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Summary. In this communication we present the CoMSON Demonstrator Platform (DP), a
software tool designed to help researchers in testing and validating models and algorithms
for coupled simulation of nanoelectronic circuits and devices. The structure of the DP is pre-
sented with an explanation of the motivations behind the critical design choices. A multilevel
simulation of a CMOS AND gate using two different coupling algorithms is provided as an
application example. The example is intended to demonstrate the suitability of the DP as a
flexible prototyping environment and its ability to cope with real life industrial problems. In
the numerical simulations both the semi-classical Drift-Diffusion model (DD) and a Quantum
Corrected DD model (QCDD) are employed and their predictions are compared.

1 Introduction

Currently, to design new integrated circuits or to port existing designs to a new tech-
nological platform, designers follow a path composed of different, almost indepen-
dent, steps. At each stage of this path different software tools are used to support
the design flow. Process simulators are used to predict geometries, doping profiles
and other physical parameters of devices that can be produced in a given technologi-
cal process. Device simulators are then used to predict electrical/thermal behavior of
the new devices. Using physical considerations, often based on the drift-diffusion
framework with simplifying assumptions on geometry, doping profiles, material
parameters, one has to define compact models to describe the device behavior with
simple, explicit analytical expressions. Very often a priori considerations lack predic-
tiveness and accurate a posteriori calibration of model parameters based on numerical
simulations and experimental data is needed. The compact device models are used
in circuit simulations to predict the behavior of new circuit topologies or to evaluate
the performance of existing topologies implemented with new technologies. Finally,
an optimization step is used to maximize circuit performance by perturbing device
parameters in the vicinity of the given values. This design flow presents some dis-
advantages that are becoming more relevant as CMOS technology is scaled down
to its physical limits. To be as accurate as possible, compact models have grown
to include several hundreds of parameters (see, for example, [7]) with little or no
connection with physical characteristics of the devices. The lack of connection be-
tween model parameters and physical properties renders, on one hand, very delicate
and cumbersome the parameter calibration stage and, on the other hand, it makes it
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almost impossible to perform an optimization of the circuits based on the geometry
and doping profiles of the devices. The latter effect is even more evident at the cur-
rent stage of technological advancement where not only device dimensions are being
scaled but completely new device geometries are being considered (DG, Tri-Gate,
GAA, FinFET, nanotubes, . . . see, for example, [12])
A possible approach to the solution of the problems described above is to create
simulation tools where the behavior of the devices is represented not by evaluating
the explicit analytical relations given by the compact models but by performing a
direct simulation based on more accurate physical models taking the complete 2D/3D
device geometry and realistic doping profiles as obtained by process simulation into
account. This clearly comes at the cost of a great increase in computational effort,
but the advantages are many-fold. First of all the use of few physically based design
variables instead of many fitting parameters gives designers a much higher level of
understanding which can lead faster to better design decisions and, furthermore, it
can greatly help the construction of automatic optimization tools.

2 The CoMSON Demonstrator Platform

To achieve the above goal, many open problems still need to be solved. Apart from
the computational cost (which will need to be reduced as much as possible, for
example via Model Order Reduction techniques [5], or parallelization, but cannot be
expected to be anywhere close to that of compact models) the coupling itself can lead
to instability and convergence issues that need to be addressed properly by resorting
to suitable numerical schemes. For this reason within the EU RTN project CoMSON
(http://www.comson.org) a Demonstrator Platform (http://www.comson.org/dem)
will be developed to connect numerical simulation tools available throughout the
nodes of the CoMSON consortium through a common interface. In this way,
researchers willing to be confronted with the problems arising in the framework of
coupled simulation will be given the opportunity to abstract from the implementa-
tion of the basic tools (device simulator, circuit simulator, heat transfer simulator,
. . . ) and to concentrate on the coupling itself. The architecture of the Demonstrator
Platform will be the main focus of this communication.

