feher, A., Julesz, B.: Medial Point Description of Shape:
A Representation for Action Coding and its Psychophysical Correlates.
Vision Research. 38 (1998) 2323–2333

[19] Anderson, J.A.: Seven times seven is About Fifty. In: Scarborough, D.,
Sternberg, S. (eds.): Invitation to Cognitive Science, Volume 4. MIT
Press, Cambridge, MA (1998) 255–299

[20] Hadamard, J.: The Psychology of Invention in the Mathematical Field.
Dover, New York (1949)

[21] Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge, MA
(2002)

[22] Watrous, R.L.: Current Status of Peterson-Barney Vowel Formant Data.
Journal of the Acoustical Society of America. 89 (1991) 2459–2460

[23] Peterson, G.E., Barney, H.L.: Control Methods Used in a Study of the
Vowels. Journal of the Acoustical Society of America. 24 (1952) 175–184

[24] Talavage, T.M., Sereno, M.I., Melcher, J.R., Ledden, P.J., Rosen, B.R.,
Dale, A.M.: Tonotopic Organization in Human Auditory Cortex Revealed
by Progressions of Frequency Sensitivity. Journal of Neurophysiology. 91
(2004) 1292–1296

[25] Olshausen, B.A., Field, D.J.: Sparse Coding of Sensor Inputs. Current
Opinions in Neurobiology. 14 (2004) 481–487

[26] Barlow, H.B.: Single Units and Sensation: A Neuron Doctrine for Per-
ceptual Psychology? Perception 1 (1972) 371–394

[27] Vincent, B.T., Baddeley, R.J., Troscianko, T., Gilchrist, I.D.: Is the Early
Visual System Optimized to be Energy Efficient? Network: Computa-
tional neural systems. (In press)

[28] Cooper, L.N., Intrator, N., Blais, B.S., Shoval, H.Z.: Theory of Cortical
Plasticity. World Scientific Publishing, Singapore (2004)

[29] Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M.: Complex Objects
are Represented in Macaque Inferotemporal Cortex by the Combination
of Feature Columns. Nature Neuroscience. 4 (2003) 832–838

[30] Tanaka, K.: Inferotemporal Cortex and Object Vision. In: Cowan, W.M.,
Shooter, E.M., Stevens, C.F., Thompson, R.F. (eds.): Annual Review of
Neuroscience. 19 (1996) 109–139

[31] Tanaka, K.: Columns for Complex Visual Object Features in Inferotem-
poral Cortex: Clustering of cells with similar but slightly different stim-
ulus selectivities. Cerebral Cortex. 13 (2003) 90–99

[32] Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)
[33] Lund, J.S., Angelucci, A., Bressloff, P.C.: Anatomical Substrates for

Functional Columns in Macaque Monkey Primary Visual Cortex. Cere-
bral Cortex. 13 (2003) 15–24

98 James A. Anderson et al.

[34] Szentagothai, J.: Specificity Versus (Quasi-) Randomness in Cortical
Connectivity. In: Brazier, M.A.B., Petsche, H. (eds,) Architectonics of
the Cerebral Cortex. Raven, New York (1978) 77–97

[35] Geman, S.: Invariance and Selectivity in the Ventral Visual Pathway.
Division of Applied Mathematics, Brown University, Providence, RI.
(in preparation)

The Human Brain as a Hierarchical Intelligent
Control System

JG Taylor

Department of Mathematics, King’s College, Strand London WC2R2LS, UK
john.g.taylor@kcl.ac.uk

Summary. An approach to intelligence and reasoning is developed for the brain.
The need for such an approach to Computational Intelligence is argued for on ethi-
cal grounds. The paper then considers various components of information processing
in the brain, choosing attention, memory and reward as key (language cannot be
handled in the space available). How these could then be used to achieve cogni-
tive faculties and ultimately reasoning are then discussed, and the paper concludes
with a brief analysis of reasoning tasks, including the amazing powers of Betty the
Crow.

Contents

1. Human Intelligence
2. Why the Brain is Important to Computational Intelligence
3. Global Principles for the Human Brain
4. Attention as a Filter
5. Memory as a Data-Base
6. Rewards/Values as Biases
7. An Architecture for Reasoning
8. Components of Reasoning
9. Extraction of Cognitive Principles

10. Analysis of Specific Reasoning Tasks
11. Conclusions for Computational Intelligence

1 Human Intelligence

It is self-evident that the human brain is an intelligent system. But of what
our faculty of human intelligence consists, and how it could be modelled in
detail is still somewhat unclear. This lack of progress is in spite of the great
strides being made by brain science to probe and define the processes the

JG Taylor: The Human Brain as a Hierarchical Intelligent Control System, Studies in Compu-

tational Intelligence (SCI) 63, 99–122 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

100 JG Taylor

brain supports, and how such support is achieved in neural terms. The neural
networks being used to perform certain cognitive functions are becoming ever
more delineated. But the main principles of information processing in the
human brain are still uncertain. In this paper we present fragments of a
general theory of human intelligence based on recent brain science results.
The approach is to suggest how the functional neural architecture (mod-
ules, their functions and the functional networks they combine to produce)
now being exposed in the brain could be joined together to lead to intelli-
gence. The approach is based on detailed neural modelling of specific regions
and their functions, but not yet on any model of the global brain. That
would require much more extensive computation than able to be achieved
presently, only then allowing a real proof of the resulting theory. However
general principles are beginning to emerge from this approach which we
explore.

There is great relevance of a brain-guided approach for the development
of a more general theory of computational intelligence. The main thrust of
the argument is that, given the long-term aim of computational intelligence
being to construct a super-intelligent system, the ethical dangers that result
from this aim necessitates use of brain guidance to help such a development
proceed without danger to the future of the human race. I will come back to
that in more detail shortly.

Human intelligence is hard to define. In action it is clear, as the follow-
ing story indicates. Two work-men were sweating away digging a hole in the
ground with the sun beating down on them, whilst their boss relaxed more
comfortably in the nearby shade. One of the workmen turned to his colleague
and asked ‘Why are we out in the hot sun while he’s so much better off in the
shade’. ‘Ask him’ responded his colleague. So he did. The boss replied: ‘Intel-
ligence’. Here we see emphasis on the ability to use simple reasoning power to
arrive at task solutions (the boss keeps cool, for example, by sheltering under
the trees) given a set of constraints (but the workmen have to stay out in the
sun where the work is sited).

Standard dictionary definitions of intelligence do not take us much farther.
Thus Chambers dictionary defines intelligence most relevantly as intellectual
skill or knowledge; mental brightness. It also defines intellect as the mind with
reference to its rational power; the thinking principle. Similarly Collins dictio-
nary defines intelligence most closely to our considerations as: the capacity for
understanding; the ability to perceive and comprehend meaning. Both of these
definitions involve the employment of some level of awareness, together with
the possession of a good data-base of knowledge to help guide any intelligent
reasoning process. More generally we may consider intelligence as the ability
to use relevant past information to solve a given task by reasoning. So a more
general definition of intelligence is as possessing the power to manipulate suit-
able information by other information so as to solve a specific task to obtain
a reward; the more tasks being solvable in this way the more intelligent will
be the system.

The Human Brain as a Hierarchical Intelligent Control System 101

Computational intelligence need not be defined as in any way related to
human intelligence. Such a position, of trying to develop an intelligent system
with no relation to human powers is completely defensible. Yet it misses out on
guidance from human intelligence as an existing solution, even if it is presently
difficult to decipher. Even at a lower level there are animals with reasoning
powers, such as crows or chimpanzees, which do not possess the linguistic
powers of humans but are still able to perform what are intelligent actions,
such as tool using or making.

Instead of going off into the unknown, computational intelligence can be
suggested as the computer equivalent of human intelligence. Taking guidance
from the definition of human intelligence we can define computational intelli-
gence as the ability to solve tasks of increasing complexity using as much as is
needed of the machine’s data-base of knowledge (being close to the definition
of computational intelligence in [15]).

There may be a variety of algorithms involved in the ‘thinking’ of an
intelligent machine, but they can all be validly considered as its intelligence
repertoire when they are used in attaining its goals. Such computational
intelligence achieved in a machine can be seen as very similar to that of the
human sort.

There is presently a clear gap between human and computational intelli-
gence as arising from the presence (in humans) or not (in machines) of aware-
ness. However that is difficult to understand due to the controversy presently
surrounding the nature of any form of consciousness. That is expected to
change in the future, but there is a more immediate gap between humans
and machines based on the presence or absence of reasoning in solving a task.
Humans have considerable reasoning powers, which have been the subject of
much speculation. Machines are to be regarded as reasoning machines, but
only through the symbolic calculus of language that may be encoded into
suitable high-level codes. Humans have a relatively high level of linguistic
reasoning powers, but also can reason non-linguistically. Other animals also
possess non-linguistic reasoning powers, as I already mentioned, although it
is controversial that they possess any linguistic reasoning capabilities. How
animals (including humans) might reason non-linguistically is one of the prob-
lems to be dwelt on shortly in this paper. A better understanding of such
non-linguistic reasoning is expected to lead also to a better understanding of
creativity (which occurs at an unconscious level as well as expected to occur
both at non-linguistic and linguistic levels). Creativity is a human power of
great importance to understand and apply to machine intelligence (the epithet
‘creative machine’ is a contradiction in terms). This supports the strategy to
be pursued here of considering reasoning, for initial modelling purposes, only
at non-linguistic level.

The paper starts by discussing some problems facing computational
intelligence, and in particular why the human brain is going to be impor-
tant in the long run. Section 3 outlines the basic functionalities of the mod-
ules of networks of the human brain involved in solving tasks intelligently, and

102 JG Taylor

associated global information processing principles to which these components
are related. The most important of these are extracted as: attention, mem-
ory and value. The following three sections cover each of those component
functionalities respectively. A possible brain architecture to support reason-
ing is discussed in Section 7. The following three chapters are concerned with
detailed applications to cognitive and most specifically some simple reasoning
tasks. The final section contains concluding remarks.

2 Why the Brain is Important to Computational
Intelligence (CI)

A set of important questions facing CI have been suggested recently [6] as:

a) What is the goal of CI?
b) What are the short term/long term technological challenges?
c) Is the field developing?
d) How can progress be measured?

The nature of answers to the above questions on CI need not be the same as
those facing human intelligence. But the answers should be much closer if we
consider human intelligence as what CI should at least in part try to emulate.

The answer to question a) (the goal of CI): is to develop a super-intelligent
computational system. The success of this over-riding long-term goal of CI will
depend on the definition of intelligence used by the assessor. From what has
been said already, there is no doubt that the task facing CI is great. Even
the reasoning powers of Betty the Crow are still beyond our understanding in
terms of modelling. To neglect trying to model Betty’s or chimpanzees’ rea-
soning powers, and assume instead that it would be a small step in directly
modelling human non-linguistic reasoning powers would be a misleading atti-
tude to take. If we watch the development of an infant through the ages of the
first few years of its life we see remarkable changes in its reasoning powers.
These indicate that we are faced with a system – the developing human brain
- of considerable complexity and one we can usefully study in what we expect
to be a simpler ‘frozen’ form in lower animals such as crows or chimpanzees.

However before we leave this important first question we need to turn
to an ethical question that stems from it and mentioned earlier: is a super-
intelligent CI system meant to be autonomous? If so, then it does not need
any further contact with its initial human creators. But such an autonomous
super-intelligent system could as well be inimical as be supportive of humanity.
The creation of such a super-intelligent system is thus suspect when looked at
from a human-based morality. We should therefore ask how we can develop a
super-intelligent CI system which is consistent with our own morality.

If we look at human society, we recognize that each time an infant is born
this same question – how to create a self-sufficient super-intelligent CI (now
regarded as the infant) – has to be faced. This has to be done initially by

The Human Brain as a Hierarchical Intelligent Control System 103

the infant’s parents and then later by its teachers and ultimately by society
at large. Various institutions have been created in human society to achieve
a good solution to this basic moral problem: schools, Universities, religions,
prisons, rules of law, and so on. There is therefore a solution, or even a number
of solutions, each being appropriate in its own human culture.

We can arguably see this developmental/educative approach – presently
employed by the majority of human cultures - as the optimal way to achieve a
morally equable society for its participants. From this we can conclude that in
order to be able to build a morally-defensible super-intelligent CI system we
must take guidance not from a single human brain but from the methods of
child-rearing that are basic in our societies. These have considerable variations
across cultures, but in essence we can see that to produce members of human
society that do not cause too much disruption we need a disciplined but loving
environment. Elsewhere I have called this ‘Guided Creative Fun’ [22]. This
consists of giving reward for good responses, but indicating by some form of
penalty that a bad response has been made where relevant (the word NO is
operative here). It is guided creative fun that needs to be incorporated into
the development cycle of a super-intelligent CI. Thereby hopefully it would
enable the super-intelligent CI to be become a valid and successful member
of human society as well as being super-intelligent.

We are thereby drawn in trying to develop the super-intelligent CI by
re-creating many of the important features of the human brain, especially
those associated with the emotions. It will be through learning the rewards
and penalties of the environments in which it could move and interact with
the objects and humans, and learn to control its desires so as not to cause
hurt and pain to others, that the requisite system would develop a basis for
crucial emotional responses. These in humans help guide us to be able to be
part of the complex web of human society. The same should occur for the
super-intelligent CI. At a higher level, as ever more complex representations
of its surroundings are created in the ‘brain’ of the super-intelligent CI system,
it would begin to show emotion responses common in young children, as in
the various social emotions of guilt, embarrassment, and so on. If the super
intelligent system could be granted conscious experience then these would
become feelings, helping guide it especially through empathy, to be able to
take part effectively in human society.

It is clear that the incorporation of emotions into the super intelligent CI
system is essential if it is to function in a morally defensible manner in human
society. The example of psychopaths, with little empathy for the feelings of
others, show how dangerous such super intelligent CI systems would be if
unleashed on society. In any case CI systems must be trained to be able to
perform tasks, and an effective approach is to train by mean of reward/penalty
learning. There is already a broad body of knowledge about such reinforcement
learning, under the heading of the Adaptive Critic Element/Adaptive Search
Element or Temporal Difference learning, as well as the related machine-
learning area of dynamic programming to learn an appropriate utility function

104 JG Taylor

to enable the CI system to perform a limited range of tasks. It may be that only
through the use of ACE/ASE learning would a suitably flexible system be able
to be developed as part of a super-intelligent CI system to enable it to function
in the manner described above – as a society-compatible machine system.

The problem of society-compatibility is not a trivial one. It has taken us
hundreds of millions of years of evolutionary pressure to arrive, as human
beings, at a solution of intelligence which has enough of societal compatibility
to enable societies to develop so as to live relatively equably together. Thus
we, as humans, present a solution to the problem of creating super-intelligent
systems able to live relatively equable together. There may be other solutions,
but even in small experiments where human societies have tried to bring up
portions of their members without guided creative fun, there has been failure
of cohesion in the end. Thus we can conclude that it may be otherwise very
difficult to succeed in creating a society of super-intelligent beings without
an important emotional content in each. This would be used so that guided
creative fun would enable these emotional powers to be harnessed to allow
for societal compatibility between different elements of society brought up in
that empathic manner.

This brings us back more strongly to the need for brain guidance in the
creation of a super-intelligent CI system. Without that brain guidance we may
not get some form of guided creative fun factor to be able to work, and hence
may create a race of rampaging psychopathic monster CI systems, with no
thought for humanity. Such a step would be racial suicide for us. The stamping
of each of these machines by a set of ‘rules of behaviour’, such as Asimov’s
Three Laws of Robotics, would be difficult, since there are various situations
where these rules are difficult to apply consistently. Only through use of an
emotional preference for responses to be made, with the emotional basis being
carefully trained along guided creative fun lines, can we ensure that human-
like decision making would occur in moments of crisis. In particular we would
expect that humanity should be no more at danger from the vagaries of such
super-intelligent CU systems than they are from their own human neighbours.
That is the best we can hope for from such intelligent systems.

The implications of this are that, in the long-term, as super-intelligence
emerges, we must develop the super-intelligent CI systems as guided by the
internal workings of the human brain. Not only will this be good in the long
run for the super-intelligent CI systems, it will also be good for the human
race.

This leads also to the realization that in any case much of what passes
for artificial intelligence today is mainly algorithmics. These are designed by
computer scientists and applied mathematicians so as to solve non-trivial
problems such as difficult problems in algebra, differential equations, opti-
misation, or similar areas. But they are not intelligent in the way that we
consider human intelligence. The data-bases of knowledge possessed by these
algorithm solvers may be large, and the speeds they work at fast, But there
are no such systems that have anything like human intelligence, This leads to

The Human Brain as a Hierarchical Intelligent Control System 105

further support to developing a super-intelligent CI system by looking at the
structures used by the brain in its processing.

To conclude, I would strongly argue that the long-term goal of CI is
to create a brain-guided super-intelligent CI system, trained initially in a
developmental fashion so as to be able to function in an effective autonomous
manner in human society.

At this point it could be argued against the brain-guided approach to CI
I am advocating: the direction being followed so far would lead us to create
a silicon-based version of humans. Why do that since there are already too
many humans on the planet, polluting it in an increasingly dangerous manner.
That is not the purpose of CI, nor my purpose in this article, although such
an approach is an important but different process of understanding ourselves
by the creation of a relatively good replica of ourselves. Here I am arguing
that the reason to bring in the human brain is to allow development of a
super-intelligent autonomous CI system along human lines so as to guide it
to have empathy for its human creators. We do not have to go all the way
towards making a human-replica brain. Instead we are probing the human
brain so as to extract its secrets of overall design. It may be that alternate but
better designs for some of the components can arise from different engineering
approaches. But firstly we have to understand the basic principles underlying
brain function and the functional architecture of global brain networks before
we can begin to consider how to make improvements on the design of the
human brain.

If we look at some areas of machine intelligence, such as machine vision
or predicting the future value of stocks or shares, we have to accept that the
human is still in front. That is why guidance from the brain is of importance
even in these areas of heavy algorithmic processing; in both machine vision
and prediction of the future values of financial assets, no algorithms have yet
been created able to surpass the powers of the brain.

The short term challenges to CI (question b) are numerous: in machine
vision, in robot control, in software agents, in creating systems able to handle
complex domains, in affective computational systems (with emotions being
included), in language understanding software systems, in the development of
various tools enabling ever more complex computer programs to be validated,
in developing ever more complex programs for running intelligent applications
on cluster or grid computers, and so on.

Is the field developing (question c)? Undoubtedly it is, especially with ever
increasing computer power. I will describe shortly some of the developments,
from a brain guided point of view, that are thereby being made possible,
although these are only still under development and have not yet arrived at
specific CI applications.

How can progress be measured (question d)? One way, following brain
guidance, is as to how much understanding is thereby generated about the
brain itself. This requires relating software models built on the basis of the

106 JG Taylor

chosen CI design architecture to the experimental results of specific brain
science experiments, say at a single cell or at a more global brain level.

However there are more applications-oriented criteria, such as the solutions
that may be provided by brain-guided architectures for some of the present
standard problems already mentioned under the answer to question c) above.
Such criteria are thereby highly relevant to showing how the brain-guidance
approach may be helpful in solving industrial–style problems.

I will now turn to consider a tentative set of processing principles that can
now dimly be glimpsed as basic to the information processing powers of the
human brain. It is these which will be explored more fully in the following.

3 Global Principles for the Human Brain

It is currently easy to get lost in the welter of brain science data now deluging
us from all levels in the brain and thereby become unable to see the wood
for the trees. This makes it hard to extract basic principles of information
processing in the human brain. This has been almost made a tenet of brain
science: difficulties in understanding the brain globally are constantly being
claimed by distinguished neuroscientists, along the lines that ‘It is not possible
to attempt to model the whole brain since we do not know its basic underlying
principles of operation’ [3]. However that does not prevent us from trying to
extract the principles upon which the brain operates, and hence embark on
such an ambitious computational exercise. It will undoubtedly be a difficult
exercise, but if we do not begin then we will never finish.

Other neuroscientists charge that unless every microscopic detail is in-
cluded in any brain model it will fail. Such an approach indicates that no
principles could be extracted at a global scale: the principles of the brain
would involve ongoing activities at all levels and scales. That makes any at-
tempt at the extraction of principles of information processing a very hard
task. However when one asks ‘And should superstrings be also included?’ then
the absurdity of such a position becomes apparent. The human brain works
at a much higher level than superstrings or even at single neuron level, with
much higher-level linguistic and concept activations and their manipulations
as being basic to the information flow in the brain. Feature level descriptions
are also tapped into by the brain, so we cannot neglect a variety of scales of
coding there. But we will not need to go down to lower than synaptic level to
begin to build an information-effective description of brain processing.

Understanding at the single neuron and at the lower synaptic level is of
course proceeding apace. One important example of this is of spike-timing
dependent potentiation (STDP for short [2]). This is now regarded as the
most likely learning law at synaptic level, although there are still other forms
of learning that may be present in the brain. But STDP is clearly an important
learning component: it brings Hebbian learning into the temporal domain, so
that only spikes which arrive at a cell causing a spike in the post-synaptic cell

The Human Brain as a Hierarchical Intelligent Control System 107

up to some tens of milliseconds later will have the relevant synaptic strength
increased. If the pre-synaptic spike arrives tens of milliseconds later than
the appearance of any post-synaptic spike, then there will be reduction of
the relevant synaptic strength, since the incoming spike was not likely to
be the cause of the outgoing one.

The STDP learning law allows the brain to capture causality in events
involving external stimuli. Such causal sensitivity seems to be needed in a
model of the brain so that it can begin to mirror the sensitivity present in the
living brain. This would be best achieved by taking a model of spiking neurons,
with their associated high sensitivity to temporal features of external stimuli.

This example shows that there are expected to be several constraints that
enter in any approach to modelling the brain when such aspects as suitable
sensitivity to the temporality of external events are to be included. How-
ever this does not necessarily imply that higher-level principles cannot be
extracted: how these are implemented in detail (and most efficiently) in our
brains need not impinge on less efficient implementations by models with
graded neurons and other unrealistic features. Thus we will proceed to look
for high level principles of brain processing, ignoring what may go on at synap-
tic and neural level.

At the highest level we have awareness, or consciousness. Awareness
presents an enormous difficulty to model, since there is no universally accepted
model of its nature, nor we do properly understand it. A model of awareness,
developed from a control model of attention using engineering control ideas,
however, has been developed elsewhere [18, 21, 22]; the claim that awareness is
properly included in such a model has been argued in detail elsewhere [20, 21].
The model itself is based on attention, so let us consider that next.

Attention is a control system employed by the brain to handle the problem
of the complexity of the world in which we live. Attention in the brain acts as
a filter to reduce the processing load for the hard problems which invariably
arise in the complex environments which we inhabit. This filtering process is
achieved by a method used in engineering control, as also observed in motor
control by the brain: the use of state estimator internal models. Attention acts
to create an ‘attended state estimate’ of the external world, as represented in
the brain. The external world exists in a lower level representation in the brain
at a pre-attentive level. However that amount of information is too much for
further processing, with many stimuli present, all coded at a variety of levels.
The total amount of information is therefore cut down by attention being
directed to the lower level brain activations for a single stimulus. It is such
attended stimulus activity which is allowed to go forward to higher executive
sites in the brain for further processing.

Attention thereby cuts down the computational complexity of the
environment. To be able to use the results of the filter of attention at later
times, the brain stores attended state estimates for later long-term memory
(LTM), especially in the hippocampus acting as a recurrent neural network.
This information is later transferred to nearby cortical sites to constitute

108 JG Taylor

either episodic memory (with the added tag of ownership) or to more distant
sites to act as semantic memory (with no ownership tag). These memory
structures are constantly developing through life, and form an important com-
ponent of the knowledge base of the relevant brain.

Long-term memory can also exist in a non-declarative form, as procedural
memory, able to be used in making responses and manipulating objects. Such
memory is thought to be encoded in the frontal cortices, basal ganglia and
related sites in cerebellum and parietal cortex. However to enter into effec-
tive procedural memory it is necessary that some form of attention control be
exercised over the motor apparatus. This has been termed ‘motor attention’,
and allows the selection of only certain most task-relevant responses as com-
pared to many others. Thus attention can exist to control, select or filter out
sensory input and also to control and select motor response. It is the motor
attention control system, coupled with the sensory attention control system,
which produces effective motor response in sensory-motor tasks, and whose
continued learning (as over-learnt responses) enables the responses to become
automatic.

Reward and drives are also important components of processing in the
brain. The value of a stimulus is the level of reward received by the person
when they interact with it (such as eat or drink it). Such reward as is thereby
gained is used to build a so-called value map (in the orbito-frontal cortex
and the related sub-cortical amygdala nucleus). Such values are used to guide
responses. At the same time the level of motivation for the rewarding stimulus
is used to modulate the level of drive to achieve that specific reward. Thus
the reward value of a particular food is reduced if a period of eating much
of the food has just occurred. In this way the motivation (hunger) is reduced
and thereby the reward value of the relevant food is devalued.

Language is a crucial human ability. It involves assigning utterances
(words) to external stimuli or to actions so as to build up a vocabulary
enabling concept creation to be efficient, as well as concepts be univer-
sally recognised. Besides the one-stimulus-to-one-word component (semantics)
there is also syntax in which rules for sentences are developed so that state-
ments about sequences of events can be understood by others of the same
culture.

Finally there is the process of reasoning, in which sequences of actions
on stimuli are reasoned about by allowing imagination to take place. This
involves the ability to replay previous action/ stimulus sequences, or make up
imaginary new ones from previously remembered ones. The reasoning process
is used to determine how a specific goal could be reached, which, if predicted
to possess a high enough reward would then be achieved by means of taking
the relevant actions in reality.

There are five functional components of the brain that have been singled
out above: the attention control system, the memory system, the value map
system, the language system and the reasoning system. These five aspects
are fundamental in brain processing, but may not be completely independent.

The Human Brain as a Hierarchical Intelligent Control System 109

The present evidence from the brain is that the executive processes involved
in reasoning are those based heavily on the attention control system. It was
argued earlier that language was not essential for some forms of reasoning.
I will not consider it further here, in spite of its importance in human activity,
so as to keep this contribution in length. In all, then, we have the following
three global or high-level processing principles:

P1. Attention Control
Attention functions as a filter, to create an attended state of the world,

which thereby reduces complexity, and allows for efficient analysis of the
external world.

P2. Long-term Memory Databases
There are a variety of memory databases constructed during the activity of

the brain: declarative (created under attention) and automatic (over-learned)
involving especially motor responses.

P3. Value Maps and Their Guidance
Value maps are created in the brain of expected reward values of different

stimuli in the outside world, and as coded in lower level cortical brain sites;
these expected rewards are modulated by the level of any associated primary
drive (such as hunger).

We claim that these three principles, properly implemented, provide the
core functionalities to achieve the complexities achieved by the human brain
(barring language). Non-linguistic reasoning is expected to arise from the first
three principles, as will be discussed later.

More specific detail needs to be put in the structure of the attention control
system, as well as bringing in memory and reward to make the overall system
both autonomous and more powerful. Thus we must turn to how the brain
fleshes out the functionality of attention, memory and reward.

4 Attention as a Filter

Attention is now known to arise from a control system in higher order cortex
(parietal and prefrontal) generating a signal to amplify a specific target rep-
resentation in posterior cortex. This is true for the both the endogenous (goal
directed) and exogenous (externally directed) forms of attention. The higher
cortical sites generating the control signal (inverse model for attention move-
ment) use a bias from prefrontal goals (held in working memory) to amplify
(by contrast gain) posterior activity in semantic memory sites (early occipital,
temporal and parietal cortices). This leads to the following ballistic model of
attention control:

Goal bias (in Pre Frontal Cortex) →
Inverse model controller (in Parietal lobe) →

Lower Posterior Cortex
(in various modalities)

(1)

110 JG Taylor

The amplified target activity is then able to access a buffer working
memory site in posterior cortices (temporal and parietal) which acts as an
attended state estimator for the modality and features that are being attended
to. The access to the buffer has been modelled in the more extended CODAM
model [18, 8] as a threshold process arising from two reciprocally-coupled
neurons almost in bifurcation in models in [8]. The access to the sensory
buffer is aided by an efference copy of the attention movement control signal
generated by the inverse attention model sited in the brain in the Superior
Parietal Lobe. The existence of an efference copy of attention was predicted
as being observable by its effect on the sensory buffer signal (as represented
by its P300 event-related potential) [19, 8]; this has just been observed in
an experiment on the Attentional Blink. In this paradigm a rapid stream of
visual stimuli are presented to a subject, who has to detect a specific first
target T1 (such as a white X) and then a second target T2 (such as a black
O). When the second target is about 250 milliseconds after the first there is
least awareness of the second target. In that case the N200 (an event related
brain potential arising about 200–250 milliseconds after stimulus onset) of the
second target is observed to inhibit the P300 (a further event related brain
potential related to the awareness of the stimulus) of the first when T2 is
detected [17].

A possible architecture for the overall attention control circuit is shown
in Figure 1, being based on the COrollary Discharge of Attention Model
(or CODAM for short) model [18, 19, 21] of attention control. This makes
important use of the efference copy of the attention movement control signal

Fig. 1. The Extended CODAM model of attention control with inclusion of a
bias from the amygdala to help guide attention either at object map level or at
prefrontally-based goal level

The Human Brain as a Hierarchical Intelligent Control System 111

to act as a predictor of the attended state, and so enhance the efficiency
of attention movement. The model of Figure 1 contains an extension of the
original CODAM model by the presence of an emotional component, the
amygdala, which influences the activation of object stimuli on the object
map as well as by further modulation of the activity of emotionally valued
goals.

There is presently considerable controversy over the micro-structure of
attention feedback. It could be one or more of three possible forms: 1) additive
feedback, altering the overall threshold to an attended neuron; 2) a multiplica-
tive effect on the output neuron to which attention is being paid; 3) contrast
gain enhancing the inputs from a stimulus being attended to but not those
from other stimuli that act as distracters. Present evidence supports the third
of the above for the action of endogenous or top-down attention [21, 22], and
only a small additional component from 2) above in addition in the case of
exogenous or bottom-up attention [12].

5 Memory as a Data-Base

There are a variety of forms of memory: short-term, long-term, procedural,
declarative, and so on, as already mentioned. We have already considered
short-term (working) memory as part of CODAM (in both parietal lobes as
the buffer system and in prefrontal cortex as part of the executive system).
Declarative long-term memory is based on the hippocampus (HC). Numerous
models of the HC cell fields exist, as well as models with more extensive
connections to prefrontal cortex. HC stores memories in at least two ways:
in changes of synaptic strengths of afferents to the module CA1, an output
component of the hippocampus (and here acting as a feed-forward net) and in
changes of the strengths of recurrent connections in the module CA3, which is
an intermediate component of the hippocampus (thought to act like a Hopfield
net in the rapid storage of permanent memories). These are both stored during
theta wave activity in HC, and then observed to be played back in the HC in
slow wave sleep. Finally playback to cortex is thought to occur during Rapid
Eye Movement sleep, leading to a more permanent code both of episodic and
semantic memories. These two types of memory form the basis of knowledge
codes for sensory stimuli. There is also procedural memory based on pre-motor
cortical sites and basal ganglia and thalamic sub-cortical sites, as well as
involving parietal lobes and the cerebellum.

6 Rewards/Values as Biases

An organism tries to optimise its experience in the world by taking actions
on stimuli which maximise its future rewards. The signal for reward, and in
particular reward prediction error, has been observed as carried in the limbic

112 JG Taylor

brain by dopamine, with predicted future reward values of stimuli encoded in
the orbito-frontal cortex (and very likely also in amygdala). A machine learn-
ing model of this has been developed under the guise of Temporal Difference
learning and the Adaptive Critic Element/Adaptive Search Element system
[1]. It allows a further bias to be exerted on the attention control system and
resulting responses; it also provides a method of enhanced learning of stimulus
representations as valued goals in prefrontal cortex.

Such a bias as brought about by the amygdala is shown in Figure 1 of the
extended CODAM model.

7 An Architecture for Reasoning

The above components of attention, memory and reward are now to be put to
work to attain reasoning. The memory component gives a data-base on which
reasoning can be based, while reward biases the responses to be made. But
whilst both of these components make for greater efficiency, they cannot func-
tion to provide intelligence and more specifically reasoning without attention
as the work-horse driving the movement of information around, and attaining
agreed goals. The engineering control approach has been developed for atten-
tion, as mentioned earlier [18, 19, 21, 22]. This will now be considered in more
detail as to how it can provide a basis for the executive processes necessary
in intelligent processing of information, ultimately leading to an approach to
reasoning. Before we turn to the important component of attention let us con-
sider how coupled forward/inverse models could allow some form of reasoning
to be achieved.

The necessary component of engineering control to help develop reasoning
is a forward model involving the process of prediction:

x(t + 1) = F [x(t), u(t)] (2)

where x(t) is the estimated or predicted state of the controlled system at
time t, and u(t) is a control signal at that time, which through the forward
model function F[,] in (2) leads to an estimate of the state at the next time
step t + 1. Internal purely sensory ‘thinking’ can thus be envisaged as arising
from the recurrent running of the above forward model, using the control
signal u(t) from, say, the attention control system. The sequence would be
concluded when a suitable goal state had been reached (as set up initially, for
example, as part of a reasoning problem).

The ability to predict future states by the forward model of (2) still requires
in detail a sequence of actions {u(t)} to be generated. This can be achieved by
use of an inverse model controller (IMC), which is a map G from the actual
state of the system x(t), and its desired state x(des, t) to the action to achieve
that transformation form the one state to the other:

u(t + 1) = G[x(t), x(des, t)] (3)

The Human Brain as a Hierarchical Intelligent Control System 113

We may use the coupled set of F and G in reasoning as follows. We suppose
that an inverse model IMC of the form (3) has been trained so that given a
sequence of visual state {x(n)} there is a sequence of actions {u(n)} generated
by the IMC as

u(n + 1) = G[x(n), x(n + 1)] (4)

In order to make the sequence of virtual actions take the internal states
of the system through the sequence {x(n)} we need to use the forward model
to make the virtual changes

x(n + 2) = F [x(n + 1), u(n + 1)] (5)

Thus at each step of the reasoning process (4) & (5), the result of the
IMC is fed, along with the expected state, into the forward model (FM) to
produce the next state. This is then fed, with the previous state into the IMC
to produce the next action, and so on. That the desired sequence of states
is produced by this process is expected only to be possible after a suitable
learning process; as noted in Figure 2, where the error at each stage is used
to retrain the FM (and to a lesser extent the IMC) so as to attain the correct
sequence of states at each point. The error is thus, for example in terms of a
squared error: ∑

[x′(n)− x(n)]2 (6)

where x’(n) is the predicted next state at the n’th step of the iteration, as
compared to the actual value of the state x(n).

More general thinking and reasoning can be achieved using a sensory-
motor coupled system, with state estimate x being the attended sensory and

Creation of IMC/FM Pairs

• Training uses internal error signal for self-
evaluative training (in CG/Cb)
(KCL/UGDIST)

Xtarget
Xactual
Xpredict
(as speed-up)

IMC

FM

(for error-based
training)

Monitor

(Xact-xpred) for FM training
(Xtarg-xact) for IMC training
or as inverse of FM as PID

Δw ~ error x w
(in cerebellum)

Cb model build and used
in TSSG as phrase inserter

Fig. 2. The reasoning model and its learning component

114 JG Taylor

motor state and the forward model run by joint sensory-motor attention con-
trol signals (which arise from separate parts of the brain, sensory attention
mainly being in the right hemisphere, motor attention mainly in the left). The
forward and related models will involve memory codes, so as to use previous
information about the world more efficiently.

A possible architecture is shown in Figure 2 for reasoning, including a mod-
ule to achieve learning through error-based feedback, and using the coupled
IMC/Forward Model pair introduced above.

Without attention there is no filtering process on either the sensory inputs
or the motor responses. This means that there will be considerable inter-
ference, especially in complex domains. To include attention the ‘reasoning’
model of Figure 2 is extended to include sensory and motor attention in
Figure 3.

What has been added to the modules of Figure 2 are the sensory attention
control components: goals module, inverse model controller (generating the
attention movement control signal) and the ‘plant’ consisting of lower level
cortical sites with activity to be attended to. There is also a working memory
buffer, whose output has a threshold applied to it (so mimicking report); in
the CODAM model of Figure 1 there is a further predictor of the attended
state, achieved by using an efference copy of the IMC signal; this has been
left out explicitly from Figure 3, although it can be regarded as a component
of the WM buffer. There is also an IMC for motor attention, whose output is
sent to a motor response system not shown explicitly in Figure 3. Finally there
is a monitor or error module, as in Figure 2, allowing for error-based learning
of the forward model as suggested there. Finally we note that the forward
model FM is fed by output from the motor IMC (denoted IMCam) and not

Overall NN Architecture (KCL)
(including attention control)

Error
module

WM
Buffers
(visual &
cd)

Semantic
level
(objects)

Visual
Goal
Module

IMC(a, v) Plant

FM(am)

IMC(a, m)

Fig. 3. The attention control components added to the model of figure 2, so as to
include both sensory and motor attention control

The Human Brain as a Hierarchical Intelligent Control System 115

from the lower-level motor output module not shown in Figure 3. The reason
for this is related to the need for motor attention in the initial stages of motor
learning, so that the IMCam must play a crucial role in the initial learning
process, and only later can automatic processing be achieved in which the
IMCam is expected to drop out.

We wish to apply the extended model of Figure 3 to various important rea-
soning tasks below, but we need to tease out various components of reasoning
as part of the overall task.

8 Components of Reasoning

Cognitive Sub-Tasks: In reasoning, thinking and planning a variety of cogni-
tive subtasks are carried out, including: 1) Storage and retrieval of memo-
ries in hippocampus (HC) and related areas; 2) Rehearsal of desired inputs
in working memory; 3) Comparison of goals with new posterior activity; 4)
Transformation of buffered material into a new, goal-directed form (such as
spatial rotation of an image held in the mind); 5) Inhibition of pre-potent
responses [9]; 6) The development of forward maps of attention in both sen-
sory and motor modalities, so that possibly consequences of attended actions
on the world can be imagined (along the lines of the architectures in Figs 2
and 3, and as discussed above); 7) Determination of the value of elements of
sequences of sensory-motor states as they are being activated in recurrence
through a forward model; 8) Learning of automatic sequences (chunks) so as
to speed up the cognitive process.

The rehearsal, transformation, inhibition and retrieval processes are those
that can be carried out already by a CODAM model [18, 19, 8] (with addi-
tional hippocampus activity for encoding & retrieval). CODAM can be used
to set up a goal, such as the transformed state of the buffered image, or its
preserved level of activity on the buffer, and transform what is presently on
the buffer by the inverse attention controller into the desired goal state. Such
transformations arise by use of the monitor in CODAM to enable the origi-
nal image to be transformed or preserved under an attention feedback signal,
generated by an error signal from the monitor and returning to the inverse
model generating the attention movement control signal so as to modify (or
preserve) attention and hence what is changed (or held) in the buffer, for
later report. Longer term storage of material for much later use would pro-
ceed in the HC, under attention control. The comparison process involves yet
again the monitor of CODAM. The use of forward models like (2) allows for
careful planning of actions and the realisation and possible valuation of the
consequences. Multiple recurrence through the forward models of the form (2)
and the IMC model (3), as shown in Figure 2, allow further look-ahead, and
prediction of consequences of several further action steps. Automatic process
are created by sequence learning in the frontal cortex, using Frontal Cortex->
Basal Ganglia → Thalamus → Frontal Cortex, as well as with Cerebellum

116 JG Taylor

involvement, to obtain the recurrent architecture needed for learning chunks
(although shorter chunks are also learnt in hippocampus). Attention agents
based on these attention control principles have been constructed in software
[10], and most recently combined with reward learning [11].

9 Extraction of Cognitive Principles

Cognitive Principles: We can deduce from these component functions some
principles of cognitive processing:

CP1: There is overall control by attention of the cognitive process, using
attention-based control signals to achieve suitable transformations to
solve cognitive tasks;

CP2: Fusion of attention control (in parietal lobe and Prefrontal Cortex) and
long-term learning in HC occurs to achieve an expanding state space of
stimuli and actions, and of corresponding attention control;

CP3: The creation of a valuation of goals occurs in Prefrontal Cortex to han-
dle reward prediction biasing of the processes 1) to 6) above;

CP4: Transformations on buffered stimuli is achieved by creation of suitable
Prefrontal Cortex goals associated with the required transformations
being carried out on existing buffered activities, under the control of
attention;

CP5: Forward models (along the lines of equation (1) in section 2)) are created
under attention control so that, by their recurrence, sequential passage
through sequences of attended sensory-motor states is achieved (as in
thinking), possibly to reach a desired goal (as in reasoning) or valued
states that may even correspond to new ways of looking at a problem
(as in creativity);

CP6: There is creation of, and ability to access, automated ‘chunks’ of knowl-
edge, so they can be inserted into forward model sequences under CP4.
These automated chunks are initially created by effortful attention at
an earlier time (using error-based learning in cerebellum [16]) but are
then gradually transferred to automatic mode by suitably long rehearsal
(through reinforcement training by Dopamine from the brain stem);

CP7: Attention is employed as a gateway to consciousness, with conscious-
ness providing an overarching control function of speed-up of attention
(through the prediction model of the attended state in the WM buffer
in the CODAM architecture), thereby giving consciousness overall guid-
ance over ongoing processes (plus other features still to be defined).

Cognitive Architecture: A possible architecture is a) CODAM as an atten-
tion controller (with both sensory and motor forms and containing forward
models) b) Extension of CODAM by inclusion of value maps and the reward
error prediction delta, as begun in [23], and shown in Figure 1; c) Extension of
CODAM to include a HC able to be attended to and to learn short sequences

The Human Brain as a Hierarchical Intelligent Control System 117

Overall Simplified ‘Brain’
Architecture

V1/V2/
V4/V5
LIP

TEO/TE

Visual perception
system Object

(Concept)
System)

Attention feedback
control
system

Visual
input

Goals
+WM
systems:

PFCVTA/OFC
NAcc/
AMYG

Value
maps

PMC/
SMA/
M1/Cb

Motor
response
System

PhSt/
Semantic

Maps

Speech/
Text
inputs

Rewards

Sounds

Internal
Models
(IMC/FM)

Word
System

HYP

Motivations/
Drives

SPL/
SMG/
IPL/IPS

Fig. 4. Proposed Overall Cognitive Architecture for a Model Global Brain

d) Further extension of CODAM by addition of cerebellum to act as an error
learner for ‘glueing’ chunked sequences together, with further extension to
addition of basal ganglia so as to have the requisite automated chunks embe-
dded in attended control of sequential progression. The goal systems in
Prefrontal Cortex are composed of basal ganglia/thalamus architecture, in
addition to prefrontal cortex, as in [24].

The overall cognitive architecture (not including the hippocampus) is
shown in Figure 4.

We will now apply the above architecture and cognitive principles to some
specific reasoning tasks.

10 Analysis of Specific Reasoning Tasks

The tasks I will consider first are: Wisconsin Card Sorting (WCST) and the
Tower of Hanoi. These are valuable paradigms used to investigate prefrontal
deficits in cognitive processing. I will then briefly describe logical reasoning
in this brain-based framework, and finally turn to reasoning in animals, most
specifically in Betty the Crow.

WCST:

The WCST task has a pack of cards with 1, 2, 3 or 4 shapes of 4 kinds,
with each card being in one of 4 colours. Four test cards lie face up on the
table. The subject’s task is to take a card from the pack and place it on one of

118 JG Taylor

the four test cards according to a rule (following the matching of colour, shape
or number). If the choice fits a rule chosen by the experimenter, unbeknownst
to the subject, then the experimenter says ‘yes’, otherwise ‘no’. Either way
the subject has to try again. After (usually) 10 correct choices by the subject,
the experimenter changes the rule, although without telling the subject except
inthe ‘yes’ or ‘no’ response they give to the subject’s choices.

Numerous neural models of this task exist, such as [13]. This uses a set of
recurrent loops (Cortex → Basal Ganglia → Thalamus → Cortex) so as to
store in working memory the rule presently in use by the subject. Receipt of a
‘yes’ continues the rule; a ‘no’ causes the Working Memory (WM) activation
to be destroyed by the amygdala, acting as a punishment device, and a new
rule is then formulated and tried until the correct new rule is discovered. This
model captures the essential components of the process, and fits reasonably
well with brain imaging data [13]. However the results in [14] indicate the
need for further development of the recurrent prefrontal lobe loop structure
to be more completely implemented.

Tower of Hanoi:

This task involves a set of vertical rods arranged, for example, in a line,
with rings of increasing radius that can fit over each rod. It is not allowed to
have a larger ring above a smaller one on any rod, and only one ring can be
moved at any time. The purpose is for the subject to work out the smallest
number of moves to take the rings from one allowed configurations of rings
to another only making allowed moves. A standard initial goal state is all the
rings on one rod (in a legal configuration), with the final goal state they being
all on another rod (again in a legal configuration); the task usually has only
three rods and 3–5 rings.

There are several executive processes involved in solving the problem:
Working Memory encoding of the present position and of the ultimate goal
state; transformation by a legal move to a further arrangement of rings from
the initial one; further transformation from one configuration to the next by
a legal move: Config(n) → Config(n + 1); achievement of the goal state by the
final configuration reached, Config(N); if the desired final state is not achieved
then start a new set of legal moves from the initial state; repeat until success-
ful. There are more abstract approaches to this problem but we are considering
here how the task would be solved by a person on first acquaintance with it.
Thus the most crucial step is the manipulation of Config(n)→Config(n+1) in
Working Memory, using a suitable legal move as represented in Prefrontal Cor-
tex. This corresponds to taking a mental image (in Working Memory) of Con-
fig(n), and making a mental legal move of one ring to the top of the set of rings
on another rod, in which the final state Config(n+1) is also legal. Thus a check
has to be made that such a move is legal by performing the move and then
checking that there are no smaller ring below the moved ring on the new rod. If
not, the move is legal and is made (and also stored in memory); if there is a
smaller ring then the move is not taken and a new move is tried for its legality.

The Human Brain as a Hierarchical Intelligent Control System 119

We note that in the above processes, attention and memory play a crucial role.
Reward is involved in setting up the goal, but is not necessarily needed unless
complete autonomy is needed for the agent to be suitable motivated.

Logical/Mathematical Reasoning:

There have been interesting new results on how this is achieved in the
brain [9]. In particular the debate between use of either a linguistic or a spatial
mechanism in reasoning seems to be settled in favour of either approach when
it is most appropriate (as detected by the brain sites being activated). Thus
in spatial reasoning sites in the brain are active known to support spatial
processing; in linguistic or logical reasoning brain areas involved in language
are observed active. Also an interesting result has arisen from the importance
of inhibition in logical reasoning process, where perceptual reasoning methods
give incorrect results and have to be inhibited by developing prefrontal cortical
connections to prevent perceptual reasoning; it was placed as item 7) in the list
of subtasks, and comes under principle CP3 in the previous section. Finally it
is clear that logical reasoning (based on ‘if-then’ manipulations) is based on
semantic processes; to understand the brain basis of this better, as pointed
out in [9], it is needed to clarify the various functions being performed in left
prefrontal regions centred on Broca’s area (BA44-45) since that appears a
crucial area involved in executive control in logical reasoning.

We can begin to model these processes most easily in the spatial case,
based on initial models of numerosity. There are two number systems involved,
integers and real numbers, the former involving language (so by some form of
supervision by a teacher) and the latter by a Self Organising Map, so in an
unsupervised manner; various models of these processes have been suggested
recently.

Modelling Animal Reasoning:

Recent research has uncovered unexpected hidden cognitive powers in a
group of animals, the corvids, of which the Caledonian crow is an important
example, as further discussed in [4, 5, 7, 25]. We will also consider here, besides
her powers of reasoning a low-level creative process present in Betty the Crow.

Betty was set the task by her handlers to remove a basket from the base
of a transparent fixed vertical tube, open at the upper end; she was provided
with a bent piece of wire which lay by the side of the vertical tube. Betty would
view the situation for a few minutes, and then proceed to pick up the bent
piece of wire in her beak and stick the bent end into the tube. She would then
manoeuvre the bent end under the basket of food at the bottom of the tube,
and thereby lift out the basket and its food. In a number of cases, however,
Abel, Betty’s partner, stole the food from the basket before Betty could eat it.

In one trial it was observed that Abel stole the bent wire before Betty was
able to use it to extract the basket and food. After a few stationary minutes,
Betty picked the straight wire up in her beak, pushed it under a piece of sticky
tape on the bench, and bent the wire so that it was similar to her previous

120 JG Taylor

bent wire stolen by Abel. She had already had several successful retrievals of
the food bucket using bent wires provided at each test. Thus these memories
would still be relatively active, so the Forward Model/ Inverse Modal Con-
troller pair would have some Working Memory activations for the ‘bent-wire
food-retrieval’ schemata. She also had past experience (reported by the exper-
imenters as occurring about a year previously) of playing with pipe-cleaners;
it is to be assumed she developed a ‘bent cleaner’ schemata involving a further
Forward Model/Inverse Model Controller pair (plus associated connections as
needed in Figure 3). Thus we can conjecture that the processes going on in
Betty’s mind to enable her to take the creative ‘tool making’ step were:

1) The Forward Model/Inverse Model Controller pair for ‘bent wire food
retrieval’ was still partly active in her brain;

2) The Forward Model/Inverse Model Controller pair for ‘bent cleaner’ was
present in her memory, and especially was available as a reasoning system;

3) She had in her Working Memory (visual) images of both bent wires (from
her recent successful trials) and a straight wire (this being straight in front
of her);

4) Through some form of generalisation (unconscious, so outside any Work-
ing Memory modules) in the Forward Model or related modules, she must
have been able to generalise from the straight wire to a straight pipe
cleaner, and so to reason that she could use the Forward Model/Inverse
Model Controller for bending pipe-cleaners to bend the wire;

5) She could check, through a further stage of reasoning, that this bent wire
would then be usable to extract the food bucket;

6) She then proceeds to make the sequence of actions in reality: bend the
wire, then lift the food bucket, then obtain the food.

The ‘Aha’ stage appears to be at stage 4), where some form of generali-
sation occurs. Such generalisation is common in neural modules with distrib-
uted representations of stimuli (so having overlap between relatively similar
stimuli). In a module with dedicated nodes for inputs, it is also possible to
have a similar spreading of activity for one input to activate sites normally
activated by another if there is appropriately-designed lateral connectivity
between similar nodes. It is not necessarily simple to achieve such ‘semantic
spreading’ without carefully defined inputs (feature-based, for example), so
that semantically similar nodes are both activated to a certain degree and
corresponding learning can occur of appropriate lateral connection strengths
between the nodes. It seems much easier to work directly with distributed
representations, when such generalisation is well known to occur.

There is also a step left out of the above: the creation of a goal of a ‘bent
wire’, in order to activate steps 5) and 6).

The Human Brain as a Hierarchical Intelligent Control System 121

11 Conclusions

We started by comparing and contrasting the nature of computational and
human intelligence. After a discussion of the nature of cognition in Section 2,
we considered in the following sections some details of the brain basis of the
three basic functions involved in cognition: attention, memory and reward.
This led to elaboration of a set or more detailed component functions of
cognition, and thence to a set of principles for cognitive processing in the brain
and an associated cognitive architecture. In Section 10 we analyzed several
basic cognitive tasks, the WCST and the Tower of Hanoi, leading to a brief
discussion of the difference between linguistic and spatial reasoning. We finally
considered the important creative steps in the reasoning of Betty the Crow,
in which she created for herself a bent piece of wire from a straight one. This
amazing process was used to extract a food reward; it involved several features
of reasoning as well as the ‘aha’ process, very likely arising from some form
of generalisation process in the neural networks of Betty’s brain.

Our discussion is very incomplete. Further careful work, as well trying to
bring in language, should allow the area of brain-based reasoning to be increas-
ingly better understood and modelled. In such a manner it may be possible to
create a new generation of computer programmes, able to generate reasoning
results and even results based on creative processes. However the advances
depend on the presence of increasingly sophisticated databases, as is clear for
the foundations of the reasoning/creative components.

Acknowledgement

The author would like to acknowledge the support of the European Union
through the FP6 IST GNOSYS project (FP6-003835) of the Cognitive Sys-
tems Initiative, and to his colleagues in this project for constant support. He
would also like to thank Professor Kacelnik for a useful discussion, and his
colleagues Dr M Hartley, Dr N Taylor, Dr N Fragopanagos and N Korsten for
stimulating discussions on much of the area covered in the paper.

References

[1] Barto A (1995) Adaptive Critics and the Basal Ganglia. In: Models of
Information Processing in the Basal Ganglia, JC Houk, J Davis & DC
Beiser (Eds). Cambridge MA: MIT Press. pp 215–232

[2] Bi G & Poo B (1998) Synaptic Modifications in Cultured Hippocampal
Neurons: Dependence on Spike Timing, Synaptic Strength and Postsy-
naptic Cell Type. Journal of Neuroscince 18:10464–72

[3] Blakemore C (2005) Private communication
[4] Boysen ST & Himes GT (1999) Current Issues and Emerging Theories

in Animal Cognition. Annual Reviews of Psychology 50:683–705

122 JG Taylor

[5] Chappell J & Kacelnik J (2002) Selection of tool diameter by New Cale-
donian crows Corvus moneduloides Animal Cognition 7:121–127.

[6] Duch W (2005) Private communication
[7] Emery NJ & Clayton NS (2004) The Mentality of Crows: Convergent

Evolution of Intelligence in Corvids and Apes. Science 306: 1903–1907
[8] Fragopanagos N, Kockelkoren S & Taylor JG (2005) Modelling the

Attentional Blink Brain Research Cogn Brain Research 24:568–586
[9] Houde O & Tzourio-Mazayer N (2003) Neural foundations of logical and

mathematical cognition. Nat Rev Neuroscience 4:507–514
[10] Kasderidis S & Taylor JG (2004) Attentional Agents and Robot Control.

International Journal of Knowledge-based & Intelligent Systems 8:69–89
[11] Kasderidis S & Taylor JG (2005) Rewarded Attentional Agents.

ICANN2005 (Warsaw).
[12] Ling S & Carrasco M (2006) Sustained and Transient Covert Attention

Enhance the Signal via Different Contrast Response Functions. Vision
Research 46:210–220

[13] Monchi O, Taylor JG & Dagher A (2000) A neural model of working
memory processes in normal subjects, Parkinson’s disease and schizophre-
nia for fMRI design and predictions. Neural Networks 13(8–9):963–973

[14] Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K & Dagher A
(2004) Neural Bases of Set Shifting Deficits in Parkinson’s Disease. Jour-
nal of Neuroscience 24:702–710

[15] Newell A (1990) Unified Theories of Cognition. Cambridge Mass: Harvard
University Press

[16] Ohyama T, Nores WL, Murphy M & Mauk MD (2003) What the cere-
bellum computes. Trends in Neuroscience 26(4):222–6

[17] Sergent C, Baillet S & Dehaene S (2005) Timing of the brain events
underlying access to consciousness during the attentional blink. Nature
Neuroscience 8:1391–1400

[18] Taylor JG (2000) Attentional Movement: the control basis for Conscious-
ness. Soc Neurosci Abstr 26:2231 #839.3

[19] Taylor JG (2003) Paying Attention to Consciousness. Progress in Neuro-
biology 71:305–335

[20] Taylor JG (2004) A Review of brain-based neuro-cognitive models. Cog-
nitive processing 5(4):19–217

[21] Taylor JG (2005) From Matter to Consciousness: Towards a Final Solu-
tion? Physics of Life Reviews 2:1–44

[22] Taylor JG (2006) The Mind: A User’s Manual. Wiley & Son
[23] Taylor JG & Fragopanagos N (2005) The interaction of attention and

emotion. Neural Networks 18(4) 353–369
[24] Taylor N & Taylor JG (2000) Analysis of Recurrent Cortico-Basal-

Ganglia-Thalamic Loops for Working Memory. Biological Cybernetics
82:415–432

[25] Weir AAS, Chappell J & Kacelnik A (2002) Shaping of Hooks in New
Caledonian Crows. Science 297:981–3

Artificial Brain and OfficeMateTR based
on Brain Information Processing Mechanism

Soo-Young Lee

Korea Advanced Institute of Science and Technology, Korea

Summary. The Korean Brain Neuroinformatics Research Program has dual goals,
i.e., to understand the information processing mechanism in the brain and to develop
intelligent machine based on the mechanism. The basic form of the intelligent
machine is called Artificial Brain, which is capable of conducting essential human
functions such as vision, auditory, inference, and emergent behavior. By the proac-
tive learning from human and environments the Artificial Brain may develop oneself
to become more sophisticated entity. The OfficeMate will be the first demonstration
of these intelligent entities, and will help human workers at offices for scheduling,
telephone reception, document preparation, etc. The research scopes for the Artifi-
cial Brain and OfficeMate are presented with some recent results.

1 Introduction

Although people had tried to understand the mechanism of brain for a long
time, still only a few are understood. Even with the limited knowledge on bio-
logical brain artificial neural network researchers have come up with powerful
information processing models and developed useful applications in the real
world. Here we report an ambitious research program to develop human-like
intelligent systems, called ‘Artificial Brain’, based on the brain information
processing mechanism.

The Korean Brain Neuroinformatics Research Program got into the third
phase in July 2004 for 4 years, which is regarded as the final phase of Korean
brain national research program started in November 1998 for 10 years [1].
The program was initially sponsored by Ministry of Science and Technology,
and is now sponsored by Ministry of Commerce, Industry, and Energy. It is
a joint effort of researchers from many different disciplines including neuro-
science, cognitive science, electrical engineering, and computer science, and
currently about 35 PhDs and about 70 graduate students are involved in the
program.

The Korean Brain Neuroinformatics Research Program has two goals, i.e.,
to understand information processing mechanisms in biological brains and to

Soo-Young Lee: Artificial Brain and OfficeMateT R based on Brain Information Processing

Mechanism, Studies in Computational Intelligence (SCI) 63, 123–143 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

124 Soo-Young Lee

develop intelligent machines with human-like functions based on these mech-
anisms. In the third phase we are developing an integrated hardware and
software platform for the brain-like intelligent systems, which combine all the
technologies developed for the brain functions in the second phase. With two
microphones, two cameras (or retina chips), and one speaker, the Artificial
Brain looks like a human head, and has the functions of vision, auditory, cog-
nition, and behavior. Also, with this platform, we plan to develop a testbed
application, i.e., “artificial secretary” alias OfficeMate, which will reduce the
working time of human secretary by a half.

In this chapter the goals and current status of the Korean Brain Neuroin-
formatics Research Program will be presented with some recent developments.
The research goals and scopes are first described, and recent developments are
presented latter.

2 Research Goals

To set up the research goals we incorporated two approaches, i.e., the bottom-
up and top-down approaches, and set common goals for them. The bottom-
up approach we incorporated is to extrapolate technology development trends
and foresee future technology. The prediction of technology demands in future
society has always been the main force of technology developments, and we
regard it as the top-down approach.

Scientific progress has a tendency to be greatly influenced by unforeseeable
breakthroughs, and the reliability of long-term prediction in scientific discov-
ery is always questionable. However, it is still safe to say that recent develop-
ments in high performance brain imaging and signal processing equipment will
greatly speed up understanding of brain architecture and information process-
ing mechanisms. By reducing resolution both in time and space, it may be
possible to record neuronal signals with sufficient accuracy for precise mathe-
matical modeling. Although there still exists a big gap between the molecular
neuroscience and system neuroscience, the existing gap between microscopic
cellular models and macroscopic behavior models may eventually be bridged
resulting in a unified brain information processing model.

Prediction in technology developments is regarded as more reliable.
Especially, there exists a well-accepted theory, called “Moore’s Law”, in semi-
conductor industry. In 1965 Gordon Moore realized that each new chip con-
tained roughly twice as many structures as its predecessor and each chip
was released within 18–24 months of the previous chip. This trend is still
remarkably accurate, and an increase rate of about 50 times is expected for
the next 10 years. With more than 10 billion transistors in a single chip
one may be able to implement a small part of human brain functions. More
powerful systems may be built with multiple chips. Even in conventional com-
puting architectures, the communication bottleneck between processors and
memories will become more serious, and distributed computing and storage

Artificial Brain and OfficeMateTR based on Brain Information 125

architectures will be pursued. Therefore, neuro-chip technology will fit into
the main stream of computer and semiconductor industries.

Another interesting law, called “Machrone’s Law”, says that the machine
you want always costs US$5,000. Actually it seems the cost is going down to
US$1,000. People always wanted more powerful systems, and engineers had
always come up with powerful systems with the same or lower price range.
Therefore, the bottom-up prediction says that the enormous computing power
will be available with affordable price in the future.

In human history the Industrial Revolution is regarded as the first big
step to utilize machines for human welfare. With the help of powerful energy-
conversion machines such as steam engines, the Industrial Revolution paved
a road to overcome the physical limitation of humans and result in mass-
production of consumer products. The second big step may be the Computer
Revolution, which is based on electronic technology with accurate number
crunching and mass data storage. Nowadays we can not imagine the world
without the mass-production machines and computers.

What the future human society will be? People always wanted to resolve
present difficulties and found ways to overcome the difficulties for the bet-
ter life. The Machrone’s law may be a simple example. Although the Com-
puter Revolution has provided better human life, it also creates problems, too.
Computers are not yet sufficiently intelligent to work in a friendly way with
humans. To make use of computers people must learn how to use it. In many
cases it means learning tedious programming languages or memorizing the
meaning of graphic user interface icons. Also, current computers do whatever
they are programmed for, and do not have generalization and self-learning
capabilities. Therefore, the programmers should take into account all possible
cases for the specific application, and provide a solution for each case. Only
a few people have these programming and logical-thinking abilities. To make
computers useful to everybody, it is strongly recommended to make computers
as human-friendly as possible. People shall be able to use computers as their
friends or colleagues. Computers shall have human-like interfaces, self-learning
capabilities, and self-esteem. The best way to accomplish this goal is to learn
from the mother nature.

In Figure 1 information processing functions in brains are divided into 4
modules. A human has 5 sensors to receive information from environment,
does some information processing based on these sensor signals, and provides
motor controls. Among 5 sensors the vision and the auditory sensors provide
the richest information, and complex information processing is performed. All
the sensory information is integrated in the inference module, which provides
learning, memory, and decision-making functions. The last module, Action
Module, generates signals for required sensory motor controls. Although there
may be many feedback pathways in biological brains, feed-forward signal path-
ways are mainly depicted here for simplicity.

Although the role of early vision systems is relatively well understood,
we believe what we know about the brain is much less than what we do not

126 Soo-Young Lee

Selective
Attention

Selective
Attention

Motor
Controls

Tactile/Oifac-
tory/Taste
Sensors

Multi-sensor
Fusion

Decision/
Planning

Cooperative
Scheduling

Knowledge/
Learning

Speech

Acoustic
Sensor

Vision
Sensor

Feature
Extraction

Recognition
Tracking

Feature
Extraction

Recognition
Tracking

Vision

Action

Inference

Fig. 1. Four functional modules in brain information processing systems. The
Artificial Brain should also have 4 functional modules for vision, auditory, infer-
ence, and action systems

know. Compared to the vision and auditory modules the knowledge on the
inference module is much more limited. However, even with a small hint from
biological brains, we believe much more intelligent systems can be built. If
neuroscientists concentrate on functions required to fill in the gaps of engi-
neering functions, much faster progress may be achieved. Issues on invari-
ant feature extraction, selective attention, adaptive dynamic ranges, sensory
fusion, knowledge representation, generalization, self-learning, emotion, and
cooperative behavior are only a few examples. Specific hardware implemen-
tations are also essential for the success. Therefore, a “system approach” is
required to integrate efforts of researchers from many different disciplines for
each module. Finally, the four modules need to be integrated as a single sys-
tem, i.e., Artificial Brain.

The Artificial Brain may be trained to work for specific applications, and
the OfficeMate is our choice of the application test-bed. Similar to office sec-
retaries the OfficeMate will help users for office jobs such as scheduling, tele-
phone calls, data search, and document preparation. The OfficeMate should
be able to localize sound in normal office environment, rotate the head and
cameras for visual attention and speech enhancement. Then it will segment
and recognize the face. The lip reading will provide additional information
for robust speech recognition in noisy environment, and both visual and au-
dio features will be used for the recognition and representation of “machine
emotion.” The OfficeMate will use natural speech for communications with
the human users, while electronic data communication may be used between
OfficeMates. A demonstration version of the Artificial Brain hardware is
shown in Figure 2.

Artificial Brain and OfficeMateTR based on Brain Information 127

Fig. 2. Artificial Brain with two eyes, two ears, and one microphone. The lips
are used for lip-sink, and 2 LCD displays are used for camera inputs and internal
processor status

3 Research Scope

As shown in Figure 3 the Artificial Brain should have sensory modules for
human like speech and visual capabilities, internal state module for the infer-
ence, and the output module for human-like behavioral control.

The sensory modules receive audio and video signals from the environ-
ment, and conduct feature extraction and recognition in the forward path.
The backward path conducts top-down attention, which greatly improves the
recognition performance of the real-world noisy speech and occluded patterns.
The fusion of video and audio signals is also greatly influenced by this back-
ward path.

The internal state module is largely responsible for intelligent functions
and has a recurrent architecture. The recurrent architecture is required to
model human-like emotion and self-esteem. Also, the user adaptation and
proactive learning are performed at this internal state module.

The output module generates human-like behavior with speech synthesizer
and facial representation controller. Also, it provides computer-based services
for OfficeMate applications.

In the Korean Brain Research Program we are trying to develop detail
mathematical models for the Artificial Brain. In the mathematical model the
internal state value H[n+1] is defined as a function of sensory inputs, previous
internal states, and system outputs, i.e.,

128 Soo-Young Lee

Output Layer

Visual Output Layer

Visual Input Layer

V [n] A [n]

H [n+1]

O [n+1]

Audio Input Layer

Audio Output Layer

Environment

Artifical Brain

Internal State Layer

Fig. 3. Block diagram of Artificial Brain and its interaction with the environment

H [n + 1] = f (V [n],A[n],H [n],O [n]), (1)

where V[n],A[n],H[n], and O[n] denote video inputs, audio inputs, internal
state values, and outputs at time n, respectively, and f(·) is a nonlinear func-
tion. The output is defined as a function of the internal states and sensory
inputs, i.e.,

O [n + 1] = g(H [n + 1], V [n],A[n]), (2)

where g(·) is a nonlinear function. It is also worth noting that the sensory
inputs are functions of both the system outputs and environment states as

V [n] = p(O [n], E [n]), A[n] = q(O [n],E [n]), (3)

where E[n] is the environment state value and p(·) and q(·) are nonlinear
functions.

Although the basic technologies had been developed for the visual and
audio perception during the last 8 years, the most challenging part is the devel-
opment of the “Machine Ego” with human-like flexibility, self-learning perfor-
mance, and emotional complexity. It will also have user-modeling capabilities
for practical user interfaces. We believe the Artificial Brain should have active
learning capability, i.e., the ability to ask “right” questions interacting with
people. To ask right questions the Artificial Brain should be able to monitor
itself and pinpoint what it may need to improve. Based on this observation
we would like to develop a mathematical model of the Machine Ego, which
is the most important component of the Artificial Brain. Research scopes for
the four modules are summarized as follows.

Artificial Brain and OfficeMateTR based on Brain Information 129

3.1 Auditory Module

The research activities on the auditory module are based on the simplified dia-
gram of the human auditory central nervous system. Detail functions currently
under modeling are summarized in Figure 4. The object path, or “what” path,
includes nonlinear feature extraction, time-frequency masking, and complex
feature formation from cochlea to auditory cortex. These are the basic compo-
nents of speech feature extraction for speech recognition. The spatial path, or
“where” path, consists of sound localization and noise reduction with binaural
processing. The attention path includes both bottom-up (BU) and top-down
(TD) attention. However, all of these components are coupled together. Espe-
cially, the combined efforts of both BU and TD attention control the object
and spatial signal paths.

The nonlinear feature extraction model is based on cochlear filter bank and
logarithmic nonlinearity. The cochlear filter bank consists of many bandpass
filters, of which center frequencies are distributed linearly in logarithmic scale.
The quality factor Q, i.e., ratio of center frequency to bandwidth, of band-
pass filters is quite low, and there are overlaps in frequency characteristics.
The logarithmic nonlinearity provides wide dynamic range and robustness
to additive noise. Time-frequency masking is a psychoacoustic phenomenon,

Fig. 4. Block diagram of auditory pathway model. The object path and spatial
path deal with speech feature extraction and sound localization, respectively, and
the attention path controls the other two paths for robust speech recognition

130 Soo-Young Lee

where a stronger signal suppresses weaker signals in nearby time and frequency
domains.

For the binaural processing at the spatial path conventional models
estimate interaural time delay, i.e., time-delay between signals from left and
right ears, based on cross-correlation, and utilize the time-delay for sound
localization and noise reduction. Interaural intensity difference is also uti-
lized for advanced models. However, these models assume only direct sound
paths from a sound source to two ears, which is not valid for many real-
world environments with multipath reverberation and multiple sound sources
(e.g., speech inside an automobile with external road and wind noise, and
reverberation of speech mixed with music from the audio system). Therefore,
it is required to incorporate deconvolution and separation algorithms in the
binaural processing.

For the attention path, a model is being developed to combine both the
bottom-up (BU) and top-down (TD) attention mechanisms. The BU atten-
tion usually results from strong sound intensity and/or rapid intensity changes
in time, and is closely related to the time-frequency masking. However, TD
attention comes from familiarity and importance of the sound, and relies on
existing knowledge of each person. For example, a specific word or a per-
son’s voice may trigger TD attention for relevant people only. Therefore, TD
attention originates from the higher-level brain areas that may be modeled in
a speech recognition system.

3.2 Vision Module

The vision module also consists of submodules for feature extraction in the
object path, stereo vision in the spatial path, and image recognition in the
attention path. Also, it is closely coupled to the action module for the active
vision and facial representation of emotion.

The object path starts from the bottom-up saliency map [2] to identify
the area of interests, and pattern recognition with top-down attention is per-
formed only at those areas. The saliency map consists of colors and orientation
edges with several different scales. The recognition submodule will visit each
area with high saliency one by one, and classify the images. In the first ver-
sion of Artificial Brain the vision module mainly identifies the facial areas
from background images, and recognizes the name and emotional status of
the person. Similar to the auditory module the top-down attention greatly
improves the recognition performance of occluded or confusing patterns in
complex backgrounds.

An important research topic for this module is the color constancy with
different illumination conditions.

In future lip-reading will be added for robust recognition in very noisy
environment. Since the human perception of motion goes through two different
pathways, i.e., the lateral fusiform gyrus for the invariant aspects and the supe-
rior temporal sulcus for the changeable aspects of faces [3], the dynamic video

Artificial Brain and OfficeMateTR based on Brain Information 131

features may be different from static image features, and efficient unsupervised
learning algorithm should be developed to extract the dynamic features.

3.3 Inference Module

The inference module performs knowledge acquisition, emotional transition,
and user adaptation. Applications of inference functions for OfficeMates are
also integrated in this module.

The knowledge acquisition should be autonomous and proactive. For the
autonomous learning it should be able to learn without intervention of users.
For example, if a textbook on medicine is provided, the Artificial Brain should
be able to learn the knowledge of medical doctors. To accomplish this goal
we develop unsupervised learning algorithms to extract the basic components
of knowledge from the text. A hierarchical architecture may be adopted to
build complex knowledge systems from these basic components. The proactive
learning then improves the knowledge by asking proper questions. The module
estimates what need to be learnt more, phrases proper questions, figures out
appropriate person to ask, and incorporates the answers into its knowledge
system.

Even with the proactive learning the inference module may experience new
circumstances that it has never been exposed to before in the real world appli-
cations. Therefore, another important characteristic of the learning system is
the generalization capability, which may be obtained by additional constraints
on the cost function during learning [4].

The emotional transition is one important characteristic of human-like
behavior. To incorporate the emotional transitions we use recurrent neural
networks in the inference module, and one hidden neuron is assigned to each
independent emotional axis. The transition may be triggered by sensory per-
ception and its own actions to the environment. However, in the future the
emotion assignment and transition will be learnt autonomously, and the effi-
cient learning algorithm of this emotional network still need be investigated.
If successful, it may lead us to the more complex topics of consciousness and
self esteem.

The user adaptation has many different levels, and the simplest level may
be implemented by adjusting some parameters of the inference system. How-
ever, we plan to implement the user adaptation as the training of another
inference system for the user. In this framework both the Artificial Brain and
users share the same inference architecture, and the two inference modules
are learnt simultaneously.

The applications of the inference module include language understand-
ing, meeting scheduling, and document preparation. Actually the language
understanding is the fundamental function for efficient man-machine inter-
face. Also, the extraction of emotional components from speech and texts is
conducted during this process.

132 Soo-Young Lee

The Artificial Brain need to be trained for specific applications of the
OfficeMates. We focus on two jobs of office secretaries, i.e., meeting scheduling
and document preparation. Of course we do not expect perfect performance
at the early stage, but hope to save time of human secretaries by a half.

3.4 Action Module

The action module consists of speech synthesizer and facial representation
controller. Both are expected to have capabilities of emotional representation,
which is very important for the natural interaction between the Artificial
Brain and its users. The speech synthesizer is based on commercial TTS
(Text-To-Speech) software, and we are just adding capability of emotional
speech expressions. The emotional facial representation has been analyzed,
and the robot head of the Artificial Brain is capable of representing simple
emotions.

Another important function of the action module is the communica-
tion with other office equipments such as telephone, computer, fax machine,
copier, etc. Although it does not require intelligence, it is needed to work as
OfficeMates.

4 Research Results

In this section some research results are reported mainly for the auditory and
vision modules. The inference and action modules are still at the early stage
of research.

4.1 Self-Organized Speech Feature

The nonlinear feature extraction in auditory pathway is based on cochlear
filter bank and logarithmic nonlinearity. The cochlear filter bank consists of
many bandpass filters, of which center frequencies are distributed linearly in
logarithmic scale. Based on the information-theoretic sparse coding principle
we present the frequency-selective responses at the cochlea and complex time-
frequency responses at the auditory cortex.

At cochlea we assume that speech signal is a linear combination of the
independent basis features, and find these basis features by unsupervised
learning from the observed speech. The Independent Component Analysis
(ICA) minimizes the mutual information and extracts the statistically inde-
pendent features [5]. For speech signals we assume the Laplacian distribution,
of which sparsity was supported by an experiment on the dynamic functional
connectivity in auditory cortex [6].

Artificial Brain and OfficeMateTR based on Brain Information 133

10
0

0
50

−10

−5
0.50

0
−0.5

0.50
0

−0.5
0.50

0
−0.5

0.20
0

−0.2
0.050

−0.05
0.050

0

0

−0.05

−0.02

0.020
0

0 50 0

−0.05
0.050

0

10
0

0
50 50

−10

10
0

50 50
−10

4
2

50 20
0

−5

500.50

500.50

500.50

500.20

0
−0.5

0
−0.5

0
−0.5

0
−0.2

50.050

−0.05
50.050

0

0

−0.05

−0.02

50.020
0

−0.05
50.050

0

50 0

0

50 10
−5

500.50

500.20

500.10

0
−1

0
−0.5

0
−0.2

0
−0.1

500.10

−0.1
50.050

0

0

−0.05

−0.01

50.010
0

−0.05
50.050

0

50 0

0

500.50
−2

500.50

500.20

500.10

0
−0.5

0
−0.5

0
−0.2

0
−0.1

50.050

−0.05
50.050

0

0

−0.05

−0.01

50.010
0

−0.05
50.050

0

5
0

50 20 50

50

50

50

50

50

50

50

50

50

−5

50 0

0

500.50
−2

500.50

500.20

50.050

0
−0.5

0
−0.5

0
−0.2

0
−0.05

50.050

−0.05
50.050

0

0

−0.05

−5

50 50
0

−0.05
50.050

0

Fig. 5. Fifty simple speech features extracted by independent component analysis
from raw speech signals

The training data consist of 60 sentences from six speakers in the TIMIT
continuous speech corpus (http://www.ldc.upenn.edu/Catalog/docs/
LDC93S2/timit.html), and speech segments composed of 50 samples, i.e.,
10 ms time interval at 16 kHz sampling rates, are randomly generated.

As shown in Figure 5, the obtained 50 basis feature vectors are localized
in both time and frequency [7]. Average normalized kurtosis of the extracted
features is 60.3, which shows very high sparseness. By applying the topology-
preserving ICA [8], the basis features are extracted in the order of the center
frequency [9].

After the frequency-selective filtering at the cochlea, more complex audi-
tory features are extracted at the latter part of the human auditory pathway,
i.e., inferior colliculus and auditory cortex. This complex features may also
be understood as the information-theoretic sparse coding. Here we model the
earlier part of the human auditory pathway as a simple mel-scaled cochlear fil-
terbank and the logarithmic compression. The time-frequency representation
of the speech signal is estimated at each time frame with 10 msec intervals,
and the ICA algorithm is applied to this two-dimensional data. The 23 mel-
scaled filters and 5 time frames are selected with the local feature dimension
of 115, which is reduced to 81 using the principal component analysis (PCA).
Topology-preserving self-organization is also incorporated [8].

134 Soo-Young Lee

Fig. 6. Eighty one complex speech features extracted by independent component
analysis from time-frequency spectrum

As shown in Figure 6, the resulting complex speech features show many
aspects of the features extracted at the auditory cortex [10]. At the lower left
side of the map, vertical lines represent frequency-maintaining components
with complex harmonics structures. The horizontal lines at the upper right
side of the map represent on-set and off-set components. In the center of the
map, there exist frequency-modulation components such as frequency-rising
and frequency-falling components. In fact, there exist neurons responding to
these three basic sound components in the human auditory pathways, i.e.,
the steady complex harmonics, on/off-sets, and frequency modulation. Many
auditory cortical areas are tonotopically organized, and are specialized to
specific sound features [11].

4.2 Time-Frequency Masking

Another important characteristic of the signal processing in the human audi-
tory pathway is the time-frequency masking, which had been successfully mod-
eled and applied to the noise-robust speech recognition [12]. Time-frequency
masking is a psychoacoustic phenomenon, where the stronger signal suppresses
the weaker signals in nearby time and frequency domains [13]. It also helps
to increase frequency selectivity with overlapping filters.

As shown in Figure 7, the frequency masking is modeled by the lateral
inhibition in frequency domain, and incorporated at the output of the Mel-
scale filterbank. The time masking is also implemented as lateral inhibition,
but only the forward (progressive) time masking is incorporated.

The developed time-frequency masking model is applied to the isolated
word recognition task. Frequency masking reduces the misclassification rates
greatly, and the temporal masking reduces the error rate even further [12].

4.3 Binaural Speech Separation and Enhancement

For the binaural processing the usual model estimates interaural time delay
based on cross-correlation, and utilizes the time-delay for sound localization
and noise reduction. Interaural intensity difference is also utilized for advanced

Artificial Brain and OfficeMateTR based on Brain Information 135

Speech

Block into frames

Hamming Windowing

Fourier transform

Discrete cosine transform

MFCC

Unilateral Inhibition Filtering
along time frame

Mel-scale filterbank with
Frequency Masking

Frequency

G
ai

n
G

ai
n

Time

Fig. 7. Block diagram of time-frequency masking and their lateral interconnections

models [13]. However, these models assume only direct sound paths from one
sound source to two ears, which is not true for many real-world environ-
ments with multipath reverberation and multiple sound sources. Therefore,
it is required to incorporate deconvolution and separation algorithms, and an
extended binaural processing model has been developed based on informa-
tion theory. We have extended the convolutive ICA algorithm [14] to multiple
filterbanks [15] and further extended the cochlea filterbank.

As shown in Figure 8, the signals from the left ear and the right ear first
go through the same filterbank, and the outputs of each filter are de-mixed by
separate ICA networks. Then, the clean signals are recovered through inverse
filterbanks. If two signal sources exist, each signal can be recovered. If only
one signal source exists, the signal and a noise will be recovered.

In ref. [15] the ICA-based binaural signal separation with uniform fil-
terbank results in much higher final SIR than the fullband time-domain
approach and the frequency-domain approach. The poor performance of the
frequency-domain approach comes from the boundary effects of the frame-
based short-time Fourier transform as well as the permutation problem of the
ICA algorithm. Although the permutation problems still needs to be solved,
compared to the standard time-domain approach without the filterbank, the
filterbank approach converges much faster giving better SNR. Basically the
filterbank approach divides the complex problem into many easier problems.
Due to the decimation at each filter the computational complexity is also

136 Soo-Young Lee

H0(z) M

ICA network
W0(z)

ICA network
W1(z)

ICA network
WK−1(z)

Mixture 1
x1(n)

Mixture 2
x2(n)

H1(z)

HK−1(z)

HK−1(z)

H0(z)

H1(z)

M

+

+

F0 (z)

F1 (z)

FK−1 (z)

FK−1 (z)

F1 (z)

F0 (z)

M

M

M

M

M

M

M

M

M

M

Result 1
u1(n)

Result 2
u2(n)

Fig. 8. Binaural processing model with filterbank and independent component
analysis. Two microphone signals first go through bandpass filterbank, and sepa-
rate ICA network is applied to each filtered signals. The filtered signals may be
combined by inverse filters

Fig. 9. Performance of ICA-based binaural signal separation methods from convolu-
tive mixtures. The ICA with cochlea filterbank converges much faster than uniform
filterbank approach. (a) Speech and music; (b) two speeches; (c) speech and car
noise

reduced. Also, it is more biologically plausible. As shown in Figure 9, the uti-
lization of cochlea filterbank greatly improves the convergence.

The de-mixing matrices include information on the relative positions of the
sources from the microphones, and the sound localization is also achievable
from the de-mixing coefficients. The filterbank approach is quite advantageous
for the accurate estimation of the sound direction, especially for noisy multi-
source cases. Also, the estimated sound direction may also be utilized to solve
the permutation problem [16].

4.4 Top-Down Selective Attention

In the cognitive science literature two different processes are presented with
the word “selective attention”, i.e., the bottom-up (BU) and top-down (TD)

Artificial Brain and OfficeMateTR based on Brain Information 137

attention mechanisms. The BU attention usually incurs from strong sound
intensity and/or fast intensity changes in time. However, the TD attention
comes from familiarity and perceptual importance of the sound, and relies on
existing knowledge of each person. For example, a specific word or a person’s
voice may trigger TD attention for relevant people only.

The TD attention originates from the higher brain areas, which may be
modeled as a speech recognition system. A simple but efficient TD atten-
tion model has been developed with a multilayer perceptron classifier for the
pattern and speech recognition systems [17][18]. As shown in Figure 10, the
sensory input pattern is fed to a multi-layer Perceptron (MLP), which gener-
ates a classified output. Then, an attention cue may be generated either from
the classified output or from an external source. The attended output class
estimates an attended input pattern based on the top-down attention. It may
be done by adjusting the attention gain coefficients for each input neuron by
error backpropagation. For unattended input features the attention gain may
become very small, while those of attended features remains close to 1. Once
a pattern is classified, the attention shifting may occurs to find the remain-
ing patterns. In this case the attention gain coefficients of highly-attended
features may be set to 0, while the other may be adapted.

The main difficulty of this top-down expectation comes from the basic
nature of the pattern classification. For pattern classification problems many
input patterns may belong to the same output class, and the reverse is not
unique. However, for many practical applications, one only needs to find the
closest input pattern to the attended class, and the gradient-descent algorithm
does just that.

Figure 11 shows examples of selective attention and attention switching
algorithm in action for confusing patterns [19] and overlapped numerals [17].

Fig. 10. Block diagram of top-down attention mechanism. The top-down expec-
tation is estimated from the attended output class by the multi-layer perceptron
classifier, which mimics the previous knowledge on the words and sounds

138 Soo-Young Lee

Fig. 11. Examples of selective attention and attention switching. The four images
in each row show from the left the test input, attended input, attention-switched
input, and the second-round input, respectively. (a) Results for 3 confusing images,
i.e. Eskimo and the facial side view, lady face and old man face, and trumpet player
and facial front view; (b) results from overlapped 10 numeric characters

The four images on the horizontal sequences show results on one test. The first
image shows the confusing or overlapped test pattern. The second image shows
the attended input for the first round classification. The third image shows the
masking pattern for attention switching. The fourth image shows the residual
input pattern for the second round classification. Figure 11 clearly shows that
selective attention and attention switching are performed effectively, and the
remaining input patterns for the second round classification are quite visi-
ble. The top-down attention algorithm recognized much better than standard
MLP classifier, and the attention shifting successfully recognized two super-
imposed patterns in sequence. It also achieved much better recognition rates
for speech recognition applications in real-world noisy environment [18].

We also combined the ICA-based blind signal separation and top-down
attention algorithms [20]. The ICA algorithm assumes that the source signals
are statistically independent, which is not true for many real-world speech
signals. Therefore, the ICA-based binaural signal separation algorithm results
in non-exact source signals. By incorporating attention layer at the output of

Artificial Brain and OfficeMateTR based on Brain Information 139

Fig. 12. Block diagram of ICA-based signal separation with deviation correction
from top-down attention. It may be understood as a BU-TD combined approach, in
which the ICA network serves for the bottom-up attention

the ICA network, this deviation may be compensated for the reference signal
provided by the top-down attention. For speech recognition tasks the Mel-
Frequency Cepstral Coefficient (MFCC) feature is the popular choice, and the
backward evaluation becomes complicated. However, as shown in Figure 12,
it is still applicable. Basically one may consider the calculation steps of the
MFCC as another layer of a nonlinear neural network, and apply the error
backpropagation with the specific network architecture.

4.5 Dynamic Features for Lip-reading

In previous studies the lip-motion features are extracted from single-frame
images and the sequential nature of the motion video is not utilized. How-
ever, it is commonly understood that the human perception of static images
and motion go through different pathways. The features of motion video may
be different from the features for the face recognition, and requires more
representation from consecutive multiple frames.

Figure 13 shows the dynamic features extracted by 3 decomposition tech-
niques, i.e., Principal Component Analysis (PCA), Non-negative Matrix
Factorization (NMF), and Independent Component Analysis (ICA), from
multi-frame lip videos [21]. While the PCA results in global features, the ICA
results in local features with high sparsity. The sparsity of the NMF-based
features resides between those of the PCA and ICA-based features. The

140 Soo-Young Lee

Fig. 13. Extracted lip motion features by PCA (left figures), NMF (center figures),
and ICA (right figures) algorithms. Only features from 2-frames are shown for
simplicity

Fig. 14. Demonstration system for the blind signal processing and adaptive noise
canceling. Two microphones received 6 signals, i.e., one human speech, one car
noise from the right speaker, and 4 background music signals from the remaining 4
speakers

probability density functions and kurtosis of these features are almost in-
dependent on the number of the consecutive frames, and the multiple-frame
features require less number of coefficients to represent video clips than the
single-frame static features. It was also found that the ICA-based features
result in the best recognition performance for the lip-reading.

4.6 Hardware Implementations

Many auditory models require intensive computing, and special hardware
has been developed for real-time applications. A speech recognition chip had

Artificial Brain and OfficeMateTR based on Brain Information 141

been developed as a System-On-Chip, which consists of circuit blocks for AD
conversion, nonlinear speech feature extraction, programmable processor for
recognition system, and DA conversion. Also, the extended binaural process-
ing model has been implemented in FPGAs [22].

The developed FPGA-chip was tested with a board with two microphones
and 5 speakers. Four of these speakers mimic car audio signals, of which orig-
inal waveforms are available from electric line jacks. The other speaker gener-
ates car noise signal. Also, there is another human speaker. Therefore, the two
microphones receive 6 audio signals as shown in the upper part of Figure 14.
The developed chip and board demonstrated great signal enhancement, and
result in about 19 dB final SNR or 18 dB enhancements. The performance
of the FPGA-chip is tested for speech recognition tasks, and the achieved
recognition rates are almost the same as those of a clean speech.

5 The Future

The intelligent machines will help human as friends and family members in the
early 21st century, and provide services for the prosperity of human beings.
In 2020 each family will have at-least one intelligent machine to help their
household jobs. At offices intelligent machines, such as the OfficeMates, will
help human to work efficiently for the organizations. We expect the number
of working people may be reduced by a half with the help of OfficeMates, and
the other half may work on more intelligent jobs. Or, they may just relax and
enjoy their freedom.

Intelligence to machines, and freedom to mankind!

Acknowledgment

This research has been supported by the Brain Neuroinformatics Research
Program by Korean Ministry of Commerce, Industry, and Commerce. The
author also would like to represent his sincere thanks to his former and current
students who had contributed to the researches.

References

[1] Lee, S.Y.: Korean Brain Neuroinformatics Research Program: The 3rd
Phase. International Joint Conference on Neural Networks, Budapest,
Hungary (2004).

[2] Itti L., Koch, C.: Computational model of visual attention. Nature
Reviews Neuroscience 2 (2001) 194–203.

142 Soo-Young Lee

[3] Haxby, J.V., Hoffman, E.A., Gobbini, M.I.: The distributed human
neural system for face perception. Trends in Cognitive Sciences 4 (2000)
223–233.

[4] Jeong, S.Y., Lee, S.Y.: Adaptive learning algorithm to incorporate
additional functional constraints into neural networks. Neurocomputing
35 (2000) 73–90.

[5] Olshausen, B., Field, D.: Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature 381 (1996)
607–609.

[6] Clement, R.S., Witte, R.S., Rousche, P.J., Kipke, D.R.: Functional con-
nectivity in auditory cortex using chronic, multichannel unit recordings.
Neurocomputing 26 (1999) 347–354.

[7] Lee, J.H., Lee, T.W., Jung, H.Y., Lee, S.Y.: On the Efficient Speech
Feature Extraction Based on Independent Component Analysis. Neural
Processing Letters 15 (2002) 235–245.

[8] Hyvarinen, A., Hoyer, P.O., Inki, M.: Topographic independent compo-
nent analysis. Neural Computation 13 (2001) 1527–1558.

[9] Jeon, H.B., Lee, J.H., Lee, S.Y.: On the center-frequency ordered speech
feature extraction based on independent component analysis. Interna-
tional Conference on Neural Information Processing, Shanghai, China
(2001) 1199–1203.

[10] Kim, T., Lee, S.Y.: Learning self-organized topology-preserving complex
speech features at primary auditory cortex. Neurocomputing 65-66 (2005)
793–800.

[11] Eggermont, J.J.: Between sound and perception: reviewing the search for
a neural code. Hearing Research 157 (2001) 1–42.

[12] Park, K.Y., Lee, S.Y.: An engineering model of the masking for the noise-
robust speech recognition. Neurocomputing 52-54 (2003) 615–620.

[13] Yost, W.A.: Fundamentals of hearing – An introduction. Academic Press
(2000).

[14] Torkkola, T.: Blind separation of convolved sources based on information
maximization. In Proc. IEEE Workshop on Neural Networks for Signal
Processing, Kyoto (1996) 423–432.

[15] Park, H.M., Jeong, H.Y., Lee, T.W., Lee, S.Y.: Subband-based blind sig-
nal separation for noisy speech recognition. Electronics Letters 35 (1999)
2011–2012.

[16] Dhir, C.S., Park, H.M., Lee, S.Y.: Permutation Correction of Filter Bank
ICA Using Static Channel Characteristics. Proc. International Conf.
Neural Information Processing, Calcutta, India (2004) 1076–1081.

[17] Lee, S.Y., Mozer, M.C.: Robust Recognition of Noisy and Superimposed
Patterns via Selective Attention. Neural Information Processing Systems
12 (1999) MIT Press 31–37.

[18] Park, K.Y., and Lee, S.Y.: Out-of-Vocabulary Rejection based on Selec-
tive Attention Model. Neural Processing Letters 12 (2000) 41–48.

Artificial Brain and OfficeMateTR based on Brain Information 143

[19] Kim, B.T., and Lee, S.Y.: Sequential Recognition of Superimposed Pat-
terns with Top-Down Selective Attention. Neurocomputing 58-60 (2004)
633–640.

[20] Bae, U.M., Park, H.M., Lee, S.Y.: Top-Down Attention to Complement
Independent Component Analysis for Blind Signal Separation. Neuro-
computing 49 (2002) 315–327.

[21] Lee, M., and Lee, S.Y.: Unsupervised Extraction of Multi-Frame Features
for Lip-Reading. Neural Information Processing – Letters and Reviews
10 (2006) 97–104.

[22] Kim, C.M., Park, H.M., Kim, T., Lee, S.Y., Choi, Y.K.: FPGA Imple-
mentation of ICA Algorithm for Blind Signal Separation and Active Noise
Canceling. IEEE Transactions on Neural Networks 14 (2003) 1038–1046.

Natural Intelligence and Artificial Intelligence:
Bridging the Gap between Neurons
and Neuro-Imaging to Understand Intelligent
Behaviour

Stan Gielen

Dept. of Biophysics Radboud University Nijmegen

Summary. The brain has been a source of inspiration for artificial intelligence since
long. With the advance of modern neuro-imaging techniques we have the opportunity
to peek into the active brain in normal human subjects and to measure its activity.
At the present, there is a large gap in knowledge linking results about neuronal
architecture, activity of single neurons, neuro-imaging studies and human cognitive
performance. Bridging this gap is necessary before we can understand the neuronal
encoding of human cognition and consciousness and opens the possibility for Brain-
Computer Interfaces (BCI). BCI applications aim to interpret neuronal activity in
terms of action or intention for action and to use these signals to control external
devices, for example to restore motor function after paralysis in stroke patients.
Before we will be able to use neuronal activity for BCI-applications in an efficient
and reliable way, advanced pattern recognition algorithms have to be developed to
classify the noisy signals from the brain. The main challenge for the future will be to
understand neuronal information processing to such an extent that we can interpret
neuronal activity reliably in terms of cognitive activity of human subjects. This will
provide insight in the cognitive abilities of humans and will help to bridge the gap
between natural and artificial intelligence.

1 Introduction

In July 2005 the journal Science celebrated its 125 years of existence by pub-
lishing a series of ten “hard questions”. These questions were posed to set
new goals for science: “The pressures of the great, hard questions bend and
even break well-established principles, which is what makes science forever
self-renewing—and which is what demolishes the nonsensical notion that sci-
ence’s job will ever be done”. Most of these hard questions were related to
major problems in astronomy, physics, neurobiology, and only one problem
(“What Are the Limits of Conventional Computing?”) was directly related to
Computational Science. Yet, several of the questions, that were posed from
the perspective of Neurobiology, are directly related to computer science and
Stan Gielen: Natural Intelligence and Artificial Intelligence: Bridging the Gap between Neurons

and Neuro-Imaging to Understand Intelligent Behaviour, Studies in Computational Intelligence

(SCI) 63, 145–161 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

146 Stan Gielen

artificial/computational intelligence. Questions like “What Is the Biological
Basis of Consciousness?”, “How Are Memories Stored and Retrieved?”, and
“How Did Cooperative Behavior Evolve?” are equally crucial to computer
science, where problems related to autonomous unsupervised decision making
and information retrieval in large, complex data bases, and emergent intel-
ligence are at the heart of Computer Science and Artificial/Computational
Intelligence. In this chapter, I will shortly address some aspects of the “hard”
problems in Neuroscience regarding consciousness, storage and retrieval of
information and the evolution of cooperative behaviour. Then I will ex-
plain how these questions relate to major problems in the field of artifi-
cial/computational intelligence.

Since long, the basic principles of neuronal information processing have
served as a source of inspiration for advanced applications in computer sci-
ence. In this context it is remarkable that after the booming of the neural
network hype in the nineteen eighties, the neural network community has
become separated in two streams : one community (frequently called artificial
neural network, AI or machine learning community) focussed on algorithms
for advanced applications in real-world problems. The other community, called
the computational neuroscience community, focussed on more-or-less realistic
models to describe the behaviour and function of biological neurons and net-
works of neurons. The development of these two research lines along separated
tracks is somewhat surprising and undesirable since these research lines have
many problems in common. Examples of fields of common interest are deci-
sion making in complex situations with incomplete information, the design
of intelligent autonomous agents and advanced data analysis/retrieval. Pre-
sumably the most interesting problems of common interest are related to the
phenomena of emergent intelligence and consciousness and their implementa-
tion in the neural/computer hardware, which belong to the major long-term
goals in both computational intelligence and in AI/machine learning. To some
extent, the separate evolution of both fields reflects the different implementa-
tion (neural wetware versus computer hardware) and the different background
of researchers in both communities. The AI/machine learning community has
many researchers with a background in computer science or statistical physics,
whereas the computational neuroscience has mainly researchers with a back-
ground in neurobiology and theoretical physics.

A particular example of a complex problem that is of relevance to both
research communities is the topic of Brain-Computer Interfaces (BCI). BCI
tries to extract meaningful signals from neuronal signals, among others for the
diagnosis and rehabilitation of patients with neurological disorders. This topic
deals with many problems that belong to the core of the AI/machine learning
community and of the computational neuroscience community. It deals with
pattern recognition and classification of highly complex data with a very poor
signal to noise ratio. Moreover, the neural code, i.e. the meaning and function
of the neuronal signals is hardly known, since we do not know the detailed
functional role of various brain structures, nor do we know how information is

Natural Intelligence and Artificial Intelligence 147

encoded in the temporal properties of the parallel distributed pathways and
how attention or dysfunction modifies the neuronal signals. A reliable classifi-
cation of neuronal signals not only requires advanced data-analysis techniques;
knowledge about the neural code and about the involvement of neuronal struc-
tures in neuronal information processing is equally important for successful
BCI applications.

2 Brain Computer Interfaces

Any type of goal-directed behaviour is reflected in a characteristic sequence of
neuronal activities in various parts of the brain. In the past decade it has
become clear that not only the decision to start a task and the performance
of the task (which should be taken very general as it can imply both per-
ceptual tasks as well as motor performance), but even the intention to take
action, is reflected in the neuronal activity. In large parts of the human brain
the neuronal activity is very similar to that for subjects who intend or plan
actions and for subjects, who really perform these actions [25]. This feature
is used for BCI applications. A Brain-Computer Interface (BCI) generally
aims to provide a communication channel from a human to a computer that
directly translates brain activity into sequences of control commands. Such
a device may give disabled people direct control over a neuro-prosthesis or
over computer applications as tools for communicating solely by their inten-
tions that are reflected in their brain signals (e.g. [27, 26, 53, 3, 38]). The
hope is that BCI can possibly reach this goal in the near future by recording
brain activity and by using these signals to control a device. For example,
this device could be the limb of a subject when the subject is paralysed (for
example after a stroke or in case of Amyotrophic Lateral Sclerosis (ALS),
which leads to complete paralysis of all muscles for an otherwise intact cen-
tral nervous system). In that case the recorded brain signals could be used for
artificial electrical stimulation of muscles, which leads to muscle contraction
and limb movements. BCI tools are thought to become an important tool
when normal functioning of the brain (such as after a stroke) is limited.

Not only does BCI address the issue of translating brain activity into
control commands, it also deals with interfering with brain activity by elec-
trical stimulation of the brain. At present deep-brain stimulation is used in
severe Parkinson patients, when the traditional treatment of patients with
Parkinson’s disease with levodopa (a drug which replaces the neurotransmit-
ter dopamine which is no longer produced in the basal ganglia in Parkinson
Patients) fails. Deep brain stimulation does not provide a cure for Parkinson’s
Disease, but greatly alleviates the symptoms [18]. Other applications can be
found in the sensory domain. The artificial cochlea, which provides hearing to
deaf people with a disorder in the peripheral auditory system [5, 6, 21, 54], has
become a standard medical treatment. Another application, that is expected

148 Stan Gielen

to become equally successful as the “artificial cochlea”, is the “artificial retina”
[13, 14, 39].

In most BCI applications (both realised as well as planned applications),
brain activity is measured by means of a multi-electrode (typically 128) elec-
troencephalogram (EEG), which is a measure for the weighed activity of many
cells in the brain. The temporal resolution of EEG is excellent (typically in
the range of a millisecond). The main problem of this technique is the poor
signal-to-noise ratio (SNR), which makes it hard to distinguish the location
and contribution of multiple sources of activity in a normal functioning brain.
The accuracy of source localisation is typically in the order of a centimetre
if the number of sources is limited to three, but becomes rather hopeless if
more than 5 sources of neuronal activity are involved. High-resolution EEG
is non-invasive as opposed to invasive work by e.g. Nicolelis [30, 31] who
used implanted electrodes in the brain to record the activity in various brain
structures. Sub-dural electrodes have a much better signal-to-noise ratio, but
have the disadvantage of being invasive. Non-invasive data acquisition is a
requirement for most applications, but has the disadvantage that the signals
of interest are ‘hidden’ in a highly ‘noisy’ environment as EEG signals consist
of a superposition of a large number of simultaneously active brain sources
that are typically distorted by artefacts and even subject to non-stationarity.
The non-stationarity is the consequence of modulation of neuronal signals by
attention or by competition between multiple sensory stimuli. Moreover, the
brain is highly adaptive and can even involve new pathways to compensate for
lesions in the brain. An ideal BCI application should be adaptive to the task
and the subject and should adapt rapidly. Actually, it should be the algorithm,
which adapts itself to the subject, rather than the subject who adapts to the
BCI device. Moreover, BCI should have short yield high information transfer
rates. Therefore, advanced data-analysis techniques are absolutely necessary.

3 The Neural Code

Traditionally the easiest and most accurate method to measure neuronal
activity is to record the action potentials of single neurons. The long tra-
dition of single-unit recording has revealed that information in the brain is
coded in firing rate of a neuron (i.e. the number of action potentials per unit
of time) and in recruitment: the orderly recruitment of neurons as a func-
tion of stimulus intensity or motor output. Single-unit recordings have been
very successful and have revealed many secrets about neuronal information
processing. However, single-unit recordings are not suitable to measure cor-
relations in neuronal activity of various neurons within a neuronal ensemble.
Such correlations might be due to common input or to lateral neuronal in-
teractions. Knowledge about correlations in neuronal activity is important
to understand the nature and amount of information that is encoded by an
ensemble of neurons. For an ensemble of N neurons the firing rate of this

Natural Intelligence and Artificial Intelligence 149

ensemble to a stimulus s can be represented by the vector
r with rj represent-
ing the firing rate of neuron j. If the probability for firing rate rj of neuron
j given the stimulus s is p(rj |s), the information encoded by this ensemble
is I(s) = −

∫
p(
r|s) ln p(
r|s)d
r. If neurons do not have neuronal interactions,

such that firing rates are independent, we have p(
r|s) =
∏
j

p(rj |s), such that

the information I(s) can be written as I(s) = −∑
j

∫
p(rj |s) ln p(rj |s)drj . This

implies that the information in the activity of the ensemble of neurons is
simply the sum of information encoded by each of the neurons. If neuronal in-
formation encoded by different neurons is correlated, it is not longer true that
p(
r|s) =

∏
j

p(rj |s). From a theoretical point of view, this would imply that the

amount of information encoded by the ensemble of neurons is in general less
than the sum of information encoded by the individual neurons (see e.g. [33]).
However, since the generation of an action potential is a stochastic process,
correlated firing allows elimination of noise by averaging. Therefore, correlated
firing may reflect a compromise to obtain optimal information transfer by re-
ducing noise. More detailed information about the information in neuronal
ensembles can be found in [42].

In order to explore the temporal correlation between firing of neurons, the
next logical step was the development of multi-unit recording techniques by
arrays of electrodes. These multi-unit recordings have revealed a third coding
mechanism for neuronal information: coding by temporal correlation of action
potential firing [9, 47]. At any moment in time, many neurons are active in the
brain. Multi-unit recordings have shown that active neurons can be subdivided
in subgroups of neurons, where neurons in the same subgroup reveal a high
temporal correlation of firing. Microelectrode recordings in monkeys, as well
as neuroimaging studies in man have revealed that these ensembles of neurons
can (re)organize rapidly and in a flexible way into subgroups, where activity
of neurons in the same subgroup reveals a high temporal correlation of firing
without changes in mean firing rate (see e.g. [46, 47]. The functional signifi-
cance of the temporal locking is not known, but there are various hypotheses
about its functional significance (see e.g. [44]).

4 Recording Neuronal Signals from the Brain

Each neuron receives spike-input from many other neurons. The input of
action potentials to a neuron arrives at the dendrites of the neuron where
each action potential induces the release of a specific neurotransmitter. This
neurotransmitter opens ion-channels, which allows ions to move through the
cell membrane into the neuron. These ion currents cause a local change in
the membrane potential (the so-called post-synaptic potential). Changes of
the membrane potential of a neuron are the result of the many post-synaptic
potentials due to input by action potentials from other neurons. The flow of

150 Stan Gielen

these currents from the dendrites to the cell body explains why a neuron can
be modelled as a dipole.

Typically a neuron receives input from 103 to 104 neurons. The amount
of synaptic input modulates the strength of the dipole. The EEG activity,
recorded on the skin above the skull, reflects the contribution of the many
dipoles. If all neurons would receive uncorrelated input, the EEG on the
skull would be nothing more than noise. However, the input to ensembles
of neighbouring neurons is not uncorrelated. This is particularly true for so
called Evoked-Brain potentials, where simultaneous onset of neuronal activ-
ity is triggered by the sudden onset of a stimulus. Well-known examples are
the EEG activity above visual cortex due to onset of neuronal activity at the
presentation of a checkerboard pattern or the evoked potentials in the audi-
tory pathway due to sudden onset of a sound. In addition to these transient
components of EEG, the temporal correlation of synchronized neuronal activ-
ity is reflected in rapid oscillations in EEG activity. These oscillations have
been reported at various frequencies, such as the alpha (8–12 Hz) or theta
(5–10 Hz) rhythm and the frequently reported beta (12–28 Hz) and gamma
oscillations (29–80 Hz). EEG activity reflects the activity of neurons with a
dipole orientation orthogonal to the skull. However, since the cortex folds with
various sulci, many neurons have an orientation parallel to the skull, rather
than orthogonal. These neurons do not or hardly contribute to EEG activity
on the skull. However, the ion currents of the neurons parallel to the skull give
rise to tiny magnetic fields with an amplitude smaller than that of the earth
magnetic field. These small magnetic field components can be measured using
SQUIDS in the so-called magneto-encephalogram (MEG). Therefore, MEG is
complementary to EEG. Both reflect neuronal activity, but of different groups
of neurons.

Another important measure of neuronal activity is obtained by functional
Magnetic Resonance Imaging (fMRI). The metabolism related to neuronal
activity causes differences in oxygen consumption. Oxygen is transported
through the blood vessels by means of hemoglobin molecules. Hemoglobin with
oxygen (oxyhemoglobin) is diamagnetic, whereas deoxyhemoglobin (hemoglo-
bin after release of oxygen) is paramagnetic, causing microscopic magnetic
field inhomogeneities that affect the transverse relaxation time (called T2) of
the MRI. Since increased neuronal activity leads to an increased blood flow,
actually overcompensating for the neuronal oxygen need, the oxygen concen-
tration increases in the blood vessels. Hence the relaxation time T2 of brain
tissue to a radio pulse, which deflects the atom spins oriented along the major
magnetic field, is larger for active neuronal tissue than for neuronal tissue
at rest. fMRI measures the magnetic relaxation signal due to the perturbing
radio pulse.

EEG and MEG both have a high temporal resolution. The disadvantage is
that the inverse problem (the problem of finding the location of the electric or
magnetic sources that gave rise to the measured EEG or MEG activity) is an
ill-posed problem since many different sources of activity can provide the same

Natural Intelligence and Artificial Intelligence 151

EEG or MEG activity on the skull. Therefore, source estimation (estimating
the temporal properties and the location of the electric or magnetic sources)
is possible only if prior knowledge is available about the number of sources
(which should be limited) or if prior knowledge is available about the position
and temporal modulation of the sources. fMRI typically has a high spatial
resolution (typically a few tenths of a millimeter). However, the temporal
resolution (tenth of a second) is way above a millisecond, which is the time
constant to characterise neuronal activity. Therefore, a combination of both
techniques is typically used in advanced neuroimaging research.

5 Basic Questions Regarding the Interpretation
of Neuronal Oscillations

5.1 Functional Role of Neuronal Oscillations

Although no one will deny the existence of neuronal oscillations nowadays,
their functional significance is yet a topic of debate and few hypotheses exist
to explain why and how various ensembles of neurons develop in a flexible
way, each with a high temporal correlation structure. These two issues are
related and reflect two important problems in neuroscience. Understanding
the functional role and the origin of synchronized neural activity is crucial for
research on neuronal information processing with large implications for BCI.
As pointed out before, correlated firing may be a way to obtain more accurate
information coding by eliminating noise. However, other hypotheses have been
put forward that attribute other functional roles to correlated firing. In order
to explain this we will first discuss the various hypotheses about the functional
significance (see also [44]) before we discuss the possible neuronal mechanisms
that can explain the initiation and disappearance of neuronal oscillations.

The first hypothesis to provide a functional significance to synchronized
neuronal activity is that synchronization plays a role in the representation
of sensory information. The most well-known example is the hypothetical
role to solve the binding problem. Visual information comes from the retina
and passes along the LGN (Lateral Geniculate Nucleus) in the thalamus to
the visual cortex (V1). After V1, different features of visual information are
processed along different parallel channels. Each channel encodes a particular
feature of visual objects, such as color, position of the object, nature of object,
and object velocity. For a single object in the visual environment, each channel
carries information about a single feature of the object. However, since the
visual environment contains multiple objects, each channel carries informa-
tion about features from multiple objects and the question is how the central
nervous system knows which feature belongs to which object. For example,
if we have a red pencil and a blue coffee cup, how does the brain know that
the label “blue” belongs to the coffee cup and not to the pencil. The idea has
been proposed (see [47]) that the temporal correlation might serve as a label

152 Stan Gielen

for all features that belong to the same object (however, see [45]). Previous
work hypothesized that neuronal coherence (or phase-locking or synchroniza-
tion) could provide a tag that binds those neurons that represent the same
perceptual object. This binding tag would be a flexible code for linking neu-
rons into assemblies and thereby would greatly enlarge the representational
capacity of a given pool of neurons. In line with this hypothesis, it has been
suggested that object features represented by spatially distinct neural assem-
blies are dynamically linked to a coherent percept by synchronized activity
in the gamma range [10]. This hypothesis can explain why information in the
brain is processed, transferred, and stored by flexible cell assemblies, defined
as distributed networks of neuronal groups that are transiently synchronized
by dynamic connections [10, 52]. A particular example of temporal locking
is the observation of phase-encoding in hippocampal place cells [35]. When a
rodent moves around in a limited area, the phase of firing in the theta-rhythm
carries more information about location of the rodent within this space than
does firing rate [49].

Another hypothesis is that synchrony enhances the saliency of neural
responses. This can be understood from the fact that two action potentials,
arriving simultaneously at the dendrites of a neuron are much more effective
in eliciting an action potential than two action potentials which arrive with a
time interval. This is particularly clear if the neuronal time constant is small,
such that the neuron operates as a coincidence detector [23]. Therefore, cor-
related discharges have a much stronger impact on neuronal populations than
temporally disorganized inputs [11, 41]. The regulation of interaction with
target neurons by coherent firing has been reported in corticospinal projec-
tions from motor cortex to the spinal cord [43]. Thus, the oscillatory activity
might serve as a dynamic filter, which selects the salient and significant inputs
to the network. Along these lines, similar coherent oscillations have also been
reported for recordings in monkey motor cortex (see e.g. [2, 1, 16, 19, 20,
36, 37], who studied the cross-correlation and coherence between local field
potentials and neural spike trains in monkey primary motor cortex, and [40]).

5.2 Neuronal Mechanisms for Neuronal Synchronization

The role of tight neuronal synchronization has raised the question how “noisy”
neurons are able to fire in close synchrony with millisecond accuracy. The
explanation is that the time constant of the neuron can be modified by bal-
anced excitatory and inhibitory input [23]. Changing the amount of balanced
excitation and inhibition changes the time constant of the neuron without
changes in firing rate of the neuron. This can be understood using a popular,
but simplified representation of neuronal dynamics: the leaky integrate-and-
fire model. According to this model, the dynamics of the membrane potential
of the neuron is given by

C
dV (t)

dt
= − 1

R
V (t) +

∑
i

{Gi(t)∗si(t)}(V (t)− Vi) (1)

Natural Intelligence and Artificial Intelligence 153

where C represents the capacitance of the cell membrane, R represents the
resistance of the cell membrane, si(t) represents the spike input from neuron i,
Gi(t) represents the conductance of the synaptic contact between the cell and
the input from neuron i, and VN represents the Nernst potential. The symbol ∗

represents convolution. The neurotransmitter released by an incoming action
potential opens ion channels and thereby modifies the local conductance Gi of
the post-synaptic membrane. The last term in Eq. (1) represents the synaptic
input current. Eq. (1) can also be written as

τ
dV (t)

dt
= −V (t) + R

∑
i

Ii(t) (2)

where the resistance R is the resistance of the cell membrane which is mod-
ulated by the synaptic input and with τ = RC. A large amount of input
implies a large conductance and a small resistance R. Therefore, input affects
the time constant τ . Obviously, Eq. (2) clearly explains the name of the leaky
integrate-and-fire model. For large values of the time constant τ , the neu-
ron integrates the input until it reaches a threshold (typically near −40 mV).
Then, an action potential is generated and the membrane potential is reset to
the membrane potential at rest, typically near −70 mV. For small values of
τ , the membrane potential decays rapidly to its rest value, such that a small
value of τ turns the neuron into a coincidence detector: the neuron only fires
an action potential if the input from different neurons arrives within a small
time interval. This explains why balanced excitation and inhibition changes
the behaviour of the neuron from a (leaky) integrator into a coincidence detec-
tor, which fires only for tightly synchronized input. Although this can explain
the propagation of synchronized neuronal activity from one brain structure to
another [7], it does not explain the initiation of synchronized activity.

As mentioned above, many studies have reported synchronized oscillations
between various neuronal ensembles. The amount of temporal synchronization
between neuronal ensembles is generally expressed by the coherence function
in the frequency domain. The coherence between two signals x(t) and y(t) is
defined by

γ(ω) =
〈Rxy(ω)〉〈√

Rxx(ω)
〉〈√

Ryy(ω)
〉 (3)

where < · > represents ensemble average over many corresponding time
segments for x(t) and y(t). Rxy(ω) represents the cross-covariance function
between x(t) and y(t) in the frequency domain. Usually, one will find the
squared coherence function |γ(ω)|2 in the literature to explore the relation
between two signals. This squared coherence is a real-valued function of fre-
quency in the range between 0 and 1. If the signal y(t) can be obtained from
the signal x(t) by convolution by a linear system in the absence of noise, the
squared coherence has value 1. This value becomes smaller when noise or non-
linearities are involved. The more noise or the more complex (nonlinear) the

154 Stan Gielen

relation between x(t) and y(t), the more the squared coherence approaches
the lower limit value of zero. This explains why the squared coherence, in
addition to the mutual-information, has often been used to explore the rela-
tion between input and output of an ensemble of neurons or to explore the
similarity between signals in different parts of the brain (see e.g. [29, 17]).

The coherence function γ(ω) has a special property in that it captures the
frequency-dependent phase relation between x(t) and y(t) by the complex-
valued function Rxy(ω). The variability of the relative phase provides infor-
mation about the coupling strength between two signals. If two signals are
tightly coupled, the variability of relative phase will be small. This prop-
erty is highly important in neuronal synchronization (see also [7]). Moreover,
when information goes from x to y, any time delay Δt will cause a frequency
dependent phase shift Δφ = ωΔt. One might expect that if one brain struc-
ture provides input to another brain structure, the phase difference between
synchronized activities in these two brain structures will reflect at least the
effect of finite conduction velocity of signals between the two brain structures.
These differences can be quite large in the motor system, where signals from
motor cortex project to neurons in the spinal cord, approximately one meter
away. With a typical axonal conduction velocity of 60 m/s, this gives rise to
as pure time delay of Δt = 16 ms and to a frequency-dependent phase shift
of ωΔt (see [43]). Quite remarkably, oscillatory neuronal activity in differ-
ent parts of the brain appears to be almost synchronous, without significant
time delays. Significant time delays should be expected for serial processing
in several brain structures due to the conduction velocity of neuronal sig-
nals in the brain. The absence of time delays is what one should expect for a
highly connected network of neuronal ensembles with multiple feedback loops.
Such highly connected networks operate as a functional unit and cannot be
separated into a set of subsystems with clear unambiguous causal relation-
ships between these subsystems. This finding argues against the simple view
of neuronal information processing as a serial process from sensory cortices to
motor cortex, for example in the case of sensory information about position
of objects, which is translated into motor commands to grasp an object.

Comparison of the relative phase of synchronized neuronal oscillations in
two functionally related parts of the nervous system has suggested that the
excitability of neurons is modulated such that excitability is maximal at the
time of arrival of periodic oscillatory activity [43]. This is highly remarkable:
how can the receiving neurons adjust their excitability such that it is opti-
mal at the time of arrival of the synchronized input? Based on the findings
by Schoffelen et al. [43], Fries [12] hypothesized that neuronal communica-
tion is mechanistically subserved by neuronal coherence. The idea is that
activated neuronal groups oscillate and thereby undergo rhythmic excitabil-
ity fluctuations that produce temporal windows for communication. A recent
modelling study showed that coherence is processed accurately between sub-
sequent groups of neurons [57]. Coherence by coherently oscillating neuronal
groups is a requirement for effective interaction, because they ensure that the

Natural Intelligence and Artificial Intelligence 155

communication windows for input and for output at the interacting neuronal
groups are open at the same times. A recent study [8] suggested a mechanism
for modulation of excitation such that the neuronal excitability is optimal at
the arrival of a period synchronized input. Thus, a flexible pattern of coher-
ence defines a flexible communication structure.

6 Interpreting EEG/MEG Data : Reading Out the Brain

Triggered by the increased knowledge about the neuronal information process-
ing in the central nervous system, the past five years have shown an expo-
nential increase in publications on BCI. These publications mainly referred to
new algorithms for classification of EEG/MEG signals and for transforming
these signals into mechanical or electronic output (for a recent overview see
[32]). Although the aim is to use BCI for the human brain, most experimen-
tal data have been obtained in animal experiments using neuronal activity
recorded invasively in multiple brain areas (see e.g. [30, 31]). Patterns of spike
trains and local field potentials from multi-electrode recordings represent as-
tonishingly well imagined or intended movements. As explained before, the
spatial resolution of source localisation estimation based on EEG or MEG is
rather poor. This causes a great problem in recording the activity in a par-
ticular brain structure with non-invasive EEG electrodes in humans. A recent
study in epileptic patients using invasive presurgically implanted subdural
electrodes over frontal regions [24] has shown a good performance in clas-
sification of neuronal activity, suggesting that it would be a good BCI tool.
With these patients, it was possible in just one session to differentiate without
any training imagination of hand-, tongue-, and mouth movement from the
electrocorticogram (ECoG). However, invasive recordings cannot be used in
standard clinical applications.

These results have created enormous public interest and hope for a rapid
solution to critical clinical problems such as communication in locked-in
patients and movement restoration in patients with spinal cord lesions and
chronic stroke. Unfortunately, there are many problems that have to be solved
and standard clinical use of BCI seems out of the question for the near fu-
ture (see a recent review by Birbaumer [4]) illustrating the complexity of the
problem with great technical and conceptual problems.

Further progress in this field depends on several developments. It will be of
great help, if more detailed knowledge will become available on the precise role
of various brain structures in normal human perception, action, and decision
making. Knowledge about the role of various brain structures in sensori-motor
tasks will provide insight in the spatial and temporal properties of activity in
the brain. Prior information about the source location will enable the exten-
sion of the temporal filtering, which is currently used in BCI-applications, to
spatio-temporal filters that act as templates for classifying EEG/MEG signals.
This will improve the signal to noise ratio of EEG/MEG signals considerably.

156 Stan Gielen

Along these lines, the use of advanced data-analysis tools like multi-taper
techniques (see [29, 57]) will be necessary to reduce the signal-to-noise ratio.
Moreover, more information about the neuronal code will be necessary. What
is the functional role of various rhythms of neuronal activity? How are these
rhythms created and what modulates their amplitude? It is well known that
synchronization (especially in the β and γ range) depends on attention and
expectation [40, 43]. Knowledge of the task-dependent functional role of neu-
ronal oscillations might be useful to extract particular frequency bands in
EEG/MEG for BCI applications in particular tasks. A proper interpretation
of EEG/MEG patterns will also require a better insight in the plasticity of
the brain. Plasticity in the brain takes place on a large range of time scales.
Some processes of plasticity develop on a time scale of seconds, whereas other
processes, such as the activation of some brain region to compensate for dam-
age or dysfunction in another part of the brain, become effective only after
days or weeks. This is particularly important for elderly people, when brain
function deteriorates, where good tools to diagnose symptoms of dementia
and other neurological pathologies might help to alleviate symptoms and to
save expenses by timely and effective treatment.

7 Implications for Artificial/Computational Science

A better understanding of neuronal information processing will have large
implications for artificial/computational science and for BCI in particular.
Although the emergence of intelligent behaviour will remain one of the mys-
teries of the human brain for quite a while, there are many other aspects that
already have an impact.

One example concerns the design of an autonomous system. How can such
a system distinguish irrelevant stimuli from relevant stimuli when operating
in a complex environment. The problem is that the sensory input in a normal
environment contains a huge amount of information. Detailed processing of all
sensory information would require large amounts of time and would prohibit
rapid responses to relevant stimuli. This is where attention starts to play a
role. If prior knowledge is available about the possible relevance of stimuli,
attention might help to focus and select the relevant stimuli to speed up sen-
sory processing. Indeed, attention has been shown to reduce reaction times
and a recent study [43] has shown that the attention-related probability for
the stimulus is highly correlated to the amount of gamma-activity in the EEG,
giving rise to shorter reaction times. Several other studies on neuronal infor-
mation processing have shown that sensory processing is not just a bottom-up
process, driven by peripheral stimuli. Rather, neuronal information process-
ing of sensory stimuli is governed by Bayes’ law, which says that the sensory
interpretation of neuronal activity is determined both by the log-likelihood of
the stimulus given the neuronal activity and by the prior probability for the
stimulus [15, 22, 34, 50, 51, 55, 56].

Natural Intelligence and Artificial Intelligence 157

Classical theories of sensory processing view the brain as a passive,
stimulus-driven device. By contrast, more recent approaches emphasize the
constructive nature of perception, viewing it as an active and highly selec-
tive process. Indeed, there is ample evidence that the processing of stimuli is
controlled by top–down influences that strongly shape the intrinsic dynamics
of thalamocortical networks and constantly create predictions about forth-
coming sensory events. Coherence among subthreshold membrane potential
fluctuations could be exploited to express selective functional relationships
during states of expectancy or attention, and these dynamic patterns could
allow the grouping and selection of distributed neuronal responses for further
processing. Top-down driven selection and processing of sensory information
has become one of the basic concepts in robotics and in multi-agent tech-
nology, although the implementation is very different from that in the brain.
Without any doubt this is to large extent determined by the differences in
hardware/wetware.

But how do groups of neurons communicate? And how do top-down
influences modify the communication structure within a range of hundred mil-
liseconds while anatomical connections stay unchanged on that time scale? In
very general terms, the dominant model of neuronal communication is that
a neuron sends its message (encoded in e.g. firing rate or in the degree of
action potential synchronization) down its axons to all neurons to which it
is anatomically connected. Those receiving neurons combine (e.g. sum and
threshold) all the inputs and send their output to neurons to which they have
connections. An important aspect of this model is that both the distribution
and the reception of neuronal signals is governed solely by the structure of
the anatomical connections, i.e. there is no further communication structure
beyond the one imposed by anatomical connectedness. However, cognitive
functions require flexibility in the routing of signals through the brain. They
require a flexible effective communication structure on top of the anatomical
communication structure that is fixed, at least on the time scale at which
cognitive demands change.

Fries [12] hypothesized that this effective communication structure is
mechanistically implemented by the pattern of coherence among neuronal
groups, i.e. the pattern of phase-locking among oscillations in the communi-
cating neuronal groups. As explained before, the key factor in this model is
that neuronal communication between two neuronal groups mechanistically
depends on coherence between them while the absence of neuronal coherence
prevents communication. Although this idea has been proposed as a working
hypothesis, which needs firm experimental testing, the idea may be a cru-
cial step to understand the biological basis of consciousness [28]. If we under-
stand the neurobiological basis of consciousness, this may serve as an example
for the implementation of “consciousness” in artificial systems. However, the
diversity of definitions for consciousness hamper progress on this topic both
in neurobiology and in AI.

158 Stan Gielen

The main challenge for the near future will be to understand the neuronal
code and to understand the role of various brain structures in memory, sensori-
motor processing and decision making. It would be a tremendous achievement
if this information could be used for successful BCI applications. On a longer
time scale, we need to understand how self-organization in the brain results
in emergent intelligent behaviour. What are the underlying principles for the
autonomous development of intelligence and can we find where and how these
processes take place in the brain? If so, could we measure this brain activity
for advanced BCI applications? BCI applications so far allow only binary de-
cisions with an information flow of just a few bits per second at best. Will we
be able to implement models for emergent intelligence and will we be able to
use these models to solve complex real-world problems? This information will
be crucially important to develop advanced adaptive algorithms to interpret
EEG/MEG activity, which can then be used for the diagnosis and therapy of
patients with neurological disorders.

References

[1] Baker SN, Spinks R, Jackson A, and Lemon RN (2001) Synchronization
in monkey motor cortex during a precision grip task. I. Task-dependent
modulation in single-unit synchrony. J Neurophysiol 85: 869–885

[2] Baker SN, Pinches EM, and Lemon RN (2003) Synchronization in mon-
key motor cortex during a precision grip task. II. Effect of oscillatory
activity on corticospinal output. J Neurophysiol 89: 1941–1953

[3] Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B,
Kübler A, Perelmouter J, Taub E, and Flor H (1999) A spelling device
for the paralysed. Nature 398: 297–298

[4] Birbaumer N (2006) Brain–computer-interface research: Coming of age.
Clin Neurophysiol 117: 479–483

[5] Carlyon RP, van Wieringen A, Long CJ, Deeks JM, and Wouters J (2002)
Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc
Am 112: 621–633

[6] Chen HB, Ishihara YC, and Zeng FG (2005) Pitch discrimination of
patterned electric stimulation. J Acoust Soc America 118: 338–345

[7] Diesmann M, Gewaltig MO, and Aertsen A (1999) Stable propagation of
synchronous spiking in cortical neural networks. Nature 402: 529–533

[8] Dodla R, Svirskis, G and Rinzel J (2006) Well-timed, brief inhibition can
promote spiking: postinhibitory facilitation. J Neurophysiol 95: 2664–
2677

[9] Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, and
Reitboeck HJ (1988) Coherent Oscillations – a Mechanism of Feature
Linking in the Visual-Cortex – Multiple Electrode and Correlation Analy-
ses in the Cat. Biol Cybern 60: 121–130

Natural Intelligence and Artificial Intelligence 159

[10] Engel AK, Fries P, and Singer W (2001) Dynamic predictions: oscillations
and synchrony in top-down processing. Nature Rev Neurosci 2: 704–711

[11] Fellous JM, Rudolph M, Destexhe A, and Sejnowski TJ (2003) Synaptic
background noise controls the input/output characteristics of single cells
in an in vitro model of in vivo activity. Neuroscience 122: 811–829

[12] Fries P (2005) A mechanism for cognitive dynamics: neuronal communi-
cation through neuronal coherence. Trends in Cognitive Science 9: 474–
480

[13] Funatsu E, Kuramochi S, Nagafuchi Y, Kage H, Sakashita N, Murao F,
and Kyuma K (2002) Artificial retina large scale integration with on-
sensor projection function for high-speed motion detection. Optical En-
gineering 41: 2709–2718

[14] Gekeler F, and Zrenner E (2005) Status of the subretinal implant project.
An overview. Ophthalmologe 102: 941–945

[15] Gielen CCAM, Hesselmans GHFM, and Johannesma PIM (1988) Sensory
interpretation of neural activity patterns. Math Biosciences 88: 15–35

[16] Jackson A, Gee VJ, Baker SN, and Lemon RN (2003) Synchrony between
neurons with similar muscle fields in monkey motor cortex. Neuron 38:
115–125

[17] Jarvis MR, and Mitra, PP (2001). Sampling properties of the spectrum
and coherence of sequences of action potentials. Neural Comp. 13: 717–
749

[18] Jenkinson N, Nandi D, Miall RC, Stein JF, and Aziz TZ (2004) Pedun-
culopontine nucleus stimulation improves akinesia in a Parkinsonian
monkey. Neuroreport 15: 2621–2624

[19] Kilner JM, Baker SN, and Lemon RN (2002) A novel algorithm to remove
electrical cross-talk between surface EMG recordings and its application
to the measurement of short-term synchronisation in humans. J Physiol
Lond 538: 919–930

[20] Kilner JM, Salenius S, Baker SN, Jackson A, Hari R, and Lemon RN
(2003) Task-dependent modulations of cortical oscillatory activity in
human subjects during a bimanual precision grip task. Neuroimage 18:
67–73

[21] Kong YY, Stickney GS, and Zeng FG (2005) Speech and melody recog-
nition in binaurally combined acoustic and electric hearing. J Acoust Soc
Am 117: 1351–1361

[22] Kording KP, and Wolpert DM (2004) Bayesian integration in sensorimo-
tor learning. Nature 427: 244–247

[23] Kuhn A, Aertsen A, and Rotter S (2004) Neuronal integration of synaptic
input in the fluctuation-driven regime. J Neurosci 24: 2345–2356

[24] Leuthardt EC, Schalk G, Wolpaw J, Ojeman JG, and Moran DW (2004)
Invasive BCI in presurgically implanted patients. J Neural Eng 1:63–71.

[25] Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, Birbaumer N,
and Grodd W (1999) Activation of cortical and cerebellar motor areas

160 Stan Gielen

during executed and imagined hand movements: an fMRI study. J Cogn
Neurosci 11: 491–501

[26] McFarland DJ, Sarnacki WA, and Wolpaw JR (2003) Brain-computer
interface (BCI) operation: optimizing information transfer rates. Biol
Psychol 63: 237–251

[27] Millán JR, Renkens F, Mouriñ J, and Gerstner W (2004) Noninvasive
brain-actuated control of a mobile robot by human EEG. IEEE Trans
Biomed Eng 51: 1026–33.

[28] Miller G (2005) What is the biological basis of consciousness. Science
309:79

[29] Mitra PP, and Pesaran B (1999). Analysis of dynamic brain imaging
data. Biophys J 76: 691–708

[30] Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–407.
[31] Nicolelis MAL (2003) Brain-machine interfaces to restore motor function

and probe neural circuits. Nature Rev Neurosci 4: 417–422.
[32] Nicolelis MAL, Birbaumer N, Mueller KL (Eds) (2004) Special issue on

brain–machine-interfaces. IEEE Trans Biomed Eng 51:877–1087
[33] Nirenberg S, Carcieri SM, Jacobs AL and Latham PE (2001) Retinal

ganglion cells act largely as independent encoders. Nature 411: 698–701
[34] Nundy S, and Purves D (2002) A probabilistic explanation of brightness

scaling. Proc Natl Acad Sci USA 99: 14482–14487
[35] O’Keefe J. and Recce M.L. (1993) Phase relationship between hippocam-

pal place units and the EEG theta rhythm. Hippocampus 3: 317–330
[36] Olivier E, Baker SN, and Lemon RN (2002) Comparison of direct and

indirect measurements of the central motor conduction time in the mon-
key. Clin Neurophysiol 113: 469–477

[37] Olivier E, Baker SN, Nakajima K, Brochier T, and Lemon RN (2001)
Investigation into non-mono synaptic corticospinal excitation of macaque
upper limb single motor units. J Neurophysiol 86: 1573–1586

[38] Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser R, Schlögl A,
Obermaier KB, and Pregenzer M (2000) Current trends in Graz brain-
computer interface (BCI), IEEE Trans Rehab Eng 8: 216–219

[39] Piedade M, Gerald J, Sousa LA, Tavares G, and Tomas P (2005) Visual
neuroprosthesis: A non invasive system for stimulating the cortex. IEEE
Trans Circuits and Systems I-Regular Papers 52: 2648–2662

[40] Riehle A, Grun S, Diesmann M, and Aertsen A (1997) Spike synchroniza-
tion and rate modulation differentially involved in motor cortical func-
tion. Science 278: 1950–1953

[41] Rudolph M, and Destexhe A (2003) Tuning neocortical pyramidal neu-
rons between integrators and coincidence detectors. J Comp Neurosci 14:
239–251

[42] Samengo I, and Treves A (2000) Representational capacity of a set of
independent neurons. Phys Rev E 63: 011910

[43] Schoffelen JM, Oostenveld R, and Fries P (2005) Neuronal coherence as
a mechanism of effective corticospinal interaction. Science 308: 111–113

Natural Intelligence and Artificial Intelligence 161

[44] Sejnowski T.J., and Paulsen O. (2006) Network oscillations: emerging
computational principles. J Neurosci 26: 1673–1676

[45] Shadlen MN, and Movshon JA (1999) Synchrony unbound: A critical
evaluation of the temporal binding hypothesis. Neuron 24: 67–77

[46] Singer W (1999) Neuronal synchrony: A versatile code for the definition
of relations? Neuron 24: 49–65

[47] Singer W, and Gray CM (1995) Visual feature integration and the tem-
poral correlation hypothesis. Annu Rev Neurosci 18: 555–586

[48] Smith E.C. and Lewicki M.S. (2006) Efficient auditory coding. Nature,
439: 978–982

[49] Tsodyks MV, Skaggs WE, Sejnowski TJ, and MacNaughton BL (1996)
Population dynamics and theta rhythm phase precsession of hippocampal
place cell firing: a spiking neuron model. Hippocampus 6: 271–280

[50] van Beers RJ, Sittig AC, and van der Gon JJD (1999) Integration of
proprioceptive and visual position-information: An experimentally sup-
ported model. J Neurophysiol 81: 1355–1364

[51] van Beers RJ, Wolpert DM, and Haggard P (2002) When feeling is more
important than seeing in sensorimotor adaptation. Current Biology 12:
834–837

[52] Varela F, J.-P. Lachaux, E. Rodriguez, J. and Martinerie (2001) The
brainweb: Phase synchronization and large-scale integration. Nature Rev
Neurosci 2: 229–239.

[53] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, and Vaughan
TM (2002) Brain-computer interfaces for communication and control.
Clin. Neurophysiol. 113: 767–791

[54] Weber DJ, Stein RB, Chan KM, Loeb GE, Richmond FJR, Rolf R,
James K, Chong SL, Thompson AK, and Misiaszek J (2004) Functional
electrical stimulation using microstimulators to correct foot drop: a case
study. Canadian J of Physiol Pharmacol 82: 784–792

[55] Yang ZY, and Purves D (2003) A statistical explanation of visual space.
Nature Neurosci 6: 632–640

[56] Yang Z and Purves D (2004) The statistical structure of natural light
patterns determines perceived light intensity. Proc. Natl. Ac. Sci. USA
101: 8745–8750

[57] Zeitler M, Fries P, and Gielen S (2006) Assessing neuronal coherence with
single-unit, multi-unit, and local field potentials. Neural Comp, in press.

Computational Scene Analysis

DeLiang Wang

Department of Computer Science & Engineering and Center for Cognitive Science
The Ohio State University
Columbus, OH 43210-1277, U.S.A.
dwang@cse.ohio-state.edu

Summary. A remarkable achievement of the perceptual system is its scene analysis
capability, which involves two basic perceptual processes: the segmentation of a
scene into a set of coherent patterns (objects) and the recognition of memorized
ones. Although the perceptual system performs scene analysis with apparent ease,
computational scene analysis remains a tremendous challenge as foreseen by Frank
Rosenblatt. This chapter discusses scene analysis in the field of computational intelli-
gence, particularly visual and auditory scene analysis. The chapter first addresses
the question of the goal of computational scene analysis. A main reason why scene
analysis is difficult in computational intelligence is the binding problem, which refers
to how a collection of features comprising an object in a scene is represented in a
neural network. In this context, temporal correlation theory is introduced as a bio-
logically plausible representation for addressing the binding problem. The LEGION
network lays a computational foundation for oscillatory correlation, which is a special
form of temporal correlation. Recent results on visual and auditory scene analysis
are described in the oscillatory correlation framework, with emphasis on real-world
scenes. Also discussed are the issues of attention, feature-based versus model-based
analysis, and representation versus learning. Finally, the chapter points out that
the time dimension and David Marr’s framework for understanding perception are
essential for computational scene analysis.

1 Introduction

Human intelligence can be broadly divided into three aspects: Perception,
reasoning, and action. The first is mainly concerned with analyzing the infor-
mation in the environment gathered by the five senses, and the last is primarily
concerned with acting on the environment. In other words, perception and
action are about input and output, respectively, from the viewpoint of the
intelligent agent (i.e. a human being). Reasoning involves higher cognitive
functions such as memory, planning, language understanding, and decision
making, and is at the core of traditional artificial intelligence [49]. Reasoning
also serves to connect perception and action, and the three aspects interact
with one another to form the whole of intelligence.
DeLiang Wang: Computational Scene Analysis, Studies in Computational Intelligence (SCI) 63,

163–191 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

164 DeLiang Wang

This chapter is about perception - we are concerned with how to analyze
the perceptual input, particularly in the visual and auditory domains. Because
perception seeks to describe the physical world, or scenes with objects located
in physical space, perceptual analysis is also known as scene analysis. To diff-
erentiate scene analysis by humans and by machines, we term the latter com-
putational scene analysis1. In this chapter I focus on the analysis of a scene
into its constituent objects and their spatial positions, not the recognition of
memorized objects. Pattern recognition has been much studied in computa-
tional intelligence, and is treated extensively elsewhere in this collection.

Although humans, and nonhuman animals, perform scene analysis with
apparent ease, computational scene analysis remains an extremely challenging
problem despite decades of research in fields such as computer vision and
speech processing. The difficulty was recognized by Frank Rosenblatt in his
1962 classic book, “Principles of neurodynamics” [47]. In the last chapter,
he summarized a list of challenges facing perceptrons at the time, and two
problems in the list “represent the most baffling impediments to the advance
of perceptron theory” (p. 580). The two problems are figure-ground separation
and the recognition of topological relations. The field of neural networks has
since made great strides, particularly in understanding supervised learning
procedures for training multilayer and recurrent networks [48, 2]. However,
progress has been slow in addressing Rosenblatt’s two chief problems, largely
validating his foresight.

Rosenblatt’s first problem concerns how to separate a figure from its back-
ground in a scene, and is closely related to the problem of scene segregation: To
decompose a scene into its comprising objects. The second problem concerns
how to compute spatial relations between objects in a scene. Since the second
problem presupposes a solution to the first, figure-ground separation is a more
fundamental issue. Both are central problems of computational scene analysis.

In the next section I discuss the goal of computational scene analysis.
Section 3 is devoted to a key problem in scene analysis - the binding prob-
lem, which concerns how sensory elements are organized into percepts in the
brain. Section 4 describes oscillatory correlation theory as a biologically plau-
sible representation to address the binding problem. The section also reviews
the LEGION2 network that achieves rapid synchronization and desynchro-
nization, hence providing a computational foundation for the oscillatory cor-
relation theory. The following two sections describe visual and auditory scene
analysis separately. In Section 7, I discuss a number of challenging issues facing
computational scene analysis. Finally, Section 8 concludes the chapter.

Note that this chapter does not attempt to survey the large body of liter-
ature on computational scene analysis. Rather, it highlights a few topics that
I consider to be most relevant to this book.

1 This is consistent with the use of the term Computational Intelligence.
2 LEGION stands for Locally Excitatory Globally Inhibitory Oscillator Network

[68].

Computational Scene Analysis 165

2 What is the Goal of Computational Scene Analysis?

In his monumental book on computational vision, Marr makes a compelling
case that understanding perceptual information processing requires three dif-
ferent levels of description. The first level of description, called computational
theory, is mainly concerned with the goal of computation. The second level,
called representation and algorithm, is concerned with the representation of
the input and the output, and the algorithm that transforms from the input
representation to the output representation. The third level, called hardware
implementation, is concerned with how to physically realize the representation
and the algorithm.

So, what is the goal of computational scene analysis? Before addressing this
question, let us ask the question of what purpose perception serves. Answers to
this question have been attempted by philosophers and psychologists for ages.
From the information processing perspective, Gibson [21] considers perception
as the way of seeking and gathering information about the environment from
the sensory input. On visual perception, Marr [30] considers that its purpose is
to produce a visual description of the environment for the viewer. On auditory
scene analysis, Bregman states that its goal is to produce separate streams
from the auditory input, where each stream represents a sound source in the
acoustic environment [6]. It is worth emphasizing that the above views suggest
that perception is a private process of the perceiver even though the physical
environment may be common to different perceivers.

In this context, we may state that the goal of computational scene analysis
is to produce a computational description of the objects and their spatial loca-
tions in a physical scene from sensory input. The term ‘object’ here is used in
a modality-neutral way: An object may refer to an image, a sound, a smell,
and so on. In the visual domain, sensory input comprises two retinal images,
and in the auditory domain it comprises two eardrum vibrations. Thus, the
goal of visual scene analysis is to extract visual objects and their locations
from one or two images. Likewise, the goal of auditory scene analysis is to
extract streams from one or two audio recordings.

The above goal of computational scene analysis is strongly related to the
goal of human scene analysis. In particular, we assume the input format to be
similar in both cases. This assumption makes the problem well defined and
has an important consequence: It makes the research in computational scene
analysis perceptually relevant. In other words, progress in computational scene
analysis may shed light on perceptual and neural mechanisms. This restricted
scope also differentiates computational scene analysis from engineering prob-
lem solving, where a variety and a number of sensors may be used.

With common sensory input, we further propose that computational scene
analysis should aim to achieve human level performance. Moreover, we do not
consider the problem solved until a machine system achieves human level
performance in all perceptual environments. That is, computational scene

166 DeLiang Wang

analysis should aim for the versatile functions of human perception, rather
than its utilities in restricted domains.

3 Binding Problem and Temporal Correlation Theory

The ability to group sensory elements of a scene into coherent objects, often
known as perceptual organization or perceptual grouping [40], is a funda-
mental part of perception. Perceptual organization takes place so rapidly and
effortlessly that it is often taken for granted by us the perceivers. The diffi-
culty of this task was not fully appreciated until effort in computational scene
analysis started in earnest. How perceptual organization is achieved in the
brain remains a mystery.

Early processing in the perceptual system clearly involves detection of
local features, such as color, orientation, and motion in the visual system, and
frequency and onset in the auditory system. Hence, a closely related question
to perceptual organization is how the responses of feature-detecting neurons
are bound together in the brain to form a perceived scene? This is the well-
known binding problem. At the core of the binding problem is that sensory
input contains multiple objects simultaneously and, as a result, the issue of
which features should bind with which others must be resolved in objection
formation. I illustrate the situation with two objects - a triangle and a square
- at two different locations: The triangle is at the top and the square is at the
bottom. This layout, shown in Figure 1, was discussed by Rosenblatt [47] and
used as an instance of the binding problem by von der Malsburg [60]. Given
feature detectors that respond to triangle, square, top, and bottom, how can
the nervous system bind the locations and the shapes so as to perceive that
the triangle is at the top and the square is at the bottom (correctly), rather
than the square is on top and the triangle is on bottom (incorrectly)? We
should note that object-level attributes, such as shape and size, are undefined
before the more fundamental problem of figure-ground separation is solved.
Hence, I will refer to the binding of local features to form a perceived object,
or a percept, when discussing the binding problem.

How does the brain solve the binding problem? Concerned with shape
recognition in the context of multiple objects, Milner [32] suggested that
different objects could be separated in time, leading to synchronization of
firing activity within the neurons activated by the same object. Later von
der Malsburg [59] proposed a correlation theory to address the binding prob-
lem. The correlation theory asserts that the temporal structure of a neuronal
signal provides the neural basis for correlation, which in turn serves to bind
neuronal responses. In a subsequent paper, von der Malsburg and Schneider
[61] demonstrated the temporal correlation theory in a neural model for seg-
regating two auditory stimuli based on their distinct onset times - an example
of auditory scene analysis that I will come back to in Section 6. This paper

Computational Scene Analysis 167

?

Feature Detectors Input

Fig. 1. Illustration of the binding problem. The input consists of a triangle and a
square. There are four feature detectors for triangle, square, top, and bottom. The
binding problem concerns whether the triangle is on top (and the square at bottom)
or the square is on top (and the triangle at bottom)

proposed, for the first time, to use neural oscillators to solve a figure-ground
separation task, whereby correlation is realized by synchrony and desynchrony
among neural oscillations. Note that the temporal correlation theory is a the-
ory of representation, concerned with how different objects are represented in
a neural network, not a computational algorithm; that is, the theory does not
address how multiple objects in the input scene are transformed into multi-
ple cell assemblies with different time structures. This is a key computational
issue I will address in the next section.

The main alternative to the temporal correlation theory is the hierarchi-
cal coding hypothesis, which asserts that binding occurs through individual
neurons that are arranged in some cortical hierarchy so that neurons higher
in the hierarchy respond to larger and more specialized parts of an object.
Eventually, individual objects are coded by individual neurons, and for this
reason hierarchical coding is also known as the cardinal cell (or grandmother
cell) representation [3]. Gray [23] presented biological evidence for and against
the hierarchical representation. From the computational standpoint, the hier-
archical coding hypothesis has major drawbacks, including the need to encode
a prohibitively large number of scenarios by cells [59, 65].

168 DeLiang Wang

It should be clear from the above discussion that the figure-ground sep-
aration problem is essentially the same as the binding problem. A layered
perceptron may be viewed as a computational implementation of the hierar-
chical coding hypothesis, and the problems challenging Rosenblatt’s percep-
trons underline the limitations of hierarchical coding.

4 Oscillatory Correlation Theory

A special form of temporal correlation - oscillatory correlation [52] - has been
studied extensively. In oscillatory correlation, feature detectors are represented
by oscillators and binding is represented by synchrony within an assembly
of oscillators and desynchrony between different assemblies. The notion of
oscillatory correlation is directly supported by the substantial evidence of
coherent oscillations in the brain. In addition, the activity of a neuron or a
local group of neurons can be accurately modeled by an oscillator. It is worth
pointing out here that a mathematical oscillator need not always produce
periodic behavior; indeed an oscillator in response to a time varying input
often exhibits a variety of aperiodic responses.

Like the temporal correlation theory, the oscillatory correlation theory is
a representation theory, not a computational mechanism. A computational
mechanism for the oscillatory correlation theory needs to exhibit three key
features [65]. First, the mechanism can synchronize a locally coupled assembly
of oscillators. Second, it can desynchronize different assemblies of oscillators
that are activated by multiple, simultaneously present objects. Third, both
synchrony and desynchrony must occur rapidly in order to deal with the
changing environment.

The first neural network that successfully met the above requirements
is the LEGION mechanism proposed in 1995 by Terman and Wang [52, 62].
LEGION builds on relaxation oscillators characterized by two time scales [58].
Formally, a relaxation oscillator, i, is defined as a pair of an excitatory unit
xi and an inhibitory unit yi [52]:

ẋi = 3xi − x3
i + 2− yi + Ii + Si + ρ (1a)

ẏi = ε(α(1 + tanh(xi/β))− yi) (1b)

In the above equation, Ii denotes the external stimulation to the oscillator and
Si the input from the rest of the network, to be specified below. ρ denotes the
amplitude of intrinsic noise (e.g. Gaussian noise) which assists the process of
desynchronization, and α and β are parameters. ε is a small positive para-
meter, and it is this parameter that induces the two time scales with y on a
slower one.

Figure 2 illustrates the oscillator defined in (1). As shown in Fig. 2A, the
x-nullcline (i.e. ẋ = 0) is a cubic function and the y-nullcline is a sigmoid func-
tion. When I > 0, the two nullclines intersect at a single point on the middle

Computational Scene Analysis 169

Silent
phase

Active
phase

−2

−2

−1

0

x
ac

ti
vi

ty

1

2

−1 0

1

2

1 2

B

A

x

x

y

y

C

Stable fixed point

time

x = 0
.

x = 0
.

y = 0
.

y = 0
.

Fig. 2. Behavior of a relaxation oscillator. A. Enabled state of the oscillator. This
state produces a limit cycle shown as the bold curve. The direction of the trajectory
is indicated by the arrows, and jumps are indicated by double arrows. B. Excitable
state of the oscillator. This state produces a stable fixed point. C. Temporal activity
of the oscillator in the enabled state. The curve shows the x activity

170 DeLiang Wang

branch of the cubic, and the oscillator produces a stable limit cycle shown in
Figure 2A. In this case, the oscillator is referred to as enabled, and the limit
cycle alternates between an active phase with relatively high x values and a
silent phase with relatively low x values. Within each of the two phases the
oscillator exhibits slow-varying behavior. However, the transition between the
two phases occurs rapidly, called jumping. The role of α is to determine the
relative times the oscillator spends in the two phases - a larger α produces a
relatively shorter active phase. The situation when I < 0 is shown in Fig. 2B.
In this case, the two nullclines intersect at a stable fixed point on the left
branch of the cubic, and no oscillation occurs - the oscillator is referred to as
excitable. Whether the state of an oscillator is enabled or excitable depends
solely on external stimulation; in other words, oscillation is stimulus depen-
dent. The x activity of an enabled state is given in Fig. 2C, and it resembles a
spike train. Indeed, relaxation oscillators have been widely used as models of
single neurons, where x is interpreted as the membrane potential of a neuron
and y the activation state of ion channels [19, 36, 35]. A relaxation oscillation
may also be interpreted as an oscillating burst of neuronal spikes, where x
corresponds to the envelope of the burst.

In a LEGION network an oscillator is excitatorily coupled with other
oscillators in its neighborhood, and excites a global inhibitor which then
inhibits every oscillator in the network. Specifically, Si in (1a) is defined as

Si =
∑

k∈N(i)

WikH(xk − θx)−WzH(z − θz) (2)

where N(i) denotes a set of neighbors of i, and Wik the connection weight
from oscillator k to i. H stands for the Heaviside step function, and θx and
θz are thresholds. Wz is the weight of inhibition from the global inhibitor z,
which is defined as

ż = φ(σ∞ − z) (3)

where φ is a parameter. σ∞ = 1 if at least one oscillator is in the active phase
and σ∞ = 0 otherwise. From (3) it is easy to see that z → 1 when σ∞ equals 1.

On the basis of the earlier analysis by Somers and Kopell [51] on two
coupled relaxation oscillators, Terman and Wang [52] conducted an extensive
analysis on LEGION networks. They showed that LEGION exhibits the mech-
anism of selective gating as follows. When an oscillator jumps to the active
phase, its activity spreads to its neighboring oscillators, their neighbors, and
so on. This leads to fast synchronization within the oscillator assembly that
contains the oscillator. In addition, the oscillator activates the global inhibitor
which prevents the oscillators of different assemblies from jumping up. This
leads to desynchronization among different oscillator assemblies. They proved
the following theorem: A LEGION network can reach both synchronization
within each assembly and desynchronization between different assemblies, and
does so in no greater than m cycles of oscillations, where m is the number

Computational Scene Analysis 171

of the oscillator assemblies. In other words, both synchronization and desyn-
chronization are achieved rapidly.

The selective gating mechanism of LEGION successfully meets the three
computational requirements stated at the beginning of this section. Subse-
quent research has shown that rapid synchronization and desynchronization
can also be achieved using other types of oscillators, such as Wilson-Cowan
and spike (integrate-and-fire) oscillators, although conclusions are typically
drawn from numerical simulations. See [65] for a broad review on this topic.

As a concrete application of LEGION dynamics, I describe a solution to a
classic problem in neural computation - the connectedness problem [64]. The
connectedness problem, first described by Minsky and Papert in 1969, is the
centerpiece of their consequential critique on perceptrons [33]. The connected-
ness predicate is innocuously simple: To classify whether an input pattern is
connected or not. To appreciate the significance of this predicate, I need to
give some context on perceptron theory. Rosenblatt’s perceptrons [46, 47] are
classification networks. A typical perceptron, illustrated in Figure 3, computes
a predicate. It consists of a binary input layer R, which symbolizes retina, a
layer of binary feature detectors, and a response unit that signals the result
of a binary classification. A feature detector is activated if and only if all the
pixels within the area of R sensed by the detector are black. The response unit
outputs 1 if a weighted sum of all the feature detectors exceeds a threshold,
and outputs 0 otherwise.

R
Feature
Detectors

Response
Unit

•
•
•

Σ

Fig. 3. Diagram of a perceptron. R denotes the input layer, which projects to a layer
of feature detectors. The response unit takes a weighted sum of the responses of all
the detectors, and outputs 1 if the sum passes a certain threshold and 0 otherwise

172 DeLiang Wang

Minsky and Papert [33] define the order of a predicate as the smallest
number of pixels in R that must be sensed by some feature detector in order
to compute the predicate. With this notion, they prove that the order of the
connectedness predicate increases at least as fast as |R|1/2. That is, the order
of this predicate is unbounded. What does this result mean? It means that,
to compute a predicate of an unbounded order requires feature detectors with
too large receptive fields (relative to R) and too many of detectors to be com-
putationally feasible [33]. It is important to understand that the result is not
about computability, or whether a perceptron exists to solve the problem. With
a finite size of R, the number of connected patterns is finite, and we can sim-
ply find a perceptron to solve the problem, in which each connected pattern
is sensed by a single feature detector. However, the number of connected pat-
terns grows exponentially except for one-dimensional R [65], and this way of
computing the connectedness predicate is computationally intractable. Hence,
their result is about the scalability or computational complexity.

Thanks to recurrent connectivity and oscillatory dynamics, LEGION
solves the connectedness problem in general form [64]. To explain the so-
lution, Figure 4 shows the response of a two-dimensional (2-D) LEGION net-
work to two binary images: The first one is a connected figure showing a
cup (Fig. 4A) and the second one is a disconnected figure showing the word
‘CUP’ (Fig. 4D). To ensure that the network has no binding preference, we
randomize oscillator phases at the beginning. The random initial conditions
are illustrated in Fig. 4B, where the diameter of a circle represents the x activ-
ity of the corresponding oscillator. A snapshot of the network activity shortly
after the beginning is shown in Fig. 4C where the oscillator assembly repre-
senting the cup is synchronized and other oscillators are in the excitable state.
The response of the same network to ‘CUP’ is depicted in Figures 4E-G at
different times. In this case, the network forms three assemblies corresponding
to each of the three letters. Figure H shows the temporal activity of all the
enabled oscillators for the connected cup image, where excitable oscillators
are omitted. The upper panel of Fig. 4H shows the combined activity of the
assembly representing the cup, and the middle panel shows the activity of
the global inhibitor. Despite randomized phases to begin with, the assembly
reaches synchrony in the first oscillation cycle. The temporal response to the
disconnected ‘CUP’ is shown in Fig. 4I, where synchrony within each of the
three assemblies and desynchrony between them are both achieved in the first
two cycles. As illustrated in Figs. 4H and 4I, every time an assembly jumps
to the active phase the global inhibitor is triggered. Thus, how many assem-
blies - or put differently how many connected patterns in the input image -
is revealed by the ratio of the response frequency of the global inhibitor to
the oscillation frequency of an enabled oscillator. A ratio of 1 indicates there
is one pattern in the input figure, and thus the figure is connected. A ratio
greater than 1 indicates there are more than one pattern in the input figure,
and thus the figure is disconnected. Hence the solution to the predicate is
given by a simple test of whether the ratio exceeds a threshold θ, chosen in

Computational Scene Analysis 173

A B C

D E F G

H

I

CUP

Inhibitor

Connectedness
θ

Symbol C

Symbol U

Symbol P

Inhibitor

Connectedness
θ

Time

Time

Fig. 4. Oscillatory correlation solution to the connectedness problem (from [64]). A.
An input image with 30x30 binary pixels showing a connected cup figure. B. A
snapshot from corresponding LEGION network showing the initial conditions of
the network. C. A subsequent snapshot of the network activity. D. Another input
image depicting three connected patterns forming the word ‘CUP’. E.-G. Snapshots
of the LEGION network at three different times. H. The upper trace shows the
temporal activity of the oscillator assembly representing the connected cup image,
the middle trace the activity of the global inhibitor, and the bottom trace the ratio
of the global inhibitor’s frequency to that of enabled oscillators. The threshold is
indicated by the dash line. I. The upper three traces show the temporal activities for
the three assemblies representing the three connected patterns in the disconnected
‘CUP’ image, the next-to-bottom trace the activity of the global inhibitor, and the
bottom one the ratio of the global inhibitor’s frequency to that of enabled oscillators
along with

174 DeLiang Wang

the range 2 > θ > 1. The bottom traces of Fig. 4H and Fig. 4I show the ra-
tios, where θ is chosen to be 1.6. As shown in the figure, the connectedness
predicate is correctly computed beyond a beginning period that corresponds
to the process of assembly formation.

The oscillatory correlation theory provides a general framework to address
the computational scene analysis problem. The following two sections deal
with visual and auditory scene analysis respectively.

5 Visual Scene Analysis

For computational scene analysis, some measure of similarity between fea-
tures is necessary. What determines if local sensory elements should be
grouped into the same object or separated apart? This is the main subject of
Gestalt psychology [71, 27]. Major Gestalt grouping principles are summarized
below [40]:

• Proximity. Sensory elements that are located closely in space tend to be
grouped.

• Similarity. Elements with similar attributes, such as color, depth, or tex-
ture, tend to group.

• Common fate. Elements that move together, or show common motion,
likely belong to the same object. Common fate is an instance of similarity
in a sense, and it is listed separately to emphasize the importance of visual
dynamics in perceptual organization.

• Good continuity. Elements that form smooth continuations of each other
tend to be bound together.

• Connectedness and common region. Connected elements or elements inside
the same connected region have the tendency to group.

• Familiarity. Elements that belong to the same memorized pattern tend to
group.

To apply the above grouping principles requires a process of feature extrac-
tion, which may be a complex operation for certain features such as motion
and texture. With extracted features, oscillatory correlation represents a gen-
eral approach to visual scene analysis. In this approach, an oscillator typically
corresponds to a spatial location and connection weights between neighbor-
ing oscillators are determined by feature extraction. The oscillator network
then evolves autonomously. After assembly formation takes place, different
assemblies representing different objects will pop out from the network at
different times. It is segmentation in time that is unique of this approach to
scene analysis. As a result, such segmentation gives rise to the notion of a
segmentation capacity [69] - at least for networks of relaxation oscillators with
a non-instantaneous active phase - that refers to a limited number of oscillator
assemblies that may be formed. The segmentation capacity corresponds to the

Computational Scene Analysis 175

integer ratio of the oscillation period to the duration of the active phase for
relaxation oscillators.

The first application of the oscillatory correlation approach to real image
segmentation was made by Wang and Terman [69]. Their segmentation sys-
tem is based on LEGION dynamics. Unlike synthetic images, real images
are often noisy. Image noise may result in many fragments and deteriorate
the result of oscillatory correlation. To address the problem of fragmentation,
a lateral potential is introduced for each oscillator in order to distinguish
between major assemblies and noisy fragments. A major assembly should
contain at least one oscillator that lies at the center of a sizable homogeneous
region. Such an oscillator, called a leader, has a high lateral potential because
it receives a large amount of lateral excitation from its neighborhood. On
the other hand, a fragment does not have a leader. All fragments, forming a
background, will cease oscillating after a few periods. Another issue that has
to be addressed is computing time required for integrating a large oscillator
network. To alleviate the computational burden, Wang and Terman abstracted
an algorithm from oscillatory dynamics that retains key features of LEGION
dynamics, such as jumping and rapid spread of excitation and inhibition. The
abstracted algorithm has the option to eliminate the segmentation capacity in
order to segment a large number of regions. In the Wang-Terman system, each
oscillator is mutually connected with its 8-nearest neighbors, and the connec-
tion weight between oscillators i and j is set proportional to 1/(1 +

∣∣Ii + Ij

∣∣),
where Ii and Ij represent the corresponding pixel intensities. Wz in (2) is a
key parameter that controls the granularity of segmentation, whereby smaller
values of Wz produce fewer and larger segments.

In a subsequent study, Chen et al. [10] suggested the idea of weight adap-
tation to perform feature-preserving smoothing before segmentation. In addi-
tion, they proposed to add a logarithmic normalization factor in excitatory
coupling (cf. (2)):

Si =

∑
k∈N(i) WikH(xk − θx)

log(
∑

k∈N(i) H(xk − θx) + 1)
−WzH(z − θz) (4)

The resulting algorithm produces robust segmentation results. An example is
given in Figure 5, where the task is to extract hydrographic objects from satel-
lite images from the United States Geological Survey (USGS). Figure 5A gives
the original image containing water bodies, and Figure 5B shows the corres-
ponding extraction results, where the extracted waterbodies are displayed as
white and overlaid on the original image. For reference, Figure 5C provides
the corresponding map from the USGS. A careful comparison should reveal
that the extracted waterbodies match the image better than the map, since
the latter is often not up to date.

Cesmeli and Wang [8] applied LEGION to motion-based segmentation
that considers motion as well as intensity for analyzing image sequences (see
also [75]). In their system, two pathways perform an initial optic flow esti-
mation and intensity-based segmentation in parallel. A subsequent network

176 DeLiang Wang

Fig. 5. Extraction of hydrographic regions (from [10]). A. Input satellite image
consisting of 640x606 pixels. B. Extraction result, where segmented waterbodies are
indicated by white. C. Corresponding 1:24,000 topographic map

Fig. 6. Motion segmentation (from [8]). A. A frame of a motion sequence. B. Esti-
mated optic flow. C. Result of segmentation

combines the two to refine local motion estimates. Motion analysis and inten-
sity analysis complement each other since the former tends to be reliable for
inhomogeneous, textured regions while the latter is most effective for homo-
geneous regions. The use of LEGION for segmentation allows for multiple
motions at the same location, as in the case of motion transparency. The
resulting system significantly reduces erroneous motion estimates and im-
proves boundary localization. A typical example is given in Figure 6. A frame
of a motion sequence is shown in Fig. 6A, where a motorcycle rider jumps to
a dry canal with his motorcycle while the camera is tracking him. Due to the
camera motion, the rider and his motorcycle have a downward motion with a
small rightward component and the image background has an upright diagonal

Computational Scene Analysis 177

motion. Figure 6B shows the estimated optic flow after integrating motion and
brightness analyses, and it is largely correct. The rider with his motorcycle is
then segmented from the image background as depicted in Figure 6C. Their
oscillator model has been favorably compared with a number of motion segre-
gation algorithms including the one by Black and Anandan [5] based on robust
statistics.

A large number of studies have applied the oscillatory correlation approach
to visual scene analysis tasks, including segmentation of range and texture
images, extraction of object contours, and selection of salient objects. See [65]
for a recent review on this subject.

6 Auditory Scene Analysis

What grouping principles govern auditory scene analysis? Bregman system-
atically addresses this question in a comprehensive book [6]. According to
Bregman, grouping principles analogous to Gestalt laws revealed in the visual
domain are responsible for the segregation of auditory input into streams.
Displaying the acoustic input in a 2-D time-frequency (T-F) representation
such as a spectrogram, major grouping principles for auditory scene analysis
(ASA) are given below [6, 13]:

• Proximity in frequency and time. Two tones that are close in frequency or
time tend to be grouped into the same stream (an auditory object).

• Periodicity. Harmonically related frequency components tend to grouped.
• Onset and offset. Frequency components that onset or offset at the same

time tend to be organized into the same stream.
• Amplitude and frequency modulation. Frequency components that have

common temporal modulation tend to be grouped together. This principle
applies to both amplitude modulation and frequency modulation.

• Continuous/smooth transition. Tones that form a continuous, or discon-
tinuous but smooth, trajectory tend to be fused.

• Familiarity. Sound components belonging to the same learned pattern,
such as a syllable, have the tendency to group.

Auditory scene analysis takes place in two stages in the brain according
to Bregman [6]. The first stage, known as the segmentation stage [66], decom-
poses the acoustic mixture reaching the ears into a collection of time-frequency
segments, each corresponding to a contiguous region in a T-F representation.
The second stage groups the segments into streams.

The first study on auditory segregation using oscillatory correlation was
made by von der Malsburg and Schneider [61]. As discussed in Section 3,
their segregation is based on common onsets. However, their model relies on
global connectivity to achieve synchronization among the oscillators that are
stimulated at the same time. Desynchronization is obtained with a global
inhibitor. Subsequently Wang [63] studied stream segregation by employing a

178 DeLiang Wang

2-D LEGION network, where one dimension represents time and another one
represents frequency. With appropriate connectivity, the LEGION network
exhibits a set of psychophysical phenomena, such as dependency of stream
segregation on spectrotemporal proximity and competition among different
perceptual organizations (see [38, 9] for recent extensions).

Wang and Brown [66] studied a more complex problem: Segregation of
voiced speech from its acoustic interference. After feature extraction using a
model of auditory periphery that comprises cochlear filtering and mechan-
ical to neural transduction, they compute a number of mid-level represen-
tations from peripheral responses, including a correlogram (autocorrelation)
and a summary correlogram. The core of their model is an oscillator network
with two layers performing auditory segmentation and grouping, respectively.
The two-layer structure is designed to embody Bregman’s two-stage notion.
Auditory segmentation is based on cross-channel correlation in the frequency
domain and temporal continuity in the time domain. Specifically, the first
layer is a LEGION network where each oscillator is connected with its four
nearest neighbors in time and frequency. The connection weight along the fre-
quency axis is set to one if the corresponding cross-channel correlation exceeds
a certain threshold and zero otherwise. The connection weight along the time
axis is set to one uniformly. In response to an input mixture, the segmen-
tation layer produces oscillator assemblies, representing regions of acoustic
energy such as harmonics or formants. The second layer groups the segments
that emerge from the first layer. Specifically, this layer contains lateral con-
nections with both excitation and inhibition but no global inhibitor. Grouping
in this layer is based on the dominant pitch extracted from the summary cor-
relogram within each time frame. The extracted dominant pitch is used to
divide the oscillators of the frame into two classes: One is consistent with the
pitch frequency and the other is not. Then excitatory connections are formed
between the oscillators of the same class and inhibitory connections are formed
between the two classes. This pattern of connectivity within the grouping
layer promotes synchronization among a group of segments that have common
periodicity.

Figure 7 gives an example of segregating a mixture of a male utterance and
telephone ringing. Figure 7A displays the peripheral response to the mixture.
The 2-D response is generated by a filterbank with 128 channels over 150 time
frames. Figure 7B shows a snapshot of the grouping layer, where active oscilla-
tors, indicated by white pixels, primarily correspond to the speech utterance.
Figure 7C shows another snapshot of the grouping layer taken at a different
time. At this time, active oscillators mostly correspond to the background,
i.e. the telephone ringing.

Wrigley and Brown [72] recently proposed an oscillator network to model
auditory selective attention. Their model first performs peripheral processing
and then auditory segmentation. A unique part of model is an interactive loop
between an oscillator layer that performs stream segregation and a leaky inte-
grator that simulates the attentional process. The weights of the connections

Computational Scene Analysis 179

Fig. 7. Segregation of voiced speech from telephone ringing (from [66]). A. Periph-
eral response to an auditory stimulus consisting of a male utterance mixed with
telephone ringing. A bank of 128 filters having center frequencies ranging from 80
Hz to 5 kHz is employed in peripheral processing. B. A snapshot of the group-
ing layer. Here, white pixels denote active oscillators that represent the segregated
speech stream. C. Another snapshot showing the segregated background

180 DeLiang Wang

between the oscillator layer and the leaky integrator are subject to modula-
tion by the attentional interest of the model. Through this interaction, the
attentional leaky integrator selects one dominant stream from the stream seg-
regation layer. Their network successfully simulates a number of auditory
grouping phenomena, including two-tone streaming with distracted attention
and sequential capturing. At a conceptual level, a major difference between
this model and Wang’s model [63] concerns whether attention can be directed
to more than one stream: In the Wrigley and Brown model only one stream
may be attended to at a time whereas in Wang’s model attention may be
divided by more than one stream. This issue will be revisited in Sect. 7.1.

7 Challenging Issues

7.1 Attention

The importance of attention for scene analysis can hardly be overstated. In a
way, to perceive is to attend.

The issues of binding and attention are related. It has been frequently
suggested that selective attention plays the role of binding. According to the
popular feature integration theory of Treisman and Gelade [57], the visual
system first analyzes a scene in parallel by separate retinotopic feature maps
and focal attention then integrates the analyses within different feature maps
to produce a coherent percept. In other words, attention provides a ‘spotlight’
on the location map to bind and select an object [55]. Arguing from the
neurobiological perspective, Reynolds and Desimone [43] also suggested that
attention provides a solution to the binding problem. An alternative view -
object-based theories of attention [42, 41] - claims that selective attention
operates on the result of binding. So the key question is whether attention
precedes or succeeds binding.

A visual object can have an arbitrary shape and size. This consideration
creates the following dilemma for the feature integration theory. On the one
hand, it is a location-based theory of attention that binds at the same location
individual analyses from different feature maps. On the other hand, to select
an object, attention spotlight must also have arbitrary shape and size, adapt-
ing to a specific object and thus object-based. Without a binding process,
what produces such an adaptive spotlight? This is an intrinsic difficulty if
focal attention, rather than perceptual organization, is to bind features across
different locations. The difficulty is illustrated by the finding of Field et al. [18]
that a path of curvilinearly aligned (snake-like) orientation elements embed-
ded in a background of randomly oriented elements can be readily detected
by observers, whereas other paths cannot. This is illustrated in Fig. 8, which
shows a snake-like pattern (left panel) in a cluttered background (right panel).
Note that there are virtually an infinite number of snake patterns that can

Computational Scene Analysis 181

Fig. 8. Detection of snake-like patterns (from [18] with permission). Human obser-
vers can easily detect the occurrence of a snake-like pattern - shown on the left -
that is embedded in a background of random orientation elements shown on the
right. The snake pattern consists of 12 aligned orientation elements

be constructed from orientation elements. Grouping seems to be required to
yield organized patterns for attentional spotlight.

This difficulty, however, does not occur in object-based theories, in which
binding provides multiple segments for focal attention to perform sequential
analysis. Though sometimes difficult to tear object-based attention apart from
location-based attention, since the former implicitly provides the informa-
tion for the latter, psychophysical and neurobiological studies show increasing
support for the object-based view [37, 31, 15]. For example, a recent study
demonstrates that the visual search for a target item in the presence of many
distractors is very efficient if the distractors can be organized into a small
number of groups on the basis of feature similarity, suggesting that visual at-
tention examines organized groups rather than individual items [67]. Indeed,
the Field et al. results have been successfully simulated by the oscillation
model of Yen and Finkel [74].

The notion of a segmentation capacity (see Sect. 5) is a basic character-
istic of the oscillatory correlation theory. A limited capacity naturally arises
from relaxation oscillations because of their non-instantaneous active phase.
On the other hand, networks of spiking neurons [7] or chaotic maps [76] do
not exhibit a limited capacity. Although such a capacity is sometimes treated
as a computational weakness [70, 76, 14], capacity limitation is a fundamen-
tal property of attention. Also it has been argued that a limited capacity is
advantageous for information processing (e.g. [29, 25]).

Assuming a limited capacity, a related question is: Can we attend to
more than one object at a time? A direct answer was offered by Cowan [12]
after reviewing a large body of literature. His answer is that the attentional
capacity is about four. Furthermore, the attentional capacity underlies the

182 DeLiang Wang

well-documented capacity in short-term memory. How to reconcile between a
capacity limit of more than one and the phenomenological impression that we
can focus on only one thing at a time? A capacity limit represents an upper
bound on the number of items held by attention, and it does not necessarily
mean that the attention span is constantly full. It may be possible for a sub-
ject to selectively attend to one thing in order to extract information from it.
Even in the case of selective attention, however, unselected items still receive
some analysis. In the classic experiment of Cherry [11], for example, listeners
can detect the change of the speaker gender from the ‘unattended’ ear.

Another important question regarding attention is what to attend when
faced with a myriad of stimuli? This decision can be a matter of survival for
an animal. Attention can be either goal-driven or stimulus-driven [73]. When
the perceiver seeks to find something, e.g. when it looks for a pen in an office,
its attention is goal-driven (also called active attention). In contrast, when the
perceiver’s attention is captured by some salient stimulus in the input scene,
such as a red pen on a gray desk, attention is said to be stimulus-driven (or
passive attention). It is important to realize that these two modes of attention
likely occur simultaneously in a given act of attention. Goal-driven attention
is controlled by the perceiver’s intentions at the moment. Stimulus-driven
attention, on the other hand, can be studied by varying stimulus properties
of the input scene. Perceptual studies [73, 42] suggest that stimuli that dif-
fer from the rest of the scene in one or more feature dimensions, e.g. color,
depth, and motion for vision, tend to capture attention. In other words, salient
objects draw attention. The saliency of a stimulus has two aspects. The first
is the difference between the stimulus and its surround and the second is
the homogeneity of the surround [16]; a stimulus is highly salient when it is
different from its surrounding stimuli that are similar to each other. Visual
feature dimensions include luminance, color, orientation, motion, and depth.
Auditory feature dimensions include loudness, pitch, temporal modulation,
and location. In addition to feature saliency, abrupt changes to the scene tend
to capture attention [73], including the onset of a new stimulus in the scene
and the abrupt change in a feature dimension of an existing stimulus. In other
words, novel objects draw attention.

7.2 Feature-based Analysis versus Model-based Analysis

Scene analysis can be performed on the basis of the features of the objects
in the input scene or the models of the objects in the memory. Feature-based
versus model-based analysis is also metaphorically characterized as bottom-up
versus top-down analysis. Familiarity has been acknowledged as an organiz-
ing principle in scene analysis so the issue is not whether memorized objects
influence scene analysis. What’s at issue is how much model-based analysis
contributes to scene analysis, or whether binding should be part of a recogni-
tion process.

Computational Scene Analysis 183

According to some, binding is a byproduct of recognition, which is typically
coupled with some selection mechanism that brings the pattern of interest
into focus, and there is really no binding problem so to speak [44]. For exam-
ple, Fukushima and Imagawa [20] proposed a model that performs recogni-
tion and segmentation simultaneously by employing a search controller that
selects a small area of the input image for processing. Their model is based
on Fukushima’s neocognitron model for pattern recognition, which is a hier-
archical multilayer network. The neocognitron model is a prominent example
of the hierarchical coding approach to the binding problem. The model con-
tains a cascade of layers with both forward and backward connections. The
forward path performs pattern recognition that is robust to a range of vari-
ations in position and size, and the last layer stores learned patterns. When
a scene of multiple patterns is presented, a rough area selection is performed
based on feature density of the input, and further competition in the last
layer leads to a winner. The winning unit of the last layer, through back-
ward connections, reinforces the pattern of the input image that is consistent
with the stored template. This, in a way, segments that part of the input
image from its background. After a while, the network switches to another
area of high feature density and continues the analysis process. Their model
has been evaluated on binary images of connected characters. Olshausen et al.
[39] proposed a model that also combines pattern recognition and a model of
selective attention. Their attention model is implemented by a shifting circuit
that routes information in a hierarchical network while preserving spatial rel-
ations between visual features, and recognition is based on a Hopfield model
of associative memory. The location and size of an attention blob are deter-
mined by competition in a feature saliency map, producing potential regions
of interest on an image. This model is highlighted by Shadlen and Movshon
[50] as an alternative to the temporal correlation theory. The model is eval-
uated on binary images with well-separated patterns. A later model along a
similar line was proposed by Riesenhuber and Poggio [44], and it uses a hier-
archical architecture similar to the neocognitron. Their model has been tested
on two-object scenes: One is a stored pattern and another is a distractor.

In my opinion, model-based analysis has clear limits. Perceiving an object,
e.g. a frog, with all its vivid details such as location, shape, color, orientation,
and size, is more than simply recognizing that the object is a frog [24, 56].
Indeed, if feature analysis played no role in scene analysis, camouflage would
not have emerged from animal evolution as a universal strategy of blending
with the environment. This point is illustrated in Figure 9 which shows two
frogs in a pond. It is effortful to spot a frog in its natural habitat even for an
experienced observer. Also, perception operates on both familiar and unfamil-
iar objects, and model-based analysis is not applicable to the latter objects.
Besides these and other conceptual difficulties with the hierarchical coding
discussed in Section 3, it is unclear how the above model-based systems can
be extended to analyze scenes where complex objects are arranged in arbitrary

184 DeLiang Wang

Fig. 9. A natural image that contains two frogs in their natural habitat

ways. As mentioned in Sect. 7.1, the number of possible snake patterns (see
Fig. 8) seems too large to search in a top-down manner.

7.3 Learning versus Representation

Learning - both supervised and unsupervised - is central to neural networks
(and computational intelligence in general). The development of neural net-
works can be characterized, to a large extent, by the development of learning
algorithms. Nowadays, much activity in neural networks is popularly called
machine learning. There is also increasing interest in the research community
to apply machine learning techniques to scene analysis. Some even argue that
data-driven learning can do away with the need to search for appropriate
representations for computational scene analysis.

While certain regularities of input data can be discovered by a learning
system, the applicability of learning-based approaches to computational scene
analysis is likely bounded. As pointed out by Konen and von der Malsburg
[28], such approaches tend to be plagued by the problem of combinatorial exp-
losion when dealing with realistically complex scenes. It is perhaps revealing to
consider the connectedness problem in this context. The failure of perceptrons
to solve this problem is rooted in the lack of a proper representation, not the
lack of a powerful learning method. According to Minsky and Papert [34], “no
machine can learn to recognize X unless it possesses, at least potentially, some
scheme for representing X.” (p. xiii). Indeed, modern multilayer perceptrons

Computational Scene Analysis 185

with the powerful backpropagation algorithm fare no better on the connect-
edness problem [65]. No learning machine, to my knowledge, has succeeded
in solving this problem. The cause, as discussed in Sect. 4, is computational
complexity - learning the connectedness predicate would require far too many
training samples and too much learning time. The success of LEGION stems
from the oscillatory correlation representation and the network structure.

The brain of a newborn possesses genetic knowledge resulting from mil-
lions of years of evolution. It is relevant to note that success is quite limited
in teaching chimpanzees, the closest relatives of humans, basic language or
arithmetic despite considerable effort by animal behaviorists. While in the-
ory all is learnable, including genetic knowledge, evolution operates at much
greater time scales. Even if evolutionary computing someday succeeded in
uncovering the computational principles of evolution, the challenge would be
insurmountable of simulating billions of years of environmental change that
resulted in the flourishing of life on the earth. Furthermore, even if major
evolutionary processes were totally reproducible on a computer there would
still be no assurance that the result will a human rather than an amoeba.

Computational complexity should be of principal concern in computational
intelligence. The essence of intelligence is the efficiency of information process-
ing. Although stunning progress in computer speed and memory has enabled
the execution of very complex algorithms, we should keep in mind that a
slower algorithm will always be slower no matter how fast the computer is.

For those who are concerned with biological plausibility, the speed of
human scene analysis has strong implications on the kind of processing emp-
loyed. For visual analysis, it has been empirically shown that object iden-
tification in a visual scene takes less than 150 ms [4, 54]. Interestingly, the
visual system categorizes novel scenes just as fast as highly familiar ones [17].
After estimation of processing time at various stages of the visual pathway,
Thorpe and Fabre-Thorpe [53] conclude that such analysis must be based
primarily on feedforward processing as there is little time left for iterative
feedback. Coincidentally, a comprehensive analysis on noise robustness, time
course, and language context led Allen [1] to essentially the same conclusion,
that is, human speech analysis is primarily a bottom-up process. These results
challenge the biological validity of the contemporary emphasis on statistical,
model-based approaches [26] that typically boil down to a time-consuming
search in a large probability space.

A major distinction between perception and reasoning is that the process
of perception is rapid and automatic, whereas the process of reasoning is
consciously deliberative and generally slow. Even when faced with certain
ambiguous figures that permit multiple interpretations, such as the famous
Necker cube shown in Fig. 10, perception seems to quickly dwell on one of the
plausible interpretations and would require a slow, conscious effort to switch
to a competing interpretation. This is not to say that perception never involves
conscious deliberations. We do, on occasion, debate in our head what to make
of an input scene. But such an experience is more of the exception rather

186 DeLiang Wang

Fig. 10. Necker cube. This figure can be seen as a cube that is viewed either from
above or from below

than the rule. From an ecological point of view, perception needs to figure
out what is out there quickly as the scene changes constantly due to both
environmental change and locomotion. The speed of perception is critical to
the survival of an organism.

The emphasis on representations contrasts that on learning. A representa-
tion is a formal system that encodes certain types of information. Marr’s pio-
neering study on computational vision exemplifies representational approaches
to scene analysis [30]. In my view, the Marrian framework for computational
perception provides the most promising roadmap for understanding scene
analysis. Appropriate representations embody key insights and constraints
in an information processing domain. How information is represented can
profoundly affect how information is processed. For instance, the cepstral
representation3 separates voice excitation from vocal tract filtering [22], and
the discovery of this representation pays huge dividends to speech processing
tasks including automatic speech recognition where cepstral features are an
indispensable part of any state-of-the-art system.

Since a good representation often captures the current state of scien-
tific understanding on human perception, it does not seem to make sense
to let a computer program ‘discover’ it through machine learning. For exam-
ple, cochlear processing of the acoustic information is well understood and
amounts to an elaborate filterbank. Why not codify such understanding,
which is nontrivial to figure out from scratch, in a representation of audi-
tory periphery?

The above discussion makes it plain that the investigation of computa-
tional scene analysis can be characterized in large part as the pursuit of appro-
priate representations. This vision implies that the research in computational
scene analysis is an interdisciplinary enterprise, as psychophysics as well as
cognitive neuroscience contributes to uncovering effective representations.

So what is the role of learning in computational scene analysis? A rep-
resentation provides a framework, a skeleton, but it is by no means all that
is needed to solve the computational scene analysis problem. Learning plays
3 A cepstrum corresponds to the logarithm of the magnitude spectrum.

Computational Scene Analysis 187

an important role within a representational framework to adjust parameter
values and precisely model the distribution of input data in relation to the
system. A recent study by Roman et al. [45] offers an example in this regard.
Their binaural system for speech segregation builds on an auditory peripheral
model and the notion of binary time-frequency masks for speech separation,
and computes the binaural cues of interaural time difference and interaural
intensity difference which are known to be employed by the auditory sys-
tem. However, their use of supervised training is responsible for high-quality
estimates of binary masks, which in turn lead to good segregation results. In
other words, effective learning can substantially enhance system performance.

8 Concluding Remarks

In this chapter I have made an effort to define the goal of computational
scene analysis explicitly. The challenges facing Rosenblatt’s perceptrons are
fundamentally related to the binding problem. Temporal correlation provides
a biologically plausible framework to address the binding problem. Advances
in understanding oscillatory dynamics lead to the development of the oscil-
latory correlation approach to computational scene analysis with promising
results.

Perhaps the most important characteristic of natural intelligence compared
to artificial intelligence is its versatility. Natural intelligence ranges from sen-
sation, perceptual organization, language, motor control, to decision making
and long-term planning. The substrate for all these functions is a brain - an
immense network of neurons - whose structure is largely fixed after develop-
ment. I have argued recently that time provides a necessary dimension to the
versatility of brain function [65]. Temporal structure is shared by neuronal
responses in all parts of the brain, and the time dimension is flexible and
infinitely extensible.

Computational scene analysis is an extremely challenging problem. The
bewildering complexity of perception makes it necessary to adopt a compass
to guide the way forward and avoid many pitfalls along the way. I strongly
recommend Marr’s posthumous book to anyone who is attempted by the
challenge.

Acknowledgments

I thank G. Hu, S. Srinivasan, and Y. Li for their assistance in formatting and
figure preparation. This research was supported in part by an AFOSR grant
(FA9550-04-1-0117) and an AFRL grant (FA8750-04-1-0093).

188 DeLiang Wang

References

[1] Allen JB (2005) Articulation and intelligibility. Morgan & Claypool
[2] Arbib MA ed (2003) Handbook of brain theory and neural networks. 2nd

ed, MIT Press, Cambridge MA
[3] Barlow HB (1972) Single units and cognition: A neurone doctrine for

perceptual psychology. Percept 1:371-394
[4] Biederman I (1987) Recognition-by-component: A theory of human image

understanding. Psychol Rev 94:115-147
[5] Black MJ, Anandan P (1996) The robust estimation of multiple motions:

parametric and piecewise-smooth flow fields. CVGIP: Image Understand-
ing 63:75-104

[6] Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge MA
[7] Campbell SR, Wang DL, Jayaprakash C (1999) Synchrony and desyn-

chrony in integrate-and-fire oscillators. Neural Comp 11:1595-1619
[8] Cesmeli E, Wang DL (2000) Motion segmentation based on motion/

brightness integration and oscillatory correlation. IEEE Trans Neural Net
11:935-947

[9] Chang P (2004) Exploration of behavioral, physiological, and computa-
tional approaches to auditory scene analysis. MS Thesis, The Ohio State
University Department of Computer Science and Engineering (available
at http://www.cse.ohio-state.edu/pnl/theses.html)

[10] Chen K, Wang DL, Liu X (2000) Weight adaptation and oscillatory cor-
relation for image segmentation. IEEE Trans Neural Net 11:1106-1123

[11] Cherry EC (1953) Some experiments on the recognition of speech, with
one and with two ears. J Acoust Soc Am 25:975-979

[12] Cowan N (2001) The magic number 4 in short-term memory: a reconsid-
eration of mental storage capacity. Behav Brain Sci 24:87-185

[13] Darwin CJ (1997) Auditory grouping. Trends Cogn Sci 1:327-333
[14] Domijan D (2004) Recurrent network with large representational capac-

ity. Neural Comp 16:1917-1942
[15] Driver J, Baylis GC (1998) Attention and visual object recognition. In:

Parasuraman R (ed) The attentive brain. MIT Press Cambridge MA, pp.
299-326

[16] Duncan J, Humphreys GW (1989) Visual search and stimulus similarity.
Psychol Rev, 96:433-458

[17] Fabre-Thorpe M, Delorme A, Marlot C, Thorpe S (2001) A limit to the
speed of processing in ultra-rapid visual categorization of novel natural
scenes. J Cog Neurosci 13:1-10

[18] Field DJ, Hayes A, Hess RF (1993) Contour integration by the human
visual system: Evidence for a local “association field”. Vis Res 33:173-193

[19] FitzHugh R (1961) Impulses and physiological states in models of nerve
membrane. Biophys J 1:445-466

[20] Fukushima K, Imagawa T (1993) Recognition and segmentation of con-
nected characters with selective attention. Neural Net 6:33-41

Computational Scene Analysis 189

[21] Gibson JJ (1966) The senses considered as perceptual systems. Green-
wood Press, Westport CT

[22] Gold B, Morgan N (2000) Speech and audio signal processing. Wiley &
Sons, New York

[23] Gray CM (1999) The temporal correlation hypothesis of visual feature
integration: still alive and well. Neuron 24:31-47

[24] Kahneman D, Treisman A, Gibbs B (1992) The reviewing of object files:
object-specific integration of information. Cognit Psychol 24:175-219

[25] Kareev Y (1995) Through a narrow window: Working memory capacity
and the detection of covariation. Cognition 56:263-269

[26] Knill DC, Richards W eds (1996) Perception as Bayesian inference.
Cambridge University Press, New York

[27] Koffka K (1935) Principles of Gestalt psychology. Harcourt, New York
[28] Konen W, von der Malsburg C (1993) Learning to generalize from single

examples in the dynamic link architecture. Neural Comp 5:719-735
[29] MacGregor JN (1987) Short-term memory capacity: Limitation or opti-

mization? Psychol Rev 94:107-108
[30] Marr D (1982) Vision. Freeman, New York
[31] Mattingley JB, Davis G, Driver J (1997) Preattentive filling-in of visual

surfaces in parietal extinction. Science 275:671-674
[32] Milner, PM (1974) A model for visual shape recognition. Psychol Rev

81(6):521-535
[33] Minsky ML, Papert SA (1969) Perceptrons. MIT Press, Cambridge MA
[34] Minsky ML, Papert SA (1988) Perceptrons (Expanded ed). MIT Press,

Cambridge MA
[35] Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle

fiber. Biophys J 35:193-213
[36] Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission

line simulating nerve axon. Proc IRE 50:2061-2070
[37] Nakayama K, He ZJ, Shimojo S (1995) Visual surface representation:

A critical link between lower-level and higher-level vision. In: Kosslyn
SM, Osherson DN (eds) An invitation to cognitive science. MIT Press,
Cambridge MA, pp. 1-70

[38] Norris M (2003) Assessment and extension of Wang’s oscillatory model of
auditory stream segregation. PhD Dissertation, University of Queensland
School of Information Technology and Electrical Engineering

[39] Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological
model of visual attention and invariant pattern recognition based on
dynamic routing of information. J Neurosci 13:4700-4719

[40] Palmer SE (1999) Vision science. MIT Press, Cambridge MA
[41] Parasuraman R ed (1998) The attentive brain. MIT Press, Cambridge

MA
[42] Pashler HE (1998) The psychology of attention. MIT Press, Cambridge

MA

190 DeLiang Wang

[43] Reynolds JH, Desimone R (1999) The role of neural mechanisms of
attention in solving the binding problem. Neuron 24:19-29

[44] Riesenhuber M, Poggio T (1999) Are cortical models really bound by the
“binding problem”? Neuron 24:87-93

[45] Roman N, Wang DL, Brown GJ (2003) Speech segregation based on
sound localization. J Acoust Soc Am 114:2236-2252

[46] Rosenblatt F (1958) The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. Psychol Rev 65:386-408

[47] Rosenblatt F (1962) Principles of neural dynamics. Spartan, New York
[48] Rumelhart DE, McClelland JL eds (1986) Parallel distributed processing

1: Foundations. MIT Press, Cambridge MA
[49] Russell S, Norvig P (2003) Artificial intelligence: A modern approach.

2nd ed Prentice Hall, Upper Saddle River, NJ
[50] Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evalua-

tion of the temporal binding hypothesis. Neuron 24:67-77.
[51] Somers D, Kopell N (1993) Rapid synchrony through fast threshold mod-

ulation. Biol Cybern, 68:393-407
[52] Terman D, Wang DL (1995) Global competition and local cooperation

in a network of neural oscillators, Physica D 81:148-176
[53] Thorpe S, Fabre-Thorpe M (2003) Fast visual processing. In: Arbib

MA (ed) Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge MA, pp. 441-444

[54] Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human
visual system. Nature 381:520-522

[55] Treisman A (1986) Features and objects in visual processing. Sci Am,
November, Reprinted in The perceptual world, Rock I (ed). Freeman
and Company, New York, pp. 97-110

[56] Treisman A (1999) Solutions to the binding problem: progress through
controversy and convergence. Neuron 24:105-110

[57] Treisman A, Gelade G (1980) A feature-integration theory of attention.
Cognit Psychol 12:97-136

[58] van der Pol B (1926) On “relaxation oscillations”. Phil Mag 2(11):978-992
[59] von der Malsburg C (1981) The correlation theory of brain function.

Internal Report 81-2, Max-Planck-Institute for Biophysical Chemistry,
Reprinted in Models of neural networks II, Domany E, van Hemmen JL,
Schulten K, eds (1994) Springer, Berlin

[60] von der Malsburg C (1999) The what and why of binding: the modeler’s
perspective. Neuron 24:95-104

[61] von der Malsburg C, Schneider W (1986) A neural cocktail-party proces-
sor. Biol Cybern 54:29-40

[62] Wang DL (1995) Emergent synchrony in locally coupled neural oscilla-
tors. IEEE Trans Neural Net 6(4):941-948

[63] Wang DL (1996) Primitive auditory segregation based on oscillatory cor-
relation. Cognit Sci 20:409-456

Computational Scene Analysis 191

[64] Wang DL (2000) On connectedness: a solution based on oscillatory corre-
lation. Neural Comp 12:131-139

[65] Wang DL (2005) The time dimension for scene analysis. IEEE Trans
Neural Net 16:1401-1426

[66] Wang DL, Brown GJ (1999) Separation of speech from interfering sounds
based on oscillatory correlation. IEEE Trans Neural Net 10:684-697

[67] Wang DL, Kristjansson A, Nakayama K (2005) Efficient visual search
without top-down or bottom-up guidance. Percept Psychophys 67:239-
253

[68] Wang DL, Terman D (1995) Locally excitatory globally inhibitory oscil-
lator networks. IEEE Trans Neural Net 6(1):283-286

[69] Wang DL, Terman D (1997) Image segmentation based on oscillatory
correlation. Neural Comp 9:805-836 (for errata see Neural Comp 9:1623-
1626)

[70] Wersing H, Steil JJ, Ritter H (2001) A competitive-layer model for feature
binding and sensory segmentation. Neural Comp 13:357-388

[71] Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt, II.
Psychol Forsch 4:301-350

[72] Wrigley SN, Brown GJ (2004) A computational model of auditory selec-
tive attention. IEEE Trans Neural Net 15:1151-1163

[73] Yantis S (1998) Control of visual attention. In: Pashler H (ed) Attention.
Psychology Press, London, pp. 223-256

[74] Yen SC, Finkel LH (1998) Extraction of perceptually salient contours by
striate cortical networks. Vis Res 38:719-741

[75] Zhang X, Minai AA (2004) Temporally sequenced intelligent block-
matching and motion-segmentation using locally coupled networks. IEEE
Trans Neural Net 15:1202-1214

[76] Zhao L, Macau EEN (2001) A network of dynamically coupled chaotic
maps for scene segmentation. IEEE Trans Neural Net 12:1375-1385

Brain-, Gene-, and Quantum Inspired
Computational Intelligence: Challenges
and Opportunities

Nikola Kasabov

Knowledge Engineering and Discovery Research Institute, KEDRI Auckland
University of Technology, Auckland, New Zealand
nkasabov@aut.ac.nz

www.kedri.info

Summary. This chapter discusses opportunities and challenges for the creation of
methods of computational intelligence (CI) and more specifically – artificial neural
networks (ANN), inspired by principles at different levels of information processing
in the brain: cognitive-, neuronal-, genetic-, and quantum, and mainly, the issues
related to the integration of these principles into more powerful and accurate CI
methods. It is demonstrated how some of these methods can be applied to model
biological processes and to improve our understanding in the subject area, along
with other – being generic CI methods applicable to challenging generic AI prob-
lems. The chapter first offers a brief presentation of some principles of information
processing at different levels of the brain, and then presents brain-inspired, gene-
inspired and quantum inspired CI. The main contribution of the chapter though is
the introduction of methods inspired by the integration of principles from several
levels of information processing, namely: (1) a computational neurogenetic model,
that combines in one model gene information related to spiking neuronal activities;
(2) a general framework of a quantum spiking neural network model; (3) a general
framework of a quantum computational neuro-genetic model. Many open questions
and challenges are discussed, along with directions for further research.

Key words: Artificial neural networks, Computational Intelligence, Neuro-
informatics, Bionformatics, Evolving connectionist systems, Gene regula-
tory networks, Computational neurogenetic modeling, Quantum information
processing.

1 Introduction

The brain is a dynamic information processing system that evolves its struc-
ture and functionality in time through information processing at different
levels – Fig. 1: quantum-, molecular (genetic)-, single neuron-, ensemble of
neurons-, cognitive-, evolutionary.
Nikola Kasabov: Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges

and Opportunities, Studies in Computational Intelligence (SCI) 63, 193–219 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

194 Nikola Kasabov

6. Evolutionary (population/generation) processes

5. Brain cognitive processes

4. System information processing (e.g. neural ensemble)

3. Information processing in a cell (neuron)

2. Molecular information processing (genes, proteins)

1. Quantum information processing

Fig. 1. Levels of information processing in the brain and the interaction between
the levels

Principles from each of these levels have been already used as inspiration
for computational intelligence (CI) methods, and more specifically – for meth-
ods of artificial neural networks (ANN). The chapter focuses on the interaction
between these levels and mainly – on how this interaction can be modeled,
and how it can be used in principle to improve existing CI methods and for a
better understanding of brain-, gene-, and quantum processes.

At the quantum level, particles (atoms, ions, electrons, etc.), that make
every molecule in the material world, are moving continuously, being in several
states at the same time that are characterised by probability, phase, frequency,
energy.

At a molecular level, RNA and protein molecules evolve in a cell and
interact in a continuous way, based on the stored information in the DNA
and on external factors, and affect the functioning of a cell (neuron) under
certain conditions.

At the level of a neuron, the internal information processes and the external
stimuli cause the neuron to produce a signal that carries information to be
transferred to other neurons.

At the level of neuronal ensembles, all neurons operate in a “concert”,
defining the function of the ensemble, for instance perception of a spoken
word.

At the level of the whole brain, cognitive processes take place, such as
language and reasoning, and global information processes are manifested, such
as consciousness.

At the level of a population of individuals, species evolve through evolu-
tion, changing the genetic DNA code for a better adaptation.

The information processes at each level from Fig. 1 are very complex
and difficult to understand, but much more difficult to understand is the
interaction between the different levels. It may be that understanding the in-
teraction through its modeling would be a key to understanding each level of
information processing in the brain and perhaps the brain as a whole. Using
principles from different levels in one ANN CI model and modeling their

Brain-, Gene-, and Quantum Inspired Computational Intelligence 195

relationship can lead to a next generation of ANN as more powerful tools to
understand the brain and to solve complex problems.

Some examples of CI models that combine principles from different levels
shown in fig. 1 are: computational neuro-genetic models [45, 4, 40]; quantum
inspired CI and ANN [15, 47]; evolutionary models [17, 74]. Suggestions are
made that modeling higher cognitive functions and consciousness in parti-
cular can be achieved if principles from quantum information processing are
considered [48, 49]. There are many issues and open questions to be addressed
when creating CI methods that integrate principles from different levels, some
of them presented in this chapter.

The chapter discusses briefly in section 2 models inspired by information
processes in the brain, that include local learning evolving connectionist sys-
tems (ECOS) and spiking neural networks (SNN). Section 3 presents CI meth-
ods inspired by genetic information processes, mainly models of gene reg-
ulatory networks (GRN). In section 4, the issue of combining neuronal with
genetic information processing is discussed and the principles of computational
neuro-genetic modeling (CNGM) are presented. Section 5 presents some ideas
behind the quantum inspired CI. Section 6 presents a model of a quantum
inspired SNN and offers a theoretical framework for the integration of princi-
ples from quantum-, -genetic- and neuronal information processing. Section 7
concludes the chapter with more open questions and challenges for the future.

2 CI and ANN Models Inspired by Neuronal
and Cognitive Processes in the Brain

Many CI methods, in particular ANN, are brain-inspired (using some princi-
ples from the brain), or brain-like (more biologically plausible models, usually
developed to model a brain function) [1, 2, 3, 4, 5, 8, 9]. Examples are: models
of single neurons and neural network ensembles [41, 56, 57, 58, 59, 60, 34];
cognitive ANN models [23, 8, 9, 64] etc.

These models have been created with the goals of:

• Modeling and understanding brain functions;
• Creating powerful methods and systems of computational intelligence (CI)

for solving complex problems in all areas of science and the humanity.

In this section we present only two groups of models, namely evolving
connectionist systems (ECOS) and spiking neural networks (SNN) as they
will be used in other sections to create models that incorporate principles
from other levels of information processing.

2.1 Local, Knowledge–based Learning Evolving Connectionist
Systems (ECOS) – Weakly Brain Inspired Models

ECOS are adaptive, incremental learning and knowledge representation sys-
tems, that evolve their structure and functionality, where in the core of a

196 Nikola Kasabov

system is a connectionist architecture that consists of neurons (information
processing units) and connections between them [35]. An ECOS is a CI sys-
tem based on neural networks, but using other techniques of CI, that operates
continuously in time and adapts its structure and functionality through a
continuous interaction with the environment and with other systems. The
adaptation is defined through:

1. A set of evolving rules.
2. A set of parameters (“genes”) that are subject to change during the system

operation.
3. An incoming continuous flow of information, possibly with unknown dis-

tribution.
4. Goal (rationale) criteria (also subject to modification) that are applied to

optimize the performance of the system over time.

ECOS learning algorithms are inspired by brain-like information process-
ing principles, e.g.:

1. They evolve in an open space, where the dimensions of the space can
change.

2. They learn via incremental learning, possibly in an on-line mode.
3. They learn continuously in a lifelong learning mode.
4. They learn both as individual systems and as an evolutionary population

of such systems.
5. They use constructive learning and have evolving structures.
6. They learn and partition the problem space locally, thus allowing for a

fast adaptation and tracing the evolving processes over time.
7. They evolve different types of knowledge representation from data, mostly

a combination of memory-based and symbolic knowledge.

Many ECOS have been suggested so far, where the structure and the
functionality of the models evolve through incremental, continuous learning
from incoming data, some times in an on-line mode, and through interaction
with other models and the environment. Examples are: growing SOMs [41],
growing gas [20], RAN [51], growing RBF networks[18, 52], FuzzyARTMAP
[8], EFuNN [35, 36, 37], DENFIS [38] and many more.

A block diagram of EFuNN is given in fig. 2. It is used to model gene
regulatory networks in section 5. At any time of the EFuNN continuous incre-
mental learning, rules can be derived from the structure, which rules represent
clusters of data and local functions associated with these clusters:

IF < data is in cluster Ncj, defined by a cluster center Nj, a cluster radius
Rj and a number of examples Njex in this cluster > (1)
THEN < the output function is Fc >

In case of DENFIS, first order local fuzzy rule models are derived incre-
mentally from data, for example:

Brain-, Gene-, and Quantum Inspired Computational Intelligence 197

…

………

………

……

…

……

Outputs

Fuzzy outputs

Rule (case)
layer

Fuzzy input
layer

Inputs

W0

W1

W2

W4

A1

inda1
(t-1) W3

x1, x2,...,xn

inda1
(t)

A1
(t)

(t-1)

Fig. 2. An EFuNN architecture with a short term memory and feedback connections
[36]. It is used in section 5 to model GRN with inputs being the expression of genes
at a time (t) and the outputs being the expression of genes/proteins at time (t + dt)

IF < the value of x1 is in the area defined by a Gaussian membership
function with a center at 0.1 and a standard deviation of 0.05, AND < the

value of x2 is in the area defined by a Gaussian function with parameters
(0.25, 0.1) respectively >

THEN < the output y is calculated by the formula:
y = 0.01 + 0.7x1 + 0.12x2 >

(2)

In case of EFuNN, local simple fuzzy rule models are derived, for example:

IF x1 is (Medium 0.8) and x2 is (Low 0.6)
THEN y is (High 0.7), radius R = 0.24; Nexamp = 6,

(3)

where: Low, Medium and High are fuzzy membership functions defined for the
range of each of the variables x1, x2, and y; the number and the type of the
membership functions can either be deduced from the data through learning
algorithms, or it can be predefined based on human knowledge [75, 73]; R is
the radius of the cluster and Nexamp is the number of examples in the cluster.

Further development of the EFuNN and the DENFIS local ECOS models is
the Transductive Weighted Neuro-Fuzzy Inference Engine (TWNFI) [62, 37].
In this approach, for every new vector (sample/example S) a “personalized”

198 Nikola Kasabov

model is developed from existing nearest samples, where each of the variables
is normalised in a different sub-range of [0,1] so that they have a different
influence on the Euclidean distance from (1), therefore they are ranked in
terms of their importance to the output calculated for any new sample indi-
vidually. Samples are also weighted in the model based on their distance to
the new sample, where in the Euclidean distance formula variables are also
weighted. Each personalized model can be represented as a rule (or a set of
rules) that represents the personalized profile for the new input vector. The
TWNFI model is evolving as new data samples, added to a data set, can
be used in any further personalized model development. That includes using
different sets of variables, features [62, 37].

ECOS have been applied to model brain functions and as general CI tools
[37]. In one application, an ECOS was trained to classify EEG data, mea-
sured from a single person’s brain, into four classes representing four percep-
tual states – hearing, seeing, both, and nothing [37]. In another application,
ECOS were used to model emerging acoustic clusters, when multiple spoken
languages are learned [37].

ECOS have been applied to a wide range of CI applications, such as adap-
tive classification of gene expression data, adaptive robot control, adaptive
financial data modeling, adaptive environmental and social data modeling
[37].

ECOS are used in section 3 for building GRN models.

2.2 Spiking Neural Networks – Strongly Brain-Inspired Models

Spiking models of a neuron and of neural networks – spiking neural networks
(SNN), have been inspired and developed to mimic more biologically the spik-
ing activity of neurons in the brain when processing information.

One model – the spike response model (SRM) of a neuron [44, 21] is
described below and extended in section 4 to a computational neuro-genetic
model (CNGM).

A neuron i receives input spikes from pre-synaptic neurons j ∈ Γi, where
Γi is a pool of all neurons pre-synaptic to neuron i. The state of the neuron
i is described by the state variable ui(t) that can be interpreted as a total
postsynaptic potential (PSP) at the membrane of soma – fig. 3. When ui(t)

integration
+ leakage

x1

x2
x3
x4

spike

refractory period

Binary events

Fig. 3. A general representation of a spiking neuron model (from [4])

Brain-, Gene-, and Quantum Inspired Computational Intelligence 199

reaches a firing threshold ϑi(t), neuron i fires, i.e. emits a spike. The value of
the state variable ui(t) is the sum of all postsynaptic potentials, i.e.

ui(t) =
∑
j∈Γi

∑
tj∈Fj

Jijεij

(
t− tj −Δax

ij

)
(4)

The weight of synaptic connection from neuron j to neuron i is denoted by
Jij . It takes positive (negative) values for excitatory (inhibitory) connections,
respectively. Depending on the sign of Jij , a presynaptic spike generated at
time tj increases (or decreases) ui(t) by an amount εij

(
t− tj −Δax

ij

)
. Δax

ij

is an axonal delay between neurons i and j which increases with Euclidean
distance between neurons.

The positive kernel εij

(
t− tj −Δax

ij

)
= εij(s) expresses an individual

postsynaptic potential (PSP) evoked by a pre-synaptic neuron j on neuron i.
A double exponential formula can be used

εsynapse
ij (s) = Asynapse

(
exp

(
− s

τsynapse
decay

)
− exp

(
− s

τsynapse
rise

))
(5)

The following notations are used above: τsynapse
decay/rise are time constants of

the rise and fall of an individual PSP; A is the PSP’s amplitude; synapse repre-
sents the type of the activity of the synapse from the neuron j to neuron i, that
can be measured and modeled separately for a fast excitation, fast inhibition,
slow excitation, and slow inhibition, all integrated in formula [4]. These types
of PSPs are based on neurobiology [13] and will be the basis for the deve-
lopment of the computational neuro-genetic model in section 4, where thye
different synaptic activities are represented as functions of different proteins
(neuro-transmitters and neuro-receptors).

External inputs from the input layer are added at each time step, thus
incorporating the background noise and/or the background oscillations. Each
external input has its own weight Jext input

ik and amount of signal εk(t), such
that:

uext inpu
i (t) = Jext input

ik εik(t) (6)

It is optional to add some degree of Gaussian noise to the right hand
side of the equation above to obtain a stochastic neuron model instead of a
deterministic one.

SNN models can be built with the use of the above spiking neuron model.
Spiking neurons within a SNN can be either excitatory or inhibitory. Lateral
connections between neurons in a SNN may have weights that decrease in
value with distance from neuron i for instance, according to a Gaussian for-
mula while the connections between neurons themselves can be established at
random.

SNN can be used to build biologically plausible models of brain functions.
Examples are given in [4, 13, 21, 44]. Fig. 4 shows graphically an application

200 Nikola Kasabov

Cortex

Thalamus

Gaussian lateral connections

Input layer

One-to-many feedforward
input connections

Spiking neural
network

Jij

sij

Fig. 4. An example of a SNN to model a function of the cortex with internal inputs
from the thalamus and external input stimuli. About 20% of N = 120 neurons are
inhibitory neurons that are randomly positioned on the grid (filled circles). External
input is random with a defined average frequency (e.g. between 10–20 Hz) (from [4])

of a SNN to model brain functions that connect signals from the thalamus to
the temporal cortex (from [4]).

Other applications of SNN include image recognition. In [71] adaptive
SNN model is developed where new SNN sub-modules (maps) are created
incrementally to accommodate new data samples over time. For example, a
new sub-module of several spiking neurons and connections is evolved when
a new class of objects (e.g. a new face in case of face recognition problem) is
presented to the system for learning at any time of this process. When there
are no active inputs presented to the system, the system merges close spiking
neuronal maps depending on their similarity.

Developing new methods for learning in evolving SNN is a challenging
direction for future research with a potential for applications in both com-
putational neuroscience and pattern recognition, e.g. multimodal information
processing – speech, image, odor, gestures, etc.

SNN are extended to computational neuro-genetic models (CNGM) in
section 4.

2.3 Open Questions

Further development of brain-like or brain-inspired ANN requires some ques-
tions to be addressed:

• How much should an ANN mimic the brain in order to become an efficient
CI model?

• How is a balance between structure definition and learning achieved in
ANN?

• How can ANN evolve and optimize their parameters and input features
over time in an efficient way?

Brain-, Gene-, and Quantum Inspired Computational Intelligence 201

• How incremental learning in ANN can be applied without a presentation
of an input signal (e.g., “sleep” learning)?

3 Gene-Inspired Methods of Computational Intelligence

3.1 The Central Dogma in Molecular Biology and GRN

The central dogma of molecular biology states that DNA, which resides in
the nucleus of a cell or a neuron, transcribes into RNA, and then translates
into proteins, which process is continuous, evolving, so that proteins, called
transcription factors, cause genes to transcribe, etc. [14, 7] (Fig. 5).

The DNA is a long, double stranded sequence (a double helix) of millions
or billions of 4 base molecules (nucleotides) denoted as A, C, T and G, that
are chemically and physically connected to each other through other mole-
cules. In the double helix, they make pairs such that every A from one strand
is connected to a corresponding T on the opposite strand, and every C is
connected to a G. A gene is a sequence of hundreds and thousands of bases
as part of the DNA that is translated into protein. Only less than 5% of the
DNA of the human genome constitutes genes, the other part is a non-coding
region that contains useful information as well.