2.1 Goals of the CoMSON Demonstrator Platform

The basic idea behind the Demonstrator Platform is to provide an integrated testing
framework for researchers interested in new strategies for coupling simulation tools
from different physical domains. Within this framework they will be able to imple-
ment, test and assess the applicability of their methods to real life problems without
having to enter the details of the lower level tools. At the same time, researchers
interested in new mathematical models for the basic physical phenomena can asses
their relevance for overall system behavior taking advantage of the coupling with
system level simulation tools.
It has has been designed to achieve the following objectives:
• providing a fast prototyping environment in which new and existing algorithms

can be tested compared and assessed;
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• allowing application of the algorithms, once assessed, to real life industrial
problems.

2.2 The Structure of the CoMSON Demonstrator Platform

To achieve the results listed above, the structure depicted in Fig. 1 has been devised.
The main components of the DP are:

Control Language/GUI
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Fig. 1: The structure of the DP

1. a library of test examples and experimental measurements to be used as bench-
marks for any new method,

2. a set of modules each consisting of a collection of functions providing the basic
functionality of the single domain simulators,

3. a controlling programming language with which the aforementioned functions
can be connected to form simulation algorithms. To separate the implementation
of the basic functions from that of the coupling algorithms, the single domain
simulators are organized as independent external libraries from which the DP
functions are obtained via interfaces (bindings for the controlling language to
the external libraries).

The test example library will contain both real-life industrial problems from the
industrial nodes of the CoMSON consortium (NXP, Qimonda and STMicroelectron-
ics) and simplified academic examples which display the same phenomena but with-
out complications that are not essential for the understanding of the problem. This
latter class of examples is especially fit for training purposes.
The initial set of functions in each module will be enriched if new algorithms will be
studied that require lower level functions not initially available.
The programming language chosen as a controlling language is Octave. The main
factors driving this choice were:
• the availability of a free language interpreter, and of a free API for building lan-

guage extensions in C, C++, Fortran;
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• the very high level of compatibility of the Octave interpreter with the Matlab
programming language syntax which is the de-facto standard for teaching
numerical algorithms;

• GPL licensing terms make it simple to distribute a fully functional system based
on Octave including all needed software dependencies.

To better demonstrate the structure of the Demonstrator Platform and its use we
will resort to a practical example. We will consider device/circuit coupling strategies
belonging to two different classes:
• based on the extension of the device simulator by considering the network equa-

tions as general boundary conditions. Such an approach is used in [2] (in the
case of stationary semiconductor equations) and in [1] (in the case of evolution-
ary semiconductor equations) to derive analytical results for the coupled system.

• Based on extension of the circuit simulator by adding the spatially discretized
semiconductor equations to the system of network equations. This approach was
applied in [11] for the numerical analysis of the coupled system and, together
with a staggered solution approach, in [8, 9] for the simulation of the electro-
thermal behavior of an operational amplifier.

By implementing solvers based on such different coupling strategies, we demon-
strate the flexibility of the Demonstrator Platform architecture. Moreover, we show
how the abstraction layer provided by the Demonstrator Platform can be exploited
for further generalization of the implemented algorithms by extending the coupling
strategies considered to the case where more complex semiconductor models (like
the Quantum-Corrected Drift-Diffusion class of models as described in [6]) are used
for device simulation.

3 Two algorithms for coupled circuit-device simulation

In the current section we introduce two different strategies for simulating an elec-
tronic circuit where part of the composing elements is described through a full 2D
Finite Element model and part is represented by lumped elements.
In Sec. (3.1) we introduce the system of equations stemming from the coupling of
circuit and device equations.
The first algorithm is outlined in Sec. 3.2 and is referred to as circuit-driven algorithm
because it is an approach that could be applied if one were to extend an existing cir-
cuit simulator to include distributed device models. The second algorithm, described
in Sec. 3.3 is a viable option to extend a device simulation program based on the
Gummel Map algorithm to include coupled simulation capabilities. In describing the
algorithms we will point out which functionalities need to be exposed to the control-
ling language by the single domain simulators for their implementation.
For more details on implementation we invite the interested readers to download the
software code and documentation which will be soon available at http://www.comson.
com/dem.