The DNA of each organism is unique and resides in the nucleus of each
of its cells. But what make a cell alive are the proteins that are expressed
from the genes and define the function of the cell. The genes and proteins in
each cell are connected in a dynamic gene regulatory network consisting of
regulatory pathways.

Normally, only few hundreds of genes are expressed as proteins in a par-
ticular cell. At the transcription phase, one gene is transcribed in many RNA
copies and their number defines the expression level of this gene [14, 7] Some

DNA-
genes

Translation
mRNA into protein production

RNA Proteins

Protein-gene feedback loop through Transcription Factors

Output Cell Function

Transcription
Genes copied as mRNA

Fig. 5. The genes in the DNA transcribe into RNA and then translate into proteins
that define the function of a cell (The central dogma of molecular biology)

202 Nikola Kasabov

genes may be over-expressed, resulting in too much protein in the cell, some
genes may be under-expressed resulting in too little protein, in both cases the
cell may be functioning in a wrong way that may be causing a disease. Abnor-
mal expression of a gene can be caused by a gene mutation – a random change
in the code of the gene, where a base molecule is either inserted, or – deleted,
or – altered into another base molecule. Drugs can be used to stimulate or to
suppress the expression of certain genes and proteins, but how that will affect
indirectly the other genes related to the targeted one, has to be evaluated and
that is where computational modeling of gene regulatory networks (GRN) can
help.

It is always difficult to establish the interaction between genes and proteins.
The question “What will happen with a cell or the whole organism if one gene
is under-expressed or missing?” is now being attempted by using a technology
called “Knock-out gene technology”. This technology is based on a removal
of a gene sequence from the DNA and letting the cell/organism to develop,
where parameters are measured and compared with these parameters when
the gene was not missing.

3.2 GRN-ANN Models

Modeling gene regulatory networks (GRN) is the task of creating a dynamic
interaction network between genes that defines the next time expression of
genes based on their previous time expression. A detailed discussion of the
methods for GRN modeling can be found in [14, 11, 39]. Models of GRN,
derived from gene expression RNA data, have been developed with the use of
different mathematical and computational methods, such as: statistical cor-
relation techniques; evolutionary computation; ANN; differential equations,
both ordinary and partial; Boolean models; kinetic models; state-based mod-
els and others [14].

A model of GRN, trained on time-course data is presented in [10] where
the human response to fibroblast serum data is used (Fig. 6) and a GRN is
extracted from it (Fig. 7). The method uses a genetic algorithm to select the
initial cluster centers of the time course clustered gene expression values, and
then applies a Kalman filter to derive the gene connecting equations.

In [39] a GRN-ECOS is proposed and applied on a small scale cell line
gene expression data. An ECOS is evolved with inputs being the expression
level of a certain number of selected genes (e.g. 4) at a time moment (t) and
the outputs being the expression level of the same or other genes/proteins at
the next time moment (t + dt). After an ECOS is trained on time course gene
expression data, rules are extracted from the ECOS and linked between each
other in terms of time-arrows of their creation in the model, thus representing
the GRN. The rule nodes in an ECOS capture clusters of input genes that
are related to the output genes/proteins at next time moment. An example
of EFuNN used for modeling GRN is shown in [39, 36].

Brain-, Gene-, and Quantum Inspired Computational Intelligence 203

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

time (hour)

log 10(expression) The Response of Human Fibroblasts to Serum Data

Fig. 6. Time-course gene expression data representing the response of thousands of
genes of fibroblast to serum (from [10])

0.3

0.8

2

1

3

4

6

7

8

5

9

10

−0.3

−0.4

0.6

0.8

−0.4

−0.5 −0.3

0.4

−0.4

0.4

0.5

Fig. 7. A GRN obtained with the use of the method from [10] on the data from
Fig. 6 after the time gene expression series are clustered into 10 clusters. The nodes
represent gene clusters while the arcs represent the dynamic relation (interaction)
between these gene groups over consecutive time moments

The extracted rules from an EFuNN model for example represent the
relationship between the gene expression of a group of genes G(t) at a time
moment t and the expression of the genes at the next time moment G(t+dt),
e.g.:

IF g13(t) is High (0.87) and g23(t) is Low (0.9)
THEN g87 (t + dt) is High (0.6) and g103(t + dt) is Low

(7)

Through modifying a threshold for rule extraction one can extract stronger
or weaker patterns of dynamic relationship.

Adaptive training of an ECOS makes it possible for incremental learning
of a GRN as well as adding new inputs/outputs (new genes) to the GRN.

A set of DENFIS models can be trained, one for each gene gi, so that an
input vector is the expression vector G(t) and the output is a single variable
gi(t + dt). DENFIS allows for a dynamic partitioning of the input space.
Takagi-Sugeno fuzzy rules, that represent the relationship between gene gi

204 Nikola Kasabov

with the rest of the genes, are extracted from each DENFISi model, e.g.:

IF g1 is 0.63, 0.70, 0.76) and g2 is (0.71, 0.77, 0.84) and g3 is (0.71,
0.77, 0.84) and g4 is (0.59, 0.66, 0.72)

THEN g5 = 1.84− 1.26g1− 1.22g2 + 0.58g3− 0.03g4
(8)

The ECOS structure from fig. 2 can be used in a multilevel, hierarchical
way, where transcription process is represented in one ECOS and translation
– in another ECOS which inputs are connected to the outputs of the first one,
using feedback connections to represent transcription factors.

Despite of the variety of different methods used so far for modeling GRN
and for systems biology in general, there is not a single method that will suit
all requirements to model a complex biological system, especially to meet the
requirements for adaptation, robustness, information integration.

In the next section GRN modeling is integrated with SNN to model the
interaction between genes/proteins in relation to activity of a spiking neuron
and a SNN as a whole.

4 Computational Neuro-Genetic Models (CNGM)

4.1 General Notions

With the advancement of molecular and brain research technologies more
and more data and information is being made available about the genetic
basis of some neuronal functions (see for example: the brain-gene map of
mouse http://alleninstitute.org; the brain-gene ontology BGO at http://www.
kedri.info).

This information can be utilized to create biologically plausible ANN mod-
els of brain functions and diseases that include models of gene interaction.
This area integrates knowledge from computer and information science, brain
science, molecular genetics and it is called here computational neurogenetic
modeling (CNGM) [40].

A CNGM integrates genetic, proteomic and brain activity data and per-
forms data analysis, modeling, prognosis and knowledge extraction that
reveals relationship between brain functions and genetic information. Let us
look at this process as a process of building mathematical function or a com-
putational algorithm as follows.

A future state of a molecule M′ or a group of molecules (e.g. genes, pro-
teins) depends on its current state M, and on an external signal Em:

M′ = Fm (M, Em) (9)

A future state N′ of a neuron, or an ensemble of neurons, will depend on
its current state N and on the state of the molecules M (e.g. genes) and on
external signals En:

Brain-, Gene-, and Quantum Inspired Computational Intelligence 205

N′ = Fn (N, M, En) (10)

And finally, a future neuronal state C′ of the brain will depend on its
current state C and also on the neuronal-N, and the molecular-M state and
on the external stimuli Ec:

C′ = Fc (C, N, M, Ec) (11)

The above set of equations (or algorithms) is a general one and in different
cases it can be implemented differently, e.g.: one gene – one neuron/brain
function; multiple genes – one neuron/brain function, no interaction between
genes; multiple genes – multiple neuron/brain functions, where genes interact
in a gene regulatory network (GRN) and neurons also interact in a neural
network architecture; multiple genes – complex brain/cognitive function/s,
where genes interact within GRN and neurons interact in several hierarchical
neural networks.

Several CNGM models have been developed so far varying from modeling
a single gene in a biologically realistic ANN model [45], to modeling a set of
genes forming an interaction gene regulatory network (GRN) [11, 4]. In the
next section we give an example of a CNGM that combines SNN and GRN
into one model [4].

4.2 A Computational Neuro-Genetic Model (CNGM)
that Integrates GRN within a SNN Model

The main idea behind the model, proposed in [40], is that interaction of genes
in neurons affect the dynamics of the whole ANN through neuronal parame-
ters, which are no longer constant, but change as a function of gene/protein
expression. Through optimization of the GRN, the initial gene/protein expres-
sion values, and the ANN parameters, particular target states of the ANN can
be achieved, so that the ANN can be tuned to model real brain data in par-
ticular.

This idea is illustrated in fig. 8. The behavior of the SNN is evaluated by
means of the local field potential (LFP), thus making it possible to attempt
modeling the role of genes in different brain states, where EEG data is avail-
able to test the model. A standard FFT signal processing technique is used
to evaluate the SNN output and to compare it with real human EEG data.
Broader theoretical and biological background of CNGM construction is given
in [4].

In general, we consider two sets of genes – a set Ggen that relates to gene-
ral cell functions, and a set Gspec that defines specific neuronal information-
processing functions (receptors, ion channels, etc.). The two sets form together
a set G = {G1, G2, . . . , Gn}. We assume that the expression level of each gene
is a nonlinear function of expression levels of all the genes in G:

gj(t + Δt′) = σ

(
n∑

k=1

wjkgk(t)

)
(12)

206 Nikola Kasabov

Fig. 8. A CNGM, where a GRN is used to represent the interaction of genes,
and a SNN is employed to model a brain function. The model output is compared
against real brain data for validation of the model and for verifying the derived gene
interaction GRN after model optimization is applied [4]

In [4] it is assumed that: (1) one protein is coded by one gene; (2) relation-
ship between the protein level and the gene expression level is nonlinear; (3)
protein levels lie between the minimal and maximal values. Thus, the protein
level is expressed by

pj(t + Δt) =
(
pmax

j − pmin
j

)
σ

(
n∑

k=1

wjkgk(t)

)
+ pmin

j (13)

The delay constant introduced in the formula corresponds to the delay
caused by the gene transcription, mRNA translation into proteins and post-
translational protein modifications, and also the delay caused by gene tran-
scription regulation by transcription factors.

Some proteins and genes are known to be affecting the spiking activity
of a neuron represented in a SNN model by neuronal parameters, such as
fast excitation, fast inhibition, slow excitation, and slow inhibition (see sec-
tion 2). Some neuronal parameters and their correspondence to particular
proteins are summarized in Table 1.

Besides the genes coding for the proteins mentioned above and directly
affecting the spiking dynamics of a neuron, a GRN model can include other
genes relevant to a problem in hand, e.g. modeling a brain function or a brain
disease. In [4] these genes/proteins are: c-jun, mGLuR3, Jerky, BDNF, FGF-2,
IGF-I, GALR1, NOS, S100beta [4].

The goal of the CNGM from fig. 8 is to achieve a desired SNN output
through optimization of the model parameters. The LFP of the SNN, defined
as LFP = (1/N)Σ ui(t), by means of FFT is evaluated in order to compare
the SNN output with the EEG signal analyzed in the same way. It has been
shown that brain LFPs in principle have the same spectral characteristics as
EEG [19].

In order to find an optimal GRN within the SNN model, so that the
frequency characteristics of the LFP of the SNN model are similar to the
brain EEG characteristics, the following evolutionary computation procedure
is used:

Brain-, Gene-, and Quantum Inspired Computational Intelligence 207

Table 1. Neuronal Parameters and Related Proteins
abbreviations: psp = postsynaptic potential, ampar = (amino-
methylisoxazole-propionic acid) ampa receptor, nmdar = (n-methyl-
d-aspartate acid) nmda receptor, gabra = (gamma-aminobutyric acid)
gabaA receptor, gabrb = gabaB receptor, scn = sodium voltage-gated
channel, kcn = kalium (potassium) voltage-gated channel, clc = chloride
channel, pv = parvalbumin.

Neuronal parameter
Protein

Amplitude and time constants of

Fast excitation PSP AMPAR
Slow excitation PSP NMDAR
Fast inhibition PSP GABRA
Slow inhibition PSP GABRB
Firing threshold SCN, KCN, CLC
Late excitatory
PSP through
GABRA

PV

1. Generate a population of CNGMs, each with randomly, but constrained,
generated values of coefficients for the GRN matrix W, initial gene
expression values g(0), initial values of SNN parameters P (0), and dif-
ferent connectivity;

2. Run each SNN model over a period of time T and record the LFP;
3. Calculate the spectral characteristics of the LFP using FFT;
4. Compare the spectral characteristics of SNN LFP to the characteristics of

the target EEG signal. Evaluate the closeness of the LFP signal for each
SNN to the target EEG signal characteristics. Proceed further according
to the standard GA algorithm to find a SNN model that matches the EEG
spectral characteristics better than previous solutions;

5. Repeat steps 1 to 4 until the desired GRN and SNN model behavior is
obtained;

6. Analyze the GRN and the SNN parameters for significant gene patterns
that cause the SNN model to manifest similar spectral characteristics as
the real data.

The proposed CNGM modeling framework can be used to find patterns
of gene regulation related to brain functions. In [4] some preliminary results
of analysis performed on real human interictal EEG data are presented. The
model performance and the real EEG data are compared for the following
relevant to the problem sub-bands: delta (0.5–3.5 Hz), theta (3.5–7.5 Hz), al-
pha (7.5–12.5 Hz), beta 1 (12.5–18 Hz), beta 2 (18–30 Hz), gamma (above
30 Hz). This particular SNN had an evolved GRN with only 5 genes out of
16 (s100beta, GABRB, GABRA, mGLuR3, c-jun) and all other genes hav-
ing constant expression values. A GRN is obtained that has a meaningful

208 Nikola Kasabov

interpretation and can be used to model what will happen if a gene/protein
is suppressed by administering a drug, for example.

In evolving CNGM new genes can be added to the GRN model at a certain
time, in addition to the new spiking neurons and connections created incre-
mentally, as it is in the evolving SNN. Developing new evolving CNGM to
model brain functions and brain diseases, such as epilepsy, Alzheimer, Parkin-
son disease, Schizophrenia, mental retardation and others is a challenging
problem for a future research [11, 4].

4.3 Open Questions

There were some questions that emerged from the first CNGM experiments:

• How many different GRNs would lead to similar LFPs and what do they
have in common?

• What neuronal parameters to include in an ANN model and how to link
them to activities of genes/proteins?

• What genes/proteins to include in the model and how to represent the
gene interaction over time within each neuron?

• How to integrate in time the output activity of the ANN and the genes as
it is known that neurons spike in millisecond intervals and the process of
gene transcription and translation into proteins takes minutes?

• How to create and validate a CNGM in a situation of insufficient data?
• How to measure brain activity and the CNGM activity in order to validate

the model?
• What useful information (knowledge) can be derived from a CNG model?
• How to adapt incrementally a CNGM model in a situation of new incoming

data about brain functions and genes related to them?

Integrating principles from gene- and neuronal information processing in
a single ANN model raises many other, more general, questions that need to
be addressed in the future, for example:

• Is it possible to create a truly adequate CNGM of the whole brain? Would
gene-brain maps help in this respect (see http://alleninstitute.org)?

• How can dynamic CNGM be used to trace over time and predict the
progression of a brain diseases, such as epilepsy and Parkinson’s?

• How to use CNGM to model gene mutation effects?
• How to use CNGM to predict drug effects?
• How CNGM can help understand better brain functions, such as memory

and learning?
• What problems of CI can be efficiently solved with the use of a brain-gene

inspired ANN?

Brain-, Gene-, and Quantum Inspired Computational Intelligence 209

5 Quantum Inspired CI

5.1 Quantum Level of Information Processing

At the quantum level, particles (e.g., atoms, electrons, ions, photons, etc.)
are in a complex evolving state all the time. The atoms are the material
that everything is made of. They can change their characteristics due to the
frequency of external signals. Quantum computation is based upon physical
principles from the theory of quantum mechanics [16].

One of the basic principles is the linear superposition of states. At a macro-
scopic or classical level a system exists only in a single basis state as energy,
momentum, position, spin and so on. However, at microscopic or quantum
level a quantum particle (e.g., atom, electron, positron, ion), or a quantum
system, is in a superposition of all possible basis states. At the microscopic
level any particle can assume different positions at the same time moment,
can have different values of energy, can have different spins, and so on. This
superposition principle is counterintuitive because in the classical physics one
particle has only one position, energy, spin, etc.

If a quantum system interacts in any way with its environment, the super-
position is assumed to be destroyed and the system collapses into one single
real state as in the classical physics (Heisenberg). This process is governed
by a probability amplitude. The square of the intensity for the probability
amplitude is the quantum probability to observe the state.

Another quantum mechanics principle is the entanglement – two or more
particles, regardless of their location, are in the same state with the same
probability function. The two particles can be viewed as “correlated”, undis-
tinguishable, “synchronized”, coherent. An example is a laser beam consisting
of millions of photons having same characteristics and states.

Quantum systems are described by a probability density ψ that exists in
a Hilbert space. The Hilbert space has a set of states |φi〉 forming a basis. A
system can exist in a certain quantum state |ψ〉 which is defined as

|ψ〉 =
∑

ci|φi〉,
∑

|ci|2 = 1 (14)

where the coefficients ci may be complex. |ψ〉 is said to be in a superposition
of the basis states |φi〉. For example, the quantum inspired analogue of a
single bit in classical computers can be represented as a qu-bit in a quantum
computer:

|x〉 = a|0〉+ b|1〉 (15)

where |0〉 and |1〉 represent the states 0 and 1 and a and b their probability
amplitudes respectively. The qu-bit is not a single value entity, but is a function
of parameters which values are complex numbers. After the loss of coherence
the qu-bit will “collapse” into one of the states |0〉 or |1〉 with the probability
a2 for the state |0〉 and probability b2 for the state |1〉.

210 Nikola Kasabov

The state of a quantum particle (represented for example as a qu-bit)
can be changed by an operator called quantum gate. A quantum gate is a
reversible gate and can be represented as a unitary operator U acting on the
qu-bit basis states. The defining property of an unitary matrix is that its
conjugate transpose is equal to its inverse. There are several quantum gates
already introduced, such as the NOT gate, controlled NOT gate, rotation
gate, Hadamard gate, etc. (see [29, 31, 32, 33]).

5.2 Why Quantum Inspired CI?

Quantum mechanical computers and quantum algorithms try to exploit the
massive quantum parallelism which is expressed in the principle of superposi-
tion. The principle of superposition can be applied to many existing methods
of CI, where instead of a single state (e.g. a parameter value, or a finite
automaton state, or a connection weight, etc.) a superposition of states will
be used, described by a wave probability function, so that all these states will
be computed in parallel, resulting in an increased speed of computation by
many orders of magnitude [6, 24, 25, 29, 30, 31, 32, 33, 47, 48, 49, 50].

Quantum mechanical computers were proposed in the early 1980s and a
description was formalized in the late 1980s. These computers, when imple-
mented, are expected to be superior to classical computers in various special-
ized problems. Many efforts were undertaken to extend the principal ideas of
quantum mechanics to other fields of interest. There are well known quan-
tum algorithms such as Shor’s quantum factoring algorithm [61] and Grover’s
database search algorithm [24, 31].

The advantage of quantum computing is that, while a system is uncol-
lapsed, it can carry out more computing than a collapsed system, because,
in a sense, it is computing in many universes at once. The above quantum
principles have inspired research in both computational methods and brain
study.

New theories (some of them, speculative at this stage) have been already
formulated. For example, Penrose [48, 49] argues that solving the quantum
measurement problem is pre-requisite for understanding the mind and that
consciousness emerges as a macroscopic quantum state due to a coherence of
quantum-level events within neurons.

5.3 Quantum Inspired Evolutionary Computation
and Connectionist Models

Quantum inspired methods of evolutionary computation (QIEC) and other
techniques have been already proposed and discussed in [25, 32] that include:
genetic programming [63], particle swarm optimizers [43], finite automata and
Turing machines, etc.

Brain-, Gene-, and Quantum Inspired Computational Intelligence 211

In QIEC, a population of n qu-bit individuals at time t can be represented
as:

Q(t) =
{
qt
1, q

t
2, . . . , q

t
n

}
(16)

where n is the size of the population.
Evolutionary computing with qu-bit representation has a better character-

istic of population diversity than other representations, since it can represent
linear superposition of states probabilistically. The qu-bit representation leads
to a quantum parallelism of the system as it is possible to evaluate the fitness
function on a superposition of possible inputs. The output obtained is also
in the form of superposition which needs to be collapsed to get the actual
solution.

Recent research activities focus on using quantum principles for ANN
[15, 47, 65, 66, 68]. Considering quantum ANN seems to be important for
at least two reasons. There is evidence for the role that quantum processes
play in the living brain. Roger Penrose argued that a new physics binding
quantum phenomena with general relativity can explain such mental abilities
as understanding, awareness and consciousness [49]. The second motivation
is the possibility that the field of classical ANN could be generalized to the
promising new field of quantum computation [6]. Both considerations suggest
a new understanding of mind and brain functions as well as new unprece-
dented abilities in information processing. Ezhov and Ventura are considering
the quantum neural networks as the next natural step in the evolution of
neurocomputing systems [15].

Several quantum inspired ANN models have been proposed and illustrated
on small examples. In [68] QIEA is used to train a MLP ANN. Narayanan and
Meneer simulated classical and quantum inspired ANN and compared their
performance [47]. Their work suggests that there are indeed certain types of
problems for which quantum neural networks will prove superior to classical
ones.

Other relevant work includes quantum decision making, quantum learning
models [42], quantum networks for signal recognition [66], quantum associative
memory [65, 69]. There are also recent approaches to quantum competitive
learning where the quantum system’s potential for excellent performance is
demonstrated on real-world data sets [70, 72].

6 Towards the Integration of Brain-, Gene-,
and Quantum Information Processing Principles:
A Conceptual Framework for a Future Research

6.1 Quantum Inspired SNN

In section 4 we presented a computational neuro-genetic model (CNGM) that
integrated principles from neuronal information processing and gene informa-
tion processing in the form of integrating SNN with GRN. Following some

212 Nikola Kasabov

ideas from QI-ANN, we can expect that a QI-SNN and QI-CNGM would
open new possibilities for modelling gene-neuron interactions related to brain
functions and to new efficient AI applications.

The CNGM from section 4 linked principles of information processing in
gene/protein molecules with neuronal spiking activity, and then – to the
information processing of a neuronal ensemble, that is measured as local field
potentials (LFP). How the quantum information processes in the atoms and
particles (ions, electrons, etc), that make the large gene/protein molecules,
relate to the spiking activity of a neuron and to the activity of a neuronal
ensemble, is not known yet and it is a challenging question for the future.

What is known at present, is that the spiking activity of a neuron relates to
the transmission of ions and neurotransmitter molecules across the synaptic
clefts and to the emission of spikes. Spikes, as carriers of information, are elec-
trical signals made of particles that are emitted in one neuron and transmitted
along the nerves to many other neurons. These particles are characterised by
their quantum properties. So, quantum properties may influence, under cer-
tain conditions, the spiking activity of neurons and of the whole brain, as
brains obey the laws of quantum mechanics (as everything else in the mater-
ial world does).

Similarly to a chemical effect of a drug to the protein and gene expression
levels in the brain, that may affect the spiking activity and the functioning
of the whole brain (modelling of these effects is subject of the computational
neurogenetic modeling), external factors like radiation, light, high frequency
signals etc. can influence the quantum properties of the particles in the brain
through gate operators. According to Penrose [49] microtubules in the neurons
are associated with quantum gates, even though what constitutes a quantum
gate in the brain is still a highly speculative topic.

So, the question is: Is it possible to create a SNN model and a CNGM that
incorporate some quantum principles?

A quantum inspired SNN (QI-SNN) can be developed as an extension of
the concept of evolving SNN [71] using the superposition principle, where
instead of many SNN maps, each representing one object (e.g. a face), there
will be a single SNN, where both connections and the neurons are represented
as particles, being in many states at the same time defined as probability
wave function. When an input vector is presented to the QI-SNN, the network
collapses in a single SNN defining the class of the recognised input vector.

6.2 A Conceptual Framework of a QI-CNGM

Here we extend the concept of CNGM (see eq. 9–11) introducing the level of
quantum information processing. That results in a conceptual and hypothet-
ical QI-CNGM, we intend to investigate and develop as a future research.

The following is a list of equations that include quantum particle states and
functions (hypothetical at this stage) into the equations eq. 9–11 (equations

Brain-, Gene-, and Quantum Inspired Computational Intelligence 213

18–20), starting with a new equation (17) that is concerned only with the
level of quantum particle states:

A future state Q′ of a particle or a group of particles (e.g. ions, electrons,
etc.) depends on the current state Q and on the frequency spectrum Eq of an
external signal, according to the Max Planck constant:

Q′ = Fq (Q, Eq)), (17)

A future state of a molecule M′ or a group of molecules (e.g. genes, pro-
teins) depends on its current state M, on the quantum state Q of the particles,
and on an external signal Em:

M′ = Fm (Q, M, Em), (18)

A future state N′ of a spiking neuron, or an ensemble of neurons will
depend on its current state N, on the state of the molecules M, on the state
of the particles Q and on external signals En:

N′ = Fn (N, M, Q, En), (19)

And finally, a future neuronal state C′ of the brain will depend on its
current state C and also on the neuronal N, on the molecular M, and on the
quantum Q states of the brain:

C′ = Fc (C, N, M, Q, Ec), (20)

The above hypothetical model of integrated function representations is
based on the following assumptions:

• A large amount of atoms are characterised by the same quantum pro-
perties, possibly related to the same gene/protein expression profile of
a large amount of neurons characterised by spiking activity that can be
represented as a function.

• A large neuronal ensemble can be represented by a single LFP function.
• A cognitive process can be represented, at an abstract level, as a function

Fc that depends on all lower levels of neuronal, genetic and quantum
activities.

6.3 Open Questions

Several reasons can be given in support to the research in integrating principles
from quantum-, molecular-, and brain information processing into future CI
models:

• This may lead to a better understanding of neuronal-,molecular-, and
quantum information processes.

• This may lead to new computer devices – exponentially faster and more
accurate than the current ones.

• At the nano-level of microelectronic devices, quantum processes would
have a significant impact and new methods of computation would be
needed anyway.

214 Nikola Kasabov

7 Conclusions and Directions for Further Research

This chapter presents some CI models inspired by principles from diffe-
rent levels of information processing in the brain – including neuronal level,
gene/protein level, and quantum level, and argues that CI models that inte-
grate principles from different levels of information processing would be useful
tools for a better understanding of brain functions and for the creation of more
powerful methods and systems of computational intelligence.

Many open questions need to be answered in the future, some of them are
listed below:

• How quantum processes affect the functioning of a living system in general?
• How quantum processes affect cognitive and mental functions?
• Is it true that the brain is a quantum machine – working in a probabilistic

space with many states (e.g. thoughts) being in a superposition all the
time and only when we formulate our thought through speech or writing,
then the brain “collapses” in a single state?

• Is fast pattern recognition in the brain, involving far away segments, a
result of both parallel spike transmissions and particle entanglement?

• Is communication between people and between living organisms in general,
a result of entanglement processes?

• How does the energy in the atoms relate to the energy of the proteins, the
cells and the whole brain?

• Would it be beneficial to develop different quantum inspired (QI) com-
putational intelligence techniques, such as: QI-SVM, QI-GA, QI-decision
trees, QI-logistic regression, QI-cellular automata, QI-ALife?

• How do we implement the QI computational intelligence algorithms in
order to benefit from their high speed and accuracy? Should we wait for
the quantum computers to be realised many years from now, or we can
implement them efficiently on specialised computing devices based on clas-
sical principles of physics?

Further directions in our research are:

• Building a brain–gene-quantum ontology system that integrates facts,
information, knowledge and CI models of different levels of information
processing in the brain and their interaction.

• Building novel brain-, gene-, and quantum inspired CI models, studying
their characteristics and interpreting the results.

• Applying the new methods to solving complex CI problems in neuro-
informatics and brain diseases, bioinformatics and cancer genetics, multi-
modal information processing and biometrics.

Acknowledgement

The paper is supported partially by a grant AUTX0201 funded by the
Foundation of Research Science and Technology of New Zealand and also

Brain-, Gene-, and Quantum Inspired Computational Intelligence 215

by the Knowledge Engineering and Discovery Research Institute KEDRI
(http://www.kedri.info), Auckland University of Technology.

References

[1] Amari S, Kasabov N (1998) Brain-like Computing and Intelligent Infor-
mation Systems. Springer Verlag, New York

[2] Arbib M (1987) Brains, Machines and Mathematics. Springer-Verlag,
Berlin.

[3] Arbib M (eds) (2003) The Handbook of Brain Theory and Neural Net-
works, MIT Press, Cambridge, MA.

[4] Benuskova, L. and N. Kasabov (2007) Computational Neurogenetic Mod-
elling, Springer, New York.

[5] Bishop C (1995) Neural networks for pattern recognition. Oxford Uni-
versity Press, Oxford, UK

[6] Brooks, M. (1999) Quantum computing and communications, Springer
Verlag, Berlin/Heidelberg.

[7] Brown, C., Shreiber, M., Chapman, B., and Jacobs, G. (2000) Informa-
tion science and bioinformatics, in: N.Kasabov, ed, Future directions of
intelligent systems and information sciences, Physica Verlag (Springer
Verlag), 251–287

[8] Carpenter G, Grossberg S, Markuzon N, Reynolds JH, Rosen DB (1991)
Fuzzy ARTMAP: A neural network architecture for incremental super-
vised learning of analogue multi-dimensional maps. IEEE Trans of Neural
Networks 3(5): 698–713.

[9] Carpenter G, Grossberg S (1991) Pattern recognition by self-organizing
neural networks. Massachusetts. The MIT Press, Cambridge, MA, U.S.A.

[10] Chan, Z., N.Kasabov, Lesley Collins (2006) A Two-Stage Methodology for
Gene Regulatory Network Extraction from Time-Course Gene Expres-
sion Data, Expert Systems with Applications: An International Journal
(ISSN: 0957-4174), Special issue on Intelligent Bioinformatics Systems,
59–63.

[11] Chin, H., Moldin, S. (eds) (2001) Methods in Genomic Neuroscience,
CRC Press.

[12] Collin P. Williams, Scott H. Clearwater (1998) Explorations in Quantum
Computing, ISBN: 038794768X, Berlin, Germany: Springer-Verlag.

[13] Destexhe A (1998) Spike-and-wave oscillations based on the properties
of GABA B receptors. J Neurosci 18: 9099–9111.

[14] Dimitrov, D. S, I. Sidorov and N. Kasabov (2004) Computational Bio-
logy, in: M. Rieth and W. Sommers (eds) Handbook of Theoretical and
Computational Nanotechnology, Vol. 6 American Scientific Publisher,
Chapter 1.

216 Nikola Kasabov

[15] Ezhov, A. and D. Ventura (2000) Quantum neural networks, in:
N. Kasabov (ed) Future Directions for Intelligent Systems and Infor-
mation Sciences, Springer Verlag.

[16] Feynman, R. P., R. B. Leighton, and M. Sands (1965) The Feynman Lec-
tures on Physics, Addison-Wesley Publishing Company, Massachusetts.

[17] Fogel DB (1995) Evolutionary Computation – Toward a New Philosophy
of Machine Intelligence. IEEE Press, New York.

[18] Freeman J, Saad D (1997) On-line learning in radial basis function net-
works. Neural Computation 9 (7)

[19] Freeman W (2000) Neurodynamics. Springer-Verlag, London.
[20] Fritzke B (1995) A growing neural gas network learns topologies.

Advances in Neural Information Processing Systems 7: 625–632.
[21] Gerstner W, Kistler WM (2002) Spiking Neuron Models. Cambridge

Univ. Press, Cambridge, MA.
[22] Grossberg S (1969) On learning and energy – entropy dependence in

recurrent and nonrecurrent signed networks. J Stat Phys 1: 319–350.
[23] Grossberg S (1982) Studies of Mind and Brain. Reidel, Boston.
[24] Grover, L. K. (1996) A fast quantum mechanical algorithm for data-

base search, in STOC ’96: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, New York, NY, USA, ACM Press,
212–219.

[25] Han, K.-H. and J.-H. Kim (2002) Quantum-inspired evolutionary algo-
rithm for a class of combinatorial optimization, IEEE Transactions on
Evolutionary Computation, 580–593.

[26] Haykin S (1994) Neural Networks – A Comprehensive Foundation. Pren-
tice Hall, Engelwood Cliffs, NJ.

[27] Hebb D (1949) The Organization of Behavior. John Wiley and Sons, New
York.

[28] Heskes TM, Kappen B (1993) On-line learning processes in artificial
neural networks. In: (eds) Mathematic Foundations of Neural Networks,
vol. Elsevier, Amsterdam, 199–233.

[29] Hey, T. (1999) Quantum computing: An introduction, Computing & Con-
trol Engineering Journal, Piscataway, NJ: IEEE Press, June, vol. 10, no.
3, 105–112.

[30] Hinton GE (1989) Connectionist learning procedures. Artificial Intelli-
gence 40: 185–234.

[31] Hogg, T. and D. Portnov (2000), Quantum optimization, Information
Sciences, 128, 181–197.

[32] Jang, J.-S., K.-H. Han, and J.-H. Kim (2003) Quantum-inspired evo-
lutionary algorithm-based face verification, Lecture Notes in Computer
Science, 2147–2156.

[33] Kak, S.C. Quantum neural computation, Research report, Louisiana
State University, Dep. Electr. and Comp. Eng., Baton Rouge, LA 70803-
5901, USA

Brain-, Gene-, and Quantum Inspired Computational Intelligence 217

[34] Kasabov N (1996) Foundations of Neural Networks, Fuzzy Systems and
Knowledge Engineering. The MIT Press, CA, MA

[35] Kasabov N (1998) Evolving Fuzzy Neural Networks – Algorithms,
Applications and Biological Motivation. In: Yamakawa T, Matsumoto
G (eds) Methodologies for the conception, design and application of soft
computing, World Scientific, 271–274.

[36] Kasabov N (2001) Evolving fuzzy neural networks for on-line super-
vised/unsupervised, knowledge–based learning. IEEE Trans. SMC –
part B, Cybernetics 31(6): 902–918

[37] Kasabov N. (2007) Evolving connectionist systems: The Knowledge
Engineering Approach, Springer Verlag, London, New York, Heidelberg,
in print (first edition 2002)

[38] Kasabov N, Song Q (2002) DENFIS: Dynamic, evolving neural-fuzzy
inference systems and its application for time-series prediction. IEEE
Trans. on Fuzzy Systems 10:144–154

[39] Kasabov N., Chan, S. H., Jain, V., Sidirov, I., and Dimitrov S. D. (2004)
Gene Regulatory Network Discovery from Time-Series Gene Expression
Data – A Computational Intelligence Approach, Lecture Notes in Com-
puter science (LNCS), Springer-Verlag, Vol. 3316, 1344–1353.

[40] Kasabov N. and L. Benuskova (2004)Computational Neurogenetics,
International Journal of Theoretical and Computational Nanoscience,
Vol. 1 (1) American Scientific Publisher, 2004, 47–61.

[41] Kohonen T (1997) Self-Organizing Maps. Springer, Verlag.
[42] Kouda, N., N. Matsui, H. Nishimura, and F. Peper (2005) Qu-bit neural

network and its learning efficiency, Neural Comput. Appl., 14, 114–121.
[43] Liu, J., W. Xu, and J. Sun, Quantum-behaved particle swarm optimiza-

tion with mutation operator, in 17th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’05), 2005.

[44] Maass W, Bishop CM (eds) (1999) Pulsed Neural Networks, The MIT
Press, Cambridge, MA.

[45] Marcus G (2004) The Birth of the Mind: How a Tiny Number of Genes
Creates the Complexity of the Human Mind. Basic Books, New York.

[46] Moody J, Darken C (1989) Fast learning in networks of locally-tuned
processing units Neural Computation 1: 281–294

[47] Narayanan, A. and T. Meneer, Quantum artificial neural network archi-
tectures and components, Information Sciences, (2000), 199–215.

[48] Penrose, R., Shadows of the mind. A search for the missing science of
consciousness, Oxford University Press, 1994.

[49] Penrose, R., The Emperor’s new mind, Oxford Univ.Press, Oxford, 1989
[50] Perkowski, M.A. Multiple-valued quantum circuits and research chal-

lenges for logic design and computational intelligence communities, IEEE
Comp.Intelligence Society Magazine, November, 2005

[51] Platt, J (1991) A resource allocating network for function interpolation.
Neural Computation 3: 213–225

218 Nikola Kasabov

[52] Poggio T (1994) Regularization theory, radial basis functions and net-
works. In: From Statistics to Neural Networks: Theory and Pattern
Recognition Applications. NATO ASI Series, No.136, 83–104

[53] Pribram, K. (1993) Rethinking Neural Networks: Quantum Fields and
Biological data. Proceeding of the first Appalachian Conference on beha-
vioral Neurodynamics. Lawrence Erlbaum Associates Publishers, Hills-
date new Yersy

[54] Resconi, G. and A.J.van Der Wal (2000), A data model for the morpho-
genetic neuron, Int.J.General Systems,Vol.29(1), 141–149.

[55] Resconi, G., G.J.Klir, E.Pessa (1999), Conceptual Foundations of quan-
tum mechanics the role of evidence theory, quantum sets and modal logic.
International Journal of Modern Physics C. Vol.10 No.1, 29–62

[56] Rolls, E. and A.Treves (1998) Neural Networks and Brain Function,
Oxford University Press

[57] Rosenblatt F (1962) Principles of Neurodynamics. Spartan Books, New
York.

[58] Rumelhart DE, Hinton GE, Williams RJ (eds) (1986) Learning inter-
nal representations by error propagation. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, MIT Press / Bradford
Books, Cambridge, MA.

[59] Rummery GA, Niranjan M (1994) On-line Q-learning using connection-
ist system. Cambridge University Engineering Department, CUED/F-
INENG/TR, pp 166

[60] Schaal S, Atkeson C (1998) Constructive incremental learning from only
local information. Neural Computation 10: 2047–2084

[61] Shor, P. W. (1997) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J. Comput., 26,
1484–1509.

[62] Song Q, Kasabov N (2005) TWNFI – Transductive Neural-Fuzzy Infer-
ence System with Weighted Data Normalization and Its Application in
Medicine. IEEE Tr Fuzzy Systems, December, Vol.13, 6, 799–808

[63] Spector, L. (2004) Automatic Quantum Computer Programming: A
Genetic Programming Approach, Kluwer Academic Publishers, 2004.

[64] Taylor JG (1999) The Race for Consciousness. MIT Press, Cambridge,
MA.

[65] Trugenberger, C. A. (2002) Quantum pattern recognition, Quantum
Information Processing, 1, pp. 471–493.

[66] Tsai, X.-Y., H.-C. Huang, and S.-J. Chuang (2005) Quantum NN vs. NN
in signal recognition, in ICITA’05: Proceedings of the Third International
Conference on Information Technology and Applications (ICITA’05) Vol-
ume 2, Washington, DC, USA, IEEE Computer Society, pp. 308–312.

[67] Vapnik V (1998) Statistical Learning Theory. John Wiley & Sons Inc.
[68] Venayagamoorthy, G. K and Gaurav, S. (2006) Quantum-Inspired Evolu-

tionary Algorithms and Binary Particle Swarm Optimization for Training

Brain-, Gene-, and Quantum Inspired Computational Intelligence 219

MLP and SRN Neural Networks, Journal of Theoretical and Computa-
tional Nanoscience, January.

[69] Ventura, D. and T. Martinez (2000) Quantum associative memory, Inf.
Sci. Inf. Comput. Sci., 124, 273–296.

[70] Ventura, D.(1999) Implementing competitive learning in a quantum sys-
tem, in Proceedings of the International Joint Conference of Neural Net-
works, IEEE Press.

[71] Wysoski, S., L. Benuskova and N. Kasabov (2006) On-line learning with
structural adaptation in a network of spiking neurons for visual pattern
recognition, Proc. ICANN 2006, LNCS, Springer, Part I, Vol.413, 61–70

[72] Xie, G. and Z. Zhuang (2003) A quantum competitive learning algorithm,
Liangzi Dianzi Xuebao/Chinese Journal of Quantum Electronics (China),
20, 42–46.

[73] Yamakawa T, Kusanagi H, Uchino E, Miki T (1993) A new Effective
Algorithm for Neo Fuzzy neuron Model, In: Proc. Fifth IFSA World
Congress, IFSA, Seoul, Korea, pp 1017–1020.

[74] Yao X (1993) Evolutionary artificial neural networks. Intl J Neural Sys-
tems 4(3): 203–222.

[75] Zadeh LA (1965) Fuzzy Sets. Information and Control 8: 338–353.

The Science of Pattern Recognition.
Achievements and Perspectives

Robert P.W. Duin1 and Elżbieta P ↪ekalska2

1 ICT group, Faculty of Electr. Eng., Mathematics and Computer Science
Delft University of Technology, The Netherlands
r.duin@ieee.org

2 School of Computer Science, University of Manchester, United Kingdom
pekalska@cs.man.ac.uk

Summary. Automatic pattern recognition is usually considered as an engineer-
ing area which focusses on the development and evaluation of systems that imi-
tate or assist humans in their ability of recognizing patterns. It may, however, also
be considered as a science that studies the faculty of human beings (and possibly
other biological systems) to discover, distinguish, characterize patterns in their en-
vironment and accordingly identify new observations. The engineering approach to
pattern recognition is in this view an attempt to build systems that simulate this
phenomenon. By doing that, scientific understanding is gained of what is needed in
order to recognize patterns, in general.

Like in any science understanding can be built from different, sometimes even
opposite viewpoints. We will therefore introduce the main approaches to the science
of pattern recognition as two dichotomies of complementary scenarios. They give
rise to four different schools, roughly defined under the terms of expert systems,
neural networks, structural pattern recognition and statistical pattern recognition.
We will briefly describe what has been achieved by these schools, what is common
and what is specific, which limitations are encountered and which perspectives arise
for the future. Finally, we will focus on the challenges facing pattern recognition in
the decennia to come. They mainly deal with weaker assumptions of the models to
make the corresponding procedures for learning and recognition wider applicable.
In addition, new formalisms need to be developed.

1 Introduction

We are very familiar with the human ability of pattern recognition. Since
our early years we have been able to recognize voices, faces, animals, fruits
or inanimate objects. Before the speaking faculty is developed, an object like
a ball is recognized, even if it barely resembles the balls seen before. So, except
for the memory, the skills of abstraction and generalization are essential to
find our way in the world. In later years we are able to deal with much more

Robert P.W. Duin and Elżbieta P ↪ekalska: The Science of Pattern Recognition. Achievements

and Perspectives, Studies in Computational Intelligence (SCI) 63, 221–259 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

222 Robert P.W. Duin and Elżbieta P ↪ekalska

complex patterns that may not directly be based on sensorial observations.
For example, we can observe the underlying theme in a discussion or subtle
patterns in human relations. The latter may become apparent, e.g. only by
listening to somebody’s complaints about his personal problems at work that
again occur in a completely new job. Without a direct participation in the
events, we are able to see both analogy and similarity in examples as complex
as social interaction between people. Here, we learn to distinguish the pattern
from just two examples.

The pattern recognition ability may also be found in other biological sys-
tems: the cat knows the way home, the dog recognizes his boss from the
footsteps or the bee finds the delicious flower. In these examples a direct con-
nection can be made to sensory experiences. Memory alone is insufficient; an
important role is that of generalization from observations which are similar,
although not identical to the previous ones. A scientific challenge is to find
out how this may work.

Scientific questions may be approached by building models and, more
explicitly, by creating simulators, i.e. artificial systems that roughly exhibit
the same phenomenon as the object under study. Understanding will be gained
while constructing such a system and evaluating it with respect to the real
object. Such systems may be used to replace the original ones and may even
improve some of their properties. On the other hand, they may also perform
worse in other aspects. For instance, planes fly faster than birds but are far
from being autonomous. We should realize, however, that what is studied in
this case may not be the bird itself, but more importantly, the ability to fly.
Much can be learned about flying in an attempt to imitate the bird, but also
when differentiating from its exact behavior or appearance. By constructing
fixed wings instead of freely movable ones, the insight in how to fly grows.
Finally, there are engineering aspects that may gradually deviate from the
original scientific question. These are concerned with how to fly for a long
time, with heavy loads, or by making less noise, and slowly shift the point of
attention to other domains of knowledge.

The above shows that a distinction can be made between the scientific
study of pattern recognition as the ability to abstract and generalize from
observations and the applied technical area of the design of artificial pattern
recognition devices without neglecting the fact that they may highly profit
from each other. Note that patterns can be distinguished on many levels,
starting from simple characteristics of structural elements like strokes, through
features of an individual towards a set of qualities in a group of individuals,
to a composite of traits of concepts and their possible generalizations. A pat-
tern may also denote a single individual as a representative for its population,
model or concept. Pattern recognition deals, therefore, with patterns, regular-
ities, characteristics or qualities that can be discussed on a low level of sensory
measurements (such as pixels in an image) as well as on a high level of the
derived and meaningful concepts (such as faces in images). In this work, we
will focus on the scientific aspects, i.e. what we know about the way pattern

The Science of Pattern Recognition. Achievements and Perspectives 223

recognition works and, especially, what can be learned from our attempts to
build artificial recognition devices.

A number of authors have already discussed the science of pattern recog-
nition based on their simulation and modeling attempts. One of the first, in
the beginning of the sixties, was Sayre [64], who presented a philosophical
study on perception, pattern recognition and classification. He made clear
that classification is a task that can be fulfilled with some success, but recog-
nition either happens or not. We can stimulate the recognition by focussing
on some aspects of the question. Although we cannot set out to fully recog-
nize an individual, we can at least start to classify objects on demand. The
way Sayre distinguishes between recognition and classification is related to
the two subfields discussed in traditional texts on pattern recognition, namely
unsupervised and supervised learning. They fulfill two complementary tasks.
They act as automatic tools in the hand of a scientist who sets out to find the
regularities in nature.

Unsupervised learning (also related to exploratory analysis or cluster
analysis) gives the scientist an automatic system to indicate the presence of
yet unspecified patterns (regularities) in the observations. They have to be
confirmed (verified) by him. Here, in the terms of Sayre, a pattern is recog-
nized. Supervised learning is an automatic system that verifies (confirms)
the patterns described by the scientist based on a representation defined by
him. This is done by an automatic classification followed by an evaluation.

In spite of Sayre’s discussion, the concepts of pattern recognition and
classification are still frequently mixed up. In our discussion, classification
is a significant component of the pattern recognition system, but unsuper-
vised learning may also play a role there. Typically, such a system is first
presented with a set of known objects, the training set, in some convenient
representation. Learning relies on finding the data descriptions such that the
system can correctly characterize, identify or classify novel examples. After
appropriate preprocessing and adaptations, various mechanisms are employed
to train the entire system well. Numerous models and techniques are used and
their performances are evaluated and compared by suitable criteria. If the fi-
nal goal is prediction, the findings are validated by applying the best model
to unseen data. If the final goal is characterization, the findings may be vali-
dated by complexity of organization (relations between objects) as well as by
interpretability of the results.

Fig. 1 shows the three main stages of pattern recognition systems: Repre-
sentation, Generalization and Evaluation, and an intermediate stage of Adap-
tation [20]. The system is trained and evaluated by a set of examples, the
Design Set. The components are:

• Design Set. It is used both for training and validating the system. Given
the background knowledge, this set has to be chosen such that it is repre-
sentative for the set of objects to be recognized by the trained system.

224 Robert P.W. Duin and Elżbieta P ↪ekalska

Background knowledge

Design Set

Sensor Representation Adaptation Generalization

Evaluation

A

B

Fig. 1. Components of a pattern recognition system

There are various approaches how to split it into suitable subsets for train-
ing, validation and testing. See e.g. [22, 32, 62, 77] for details.

• Representation. Real world objects have to be represented in a formal
way in order to be analyzed and compared by mechanical means such as
a computer. Moreover, the observations derived from the sensors or other
formal representations have to be integrated with the existing, explicitly
formulated knowledge either on the objects themselves or on the class
they may belong to. The issue of representation is an essential aspect of
pattern recognition and is different from classification. It largely influences
the success of the stages to come.

• Adaptation. It is an intermediate stage between Representation and Gen-
eralization, in which representations, learning methodology or problem
statement are adapted or extended in order to enhance the final recogni-
tion. This step may be neglected as being transparent, but its role is essen-
tial. It may reduce or simplify the representation, or it may enrich it by em-
phasizing particular aspects, e.g. by a nonlinear transformation of features
that simplifies the next stage. Background knowledge may appropriately
be (re)formulated and incorporated into a representation. If needed, ad-
ditional representations may be considered to reflect other aspects of the
problem. Exploratory data analysis (unsupervised learning) may be used
to guide the choice of suitable learning strategies.

• Generalization or Inference. In this stage we learn a concept from a
training set, the set of known and appropriately represented examples, in
such a way that predictions can be made on some unknown properties of
new examples. We either generalize towards a concept or infer a set of
general rules that describe the qualities of the training data. The most
common property is the class or pattern it belongs to, which is the above
mentioned classification task.

• Evaluation. In this stage we estimate how our system performs on known
training and validation data while training the entire system. If the results
are unsatisfactory, then the previous steps have to be reconsidered.

Different disciplines emphasize or just exclusively study different parts of
this system. For instance, perception and computer vision deal mainly with

The Science of Pattern Recognition. Achievements and Perspectives 225

the representation aspects [21], while books on artificial neural networks [62],
machine learning [4, 53] and pattern classification [15] are usually restricted
to generalization. It should be noted that these and other studies with the
words “pattern” and “recognition” in the title often almost entirely neglect
the issue of representation. We think, however, that the main goal of the field
of pattern recognition is to study generalization in relation to representation
[20].

In the context of representations, and especially images, generalization
has been thoroughly studied by Grenander [36]. What is very specific and
worthwhile is that he deals with infinite representations (say, unsampled im-
ages), thereby avoiding the frequently returning discussions on dimensionality
and directly focussing on a high, abstract level of pattern learning. We like
to mention two other scientists that present very general discussions on the
pattern recognition system: Watanabe [75] and Goldfarb [31, 32]. They both
emphasize the structural approach to pattern recognition that we will discuss
later on. Here objects are represented in a form that focusses on their struc-
ture. A generalization over such structural representations is very difficult if
one aims to learn the concept, i.e. the underlying, often implicit definition
of a pattern class that is able to generate possible realizations. Goldfarb ar-
gues that traditionally used numeric representations are inadequate and that
an entirely new, structural representation is necessary. We judge his research
program as very ambitious, as he wants to learn the (generalized) structure
of the concept from the structures of the examples. He thereby aims to make
explicit what usually stays implicit. We admit that a way like his has to be
followed if one ever wishes to reach more in concept learning than the ability
to name the right class with a high probability, without having built a proper
understanding.

In the next section we will discuss and relate well-known general scientific
approaches to the specific field of pattern recognition. In particular, we like
to point out how these approaches differ due to fundamental differences in
the scientific points of view from which they arise. As a consequence, they
are often studied in different traditions based on different paradigms. We will
try to clarify the underlying cause for the pattern recognition field. In the
following sections we sketch some perspectives for pattern recognition and
define a number of specific challenges.

2 Four Approaches to Pattern Recognition

In science, new knowledge is phrased in terms of existing knowledge. The
starting point of this process is set by generally accepted evident views, or
observations and facts that cannot be explained further. These foundations,
however, are not the same for all researchers. Different types of approaches
may be distinguished originating from different starting positions. It is almost
a type of taste from which perspective a particular researcher begins. As a

226 Robert P.W. Duin and Elżbieta P ↪ekalska

consequence, different ‘schools’ may arise. The point of view, however, deter-
mines what we see. In other words, staying within a particular framework of
thought we cannot achieve more than what is derived as a consequence of
the corresponding assumptions and constraints. To create more complete and
objective methods, we may try to integrate scientific results originating from
different approaches into a single pattern recognition model. It is possible that
confusion arises on how these results may be combined and where they essen-
tially differ. But the combination of results of different approaches may also
appear to be fruitful, not only for some applications, but also for the scientific
understanding of the researcher that broadens the horizon of allowable start-
ing points. This step towards a unified or integrated view is very important
in science as only then a more complete understanding is gained or a whole
theory is built.

Below we will describe four approaches to pattern recognition which arise
from two different dichotomies of the starting points. Next, we will present
some examples illustrating the difficulties of their possible interactions. This
discussion is based on earlier publications [16, 17].

2.1 Platonic and Aristotelian Viewpoints

Two principally different approaches to almost any scientific field rely on the
so-called Platonic and Aristotelian viewpoints. In a first attempt they may
be understood as top-down and bottom-up ways of building knowledge. They
are also related to deductive (or holistic) and inductive (or reductionistic)
principles. These aspects will be discussed in Section 4.

The Platonic approach starts from generally accepted concepts and global
ideas of the world. They constitute a coherent picture in which many details
are undefined. The primary task of the Platonic researcher is to recognize in
his3 observations the underlying concepts and ideas that are already accepted
by him. Many theories of the creation of the universe or the world rely on
this scenario. An example is the drifts of the continents or the extinction of
the mammoths. These theories do not result from a reasoning based on obser-
vations, but merely from a more or less convincing global theory (depending
on the listener!) that seems to extrapolate far beyond the hard facts. For
the Platonic researcher, however, it is not an extrapolation, but an adapta-
tion of previous formulations of the theory to new facts. That is the way this
approach works: existing ideas that have been used for a long time are grad-
ually adapted to new incoming observations. The change does not rely on an
essential paradigm shift in the concept, but on finding better, more appro-
priate relations with the observed world in definitions and explanations. The
essence of the theory has been constant for a long time. So, in practise the

3 For simplicity, we refer to researchers in a male form; we mean both women and
men.

The Science of Pattern Recognition. Achievements and Perspectives 227

Platonic researcher starts from a theory which can be stratified into to a num-
ber of hypotheses that can be tested. Observations are collected to test these
hypotheses and, finally, if the results are positive, the theory is confirmed.

The observations are of primary interest in the Aristotelian approach. Sci-
entific reasoning stays as closely as possible to them. It is avoided to speculate
on large, global theories that go beyond the facts. The observations are always
the foundation on which the researcher builds his knowledge. Based on them,
patterns and regularities are detected or discovered, which are used to formu-
late some tentative hypotheses. These are further explored in order to arrive
at general conclusions or theories. As such, the theories are not global, nor
do they constitute high level descriptions. A famous guideline here is the so-
called Occam’s razor principle that urges one to avoid theories that are more
complex than strictly needed for explaining the observations. Arguments may
arise, however, since the definition of complexity depends, e.g. on the mathe-
matical formalism that is used.

The choice for a particular approach may be a matter of preference or
determined by non-scientific grounds, such as upbringing. Nobody can judge
what the basic truth is for somebody else. Against the Aristotelians may be
held that they do not see the overall picture. The Platonic researchers, on
the other hand, may be blamed for building castles in the air. Discussions
between followers of these two approaches can be painful as well as fruitful.
They may not see that their ground truths are different, leading to pointless
debates. What is more important is the fact that they may become inspired
by each other’s views. One may finally see real world examples of his concepts,
while the other may embrace a concept that summarizes, or constitutes an
abstraction of his observations.

2.2 Internal and the External Observations

In the contemporary view science is ‘the observation, identification, descrip-
tion, experimental investigation, and theoretical explanation of phenomena’ 4

or ‘any system of knowledge that is concerned with the physical world and its
phenomena and that entails unbiased observations and systematic experimen-
tation.5 So, the aspect of observation that leads to a possible formation of a
concept or theory is very important. Consequently, the research topic of the
science of pattern recognition, which aims at the generalization from observa-
tions for knowledge building, is indeed scientific. Science is in the end a brief
explanation summarizing the observations achieved through abstraction and
their generalization.

Such an explanation may primarily be observed by the researcher in
his own thinking. Pattern recognition research can thereby be performed
by introspection. The researcher inspects himself how he generalizes from

4 http://dictionary.reference.com/
5 http://www.britannica.com/

228 Robert P.W. Duin and Elżbieta P ↪ekalska

observations. The basis of this generalization is constituted by the primary
observations. This may be an entire object (‘I just see that it is an apple’)
or its attributes (‘it is an apple because of its color and shape’). We can
also observe pattern recognition in action by observing other human beings
(or animals) while they perform a pattern recognition task, e.g. when they
recognize an apple. Now the researcher tries to find out by experiments and
measurements how the subject decides for an apple on the basis of the stimuli
presented to the senses. He thereby builds a model of the subject, from senses
to decision making.

Both approaches result into a model. In the external approach, however,
the senses may be included in the model. In the internal approach, this is either
not possible or just very partially. We are usually not aware of what happens
in our senses. Introspection thereby starts by what they offer to our thinking
(and reasoning). As a consequence, models based on the internal approach
have to be externally equipped with (artificial) senses, i.e. with sensors.

2.3 The Four Approaches

The following four approaches can be distinguished by combining the two
dichotomies presented above:

(1) Introspection by a Platonic viewpoint: object modeling.
(2) Introspection by an Aristotelian viewpoint: generalization.
(3) Extrospection by an Aristotelian viewpoint: system modeling.
(4) Extrospection by a Platonic viewpoint: concept modeling.

These four approaches will now be discussed separately. We will identify some
known procedures and techniques that may be related to these. See also Fig. 2.
Object modeling. This is based on introspection from a Platonic viewpoint.
The researcher thereby starts from global ideas on how pattern recognition
systems may work and tries to verify them in his own thinking and reasoning.
He thereby may find, for instance, that particular color and shape descriptions
of an object are sufficient for him to classify it as an apple. More generally, he
may discover that he uses particular reasoning rules operating on a fixed set
of possible observations. The so-called syntactic and structural approaches to
pattern recognition [26] thereby belong to this area, as well as the case-based
reasoning [3]. There are two important problems in this domain: how to con-
stitute the general concept of a class from individual object descriptions and
how to connect particular human qualitative observations such as ‘sharp edge’
or ‘egg shaped’ with physical sensor measurements.
Generalization. Let us leave the Platonic viewpoint and consider a
researcher who starts from observations, but still relies on introspection. He
wonders what he should do with just a set of observations without any frame-
work. An important point is the nature of observations. Qualitative observa-
tions such as ‘round’, ‘egg-shaped’ or ‘gold colored’ can be judged as recog-
nitions in themselves based on low-level outcomes of senses. It is difficult to

The Science of Pattern Recognition. Achievements and Perspectives 229

E
xt

er
n

al
 P

la
tf

o
rm

In
tern

al P
latfo

rm

Platonic Viewpoint
(top down)

Aristotelean Viewpoint
(bottom up)

Concept modelling Object modelling

System modelling Generalization

Expert Systems
Belief Networks

Probabilistic Networks

Neural Networks
Vision

Grammatical Inference
Statistical Pattern Recognition

Syntactic Pattern Recognition
Structural Pattern Recognition

Case Based Reasoning

Fig. 2. Four approaches to Pattern Recognition

neglect them and to access the outcomes of senses directly. One possibility
for him is to use artificial senses, i.e. of sensors, which will produce quantita-
tive descriptions. The next problem, however, is how to generalize from such
numerical outcomes. The physiological process is internally unaccessible. A
researcher who wonders how he himself generalizes from low level observa-
tions given by numbers may rely on statistics. This approach thereby includes
the area of statistical pattern recognition.

If we consider low-level inputs that are not numerical, but expressed in
attributed observations as ‘red, egg-shaped’, then the generalization may be
based on logical or grammatical inference. As soon, however, as the structure
of objects or attributes is not generated from the observations, but derived
(postulated) from a formal global description of the application knowledge,
e.g. by using graph matching, the approach is effectively top-down and thereby
starts from object or concept modeling.

System modeling. We now leave the internal platform and concentrate on
research that is based on the external study of the pattern recognition abil-
ities of humans and animals or their brains and senses. If this is done in a
bottom-up way, the Aristotelian approach, then we are in the area of low-
level modeling of senses, nerves and possibly brains. These models are based
on the physical and physiological knowledge of cells and the proteins and
minerals that constitute them. Senses themselves usually do not directly gen-
eralize from observations. They may be constructed, however, in such a way

230 Robert P.W. Duin and Elżbieta P ↪ekalska

that this process is strongly favored on a higher level. For instance, the way
the eye (and the retina, in particular) is constructed, is advantageous for the
detection of edges and movements as well as for finding interesting details in a
global, overall picture. The area of vision thereby profits from this approach.
It is studied how nerves process the signals they receive from the senses on a
level close to the brain. Somehow this is combined towards a generalization of
what is observed by the senses. Models of systems of multiple nerves are called
neural networks. They appeared to have a good generalization ability and are
thereby also used in technical pattern recognition applications in which the
physiological origin is not relevant [4, 62].

Concept modeling. In the external platform, the observations in the start-
ing point are replaced by ideas and concepts. Here one still tries to externally
model the given pattern recognition systems, but now in a top-down manner.
An example is the field of expert systems: by interviewing experts in a partic-
ular pattern recognition task, it is attempted to investigate what rules they
use and in what way they are using observations. Also belief networks and
probabilistic networks belong to this area as far as they are defined by experts
and not learned from observations. This approach can be distinguished from
the above system modeling by the fact that it is in no way attempted to model
a physical or physiological system in a realistic way. The building blocks are
the ideas, concepts and rules, as they live in the mind of the researcher. They
are adapted to the application by external inspection of an expert, e.g. by
interviewing him. If this is done by the researcher internally by introspection,
we have closed the circle and are back to what we have called object modeling,
as the individual observations are our internal starting point. We admit that
the difference between the two Platonic approaches is minor here (in contrast
to the physiological level) as we can also try to interview ourselves to create
an objective (!) model of our own concept definitions.

2.4 Examples of Interaction

The four presented approaches are four ways to study the science of pattern
recognition. Resulting knowledge is valid for those who share the same start-
ing point. If the results are used for building artificial pattern recognition
devices, then there is, of course, no reason to restrict oneself to a particular
approach. Any model that works well may be considered. There are, however,
certain difficulties in combining different approaches. These may be caused by
differences in culture, assumptions or targets. We will present two examples,
one for each of the two dichotomies.

Artificial neural networks constitute an alternative technique to be used
for generalization within the area of statistical pattern recognition. It has
taken, however, almost ten years since their introduction around 1985 before
neural networks were fully acknowledged in this field. In that period, the
neural network community suffered from lack of knowledge on the competing

The Science of Pattern Recognition. Achievements and Perspectives 231

classification procedures. One of the basic misunderstandings in the pattern
recognition field was caused by its dominating paradigm stating that learning
systems should never be larger than strictly necessary, following the Occam’s
razor principle. It could have not been understood how largely oversized sys-
tems such as neural networks would have ever been able to generalize without
adapting to peculiarities in the data (the so-called overtraining). At the same
time, it was evident in the neural network community that the larger neural
network the larger its flexibility, following the analogy that a brain with many
neurons would perform better in learning than a brain with a few ones. When
this contradiction was finally solved (an example of Kuhn’s paradigm shifts
[48]), the area of statistical pattern recognition was enriched with a new set
of tools. Moreover, some principles were formulated towards understanding
of pattern recognition that otherwise would have only been found with great
difficulties.

In general, it may be expected that the internal approach profits from the
results in the external world. It is possible that thinking, the way we generalize
from observations, changes after it is established how this works in nature.
For instance, once we have learned how a specific expert solves his problems,
this may be used more generally and thereby becomes a rule in structural
pattern recognition. The external platform may thereby be used to enrich the
internal one.

A direct formal fertilization between the Platonic and Aristotelian appr-
oaches is more difficult to achieve. Individual researchers may build some
understanding from studying each other’s insights, and thereby become mu-
tually inspired. The Platonist may become aware of realizations of his ideas
and concepts. The Aristotelian may see some possible generalizations of the
observations he collected. It is, however, still one of the major challenges in
science to formalize this process.

How should existing knowledge be formulated such that it can be enriched
by new observations? Everybody who tries to do this directly encounters the
problem that observations may be used to reduce uncertainty (e.g. by the
parameter estimation in a model), but that it is very difficult to formalize
uncertainty in existing knowledge. Here we encounter a fundamental ‘para-
dox’ for a researcher summarizing his findings after years of observations and
studies: he has found some answers, but almost always he has also gener-
ated more new questions. Growing knowledge comes with more questions. In
any formal system, however, in which we manage to incorporate uncertainty
(which is already very difficult), this uncertainty will be reduced after having
incorporating some observations. We need an automatic hypothesis generation
in order to generate new questions. How should the most likely ones be deter-
mined? We need to look from different perspectives in order to stimulate the
creative process and bring sufficient inspiration and novelty to hypothesis gen-
eration. This is necessary in order to make a step towards building a complete
theory. This, however, results in the computational complexity mentioned

232 Robert P.W. Duin and Elżbieta P ↪ekalska

in the literature [60] when the Platonic structural approach to pattern recog-
nition has to be integrated with the Aristotelian statistical approach.

The same problem may also be phrased differently: how can we express the
uncertainty in higher level knowledge in such a way that it may be changed
(upgraded) by low level observations? Knowledge is very often structural and
has thereby a qualitative nature. On the lowest level, however, observations
are often treated as quantities, certainly in automatic systems equipped with
physical sensors. And here the Platonic – Aristotelian polarity meets the inter-
nal – external polarity: by crossing the border between concepts and observa-
tions we also encounter the border between qualitative symbolic descriptions
and quantitative measurements.

3 Achievements

In this section we will sketch in broad terms the state of the art in building
systems for generalization and recognition. In practical applications it is not
the primary goal to study the way of bridging the gap between observations
and concepts in a scientific perspective. Still, we can learn a lot from the
heuristic solutions that are created to assist the human analyst performing
a recognition task. There are many systems that directly try to imitate the
decision making process of a human expert, such as an operator guarding a
chemical process, an inspector supervising the quality of industrial production
or a medical doctor deriving a diagnosis from a series of medical tests. On the
basis of systematic interviews the decision making can become explicit and
imitated by a computer program: an expert system [54]. The possibility to
improve such a system by learning from examples is usually very limited and
restricted to logical inference that makes the rules as general as possible, and
the estimation of the thresholds on observations. The latter is needed as the
human expert is not always able to define exactly what he means, e.g. by ‘an
unusually high temperature’.

In order to relate knowledge to observations, which are measurements in
automatic systems, it is often needed to relate knowledge uncertainty to
imprecise, noisy, or generally invalid measurements. Several frameworks have
been developed to this end, e.g. fuzzy systems [74], Bayesian belief networks
[42] and reasoning under uncertainty [82]. Characteristic for these approaches
is that the given knowledge is already structured and needs explicitly defined
parameters of uncertainty. New observations may adapt these parameters by
relating them to observational frequencies. The knowledge structure is not
learned; it has to be given and is hard to modify. An essential problem is
that the variability of the external observations may be probabilistic, but the
uncertainty in knowledge is based on ‘belief’ or ‘fuzzy’ definitions. Combining
them in a single mathematical framework is disputable [39].

In the above approaches either the general knowledge or the concept un-
derlying a class of observations is directly modeled. In structural pattern

The Science of Pattern Recognition. Achievements and Perspectives 233

recognition [26, 65] the starting point is the description of the structure of
a single object. This can be done in several ways, e.g. by strings, contour
descriptions, time sequences or other order-dependent data. Grammars that
are inferred from a collection of strings are the basis of a syntactical approach
to pattern recognition [26]. The incorporation of probabilities, e.g. needed for
modeling the measurement noise, is not straightforward. Another possibility
is the use of graphs. This is in fact already a reduction since objects are de-
composed into highlights or landmarks, possibly given by attributes and also
their relations, which may be attributed as well. Inferring a language from
graphs is already much more difficult than from strings. Consequently, the
generalization from a set of objects to a class is usually done by finding typ-
ical examples, prototypes, followed by graph matching [5, 78] for classifying
new objects.

Generalization in structural pattern recognition is not straightforward. It
is often based on the comparison of object descriptions using the entire avail-
able training set (the nearest neighbor rule) or a selected subset (the nearest
prototype rule). Application knowledge is needed for defining the representa-
tion (strings, graphs) as well as for the dissimilarity measure to perform graph
matching [51, 7]. The generalization may rely on an analysis of the matrix of
dissimilarities, used to determine prototypes. More advanced techniques using
the dissimilarity matrix will be described later.

The 1-Nearest-Neighbor Rule (1-NN) is the simplest and most natural
classification rule. It should always be used as a reference. It has a good
asymptotic performance for metric measures [10, 14], not worse than twice the
Bayes error, i.e. the lowest error possible. It works well in practice for finite
training sets. Fig. 3 shows how it performs on the Iris data set in comparison
to the linear and quadratic classifiers based on the assumption of normal

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

A
ve

ra
ge

d
er

ro
r

(1
00

 e
xp

er
im

en
ts

)

Learning curves for the Iris data set

Training size size per class

1-NN Classifier
Bayes-Normal-1
Bayes-Normal-2

Fig. 3. Learning curves for Iris data

234 Robert P.W. Duin and Elżbieta P ↪ekalska

distributions [27]. The k-NN rule, based on a class majority vote over the
k nearest neighbors in the training set, is, like the Parzen classifier, even
Bayes consistent. These classifiers approximate the Bayes error for increasing
training sets [14, 27].

However, such results heavily rely on the assumption that the training
examples are identically and independently drawn (iid) from the same dis-
tribution as the future objects to be tested. This assumption of a fixed and
stationary distribution is very strong, but it yields the best possible classi-
fier. There are, however, other reasons, why it cannot be claimed that pattern
recognition is solved by these statistical tools. The 1-NN and k-NN rules have
to store the entire training set. The solution is thereby based on a comparison
with all possible examples, including ones that are very similar, and asymp-
totically identical to the new objects to be recognized. By this, a class or
a concept is not learned, as the decision relies on memorizing all possible
instances. There is simply no generalization.

Other classification procedures, giving rise to two learning curves shown
in Fig. 3, are based on specific model assumptions. The classifiers may perform
well when the assumptions hold and may entirely fail, otherwise. An important
observation is that models used in statistical learning procedures have almost
necessarily a statistical formulation. Human knowledge, however, certainly in
daily life, has almost nothing to do with statistics. Perhaps it is hidden in
the human learning process, but it is not explicitly available in the context
of human recognition. As a result, there is a need to look for effective model
assumptions that are not phrased in statistical terms.

In Fig. 3 we can see that a more complex quadratic classifier performs ini-
tially worse than the other ones, but it behaves similarly to a simple linear
classifier for large training sets. In general, complex problems may be bet-
ter solved by complex procedures. This is illustrated in Fig. 4, in which the
resulting error curves are shown as functions of complexity and training size.
Like in Fig. 3, small training sets require simple classifiers. Larger training
sets may be used to train more complex classifiers, but the error will increase,
if pushed too far. This is a well-known and frequently studied phenomenon in

Classifier complexity

E
xp

ec
te

d
cl

as
si

fic
at

io
n

er
ro

r

sample size
∞

Fig. 4. Curse of dimensionality

The Science of Pattern Recognition. Achievements and Perspectives 235

Background
knowledge

Predicted
outputs

Test
examples

Reasoning based on
the current knowledge

Test
examples

Training
data

Reasoning based on
the learned concept

Predicted
outputs

Model or dependence
estimated globally

Dependence estimated
for the given test data

Transductive learning

Training
data

Traditional inductive learning

Background
knowledge

Fig. 5. Inductive (left) and transductive (right) learning paradigms; see also [8].
Background knowledge is here understood in terms of properties of the represen-
tations and the specified assumptions on a set of learning algorithms and related
parameters

relation to the dimensionality (complexity) of the problem. Objects described
by many features often rely on complex classifiers, which may thereby lead
to worse results if the number of training examples is insufficient. This is the
curse of dimensionality, also known as the Rao’s paradox or the peaking
phenomenon [44, 45]. It is caused by the fact that the classifiers badly gener-
alize, due to a poor estimation of their parameters or their focus/adaptation
to the noisy information or irrelevant details in the data. The same phenom-
enon can be observed while training complex neural networks without taking
proper precautions. As a result, they will adapt to accidental data configura-
tions, hence they will overtrain. This phenomenon is also well known outside
the pattern recognition field. For instance, it is one of the reasons one has to
be careful with extensive mass screening in health care: the more diseases and
their relations are considered (the more complex the task), the more people
will we be unnecessarily sent to hospitals for further examinations.

An important conclusion from this research is that the cardinality of the
set of examples from which we want to infer a pattern concept bounds the
complexity of the procedure used for generalization. Such a method should
be simple if there are just a few examples. A somewhat complicated concept
can only be learnt if sufficient prior knowledge is available and incorporated
in such a way that the simple procedure is able to benefit from it.

An extreme consequence of the lack of prior knowledge is given by Watan-
abe as the Ugly Duckling Theorem [75]. Assume that objects are described
by a set of atomic properties and we consider predicates consisting of all pos-
sible logic combinations of these properties in order to train a pattern recog-
nition system. Then, all pairs of objects are equally similar in terms of the
number of predicates they share. This is caused by the fact that all atomic
properties, their presence as well as their absence, have initially equal weights.
As a result, the training set is of no use. Summarized briefly, if we do not know
anything about the problem we cannot learn (generalize and/or infer) from
observations.

236 Robert P.W. Duin and Elżbieta P ↪ekalska

An entirely different reasoning pointing to the same phenomenon is the
No-Free-Lunch Theorem formulated by Wolpert [81]. It states that all
classifiers perform equally well if averaged over all possible classification prob-
lems. This also includes a random assignment of objects to classes. In order
to understand this theorem it should be realized that the considered set of
all possible classification problems includes all possible ways a given data set
can be distributed over a set of classes. This again emphasizes that learning
cannot be successful without any preference or knowledge.

In essence, it has been established that without prior or background knowl-
edge, no learning, no generalization from examples is possible. Concerning
specific applications based on strong models for the classes, it has been shown
that additional observations may lower the specified gaps or solve uncertainties
in these models. In addition, if these uncertainties are formulated in statisti-
cal terms, it will be well possible to diminish their influence by a statistical
analysis of the training set. It is, however, unclear what the minimum prior
knowledge is that is necessary to make the learning from examples possible.
This is of interest if we want to uncover the roots of concept formation, such
as learning of a class from examples. There exists one principle, formulated at
the very beginning of the study of automatic pattern recognition, which may
point to a promising direction. This is the principle of compactness [1], also
phrased as a compactness hypothesis. It states that we can only learn from
examples or phenomena if their representation is such that small variations
in these examples cause small deviations in the representation. This demands
that the representation is based on a continuous transformation of the real
world objects or phenomena. Consequently, it is assumed that a sufficiently
small variation in the original object will not cause the change of its class
membership. It will still be a realization of the same concept. Consequently,
we may learn the class of objects that belong to the same concept by studying
the domain of their corresponding representations.

The Ugly Duckling Theorem deals with discrete logical representations.
These cannot be solved by the compactness hypothesis unless some metric is
assumed that replaces the similarity measured by counting differences in pred-
icates. The No-Free-Lunch Theorem clearly violates the compactness assump-
tion as it makes object representations with contradictory labelings equally
probable. In practice, however, we encounter only specific types of problems.

Building proper representations has become an important issue in pat-
tern recognition [20]. For a long time this idea has been restricted to the
reduction of overly large feature sets to the sizes for which generalization pro-
cedures can produce significant results, given the cardinality of the training
set. Several procedures have been studied based on feature selection as well
as linear and nonlinear feature extraction [45]. A pessimistic result was found
that about any hierarchical ordering of (sub)space separability that fulfills the
necessary monotonicity constraints can be constructed by an example based
on normal distributions only [11]. Very advanced procedures are needed to
find such ‘hidden’ subspaces in which classes are well separable [61]. It has to

The Science of Pattern Recognition. Achievements and Perspectives 237

be doubted, however, whether such problems arise in practice, and whether
such feature selection procedures are really necessary in problems with finite
sample sizes. This doubt is further supported by an insight that feature re-
duction procedures should rely on global and not very detailed criteria if their
purpose is to reduce the high dimensionality to a size which is in agreement
with the given training set.

Feed-forward neural networks are a very general tool that, among
others, offer the possibility to train a single system built between sensor and
classification [4, 41, 62]. They thereby cover the representation step in the
input layer(s) and the generalization step in the output layer(s). These layers
are simultaneously optimized. The number of neurons in the network should
be sufficiently large to make the interesting optima tractable. This, however,
brings the danger of overtraining. There exist several ways to prevent that by
incorporating some regularization steps in the optimization process. This re-
places the adaptation step in Fig. 1. A difficult point here, however, is that it is
not sufficiently clear how to choose regularization of an appropriate strength.
The other important application of neural networks is that the use of various
regularization techniques enables one to control the nonlinearity of the result-
ing classifier. This gives also a possibility to use not only complex, but also
moderately nonlinear functions. Neural networks are thereby one of the most
general tools for building pattern recognition systems.

In statistical learning, Vapnik has rigorously studied the problem of adapt-
ing the complexity of the generalization procedure to a finite training set
[72, 73]. The resulting Vapnik-Chervonenkis (VC) dimension, a complex-
ity measure for a family of classification functions, gives a good insight into
the mechanisms that determine the final performance (which depends on the
training error and the VC dimension). The resulting error bounds, however,
are too general for a direct use. One of the reasons is that, like in the No-Free-
Lunch Theorem, the set of classification problems (positions and labeling of
the data examples) is not restricted to the ones that obey the compactness
assumption.

One of the insights gained by studying the complexity measures of poly-
nomial functions is that they have to be as simple as possible in terms of the
number of their free parameters to be optimized. This was already realized
by Cover in 1965 [9]. Vapnik extended this finding around 1994 to arbitrary
non-linear classifiers [73]. In that case, however, the number of free parameters
is not necessarily indicative for the complexity of a given family of functions,
but the VC dimension is. In Vapnik’s terms, the VC dimension reflects the
flexibility of a family of functions (such as polynomials or radial basis func-
tions) to separate arbitrarily labeled and positioned n-element data in a vector
space of a fixed dimension. This VC dimension should be finite and small to
guarantee the good performance of the generalization function.

This idea was elegantly incorporated to the Support Vector Machine
(SVM) [73], in which the number of parameters is as small as a suitably
determined subset of the training objects (the support vectors) and into

238 Robert P.W. Duin and Elżbieta P ↪ekalska

independent of the dimensionality of the vector space. One way to phrase
this principle is that the structure of the classifier itself is simplified as far
as possible (following the Occam’s razor principle). So, after a detor along
huge neural networks possibly having many more parameters than training
examples, pattern recognition was back to the small-is-beautiful principle, but
now better understood and elegantly formulated.

The use of kernels largely enriched the applicability of the SVM to non-
linear decision functions [66, 67, 73]. The kernel approach virtually generates
nonlinear transformations of the combinations of the existing features. By us-
ing the representer theorem, a linear classifier in this nonlinear feature space
can be constructed, because the kernel encodes generalized inner products of
the original vectors only. Consequently, well-performing nonlinear classifiers
built on training sets of almost any size in almost any feature space can be
computed by using the SVM in combination with the ‘kernel trick’ [66].

This method has still a few limitations, however. It was originally designed
for separable classes, hence it suffers when high overlap occurs. The use of slack
variables, necessary for handling such an overlap, leads to a large number of
support vectors and, consequently, to a large VC dimension. In such cases,
other learning procedures have to be preferred. Another difficulty is that the
class of admissible kernels is very narrow to guarantee the optimal solution.
A kernel K has to be (conditionally) positive semidefinite (cpd) functions of
two variables as only then it can be interpreted as a generalized inner product
in reproducing kernel Hilbert space induced by K. Kernels were first consid-
ered as functions in Euclidean vector spaces, but they are now also designed to
handle more general representations. Special-purpose kernels are defined
in a number of applications such as text processing and shape recognition, in
which good features are difficult to obtain. They use background knowledge
from the application in which similarities between objects are defined in such
a way that a proper kernel can be constructed. The difficulty is, again, the
strong requirement of kernels as being cpd.

The next step is the so-called dissimilarity representation [56] in which
general proximity measures between objects can be used for their represen-
tation. The measure itself may be arbitrary, provided that it is meaningful
for the problem. Proximity plays a key role in the quest for an integrated
structural and statistical learning model, since it is a natural bridge between
these two approaches [6, 56]. Proximity is the basic quality to capture the
characteristics of a set objects forming a group. It can be defined in various
ways and contexts, based on sensory measurements, numerical descriptions,
sequences, graphs, relations and other non-vectorial representations, as well
as their combinations. A representation based on proximities is, therefore,
universal.

Although some foundations are laid down [56], the ways for effective learn-
ing from general proximity representations are still to be developed. Since
measures may not belong to the class of permissable kernels, the traditional
SVM, as such, cannot be used. There exist alternative interpretations of

The Science of Pattern Recognition. Achievements and Perspectives 239

indefinite kernels and their relation to pseudo-Euclidean and Krein spaces
[38, 50, 55, 56, 58], in which learning is possible for non-Euclidean repre-
sentations. In general, proximity representations are embedded into suitable
vector spaces equipped with a generalized inner product or norm, in which
numerical techniques can either be developed or adapted from the existing
ones. It has been experimentally shown that many classification techniques
may perform well for general dissimilarity representations.

4 Perspectives

Pattern recognition deals with discovering, distinguishing, detecting or char-
acterizing patterns present in the surrounding world. It relies on extrac-
tion and representation of information from the observed data, such that after
integration with background knowledge, it ultimately leads to a formulation
of new knowledge and concepts. The result of learning is that the knowledge
already captured in some formal terms is used to describe the present inter-
dependencies such that the relations between patterns are better understood
(interpreted) or used for generalization. The latter means that a concept,
e.g. of a class of objects, is formalized such that it can be applied to unseen
examples of the same domain, inducing new information, e.g. the class label
of a new object. In this process new examples should obey the same deduction
process as applied to the original examples.

In the next subsections we will first recapitulate the elements of logical
reasoning that contribute to learning. Next, this will be related to the Platonic
and Aristotelian scientific approaches discussed in Section 2. Finally, two novel
pattern recognition paradigms are placed in this view.

4.1 Learning by Logical Reasoning

Learning from examples is an active process of concept formation that
relies on abstraction (focus on important characteristics or reduction of detail)
and analogy (comparison between different entities or relations focussing on
some aspect of their similarity). Learning often requires dynamical, multi-
level (seeing the details leading to unified concepts, which further build higher
level concepts) and possibly multi-strategy actions (e.g. in order to support
good predictive power as well as interpretability). A learning task is basically
defined by input data (design set), background knowledge or problem context
and a learning goal [52]. Many inferential strategies need to be synergetically
integrated to be successful in reaching this goal. The most important ones
are inductive, deductive and abductive principles, which are briefly presented
next. More formal definitions can be sought in the literature on formal logic,
philosophy or e.g. in [23, 40, 52, 83].

Inductive reasoning is the synthetic inference process of arriving at a
conclusion or a general rule from a limited set of observations. This relies on

240 Robert P.W. Duin and Elżbieta P ↪ekalska

a formation of a concept or a model, given the data. Although such a derived
inductive conclusion cannot be proved, its reliability is supported by empiri-
cal observations. As along as the related deductions are not in contradiction
with experiments, the inductive conclusion remains valid. If, however, future
observations lead to contradiction, either an adaption or a new inference is
necessary to find a better rule. To make it more formal, induction learns a
general rule R (concerning A and B) from numerous examples of A and B. In
practice, induction is often realized in a quantitative way. Its strength relies
then on probability theory and the law of large numbers, in which given a
large number of cases, one can describe their properties in the limit and the
corresponding rate of convergence.

Deductive reasoning is the analytic inference process in which existing
knowledge of known facts or agreed-upon rules is used to derive a conclusion.
Such a conclusion does not yield ‘new’ knowledge since it is a logical conse-
quence of what has already been known, but implicitly (it is not of a greater
generality than the premises). Deduction, therefore, uses a logical argument
to make explicit what has been hidden. It is also a valid form of proof provided
that one starts from true premises. It has a predictive power, which makes it
complementary to induction. In a pattern recognition system, both evaluation
and prediction rely on deductive reasoning. To make it more formal, let us
assume that A is a set of observations, B is a conclusion and R is a general
rule. Let B be a logical consequence of A and R, i.e. (A ∧ R) |= B, where |=
denotes entailment. In a deductive reasoning, given A and using the rule R,
the consequence B is derived.

Abductive reasoning is the constructive process of deriving the most
likely or best explanations of known facts. This is a creative process, in which
possible and feasible hypotheses are generated for a further evaluation. Since
both abduction and induction deal with incomplete information, induction
may be viewed in some aspects as abduction and vice versa, which leads to
some confusion between these two [23, 52]. Here, we assume they are different.
Concerning the entailment (A ∧R) |= B, having observed the consequence B
in the context of the rule R, A is derived to explain B.

In all learning paradigms there is an interplay between inductive, abduc-
tive and deductive principles. Both deduction and abduction make possible
to conceptually understand a phenomenon, while induction verifies it. More
precisely, abduction generates or reformulates new (feasible) ideas or hypothe-
ses, induction justifies the validity of these hypothesis with observed data and
deduction evaluates and tests them. Concerning pattern recognition systems,
abduction explores data, transforms the representation and suggests feasible
classifiers for the given problem. It also generates new classifiers or reformu-
lates the old ones. Abduction is present in an initial exploratory step or in
the Adaptation stage; see Fig. 1. Induction trains the classifier in the Gener-
alization stage, while deduction predicts the final outcome (such as label) for
the test data by applying the trained classifier in the Evaluation stage.

The Science of Pattern Recognition. Achievements and Perspectives 241

Since abduction is hardly emphasized in learning, we will give some more
insights. In abduction, a peculiarity or an artifact is observed and a hypoth-
esis is then created to explain it. Such a hypothesis is suggested based on
existing knowledge or may extend it, e.g. by using analogy. So, the abduc-
tive process is creative and works towards new discovery. In data analysis,
visualization facilitates the abductive process. In response to visual observa-
tions of irregularities or bizarre patterns, a researcher is inspired to look for
clues that can be used to explain such an unexpected behavior. Mistakes and
errors can therefore serve the purpose of discovery when strange results are
inquired with a critical mind. Note, however, that this process is very hard
to implement into automatic recognition systems as it would require to en-
code not only the detailed domain knowledge, but also techniques that are
able to detect ‘surprises’ as well as strategies for their possible use. In fact,
this requires a conscious interaction. Ultimately, only a human analyst can
interactively respond in such cases, so abduction can be incorporated into
semi-automatic systems well. In traditional pattern recognition systems, ab-
duction is usually defined in the terms of data and works over pre-specified
set of transformations, models or classifiers.

4.2 Logical Reasoning Related to Scientific Approaches

If pattern recognition (learning from examples) is merely understood as a
process of concept formation from a set of observations, the inductive principle
is the most appealing for this task. Indeed, it is the most widely emphasized
in the literature, in which ‘learning’ is implicitly understood as ‘inductive
learning’. Such a reasoning leads to inferring new knowledge (rule or model)
which is hopefully valid not only for the known examples, but also for novel,
unseen objects. Various validation measures or adaptation steps are taken to
support the applicability of the determined model. Additionally, care has to
be taken that the unseen objects obey the same assumptions as the original
objects used in training. If this does not hold, such an empirical generaliza-
tion becomes invalid. One should therefore exercise in critical thinking while
designing a complete learning system. It means that one has to be conscious
which assumptions are made and be able to quantify their sensibility, usability
and validity with the learning goal.

On the other hand, deductive reasoning plays a significant role in the Pla-
tonic approach. This top-down scenario starts from a set of rules derived from
expert knowledge on problem domain or from a degree of belief in a hypoth-
esis. The existing prior knowledge is first formulated in appropriate terms.
These are further used to generate inductive inferences regarding the validity
of the hypotheses in the presence of observed examples. So, deductive formal-
ism (description of the object’s structure) or deductive predictions (based on
the Bayes rule) precede inductive principles. A simple example in the Bayesian
inference is the well-known Expectation-Maximization (EM) algorithm used
in problems with incomplete data [13]. The EM algorithm iterates between the

242 Robert P.W. Duin and Elżbieta P ↪ekalska

E-step and M-step until convergence. In the E-step, given a current (or initial)
estimate of the unknown variable, a conditional expectation is found, which
is maximized in the M-step and derives a new estimate. The E-step is based
on deduction, while the M-step relies on induction. In the case of Bayesian
nets, which model a set of concepts (provided by an expert) through a net-
work of conditional dependencies, predictions (deductions) are made from the
(initial) hypotheses (beliefs over conditional dependencies) using the Bayes
theorem. Then, inductive inferences regarding the hypotheses are drawn from
the data. Note also that if the existing prior knowledge is captured in some
rules, learning may become a simplification of these rules such that their log-
ical combinations describe the problem.

In the Aristotelian approach to pattern recognition, observation of par-
ticulars and their explanation are essential for deriving a concept. As we al-
ready know, abduction plays a role here, especially for data exploration and
characterization to explain or suggest a modification of the representation
or an adaptation of the given classifier. Aristotelian learning often relies on
the Occam’s razor principle which advocates to choose the simplest model
or hypothesis among otherwise equivalent ones and can be implemented in a
number of ways [8].

In summary, the Platonic scenario is dominantly inductive-deductive,
while the Aristotelian scenario is dominantly inductive-abductive. Both frame-
works have different merits and shortcomings. The strength of the Platonic
approach lies in the proper formulation and use of subjective beliefs, expert
knowledge and possibility to encode internal structural organization of ob-
jects. It is model-driven. In this way, however, the inductive generalization
becomes limited, as there may be little freedom in the description to explore
and discovery of new knowledge. The strength of the Aristotelian approach lies
in a numerical induction and a well-developed mathematical theory of vector
spaces in which the actual learning takes place. It is data-driven. The weak-
ness, however, lies in the difficulty to incorporate the expert or background
knowledge about the problem. Moreover, in many practical applications, it is
known that the implicit assumptions of representative training sets, identical
and identically distributed (iid) samples as well as stationary distributions do
not hold.

4.3 Two New Pattern Recognition Paradigms

Two far-reaching novel paradigms have been proposed that deal with the
drawbacks of the Platonic and Aristotelian approaches. In the Aristotelian
scenario, Vapnik has introduced transductive learning [73], while in the Pla-
tonic scenario, Goldfarb has advocated a new structural learning paradigm
[31, 32]. We think these are two major perspectives of the science of pattern
recognition.

Vapnik [73] formulated the main learning principle as: ‘If you posses a
restricted amount of information for solving some problem, try to solve the

The Science of Pattern Recognition. Achievements and Perspectives 243

problem directly and never solve a more general problem as an intermediate
step.’ In the traditional Aristotelian scenario, the learning task is often trans-
formed to the problem of function estimation, in which a decision function
is determined globally for the entire domain (e.g. for all possible examples
in a feature vector space). This is, however, a solution to a more general
problem than necessary to arrive at a conclusion (output) for specific input
data. Consequently, the application of this common-sense principle requires
a reformulation of the learning problem such that novel (unlabeled) exam-
ples are considered in the context of the given training set. This leads to the
transductive principle which aims at estimating the output for a given input
only when required and may differ from an instance to instance. The train-
ing sample, considered either globally, or in the local neighborhoods of test
examples, is actively used to determine the output. As a result, this leads to
confidence measures of single predictions instead of globally estimated classi-
fiers. It provides ways to overcome the difficulty of iid samples and stationary
distributions. More formally, in a transductive reasoning, given an entailment
A |= (B ∪ C), if the consequence B is observed as the result of A, then the
consequence C becomes more likely.

The truly transductive principle requires an active synergy of inductive,
deductive and abductive principles in a conscious decision process. We believe
it is practised by people who analyze complex situations, deduce and validate
possible solutions and make decisions in novel ways. Examples are medical
doctors, financial advisers, strategy planners or leaders of large organizations.
In the context of automatic learning, transduction has applications to learn-
ing from partially labeled sets and otherwise missing information, information
retrieval, active learning and all types of diagnostics. Some proposals can be
found e.g. in [34, 46, 47, 73]. Although many researchers recognize the impor-
tance of this principle, many remain also reluctant. This may be caused by
unfamiliarity with this idea, few existing procedures, or by the accompany-
ing computational costs as a complete decision process has to be constantly
inferred anew.

In the Platonic scenario, Goldfarb and his colleagues have developed struc-
tural inductive learning, realized by the so-called evolving transformation sys-
tems (ETS) [31, 32]. Goldfarb first noticed the intrinsic and impossible to
overcome inadequacy of vector spaces to truly learn from examples [30]. The
reason is that such quantitative representations loose all information on ob-
ject structure; there is no way an object can be generated given its numeric
encoding. The second crucial observation was that all objects in the universe
have a formative history. This led Goldfarb to the conclusion that an object
representation should capture the object’s formative evolution, i.e. the way
the object is created through a sequence of suitable transformations in time.
The creation process is only possible through structural operations. So, ‘the
resulting representation embodies temporal structural information in the form
of a formative, or generative, history’ [31]. Consequently, objects are treated
as evolving structural processes and a class is defined by structural processes,

244 Robert P.W. Duin and Elżbieta P ↪ekalska

which are ‘similar’. This is an inductive structural/symbolic class represen-
tation, the central concept in ETS. This representation is learnable from a
(small) set of examples and has the capability to generate objects from the
class.

The generative history of a class starts from a single progenitor and is
encoded as a multi-level hierarchical system. On a given level, the basic struc-
tural elements are defined together with their structural transformations, such
that both are used to constitute a new structural element on a higher level.
This new element becomes meaningful on that level. Similarity plays an im-
portant role, as it is used as a basic quality for a class representation as a
set of similar structural processes. Similarity measure is learned in training
to induce the optimal finite set of weighted structural transformations that
are necessary on the given level, such that the similarity of an object to the
class representation is large. ‘This mathematical structure allows one to cap-
ture dynamically, during the learning process, the compositional structure of
objects/events within a given inductive, or evolutionary, environment’ [31].

Goldfarb’s ideas bear some similarity to the ones of Wolfram, presented
in his book on ‘a new kind of science’ [80]. Wolfram considers computation
as the primary concept in nature; all processes are the results of cellular-
automata6 type of computational processes, and thereby inherently numerical.
He observes that repetitive use of simple computational transformations can
cause very complex phenomena, especially if computational mechanisms are
used at different levels. Goldfarb also discusses dynamical systems, in which
complexity is built from simpler structures, through hierarchical folding up
(or enrichment). The major difference is that he considers structure of pri-
mary interest, which leads to evolving temporal structural processes instead
of computational ones.

In summary, Goldfarb proposes a revolutionary paradigm: an ontological
model of a class representation in an epistemological context, as it is learn-
able from examples. This is a truly unique unification. We think it is the
most complete and challenging approach to pattern recognition to this date,
a breakthrough. By including the formative history of objects into their rep-
resentation, Goldfarb attributes them some aspects of human consciousness.
The far reaching consequence of his ideas is a generalized measurement process
that will be one day present in sensors. Such sensors will be able to measure
‘in structural units’ instead of numerical units (say, meters) as it is currently
done. The inductive process over a set of structural units lies at the founda-
tion of new inductive informatics. The difficulty, however, is that the current
formalism in mathematics and related fields is not yet prepared for adopting
these far-reaching ideas. We, however, believe, they will pave the road and be
found anew or rediscovered in the next decennia.

6 Cellular automata are discrete dynamical systems that operate on a regular lattice
in space and time, and are characterized by ‘local’ interactions.

The Science of Pattern Recognition. Achievements and Perspectives 245

5 Challenges

A lot of research effort is needed before the two novel and far-reaching para-
digms are ready for practical applications. So, this section focuses on several
challenges that naturally come in the current context and will be summa-
rized for the design of automatic pattern recognition procedures. A number of
fundamental problems, related to the various approaches, have already been
identified in the previous sections and some will return here on a more techni-
cal level. Many of the points raised in this section have been more extensively
discussed in [17]. We will emphasize these which have only been touched or
are not treated in the standard books [15, 71, 76] or in the review by Jain
et al. [45]. The issues to be described are just a selection of the many which
are not yet entirely understood. Some of them may be solved in the future
by the development of novel procedures or by gaining an additional under-
standing. Others may remain an issue of concern to be dealt with in each
application separately. We will be systematically describe them, following the
line of advancement of a pattern recognition system; see also Fig. 1:
• Representation and background knowledge. This is the way in which

individual real world objects and phenomena are numerically described or
encoded such that they can be related to each other in some meaningful
mathematical framework. This framework has to allow the generalization
to take place.

• Design set. This is the set of objects available or selected to develop the
recognition system.

• Adaptation. This is usually a transformation of the representation such
that it becomes more suitable for the generalization step.

• Generalization. This is the step in which objects of the design set are
related such that classes of objects can be distinguished and new objects
can be accurately classified.

• Evaluation. This is an estimate of the performance of a developed recog-
nition system.

5.1 Representation and Background Knowledge

The problem of representation is a core issue for pattern recognition [18, 20].
Representation encodes the real world objects by some numerical description,
handled by computers in such a way that the individual object representations
can be interrelated. Based on that, later a generalization is achieved, establish-
ing descriptions or discriminations between classes of objects. Originally, the
issue of representation was almost neglected, as it was reduced to the demand
of having discriminative features provided by some expert. Statistical learning
is often believed to start in a given feature vector space. Indeed, many books on
pattern recognition disregard the topic of representation, simply by assuming
that objects are somehow already represented [4, 62]. A systematic study on

246 Robert P.W. Duin and Elżbieta P ↪ekalska

representation [20, 56] is not easy, as it is application or domain-dependent
(where the word domain refers to the nature or character of problems and
the resulting type of data). For instance, the representations of a time sig-
nal, an image of an isolated 2D object, an image of a set of objects on some
background, a 3D object reconstruction or the collected set of outcomes of a
medical examination are entirely different observations that need individual
approaches to find good representations. Anyway, if the starting point of a
pattern recognition problem is not well defined, this cannot be improved later
in the process of learning. It is, therefore, of crucial importance to study the
representation issues seriously. Some of them are phrased in the subsequent
sections.

The use of vector spaces. Traditionally, objects are represented by vectors
in a feature vector space. This representation makes it feasible to perform some
generalization (with respect to this linear space), e.g. by estimating density
functions for classes of objects. The object structure is, however, lost in such a
description. If objects contain an inherent, identifiable structure or organiza-
tion, then relations between their elements, like relations between neighboring
pixels in an image, are entirely neglected. This also holds for spatial properties
encoded by Fourier coefficients or wavelets weights. These original structures
may be partially rediscovered by deriving statistics over a set of vectors rep-
resenting objects, but these are not included in the representation itself. One
may wonder whether the representation of objects as vectors in a space is
not oversimplified to be able to reflect the nature of objects in a proper way.
Perhaps objects might be better represented by convex bodies, curves or by
other structures in a metric vector space. The generalization over sets of vec-
tors, however, is heavily studied and mathematically well developed. How to
generalize over a set of other structures is still an open question.

The essential problem of the use of vector spaces for object representation
is originally pointed out by Goldfarb [30, 33]. He prefers a structural repre-
sentation in which the original object organization (connectedness of building
structural elements) is preserved. However, as a generalization procedure for
structural representations does not exist yet, Goldfarb starts from the evolv-
ing transformation systems [29] to develop a novel system [31]. As already
indicated in Sec. 4.3 we see this as a possible direction for a future break-
through.

Compactness. An important, but seldom explicitly identified property of
representations is compactness [1]. In order to consider classes, which are
bounded in their domains, the representation should be constrained: objects
that are similar in reality should be close in their representations (where the
closeness is captured by an appropriate relation, possibly a proximity mea-
sure). If this demand is not satisfied, objects may be described capriciously
and, as a result, no generalization is possible. This compactness assumption
puts some restriction on the possible probability density functions used to
describe classes in a representation vector space. This, thereby, also narrows

The Science of Pattern Recognition. Achievements and Perspectives 247

the set of possible classification problems. A formal description of the prob-
ability distribution of this set may be of interest to estimate the expected
performance of classification procedures for an arbitrary problem.

In Sec. 3, we pointed out that the lack of a formal restriction of pattern
recognition problems to those with a compact representation was the basis
of pessimistic results like the No-Free-Lunch Theorem [81] and the classifi-
cation error bounds resulting from the VC complexity measure [72, 73]. One
of the main challenges for pattern recognition to find a formal description of
compactness that can be used in error estimators the average over the set of
possible pattern recognition problems.

Representation types. There exists numerous ways in which representa-
tions can be derived. The basic ‘numerical’ types are now distinguished as:
• Features. Objects are described by characteristic attributes. If these at-

tributes are continuous, the representation is usually compact in the cor-
responding feature vector space. Nominal, categorical or ordinal attributes
may cause problems. Since a description by features is a reduction of ob-
jects to vectors, different objects may have identical representations, which
may lead to class overlap.

• Pixels or other samples. A complete representation of an object may be
approximated by its sampling. For images, these are pixels, for time signals,
these are time samples and for spectra, these are wavelengths. A pixel
representation is a specific, boundary case of a feature representation, as
it describes the object properties in each point of observation.

• Probability models. Object characteristics may be reflected by some prob-
abilistic model. Such models may be based on expert knowledge or trained
from examples. Mixtures of knowledge and probability estimates are diffi-
cult, especially for large models.

• Dissimilarities, similarities or proximities. Instead of an absolute descrip-
tion by features, objects are relatively described by their dissimilarities to
a collection of specified objects. These may be carefully optimized pro-
totypes or representatives for the problem, but also random subsets may
work well [56]. The dissimilarities may be derived from raw data, such as
images, spectra or time samples, from original feature representations or
from structural representations such as strings or relational graphs. If the
dissimilarity measure is nonnegative and zero only for two identical ob-
jects, always belonging to the same class, the class overlap may be avoided
by dissimilarity representations.

• Conceptual representations. Objects may be related to classes in various
ways, e.g. by a set of classifiers, each based on a different representation,
training set or model. The combined set of these initial classifications or
clusterings constitute a new representation [56]. This is used in the area
of combining clusterings [24, 25] or combining classifiers [49].

248 Robert P.W. Duin and Elżbieta P ↪ekalska

In the structural approaches, objects are represented in qualitative ways. The
most important are strings or sequences, graphs and their collections and
hierarchical representations in the form of ontological trees or semantic nets.

Vectorial object descriptions and proximity representations provide a good
way for generalization in some appropriately determined spaces. It is, however,
difficult to integrate them with the detailed prior or background knowledge
that one has on the problem. On the other hand, probabilistic models and,
especially, structural models are well suited for such an integration. The later,
however, constitute a weak basis for training general classification schemes.
Usually, they are limited to assigning objects to the class model that fits
best, e.g. by the nearest neighbor rule. Other statistical learning techniques
are applied to these if given an appropriate proximity measure or a vectorial
representation space found by graph embeddings [79].

It is a challenge to find representations that constitute a good basis for
modeling object structure and which can also be used for generalizing from
examples. The next step is to find representations not only based on back-
ground knowledge or given by the expert, but to learn or optimize them from
examples.

5.2 Design Set

A pattern recognition problem is not only specified by a representation, but
also by the set of examples given for training and evaluating a classifier in
various stages. The selection of this set and its usage strongly influence the
overall performance of the final system. We will discuss some related issues.

Multiple use of the training set. The entire design set or its parts are
used in several stages during the development of a recognition system. Usually,
one starts from some exploration, which may lead to the removal of wrongly
represented or erroneously labeled objects. After gaining some insights into
the problem, the analyst may select a classification procedure based on the
observations. Next, the set of objects may go through some preprocessing and
normalization. Additionally, the representation has to be optimized, e.g. by
a feature/object selection or extraction. Then, a series of classifiers has to
be trained and the best ones need to be selected or combined. An overall
evaluation may result in a re-iteration of some steps and different choices.

In this complete process the same objects may be used a number of times
for the estimation, training, validation, selection and evaluation. Usually, an
expected error estimation is obtained by a cross-validation or hold-out method
[32, 77]. It is well known that the multiple use of objects should be avoided
as it biases the results and decisions. Re-using objects, however, is almost
unavoidable in practice. A general theory does not exist yet, that predicts
how much a training set is ‘worn-out’ by its repetitive use and which suggests
corrections that can diminish such effects.

The Science of Pattern Recognition. Achievements and Perspectives 249

Representativeness of the training set. Training sets should be repre-
sentative for the objects to be classified by the final system. It is common to
take a randomly selected subset of the latter for training. Intuitively, it seems
to be useless to collect many objects represented in the regions where classes
do not overlap. On the contrary, in the proximity of the decision boundary, a
higher sampling rate seems to be advantageous. This depends on the complex-
ity of the decision function and the expected class overlap, and is, of course,
inherently related to the chosen procedure.

Another problem are the unstable, unknown or undetermined class distrib-
utions. Examples are the impossibility to characterize the class of non-faces in
the face detection problem, or in machine diagnostics, the probability distrib-
ution of all casual events if the machine is used for undetermined production
purposes. A training set that is representative for the class distributions can-
not be found in such cases. An alternative may be to sample the domain of
the classes such that all possible object occurrences are approximately cov-
ered. This means that for any object that could be encountered in practice
there exists a sufficiently similar object in the training set, defined in relation
to the specified class differences. Moreover, as class density estimates can-
not be derived for such a training set, class posterior probabilities cannot be
estimated. For this reason such a type of domain based sampling is only ap-
propriate for non-overlapping classes. In particular, this problem is of interest
for non-overlapping (dis)similarity based representations [18].