3.1 The Circuit/Device Coupled Problem

Using charge/flux based MNA modeling for the network (see, for example, [10] for
more details), we can write
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Aqq,t(t) + f(x(t), t) = jN
q(t) − g(x(t)) = 0 (1)

where Aq is a constant incidence matrix, f(x(t), t) and g(x(t)) are non-linear func-
tions, x is a vector formed by the values of the voltage nodes and of the currents
through the inductors and voltage sources and q is the vector containing the values
of the capacitor charges and the magnetic fluxes through the inductors. jN represents
the currents flowing from the circuit into the contacts of the distributed device. Fur-
thermore note that the subscript (·),t indicates differentiation with respect to time.
Considering, for sake of brevity, the effect of charge transport due to electron carriers
only, a very general form to express the equations for the distributed device which
can fit the whole class of Quantum Corrected Drift Diffusion (QCDD, see [6]) is as
follows

P (Φ, n, p) = 0 in Ω
n,t + Cn(Φ, n) = 0 in Ω

Φ|Γi
= φi

n|Γi
= ni

(2)

In (2) Φ, n, p are the electric potential, electron density and hole density inside the
device computational domain Ω respectively; P and Cn are non-linear differential
operators for the Poisson equation and electron current continuity equation respec-
tively; Γi is the ith contact of the device and Φi and ni are the values of the electric
potential and electron density on each of the contacts.
From the values of Φ and n one can compute the charges qSi

and currents jSi
at the

contacts of the device as ∫
Γi

ε∇Φ · ν dγ = qsi∫
Γi

Jn(Φ, n) · ν dγ = jsi

where Jn represents the current density in the device, and ν being the unit outward
normal to the boundary of the device. Finally the circuit and device can be coupled
by enforcing charge conservation:

jN + As(js + qs,t) = 0
α(φN + VBI) = AT

s x (3)

In (3) As is an incidence matrix indicating to which nodes in the network the contacts
of the distributed device are connected, ΦN are the voltages of the network nodes
connected to the device and VBI are the corresponding built-in voltages, α is a
scaling factor and the vectors js = [js1 . . . js1 ]

T and qs = [qs1 . . . qs1 ]
T are the

currents and charges flowing through the distributed device contacts.

3.2 The Circuit-Driven Algorithm

The basic idea behind this approach is to express the complete coupled system in a
form as similar as possible to the MNA equations (1).
By using (1) and (3) and discretizing in time by applying Rothe’s method and a
BDF(m) formula, we can write the coupled problem as

β0 (Aqq(tn) + Asqs(tn)) +

+ f(x(tn), tn) + Asjs(AT
s x) = −

∑
k=1...m

βk (Aqq (tn−k) + Asqs(tn))

q(tn) − g(x(tn)) = 0
qs(tn) − gs(AT

s x(tn)) = 0

(4)
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To solve this system with a Newton method we need a function to compute
• Currents and charges flowing through the distributed device contacts as a func-

tion of the node voltages
• Derivatives of such currents and charges with respect to the node voltages (local

capacitance and conductance matrices)
Such function is implemented along the following lines.