Consequently, we wonder whether it is possible to use a more general type
of sampling than the classical iid sampling, namely the domain sampling. If
so, the open questions refer to the verification of dense samplings and types
of new classifiers that are explicitly built on such domains.

5.3 Adaptation

Once a recognition problem has been formulated by a set of example ob-
jects in a convenient representation, the generalization over this set may be
considered, finally leading to a recognition system. The selection of a proper
generalization procedure may not be evident, or several disagreements may
exist between the realized and preferred procedures. This occurs e.g. when
the chosen representation needs a non-linear classifier and only linear decision
functions are computationally feasible, or when the space dimensionality is
high with respect to the size of the training set, or the representation cannot
be perfectly embedded in a Euclidean space, while most classifiers demand
that. For reasons like these, various adaptations of the representation may
be considered. When class differences are explicitly preserved or emphasized,
such an adaptation may be considered as a part of the generalization pro-
cedure. Some adaptation issues that are less connected to classification are
discussed below.

Problem complexity. In order to determine which classification proce-
dures might be beneficial for a given problem, Ho and Basu [43] proposed

250 Robert P.W. Duin and Elżbieta P ↪ekalska

to investigate its complexity. This is an ill-defined concept. Some of its as-
pects include data organization, sampling, irreducibility (or redundancy) and
the interplay between the local and global character of the representation
and/or of the classifier. Perhaps several other attributes are needed to define
complexity such that it can be used to indicate a suitable pattern recognition
solution to a given problem; see also [2].

Selection or combining. Representations may be complex, e.g. if objects
are represented by a large amount of features or if they are related to a large
set of prototypes. A collection of classifiers can be designed to make use of
this fact and later combined. Additionally, also a number of representations
may be considered simultaneously. In all these situations, the question arises
on which should be preferred: a selection from the various sources of infor-
mation or some type of combination. A selection may be random or based on
a systematic search for which many strategies and criteria are possible [49].
Combinations may sometimes be fixed, e.g. by taking an average, or a type of
a parameterized combination like a weighted linear combination as a principal
component analysis; see also [12, 56, 59].

The choice favoring either a selection or combining procedure may also be
dictated by economical arguments, or by minimizing the amount of necessary
measurements, or computation. If this is unimportant, the decision has to
be made according to the accuracy arguments. Selection neglects some infor-
mation, while combination tries to use everything. The latter, however, may
suffer from overtraining as weights or other parameters have to be estimated
and may be adapted to the noise or irrelevant details in the data. The sparse
solutions offered by support vector machines [67] and sparse linear program-
ming approaches [28, 35] constitute a way of compromise. How to optimize
them efficiently is still a question.

Nonlinear transformations and kernels. If a representation demands or
allows for a complicated, nonlinear solution, a way to proceed is to transform
the representation appropriately such that linear aspects are emphasized. A
simple (e.g. linear) classifier may then perform well. The use of kernels, see
Sec. 3, is a general possibility. In some applications, indefinite kernels are pro-
posed as being consistent with the background knowledge. They may result in
non-Euclidean dissimilarity representations, which are challenging to handle;
see [57] for a discussion.

5.4 Generalization

The generalization over sets of vectors leading to class descriptions or discrim-
inants was extensively studied in pattern recognition in the 60’s and 70’s of
the previous century. Many classifiers were designed, based on the assumption
of normal distributions, kernels or potential functions, nearest neighbor rules,
multi-layer perceptrons, and so on [15, 45, 62, 76]. These types of studies were
later extended by the fields of multivariate statistics, artificial neural networks

The Science of Pattern Recognition. Achievements and Perspectives 251

and machine learning. However, in the pattern recognition community, there
is still a high interest in the classification problem, especially in relation to
practical questions concerning issues of combining classifiers, novelty detection
or the handling of ill-sampled classes.

Handling multiple solutions. Classifier selection or classifier combi-
nation. Almost any more complicated pattern recognition problem can be
solved in multiple ways. Various choices can be made for the representation,
the adaptation and the classification. Such solutions usually do not only differ
in the total classification performance, they may also make different errors.
Some type of combining classifiers will thereby be advantageous [49]. It is to
be expected that in the future most pattern recognition systems for real world
problems are constituted of a set of classifiers. In spite of the fact that this
area is heavily studied, a general approach on how to select, train and combine
solutions is still not available. As training sets have to be used for optimizing
several subsystems, the problem how to design complex systems is strongly
related to the above issue of multiple use of the training set.

Classifier typology. Any classification procedure has its own explicit or
built-in assumptions with respect to data inherent characteristics and the
class distributions. This implies that a procedure will lead to relatively good
performance if a problem fulfils its exact assumptions. Consequently, any clas-
sification approach has its problem for which it is the best. In some cases such
a problem might be far from practical application. The construction of such
problems may reveal which typical characteristics of a particular procedure
are. Moreover, when new proposals are to be evaluated, it may be demanded
that some examples of its corresponding typical classification problem are
published, making clear what the area of application may be; see [19].

Generalization principles. The two basic generalization principles, see Sec-
tion 4, are probabilistic inference, using the Bayes-rule [63] and the minimum
description length principle that determines the most simple model in agree-
ment with the observations (based on Occam’s razor) [37]. These two princi-
ples are essentially different7. The first one is sensitive to multiple copies of an
existing object in the training set, while the second one is not. Consequently,
the latter is not based on densities, but just on object differences or distances.
An important issue is to find in which situations each of these principle should
be recommended and whether the choice should be made in the beginning, in
the selection of the design set and the way of building a representation, or it
should be postpone until a later stage.

The use of unlabeled objects and active learning. The above mentioned
principles are examples of statistical inductive learning, where a classifier is

7 Note that Bayesian inference is also believed to implement the Occam’s razor [8]
in which preference for simpler models is encoded by encouraging particular prior
distributions. This is, however, not the primary point as it is in the minimum
description length principle.

252 Robert P.W. Duin and Elżbieta P ↪ekalska

induced based on the design set and it is later applied to unknown objects. The
disadvantage of such approach is that a decision function is in fact designed for
all possible representations, whether valid or not. Transductive learning, see
Section 4.3, is an appealing alternative as it determines the class membership
only for the objects in question, while relying on the collected design set or
its suitable subset [73]. The use of unlabeled objects, not just the one to be
classified, is a general principle that may be applied in many situations. It may
improve a classifier based on just a labeled training set. If this is understood
properly, the classification of an entire test set may yield better results than
the classification of individuals.

Classification or class detection. Two-class problems constitute the tra-
ditional basic line in pattern recognition, which reduces to finding a discrim-
inant or a binary decision function. Multi-class problems can be formulated
as a series of two-class problems. This can be done in various ways, none of
them is entirely satisfactory. An entirely different approach is the description
of individual classes by so-called one-class classifiers [69, 70]. In this way the
focuss is given to class description instead of to class separation. This brings
us to the issue of the structure of a class.

Traditionally classes are defined by a distribution in the representation
space. However, the better such a representation, the higher its dimensionality,
the more difficult it is to estimate a probability density function. Moreover,
as we have seen above, it is for some applications questionable whether such
a distribution exist. A class is then a part of a possible non-linear manifold in
a high-dimensional space. It has a structure instead of a density distribution.
It is a challenge to use this approach for building entire pattern recognition
systems.

5.5 Evaluation

Two questions are always apparent in the development of recognition systems.
The first refers to the overall performance of a particular system once it is
trained, and has sometimes a definite answer. The second question is more
open and asks which good recognition procedures are in general.

Recognition system performance. Suitable criteria should be used to
evaluate the overall performance of the entire system. Different measures with
different characteristics can be applied, however, usually, only a single criterion
is used. The basic ones are the average accuracy computed over all validation
objects or the accuracy determined by the worst-case scenario. In the first
case, we again assume that the set of objects to be recognized is well defined
(in terms of distributions). Then, it can be sampled and the accuracy of the
entire system is estimated based on the evaluation set. In this case, however,
we neglect the issue that after having used this evaluation set together with
the training set, a better system could have been found. A more interesting
point is how to judge the performance of a system if the distribution of objects

The Science of Pattern Recognition. Achievements and Perspectives 253

is ill-defined or if a domain based classification system is used as discussed
above. Now, the largest mistake that is made becomes a crucial factor for this
type of judgements. One needs to be careful, however, as this may refer to an
unimportant outlier (resulting e.g. from invalid measurements).

Practice shows that a single criterion, like the final accuracy, is insufficient
to judge the overall performance of the whole system. As a result, multiple
performance measures should be taken into account, possibly at each stage.
These measures should not only reflect the correctness of the system, but also
its flexibility to cope with unusual situations in which e.g. specific examples
should be rejected or misclassification costs incorporated.

Prior probability of problems. As argued above, any procedure has a
problem for which it performs well. So, we may wonder how large the class of
such problems is. We cannot state that any classifier is better than any other
classifier, unless the distribution of problems to which these classifiers will
be applied is defined. Such distributions are hardly studied. What is done at
most is that classifiers are compared over a collection of benchmark problems.
Such sets are usually defined ad hoc and just serve as an illustration. The
collection of problems to which a classification procedure will be applied is
not defined. As argued in Section 3, it may be as large as all problems with a
compact representation, but preferably not larger.

6 Discussion and Conclusions

Recognition of patterns and inference skills lie at the core of human learning.
It is a human activity that we try to imitate by mechanical means. There
are no physical laws that assign observations to classes. It is the human con-
sciousness that groups observations together. Although their connections and
interrelations are often hidden, some understanding may be gained in the at-
tempt of imitating this process. The human process of learning patterns from
examples may follow along the lines of trial and error. By freeing our minds
of fixed beliefs and petty details we may not only understand single obser-
vations but also induce principles and formulate concepts that lie behind the
observed facts. New ideas can be born then. These processes of abstraction
and concept formation are necessary for development and survival. In practice,
(semi-)automatic learning systems are built by imitating such abilities in or-
der to gain understanding of the problem, explain the underlying phenomena
and develop good predictive models.

It has, however, to be strongly doubted whether statistics play an impor-
tant role in the human learning process. Estimation of probabilities, especially
in multivariate situations is not very intuitive for majority of people. More-
over, the amount of examples needed to build a reliable classifier by statistical
means is much larger than it is available for humans. In human recognition,
proximity based on relations between objects seems to come before features

254 Robert P.W. Duin and Elżbieta P ↪ekalska

are searched and may be, thereby, more fundamental. For this reason and
the above observation, we think that the study of proximities, distances and
domain based classifiers are of great interest. This is further encouraged by
the fact that such representations offer a bridge between the possibilities of
learning in vector spaces and the structural description of objects that pre-
serve relations between objects inherent structure. We think that the use of
proximities for representation, generalization and evaluation constitute the
most intriguing issues in pattern recognition.

The existing gap between structural and statistical pattern recognition
partially coincides with the gap between knowledge and observations. Prior
knowledge and observations are both needed in a subtle interplay to gain new
knowledge. The existing knowledge is needed to guide the deduction process
and to generate the models and possible hypotheses needed by induction,
transduction and abduction. But, above all, it is needed to select relevant
examples and a proper representation. If and only if the prior knowledge is
made sufficiently explicit to set this environment, new observations can be
processed to gain new knowledge. If this is not properly done, some results
may be obtained in purely statistical terms, but these cannot be integrated
with what was already known and have thereby to stay in the domain of obser-
vations. The study of automatic pattern recognition systems makes perfectly
clear that learning is possible, only if the Platonic and Aristotelian scientific
approaches cooperate closely. This is what we aim for.

References

[1] A.G. Arkadev and E.M. Braverman. Computers and Pattern Recognition.
Thompson, Washington, DC, 1966.

[2] M. Basu and T.K. Ho, editors. Data Complexity in Pattern Recognition.
Springer, 2006.

[3] R. Bergmann. Developing Industrial Case-Based Reasoning Applications.
Springer, 2004.

[4] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[5] H. Bunke. Recent developments in graph matching. In International
Conference on Pattern Recognition, volume 2, pages 117–124, 2000.

[6] H. Bunke, S. Günter, and X. Jiang. Towards bridging the gap between
statistical and structural pattern recognition: Two new concepts in graph
matching. In International Conference on Advances in Pattern Recogni-
tion, pages 1–11, 2001.

[7] H. Bunke and K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3-4):255–259, 1998.

[8] V.S. Cherkassky and F. Mulier. Learning from data: Concepts, Theory
and Methods. John Wiley & Sons, Inc., New York, NY, USA, 1998.

The Science of Pattern Recognition. Achievements and Perspectives 255

[9] T.M. Cover. Geomerical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions
on Electronic Computers, EC-14:326–334, 1965.

[10] T.M. Cover and P.E. Hart. Nearest Neighbor Pattern Classification.
IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[11] T.M. Cover and J.M. van Campenhout. On the possible orderings in the
measurement selection problem. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-7(9):657–661, 1977.

[12] I.M. de Diego, J.M. Moguerza, and A. Muñoz. Combining kernel infor-
mation for support vector classification. In Multiple Classifier Systems,
pages 102–111. Springer-Verlag, 2004.

[13] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[14] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer-Verlag, 1996.

[15] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John
Wiley & Sons, Inc., 2nd edition, 2001.

[16] R.P.W. Duin. Four scientific approaches to pattern recognition. In Fourth
Quinquennial Review 1996-2001. Dutch Society for Pattern Recognition
and Image Processing, pages 331–337. NVPHBV, Delft, 2001.

[17] R.P.W. Duin and E. P ↪ekalska. Open issues in pattern recognition. In
Computer Recognition Systems, pages 27–42. Springer, Berlin, 2005.

[18] R.P.W. Duin, E. P ↪ekalska, P. Pacĺık, and D.M.J. Tax. The dissimilarity
representation, a basis for domain based pattern recognition? In L. Gold-
farb, editor, Pattern representation and the future of pattern recogni-
tion, ICPR 2004 Workshop Proceedings, pages 43–56, Cambridge, United
Kingdom, 2004.

[19] R.P.W. Duin, E. P ↪ekalska, and D.M.J. Tax. The characterization of classi-
fication problems by classifier disagreements. In International Conference
on Pattern Recognition, volume 2, pages 140–143, Cambridge, United
Kingdom, 2004.

[20] R.P.W. Duin, F. Roli, and D. de Ridder. A note on core research issues for
statistical pattern recognition. Pattern Recognition Letters, 23(4):493–
499, 2002.

[21] S. Edelman. Representation and Recognition in Vision. MIT Press,
Cambridge, 1999.

[22] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall, London, 1993.

[23] P. Flach and A. Kakas, editors. Abduction and Induction: essays on their
relation and integration. Kluwer Academic Publishers, 2000.

[24] A. Fred and A.K. Jain. Data clustering using evidence accumulation. In
International Conference on Pattern Recognition, pages 276–280, Quebec
City, Canada, 2002.

256 Robert P.W. Duin and Elżbieta P ↪ekalska

[25] A. Fred and A.K. Jain. Robust data clustering. In Conf. on Computer
Vision and Pattern Recognition, pages 442 –451, Madison - Wisconsin,
USA, 2002.

[26] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall,
1982.

[27] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, 1990.

[28] G.M. Fung and O.L. Mangasarian. A Feature Selection Newton Method
for Support Vector Machine Classification. Computational Optimization
and Aplications, 28(2):185–202, 2004.

[29] L. Goldfarb. On the foundations of intelligent processes – I. An evolving
model for pattern recognition. Pattern Recognition, 23(6):595–616, 1990.

[30] L. Goldfarb, J. Abela, V.C. Bhavsar, and V.N. Kamat. Can a vector
space based learning model discover inductive class generalization in a
symbolic environment? Pattern Recognition Letters, 16(7):719–726, 1995.

[31] L. Goldfarb and D. Gay. What is a structural representation? Fifth
variation. Technical Report TR05-175, University of New Brunswick,
Fredericton, Canada, 2005.

[32] L. Goldfarb and O. Golubitsky. What is a structural measurement
process? Technical Report TR01-147, University of New Brunswick,
Fredericton, Canada, 2001.

[33] L. Goldfarb and J. Hook. Why classical models for pattern recognition are
not pattern recognition models. In International Conference on Advances
in Pattern Recognition, pages 405–414, 1998.

[34] T. Graepel, R. Herbrich, and K. Obermayer. Bayesian transduction. In
Advances in Neural Information System Processing, pages 456–462, 2000.

[35] T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K.-R.
Müller, K. Obermayer, and R. Williamson. Classification on proximity
data with LP-machines. In International Conference on Artificial Neural
Networks, pages 304–309, 1999.

[36] U. Grenander. Abstract Inference. John Wiley & Sons, Inc., 1981.
[37] P. Grünwald, I.J. Myung, and Pitt M., editors. Advances in Minimum

Description Length: Theory and Applications. MIT Press, 2005.
[38] B. Haasdonk. Feature space interpretation of SVMs with indefinite ker-

nels. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(5):482–492, 2005.

[39] I. Hacking. The emergence of probability. Cambridge University Press,
1974.

[40] G. Harman and S. Kulkarni. Reliable Reasoning: Induction and Statistical
Learning Theory. MIT Press, to appear.

[41] S. Haykin. Neural Networks, a Comprehensive Foundation, second
edition. Prentice-Hall, 1999.

[42] D. Heckerman. A tutorial on learning with Bayesian networks.
In M. Jordan, editor, Learning in Graphical Models, pages 301–354. MIT
Press, Cambridge, MA, 1999.

The Science of Pattern Recognition. Achievements and Perspectives 257

[43] T.K. Ho and M. Basu. Complexity measures of supervised classification
problems. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(3):289–300, 2002.

[44] A. K. Jain and B. Chandrasekaran. Dimensionality and sample size con-
siderations in pattern recognition practice. In P. R. Krishnaiah and L. N.
Kanal, editors, Handbook of Statistics, volume 2, pages 835–855. North-
Holland, Amsterdam, 1987.

[45] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition:
A review. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(1):4–37, 2000.

[46] T. Joachims. Transductive inference for text classification using support
vector machines. In I. Bratko and S. Dzeroski, editors, International
Conference on Machine Learning, pages 200–209, 1999.

[47] T. Joachims. Transductive learning via spectral graph partitioning. In
International Conference on Machine Learning, 2003.

[48] T.S. Kuhn. The Structure of Scientific Revolutions. University of Chicago
Press, 1970.

[49] L.I. Kuncheva. Combining Pattern Classifiers. Methods and Algorithms.
Wiley, 2004.

[50] J. Laub and K.-R. Müller. Feature discovery in non-metric pairwise data.
Journal of Machine Learning Research, pages 801–818, 2004.

[51] A. Marzal and E. Vidal. Computation of normalized edit distance
and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):926–932, 1993.

[52] R.S. Michalski. Inferential theory of learning as a conceptual basis for
multistrategy learning. Machine Learning, 11:111–151, 1993.

[53] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[54] Richard E. Neapolitan. Probabilistic reasoning in expert systems: theory

and algorithms. John Wiley & Sons, Inc., New York, NY, USA, 1990.
[55] C.S. Ong, S. Mary, X.and Canu, and Smola A.J. Learning with non-

positive kernels. In International Conference on Machine Learning, pages
639–646, 2004.

[56] E. P ↪ekalska and R.P.W. Duin. The Dissimilarity Representation for
Pattern Recognition. Foundations and Applications. World Scientific,
Singapore, 2005.

[57] E. P ↪ekalska, R.P.W. Duin, S. Günter, and H. Bunke. On not making dis-
similarities Euclidean. In Joint IAPR International Workshops on SSPR
and SPR, pages 1145–1154. Springer-Verlag, 2004.

[58] E. P ↪ekalska, P. Pacĺık, and R.P.W. Duin. A Generalized Kernel Approach
to Dissimilarity Based Classification. Journal of Machine Learning
Research, 2:175–211, 2002.

[59] E. P ↪ekalska, M. Skurichina, and R.P.W. Duin. Combining Dissimilarity
Representations in One-class Classifier Problems. In Multiple Classifier
Systems, pages 122–133. Springer-Verlag, 2004.

258 Robert P.W. Duin and Elżbieta P ↪ekalska

[60] L.I. Perlovsky. Conundrum of combinatorial complexity. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20(6):666–670, 1998.

[61] P. Pudil, J. Novovićova, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(11):1119–1125, 1994.

[62] B. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, 1996.

[63] C.P. Robert. The Bayesian Choice. Springer-Verlag, New York, 2001.
[64] K.M. Sayre. Recognition, a study in the philosophy of artificial intelli-

gence. University of Notre Dame Press, 1965.
[65] M.I. Schlesinger and Hlavác. Ten Lectures on Statistical and Structural

Pattern Recognition. Kluwer Academic Publishers, 2002.
[66] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press,

Cambridge, 2002.
[67] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.

Cambridge University Press, UK, 2004.
[32] M. Stone. Cross-validation: A review. Mathematics, Operations and

Statistics, (9):127–140, 1978.
[69] D.M.J. Tax. One-class classification. Concept-learning in the absence

of counter-examples. PhD thesis, Delft University of Technology, The
Netherlands, 2001.

[70] D.M.J. Tax and R.P.W. Duin. Support vector data description. Machine
Learning, 54(1):45–56, 2004.

[71] F. van der Heiden, R.P.W. Duin, D. de Ridder, and D.M.J. Tax.
Classification, Parameter Estimation, State Estimation: An Engineering
Approach Using MatLab. Wiley, New York, 2004.

[72] V. Vapnik. Estimation of Dependences based on Empirical Data. Springer
Verlag, 1982.

[73] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., 1998.
[74] L.-X. Wang and J.M. Mendel. Generating fuzzy rules by learning

from examples. IEEE Transactions on Systems, Man, and Cybernetics,
22(6):1414–1427, 1992.

[75] S. Watanabe. Pattern Recognition, Human and Mechanical. John Wiley
& Sons, 1985.

[76] A. Webb. Statistical Pattern Recognition. John Wiley & Sons, Ltd., 2002.
[77] S.M. Weiss and C.A. Kulikowski. Computer Systems That Learn. Morgan

Kaufmann, 1991.
[78] R.C. Wilson and E.R. Hancock. Structural matching by discrete relax-

ation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(6):634–648, 1997.

[79] R.C. Wilson, B. Luo, and E.R. Hancock. Pattern vectors from alge-
braic graph theory. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7):1112–1124, 2005.

[80] S. Wolfram. A new kind of science. Wolfram Media, 2002.
[81] D.H. Wolpert. The Mathematics of Generalization. Addison-Wesley,

1995.

The Science of Pattern Recognition. Achievements and Perspectives 259

[82] R.R. Yager, M. Fedrizzi, and J. (Eds) Kacprzyk. Advances in the
Dempster-Shafer Theory of Evidence. Wesley, 1994.

[83] C.H. Yu. Quantitative methodology in the perspectives of abduction,
deduction, and induction. In Annual Meeting of American Educational
Research Association, San Francisco, CA, 2006.

Towards Comprehensive Foundations
of Computational Intelligence

W�lodzis�law Duch

1 Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5,
Toruń, Poland,

2 School of Computer Engineering, Nanyang Technological University, Singapore.

Summary. Although computational intelligence (CI) covers a vast variety of differ-
ent methods it still lacks an integrative theory. Several proposals for CI foundations
are discussed: computing and cognition as compression, meta-learning as search
in the space of data models, (dis)similarity based methods providing a framework
for such meta-learning, and a more general approach based on chains of transfor-
mations. Many useful transformations that extract information from features are
discussed. Heterogeneous adaptive systems are presented as particular example of
transformation-based systems, and the goal of learning is redefined to facilitate cre-
ation of simpler data models. The need to understand data structures leads to tech-
niques for logical and prototype-based rule extraction, and to generation of multiple
alternative models, while the need to increase predictive power of adaptive models
leads to committees of competent models. Learning from partial observations is a
natural extension towards reasoning based on perceptions, and an approach to in-
tuitive solving of such problems is presented. Throughout the paper neurocognitive
inspirations are frequently used and are especially important in modeling of the
higher cognitive functions. Promising directions such as liquid and laminar comput-
ing are identified and many open problems presented.

1 Introduction

Computational intelligence emerged from interactions of several research com-
munities with overlapping interests, inspired by observations of natural infor-
mation processing. H. Spencer in his “Principles of Psychology” published in
1855 drew neural network diagrams and made a conjecture that all intelligence
may be interpreted in terms of successful associations between psychological
states driven by the strength of connections between the internal states (see
the early history of connectionism in [174]).

Research in artificial neural networks (ANNs) grew out from attempts
to drastically simplify biophysical neural models, and for a long time was
focused on logical and graded response (sigmoidal) neurons [5] used for classi-
fication, approximation, association, and vector quantization approaches used

W�lodzis�law Duch: Towards Comprehensive Foundations of Computational Intelligence, Studies

in Computational Intelligence (SCI) 63, 261–316 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

262 W�lodzis�law Duch

for clusterization and self-organization [108]. Later any kind of basis func-
tion expansion, used since a long time in approximation theory [145] and
quite common in pattern recognition, became “a neural network” [4], with
radial basis function (RBF) networks [142] becoming a major alternative to
multilayer perceptron networks (MLPs). However, as pointed out by Minsky
and Papert [133] there are some problems that such networks cannot solve.
Although these authors were wrong about the XOR (or the parity) problem
which is easily solved by adding hidden neurons to the network, they were right
about the topological invariants of patterns, in particular about the problem
of connectedness (determining if the pattern is connected or disconnected).
Such problems can only be solved with a different type of neurons that in-
clude at least one phase-sensitive parameter [113], or with spiking neurons
[175]. Computational neuroscience is based on spiking neurons [69], and al-
though mathematical characterization of their power has been described [121]
their practical applications are still limited. On the other hand feedforward
artificial neural networks found wide applications in data analysis [146] and
knowledge extraction [62]. Better understanding of mathematical foundations
brought extensions of neural techniques towards statistical pattern recogni-
tion models, such as the Support Vector Machines (SVMs) [157] for supervised
learning and Independent Component Analysis [92] and similar techniques for
unsupervised learning.

Most networks are composed of elements that perform very simple func-
tions, such as squashed weighted summation of their inputs, or some distance-
based function [57, 58]. Connectionist modeling in psychology [153] introduced
nodes representing whole concepts, or states of network subconfigurations, al-
though their exact relations to neural processes were never elucidated. It was
natural from this point of view to extend connectionist networks to all kinds of
graphical models [101], including Bayesian belief networks and abstract net-
work models for parallel distributed processing. Concept nodes, representing
information derived from perception or from some measurements, are not too
precise and thus may be represented in terms of fuzzy membership functions.
Fuzzy models may be formally derived as generalization of multivalued logics,
but the field has also rather obvious cognitive inspirations related to models
of intelligent behavior at a higher, psychological level, rather than elementary
neural level. Sets of fuzzy rules have a natural graphical representation [118],
and are deeply connected to neural networks [37]. Fuzzy rules organized in a
network form may be tuned by adaptive techniques used in neural networks,
therefore they are called neurofuzzy systems [135, 138]. Thus fuzzy and neural
systems are at the core of computational intelligence.

Brains and sensory organs have been structured and optimized by the
evolutionary processes to perform specific functions. This inspiration led
to introduction of evolutionary programming [66, 73], and later also other
biologically-inspired optimization approaches, such as ant, swarm, and im-
munological system algorithms [16, 107, 30], that can be used for optimiza-
tion of adaptive parameters in neural and neurofuzzy systems. Although the

Towards Comprehensive Foundations of Computational Intelligence 263

algorithms based on these diverse biological inspirations are used for similar
applications the time-scales of evolutionary, behavioral and immunological
processes involved are very different, and the type of intelligence they are
related to is also quite different.

The three main branches of computational intelligence are thus inspired
by evolutionary processes that structured brains and intelligence, low-level
brain processes that enable perception and sensorimotor reactions (primary
sensory and motor cortices), and intermediate level fuzzy concepts and as-
sociative reasoning (higher sensory areas in temporal and parietal lobes). To
cover all phenomena related to intelligence in a computational framework rep-
resentation and reasoning based on complex knowledge structures is needed.
Traditionally artificial intelligence (AI) has been concerned with high level
cognition, using the symbolic knowledge modeling to solve problems that re-
quire sequential reasoning, planning and understanding of language, but ignor-
ing learning and associative memories. High-level cognition requires different
approach than perception-action sequences at the lower cognitive level, where
artificial neural networks, pattern recognition and control techniques are used.
Knowledge used in reasoning and understanding language is based on a large
number of concepts with complex structure, huge amount of diverse informa-
tion that may be combined in an infinite number of ways. Making inferences
from partial observations requires systematic search techniques and may draw
inspirations from decision-making processes in which prefrontal cortex of the
brain is involved. One of the big challenges facing CI community is integra-
tion of the good-old fashioned artificial intelligence (GOFAI). Although some
attempts in this direction have been made [90] typical textbooks on artificial
intelligence [181, 154] include very little information on neural networks or
fuzzy systems, with learning reduced to probabilistic, Bayesian models, maxi-
mum likelihood approaches, and symbolic machine learning methods. Overlap
between the two communities in terms of conference topics, or journal publi-
cations has always been minimal. Each branch of CI has its natural areas of
application requiring methods that may not overlap significantly. Even neural
networks and pattern recognition communities, despite a considerable overlap
in applications, tend to be separated.

This situation may change in near future. Development of artificial pets
or other autonomous systems that should survive in hostile environment is
a great challenge for signal analysis to model perception, control systems
for behavioral modeling, and perception-based reasoning including attention.
Autonomous agents, such as robots, need to reason using both abstract knowl-
edge and information based on perceptions, information coming from sensors,
categorized into information granules that are easier to handle. Efforts in
cognitive robotics require combination of high behavioral competence with
human-level higher cognitive competencies. Autonomous agents should be
based on cognitive architectures that integrate low and high-level cognitive
functions. This area is slowly gaining popularity and will be a natural meet-
ing ground for all branches of computational intelligence. Development of

264 W�lodzis�law Duch

chatterbots that involve people in interesting conversation is based now on
natural language processing and knowledge representation techniques, but it
remains to be seen how far one can go in this direction without including real
perception. Another driving force that should encourage the use of search tech-
niques that form the basis for AI problem solving is the “crises of the richness”
that afflicts computational intelligence. Recent component-based data mining
packages1 contain hundreds of learning methods, input transformations, pre-
and post-processing components that may be combined in thousands of ways.
Some form of meta-learning that should automatically discover interesting
models is urgently needed and it has to be based on search in the model
space. Heuristic search techniques have been developed to solve complex com-
binatorial problems and CI has reached the stage now where they should be
used.

In this paper an attempt is made to outline foundations for a large part
of computational intelligence research, identify open problems and promising
directions, show how to solve this “crises of the richness” and how to go be-
yond pattern recognition, towards problems that are of interest in artificial
intelligence, such as learning from partial observations or perceptions, and sys-
tematic reasoning based on perceptions. The emphasis here is on architectures
and capabilities of models, rather then learning techniques, therefore evolu-
tionary and other optimization approaches are not discussed. In the second
section foundations of computational intelligence are discussed. Computing
and cognition seen from the perspective of compression of information is ana-
lyzed, introducing a new measure of syntactic and semantic information con-
tent, heterogeneous systems that may discover specific bias in the data, and
meta-learning scheme to discover good data models in an automatic way. In
the third section a general CI theory based on composition of transformations
is outlined, showing how new information is generated, extracted from the
data, how to use heterogeneous learning systems, redefine the goal of learning
in case of difficult problems, understand data in the similarity-based frame-
work and use many individual models in meta-learning schemes. Section four
shows how to go beyond pattern recognition using intuitive computing and
correlation machines. Neurocognitive inspirations are very important at every
step and are discussed in section five. A summary of open problems closes this
paper.

2 Searching for Computational Intelligence Foundations

A quick glance on some books with “computational intelligence” title [109,
134, 138] shows that the field still lacks a coherent framework. Many branches
of CI are presented one after another, with distant biological inspirations
as a common root, although in case of such statistical techniques as kernel

1 See: http://en.wikipedia.org/wiki/Data mining

Towards Comprehensive Foundations of Computational Intelligence 265

methods or SVMs such inspirations cannot be provided. Different experts de-
fine computational intelligence as a collection of computational techniques
that are glued together only for historical or even personal reasons. Modern
pattern recognition textbooks [63, 176, 166] start from the Bayesian proba-
bilistic foundations that may be used to justify both discriminat as well as
the nearest neighbor type of learning methods. Supervised and unsupervised
pre-processing techniques, classification, rule extraction, approximation and
data modeling methods, cost functions and adaptive parameter optimization
algorithms are used as components that may be combined in thousands of
ways to create adaptive systems.

Can there be a common foundation for most computational intelligence
methods guiding the creation of adaptive systems? Computational learning
theory [104] is a rigorous mathematical approach to learning, but it covers only
the theoretical aspects of learning and is rarely used in practice. In brain sci-
ence it has been commonly assumed (although only recently tested [162]) that
sensory systems and neurons in the primary sensory cortex are well adapted
through the evolutionary and developmental processes to the statistical prop-
erties of the visual, auditory and other types of signals they process. Neurons
in the higher sensory areas react to progressively more complex aspects of
signal structure. Difficult, ill-determined problems (including perception and
natural language processing) may be solved only by using extensive back-
ground knowledge. Despite relatively rigid architecture of primary sensory
areas neurons can quickly adapt to changes in the sensory signal statistics,
for example variance, contrast, orientation and spatial scale. Thus a series
of transformations is made before sufficient amount of information is derived
from the signal to perform object identification, and then information about
the object is used for associations and further reasoning. Inspirations from
brain sciences serve below to discuss some challenges facing CI, and will be
explored in more details later in this paper.

2.1 Some Challenges for CI

Intelligent systems should have goals, select appropriate data, extract informa-
tion from data, create percepts and reason with them to find new knowledge.
Goal setting may be a hierarchical process, with many subgoals forming a plan
of action or solution to a problem. Humans are very flexible in finding alterna-
tive ways to solve a given problem, and a single-objective solutions are rarely
sufficient. Brains have sufficient resources to search for alternative solutions to
the problem, recruiting many specialized modules in this process. An impor-
tant challenge for computational intelligence is thus to create flexible systems
that can use their modules to explore various ways to solve the same problem,
proposing multiple solutions that may have different advantages. This idea will
be explored below using a meta-learning search process in the space of all pos-
sible models that may be composed from available transformations. The great
advantage of Lisp programming is that the program may modify itself. There

266 W�lodzis�law Duch

are no examples of CI programs that could adjust themselves in a deeper way,
beyond parameter optimization, to the problem analyzed. Such adjustment
has been partially implemented in the similarity-based meta-learning scheme
[35, 53], and is also in accord with evolving programs and connectionist sys-
tems [103] that to a limited degree change their structure.

Most CI algorithms have very limited goals, such as prediction (using ap-
proximation method) or diagnosis (classification) based on data with some
fixed structure. Such algorithms are essential building blocks of general intel-
ligent systems, although their goals and information flow is determined by the
user who tries to find a method that works for a given data. For example, run-
ning neural network software the user has to make many decisions, designing
the network, selecting the training method, setting parameters, preparing the
data, evaluating results and repeating the whole cycle. In effect the user acts
as an external controller for the system, while the brain has parts controlling
other parts [151, 152]. With sufficiently large library of different procedures
for data preprocessing, feature selection and transformation, creation of data
models, optimization of these models and postprocessing of results (already
hundreds of components are available in such packages as Weka [182], Yale
[131] and others) the control problem becomes quite difficult and the number
of possible variants of such approach guarantees a constant supply of confer-
ence papers for many years to come.

Most efforts in the computational intelligence field goes into the improve-
ment of individual algorithms. For example, model selection [166] in neural
networks is usually restricted to architectures (number of nodes, each perform-
ing the same type of functions) and improvements of the training schemes;
in the decision tree the focus is on the node splitting criteria and pruning
strategies. The current focus on accuracy improvements of individual models,
dominating in the academic journal and conference papers, is hard to jus-
tify both from the practical and theoretical point of view. The ‘no free lunch’
theorem [63, 176] shows that there is no single learning algorithm that is inher-
ently superior to all other algorithms. In real world applications there may be
many additional considerations, different methods may offer different advan-
tages, for example presenting results in comprehensible way or using features
of the problem that can be obtained with lower costs or effort. These consid-
erations are almost never addressed in the literature on learning systems. In
practice “Experience with a broad range of techniques is the best insurance for
solving arbitrary new classification problems (Chapter 9.2.1, [63]). Moreover,
one should find all algorithms that work sufficiently well for a given data, but
offer different advantages. Although data mining packages include now many
algorithms still some of the best algorithms used in the StatLog project [130]
are not implemented in research or commercial software. It is doubtful that
new algorithms are going to be always significantly better. Most programs
have many parameters and it is impossible to master them all.

Towards Comprehensive Foundations of Computational Intelligence 267

The first challenge for CI is thus to create flexible systems that can
configure themselves finding several interesting solutions for a given tasks.
Instead of a single learning algorithm priorities may be set to define what will
be an interesting solution. A system that automatically creates algorithms
on demand should search for configurations of computational modules in the
space of all models restricted by the user priorities. For example, if the goal
is to understand or make a comprehensible model of the data, methods that
extract rules from data or that find interesting prototypes in the data should
be preferred, although methods that provide interesting visualizations may
also be considered. A lot of knowledge about reliability of data samples, pos-
sible outliers, suspected cases, relative costs of features or their redundancies
is usually ignored as there is no way to pass it to and to use it in CI programs.
Models that are not working well on all data may work fine on some subsets
of data and be still useful. In practical applications validation and verification
of solutions may be of great importance.

These challenges have been only partially addressed so far by CI com-
munity. Systematic generation of interesting models has been the topic of
meta-learning research. In the simplest version meta-learning may be reduced
to a search for good models among those available in the data mining pack-
ages, a search in the model/parameter space. In the machine learning field
the multistrategy learning has been introduced by Michalski [64]. Learning of
a single model may be sufficiently difficult, therefore to be feasible search in
the space of many possible models should be heuristically guided. The Metal
project [72] tried to collect information about data characteristics and cor-
relate it with the methods that performed well on a given data. A system
recommending classification methods for a given data has been built using
this principle, but it works well only in a rather simple cases. Not much is
known about the use of heuristic knowledge to guide the search for interesting
models. One problem with most meta-learning approaches is that the granu-
larity of the existing models is too large and thus only a small subspace of all
possible models is explored.

Although computational intelligence covers a vast variety of different meth-
ods it lacks integrative theory. Bayesian approaches to classification and ap-
proximation in pattern recognition [63, 176, 166] covers mostly statistical
methods, leaving many neural and fuzzy approaches in CI largely outside
of their scope. There is an abundance of specialized, ad hoc algorithms for
information selection, clusterization, classification and approximation tasks.
An integrative theory is needed, providing a good view of interrelations of
various approaches, and a good start for meta-learning, that could automat-
ically find an appropriate tool for a given task. Creating such a theory is a
great challenge. Some guiding principles that address it are described below.

268 W�lodzis�law Duch

2.2 Computing and Cognition as Compression

Neural information processing in perception and cognition is based on the
principles of economy, or information compression [22]. In computing these
ideas have been captured by such concepts as the minimum (message) length
encoding, minimum description length, or general algorithmic complexity
[119]. An approach to information compression by multiple alignment, uni-
fication and search has been proposed as a unifying principle in computing,
analysis and production of natural language, fuzzy pattern recognition, prob-
abilistic reasoning and unsupervised inductive learning [183, 184], but so far
only models for sequential data have been considered. The difficulty in apply-
ing such principles to real problems are due to the importance of underlying
structures for handling information and knowledge representation. Multiple
alignment is sufficient for sequential information that is stored in strings but
not for structured information that is stored in the brain subnetworks in a
way that is not yet fully understood.

Information compression and encoding of new information in terms of old
has been used to define the measure of syntactic and semantic information
introduced in [56]. This information is based on the size of the minimal graph
representing a given data structure or knowledge–base specification, thus it
goes beyond alignment of sequences. A chunk of information has different value
for someone who does not have any associations with it and treats it as a fact
to be ignored or remembered, and a very different value for an expert who may
have to restructure many existing associations to accommodate it. Semantic
information measure, introduced in [56], is proportional to the change of algo-
rithmic (Chaitin-Kolmogorov) information [20] that is needed to describe the
whole system, and therefore measures relative complexity, depending on the
knowledge already accumulated. Algorithmic information or the relative com-
plexity of an object y in respect to a given object x is defined as the minimal
length of the program p for obtaining y from x. Algorithmic information cap-
tures some intuitive features of information: a binary string obtained by truly
random process cannot be compressed and carries the amount of information
equal to the number of its digits. An apparently random string may, however,
be easily computable from some short algorithm, for example a square root
or the value of π. Because of the Gödel and related theorems it is in general
not possible to decide whether the string is random or simple to compute.
Although algorithmic information has correct intuitive features it is usually
very hard to compute, relying on a concept of universal computer.

Suppose that information is encoded in n-element binary strings. There
are 2n possible strings and if they are chosen in a completely random way
only a little compression will be possible. Each new string will contribute
about n bits of information and strings will be represented in form of a binary
tree. Encoding new information in terms of the old is possible in various ways
if some parts of the new bit strings are already present in the previously
analyzed old bit strings. For example, if the new string Bn differs from an old

Towards Comprehensive Foundations of Computational Intelligence 269

0

0

0

0

0

1

1

1

1

1 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

Fig. 1. Left: minimal graph representing a set of all 32 binary 5-bit strings. Right:
minimal graph for a set of all 5-bit binary strings, without 11111 string. Such graphs
are created by folding binary trees to minimal graphs

string Bo only by the last bit bn the whole Bn string contributes only one
bit of information relatively to Bo. If many bit strings are received the whole
information contained in them may be presented in a binary tree and folded
into a minimal graph. If all 2n strings are present the minimal graph may be
represented in a very compact form (Fig. 1, left). However, if all but the last
string 11111 are received the minimal graph (created by folding binary tree
with just one edge removed) is rather complicated (Fig. 1, right). Adding the
last string carries – from the point of view of the whole system that builds
internal representation of the structure of the incoming information – a large
amount of information, reducing the 5-bit graph by 7 edges and 4 vertices.
The number of edges plus vertices changed in the minimal graph representing
all data is thus a useful measure of the structural information that is gained by
receiving new information. If the strings repeat themselves no new structural
information is gained, although frequency of repeated information chunks may
be useful for other purposes.

Semantic contents or meaning of information may only be defined in a
context of cognitive system, for example an expert system based on a set of
rules stored in a knowledge base, or a semantic network. Knowledge base,
together with the rules of inference, defines a universum of facts, representing
knowledge or some model of the world. Information gain relatively to the
knowledge base is defined as the change of the size of the minimal knowledge
base that can accommodate this fact and its consequences. When a new fact
is learned by a human it may take from several seconds to days or even years
before this fact is truly accommodated and the meaning is fully understood.

270 W�lodzis�law Duch

Years of repetition of basic facts in mathematics and natural sciences are
required to really digest this information: once it has been integrated into
the “knowledge base” the information contained in the school book can be
quickly reviewed and new information encoded in terms of the old. Adding
new rule to the knowledge base requires accommodation of this knowledge,
and thus modification of existing knowledge. For example, learning that some
fruits are edible may require a short sequence of symbols to transmit, but will
have large influence on the knowledge base, creating new goals and modifying
behavior of humans and animals.

Perfect minimal encoding is probably never accomplished in real brains,
but even an imperfect approximation of this process gives a useful measure of
semantic information. For example, cyclomatic complexity [127] of a software
module is calculated from a connected graph showing topology of control
flow within the program as CC = E − N + p, where E is the number of
edges of the graph, N the number of nodes of the graph and p the number
of connected components. Software with cyclomatic complexity over 50 is
considered untestable and very high risk. Adding new module to such software
leads to a large change in the amount of information that the system gains,
making it hard to predict all the consequences.

The use of algorithmic information measures in computational intelligence
is still rare. However, CI systems that encode new information in terms of the
known information are certainly not new. They include constructive neural
networks that add new nodes only if the current approximation is not sufficient
[87, 50], similarity-based systems that accept new reference vector checking
first if it is not redundant, decision trees that are pruned to increase their
generalization and ignore data that are already correctly handled, information
selection methods that increase the pool of features or their combinations only
when new data justifies it, and many other approaches.

2.3 Meta-learning via Search in the Model Space

Meta-learning requires detailed characterization of the space of possible mod-
els, the ability to create and modify CI models in a systematic way. This should
not be done in a random way, as the space of all possible models is too large
to explore. Some framework that covers large number of different methods is
needed. For feedforward neural networks such framework involves possible ar-
chitectures, from simplest to more complex, and a taxonomy of different types
of transfer functions [57, 58], allowing for systematic exploration of different
network models. Although the focus of neural network community has been
on learning algorithms and network architectures, it is clear that selection of
transfer functions is decisive for the speed of convergence in approximation
and classification problems. As already shown in [57] (see also [11, 12]) some
problems may require O(n2) parameters using localized functions and only
O(n) parameters when non-local functions are used. The n-parity problem
may be trivially solved using a periodic function with a single parameter [40]

Towards Comprehensive Foundations of Computational Intelligence 271

while the multilayer perceptron (MLP) networks need O(n2) parameters and
learn it only with great difficulty. It is hard to create basis functions expan-
sion that will not have the universal approximator property, yet the fact that
MLPs and radial basis function (RBF) networks are universal approxima-
tors has somehow blinded the researches who ignored quite obvious fact that
it is the speed of convergence (especially for multidimensional data) that is
most important. In principle neural networks may learn any mappings, but
the ability to learn quickly and accurately requires flexible “brain modules”,
or transfer functions that are appropriate for the problem to be solved. This
problem will not disappear thanks to better learning procedures or architec-
tures, the main research topics in neural computing.

Meta-learning methods should help to build the final model from com-
ponents performing different transformations on available data. Almost all
adaptive systems are homogenous, i.e. they are built from many processing
elements of the same type. MLP neural networks and decision trees use nodes
that partition the input space by hyperplanes. Networks based on localized
functions (RBF, Gaussian classifiers) frequently use nodes that provide spher-
ical or ellipsoidal decision borders. This cannot be the best inductive bias for
all data, frequently requiring large number of processing elements even in
cases when simple solutions exist. Neurocognitive inspirations that go beyond
simple neurons may point the way here. A single cortical column in the brain
provides many types of microcircuits that respond in a qualitatively different
way to the incoming signals [123]. Other cortical columns may combine these
responses in a perceptron-like fashion to enable complex discriminations. At
the level of higher cognition brains do not recognize all objects in the same fea-
ture space. Even within the same sensory modality a small subset of complex
features is selected, allowing to distinguish one class of objects from another
(for example, in case of vision a simple sketch is sufficient). Object recog-
nition or category assignment by the brain is probably based on evaluation
of similarity to memorized prototypes of objects using a few characteristic
features.

In contrast to human categorization most pattern recognition systems im-
plicitly assume that classification is done using the same features in all regions
of the input space. Memory-based techniques use single distance (or similarity)
function to distinguish all objects, statistical or neural methods provide hy-
perplanes (MLPs) or Gaussian functions (RBF networks) for discrimination,
but rarely both. Decision trees are usually univariate, employing a decision
rule for the threshold value of a single feature, partitioning the input space
into hyperrectangles. Multivariate decision trees provide several hyperplanes
at high computational cost. Support Vector Machines use one kernel globally
optimized for a given dataset [27]. All these systems may be called “homoge-
nous” since they search for a solution providing the same type of elements,
the same type of decision borders in the whole feature space. Committees of
the homogenous systems are frequently used to improve and stabilize results
[17]. Combining systems of different types in a committee is a step towards

272 W�lodzis�law Duch

heterogeneous systems that use different types of decision borders, but such
models may become quite complex and difficult to understand.

A rather obvious extension of traditional approach is to use class-specific
features that may be quite distinct for different classes. This approach is used
in an implicit way in feedforward neural networks with strong regularization
that leads to creation of hidden nodes strongly linked only to selected features
and used for specific classes. This type of solutions may also emerge in hierar-
chical systems, such as decision trees, where each class may end in a different
branch using different features, although at least one feature is always shared
among all classes. Using feature selection for separate classifiers Ck(X) that
distinguish a single class from the rest may lead to completely distinct sets
of features. In the K-class problem a set of i = 1..K selector transformations
Zi = Ti(Xi) may be defined by feature selection techniques, and these classi-
fiers are restricted to their own Ck(Zk) subspaces. The final decision depends
on the relative confidence of individual classifiers that may assign the same
vector to the class they specialize in. Even though individual classifiers are
trained on different feature subsets their confidence may be scaled by a sec-
ond transformation, such as additional scaling or a linear mixture of their
predictions. Alternatively, new adaptive transformations may be trained on
the K-dimensional vectors 1X = Ck(X) obtained as predictions for all train-
ing data. In this case the classifiers are used as data transformations and their
number may be larger than K. Binary classifiers (such as decision trees) usu-
ally give only one answer Ck(X) = 1, but some other classifiers may actually
create K probabilities, so the final dimensionality after this transformation
may reach at least K2.

A more sophisticated approach to class-specific use of features has been
presented by Baggenstoss [8]. It is based on estimation of probability density
functions (PDFs) in the reduced low-dimensional feature space selected sep-
arately for each class, and mapping these PDFs back to the original input
space, where Bayesian classification is performed. To constrain the inverse
mapping (it is obviously not unique) a reference hypothesis is used for which
P(X|H0) and P(Z|H0) are both known, and likelihood rations are preserved,
that is:

P(X) = P(Z)P(X|H0)/P(Z|H0) (1)

The “correction factor” to the PDF calculated in Z space is simply the ra-
tio of the two reference hypothesis PDFs. The PDF projection theorem opens
many possibilities worth exploration, although the choice of the reference hy-
pothesis may sometimes be non-trivial.

2.4 Similarity-based Framework for Meta-learning

Similarity (or dissimilarity, measured by some distance) is a very fundamental
concept that can be used as a basis for computational intelligence methods

Towards Comprehensive Foundations of Computational Intelligence 273

[140]. For additive similarity measures models based on similarity to proto-
types are equivalent to models based on fuzzy rules and membership func-
tions [48]. Similarity functions may be related to distance functions by many
transformations, for example exponential transformation S(X,Y) = exp
(−D(X,Y)). Additive distance functions D(X,Y) are then converted to the
multiplicative similarity factors (membership functions). For example, Euclid-
ean distance function D2(X,Y)2 =

∑
i Wi(Xi − Yi)2 is equivalent to a multi-

variate Gaussian similarity function S2(X,Y) = exp(−D2(X,Y)2) centered
at Y with ellipsoidal contours of constant values D2(X,Y) = const, equal
to the product of univariate Gaussian membership functions S2(X,Y) =∏

i G(Xi, Yi) =
∏

i exp[−Wi(Xi−Yi)2]. Using such transformations fuzzy rules
(F-rules) with product norms may always be replaced by prototype-based rules
(P-rules) with appropriate similarity functions. On the other hand all addi-
tive distance functions may be replaced by product T-norms with membership
functions given by exponential one-dimensional distance factors. For example,
the Manhattan distance function D1(X,P) =

∑
i=1 |Xi−Pi| leads to a prod-

uct of exp(−|Xi−Pi|) membership functions. However, non-additive distance
functions (for example the Mahalanobis distance) are difficult to approxi-
mate using products or combinations of one-dimensional fuzzy membership
functions, unless explicit correlations between fuzzy features are taken into
account.

Prototype-based rules (P-rules), although rarely used, are in many cases
easier to comprehend than fuzzy rules (F-rules) and create new possibilities
for data understanding. Relations between these two types of rules have so
far not been explored in details. Two types of prototype-based rules may
be distinguished: minimum distance rules (discriminative approach), and the
threshold rules (similarity-based approach). Minimum distance rule selects
the prototype that is closer:
IF P = arg minP′ D(X,P′) THAN Class(X) = Class(P),
while threshold rules select the prototype that is sufficiently similar, or closer
than some threshold distance:
IF D(X,P) ≤ dP THEN C.

The minimum distance rule for two prototypes defines a hyperplane bi-
secting the line connecting these prototypes. There are many methods to find
optimal hyperplanes [63, 87] and they can be used to select optimal posi-
tion of prototypes. On the other hand variants of LVQ methods [108] lead
to prototypes and thus hyperplanes that do not seem to correspond to any
discriminant analysis algorithms. In particular the idea of maximizing mar-
gins, not only minimizing errors, used in SVM algorithms based on solutions
to regularized least square problem in the primial or dual space [21], has not
yet been used for prototype optimization or selection [97, 81]. Any hyperplane
defined by its bias and normal vector (W0,W) is equivalent to a minimal dis-
tance rule for two prototypes P,P′ such that W/||W|| = (P−P′)/||P−P′||,
and W0 = 1

2 ||P − P′||. Thus discrimination hyperplanes do not specify by
themselves interesting prototypes, they can move in the subspace parallel to

274 W�lodzis�law Duch

the W plane, and be placed in important positions, for example close to clus-
ter centers.

Decision boundaries of the threshold rules depend on the type of the dis-
tance function D(X,P). They frequently provide localized decision regions
and may not be able to label vectors in some areas of feature space, unless
a default (ELSE) rule is used. Distance function DW(X,P) between proto-
type P and point X that has constant value for all points lying on a plane
perpendicular to W is calculated by:

DW(X,P) = |
N∑
i

si(Xi −Pi)|; si = Wi/||W|| (2)

The threshold rule IF D(X,P) ≤ dP THEN C, with dP = 1
2 ||P − P′||

is equivalent to the minimum distance rule for propotypes P,P′. Relations
between various discriminant analysis techniques on the one hand, and opti-
mization of prototypes on the other hand, have just started to be explored.
Relations between similarity based methods and fuzzy rule-based systems have
also not yet been analyzed in depth. More attention has been devoted to re-
lations between RBF networks and fuzzy logic models [105].

RBF and MLP networks may be viewed as a particular implementation of
hierarchical sets of fuzzy threshold logic rules based on sigmoidal membership
functions, equivalent to crisp logic networks applied to the input data with
uncertainty [37]. Leaving uncertainty (fuzziness) on the input side makes the
networks or the logical rule-based systems easier to understand, and achieves
similar results as the Type-2 fuzzy systems [129]. Moreover, it shows deep
connections between neural and fuzzy systems, with different types of in-
put uncertainty equivalent to crisp input values with specific transfer func-
tions. Many natural assumptions about uncertainty of input variable x lead
to probability that rule Pr(x > θ) is true given by the membership functions
of sigmoidal shape, for example semi-linear functions for uncertainties that
are constant in some interval or to erf functions (almost identical to logistic
functions) for Gaussian uncertainties.

The radial basis functions became a synonym for all basis function ex-
pansions, although in approximation theory already in the classical book of
Achieser published in 1956 [2] many such expansions were considered. RBF
networks are equivalent to the fuzzy systems only in special cases, for ex-
ample when the Gaussian membership functions are used [105], but in the
literature RBF is frequently used as a synonym for Gaussian node networks,
although any functions that depends only on Euclidean distance, or a ra-
dial variable φ(r) = φ(||X − R||), is suitable for RBF expansion. However,
it is not clear that a radial dependence is always the best assumption for
a given data. Another useful category of basis set expansion methods uses
separable basis functions (SBF), where each node implements a product of
one-dimensional functions φ(X) =

∏
i fi(Xi). Approximation abilities of SBF

networks are similar to those of RBF networks, and the separable function

Towards Comprehensive Foundations of Computational Intelligence 275

realized by their nodes may be interpreted in a natural way as the product
of fuzzy membership functions. They may also form a natural generalization
of the Naive Bayes (NB) approach, with each network node implementing a
local NB model, and the whole network functioning as a committee of such
models, aggregating evidence for each class and using some voting procedure
or final decision [112]. It is not clear why so much research has been devoted
to the RBF networks while neural networks based on separable functions are
virtually unknown: the Feature Space Mapping (FSM) network [50, 60, 3, 44]
seems to be the only existing implementation of the Separable Basis Function
networks so far.

A general framework for similarity-based methods (SBMs) has been
formulated using the concept of similarity [43, 35]. This framework includes
typical feedforward neural network models (MLP, RBF, SBF), some novel net-
works (Distance-Based Multilayer Perceptrons (D-MLPs, [41]) and the nearest
neighbor or minimum-distance networks [33, 43]), as well as many variants of
the nearest neighbor methods, improving upon the traditional approach by
providing more flexible decision borders. This framework has been designed to
enable meta-learning based on a search in the space of all possible models that
may be systematically constructed. New algorithms are generated by applying
admissible extensions to the existing algorithms and the most promising are
retained and extended further. Training is performed using parameter opti-
mization techniques [52, 53]. Symbolic values used with probabilistic distance
functions allow to avoid ad hoc procedure to replace them with numerical val-
ues. To understand the structure of the data prototype-based interpretation
of the results is used, simplifying predictive models and providing prototype
rules (P-rules) that may be converted to fuzzy rules (F-rules) [48].

In the SBM approach objects (samples, cases, states) {Oi}, i = 1 . . . n may
be represented by a set of numerical or symbolic features Xi

j = Xj(Oi), j =
1...N characterizing these objects, or by a procedure that evaluates directly
similarity D(Oi,Ok) between objects, allowing for comparison of objects with
complex structure. For classification problems a function or a procedure to
estimate p(Ci|X; M), i = 1..K, the posterior probability of assigning vector X
to a class Ci, is defined, while for approximation problems a function Y (X; M)
is defined. In both cases the model M includes various procedures, parameters
and optimization methods. A general similarity-based model for classification
problems is constructed from the following components:

• input pre-processing transformation, either providing directly dissimilari-
ties of objects D(Oi,Ok) or mapping them to symbolic/numerical descrip-
tions X(O) that define the feature space; in both cases a data matrix is
obtained;

• a procedure to select relevant features or their combinations;
• function dj(Xj ; Yj) to calculate similarity of Xj , Yj feature values, j =

1..N ;

276 W�lodzis�law Duch

• function D(X,Y) = D({dj(Xj ; Yj)}) that combines similarities defined
for each attribute to compute similarities of vectors;

• specification of the neighborhoods, such as the number of reference vectors
k taken into account around of X, or the number of hidden nodes in
feedforward neural networks based on functions with localized support in
the feature space;

• the weighting function G(D) = G(D(X,R)) estimating contribution of
each reference vector R;

• a set of prototype (reference) vectors {R} selected from the set of training
vectors {Xi} and optimized using some procedures;

• a set of class probabilities or membership values pi(R), i = 1 . . .K for each
reference vector;

• a misclassification risk matrix R(Ci, Cj), i, j = 1 . . .K;
• a scaling function K(·) estimating the influence of the error, for a given

training example, on the total cost function;
• a function (or a matrix) S(·, ·) evaluating similarity (or more frequently

dissimilarity) of the classes; if class labels are soft, or if they are given by
a vector of probabilities pi(X), classification task is in fact a mapping;

• a total cost function E[dT ; M] that is minimized at the training stage
directly, in a crossvalidation, bootstrap or other procedure;

• procedures to optimize parameters of the model at each stage.

This framework may be used to automatically generate a sequence of mod-
els with growing complexity. It has been used in a meta-learning scheme to
solve classification problems [53], starting from the simplest k-NN model pa-
rameterized by M = {k,D(·, ·), {X}}), i.e. the whole training dataset used as
the reference set, k nearest prototypes included with the same weight, using
a typical distance function, such as the Euclidean or the Manhattan distance.
Probabilities are computed as p(Ci|X; M) = Ni/k, where Ni is the number of
nearest vectors that belong to class Ci. The initially model has thus only one
parameter k for optimization. If such model is not sufficiently accurate new
procedures/parameters are added to create a more complex model. The search
tree in the space of all models is generated by extending current model in the
simplest way, using a measure that penalizes for increased model complexity
and rewards for increased accuracy. Various model selection criteria may be
applied to control this process [176]. Several good models are maintained in a
beam search procedure, and the search stops when additional complexity of
possible extensions of existing models does not justify increased accuracy.

Scalar products or cosine distances are a particular way to measure simi-
larity, quite useful especially when vectors have significantly different norms
(as in the evaluation of text similarity [125]). Similarity may be evaluated in
a more sophisticated way by learning [114] and designing various kernels that
evaluate similarity between complex objects [27, 157]. Although kernels are
usually designed for SVM methods, for example in text classification [120] or
bioinformatics [173, 7, 171] applications, they may be directly used in the SBM

Towards Comprehensive Foundations of Computational Intelligence 277

framework, because kernels are specific (dis)similarity functions. In particu-
lar positive semidefinitive kernels used in SVM approach correspond to some
Euclidean dissimilarity matrices [140]. SVM is just one particular method of
a single hyperplane optimization in a space where kernel K(X,Y) serves as
a scalar product. However, for data models requiring different resolutions in
different areas of feature spaces SVM may not be the best approach, and a
combination of kernels for feature space expansion, easily accommodated in
the SBM framework, should be used. Meta-learning is not a single method,
but an approach that leads to a tailor-made methods created on demand,
therefore it may to a large degree avoid the “no-free-lunch” theorem restric-
tions [176]. SVM models are certainly an important family among a large
number of models that may be explored during metalearning.

3 Transformation-based CI Theory

Similarity-based methods using only direct similarity comparisons of some
vector representations are restricted to a single transformation (not count-
ing pre-processing), Y = T (X; R). Although in principle this is sufficient for
universal approximation [85] in practice it may slow down the convergence
and make a discovery of simple data models very difficult. SBM framework is
generalized here to include multiple transformation steps. In the stacking ap-
proach [185, 163, 159] one classifier produces outputs that are used as inputs
for another classifier. Wolpert showed [185] that biases of stacked classifiers
may be deducted step by step, improving generalization of the final system.
The same is true if a series of transformations is composed together to pro-
duce a data model. Transformation-based approach fits very well to modern
component-based data mining and may be presented in from of graphical
models, although quite different than probabilistic models presented in [101].

General similarity transformations may act on objects and produce vec-
tors, either by analysis of object properties or object similarity to some refer-
ence objects. In both cases feature-based vector description X of the object O
is produced, although the size of this vector may be different. In the first case
the number of features N is independent of the number of objects, while in the
second case all training objects may be used as a reference and Xi = K(O,Oi)
feature values calculated using kernel K(·, ·) function (or procedure) to pro-
vide n-dimensional vector.

CI calculations may be presented as a series of transformations, divided
into several stages. Starting from the raw input data 0X = X that defines
initial feature space, first transformation T1 scales individual features, filters
them, combining pairs or small subsets of features. This leads to a new dataset
1X = T1(0X) with vectors based on a new set of features that may have
different dimensionality than the original data. The second transformation
2X = T2(1X) extracts multidimensional information from pre-processed fea-
tures 1X. This is further analyzed by subsequent transformations that either

278 W�lodzis�law Duch

aim at separation of the data or at mapping to a specific structures that
can be easily recognized by the final transformation. The final transforma-
tion provides desired information. These transformations can in most cases
be presented in a layered, graphical form.

Chains of transformations created on demand should lead to optimal CI
methods for a given data. This requires characterization of elementary trans-
formations. The goal here is to describe all CI methods as a series of trans-
formations but at a higher level than the psuedocode. Several types of vector
transformations should be considered: component, selector, linear combina-
tions and non-linear functions. Component transformations work on each vec-
tor component separately, for example shifting and scaling component values
when calculating distances or scalar products. Selector transformations define
subsets of vectors or subsets of features using various criteria for information
selection, or similarity to the known cases (nearest neighbors), or distribution
of feature values and class labels. Non-linear functions may serve as kernels
or as neural transfer functions [57]. Transformations composed from these
elementary types may always be presented in a network form.

3.1 Extracting Information from Single or Small Subsets
of Features

New information from available features may be extracted using various types
of network nodes in several ways. First, by providing diverse basis functions or
receptive fields for sampling the data separately in each dimension, although
two or higher-dimensional receptive fields may also be used in some applica-
tions (as is the case for image or signal processing filters, such as wavelets).
Fuzzy and neurofuzzy systems usually include a “fuzzification step”, defin-
ing for each feature several membership functions μk(Xi) that act as large
receptive fields. Projecting each feature value Xi on these receptive fields μk

increases the dimensionality of the original data. This may lead to some im-
provement of results as even a linear transformation in the extended space
has a greater chance to separate data better.

Second, information may be extracted by scaling the features using loga-
rithmic, sigmoidal, exponential, polynomial and other simple functions; such
transformations help to make the density of points in one dimension more
uniform, circumventing some problems that would require multiresolution al-
gorithms. Although they are rarely mentioned as a part of the learning algo-
rithms adaptive preprocessing at this stage may have a critical influence on
the final data model.

Third, information is extracted by creating new features using linear com-
binations, tensor products, ratios, periodic functions or using similarity mea-
sures on subsets of input variables. Non-linear feature transformations, such
as tensor products of features, are particularly useful, as Pao has already
noted introducing functional link networks [139, 1]. Rational function neural
networks [87] in signal processing [117] and other applications use ratios of

Towards Comprehensive Foundations of Computational Intelligence 279

polynomial combinations of features; a linear dependence on a ratio y = x1/x2

is not easy to approximate if the two features x1, x2 are used directly. Groups
of several strongly correlated features may be replaced by a single combina-
tion performing principal component analysis (PCA) restricted to small sub-
spaces. To decide which groups should be combined standardized Pearson’s
linear correlation is calculated:

rij = 1− |Cij |
σiσj

∈ [−1, +1] (3)

where the covariance matrix is:

Cij =
1

n− 1

n∑
k=1

(
X(k)

i
− X̄i

)(
X

(k)
j − X̄j

)
; i, j = 1 · · · d (4)

These coefficient may be clustered, for example by using dendrogram tech-
niques. Depending on the clustering thresholds they provide reduced number
of features, but also features at different scales, from a combination of a few
features to a global PCA combinations of all features. This approach may help
to discover hierarchical sets of features that are useful in problems requiring
multiscale analysis. Another way to obtain features for multiscale problems is
to do clusterization in the data space and make local PCA within the clusters
to find features that are most useful in various areas of space.

Linear combinations derived from interesting projection directions may
provide low number of interesting features, but in some applications non-linear
processing is essential. The number of possible transformations at this stage is
very large. Feature selection techniques [84], and in particular filter methods
wrapped around algorithms that search for interesting feature transformations
(called “frappers” in [39]), may be used to quickly evaluate the usefulness of
proposed transformations. The challenge is to provide a single framework for
systematic selection and creation of interesting transformations in a meta-
learning scheme. Evolutionary techniques may prove to be quite useful in this
area.

3.2 Extracting Information from All Features

After transforming individual features or small groups of features to create 1X
space additional transformations that involve all features are considered. Fre-
quently these transformations are used to reduce dimensionality of the data.
Srivastava and Liu [164] point out that the choice of optimal transformation
depends on the application and the data set. They have presented an elegant
geometrical formulation using Stiefel and Grassmann manifolds, providing a
family of algorithms for finding orthogonal linear transformations of features
that are optimal for specific tasks and specific datasets. They find PCA to
be optimal transformation for image reconstruction under mean-squared er-
ror, Fisher discriminant for classification using linear discrimination, ICA for

280 W�lodzis�law Duch

signal extraction from a mixture using independence, optimal linear transfor-
mation of distances for the nearest neighbor rule in appearance-based recog-
nition of objects, transformations for optimal generalization (maximization of
margin), sparse representations of natural images and retrieval of images from
a large database. In all these applications optimal transformations are differ-
ent and may be found by defining appropriate cost functions and optimizing
them using stochastic gradient techniques. Some of their cost functions may
be difficult to optimize and it is not yet clear that sophisticated techniques
based on differential geometry, advocated in [164], offer significant practical
advantages, although they certainly provide an interesting insight into the
problem. Simpler learning algorithms based on numerical gradient techniques
and systematic search algorithms give surprisingly good results and can be
applied to optimization of difficult functions [110], but a detailed comparison
of such methods has not yet been made.

In some cases instead of reduction of dimensionality expansion of the fea-
ture space may be useful. Random linear projection of input vectors into
a high-dimensional space 2X = L(1X) is the simplest expansion, with the
random matrix L that has more rows than columns (see neurobiological jus-
tification of such projections in [123]). If highly nonlinear low-dimensional
decision borders are needed large number of neurons should be used in the
hidden layer, providing linear projection into high-dimensional space followed
by filtering through neural transfer functions to normalize the output from
this transformation. Enlarging the data dimensionality increases the chance
to make the data separable, and this is frequently the goal of this transfor-
mation, 2X = T2(1X; 1W). If (near) separability can be achieved this way
the final transformation may be linear Y = T3(2X; 2W) = W2 · 2X. A com-
bination of random projection and linear model may work well [91] – this
is basically achieved by random initialization of feedforward neural networks
and a linear discriminant (LDA) solution for the output model, a method
used to start a two-phase RBF learning [158]. However, one should always
check whether such transformation is really justified from the point of view of
model complexity, because linear discrimination may work also quite well for
many datasets in the original feature space, and many non-random ways to
create interesting features may give better results. It may also be worthwhile
to add pre-processed 1X = T1(X) features to the new features generated by
the second transformation 2X = (1X, T2(1X; 1W)), because they are easier to
interpret and frequently contain useful information – in case of linear trans-
formations this simply adds additional diagonal part to the weight matrix.

In general the higher the dimensionality of the transformed space the
greater the chance that the data may be separated by a hyperplane [87].
One popular way of creating highly-dimensional representations without in-
creasing computational costs is by using the kernel trick [157]. Although this
problem is usually presented in the dual space the solution in the primal space
is conceptually simpler [115, 21]. Regularized linear discriminant (LDA) solu-
tion is found in the new feature space 2X = K(X) = K(1X,X), mapping X

Towards Comprehensive Foundations of Computational Intelligence 281

using kernel functions for each training vector. Feature selection techniques
may be used to leave only components corresponding to “support vectors that
provide essential support for classification, for example only those close to the
decision borders or those close to the centers of cluster, depending on the type
of the problem. Any CI method may be used in the kernel-based feature space
K(X), although if the dimensionality is large data overfitting is a big danger,
therefore only the simplest and most robust models should be used. SVM
solution to use LDA with margin maximization is certainly a good strategy.

Consider for example a two-class case. In m-dimensional space the ex-
pected maximum number of separable vectors randomly assigned to one of
the classes is 2m [24, 87]. For k-bit strings there are n = 2k vectors and 2n

Boolean functions that may be separated in the space with n/2 dimensions
with high probability. In case of k-bit Boolean problems localized kernels
are not useful as the number of vectors n grows exponentially fast with k,
but separation of all vectors is possible in the space generated by polyno-
mial kernel of degree k, providing new features based on n − 1 monomials
xa, xaxb, xaxbxc, . . . , x1 . . . xk. Indeed SVM algorithms with such kernel are
capable of learning all Boolean functions although they do not generalize
well, treating each vector as a separate case. For example, SVM with polyno-
mial kernel of degree k (or with a Gaussian kernel) may solve the k-bit parity
problem. However, removing a single string from the training set in the leave-
one-out test will lead to perfect learning of the training sets, but always wrong
predictions of the test vector, thus achieving 0% accuracy! Unfortunately only
for parity the answer will always be wrong (each vector is surrounded by the
nearest neighbors from the opposite class), for other Boolean functions one
cannot count on it. This problem may be solved in a simple way in the original
feature space if the goal of learning is redefined (see Sect. 3.5 below).

If the final transformation is linear Y = 3X = T3(2X; 2W) parameters 2W
are either determined in an iterative procedure simultaneously with parame-
ters 1W from previous transformations (as in the backpropagation algorithms
[87]), or they may be sequentially determined by calculating the pseudoinverse
transformation, as is frequently practiced in the two-phase RBF learning [158],
although in experiments on more demanding data simultaneous adaptation of
all parameters (in RBF networks they include centers, scaling parameters, and
output layer weights) gives better results. The initial random transformation
may use arbitrary basis functions, although for localized functions simple clus-
tering instead of a random projection is recommended. Most basis function
networks provide receptive fields in the subspace of the original feature space
or on the pre-processed input data. Transformations of this kind may be pre-
sented as a layer of network nodes that perform vector mapping T2(1X; 1W)
based on some specific criterion. Many interesting mappings are linear and
define transformations equivalent to those provided by the Exploratory Pro-
jection Pursuit Networks (EPPNs) [100, 67]. Quadratic cost functions used for
optimization of linear transformations may lead to formulation of the problem
in terms of linear equations, but most cost functions or optimization criteria

282 W�lodzis�law Duch

are non-linear even for linear transformations. A few such transformations are
listed below:

• Statistical tests for dependency between class and feature value distribu-
tions, such as Pearson’s correlation coefficient, χ2 and other measures that
may be used to determine best orthogonal combination of features in each
node.

• Principal Component Analysis (PCA) in its many variants, with each node
computing principal component [63, 176, 166]).

• Linear Discriminatory Analysis (LDA), with each node computing LDA
direction (using one of the numerous LDA algorithms [63, 176, 166]).

• Fisher Discriminatory Analysis (FDA), with each node computing canon-
ical component using one of many FDA algorithms [176, 167].

• Independent Component Analysis, with each node computing one inde-
pendent component [92, 23].

• Linear factor analysis, computing common and unique factors from data
[77].

• Canonical correlation analysis [71].
• KL, or Kullback-Leibler networks with orthogonal or non-orthogonal com-

ponents; networks maximizing mutual information [170] are a special case
here, with product vs. joint distribution of classes/feature values.

• Classical scaling, or linear transformation embedding input vectors in a
space where distances are preserved [140].

• Linear approximations to multidimensional scaling [140].
• Separability criterion used on orthogonalized data [78].

Non-linearities may be introduced in transformations in several ways:
either by adding non-linear functions to linear combinations of features, or
using distance functions, or transforming components and combining results
[57, 58]. Linear transformations in kernel space are equivalent to non-linear
transformations in the original feature space. A few non-linear transformations
are listed below:

• Kernel versions of linear transformations, including radial and other basis
set expansion methods [157].

• Weighted distance-based transformations, a special case of general kernel
transformations, that use (optimized) reference vectors [43].

• Perceptron nodes based on sigmoidal functions with scalar product or
distance-based activations [42, 41], as in layers of MLP networks, but with
targets specified by some criterion (any criterion used for linear transfor-
mations is sufficient).

• Heterogeneous transformations using several types of kernels to capture
details at different resolution [57].

• Heterogeneous nodes based or several type of non-linear functions to
achieve multiresolution transformations [57].

Towards Comprehensive Foundations of Computational Intelligence 283

• KL, or Kullback-Leibler networks with orthogonal or non-orthogonal com-
ponents; networks maximizing mutual information [170] are a special case
here, with product vs. joint distribution of classes/feature values.

• χ2 and other statistical tests for dependency to determine best combina-
tion of features.

• Factor analysis, computing common and unique factors, reducing noise in
the data.

• Nodes implementing fuzzy separable functions, or other fuzzy functions
[50].

Many other transformations of this sort are known and may be used at this
stage in transformation-based systems. A necessary step for meta-learning is
to create taxonomy, similarities and relations among such transformations to
enable systematic search in the space of possible models, but this has not
yet been done. An obvious division is between fixed transformations that
are based on local criterion, with well-defined targets, and adaptive transfor-
mations that are based on criterions optimizing several steps simultaneously
(as in backpropagation), where the targets are defined only for composition of
transformations. Fixed T2 transformations have coefficients calculated directly
from the input data or data after T1 transformation. Activity of the network
nodes has then clear interpretation, and the number of nodes may be deter-
mined from estimation of such criteria as the information gain compared to the
increased complexity. A general way to calculate fixed transformation coeffi-
cients is to create a single component (for example, one LDA hyperplane), and
then orthogonalize the input vectors to this component, repeating the process
in an iterative way. General projection pursuit transformations [100, 67] may
provide a framework for various criteria used in fixed transformations.

Transformations may also have adaptive coefficients, determined either by
an optimization procedure for the whole system (for example, global optimiza-
tion or backpropagation of errors), or by certain targets set for this mapping
(see Sect. 3.5 below). The interpretation of node functions is not so clear as for
the fixed targets for individual transformations, but the final results may be
better. Fixed transformations may be very useful for initialization of adaptive
transformations or may be useful to find better solutions of more complex
fixed transformations. For example, multidimensional scaling requires very
difficult minimization and seems most of the time to converge to a better
solution if PCA transformations are performed first. Nonlinear Mapping Pur-
suit Networks (MPN), similar to EPPNs, may be defined and used as a fixed
transformation layer, followed by linear model in the same way as it is done
in the functional link networks [139].

Adding more transformation layers with distance-based conditions, that is
using similarity in the space created by evaluation of similarity in the origi-
nal input space, leads to higher-order nearest neighbor methods, rather un-
explored area. There are many other possibilities. For example, consider a
parity-like problem with vectors from the same class that are spread far apart

284 W�lodzis�law Duch

and surrounded by vectors from other classes [40]. The number of nodes cov-
ering such data using localized functions will be proportional to the number of
vectors. Such transformations will not be able to generalize. Kernel methods
based on localized or polynomial kernels will also not be able to generalize.
MLP networks may solve the problem but need architectures specially de-
signed for each problem of this type and are hard to train. Linear projections
may provide interesting views on such data, but the number of directions
W that should be considered to find good projections grows exponentially
fast with the number of input dimensions (bits). In case of n-bit parity pro-
jection Y = W · X counts the number of 1 bits, producing odd and even
numbers for the two parity classes. A periodic functions (such as cosine) is
sufficient to solve the parity problem, but is not useful to handle other logical
problems. Interesting transformations should find directions W that project
a large number of training vectors X into localized groups. A window func-
tion G(||W ·X− Y ||) may capture a region where a delocalized large cluster
of vectors from a single class is projected. A constructive network that adds
new nodes to capture all interesting projections should be able to solve the
problem. The linear output transformations will simply add outputs of nodes
from all clusters that belong to a given class.

This type of geometric thinking leads to transformations that will be
very useful in metalearning systems, facilitating learning of arbitrary Boole’an
problems.

3.3 Heterogeneous Adaptive Systems

Many transformations may lead to the same goal because transformations
with non-polynomial transfer functions are usually universal approximators
[116]. The speed of convergence and the complexity of networks needed to
solve a given problem is more interesting. Approximations of complex decision
borders or approximations of multidimensional mappings by neural networks
require flexibility that may be provided only by networks with sufficiently large
number of parameters. This leads to the bias-variance dilemma [14, 63, 176],
since large number of parameters contribute to a large variance of neural
models and small number of parameters increase their bias.

Regularization techniques may help to avoid overparameterization and re-
duce variance, but training large networks has to be expensive. In MLP models
regularization methods decrease the weights, forcing the network function to
be more smooth. This is a good bias for approximation of continuous func-
tions, but it is not appropriate for data generated using logical rules, where
sharp, rectangular decision borders are needed. Two orthogonal hyperplanes
cannot be represented accurately with soft sigmoidal functions used in MLPs
or with Gaussian functions used by RBF networks. The inadequacy of fun-
damental model limits the accuracy of neural solutions, and no improvement
of the learning rule or network architecture will change this. Transformations
based on scalar products (hyperplanes, delocalized decision borders) solve

Towards Comprehensive Foundations of Computational Intelligence 285

some problems with O(N) parameters, while the use of localized functions
(for example Gaussians) requires O(N2) parameters; on other problems this
situation is reversed [57]. Therefore discovering the proper bias for a given
data is very important. Some real world examples showing the differences be-
tween RBF and MLP networks that are mainly due to the transfer functions
used were presented in [57] and [46, 47].

The simplest transformation that has the chance to discover appropri-
ate bias for complex data may require several different types of elementary
functions. Heterogeneous adaptive systems (HAS) introduced in [51] provide
different types of decision borders at each stage of building data model, en-
abling discovery of the most appropriate bias for the data. Neural [59, 96, 45],
decision tree [51, 80] and similarity-based systems [53, 179, 180] of this sort
have been described, finding for some data simplest and most accurate models
known so far.

Heterogeneous neural algorithms that use several transfer functions within
one network may be introduced in several ways. A constructive method that
selects the most promising function from a pool of candidates adding new
node to the transformation has been introduced in [45, 96, 59]. Other con-
structive algorithms, such as the cascade correlation [65], may also be used
for this purpose. Each candidate node using different transfer function should
be trained and the most useful candidate added to the network.

The second approach starts from transformation that uses many types of
functions using information selection or regularization techniques to reduce
the number of functions [96]. Initially the network may be too complex but
at the end only the functions that are best suited to solve the problem are
left. In the ontogenic approach neurons are removed and added during the
learning process [96].

The third approach starts from flexible transfer functions that are para-
meterized in a way that makes them universal. Linear activation based on a
scalar product W ·X is combined with higher order terms used in distance
measures to create functions that for some parameters are localized, and for
other parameters non-localized. Several functions of such kind have been pro-
posed in [57]. In particular bicentral functions are very useful and flexible, with
decision regions of convex shapes, suitable for classification. These functions
are products of N pairs of sigmoidal functions (Fig. 2):

Bi2s(X; t,B, s) =
N∏

i=1

σ(A2+
i) (1− σ(A2−i)) (5)

=
N∏

i=1

σ(esi · (xi − ti + ebi)) (1− σ(es′
i · (xi − ti − ebi)))

The first sigmoidal factor in the product is growing for increasing input
xi while the second is decreasing, localizing the function around ti. Shape

286 W�lodzis�law Duch

Bicentral function with rotation and double slope

−10

0

10

−10

0

10
0

0.2

0.4

0.6

0.8

−10 0 10
−10

−5

0

5

10

−10

0

10

−10

0

10
0

0.1

0.2

0.3

0.4

−10 0 10
−10

−5

0

5

10

−10

0

10

−10

0

10
0

0.05

0.1

0.15

0.2

−10 0 10
−10

−5

0

5

10

Fig. 2. A few shapes of general bicentral functions (Eq. 5)

adaptation of the density Bi2s(X; t,B, s) is possible by shifting centers t,
rescaling B and s. Product form leads to well-localized convex contours of
bicentral functions. Exponentials esi and ebi are used instead of si and bi

Towards Comprehensive Foundations of Computational Intelligence 287

parameters to prevent oscillations during the learning procedure (learning
becomes more stable). Using small slope si and/or s′i the bicentral function
may delocalize or stretch to left and/or right in any dimension. This allows
creation of such contours of transfer functions as half-infinite channel, half-
hyper ellipsoidal, soft triangular, etc.

Although the costs of using this function is a bit higher than using the
sigmoidal function (each function requires 4N parameters) more flexible deci-
sion borders are produced. Rotations of these contours require additional N
parameters. An important advantage of the bicentral functions comes from
their separability, enabling analysis of each dimension or a subspace of the
input data independently: one can forget some of the input features and work
in the remaining subspace. This is very important in classification when some
of the features are missing and allows to implement associative memories us-
ing feedforward networks [50, 3]. Bicentral functions with rotations (as well
as multivariate Gaussian functions with rotation) have been implemented so
far only in two neural network models, the Feature Space Mapping [50, 3] and
the IncNet [102, 99, 98].

Very little experience with optimization of transfer functions in heteroge-
nous systems has been gathered so far. Neural networks using different transfer
functions should use lower number of nodes, and thus the function performed
by the network may be more transparent. For example, one hyperplane may
be used to divide the input space into two classes and one additional Gaussian
function to account for local anomaly. Analysis of the mapping performed by
an MLP network trained on the same data will not be so simple. More algo-
rithms to create such models are needed.

3.4 Geometrical Perspective

Composition of transformations may also be seen from geometrical perspec-
tive. Informational geometry [93] is aimed at characterization of the space of
all possible probability distributions, and thus works in the space of model
parameters. Geometry of heteroassociative vector transformations, from the
input feature space to the output space, is also interesting. It is clear that dif-
ferent sensory signals are recognized in different feature subspaces, but even
in a single sensory modality different objects are recognized paying attention
to different features. This shows that vector space model for characterization
of objects is too simple to account for object recognition in perception.

At each point of the input space relative importance of features may
change. One way to implement this idea [35] is to create local non-symmetric
similarity function D(X − Y; X), smoothly changing between different re-
gions of the input space. For example this may be a Minkovsky function
D(X − Y; X) =

∑
i si(X)|Xj − Yi)| with the scaling factor that depend on

the point X of the input space, in particular many of them may be zero. Such
scaling factors may be calculated for each training vector using local PCA,
and interpolated between the vectors. Local Linear Embedding (LLE) is a

288 W�lodzis�law Duch

popular method of this sort [150] and many other manifold learning meth-
ods have been developed. Alternatively a smooth mapping may be generated
training MLP or other neural networks to approximate desired scaling factors.

Prototype rules for data understanding and transformation may be created
using geometrical learning techniques that construct a convex hull encompass-
ing the data, for example an enclosing polytope, cylinder, a set of ellipsoids
or some other surface enclosing the data points. Although geometrical algo-
rithms may be different than neural or SVM algorithms, the decision surfaces
they provide are similar to those offered by feedforward networks. A covering
may be generated by a set of balls or ellipsoids following principal curve, for
example using the piecewise linear skeletonization approximation to principal
curves [106]. An algorithm of this type creating a “hypersausage” decision
regions has been published recently [161]. More algorithms of this type should
be developed, and their relations with neural algorithms investigated.

From geometrical perspective kernel transformations are capable of
smoothing or flatting decision borders. Using the vectors R(i) that are close
to the decision border as support vectors for kernel (distance) calculation
creates new features, placing support vectors on a hyperplane (distance for
all R(i) is zero). Therefore a single hyperplane after such transformation is
frequently sufficient to achieve good separation of data. However, if the data
has complex structure, disjoint clusters from the same class, or requires spe-
cial transformation for extraction of information this may not be an optimal
approach.

After the second transformation (or a series of transformations) all data
is converted to the second internal representation 2X, and the final transfor-
mation is added to extract simple structure from multidimensional data.

3.5 Redefining the Goal of Learning

The first two transformations should discover interesting structures in data
or increase the chance of data separability, as in the case of kernel transfor-
mations. More transformations may be applied, either at the pre-processing
stage (normalization, whitening, calculation of Fourier, Hadamard or wavelet
coefficients etc), or at the information extraction stage. The role of the final
transformations is to compress this information, find interesting views on the
data from the point of view of certain goals. These transformations usually
involves a drastic reduction of dimensionality. The number of outputs in the
approximation problems is equal to the number of approximated components,
or the problem is broken into several single-output functions. In the K-class
classification problems the number of outputs is usually K − 1, with zero
output for the default class. In the Error Correcting Output Codes (ECOC)
approach [32] learning targets that are easier to distinguish are defined, setting
a number of binary targets that define a prototype “class signature” vectors.
The final transformation compares then the distance from the actual output
to these class prototypes.

Towards Comprehensive Foundations of Computational Intelligence 289

The learning targets used in most CI methods for classification are aimed
at linear separability. The final linear transformation provides a hyperplane
that divides the data, transformed by a series of mappings Tk(..T2(T1(X) . . .)),
into two halfspaces. Linear transformation is the simplest and quite natural if
the kernel transformation increases the dimensionality and flattens the deci-
sion borders, making the data linearly separable. However, for difficult prob-
lems, such as learning of Boolean functions, this will not work. Instead of
thinking about the decision hyperplane it is better to focus on interesting
projections or more general transformations of data. For linearly separable
data W · X projection creates two distinct clusters. For non-separable data
an easier target is to obtain several well separated clusters. For example, in
k-bit parity problem projection on W = [1, 1..1] shows k + 1 clusters clearly
providing a satisfactory solution to the problem. Thus instead of aiming at
linear separation using the final transformation based on hyperplane, the goal
of learning may be redefined by assuming another well-defined transformation.
In particular using the interval-based transformation as the final step easily
“disarms” the remaining non-linearity in data, and greatly simplifies the task
of all previous transformations.

The dataset Xi of points belonging to two classes is called k-separable if
a direction W exist such that points yi = W ·Xi are clustered in k intervals,
each containing vectors from a single class only. A dataset that is k-separable
may also be k+m separable, until k+m = n is reached. Although usually the
minimal k is of interest sometimes higher k’s may be preferred if the margins
between projected clusters are larger, or if among k clusters some have very
small number of elements. Problems that may be solved by linear projection on
no less than k-clusters belonging to alternating classes are called k-separable
problems [40]. This concept allows for characterization of the space of all non-
separable problems. The difficulty of learning grows quickly with the minimum
k required to solve a given problem. Linear (2-separable) problems are quite
simple and may be solved with linear SVM or any other variant of LDA model.
Kernel transformations may convert some problems into linearly separable in
higher dimensional space. Problems requiring k = 3, for example the XOR
problem, are already slightly more difficult for non-local transformations (for
example MLPs), and problems with high k quickly become intractable for
general classification algorithms.

Among all Boolean classification problems linear separability is quite rare.
For 3 bits there are 8 vertices in the cube and 28 = 256 possible Boolean func-
tions. Two functions are constant (always 0 or 1), 102 are linearly separable,
126 are 3-separable and 26 are 4-separable functions. For more than half of
the 3-bit Boolean functions there is no linear projection that will separate the
data. Almost half (126) of all the functions give at least 3 alternating clusters.
For the 4-bit problem there are 16 hypercube vertices, with Boolean functions
corresponding to 16-bit numbers, from 0 to 65535 (64K functions). The num-
ber of linearly separable functions is 1880, or less than 3% of all functions,
with about 22%, 45% and 29% being 3 to 5-separable. About 188 functions

290 W�lodzis�law Duch

were found that seem to be either 4 or 5-separable, but in fact contain projec-
tion of at least two hypercube vertices with different labels on the same point.
Although the percentage of linearly separable functions rapidly decreases rel-
atively low k-separability indices resolve most of the Boolean functions.

Changing the goal of learning may thus help to discover much simpler
data models than those provided by kernel methods. The final transformation
separating the classes on a line with k-intervals has only k − 1 parameters.
Periodic or quasi-periodic separability in one dimension is worth considering to
avoid high number of intervals. Other simplified transformations that handle
different types of non-linearities may be defined in two or more dimensions.
Mapping on the chessboard targets, or on localized Voronoi cells defined by
prototypes localized on a regular multidimensional grid, may handle directly
quite difficult non-linearities.

New targets require a different approach to learning because the vector
labels YX do not specify to which interval a given vector X belongs. Gradient
training is still possible if soft windows based on combinations of sigmoidal
functions are used. Thus for 3-separable problems the final transformation is
from 3 intervals: [−∞, a], [a, b], [b, +∞] to −1, +1,−1 values. For the middle
interval a soft window functions may be set S(x; a, b) = tanh(x−a)−tanh(x−
b)− 1 ∈ [−1, +1]. Quadratic error function suitable for learning is:

E(a, b,W) =
∑
X

(S(W ·X; a, b)− YX)2 (6)

Starting from small random weights the center y0 of projected data y =
W · X, the range [ymin, ymax] is estimated, and a, b values are set to y0 ±
|ymax − ymin|/4. The weights and the [a, b] interval are trained using gradient
method. It is also possible to implement 3-separable backpropagation learning
in purely neural architecture based on a single linear neuron or perceptron for
projection plus a combination of two neurons creating a “soft trapezoidal
window” function S(x; a, b) that passes only the output in the [a, b] interval
[47]. The two additional neurons (Fig. 3) have fixed weights (+1 and −1) and
biases a, b, adding only two adaptive parameters. An additional parameter
determining the slope of the window shoulders may be introduced to scale

X1

X2

X3

X4

Y = W.X +1

−1

+1

+1

σ(W.X+a)

σ (W.X+b)
IfY ∈[a,b] then 1

Fig. 3. MLP solution to the 3-separable case

Towards Comprehensive Foundations of Computational Intelligence 291

the W · X values as the weights grow. The input layer may of course be
replaced by hidden layers that implement additional mappings, for example
kernel mappings, thus making this at least as powerful as SVM methods.

This network architecture has n+2 parameters and is able to separate a sin-
gle class bordered by vectors from other classes. For n-dimensional 3-separable
problems standard MLP architecture requires at least two hidden neurons con-
nected to an output neuron with 2(n + 1) + 3 parameters. For k-separability
this architecture will simply add one additional neuron for each new interval,
with one bias parameter. n-bit parity problems require only n neurons (one
linear perceptron and n− 1 neurons with adaptive biases for intervals), while
in the standard approach O(n2) parameters are needed [94]. Tests of such
architectures showed (W. Duch, R. Adamczak, M. Grochowski, in prepara-
tion) that indeed one may learn dificult Boolean functions this way. In fact we
are training here a single bi-central function with rotations (Eq. 5), creating
simplest possible model of the data.

Algorithms of this type, projecting data on many disjoined pure clusters,
may have biological justification. Neurons in association cortex form strongly
connected microcircuits found in cortical columns, resonating with different
frequencies when an incoming signal X(t) appears. This essentially projects
the signal into high-dimensional space. A perceptron neuron observing the
activity of a column containing many microcircuits learns to react to signals
in an interval around particular frequency in a supervised way based on Heb-
bian principles. It is sufficient to combine outputs from selected microcircuits
correlated with the category that is being learned. In case of signals micro-
circuits may be treated as resonators specializing in discovering interesting
signal structures, for example Gabor filters in vision. A parallel array of one-
bit threshold quantizers with sums of inputs is a crude approximation to such
model. It achieves not only optimal signal detection, but even for suprathresh-
old input signals it improves its performance when additional noise is added,
a phenomenon called “suprathreshold stochastic resonance” [149]. In case of
abstract reasoning combination of disjoint projections on the W · X line is
more useful than simple quantizers.

3.6 Prototype-based Rules for Data Understanding

Most attempts to understand the structure of data in machine learning is
focussed on extraction of logical rules [62, 47]. Relations between fuzzy logic
systems and basis set networks are fairly obvious and have been described in
details [105, 95]. The use of Gaussian functions in the Radial Basis Function
(RBF) networks is equivalent to the use of sets of fuzzy rules with Gaussian
membership functions. Although it is an interesting fact in itself, it has not
lead to any new development, in most applications simple Gaussian classifiers
are created. To optimize fuzzy systems neural adaptation techniques may be
used, leading to neurofuzzy systems [50, 135, 138].

292 W�lodzis�law Duch

Fuzzy set F is defined by the universe X and the membership functions
χF (X), specifying the degree to which elements of this universe belong to the
set F . This degree should not be interpreted as probability [111] and in fact
at least four major interpretations of the meaning of membership functions
may be distinguished [13]. One natural interpretation is based on the degree
to which all elements X ∈ X are similar to the typical elements (that is those
with χF (X) ≈ 1) of F . From this point of view fuzzy modeling seems to be a
special case of similarity modeling, field that have not yet been fully developed.
On the other hand fuzzy models are quite successful and may contribute
to new similarity measures. Relations between fuzzy rules and similarity to
prototypes are worth more detailed exploration.

An analogy with human object recognition is quite fruitful. Perceiving
and recognizing an object requires attention to be paid to its most charac-
teristic features. First feature values Xi are measured by our sensory systems
with relatively high precision (deriving, for example, physical parameters of
sound), and then primary and secondary sensory cortex transforms these in-
put values using higher-order receptive fields that integrate spatio-temporal
patterns facilitating recognition of complex patterns (for example, phonemes).
In fuzzy modeling each feature Xi of an object X is filtered through a large
receptive field Fij , defined by a membership function μFj

(Xi). Simple MFs,
such as triangular, trapezoidal or Gaussian, are used to model the degree to
which some value Xi belongs to the receptive field Fij . Comparing to the
sophisticated processing of sensory signals by the brain this is a very crude
approach in which larger receptive fields are obtained directly from individ-
ual features using membership functions, instead of non-linear combinations
of several features. Brain-like information processing may of course be more
accurately modeled using hierarchical fuzzy systems.

Selection of prototypes and features together with similarity measures of-
fers new, so far unexplored alternative to neurofuzzy methods [49, 180, 15].
Duality between similarity measures and membership functions allows for gen-
eration of propositional rules based on individual membership functions, but
there are significant differences. Fuzzy rules first apply large receptive fields
(membership functions) to these individual features, combining them in con-
ditions of rules later. P-rules in their natural form first create a combina-
tion of features (via similarity functions) and then apply various membership
functions to this combination. Neurofuzzy systems generate fuzzy rules and
optimize membership functions [135, 138] using input vectors defined in fixed-
dimensional feature spaces. Similarity may be evaluated between objects with
complex structures that are not easy to describe using a common sets of fea-
tures. In particular the use of probabilistic, data dependent distance functions
allows for definition of membership functions for symbolic data (such as the
sequential DNA or protein strings) that may be difficult to derive in other
way.

Experiments in cognitive psychology show that logical rules are rarely used
to define natural categories, human categorization is based on memorization of

Towards Comprehensive Foundations of Computational Intelligence 293

exemplars and prototypes [148]. Similarity functions may be used to model the
importance of different features in evaluating similarity between the new case
in relation to stored prototypes. Multiplicative similarity factors may easily be
converted to additive distance factors and vice versa. Rule-based classifiers are
useful only if the rules they use are reliable, accurate, stable and sufficiently
simple to be understood [47]. Prototype-based rules are useful addition to the
traditional ways of data exploration based on crisp or fuzzy logical rules. They
may be helpful in cases when logical rules are too complex or difficult to obtain.
A small number of prototype-based rules with specific similarity functions
associated with each prototype may provide complex decision borders that
are hard to approximate using logical systems, but are still sufficiently simple
to understand them. For example, such simple rules have been generated for
some medical datasets using heterogeneous decision tree [80]. A single P-
rule for breast cancer data classifying as malignant cancer all cases that are
closer to prototype case (taken as one of the training cases) than a certain
threshold, achieves 97.4% accuracy (sensitivity 98.8% and specificity 96.8%).
The accuracy in this case is at least as good as that of any alternative system
tried on this data.

Combining various feature selection and prototype selection methods with
similarity functions leads to many interesting algorithms. An interesting possi-
bility is to use the prototype-based rules to describe exceptions in the crisp or
fuzzy logic systems. Systematic investigation of various membership functions,
T-norms and co-norms, and their relation to distance functions is certainly
worth pursuing. The algorithms for generation of P-rules should be compet-
itive to the existing neurofuzzy algorithms and will become an important
addition to the methods of computational intelligence. Although similarity
measures provide great flexibility in creating various decision borders this
may turn to be a disadvantage if the primary goal is to understand the data
rather than make most accurate predictions (neurofuzzy approaches have of
course the same problem). Optimized similarity measures may not agree with
human intuition and in some cases larger number of prototypes with simpler
similarity measures may offer more acceptable solution.

3.7 Multiple Models for Meta-learning

Multi-objective optimization problems do not have a single best solution. Usu-
ally data mining systems return just a single best model but finding a set of
Pareto optimal models if several criteria are optimized is much more ambi-
tious goal. For example, accuracy should be maximized, but variance should
be minimized, or sensitivity should be maximized while the false alarm rate
should be minimal. The search process for optimal models in meta-learning
should explore many different models. Models that are close to the Pareto
front [132] should be retained and evaluated by domain experts.

A forest of decision trees [79] and heterogeneous trees [80] is an exam-
ple of a simple meta-search in a model space restricted to decision trees.

294 W�lodzis�law Duch

Heterogeneous trees use different types of rule premises, splitting the branches
not only using individual features, but also using tests based on distances from
the training data vectors. These trees work in fact in a kernel space, but the
optimization process is quite different than in the SVM case. In case when
linear discrimination works well standard decision trees may give poor re-
sults, but adding distance-based conditions with optimal support vectors far
from decision borders provides flat spherical borders that work as well as hy-
perplanes. The beam search maintains at each stage k decision trees (search
states), ordering them by their accuracy estimated using cross-validation on
the training data [80]. This algorithm has found some of the simplest and
most accurate decision rules that gave different tradeoffs between sensitivity
and specificity.

The metalearning search procedure creates many individual models and it
would be wasteful not to use them, unless only models of specific types are of
interest (for example, models that are easily comprehensible). Metalearning
usually leads to several interesting models, as different types of optimization
channels are enabled by the search procedure. If a committee of models is
desired diversification of individual models that should perform well in differ-
ent regions of input space may be necessary, especially for learning of difficult
tasks. The mixture of models allows to approximate complicated probability
distributions quite accurately improving stability of individual models. In-
dividual models are frequently unstable [17], i.e. quite different models are
created as a result of repeated training (if learning algorithms contains sto-
chastic elements) or if the training set is slightly perturbed [6].

Although brains are massively parallel computing devices attention mech-
anisms are used to inhibit parts of the neocortex that are not competent in
analysis of a given type of signal. All sensory inputs (except olfactory) travel
through the thalamus where their importance and rough category is esti-
mated. Thalamic nuclei activate only those brain areas that may contribute
useful information to the analysis of a given type of signals [168]. This obser-
vation may serve as an inspiration for construction of better algorithms for
data analysis. In the metasearch process all models that handle sufficiently
many cases mistreated by other models should be maintained.

A committee based on competent models, with various factors determining
regions of competence (or incompetence) may be used to integrate decisions of
individual models [54, 55]. The competence factor should reach F (X; Ml) ≈ 1
in all areas where the model Ml has worked well and F (X; Ml) ≈ 0 near
the training vectors where errors were made. A number of functions may be
used for that purpose: a Gaussian function F (||X −Ri||; Ml) = 1−G(||X −
Ri||a; σi), where a ≥ 1 coefficient is used to flatten the function, a simpler
1/ (1 + ||X−Ri||−a) inverse function, or a logistic function 1−σ(a(||X−Ri||−
b)), where a defines its steepness and b the radius where the value drops to
1/2. Because many factors are multiplied in the incompetence function of the
model each factor should quickly reach 1 outside of the incompetence area.

Towards Comprehensive Foundations of Computational Intelligence 295

This is achieved by using steep functions or defining a threshold values above
which exactly 1 is taken.

Results of l = 1 . . .m models providing estimation of probabilities
P(Ci|X; Ml) for i = 1 . . .K classes may be combined in many different ways
[112]: using majority voting, averaging results of all models, selecting a single
model that shows highest confidence (i.e. gives the largest probability), se-
lecting a subset of models with confidence above some threshold, or using
simple linear combination. For class Ci coefficients of linear combination are
determined from the least-mean square solution of:

P(Ci|X; M) =
m∑

l=1

∑
m

Wi,lF (X; Ml)P(Ci|X; Ml) (7)

The incompetence factors simply modify probabilities F (X; Ml)
P(Ci|X; Ml) that are used to set linear equations for all training vectors X,
therefore the solution is done in the same way as before. After renormaliza-
tion P(Ci|X; M)/

∑
j P(Cj |X; M) give final probabilities for classification. In

contrast to AdaBoost and similar procedures [10] explicit information about
competence, or quality of classifier performance in different feature space ar-
eas, is used here. Many variants of committee or boosting algorithms with
competence are possible [112], focusing on generation of diversified models,
Bayesian framework for dynamic selection of most competent classifier [70],
regional boosting [124], confidence-rated boosting predictions [156], task clus-
tering and gating approach [9], or stacked generalization [185].

A committee may be build as a network of networks, or a network where
each element has been replaced by a very complex processing element made
from individual network. This idea fits well to the transformation-based learn-
ing. Incompetence factors may be used to create virtual subnetworks, with
different effective path of information flow. Modulation of the activity of mod-
ules is effective only if the information about the current state is distributed
to all modules simultaneously. In the brain this role may be played by the
working memory. Here it can be replaced by networks of modules adjusting
their internal states (local knowledge that each module has learned) and their
interactions (modulations of weights) to the requirements of the information
flow through this system.

4 Beyond Pattern Recognition

The transformation-based approach described here is quite general and may
be used for all kinds of pattern recognition problems, classification, approx-
imation, pattern completion, association and unsupervised learning, extend-
ing what has already been done in the similarity-based approach [35, 43].
Computational intelligence should go beyond that, using partial observations
(perceptions) to reason and learn from them.

296 W�lodzis�law Duch

Biological systems may be viewed as associative machines, but associa-
tive memories do not capture essential features of this process. Real brains
constantly learn to pay attention to relevant features and use correlations
between selected feature values and correct decisions. People may learn to
act appropriately without explicitly realizing the rules behind their actions,
showing that this process may proceed intuitively, without conscious control.
Associative machines should learn from observations correlation of subsets of
features and apply many such correlations in decision making process. Prob-
lems solved by symbolic artificial intelligence are of this sort. Bits and pieces
of knowledge should be combined in a search for a final solution, and this
leads in all interesting cases to a combinatorial explosion.

Not much progress has been made along this line of research in the last
decades, although already in the PDP Books [153] several articles addressed
combinatorial problems that are beyond pattern recognition. Boltzmann ma-
chines and harmony theory have been used to answer questions about complex
systems from partial observations [153], but they proved to be very inefficient
because the stochastic training algorithm needs time that grows exponen-
tially with the size of the problem. Helmholtz machines [28], and recently
introduced multi-layer restricted Boltzmann machines and deep belief net-
works [89] have been used only for pattern recognition problems so far. These
models are based on stochastic algorithms and binary representations and
thus are rather restricted.