1 Solve the DD equations with the Gummel map algorithm
2 Linearize the Poisson equation around the solution and compute the charges

as the flux of −ε∇Φ through the contacts
3 Linearize the Continuity equation around the solution and compute the cur-

rents as the flux of −εµn(n∇Φ − Vth∇n) through the contacts
4 Obtain the capacitance and conductance matrices via a Schur complement

technique from the linearized Poisson (continuity) equation

The main requirement to implement this algorithm in the framework we described is
that, to perform steps 2-3, we need the device simulation module to define functions
that, given the contact potentials as input, produce as output the matrices for the
linearized Poisson and continuity equation at each integration time point.
Once such matrices are available the computation of conductance and capacitance
matrices is very straightforward.
Consider for example the Poisson equation for a device with two contacts. The dis-
crete, linearized Poisson equation has the form

⎡
⎣P11 0 P1I

0 P22 P2I

PI1 PI2 PII

⎤
⎦
⎡
⎣ (φ1 + vBI1)1Γ1

(φ2 + vBI2)1Γ2

ΦI

⎤
⎦ =

⎡
⎣ q′s1

q′s2

0

⎤
⎦ (5)

where 1Γi
represents a column vector of all ones with as many elements as there

are on the mesh for the i-th contact, ΦI is the vector with the values of the electric
potential at the internal mesh nodes, and q′s1

is the vector of the charges at the mesh
nodes on the i-th contact.
The total charge at the contacts can be expressed as

qs1 = 1T
Γ1

q′s1
; qs2 = 1T

Γ2
q′s2

and by eliminating ΦI one can get a relation for the charges in terms of the contact
potentials of the form

(
qs1

qs2

)
=
(

c11 c12

c21 c22

)(
φ1

φ2

)
+ . . .

where cij is the derivative of charge qi with respect to node voltage Φj .

3.3 The Device-Driven Algorithm

The Device-Driven algorithm we present is a generalization of the well-known
Gummel algorithm for the solution of the DD equations where the circuit equations
are included as boundary conditions for each of the decoupled problems.
To set up such algorithm we need to decouple the problem into two subproblems,
corresponding to the Poisson and continuity equations respectively:
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Problem A (Poisson)

P (AT
s x, ΦI ,qs) = 0

β0(Aqq(tn) + Asqs(tn))+ f(x(tn), tn) + Asjs =

= −
∑

k=1...m

βk(Aqq(tn−k) + Asqs(tn−k))

q(tn) − g(x(tn)) = 0

(6)

Problem B (Continuity)

Cn

(
AT

s x, ΦnI
, js

)
= 0

β0(Aqq(tn) + Asqs(tn))+ f(x(tn), tn) + Asjs =

= −
∑

k=1...m

βk(Aqq(tn−k) + Asqs(tn−k))

q(tn) − g(x(tn)) = 0

(7)

In (6) ΦI is the value of the electrical potential at the internal nodes of the device
mesh x(tn) is the vector of the network node voltages, the network and device node
charges are q(tn) and qs(tn) and the current through the device contacts is js. In (7)
ΦnI

represents the vector of the values of the quasi-Fermi potentials at the internal
nodes of the device mesh. As in Sec. 3.2 a BDF(m) formula has been applied for
time discretization.
Having defined the two subproblems above, the procedure to be carried out at each
time step can be described as follows:

Iterate through steps 1 and 2 below until consistency is reached:
1 Solve the non-linear Poisson equation [A] for the unknowns ΦI , x(tn), q(tn),

qs(tn) considering js a known quantity.
2 Solve the non-linear continuity equation with unknowns ΦnI

,x(tn),q(tn), js
and considering qs(tn) fixed

Note that both step 1 and step 2 involve the solution of a system of non-linear
equations so they require two more Newton loops to be nested within the iteration
described above.
To be able to impose the appropriate boundary conditions we need the circuit simu-
lation module to define a function that, given the values of the network unknowns
as input, produces as output the matrices for the linearized MNA equations. This
is the main requirement to be able to implement the Device-Driven method in our
framework.

4 An Application Example

As an application for the algorithms described above, the test circuit in Fig.2(a),
representing a CMOS AND gate, has been considered. For sake of simplicity only
the n-type MOSFET in the output stage has been simulated using a full 2D simulation
as shown in Fig. 2(b). The simulated device is a very aggressively scaled MOSFET
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with a gate length of 15nm. For such small devices, according to traditional scaling
rules a Vdd voltage of 0.8V should be appropriate.
Fig. 3(a) displays the switching behavior of the AND gate computed with a DD
Model for the distributed device and using both the Circuit and the Device-Driven
algorithms. As stated in the previous section both coupling approaches can be applied

(a) The CMOS AND gate simulated (b) The set-up for coupled simulation of the
AND gate

Fig. 2:

with no effort to more advanced semiconductor models. To demonstrate this we
repeated the simulation using a Density Gradient model (See [3], [4] for a descrip-
tion of the model). The impact of quantum correction on the performance of the
circuit is shown in Fig. 2(b). Essentially the circuit does not behave as a digital gate
at all. This is mainly due to a shift in the threshold voltage of the device connected
to the increased Equivalent Oxide Thickness (see [6] for a description of this effect).
Indeed, as shown in Fig. 3(c), if Vdd = 1.6V is applied, the circuit displays better
performance.

(a) Simulation results using a DD
model with Vdd = 0.8V

(b) Simulation results using a QDD
model with Vdd = 0.8V

(c) Simulation results using a QDD
model with Vdd = 1.6V

Fig. 3:

Acknowledgment

The work described here is partly financially supported by the European Commission
in the framework of the CoMSON RTN project, grant number MRTN-2005-019417.



A Demonstrator Platform for Coupled Multiscale Simulation 71

References

1. G. Alı̀, A. Bartel, and M. Günther, Parabolic differential-algebraic models in electrical
network design, SIAM J. Mult. Model. Sim. 4 (2005), no. 3, 813–838.

2. G. Alı̀, A. Bartel, M. Günther, and C. Tischendorf, Elliptic partial differential-algebraic
multiphysics models in electrical network design, Mathematical Models and Methods in
Applied Sciences 9 (2003), no. 13, 1261–1278.

3. M. G. Ancona and G. J. Iafrate, Quantum Correction to the Equation of State of an Elec-
tron Gas in a Semiconductor, Phys. Rev. B 39 (1989), 9536–9540.

4. M. G. Ancona and H. F. Tiersten, Macroscopic physics of the silicon inversion layer,
Phys. Rev. B 35 (1987), no. 15, 7959–7965.

5. T. Bechtold, E. B. Rudnyi, and Jan G. Korvink, Fast simulation of electro-thermal mems:
Efficient dynamic compact models, Springer, 2006.

6. C. de Falco, A. L. Lacaita, E. Gatti, and R. Sacco, Quantum–corrected drift–diffusion
models for transport in semiconductor devices, J. Comp. Phys. 204 (2005), no. 2,
533–561.

7. G. Denk, Circuit simulation for nanoelectronics, Proceedings of Scientific Computing in
Electrical Engineering (SCEE), Springer–Verlag, 2004, pp. 13–20.

8. T. Grasser, Mixed-mode device simulation, Ph.D. thesis, Institut für Mikroelektronik,
TU/Wien, 1999.

9. T. Grasser and S. Selberherr, Fully coupled electrothermal mixed-mode device simu-
lation of SiGeHBT circuits, IEEE Transactions on Electron Devices 48 (2001), no. 7,
1421–1427.

10. M. Günther, U. Feldmann, and J. ter Maten, Modelling and discretization of cir-
cuit problems, Handbook of Numerical Analysis (P.G. Ciarlet, W.H.A. Schilders, and
E.J.W. ter Maten, eds.), vol. XIII, Elsevier North-Holland, 2005, pp. 523–659.

11. C. Tischendorf, Coupled systems of differential algebraic and partial differential equa-
tions in circuit and device simulation. Modeling and numerical analysis, Habilitationss-
chrift, Inst. für Math., Humboldt-Univ. zu Berlin, 2003.

12. H.-S. P. Wong, Beyond the conventional transistor, IBM J. Res. & Dev. 46 (2002), no. 2/3,
133–169.