Inferences about complex behavior from partial observations require sys-
tematic search. Suppose that a number of relations between small subsets of
all variables characterizing complex system or situation are known a priori or
from observations. For example, representing discrete changes of 3 variables
(ΔA = + for increase, ΔA = − for decrease and ΔA = 0 for no change)
33 = 27 possibilities are distinguished, from all three variables decreasing,
(ΔA,ΔB,ΔC) = (−,−,−) to all three increasing (ΔA,ΔB,ΔC) = (+, +, +).
If these variables are constrained by additive A = B + C, multiplicative
A = B · C or inverse additive A−1 = B−1 + C−1 relations A = f(B,C)
then for all these relations 14 of the 27 possibilities cannot occur, for exam-
ple ΔA = 0 is impossible if both ΔB = ΔC = − or both are +). If many
such relations are applicable for N variables out of 3N possible solutions only
a few will be in agreement with all constraints. Assuming specific relations:
f(A1, A2) = A3; f(A2, A3) = A4; . . . f(AN−2, AN−1) = AN leaves only 4N +1
possible solutions. For a large N it is a negligible fraction of all 3N possibilities.
Relations among 3 variables – representing partial observations – are stored in
“knowledge atoms”, or nodes arranged in one-dimensional array, connected to
relevant input features. If the values of any two variables Ai, Ai+1 or Ai, Ai+2

are known then one of such nodes will provide the value of the third variable.
In at most N − 2 steps, in each step selecting nodes that have only one un-
known input, all values of variables are determined. Suppose now that only
a single variable in two nodes has specific value, for example A1 and A4. An
assumption about the value of A2 should be made, starting 3 branches of a

Towards Comprehensive Foundations of Computational Intelligence 297

search tree with A2 = −, 0, +. In the first step this leads to an inference of A3

value, and in the second step f(A2, A3) = A4 is checked, leaving only those
branches for which both relations are true.

This is obviously a very fortuitous set of relations, but in most real sit-
uations very small search trees, sometimes reduced to a single branch, are
still sufficient. An application to the analysis of a simple electric circuit (7
variables, currents I, voltages V and resistances R) [153] using network that
keeps in its nodes relations between I, V,R (Ohm’s law) and Kirchoff laws
(V = V1 + V2 and R = R1 + R2) has been reported [50], showing how a pri-
ori knowledge enables solutions to problems involving qualitative changes of
currents, voltages and resistances. The feature space representation works as
a powerful heuristics in the reasoning process. In the seven variable problem
considered here there are 37 = 2187 different strings of 7 variables, but only
111 may actually be realized. In more complicated cases, when the number of
variables involved is larger and the number of values these variable may take is
also larger, the percentage of situations that fulfills all the constraints is van-
ishingly small. Network nodes may also implement functions that determine
numerical values of unknown variables (such as V = I ·R).

Such network of knowledge atoms may solve mathematical problems with-
out explicit transformation of equations, and when qualitative reasoning is
sufficient it serves as a model of intuitive computing. For more complex sit-
uations hierarchical decomposition of the problem is necessary, depending on
the questions asked. For example, changes of parameters of a single or a few
elements of a complex electrical circuit may be decomposed into blocks, and
there is no need to assign values to all variables. People in such cases ana-
lyze graphical structure of connections and nodes representing the problem,
starting from elements mentioned in the problem statement.

Network nodes may also estimate probabilities of different observations,
and then the algorithm may use them in sequential Markov-chain reasoning
or in other variants of such algorithms approximating joint distribution of
variables in various ways. The confabulation architecture [88] is an example
of such algorithm that uses products of a few (usually 4) conditional proba-
bilities in a specific way
arg maxj(min[p(i1|j)p(i2|j)p(i3|j)p(i4|j)],
where p(i1|j) is the probability that word i1 precedes word j in a sequence.
This algorithm trained on a large corpus of English stories produces plausible
words j, although it cannot capture the meaning of the story or learn a strat-
egy of games played, due to the lack of long-term dependencies and structural
representation of the concepts.

Similar approaches may be useful in many other fields. In intelligent control
random actions may be correlated with probability distributions of different
results, creating several scenarios [169]. Problems of this type are somewhere
between pattern recognition and typical artificial intelligence problems. Neural
networks (a core CI technology) may be used as heuristics to constrain search
(a core AI technology) in problem solving. Robots, including autonomous

298 W�lodzis�law Duch

vehicles, need to combine reasoning with pattern recogntion in a real time.
It would be very worthwhile to collect data for real problems of this kind,
encouraging the development of algorithms for their solutions.

The inference process in this approach resembles human reasoning that
either proceeds sequentially, or temporarily assumes one of the possibilities,
checking if it is consistent with all knowledge assumed to be true at a given
stage. The interplay between left and right hemisphere representations leads
to generalization of constraints that help to reason at the meta-level [38].
These ideas may form a basis for an associative machine that could reason
using both perceptions (observations) and a priori knowledge. In this way
pattern recognition (lower level cognitive functions) may be combined in a
natural way with reasoning (higher level cognitive functions).

A very interesting approach to representation of objects as evolving struc-
tural entities/processes has been developed by Goldfarb and his collaborators
[76, 74, 75]. Structure of objects is a result of temporal evolution, a series
of transformations describing the formative history of these objects. This is
more ambitious than the syntactic approach in pattern recognition [68], where
objects are composed of atoms, or basic structures, using specific rules that
belong to some grammar. In the evolving transformation system (ETS) object
structure is a temporal recording of structured events, making syntax and se-
mantics inseparable. ETS formalism leads to a new concept of class which is
represented by similar structural processes. Classes defined by decision bor-
ders do not capture the meaning of objects. Inductive learning process should
discover class structures as a series of transformations that change the prim-
itive elements to their observed structure. In this way a generative model is
produced that may generate an infinite set of examples of objects from a given
class.

This line of thinking is in agreement with the modified goal of learning
presented in Sect. 3.5. Various initial transformations should discover interest-
ing representations of different aspects of objects, learn how to measure their
(dis)similarities introducing kernel functions. These transformations may be
viewed as receptive fields of sensors observing the data, or as selection of op-
erations that compare objects in some specific way. For comparison of strings,
to take the simplest example, various substring operations may be used. ETS
is also in agreement with the idea of computing and learning as compression,
as evolving transformations compress the information. Application of ETS
to structural representation of molecules has been presented [75], and struc-
tural representation of spoken language has been analyzed from this point of
view [83].

5 Neurocognitive Inspirations, Computing, Cognition
and Compression

How to scale up our present models to perform more interesting cognitive
functions? Neurocognitive inspirations lead to modular networks that should

Towards Comprehensive Foundations of Computational Intelligence 299

process information in a hierarchical way that roughly should correspond to
functions of various brain areas, and these networks become modules that
are used to build next-level supernetworks, functional equivalents of larger
brain areas. The principles on which models should be based at each level
are similar [61]: networks of interacting modules should adjust to the flow of
information (learn) changing their internal knowledge and their interactions
with other modules. Efficient algorithms for learning are known only at the
lowest level, when very simple interactions and local knowledge of processing
elements are assumed. The process of learning leads to emergence of novel,
complex behaviors and competencies. Maximization of system information
processing capacity may be one guiding principle in building such systems: if
the supernetwork is not able to model all relations in the environment then
it should recruit additional members that will specialize in learning facts,
relations or behaviors that have been missing.

Very complex supernetworks, such as the individual brains, may be fur-
ther treated as units that cooperate to create higher-level structures, such as
groups of experts, institutions, think-tanks or universities, commanding huge
amounts of knowledge that is required to solve problems facing the whole soci-
ety. Brain-storming is an example of interaction that may bring ideas up that
are further evaluated and analyzed in a logical way by groups of experts. The
difficult part is to create ideas. Creativity requires novel combination, gen-
eralization of knowledge that each unit has, applying it in novel ways. This
process may not fundamentally differ from generalization in neural networks,
although it takes place at much higher level of complexity. The difficult part
is to create a system that has sufficiently rich, dense representation of use-
ful knowledge to be able to solve the problem by combining or adding new
concepts/elements [38].

The brain has much more computing power than our current machinery
and thus may solve problems in a different way. Nevertheless brain resources
are limited and the mechanism of encoding the new information using old
memory structures is quite natural, leading to a great conservation of re-
sources and enabling associative recall. This is also a source of serious difficulty
in defining the meaning of symbols, encoded by activity of neural microcir-
cuits that is constantly changing, spreading activation to other concepts. As
a result relations between concepts change depending on the context, making
the invariant meaning of concepts only a rough approximation. In experimen-
tal psychology this process, known as semantic priming, is one of the most
popular subjects of investigation [128].

How can this priming process be approximated? An attractor network
model has been created to explain results of psychological experiments [25].
However, such dynamical models are rather complex and do not scale well
with the size of the network. Processing sequential information by simpler
mechanisms, such as spreading activation in appropriately structured net-
works, is more suitable for information retrieval [26]. The challenge here
is to create large semantic networks with overall structure and weighted

300 W�lodzis�law Duch

links that facilitate associations and reproduce priming effects. Wordnet
(http://wordnet.princeton.edu) and many other dictionaries provide some
useful relations that may be used in network construction, although these
relations capture a small fraction of knowledge and associations that humans
have about each concept. Medical applications of spreading activation net-
works are easier to create because huge lexical resources are available [126].

Activation of semantic networks may be seen as dynamical construction
of a relevant feature space, or non-zero subspace for vector models in infor-
mation retrieval. New information is projected into this space, expanding it
by adding new dimensions with non-zero components. Although the use of
semantic networks is quite natural geometrical description of this process is
still interesting. In geometrical model activation of the network concept node
corresponds to a change of a metric around this concept (active concept as-
sociates with other active concepts), and this changes similarity relations at
a given moment. Concepts in some specific meanings attract other concepts
that become closer, while other concepts increase their distance, facilitating
disambiguation. Static vector space models do not take that into account
such dynamical changes, therefore spreading activation models should have
an important advantages here.

Projecting new information on the semantic network creates strong as-
sociations with existing network nodes, encoding partially new knowledge in
terms of the old one. Basic perceptual and conceptual objects of mind are
created early in the developmental process, therefore perceptual information
will be predominantly encoded in terms of the old knowledge. Seeing or hear-
ing new objects will be remembered by adding new nodes that bind together
(symbolize) specific configuration of node activations, responsible for recogni-
tion of natural categories. These nodes in turn are linked to new nodes coding
abstract concepts that do not activate directly any perceptual nodes, allowing
for higher and higher levels of abstraction.

Computing and cognition may be seen as information compression, al-
though there are clearly exceptions. In the brain signals may be projected
into higher-dimensional space, for example information from retina is pro-
jected on visual cortex with order of magnitude expansion in the number of
cells involved. In computing we have seen that kernel methods make implicit
projection into a highly-dimensional space to achieve separability before final
reduction of information is made. Although the idea of cognition as com-
pression is worth exploring it has been so far developed only for sequential,
one-dimensional systems [184], and to some extent in our approach to concept
disambiguation in medical domain [126]. Multiple alignment may be applied
to sequential data, while computational intelligence methods work with many
other types of data, including signals, vectors, spatial structures (like chemi-
cal molecules), or multimedia data. To account for preliminary processing of
sensory and motor signals a more general approach to data transformation
is needed. Instead of a sequence alignment calculus based on “small world”
active subnetworks in the huge semantic network encoding relations between

Towards Comprehensive Foundations of Computational Intelligence 301

mind objects is required. New knowledge activates old similar structures, ex-
tends them in new directions, and thus is encoded in a compressed way. This
process may be approximated using graphs representing active network nodes
that represent current mind state. Associations between different network con-
figurations are determined by transition probabilities between network states.

Several interesting developments emerged from neurocognitive inspira-
tions, the two most important theories being the liquid computing [123] and
laminar computing [82, 147]. Liquid computing concentrates on microcircuits
and columnar architecture, and laminar computing on the layered architec-
ture of neocortex. The neocortex microcircuits composed of densely connected
neurons within a diameter of 500μm are heterogeneous and differ across brain
regions. Many properties of these microcircuits are stereotypical, therefore
a concept of generic microcircuit template may be a useful abstraction al-
lowing for understanding of dynamical properties of the cortex. Maass and
Markram [122] argue that online computing is indistinguishable from learn-
ing, because temporal integration of information in a stream of data con-
stantly changes the system. Learning is thus an integral part of microcircuit
dynamics. Boolean functions and approximations to Boolean functions may be
computed by feedforward networks with stereotypical basis functions, includ-
ing sigmoidal or any other nonlinear functions. Computing such functions is
thus relatively easy, there are many biophysical mechanisms that can influence
neuronal states and thus can be interpreted as performing computations and
learning. A useful approximation to microcircuit dynamics may be provided
by finite state automata [18, 29, 34]. The Liquid State Machine (LSM) model
aims at better approximation at the microscopic level, based on “liquid” high
dimensional states of neural microcircuits that change in real time. In [34]
another approximation relating neurodynamical states to psychological space
and mental events has been advocated to bridge neuroscience and psychology.

LSM treats complex dynamical systems as non-linear filters transforming
input signals x(t) into activations of microcircuit (hidden) neurons h(t) =
L(x(t)). The output stream y(t) = M(h(t)) is then provided using “read-
out neurons” that learn to select and recombine activations of the hidden
layer. In fact this is a simple transformation model that projects signals into
high-dimensional spaces h(t) created by microcircuits in form of temporal
filters or basis functions, where separation is relatively straightforward. Os-
cillators based on neurons with diverse time constants are needed to create
good projections. Linear or simple perceptron readout neurons are sufficient
to approximate any time-varying signal. A single LSM may be used for vari-
ous tasks, depending on the training of these output neurons. It has a fading
memory for signals, depending on the time constants of the neurons. In fact
any larger reservoir of neurons with some memory will be sufficient to create
projections of signals to high-dimensional space. The Echo State Networks, or
more general Reservoir Computing, use untrained recurrent neural networks
as “reservoirs of activity” to implement this projection. These approaches are
equivalent to the Liquid State Machines [86] and are being applied to time

302 W�lodzis�law Duch

series prediction, dynamical system identification and speech recognition with
great success [86].

The question how to use neural elements to compute Boolean functions
has many solutions [122]. A complementary question that is also worth asking
is: how can neural circuits discover approximate but rather complicated logic
(Boolean function) in data, going beyond trivial associations? How are differ-
ent activations of the hidden layer recombined to enable this? This is what
humans and animals evidently do all the time. LSM has so far been used
for problems where simple associations are sufficient. k-separability and other
more general goals of learning may be responsible for the ability of cortex
to learn complex approximate logic using liquid states. One good algorithm
for k-separability combines projections with discovery of local clusters. This
is essentially what is needed for object-centered representations in vision [31]
and has been used to model the outputs of parietal cortex neurons [143, 144].
Any continuous sensory-motor transformation may be approximated in this
way [155]. Although precise neural implementation of such basis functions is
not clear they may result from the activity of microcircuits. Generalization
of k-separability to time-dependent transformations done by liquid state ma-
chines is rather straightforward. Therefore it is quite likely that k-separability
is an interesting abstraction of a basic biological mechanism.

Laminar computing is based on inspirations derived from organization
of neocortex into six layers with specific architecture, and information flow
in the brain on macroscopic scales. The bottom-up interactions provide sig-
nals from the senses, while the top-down interactions provide expectations
or prior knowledge, that helps to solve ill-defined problems. Finally the hori-
zontal interactions enable competition and specialization. Laminar computing
has been studied initially in the visual cortex [82] but seems to have captured
more general principles of cortical computations [147]. It explains how dis-
tributed data is grouped into coherent object representations, how attention
selects important events and how cortex develops and learns to express en-
vironmental constraints. The laminar computing models have been used to
explain many neurophysiological and psychophysical results about visual sys-
tem, but it has also been used to develop new algorithms for image processing.
In practical applications a version of Adaptive Resonant Theory [19] called
LAMINART [147], has been used. So far this is the most advanced approach
to perception that will certainly play a very important role in the growing
field of autonomous mental development and cognitive robotics.

6 Summary of Open Problems

Many open problems have been identified in the preceding chapters. Below is
a summary of some of them:

• Solid foundations of computational intelligence that go beyond probabilis-
tic pattern recognition approaches are needed.

Towards Comprehensive Foundations of Computational Intelligence 303

The current state is clearly not satisfactory. Bayesian probabilistic frame-
work forms the foundation of many pattern recognition methods [63, 176, 166]
and graphical networks [101], but it does not cover most branches of compu-
tational intelligence. Good foundations should help to create methods that
adjust themselves to the data, finding the simplest possible model that ac-
curately describes the data. The no-free-lunch theorem shows that a single
approach is not sufficient [63] and automatic selection of methods included
in larger data mining packages is still too difficult as these methods are not
presented from the point of view of common foundations.

Earlier suggestions to base CI foundations on similarity concept [35, 43,
141] led to a framework in which meta-learning could be implemented [53]
using search techniques in the model space. It has been found that similarity-
based rule systems are equivalent to fuzzy systems [49], providing an alterna-
tive way to understand data, and that neural algorithms can also be presented
in this framework. Heterogeneous constructive systems of this type are espe-
cially useful and have already discovered some of the simplest descriptions of
data [80, 51]. A framework based on transformations, presented in this paper
for the first time, is even more general, as it includes all kinds of pre-processing
and unsupervised methods for initial data transformations, and looks at learn-
ing as a series of data transformations, defining new goals of learning. The
work on hyperkernels also goes in similar direction [137].

Although this framework is still in the initial stage of its development it
has a chance to provide foundations for computational intelligence models.
Adaptation of these models requires some optimization techniques, processes
that operate on admissible transformations. A new generation of data min-
ing software, capable of implementing arbitrary sequences of transformations
for meta-learning, is in development (K. Gra̧bczewski and N. Jankowski, in
preparation).

• Existing methods cannot learn difficult problems.

CI algorithms are rarely addressing real, difficult problems, and many re-
searchers are convinced that universal approximators, such as neural networks,
are good tools to learn the structure of any data. In fact off-the-shelf systems
work well only for problems that are “not-too-far” from the linearly separable
problems. Fortunately many interesting datasets in machine learning domain
are of this kind. Problems with inherent approximate Boolean logic become
quickly intractable with growing complexity of the logical functions. Grow-
ing complexity of such problems may be characterized using the notion of
k-separability [40], or setting more general goal for learning. We are proba-
bly not aware how many problems in bioinformatics or text processing are
intractable and therefore are ignoring them. Datasets for such difficult prob-
lems are needed to increase awareness of the need for such methods, but first
we should be able to solve at least some of these problems.

• Problems requiring reasoning based on perceptions should be explored.

304 W�lodzis�law Duch

The basic function of simple brains is to link perception with action. Agents
with more complex brains have internal states and goals, and need to perceive
and reason before making actions. Agent-based approach in artificial intelli-
gence [154] is usually based on symbolic reasoning and logical rules. There has
been some work on hybrid neural-symbolic architectures [178], but not much
effort devoted to neural architectures capable of representations of predicate
relations. The connectionist model Shruti [160, 177] seems to be an exception,
although it has not gained wider popularity. Although spreading activation
networks allow for some reasoning (mostly disambiguation and coherent in-
terpretation of concepts [126]) this is not sufficient to solve problems requiring
combinatorial search, compositionality, problems arising in sentence parsing
or sequential reasoning. How to control spreading activation to account for
systematic thinking process? New mathematical techniques for representa-
tion of objects and relations by active subgraphs in large semantic networks
seem to be required. Search processes may be constrained by “intuitive com-
puting” using neural heuristics [34]. Reinforcement learning [165], reservoir
learning [86], laminar computing [82, 147] and chunking [136] should also
be used as general mechanisms for sequence learning and divide-and-conquer
sub-problem parsing. No cognitive architectures have captured so far all these
processes, and combining them together is an interesting challenge.

Neurocognitive inspirations for understanding language and general cog-
nitive processes lead to distributed connectionist systems that can be approx-
imated by networks with local activations, and that in turn may be partially
understood in terms of symbolic processes and probabilistic or finite automata
[178]. Investigation of relations between approximations of brain functions at
different level of complexity is quite fruitful, leading to new models of mental
processes based on psychological spaces [34, 61]. At the simplest level percep-
trons are found, with a single internal parameter and synaptic interactions
based on fixed weight connections. Enhanced perceptrons sensitive to phase
synchronization [113] are able to solve the famous connectedness and other
problems posed by Minsky and Papert [133]. Networks with spiking neurons
also have this capability [175], but it is not clear if they have additional pow-
ers – characterization of different complexity classes seems to be incomplete
here. At a higher level complex processing elements modeling whole microcir-
cuits are found, and even higher networks of networks and societies of minds.
Although new biological mechanisms at the level of synaptic learning are
certainly very important, simple abstractions of complex functions such as
self-organization proved to be quite interesting. At the level of approximating
microcuircuit and minicolumn functions simpler mechanisms, implementing
for example some form of k-separability learning, may also be useful. Perhaps
correlation-based learning, as in the Alopex algorithm [172], would be suffi-
cient for biological implementation? Such approximations may also be viewed
as information compression [184].

Towards Comprehensive Foundations of Computational Intelligence 305

• Methodology of evaluation and development of CI methods is urgently
needed.

Every year hundreds of methods are introduced, some of them rediscovered
many times, others being minor variations on the known themes. It is well
known that a data on which a given method works well may always be found
[63]. There is no simple way to evaluate a priori how a new method will
perform on a real data, but at least it is possible to understand what type
of decision borders it is using and thus what type of problems it may solve.
Efforts to provide standard benchmarks have largely failed. For example, the
Data for Evaluating Learning in Valid Experiments (Delve) project2 has been
quite promising, presenting problems of growing complexity, but the project
has unfortunately been abandoned.

Without standard methodology of evaluating new approaches no progress
will be possible. There is a tendency to create algorithms and test them on
new datasets, ignoring good reference results that are hard to compete with.
Even though quite interesting datasets are available from some competitions
many papers end with one or two trivial examples. Benchmarks that go be-
yond pattern recognition are particularly hard to find. It is up to the editors
and reviewers of journals to enforce comparison with the simplest methods
that may solve similar problems, and require solutions to problems of in-
creasing complexity. For example, in extraction of logical rules comparison
with rules extracted by popular decision trees should be required [62], or in
classification problems comparison with linear discrimination and the nearest
neighbor model. Collecting raw data, results of data analysis and software im-
plementing different methods should be encouraged by data repositories and
competitions at conferences.

Comparison of accuracy does not address problems in real applications.
There may be many performance measures, different costs involved, trade-
offs between model simplicity and accuracy, rejection rate and confidence,
or costs of obtaining different features and making different types of errors.
Verification and validation of CI models is of great importance in industrial
applications where software should always perform up to the intended speci-
fications. Testing the system on data that is similar to the training data may
not be sufficient. The standard neural network testing is not able to validate
applications used to assess safety of nuclear reactors, chemical plants, military
equipment or medical life support systems. These issues are largely ignored
by the CI academic community and mostly explored by researchers working
in NASA, IBM and other research oriented companies. Visualization of data
transformations performed by CI systems, including analysis of perturbation
data, are very useful tools [36], although still rarely used.

Cognitive robotics may be an ultimate challenge for computational intel-
ligence. Various robotic platforms that could be used for testing new ideas in

2 http://www.cs.utoronto.ca/delve/

306 W�lodzis�law Duch

semi-realistic situations would be very useful. They have to combine percep-
tion, object recognition, reasoning, planning and control in real-time environ-
ment. However, computational intelligence has even more general ambitions,
looking for solutions to all hard problems for which effective algorithms are
not known.

Acknowledgments

I am grateful for the support by the Polish Committee for Scientific Research,
research grant 2005-2007.

References

[1] F. Corbacho A. Sierra, J.A. Macias. Evolution of functional link net-
works. IEEE Transactions on Evolutionary Computation, 5:54–65, 2001.

[2] N.I. Achieser. Theory of Approximation. Frederick Ungar, New York,
1956. Reprinted: Dover Publications, New York 1992.

[3] R. Adamczak, W. Duch, and N. Jankowski. New developments in the
feature space mapping model. In Third Conference on Neural Networks
and Their Applications, pages 65–70, Kule, Poland, Oct 1997.

[4] J.A. Anderson, A. Pellionisz, and E. Rosenfeld. Neurocomputing 2. MIT
Press, Cambridge, MA, 1990.

[5] J.A. Anderson and E. Rosenfeld. Neurocomputing - foundations of re-
search. MIT Press, Cambridge, MA, 1988.

[6] R. Avnimelech and N. Intrator. Boosted mixture of experts: An ensem-
ble learning scheme. Neural Computation, 11:483–497, 1999.

[7] F.R. Bach and M.I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1–48, 2002.

[8] P.M. Baggenstoss. The pdf projection theorem and the class-specific
method. IEEE Transactions on Signal Processing, 51:672–668, 2003.

[9] B. Bakker and T. Heskes. Task clustering and gating for bayesian mul-
titask learning. Journal of Machine Learning Research, 4:83–99, 2003.

[10] E. Bauer and R. Kohavi. An empirical comparison of voting classifi-
cation algorithms: bagging, boosting and variants. Machine learning,
36:105–142, 1999.

[11] Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable
functions for local kernel machines. Advances in Neural Information
Processing Systems, 18:107–114, 2006.

[12] Y. Bengio, M. Monperrus, and H. Larochelle. Non-local estimation of
manifold structure. Neural Computation, 18:2509–2528, 2006.

[13] T. Bilgiç and I.B. Türkşen. Measurements of membership functions:
Theoretical and empirical work. In D. Dubois and H. Prade, editors,

Towards Comprehensive Foundations of Computational Intelligence 307

Fundamentals of Fuzzy Sets, Vol. 1, pages 195–232. Kluver, Boston,
2000.

[14] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[15] M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules –
context searching via clustering. Lecture Notes in Artificial Intelligence,
4029:573–582, 2006.

[16] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

[17] L. Breiman. Bias-variance, regularization, instability and stabilization.
In C.M. Bishop, editor, Neural Networks and Machine Learning, pages
27–56. Springer-Verlag, 1998.

[18] Y. Burnod. An Adaptive Neural Network. The Cerebral Cortex.
Prentice-Hall, London, 1990.

[19] G.A. Carpenter and S. Grossberg. Adaptive resonance theory. In M.A.
Arbib, editor, The Handbook of Brain Theory and Neural Networks, 2nd
ed, pages 87–90. MIT Press, Cambridge, MA, 2003.

[20] G. Chaitin. Algorithmic Information Theory. Cambridge University
Press, 1987.

[21] O. Chapelle. Training a support vector machine in the primal. Neural
Computation, 19:1155–1178, 2007.

[22] N. Chater. The search for simplicity: A fundamental cognitive principle?
Quarterly Journal of Experimental Psychology, 52A:273–302, 1999.

[23] A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing.
Learning Algorithms and Applications. J. Wiley & Sons, New York,
2002.

[24] T.M. Cover. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions
on Electronic Computers, 14:326–334, 1965.

[25] G.S. Cree, K. McRae, and C. McNorgan. An attractor model of lexical
conceptual processing: Simulating semantic priming. Cognitive Science,
23(3):371–414, 1999.

[26] F. Crestani. Application of spreading activation techniques in informa-
tion retrieval. Artifical Intelligence Review, 11(6):453–482, 1997.

[27] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vec-
tor Machines and other Kernel-Based Learning Methods. Cambridge
University Press, 2000.

[28] P. Dayan and G.E. Hinton. Varieties of helmholtz machines. Neural
Networks, 9:1385–1403, 1996.

[29] A.M. de Callataÿ. Natural and Artificial Intelligence. Misconceptions
about Brains and Neural Networks. Elsevier, Amsterdam, 1992.

[30] L.N. de Castro and J.I. Timmis. Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, 2002.

[31] S. Deneve and A. Pouget. Basis functions for object-centered represen-
tations. Neuron, 37:347–359, 2003.

308 W�lodzis�law Duch

[32] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems
via error-correcting output codes. Journal Of Artificial Intelligence Re-
search, 2:263–286, 1995.

[33] W. Duch. Neural minimal distance methods. In Proceedings 3-rd Confer-
ence on Neural Networks and Their Applications, pages 183–188, Kule,
Poland, Oct 1997.

[34] W. Duch. Platonic model of mind as an approximation to neurodynam-
ics. In S i. Amari and N. Kasabov, editors, Brain-like computing and
intelligent information systems, pages 491–512. Springer, 1997.

[35] W. Duch. Similarity based methods: a general framework for classifica-
tion, approximation and association. Control and Cybernetics, 29:937–
968, 2000.

[36] W. Duch. Coloring black boxes: visualization of neural network deci-
sions. In Int. Joint Conf. on Neural Networks, Portland, Oregon, vol-
ume I, pages 1735–1740. IEEE Press, 2003.

[37] W. Duch. Uncertainty of data, fuzzy membership functions, and multi-
layer perceptrons. IEEE Transactions on Neural Networks, 16:10–23,
2005.

[38] W. Duch. Computational creativity. In World Congress on Computa-
tional Intelligence, Vancouver, Canada, pages 1162–1169. IEEE Press,
2006.

[39] W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh,
and L. Zadeh, editors, Feature extraction, foundations and applications,
pages 89–118. Physica Verlag, Springer, Berlin, Heidelberg, New York,
2006.

[40] W. Duch. k-separability. Lecture Notes in Computer Science, 4131:188–
197, 2006.

[41] W. Duch, R. Adamczak, and G.H.F. Diercksen. Distance-based multi-
layer perceptrons. In M. Mohammadian, editor, International Confer-
ence on Computational Intelligence for Modelling Control and Automa-
tion, pages 75–80, Amsterdam, The Netherlands, 1999. IOS Press.

[42] W. Duch, R. Adamczak, and G.H.F. Diercksen. Neural networks in
non-euclidean spaces. Neural Processing Letters, 10:201–210, 1999.

[43] W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, asso-
ciation and pattern completion using neural similarity based methods.
Applied Mathemathics and Computer Science, 10:101–120, 2000.

[44] W. Duch, R. Adamczak, and G.H.F. Diercksen. Feature space map-
ping neural network applied to structure-activity relationship problems.
In Soo-Young Lee, editor, 7th International Conference on Neural In-
formation Processing (ICONIP’2000), pages 270–274, Dae-jong, Korea,
2000.

[45] W. Duch, R. Adamczak, and G.H.F. Diercksen. Constructive density
estimation network based on several different separable transfer func-
tions. In 9th European Symposium on Artificial Neural Networks, pages
107–112, Bruges, Belgium, Apr 2001.

Towards Comprehensive Foundations of Computational Intelligence 309

[46] W. Duch, R. Adamczak, and K. Gra̧bczewski. Extraction of logical rules
from backpropagation networks. Neural Processing Letters, 7:1–9, 1998.

[47] W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of
extraction, optimization and application of crisp and fuzzy logical rules.
IEEE Transactions on Neural Networks, 12:277–306, 2001.

[48] W. Duch and M. Blachnik. Fuzzy rule-based systems derived from simi-
larity to prototypes. Lecture Notes in Computer Science, 3316:912–917,
2004.

[49] W. Duch and M. Blachnik. Fuzzy rule-based systems derived from sim-
ilarity to prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and
S.K. Parui, editors, Lecture Notes in Computer Science, volume 3316,
pages 912–917. Physica Verlag, Springer, New York, 2004.

[50] W. Duch and G.H.F. Diercksen. Feature space mapping as a universal
adaptive system. Computer Physics Communications, 87:341–371, 1995.

[51] W. Duch and K. Gra̧bczewski. Heterogeneous adaptive systems. In
IEEE World Congress on Computational Intelligence, pages 524–529.
IEEE Press, Honolulu, May 2002.

[52] W. Duch and K. Grudziński. Search and global minimization in
similarity-based methods. In International Joint Conference on Neural
Networks, page Paper 742, Washington D.C., 1999. IEEE Press.

[53] W. Duch and K. Grudziński. Meta-learning via search combined with
parameter optimization. In L. Rutkowski and J. Kacprzyk, editors,
Advances in Soft Computing, pages 13–22. Physica Verlag, Springer,
New York, 2002.

[54] W. Duch and L. Itert. Competent undemocratic committees. In
L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Com-
puting, pages 412–417. Physica Verlag, Springer, 2002.

[55] W. Duch and L. Itert. Committees of undemocratic competent mod-
els. In L. Rutkowski and J. Kacprzyk, editors, Proc. of Int. Conf. on
Artificial Neural Networks (ICANN), Istanbul, pages 33–36, 2003.

[56] W. Duch and N. Jankowski. Complex systems, information theory and
neural networks. In First Polish Conference on Neural Networks and
Their Applications, pages 224–230, Kule, Poland, Apr 1994.

[57] W. Duch and N. Jankowski. Survey of neural transfer functions. Neural
Computing Surveys, 2:163–213, 1999.

[58] W. Duch and N. Jankowski. Taxonomy of neural transfer functions. In
International Joint Conference on Neural Networks, volume III, pages
477–484, Como, Italy, 2000. IEEE Press.

[59] W. Duch and N. Jankowski. Transfer functions: hidden possibilities for
better neural networks. In 9th European Symposium on Artificial Neural
Networks, pages 81–94, Brusells, Belgium, 2001. De-facto publications.

[60] W. Duch, N. Jankowski, A. Naud, and R. Adamczak. Feature space
mapping: a neurofuzzy network for system identification. In Proceedings
of the European Symposium on Artificial Neural Networks, pages 221–
224, Helsinki, Aug 1995.

310 W�lodzis�law Duch

[61] W. Duch and J. Mandziuk. Quo vadis computational intelligence? In
P. Sincak, J. Vascak, and K. Hirota, editors, Machine Intelligence: Quo
Vadis?, volume 21, pages 3–28. World Scientific, Advances in Fuzzy
Systems – Applications and Theory, 2004.

[62] W. Duch, R. Setiono, and J. Zurada. Computational intelligence meth-
ods for understanding of data. Proceedings of the IEEE, 92(5):771–805,
2004.

[63] R.O. Duda, P.E. Hart, and D.G. Stork. Patter Classification. J. Wiley
& Sons, New York, 2001.

[64] R.S. Michalski (ed). Multistrategy Learning. Kluwer Academic Publish-
ers, 1993.

[65] S.E. Fahlman and C. Lebiere. The cascade-correlation learning architec-
ture. In D.S. Touretzky, editor, Advances in Neural Information Process-
ing Systems 2, pages 524–532. Morgan Kaufmann, 1990.

[66] L.J. Fogel, A.J. Owens, and M.J. Walsh, editors. Artificial Intelligence
through Simulated Evolution. Wiley & Sons, 1966.

[67] J.H. Friedman. Exploratory projection pursuit. Journal of the American
Statistical Association, 82:249–266, 1987.

[68] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall,
New York, 1982.

[69] W. Gerstner and W.M. Kistler. Spiking Neuron Models. Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[70] G. Giacinto and F. Roli. Dynamic classifier selection based on multiple
classifier behaviour. Pattern Recognition, 34:179–181, 2001.

[71] A. Gifi. Nonlinear Multivariate Analysis. Wiley, Boston, 1990.
[72] Ch. Giraud-Carrier, R. Vilalta, and P. Brazdil. Introduction to the

special issue on meta-learning. Machine Learning, 54:197–194, 2004.
[73] D. Goldberg. Genetic Algorithms in Optimization and Machine Learn-

ing. Addison-Wesley, 1989.
[74] L. Goldfarb and D. Gay. What is a structural representation? fifth vari-

ation. Technical Report Technical Report TR05-175, Faculty of Com-
puter Science, University of New Brunswick, Canada, 2005.

[75] L. Goldfarb, D. Gay, O. Golubitsky, and D. Korkin. What is a structural
representation? a proposal for a representational formalism. Pattern
Recognition, (submitted), 2006.

[76] L. Goldfarb and S. Nigam. The unified learning paradigm: A foundation
for ai. In V. Honovar and L. Uhr, editors, Artificial Intelligence and
Neural Networks: Steps Toward Principled Integration, pages 533–559.
Academic Press, Boston, 1994.

[77] R.L. Gorsuch. Factor Analysis. Erlbaum, Hillsdale, NJ, 1983.
[78] K. Gra̧bczewski and W. Duch. The separability of split value criterion.

In Proceedings of the 5th Conf. on Neural Networks and Soft Computing,
pages 201–208, Zakopane, Poland, 2000. Polish Neural Network Society.

[79] K. Gra̧bczewski and W. Duch. Forests of decision trees. Neural Networks
and Soft Computing, Advances in Soft Computing, pages 602–607, 2002.

Towards Comprehensive Foundations of Computational Intelligence 311

[80] K. Gra̧bczewski and W. Duch. Heterogenous forests of decision trees.
Springer Lecture Notes in Computer Science, 2415:504–509, 2002.

[81] M. Grochowski and N. Jankowski. Comparison of instance selection
algorithms. II. results and comments. Lecture Notes in Computer Sci-
ence, 3070:580–585, 2004.

[82] S. Grossberg. How does the cerebral cortex work? development, learn-
ing, attention, and 3d vision by laminar circuits of visual cortex. Be-
havioral and Cognitive Neuroscience Reviews, 2:47–76, 2003.

[83] A. Gutkin. Towards formal structural representation of spoken language:
An evolving transformation system (ETS) approach. PhD Thesis, School
of Informatics, University of Edinburgh, UK, 2005.

[84] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature extraction,
foundations and applications. Physica Verlag, Springer, Berlin, Heidel-
berg, New York, 2006.

[85] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free
Theory of Nonparametric Regression. Springer Series in Statistics,
Springer-Verlag, New York, 2002.

[86] H. Haas H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304:78–80, 2004.

[87] S. Haykin. Neural Networks - A Comprehensive Foundation. Maxwell
MacMillian Int., New York, 1994.

[88] R. Hecht-Nielsen. Cogent confabulation. Neural Networks, 18:111–115,
2005.

[89] G.E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:381–414, 2006.

[90] V. Honavar and L. Uhr, editors. Artificial Intelligence and Neural Net-
works: Steps Toward Principled Integration. Academic Press, Boston,
1994.

[91] G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation us-
ing incremental constructive feedforward networks with random hidden
nodes. IEEE Transactions on Neural Networks, 17:879–892, 2006.

[92] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analy-
sis. Wiley & Sons, New York, NY, 2001.

[93] S-i. Amari and H. Nagaoka. Methods of information geometry. American
Mathematical Society, 2000.

[94] E.M. Iyoda, H. Nobuhara, and K. Hirota. A solution for the n-bit
parity problem using a single translated multiplicative neuron. Neural
Processing Letters, 18(3):233–238, 2003.

[95] J.S.R. Jang and C.T. Sun. Functional equivalence between radial basis
function neural networks and fuzzy inference systems. IEEE Transac-
tions on Neural Networks, 4:156–158, 1993.

[96] N. Jankowski and W. Duch. Optimal transfer function neural networks.
In 9th European Symposium on Artificial Neural Networks, pages 101–
106, Bruges, Belgium, 2001. De-facto publications.

312 W�lodzis�law Duch

[97] N. Jankowski and M. Grochowski. Comparison of instance selection
algorithms. I. algorithms survey. Lecture Notes in Computer Science,
3070:598–603, 2004.

[98] N. Jankowski and V. Kadirkamanathan. Statistical control of grow-
ing and pruning in RBF-like neural networks. In Third Conference on
Neural Networks and Their Applications, pages 663–670, Kule, Poland,
October 1997.

[99] N. Jankowski and V. Kadirkamanathan. Statistical control of RBF-like
networks for classification. In 7th International Conference on Artificial
Neural Networks, pages 385–390, Lausanne, Switzerland, October 1997.
Springer-Verlag.

[100] C. Jones and R. Sibson. What is projection pursuit. Journal of the
Royal Statistical Society A, 150:1–36, 1987.

[101] M. Jordan and Eds. T.J. Sejnowski. Graphical Models. Foundations of
Neural Computation. MIT Press, 2001.

[102] V. Kadirkamanathan. A statistical inference based growth criterion
for the RBF networks. In Vlontzos, editor, Proceedings of the IEEE.
Workshop on Neural Networks for Signal Processing, pages 12–21, New
York, 1994.

[103] N. Kasabov. Evolving Connectionist Systems - Methods and Ap-
plications in Bioinformatics, Brain Study and Intelligent Machines.
Springer, Perspectives in Neurocomputing, 2002.

[104] M.J. Kearns and U.V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, 1994.

[105] V. Kecman. Learning and Soft Computing. MIT Press, Cambridge, MA,
2001.

[106] B. Kégl and A. Krzyzak. Piecewise linear skeletonization using principal
curves. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24:59–74, 2002.

[107] J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan
Kaufmann, 2001.

[108] T. Kohonen. Self-organizing maps. Springer-Verlag, Heidelberg Berlin,
1995.

[109] A. Konar. Computational Intelligence. Principles, Techniques and
Applications. Springer, New York, 2005.

[110] M. Kordos and W. Duch. Variable step search mlp training method.
International Journal of Information Technology and Intelligent Com-
puting, 1:45–56, 2006.

[111] B. Kosko. Neural Networks and Fuzzy Systems. Prentice Hall Interna-
tional, 1992.

[112] L.I. Kuncheva. Combining Pattern Classifiers. Methods and Algorithms.
J. Wiley & Sons, New York, 2004.

[113] N. Kunstman, C. Hillermeier, B. Rabus, and P. Tavan. An associa-
tive memory that can form hypotheses: a phase-coded neural network.
Biological Cybernetics, 72:119–132, 1994.

Towards Comprehensive Foundations of Computational Intelligence 313

[114] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and
M.I. Jordan. Learning the kernel matrix with semidefinite program-
ming. Journal of Machine Learning Research, 5:27–72, 2004.

[115] Y.J. Lee and O.L. Mangasarian. Ssvm: A smooth support vector ma-
chine for classification. Computational Optimization and Applications,
20:5–22, 2001.

[116] M. Leshno, V.Y. Lin, Pinkus, and S. Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6:861–867, 1993.

[117] H. Leung and S. Haykin. Detection and estimation using an adap-
tive rational function filters. IEEE Transactions on Signal Processing,
12:3365–3376, 1994.

[118] H. Li, C.L.P. Chen, and H.P. Huang. Fuzzy Neural Intelligent Systems:
Mathematical Foundation and the Applications in Engineering. CRC
Press, 2000.

[119] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and
its Applications. Springer-Verlag, 1997 (2nd ed).

[120] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins.
Text classification using string kernels. Journal of Machine Learning
Research, 2:419–444, 2002.

[121] W. Maass and Eds. C.M. Bishop, editors. Pulsed Neural Networks. MIT
Press, Cambridge, MA, 1998.

[122] W. Maass and H. Markram. Theory of the computational function of
microcircuit dynamics. In S. Grillner and A. M. Graybiel, editors, Mi-
crocircuits. The Interface between Neurons and Global Brain Function,
pages 371–392. MIT Press, 2006.

[123] W. Maass, T. Natschläger, and H. Markram. Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14:2531–2560, 2002.

[124] R. Maclin. Boosting classifiers regionally. In Proc. 15th National Con-
ference on Artificial Intelligence, Madison, WI., pages 700–705, 1998.

[125] C.D. Manning and H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA, 1999.

[126] P. Matykiewicz, W. Duch, and J. Pestian. Nonambiguous concept
mapping in medical domain. Lecture Notes in Artificial Intelligence,
4029:941–950, 2006.

[127] T.J. McCabe and C.W. Butler. Design complexity measurement and
testing. Communications of the ACM, 32:1415–1425, 1989.

[128] T.P. McNamara. Semantic Priming. Perspectives from Memory and
Word Recognition. Psychology Press, 2005.

[129] J.M. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions. Prentice-Hall, 2000.

[130] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning,
neural and statistical classification. Elis Horwood, London, 1994.

314 W�lodzis�law Duch

[131] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale:
Rapid prototyping for complex data mining tasks. In Proc. 12th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD
2006), pages 935–940, 2006.

[132] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, 1999.

[133] M. Minsky and S. Papert. Perceptrons: An Introduction to Computa-
tional Geometry. MIT Press, 1969.

[134] S. Mitra and T. Acharya. Data Mining: Multimedia, Soft Computing,
and Bioinformatics. J. Wiley & Sons, New York, 2003.

[135] D. Nauck, F. Klawonn, R. Kruse, and F. Klawonn. Foundations of
Neuro-Fuzzy Systems. John Wiley & Sons, New York, 1997.

[136] A. Newell. Unified theories of cognition. Harvard Univ. Press,
Cambridge, MA, 1990.

[137] C.S. Ong, A. Smola, and B. Williamson. Learning the kernel with hy-
perkernels. Journal of Machine Learning Research, 6:1045–1071, 2005.

[138] S.K. Pal and S. Mitra. Neuro-fuzzy Pattern Recognition: Methods in
Soft Computing Paradigm. J. Wiley & Sons, New York, 1999.

[139] Y.H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-
Wesley, Reading, MA, 1989.

[140] E. Pȩkalska and R.P.W. Duin, editors. The dissimilarity representa-
tion for pattern recognition: foundations and applications. New Jersey;
London: World Scientific, 2005.

[141] E. Pȩkalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach
to dissimilarity-based classification. Journal of Machine Learning Re-
search, 2:175–211, 2001.

[142] T. Poggio and F. Girosi. Network for approximation and learning. Pro-
ceedings of the IEEE, 78:1481–1497, 1990.

[143] A. Pouget and T.J. Sejnowski. Spatial transformation in the parietal
cortex using basis functions. Journal of Cognitive Neuroscience, 9:222–
237, 1997.

[144] A. Pouget and T.J. Sejnowski. Simulating a lesion in a basis function
model of spatial representations: comparison with hemineglect. Psycho-
logical Review, 108:653–673, 2001.

[145] M.J.D. Powell. Radial basis functions for multivariable interpolation: A
review. In J.C. Mason and M.G. Cox, editors, Algorithms for Approx-
imation of Functions and Data, pages 143–167, Oxford, 1987. Oxford
University Press.

[146] J.R. Rabunal and J. Dorado, editors. Artificial Neural Networks in
Real-life Applications. Hershey, PA, Idea Group Pub, 2005.

[147] R. Raizada and S. Grossberg. Towards a theory of the laminar archi-
tecture of cerebral cortex: Computational clues from the visual system.
Cerebral Cortex, 13:100–113, 2003.

[148] I. Roth and V. Bruce. Perception and Representation. Open University
Press, 1995. 2nd ed.

Towards Comprehensive Foundations of Computational Intelligence 315

[149] D. Rousseau and F. Chapeau-Blondeau. Constructive role of noise in
signal detection from parallel arrays of quantizers. Signal Processing,
85:571–580, 2005.

[150] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323–2326, 2000.

[151] A. Roy. Artificial neural networks - a science in trouble. SIGKDD
Explorations, 1:33–38, 2000.

[152] A. Roy. A theory of the brain: There are parts of the brain that control
other parts. In Proc. of the Int. Joint Conf. on Neural Networks (IJCNN
2000), volume 2, pages 81–86. IEEE Computer Society Press, 2000.

[153] D.E. Rumelhart and J.L. McClelland (eds). Parallel Distributed Process-
ing, Vol. 1: Foundations. MIT Press, Cambridge, MA, 1986.

[154] S.J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[155] E. Salinas and T.J. Sejnowski. Gain modulation in the central ner-
vous system: where behavior, neurophysiology, and computation meet.
Neuroscientist, 7:430–440, 2001.

[156] R.E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37:297–336, 1999.

[157] B. Schölkopf and A.J. Smola. Learning with Kernels. Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT Press,
Cambridge, MA, 2001.

[158] F. Schwenker, H.A. Kestler, and G. Palm. Three learning phases for
radial-basis-function networks. Neural Networks, 14:439–458, 2001.

[159] A.K. Seewald. Exploring the parameter state space of stacking. In
Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), pages 685–688, 2002.

[160] L. Shastri. Advances in Shruti - a neurally motivated model of relational
knowledge representation and rapid inference using temporal synchrony.
Applied Intelligence, 11:79–108, 1999.

[161] W. Shoujue and L. Jiangliang. Geometrical learning, descriptive geome-
try, and biomimetic pattern recognition. Neurocomputing, 67:9–28, 2005.

[162] E. Simoncelli and B.A. Olshausen. Natural image statistics and neural
representation. Annual Review of Neuroscience, 24:1193–1216, 2001.

[163] P. Smyth and D. Wolpert. Linearly combining density estimators via
stacking. Machine Learning, 36:59–83, 1999.

[164] Anuj Srivastava and Xiuwen Liu. Tools for application-driven linear
dimension reduction. Neurocomputing, 67:136–160, 2005.

[165] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[166] R. Tibshirani, T. Hastie and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.

[167] J.D. Tebbens and P. Schlesinger, Improving Implementation of Linear
Discriminant Analysis for the High Dimension/Small Sample Size Prob-
lem, Computational Statistics and Data Analysis (in press).

316 W�lodzis�law Duch

[168] R.F. Thompson. The Brain. The Neuroscience Primer. W.H. Freeman
and Co, New York, 1993.

[169] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[170] K. Torkkola. Feature extraction by non-parametric mutual informa-
tion maximization. Journal of Machine Learning Research, 3:1415–1438,
2003.

[171] K. Tsuda and W.S. Noble. Learning kernels from biological networks
by maximizing entropy. Bioinformatics, 20:i326–i333, 2004.

[172] K.P. Unnikrishnan and K.P. Venugopal. Alopex: a correlation-based
learning algorithm for feeedforward and recurrent neural networks.
Neural Computation, 6:469–490, 1994.

[173] J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics,
18:S276–S284, 2002.

[174] S.F. Walker. A brief history of connectionism and its psychological im-
plications. In A. Clark and R. Lutz, editors, Connectionism in Context,
pages 123–144. Springer-Verlag, Berlin, 1992.

[175] D.L. Wang. On connectedness: a solution based on oscillatory correla-
tion. Neural Computation, 12:131–139, 2000.

[176] A.R. Webb. Statistical Pattern Recognition. J. Wiley & Sons, 2002.
[177] C. Wendelken and L. Shastri. Multiple instantiation and rule mediation

in shruti. Connection Science, 16:211–217, 2004.
[178] S. Wermter and R. Sun. Hybrid Neural Systems. Springer, 2000.
[179] T. Wieczorek, M. Blachnik, and W. Duch. Influence of probability

estimation parameters on stability of accuracy in prototype rules using
heterogeneous distance functions. Artificial Intelligence Studies, 2:71–
78, 2005.

[180] T. Wieczorek, M. Blachnik, and W. Duch. Heterogeneous distance func-
tions for prototype rules: influence of parameters on probability estima-
tion. Artificial Intelligence Studies (in print).

[181] P.H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA,
third edition, 1992.

[182] I.H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2nd Ed, 2005.

[183] J.G. Wolff. Information compression by multiple alignment, unification
and search as a unifying principle in computing and cognition. Artificial
Intelligence Review, 19:193–230, 2003.

[184] J.G. Wolff. Unifying Computing and Cognition. The SP Theory and its
Applications. CognitionResearch.org.uk (Ebook edition), 2006. http://
www.cognitionresearch.org.uk.

[185] D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

Knowledge-Based Clustering in Computational
Intelligence

Witold Pedrycz

Department of Electrical & Computer Engineering University of Alberta
Edmonton T6R 2G7 Canada
and Systems Research Institute, Polish Academy of Sciences
Warsaw, Poland

Summary. Clustering is commonly regarded as a synonym of unsupervised learn-
ing aimed at the discovery of structure in highly dimensional data. With the evident
plethora of existing algorithms, the area offers an outstanding diversity of possible
approaches along with their underlying features and potential applications. With
the inclusion of fuzzy sets, fuzzy clustering became an integral component of Com-
putational Intelligence (CI) and is now broadly exploited in fuzzy modeling, fuzzy
control, pattern recognition, and exploratory data analysis. A lot of pursuits of CI are
human-centric in the sense they are either initiated or driven by some domain knowl-
edge or the results generated by the CI constructs are made easily interpretable. In
this sense, to follow the tendency of human-centricity so profoundly visible in the
CI domain, the very concept of fuzzy clustering needs to be carefully revisited. We
propose a certain paradigm shift that brings us to the idea of knowledge-based clus-
tering in which the development of information granules – fuzzy sets is governed by
the use of data as well as domain knowledge supplied through an interaction with
the developers, users and experts. In this study, we elaborate on the concepts and
algorithms of knowledge-based clustering by considering the well known scheme of
Fuzzy C-Means (FCM) and viewing it as an operational model using which a num-
ber of essential developments could be easily explained. The fundamental concepts
discussed here involve clustering with domain knowledge articulated through partial
supervision and proximity-based knowledge hints. Furthermore we exploit the con-
cepts of collaborative as well as consensus driven clustering. Interesting and useful
linkages between information granularity and privacy and security of data are also
discussed.

1 Introductory Comments

The human-centric facet of Computational Intelligence (CI) becomes pro-
foundly visible in a significant number of developments. One could mention
here system modeling, pattern recognition, and decision-making. In data
analysis tasks completed in the setting of the CI, the phenomenon of human-
centricity manifests quite vividly in several ways and the needs there are well
Witold Pedrycz: Knowledge-Based Clustering in Computational Intelligence, Studies in Com-

putational Intelligence (SCI) 63, 317–341 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

318 Witold Pedrycz

articulated. First, the results are presented at some suitable level of abstrac-
tion secured by the use of information granules. Likewise the semantics of the
information granules that are used to organize findings about data is conveyed
in the language of fuzzy sets whose interpretation is quite intuitive. In this
sense, we envision that the available mechanisms of presentation of results to
the end-user are quite effective. Second, the communication with the human
at the entry point when the data sets become analyzed is not that well devel-
oped. Domain knowledge available there is crucial to the build up of models
(say, fuzzy models) and the establishment of their transparency and read-
ability. It is worth stressing that the transparency and accuracy are the two
dominant requirements of fuzzy models we are interested in satisfying to the
highest possible extent.

The effective two-way communication is a key to the success of CI
constructs, especially if we are concerned with the ways how all comput-
ing becomes navigated. For instance, the mechanisms of relevance feedback
that become more visible in various interactive systems hinge upon the well-
established and effective human-centric schemes of processing in which we
effectively accept user hints and directives and release results in a highly
comprehensible format.

Given the existing algorithms of clustering that are pivotal to the design
of information granules (and as such playing an important role in the CI con-
structs), we become cognizant that the principles guiding processing realized
by them need to be augmented. The main quest is to assure that the fuzzy
clustering operates not only on data (its data-driven optimization underpin-
nings are well known) but takes full advantage of various sources of knowledge
available when dealing with the problem at hand. In particular, we anticipate
that any guidance available from the user could be incorporated as a part
of the optimization environment. This point of view as to the unified treat-
ment of data and knowledge in clustering augments the existing principle of
data analysis and gives rise to the concept of knowledge-based clustering. The
ultimate objective of this study is to introduce and explore various scenarios
where knowledge could be seamlessly included into the algorithmic architec-
ture of fuzzy clustering. We discuss several fundamental concepts such as
clustering with partial supervision and proximity knowledge hints, collabora-
tive clustering and a consensus mode of clustering.

The organization of the material reflects the main concepts discussed in
the study. For the sake of completeness, in Section 3, we study with a brief
note on the FCM algorithm by highlighting the main features that make its
role visible in the CI domain. Section 3 is devoted to the formulation of the
main challenges and spells out a number of open questions. In Section 4, we
cover the mechanisms of human-oriented guidance such as partial supervision
and proximity-based clustering. Distributed data mining in the unsupervised
mode is discussed in Section 5. Collaborative fuzzy clustering is presented in
Section 6 where we formulate the problem, discuss privacy aspects linked with
information granularity, and present the underlying principles. The vertical

Knowledge-Based Clustering in Computational Intelligence 319

mode of collaboration is presented along with the detailed design phases
(Section 7). Further we elaborate on consensus based clustering. Concluding
comments are covered in Section 9.

2 Fuzzy C-Means (FCM) as an Example of the CI
Algorithm of Data Analysis

To make a consistent exposure of the overall material and assure linkages
with the ensuing optimization developments, we confine ourselves to one of
the objective function based fuzzy clustering. More specifically, we consider a
Fuzzy C-Means (FCM) [4] governed by the following objective function

Q =
c∑

i=1

N∑
k=1

um
ik‖xk − vi‖2 (1)

where xk denotes an multidimensional data point (pattern), vi is an i-th pro-
totype and U = [uik], i = 1, 2, . . . , c; k = 1, 2,. . . ,N is a partition matrix.
‖.‖ denotes a certain distance function and “m” stands for a fuzzification
coefficient; m > 1.0. The minimization of (1) is realized with respect to the
partition matrix and the prototypes. The optimization scheme and all specific
features of the minimization of Q are well reported in the literature, refer
for instance to [1, 20]. What is of interest to us here is an observation that
fuzzy clustering is inherently associated with the granularity of information.
In a nutshell fuzzy clustering leads to the abstraction of data into a format of
information granules. Two essential and somewhat orthogonal dimensions of
the granulation process are envisioned: (a) numeric realization of the granula-
tion through a collection of the prototypes, and (b) a collection of information
granules – fuzzy sets represented by successive rows of the partition matrix.
Interestingly enough, there is a direct correspondence between these two rep-
resentations. Given a collection of prototypes we can determine the entries
of the partition matrix. And vice versa, a given partition matrix along with
the data gives rise to the prototypes. The interpretability of the results of
the FCM is its significant and highly valuable feature of the algorithm. As a
collection of fuzzy sets (described by the corresponding rows of the generated
partition matrix) offer a holistic view at the structure of data, this feature
of the FCM emphasizes its linkages with the main thrusts of Computational
Intelligence.

3 Challenges and Open Issues

Indisputably, fuzzy clustering (including FCM) is one of the well-established
conceptual and algorithmic avenues that has become an integral, highly visible

320 Witold Pedrycz

construct present in numerous modeling pursuits encountered in fuzzy sys-
tems, neurofuzzy systems, and Computational Intelligence, in general. Given
all of those, arises an obvious question as to the further developments that
could support some open issues and anticipated or already existing challenges.
They could eventually contribute to the changes of the landscape of this area
in the years to come.

While any projection in the rapidly developing areas could be quire risky,
there are several challenges which could be quite visible and influential in the
buildup and progression of the area in the future.

Knowledge-based orientation of fuzzy clustering. A heavy and visible
reliance on numeric data is an evident feature of fuzzy clustering as it could be
seen today. There are, however, other important factors one has to take into
account when discovering the structure in data. Various sources of knowledge
are available from experts, data analysts, users and they come in various for-
mats. The fundamental challenge concerns efficient ways of their incorporation
into the clustering schemes, both as a concept and the algorithmic enhance-
ment. This is not a straightforward task given the fact that clustering has to
reconcile numeric aspects (data) and knowledge component (human factors).
In essence, the knowledge-based orientation of clustering is in line of human-
centricity of Computational Intelligence and the development of interaction
schemes.

Distributed character of processing This challenge has emerged
because of the inherently distributed nature of data. Those tend to be
distributed at individual locations (say, sensor networks) and this poses an
interesting quest as to the distributed clustering. The centralized mode that
is predominant today in fuzzy clustering requires a careful revision. The clus-
tering techniques available nowadays that predominantly revolve around a
single, huge and centrally available dataset do require a careful re-visiting
and reformulation.

Communication, collaboration and consensus building All of those
aspects are associated in one way or another with the distributed nature of
data sets. Given the distributed character of data, it is also very likely that
they cannot be shared because of the privacy and security restrictions. On
the other hand, some collaboration and interaction would be highly desirable
given the fact that the structure in some datasets could be quite similar and
sharing the knowledge about the discovery of clusters within one dataset with
other sites could be beneficial. How to facilitate collaboration and consensus
building in data analysis while respecting security requirements becomes an
evident challenge.

Each of these challenges comes with a suite of their own quite specific
problems that do require a very careful attention both at the conceptual as
well as algorithmic level. We have highlighted the list of challenges and in
the remainder of this study present some of the possible formulations of the
associated problems and look at their solutions. It is needless to say that our
proposal points at some direction that deems to be of relevance however does

Knowledge-Based Clustering in Computational Intelligence 321

not pretend to offer a complete solution to the problem. Some algorithmic pur-
suits are also presented as an illustration of some possibilities emerging there.

4 Data and Knowledge in Clustering: Forming
a Human-Centric Perspective of Computational
Intelligence in Data Analysis

In fuzzy clustering, we are ultimately faced with the problem of optimization
driven by data. This clearly emphasizes the role of data in the processes of
revealing the structure. While this is the evident and dominant tendency, a
shift of this data-oriented paradigm is contemplated in light of the fact that
not only the data are essential but any domain knowledge available from users,
designers has to play a pivotal role. Considering such domain knowledge as
an important and indispensable component of data analysis, it becomes clear
that it cast data analysis in some human-centric perspective. To be more
descriptive, we may refer to pursuits carried out in this way as a knowledge-
based clustering. There are two fundamental issues that need to be addressed
in the setting of the knowledge-based clustering: (a) what type of knowledge-
based hints could be envisioned, and (b) how they could be incorporated as a
part of the optimization (more specifically, what needs to be done with regard
to the possible augmentation of the objective function and how the ensuing
optimization scheme has to be augmented to efficiently cope with the modified
objective function).

5 Fuzzy Clustering and Mechanisms of Human-Oriented
Guidance

In this section, we highlight several commonly encountered alternatives that
emerge when dealing with domain knowledge and building formal mechanisms
which reformulate the underlying objective function. We focus on two formats
of domain knowledge being available in this setting that is labeling of some
selected data points and assessments of proximity of some pairs of data.

5.1 Mechanisms of Partial Supervision

The effect of partial supervision involves a subset of labeled data, which come
with their class membership. These knowledge-based hints have to be included
into the objective function and reflect that some patterns have been labeled.
In the optimization, we expect that the structure to be discovered conforms
to the membership grades already provided for these selected patterns. More
descriptively, we can treat the labeled patterns to form a grid of “anchor”
points using which we attempt to discover the entire structure in the data set.

322 Witold Pedrycz

Put it differently, such labeled data should help us navigate a process of
revealing the structure. The generic objective function shown in the form (1)
has to be revisited and expanded so that the structural information (labeled
data points) is taken into consideration. While there could be different alter-
natives possible with this regard, we consider the following additive expansion
of the objective function, [20, 21, 22]

Q =
c∑

i=1

N∑
k=1

u2
ik‖xk − vi‖2 + α

c∑
i=1

N∑
k=1

(uik − fikbk)2‖xk − vi‖2 (2)

The first term is aimed at the discovery of the structure in data and
is the same as in the standard FCM. The second term (weighted by some
positive scaling factor α) addresses the effect of partial supervision. It requires
careful attention because of the way in which it has been introduced into the
objective function and the role it plays during its optimization. There are
two essential data structures containing information about the initial labeling
process (labeled data points)

– the vector of labels, denoted by b = [b1b2 . . . bN]T. Each pattern xk comes
with a Boolean indicator: we assign bk equal to1 if the pattern has been
already labeled and bk = 0 otherwise.

– The partition matrix F = [fik], i = 1, 2, . . . , c; k = 1, 2, . . . N which contains
membership grades assigned to the selected patterns (already identified
by the nonzero values of b). If bk = 1 then the corresponding column
shows the provided membership grades. If bk = 0 then the entries of the
corresponding k-th column of F do not matter; technically we could set
them up to zero.

The nonnegative weight factor (α) helps set up a suitable balance between
the supervised and unsupervised mode of learning. Apparently when α = 0
then we end up with the standard FCM. Likewise if there are no labeled
patterns (b = 0) then the objective function reads as

Q = (1 + α)
c∑

i=1

N∑
k=1

u2
ikd2

ik (3)

and becomes nothing but a scaled version of the standard objective function
encountered in the FCM optimization process. If the values of α increase signi-
ficantly, we start discounting any structural aspect of optimization (where
properly developed clusters tend to minimize) and rely primarily on the
information contained in the labels of the patterns. Subsequently, any depar-
ture from the required membership values in F would lead to the significant
increase in the values of the objective function.

One could consider a slightly modified version of the objective function

Q =
c∑

i=1

N∑
k=1

u2
ikd2

ik + α
c∑

i=1

N∑
k=1

(uik − fik)2bk d2
ik (4)

Knowledge-Based Clustering in Computational Intelligence 323

where the labeling vector b shows up in a slightly different format. In essence,
this function captures the essence of partial supervision. For some slight vari-
ations on the issue of partial supervision, the reader may refer to the work by
[3, 1, 15, 17, 28].

Once the objective function (2) has been optimized, the resulting entries
of the partition matrix U assume the form

uik =
1

1 + α

⎡
⎢⎢⎢⎣

1 + α
(

1− bk

c∑
i=1

fik

)
c∑

j=1

(
dik

djk

)2 + αfikbk

⎤
⎥⎥⎥⎦ (5)

For α = 0, the formula returns the result produced by the “standard”
FCM. Moving on to the computations of the prototypes, the necessary con-
dition for the minimum of Q with respect to the prototypes comes in the

form
∂Q
∂vst

= 0, s = 1, 2, .., c; t = 1, 2, . . . , n. Calculating the respective partial

derivatives one obtains

∂Q
∂vst

=
∂

∂vst

⎡
⎣ c∑

i=1

N∑
k=1

u2
ik

n∑
j=1

(xkj − vij)2

+ α
c∑

i=1

N∑
k=1

(uik − fikbk)2
n∑

j=1

(xkj − vij)2 (6)

=
∂

∂vst

⎡
⎣ c∑

i=1

N∑
k=1

[
u2

ik + (uik − fikbk)2
] n∑

j=1

(xkj − vij)2

⎤
⎦

Let us introduce the following shorthand notation

Ψik = u2
ik + (uik − fikbk)2 (7)

This leads to the optimality condition of the form

∂Q
∂vst

= 2
N∑

k=1

Ψsk(xkt − vst) = 0 (8)

and finally we derive the prototypes in the following form

vs =

N∑
k=1

Ψskxk

N∑
k=1

Ψsk

(9)

324 Witold Pedrycz

5.2 Clustering with Proximity Hints

The concept of proximity is one of the fundamental notions when assessing
the mutual dependency between membership occurring two patterns. Consider
two patterns with their corresponding columns in the partition matrix denoted
by “k” and “l”, that is uk and ul, respectively. The proximity between them,
Prox(uk,ul), is defined in the following form [23, 25]

Prox(uk,ul) =
c∑

i=1

min(uik, uil) (10)

Note that the proximity function is symmetric and returns 1 for the same
pattern (k = 1); however this relationship is not transitive. In virtue of the
properties of any partition matrix we immediately obtain

Prox(uk,u1) =
c∑

i=1

min(uik, uil) = Prox(u1,uk) (11)

Prox(uk,uk) =
c∑

i=1

min(uik, uik) = 1

Let us illustrate the concept of proximity for c = 2. In this case u1k =
1 − u2k so that we can confine ourselves to a single argument. The resulting
plot (with the first coordinates of the patterns, u1k and u1l) is included in
Figure 1.

The incorporation of the proximity-based knowledge hints leads to the
two optimization processes. The first one is the same as captured by the
original objective function. In the second one we reconcile the proximity hints

Fig. 1. Proximity function as a function of membership grades encountered in the
partition matrix

Knowledge-Based Clustering in Computational Intelligence 325

with the proximity values induced by the partition matrix generated by the
generic FCM. Denote the proximity values delivered by the user as Prox[k1, k2]
where k1 and k2 are the indexes of the data points for which the proximity
value is provided. Obviously these hints are given for some pairs of data so
to emphasize that we introduce a Boolean predicate B[k1, k2] defined in the
following manner

B[k1, k2] =

⎧⎨
⎩

1, if the value of Prox[k1, k2] has
been specified for the pair (k1, k2)

0, otherwise
(12)

Note that for any pair of data, the corresponding induced level of proximity
that is associated with the partition matrix produced by the FCM is computed
as given by (10). We request that the proximity knowledge-based hints offered
by the designer coincide with the induced proximity values implied by the
structure revealed by the FCM on the basis of numeric data. Computationally,
we express this requirement by computing the expression (which is a sum of
distances between the corresponding values of the proximity values)

∑
k1

∑
k2

‖Prox[k1, k2]−
c∑

i=1

min(uik1 , uik2)‖2B[k1, k2] (13)

By making changes to the entries of the partition matrix U, we mini-
mize the value of the expression given above thus arriving at some agreement
between the data and the domain knowledge. The optimization activities are
then organized into two processes exchanging results as outlined in Figure 2.
There are two optimization activities. The first one, being driven by data

induced
proximity(U)

U

knowledge

Data-driven
optimization

Knowledge-driven
optimization

Data

FCM Proximity
optimization

Fig. 2. The optimization data – and knowledge-driven processes of proximity-based
fuzzy clustering

326 Witold Pedrycz

produces some partition matrix. The values of this matrix are communicated
to the second optimization process driven by the proximity-based knowledge
hints. At this stage, the proximity values induced by the partition matrix are
compared with the proximities coming as knowledge hints and (13) is mini-
mized giving rise to the new values of the partition matrix U which in turn
is communicated to the data driven optimization phase. At this point, this
“revised” partition matrix is used to further minimize the objective function
following the iterative scheme of the FCM.

6 Distributed Data Mining

Quite commonly we encounter situations where databases are distributed
rather than centralized [10, 19, 29]. There are different outlets of the same
company and each of them operates independently and collects data about
customers populating their independent databases. The data are not available
to others. In banking, each branch may run its own database and such data-
bases could be geographically remote from each other. In health institutions,
there could be separate datasets with a very limited communication between
the individual institutions. In sensor networks (which become quite popular
given the nature of various initiatives such as intelligent houses, information
highway, etc.), we encounter local databases that operate independently from
each other and are inherently distributed. They are also subject to numerous
technical constraints (e.g., a fairly limited communication bandwidth, limited
power supply, etc) which significantly reduce possible interaction between the
datasets. Under these circumstances, the “standard” data mining activities
are faced now new challenges that need to be addressed. It becomes apparent
that processing all data in a centralized manner cannot be exercised. On the
other hand, data mining of each of the individual databases could benefit from
availability of findings coming from others. The technical constraints and pri-
vacy issues dictate a certain level of interaction. There are two general modes
of interaction that is collaborative clustering and consensus clustering both of
which are aimed at the data mining realized in the distributed environment.
The main difference lies in the level of interaction. The collaborative cluster-
ing is positioned at the more active side where the structures are revealed in
a more collective manner through some ongoing interaction. The consensus
driven clustering is focused on the reconciliation of the findings while there is
no active involvement at the stage of constructing clusters.

7 Collaborative Clustering

Given the distributed character of data residing at separate databases, we
are ultimately faced with the need for some collaborative activities of data
mining. With the distributed character of available data come various issues of

Knowledge-Based Clustering in Computational Intelligence 327

privacy, security, limited communication capabilities that have to be carefully
investigated. We show that the notion of information granularity that is at
heart of fuzzy sets plays a pivotal role in this setting.

7.1 Privacy and Security of Computing Versus Levels
of Information Granularity

While the direct access to the numeric data is not allowed because of the
privacy constraints [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 30, 32, 33] all
possible interaction could be realized through some interaction occurring at
the higher level of abstraction delivered by information granules. In objective
function based fuzzy clustering, there are two important facets of information
granulation conveyed by (a) partition matrices and (b) prototypes. Partition
matrices are, in essence, a collection of fuzzy sets which reflect the nature
of the data. They do not reveal detailed numeric information. In this sense,
there is no breach of privacy and partition matrices could be communicated
not revealing details about individual data points. Likewise prototypes are
reflective of the structure of data and form a summarization of data. Given
a prototype, detailed numeric data are hidden behind them and cannot be
reconstructed back to the original form of the individual data points. In either
case, no numeric data are directly made available.

The level of information granularity [34] is linked with the level of detail
and in this sense when changing the level of granularity possible leakage of pri-
vacy could occur. For instance, in limit when the number of clusters becomes
equal to the number of data points, each prototype is just the data point
and not privacy is retained. Obviously, this scenario is quite unrealistic as the
structure (the number of clusters) is kept quite condensed when contrasted
with all data. The schematic view of privacy offered through information gran-
ulation resulting within the process of clustering is illustrated in Figure 3. We
note here that the granular constructs (either prototypes or partition matri-
ces) build some granular interfaces.

Numeric data

Granular interface

Fig. 3. Granular interface offering secure communication and formed by the results
of the fuzzy clustering (partition matrices and prototypes)

328 Witold Pedrycz

7.2 The Underlying Principle of Collaborative Clustering

When dealing with distributed databases we are often interested in a collabo-
rative style of discovery of relationships [24, 25] that could be common to all
of the databases. There are a lot of scenarios where such collaborative pur-
suits could be deemed highly beneficial. We could envision a situation where
the databases are located in quite remote locations and given some privacy
requirements as well as possible technical constraints we are not allowed to
collect (transfer) all data into a single location and run any centralized algo-
rithm of data mining, say clustering. On the other hand, at the level of each
database each administrator/analyst involved in its collection, maintenance
and other activities could easily appreciate the need for some joint activi-
ties of data mining. Schematically, we can envision the overall situation as
schematically visualized in Figure 4.

While the collaboration can assume a variety of detailed schemes, the two
of them are the most essential. We refer to them as horizontal and verti-
cal modes of collaboration or briefly horizontal and vertical clustering. More
descriptively, given are “P” data sets X[1], X[2], .. X[p] where X[ii] stands for
the ii-th dataset (we adhere to the consistent notation of using square brack-
ets to identify a certain data set) in horizontal clustering we have the same
objects that are described in different feature spaces. In other words, these
could be the same collection of patients coming with their records built within
each medical institution. The schematic illustration of this mode of cluster-
ing portrayed in Figure 4 underlines the fact that any possible collaboration
occurs at the structural level viz. through the information granules (clusters)
built over the data; the clusters are shown in the form of auxiliary interface
layer surrounding the data. The net of directed links shows how the collabora-
tion between different data sets takes place. The width of the links emphasizes
the fact that an intensity of collaboration could be different depending upon

X[ii]

X[jj]

X[kk]

Fig. 4. A scheme of collaborative clustering involving several datasets and interact-
ing at the level of granular interfaces

Knowledge-Based Clustering in Computational Intelligence 329

DATA SETS

CLUSTERING

Fig. 5. A general scheme of horizontal clustering; all communication is realized
through some granular interface

DATA SETS CLUSTERING

Fig. 6. A general scheme of vertical clustering; note a “stack” of data sets commu-
nicating through some layer of granular communication

the dataset being involved and the intension of the collaboration say, a will-
ingness of some organization to accept findings from external sources).

The mode of vertical clustering, Figure 6, is complementary to the one
already presented. Here the data sets are described in the same feature space
but deal with different patterns. In other words, we consider that X[1], X[2],
. . . , X[P] are defined in the same feature space while each of them consists of
different patterns, dim(X[1]) = dim(X[2]) = . . . dim(X[P]) while X[ii] X[jj].
We can show the data sets as being stack on each other (hence the name of
this clustering mode).

Collaboration happens through some mechanisms of interaction. While the
algorithmic details are presented in the subsequent section, it is instructive to
underline the nature of the possible collaboration.

330 Witold Pedrycz

• in horizontal clustering we deal with the same patterns and different fea-
ture spaces. The communication platform one can establish is through the
partition matrix. As we have the same objects, this type of collaboration
makes sense. The confidentiality of data has not been breached: we do
not operate on individual patterns but the resulting information granules
(fuzzy relations, that is partition matrices). As this number is far lower
than the number of data, the low granularity of these constructs moves us
quite far from the original data

• in vertical clustering we are concerned with different patterns but the
same feature space. Hence the communication at the level of the proto-
types (which are high level representatives of the data) becomes feasible.
Again, because of the aggregate nature of the prototypes, the confidential-
ity requirement has been satisfied.

There are also a number of hybrid models of collaboration where we
encounter data sets with possible links of vertical and horizontal collaboration.
The collaborative clustering exhibits two important features:

• The databases are distributed and there is no sharing of their content in
terms of the individual records. This restriction is caused by some privacy
and security concerns. The communication between the databases can be
realized at the higher level of abstraction (which prevents us from any
sharing of the detailed numeric data).

• Given the existing communication mechanisms, the clustering realized for
the individual datasets takes into account the results about the structures
of other datasets and actively engages them in the determination of the
clusters; hence the term of collaborative clustering.

Depending upon the nature of the data located at each database and their
mutual characteristics, we distinguish between two main fundamental modes
of clustering such as horizontal and vertical clustering.

8 The Vertical Mode of Collaboration – The Main Flow
of Processing

Let us start with setting up all necessary notation which will be subsequently
used in the main phases of the development scheme. Let consider “P” data-
bases X1, X2, . . .,XP whose elements (data points, patterns) are defined in
the same feature space however each of these datasets consists of different
data. Schematically, we can portray it in Figure 6. Given the privacy con-
cerns, it becomes evident that sharing the data becomes impossible however
as all data points are defined in the same space, communicating at the level
of the prototypes becomes feasible. By noting that, we follow the same nota-
tion as included in Figure 6. The collections of the prototypes formed at the
individual datasets are denoted by v1[ii], v2[ii], . . . , vc[ii] (the index in the
square brackets pertains to the ii-th dataset).

Knowledge-Based Clustering in Computational Intelligence 331

The mode of vertical clustering, refer to Figure 6, is complementary to the
one already presented. Here the data sets are described in the same feature
space but deal with different patterns (data points). In other words, we con-
sider that X[1], X[2], . . . , X[P] are defined in the same feature space while each
of them consists of different patterns, dim(X[1]) = dim(X[2]) = . . . dim(X[P])
while X[ii] X[jj]. We can show the data sets as being stack on each other (hence
the name of this clustering mode).

In the discussion, we make a fundamental assumption about the same
number of clusters. Whether this assumption is realistic or not, it still deserves
more discussion. Later on we show how to relax this constraint and how this
could be handled in an efficient manner.

8.1 The Development of Collaboration

The collaboration in the clustering process deserves a careful treatment. We
do not know in advance if the structures emerging (or being discovered) at the
level of the individual datasets are somewhat compatible and in this manner
supportive of some collaborative activities. It could well be that in some cases
the inherent structures of datasets are very different thus preventing from
any effective collaboration to occur. The fundamental decision is whether we
allow some datasets to collaborate or they should be eliminated from the
collaboration from the very beginning. This important decision needs to be
made upfront. One of the feasible possibilities would be to exercise some
mechanisms of evaluating consistency of the clusters (structure) at site “ii”
and some other dataset “jj”. Consider that the fuzzy clustering has been
completed separately for each dataset. The resulting structures represented by
the prototypes are denoted by ∼v1[ii], ∼v2[ii], . . .,∼vc[ii] for the ii-the dataset
and ∼v1[jj], ∼v2[jj], . . . , ∼vc[jj]. Consider the ii-th data set. The equivalent
representation of the structure comes in the form of the partition matrix. For
the ii-th dataset, the partition matrix is denoted by ∼U[ii] whose elements are
computed on the basis of the prototypes when using the dataset X[ii].

∼uik[ii] =
1

c∑
j=1

(‖xk − ∼vi[ii]‖
|xk − ∼vj[ii]‖

)2/(m−1)
(14)

xk ∈ X[ii]. The prototypes of the jj-th dataset being available for collaborative
purposes when presented to X[ii] give rise to the partition matrix ∼U[ii|jj]
formed for the elements of X[ii] in the standard manner

∼uik[ii|jj] =
1

c∑
j=1

(‖xk − ∼vi[jj]‖
|xk − ∼vj[jj]‖

)2/(m−1)
(15)

332 Witold Pedrycz

X[ii]

X[jj]

~vi[ii]

~vi[jj]

partition matrix

induced partition matrix

Fig. 7. Statistical verification of possibility of collaboration between datasets “ii”
and “jj”

Again the calculations concern the data points of X[ii]. Refer to Figure 7
that highlights the essence of the interaction.

Given the partition matrix ∼U[ii] and ∼U[ii|jj] (induced partition matrix)
we can check whether they are “compatible” meaning that the collaboration
between these two datasets could be meaningful. We can test whether the
histograms of membership grades of ∼U[ii] and ∼U[ii|jj] are statistically dif-
ferent (that is there is a statistically significant difference). This could be
done using e.g., a standard nonparametric test such as χ2. If the hypothesis
of significant statistical difference between the partition matrices (that is cor-
responding structures) is not rejected, then we consider that the ii-th dataset
can collaborate with the jj-th one. Noticeably, the relationship is not recipro-
cal so the issue of collaboration of the jj-th dataset with the ii-th needs to be
investigated separately.

8.2 The Augmented Objective Function

The “standard” objective function minimized at the level of the ii-th dataset

comes in the well-known form of the double sum,
c[ii]∑
i=1

N[ii]∑
k=1

um
ik[ii]‖xk − v[ii]‖2.

Given that the we admit collaboration with the jj-th dataset, in the search
for the structure we take advantage of the knowledge of the prototypes
representing the jj-th dataset and attempt to make the prototypes v1[ii],
v2[ii], . . . , vc[ii] to be positioned closer to the corresponding prototypes
v1[jj], v2[jj[, . . .,vc[jj]. This request is reflected in the form of the augmented
objective function to come in the following format

Q[ii] =
N[ii]∑
k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

β[ii, jj]
c∑

i=1

N[ii]∑
k=1

u2
ik[ii]‖vi[ii]− vi[jj]‖2 (16)

The first component is the same as the one guiding the clustering at the
dataset X[ii] while the second part reflects the guidance coming from all other

Knowledge-Based Clustering in Computational Intelligence 333

datasets that we identified as potential collaborators (which is done using the
χ2 test described in the previous section). The level of collaboration (which
is asymmetric) is guided by the value collaboration coefficient. Its value is
chosen on a basis of potential benefits of collaboration. This will be discussed
in more detail in the next section. More specifically, β[ii,jj] is a collaboration
coefficient supporting an impact coming from the jj-th dataset and affecting
the structure to be determined in the ii-th data set. The number of patterns
in the ii-th dataset is denoted by N[ii]. We use different letter to distinguish
between the horizontal and vertical collaboration. The interpretation of (20)
is quite obvious: the first term is the objective function directed towards the
search of structure the ii-th dataset while the second articulates the differences
between the prototypes (weighted by the partition matrix of the ii-th data set)
which have to be made smaller through the refinement of the partition matrix
(or effectively the moves of the prototypes in the feature space).

The optimization of Q[ii] involves the determination of the partition matrix
U[ii] and the prototypes vi[ii]. As before we solve the problem for each dataset
separately and allow the results interact so that this forms collaboration
between the sets. The minimization of the objective function with respect
to the partition matrix requires the use of the technique of Lagrange mul-
tipliers because of the existence of the standard constraints imposed on the
partition matrix. We form an augmented objective function V incorporat-
ing the Lagrange multiplier λ and deal with each individual pattern (where
t = 1, 2, . . ., N[ii]),

V =
c∑

i=1

u2
it[ii]d

2
it[ii] +

P∑
jj=1
jj�=ii

β[ii, jj]
c∑

i=1

u2
it[ii]‖vi[ii]− vi[jj]‖2 − λ

(
c∑

i=1

uit − 1

)

(17)
Taking the derivative of V with respect to ust[ii] and making it zero, we have

∂V
∂ust

= 2ust[ii]d2
st[ii] + 2

P∑
jj=1
jj �=ii

β[ii, jj]ust[ii]‖vi[ii]− vi[jj]‖ − λ (18)

For notational convenience, let us introduce the shorthand expression

Dii,jj = ‖vi[ii]− vi[jj]‖2 (19)

From (18) we derive

ust[ii] =
λ

2

⎛
⎜⎝d2

st[ii] +
P∑

jj=1
jj �=ii

β[ii, jj]Dii,jj

⎞
⎟⎠

(20)

334 Witold Pedrycz

In virtue of the standard normalization condition
c∑

j=1

ujt[ii] = 1 one has

λ
2

=
1

c∑
j=1

1

d2
jt[ii] +

P∑
jj=1
jj �=ii

β[ii, jj]Dii,jj

(21)

With the following abbreviated notation

ϕ[ii] =
P∑

jj �=ii

β[ii, jj] Dii,jj (22)

the partition matrix

ust[ii] =
1

c∑
j=1

d2
st[ii] + ϕ[ii]

d2
jt[ii] + ϕ[ii]

(23)

For the prototypes, we complete calculations of the gradient of Q with
respect to the coordinates of the prototype v[ii] and the solve the following
system of equations

∂Q[ii]
∂vst[ii]

= 0, s = 1, 2, .., c; t = 1, 2, ..n (24)

We obtain

∂Q[ii]
∂vst[ii]

= 2
N∑

k=1

u2
sk[ii](xkt− vst[ii]) + 2

P∑
jj �=ii

β[ii, jj]
N∑

k=1

u2
sk[ii](vst[ii]− vst[jj]) = 0

(25)
Next

vst[ii]

⎛
⎝ P∑

jj�=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]−

N[ii]∑
k=1

u2
sk[ii]

⎞
⎠=

P∑
jj �=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]vst[jj] (26)

−
N[ii]∑
k=1

u2
sk[ii]xkt

Finally we get

vst[ii] =

P∑
jj �=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]vst[jj]− 2

N[ii]∑
k=1

u2
sk[ii]xkt

P∑
jj�=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]−

N[ii]∑
k=1

u2
sk[ii])

(27)

Knowledge-Based Clustering in Computational Intelligence 335

An interesting application of vertical clustering occurs when dealing with
huge data sets. Instead of clustering them in a single pass, we split them into
individual data sets, cluster each of them separately and actively reconcile the
results through the collaborative exchange of prototypes.

8.3 The Assessment of the Strength of Collaboration

The choice of a suitable level of collaboration realized between the datasets
through clustering denoted by β[ii,jj] deserves attention. Too high values of
collaboration coefficient may lead to some instability of collaboration. Too low
values of this coefficient may produce a very limited effect of collaboration
that could be eventually made almost nonexistent in this manner. Generally
speaking, the values of the collaboration coefficient could be asymmetric that
is β[ii, jj] �= β[jj, ii]. This is not surprising: we might have a case where at the
level of dataset “ii” we are eager to collaborate and quite seriously accept find-
ings coming from what has been discovered at dataset “jj” while the opposite
might not be true. As the values of the collaboration coefficients could be dif-
ferent for any pair of datasets, the optimization of their values could be quite
demanding and computationally intensive. To alleviate these shortcomings, let
us express the coefficient β[ii, jj] as the following product β[ii, jj] = ω f(ii, jj)
meaning that we view it as a function of the specific datasets under collabo-
ration calibrated by some constant ω (>0) whose value does not depend upon
the indexes of the datasets. The choice of the function f(ii, jj) can be done
in several different ways. In general, we can envision the following intuitive
requirement: if the structure revealed at the site of the jj-th dataset is quite
different from the one present at the ii-th data set, the level of collaboration
could be set up quite low. If there is a high level of agreement between the
structure revealed at the jj-th set with what has been found so far at the ii-th
dataset, then f(ii, jj) should assume high values. Given these guidelines, we
propose the following form of f(ii, jj)

f(ii, jj) = 1− Q[ii| jj]
Q[ii] + Q[ii| jj] (28)

Here Q[ii] denotes a value of the objective function obtained for clustering
without any collaboration (viz. the partition matrix and the prototypes are
formed on the basis of optimization realized for X[ii] only). Q[ii|jj] denotes
the value of the objective function computed for the prototypes obtained for
X[jj] (without any collaboration) and used for data in X[ii]; refer to Figure 8.

In essence, the values of Q[ii] and Q[ii|jj] reflect the compatibility of the
structures in the corresponding data sets and in this manner tell us about
a possible level of successful collaboration. The prototypes obtained for the
dataset “jj” being used to determine the value of the objective function for the
ii-th dataset could lead to quite comparable values of the objective function if
the structure in X[jj] resembles the structure of X[ii]. In this case we envision

336 Witold Pedrycz

X[ii]
X[jj]

{vi[jj]}

Q[ii]

Q[ii|jj]

Fig. 8. Computing the values of Q[ii|jj] realized on a basis of the prototypes com-
puted for X[jj]

Q[ii] < Q[ii|jj] yet Q[ii] ≈ Q[ii|jj]. On the other hand, if the structure in X[jj]
is very different meaning that Q[ii|jj] >> Q[ii], the collaborative impact from
what has been established for X[jj] could not be very advantageous. If Q[ii|jj]
is close to Q[ii], f(ii, jj) approaches 1/2. In the second case, Q[ii|jj] >> Q[ii],
the values of f(ii, jj) are close to zero.

Following the process described above, we are left now with a single
coefficient (ω) controlling all collaborative activities for all datasets. This is
far more practical yet its value needs to be properly selected. Here several
alternatives could be sought:

(a) One could monitor the values of the overall objective function (1) during
the course of optimization (minimization). The plot of the minimized
objective function could be helpful here. The oscillations and a lack of con-
vergence in the successive values of the objective function might strongly
suggest that the values of ω are too high (too tight and intensive collab-
oration) and need to be reduced to assure smooth interaction between
the datasets.

(b) We could also look at the differences between the results obtained without
collaboration and with collaboration. For instance, a difference between
the proximity matrices formed on a basis of the partition matrices con-
structed for the same dataset X[ii] without collaboration and with collab-
oration could serve as an indicator of the differences between the results.
Such differences could be constrained by allowing only for some limited
changes caused by the collaboration.

8.4 Dealing with Different Level of Granularity
in the Collaboration Process

So far, we have made a strong assumption about the same number of clusters
being formed at each individual dataset. This conjuncture could well be valid

Knowledge-Based Clustering in Computational Intelligence 337

in many cases (as we consider collaboration realized at the same level of
information granularity). It could be also quite inappropriate to made in some
other cases. To cope with this problem, we need to move the optimization
activities at the higher conceptual level by comparing results of clustering at
the level of the proximity matrices. As indicated, when operating at this level
of abstraction we are relieved from making any assumption about the uniform
level of granularity occurring across all constructs.

9 Consensus–Based Fuzzy Clustering

In contrast to the collaborative clustering in which there is an ongoing
active involvement of all datasets and the clustering algorithms running for
individual datasets are impacted by the results developed at other sites,
consensus-based clustering focuses mainly on the reconciliation of the indi-
vidually developed structures. In this sense, building consensus is concerned
with the formation of structure on the basis of the individual results of cluster-
ing developed separately (without any interaction) at the time of running the
clustering algorithm. In this section, we are concerned with a collection of clus-
tering methods being run on the same dataset. Hence U[ii], U[jj] stand here for
the partition matrices produced by the corresponding clustering method. The
essential step is concerned with the determination of some correspondence
between the prototypes (partition matrices) formed for by each clustering
method. Since there has not been any interaction when building clusters,
there are no linkages between them once the clustering has been completed.
The determination of this correspondence is an NP complete problem and
this limits the feasibility of finding an optimal solution. One way of alleviat-
ing this problem is to develop consensus at the level of the partition matrix
and the proximity matrices being induced by the partition matrices associ-
ated with other data. The use of the proximity matrices helps eliminate the
need to identify correspondence between the clusters and handle the cases
where there are different numbers of clusters used when running the specific
clustering method.

The overall development process of consensus forming is accomplished
in the following manner. Given the partition matrix U[ii], U[jj], etc. being
developed individually, let us focus on the building consensus focused on U[ii].
Given the information about the structure coming in the form of U[ii] and
other partition matrices U[jj], jj �= ii, the implied consensus-driven partition
matrix ∼U[ii] comes as a result of forming a sound agreement between the
original partition matrix U[ii]. In other words, we would like to make ∼U[ii]
to be as close as possible to U[ii]. The minimization of the distance of the form
‖U[ii] − ∼U[ii]‖2 could be a viable optimization alternative. There are some
other sources of structural information, see Figure 9. Here, however, we cannot
establish a direct relationship between U[ii] (and ∼U[ii]) and U[jj] given the
reasons outlined before. The difficulties of this nature could be alleviated by

338 Witold Pedrycz

X

U[ii] U[1] U[jj]

~U[ii] Prox(U[1]) Prox(U[jj])

Fig. 9. A development of consensus-based clustering; the consensus building is
focused on the partition matrix generated by the ii-th clustering method, U[ii]; here
Prox(U[ii]) denotes a matrix of proximity values

considering the corresponding induced proximity matrices, say Prox(U[jj]). It
is worth noting that a way in which the proximity matrix has been formed
relieves us from the correspondence between the rows of the partition matrices
(fuzzy clusters) and the number of clusters. In this sense, we may compare
Prox (∼U[ii]) and Prox (U[jj]) and searching for consensus by minimizing the
distance ‖Prox(∼U[ii])-Prox(U[jj])‖2. Considering all sources of structural in-
formation, the consensus building can be translated into the minimization of
the following optimization problem

‖U[ii]− ∼U[ii]‖2 + γ
P∑

jj �=ii

‖Prox(U[jj])− Prox(∼U[ii])‖2 (29)

The two components are reflective of the two essential sources of informa-
tion about the structure. The positive weight factor (γ) is aimed at striking
a sound compromise between the partition matrix U[ii] associated with the
ii-th dataset. The result of the consensus reached for the ii-th method is the
fuzzy partition matrix ∼U[ii] minimizing the above performance index (29).

10 Concluding Notes

In this study, we emphasized the need for a revision of the paradigm of fuzzy
clustering by augmenting it by the mechanisms of domain knowledge into its
algorithmic layer. We have presented and discussed the key open issues and
associate those to some evident challenges lying ahead in the progression of
the discipline. Likewise we showed some pertinent links and outlined some
promising avenues of algorithmic developments that might support the design
of required conceptual platforms and specific detailed solutions.

We offered a number of algorithmic developments including clustering with
partial supervision, collaborative clustering and clustering aimed at building

Knowledge-Based Clustering in Computational Intelligence 339

consensus. In all of these we emphasized the role of human-centricity of the
clustering framework and a distributed character of the available data. It has
been shown how the issues of data privacy and security are alleviated through
the use of granular information being inherently associated with the format
of results generated in the process of clustering.

Acknowledgments

Support from the Canada Research Chair (CRC) program and the Natural
Sciences and Engineering Research Council (NSERC) is gratefully acknowl-
edged.

References

[1] Abonyi, J. and Szeifert, F. (2003). Supervised fuzzy clustering for the
identification of fuzzy classifiers, Pattern Recognition Letters, 24, 14,
2195–2207.

[2] Agarwal, R. and Srikant, R. (2000). Privacy-preserving data mining. In:
Proc. of the ACM SIGMOD Conference on Management of Data. ACM
Press, New York, May 2000, 439–450.

[3] Bensaid, A. M., Hall, L. O., Bezdek, J. C. and Clarke L. P. (1996). Par-
tially supervised clustering for image segmentation, Pattern Recognition,
29, 5, 859–871.

[4] Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, NY.

[5] Claerhout, B. and DeMoor, G.J.E. (2005). Privacy protection for clinical
and genomic data: The use of privacy-enhancing techniques in medicine,
Int. Journal of Medical Informatics, 74, 2–4, 257–265.

[6] Clifton, C. (2000). Using sample size to limit exposure to data mining,
Journal of Computer Security 8,4, 281–307.

[7] Clifton, C. and Marks, D. (1996). Security and privacy implications of
data mining. In: Workshop on Data Mining and Knowledge Discovery,
Montreal, Canada, 15–19.

[8] Clifton, C. and Thuraisingham, B. (2001). Emerging standards for data
mining, Computer Standards & Interfaces, 23, 3, 187–193.

[9] Coppi, R. and D’Urso, P. (2003). Three-way fuzzy clustering models for
LR fuzzy time trajectories, Computational Statistics & Data Analysis,
43, 2, 149–177.

[10] Da Silva, J. C., Giannella, C., Bhargava, R., Kargupta, H. and Klusch,
M. (2005). Distributed data mining and agents, Engineering Applications
of Artificial Intelligence, 18, 7, 791–807.

340 Witold Pedrycz

[11] Du, W., Zhan, Z. (2002). Building decision tree classifier on private data.
In: Clifton, C., Estivill-Castro, V. (Eds.), IEEE ICDM Workshop on Pri-
vacy, Security and Data Mining, Conferences in Research and Practice
in Information Technology, vol. 14, Maebashi City, Japan, ACS, pp. 1–8.

[12] Evfimievski, A., Srikant, R., Agrawal, R. and Gehrke, J. (2004). Pri-
vacy preserving mining of association rules, Information Systems, 29, 4,
343–364.

[13] Johnsten, T. and Raghavan V.V. (2002). A methodology for hiding
knowledge in databases. In: Clifton, C., Estivill-Castro, C. (Eds.), IEEE
ICDM Workshop on Privacy, Security and Data Mining, Conferences in
Research and Practice in Information Technology, vol. 14. Maebashi City,
Japan, ACS, pp. 9–17.

[14] Kargupta, H., Kun, L., Datta, S., Ryan, J. and Sivakumar, K. (2003).
Homeland security and privacy sensitive data mining from multi-party
distributed resources, Proc. 12th IEEE International Conference on Fuzzy
Systems, FUZZ ’03,. Volume 2, 25–28 May 2003, vol.2, 1257–1260.

[15] Kersten, P.R. (1996). Including auxiliary information in fuzzy clustering,
Proc. 1996 Biennial Conference of the North American Fuzzy Informa-
tion Processing Society, NAFIPS, 19–22 June 1996, 221 –224.

[16] Lindell, Y. and Pinkas, B. (2000). Privacy preserving data mining. In:
Lecture Notes in Computer Science, vol. 1880, 36–54.

[17] Liu, H. and Huang, S.T. (2003). Evolutionary semi-supervised fuzzy clus-
tering, Pattern Recognition Letters, 24, 16, 3105–3113.

[18] Merugu, S and Ghosh, J. (2005).A privacy-sensitive approach to distrib-
uted clustering, Pattern Recognition Letters, 26, 4, 399–410.

[19] Park, B. and Kargupta, H. (2003). Distributed data mining: algorithms,
systems, and applications. In: Ye, N. (Ed.), The Handbook of Data Min-
ing. Lawrence Erlbaum Associates, N. York, 341–358.

[20] Pedrycz, W. (1985). Algorithms of fuzzy clustering with partial supervi-
sion, Pattern Recognition Letters, 3, 1985, 13–20.

[21] Pedrycz, W. and Waletzky, J. (1997). Fuzzy clustering with partial
supervision, IEEE Trans. on Systems, Man, and Cybernetics, 5, 787–795.

[22] Pedrycz, W. and Waletzky, J. (1997). Neural network front-ends in
unsupervised learning, IEEE Trans. on Neural Networks, 8, 390–401.

[23] Pedrycz, W., Loia, V. and Senatore, S. (2004). P-FCM: A proximity-
based clustering, Fuzzy Sets & Systems, 148, 2004, 21–41.

[24] Pedrycz, W. (2002). Collaborative fuzzy clustering, Pattern Recognition
Letters, 23, 14, 1675–1686.

[25] Pedrycz, W. (2005). Knowledge-Based Clustering: From Data to Infor-
mation Granules, J. Wiley, N. York.

[26] Pinkas, B. (2002). Cryptographic techniques for privacy-preserving data
mining. ACM SIGKDD Explorations Newsletter 4, 2, 12–19.

[27] Strehl, A. and Ghosh, J. (2002). Cluster ensembles—a knowledge reuse
framework for combining multiple partitions. Journal of Machine Learn-
ing Research, 3, 583–617.

Knowledge-Based Clustering in Computational Intelligence 341

[28] Timm, H., Klawonn, F. and Kruse, R. (2002). An extension of partially
supervised fuzzy cluster analysis, Proc. Annual Meeting of the North
American Fuzzy Information Processing Society, NAFIPS 2002, 27–29
June 2002, 63–68.

[29] Tsoumakas, G., Angelis, L. and Vlahavas, I. (2004). Clustering classifiers
for knowledge discovery from physically distributed databases, Data &
Knowledge Engineering, 49, 3, 223–242.

[30] Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y. and
Theodoridis Y. (2004). State-of-the-art in privacy preserving data mining.
SIGMOD Record 33, 1, 50–57.

[31] Wang K., Yu, P.S. and Chakraborty, S. (2004). Bottom-up generalization:
a data mining solution to privacy protection, Proc. 4 th IEEE Interna-
tional Conference on Data Mining, ICDM 2004, 1–4 Nov. 2004, 249–256

[32] Wang, S.L. and Jafari, A. (2005). Using unknowns for hiding sensitive
predictive association rules, Proc. 2005 IEEE International Conference
on Information Reuse and Integration, 223–228.

[33] Wang, E.T., Lee, G. and Lin, Y. T. (2005). A novel method for protect-
ing sensitive knowledge in association rules mining, Proc. 29 th Annual
International Computer Software and Applications Conference (COMP-
SAC 2005), vol. 2, 511–516.

[34] Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU)
– an outline, Information Sciences, 172, 1–2, 1–40.

Generalization in Learning from Examples

Věra Kůrková

Institute of Computer Science, Academy of Sciences of the Czech Republic
vera@cs.cas.cz

Summary. Capability of generalization in learning from examples can be modeled
using regularization, which has been developed as a tool for improving stability
of solutions of inverse problems. Theory of inverse problems has been developed to
solve various tasks in applied science such as acoustics, geophysics and computerized
tomography. Such problems are typically described by integral operators. It is shown
that learning from examples can be reformulated as an inverse problem defined by an
evaluation operator. This reformulation allows one to characterize optimal solutions
of learning tasks and design learning algorithms based on numerical solutions of
systems of linear equations.

1 Learning of Artificial Neural Networks

Metaphorically, we can call machines “artificial muscles” as they extend
capabilities of our biological muscles. Similarly, microscopes, telescopes,
x-rays, electrocardiograms, tomography, as well as many other modern imag-
ing systems play roles of “artificial senses” as they highly increase capabilities
of our biological senses. Using such devices we can obtain huge amounts of
empirical data from many areas of interest. But mostly such data in its raw
form is not comprehensible to our brains. We are like King Midas, whose
foolish wish to transform everything he touched into gold lead to his star-
vation. Just as Midas’ body could not digest gold, our brains cannot digest
machine-made data. But, in contrast to gold, some data can be transformed
into comprehensible patterns.

In the 1940s in the early days of cybernetics, ideas of building artificial neu-
rons and networks composed from them emerged. Inspired by simplified mod-
els of biological neural networks, artificial neural networks transform inputs of
measured or preprocessed data into outputs in the form of codes or parameters
of patterns. Such networks are beginning to be able to help us cope with the
overload of data produced by our sensing devices.

The invention of the first “artificial muscles” required an understanding
of the elementary laws of forces (which were already known to Archimedes in
Věra Kůrková: Generalization in Learning from Examples, Studies in Computational Intelligence

(SCI) 63, 343–363 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

344 Věra Kůrková

Fig. 1.

the 3rd century B.C. [36]) and the invention of optical “artificial senses”, mi-
croscope and telescope, was possible because of an understanding of the laws
of optics, which were discovered in the 17th century by developing ideas from
Euclid’s Optics [36]. Development of artificial neural networks also required
some theoretical understanding of data analysis.

Although Popper’s [34] explicit claim that no patterns can be derived solely
from empirical data was stated in the 1960s, since the early stages of devel-
opment of modern science, some hypotheses about patterns, among which the
one fitting best to the measured data is searched for, have been assumed. For
example, Kepler discovered that planetary orbits are elliptic assuming that
planets move on the “most perfect curves” fitting to the data collected by
Tycho Brahe.

Our visual perception often seems to work in this way as well. It tries to
complete drawings like the one in Fig. 1 using familiar patterns. In Fig. 1 we
imagine seeing a dark regular star blocking a pattern of light disks. Visual
perception may also impose an interference patterns on repetitive drawings
such as the one in Fig. 2. Human intelligence can even be measured by the
capability to accomplish tasks of completing numerical or alphabetical pat-
terns from partial information (such as finding a next element in an arith-
metical sequence) in IQ tests.

Searching for curves fitting to astronomical data collected from observa-
tions of comets, Gauss and Legendre developed the least square method. In
1805, Legendre praised this method: “of all the principles that can be pro-
posed, I think that there is none more general, more exact and more easy to
apply than that consisting of minimizing the sum of the squares of errors” [5].
Many researchers of later generations shared Legendre’s enthusiasm and used
the least square method in statistical inference, pattern recognition, function
approximation, curve or surface fitting, etc.

Generalization in Learning from Examples 345

Fig. 2.

(u1, v1)
(um, vm)

Fig. 3.

Neurocomputing brought a new terminology to data analysis: artificial
neural networks learn functional relationships between their inputs and out-
puts from training sets of correctly processed input-output pairs (with inputs
being measured or preprocessed data and outputs codes or parameters of pat-
terns). Many neural-network learning algorithms are based on the least square
method – for example, the back-propagation algorithm developed by Werbos
in 1970s (see [42]) and reinvented by Rummelhart, Hinton and Williams [35].
Such algorithms iteratively adjust network parameters decreasing values of a
functional computing the average of the squares of errors, which the network
input-output function (determined by actual network parameters) makes on
a set of examples. The functional is called empirical error because it is deter-
mined by a sample of empirical data chosen as a training set of examples as
in Fig. 3.

For a sample of input-output pairs of data z = {(ui, vi) ∈ Ω × R, i =
1, . . . ,m}, where R denotes the set of real numbers and Ω ⊂ R

d, the empirical
error functional Ez is defined at a function f : Ω → R as

Ez(f) =
1
m

m∑
i=1

(f(ui)− vi)2. (1)

346 Věra Kůrková

The utilization of the least square method in neurocomputing differs from
its traditional applications, where only optimization of coefficients of a lin-
ear combination of a fixed family of functions is performed. Neural network
learning algorithms are searching an input-output function fitting to data in
nonlinear function spaces. They optimize both inner parameters of the func-
tions corresponding to computational units and coefficients of their linear
combination.

Originally the units, called perceptrons, modeled some simplified proper-
ties of neurons, but later also other types of units (radial and kernel units) with
suitable mathematical properties for function approximation became popular.

Optimization of the inner parameters of network units allows more flexibil-
ity, which potentially enables better efficiency in processing high-dimensional
data [23], which are commonly produced through modern technology. This is
one of the main advantages of artificial neural networks in contrast to linear
methods. The theory of linear approximation shows that linear methods are
not suitable for approximation of functions of a large number of variables since
the model complexity of such methods grows exponentially with the number
of variables [31].

2 Generalization

Various learning algorithms can adjust network parameters so that a network
correctly processes all data from the training set. But it is desirable that the
network also processes satisfactorily new data that have not been used for
learning, i.e., it generalizes well.

The concept of generalization has been studied in philosophy in early
20th century. Husserl considered eidetic generalization, by which he meant
the process of imagination of possible cases rather than observation of ac-
tual ones, while by essences or eidos he meant properties, kinds or types of
ideal species that entities may exemplify, and by eidetic variation he meant
possible changes an individual can undergo while remaining an instance of a
given type of an essence [38]. As Husserl pointed out, one grasps the essence
in its eidetic variation by grasping essential generalities about individuals of
a given type or essence. Similarly, neural networks learn to recognize patterns
by being trained on examples of correctly processed data. But Husserl also
warned that apprehension of essences from their eidetic variation is usually
incomplete.

Can these philosophical concepts be modeled mathematically and can such
models inspire learning algorithms with the capability of generalization?

In algorithms based on minimization of the empirical error functional Ez,
network parameters are adjusted so that the network input-output function
fits well to the training set. The smaller the value of the empirical error func-
tional, the better the approximation of the input-output function to the train-
ing set. Often, there are many input-output functions approximating well the

Generalization in Learning from Examples 347

training set, some of them even interpolating it exactly as in Fig. 3. Although
such interpolating input-output functions perfectly process all examples from
the training set, they may fail on new data confirming Popper’s claim that
empirical data are not sufficient for obtaining any pattern. Thus, in addition
to empirical data, one needs some conceptual data expressing prior knowledge
about properties of a desired function.

In 1990s, Poggio and Girosi [32] proposed modifying the empirical error
functional by adding to it a term to penalize undesired properties of the net-
work input-output function. They replaced minimization of the empirical error
Ez with minimization of

Ez + γΨ,

where Ψ is a functional expressing some global property (such as smoothness)
of the function to be minimized, and γ is a parameter controlling the trade-off
between fitting to data and penalizing lack of the desired property. Their idea
of such a modification of empirical error functional was inspired by regulariza-
tion, which has been developed in the 1970s as a method of improving stability
of certain integral equations. So Poggio and Girosi proposed modeling gener-
alization mathematically in terms of stability guaranteeing that small changes
or errors in empirical data cause merely minor changes in patterns.

In regularization, the functional Ψ is called the stabilizer and γ the regu-
larization parameter. This parameter represents a compromise between good
approximation of data and stability of the solution.

Girosi, Jones and Poggio [18] considered stabilizers penalizing functions
with high frequencies in their Fourier representations. They used stabilizers
of the form

Ψ(f) =
1

(2 π)d/2

∫
Rd

f̃(s)
2

k̃(s)
ds, (2)

where 1
k̃

is a high-frequency filter (k is a function with positive Fourier trans-

form such as the Gaussian k(s) = e−‖s‖2
).

3 Inverse Problems

Integral equations, for the solution of which regularization was invented,
belong to a wider class of inverse problems, in which unknown causes (such
as shapes of functions, forces or distributions) are searched for from known
consequences (empirical data). Inverse problems are fundamental in various
domains of applied science such as astronomy, medical imaging, geophysics,
heat conduction, seismology and meteorological forecasting. We shall show
that learning can also be expressed as an inverse problem.

Often a dependence of consequences on causes is modeled mathematically
by a linear operator. For such operator A : X → Y between two Hilbert spaces

348 Věra Kůrková

(X , ‖.‖X), (Y, ‖.‖Y), an inverse problem determined by A is a task of finding
for g ∈ Y (called data) some f ∈ X (called solution) such that

A(f) = g.

When X and Y are finite dimensional, linear operators can be represented
by matrices. In infinite dimensional case, typical operators are integral ones.
For example, Fredholm integral equations of the first and second kind

(I − λLK)(f) = g

LK(f) = g,

resp., are inverse problems defined by integral operators I − λLK and LK ,
where

LK(f)(x) =
∫ b

a

f(y)K(x, y)dy.

Another example of an integral operator defining an inverse problem is the
Laplace transform

L(f)(p) =
∫ +∞

0

e−ptf(t)dt.

It describes the relaxation kinetics that occurs, for example, in nuclear mag-
netic resonance, photon correlation spectroscopy, and fluorescence or sedimen-
tation equilibrium.

In 1902, Hadamard [20] introduced a concept of a well-posed problem
in solving differential equations. Formally, well-posed inverse problems were
defined by Courant [8] in 1962 as problems, where for all data there exists a
solution which is unique and depends on the data continuously. So for a well-
posed inverse problem, there exists a unique inverse operator A−1 : Y → X .
When A is continuous, then by the Banach open map theorem [16, p. 141]
A−1 is continuous, too, and so the operator A is a homeomorphism of X onto
Y. When for some data, either there is no solution or there are multiple solu-
tions or solutions do not depend on data continuously, the problem is called
ill-posed.

Hadamard showed that some classical problems have unique solutions and
he argued that all problems motivated by physical reality are well-posed. But
the physics which Hadamard considered was the physics of the 19th century,
when ill-posed problems were supposed to be anomalies. Similarly as in the
mathematics of that time, continuous functions without derivatives, the Can-
tor’s discontinuum, and the devil’s staircase were supposed to be pathologies,
but in the 20th century, they became central concepts of fractal geometry.

Also ill-posed problems have moved from the periphery of applied physics
to being near its center. Many useful applications have been developed, the

Generalization in Learning from Examples 349

most famous one among them is the computerized tomography, for which
the Nobel prize for physiology or medicine was awarded to Cormack and
Hounsfield in 1979 [13]. Tomography is based on the idea that enough x-ray
projections taken at different angles can yield a complete description of some
internal structure. Mathematically, it requires reconstruction of a function of
two variables from knowledge of its line integrals. Such a function models a
space distribution of x-ray absorption and its line integrals correspond to mea-
sured total attenuation coefficients along the ray path lying between the x-ray
tube and the detector. The attenuation coefficient is defined as the relative
intensity loss, which varies for different body tissues (it has the highest value
for bones).

Mathematically such a reconstruction can be described as an inverse prob-
lem with an operator called the Radon transform. This transform is defined
for a function f of two variables as

R(f)(e, b) =
∫

He,b

f(x)dedb,

where He,b denotes the line determined by its normal vector e and its transla-
tion from the origin b, i.e., He,b = {x | e · x + b = 0}. In 1917, Radon used the
transform carrying his name for solving gravitational field equations. Comput-
erized tomography is a special case of Radon transform inversion, which is an
ill-posed problem (its solutions do not exist for all data and the dependence
of solutions on data is not continuous).

4 Pseudosolutions of Inverse Problems

For finite-dimensional inverse problems, in 1920 Moore proposed a method of
generalized inversion based on a search for pseudosolutions, also called least-
square solutions, for data, for which no solutions exist. His idea, published as
an abstract [28], has not received too much attention until it was rediscovered
by Penrose [30] in 1955. So it is called Moore-Penrose pseudoinversion. In the
1970s, it has been extended to the infinite-dimensional case, where similar
properties as the ones of Moore-Penrose pseudoinverses of matrices hold for
pseudoinverses of continuous linear operators between Hilbert spaces [19].

For an operator A : X → Y , let R(A) = {g ∈ Y | (∃f ∈ X)(A(f) = g)}
denotes its range and πclR(A) : Y → clR(A) the projection of Y onto the closure
of R(A) in (Y, ‖.‖Y). Recall that every continuous operator A between two
Hilbert spaces has an adjoint A∗ satisfying for all f ∈ X and all g ∈ Y,

〈f,A∗g〉X = 〈Af, g〉Y .

Denoting S(g) = argmin(X , ‖A(.)−g‖Y), we can summarize properties of the
pseudoinverse operator as follows (see, e.g., [19, pp. 37–46] and [4, pp. 56–60]):

350 Věra Kůrková

If the range of A is closed, then there exists a unique continuous linear
pseudoinverse operator A+ : Y → X such that for every g ∈ Y,

A+(g) ∈ S(g)

‖A+(g)‖X = min
fo∈S(g)

‖fo‖X

and for every g ∈ Y, AA+(g) = πclR(g) and

A+ = (A∗A)+A∗ = A∗(AA∗)+. (3)

If the range is not closed, then A+ is only defined for those g ∈ Y, for
which πclR(A)(g) ∈ R(A).

Continuous dependence of pseudosolutions on data cannot prevent their
small variations to have large effects on forms of solutions. Stability of depen-
dence of solutions on data can be measured by the condition number of the
operator A defined as

cond(A) = ‖A‖ ‖A+‖.
When this number is large, pseudosolutions can be too sensitive to data

errors. In such cases, the inverse problems are called ill-conditioned. Note
that the concept of ill-conditioning is rather vague. More information about
stability can be obtained from an analysis of behavior of the singular values
of the operator A (see, e.g., [21]).

5 Regularization

A method of improving stability of solutions of ill-conditioned inverse prob-
lems, called regularization, was developed in 1960s. The basic idea in the
treatment of ill-conditioned problems is to use some a priori knowledge about
solutions to disqualify meaningless ones. In physically motivated inverse prob-
lems, such knowledge can be, for example, some regularity condition on the
solution expressed in terms of existence of derivatives up to a certain or-
der with bounds on the magnitudes of these derivatives or some localization
condition such as a bound on the support of the solution or its behavior at
infinity.

Among several types of regularization, the most popular one penalizes un-
desired solutions by adding a term called a stabilizer. It is called Tikhonov’s
regularization due to Tikhonov’s unifying formulation [40]. Tikhonov’s regu-
larization replaces the problem of minimization of the functional

‖A(.)− g‖2
Y

with minimization of
‖A(.)− g‖2

Y + γΨ,

Generalization in Learning from Examples 351

where Ψ is a functional called stabilizer and the regularization parameter γ
plays the role of a trade-off between the least square solution and the penal-
ization expressed by Ψ .

Typical choice of a stabilizer is the square of the norm on X , for which
the original problem is replaced with a minimization of the functional

‖A(.)− g‖2
Y + γ‖.‖2

X .

For the stabilizer ‖.‖2
X , regularized solutions always exist (in contrast to

pseudosolutions, which in the infinite dimensional case do not exist for
those data g, for which πclR(A)(g) /∈ R(A)). For every continuous operator
A : X → Y between two Hilbert spaces and for every γ > 0, there exists a
unique operator

Aγ : Y → X
such that for every g ∈ Y,

{Aγ(g)} = argmin(X , ‖A(.)− g‖2
Y + γ‖.‖2

X)

and

Aγ = (A∗A + γIX)−1A∗ = A∗(AA∗ + γIY)−1, (4)

where IX , IY denote the identity operators. Moreover for every g ∈ Y, for
which A+(g) exists,

lim
γ→0

Aγ(g) = A+(g)

(see, e.g., [4, pp.68-70] and [19, pp.74-76]).
Even when the original inverse problem does not have a unique solution

(and so it is ill-posed), for every γ > 0 the regularized problem has a unique
solution. This is due to the uniform convexity of the functional ‖.‖2

Y (see,
e.g., [26]). With γ decreasing to zero, the solutions Aγ(g) of the regularized
problems converge to the normal pseudosolution A+(g).

So for stabilizers equal to the squares of the norms ‖.‖2
X on Hilbert spaces

of solutions, regularization is theoretically well understood. However to apply
this theory, one needs to choose Hilbert spaces of solutions properly so that
their norms model undesired properties of solutions. To make such a choice,
some a priori knowledge about meaningful solutions is needed. For example,
if such knowledge is in terms of localization, weighted L2-norms are suitable
[11]. Stabilizers of the form

‖f‖2
L2

w
=
∫

f(x)2

w(x)2
dx

can force solutions to be localized where the weighting functions w are. When
an a priori knowledge concerns smoothness expressed mathematically in terms

352 Věra Kůrková

of an existence and bounds on derivatives, suitable stabilizers can be the
squares of weighted Sobolev norms

‖f‖2
d,2,w =

⎛
⎝∑

|α|≤d

‖Dαf‖L2
w

⎞
⎠

2

,

where d is the number of variables and for a multi-index α = (α1, . . . , αd)
with nonnegative integer components, |α| = α1 + · · · + αd and Dα =
(∂/∂x1)α1 . . . (∂/∂xd)αd .

6 Learning from Data as an Inverse Problem

Learning of neural networks from examples is also an inverse problem – it
requires to find for a given training set an unknown input-output function of
a network of a given type. But the operator describing how such function
determines data is of a different nature than operators modeling physical
processes. The operator performs the evaluations of an input-output function
at the input data from the training set: it assigns to a function a vector of its
values at u1, . . . , um.

Let (Rm, ‖.‖2,m) denote the m-dimensional Euclidean space with the
weighted Euclidean norm

‖y‖2,m =

√√√√ 1
m

m∑
i=1

y2
i .

For an input data vector u = (u1, . . . , um) ∈ Ωm and a Hilbert space (X , ‖.‖X)
of functions on Ω, define an evaluation operator

Lu : (X , ‖.‖X) → (Rm, ‖.‖2,m)

by
Lu(f) = (f(u1), . . . , f(um)) . (5)

It is easy to check that the empirical error functional Ez with z = {(ui, vi) ∈
Ω × R, i = 1, . . . ,m}, can be represented as

Ez(f) =
1
m

m∑
i=1

(f(ui)− vi)2 = ‖Lu(f)− v‖2
2,m. (6)

This representation proposed in [24, 25] and [12] allows one to express
minimization of empirical error functional as an inverse problem

Lu(f) = v

Generalization in Learning from Examples 353

of finding for a given output data vector v = (v1, . . . , vm) ∈ R
m a solution of

the form of an input-output function f fitting to the sample z = {(ui, vi) ∈
Ω × R, i = 1, . . . ,m}. Finding a pseudosolution of this inverse problem is
equivalent to the minimization of the empirical error functional Ez over X .

But to take advantage of characterizations of pseudosolutions (4) and reg-
ularized solutions (3) from theory of inverse problems, solutions of the inverse
problem defined by the operator Lu should be searched for in suitable Hilbert
spaces, on which

• all evaluation operators of the form (5) are continuous
• norms can express some undesired properties of input-output functions.

Continuity of Lu guarantees that the formulas (3) and (4) hold and so
descriptions of the pseudoinverse operator L+

u and the regularized operators
Lγ

u can be easily obtained.
Neither the space C(Ω) of all continuous functions on Ω nor the Lebesgue

space L2
ρX

(Ω) are suitable as the solution spaces: the first one is not a Hilbert
space and the second one is not formed by pointwise defined functions. More-
over, the evaluation operator Lu is not continuous on any subspace of L2

λ(Rd)
(where λ denotes the Lebesgue measure) containing the sequence {nχn},
where χn denotes the characteristic function of [0, 1

n] × [0, 1]d−1 (see Fig. 4)

or the sequence of scaled Gaussian functions
{
nde−(

‖x‖
n)2
}

. Indeed, all ele-

ments of these sequences have L2
λ-norms equal to 1, but the evaluation func-

tional at zero maps them to unbounded sequences of real numbers and thus
L0 is not continuous (for a linear functional, continuity is equivalent to its
boundedness).

Fig. 4.

354 Věra Kůrková

7 Reproducing Kernel Hilbert Spaces

Fortunately, there exists a large class of Hilbert spaces, on which all evaluation
functionals are continuous and moreover, norms on such spaces can play roles
of measures of various types of oscillations of input-output functions.

Girosi [17] showed that stabilizers

Ψ(f) =
1

(2 π)d/2

∫
Rd

f̃(s)
2

k̃(s)
ds, (7)

penalizing high-frequency oscillations (which were used in [18] to model gen-
eralization) can be represented as norms on certain Hilbert spaces.

Such spaces are called reproducing kernel Hilbert spaces. They were for-
mally defined by Aronszajn [2] in 1950, but their theory includes many classi-
cal results on positive definite functions, matrices and integral operators with
kernels. Aronszajn defined a reproducing kernel Hilbert space (RKHS) as a
Hilbert space of pointwise defined real-valued functions on a nonempty set Ω
such that all evaluation functionals are continuous, i.e., for every x ∈ Ω, the
evaluation functional Fx, defined for any f ∈ X as

Fx(f) = f(x),

is continuous (bounded).
The name of this class suggests that these spaces are related to kernels.

Indeed, every RKHS is uniquely determined by a symmetric positive semi-
definite kernel K : Ω × Ω → R, i.e., a symmetric function of two variables
satisfying for all m, all (w1, . . . , wm) ∈ R

m, and all (x1, . . . , xm) ∈ Ωm,

m∑
i,j=1

wi wj K(xi, xj) ≥ 0.

A stronger property is positive definiteness requiring that if

m∑
i,j=1

wiwjK(xi, xj) = 0

with x1, . . . , xm distinct, then for all i = 1, . . . ,m, wi = 0.
By the Riesz Representation Theorem [16, p. 200], every evaluation func-

tional Fx on a RKHS can be represented as an inner product with a function
Kx ∈ X , called the representer of x. It follows from properties of an inner
product that the function K : X ×X defined for all x, y ∈ Ω as

K(x, y) = 〈Kx,Ky〉,
where 〈., .〉 denotes the inner product on X , is symmetric and positive semi-
definite. For a positive definite kernel, the set of representers {Kx |x ∈ X} is
linearly independent.

Generalization in Learning from Examples 355

On the other hand, every positive semidefinite kernel K : Ω × Ω → R

generates an RKHS denoted by

HK(Ω).

It is formed by linear combinations of functions from {Kx |x ∈ Ω} and point-
wise limits of all Cauchy sequences of these linear combinations with respect to
the norm ‖.‖K induced by the inner product 〈., .〉K defined on representers as

〈Kx,Ky〉K = K(x, y)

and then extended to the whole space.
The equation

Fx(f) = f(x) = 〈f,Kx〉K
is called the reproducing property. So a representer Kx behaves like the Dirac
delta distribution δx centered at x, for which

δx(f) = f(x) = 〈f, δx〉

holds [39, p.5]. But in contrast to the Dirac delta distribution, representers
are pointwise defined functions. The reproducing property of pointwise de-
fined functions is possible in RKHSs because they contain less functions than
L2-spaces – only those satisfying certain restrictions on high-frequency oscil-
lations of certain types defined by kernels.

A paradigmatic example of a kernel is the Gaussian kernel

K(x, y) = e−‖x−y‖2

on R
d×R

d. Scaling and normalizing this kernel, one can construct a sequence
converging to the Dirac delta distribution, namely

{
nde−(

‖x‖
n)2
}

. For every

b > 0, the space HKb
(Rd) with scaled Gaussian kernel

Kb(x, y) = e−b‖x−y‖2

contains all functions computable by radial-basis function networks with a
fixed width equal to b.

Other examples of positive semidefinite kernels are the Laplace kernel

K(x, y) = e−‖x−y‖,

homogeneous polynomial of degree p

K(x, y) = 〈x, y〉p,
where 〈·, ·〉 is any inner product on R

d,

356 Věra Kůrková

inhomogeneous polynomial of degree p

K(x, y) = (1 + 〈x, y〉)p,

and
K(x, y) = (a2 + ‖x− y‖2)−α

with α > 0 [10, p. 38].
As on every RKHS HK(Ω), all evaluation functionals are continuous, for

every sample of input data u = (u1, . . . , um), the operator

Lu : (HK(Ω), ‖.‖K) → (Rm, ‖.‖2,m)

is continuous. Moreover, its range is closed because it is finite dimensional. So
one can apply results from theory of inverse problems [19] to show that for all
data vectors v = (v1, . . . , vm), the normal pseudosolution L+

u (v) exists. Using
the formula (3) we can describe its form as

f+ = L+
u (v) =

m∑
i=1

ciKui
, (8)

where

c = K[u]+v, (9)

and K[u] is the Gram matrix of the kernel K with respect to the vector u
defined as

K[u]i,j = K(ui, uj).

The minimum of the empirical error Ez over HK(Ω) is achieved at the
function f+, which is a linear combination of the representers Ku1 , . . . ,Kum

determined by the input data u1, . . . , um. Thus f+ can be interpreted as an
input-output function of a neural network with one hidden layer of kernel units
and a single linear output unit. For example, for the Gaussian kernel, f+ is
an input-output function of the Gaussian radial-basis function network with
units centered at the input data u1, . . . , um. The coefficients c = (c1, . . . , cm)
of the linear combination (corresponding to network output weights) can be
computed by solving the system of linear equations (9).

Similarly as the function f+ =
∑m

i=1 ciKui
minimizing the empirical error

is a linear combination of the functions Ku1 , . . . ,Kum
defined by the input

data u1, . . . , um, the solution fγ of the regularized problem is of the form

fγ =
m∑

i=1

cγ
i Kui

, (10)

where
cγ = (K[u] + γmI)−1v. (11)

This form follows from the formula (4).

Generalization in Learning from Examples 357

Comparing the equations (8) and (9) with (10) and (11), one sees that
both the functions f+ and fγ minimizing Ez and Ez + ‖.‖2

K , resp., are linear
combinations of representers Ku1 , . . . ,Kum

of input data u1, . . . , um, but the
coefficients of the two linear combinations are different. For the pseudoso-
lution, c = (c1, . . . , cm) is the image of the output vector v = (v1, . . . , vm)
under Moore-Penrose pseudoinverse of the matrix K[u], while for the regular-
ized solution, cγ = (cγ

1 , . . . , cγ
m) is the image of v under the inverse operator

(K[u] + γmI)−1.
This clearly shows the role of regularization – it makes dependence of co-

efficients on output data more stable. Growth of the regularization parameter
γ leads from “under smoothing” to “over smoothing”. However, the size of γ
is constrained by the requirement of fitting fγ to the sample of empirical data
z, so γ cannot be too large.

The effect of regularization of the evaluation operator Lu depends on be-
havior of the eigenvalues of the Gram matrix K[u]. Stability analysis of the
regularized problem ‖Lu(.) − v‖2,m + γ‖.‖2

K can be investigated in terms of
the finite dimensional problem of regularization of the Gram matrix K[u]
with the parameter γ′ = γm, because the coefficient vector cγ satisfies
cγ = (K[u] + γmI)−1v. For K positive definite, the row vectors of the ma-
trix K[u] are linearly independent. But when the distances between the data
u1, . . . , um are small, the row vectors might be nearly parallel and the small
eigenvalues of K[u] might cluster near zero. In such a case, small changes of v
can cause large changes of f+. Various types of ill-posedness of K[u] can occur:
the matrix can be rank-deficient when it has a cluster of small eigenvalues and
a gap between large and small eigenvalues, or the matrix can represent a dis-
crete ill-posed problem, when its eigenvalues gradually decay to zero without
any gap in its spectrum [21].

Practical applications of learning algorithms based on theory of inverse
problems are limited to such samples of data and kernels, for which it-
erative methods for solving systems of linear equations c = K[u]+v and
cγ = (K[u] + γmI)−1v are computationally efficient (see [33] for references to
such applications).

In typical neural-network algorithms, networks with the number of hidden
units n much smaller than the size m of the training set are used [22]. In [26]
and [27], estimates of the speed of convergence of infima of empirical error
over sets of functions computable by such networks to the global minimum
Ez(fγ) were derived. For reasonable data sets, such convergence is rather fast.

8 Three Reasons for Using Kernels in Machine Learning

In 1960s, applications of kernels to data analysis were introduced by Parzen
[29] and Wahba (see [41]), who applied them to data smoothing by splines.

However, kernels were independently applied to learning theory, under the
name potential functions. In 1964, Aizerman, Braverman and Rozonoer [1]

358 Věra Kůrková

proposed an algorithm solving classification tasks by transforming the geome-
try of input spaces by embedding them into higher dimensional inner product
spaces [1]. Boser, Guyon and Vapnik [6] and Cortes and Vapnik [7] further
developed this method of classification into the concept of the support vector
machine (SVM), which is a one-hidden-layer network with kernel units in the
hidden layer and one threshold output unit.

Linear separation simplifies classification. In some cases, even data which
are not linearly separable can be transformed into linearly separable ones.
A simple example is the body-mass index (BMI), which is equal to w

h2 , where
w denotes the weight and h the height. The nonlinear mapping (w, h) → w

h2

allows to set a threshold defining obesity. Another example is the set of points
belonging to two classes in Fig. 5. Because these two classes can be separated
by an ellipse described by the nonlinear equation x2

a + y2

b = 1, after a proper
nonlinear transformation they also can be separated linearly.

More sophisticated separations can be accomplished by embedding data
into infinite dimensional RKHSs by the mapping u → Ku [37, 9]. So ker-
nels can define transformations of geometries of data spaces to geometries of
infinite dimensional Hilbert spaces.

A second reason for using kernels was found by Girosi [17] in 1998, when
he realized that stabilizers of the form

Ψ(f) =
1

(2 π)d/2

∫
Rd

f̃(s)
2

k̃(s)
ds (12)

are special cases of squares of norms on RKHSs generated by convolution
kernels, i.e., kernels

K(x, y) = k(x− y)

defined as translations of a function k : R
d → R, for which the Fourier trans-

form k̃ is positive. For such kernels, the value of the stabilizer ‖.‖2
K at any

Fig. 5.

Generalization in Learning from Examples 359

f ∈ HK(Ω) can be expressed as

‖f‖2
K =

1
(2 π)d/2

∫
Rd

f̃(ω)
2

k̃(ω)
dω (13)

[17], [10, p. 97]. A typical example of a convolution kernel with a positive
Fourier transform is the Gaussian kernel.

The role of the squares of norms on RKHS can be illustrated by Mercer
kernels, i.e., continuous, symmetric, positive semidefinite functions K : Ω ×
Ω → R, where Ω ⊂ R

d is compact. For a Mercer kernel K, ‖f‖2
K can be

expressed using eigenvectors and eigenvalues of the compact linear operator

LK : L2
μ(Ω) → L2

μ(Ω),

(where μ is a nondegenerate probability measure on Ω) defined for every
f ∈ L2

μ(Ω) as

LK(f)(x) =
∫

X

f(y) K(x, y) dy.

By the Mercer Theorem (see, e.g., [10, p. 34])

‖f‖2
K =

∞∑
i=1

a2
i

λi
,

where the λi’s are the eigenvalues of LK and the ai’s are the coefficients of the
representation f =

∑∞
i=1 aiφi, where {φi} is the orthonormal basis of HK(Ω)

formed by the eigenvectors of LK . Note that the sequence {λi} is either finite
or convergent to zero (for K smooth enough, the convergence to zero is rather
fast [14, p. 1119]). Thus, the stabilizer ‖.‖2

K penalizes functions, for which the
sequences of coefficients {ai} do not converge to zero sufficiently quickly, and
so it constrains high-frequencies. The sequence {1/λi} plays a role analogous
to that of the function 1/k̃ in the case of a convolution kernel.

A third reason for using kernels in learning theory follows from the above
described reformulation of minimization of the empirical error functional as
an inverse problem by Kůrková [24, 25] and De Vito et al. [12]. Application of
tools from theory of inverse problems requires continuity of evaluation func-
tionals. By the definition, RKHSs are the class of Hilbert spaces, where all
evaluation functionals are continuous [2]. Characterization (10) of the mini-
mum of the regularized task can be also obtained using functional derivatives
as in [10, 33], but theory of inverse problems puts learning into a more general
framework of applied mathematics.

9 Conclusion

Computational intelligence should be able to perform some of the tasks posed
in IQ tests: to complete numerical, alphabetical or graphical patterns from

360 Věra Kůrková

their parts. Some of such tasks can be accomplished by artificial neural net-
works trained on examples of correctly completed patterns. The capability
of networks to satisfactorily process also new data that were not used for
learning is called generalization.

The concept of generalization became a subject of philosophical analysis in
the early 20th century. Husserl considered eidetic generalization as a process
of grasping an essence from eidetic variation of entities which exemplify it.

A mathematical model of generalization proposed by Poggio and Girosi
in the 1990s expresses generalization as a stability of network input-output
functions with respect to small variations in data. It was inspired by methods
of improving stability of solutions of differential equations developed in the
1960s under the name regularization. This method can be applied to tasks,
called inverse problems, where unknown causes (such as shapes of functions
or distributions) are searched from known consequences (measured data).

But inverse problems of finding patterns fitting to data have a different
nature than inverse problems from physics, which are typically defined by
integral operators. Learning can be modeled in terms of evaluation operators.

The theory of inverse problems can be applied to this type of operators
when solutions of learning tasks belong to a class of function spaces defined
by kernels. Kernel models (corresponding to networks with kernel units) are
suitable for data analysis because: (1) they can define mappings of input spaces
into feature spaces, where data to be classified can be separated linearly, (2)
norms on kernel spaces can play roles of undesirable attributes of network
functions, the penalization of which improves generalization, and as (3) all
evaluation functionals on function spaces defined by kernels are continuous,
the theory of inverse problems can be applied to describe pseudosolutions and
regularized solutions of learning tasks formulated as minimization of error
functionals over kernel spaces.

Mathematical methods which work for tomography also apply to compu-
tational intelligence. Applications of results from theory of inverse problems
combined with understanding of properties of kernels lead to description of
optimal network functions and designs of learning algorithms. Their practical
applications involve a variety of complexity problems related to computational
efficiency of solutions of systems of linear equations and their stability. But
the most difficult task is a proper choice of kernels, which requires some a
priori knowledge of the class of patterns to be recognized.

Acknowledgement

This work was partially supported by the project 1ET100300517 of the pro-
gram “Information Society” of the National Research Program of the Czech
Republic and the Institutional research Plan AV0Z10300504. The author
thanks P. C. Kainen from Georgetown University for fruitful comments and
discussions.

Generalization in Learning from Examples 361

References

[1] Aizerman M A, Braverman E M, Rozonoer L I (1964) Theoretical foun-
dations of potential function method in pattern recognition learning. Au-
tomation and Remote Control 28:821–837

[2] Aronszajn N (1950) Theory of reproducing kernels. Transactions of AMS
68:33–404

[3] Berg C, Christensen J P R, Ressel P (1984) Harmonic Analysis on Semi-
groups. New York, Springer-Verlag

[4] Bertero M (1989) Linear inverse and ill-posed problems. Advances in
Electronics and Electron Physics 75:1–120

[5] Bjorck A (1996) Numerical methods for least squares problem. SIAM
[6] Boser B, Guyon I, Vapnik V N (1992) A training algorithm for optimal

margin clasifiers. In Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory (Ed. Haussler D), pp. 144–152. ACM
Press

[7] Cortes C, Vapnik V N (1995) Support-vector networks. Machine Learning
20:273–297

[8] Courant R, Hilbert D (1962) Methods of Mathematical Physics, vol. 2.
New York, Wiley

[9] Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector
Machines. Cambridge, Cambridge University Press

[10] Cucker F, Smale S (2002) On the mathematical foundations of learning.
Bulletin of the AMS 39:1–49

[11] De Mol C (1992) A critical survey of regularized inversion method. In
Inverse Problems in Scattering and Imaging (Eds. Bertero M, Pike E R),
pp. 346–370. Bristol, Adam Hilger

[12] De Vito E, Rosasco L, Caponnetto A, De Giovannini U, Odone F (2005)
Learning from examples as an inverse problem. Journal of Machine Learn-
ing Research 6:883–904

[13] Di Chiro G, Brooks R A (1979) The 1979 Nobel prize in physiology or
medicine. Science 206:1060–1062

[14] Dunford N, Schwartz J T (1963) Linear Operators. Part II: Spectral
Theory. New York, Interscience Publishers

[15] Engl H W, Hanke M, Neubauer A (2000) Regularization of Inverse Prob-
lems. Dordrecht, Kluwer

[16] Friedman A (1982) Modern Analysis. New York, Dover
[17] Girosi F (1998) An equivalence between sparse approximation and sup-

port vector machines. Neural Computation 10:1455–1480 (AI Memo No
1606, MIT)

[18] Girosi F, Jones M, Poggio T (1995) Regularization theory and neural
network architectures. Neural Computation 7:219–269

[19] Groetch C W (1977) Generalized Inverses of Linear Operators. New York,
Dekker

362 Věra Kůrková

[20] Hadamard J (1902) Sur les problèmes aux dérivées partielles et leur sig-
nification physique. Bulletin of University of Princeton 13:49

[21] Hansen P C (1998) Rank-Deficient and Discrete Ill-Posed Problems.
Philadelphia, SIAM

[22] Kecman V (2001) Learning and Soft Computing. Cambridge, MIT Press.
[23] Kůrková V (2003) High-dimensional approximation by neural networks.

Chapter 4 in Advances in Learning Theory: Methods, Models and Appli-
cations (Eds. Suykens J et al.), pp. 69–88. Amsterdam, IOS Press

[24] Kůrková V (2004) Learning from data as an inverse problem. In: COMP-
STAT 2004 – Proceedings on Computational Statistics (Ed. Antoch J),
pp. 1377–1384. Heidelberg, Physica-Verlag/Springer

[25] Kůrková V (2005) Neural network learning as an inverse problem. Logic
Journal of IGPL 13:551–559

[26] Kůrková V, Sanguineti M (2005) Error estimates for approximate opti-
mization by the extended Ritz method. SIAM Journal on Optimization
15:461–487

[27] Kůrková V, Sanguineti M (2005) Learning with generalization capabil-
ity by kernel methods with bounded complexity. Journal of Complexity
21:350–367

[28] Moore E H (1920) Abstract. Bull. Amer. Math. Soc. 26:394–395
[29] Parzen E (1966) An approach to time series analysis. Annals of Math.

Statistics 32:951–989
[30] Penrose R (1955) A generalized inverse for matrices. Proc. Cambridge

Philos. Soc. 51:406–413
[31] Pinkus A (1985) n-width in Approximation Theory. Berlin, Springer-

Verlag
[32] Poggio T, Girosi F (1990) Networks for approximation and learning. Pro-

ceedings IEEE 78:1481–1497
[33] Poggio T, Smale S (2003) The mathematics of learning: dealing with

data. Notices of the AMS 50:536–544
[34] Popper K (1968) The Logic of Scientific Discovery. New York, Harper

Torch Book
[35] Rummelhart D E, Hinton G E, Williams R J (1986) Learning internal

representations by error propagation. In Parallel Distributed Processing
(Eds. Rummelhart D E, McClelland J L), pp. 318–362. Cambridge, MIT
Press

[36] Russo L (2004) The Forgotten Revolution. Berlin, Springer-Verlag
[37] Schölkopf B, Smola A J (2002) Learning with Kernels – Support Vector

Machines, Regularization, Optimization and Beyond. Cambridge, MIT
Press

[38] Smith D W, McIntyre R (1982) Husserl and Intentionality: A Study of
Mind, Meaning, and Language. Dordrecht and Boston, D. Reidel Pub-
lishing Co.

[39] Strichartz R S (2003) A Quide to Distribution Theory and Fourier Trans-
forms. Singapore, World Scientific

Generalization in Learning from Examples 363

[40] Tikhonov A N, Arsenin V Y (1977) Solutions of Ill-posed Problems.
Washington, D.C., W.H. Winston

[41] Wahba G (1990) Splines Models for Observational Data. Philadelphia,
SIAM

[42] Werbos P J (1995) Backpropagation: Basics and New Developments. In
The Handbook of Brain Theory and Neural Networks (Ed. Arbib M),
pp. 134–139. Cambridge, MIT Press

A Trend on Regularization and Model
Selection in Statistical Learning:
A Bayesian Ying Yang Learning Perspective

Lei Xu

Department of Computer Science and Engineering, Chinese University of Hong
Kong, Shatin, NT, Hong Kong, P.R. China

Summary. In this chapter, advances on regularization and model selection in
statistical learning have been summarized, and a trend has been discussed from a
Bayesian Ying Yang learning perspective. After briefly introducing Bayesian Ying-
Yang system and best harmony learning, not only its advantages of automatic model
selection and of integrating regularization and model selection have been addressed,
but also its differences and relations to several existing typical learning methods
have been discussed and elaborated. Taking the tasks of Gaussian mixture, local
subspaces, local factor analysis as examples, not only detailed model selection crite-
ria are given, but also a general learning procedure is provided, which unifies those
automatic model selection featured adaptive algorithms for these tasks. Finally, a
trend of studies on model selection (i.e., automatic model selection during para-
metric learning), has been further elaborated. Moreover, several theoretical issues
in a large sample size and a number of challenges in a small sample size have been
presented. The contents consist of

1. Best Fitting vs Over-fitting
2. Trends on Regularization and Model selection

• Regularization
• Model selection
• Model selection: from incremental to automatic

3. BYY Harmony Learning: A new direction for regularization and model selection
• Bayesian Ying-Yang system
• BYY harmony learning
• BYY harmony learning and automatic model selection
• BYY model selection criteria on a small size of samples
• BYY learning integrates regularization and model selection
• Best harmony, best match, best fitting: BYY learning and related approaches

4. Two Examples
• Gaussian mixtures
• Local subspaces and local factor analysis
• A unified learning algorithm

Lei Xu: A Trend on Regularization and Model Selection in Statistical Learning: A Bayesian

Ying Yang Learning Perspective, Studies in Computational Intelligence (SCI) 63, 365–406 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

366 Lei Xu

5. A Trend and Challenges
• A Trend for model selection
• Theoretical issues in a large sample size
• Challenges in a small sample size

6. Concluding Remarks

Key words: Statistical learning, Model selection, Regularization, Bayesian
Ying-Yang system, Best harmony learning, Best matching, Best fitting, AIC,
BIC, Automatic model selection, Gaussian mixture, Local factor analysis,
theoretical issues, challenges.

1 Best Fitting vs Over-fitting

Statistical learning is usually referred to a process that a learner discovers
certain dependence relation underlying a set of samples XN = {xt}N

t=1. The
learner is equipped with a device or model M to accommodate this dependence
relation. Such a relation is featured by a specific structure So and a specific
setting θo taken by a set of parameters θ. Keeping the same structure So, we
can get a family of specific relations So(θ) by varying θ within a given domain
Θ that includes θo. Provided that every xt comes from So(θo) without noise
or disturbance, if we know So but do not directly know θo, we can get θ = θo

via the principle of searching one θ ∈ Θ such that So(θ) best fits the samples
in XN , as long as N is large enough. Usually, samples come from So(θo)
subject to certain uncertainties, e.g., noises, disturbances, random sampling,
etc. When N is large enough, we may still get a unique estimate value θ∗ to
approximate θo via this best fitting principle. Such a task of determining θ is
usually called parameter learning.

The task becomes not so simple in the cases that either So is unknown or
N is not large enough even when So is known. If we do not know So, we have to
assign an appropriate structure to M . More specifically, a structure is featured
by its structure type and its complexity or scale. E.g., considering relations
described by y(x) = a3x

3 +a2x
2 +a1x+a0, its structure type is a polynomial

and its scale is simply an integer that is equal to 3. For two structures Sa

and Sb of a same type, Sa is actually a sub-structure (or Sa is included in Sb,
shortly denoted by Sa ≺ Sb) if Sa has a scale smaller than that of Sb. E.g.,
a polynomial of the order 2 is a sub-structure in a polynomial of the order 3.
For two structures Sa and Sb of different types, if one is not a sub-structure of
the other, we can always enlarge the scale of one structure to a large enough
one such that it includes the other as a sub-structure. For this reason, we
let M to consider a family of structures S(θk,k), where S may not be same
as the unknown one of So, but is pre-specified by one of typical structures,
depending on a specific learning task encountered. Readers are referred to [41]
for a number of typical structure types. k is a tuple that consists of one or

Model Selection versus Regularization 367

k

er
ro

r

er
ro

r

fitting
error

k*
k

generalization error

fitting
errork

• Cross Validation
• VC dimension based

• AIC, BIC, SIC
• MML/MDL
• Bayesian Approach

k̂SNSk*S1

kN

(b)(a)

generalization error

Fig. 1. Fitting error vs generalization error

several integers. By enumerating in a certain manner the values that k takes,
we can get a series of embedded structures S1 ≺ S2 ≺ · · · ≺ Sk · · · such that
Sk∗−1 ≺ So ≺ Sk∗ .

It is not difficult to find k∗ if XN comes from So(θo) without noise or
disturbance. Searching a best value of θ1 such that S1(θ1) best fits the samples
in XN , there will be a big fitting error. This fitting error will monotonically
decrease as k increases. Also, it reaches zero when k = k∗ and remains to be
zero as k further increases. That is, k∗ can be found by the smallest k where
a zero fitting error is reached. However, the best fitting error by Sk∗(θk∗) will
still be nonzero, if the samples in XN have been infected by noises while N
is a finite size. As shown in Fig. 1(a), the fitting error will keep to decrease
monotonically as k further increases, until it reaches zero at kN that relates
to N and but is usually much larger than k∗. In other words, a large part
of structure with a much larger scale has actually been used to fit noises or
disturbances. As a result, we can not get k∗ by the principle of finding the
smallest scale at which the best-fitting error is zero. This is usually called
over-fitting problem.

We also encounter the same problem even when we known that the samples
XN = {xt}N

t=1 come from So(θo) without noise but the size N is not large
enough. In such a case, we are unable to determine a unique θ∗ via the best
fitting principle, because there will be infinite many choices of θ by which the
best fitting error is zero. In other words, the samples in XN actually come
from a unknown sub-structure inside So. That is, we are lead to the same
situation as the above ones with So unknown.

2 Trends on Regularization and Model Selection

2.1 Regularization

In the literatures of statistics, neural networks, and machine learning, many
efforts in two directions have been made on tackling the over-fitting problem
in the past 30 or 40 years. One direction consists of those made under the
name of regularization that is imposed during parameter learning [35, 24].

368 Lei Xu

Though we do not know the original structure underlying the samples in
XN , we may consider a structure Sk(θk) with its scale large enough to include
the original structure, which is also equivalent to the cases that the samples
XN = {xt}N

t=1 come from a known structure So(θo) but with N being not
large enough. Instead of searching an appropriate substructure, we impose
certain constraint on θ or certain regularity on the structure S(θ) = Sk(θk)
with a scale k such that we can find a unique θ∗ by best fitting to get a
specific structure S(θ∗) but still with a scale k as an effective approximation
to a substructure in a lower scale.

The existing typical regularization techniques can be roughly classified into
two types. One is featured by a corrected best fitting criterion in a format of
best-fitting plus correction, as summarized below:

• Tikhonov regularization One popular approach relates to the well known
Tikhonov regularization [24, 11, 35], featured by the following format

θ∗ = arg min
θ

[F (S(θ),XN) + λP (S(x, θ))], (1)

where F (S(θ),XN) denotes the fitting error for implementing the best
fitting principle, and P (S(x, θ)) is usually called a stabilizer that describes
the irregularity or non-smoothness of the manifold S(x, θ) specified by the
structure S(θ). Moreover, λ is called a regularization strength that controls
how strong the stabilizer is in action.

• Ridge regression It has been widely used in the literature of neural net-
works (see a summary by Sec. 2.3 in [67]), featured by the following format

θ∗ = arg min
θ

[F (S(θ),XN) + λΩ(θ)], (2)

where Ω(θ) denotes a regularized term that attempts to shrink the dyna-
mic range that θ varies. One typical example is Ω(θ) = ‖θ‖2.

• Bayesian approach Another widely studied apporach is called maximum
a posteriori probability (MAP), featured by maximizing the posteriori
probability

p(θ|XN) = p(XN |θ)p(θ)/p(XN), (3)

or equivalently minimizing −[ln p(XN |θ) + ln p(θ)] with ln p(XN |θ) taking
the role of F (S(θ),XN), while ln p(θ) takes the role of Π(S(x, θ)) and Ω(θ).

This type has both one crucial weakness and one key difficulty. The crucial
weakness comes from the choices of P (S(x, θ)) in eq.(1), Ω(θ) in eq.(2), and
p(θ) in eq.(3), which usually have to be imposed in an isotropic manner.

Thus, regularization works only to a single mode data set in a symmet-
rical, isotropic, or uniform structure. However, such a situation is usually
not encountered for two main reasons. First, a data set may include multi-
ple disconnected substructures. Second, even for a single mode data set in a
symmetrical, isotropic, or uniform structure, we need to use a structure with

Model Selection versus Regularization 369

an appropriate scale k∗ to fit it. If a structure with a larger sale k > k∗ is
used, it is desired that the part corresponding to those extra scales can be
ignored or discarded in fitting. For an example, given a set of samples (xt, yt)
that come from a curve y = x2 + 3x + 2, if we use a polynomial of an order
k > 2 to fit the data set, i.e. y =

∑k
i=0 aix

i, we desire to force all the para-
meters {ai, i ≥ 3} to be zero. In other words, we have to treat the parameters
{ai, i ≥ 3} differently from the parameters {ai, i ≤ 2}, instead of being in an
isotropic or uniform way.

In addition to the above problem, we also encounter a key difficulty on how
to appropriately control the strength λ of regularization, which is usually able
to be roughly estimated only for a rather simple structure via either handling
the integral of marginal density or in help of cross validation, but with very
extensive computing costs [31, 32, 33].

The second type of regularization techniques consists of those not directly
guided by a corrected best fitting criterion, but rather heuristically based.
While some are quite specific problem dependent, some are generally applica-
ble to many problems, for examples we can

• add noises to the samples in XN ;
• add noises to a solution θ∗ obtained by certain approach;
• terminate a learning process before it converges.

Though the adding noise approaches can be qualitatively related to the
Tikhonov regularization [5], we do not know what type of noises to add and
thus usually add a Gaussian noise with a variance λ, which is still an isotropic
type regularization. In other words, we still can not avoid being suffering from
the previously discussed crucial weakness. Also, it is very difficult to determine
an appropriate variance λ.

As to the early termination approach, it has also been qualitatively related
to Tikhonov regularization in some simple structure. However, it is very diff-
icult to guide when to terminate.

Actually, all the regularization efforts suffer the previously discussed cru-
cial weakness and difficulty, which come from its nature of searching a struc-
ture S(θ∗) with a scale k to approximate a substructure in a lower scale,
while the part related to those extra scales has not been discarded but still in
action to blur those useful ones. To tackle the problems, we turn to consider
the other direction that consists of those efforts made under the name of model
selection, featured by searching a structure with an appropriate scale k∗.

2.2 Model Selection

As discussed previously in Fig. 1, we can not find an appropriate k∗ according
to the best fitting principle. Several theories or principles have been proposed
to guide the selection of k∗, which can be roughly classified into two categories.

One directly bases on the generalization error, i.e., the fitting error of an
estimated Sk(θ∗k) not only on the samples in XN but also on all the other

370 Lei Xu

samples from So(θo) subject to noises and certain uncertainty. Using po(x) =
p(x|So(θo)) to describe that x comes from So(θo) subject to certain noises or
uncertainty, and letting ε(x, k) to denote the fitting error of x by Sk(θ∗k), if
we measure the following expected error (also called generalization error):

Eg(k) =
∫
ε(x, k)po(x)dx, (4)

which takes in consideration not only the best fitting error on the samples in
XN but also all the other samples from So(θo).

However, it is impossible to estimate the generalization error by knowing
all the samples from So(θo). We have to face the difficulty of estimating the
generalization error merely based on the samples in XN . Two representative
theories for this purpose are as follows:

• Estimating generalization error by experiments Studies of this type are
mostly made under the name of cross-validation (CV) [31, 32, 33, 28], by
which generalization error is estimated in help of experiments of making
training and testing via repeatedly dividing a same set of samples into a
different training set and a different testing set.

• Estimating bounds of general error via theoretical analysis Though it is
theoretically impossible to get an analytical expression for the general-
ization error merely based on the samples in XN , we may estimate some
rough bound Δ(k) on the difference between the best fitting error and the
generalization error. As shown in Fig. 1(b), we consider

k̂ = arg min
k

J(k, θfit
k), J(k, θfit

k) = F (XN , θfit
k) + Δ(k), (5)

where θfit
k = arg minθk

F (XN , θk), and F (XN , θk) is a cost measure for
implementing a best fitting, e.g., it is usually the negative likelihood func-
tion − ln p(XN |θk). One popular example for this Δ(k) is the VC dimen-
sion based learning theory [39]. A bound Δ(k) relates to not only N and
the fitting error F (XN , θfit

k), but also a key index called VC dimension.
Qualitatively, such a bound Δ(k) is useful for theoretical understanding.
However, it is usually difficult to implement because the VC dimension is
very difficult to estimate except for some simple cases.

The other category summarizes all the other efforts not directly based
on estimating the generalization error. They are closely related but proposed
from different aspects, as summarized below:

• Minimizing information divergence The discrepancy between the true
model and the estimated model is minimized via minimizing KL(po‖pθk

),
where pθk

= p(x|θk) = p(x|Sk(θk)) and KL(p‖q) is the well known
Kullback-Leiber information, i.e.,

KL(p‖q) =
∫
p(x) ln

p(x)
q(x)

dx. (6)

Model Selection versus Regularization 371

It further follows that KL(po‖pθk
) = H(po‖po)−H(po‖pθk

), where

H(p‖q) =
∫
p(x) ln q(x)dx. (7)

Its negation −H(p‖q) is also called the cross entropy, and −H(p‖p) is the
entropy of p(x). Since H(po‖po) is constant, minimizing KL(po‖pθk

) is
equivalent to maximizing H(po‖pθk

). If the unknown true density po(x) is
simply replaced by the empirical density from the sample set XN , i.e.,

pXN
(x) =

1
N

∑N
t=1δ(x− xt), (8)

maximizing H(pXN
‖pθk

) becomes the maximum likelihood function, which
gives θML

k = arg maxθk
H(pXN

‖pθk
). However, as discussed before, the

best fitting measure H(pXN
‖pθML

k
) will monotonically decrease as k and

thus is not good to be used for selecting k. A better choice is to use the
unknown EXN

[H(pXN
‖pθk

)]θk=θML
k

. To estimate it, we consider the bias

b(k,N) = EXN
{EXN

[H(pXN
‖pθk

)]θk=θML
k
} − EXN

H(po‖pθML
k

), (9)

which relates to both k and N . With this bias b(k,N) estimated, we are
lead to eq.(5) with

F (XN , θfit
k) = H(pXN

‖pθML
k

), Δ(k) = b(k,N) (10)

for selecting k. Along this line, we are further lead to the well known
Akaike information criterion (AIC) with b(k,N) = 0.5dk/N [1, 2, 3] and a
number of its extensions AICB, CAIC, etc, [34, 6, 7, 14, 8].

• Optimizing marginal likelihood Introducing a prior p(θk), we consider to
maximize the likelihood of the following marginal distribution:

p(x|Sk) =
∫
p(x|Sk(θk))p(θk)dθk. (11)

Instead of solving this integration, we consider h(θk) = ln p(x|Sk(θk)) that
is expanded into a second order Taylor series with respect to θk around
θML

k . Let p(θk) = 1 noninformatively inside the intergal, we get

p(x|Sk) = p(x|Sk(θML
k))

∫
p(θk)e−0.5N(θk−θML

k)T I(θML
k)(θk−θML

k)dθk,

= p(x|Sk(θML
k))(2π)0.5dk |I(θML

k)N |−0.5 (12)

where dk is the dimension of θk, and I(θk) is the observed Fisher infor-
mation matrix. After ignoring some terms approximately, we are lead to
eq.(5) again with

F (XN , θfit
k) = H(pXN

‖pθML
k

), Δ(k,N) = 0.5
dk ln N

N
, (13)

which is usually referred as Bayesian inference criterion (BIC) [29, 15, 23].

372 Lei Xu

• Ockham Razor (minimizing two parts of coding) The idea is to mini-
mize the sum of the description length for the model and the description
length for residuals that the model fails to fit. Typical examples include
those studies under the name of Minimum Message Length (MML) the-
ory [36, 37, 38] and the name of Minimum Description Length (MDL)
[26, 27, 22, 9, 13]. Though being different from the above BIC type app-
roach conceptually, the implementation of either MML or MDL actually
crash back to be exactly equivalent to the above BIC type approach.

Though each of the above approaches can provide a criterion J(k, θ∗k)
in a format of eq.(5), we still have to face two problems for selecting an
appropriate scale k∗. First, in the cases that the size N of samples is small or
not large enough, each criterion actually provides a rough estimate that can
not guarantee to give k∗, and even results in a wrong result especially when k
consists of several integers to enumerate. Moreover, one criterion works better
in this case and the other criterion may work better in that case, none can
be said to be better than the others. Second, in addition to the performance
problem, another difficulty is its feasibility in implementation, because it has
to be made in the following two phases:

Phase 1: Enumerate k within a range from kd to ku, that is assumed to
contain the optimal k∗. For each specific k, we make parameter learning
to get θfit

k = arg minθk
F (XN , θk) according to the best fitting principle

(e.g., minimizing a square error or maximizing a likelihood function).
Phase 2: Select k∗ = arg mink J(k, θfit

k) for every k within [kd, ku].

This two-stage implementation is very expensive in computing, which makes
it infeasible in many real applications.

2.3 Model Selection: from Incremental to Automatic

There are also efforts made in literatures towards the difficulty of the above
two-stage implementation. One type of efforts is featured by an incremental
implementation. Parameter learning is made incrementally in a sense that it
attempts to incorporate as much as possible what learned at k into the learning
procedure at k+1. Also, the calculation of J(k, θ∗k) is made incrementally. Such
an incremental implementation can indeed save computing costs in certain
extent. However, parameter learning has to be made still by enumerating
the values of k, and computing costs are still very high. As k increases to
k + 1, an incremental implementation of parameter learning may also lead to
suboptimal performance because not only those newly added parameters but
also the old parameter set θk have to be re-learned.

Another type of efforts has been made on a widely encountered category
of structures, with each consisting or composing of k individual substructures,
e.g., a Gaussian mixture structure that consists of k Gaussian components.
A local error criterion is used to check whether a new sample x belongs to each
substructure. If x is regarded as not belonging to any of the k substructures,

Model Selection versus Regularization 373

the k + 1-th substructure is added to accommodate this new x. This incre-
mental implementation for determining k is much faster. However, the local
evaluating nature makes it very easy to be trapped into a poor performance,
except for some special cases that XN = {xt}N

t=1 come from substructures
that are well separated from each other.

Another new road has also been explored for more than ten years, with a
feature that model selection can be implemented automatically during para-
meter learning, in a sense that making parameter learning on a structure
Sk(θk) with its scale large enough to include the correct structure, will not only
determine parameters but also automatically shrink its scale to an appropriate
one, while those extra substructures are discarded during learning. It combines
the good feature of regularization and the good feature of model selection. On
one hand, it takes the good feature of regularization (i.e., parameter learning
is only implemented on a structure Sk(θk) with a larger scale), but discards
the crucial problem of regularization (i.e., those extra substructures are still
kept to blur the useful ones). On the other hand, it takes the good feature
of model selection, i.e., only a structure with an appropriate scale is in action
without any extra substructures to deteriorate its performance. Moreover, it
not only keeps the model selection performance as good as that by a two-
stage implementation, but only performs parameter learning only once with
a drastic reduction in computing costs.

One early effort along such a new road started from Rival Penalized Com-
petitive Learning (RPCL) for clustering analysis and detecting curves in an
image [64, 66]. A structure in a scale k consists of k individual substructures,
with each being simply one point as one cluster’s center. Initially, k is given
a value larger than the appropriate number of clusters. A coming sample x
is allocated to one of the k centers via competition, and the winning center
moves a little bit to adapt the information carried by this sample. Moreover,
the rival (i.e., the second winner) is repelled a little bit away from the sample to
reduce a duplicated information allocation. Driving those extra centers away,
this rival penalized mechanism will keep an appropriate number of centers. In
other words, RPCL makes the number of clusters determined automatically
during learning. This is a favorable feature that the conventional competi-
tive learning or clustering algorithm (e.g., k-means) does not have. RPCL has
been further extended from spheral clusters to elliptic clusters via Gaussian
mixture [55, 52, 49]. Readers are referred to [40, 47] for a recent elaboration
and to [17, 18, 16] for successful applications.

RPCL learning was heuristically proposed on a bottom level (i.e., a
level of learning dynamics or updating rule), which is quite different from
our previous discussions on a global level of using one learning principle
or theory to guide parameter learning and model selection in a top-down
manner. Proposed firstly in [59] and systematically developed in past years
[53, 51, 52, 49, 47, 42, 43, 41], the Bayesian Ying-Yang (BYY) harmony learn-
ing is such a global level theory that guides various statistical learning tasks
with model selection achieved automatically during parameter learning.

374 Lei Xu

3 BYY Harmony Learning: A Trend on Regularization
and Model Selection

3.1 Bayesian Ying-Yang System

Instead of letting M to consider a parametric structure for directly best fitting
the observed samples XN , M is considered or designed as a system that jointly
describes the observed samples and their inner representations Y via two dif-
ferent but complementary parts. As shown in Fig. 2(a), one is named as Yang
that consists of one component for representing XN and one component for
describing a path from XN to Y. The other part is named as Ying that con-
sists of one component for representing Y and one component for describing
a path from Y to XN . Each of the four components may have several choices
for its corresponding structure. The four components can be integrated into
a system in more than one choices under the name of architecture. In such a
Ying-Yang system, a principle of using a structure in a specific type to best fit
X can be generalized into a principle for a Ying-Yang system to best match
each other, which includes using a structure to directly best fit X as a subtask.

The Ying-Yang system can be further formulated in a statistical framework
by considering the joint distribution of X and Y, which can be described via
the following two types of Bayesian decomposition:

p(X ,Y) = p(Y|X)p(X), q(X ,Y) = q(X|Y)q(Y). (14)

In a compliment to the famous Chinese ancient Ying-Yang philosophy, the
decomposition of p(X ,Y) coincides the Yang concept with p(X) describing
samples from an observable domain (called the Yang space) and p(Y|X)
describing the forward path from XN to Y (called the Yang pathway). Thus,
p(X ,Y) is called the Yang machine. Similarly, q(X ,Y) is called the Ying ma-
chine with q(Y) describing representations in an invisible domain (thus re-
garded as a Ying space) and q(X|Y) describing the backward path (called the

building up input-response
type dependence

Y → XX → Y
Describing invariant dependence
underlying a set of all samples

The World
XN

YN

P(Y|X) P(X|Y)

The World
P(X)

P(Y)

(a) (b)

Fig. 2. (a) Ying-Yang system, (b) Bayesian Ying-Yang system

Model Selection versus Regularization 375

Ying pathway). As shown in Fig. 2(b), such a pair of Ying-Yang machines is
called Bayesian Ying-Yang (BYY) system.

Each of the above four components may have more than one choices for
its structure, as summarized below:

• p(X) is either a nonparametric estimation via data smoothing, e.g.,

ph(XN) =
∏N

t=1G(xt|x̄t, h
2I), (15)

or a direct use of the samples in XN , i.e., by p0(XN) = ph(XN)|h=0.
That is, each specific sample x̄t is blurred or smoothed by a Gaussian noise
with a variance h2, resulting in a Gaussian random variable xt.

• The structure of q(Y) takes at least three crucial roles. One is bridging the
Ying and Yang two parts. The other is specifying the nature of learning
tasks via a number of choices summarized by a general structure [41]. The
third role is that the scale of its structure actually dominates the scale of
the system architecture, as to be introduced in the next subsection.

• With the settlements of q(Y) and p(X), each of p(Y|X) and q(X|Y) has
also more than one different choices.

Moreover, there are different ways for integrating the four components
together, which result in different system architectures.

As a result, p(X ,Y) and q(X ,Y) in eq.(14) are actually not the same
though both represent the same joint distribution of X and Y. In such a for-
mulation, the best fitting principle is generalized into a principle that p(X ,Y)
and q(X ,Y) best match each other. This match can be measured by the
Kullback divergence [59] and several non-Kullback divergences [57, 45], sum-
marized in the following general expression:

D(p‖q, θk) =
∫
p(Y|X)p(X)f(

p(Y|X)p(X)
q(X|Y)q(Y)

)dXdY, (16)

where f(r) is a convex function. Particularly, we have the Kullback divergence
when f(r) = ln r. In this setting, our task becomes to specify each of the four
components via determining all the unknowns subject to all the known parts,
i.e., XN and the pre-specified structure of each component. In a summary,
we have

min
p(X), p(Y|X), q(X|Y), q(Y), and θk subject to

their pre-specified structures and XN

D(p‖q, θk). (17)

In the special case that p(Y|X) is free of any pre-structure, minimizing
D(p‖q, θk) with respect to p(Y|X) will lead to a special case that is equivalent
to using q(X) =

∫
q(X|Y)q(Y)dY to best fit XN in a sense of the maximum

likelihood principle. This nature, together with the feature that the special
settings of q(Y) as well as of other three components q(X|Y), p(Y|X) and
p(X) lead to specific structures of a number of existing typical learning tasks,
makes a number of existing statistical learning approaches summarized in a
unified perspective with new variants and extensions [44, 45, 41].

376 Lei Xu

3.2 BYY Harmony Learning

Still, we encounter an over-fitting problem for such a best Ying-Yang match
by eq.(17). Similar to what discussed in Sec. 1, we consider the BYY system
with a family of system architectures of the same type but in different scales.

A system architecture type is an integration of the four components with
each in its own specific structure type. As introduced in the previous subsec-
tion, the structure type of q(Y) takes a leading role, and the scale of the entire
system architecture is dominated by the scale of the structure for q(Y). We
can denote this scale by an integer k that usually represents an enumeration
of a set of integers k embedded within the structure of q(Y). Also we can use
θk to denote all the unknowns in an architecture of a scale k. Suffering an
expensive computing cost, we may learn a best value θ∗k∗ at a best scale k∗

via the following two-phase implementation:

Phase 1: Enumerate a series of architectures of a same type but in diff-
erent scales. For each one at k, we make parameter learning to get θ∗k =
arg minθk

D(p‖q, θk).
Phase 2: Select k∗ = arg mink J(k, θ∗k) according to one of the existing model

selection criteria.

Much more importantly, the Ying-Yang system is motivated together with
the ancient Chinese philosophy that the Ying and the Yang should be best
harmony in a sense that two parts should not only best match but also are
matched in a compact way. Applying this philosophy into a BYY system, we
have a best harmony principle in the following twofold sense:

• Best matching the difference between the two Bayesian representations
in eq.(14) should be minimized.

• Least complexity the resulted architecture for the BYY system should be
in a least complexity, i.e., its inner representation has a least complexity.

The above can be further mathematically measured by the following functional

H(p‖q, θk) =
∫
p(Y|X)p(X)f(q(X|Y)q(Y))μ(dX)μ(dY)− ln Z, (18)

where f(r) is again a convex function as in eq.(16), and a most useful case is
f(r) = ln r. Instead of eq.(17), we specify the four components via determining
all the unknowns subject to all the known parts as follows [59, 51, 49]:

max
p(X), p(Y|X), q(X|Y), q(Y), and θk subject to

their pre-specified structures and XN

H(p‖q, θk), (19)

which guides not only learning on θ∗k but also model selection on k∗. This
is a significant difference from the conventional approaches, by which θ∗k is
learned under a best fitting principle but k∗ is selected in help of another
learning theory.

Model Selection versus Regularization 377

The term ln Z imposes certain regularization into learning on XN with
a small size N , which will be discussed in Sec. 3.5. Here, we give a further
insight on H(p‖q) via the following decomposition

H(p‖q, θk) = Hx|y + Hy,
Hx|y =

∫
p(Y|X)p(X) ln q(X|Y)μ(dX)μ(dY),

Hy =
∫
p(Y) ln q(Y)μ(dY), p(Y) =

∫
p(Y|X)p(X)μ(dX). (20)

On one hand, the term Hx|y accounts for a best fitting of the samples in XN by
q(X|Y) in help of the corresponding inner representation Y. If p(X) is given
by eq.(8) and a set YN is given for pairing XN , Hx|y degenerates into the
likelihood function of q(X|Y). On the other hand, the term Hy accounts for
two purposes. When the structure of q(Y) is not pre-imposed with too much
constraint, maximizing Hy results in q(Y) = p(Y) such that −Hy becomes
exactly the entropy of the inner representation. Thus, maximizing Hy leads
to an inner representation in a least complexity. Usually, q(Y) is pre-imposed
with different structures for different learning tasks, maximizing Hy forces the
resulted p(Y) to satisfy these constraints correspondingly. It can be observed
that Hx|y increases while Hy decreases as the scale k increases, which trades
off for an appropriate k∗. In other words, H(p‖q, θk) can be used at Phase 2
of a two-phase implementation given at the beginning of this subsection, in
place of a model selection criterion. That is, we get θ∗k = arg minθk

D(p‖q, θk)
at Phase 1, and then, as shown in Fig. 3(a), we select a best k∗ at Phase 2 by

k∗ = arg min
k

J(k), J(k) = −H(p‖q, θk)|θk=θ∗
k
. (21)

With this two-phase implementation as a link, we can compare the perfor-
mances of this new criterion with those typical model selection criteria dis-
cussed in Sec. 2.2.

3.3 BYY Harmony Learning and Automatic Model Selection

The BYY harmony learning by eq.(19) has a salient advantage that an appro-
priate scale k∗ can be obtained by implementing parameter learning only once
on an architecture in a larger scale.

Considering q(Y) in a scale reducible structure that its scale k can be
effectively reduced into a smaller one by forcing a critical subset of parame-
ters within the structure becoming zero. That is, we consider a distribution
q(y|θy

k), θy
k ∈ Θy

k that demonstrates its maximum scale ky when θy
k takes val-

ues within some specific domain Θ̂k
y

of Θy
k while it effectively reduces into a

smaller scale when a critical subset φk of θy
k becomes zero. For an example, a

mixture distribution q(y|θy
k) =

∑k
�=1 α�q(y|φ�) has a scale k when α� > 0 for

all �, but will reduce into a scale k − 1 if one α� = 0. For another example,
an independent product q(y|θy

k) =
∏m

j=1 q(y(j)|θy(j)

k) has a scale m in general

378 Lei Xu

k

J(k)=−minqk
H(p||q,qk)J(k)=−

H(p||q,qk)|qk=q

*
k

qk
* = argminqk

D(p||q, qk)

kk*k*

(b)(a)

Fig. 3. Selection of an appropriate k∗

but a reduced scale m − 1 when there is one j with var(y(j)) = 0, i.e., the
variance parameter of y(j) becomes zero. Readers are referred to Sec. 22.5 in
[44], Sec. 23.3.2 in [45], Sec. II(B) in [42], and Sec. III(C) in [41].

For q(Y) in a scale reducible structure, we have two different types of
choices. First, let

J(k) = − max
θk, subject to θy

k
∈Θ̂k

y
H(p‖q, θ∗k), (22)

we are lead to a case as shown in Fig. 3(a) for a two-phase implementation.
E.g., we get such a case when α� = 1/k for all � or var(y(j)) = 1 for all j.
Second, we let J(k) = −maxθk

H(p‖q, θk) without any constraint, maximizing
Hy will push the part θ

y (2)
k of those extra substructures to zeros such that

q(Y) effective shrinks to a scale smaller than k. As a result, the curve shown
in Fig. 3(a) becomes the curve shown in Fig. 3(b).

In other words, considering q(Y) in a scale reducible structure with an
initial scale k that is larger than an appropriate one, we can implement the
following parameter learning

max
θk

H(p‖q, θk), (23)

which results in not only a best θ∗k but also an appropriate k∗ determined
automatically during this learning. Readers are referred to [41, 43, 44, 49].

3.4 BYY Model Selection Criteria on a Small Size of Samples

In a situation that the sample size N is too small, the performance of auto-
matic model selection by the BYY harmony learning will deteriorate, and we
have to turn back to a two phase implementation. For this purpose, we seek
to find improved model selection criteria from eq.(21).

We consider a more general BYY system with an augmented inner-system
representation R that consists of not only Y featured by a per sample pairing

Model Selection versus Regularization 379

relation between XN and YN (i.e., each xt gets its inner representation yt),
but also all the unknown parameters θk (including h in eq.(15)). With such
an extension, eq.(14) becomes

p(X ,R) = p(R|X)p(X), q(X ,R) = q(X|R)q(R). (24)

Specifically, q(R) = q(Y, θk) = q(Y|θk)q(θk) that consists of two parts. One
is q(θk) that describes a priori distribution for the values that θk may take.
The other is actually the previous one under the notation q(Y), which is
featured by a family of parametric functions that vary as a set of parame-
ters θy

k that is a subset of θk. That is, q(Y) = q(Y|θk) = q(Y|θy
k). Coupling

with the representation of Y, q(X|R) = q(X|Y, θk) = q(X|Y, θxy
k) is actually

the previous one under the notation q(X|Y), defining a family of parametric
functions with a set of parameters θxy

k that is also a subset of θk. More-
over, p(R|X) = p(Y, θk|X) = p(Y|X , θk)p(θk|X) that comprises of two parts.
p(Y|X , θyx

k) is actually the previous one under the notation p(Y|X), associated
with a set of parameters θyx

k that is another subset of θk too. The other part
p(θk|X) describes the uncertainty of estimating θk from X , which is actually
the posteriori counterpart of the a priori q(θk).

Correspondingly, we can observe that the harmony functional by eq.(18)
actually comes from

H(p‖q) =
∫
p(R|X)p(X)f(q(X|R)q(R))μ(dX)μ(dR). (25)

In the case f(r) = ln r, it can be further rewritten into

H(p‖q) =
∫
p(θk|X)H(p‖q, θk)dθk

H(p‖q, θk) =
∫
p(Y|X , θyx

k)ph(X) ln [q(X|Y, θxy
k)q(Y|θy

k)]dXdY − Z(θk),

Z(θk) = − ln q(θk), (26)

where H(p‖q, θk) is actually the one given in eq.(18) at the case f(r) = ln r.
Given the structures of q(Y|θy

k), q(X|Y, θxy
k), and p(Y|X , θyx

k), the task of
learning is featured by max{p(θk|X), k} H(p‖q). By expanding H(p‖q, θk) with
respect to θk around the following θ∗k up to the second order and ignoring
its first order term since ∇θk

H(p‖q, θk) = 0 at θk = θ∗k, the task can be
approximately decomposed into the following two parts:

θ∗k = arg max
θk

H(p‖q, θk), k∗ = arg min
k

J(k), J(k) = −H(p‖q),

H(p‖q) = H(p‖q, θ∗k)− 0.5d(θ∗k),

d(θk) = −Tr[Σθk

∂2H(p‖q, θk)
∂θk∂θk

T
]θk=θ∗

k
, (27)

Σθk
=
∫

(θk − θ∗k)(θk − θ∗k)T p(θk|X)dθk.

380 Lei Xu

That is, to get rid of the difficulty of estimating p(θk|X) and the related
computing cost, we can implement learning in two phases as follows:

Phase 1: Enumerate k for a series of architectures of a same type but in diff-
erent scales. For each candidate, we estimate θ∗k = arg maxθk

H(p‖q, θk).
Phase 2: Select a best architecture by k∗ = arg mink J(k), where d(θ∗k) can

be further approximately simplified into an integer as follows:

d(θk) =

{
dk, (a)an under − constraint choice,

2dk, (b)an over − constraint choice,
(28)

where dk is the number of free parameters in θk.

Eq. (28) comes from a reason related to the celebrated Cramer-Rao
inequality. We roughly regard that the obtained θ∗k suffers a uncertainty
under p(θk|X) with a covariance matrix Σθk

such that Σθk

∂2H(p‖q,θk)

∂θk∂θk
T ≈ I

at θk = θ∗k, especially when we consider a noninformative priori q(θk) = 1
or ln q(θk) = 0, which leads to eq.(28)(a). Generally, it may be too crude
to simply count the number of parameters in θk. Instead, d(θ∗k) is an effec-
tive number closely related to how p(θk|X̄N) is estimated. For an estimator
θ∗k = T (X̄N) basing on a sample set X̄N , if this estimator is unbiased to its true
value θo, it follows from the celebrated Cramer-Rao inequality that p(θk|X̄N)
can be asymptomatically regarded as p(θk|X̄N) = G(θk|θo, [NF (θo)]−1) with
F (θ) = − 1

N
∂2 ln q(X̄N |θ)

∂θ∂θT , and thus we have Σθk
=
∫

(θk−θo +θo− θ̂k)(θk−θo +
θo− θ̂k)T G(θk|θo, [NF (θo)]−1)dθk ≈ 2[NF (θo)]−1. Moreover, if we roughly re-
gard that ∂2H(p‖q,θk)

∂θk∂θk
T |θk=θo = [NF (θo)]−1 as N becomes large enough, we are

alternatively lead to eq.(28)(b).

3.5 BYY Learning Integrates Regularization and Model Selection

Recall Sec. 2.1 and Sec. 2.2, the conventional regularization approaches have
only a limited help on those learning problems due to a small sample size.
Also, these regularization approaches suffer one crucial weakness caused by
an isotropic regularization and a key difficulty on controlling a regulariza-
tion strength. The conventional model selection approaches aim at tackling
the weaknesses, but it suffers a huge cost to enumerate a number of candi-
date models with different values of k. Associated with a BYY system under
the best harmony principle, the roles of regularization and model selection
can be integrated in a sense that the crucial weakness caused by an isotropic
regularization can be avoided by the model selection ability of the best har-
mony principle, while types of companion regularization can still be imposed
to improve the weakness caused by the model selection mechanism of the
BYY harmony learning. Moreover, some of these companion regularization
approaches can also be decoupled from a BYY system and become directly
applicable to the conventional maximum likelihood learning on a parametric
model p(x|θ).

Model Selection versus Regularization 381

Considering H(p‖q, θk) =
∫
ph(X)HX (p‖q, θk)dX − Z(θk) in eq.(19), we

can also expand HX (p‖q, θk) with respect to X around X̄N up to the second
order, resulting in

H(p‖q, θk) = HX̄N
(p‖q, θk) + 0.5h2Tr[

∂2HX (p‖q, θk)
∂X∂X T

]X=X̄N
− Z(θk),

HX (p‖q, θk) =
∫
p(Y|X , θyx

k) ln [q(X|Y, θxy
k)q(Y|θy

k)]dY. (29)

The term 0.5h2Tr[·] is usually negative and thus increases as h2 → 0. What
a value h will take depends on what type of the priori term Z(θk), for which
there are three typical situations.

The simplest and also most usual case is q(θk) = 1 or Z(θk) = 0.
In this case, maxh H(p‖q, θk) will force h = 0, and thus we simply have
H(p‖q, θk) = HX̄N

(p‖q, θk). When the function forms of q(X̄N |Y, θxy
k) and

q(Y|θy
k) are given while there is no priori constraint on the function form

p(Y|X , θyx
k), we can consider the learning task in a sequential maximization,

i.e., maxθk
{maxp(Y|X) H(p‖q)}. It follows from maxp(Y|X) HX (p‖q, θk) that

p(Y|X̄N) = δ(Y − ȲN), ȲN = arg max
Y

[q(X̄N |Y, θxy
k)q(Y|θy

k)],

HX̄N
(p‖q, θk) = HX̄N ,ȲN

(p‖q, θk),

HX̄N ,Y(p‖q, θk) = ln [q(X̄N |Y, θxy
k)q(Y|θy

k)]. (30)

That is, maxθk
{maxp(Y|X) H(p‖q)} becomes maxθk

HX̄N ,ȲN
(p‖q, θk).

On one hand, the winner-take-all (WTA) maximization in eq.(30) indirectly
implements a mechanism of selecting an appropriate value k that enables the
automatic model selection discussed in Sec. 3.3. Readers are referred to
Sec. 22.5 in [44], Sec. 23.3.2 in [45], Sec. II(B) in [42], and Sec. III(C) in
[41]. However, there is also an other hand. If we subsequently implement
maxθk

HX̄N ,ȲN
(p‖q, θk) by ignoring the relation of ȲN=arg maxY [q(X̄N |Y, θxy

k)
q(Y|θy

k)] to θk, we have to re-update maxp(Y|X) HX (p‖q, θk) by eq.(30).
Though such an alternative maximization will gradually increase HX (p‖q, θk),
it cannot avoid to get stuck in a local maximum or perhaps even a saddle point.
Moreover, such an iterative maximization has to be made on the whole batch
X̄N per step and thus is computationally very expensive. In an actual imple-
mentation [59, 53, 51, 52, 49, 47, 42, 43, 41], such an iteration is made per
sample per step in a form ȳt = arg maxyt

[q(x̄t|yt, θ
xy
k)q(yt|Yt−1, θ

y
k)], where

Yt−1 is either an empty set or a set that consists of a number of past samples
of yt−1, · · · , yt−p.

When ȲN = arg maxY [q(X̄N |Y, θxy
k)q(Y|θy

k)] becomes an explicit expres-
sion with respect to X̄N and θk or ȳt = arg maxyt

[q(x̄t|yt, θ
xy
k)q(yt|Yt−1, θ

y
k)]

becomes an explicit expression with respect to xt, Yt−1 and θk, we can take
these explicit expressions into maxθk

HX̄N ,ȲN
(p‖q, θk) by considering a com-

pound dependence on θk, which will be helpful to improve the problem of local
maximum. However, except for certain particular cases, it is usually difficult
to get such explicit expressions. Therefore, we have to ignore the dependence
of ȲN with respect to θk.

382 Lei Xu

The local maximum problem can be remedied by a unique regulariza-
tion type coped with a BYY system, structural regularization or shortly BI-
regularization. Details are referred to Sec. 3 in [46].

The key idea of the BI-regularization is to let p(Y|X) in an appropriately
designed structure, three examples are given as follows:

(a) Let the optimization procedure for ȲN in eq.(30) to be approximated by
a parametric function:

ȲN = F (X̄N , θyx
k), p(Y|X̄N) = δ(Y − ȲN),

HX̄N
(p‖q, θk) = HX̄N ,Y(p‖q, θk)Y=F (X̄N ,θyx

k
), (31)

where two examples of F (X̄N , θyx
k) are as follows,

(1) ȳt = f(xt, θ
yx
k) for i.i.d. samples,

(2) ȳt = f(xt, Ξt, θ
yx
k) for temporal samples,

Ξt consists of past samples from either or both of X̄N and ȲN .
(b) We can also consider jointly a number of functions Y = F�(X̄N , θyx

�,k),
� = 1, · · · , nyx as follows

ȲN = F�∗(X̄N , θyx
k), �∗ = arg max

�
[q(X̄N |Y, θxy

k)q(Y|θy
k)]Y=F�(X̄N ,θyx

�,k
),

HX̄N
(p‖q, θk) = HX̄N ,Y(p‖q, θk)Y=F�∗ (X̄N ,θyx

�∗,k
). (32)

(c) In the special cases that Y is represented in discrete values or both
q(X̄N |Y, θxy

k) and q(Y|θy
k) are Gaussian, it is also possible to let

p(Y|X) =
q(X̄ |Y, θxy

k)q(Y|θy
k)∫

q(X|Y, θxy
k)q(Y|θy

k)dY . (33)

In these two cases, the integral over Y either becomes a summation or
is analytically solvable. Readers are referred to Sec. 3.4.2 in [40] some
discussions on the summation cases.

Another type of regularity lost comes from that HX̄N ,ȲN
(p‖q, θk) is com-

puted only based on the samples in XN via p0(XN) = ph(XN)|h=0 by eq.(15).
Though the above discussed structural regularization is helpful to remedy this
problem indirectly, another regularization type coped with a BYY system is
the Z-regularization featured by the term Z(θk) �= 0 in eq.(29), with two
typical examples as follows:

• When q(θk) is irrelevant to h but relates to a subset of θk, maxh H(p‖q, θk)
will still force h = 0, and thus force the second term 0.5h2Tr[·] disapp-
eared, while Z(θk) will affect the learning on θk. A typical example is

q(θxy
k , θy

k) ∝ [
N∑

t=1

∫
q(x̄t|yt, θ

xy
k)q(yt|θy

k)dyt]−1, (34)

or q(θk) = q(θxy
k , θy

k) ∝ [
N∑

t=1

q(x̄t|ȳt, θ
xy
k)q(ȳt|θy

k)]−1, if we get ȳt per x̄t,

Model Selection versus Regularization 383

which normalizes a finite size samples of q(x̄t|yt, θ
xy
k)q(yt|θy

k). Thus, it
is called normalization learning. Readers are referred to Sec. 2.2 in [52],
Sec. 22.6.1 in [44], and [47].

• Another typical case is q(θk) = q(h) ∝ [
∑N

t=1

∑N
τ=1 G(xt|xτ , h2I)/N]−1

that merely relates to h but is irrelevant to any other parameters in θk. In
this case, the term Z(θk) together with the term 0.5h2Tr[·] will trade off to
give an appropriate h, which then affects the learning on other parameters
in θk via 0.5h2Tr[·]. This type of regularization is equivalent to smoothing
the samples in XN via adding Gaussian noises with a noise variance h2.
Thus, it is called data smoothing. Details are referred to Sec. II(B) in [51],
Sec. 23.4.1 in [45], and Sec. III(E) in [41].
Furthermore, data smoothing can also be imposed on ȲN given by eq.(31)
or eq.(32) by considering

phy (Y|X̄N) = G(Y|ȲN , h2
yI),

HX̄N
(p‖q, θk) = HX̄N ,ȲN

(p‖q, θk) + 0.5h2
yTr[

∂2HX̄N ,Y(p‖q, θk)

∂Y∂YT
]Y=ȲN

,

q(θk) = q(h, hy) ∝ [

N∑
t=1

N∑
τ=1

G(xt|xτ , h2I)G(yt|yτ , h2
yI)/N]−1. (35)

In this case, the term Z(θk) together with the term 0.5h2Tr[·]+0.5h2
yTr[·]

will trade off to give both h and hy, which will affect the learning on other
parameters in θk via 0.5h2Tr[·] + 0.5h2

yTr[·].
Both the above Z-regularization approaches can be decoupled from a BYY
system and become directly applicable to the conventional maximum likeli-
hood learning on a parametric model p(x|θ), featured by their implementable
ways for controlling regularization strength. For data smoothing, the regular-
ization strength h2 (equivalently the noise variance) is estimated in an easy
implementing way. For normalization learning, the regularization strength is
controlled by the term Z, with a conscience de-learning behavior. Readers are
also referred to [71] for a rationale for the priors by eq. (34) and eq. (35).

In addition to all the above discussed, regularization can also be imple-
mented by appropriately combining the best match principle and the best
harmony principle. Readers are referred to Sec. 23.4.2 in [45] for a summary
of several methods under the name KL-λ-HL spectrum, and also to [43] for the
relations and differences of the best harmony principle from not only the best
match principle but also several existing typical learning theories. In addition,
the ln(r) function in eq.(19) can also be extended to a convex function f(r),
and a detailed discussion can be found in Sec. 22.6.3 of [44].

3.6 Best Harmony, Best Match, Best Fitting: BYY Learning
and Related Approaches

The differences and relations between the BYY learning and several typical
approaches have been discussed in [50, 43]. Here we further elaborate this
issue via more clear illustrations in Fig. 4 and Fig. 5.

384 Lei Xu

For a number of
Learning tasks

BYY Best HarmonyBYY Best Match

Maximum
Likelihood (ML)

Minimum Mutual
Information (MMI)

Max
EJL

p(y|x)
becomes
y=f(x)

p(x,y)=p(y|x)p(x) q(x,y)=q(x|y)q(y)

ML&extensions

Bits-back MDL (BB-MDL)
Helmholtz Machine (HM)
Variational
Approximation(VA)

 In architectures of

• Bi-directional

• Forward
• Backward

Fig. 4. BYY learning and related approaches (I)

p(X,R)=p(R|X)p(X) q(X,R)=q(X|R)q(R)
R={Y,q }

•Variational Bayes

•Marginal Likelihood
 (MDL/BIC)

R=q

MAP/
MML

Max
EJL

R=Y

p(R|X)
becomes
R=f(X)

•ML
•MMI
•BB-MDL
•HM/VA

For a number of
Learning tasks

 In architectures of

• Bi-directional

• Forward
• Backward

Fig. 5. BYY learning and related approaches (II)

As introduced in Sec. 3.1 and Sec. 3.2, learning in a BYY system can be
implemented via either the best match principle by eq.(16) or the best har-
mony principle by eq.(18). The key difference of the best harmony principle by
eq.(18) from the best match principle by eq.(16) is its model selection ability
such that it can guide both parameter learning and model selection under
a same principle, while the best match principle by eq.(16) can only guide
parameter learning while model selection needs another different criterion.

Model Selection versus Regularization 385

This difference can be further understood in depth from a Projection
Geometry Perspective (See Sec. III in [43]). The two principles correspond
to two different types of Geometry, which become equivalent to each other
only in a special case that H(p‖p) is fixed at a constant H0 that is irrelevant
to both k and θk (see eqn(45) in [43]). For a BYY system, this case means
that p(Y|X) in a format p(Y|X) = δ(Y − f(X)) or Y = f(X)†, as shown by
the overlap part of two big circles in Fig. 4.

This common part has not been studied in the literature before it is studied
under the best harmony principle in the BYY harmony learning on H(p‖q, θk)
by eq.(18) with Z = 1. We say that this case has a backward architecture since
only the backward direction Y → X has a specific structure while p(Y|X) is
free from any structural constraint. In these cases, we get eq.(30) from eq.(19).
Ignoring − ln Z, it equivalently considers

max
{θk,k, Y}

ln [q(XN |Y, θxy
k)q(Y|θy

k)]. (36)

That is, we implement a best fitting of samples in XN by a joint distribution
via maximizing the extreme of the joint likelihood of X ,Y with respect to the
unknown inner representation Y. So, we call eq.(36) the maximum extremal
joint likelihood or shortly Max-EJL, which will be further discussed in Sec. 5.2,
especially after eq.(62).

In the BYY Best Match domain shown in Fig. 4, the other part of learn-
ing on a BYY system includes the widely studied Maximum Likelihood
(ML), Minimum Mutual Information (MMI), the bits-back based MDL [13],
Helmholtz Machine and Variational Approximation [10, 12]. The detailed dis-
cussions are referred to Sec. II in [43]. There are also other cases that have
not been studied previously, e.g., data smoothing and normalization learning,
which have already been introduced in Sec. 3.5.

Furthermore, we consider the most general case with Y replaced by
R = {Y, θk} such that the best harmony principle is turned from eq.(18)
into eq.(25), by which we got eq.(26), eq.(27), and eq.(29), as well as those
studied in Sec. II(B) of [43].

Similarly, the best match principle is turned from eq.(16) into

D(p‖q) =
∫
p(R|X)p(X)f(

p(R|X)p(X)
q(X|R)q(R)

)dXdR, (37)

which shares with eq.(25) a common part that p(R|X) in a format p(R|X) =
δ(R− f(X)) or R = f(X)†, as shown by the overlap part of two big circles in
Fig. 5. This common part includes not only Max EJL at R = Y but also what
† Strictly speaking, H(p||p) is still relevant to k even when p(Y|X) or P (R|x)

becomes a δ density, since it can be regarded as a limit of a type −(c + ln h)k
as h → 0. In such a sense we should regard the above discussed common part in
Fig. 4 and Fig. 5 is actually not common but only belongs to BYY Best Harmony
domain, e.g., Max-EJL is a special case of BYY harmony learning only but not
of BYY matching learning.

386 Lei Xu

is usually called MAximum Posterior (MAP) at R = θk, as well as closely
relates to Minimum Message Length (MML) [36, 38].

In the BYY best match domain shown in Fig. 5, the other parts includes
not only those listed in Fig. 4 at its special case R = Y, but also the existing
marginal likelihood related Bayesian approaches at R = θk, such as MDL,
BIC, and Variational Bayes.

4 Typical Examples

4.1 Gaussian Mixture

The first example that has been studied in [59] under the BYY harmony
learning principle is the following Gaussian mixture, that is,

p(x|θk) =
k∑

j=1

αjG(x|μj , Σj). (38)

In the literature, its parameters θ is learned via the maximum likelihood by
the EM algorithm [25, 58], which has been widely studied in the literature of
machine learning and neural networks. Readers are referred to Sec. 22.9.1(a)
and Sec. 22.9.2(1) in [44] for a summary on a number of further results on the
EM algorithm.

To determine k, we need one of typical model selection criteria such as
AIC, BIC/MDL in help of a two-phase implementation. In [59], studies on
the BYY learning for eq.(38) have been made in the common part shown in
Fig. 4. On one hand, a criterion

J(k) = 0.5
k∑

j=1

αj ln |Σj | −
k∑

j=1

αj ln αj , (39)

and its special cases have been obtained [56]. On the other hand, an adaptive
algorithm for implementing eq.(23) is firstly proposed in [59] under the name
of the hard-cut EM algorithm for learning with automatic selection on k.

In eq.(38), xt is a d-dimensional vector and y takes only discrete values
j = 1, · · · , k. When p(X) is given by eq.(15), from eq.(18) we have

H(p‖q) =
N∑

t=1

k∑
j=1

∫
p(j|x)G(x|xt, h

2I)ρj(x|θj)dx,

ρj(x|θj) = ln [αjG(x|μj , Σj)]. (40)

In its simplest case that h = 0 and Z = 1, from eq.(21) we can get J(k) in
eq.(39) after discarding a constant 0.5d ln (2π) and ignoring a term

0.5
N

k∑
j=1

Tr[
N∑

t=1

p(j|xt)(xt − μj)(xt − μj)T Σ−1
j] = 0.5

d(N − k)
N

. (41)

Model Selection versus Regularization 387

When N is small, we can no longer regard 0.5d(N − k)/N as constant but
need to consider −0.5dk/N . For eq.(27) and eq.(28), we have dk = dk+k−1+∑k

j=1 dΣj
, where dA denotes the number of free parameters in the matrix A.

It further follows that

JC(k) = 0.5
k∑

j=1

αj ln |Σj | −
k∑

j=1

αj ln αj − 0.5
kd

N
,

JR(k) = JC(k) + ck
dk

N
, dk = dk + k − 1 +

k∑
j=1

dΣj
, (42)

dΣj
=

⎧⎪⎨
⎪⎩

1, for Σj = σ2
j I,

d, for Σj is diagonal,
0.5d(d + 1), for Σj in general,

where it follows from eq.(28) that

ck =

{
0.5, (a) corresponding to the case (a) in eq.(28),
1, (b) corresponding to the case (b) in eq.(28).

(43)

Moreover, it follows from eq.(23) and eq.(40) that the updating formulae
on αj , μj , Σj are same as their counterparts in the EM algorithm, while it
follows from eq.(30) that

p(j|xt) = δ̄jj∗
t
, j∗t = arg max

j
ρj(xt|θj), where δ̄ji =

{
1, if j = i,

0, otherwise,
(44)

which is a hard-cut version of the posteriori probability of j upon xt

p(j|xt, θj) =
e−ρj(xt|θj)∑k

j=1 e−ρj(xt|θj)
, (45)

in the conventional EM algorithm. Thus, an algorithm that uses p(j|xt) in
eq.(44) to replace the above one is named the hard-cut EM algorithm [59].

Generally, we consider to regularize learning on a small size N by

Z =

⎧⎨
⎩

1
N

∑N
t=1

∑N
τ=1 G(xt|xτ , h2I), (a) data smoothing with h �= 0,

1∑N

t=1

∑k

j=1
eρj(xt|θj) , (b) normalization with h = 0. (46)

Interestingly, as shown in [52, 49], it follows from the above case (b) that
we can get an algorithm from eq.(23) to demonstrate a mechanism similar to
RPCL learning previously introduced in Sec. 2.3.

The type of bi-directional regularization by eq.(33) can also be imposed.
E.g., as suggested by Eqn.(40) in [52], it follows from eq.(7) that we also get

388 Lei Xu

an algorithm that demonstrates another RPCL-like mechanism [19]. Actually,
different types of bi-directional regularization demonstrate different versions
of RPCL-like mechanism [46]. Readers are referred to Sec. 23.7 in [45] for a
historic remark on RPCL-like mechanisms versus the BYY harmony learn-
ing, and to Eqn.(28) in [47] for a unified procedure to implement RPCL and
adaptive EM as well as the hard-cut EM algorithm.

4.2 Local Subspaces and Local Factor Analysis

We further consider Σj in the following decomposition

Σj = σ2
j I +

mj∑
i=1

λ
(i) 2
j a

(i)
j a

(i) T
j , a

(i) T
j a

(i)
j = 1, a

(i) T
j a

(ι)
j = 0, i �= ι, (47)

where λ
(1) 2
j ≥ λ

(2) 2
j · · · ≥ λ

(mj) 2
j with each λ

(i) 2
j being the variance of

the projection a
(i) T
j x on the direction of the i-th principal vector a

(i)
j . This

expression actually represents a subspace located at μj , shown in Fig. 6(a).
Here, our task becomes finding several subspaces at different locations, which
is thus called local subspace analysis. Readers are referred to Secs. 3.2 & 3.3
of [49] for not only other variants of elliptic RPCL but also RPCL based local
subspaces.

When only the first principal component is considered, we can use this local
PCA for collectively detecting multiple lines in an image, as shown in Fig. 6(b).
We can also detect multiple planes in an image as shown in Fig. 6(c), as well
as multiple curves and surfaces. Some applications are referred to [17, 18].

As illustrated in Fig. 6(a), the subspace obtained via the decomposition by
eq.(47) is equivalent to orthogonally projecting each sample x onto a subspace
that is located at μ and spanned by vectors a1, a2, a3, such that the average
square error ‖e‖2 between x and its projection x̂ is minimized. It follows from
e = x− x̂, x̂ = Ay + μ that this subspace analysis is equivalent to the special
case Σj = σ2

j I of the following Factor Analysis (FA) [4]:

x = Ajy + μj + ej , ej ∼ G(ej |0, Σj), y ∼ G(y|0, I), E(ejy
T) = 0, (48)

e
e

a1

a3

a2

x

y1
y2

3y

x̂

 μ

e

(a) (b) (c)

Fig. 6. Subspaces

Model Selection versus Regularization 389

where u ∼ p(u) means that u comes from the distribution p(u). In a general
case Σj �= σ2

j I, the project x → x̂ is still linear but its direction is no longer
orthogonal to the subspace. Also, the average square error ‖e‖2 is no longer
minimized.

Since a rotation transform on y ∼ G(y|0, I) results in y′ ∼ G(y|0, I) still, it
has no difference to p(x) by eq.(48) whether Aj is a general matrix or subject
to the following constraint

Aj = UjΛj , UjU
T
j = I, Λ2

j = diag[λ(1) 2
j , · · · , λ(mj) 2

j] (49)

When p(X) is given by eq.(15), putting eq.(48) into eq.(18) we have

H(p‖q) =
N∑

t=1

k∑
j=1

∫
p(y|x, j)p(j|x)G(x|xt, h

2I)ρj(x, y|θj)dxdy − ln Z,

ρj(x, y|θj) = ln [αjG(x|UjΛjy + μj , Σj)G(y|0, I)]. (50)

Similar to eq.(44), it follows from eq.(30) that

p(y|xt, j) = δ(y − ŷj(xt)), ŷj(xt) = arg max
y

ρj(xt, y|θj),

ŷj(xt) = Wj(xt − μj), Wj = ΛjU
T
j (UjΛ

2
jU

T
j + Σj)−1. (51)

Also, we can get p(j|xt) by inserting ρj(xt|θj) = ρj(xt, ŷj(xt)|θj) into eq.(44).
Again, p(y|xt, j) in eq.(51) can be regarded as a hard-cut version of the fol-
lowing posteriori probability of y upon getting xt and j

p(y|xt, j) = G(y|ŷj(xt), I −Πj), Πj = Wj(UjΛ
2
jU

T
j + Σj)WT

j . (52)

In a way similar to eq.(39) and eq.(41), it follows from eq.(21) in the case
h = 0 and Z = 1 that

J(k, {mj}k
j=1) + cN,k = 0.5

k∑
j=1

αj{ln |Σj |+ Jy
j + mj ln (2π)} −

k∑
j=1

αj ln αj ,

Jy
j =

{
Tr[I −Πj], (a) for p(y|xt, j) = G(y|ŷj(xt), I −Πj),
T r[Γj], (b) for p(y|xt, j) = δ(y − ŷj(xt)),

where cN,k =
0.5
N

(kd +
k∑

j=1

mj),

Γj =
1

αjN − 1

N∑
t=1

p(j|xt)ŷj(xt)ŷT
j (xt) = WjSjW

T
j ,

Sj =
1

αjN − 1

N∑
t=1

p(j|xt)(xt − μj)(xt − μj)T . (53)

Specifically, the case (a) of Jy
j comes from

∫
yyT p(y|xt, j)dy, and the case (b)

of Jy
j comes from

∑k
j=1

∑N
t=1 p(j|xt)ŷj(xt)ŷT

j (xt), while cN,k comes in a way
similar to eq.(41).

390 Lei Xu

Moreover, similar to eq.(42) we have

JR(k, {mj}k
j=1) = J(k, {mj}k

j=1) + ck
dk

N
,

dk = dk + k − 1 +
k∑

j=1

(mj + dUj
+ dΣj

). (54)

where ck is same as in eq.(43), and dUj
= dmj − 0.5mj(mj + 1).

Next, it follows from eq.(48) that the distribution p(x) still remains un-
changed when

Aj = Uj , y ∼ G(y|0, Λ2
j) (55)

where the components of y remain uncorrelated. Correspondingly, eq.(50),
eq.(51), eq.(52), and eq.(53) are modified with the following replacements

ρj(x, y|θj) = ln [αjG(x|Ujy + μj , Σj)G(y|0, Λ2
j)], (56)

Wj = Λ2
jU

T
j (UjΛ

2
jU

T
j + Σj)−1,

p(y|xt, j) = G(y|ŷj(xt), Λ2
j −Πj),

Jy
j =

{
ln |Λ2

j −Πj |+ mj , (a) for p(y|xt, j) = G(y|ŷj(xt), Λ2
j −Πj),

ln |Γj |+ mj , (b) for p(y|xt, j) = δ(y − ŷj(xt)).

Still, we can get p(j|xt) by inserting the above ρj(xt|θj) = ρj(xt, ŷj(xt)|θj)
into eq.(44), and also get JR(k, {mj}k

j=1) by eq.(54).
There are two specifical cases that deserve a particular mention. One is

the special case Σj = σ2
j I of eq.(48), which becomes local subspace analysis.

The other is the special case k = 1, which becomes factor analysis. In the
latter case, J(k, {mj}k

j=1) and JR(k, {mj}k
j=1) are degenerated into J(m1)

and JR(m1) for determining the number of factors. Moreover, if we jointly
have k = 1 and Σ1 = σ2

1I, the problem becomes equivalent to Principal
Component Analysis (PCA), J(m1) and JR(m1) can be used for determining
the subspace dimension.

4.3 A Unified Learning Algorithm

On one hand, learning on the local factor analysis model by eq.(48) can be
implemented in a two-phase implementation. That is, the first phase consid-
ers a set of possible candidate models by enumerating k, {mj}k

j=1 and then
learns parameters in every candidate model in help of the EM algorithm under
the maximum likelihood principle. The second phase selects a best candidate
k∗, {m∗

j}k∗
j=1 by either J(k, {mj}k

j=1) or JR(k, {mj}k
j=1) given in the previous

subsection. However, not only the computing cost will be impractically huge,
especially for selecting {mj}k

j=1, but also this criterion type of multiple dis-
crete variables becomes unable to provide a correct minimum point due to a
finite sample size.

Model Selection versus Regularization 391

On the other hand, we can implement learning by eq.(23) in the cases
of eq.(49) or eq.(55), during which k∗, {m∗

j}k∗
j=1 is able to be automatically

determined. For eq.(49), learning is made via eq.(50) during which mj is
determined via minimizing − ln G(y|0, I) = c + 0.5‖y‖2 that pushes y(j) 2 of
an extra dimension to 0. For eq.(55), learning is made via eq.(50) modified
with eq.(56), during which mj is determined via minimizing − ln G(y|0, Λ2

j)

that directly pushes each extra λ
(r) 2
j to 0. From eq.(23), eq.(50), and eq.(56),

we can obtain the detailed implementing algorithms. One example is the one
given by Eqn.(72) plus Table 2 in [42] with Bj = 0,∀j.

A general adaptive learning procedure is introduced in the sequel, which
includes not only the one for implementing BYY harmony learning by eq.(23)
in the form of eq.(50) and eq.(56) with Z = 1 and h = 0, but also an adap-
tive EM algorithm for the maximum likelihood learning, as well as a RPCL
learning algorithm via the following rival penalized competition:

pj,t =

⎧⎪⎪⎨
⎪⎪⎩

1, if j = c, c = arg maxj ρj(xt|θj),

−γ, if j = r, r = arg maxj �=c ρj(xt|θj),

0, otherwise,

(57)

where ρj(xt|θj) is either the one in eq.(40) or ρj(xt|θj) = ρj(xt, ŷj(xt)|θj) by
eq.(50) or eq.(56).

The general procedure consists of iterating the following two steps:

Yang step: take a sample xt, get yj(xt) = Wj(xt−μj) with Wj by eq.(51) for
eq.(49) or by eq.(56) for eq.(55). Then, with ρj(xt|θj) = ρj(xt, ŷj(xt)|θj)
by eq.(50) or eq.(56), further get pj,t as follows

pj,t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(j|xt) by eq.(45), (a) ML− Learning,

p(j|xt, θj) by eq.(44), (b) BYY harmony,

by eq.(57), (c) RPCL− Learning,

p(j|xt, θj)− γq(j|xt), (d) RPCL− BYY harmony,

(58)

where γ > 0 is a small number, and q(j|xt) ≥ 0,
∑k

j=1 q(j|xt) = 1 are
either pre-specified or estimated by some means, e.g., via a normalizing
term Z.

Ying step: adaptively update all the parameters, check and discard extra
dimensions. The details consist of

(a) x̂j,t = Uold
j yj,t + μold

j , ej,t = xt − x̂j,t, μnew
j = μold

j + ηpj,tej,t,

gUj
= yte

T
j,tΣ

old −1
j , Unew

j = Uold
j + η(gT

Uj
− Uold

j gUj
Uold

j),

(b) λ
(i) new
j = λ

(i) old
j + ηpj,t

y
(i) 2
j,t − (λ(i) old

j)2

λ
(i) old
j

,

392 Lei Xu

if λ
(i)
j → 0 is detected, remove the i-th coordinate in the j-th

subspace, mj ← mj − 1;

(c) αj =
β2 new

j∑k
j=1 β2 new

j

, βnew
j = βold

j + η
pj,t − αold

j

∑k
j=1pj,t

βold
j

, (59)

if αj → 0 is detected, discard the j-th subspace, k ← k − 1.
(d) Σj = SjS

T
j , Snew

j = Sold
j + ηpj,tG

old
Σj

Sold
j ,

GΣj
= Σ−1

j ej,te
T
j,tΣ

−1
j −Σ−1

j .

For Σj = σ2
j I, simply σnew

j = σold
j + ηpj,t

‖ej,t‖2/d− σold 2
j

σold
j

.

The updating on Unew
j guarantees the satisfaction of UjU

T
j = I. Moreover,

even when pj,t < 0, the updating rules (d)&(c) guarantee the satisfaction
of αj ≥ 0,

∑k
j=1αj = 1 and that Σj remains non-negative definite.

4.4 Other Examples

The above general procedure degenerates back to the unified learning proce-
dure by Eqn.(28) in [47] for Gaussian mixture by eq.(38) at Uj = 0, Λj = I.
The above procedure also directly applies to the following two special cases:

• Local subspace analysis at the special case Σj = σ2
j I, which actually pro-

vides a unified scheme as well as improvements on the previous studies
under the name of local PCA, local subspaces, and multi-sets mixture
learning (MML) [62, 60]. Also, it can be applied to detecting lines, planes,
curves, and surfaces in pattern recognition tasks [17, 18, 16].

• Factor analysis at the special case k = 1 that also includes principal
components analysis (PCA). Readers are referred to Secs.2.2-2.4 in [48]
and Sec. IV in [41] for recent summaries.

Advances on the BYY harmony learning have also been made along the
following directions:

• Independence subspace analysis Extensions have been made from the
specific case G(y|0, Λ2

j) to a general case
∏m

j=1 q(y(j)), including inde-
pendence components dependence (ICA), binary factor analysis (BFA),
nonGaussian factor analysis (NFA), and LMSER, as well as three layer
net. Readers are referred to Secs.4 & 5 in [48] and Sec. IV in [41].

• Independence state space analysis Extensions have further been made
from G(y|0, Λ2

j) and
∏m

j=1 q(y(j)) to temporal state spaces by taking
temporal relations in consideration, including temporal factor analysis
(TFA), independent hidden Markov model (HMM), temporal LMSER,
and variants. Readers are referred to [42] and Sec. 6 in [48].

• Mixture of shape-structures In the computer vision field, finding multiple
shapes is an important task called object detection. In [69], a new approach
was proposed under the name of randomized Hough transform (RHT)

Model Selection versus Regularization 393

[65]. In [62, 60], a multi-set modelling method has been proposed, under
situations of strong noise, partially observable objects, and a large amount
of objects. In [40], a unified problem solving paradigm has been developed.

• Combination of multiple inference In [68], an early systematic study has
been made on multiple classifier combination. In [63], a number of results
have been obtained on statistical consistency and convergence rates for
RBF nets. An alternative model of mixture of experts has been proposed
and easily implemented by the EM algorithm [61], which is further applied
to replace the existing suboptimal two stage algorithm for RBF nets [54].
Also, the number of basis functions are determined via either RPCL or
BYY harmony learning. Readers are referred to Sec. 22.9.1(d) in [44].

5 A Trend and Challenges

5.1 A Trend for Model Selection

Summarizing the discussions on model selection in Sec. 2.2, Sec. 2.3, and
Sec. 3, we roughly have two categories of studies. One is local cost based,
usually for a learning task on a model that consists of several individual
units or components. There is a local cost measure for each individual, e.g.,
− ln[αjG(x|μj , Σj)] can be such a local cost for the j-th component in the
Gaussian mixture by eq.(38). A sample x is excluded from one individual if
its corresponding local cost is higher than a pre-specified threshold. If this
x is excluded by all the current individual components, a new component
is created to accommodate this x. As a result, a number of components are
allocated to a set of samples. However, it is difficult to appropriately assign
such a pre-specified threshold.

The other category is a global cost based, which is applicable to any model
selection tasks. That is, after all its unknown parameters have been learned,
a model with a scale k is globally evaluated by a cost J(k) that is com-
puted based on the learned parameters. Studies of this category can be further
classified according to the configuration of J(k).

When we have a large sample size N , as discussed in Sec. 1, a negative
likelihood and a best fitting error, as well as a best matching error, will vary
in a way illustrated by the top part of Fig. 7(a). That is, a correct scale k∗ can
be determined at the smallest k that either makes J(k) reach its minimum
or equivalently makes ΔJ(k) = J(k + 1)− J(k) = 0. However, as the sample
size N drops below a limit, this negative likelihood type J(k) will degenerate
into those shown by the top cases of Fig. 7(b) and Fig. 7(c). As a result, a
correct scale k∗ can not be obtained via searching a minimum or detecting
a zero. One heuristic remedy is to check whether ΔJ(k) is smaller than a
pre-specified threshold. Alternatively, the conventional learning theories aim
at modifying the top cases of Fig. 7(b) and Fig. 7(c) into the bottom cases

394 Lei Xu

kkk*

k* k* k*

k* k*

k*

k

As the sample size N reduces

Fitting error

k

AIC
BIC
CV

(a) (b)

kk

(c)

Fig. 7. Best matching error vs model selection criteria as the sample size N reduces

of Fig. 7(b) and Fig. 7(c) such that k∗ can still be obtained via searching a
minimum.

At each k, a cost J(k) is computed once all the unknown parameters in
the corresponding model have been estimated. Except for certain special task
(e.g., determining the dimension k of orthogonal subspace), the estimated
unknown parameters at one value of k usually can not be carried over to
another value of k. More specifically, neither the estimated parameters at a
lower value k′ can be directly used as a part of the parameters at a higher
value k′′, nor the estimated parameters at a higher value k′′ can be directly
adopted for a use at a lower value k′. Therefore, all the unknown parameters
have to be estimated completely at each different value k. That is, the model
selection has to be implemented expensively.

On one hand, the BYY harmony learning provides us new criteria J(k)
by eq.(21), eq.(22), and eq.(27). Illustrated in the middle of Fig. 8 are those
J(k) curves by eq.(21) at different sample sizes of N , which are usually same
or slightly worse than the popular model selection criterion BIC or equiva-
lently MDL. The curve J(k) by eq.(21) or eq.(22) are used as a bridge to
illustrate the equivalent performance of automatic model selection by eq.(23)
in a comparison with those existing conventional criteria, instead of being
actually used in a two phase implementation for model selection. In a two
phase implementation, it is suggested to use J(k) by eq.(27), as illustrated
in the bottom of Fig. 8, which are usually better than several typical criteria
such as AIC, CAIC, BIC/MDL, CV, etc.

On the other hand, more important is that the BYY harmony learning
provides a new trend that integrates model selection and parameter learning
into one single process with a considerably reduced computing cost, that is,

Model Selection versus Regularization 395

kkk* k* k*k

kkk* k* k*k

kkk* k* k*k

(a) (b) (c)

AIC
BIC
CV

BYY
J(k)

BYY - S
J(k)

As the sample size N reduces

Fig. 8. BYY harmony learning criteria vs model selection criteria as the sample
size N reduces

a trend of seeking automatic model selection during parameter learning. Fur-
ther efforts are deserved along this trend. Generally speaking, in additional
to the BYY harmony learning, an approach that follows this trend should be
either explicitly or implicitly featured by a cost measure that varies with both
the scale integer k and the parameters θk, in a format f(θk, k) or shortly f(θk)
with the following nature:

f(θk)

{
= f∗, when k ≥ k∗, θk∗ = θ∗k∗ and φk = 0,
> f∗, otherwise,

(60)

where f∗ = f(θ∗k∗) is reached at the correct k∗ and the correct value θ∗k∗ .
Moreover, θk = {θk∗ , θr

k−k∗} with θr
k−k∗ denoting the remaining part of θk

after removing the subset θk∗ , and φk is a critical subset φk ⊆ θr
k−k∗ . For

an example, we have φk = {αj}k
j=k∗+1 in eq.(38). When φk = 0, a Gaussian

mixture with k components actually becomes one with only k∗ components.
Given a k ≥ k∗ initially, minimizing f(θk) with respect to θk will force

θk∗ = θ∗k∗ and φk = 0, such that a model with a higher scale k actually
becomes one with the correct k∗ effectively. That is, model selection is made
automatically during parameter learning. Moreover, it follows from eq.(60)
that J(k) = minθk

f(θk) will illustrate as shown by Fig. 3(b) and that J(k) =
minθk, s.t. φ′

k
=c f(θk) will illustrate as shown by Fig. 3(a), where c is certain

396 Lei Xu

constant and φ′
k ⊃ φk is a subset in θk, e.g., we have c = 1/k and φk = {αj}k

j=1

in eq.(38).

5.2 Theoretical Issues in a Large Sample Size

Corresponding to the studies on asymptotic natures (i.e., the behaviors as the
sample size N → ∞) of the maximum likelihood approach or a best fitting
type approach (e.g., the Kullback divergence based one by eq.(16)), it is also
an interesting problem to study asymptotic natures of the BYY harmony
learning. Such studies can be made in two stages.

First, we consider maximizing H(p‖q, θk) in eq.(18). Considering f(r) =
ln r and that samples of xt are i.i.d., we have Z → 1 as N → ∞ and thus
eq.(18) becomes equivalent to the following form

Ho(p‖q, θk) =
∫
p(y|x)po(x) ln [q(x|y, θx|y

k)q(y, θy
k)]μ(dx)μ(dy), (61)

where po(x) is the original density that samples of x come from, k is one or
a set of integers that represent the scale of y, and θk = {θx|y

k , θy
k} consists

of the unknown parameters sets in the distribution functions q(x|y, θx|y
k) and

q(y, θy
k) respectively, with their structures pre-designed.

When p(y|x) is free of any constraint, maxp(y|x) Ho(p‖q, θk) results in

p(y|x) = δ(y − y(x, θk)), y(x, θk) = arg max
y

[q(x|y, θx|y
k)q(y, θy

k)], (62)

Ho(p‖q, θk) =
∫
po(x) ln Q(x, θk)μ(dx), Q(x, θk) = q(x|y(x, θk))q(y(x, θk)),

which was previously discussed after eq.(36), as well as in Fig. 4 and Fig. 5,
under the name Max-EJL.

In a comparison of the corresponding maximum likelihood counterpart,
i.e.,

Lo(θk) =
∫
po(x) ln q(x, θk)μ(dx),

q(x, θk) =
∫
q(x|y, θx|y

k)q(y, θy
k)μ(dy), (63)

we can observe that the above marginal integral q(x, θk) (i.e., a projected
sum of q(x|y, θx|y

k)q(y, θy
k) to the domain of x) is replaced by Q(x, θk) in

eq.(62) that is the peak point of q(x|y, θx|y
k)q(y, θy

k) in the domain of y per
each fixed x. Illustratively, we can regard q(x|y, θx|y

k)q(y, θy
k) as a mountain

in a x − y coordinate system, q(x, θk) lumps the total sum of all the masses
along the y-axis perpendicularly to the x-axis, while Q(x, θk) only places the
mass on the highest ridge of the mountain perpendicularly to the x-axis.
Noticing that the mountain is constrained to have a unit total mass, i.e.,∫
q(x|y, θx|y

k)q(y, θy
k)μ(dx)μ(dy) = 1, maximizing Ho(p‖q, θk) will force the

mountain shrink to concentrate swiftly to its highest ridge, while maximiz-
ing Lo can be achieved by those mountains with a unit mass that stretches

Model Selection versus Regularization 397

along the y-axis in infinite many ways. This provides another perspective that
explains why the BYY harmony learning has a model selection ability while
the maximum likelihood learning has not.

Moreover, it follows from eq.(62) that

Ho(p‖q, θk) =
∫
po(x) ln Q̃(x, θk)μ(dx) + C(θk),

Q̃(x, θk) = Q(x, θk)/C(θk), C(θk) =
∫
Q(x, θk)μ(dx), (64)

Maximizing Ho(p‖q, θk) not only forces the configuration of q(x|y, θx|y
k)q(y, θy

k)
to shrink into its highest ridge for a largest C(θk), but also forces Q̃(x, θk) to
match po(x) as close as possible.

Comparing eq.(64) with eq.(63), we observe that the asymptotic nature
of the BYY harmony learning can be investigated in two typical situations.
First, when C(θk) is only relevant to k but irrelevant to θk. The asymptotic
nature of the BYY harmony learning is similar to the asymptotic nature of
the maximum likelihood learning. That is, the key point is to investigate the
discrepancy between po(x) and Q(x, θk) versus the discrepancy between po(x)
and q(x, θk). We consider the notations:

Pq(k) = {q(x, θk) : for all θk ∈ Ξk},
PQ(k) = {Q(x, θk) : for all θk ∈ Ξk}, (65)

which denote the distribution families that can be represented by q(x, θk) and
Q(x, θk), respectively, where Ξk is the domain that θk takes values.

One typical asymptotic nature is the so called statistical consistency. For
the maximum likelihood learning, having statistical consistency means that
q(x, θ̂k) → po(x) for a maximum likelihood estimator θ̂k as N →∞, or equiv-
alently po(x) ∈ Pq(k), which is always possible when k becomes large enough.
For the BYY harmony learning, when C(θk) is only relevant to k but irrele-
vant to θk, statistical consistency means po(x) ∈ PQ(k), which is also possible
when k become large enough.

It is interesting to further study the cases where a statistical consistency
is not satisfied. Such cases are encountered either when k is not large enough
or when C(θk) is relevant to θk. The following are several theoretical issues
to be explored:

(a) When C(θk) is only relevant to k but irrelevant to θk, it deserves to
investigate how the bias between po(x) and Q(x, θk) and the bias between
po(x) and q(x, θk) vary as k in the cases with N →∞.

(b) With the unknown original density po(x) replaced by the empirical density
by eq.(8) in the above case (a), it deserves to further investigate how the
bias between po(x) and q(x, θ̂k) and the bias between po(x) and Q(x, θ̂k)
vary as k and N vary, where θ̂k is obtained by the maximum likelihood
learning for q(x, θ̂k), and by the BYY harmony learning via eq.(19) or
eq.(23) for Q(x, θ̂k).

398 Lei Xu

(c) When C(θk) is relevant to θk, it follows from eq.(64) that the BYY har-
mony learning is somewhat similar to a Bayesian learning, with C(θk)
taking a role similar to a priori, which usually introduces certain bias.
It is interesting to investigate how the bias between po(x) and Q(x, θ̂k)
changes as k (or as both k and N , when po(x) is replaced by eq.(8)).

(d) In the above cases, there are no regularization taking its role. As intro-
duced in Sec. 3.5, several ways can be used for imposing certain regular-
ization, and it deserves to study how the asymptotic nature of the BYY
harmony learning is affected by regularization. Particularly, it deserves to
investigate how the bias between po(x) and Q(x, θ̂k) changes as k, N , and
h, with po(x) replaced by eq.(15). It also deserves to study how the bias
between po(x) and Q(x, θ̂k) changes as k and N , when p(y|x) is free but
in a structure as discussed in Sec. 3.5 (e.g., given by eq.(31) and eq.(32)).

(e) As discussed in [43], the maximum likelihood learning and the BYY har-
mony learning can be interpreted from two different views of geometry. It
is interesting to further investigate the nature of manifold of H(p‖q, θk),
as well as its relations to k, N , and h.

5.3 Challenges in a Small Sample Size

In the cases of a small sample size, we encounter more challenges on a number
of theoretic and algorithmic aspects for not only the BYY harmony learn-
ing but also other model selection approaches. In the following, we discuss a
number of typical challenges:

(a) One is to estimate H(p‖q) =
∫
p(θk|X)H(p‖q, θk)dθk by eq.(26) more

accurately. It is approximated by J(k) = −H(p‖q, θ∗k)+0.5d(θ∗k) in eq.(27)
via considering a noninformative priori q(θk) = 1 and a rough estimator
θ∗k = T (X̄N) in help of the celebrated Cramer-Rao inequality. Interestingly,
this J(k) with d(θ∗k) in the case (a) of eq.(28) can also be reached in help
of using the idea of eq.(9) to estimate the bias

b(k,N) = EXN
{EXN

[H(p‖q, θk)]θk=θ∗
k
} − EXN

H(p‖q, θ∗k). (66)

Considering the case H(p‖q, θk) = HX̄N ,ȲN
(p‖q, θk) given by eq.(30),

i.e., H(p‖q, θk) = ln [q(X̄N |ȲN , θxy
k)q(ȲN |θy

k)] that can be approximately
regarded as the likelihood function jointly on X̄N , ȲN if we ignore the de-
pendence of ȲN on θk, we can directly get b(k,N) = 0.5dk/N from AIC
[1, 2, 3]. That is, this road also leads to J(k) by eq.(27) with d(θ∗k) in
the case (a) of eq.(28). Intuitively, the performance changing trend from
the case (a) to the case (b) in eq.(28) will be somewhat similar to the
changing trend from AIC to BIC [29, 15, 23]. A further improvement may
be obtained via mathematical analysis on one d(θ∗k) somewhere between
the case (a) and the case (b) in eq.(28). It may also deserve to consider
q(θk) in a priori distribution instead of simply setting q(θk) = 1.

Model Selection versus Regularization 399

(b) In addition to making empirical comparisons with those typical model
selection criteria discussed in Sec. 2.2, it remains to be challenges to make
mathematical analysis on the chances and the magnitudes that k∗ devi-
ates from the correct one of the underlying distribution, with k∗ given by
eq.(21) and eq.(27) versus by those typical model selection criteria. More-
over, the studies on k∗ by eq.(21) illustrate the performances of automatic
model selection during parameter learning, while the studies on k∗ by
eq.(27) illustrate the performances in a two phase implementation. The
performance gain by eq.(27) should also been evaluated together with its
computation cost in a quantative way.

(c) More importantly, challenges lay on building up a mathematical link from
the BYY harmony measure by eq.(27) or eq.(23) to the generalization
error by eq.(4) either in a general sense or specifically for different learning
tasks with different structures [41]. In other words, how to mathematically
analyzes the performances of BYY harmony learning in the term of the
generalization error with respect to the sample size N . A possible direction
is to rewrite the BYY harmony measure in a format

∫
p(X)R(X , k)μ(dX),

and then investigate it in an analogy of those studies on eq.(4). Similar
challenges apply to those typical model selection criteria in Sec. 2.2 too.

(d) As introduced in Sec. 3.5, the BYY harmony learning integrates the roles
of regularization and model selection. It is interesting to examine this
feature in term of generalization error, i.e., how the generalization error
is affected by regularization, especially how it varies as k, N , and h with
po(x) replaced by eq.(15), how it relates to p(y|x) in a structure given
by eq.(31) and eq.(32), as well as how accurate the scale k∗ obtained by
automatic model selection is, with respect to the sample size N and k∗.

(e) As discussed after eq.(30), alternatively making maxθk
HX̄N ,ȲN

(p‖q, θk)
and ȳt = arg maxyt

[q(x̄t|yt, θ
xy
k)q(yt|Yt−1, θ

y
k)] lead to the problem of local

maximum or saddle point. It needs further investigation on how this prob-
lem affects the accuracy of the obtained scale k∗ and the generalization
error with its relation to k, N , and h, via either an implementation with
automatic model selection or a two phase implementation.

(f) Also discussed after eq.(30), if we have an explicit expression for ȳt =
arg maxyt

[q(x̄t|yt, θ
xy
k)q(yt|Yt−1, θ

y
k)], we can use it to improve the prob-

lem of local maximum. It deserves to study such an improvement in term of
the accuracy of k∗ and the generalization error. As introduced in Sec. 3.5,
in the cases without such explicit expressions, one way to remedy is to
approximate the desired explicit expression by a parametric structure,
e.g., by eq.(31) and eq.(32). In this way, the relation of ȲN or of ȳt

to θk can be approximately taken in consideration during updating θk.
On the other hand, this pre-designed parametric structure may constrain
maxp(Y|X) HX (p‖q, θk) to reach its optimal solution by eq.(30). Thus, it
needs to examine the two-fold role of imposing such a pre-designed para-
metric structure.

400 Lei Xu

(g) The difficulty of getting the above discussed explicit expression also brings
an implementation difficulty. I.e., ȲN = arg maxY [q(X̄N |Y, θxy

k)q(Y|θy
k)]

or ȳt = arg maxyt
[q(x̄t|yt, θ

xy
k)q(yt|Yt−1, θ

y
k)] has to be iteratively solved

as an inner loop within a parameter learning process. It can be very ex-
pensive to wait for this iterative inner loop to converge. In practice, this
convergence is approximately replaced by running the iteration only for
a few steps, which can be far before its convergence. It would be also
a challenge on appropriately developing such an approximation and on
examining how it affects the performance.

(h) Related closely to the above case (f) and case (g), it would be helpful
to investigate the manifold of HX (p‖q, θk), especially on the distribution
of local maxima. Since the gradient based technique takes a major role
in implementing the BYY harmony learning, it is likely to be stuck at
a local maximum. Thus, it deserves to study how the global versus local
maximum issue will affect the accuracy of k∗ and the generalization error.

(i) As introduced in Sec. 2.3, Rival Penalized Competitive Learning (RPCL)
can also perform automatic model selection [64, 66]. Its relation to the
BYY harmony learning has been discussed in [52, 49, 47, 19]. Though the
convergence behavior of RPCL has already been qualitatively interpreted
in a top-down way via the BYY harmony learning (e.g., as discussed in
Sec. 4.1), it is interesting to investigate in a bottom up way on converg-
ing behaviors of both RPCL learning and adaptive algorithm for BYY
harmony learning. Some preliminary studies have been made in [20, 21].
However, challenges still remain on getting the conditions (especially the
penalizing strength) for guaranteeing a RPCL learning to correctly con-
verge with a correct scale k∗.

(j) As discussed in Sec. 5.1, the key point of automatic model selection comes
from the nature by eq.(60). That is, a critical subset φk of parameters,
e.g., the proportional parameter αj in eq.(38) and one component variance
λ

(r) 2
j of Λ2

j in eq.(55), will be driven towards 0 during the maximization
process. However, waiting for φk converging to zero will waste a large com-
puting cost, which is usually unnecessary. It deserves to develop effective
techniques to detect the evidences for φk → 0 (e.g., αj → 0, λ

(r) 2
j → 0).

One possible direction is to develop some statistical test for this purpose.
(k) The BYY harmony learning has already been extended to model temporal

relations among samples [51, 48]. Many of the above discussed challenges
should also be investigated on these temporal extensions.

(l) In a two-stage implementation given at the end of Sec. 2.2, we have to
enumerate every k within [kd, ku] in a general case without considering
the internal structure of J(k, θfit

k). Such an enumeration can be made in
either a forward way (i.e., increasing k from a small initial value) or a
backward way (i.e., decreasing k from a large initial value). In a forward
implementation, as k increases to k + 1, not only those newly appeared
parameters but also the existing parameter set θk have to be re-learned.

Model Selection versus Regularization 401

In a backward implementation, as k + 1 decreases to k, we are unable
to directly take a subset θk from the set θk+1. However, J(k, θfit

k) may
have a specific structure for certain learning tasks. As k increases to k+1,
only those newly appeared parameters need to be re-learned while the
existing parameter set θk remain unchanged. In other words, the learning
can be made in an incremental way. Furthermore, we may also consider
J(k, θfit

k) with a more complicated structure in help of certain enumerat-
ing or searching technique that was developed for feature selection tasks
in the pattern recognition field [70].

6 Concluding Remarks

Advances, trends, and challenges on regularization and model selection in
statistical learning have been discussed from a Bayesian Ying Yang learning
perspective. After briefly introducing the Bayesian Ying-Yang system and the
best harmony learning principle, its advantage of automatic model selection
and of integrating regularization and model selection have been addressed,
and its differences and relations to typical existing learning methods have
been elaborated. Taking the tasks of Gaussian mixture, local subspaces, local
factor analysis as examples, not only detailed model selection criteria are
given, but also a general learning procedure is provided to unify adaptive
algorithms for these learning tasks. Finally, a new trend for model selection
has been elaborated; theoretical issues in a large sample size and challenges
in a small sample size have been further presented.

Acknowledgement

The work described in this paper was fully supported by a grant from the
Research Grant Council of the Hong Kong SAR (Project No:CUHK4173/06E).

References

[1] Akaike, H (1974), “A new look at the statistical model identification”,
IEEE Tr. Automatic Control, 19, 714-723.

[2] Akaike, H (1981), “Likelihood of a model and information criteria”, Jour-
nal of Econometrics, 16, 3-14.

[3] Akaike, H (1987), “Factor analysis and AIC”, Psychometrika, 52,
317-332.

[4] Anderson, TW, & Rubin, H (1956), “Statistical inference in factor analy-
sis”, Proc. Berkeley Symp. Math. Statist. Prob. 3rd 5, UC Berkeley,
111-150.

[5] Bishop, C.M., (1995), “Training with noise is equivalent to Tikhonov
regularization”, Neural Computation 7, 108-116.

402 Lei Xu

[6] Bozdogan, H (1987) “Model Selection and Akaike’s Information Crite-
rion: The general theory and its analytical extension”, Psychometrika,
52, 345-370.

[7] Bozdogan, H & Ramirez, DE (1988), “FACAIC: Model selection algo-
rithm for the orthogonal factor model using AIC and FACAIC”, Psy-
chometrika, 53 (3), 407-415.

[8] Cavanaugh, JE (1997), “Unifying the derivations for the Akaike and
corrected Akaike information criteria”, Statistics & Probability Letters,
33, 201-208.

[9] Cooper, G & Herskovitz, E (1992), “A Bayesian method for the induction
of probabilistic networks from data”, Machine Learning, 9, 309-347.

[10] Dayan, P. & Hinton, GE (1995), “The Helmholtz machine”, Neural Com-
putation 7, No.5, 889-904.

[11] Girosi, F, et al, (1995) “Regularization theory and neural architectures”,
Neural Computation, 7, 219-269.

[12] Hinton, GE, Dayan, P, Frey, BJ, & Neal, RN (1995), “The wake-
sleep algorithm for unsupervised learning neural networks”, Science 268,
1158-1160.

[13] Hinton, GE & Zemel, RS (1994), “Autoencoders, minimum description
length and Helmholtz free energy”, Advances in NIPS, 6, 3-10.

[14] Hurvich, CM, & Tsai, CL (1989), “Regression and time series model in
samll samples”, Biometrika, 76, 297-307.

[15] Kashyap, RL (1982), “Optimal choice of AR and MA parts in autore-
gressive and moving-average models”, IEEE Trans. PAMI, 4, 99-104.

[16] Z.Y. Liu, H. Qiao, & L. Xu, “Multisets Mixture learning based Ellipse
Detection”, Pattern Recognition 39, pp 731-735, 2006.

[17] Z.Y. Liu, K.C. Chiu, & L. Xu, “Strip Line Detection and Thinning by
RPCL-Based Local PCA”, Pattern Recognition Letters 24, 2335-2344,
2003.

[18] Liu, ZY, Chiu, KC, & Xu, L (2003), “ Improved system for object detec-
tion and star/galaxy classification via local subspace analysis”, Neural
Networks 16, 437-451.

[19] Ma, J, Wang, T, & Xu, L (2004), “A gradient BYY harmony learning rule
on Gaussian mixture with automated model selection”, Neurocomputing
56, 481-487.

[20] Ma, J & Xu, L (2002), “Convergence Analysis of Rival Penalized Com-
petitive Learning (RPCL) Algorithm”, Proc. of Intl. Joint Conf. on
Neural Networks (IJCNN ’02), Hawaii, USA, May 12-17, 2002, pp 1596-
1602.

[21] Ma, J & Xu, L “The Correct Convergence of the Rival Penalized Com-
petitive Learning (RPCL) Algorithm”, Proc. of Intl. Conf. on Neural
Information Processing (ICONIP’98), October 21-23, 1998, Kitakyushu,
Japan, Vo.1, pp239-242.

[22] Mackey, D (1992) “A practical Bayesian framework for backpropaga-
tion”, Neural Computation, 4, 448-472.

Model Selection versus Regularization 403

[23] Neath, AA & Cavanaugh, JE (1997), “Regression and Time Series model
selection using variants of the Schwarz information criterion”, Commu-
nications in Statistics A, 26, 559-580.

[24] T.Poggio & F.Girosi, “Networks for approximation and learning”, Proc.
of IEEE, 78, 1481-1497 (1990).

[25] Redner, RA & Walker, HF (1984), “Mixture densities, maximum likeli-
hood, and the EM algorithm”, SIAM Review, 26, 195-239.

[26] Rissanen, J (1986), “Stochastic complexity and modeling”, Annals of
Statistics, 14(3), 1080-1100.

[27] Rissanen, J (1989), Stochastic Complexity in Statistical Inquiry, World
Scientific: Singapore.

[28] Rivals, I & Personnaz, L (1999) “On Cross Validation for Model Selec-
tion”, Neural Computation, 11, 863-870.

[29] Schwarz, G (1978), “Estimating the dimension of a model”, Annals of
Statistics, 6, 461-464.

[30] Stone, M (1974), “Cross-validatory choice and assessment of statistical
prediction”, J. Royal Statistical Society B, 36, 111-147.

[31] Stone, M (1977), “An asymptotic equivalence of choice of model by cross-
validation and Akaike’s criterion”, J. Royal Statistical Society B, 39 (1),
44-47.

[32] Stone, M (1978), “Cross-validation: A review”, Math. Operat. Statist.,
9, 127-140.

[33] Stone, M (1979), “Comments on model selection criteria of Akaike and
Schwartz. J. Royal Statistical Society B, 41 (2), 276-278.

[34] Sugiura, N (1978), “Further analysis of data by Akaike’s information
criterion and the finite corrections”, Communications in Statistics A, 7,
12-26.

[35] Tikhonov, AN & Arsenin, VY (1977), Solutions of Ill-posed Problems,
Winston and Sons.

[36] Wallace, CS & Boulton, DM (1968), “An information measure for
classification”, Computer Journal, 11, 185-194.

[37] Wallace, CS & Freeman, PR (1987), “Estimation and inference by
compact coding”, J. of the Royal Statistical Society, 49(3), 240-265.

[38] Wallace, CS & Dowe, DR (1999), “Minimum message length and
Kolmogorov complexity”, Computer Journal, 42 (4), 270-280.

[39] Vapnik, VN (1995), The Nature Of Statistical Learning Theory, Springer.
[40] Xu, L., (2007), “A Unified Perspective and New Results on RHT

Computing, Mixture Based Learning, and Multi-learner Based Problem
Solving”, Pattern Recognition, Vol. 40, pp. 2129–2153, 2007.

[41] Xu, L., (2005), “Fundamentals, Challenges, and Advances of Sta-
tistical Learning for Knowledge Discovery and Problem Solving:
A BYY Harmony Perspective”, Keynote talk, Proc. of Intl. Conf. on
Neural Networks and Brain, Oct. 13-15, 2005, Beijing, China, Vol. 1,
pp. 24-55.

404 Lei Xu

[42] Xu, L. (2004), “Temporal BYY Encoding, Markovian State Spaces, and
Space Dimension Determination”, IEEE Tr. Neural Networks, V15, N5,
pp. 1276-1295.

[43] Xu, L (2004), “Advances on BYY harmony learning: information
theoretic perspective, generalized projection geometry, and indepen-
dent factor auto-determination”, IEEE Tr. Neural Networks, V15, N4,
pp. 885-902.

[44] Xu, L. (2004), “Bayesian Ying Yang Learning (I): A Unified Perspec-
tive for Statistical Modeling”, Intelligent Technologies for Information
Analysis, N. Zhong and J. Liu (eds), Springer, pp. 615-659.

[45] Xu, L. (2004), “Bayesian Ying Yang Learning (II): A New Mecha-
nism for Model Selection and Regularization”, Intelligent Technolo-
gies for Information Analysis, N. Zhong and J. Liu (eds), Springer,
pp. 661-706.

[46] Xu, L. (2004), “BI-directional BYY Learning for Mining Structures with
Projected Polyhedra and Topological Map”, Invited talk, in Proc. of
FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T.
Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp. 5-18.

[47] Xu, L. (2003), “Data smoothing regularization, multi-sets-learning, and
problem solving strategies”, Neural Networks, V. 15, No. 5-6, 817-825.

[48] Xu, L. (2003), “Independent Component Analysis and Extensions with
Noise and Time: A Bayesian Ying-Yang Learning Perspective”, Neural
Information Processing Letters and Reviews, Vol.1, No.1, 1-52.

[49] Xu, L (2002), “BYY Harmony Learning, Structural RPCL, and Topolog-
ical Self-Organizing on Mixture Models ”, Neural Networks, V15, N8-9,
1125-1151.

[50] Xu, L, (2002), “Bayesian Ying Yang Harmony Learning”, The Handbook
of Brain Theory and Neural Networks, Second edition, (MA Arbib, Ed.),
Cambridge, MA: The MIT Press, pp. 1231-1237.

[51] Xu, L (2001), “BYY Harmony Learning, Independent State Space and
Generalized APT Financial Analyses ”, IEEE Tr. Neural Networks, 12
(4), 822-849.

[52] Xu, L (2001), “Best Harmony, Unified RPCL and Automated Model
Selection for Unsupervised and Supervised Learning on Gaussian Mix-
tures, Three-Layer Nets and ME-RBF-SVM Models”, Intl J of Neural
Systems 11 (1), 43-69.

[53] Xu, L (2000), “Temporal BYY Learning for State Space Approach,
Hidden Markov Model and Blind Source Separation”, IEEE Tr. Signal
Processing 48, 2132-2144.

[54] Xu, L (1998), “RBF Nets, Mixture Experts, and Bayesian Ying-Yang
Learning”, Neurocomputing, Vol. 19, No.1-3, 223-257.

[55] Xu, L, (1998), “Rival Penalized Competitive Learning, Finite Mix-
ture, and Multisets Clustering”, Proc. of IJCNN98, Anchorage, Vol.II,
pp. 2525-2530.

Model Selection versus Regularization 405

[56] Xu, L (1997), “Bayesian Ying-Yang Machine, Clustering and Number of
Clusters”, Pattern Recognition Letters 18, No.11-13, 1167-1178.

[57] Xu, L, (1997), “New Advances on Bayesian Ying-Yang Learning System
with Kullback and Non-Kullback Separation Functionals”, Proc. IEEE-
INNS Intl. Joint Conf. on Neural Networks (IJCNN97), Houston, Vol.
III, pp. 1942-1947.

[58] Xu, L, & Jordan, MI (1996), “On convergence properties of the EM
algorithm for Gaussian mixtures”, Neural Computation, 8, No.1, 1996,
129-151.

[59] Xu, L, (1995), “Bayesian-Kullback Coupled YING-YANG Machines:
Unified Learnings and New Results on Vector Quantization”, Proc. Intl.
Conf. on Neural Information Processing, Oct 30-Nov.3, 1995, Beijing,
pp. 977-988.

[60] L. Xu, “A Unified Learning Framework: Multisets Modeling Learning”,
Invited Talk, Proc. of World Congress on Neural Networks (WCNN95),
Washington, DC, July 17-21, 1995, Vol.I, pp. 35-42.

[61] Xu, L, Jordan, MI, & Hinton, GE (1995), “An Alternative Model for
Mixtures of Experts”, Advances in Neural Information Processing Sys-
tems 7, eds, Cowan, JD, et al, MIT Press, 633-640, 1995.

[62] L. Xu, “Multisets Modeling Learning: An Unified Theory for Supervised
and Unsupervised Learning”, Invited Talk, Proc. of IEEE ICNN94, Or-
lando, Florida, June 26-July 2, 1994, Vol.I, 315-320.

[63] Xu, L, Krzyzak, A, & Yuille, AL (1994), “On Radial Basis Function Nets
and Kernel Regression: Statistical Consistency, Convergence Rates and
Receptive Field Size”, Neural Networks, 7, 609-628.

[64] Xu, L, Krzyzak, A & Oja, E (1993), “Rival Penalized Competitive Learn-
ing for Clustering Analysis, RBF net and Curve Detection”, IEEE Tr.
on Neural Networks 4, 636-649.

[65] Xu, L & Oja, E. (1993), “Randomized Hough Transform (RHT): Basic
Mechanisms, Algorithms and Complexities”, Computer Vision, Graph-
ics, and Image Processing : Image Understanding, Vol.57, No.2, pp. 131-
154.

[66] Xu, L, Krzyzak, A & Oja, E (1992), “Unsupervised and Supervised
Classifications by Rival Penalized Competitive Learning”, Proc. of 11th
Intl Conf. on Pattern Recognition (ICPR92), Hauge, Netherlands, Vol.I,
pp. 672-675.

[67] Xu, L, Klasa, A, & Yuille, A.L. (1992), “Recent Advances on Techniques
Static Feedforward Networks with Supervised Learning”, International
Journal of Neural Systems, Vol.3, No.3, pp. 253-290.

[68] Xu, L., Krzyzak, A., & Suen, C.Y. (1992), “Several Methods for Combin-
ing Multiple Classifiers and Their Applications in Handwritten Charac-
ter Recognition”, IEEE Tr. System, Man and Cybernetics, Vol. 22, No.3,
pp. 418-435.

406 Lei Xu

[69] Xu, L, Oja, E., & Kultanen, P. (1990), “A New Curve Detection Method:
Randomized Hough Transform (RHT)”, Pattern Recognition Letters,
Vol.11, pp. 331-338.

[70] Xu, L, P.F. Yan, & T. Chang (1988), “Best First Strategy for Feature
Selection”, Proc. of 9th Intl Conf. on Pattern Recognition (ICPR98),
Nov. 14-17, 1988, Rome, Italy, Vol.II, pp. 706-709.

[71] Xu, L, (2007), “Bayesian Ying Yang Learning”, Scholarpedia, p. 10469,
http://scholarpedia.org/article/Bayesian Ying Yang Learning.

Computational Intelligence in Mind Games

Jacek Mańdziuk

Faculty of Mathematics and Information Science
Warsaw University of Technology, Poland.
mandziuk@mini.pw.edu.pl

Summary. The chapter considers recent achievements and perspectives of Com-
putational Intelligence (CI) applied to mind games. Several notable examples of
unguided, autonomous CI learning systems are presented and discussed. Based on
advantages and limitations of existing approaches a list of challenging issues and
open problems in the area of intelligent game playing is proposed and motivated.

It is generally concluded in the paper that the ultimate goal of CI in mind
game research is the ability to mimic human approach to game playing in all its
major aspects including learning methods (learning from scratch, multitask learning,
unsupervised learning, pattern-based knowledge acquisition) as well as reasoning
and decision making (efficient position estimation, abstraction and generalization
of game features, autonomous development of evaluation functions, effective pre-
ordering of moves and selective, contextual search).

Key words: challenges, CI in games, game playing, soft-computing methods,
Chess, Checkers, Go, Othello, Give-Away Checkers, Backgammon, Bridge,
Poker, Scrabble.

1 Introduction

Playing games has always been an important part of human activities and the
oldest mind games still played in their original form (Go and Backgammon)
date back to 1,000 - 2,000 BC.

Games also became a fascinating topic for Artificial Intelligence (AI). The
first widely known “AI approach” to mind games was noted as early as 1769
when Baron Wolfgang von Kempelen’s automaton Chess player named The
Turk was presented at the court of Empress Maria Theresa. The Turk ap-
peared to be a very clever, actually unbeatable, Chess player who defeated
among others Napoleon and the Empress Catherine of All the Russias. It took
a few decades to uncover a very smart deception: a grandmaster human player
was hidden inside the Turk’s machinery and through a complicated construc-
tion of levers and straddle-mounted gears was able to perceive opponent’s
Jacek Mańdziuk: Computational Intelligence in Mind Games, Studies in Computational

Intelligence (SCI) 63, 407–442 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

408 Jacek Mańdziuk

moves and make its own ones. The history of The Turk was described inde-
pendently by several people, including the famous American novelist Edgar
Allan Poe[78]. Although The Turk had apparently nothing in common with
AI, the automaton is a good illustration of humans’ perennial aspiration for
creating intelligent machines able to defeat the strongest human players in
popular mind games.

Serious, scientific attempts to invent “thinking machines” able to play
mind games began in the middle of the previous century. Thanks to seminal
papers devoted to programming Chess [93, 110, 74] and Checkers [82] in the
1950s., games remained through decades an interesting topic for both classical
AI and CI based approaches.

One of the main reasons for games’ popularity in AI/CI community is the
possibility to obtain cheap, reproducible environments suitable for testing new
search algorithms, pattern-based evaluation methods or learning concepts.

On the other hand the “human aspect” of game playing should not be
underestimated. This is why from the very beginning of AI “involvement”
in games, it was Chess - the queen of mind games - that attracted special
attention and in 1965 was even announced “the Drosophila of Artificial Intel-
ligence” by the Russian mathematician Alexander Kronrod.

The focus of this chapter is on the most popular mind games, such as
Chess, Checkers, Go, Othello, Backgammon, Bridge, Poker and Scrabble. The
reason for choosing these particular games is two-fold: (1) they are all very
popular and played all over the world, (2) for decades they have been a target
for AI/CI research aiming at surpassing human supremacy. Certainly, there
are many other interesting and highly competitive mind games (e.g. Shogi,
Chinese Chess, Hex, Amazons, Octi, Lines of Actions, Sokoban), which do
not appear in this chapter, mainly due to their lesser popularity - although,
some of them are becoming more and more prominent. Also other types of
computer games different from mind games, such as skill, adventure, strategic,
war, sport, negotiating, racing and others are not considered in this chapter.

In order to make the notation clear and concise, henceforth any refer-
ence to CI systems (approaches) will address soft-computing-based systems
(neural networks, genetic or evolutionary algorithms, fuzzy systems, reinforce-
ment learning, Bayesian methods, probabilistic reasoning, rough sets) capable
of learning and autonomous improvement of behavior1.

It seems worth noting that the aim of this chapter is by no means to criti-
cize the achievements of traditional AI methods in the game playing domain.
On the contrary the hitherto accomplishments of AI approaches are undis-
putable and speak for themselves. Our goal is rather to express the belief that
other, alternative ways of developing “thinking machines” are possible and ur-
gently needed. These methods include cognitive, knowledge-free approaches
capable of learning from scratch based merely on an unguided training process,

1 Certainly, a distinction between AI and CI is to some extent a matter of conven-
tion. The above proposal is consistent with the author’s point of view.

Computational Intelligence in Mind Games 409

e.g. evolutionary or reinforcement-type, or based on an agent’s experience ob-
tained gradually through (self-)playing or in a supervised training process,
e.g. with neural nets, but again without explicit implementation of human
experts’ knowledge.

In our opinion the need for further development of these, knowledge-free
methods is unquestionable, and the ultimate goal that can be defined is build-
ing a truly autonomous, human-like multi-game playing agent. In order to
achieve this goal several challenging problems have to be addressed and solved
on the way.

The chapter is organized as follows. In the next section a brief description
of state-of-the-art accomplishments in the most popular mind games are pre-
sented. Section 3 starts with a general discussion on the challenging issues in
the game playing domain and presents further motivation for pursuing this re-
search topic. Next, in several subsections particular challenges are considered
one-by-one in more detail. Conclusions are presented in the last section.

2 State-of-the-Art Playing Programs

In this section some of the best playing programs in the most popular games
are briefly introduced. In some games (Scrabble, Chess, Checkers, Othello,
Backgammon) the supremacy of the presented systems over humans and other
artificial agents was officially acclaimed either by gaining the respective World
Champion title or by defeating the best human players. In the remaining
games considered here (Poker, Bridge, Go) humans are still far ahead of ma-
chines.

Scrabble. One of the first programs that achieved a world-class human
level in a non-trivial game was Maven - a Scrabble playing program written
by Brian Sheppard [94]. In the 1990s. Maven successfully challenged several
world top Scrabble players including (then) North America Champion Adam
Logan and world champion Joel Sherman (both matches took place in 1998).
Strictly speaking the supremacy of Maven was demonstrated only in North
America - i.e. for US English, but adaptation of Maven to another dictionary is
straightforward. Actually, it was later on adapted to UK English, International
English, French, Dutch and German.

Scrabble is a game of imperfect information with a large branching factor,
and as such is very demanding for AI research. The key to Maven’s success lies
in efficient, selective move generation and perfect endgame play supported by
B∗ search algorithm2. Maven, similarly to TD-Gammon described in sect. 3.1,
uses game scenarios simulation or “rollouts”, which proved to be a strong
evaluation technique. The implementation details are presented in [94].

2 As soon as the bag is empty, Scrabble becomes a perfect information game, since
one can deduce the opponent’s rack by subtracting the tiles one can see from the
initial distribution.

410 Jacek Mańdziuk

In [94] Sheppard stated: “There is no doubt in my mind that Maven is
superhuman in every language. No human can compete with this level of con-
sistency. Anyone who does not agree should contact me directly to arrange a
challenge match”. So far, no-one tried ...

Chess. Presumably the most striking achievement of AI in games was
Deep Blue II’s victory over Garry Kasparov - the World Chess Champion (at
the time the match was held) and one of the strongest Chess players in the
history. This event ended a nearly 50-year era of Chess programming efforts
which started in Shannon’s paper [93]. The evaluation function of Deep Blue
II was composed of over 8, 000 features implemented in a single chess chip. 480
such chips formed an extremely fast, massively parallel search system based
on 30-node cluster allowing for total search speed between 100 million and
330 million positions per second depending on their tactical complexity [20]
or 50 billion positions in three minutes - the average time allotted for each
move [48]. Certainly, except for tuning thousands of weights in the evaluation
function, a lot of other problems concerning massively-parallel, non-uniform,
highly-selective search or creation and analysis of the extended opening book
and endgame database had to be solved in order to achieve the final result.
There in no doubt that Deep Blue II is a milestone achievement from an
engineering and programming point of view [45, 20]. From a CI viewpoint
much less can be said since the system did not take advantage of any learning
or self-improvement mechanisms.

The victory of Deep Blue II attracted tremendous interest among game
playing researches and also had an undisputed social and philosophical impact
on other people, not professionally related to science (New York’s Kasparov
vs. Deep Blue II match was followed on the Internet by thousands of people all
over the world). On the other hand the result of the match should not lessen
further research efforts aiming at developing an “intelligent” Chess playing
program equipped with cognitive skills similar to those used by human Chess
grandmasters.

Since Deep Blue’s era several other Chess programs, e.g. Shredder, Fritz,
Deep Junior or the recent Chess supercomputer - Hydra played successfully
against human grandmasters, but none of these matches gained comparable
public attention and esteem.

Checkers. The first computer program that won a human world cham-
pionship was Chinook - the World Man-Machine Champion developed by
Jonathan Schaeffer and his collaborators from the University of Alberta
[87, 89, 84]. Chinook’s opponent in both 1992 and 1994 was Dr Marion Tinsley
- the ultimate Checkers genius, who was leading the scene of Checkers com-
petitions for over 40 years losing during that period as few as only 7 games
(including the 2 lost to Chinook)! As Schaffer stated: Tinsley was “as close
to perfection as was possible in a human” [89].

Similarly to Deep Blue, Chinook can be regarded as a large scale AI engi-
neering project including all vital aspects of AI design: efficient search, well-

Computational Intelligence in Mind Games 411

tuned evaluation function, opening book and endgame database. Special care
was taken over specific tactical combinations (e.g. exchanging one of our own
pawns for two of an opponent’s) and these situations were carefully analyzed
and coded in special tables. The evaluation function was linear and composed
of over 20 major components, each of which having several heuristic parame-
ters. All evaluation function weights were hand-tuned. During the re-match
in 1994 Chinook was equipped with a complete 7-piece endgame database
(i.e. exact solutions of all endings of 7 pieces or less) and with a 4× 4 subset
of an 8-piece database (i.e. all endings in which each side was left with ex-
actly 4 pieces) [89]. At the time of writing this chapter the 9-piece database
is completed and the 10-piece one is on the way [85].

The ultimate goal of Schaeffer and his group is to build the perfect Check-
ers player by solving the game of Checkers. Recently it was announced that
another opening (already the second one) has been solved - proven to be a
draw [85].

Othello. Another game in which computers outperformed over humans
is Othello. In 1997, just a few months after Deep Blue’s victory, Michael
Buro’s program Logistello [19], running on a single PC machine, decisively
defeated the then Othello World Champion Takeshi Murakami with the score
6 − 0. Taking into account that Logistello was not implemented in a special
hardware and considering the convincing result of the match as well as post-
mortem analysis of the games which showed that program was not in trouble
in any of the six games played, further advances Buro’s achievement.

The main factors contributing to this strong victory were: (1) new, effi-
cient way of feature selection for the evaluation function [17]. Starting from
a set of predefined, atomic features, various Boolean conjunctions of these
simple features were considered and their weights calculated by the linear re-
gression based on several million training positions labelled either by their
true mini-max value or an approximation of it. (2) Forward pruning method
ProbCut (and Multi-ProbCut) capable of cutting out the most probably irrele-
vant subtrees with predefined confidence [16]. In short, the method generalizes
from shallow search results to deeper search levels by statistically estimating
the coefficients in the linear model approximating the relationship between
shallow and deep mini-max search results. (3) Automatic opening book de-
velopment, which takes advantage of the search results along the promising
lines not played so far and consequently allows potentially interesting opening
alternatives in the future [18].

All three above mentioned aspects of game playing are game independent
and possibly applicable to other two-player board games. On a more general
note these methods are in line with a human way of playing which includes
building up the evaluation function, performing selective search or looking for
new variants in the known game openings.

Backgammon. The state-of-the-art Backgammon playing program is TD-
Gammon [103, 104, 105] written by Gerald Tesauro. The program implements

412 Jacek Mańdziuk

Temporal Difference learning and is one of the archetypal examples of success-
ful CI approaches in games. The main features of TD-Gammon are discussed
in more detail in sect. 3.1.

In the above mentioned games the human supremacy has already been
successfully challenged by AI/CI programs. Among the most popular games
there are only three left in which humans have not been conquered - (yet!).
These are: Poker, Bridge and Go.

Poker. According to the results of the World Poker Robot Championship
that took place in July 2005 the world’s best playing Poker program is
PokerProbotTM [40] - the Amateur Robot Champion and, at the same event,
the winner of the match with Poki-X [86] written by Jonathan Schaeffer and
his group from the University of Alberta.

Since PokerProbot, written by Hilton Givens, is commercial software, very
little is known about its internal characteristics and the history of its devel-
opment. On the contrary the knowledge behind its main opponent Poki-X
has been revealed [13]. Both programs were also confronted with one of the
game’s most accomplished professionals and World Series of Poker champion,
Phil Laak - and both lost by a large margin.

The reasons why Poker is so difficult for AI/CI is related to the fact that
it is an imperfect information game since the other player’s cards are hidden.
Additionally Poker players often use various kinds of deception or bluffing.
Non-accessibility to the whole information (as opposed to Chess, Checkers,
and other board games not involving elements of chance) requires (1) model-
ing of the opponents, (2) applying risk management techniques and (3) using
a dynamical, context sensitive and in most cases probabilistic evaluation func-
tion rather than a static one. These issues are expanded in [13] with regard
to the Poki system. Poki uses a sophisticated, multi-stage betting strategy
which includes the evaluation of effective and potential hand strength, oppo-
nent’s modeling and probabilistic simulations based on selective sampling3.
All the above issues are essential for successful machine Poker playing. For
the scope of this chapter the problem of opponent modeling (discussed further
in sect. 3.6) is of particular interest.

Bridge. Since 1997 the World Computer-Bridge Championship has been
organized each year by The American Contract Bridge League. The regular
participants in this annual event are Jack, Bridge Baron, WBridge5, Micro
Bridge, Q-Plus Bridge and Blue Chip Bridge. Each of these programs enjoyed
some success in previous contests but the most renowned one is the Dutch
program named Jack by Hans Kuijf and his team [53]. Jack won the title in
2001, 2002, 2003, 2004 and was placed second in 2005 after WBridge5, though
was in the first place in the so-called Round Robin - the aggregated result of
direct pairwise comparison.

3 The idea of selective sampling in a world-class playing programs was also applied
to Backgammon [105], Scrabble [94] and Bridge[38].

Computational Intelligence in Mind Games 413

An interesting phenomenon among top bridge programs is GIB (Ginsberg’s
Intelligent BridgePlayer) written by Matthew L. Ginsberg - historically the
first strong bridge playing program. GIB uses partition search (the cutting
tree technique defined by Ginsberg) and Monte Carlo sampling techniques for
both the bidding and cardplay phases [39].

The level of play of the best computer programs is gradually improving
and currently they are able to play on equal terms against intermediate human
players.

Go. The game of Go is widely considered as the most demanding, grand
AI/CI challenge in the mind games domain. Despite simple rules and no pieces
differential, playing the game well is yet a non-achievable task for machines.
The most advanced Go programs can still be easily beaten by intermediate
amateur human players 4. There are several reasons for this situation. First
of all, Go has a very high branching factor, which effectively eliminates brute-
force-type exhaustive search methods. But the huge search space is not the
only impediment in efficient play. The very distinctive feature that separates
Go and other popular board games is the fact that static positional analysis
of the board is orders of magnitude slower in Go than in other games [73].
Additionally, proper positional board judgement requires performing several
auxiliary tactical searches oriented on particular tactical issues [73]. Due to
the variety of positional features and tactical threats it is highly probable
that, as stated in [73], “no simple yet reasonable evaluation function will ever
be found for Go”. Another difficult problem for machine play is the “pattern
nature” of Go. On the contrary to humans, who posses strong pattern analysis
abilities, machine players are very inefficient in this task, mainly due to the
lack of mechanisms (either predefined or autonomously developed) allowing
flexible subtask separation. The solutions for these subtasks need then to be
aggregated - considering complex mutual relations - at a higher level and
provide the ultimate estimation of the board position. Instead, only relatively
simple pattern matching techniques are implemented in the current playing
programs [72, 73].

Due to the still preliminary stage of Go playing programs’ development
it is hard to point out the stable leader among them. Instead, there exists a
group of about ten programs playing on a more or less comparable level. These
include: Many Faces of Go, Go4++, Handtalk, GoIntellect, Explorer, Indigo
and a few more. A detailed discussion on the development of Go playing agents
can be found in [14, 73]. An interesting proposition for researchers aiming to
write their own Go program is the open source application GnuGo [15].

4 Unless otherwise stated in the whole paper we will refer to the game played on a
regular 19 x 19 board.

414 Jacek Mańdziuk

3 The Challenges

Recent advances of AI in the most popular mind games, which led to spectacu-
lar challenging the human supremacy in Chess, Checkers, Othello or Backgam-
mon provoke the question: “Quo vadis mind games research?”. Do we still
need to pursue mind game research or maybe defeating human world cham-
pions is (was) the ultimate, satisfying goal?

Naturally, when considering the quality of machine playing in particular
game as the sole reference point the only remaining target might be the further
extension of the machines’ leading margin in the man-machine competition
(since it is doubtful that the improvement of human players would be adequate
to the one of computer players). But improvement of efficiency is not the only
and not even a sufficient motivation for further research.

I would argue that good reasons for game research concern the way in
which high playing competency is accomplished by machines. On one side
there are extremely powerful AI approaches in which playing agents are
equipped with carefully designed evaluation functions, look-up tables, per-
fect endgame databases, opening databases, grandmaster game repositories,
sophisticated search methods (e.g. B∗[11], SSS∗[99], NegaScout [80], MTD(f)
[76, 77], conspiracy numbers [65]) or search enhancements (e.g. singular ex-
tensions [2], null moves [9, 44], ProbCut [16], and other [83]) and a lot of
other predefined, knowledge-based tools and techniques that allow making
high quality moves with enormous search speed. On the other side there are
soft, CI-based methods relying mainly on knowledge-free approaches, exten-
sive training methods including reinforcement learning, neural networks, self-
playing and even learning from scratch based merely on the final outcomes
of the games played. Application and development of these soft techniques
pose several challenging questions which are discussed in the remainder of
this section. First, in section 3.1 some well-known successful examples of au-
tonomous learning in game playing and challenging, open problems related
to this type of learning are discussed. Section 3.2 addresses the issue of cre-
ativity understood as ad hoc knowledge discovery which may emerge as a
result of deliberately designed training process. Section 3.3 is devoted to in-
tuition, implementation of which in artificially built systems seems to be one
of the grand challenges not only in game playing domain. Section 3.4 consid-
ers the problem of abstraction and generalization of knowledge possessed
during the learning process. In particular the problem of how to generalize
from shallow-depth search is still unsolved and considered a challenge. An-
other challenging problem is efficient pre-ordering of moves in the search
algorithms (section 3.5). Although a lot of results have been published in
this area, the problem - addressed generally - still remains open. Section 3.6
touches on the problem of opponent modeling which is one of the central is-
sues in games with imperfect information, especially those in which deception
and bluffing are inherent elements, such as Poker or Perudo. Finally, section
3.7 concerns universality of approaches and tools applied within CI. The

Computational Intelligence in Mind Games 415

development of game independent, universal training processes applicable to a
wide range of games is one of the relevant current research problems. Possible
approaches include multitask learning and lifelong learning.

3.1 Autonomous Learning

One of the most distinctive features of CI-based systems is the ability to
improve themselves through a (self)-learning process. Unlike classical AI ap-
proaches which rely on carefully designed, hand-crafted evaluation functions
reflecting expert knowledge about various game aspects, the CI systems, given
some initial knowledge, are able to improve their performance through learn-
ing or evolution.

Construction of game playing agents capable of learning based on expe-
rience is one of the challenging issues. There are several notable examples
of such systems, e.g. Tesauro’s Neurogammon and TD-Gammon, Baxter’s
KnightCap, Schaeffer’s TDL-Chinook, Thrun’s NeuroChess, or Fogel’s Ana-
conda - to mention only a few of them. A brief description of the above
seminal achievements is presented in the remainder of this section, followed
by a general discussion on their strengths and weaknesses as well as related
open problems.

Certainly the systems described below by no means pretend to be a com-
plete catalogue of CI achievements in games. They are rather a partial collec-
tion of milestone accomplishments subjectively chosen by the author. Other CI
approaches to most popular games include for example [112, 109, 36, 50, 41, 34]
in Chess, [1, 61] in Checkers, [63, 75, 54] in Give-Away Checkers, [69, 113] in
Othello, [52] in Rummy, [26, 22, 92] in Iterated Prisoner’s Dilemma, [79] in
Backgammon, [4, 5] in Poker, [90, 91, 29, 81] in Go.

Neurogammon and TD-Gammon. The first world-class accomplish-
ment in the field of CI in games was TD-Gammon program [103, 104, 105]
and its predecessor - Neurogammon [102], both written by Gerald Tesauro
for playing Backgammon - an ancient two-player board game. In short, the
goal of the game is to move one’s checkers from their initial position on the
one-dimensional track to the final position (players make moves in the oppo-
site directions). The total distance that pieces belonging to one player can
move at a given turn depends on the score of the two dices which are thrown
by a player at the beginning of a move. Rolling dices introduces randomness
into the game. Based on the dices’ score the player makes a decision regard-
ing which pieces to move forward and of how many fields. The game has a
high branching factor (due to dices’ throwing) and when played by masters be-
comes a highly complex battle, full of tactical and positional threats including
sophisticated blocking strategies.

The evaluation function in Neurogammon was implemented by Multilayer
Perceptron (MLP) neural network trained with backpropagation, having as
the input the location of pieces on the board and a set of game features

416 Jacek Mańdziuk

carefully designed by human experts. Board positions were extracted from
the corpus of master-level games. Neurogammon achieved a steady human
intermediate level of play which allowed it to convincingly win the computer
olympic competition [102].

Quite a different approach was adopted in TD-Gammon - the successor of
Neurogammon. TD-Gammon was also utilizing the MLP network, but it dif-
fered from Neurogammon in three key aspects: (1) instead of backpropagation
training the temporal difference learning introduced by Sutton [100, 101, 49]
was used; (2) the input to the network was a raw board state without any ex-
pert features5; (3) training was essentially based on self-playing as opposed to
training based on board positions that occurred in games played by experts.

Initially, i.e. in a knowledge-free approach, TD-Gammon reached an in-
termediate human level of play roughly equivalent to Neurogammon’s level.
In subsequent experiments - still in a self-playing regime, but with the input
layer extended by adding expert board features (the ones used in Neurogam-
mon) to the raw board data - the level of play eventually became equivalent
to the best world-class human players.

Following Tesauro’s work, various attempts to repeat his successful TD
approach in other game domains were undertaken, but none of the subsequent
trials reached as high level of playing competency in any other game as TD-
Gammon did in Backgammon. One of the possible reasons of TD-Gammon’s
striking efficiency is the stochastic nature of the game which allows broad
search of the entire state space and a real-valued, smooth, continuous target
evaluation function, as opposed to discrete and discontinuous functions in
most of the popular perfect information, deterministic games. Another reason
is ascribed to the impact of TD learning strategy on the course of neural
net’s training: first simple linear associations were learnt, and only then a
representation of nonlinear, context-sensitive concepts and exceptional cases
was built [105].

KnightCap. Another well known example of TD-type learning in games is
Chess playing program KnightCap written by Baxter, Tridgell and Weaver [6,
7, 8]. The authors applied TDLeaf(λ) method - a variant of TD(λ) introduced
in [10]6. As opposed to Samuel [82], Tesauro [103], Thrun [106], Beal and
Smith [10] and later on Schaeffer et al. [88] KnightCap’s designers found self-
playing to be a very poor way of learning and preferred the use of external
trainers instead. Hence, the TDLeaf(λ) learning was carried out by playing
on the Internet Chess site. The program started from the blitz rating of 1650
and required only three days of playing (308 games) to reach the blitz rating
of 2150, which is roughly equivalent to master candidate player. Afterwards
the rating curve entered a plateau.

5 Some experiments with adding expert features to the input vector were carried
out in subsequent studies.

6 Although the idea of TDLeaf(λ) was first presented in [10], the algorithm’s name
was coined in Baxter et al.’s papers.

Computational Intelligence in Mind Games 417

The success of KnightCap laid, according to the authors, in appropri-
ate choice of TD learning parameters, and first of all in “intelligent mater-
ial parameters” initialization, which reflected the common knowledge of the
pieces’ values in Chess. Additional contribution to rapid rating increase was
attributed to the fact that the weights of all other (i.e. non-material) parame-
ters were initially set to zero, and therefore even small changes in their values
potentially caused a relatively significant increase in the quality of play.

The main lesson from KnighCap’s experiment was that the choice of ini-
tial weights in the evaluation function is crucial for the speed and quality of
training. Another conclusion concerned the choice of training opponents who,
according to authors’ suggestions, should be comparable in playing strength
to the learning program. This observation is in line with common human in-
tuition that too strong or too weak opponents are not as valuable as the ones
playing on approximately the same level.

The weakest feature of KnightCap was playing in the opening phase7. One
possible remedy to this problem is the idea of “permanent brain” introduced
in Crafty [46] - the strongest publicly available freeware Chess program and
a direct descendant of a former Computer Chess Champion - Cray Blitz [47].
“Permanent brain” stores a number of losing positions and their evaluations in
a hash table, which is used in every search. Thus the program avoids playing
into these unfavorable lines.

TDL-Chinook. Jonathan Schaeffer, the author of Chinook (the Man-
Machine Checkers Champion described in sect. 2), together with Markian
Hlynka and Vili Jussila applied TD learning to Checkers [88] in order to
verify its efficacy in another (after Backgammon and Chess) demanding game.
The authors used the TDLeaf(λ) learning scheme. Their direct goal was a
comparison between Chinook’s evaluation function and the TD-based learnt
one. In order to make this comparison the TD learning player was initially
equipped with Chinook’s evaluation function but with a different set of weights
assigned to its components. Two main approaches were considered: in the first
one, Chinook served as the training opponent for the TD player whereas the
second approach relied on self-playing. In the first case training was performed
in a predefined regime involving the use of some number of standard Checkers
openings (afterwards the game was continued and finally completed by the
players).

Surprisingly enough it turned out that by applying the TDLeaf(λ) learning
scheme the program was capable of reaching the level of play comparable to
the teacher’s even though Chinook evaluation function’s weights had been
carefully tuned for more than five years. More surprisingly, the other approach
(self-playing) also led to the Chinook caliber program, which implies that

7 Due to the way TD learning is performed the relatively poorer play in the openings
is common to practically all TD implementations regardless of the choice of the
game.

418 Jacek Mańdziuk

external teacher is not indispensable for achieving the human championship
level of play in a complex game as Checkers is!

It is interesting that the weighting of features in the evaluation function
of the learning program was very different from that of Chinook. Closer ex-
amination of weights developed during training revealed several interesting
insights into how some “human-type” features (i.e. the ones which very rarely
occur in machine vs machine play) are compensated by other components in
the evaluation function.

NeuroChess. Another interesting application of CI methods in games
is NeuroChess program written by Sebastian Thrun [106], which combines
TD learning with Explanation-Based Neural Network learning (EBNN) de-
scribed in [68, 107]. The evaluation function in NeuroChess is represented by
a neural network which inputs and outputs are board features (defined by a
human expert) of the current position and the one expected after the next
two half-moves, respectively. The challenge of Thrun’s approach is to learn
the evaluation function (i.e. weights of a network) with TD algorithm based
solely on the final outcomes of the training games. Training is also supported
by self-playing. The role of EBNN is to speed up the training process by al-
lowing better generalization. This goal is accomplished by defining a separate
neural network called the Chess model which represents the domain knowl-
edge, obtained based on a large number of grandmaster games.

Although NeuroChess never reached the level of play of GNU-Chess (being
its test opponent) defeating it in about 13% of times, the experiment pointed
out some important advantages and weaknesses of TD learning based on the
final games’ outcomes. First of all NeuroChess’s ability of playing openings
was very poor, which was the consequence of increasing inaccuracy of position
estimation from the final position backwards to the opening one. Another
characteristic feature of NeuroChess play was mixing very strong moves with
schoolboy mistakes, which according to Thrun happened quite frequently.

The main conclusion from Thrun’s work is that learning based solely on
observation of grandmaster play (TD learning in here) is not efficient enough
and may lead to several artifacts in agent’s evaluation function. An example
of such inefficiency it the tendency of NeuroChess (when trained without self-
playing) to move its queen into the center of the board in the early stage of the
game. This behavior was learnt from grandmasters’ games, but the program
was unable to observe that grandmasters make such moves only when the
queen is safe from being harassed by the opponent. In other words the basic
idea of EBNN, i.e. using domain knowledge for finding explanations for a given
set of examples in order to generalize based on them is not sufficient in the
game of chess since some moves cannot be fully explained based exclusively
on the accessible domain theory, ergo cannot be properly learnt.

Anaconda (vel Blondie24). Kumar Chellapilla and David Fogel carried
out an experiment in which an ensemble of feed-forward neural networks, each
representing an evaluation function for the game of Checkers, was evolved in

Computational Intelligence in Mind Games 419

appropriately designed evolutionary process. The input data for each network
consisted of locations of pieces on a game board. This data was further decom-
posed in the first hidden layer into all possible subsets of size 3× 3, 4× 4, . . .,
8× 8 of the entire board. The two subsequent hidden layers operated on fea-
tures originated in the first hidden layer. A single output neuron represented
the evaluation of a Checkers’ position presented in the input.

In each generation offspring networks were created and then each network
(being either parent or offspring) played against five randomly selected oppo-
nents from that population. The best networks constituted the population for
the next generation. After 250 generations the top network was tested against
human competitors on the Internet site where it achieved the rating of an A-
class player (immediately below the expert level) [22, 23]. After another 590
evolutionary generations the best network achieved the rating of an expert
player (just below the master level) according to the U.S. Chess Federation
rating system on the same Internet gaming site [25, 33]. This network was
also tested against three characters (Beatrice, Natasha, and Leopold) from
the Hoyle’s Classis Games - commercially available software - winning a six
game match with the score 6 : 0 [24]. Chellapilla and Fogel used two names for
their network: Anaconda and Blondie24. The former one was related to the
system’s style of playing (this issue is further discussed in the next section)
while the latter - most probably - to attract other player’s attention on the
Internet gaming zone.

It should be underlined that except for the sum of all board inputs (reflect-
ing difference in material), which was presented as an additional input value
directly to the output neuron, no expert knowledge about the game of Check-
ers was incorporated into the neural networks or the evolutionary process. The
only “knowledge” available during the process was the location of pieces on
the board, the rules of making (generating) all legal moves in a given position
and the minimax heuristic for selecting the most favorable move at a given
search depth. In majority of the games the search depth was defined to be
equal to 6 or 8. The search was extended further for non-quiescent positions.

The common feature of all playing agents described above is the ability
to autonomously improve their playing strength basing on experience (games
played). This improvement is achieved either in the self-playing regime or
in the course of playing against external opponents. Interestingly, the above
mentioned experiments and other works presented in the literature are in-
conclusive with regard to whether it is more profitably to favor self-playing
or rather to train with external opponents. Hence, one of the interesting and
challenging issues is further investigation and formalization of the strengths
and weaknesses of both training approaches.

In the case of training with external opponents additional key issue is the
choice of the opponent players and the scheme of training [6, 63]. According
to intuition, too strong or too weak opponents may not lead to expected im-
provement since weak opponents play badly and the strong ones are too good

420 Jacek Mańdziuk

to be followed by the learner. Also the training scheme, when playing against
external opponents, may have a great impact on the speed and quality of the
learning process. In particular, in TD learning one may consider updating
weights of the evaluation function after each game or only after the games
lost or drawn. Another possibility is to update the weights regardless of the
game’s outcome, but with elimination of weak moves which most probably
may be misleading for the training process [6, 7]. One may also consider play-
ing against stronger opponent a few times in a raw if only the learner keeps
losing against that opponent. The results for the game of Give-Away Check-
ers presented in [75] suggest the superiority of such approach over classical
TD learning based on either all games played or only the ones not won by
the learner. Other constructions of the learning scheme, e.g. the tournament
choice of the opponents, can also be considered. The issue of how to define
the optimal training scheme deserves further investigation and hopefully new
conclusions across various game domains will come into light.

Another relevant issue is the choice of initial weights in the evaluation
function. Regardless of the training method (being either TD, neural nets
or evolutionary approach) the choice of the starting point is in most cases
crucial for the final outcome of the learning process. Usually these initial
settings are based on human expert knowledge. Another possibility would be
to define a universal, game-independent procedure allowing the development
of “reasonable” initial settings that approximate the relative importance of
particular features or their combinations.

Naturally, the problem of how to define the optimal set of features that
compose the evaluation function for a particular game is also a challenge.
A more demanding question would be how to define the human-guided, but
semi-autonomous and game-independent process that would have led to the
construction of suboptimal set of board (game) features. This issue was dis-
cussed by Paul Utgoff who stated in [111]: “Constructing good features is a
major development bottleneck in building a system that will make high quality
decisions. We must continue to study how to enhance our ability to automate
this process”. Utgoff suggested that game features should be overlapping and
form a layered, hierarchical system in which more complex features are built
based on simpler ones.

Another challenge concerns autonomous learning with zero initial knowl-
edge (except for the rules of the game). The majority of game playing pro-
grams rely on carefully designed expert features reflecting positional and tac-
tical nuances of the game. A good counterexample is Anaconda which does
not rely on built-in human knowledge at all, and as such is an apparent,
successful example of learning from scratch using Computational Intelligence
techniques. Chellapilla and Fogel’s success contradicts Allen Newell’s opinion
(supported also by Marvin Minsky): “It is extremely doubtful whether there is
enough information in ‘win, lose, or draw’ when referred to the whole play of
the game to permit any learning at all over available time scales” [67].

Computational Intelligence in Mind Games 421

3.2 Creativity - Knowledge Discovery

One of the long-term goals of CI in game playing is development of creativ-
ity mechanisms which implemented in the playing program might lead to
spontaneous knowledge discovery.

Some successful examples of such “emerging intelligent behavior” have
already been presented in the literature however, according to the author’s
knowledge, all of them were merely “the side effects” of the training process.
The most famous example is probably Tesauro’s TD-Gammon described in
the previous section, which according to former Backgammon world champion
Robertie, came up with genuinely novel strategies that no one had used before.
TD-Gammon’s play caused revision in human positional judgement in this
game leading, for example, to invention of new opening moves - proposed by
TD-Gammon and subsequently proved (in exhaustive, statistical analysis as
well as tournament play) to be successful. Another interesting observation
concerning TD-Gammon is the development of spatial weight patterns in the
MLP, responsible for representation of particular game concepts, which were
not explicitly presented in the course of training [103].

Similar observations about ad-hoc feature discovery and feature represen-
tation in neural network weights were reported in [70, 62, 71] concerning the
game of Bridge. The authors considered the so-called Double-Dummy Bridge
Problem, which consists in answering the question about the number of tricks
to be taken by a pair of players assuming perfect play of all four hands with
all cards being revealed.

Several MLP networks with 0, 1 or 2 hidden layers were trained in a super-
vised manner and tested based on the data from the GIB Library [37], created
by Ginsberg using his GIB program [39]8. The input layer was composed of
52 neurons and each of them was assigned to a particular card from a deal.
The value of this neuron denoted the hand containing this card (e.g. N : 1.0,
S : 0.8, W : −1.0, E : −0.8). A single output neuron yielded the predicted
number of tricks to be taken (the output range - [0.1, 0.9] was divided into 14
intervals of equal length). Besides deal assignment, no additional information
e.g. the rules of the game or the strength of particular cards was provided
to the network. Except for achieving satisfying numerical results the other
main goal of that research was exploration of networks’ knowledge represen-
tation and search for patterns in the weight space that possibly represented
particular “Bridge features” (e.g. the relative strength of cards). Examining
the weights in the trained networks revealed several interesting observations.

Firstly, weights of outgoing connections from input neurons representing
aces and kings always had the biggest absolute values. This feature was simple
to explain (for humans) - these cards are the most important in the game of
Bridge, especially in no trump contracts.

Secondly, in each trained network there were exactly four connections from
input to hidden neurons with weights’ absolute values noticeably bigger than
8 GIB is considered one of the top machine Bridge players.

422 Jacek Mańdziuk

all the others (about 25.0 vs less than 7.0). Not surprisingly these favored
connections started from four input neurons assigned to aces.

Thirdly, in all networks it was possible to point out four hidden neurons fo-
cused on particular suits (one neuron per suit). Absolute values of connection
weights from inputs representing the respective suit to such hidden neuron
were much bigger than absolute weight values from the remaining inputs.

Finally, a very interesting feature which appeared in all trained networks
with sufficient number of hidden neurons, was the presence of four hidden
neurons, each of which focused on five top cards from one particular suit: ten,
jack, queen, king and ace. In each of these five-card groups the most important
connections were from queens and kings, jacks were less important, but still
much more relevant than aces and tens. The hypothesis is that these hidden
neurons were responsible for a very important aspect of the game - the finesses.

All the above observations are in line with human knowledge about the
game of Bridge. Estimation of the strength of individual cards as well as entire
suits is the basic information considered in the process of a hand’s evaluation.
Even though these game features are trivial to understand for human players
they are not necessarily easy to discover by a neural network. Moreover, quite
surprisingly, in the simple training process, the networks were also able to
independently discover the notion of the finesses, which is a subtle mechanism
- not rarely deciding about the final number of tricks taken by a playing pair.

Interesting observations concerning knowledge discovery in the game of
Chess were reported in the MORPH experiment [56, 42] which implemented
pattern based learning with the weights of patterns being modified through
the TD(λ) method combined with simulated annealing. Although the strength
of MORPH was far inferior to GNU Chess, the patterns learned by the system
were consistent with human Chess knowledge. In particular MORPH was able
to play openings on a reasonable level, despite the fact that no information
about the significance of development or controlling the center of the board in
the opening phase had been added to the system. On the other hand, one of
the weaknesses of MORPH was poor scalability with respect to the number of
patterns, due to the lack of efficient selection mechanisms. Nevertheless, the
system was able to defeat human novices while searching only 1-ply.

A general approach to automatic feature generation was presented by Faw-
cett and Utgoff [32]. Given only domain theory and the ability to solve prob-
lems in this domain the system called Zenith was able to automatically gener-
ate a set of relevant domain features. The system started from a single feature
created automatically from the problem’s goal (e.g. “win of white”) and by
using four predefined types of transformations: decomposition, abstraction,
regression and specialization, gradually extended the set of features in an
iterative manner. Zenith was applied to Othello with promising results. For
example, the system autonomously discovered the importance of stable pieces,
i.e. the ones which cannot be reversed [32].

Another well-known example of independent feature discovery in games is
Anaconda [25, 33] described in sect. 3.1, which received its name due to the

Computational Intelligence in Mind Games 423

“snake-like” way of playing - in most of the games won by the program its
opponent was blocked and therefore forced to make a weak move. However,
neither in the input data nor in the evolutionary process of Anaconda’s de-
velopment the concept of mobility was ever explicitly considered. Hence the
importance of mobility must have been “invented” by the system or more
precisely by the evolutionary process, which guided Anaconda’s development.

The potential strength of neuro-evolutionary approach was also reported
in Othello [69]. The evolved networks “discovered” positional features and
advanced mobility issues indispensable for high-profile tournament play.

All the above examples led to discovering new features, previously un-
known to the system, induced from the training data. The ultimate goal that
can be put forward in this context is autonomous discovering of all relevant
components of the evaluation function in a way allowing their separation and
explanation. Such a requirement goes beyond Anaconda experiment and other
neural or neuro-evolutionary type approaches that resulted in efficient numer-
ical approximation of the board state, but lack the feature-based formulation
of the evaluation function.

3.3 Intuition

Implementation of the concept of intuition is definitely one of the greatest
challenges in computer games and also in computer science in general. Nowa-
days, despite the major breakthroughs made in several disciplines and despite
increasingly deeper, scientific understanding of the nature, intuition - para-
doxically - becomes more important than ever.

One of the most salient research studies focused on understanding (and
implementation of) intuition was performed by Herbert Simon - a Nobel Prize
Winner in Economics. According to Simon intuition is nothing mysterious or
extraordinary and simply relates to a subconscious pattern recognition process
able to immediately provide appropriate pattern(s) among those stored in the
memory, based on our knowledge and experience. According to Simon, this
does not mean that intuition is an irrational process - he considered it to be
a rational but neither conscious nor analytical one [95].

Simon was optimistic about the potential abilities of “thinking machines”
and predicted that any “intelligent” human activity (thinking, creativity, de-
cision making, intuition and other) will ultimately be implemented in artificial
systems.

In most of mind board games intuition plays a leading role at master
level of play. Consider for example Chess. With a branching factor of about
30, in a 50 move (100 ply) game there are about 10147 contingencies, which
is an enormous number for any human being (grandmasters are believed to
search no more than a few hundred contingencies during the entire game).
How then it is possible that Chess champions are able to play at such a high
level? One of the factors is intuition which allows them to perform highly
selective search in this huge space, although in many cases they are not able

424 Jacek Mańdziuk

to explain why they have chosen to search a particular contingency and skipped
the others. Moreover, when playing simultaneous games, Chess grandmasters
usually need only a few seconds to make a move, which generally proves to
be very strong (often optimal). This means that they have the ability to
immediately find the most relevant information characterizing board position
and recognize the most promising continuation (move), usually without deep,
precise calculation of its contingencies.

Another aspect of intuition in board games is the ability to almost in-
stantaneous recognition of strengths and weaknesses of a given position. A
grandmaster usually needs only a few seconds of board analysis in order to
tell which side is in the winning or favorable position. One of the possible psy-
chological explanations of this phenomenon is the ability of advanced players
to link the new position with previously explored familiar ones and conse-
quently to focus on moves and plans associated with these, already known,
positions [27] (this topic is further discussed in sect. 3.4).

Based on the above described results of applying intuition in games, one
can provide the operational definition of intuition as an instantaneous, sub-
conscious recognition/reasoning process which does not rely on precise, deep
calculations, but instead rather refers to past experiences and previously ac-
quired general knowledge. Consequently, in most mind games, intuition is one
of the main factors contributing to the beauty and attraction of the game.
Its application often leads, for example, to long term material sacrifices with-
out apparent possibility of its recovery. A well known example in Chess is
the immortal game played in London in 1851 by Adolf Anderssen and Lionel
Kieseritzky in which white sacrificed bishop (on move 11 - see Fig. 1(a)) and
subsequently two rooks and a queen (starting on move 18 - see Fig. 1(b)) in
order to checkmate on move 23 - (Fig. 1(c)). Certainly, the last three sacrifices
were tactical ones, i.e. their consequences could have been precisely calculated
by Anderssen, but the introductory sacrifice (bishop on move 11) is an exam-
ple of an intuitive type of move based on players experience and his “feeling”
of the board position.

a

1

2

3

4

5

6

7

8

b c d e f g h

(a) After 11. Rg1 ...

a

1

2

3

4

5

6

7

8

b c d e f g h

(b) After 17. ... Qxb2

a

1

2

3

4

5

6

7

8

b c d e f g h

(c) 23. Be7++.
White won

Fig. 1. Anderssen vs Kieseritzky, Immortal game, London, 1851

Computational Intelligence in Mind Games 425

a

1

2

3

4

5

6

7

8

b c d e f g h

(a) After 16. Nb6 ...

a

1

2

3

4

5

6

7

8

b c d e f g h

(b) After 16. ... axb6,
17. Rxd7 Bxd7

Fig. 2. Karpov vs Kasparov, New York, 1990

Another interesting example of intuitive sacrifice occurred in the game
played between two great archenemies: Anatoly Karpov and Garry Kasparov
in the New York match in 1990. In the middle-game position Kasparov sac-
rificed queen for a rook and knight on moves 16 − 17 (see Fig. 2) and this
sacrifice was clearly positional with no immediate tactical or material threats.
The game continued up to 53th move, when players agreed for a draw.

Theoretically, human-type intuition in machine playing may possibly
emerge as a “side effect” of using a close to optimal evaluation function
(on condition that such a function could be practically specified and imple-
mented). Examples of “intuition” of such origin have been observed in the
famous Kasparov vs Deep Blue re-match, in which some of the machine’s
moves were described by grandmasters commentating on the match as phe-
nomenal and extremely human.

One of very few published attempts focusing on formalization of intuitive
concepts in Chess was recently described by Arbiser [3]. The author proposes
the way of formalizing such concepts as capture, attack, threat, sacrifice, etc.
as well as the notion of style of opponent’s play, i.e. aggressive, defensive,
conservative, tactical or positional. The underlying idea is based on general-
ization of the null-move heuristic in such a way that instead of hypothetical
opponent’s moving twice in a row, the opponent is allowed to virtually change
one of his or our pieces or add/delete a piece and then make a move. For
example the notion of aggressive play will be implemented by exchanging one
of the opponent’s or our pieces into a strong opponent’s piece before deciding
a move. Such an exchange would most probably cause immediate threats to
us thus forcing the choice of an appropriate response. In short, the following
scheme is proposed: modify the board in an adequate manner before calling
a regular search algorithm and ensure that the chosen move would be valid
and sound in the original board position i.e. the one without initial, fictitious
modification. Although the description of the method raises several questions
concerning its time complexity as well as the omitted implementation details,
overall the algorithm seems to be a step in the right direction.

426 Jacek Mańdziuk

Understanding and furthermore implementation of the mechanism of intu-
ition in artificial players is one of the main challenges for CI in games. Several
issues described in the remainder of this chapter, e.g. geometrical trajectories,
positional generalization, feature abstraction may partly compliment to the
implementation of intuition, but the efficient and general approach to this
wonderful human ability is yet to be specified. I would argue that unless pro-
grams (machines) capable of making intuitive moves (in the above described
sense) in Chess and other mind board games are created, we should be very
cautious about announcing the end of the human era in these games.

In 1931 Albert Einstein wrote [28]: “The intuitive mind is a sacred gift and
the rational mind is a faithful servant. We have created a society that honors
the servant and has forgotten the gift”. This aphorism, originally related to
religion, can also be referred to other human activities including the domain
of machine game playing development.

3.4 Abstraction and Generalization

As discussed in the previous section, one of the facets of human game playing is
the ability to abstract particularly relevant game features from a given board
position. This skill allows experienced players almost immediate estimation of
positional and tactical strengths and weaknesses on both sides as well as to
point out future possibilities and potentially promising moves. For example
in Chess these crucial features include pawn structure, cooperation of figures
(e.g. two rooks on the 2nd (resp. 7th) line or multiple attack on point F2 (F7
resp.)), mobility, tempo and many more.

In practically all popular mind board games vital positional and tacti-
cal features are context-sensitive. Due to the presence of other pieces on the
board their appropriate classification is not a straightforward task for machine
players and requires both abstraction and generalization capabilities.

Another generalization task is an attempt to reason on the quality of a
move based on shallow search. On one hand it is hard not to agree with
Schaeffer, Hlynka and Jussila who stated in [88]: “There is no free lunch; you
can’t use shallow search results to approximate deep results” and therefore
advised: “the weights [of an evaluation function] must be trained using depths
of search expected to be seen in practice”.

On the other hand the above claims are not necessarily valid when estimat-
ing the relative strength of the moves without focusing of their true numerical
evaluation. A crude relative estimation of possible moves is crucial for the ef-
ficacy of several search algorithms (e.g. the alpha-beta based ones). This issue
is further discussed in the next section.

A challenging test of generalization skills applicable to machines is solving
game problems defined on arbitrarily large game boards. Intelligent approach
to such problems requires efficient generalization from shallow search results.
John McCarthy in 1998 in his comments to intelligent Chess problem solving,
referring to the famous Reti problem (Fig. 3), stated: “Note that Reti’s idea can

Computational Intelligence in Mind Games 427

a

1

2

3

4

5

6

7

8

b c d e f g h

Fig. 3. Reti ending. White to begin and draw.

be implemented on a 100×100 board, and humans will still solve the problem,
but present programs will not ... AI will not advance to human level if AI
researchers remain satisfied with brute force as a substitute for intelligence ...
Would anyone seriously argue that it is impossible for a computer to solve the
Reti problem by other than brute force?” [66]. An interesting approach to this
type of generalization is expressed by the Linguistic Geometry (LG) which
focuses on evaluation of trajectories of possible solutions rather than on exact
exploration of the game tree [98]. Instead of traditional search-based approach,
LG proposes methods for construction of problem solving strategies. These
strategies can be represented as trajectories on the board (e.g. in the endgame
problems) and to some extent allow formalization of expert knowledge and
intuition (see [98] for details).

Another challenge related to abstraction and generalization is the quest
for learning methods capable of generalizing knowledge across game boards
of different sizes. One particularly interesting question is: how to apply the
outcomes of learning on small boards to the learning process performed on
larger boards? One possible approach is to use incremental training methods
implemented in neural networks according to the following procedure. Learn-
ing starts off in the environment (game board) smaller than the target one.
During the training process the environment is gradually increased - up to
desired size - and after each change of size the limited number of training ex-
amples is modified/added in order to capture new features that arose in this
larger, more complicated environment. The claim is that after some training
time, the system should be able to recognize features, which are invariant to
the size (degree of complication) of the environment. In such cases these fea-
tures will be shared among several instances of the environment and during
the training process used to make generalizations about the learning task.

Consider, for example, a game which is played on a board of size n. In the
proposed approach the training process begins on a game board of smaller
size k, k < n and after the agent learns how to play or solve problems on
this board, the board size is increased to k + t, where t depends on particular

428 Jacek Mańdziuk

game (t ∈ {1, 2} for the majority of popular games). Then the agent is re-
trained in a limited manner based on the new set of problems presented on
the increased board. The re-training procedure is significantly shorter than the
regular training performed on the board of size k. Once again the board size
is increased and the agent is re-trained, etc. The whole procedure is stopped
after the re-training on board of size n is completed.

The underlying idea is that after the preliminary phase, learning should
become relatively easier, and solutions for problems defined on larger boards
would be developed by the system based on already defined solutions for prob-
lems stated on smaller-size boards. Hence, subsequent learning would mostly
involve efficient use of previously acquired knowledge.

The above described learning scheme is problem independent, but can be
applied only to a certain type of games such as Checkers, Othello or Go,
which can be easily defined on boards of different sizes. Such training scheme
was used in Othello on 6 × 6, 8 × 8 and 10 × 10 boards (the board of size
10 × 10 being the target one) [59, 60]. The MLP neural network was fully
trained on examples from 6×6 board and subsequently re-trained, in a limited
manner, on 8×8 and 10×10 boards’ examples. The training goal was to point
out the best move in a given position. The results of the above-described
incremental training procedure were compared with the full backpropagation
training carried out exclusively on 10×10 board examples. The amount of time
required for incremental training was considerably lower than in the opposite
case. Also numerical results showed a slight improvement over a one-shot
training procedure: after incremental training the network responded with
the best move (selected according to applied heuristic) in 40% of the cases,
compared to 34% achieved in the full backpropagation training on 10 × 10
board [60].

3.5 Pre-Ordering of Moves

In practical applications, efficient moves pre-ordering should rely on shallow
search or no search at all, otherwise, the remaining time devoted to deeper,
selective search may be insufficient. Efficacious pre-ordering of moves is again
a “very human” skill. Human Chess players, for example, can estimate roughly
2 positions per second - compared to 200 billion ones checked in a second by
Deep Blue - and therefore must be extremely effective in preliminary selection
of moves.

There exist a few popular, search-free strategies of moves pre-ordering
basing on historical goodness of the move in previous games played. These
include the history heuristics, transposition tables or the killer move heuristics.
In most cases these methods are highly effective since the assumption that a
move which often appeared to be efficient in the past is more likely to be
suitable for the current game position than other “less popular” moves is
generally correct (see e.g. [83] for further discussion and experimental results
in Checkers).

Computational Intelligence in Mind Games 429

An interesting approach to moves pre-ordering in Chess was presented
by Greer [43]. The method relies on pattern-oriented classification of moves
based on heuristically defined influence of a particular move on certain board
regions. At first, each square is assigned a label that represents heuristical
belief in which of the two players controls this square. Combining this infor-
mation for all squares leads to the chessmap which represents the regions of
the board that are in favor for each side as well as the neutral areas, where
none of the players has a visible advantage9. Additionally, for each square (or
more generally each sector composed of some number of squares) the so-called
valueboard is defined based on the relative strength of the control that one
side has over that square (sector). The influence of a move on a given square
(or sector) is defined as the sign of a difference between the valueboard after
that move would have been made and before (i.e. in a current position). This
allows to detect the squares that would be strengthened by that move as well
as the ones that would be weakened.

In order to learn the influence relationship for Chess positions a neural
network was trained based on 10, 000 positions extracted from master and
grandmaster games. The input layer represented influence labels of 64 squares
and the kings’ locations. The desired output values in the 64 element output
layer (one neuron per square) were the influence labels after a move had been
made in the actual game. After training, the outputs of the network were
used to order board squares according to their predicted influence values.
Consequently moves that influenced the highest ranked sector(s) of the board
were considered as the most promising ones.

The above procedure was further enhanced by giving priority to forced and
capture moves. Several tests of this interesting pattern-based heuristic were
carried out including the ones on the set of 24 Bratko-Kopec positions [51],
for which the quality of the method - calculated as the number of searched
nodes - was comparable to the result of applying the history heuristic.

Pattern-based pre-ordering of moves is in line with psychological observa-
tions of how human grandmasters make decisions about which moves to con-
sider first. As Johannes Fürnkranz stated in his excellent review of a decade
of research in AI and computer chess [35] referring to the work of deGroot [27]
“the differences in playing strengths between experts and novices are not so
much due to differences in the ability to calculate long moves sequences, but
to which moves they start to calculate. For this preselection of moves chess
players make use of chess patterns and accompanying promising moves and
plans”.

Pattern-based approaches seem to be perfectly suited for Go, which is a
territory game. Since today’s Go programs are far from being a threat to
human players and rely only on simple pattern matching [73] application

9 The idea of calculating the influence of white and black pieces in order to divide
the board into sections controlled by the respective players was initially intro-
duced by Zorbist [114] in Go.

430 Jacek Mańdziuk

of pattern-oriented methods of moves pre-selection in this game may be a
promising research direction.

3.6 Opponent Modeling

Modeling the opponent is another fundamental issue in current AI/CI re-
search. The problem actually extends far beyond the game playing domain
and is considered as a crucial aspect of any competitive multi-agent environ-
ment (e.g. decision support systems, stock markets, trading systems, etc.). In
game domain the relevance of opponent modeling strongly depends on the
choice of a game. Relatively lesser impact on the quality of playing programs
concerns perfect information games, such as Chess, Checkers, Go, Othello,
etc. However, also in these games the problem is not negligible. The style of
play (tactical vs positional, aggressive vs conservative, etc.), if properly mod-
eled, can provide an important indication for a game playing program. For
example, in a disadvantageous position a program could use a specific style
of play in order to hinder the potential victory of the opponent and strive to
achieve a draw. Another example is seeking the chance to win an even game
by steering it to inconvenient (for the opponent) positions and thus provoking
an opponent’s mistake.

A similar situation is observed among human players. Nearly each of the
top players in any popular board game has opponents who are “less conve-
nient for him”, i.e. achieve relatively better results against that player than
is indicated by their ranking (e.g. ELO in Chess). In other words the “win-
ning relation” is non-transitive and the ranking points provide only general,
statistical information about player’s strength.

Modeling the opponent is far more important in imperfect information
games, especially the ones, in which deception (bluffing) is an inherent part
of the rules. A simple, though instructive, example is the kids’ game Rock-
Paper-Scissors, also known as RoShamBo [12]. In this game, each of the players
independently and simultaneously chooses among Rock, Paper and Scissors.
In the simplest case of two players the winner is the one whose choice “beats”
the opponent’s choice under the following rules: Rock beats Scissors, Scissors
beat Paper and Paper beats Rock. If both players point out the same object
the turn ends with a draw. Even though the rules of the game are trivial,
the game itself is more demanding that one might expect at first glance. A
simple solution is of course choosing actions randomly according to uniform
distribution. Such approach would statistically lead to a draw, however it
does not take into account the opponent’s playing policy which may possibly
be inferred from his/her previous play. Moreover, except for trying to pre-
dict the opponent’s next move, a skilful player (program) should avoid to be
predictable itself. Hence, simple rule-based approaches are not sufficient and
more sophisticated methods are to be employed.

Another example of the game in which opponent modeling is crucial for
efficient playing is a dice game Perudo [57] also known as Liar’s Dice. The

Computational Intelligence in Mind Games 431

rules of Perudo are not very complicated [58], though not as simple as those
of RoShamBo. Playing the game well requires quite sophisticated analysis of
opponents’ past actions in order to detect possible bluffing, since the game
significantly consists in bluffing and straightforward playing most probably
would not lead to success against experienced opponents.

Certainly the most popular “game of deception” is Poker. Here the notion
of (objectively) optimal playing is hard to define due to the huge amount of
uncertainty regarding hidden opponents’ cards (the hole cards) and the la-
tent community cards10. Hence the optimal behavior can only be estimated
with some probability and its calculation strongly depends on the opponents’
actions. A simple example given in [13] concerns the frequency of bluffing by
the opponent. The one who bluffs more frequently should be called more often
compared to the one who bluffs relatively rarely. One possibility of modeling
opponent’s behavior is to construct a statistical model for the next move pre-
diction based on sufficiently large number of games already played against
that opponent. Another possibility is to train a neural network to predict
the opponent’s next action. Poki-X team (cf. sect. 2) employed a standard,
one-hidden-layer MLP network with 19 inputs representing particular aspects
of the game and three outputs corresponding to three possible opponent’s
decisions (fold, raise or call). The outcome of the network provided a prob-
ability distribution (after output normalization) of the opponent’s action in
a given context defined by the input features. After training on deals played
by a given opponent, magnitudes of network’s weights reflected the relative
impact of particular input features on the predicted outcome, which allowed
further exploration of the input data, e.g. finding new features and defining a
relatively small number of context equivalence classes in the input space.

Additional advantage of using neural nets for the opponent modeling task
is their ability to adapt to changes observed in the training patterns (repre-
senting the opponent’s behavior) by adequate weights’ tuning11.

Computational Intelligence methods are very well suited to the problem of
opponent modeling. Probabilistic methods allow building a generic opponent’s
model for a given game, which can be further optimized, e.g. with the use of
genetic algorithms. An alternative approach, especially in the case when the
opponent’s patterns of activity vary in time, is to use neural networks, due
to their capability of adapting internal parameters to the gradually changing
input training data. Another promising avenue is to use TD learning and adapt
internal parameters of the playing system according to achieved results.

Definitely, on-line, adaptable and close to reality modeling of the oppo-
nent is one of the fundamental challenging problems in any non-trivial game,
10 We refer to the Texas Hold’em variant of Poker, which is now the most popular

version of this game. The rules of the game can be found for example in the
excellent books by David Sklansky [96, 97]

11 Certainly such network weights’ adjustment requires the use of appropriate train-
ing scheme and is possible on condition that changes in the opponent’s behavior
are relatively smooth.

432 Jacek Mańdziuk

in particular in imperfect information games, in which data hidden by the
opponent can only be inferred by analysis of his/her past actions in similar
game situations. Proper prediction of this hidden information increases the
expected outcome by decreasing the amount of uncertainty.

It is worth to note that the problem of opponent modeling becomes much
more demanding when multi-player situation is considered, in which players
can form ad-hoc coalitions (formal or informal) against the current leader or
in order to gain some benefits. In such a case players’ decisions are highly
contextual and strongly depend on short-term and long-term goals of the
coalitions they belong to.

3.7 Universality of Tools

One of the grand challenges in game playing is associated with designing
general-purpose methods and algorithms that abstract from particular games.
CI is well located in this stream and several CI-based attempts to create game-
independent methods were presented in the literature.

Game-Independent Learning

Research concerning game-independent learning aims at developing systems
capable of learning any game belonging to a certain class of games. This topic
was very popular in the mid 1990’s when some renowned methods and systems
originated.

One of the well known universal learning systems is Michael Gherrity’s
SAL program [36] capable of learning any two-player, perfect information,
deterministic game. SAL consists of a kernel that uses TD learning combined
with neural network’s backprop learning in order to learn the evaluation func-
tion for a given game. The kernel is game-independent and remains unchanged
for different games. The rules of making valid moves for any particular game
are represented by the game-specific module. SAL learns by trial and error
from the games it has played hitherto. It generates two evaluation functions,
one for each playing side which allows learning non-symmetric games or im-
posing asymmetry in symmetric games, if necessary. The system uses only
2-ply search of the game tree. SAL’s success is strongly hindered by slow
learning. For example, it took the program 20, 000 games to learn to play the
Tic-Tac-Toe game.

Another interesting approach to game-independent learning is represented
by Susan Epstein’s HOYLE system [30, 31], able to learn two-person, deter-
ministic, perfect information games. The underlying idea of HOYLE is to use
a set of game independent advisors each specializing in a narrow, specific as-
pect of game-playing (e.g. one advisor may focus on material advantage while
another one on finding the winning moves or sequences of moves, etc.). Each
of the advisors may recommend some moves and all of them can comment
on these proposals from their specialized viewpoint. Finally the advisors vote

Computational Intelligence in Mind Games 433

using a simple arithmetic voting system. Similarly to SAL, HOYLE uses only
shallow search (2-ply ahead at most).

The diversity of advisors plays a crucial role in learning a new game. Each
of the advisors learns patterns from played games chosen according to its in-
dividual priorities. One advisor may be focused on patterns related to the
opening moves while another, for example, on those related to strong, win-
ning moves, etc. Besides game-specific knowledge that can be acquired by the
advisors based on analysis of the played games, HOYLE is a priori equipped
with some general knowledge about the domain of two-person, deterministic
games.

The efficacy of HOYLE has been demonstrated by playing Tic-Tac-Toe and
Nine-Men’s Morris. The potential of Epstein’s approach in more complicated
games (Chess, Checkers, ...) has not been experimentally proven.

MORPH II developed by Robert Levinson [55] is another example of game-
independent learning system and also a problem solver. MORPH II is a direct
extension of MORPH - a Chess learning program mentioned in sect. 3.2.
MORPH II uses several CI learning techniques which include neural network-
like weights propagation and genetic algorithm-type pattern evolution. Ad-
ditionally, MORPH II implements symbolic learning. The system is capable
of autonomous abstraction of new features and patterns and development of
its own learning modules. Like its predecessor, MORPH II relies on shallow
search equal to only 2 plies on average. The system has successfully learnt to
play Chess on a novice level. Its strength against more demanding opponents
hasn’t been demonstrated.

All the above-mentioned general learning systems are potentially capable
of picking up any game within a certain class of games. They use CI techniques
combined with AI symbolic learning and multi-agent approach. They all rely
on shallow search, just 1 or 2 plies. All of them have demonstrated the ability
to efficiently learn how to play very simple games or more complicated ones,
but at a novice level only. Definitely this direction deserves further exploration
and the issue of how to design universal, game-independent learning systems
is one of the grand challenges for CI community in the area of intelligent game
playing.

Multitask Learning

The idea of designing game-independent learning systems can also be real-
ized within the multitask or incremental learning schemes. Multitask learning
utilizes simultaneous learning of a few tasks and sharing the representation
issues, experience and knowledge among all of them in order to make the over-
all learning process faster and more effective. Incremental, lifelong learning is
usually implemented as a sequential learning process, i.e. tasks are being learnt
one after another, but again representation of problems as well as knowledge
acquired in previous learning are widely shared and involved in subsequent
learning, consequently making the latter easier.

434 Jacek Mańdziuk

Several approaches to multitask and lifelong learning (not only within
game playing domain) has been developed in the last 10 years (e.g. [108, 107,
21, 64]), but there is still a strong demand for new concepts in this area. In case
of game playing one may think of using the experience gained in learning one
or more games in order to alleviate the effort of learning another, similar game.
This type of learning is typical for humans. For example, previous experience
in playing cards is one of the fundamental factors in efficient learning of a new
card game.

Generally speaking, in case of similar games some representation issues
and high level game rules are either common or very similar. Therefore, when
learning a new game there is no need to start from the very beginning. The
learning system may exploit already possessed knowledge - albeit usually its
appropriate tuning will be required.

4 Conclusions

Mind games provide cheap, replicable environments, perfectly suited for test-
ing new Computational Intelligence learning methods and search algorithms.
They also serve as an excellent framework for testing and validating various
implementations of human-type cognitive skills, e.g. intuitive behavior, cre-
ativity, knowledge discovery, or unguided, autonomous and context-sensitive
learning.

All the above skills are crucial in achieving the long-term goal of CI in
mind game playing research, which is the ability to mimic human methods of
learning, reasoning and decision making. Several challenging problems have
to be addressed on this path. Some of them are proposed and motivated in
this chapter.

One of the most interesting issues is implementation of mechanisms of
autonomous knowledge discovery that would lead to creation of new game
features and new playing strategies. In particular a very challenging task is
autonomous choice of board features that compose efficient (close to opti-
mal), descriptive game representation allowing adequate evaluation of board
positions. At the moment the development of a world-class playing program
requires that the set of features be predefined by human experts. Even though
there exist a few notable examples of learning how to play certain games with-
out human expertise, there is still a lot of work ahead.

Another fundamental issue is the ability to improve artificial player’s be-
havior through the learning process resting solely on the experience-based
knowledge acquired from previously played games. An interesting, open prob-
lem in this area is analysis of pros and cons of two main learning schemes
used so-far, i.e. playing against external opponents vs self-playing. In the for-
mer case, additional open problems concern the optimal choice of the training
opponents and the training schedule. Both types of learning were successfully

Computational Intelligence in Mind Games 435

applied to various board games especially with TD learning algorithms. Fur-
ther exploration of these two directions may ultimtely lead to the development
of a general purpose learning engine (system) capable of learning any board
mind game.

Another formidable challenge is implementation of intuition in the game-
playing systems or, more precisely, implementation of mechanisms that would
efficiently pretend human-type intuitive behavior. Such achievement would
straightforwardly lead to the efficacious search-free pre-selection of moves and
instantaneous estimation of position strength as well as the ability to play
strong positional moves relying on shallow search only. All three above men-
tioned skills are typical for experienced human players, but still generally
non-attainable for machines.

Yet another challenging issue concerns game independent learning, in par-
ticular incremental learning methods allowing for sequential or simultaneous
learning of a few games. Sequential incremental game learning may rely on
appropriate tuning of already possessed knowledge and generation of new fea-
tures only when necessary, i.e. when they are “sufficiently different” from al-
ready discovered ones. Simultaneous learning requires that representational
and computational issues be shared on-line among various learning tasks
(games) and each learning task benefits from this synergy.

Achieving the above challenging goals does not necessarily mean construc-
tion of an omnipotent, unbeatable program/machine capable to play “in God’s
way”. On the contrary, as humans make mistakes and are not infallible, also
the CI-based playing systems may possibly suffer from “human” weaknesses,
though to a much lesser extent.

In summary, CI-based methods focus on the way the game playing is-
sues are implemented and solved rather than on the quality of play, which is
regarded as relevant, yet subservient, supplementary goal. This distinguishes
CI-based game-learning systems from traditional AI-based approaches focused
mainly on maximization of the level of play. Consequently, in the near future
AI playing systems are with high probability hardly to be defeated by CI-
based ones.

The above conclusion, on the other hand, does not mean that application
of CI methods to mind game playing is not interesting or not advantageous.
On the contrary, I would argue that the mind game playing research will more
and more be tied with Computational Intelligence methods and its future will
be closely related to the development of psychologically motivated learning
processes attempting to follow higher-level human competencies.

Acknowledgement

The author is grateful for the support from the Warsaw University of Tech-
nology, grant no. 504G 1120 0008 000.

436 Jacek Mańdziuk

References

[1] I. Aleksander. Neural networks - evolutionary checkers. Nature,
402(6764):857, 1999.

[2] T. Anantharaman and M. Campbell. Singular extensions: Adding selec-
tivity to brute-force searching. Artificial Intelligence, 43:99–109, 1990.

[3] A. Arbiser. Towards the unification of intuitive and formal game con-
cepts with applications to computer chess. In Proceedings of the Digi-
tal Games Research Conference 2005 (DIGRA’2005), Vancouver, B.C.,
Canada, 2005.

[4] L. Barone and L. While. An adaptive learning model for simplified
poker using evolutionary algorithms. In Proceedings of the Congress of
Evolutionary Computation (GECCO-1999), pages 153–160, 1999.

[5] L. Barone and L. While. Adaptive learning for poker. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 566–573,
2000.

[6] J. Baxter, A. Tridgell, and L. Weaver. Experiments in parameter learn-
ing using temporal differences. ICCA Journal, 21(2):84–99, 1998.

[7] J. Baxter, A. Tridgell, and L. Weaver. Knightcap: A chess program that
learns by combining td(λ) with game-tree search. In Machine Learning,
Proceedings of the Fifteenth International Conference (ICML ’98), pages
28–36, Madison Wisconsin, July 1998.

[8] J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using
temporal differences. Machine Learning, 40(3):243–263, 2000.

[9] D. Beal. A generalised quiescence search algorithm. Artificial Intelli-
gence, 43:85–98, 1990.

[10] D. F. Beal and M. C. Smith. Learning piece values using temporal
differences. ICCA Journal, 20(3):147–151, 1997.

[11] H. Berliner. The B∗ tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12(1):23–40, 1979.

[12] D. Billings. Thoughts on RoShamBo. ICGA Journal, 23(1):3–8, 2000.
[13] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of

poker. Artificial Intelligence, 134:201–240, 2002.
[14] B. Bouzy and T. Cazenave. Computer Go: an AI oriented survey. Ar-

tificial Intelligence, 132(1):39–103, 2001.
[15] D. Bump. GNU Go. http://www.gnu.org/software/gnugo/gnugo.html,

1999.
[16] M. Buro. Probcut: An effective selective extension of the alpha-beta

algorithm. ICCA Journal, 18(2):71–76, 1995.
[17] M. Buro. From simple features to sophisticated evaluation functions. In

H. J. van den Herik and H. Iida, editors, Proceedings of Computers and
Games Conference (CG98), volume 1558 of Lecture Notes in Computer
Science, pages 126–145, Springer, Berlin, 1999.

[18] M. Buro. Toward opening book learning. ICCA Journal, 22(2):98–102,
1999.

Computational Intelligence in Mind Games 437

[19] M. Buro. Improving heuristic mini-max search by supervised learning.
Artificial Intelligence, 134:85–99, 2002.

[20] M. Campbell, A. J. Hoane Jr., and F.-h. Hsu. Deep Blue. Artificial
Intelligence, 134:57–83, 2002.

[21] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
[22] K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and

intelligence. Proceedings of the IEEE, 87(9):1471–1496, 1999.
[23] K. Chellapilla and D. B. Fogel. Evolving neural networks to play check-

ers without relying on expert knowledge. IEEE Transactions on Neural
Networks, 10(6):1382–1391, 1999.

[24] K. Chellapilla and D. B. Fogel. Anaconda defeats Hoyle 6-0: A case
study competing an evolved checkers program against commercially
available software. In Congress on Evolutionary Computation, La Jolla,
CA, USA, pages 857–863, 2000.

[25] K. Chellapilla and D. B. Fogel. Evolving a neural network to play
checkers without human expertise. In N. Baba and L. C. Jain, editors,
Computational Intelligence in Games, volume 62, pages 39–56. Springer
Verlag, Berlin, 2001.

[26] P. Darwen and X. Yao. On evolving robust strategies for iterated pris-
oner’s dilemma. volume 956 of LNCS, pages 276–292. Springer, 1995.

[27] A. D. de Groot. Thought and Choice in Chess. Mouton Publishers, The
Hague, 1965.

[28] A. Einstein. Cosmic Religion, with Other Opinions and Aphorisms.
1931.

[29] M. Enzenberger. Evaluation in Go by a neural network using soft
segmentation. In Advances in Computer Games: Many Games, Many
Challenges: Proceedings of the International Conference on Advances in
Computer Games (ACG-10), pages 97–108, Graz, Austria, 2003.

[30] S. Epstein. Identifying the right reasons: Learning to filter decision
makers. In R. Greiner and D. Subramanian, editors, Proceedings of the
AAAI 1994 Fall Symposium on Relevance, pages 68–71, New Orleans,
1994. AAAI Press.

[31] S. L. Epstein, J. Gelfand, and J. Lesniak. Pattern-based learning and
spatially-oriented concept formation in a multi-agent, decision-making
expert. Computational Intelligence, 12(1):199–221, 1996.

[32] T. E. Fawcett and P. E. Utgoff. Automatic feature generation for prob-
lem solving systems. In D. Sleeman and P. Edwards, editors, Proceedings
of the 9th International Conference on Machine Learning, pages 144–
153. Morgan Kaufmann, 1992.

[33] D. B. Fogel. Blondie24: Playing at the Edge of Artificial Intelligence.
Morgan Kaufmann, 2001.

[34] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning
evolutionary chess program. Proceedings of the IEEE, 92(12):1947–1954,
2004.

438 Jacek Mańdziuk

[35] J. Fürnkranz. Machine learning in computer chess: the next generation.
ICGA Journal, 19(3):147–161, 1996.

[36] M. Gherrity. A game-learning machine. PhD Thesis, University of
California, San Diego, CA, 1993.

[37] M. L. Ginsberg. GIB Library.
http://www.cirl.uoregon.edu/ginsberg/gibresearch.html.

[38] M. L. Ginsberg. GIB: Steps toward an expert-level bridge-playing pro-
gram. In International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 584–589, Stockholm, SWEDEN, 1999.

[39] M. L. Ginsberg. GIB: Imperfect information in a computationally chal-
lenging game. Journal of Artificial Intelligence Research, 14:303–358,
2001.

[40] H. Givens. PokerProbot. http://www.pokerprobot.com/, 2006.
[41] D. Gomboc, T. A. Marsland, and M. Buro. Evaluation function tun-

ing via ordinal correlation. In Advances in Computer Games: Many
Games, Many Challenges: Proceedings of the International Conference
on Advances in Computer Games (ACG-10), pages 1–18, Graz, Austria,
2003.

[42] J. Gould and R. Levinson. Experience-based adaptive search. In
R. Michalski and G. Tecuci, editors, Machine Learning: A Multi-Strategy
Approach, pages 579–604. Morgan Kaufmann, 1994.

[43] K. Greer. Computer chess move-ordering schemes using move influence.
Artificial Intelligence, 120:235–250, 2000.

[44] E. A. Heinz. Adaptive null-move pruning. ICCA Journal, 22(3):123–
132, 1999.

[45] F.-h. Hsu. Behind Deep Blue. Princeton University Press, Princeton,
NJ, 2002.

[46] R. M. Hyatt. Crafty. ftp.cis.uab.edu/pub/hyatt, 2006.
[47] R. M. Hyatt, H. L. Nelson, and A. E. Gower. Cray Blitz. In T. A.

Marsland and J. Schaeffer, editors, Computers, Chess, and Cognition,
pages 111–130. Springer Verlag, New York, 1990.

[48] IBM Corporation. Deep Blue technology.
http://www.research.ibm.com/know/blue.html, 2006.

[49] L. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[50] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. In Proceedings
of the 2001 Congress on Evolutionary Computation CEC2001, pages
995–1002. IEEE Press, 2001.

[51] D. Kopec and I. Bratko. The Bratko-Kopec experiment: A comparison
of human and computer performance in chess. In M. R. B. Clarke,
editor, Advances on Computer Chess 3, pages 57–72. Pergamon Press,
Oxford, 1982.

[52] C. Kotnik and J. K. Kalita. The significance of temporal-difference
learning in self-play training td-rummy versus evo-rummy. In T. Fawcett

Computational Intelligence in Mind Games 439

and N. Mishra, editors, Machine Learning, Proceedings of the Twenti-
eth International Conference (ICML 2003), pages 369–375, Washington,
DC, USA, August 2003. AAAI Press.

[53] H. Kuijf. Jack - computer bridge playing program.
http://www.jackbridge.com, 2006.

[54] M. Kusiak, K. Walȩdzik, and J. Mańdziuk. Evolution of heuristics for
give-away checkers. In W. Duch et al., editors, Artificial Neural Net-
works: Formal Models and Their Applications - Proc. ICANN 2005, Part
2, Warszawa, Poland, volume 3697 of LNCS, pages 981–987. Springer,
2005.

[55] R. Levinson. MORPH II: A universal agent: Progress report and pro-
posal. Technical Report UCSC-CRL-94-22, Jack Baskin School of En-
gineering, Department of Computer Science, University of California,
Santa Cruz, 1994.

[56] R. A. Levinson and R. Snyder. Adaptive pattern-oriented chess. In
L. Birnbaum and G. Collins, editors, Proceedings of the 8th International
Workshop on Machine Learning, pages 85–89. Morgan Kaufmann, 1991.

[57] A. Macleod. Perudo as a development platform for Artificial Intelligence.
In 13th Game-On International Conference (CGAIDE’04), pages 268–
272, Reading, UK, 2004.

[58] A. Macleod. Perudo game. http://www.playperudo.com/, 2006.
[59] J. Mańdziuk. Incremental learning approach for board game playing

agents. In Proceedings of the 2000 International Conference on Artificial
Intelligence (IC-AI2000), volume 2, pages 705–711, Las Vegas, USA,
2000.

[60] J. Mańdziuk. Incremental training in game playing domain. In Pro-
ceedings of the International ICSC Congress on Intelligent Systems &
Applications (ISA2000), volume 2, pages 18–23, Wollongong, Australia,
2000.

[61] J. Mańdziuk, M. Kusiak, and K. Walȩdzik. Evolutionary-based heuristic
generators for checkers and give-away checkers. Expert Systems, 2007,
(accepted).

[62] J. Mańdziuk and K. Mossakowski. Looking inside neural networks
trained to solve double-dummy bridge problems. In 5th Game-On Inter-
national Conference on Computer Games: Artificial Intelligence, Design
and Education (CGAIDE04), pages 182–186, Reading, UK, 2004.

[63] J. Mańdziuk and D. Osman. Temporal difference approach to playing
give-away checkers. In L. Rutkowski et al., editors, 7th Int. Conf. on
Art. Intell. and Soft Comp. (ICAISC 2004), Zakopane, Poland, volume
3070 of LNAI, pages 909–914. Springer, 2004.

[64] J. Mańdziuk and L. Shastri. Incremental Class Learning approach and
its application to handwritten digit recognition. Information Sciences,
141(3–4):193–217, 2002.

[65] D. McAllester. Conspiracy numbers for min-max search. Artificial In-
telligence, 35:287–310, 1988.

440 Jacek Mańdziuk

[66] J. McCarthy. Homepage of John McCarthy.
http://www-formal.stanford.edu/jmc/reti.html, 1998.

[67] M. L. Minsky. Steps towards artificial intelligence. In Proceedings of
IRE, volume 49, pages 8–30, 1961.

[68] T. M. Mitchell and S. Thrun. Explanation based learning: A comparison
of symbolic and neural network approaches. In P. E. Utgoff, editor,
Proceedings of the 10th International Conference on Machine Learning,
pages 197–204, San Mateo, CA, 1993. Morgan Kaufmann.

[69] D. E. Moriarty and R. Miikkulainen. Discovering complex othello strate-
gies through evolutionary neural systems. Connection Science, 7(3):195–
209, 1995.

[70] K. Mossakowski and J. Mańdziuk. Artificial neural networks for solving
double dummy bridge problems. Lecture Notes in Artificial Intelligence,
3070:915–921, 2004.

[71] K. Mossakowski and J. Mańdziuk. Neural networks and the estimation
of hands’ strength in contract bridge. In L. Rutkowski et al., editors, 8th
International Conference on Artificial Intelligence and Soft Computing
(ICAISC06), Lecture Notes in Artificial Intelligence, pages 1189–1198,
Zakopane, POLAND, 2006.

[72] M. Müller. Computer Go as a sum of local games: An application
of combinatorial game theory. PhD Thesis, ETH Zürich, Switzerland,
1995.

[73] M. Müller. Computer Go. Artificial Intelligence, 134:145–179, 2002.
[74] A. Newell, J. C. Shaw, and H. A. Simon. Chess-playing programs and

the problem of complexity. IBM Journal of Research and Development,
2(4):320–335, 1958.

[75] D. Osman and J. Mańdziuk. Comparison of tdleaf(λ) and td(λ) learning
in game playing domain. In N. R. Pal et al., editors, 11th Int. Conf.
on Neural Inf. Proc. (ICONIP 2004), Calcutta, India, volume 3316 of
LNCS, pages 549–554. Springer, 2004.

[76] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-first fixed-depth
minimax algorithms. Artificial Intelligence, 87(1–2):255–293, 1996.

[77] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Exploiting graph
properties of game trees. In 13th National Conference on Artificial In-
telligence (AAAI-96), volume 1, pages 234–239, Menlo Park, CA, 1996.

[78] E. A. Poe. Maelzel’s chess player. Southern Literary Messenger, (April),
1936.

[79] J. B. Pollack, A. D. Blair, and M. Land. Coevolution of a backgammon
player. In C. G. Langton and K. Shimokara, editors, Proceedings of the
Fifth Artificial Life Conference, pages 92–98. MIT Press, 1997.

[80] A. Reinefeld. An improvement to the scout tree-search algorithm. ICCA
Journal, 6(4):4–14, 1983.

[81] T. P. Runarsson and S. M. Lucas. Coevolution versus self-play temporal
difference learning for acquiring position evaluation on small-board Go.
IEEE Transactions on Evolutionary Computation, 9(6):628–640, 2005.

Computational Intelligence in Mind Games 441

[82] A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210–229,
1959.

[83] J. Schaeffer. The history heuristic and alpha-beta search enhancements
in practice. IEEE PAMI, 11(11):1203–1212, 1989.

[84] J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in
Checkers. New York: Springer-Verlag, 1997.

[85] J. Schaeffer. Chinook. http://www.cs.ualberta.ca/˜ chinook/, 2006.
[86] J. Schaeffer. Poki-X. http://www.cs.ualberta.ca/˜ games/poker/, 2006.
[87] J. Schaeffer, J. C. Culberson, N. Treloar, B. Knight, P. Lu, and

D. Szafron. A world championship caliber checkers program. Artifi-
cial Intelligence, 53(2-3):273–289, 1992.

[88] J. Schaeffer, M. Hlynka, and V. Jussila. Temporal difference learn-
ing applied to a high-performance game-playing program. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 529–
534, 2001.

[89] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook: The world man-
machine checkers champion. AI Magazine, 17(1):21–29, 1996.

[90] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal difference
learning of position evaluation in the game of go. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information
Processing 6, pages 817–824. Morgan Kaufmann, San Francisco, 1994.

[91] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Learning to evaluate
go positions via temporal difference methods. In N. Baba and L. C. Jain,
editors, Computational Intelligence in Games, volume 62, pages 77–98.
Springer Verlag, Berlin, 2001.

[92] Y. G. Seo, S. B. Cho, and X. Yao. Exploiting coalition in co-evolutionary
learning. In Proceedings of the 2000 Congress on Evolutionary Compu-
tation, volume 2, pages 1268–1275. IEEE Press, 2000.

[93] C. E. Shannon. Programming a computer for playing chess. Philosoph-
ical Magazine, 41 (7th series)(314):256–275, 1950.

[94] B. Sheppard. World-championship-caliber scrabble. Artificial Intelli-
gence, 134:241–275, 2002.

[95] H. Simon. Making managenet decisions: The role of intuition and emo-
tion. In Weston Agor, editor, Intuition in Organizations, pages 23–39.
Sage Pubs., London, 1987.

[96] D. Sklansky. Hold’Em Poker. Two Plus Two Publishing, Nevada, USA,
1996.

[97] D. Sklansky and M. Malmuth. Hold’Em Poker for Advanced Players,
21st Century Edition. Two Plus Two Publishing, Nevada, USA, 2001.

[98] B. Stilman. Liguistic Geometry. From search to construction. Kluwer
Academic Publishers, Boston, Dordrecht, London, 2000.

[99] G. Stockman. A minimax algorithm better than alfa-beta? Artificial
Intelligence, 12(2):179–196, 1979.

442 Jacek Mańdziuk

[100] R. Sutton. Learning to predict by the method of temporal differences.
Machine Learning, 3:9–44, 1988.

[101] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[102] G. Tesauro. Neurogammon wins computer olympiad. Neural Computa-
tion, 1:321–323, 1989.

[103] G. Tesauro. Practical issues in Temporal Difference Learning. Machine
Learning, 8:257–277, 1992.

[104] G. Tesauro. TD-Gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6(2):215–219, 1994.

[105] G. Tesauro. Temporal Difference Learning and TD-Gammon. Commu-
nications of the ACM, 38(3):58–68, March 1995.

[106] S. Thrun. Learning to play the game of chess. In G. Tesauro, D. Touret-
zky, and T. Leen, editors, Advances in Neural Information Processing
Systems 7, pages 1069–1076. The MIT Press, Cambridge, MA, 1995.

[107] S. Thrun. Explanation-Based Neural Network Learning: A Lifelong
Learning Approach. Kluwer Academic Publishers, Boston, MA, 1996.

[108] S. Thrun and T. M. Mitchell. Learning one more thing. Technical
report, Carnegie Mellon University, USA, CMU-CS-94-184, 1994.

[109] W. Tunstall-Pedoe. Genetic algorithms optimizing evaluation functions.
ICCA Journal, 14(3):119–128, 1991.

[110] A. M. Turing. Digital computers applied to games. In B. V. Bowden,
editor, Faster than thought: a symposium on digital computing machines,
chapter 25. Pitman, London, UK, 1953.

[111] P. E. Utgoff. Feature construction for game playing. In J. Fürnkranz and
M. Kubat, editors, Machines that Learn to Play Games, pages 131–152.
Nova Science Publishers, Huntington, NY, 2001.

[112] A. van Tiggelen. Neural networks as a guide to opitimization. The chess
middle game explored. ICCA Journal, 14(3):115–118, 1991.

[113] T. Yoshioka, S. Ishii, and M. Ito. Strategy acquisition for the game
“othello” based on reinforcement learning. IEICE Transactions on In-
formation and Systems, E82-D(12):1618–1626, 1999.

[114] A. Zorbist. Feature extractions and representation for pattern recogni-
tion and the game of go. PhD Thesis, University of Wisconsin, 1970.

Computer Go: A Grand Challenge to AI

Xindi Cai and Donald C. Wunsch II

University of Missouri – Rolla

Summary. The oriental game of Go is among the most tantalizing unconquered
challenges in artificial intelligence after IBM’s DEEP BLUE beat the world Chess
champion in 1997. Its high branching factor prevents the conventional tree search
approach, and long-range spatiotemporal interactions make position evaluation
extremely difficult. Thus, Go attracts researchers from diverse fields who are
attempting to understand how computers can represent human playing and win
the game against humans. Numerous publications already exist on this topic with
different motivations and a variety of application contexts. This chapter surveys
methods and some related works used in computer Go published from 1970 until
now, and offers a basic overview for future study. We also present our attempts and
simulation results in building a non-knowledge game engine, using a novel hybrid
evolutionary computation algorithm, for the Capture Go game.

1 Introduction

Games have served as one of the best test benches in artificial intelligence
fields since shortly after computers were invented. Human-designed computer
game engines have beaten their designers in varieties of games, from those as
simple as Tic-Tac-Toe to as complex as Chess. The brute-force search algo-
rithm, combined with an expert database, achieved noteworthy success, given
the computational power of current machines, when IBM DEEP BLUE beat
the World Chess Champion Garry Kasparov in 1997 [21]. Unfortunately, this
game’s tree search approach is hampered by the traditional Chinese game Go.

Unlike most other games of strategy, Go has remained an elusive skill for
computers to acquire, and it is increasingly recognized as a “grand challenge”
of artificial intelligence, which attracts researchers from a diversity of domains,
such as game theory [2], pattern recognition, reinforcement learning [47], and
even cognitive psychology [10].

Even though computers still play Go at an amateur level, numerous
publications demonstrate some quite meaningful exploration that helps us
to understand the nature of this computer game better. In our review of
Xindi Cai and Donald C. Wunsch II: Computer Go: A Grand Challenge to AI, Studies in

Computational Intelligence (SCI) 63, 443–465 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

444 Xindi Cai and Donald C. Wunsch II

computer Go literature on what has been achieved, where the barriers lie,
and how to make a breakthrough, we emphasize that developing an effi-
cient self-learning mechanism in Go may best reveal the nature of goal-driven
decision making and interacting in a range of environments, where strategies
are acquired to allocate available resources in achieving maximum payoffs,
either short-term or long-term. Even though other AI approaches are promis-
ing in computer Go, we particularly favor applying reinforcement learning
and neural network techniques to build a zero-knowledge board evaluation
function. Such neural network evaluators have been successfully trained by
evolutionary algorithms in Checkers and Chess [6, 7, 16]. We utilize a hybrid
of an evolutionary algorithm and particle swarm optimization to train our
neural network evaluator and obtain encouraging results on Capture Go, a
simplified version of Go. The success in learning one of the key strategies
of Go, i.e., capture and defense, through Capture Go will demonstrate that
other strategies of similar complexity are solvable with the same technique.
With more strategy boxes accumulated, this divide-conquer approach may
result in an overall game engine incrementally built in a hierarchy of high
levels, employing those boxes as the building blocks and eventually becoming
competitive against human beings.

The chapter is organized as follows: Section 2 provides background infor-
mation about Go and some comparison between computer Go and a Chess
program. In Section 3, we track the development of computer Go and focus
on several successful programs. The theme for Section 4 is the current promis-
ing approaches in self-learning with little built-in knowledge where conven-
tional architecture and algorithms have failed in computer Go. In Section 5, we
present our simulation results in training a zero knowledge game engine to play
Capture Go using an innovative hybrid population computation. We round
off the article with an overview for future directions of study and conclusions
in Section 6.

2 Background

This section furnishes some background knowledge for both the traditional
game Go and the computer version so that we can discuss the methods
presented in this chapter. First, we introduce the game Go with its terms
and rules. Then, we briefly discuss the techniques used for computer games.
Finally, we compare computer Go and computer Chess to show why the con-
ventional methods failed.

2.1 The Game Go

Go is a deterministic, perfect information, zero-sum game of strategy between
two players. Players take turns placing black and white pieces (called stones)
on the intersections of the lines in a 19x19 grid called the Go board. Once

Computer Go: A Grand Challenge to AI 445

played, a stone cannot be removed unless captured by the other player. To
win the game, each player seeks to surround more territory (empty grids) with
one’s own stones than the opponent.

Adjacent stones of the same color form strings, and hence groups; an empty
intersection adjacent to a stone, a string, etc. is called its liberty. A group is
captured when its last liberty is occupied by the opponent’s stone. A player
cannot make a suicidal move by placing a stone on an intersection with no
liberty. An eye is a formation of stones of special significance in Go. When
an empty intersection is completely surrounded by stones of the same color,
it is known as an eye. An opponent cannot place a stone on that intersec-
tion unless it is a capturing move, i.e. unless placing the stone causes one
or more of the stones surrounding the intersection to be captured. A string
with two eyes cannot be captured because filling one of the eyes would be
a suicidal, and therefore illegal, move. Having formed two eyes, or having
the potential to do so, is the line between “alive” strings and “dead” ones.
Those strings that are incapable of forming two eyes will be considered as
captured and hence are removed when calculating the territories at the end of
the game. Evaluating whether stones can be formed into strings, furthermore
into groups, and whether strings are capable of forming two eyes is the fun-
damental skill in Go as it represents the game strategies of “attack,” making
ourselves strong and being aggressive, and “defense,” avoiding vulnerabilities
and surviving.

To prevent loop, it is illegal to make moves that recreate prior board
positions (rule of Ko). The rule for Go is simple: one can place his/her stone
on any empty intersection unless it is a suicidal or Ko move. A player can
pass his/her turn at any time. The game ends when both players pass in
consecutive turns (see Fig. 1). There are excellent books available on the game
of Go [43].

2.2 Techniques Used in Computer Games

Claude Shannon [42] proposed that a mechanical algorithm could play a game
if that algorithm contained two ingredients: an evaluation function—a math-
ematical formula that assigns credits according to different board positions—
and a rationale, which he called “minimax,” that seeks to minimize the max-
imum damage that the opponent can do in any circumstance.

The evaluation function quantifies how good or bad each legal move on
the board was, while the minimax procedure provides a way to evaluate the
possible alternative positions, given the credits from the evaluation function,
by favoring the position that had the least advantage for the rival. This mech-
anism is the bar code of almost every computer game product.

Numerous algorithms, such as minimax, Alpha-Beta search, MFD, and
different parallel versions, are proposed in the minimax procedure for the
purpose of achieving a deeper and wider search with the same computa-
tional power. On the other hand, the evaluation function is evolved from static

446 Xindi Cai and Donald C. Wunsch II

E

E F

(a) (b)

Fig. 1. Go board, terms, and rules. Only a portion of the 19x19 Go board is shown.
In (a), the lower 5 T-like white stones form a string, and hence a group with the
white stone to their left. In the middle, black captures a white stone, the dashed
one, and removes it from the board by placing the top black stone on the board.
However, white cannot immediately put a stone onto the dashed-stone intersection
to capture the top black stone because such a move would repeat the previous board
position, thus violating the rule of “Ko.” In the middle of (b), white has an eye at
“E.” White cannot put his stone at “E,” which results in no liberty of the whole
string. That is a suicide move and forbidden by the rules. Black can put his stone
at “E” even though there is no liberty of that stone either, but it is allowed because
it captures the white string. So the white string with only one eye is dead and will
be removed from the board at the end of the game. The black string at the corner
has two eyes, i.e., “E” and “F,” and hence is alive because white cannot seize both
of the eyes simultaneously

knowledge-based pattern recognition to dynamic neural networks trained by
Heuristic Dynamic Programming (HDP) or Evolutionary Algorithm (EA).

2.3 Computer Go and Computer Chess

Given the same programming techniques that were so successful in Chess,
computer Go has so far significantly bypassed what Chess programs have
achieved in a high level of game playing. We separate these two games into
parts, based on Shannon’s plot, to illustrate the gap we need to overcome.

In the game tree aspect, good Chess programs look seven plys, a move by
each player, ahead or deeper, and there are about 35–40 moves available, on
average, to a player. Exploration on such a search tree results in an evaluation
of about 60 billion scenarios with good prune skills. The IBM Deep Blue
is capable of evaluating 200 million positions a second, which allows Chess
programs to execute a massive search and evaluation with the help of expert
knowledge.

Unlike Chess, Go starts with an empty board and fills with stones as the
game progresses. Theoretically speaking, there are 361! leaves at the bottom

Computer Go: A Grand Challenge to AI 447

of the game tree with no capture occurring during the game. The branching
factor of the search tree, or the number of legal moves on the board, is around
200 on average, more at the beginning and less at the end of the game. The
game length varies from 150 to 300 moves. All these factors result in a game
tree varying from 10360 to 10690. In general, a game tree of approximately
10575 leaves [1] is accepted by most researchers. A 7-ply look-ahead search
needs to handle ten thousand trillion positions, which makes a brute force
search approach infeasible, even with the most powerful computer.

The evaluation function is much easier in Chess because the pieces have
their own rank values. Assessing the strength of either side can be simply
reduced to comparing the piece value, plus some measure of strength posi-
tion and threat to the King, since normally a piece advantage will lead to
a victory. The idea of rank in Go is very vague. A single stone has no rank
at all. Moreover, the importance of a stone, a string, and a group changes
based on a number of factors, such as connectivity, liberty, position on the
board, correlation with neighboring friend and/or foe, and even the player’s
preferences, as the game progresses. Sometimes, the same stones can be ei-
ther protected or sacrificed with the same aim to gain the maximum territory.
Additionally, tactical skills play a more important role in Chess. A tactical
evaluation based on piece quality of the board correctly yields the likely win-
ner. In Go, winning a tactical struggle over a group may not clearly lead to
winning the game. In other words, it is more important to know how to apply
those tactical skills properly at different board areas, under different game
conditions, or even in different sequences than how to play each tactic cor-
rectly. Unfortunately, the former is very game/situation dependent, and even
human masters do not agree with each other on which tactical method to pick
(sometimes totally opposite methods are selected just because of masters’ per-
sonal tastes). Therefore, installation of an expert knowledge database, which
usually contains the procedures of tactical skills, as the evaluation function,
as used in Chess, is implausible for Go because defining and formulating such
knowledge into Go moves is difficult.

Besides the above two facets, computer Go also lacks the capability to
perform deep, narrow look-ahead. “Ladder situation” is a typical example.
Another problem in Go is to determine the finish of the game. In Chess, the
game ends when one of the players resigns, when a checkmate is achieved, or
when stalemate/draw positions by rule (e.g. king + knight vs. king, position
repetition, 50-move rule) are reached, which all are immediate, definite, and
easily recognizable states. In Go, the game ends when both players choose
to pass consecutively. They agree to pass when they feel that it would not
improve their territory by placing more stones on the board. Beginners fre-
quently play beyond the optimal point at which an expert would stop. Current
Go programs display similar behavior, especially in self-playing.

448 Xindi Cai and Donald C. Wunsch II

3 Development of Computer Go

The history of computer Go is rather short. The first paper discussing com-
puter Go was published in 1970 by Albert Zobrist [49], who wrote the first
computer program to play a complete Go game. Since then, many programs
have been developed, including, but not limited to: Go Nemesis [46], Wally
[29], Many Faces of Go [17], Handtalk [11] and Go4++ [33], some of which
will be discussed in full later in this section. Also, quite a few international
computer Go tournaments have been held since the 1st international computer
Go congress took place in 1986.

3.1 Early Attempts

Computer Go pioneers inherited most of their techniques from computer
Chess. A small game tree was searched due to limited computational power,
and certain board patterns, based on fixed, pre-built expert knowledge work-
ing as feature evaluation, were checked in order to generate candidate moves.

Zobrist introduced the idea of using influence functions to quantify the im-
pact of black and white stones, and hence segment the board into black and
white territories. Each stone radiates its influence, measured by a numeric
value with positive for black stones and negative for white ones on the board.
The influence attenuates as the hamming distance increases. Also, a black
stone itself is given a value of +50 and a white stone, −50. For every inter-
section on the board, the influence function accumulates the influence credits
spread by all black and white stones. The black and white territories can be
recognized as the areas of contiguous positive and negative values. On the
other hand, Zobrist quantified the board in various 19x19 arrays that con-
tain information such as the occupation of an intersection (black, white, or
empty); the number of white and black neighbors; the number of stones and
liberties for each string; size (including empty points) and number of stones in
each segment. This internal representation was constructed for future feature
evaluation and pattern recognition.

The move generator in Zobrist’s program was built by integrated feature
evaluations. With the help of internal representation, the program performed
pattern recognition over the entire board, hoping to find some patterns match-
ing those stored in the expert knowledge database. In this database, each pat-
tern was associated with a candidate move and a numeric value to reflect the
priority of the move. At the end of the process, the pattern with the highest
value was picked, and its associated move became the program’s next move. In
addition, a limited look-ahead, a depth of three moves, or heuristic search was
executed on a local area in handling forming eyes, ladders, saving/capturing
strings, and connecting/cutting strings.

Zobrist’s program performed somewhat weakly. It beat some beginners
but was fairly vulnerable when playing against experienced players.

Computer Go: A Grand Challenge to AI 449

Ryder’s program [37] extended Zobrist’s work with refined influence func-
tions and larger summed feature evaluations. The contribution Ryder made
was that he combined both strategic, long-term objectives and tactical, short-
term objectives because he saw that Go requires a balance between fortifying
actual and/or potential territories and avoiding loss of key stones to the oppo-
nent. In maintaining this balance, Ryder formulated three domains of interest:
how well each side controls his/her regions on the board; where the best moves
for both sides are located; and what the life-and-death statuses of strings for
both sides are.

Move generation in Ryder’s program consisted of two phases. At first, the
summed feature evaluation, working as a move filter, reduced the candidate
moves from all legal ones to about the 15 best moves according to the tactical
status of all strings. In the second phase, the best 15 moves were further
analyzed with respect to both tactical and näıve strategy theories. The move
with the highest combined score after the first and second round was then
recommended as the next move.

Besides refining the credits each stone contributed through the influence
function, Ryder also used the influence function to describe the strength
of connectedness and relation between stones, and hence to form individual
stones and neighboring empty points into some local properties, such as walls,
strings, groups, and armies, based on some predefined influence thresholds.

Reitman and Wilcox [34, 35, 36] built their Go program, from INTERIM.2
to Nemesis, by replicating human perceptual and cognitive abilities in Go.
The three essential ingredients they incorporated into their Go program were
perception, knowledge, and coordination. By perception, they meant the rep-
resentation of different board positions as a skilled Go player would do. Types
of knowledge stored in the program were: tactical – including how to save/kill
a group and how to make territory; strategy – evaluating the board position
as the game proceeded; coordination – controlling the flow of both perceptions
and knowledge for the purpose of generating the next move.

The INTERIM.2, and later the Nemesis [46], had tremendous data struc-
tures cascading from simple to complex: stringboard, linkboard, gameboard,
and gamemap. They were designed to contain the representations mentioned
above. The program also employed a tactician, PROBE, to answer specific
questions and propose reasonable initial moves. Those moves, instead of all
legal candidates, worked as the branches of the game tree for certain depths
of plays until a board position could be judged as either a success or a fail-
ure for the specific question. Typically, around 60–80 moves were searched for
a particular problem based on a hierarchy of experts in PROBE. Therefore,
such a look-ahead drive was rather a narrow, goal-driven but faster one than
a general, full-board yet time-consuming one with the price of being greedy
at local patterns.

Restricted by the computational powers they had at the time, researchers
of computer Go in the 70s and 80s implemented quite an amount of Go
knowledge, borrowed directly from human experts, in their programs. The

450 Xindi Cai and Donald C. Wunsch II

Go knowledge encoded in the form of patterns greatly pruned the game tree,
which by no means brute force can handle, by concentrating on the most
promising candidate moves. On the other hand, the room for improvement for
these knowledge-intensive Go engines was limited due to their hard learning
mode. No ability in Go beyond their fixed database had been demonstrated in
their performance. Besides rigid playing, these early programs lacked overall
game strategy because the search involved was local rather than full-width.
The preferred patterns, and hence corresponding moves, on the sub-board
may not be the right play for a long-term goal. These were the reasons why
early Go programs ranked at low Kyu level.

3.2 Knowledge Representation and Rule-Based Go Engines

Computer Go engines saw some breakthrough in the 1990s. Many Faces of
Go, Handtalk, and Go4++ were among the strongest Go programs commer-
cially available during that time. All these programs employed complicated
data structures to describe board position, sophisticated tactical strategies to
generate candidate moves, and expert patterns to modify move values.

Many Faces of Go is a typical representative of this category. It contains
dynamic data, such as intersections, eye, string, connection, and group, to
illustrate board positions. The dynamic data structure is modified incremen-
tally as stones are added to or removed from the board. The data are also
recalculated, ether locally or globally, when regions of the board have been
affected by a move or move sequence.

The evaluation function, which maintains the data structure, is a tactical
analyzer. It reads strings to evaluate liberties, eye, connection, group strength,
and territories. Therefore, it assigns a score to board positions depending on
how strongly they are controlled by white or black.

The game engine of Many Faces of Go is driven by a strategy function,
which scans the dynamic data to pick up important areas on the board to act.
It also switches the engine among open game, middle game, and end game,
hence utilizing different knowledge/rule databases for move generation. Other
functionalities include game judgment (“ahead,” “even,” “behind,” etc.), sente
evaluation, and urgent defense/capture.

Knowledge and rules are implemented intensively in Many Faces of Go
for candidate move generation. A rule-based expert system with more than
200 rules is responsible for suggesting plausible moves for full board level. A
Joseki database consisting of over 36,000 moves is designed for corner fights.
In the pattern database, each of the 1200 patterns of size 8x8 is associated
with a move tree. Patterns match leads to move suggestion, eye/connection
clarification, in different game phases (middle or end game), and at different
areas of the board (middle, edge, or corner).

Combining a strategy function, a move suggestion expert system, and a
pattern database, the Many Faces of Go evaluates only a small number of
moves and plays the one with the highest score.

Computer Go: A Grand Challenge to AI 451

Handtalk and Go4++ process similar procedures; Handtalk implements
patterns in assemble code to enhance the matching speed, and Go4++ em-
phasizes the connectivity in its data structure and evaluation function.

The common and distinguishing feature of computer Go programs in this
category is that candidate moves are heuristically generated by an expert
knowledge database and/or pattern matching. The success of the program
depends heavily on the sound design of the expert knowledge database and
sufficient patterns to cover every case, which is usually very difficult, especially
in middle game.

3.3 Combinatorial Game Theory Approach in Computer Go

Combinatorial game theory [12] treats a game as a sum of local subgames
and provides a mathematical basis to analyze the game in a divide-conquer
manner.

Combinatorial game theory has been applied to many aspects of computer
Go. This approach achieved a major breakthrough in computer Go by beat-
ing a human professional master at the end game [3]. Another attempt of
combinatory game theory is to employ it in position evaluation by focusing
on different zones of the board and then computing a full board evaluation
from these local evaluations [27]. It is also utilized to decompose Go game
tree search [26].

However, the theory has one drawback for its emphasis on being exact. At
the end game, the territories held by each side are very clear; thus, subgames
can be precisely divided. In open and middle games, however, such assumption
is usually not true. Current research involves using heuristic rules/conditions
to replace [9] or relax [28] the theory.

4 Learning in Computer Go

Unlike the knowledge-based approaches, which retrieve the built-in expert
solutions via pattern recognition, the learning approaches really focus on
teaching the computer to analyze the environment and then play the game
from its own experience. Neural networks, reinforcement learning, and evolu-
tionary computation are heavily involved in these approaches. Neural networks
usually act as a game engine, such as a board evaluator and/or move filter
for game tree search, utilizing reinforcement learning techniques to describe
the game environment/goals in sequence and employing evolutionary compu-
tation methods to tune the weights in order to minimize the cost function.

Temporal difference [44] methods are incremental learning procedures
specialized for prediction problems where the sensory inputs are applied in
sequence. They have been successfully employed for the prediction evaluation
function at different board positions in backgammon [45]. Temporal difference
algorithms minimize the following criterion function:

452 Xindi Cai and Donald C. Wunsch II

J(w) =
P∑

p=1

Np∑
k=1

λNp−k(zNp −G(xp(k))2 (4.1)

by adjusting the weights in a neural network as:

Δwt = α(Pt+1 − Pt)
t∑

k=1

λt−kΔwPk (4.2)

In both equations, P is the number of examples, i.e., the number of games;
Np is the number of steps in the pth example, which is not known until the out-
come is determined; zNp is the actual outcome of the pth example; G(xp(k))
is the output of the network when presented with xp(k); and λ[0,1] is a pa-
rameter used to place more emphasis on predictions temporally close to the
outcome.

Using the TD approach, a computer Go program can pick up moves that
result in better board positions once appropriate weights are learned. In ad-
dition, as the weight evolves, the program strategy will also evolve, leading to
different performance and triggering, and, in return, another round of weight
adjustment. Such a process guides the computer Go engine to play a game
without supervision, i.e., explicitly labeled good/bad moves. In fact, any legal
move can be used for training, and the game engine gradually learns the strate-
gies itself by playing both sides according to its current evaluation function,
with little expert knowledge involved during the whole process.

Schraudolph et al. [39, 40] implemented a Go position evaluator on a neural
network system, trained by the TD(0) algorithm. The architecture of the
neural system was designed to reflect the spatial board information and elim-
inate symmetric effects on the board (color and position reflection/rotation)
with hidden units and weight sharing. The network predicts the fate of every
point on the board rather than just the overall score and then evaluates whole
positions accordingly. After extensive self-play training (moves acquired sto-
chastically by Gibbs sampling to avoid duplication and local minima), the
system managed to edge past Wally, a weak computer Go program, and even
beat Many Faces of Go at some low level playing.

Zaman et al. [47, 48] used an Heuristic Dynamic Programming (HDP)
type adaptive critic design [32] for evaluating a Go board. The main difference
between HDP and the above-mentioned TD approaches is that HDP uses an
additional utility function (per step cost/reward) in the training signal.

An HDP-type critic estimates the function J (cost-to-go) in the Bellman
equation of dynamic programming expressed as:

J(t) =
∞∑

k=0

γkU(t + k) (4.3)

where γ is a discount factor for finite horizon problems (0 < γ < 1), and U(.)
is a non-negative utility function or local cost/reward. The critic is trained
forward in time and tries to minimize the following error measure over time:

Computer Go: A Grand Challenge to AI 453

‖E‖ =
∑

t

E2(t) (4.4)

where,
E(t) = J(t)− [γJ(t + 1) + U(t)] (4.5)

the terms inside the square bracket make the desired signal at time t, if t is
not the terminal state. At the end of the game, the desired signal is simply
U(t). J(t) is a function of R(t), i.e., the observable states. In terms of Go,
R(t) can be the board representations at step t. The function U(t) denotes
an incremental area measure from board R(t − 1) to R(t). When the area
associated with R(t− 1) is larger than that of R(t) (loss of area between two
steps, t− 1 and t), U(t) is set to zero because U(.) is strictly non-negative by
the principle of dynamic programming. In [47], the U(t) function is given by:

U(t) =
{

util(t)− util(t− 1); if util(t) > util(t− 1)
0; otherwise

(4.6)

where,

util(t) = η
NW

NW + NB
+ ν

AW

AW + AB
+ ρ

PB

PW + PB
(4.7)

NW and NB are the number of WHITE and BLACK stones on the board,
respectively; AW and AB are the areas occupied by WHITE and BLACK
stones, respectively; PB and PW are BLACK and WHITE prisoners held by
the opponent, respectively.

The architecture of Zaman’s computer Go engine includes five distinct
modules: Critic, Action, Wally, Go, and Utility. The Critic module is a multi-
layer perceptron trained by the TD(0) method. It estimates the sum of dis-
counted reward/cost for the network’s future actions starting from the current
state. The Action network plays as a move filter. Firstly, it lists all legal moves
for the current state; secondly, it generates a new board position for each
move; after that, it evaluates the critic’s evaluation of the resulting board;
and finally, it selects the move based on the critic’s board evaluation. The
utility module is used to measure network cost/reward at the current state of
the board. The Go module incorporates rules of the game, and Wally serves
as the network’s opponent. The game engine surpassed the strength of Wally.

Besides the reinforcement technique discussed above, evolutionary com-
putation, especially genetic algorithm, is also very popular in computer Go
engine implementation. Like natural evolution, the genetic algorithm evolves
the neural networks to tackle evaluation function problems in Go.

Genetic operators, such as selection, crossover, and mutation, are applied
to neural networks for effective architecture and/or weights to solve the credit
assignment problem. Instead of punishing or rewarding individual moves, the
evolutionary approach evaluates and selects networks, i.e., game strategies,
based on their overall performance in the game. SANE [38] evolved both
architecture and weights of a three-layer feedforward network simultaneously

454 Xindi Cai and Donald C. Wunsch II

to evaluate move value for each board position. After a few hundred gen-
erations of evolution, SANE defeated Wally 75% of the time and exhibited
several aspects of general Go playing, indicating a good scale-up.

Genetic algorithms are also used to direct minimax searches away from
poor information [25] and optimize search heuristics for life-and-death prob-
lems [31].

5 An Example of Training a Non-Knowledge Game
Engine for Capture Go

Evolutionary algorithms have shown to be a promising approach to solving
complex constrained optimization problems. Chellapilla and Fogel succeeded
in evolving an expert-level neural board position evaluator for Checkers with-
out any domain expertise [6, 7, 15]. Their work concludes that computer game
engines can learn, without any expert knowledge, to play a game at an expert
level, using a co-evolutionary approach.

The trend of [6, 7] is followed, and PSO is applied in combination with an
EA to develop a neural evaluator for the game of Capture Go. As a simplified
version of Go, Capture Go has the same rules but a different goal – who-
ever captures first, wins. The system for this game, with minor modifications,
should be a useful subsystem for an overall Go player. Previous work [24] on
Capture Go showed that the simplified game is a suitable test bench to ana-
lyze typical problems involved in evolution-based algorithms, such as lifetime
learning, incremental evolution [20], open ended evolution, and scalability.
Growing from zero knowledge, this game engine extends our work [4]. The
large-scale game engine, a neural network with more than 6000 parameters, is
trained by a particle swarm optimization (PSO)-enhanced evolutionary algo-
rithm through self-playing. The innovative hybrid training algorithm inherit-
ing the advantages, i.e., fast convergence and good diversity, of both PSO and
EA is more powerful than its individual parts, and this has been shown in
other applications [5]. It is compared with a Hill-Climbing (HC) algorithm as
a first-order benchmark. The hybrid, method-based game engine is also played
against a hand-coded defensive and a web player to show its competence. The
Capture Go games are played on a 9x9 board.

5.1 Particle Swarm Optimization

Particle swarm optimization is a form of evolutionary computation developed
by Kennedy and Eberhart [22, 23]. Similar to EAs, PSO is a population-based
optimization tool, where the population is initialized with random potential
solutions and the algorithm searches for optima, satisfying some performance
index over iterations. It is unlike an EA, however, in that each potential
solution (called a particle) is also assigned a randomized “velocity” and is
then “flown” through an m-dimensional problem space.

Computer Go: A Grand Challenge to AI 455

Each particle i has a position represented by a position vector xi (the
possible solution for the given problem). A swarm of particles moves through
the problem space, with the velocity of each particle represented by a vector
vi. At each time step, a function f representing a quality measure is calculated
by using xi as input. Each particle keeps track of its own best position, which
is recorded in a vector pi, and f(pi), the best fitness it has achieved so far.
Furthermore, the best position among all the particles obtained so far in the
population is recorded as pg, and its corresponding fitness as f(pg).

At each time step t, by using the individual’s best position, pi(t), and the
global best position, pg(t), a new velocity for particle i is calculated using
(5.1) below

vi(t + 1) = w × vi(t) + c1r1(pi(t)− xi(t)) (5.1)
+ c2r2(pg(t)− xi(t))

where c1 and c2 are positive acceleration constants, r1 and r2 are uniformly
distributed random numbers in the range [0, 1], and w is the inertia weight,
with a typical value between 0.4 and 0.9. The term vi is limited to the range
±vmax. If the velocity violates this limit, it is set at its proper limit. Changing
velocity this way enables the particle i to search around the individual’s best
position pi and global best position pg. Based on the updated velocities, each
particle updates its position according to the following:

xi(t + 1) = xi(t) + vi(t + 1) (5.2)

Based on the above equations, the population of particles tends to clus-
ter together with each particle initially moving in a random direction. Fig. 2
illustrates the procedure of the PSO algorithm. Computing PSO is easy and
adds only a slight computational load when incorporated into an EA.

5.2 Evolutionary Algorithm

The evolutionary algorithm (also called evolution strategy in [41]) begins
with a uniformly random population of n neural networks, Ki, i = 1, . . . , n.
Each neural network has an associated self-adaptive parameter vector σi,
i = 1, . . ., n, where each component controls the step size of mutation ap-
plied to its corresponding weights or bias.

Each parent generates an offspring strategy by varying all associated
weights and biases. Specifically, for each parent Ki, i = 1, . . ., n, an offspring
Ki, i = 1, . . ., n, was created by

σ′
i(j) = σi(j) exp(τNj(0, 1)), j = 1, . . . , Nw (5.3)
w′

i(j) = wi(j) + σ′
iNj(0, 1), j = 1, . . . , Nw (5.4)

where Nw is the number of weights and biases in the feedforward neural
network, τ = 1/

√
2
√

Nw, and Nj(0, 1) is a standard Gaussian random variable
resampled for every j[6, 7].

456 Xindi Cai and Donald C. Wunsch II

pg is the best solution to the given problem

Initialize particles with random positions and velocities
gen K = 1; i = 0

At gen K: Evaluate particle xi by given fitness function f
i = i +1

Is the fitness value f (xi)
better than f (pi)

pi = xi
f (pi) = f (xi)

Yes

Is the fitness value f (pi)
better than f (pg)

pg = pi
f (pg) = f (pi)

Yes

Are all n particles
evaluated, i.e., i > n

Yes

For each of all n particles:
Calculate particle velocity according to eqn (1)
Update particle position according to eqn (2)

K = K + 1; i = 0

K > max number or
f (pg) is sufficiently

good

No

No

No

No

Yes

Fig. 2. Flow chart of PSO procedure

Computer Go: A Grand Challenge to AI 457

5.3 Hybrid of PSO and EA

PSO focuses more on the cooperation among the particles. With memory, each
particle tracks the best performance in its own history and its neighborhood
throughout the entire evolution when sharing the memory. Such a mechanism
guides particles to pursue high fitness values more quickly than mere selection
operation in EA. However, particles of PSO are not eliminated even if they
are ranked to have the worst fitness in the population, which may waste the
limited computational resources. On the other hand, individuals in EA com-
pete for survival. Also, their diversity, maintained by mutation, prevents the
population from the premature convergence often found in PSO. Clearly, the
advantage of one algorithm can complement the other’s shortcoming. Thus,
the motivation is to develop a hybrid-based learning algorithm.

Based on the complementary properties of PSO and EA, a hybrid algorithm
is used to combine the cooperative and competitive characteristics of both. In
other words, PSO is applied to improve the surviving individuals and main-
tain the properties of competition and diversity in EA. In each generation, the
hybrid algorithm selects half of the population as the winners according to
their fitness and discards the rest as losers. These elites are enhanced, sharing
the information in the community and benefiting from their learning history,
by the standard PSO procedure. The enhanced elites then serve as parents for
an EA mutation procedure. The offspring also inherit the social and cognitive
information from the corresponding parents, in case they become winners in
the next generation. Fig. 3 illustrates this hybrid PSO + EA algorithm.

5.4 Simulation Results

A feedforward neural network (multi-layer perceptron MLP) is designed to
carry out the board evaluation function, assigning credits for leaves in the
game search tree of Capture Go. The best candidate move is then chosen
according to the alpha-beta minimax search from the game tree. The board
information is represented by a vector of length 81, with each element cor-
responding to an intersection on the board. Elements in the vector are from
{−1, 0, +1}, where “−1” denotes that the position on the board is occupied
by a black stone, “0” denotes an empty position, and “1” denotes a white
stone. The feedforward neural evaluator consists of three hidden layers and
one output node. The second, third, and output layers are fully connected.
Each neuron has a bipolar sigmoid activation function:

tanh(λx) =
eλx − e−λx

eλx + e−λx
(5.5)

with a variable bias term.
The first hidden layer is designed specially, following [6, 7], to process

spatial information from the board. In order to grasp the spatial characteristics
such as neighborhood and distance of the board, each neuron in the first

458 Xindi Cai and Donald C. Wunsch II

New population

Old population

PSO

EA
mutation

Fitness ranking

Winners Losers

Elites

Enhanced elites

Offspring

Discard half

Fig. 3. Flow chart of the hybrid PSO-EA method. The winners, which contain half
of the population, are enhanced by PSO and kept in the population for the next
generation. Those enhanced winners also work as the parents in EA to produce
offspring. The offspring replace the discarded losers to keep a constant number of
individuals in the population for the next generation. If the PSO block is removed,
the hybrid algorithm is reduced to the conventional EA

hidden layer covers an n× n, n = 3, . . ., 9, square overlapping a subsection of
the board. In addition, the connecting weights between the input layer and
the first hidden layer are designed specially to reflect the symmetric property
of the board. Fig. 4 shows the general structure of the game engine.

In the self-play training, a population of 40 individuals, each representing
a game engine, is evolved by playing games of Capture Go. Each individual
earns credits based on its game results. Each player, always black, plays one
game against each of eight randomly selected opponents, always white, from
the population. The game is scored for each player as −2, 0, or +1 points
depending on the results of loss, draw, or win. In total, there are 320 games
per generation, with each engine participating in an average of 16 games. After
all games are complete, each individual accumulates the scores it earned as
its fitness value and updates according to the algorithms employed, i.e., PSO,
EA, or the hybrid.

The weights of each swarm neuro-engine are generated randomly from a
uniform distribution over [−0.2, 0.2]. The self-adaptive parameters for the
EA are initially set to 0.05. The value of vmax for PSO is set to 2.0. The
whole evolutionary process is iterated for 100 generations. At last, the best

Computer Go: A Grand Challenge to AI 459

evaluation

All 49 3x3
overlapping
subsections

All 36 4x4
overlapping
subsections

All 48x8
overlapping
subsections

Full Board
(Only 9x9

subsection)

Capture Go board encoded as an 81x1 vector

Fig. 4. Architecture of the game engine. This feedforward neural network evaluates
the given board. Different sets of parameters of the neuro-game engine lead to differ-
ent credit assignments for the given board, and hence represent different strategies.
The board pattern is interpreted by 140 subsquares. Each of these subsquares is
assigned to a node in the first layer of the network for spatial preprocessing pur-
poses. The outputs are then passed through two hidden layers of 40 and 10 nodes,
respectively. The output node of the entire network is scaled between [−1, 1] with
“−1” in favor for the white and “1” for black

Table 1. Tournament results among hybrid PSO-EA, PSO, EA, HC and random
players in 100 games. Black players are listed in rows and white players in columns.
For example, the result in row 2, column 4 means that the hybrid PSO-EA player
in black wins 90 to 10 against the EA player in white

Hybrid PSO-EA PSO EA HC Random

Hybrid PSO-EA / 79/21 90/10 76/24 100/0
PSO 62/38 / 76/24 70/30 100/0
EA 53/47 68/32 / 70/30 100/0

neuro-engine (at generation 100) of each category, i.e., PSO, EA, and the
hybrid, is then used to play against each other and a random player (in each
game, roughly 20% of the moves are randomly generated for both sides to
avoid duplication). Table 1 summarizes their performance in 100 games in the

460 Xindi Cai and Donald C. Wunsch II

tournament. All players illustrate success in learning strategies in Capture Go
because they overwhelm the random player with only 28 moves per game,
on average. The hybrid PSO-EA player in black dominates both PSO and
EA players. Considering the advantage that black plays first, the hybrid in
white is roughly equivalent to the EA and slightly weaker than the PSO.
The PSO and EA players are at the same level. Following the same self-play
methodology, another game engine is trained by a simple learning method,
hill-climbing (HC), for Capture Go, to verify if the dynamics of the game
and the co-evolutionary setup of the training are the key issues of the game
engine learning [30]. The tournament results show that PSO, EA, and hybrid
players outperform the HC player (with training parameter beta = 0.05 [30]),
which indicates that the improvement of game engines comes mainly from
the learning algorithms. Finally, a web Capture Go player [19] is brought for
illustration, and the best hybrid player wins 23 of 25 games.

In addition to self-play, a defensive player of Capture Go is hand-coded.
This player takes defensive strategies with the following priorities: 1) connect
all its stones into one string; 2) choose a move that maximizes its liberties
(the liberty count saturates when it makes two eyes); 3) surround more empty
intersections with a wall; and 4) attack the weak stone(s) of its opponent. The
player is hard to capture because it is difficult to seize all its liberties before
it makes two eyes or captures an opponent’s stone(s) instead (see Fig. 5).
The game’s result indicates that an opponent is more likely to defeat this
defensive player by occupying more territories rather than by capturing its
stones. Competing with this player teaches our hybrid engine to manage the
balance between seizing its own territories and capturing enemy stones (see
Figs. 6 & 7).

6 Conclusion

The game Go remains unconquered for traditional artificial intelligence tech-
niques due to the tremendous size of its game tree, vague rank information of
its stones/strings/groups, and dynamic changes of the crucial building blocks.

Early computer Go programs built the game board evaluation function
by employing pattern recognition, tactical search, and rule-based reasoning,
mainly based on matching the expert knowledge. Even though such tech-
niques are predominant in the top computer Go engines existing now, the
rigid or hand-coded look-up table in a knowledge database prevents the game
engines from correctly handling the complex and subtle environment beyond
the provided expert knowledge.

The emergence of neural networks, reinforcement learning, and evolution-
ary computation techniques guide the computer Go engines to learn, rather
than embed, the game strategies through playing Go games. The game engines
without pre-defined knowledge gradually adapt to the nonlinear stimulus-
response mappings of the game from their own experience. Multiple at-

Computer Go: A Grand Challenge to AI 461

Yes

Make a capture

Make a save

Select one that maximizes
the string liberty

Set Self_lib=Max
Place stone on enemy
liberty (subtracts most

enemy liberty) or extends
self territory

For every liberty intersection (except
eyes) place a stone to check

Liberty
increased

Has two
eyes

Yes

Yes

No

No

Make eyes and mark

Make next move

Both
pass

Game over

Initial Board

Any capture
on enemy

Any capture
on self

Yes

Yes

No

No

Current Board

Enemy move

No

Fig. 5. Flowchart of the defensive player

462 Xindi Cai and Donald C. Wunsch II

0 1 2 3 4 5 6 7 8

0
1

2
3

4
5

6
7

8

Fig. 6. Final board of game one between the hybrid PSO-EA and the defensive
player

0 1 2 3 4 5 6 7 8

0
1

2
3

4
5

6
7

8

Fig. 7. Final board of game two between the hybrid PSO-EA and the defensive
player

tempts in this category have achieved primary success in beating some of
the knowledge-based counterparts and have demonstrated the ability to scale
up and grasp the general Go strategy.

The acquisition, integration, and use of knowledge are critical to the
progress of computer Go programs. Allowing the network to access mature
features instead of looking at the raw board may allow it to learn faster and
deal with more complex situations. The possibility of merging approaches
of network evolution and pattern matching is worthy of further exploration.
Evolving a hierarchy of networks where the lower levels, mainly the well-
studied features, would provide the inputs for the networks at a high level
may be the next breakthrough towards the ultimate goal – defeating human
masters in Go.

Computer Go: A Grand Challenge to AI 463

References

[1] Allis LV, Van den Herik HJ, Herschberg IS (1991) “Which games will sur-
vive?” In D. N. L. Levy and D. F. Beal, editors, Heuristic Programming
in Artificial Intelligence 2-The Second Computer Olympiad, pp. 232–243,
Ellis Horwood.

[2] Berlekamp E, Conway J, Guy R (1982) Winning Ways, Academic Press,
New York.

[3] Berlekamp E, Wolfe D (1994) Mathematical Go: Chilling Gets the Last
Point. A. K. Peters., MA, USA

[4] Cai X, Wunsch II DC (2004) “Evolutionary computation in playing Cap-
tureGo game,” Proc. of ICCNS’04, Boston.

[5] Cai X, Zhang N, Venayagamoorthy GK, Wunsch II DC (2005) “Time
series prediction with recurrent neural networks using hybrid PSO-EA
algorithm,” Neurocomputing, (Accepted).

[6] Chellapilla K, Fogel D (1999) “Evolution, neural networks, games, and
intelligence,” Proceedings of the IEEE, vol. 87, no. 9, pp. 1471–1496,
September.

[7] Chellapilla K, Fogel D (1999) “Evolving neural networks to play Checkers
without relying on expert knowledge,” IEEE Trans. on Neural Networks,
vol. 10, no. 6, pp. 1382–1391, November.

[8] Chellapilla K, Fogel D (2001) “Evolving an expert Checkers playing pro-
grams without using human expertise,” IEEE Trans. on Evolutionary
Computation, vol. 5, no. 4, pp. 422–428, August.

[9] Chen K, Chen Z (1999) “Static analysis of life and death in the game of
Go,” Information Science, Vol. 121, pp. 113–134.

[10] Chen X, Zhang D, Zhang X, Li Z, Meng X, He S, Hu X (2003) “A func-
tional MRI study of high-level cognition II. The game of GO,” Cognitive
Brain Research, 16(1): 32–37.

[11] Chen Z (1995) “Programming technics in Handtalk,” http://www.wulu.
com/ht-techn.htm.

[12] Convey J (1976) On Numbers and Games, Academic Press, London/New
York.

[13] Enderton HD (1991) “The Golem Go program,” Tech. Rep. CMU-CS-
92-101, Carnegie Mellon University.

[14] Enzenberger M (1996) “The integration of a priori knowledge into a Go
playing neural network”.
Available: http://www.markus-enzenberger.de/neurogo.ps.gz

[15] Fogel D (2002) Blondie24: Playing at the Edge of AI. SF, CA: Morgan
Kaufmann.

[16] Fogel D, Hays TJ, Hahn SL and Quon J (2004) “A self-learning evolution-
ary Chess program,” Proc. of the IEEE, vol. 92, no. 12, pp. 1947–1954,
December.

464 Xindi Cai and Donald C. Wunsch II

[17] Fotland D (1999) The 1999 FOST (Fusion of Science and Technology)
cup world open computer championship, Tokyo. Available: http://www.
britgo.org/results/computer/fost99htm

[18] Fürnkranz J (2001) Machine learning in games: A survey. J. Fürnkranz
& M. Kubat (eds.): Machines that Learn to Play Games, Nova Scientific
Publishers, Chapter 2, pp. 11–59, Huntington, NY.

[19] Goerlitz S http://www.schachverein-goerlitz.de/Foren/Fun/Go/go.htm
[20] Gomez F, Miikkulainen R (1997) “Incremental evolution of complex gen-

eral behavior,” Adaptive Behavior, vol. 5, pp. 317–342.
[21] Hsu F (2002), Behind Deep Blue. Princeton, NJ: Princeton Univ. Press.
[22] Kennedy J,. Eberhart R (1995) “Particle Swarm Optimization,” IEEE

International Conference on Neural Networks, vol. 4, pp. 1942–1948, Nov.
27-Dec. 1, Perth, Australia.

[23] Kennedy J,. Eberhart R, Shi Y (2001) Swarm Intelligence. San Meteo,
CA: Morgan Kaufmann.

[24] Konidaris G, Shell D, Oren N (2002) “Evolving neural networks for
the capture game,” Proc. of the SAICSIT postgraduate symposium, Port
Elizabeth, South Africa. Available from: http://www-robotics.usc.edu/
∼dshell/res/evneurocapt.pdf

[25] Moriarty DE, Miikkulainen R (1994) “Evolving neural networks to focus
minimax search,” Proc. of National Conference on Artificial Intelligence
(AAAI-94), pp. 1371–1377.

[26] Muller M (1999) “Decomposition search: A combinatorial games ap-
proach to game tree search, with applications to solving Go endgames,”
Proc. of IJCAI, vol. 1, pp. 578–583.

[27] Muller M (2002) “Position evaluation in computer Go,” ICGA Journal,
Vol. 25, No. 4, pp. 219–228.

[28] Muller M (2003) “Conditional combinatorial games and their application
to analyzing capturing race in Go,” Information Science, Vol. 154, pp.
189–202.

[29] Newman B (1988) “Wally, a simple minded Go-program,” ftp://imageek.
york.cuny.edu/nngs/Go/comp/.

[30] Pollack JB, Blair AD (1998) “Co-evolution in the successful learning of
Backgammon strategy,” Machine Learning, Vol. 32, pp. 226–240.

[31] Pratola M, Wolfe T (2003) “Optimizing GoTools’ search heuristics using
genetic algorithms,” ICGA Journal, vol. 26, no. 1, pp. 28–48.

[32] Prokhorov D and Wunsch II DC (1997) “Adaptive critic designs,” IEEE
Trans. on Neural Networks, vol. 8, no. 5, pp. 997–1007, September.

[33] Reiss M (1995) e-mail sent in January 1995 to the computer Go mailing
list, http://www.cs.uoregon.edu/∼richard/computer-go/.

[34] Reitman W, Kerwin J, Nado R, Reitman J, Wilcox B (1974) “Goals and
plans in a program for playing Go,” Proc. of the 29th National Conference
of the ACM, pp. 123–127.

Computer Go: A Grand Challenge to AI 465

[35] Reitman W, Wilcox B (1975) “Perception and representation of spatial
relations in a program for playing Go,” Proc. of the 30th National Con-
ference of the ACM, pp. 37–41.

[36] Reitman W, Wilcox B (1978) “Pattern recognition and pattern-directed
inference in a program for playing Go,” In D. Waterman and F. Hayes-
Roth, editors, Pattern Directed Inference Systems, pp. 503–523, Acad-
emic Press, New York.

[37] Ryder J (1971) “Heuristic analysis of large tree as generated in the game
of Go,” PhD thesis, Department of Computer Science, Stanford Univer-
sity.

[38] Richards N, Moriarty D, McQuesten P, Miikkulainen R (1998) “Evolving
neural networks to play Go,” Applied Intelligence, vol. 8, pp. 85–96.

[39] Schraudolph N, Dayan P, Sejnowski T (1994) “Temporal difference learn-
ing of position evaluation in the game of Go,” Advances in Neural Infor-
mation Processing, vol. 6, pp. 817–824.

[40] Schraudolph N, Dayan P, Sejnowski T (2000) “Learning to evaluate Go
position via temporal difference methods,” In L. Jain and N. Baba Eds,
Soft Computing Techniques in Game Playing, Springer Verlag, Berlin.

[41] Schwefel (1995) Evolution and Optimum Seeking. Wiley, NY.
[42] Shannon CE (1950) “Automatic Chess player,” Scientific American 182,

No. 48.
[43] Smith A (1956) The Game of Go, Charles Tuttle Co., Tokyo, Japan.
[44] Sutton R (1988) “Learning to predict by the method of temporal differ-

ences,” Machine Learning, No. 3, pp. 9–44.
[45] Tesauro G (1992) “Practical issue in temporal difference learn-

ing,”Machine Learning, No. 8, pp. 257–278.
[46] Wilcox B (1985) “Reflections on building two Go programs,” ACM

SIGART Newsletter, pp. 29–43.
[47] Zaman R, Prokhorov DV, Wunsch II DC (1997) “Adaptive critic design

in learning to play the game of Go,” Proc. of the International Joint
Conference on Neural Networks, vol. 1, pp. 1–4, Houston.

[48] Zaman R, Wunsch II DC (1999) “TD methods applied to mixture of ex-
perts for learning 9x9 Go evaluation function,” Proc. of the International
Joint Conference on Neural Networks, vol. 6, pp. 3734–3739

[49] Zobrist A (1970) “Feature extractions and representation for pattern
recognition and the game of Go,” PhD thesis, Graduate School of the
University of Wisconsin.

This research was supported in part by the National Science Foundation
and the M. K. Finley Missouri endowment.

Authors’ addresses: Applied Computational Intelligence Laboratory, Dept.
ofElectrical&ComputerEngineering,UniversityofMissouri–Rolla,1870Miner
Circle, Rolla, MO 65409-0040; email: cai@umr.edu, dwunsch@ece.umr.edu

Noisy Chaotic Neural Networks
for Combinatorial Optimization

Lipo Wang and Haixiang Shi

School of Electrical and Electronic Engineering, Nanyang Technological University,
Block S1, Nanyang Avenue, Singapore 639798

Summary. In this Chapter, we review the virtues and limitations of the Hopfield
neural network for tackling NP-hard combinatorial optimization problems (COPs).
Then we discuss two new neural network models based on the noisy chaotic neural
network, and applied the two methods to solving two different NP-hard COPs in
communication networks. The simulation results show that our methods are superior
to previous methods in solution quality. We also point out several future challenges
and possible directions in this domain.

1 Introduction

Since Hopfield and Tank’s innovative work on solving the traveling sales man
problem (TSP) using neural networks, there are numerous research efforts on
applying the Hopfield neural network (HNN) and HNN-based neural network
techniques to solving combinatorial optimization problems (COPs) [3, 10, 26,
42, 36, 27, 24]. However, Wilson and Pawley [43] raise doubts on the validity
of the HNN to solving COPs after they were unable to reproduce the results
in Hopfield and Tank’s work. They claimed that the original HNN formulation
for the TSP is unreliable even for small-sized problems. Many explanations
for the poor solution quality of the TSP had been made in terms of energy
function formulation [8, 29, 4] and parameter selection [15, 25, 22, 7].

Poor solution quality, dependences on energy function formulations, and
the difficulties in parameter selection of the original HNN are due to its gra-
dient descent dynamics leading local minima. This chapter introduces the
chaotic neurodynamics which can help to avoid local minima and converge to
better solutions in solving NP-hard combinatorial optimizations (COPs).

In 1983, Kirkpatrick et al [23] developed simulated annealing, which
emulates the annealing processing in metals by first heating the metal to
its melting point and then slowly cooling the material. Because of the sto-
chastic nature of the optimization process, simulated annealing can also be
called stochastic simulated annealing (SSA) [23]. SSA is known to relax to

Lipo Wang and Haixiang Shi: Noisy Chaotic Neural Networks for Combinatorial Optimization,

Studies in Computational Intelligence (SCI) 63, 467–487 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

468 Lipo Wang and Haixiang Shi

a global minimum with probability 1 if the annealing takes place sufficiently
slowly, i.e., at least inversely proportional to the logarithm of time [13]. In a
practical term, this means that SSA is capable of producing good (optimal
or near-optimal) solutions for many applications, if the annealing parameter
(temperature) is reduced exponentially with a reasonably small exponent [40].

SSA has been widely used in various optimization problems with great
success, but it still suffers from several deficiencies:

1) For large problems, the method requires prohibitively long relaxation time
in order to find solutions with acceptable quality, i.e., SSA consumes too
much iteration time due to its Monte Carlo scheme. To guarantee conver-
gence to an exact solution, SSA will require more iterations than complete
enumeration does for some problems [5].

2) SSA often requires subtle adjustments of parameters in the annealing
schedule, such as the length of the temperature steps during annealing,
the temperature range, the number of re-starts and re-direction during
the search [32, 1, 19, 20, 23].

In order to improve the searching ability of the SSA, complex neurodynam-
ics such as chaotic simulated annealing (CSA) was proposed [46]. Compared
with the gradient descent dynamics of the HNN models and neural networks
with SSA dynamics, neural networks with CSA have a richer spectrum of dy-
namic behaviors, such as stable fixed points, periodic oscillations, and chaos.

Nozawa demonstrated the search ability of the chaotic neural networks
(CNN) [30, 45]. Chen and Aihara [46, 5] proposed the chaotic simulated an-
nealing (CSA) by starting with a sufficiently large negative self-coupling in
the Aihara-Takabe-Toyoda [2] network when the dynamics is chaotic, and
gradually decreasing the self-coupling so that the network eventually stabi-
lizes, thereby obtaining a transiently chaotic neural network (TCNN). Their
computer simulations showed that the CSA leads to good solutions for the
TSP much more easily compared to the Hopfield-Tank approach [16, 17] and
SSA. Chen and Aihara [6] offered the following theoretical explanation for
the global searching ability of the chaotic neural network: its attracting set
contains all global and local optima of the optimization problem under cer-
tain conditions, and since the chaotic attracting set has a fractal structure
and covers only a very small fraction of the entire state space, CSA is more
efficient in searching for good solutions for optimization problems compared
to other global search algorithms such as SSA.

Other kinds of CSA have also been proposed. Wang and Smith proposed
another chaotic annealing by annealing the time-step in the Euler approxima-
tion of the continuous Hopfield network [41]. Hayakawa et al. [14] obtained
the CSA by adding the chaotic noise into the Hopfield network. Zheng et al.
[47] improved the Wang-Smith’s chaotic simulated annealing which reaps the
benefits of Wang-Smith model and Chen-Aihara model.

Noisy Chaotic Neural Networks for Combinatorial Optimization 469

There are mainly three significant differences between SSA and CSA [5]:

1) SSA is stochastic on the basis of the Monte Carlo scheme while CSA is
deterministic with transiently chaotic dynamics.

2) The convergent processing of SSA is controlled by stochastic ”thermal”
fluctuations while that of CSA is controlled by bifurcation structures.

3) SSA essentially searches all possible states while temporally changing
probability distributions, whereas CSA restricts to a fractal subspace.
Because the searching region in CSA is usually smaller compared with
the entire state space, CSA can be expected to perform efficient searching
if the restriction is adequate to include a global optimum state or some
near-global optimum states.

However, CSA has completely deterministic dynamics and is not guaran-
teed to settle down at a global optimum no matter how slowly the anneal-
ing parameter (the neuronal self-coupling) is reduced [37]. Different from the
searching direction of SSA that is probabilistically determined by mutual in-
teractions among neurons, CSA is uniquely determined by mutual interactions
among neurons. In practical terms, this means that CSA sometimes may not
be able to provide a good solution at the end of annealing for some initial
conditions of the network, no matter how slowly annealing takes place, i.e.,
CSA sometimes may not be able to provide a good solution at the conclusion
of annealing even after a long time of searching.

Wang and Tian [40] proposed a new approach to simulated annealing, i.e.,
stochastic chaotic simulated annealing (SCSA), using a noisy chaotic neural
network (NCNN) by adding decaying stochastic noise into the TCNN. Com-
pared with CSA, SCSA performs stochastic searching both before and after
chaos disappears and is more likely to find optimal or sub-optimal solutions.

2 Mathematical Formulations of the NCNN

The NCNN model is described as follows [40]:

xjk(t) =
1

1 + e−yjk(t)/ε
, (1)

yjk(t + 1) = kyjk(t) + α

⎧⎨
⎩

N∑
i=1,i �=j

M∑
l=1,l �=k

wjkilxjk(t) + Iij

⎫⎬
⎭

−z(t)(xjk (t)− I0) + n(t) , (2)

z(t + 1) = (1− β1)z(t) , (3)

n(t + 1) = (1− β2)n(t) , (4)

470 Lipo Wang and Haixiang Shi

where the notations are:
xjk : output of neuron jk ;
yjk : input of neuron jk ;
wjkil: connection weight from neuron jk to neuron il, with wjkil = wiljk

and wjkjk = 0;

N∑
i=1,i �=j

M∑
l=1,l �=k

wjkilxjk + Iij = −∂E/∂xjk (5)

E : energy function;
Ijk : input bias of neuron jk ;
k : damping factor of nerve membrane (0 ≤ k ≤ 1);
α : positive scaling parameter for inputs ;
β1 : damping factor for neuronal self-coupling (0 ≤ β1 ≤ 1);
β2 : damping factor for stochastic noise (0 ≤ β2 ≤ 1);
z(t) : self-feedback connection weight or refractory strength (z(t) ≥ 0),

z(0) is a constant;
I0 : positive parameter, which is used as threshold for each neuron, can be

a fixed number or variable one;
ε : steepness parameter of the output function (ε > 0) ;
n(t): random noise injected into the neurons, in [−A,A] with a uniform

distribution;
A[n]: amplitude of noise n.
This NCNN model is a general form of chaotic neural networks with tran-

sient chaos and decaying noise. In the absence of noise, i.e., n(t) = 0, for all
t, the NCNN as proposed in eqns. (1) - (4) reduces to the TCNN in [5].

3 Gradual Noisy Chaotic Neural Network (G-NCNN)

Compared with the constant number of neurons used in conventional neural
networks, the gradual neural network [11] adopts an increasing number of
neurons. Usually, the number of neurons that a neural networks needs for
solving a COP is determined by the problem, e.g., N -city TSP problem, N×N
neurons are needed to compose a solution space. For the NCNN, N2 neurons
are needed at the start of neural network updating. But if using the gradual
neural network, the neural network needs only a fraction of N ×N neurons at
the beginning of neuron computation, which are the most likely selected group
of neurons in the final results (each neuron stands for a status in the solution
matrix based on different problems, e.g., if neuron ij fires, it means the ith
element is assigned to jth element in the assignment problem). The rest of all
N ×N neurons are gradually added to the current commutating group.

The reason why the gradual scheme is needed instead of a constant number
of neurons is that the gradual scheme can be considered as one kind of objec-
tive in the optimization. There are objectives in COPs that need to find the

Noisy Chaotic Neural Networks for Combinatorial Optimization 471

minimal “cost”, where the cost can have many different meanings in different
problems, e.g., interference, delay, or length of a path. In order to achieve the
objective that the solution found by the neural network is with the minimal
cost, neurons are divided into several groups and activated or added in several
stages with each stage only adopt one group of neurons with smallest cost left
over. Through the gradual scheme, we do not need to formulate the objective
(“minimal cost”) in the energy function, because we think that the objective
is realized in the gradual expansion stages which let the neurons with smaller
cost be included in neuron computation in an earlier stage. When dealing with
this kind of objective, we can adopt the gradual scheme naturally through the
following steps [11]:

1) Assume there are N ×M neurons needed for the problem. Compute the
cost matrix C[N ×M], i.e., the cost of neuron ij if neuron ij is selected
in the final solution. Here N and M can have the same value.

2) Sort the neuron in ascending order of the cost.
3) Divide the N × M neurons into P groups (G1, G2, . . . , GP), with each

group have p neurons, where p is the maximum integer less than or equal
to NM/P . Group G1 is the group of neurons with smallest cost and
the other groups G2 to GP contain the neurons with larger cost with an
ascending order of cost.

4) Add the neurons in the first group G1 to the neural network and let the
neural network update. If a feasible solution is found, exit, the solution
found is the final solution. If the pre-defined steps are used up and still no
solutions are found, then apply the gradual expansion scheme by adding
the neurons in G2 and let the neural network update again.

We found that although using gradual scheme can help to reduce the
objectives in optimizations, it cannot guarantee to achieve the objective. But
it can be made up by adding the objective again into the energy function.

4 Noisy Chaotic Neural Network with Variable
Threshold (NCNN-VT)

Besides the gradual noisy chaotic neural network, another extension of the
noisy chaotic neural network is proposed by using the variable threshold in
the neural network, instead of the fixed threshold value. It can be found that
the variable threshold can be used to achieve the objective of the NP-hard
optimization problem, and again reduces the number of objectives needed to
be formulated in the energy function.

4.1 Adaptive Mapping Scheme

Adaptive Mapping Scheme (AMS) aims to map the objective of optimization
problem into the probability of firing of each neuron. If the objective of the

472 Lipo Wang and Haixiang Shi

problem is to find the solution with minimal cost, then the neurons with
smaller cost will have larger probability to be selected in the final solution
matrix. By investigating the single neuron dynamics of the NCNN model, it
can be seen that the positive parameter I0 in the NCNN model is responsible
for the neuron firing probability. The single neuron dynamics of the NCNN
by varying the parameter I0 is shown in Figs. 1 to 4 (the x-axis is the time
steps t, the y-axis is the output of neuron xij(t)). We can see clearly that if
the value of parameter I0 is 0.3, the output of neuron is very close to 0.3 after
the network passes the last bifurcation-2 in Fig. 2. After the bifurcation point,
the neural network slowly converge to a stable point at about 0.5. The same
pattern can be observed in other figures. It means that different value of I0

(0 < I0 < 1) induces different probability of neuron firing. The neuron with
large value of I0 will be selected to be firing (neuron output equals 1) with
bigger probability, whereas, the small value of I0 will result in less chance the
neuron to be firing.

4.2 Model Definition

The difference between the NCNN and the NCNN-VT model is that the pos-
itive parameter I0 in eqn. (2) of the NCNN becomes a variant labeled as Ijk,
where jk stands for the neuron jk, i.e.,

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, I0 = 0.1

Noisy Chaotic Neural Networks for Combinatorial Optimization 473

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, I0 = 0.3

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, I0 = 0.6

474 Lipo Wang and Haixiang Shi

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, I0 = 0.9

yjk(t + 1) = kyjk(t) + α

⎧⎨
⎩

N∑
i=1,i �=j

M∑
l=1,l �=k

wjkilxjk(t) + Iij

⎫⎬
⎭

−z(t) [xjk(t)− Ijk] + n(t) . (6)

where Ijk is not a constant parameter but a variable which determines the
selection of firing of each neuron. The value of Ijk is related to the problem
optimization term.

4.3 Mapping Functions

The mapping function connects the problem’s cost with the parameter Iij .

Ijk = f(cjk), j = 1, 2, . . . , N ; k = 1, 2, . . . ,M (7)

The mapping function can be a linear or nonlinear function which trans-
form the cost into the probability value between 0 and 1. Normally, a linear
mapping is adopted:

f(cjk) = 1− cjk − cmin

cmax − cmin
. (8)

where cjk is the jk element in the cost matrix C, cmax is the maximum value
among the cost matrix and cmin is the minimum value in the cost matrix.

Noisy Chaotic Neural Networks for Combinatorial Optimization 475

From the mapping functions in eqn. (8), it can be seen that the neuron ij
with smaller cost dij will have larger or higher probability to fire while the
ones with larger cost will be inhibited to fire.

5 Using G-NCNN to Solve the Broadcast Scheduling
Problem

5.1 Problem Introduction

In a time-division-multiple-access (TDMA) network, time is divided into
frames and each TDMA frame is a collection of time slots. A time slot has
a unit time length required for a single packet to be communicated between
adjacent nodes. When nodes transmit simultaneously, conflicts will occur if
the nodes are in a close range. Therefore, adjacent nodes must be scheduled
to transmit in different time slots, while nodes some distance away may be
arranged to transmit in the same time slot without causing conflict [39]. The
goal of the broadcast scheduling problem (BSP) is to find an optimal TDMA
frame structure that fulfills the following two objectives. The first is to sched-
ule transmissions of all nodes in a minimal TDMA frame length without any
conflict. The second is to maximize channel utilization or total conflict-free
transmissions.

5.2 Energy Function Formulation

For the two objectives, a two-stage methods using the NCNN are used to
solve the problem. The first stage aims to find the minimal TDMA frame
cycle length (M), whereas the objective in the second stage is to maximize
the total node transmissions in order to fulfill the channel utilization.

The G-NCNN consists of M × N neurons. M is initially set as its lower
bound value Lm, which can be easily obtained using graph theory [21]. The
network can be formulated to a graph G = (V, E). The graph G can be
transformed into G′ = (V,E′), where E in G stands for one-hop-away edges,
and E′ in G′ stands for one-hop-away and two-hop-away edges. The lower
bound is:

Lm = ω(G′) . (9)

where ω(G′) is the maximal cardinality of a clique in G’ [33].
The energy function E1 for the first stage is given as follows [9]:

E1 =
W1

2

N∑
j=1

(
M∑

k=1

xjk − 1)2 +
W2

2

N∑
j=1

M∑
i=1

N∑
k=1,k �=i

djkxijxki , (10)

where W1 and W2 are weighting coefficients. The W1 term represents the
constraint that each of the N nodes in the PRN must transmit exactly once

476 Lipo Wang and Haixiang Shi

during each TDMA cycle. The W2 term indicates the constraint that any pair
of nodes which is one-hop-away or two-hop-away must not transmit simulta-
neously during each TDMA cycle.

From eqn. (2), eqn. (5), and eqn. (10), we obtain the dynamics of the
G-NCNN as follows:

yjk(t + 1) = kyjk(t) + α

⎧⎨
⎩−W1(

M∑
k=1

xjk − 1)−W2

N∑
k=1,k �=j

djkxki

⎫⎬
⎭

−z(t) [xjk(t)− I0] + n(t) . (11)

The G-NCNN stops when the it finds a feasible assignment and the cur-
rent number of time slots together with its transmission assignments are the
optimal results for phase I of the BSP. In this chapter, different from the GNN
in [9], where the neurons are expanded gradually at every P iterations during
the iterative computation of the neural network, we implement the GES based
on a convergence index δ(t) of the network energy, which we defined as:

δ(t) =
t∑

q=t−4

|E(q)− E(q − 1)| /E(0) . (12)

where E(q) is the value of energy function at time step q. If index δ(t) is
less than a very small value, e.g., δ(t) < 10−4 in our simulation, the neural
network is considered as having fully converged. If the network has converged
but no feasible solutions are found using the current number of time slots, the
number of time slots is increased by 1, i.e., M → M + 1, and the G-NCNN
re-starts to search for optimal solutions with the updated number of neurons.

In the second stage, the minimal TDMA frame length M is found and
each node is assigned with one and exactly one time slot. In phase II, we
aim at maximizing the channel utilization by adding as many conflict-free
transmissions as possible to the TDMA frame. Because in phase I one node
is assigned with exactly one slot in order to find a minimal frame length,
there are many nodes which can use other time slots without violating the
no-conflict constraint. Thus, additional transmissions may be found on some
nodes but frame length M and the assigned transmissions in phase I are
fixed [9].

E2 =
W3

2

N∑
j=1

M∑
i=1

N∑
k=1,k �=i

djkxijxki +
W4

2

N∑
j=1

M∑
i=1

(1− xij)2 , (13)

where W3 and W4 are weighting coefficients. W3 represents the constraint
term that any pair of nodes which is one-hop-away or two-hop-away must not
transmit simultaneously during each TDMA cycle. W4 is the optimization
term which maximizes the total number of firing neurons.

Noisy Chaotic Neural Networks for Combinatorial Optimization 477

From eqn. (2), eqn. (5), and eqn. (13), we obtain the dynamics of the
NCNN for phase II of the BSP as follows:

yjk(t + 1) = kyjk(t) + α

⎧⎨
⎩−W3

N∑
k=1,k �=j

djkxki + W4(1− xij)

⎫⎬
⎭

−z(t) [xjk(t)− I0] + n(t) . (14)

The NCNN is updated cyclically and asynchronously, which means we
update the neurons in two loops and the neuron is selected to be computed in
a fixed order. The new state information of a updated neuron is immediately
available for the other neurons in the computation. The iteration is terminated
once a feasible transmission schedule is obtained, i.e., the transmissions of all
nodes are conflict-free.

5.3 Results Discussions

The benchmark examples are get from other published papers. Each prob-
lem is simulated 50 different times and the best and the average values are
displayed in Table 1.

Table 1. Comparisons of average delay time η and numbers of time slots M and
computation time T obtained by the G-NCNN and other algorithms for the three
benchmark problems in 50 runs, where Best/Avg stands for the best value and
average value in multiple runs.

Case BM 1 BM 2 BM 3

Best/Avg Best/Avg Best/Avg

η 6.8/7.0 9.0/9.5 5.7/6.1

G-NCNN M 8/8.0 10/10.5 8/8.0

T 6.0/7.2 16.0/18.3 6.0/6.5

η 7.0/7.0 9.3/9. 6.3/6.5

HNN-GA M 8/8.0 10/10.0 8/9.0

T 4.0/4.7 17/19.0 13.0/14.0

η 7.2/7.4 10.0/12.0 6.8/7.2

SVC M 8/8.0 10/11.0 8/10.0

T 2.5/2.8 15.0/15.4 10.0/12.0

η 7.1/7.2 9.5/10.0 6.2/6.5

GNN M 8/8.0 10/10.5 8/8.5

T 15.0/16.4 18.0/20.0 17.0/19.5

η 7.2/7.5 10.5/12.5 6.9/8.2

MFA M 8/9.0 12/13,5 9/10.0

T 25.0/7.2 32.5/38.5 28.0/29.0

478 Lipo Wang and Haixiang Shi

From the results, we can see that our G-NCNN method can find shorter
frame length than previous methods. In addition, our proposed method can
find the smallest average time delay η among all methods in all three cases.
The computation time (T in the table) needed by the G-NCNN is relatively
lower than the previous MFA and comparable to other methods.

6 Applying the NCNN-VT to the Frequency Assignment
Problem

6.1 Problem Introduction

Due to the economic effect on the average person in everyday life, there is an
increasing number of satellites in geostationary orbits. In order to accommo-
date the crowded satellites in the same orbit, optimal design of satellites are
necessary in order to provide high quality transmissions. In satellite communi-
cation systems, the major impairments in transmission design include thermal
noise, rain attenuation, inter-modulation, and co-channel interference, among
which, co-channel interference dominates because it seriously affects system
design and operation [28]. Hence, the reduction of the co-channel interference
has arisen as a major problem in satellite communications with the dramatic
increase of geostationary satellites in orbits.

In order to reduce the interference, re-arrangements of frequency assign-
ments, which take advantage of carrier interleaving, is thought as an effective
way in practical situations. Early efforts have focused on various analytical
methods for evaluations of co-channel interference [31, 18] and very few sys-
tematic methods have been adopted to optimize frequency assignments to
reduce co-channel interference. The later work of Muzuike and Ito [28] re-
vealed the importance of mathematical models for reduction of co-channel
interference. They proposed a basic mathematical model to formulate the
co-channel interference reduction problem as the “assignment problem”. The
assignment problem aims to minimize the largest interference among carriers.
Fig. 6 shows the co-channel interference model for the system in Fig. 5. In the
inter-system context, the two sets of carriers share the same frequency band.
One set of carriers (C11 to C13) is in satellite system 1 and the other set of
carriers (C21 to C24) corresponds to satellite system 2 in Fig. 5.

In the model shown in Fig. 6, carrier frequencies for one set of carriers
are to be rearranged while keeping the other set fixed, i.e., the frequencies
for carriers in system 2 are chosen to be re-arranged while the frequencies
for system 1 are fixed. Fig. 5 shows the inter-system co-channel interference
between two adjacent satellite systems. The communications are assumed to
operated between Fa and Fb as showed in Fig. 6, where Fa and Fb are fre-
quency band. The co-channel interference can be evaluated by calculating
the each pair of carriers using the same frequency, which varies with differ-
ent pairs. The objective of this assignment problem is to find the optimal

Noisy Chaotic Neural Networks for Combinatorial Optimization 479

Earth Station 1 Earth Station 2

Satellite 1 Satellite 2

System 1 System 2

Fig. 5. Inter-system co-channel interference

C11 C12 C13

C21 C22 C23 C24

System 1

System 2

Fa Fb

Fa Fb

Frequency

Frequency

Interference

Fig. 6. Co-channel interference model for the system in Fig. 5, where the Cxy stands
for the carrier y in system x, e.g., C23 stands for the carrier 3 in system 2

480 Lipo Wang and Haixiang Shi

assignment of frequencies in system 2 in order to reduce the co-channel inter-
ference. The largest interference is considered as a limiting factor, and the
optimal assignment is the one which can minimize the limiting factor.

In this chapter, we use a two-dimensional neural network which consists
of N ×M neurons for the FAP of N carriers and M segments. The output of
each neuron Vij will be converted into binary values V d

ij . V d
ij represents whether

carrier i is assigned to segment j − (j + ci − 1), (i = 1, . . . , N ; j = 1, . . . ,M),
where ci indicates the length of carrier i, i.e.:

V d
ij =

⎧⎨
⎩

1 carrier i is assigned to segment j − (j + ci − 1),

0 otherwise.

Fig. 7 shows the neural network formulation for the 4-carrier-6-segment
problem. This neural network consists of 24 (= 4 × 6) neurons as shown in
Fig. 7 (a). Fig. 7 (b) is the convergence state, with the black squares stand for
the neurons with output V d

ij = 1. Fig. 7 (c) shows the full assignment for each
carrier. And Fig. 7 (d) is the final frequency assignment for the FAP. Note
that it can be easy to expand the convergence state in Fig. 7 (c) to the final
assignment in Fig. 7 (d) given the carrier length for each carrier. We provide
only the solution format in Fig. 7 (c) to represent the final assignment in this
Chapter.

Our objective is to minimize the largest element of the interference matrix
selected in the assignment and at the same time minimize the sum of inter-
ference of all selected elements. Thus we define the choice of the mapping
function of Iij as follows:

Iij = 1− dij − di,min

di,max − di,min

=
di,max − dij

di,max − di,min
. (15)

where dij is the ij-th element in cost matrix D = (dij , i = 1, . . . , N ; j =
1, . . . ,M), and di,max

1 is the maximum value in line i of matrix D and di,min

is the minimum value line i of matrix D. We will label di,max as dmax and
di,min as dmin for simplicity.

Through the mapping in eqn. (15), not only can we achieve the objectives
of FAP, but also separate the objective from the energy function, which will
make the tuning of weighting coefficients in the energy function easier without
the need to balance the optimization term and constraint term in one energy
function. Moreover, it will improve the convergence speed of the noisy chaotic
neural network as shown in the result discussion section.
1 Note that the maximum value of cost does not include the infinity value of in the

interference matrix. Actually the neurons corresponding to the infinite interfer-
ence will never fire due to its inhibitive cost.

Noisy Chaotic Neural Networks for Combinatorial Optimization 481

1

2

3

4

(c)

1

2

3

4

(b)

Vij

Carrier

Segment

1

2

3

4

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(a)

(d)

5

6

1

2

3

4

Fig. 7. The neural network formulation for the FAP. (a) The 24 neurons for the
4-carrier-6-segment FAP. (b) the convergence state of the neural network. (c) the
full assignment of the neural network formulation. (d) the final assignment of the
segments for the FAP through the expansion from the neural network formulation

6.2 Energy Function and Results

Recall that the goal of the FAP has been separated from the constraints. Only
the two constraints of the FAP need to be formulated in the energy function.
The first constraint of an N -carrier-M -segment problem is that each first
segment of the N carriers in system 2 must be assigned to one and only one of
the M segments. Hence, one and only one neuron among the M neurons for
each carrier has output 1. Then the first constraint can be formulated as [11]:

E1 =
N∑

i=1

(
M∑

q=1

Viq − 1)2 . (16)

482 Lipo Wang and Haixiang Shi

Carrier i

Carrier pCarrier p

j-Cp+1

Segment j+Ci-1

Cp Cp

j

Ci

Fig. 8. Violation condition for the second and third constraints of the FAP

The second and third constraints are that each segment in system 1 can
be assigned to at most one segment in system 2 and the assignment of carriers
in system 2 should be in consecutive segments in system 1 in the same order.
If carrier i is assigned to segment j − (j + ci − 1), any other carrier p(p �= i)
must not be assigned to the consecutive segment (j − cp + 1)− (j + ci − 1)).
The violation condition of the two constraints is shown in Fig. 8, where ci

is the carrier length of carrier i. In other words, if carrier i is assigned with
consecutive ci segments, the segments occupied by any other carrier cannot
occupy with the segment j − (j + ci − 1). The first segment of each carrier
p, (p �= i) should be (j − cp + 1) before and j − (j + ci − 1) after the first
segment of carrier i.

Hence these two constraints give raise to the second part of the energy
function to be minimized, as formulated in [11]:

E2 =
N∑

i=1

M∑
j=1

N∑
p=1

p�=i

j+ci−1∑
q=j−cp+1

VijVpq . (17)

Note that because (j− cp + 1) can be negative and (j + ci− 1) can exceed
the total number of segments M . The original formulation in eqn. (17) [11]
has errors in dealing with the bounds and produces the program bugs when
searching the solutions. We formulate the second term in our energy function
in a revised version as follows:

E′
2 =

N∑
i=1

M∑
j=1

N∑
p=1

p�=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

VijVpq . (18)

where function max(x, y) returns the maximum value between (x, y) two num-
bers and min(x, y) finds the minimum value between (x, y).

We use the following convergence term in our energy function to help the
neuron output converge to the corner (0 or 1) of the hypercube:

Noisy Chaotic Neural Networks for Combinatorial Optimization 483

Table 2. Comparisons of the simulation results (largest interference and total inter-
ference) obtained by the NCNN-VT, GNN and HopSA in the benchmark examples.

Instance GNN[11] HopSA[34] NCNN-VT

largest total largest total largest total

BM 1 30 100 30 100 30 100
BM 2 4 13 4 13 4 13
BM 3 7 85 7 85 7 88
BM 4 64 880 84 886 64 880
BM 5 640 8693 817 6851 640 7246

E3 =
N∑

i=1

M∑
j=1

Vij(1− Vij) , (19)

The total energy function of the NCNN-VT is given by the summation of
the three parts E1, E′

2, and E3:

E =
W1

2

N∑
i=1

(
M∑

q=1

Viq − 1)2 +
W2

2

N∑
i=1

M∑
j=1

N∑
p=1

p�=i

min(j+ci−1,M)∑
q=max(j−cp+1,1)

VijVpq

+
W3

2

N∑
i=1

M∑
j=1

Vij(1− Vij) . (20)

where W1, W2, and W3 are weighting coefficients.

6.3 Result Discussions

Table 2 shows the results obtained by the NCNN-VT and a comparison with
other previous methods. For the benchmark problems from BM 1 to BM 5,
the NCNN-VT algorithm matches or improves the results of other existing
algorithms. The results on the benchmark examples show that the NCNN-
VT can find better or similar solution compared with the previous methods.

7 Future Challenges

We have reviewed neural-network-based techniques for solving NP-hard COPs,
especially neural networks with chaotic neuro-dynamics. Two applications in
telecommunication networks demonstrated that chaotic neural networks have
effective search abilities compared to other methods. Despite the computa-
tional advantages of these methods, there still exist tremendous challenges
from both methodology and applications points of view.

484 Lipo Wang and Haixiang Shi

The “no free lunch” theorem proposed by Wolpert and Macready [44]
showed that all algorithms that search for an extremum of a cost function
perform exactly the same, when averaged over all possible cost functions.
They claimed that if algorithm A outperforms algorithm B on some cost
functions, then loosely speaking there must exist exactly as many other func-
tions where B outperforms A. The no free lunch theorem also applies for the
NCNN and the extensions (G-NCNN and NCNN-VT). Actually, the NCNN-
based methods are facing difficities on solving problems besides combinatorial
optimizations, for example, they are opt for solving combinatorial optimiza-
tion problems, other than applications like non-linear or multi-dimensional
function optimization. We may ask the question: how do chaotic neural net-
works compare to other computational intelligence methods, such as genetic
algorithms and ant colonies, in solving other practical COPs?

Problem modeling can also cause difficulties when solving COPs using
neural networks. Every COP, whether simple or hard, needs to be constructed
into an energy function formulation before using the NCNN to solve it. And
the form of this energy function is critical for neural-network-based methods
to search for optimal solutions. Different formulations may lead to different
solution quality and search time. It is common to see various formulations of
energy funcations made by different researchers on the same problem, e.g. the
TSP problem [4, 43, 38]. In order to improve solution quality, the formulation
needs to be revised and upgraded from time to time. The state-of-the-art
energy function formulation, if not difficult to formulate, is actually time-
consuming to find.

Another tough problem when using neural-network-based methods is the
selection of the parameters. The various parameters, including system pa-
rameters and weighting coefficients in the energy functions, are influential to
solution quality and search efficiency. There are basic guidelines for parameter
selections [35]; however, it can be challenging to find the optimal parameters,
which in turn will lead to optimal solution quality and search efficiency.

For applications in the communications domain, comparisons performed in
the research studies have usually been undertaken in simplified scenarios sim-
ulated in servers or desktop PCs. Except for some partial implementations on
real hardware [12], algorithm testing using hardware is usually not undertaken.
It will be necessary to place a greater emphasis on demonstrating advantages
of computational intelligence methods in real communications hardware, in
order to convince industrialists to adopt computational intelligence methods
in telecommunications companies and equipment manufacturers.

References

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.
John Wiley, Chichester, 1989.

[2] K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Physics
Letters A, 144:333–340, 1990.

Noisy Chaotic Neural Networks for Combinatorial Optimization 485

[3] Mustafa K. Mehmet Ali and F. Kamoun. Neural networks for shortest
path computation and routing in computer networks. IEEE Trans. on
Neural Networks, 4:9, 1993.

[4] R.D. Brandt, Y. Wang, A.J. Laub, and S.K. Mitra. Alternative net-
work for solving the travelling salesman problem and the list-matching
problem. In Proceedings IEEE International Joint Conference on Neural
Networks, volume 2, pages 333–340, 1988.

[5] L. Chen and K. Aihara. Chaotic simulated annealing by a neural network
model with transient chaos. Neural Networks, 8:915–930, 1995.

[6] L. Chen and K. Aihara. Global searching ability of chaotic neural net-
works. IEEE Trans. Circuits and Systems - I: Fundamental Theory and
Applications, 46(8):974–993, 1999.

[7] G.W. Davis. Sensitivity analysis in neural net solutions. IEEE Trans. on
Systems, Man and Cybernetics, 19:1078–1082, 1989.

[8] D.E. Van den Bout and T.K. Miller. A traveling salesman objective
function that works. In Proceedings IEEE International Joint Conference
on Neural Networks, volume 2, pages 299–303, 1988.

[9] N. Funabiki and J. Kitamichi. A gradual neural network algorithm for
broadcast scheduling problems in packet radio networks. IEICE Trans.
Fundamentals, E82-A:815–824, 1999.

[10] N. Funabiki and S. Nishikawa. A binary hopfield neural-network approach
for satellite broadcast scheduling problems. IEEE Trans. on Neural Net-
works, 8:441–445, 1997.

[11] N. Funabiki and S. Nishikawa. A gradual neural-network approach for
frequency assignment in satellite communication systems. IEEE Trans.
Neural Networks, 8:1359–1370, 1997.

[12] V. Catania G. Ficili S. Palazzo G. Ascia and D. Panno. A VLSI fuzzy
expert system for real-time tra.c control in atm networks. IEEE Trans-
actions on Fuzzy Systems, 5(1):20–31, 1997.

[13] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Trans. Pattern Analysis and
machine Intelligence, 6:721–741, 1984.

[14] Y. Hayakawa, Marunoto A, and Y. Sawada. Effects of the chaotic noise
on the performance of a neural network model for optimization problems.
Physical Review E, 51:2693–2696, 2002.

[15] S. Hegde, J. Sweet, and W. Levy. Determination of parameters in a
hopfield/tank computational network. In Proceedings IEEE International
Conference in Neural Networks, volume 2, pages 291–298, 1988.

[16] J.J. Hopfield. Neurons with graded response have collective computa-
tional properties like those of two-state neurons. In Proc. Natl. Acad.
Sci. USA, volume 81, pages 3088–3092, 1984.

[17] J.J. Hopfield and D. W. Tank. Neural computation of decisions in opti-
mization problems. Biological Cybernetics, 52:141–152, 1985.

[18] M. Jeruchim. A survey of interference problems and applications to geo-
stationary satellite networks. In Proceedings IEEE, pages 317–331, 1977.

486 Lipo Wang and Haixiang Shi

[19] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. Optimzation by
simulated annealing: an experimental evalution, part 1, graph partition-
ing. Operat. Res., 37:865–892, 1989.

[20] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. Optimzation by
simulated annealing: an experimental evalution, part 2, graph partition-
ing. Operat. Res., 39:378–406, 1991.

[21] D. Jungnickel. Graphs, Netwrks and Algorithms. Springer-Verlag, Berlin,
Germany, 1999.

[22] B. Kamgar-Parsi and B. Kamgar-Parsi. Dynamical stability and parame-
ter selection in neural optimization. In Proceedings IEEE International
Joint Conference on Neural Networks, volume 4, pages 566–571, 1992.

[23] S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[24] T. Kwok and K.A. Smith. A noisy self-organizing neural network with
bifurcation dynamics for combinatorial optimization. IEEE Trans. on
Neural Networks, 15:84–98, 2004.

[25] W.K. Lai and G.G. Coghill. Genetic breeding of control parameters for
the hopfield/tank neural net. In Proceedings IEEE International Joint
Conference on Neural Networks, volume 4, pages 618–632, 1992.

[26] O. Lazaro and D. Girma. A hopfield neural-network-based dynamic chan-
nel allocation with handoff channel reservation control. IEEE Trans. on
Vehicular Technology, 49:1578–1687, 2000.

[27] R.S.T. Lee. A transient-chaotic autoassociative network (tcan) based on
lee oscillators. IEEE Trans. on Neural Networks, 15:1228–1243, 2004.

[28] T. Mizuike and Y. Ito. Optimization of frequency assignment. IEEE
Trans. Communications, 37:1031–1041, 1989.

[29] H. Nonaka and Y. Kobayashi. Sub-optimal solution screening in opti-
mization by neural networks. In Proceedings IEEE International Joint
Conference on Neural Networks, volume 4, pages 606–611, 1992.

[30] H. Nozawa. A neural network model as a globally coupled map and
applications based on chaos. Chaos, 2(3):377–386, 1992.

[31] B. Pontano. Interference into angel-modulated systems carrying multi-
channel telephony signals. IEEE Trans. Communications, 21, 1973.

[32] C.R. Reeves. Modern Heuristic Techniques for Combinatorial Problems.
Oxford, Blackwell, 1993.

[33] S. Salcedo-Sanz, C. Bouso no Calzón, and A.R. Figueiras-Vidal. A mixed
neural-genetic algorithm for the broadcast scheduling problem. IEEE
Trans. on Wireless communications, 2:277–283, 2003.

[34] S. Salcedo-Sanz, R. Santiago-Mozos, and C. Bouso no Calzón. A hybrid
hopfield network-simulated annealing approach for frequency assignment
in satellite communications systems. IEEE Trans. Systems, Man, and
Cybernetics-Part B: Cybernetics, 34:1108–1116, 2004.

[35] H.X. Shi and L.P. Wang. Broadcast scheduling in wireless multihop net-
works using a neural-network-based hybrid algorithm. Neural Networks,
18:765C771, 2005.

Noisy Chaotic Neural Networks for Combinatorial Optimization 487

[36] H. Tang, K.C. Tan, and Z. Yi. A columnar competitive model for solving
combinatorial optimization problems. IEEE Trans. on Neural Networks,
15:1568–1573, 2004.

[37] I. Tokuda, K. Aihara, and T. Nagashima. Adaptive annealing for chaotic
optimization. Phys. Rev. E, 58:5157–5160, 1998.

[38] A. Varma and Jayadeva. A novel digital neural network for the travelling
salesman problem. In Neural Information Processing, 2002. ICONIP ’02,
volume 2, pages 1320–1324, 2002.

[39] G. Wang and N. Ansari. Optimal broadcast scheduling in packet radio
networks using mean field annealing. IEEE Journal on Selected Areas in
Communications, 15:250–260, 1997.

[40] L.P. Wang and F. Tian. Noisy chaotic neural networks for solving combi-
natorial optimization problems. In Proc. International Joint Conference
on Neural Networks, volume 4, pages 37–40, 2000.

[41] L.P. Wang and K. Smith. On chaotic simulated annealing. IEEE Trans-
actions on Neural Networks, 9:716–718, 1998.

[42] R.L. Wang, Z. Tang, and Q.P. Cao. A hopfield network learning method
for bipartite subgraph problem. IEEE Trans. on Neural Networks,
15:1458–1465, 2004.

[43] G.V. Wilson and G.S. Pawley. On the stalibility of the travelling salesman
problem algorithm of hopfield and tank. Biol. Cybern., 58:63–70, 1988.

[44] David H. Wolpert and William G. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Computation,
1:67C82, 1997.

[45] M. Yamaguti, editor. Solution of the optimization problem using the
neural network model as a globally coupled map, 1994.

[46] M. Yamguti, editor. Transient chaotic neural networks and chaotic sim-
ulated annealing. Amsterdam: Elsevier Science Publishers, 1994.

[47] L. Zheng, K. Wang, and K. Tian. An approach to improve wang-smith
chaotic simulated annealing. International Journal of Neural Systems,
12:363–368, 2002.

