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Stochastic differential algebraic equations (SDAEs) arise as a mathematical model
for electrical network equations that are influenced by additional sources of Gaussian
white noise. In this paper we discuss adaptive linear multi-step methods for the
numerical integration of SDAEs, in particular stochastic analogues of the trapezoidal
rule and the two-step backward differentiation formula, together with a new step-size
control strategy. Test results illustrate the performance of the presented methods.

1 Transient noise analysis in circuit simulation

Transient analysis is often performed without taking noise effects into account.
But due to the parasitic effects, this is no longer possible. The increasing scale of
integration, high clock frequencies and low supply voltages cause smaller signal-
to-noise ratios. In several applications the noise influences the system behaviour in
an essentially nonlinear way such that linear noise analysis is no longer satisfactory
and transient noise analysis, i.e., the simulation of noisy systems in the time domain,
becomes necessary (see [DeWi03, Wi04]). Here we deal with the thermal noise of
resistors as well as the shot noise of semiconductors that are modelled by additional
sources of additive or multiplicative Gaussian white noise currents that are shunt in
parallel to the noise-free elements [DS98].
Thermal noise of resistors having a resistance R is caused by the thermal motion
of electrons and is described by Nyquist’s theorem. Hence, the associated current is
modelled by additive noise,

ith =

√
2kT

R
ξ(t), k = 1.3806 × 10−23,

where T is the temperature, k is Boltzmann’s constant and ξ(t) is a standard
Gaussian white noise process. Shot noise of pn-junctions, caused by the discrete
nature of currents due to the elementary charge, is modelled by multiplicative noise.
If the noise-free current through the pn-junction is described by a characteristic
i = g(u) in dependence on a voltage u, the associated Gaussian white noise current is
modelled by

ishot =
√

qe|g(u)|ξ(t), qe = 1.602 × 10−19,
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where ξ(t) again is a standard Gaussian white noise process and qe is the elementary
charge. Combining Kirchhoff’s Current law with the element characteristics and
using the charge-oriented formulation yields a stochastic differential algebraic
equation (SDAE) of the form (see [GF99] for the deterministic case)

A
d

dt
q(x(t)) + f(x(t), t) +

m∑
r=1

gr(x(t), t)ξr(t) = 0 , (1)

where A is a constant singular incidence matrix determined by the topology of the
dynamic circuit parts, the vector q(x) consists of the charges and the fluxes, and x
is the vector of unknowns consisting of the nodal potentials and the branch currents
through voltage-defining elements. The term f(x, t) describes the impact of the static
elements, gr(x, t) denotes the vector of noise intensities for the r-th noise source, and
ξ is an m-dimensional vector of independent Gaussian white noise sources (see e.g.
[DeWi03, Wi04]). Hence, one has to deal with a large number of equations as well
as of noise sources. Compared to the other quantities the noise intensities gr(x, t)
are small.
We understand (1) as a stochastic integral equation

Aq(X(s))
∣∣∣t
t0

+
t�

t0

f(X(s), s)ds +
m∑

r=1

t�
t0

gr(X(s), s)dWr(s) = 0, t ∈ [t0, T ] , (2)

where the second integral is an Itô-integral, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P ) with
a filtration (Ft)t≥t0 . The solution is a stochastic process depending on the time t and
on the random sample ω. For a fixed sample ω representing a fixed realization of
the driving Wiener noise, the function X(·, ω) is called a realization or a path of the
solution. Due to the influence of the Gaussian white noise, typical paths are nowhere
differentiable.
Especially for oscillating solutions in circuit simulation one is interested in the phase
noise. We aim at the simulation of solution paths that reveal the phase noise. From
the solution paths statistical data of the phase as well as of moments of the solution
can be computed in a post-processing step. We therefore use the concept of strong
solutions and strong (mean-square) convergence of approximations.
Using techniques from the theory of DAEs as well as of the theory of stochastic
differential equations (SDEs) one derives existence and uniqueness for the solutions
as well as convergence results for certain drift-implicit methods for systems with
index 1 DAE [Wi03].

2 Adaptive numerical methods

An efficient integrator must be able to change the step-size. We present adaptations
of known schemes for SDEs that are implicit in the deterministic part (drift) and
explicit in the stochastic part (diffusion) of the SDAE. Designing the methods such
that the iterates have to fulfill the constraints of the SDAE at the current time-point
is the key idea to adapt known methods for the SDEs to (2).
We consider stochastic analogues of the two-step backward differentiation formula
(BDF2) and the trapezoidal rule, where only the increments of the driving Wiener
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process are used to discretize the diffusion part. Analogously to the Euler-Maruyama
scheme we call such methods multi-step Maruyama methods. The variable step-
size BDF2 Maruyama method for the SDAE (2) has the form (see [Si05] and e.g.
[BuWi05] in the case of constant step-sizes)

A
q(X�) − (κ
+1)2

2κ
+1 q(X�−1) + κ2



2κ
+1q(X�−2)

h�
+

κ� + 1
2κ� + 1

f(X�, t�)

+
m∑

r=1

gr(X�−1, t�−1)
∆W �

r

h�
− κ2

�

2κ� + 1

m∑
r=1

gr(X�−2, t�−2)
∆W �−1

r

h�
= 0, (3)

� = 2, . . . , N . Here, X� denotes the approximation to X(t�), h� = t� − t�−1, and
∆W �

r = Wr(t�) − Wr(t�−1) ∼ N(0, h�) on the grid 0 = t0 < t1 < · · · <
tN = T . The coefficients of the two-step scheme (3) depend on the step-size ratio
κ� = h�/h�−1 and satisfy the conditions for consistency of order one and two in the
deterministic case and of order 1/2 in the stochastic case (see [Si05]).
A correct formulation of the stochastic trapezoidal rule for SDAEs requires more
structural information (see [SiWi06]). It should implicitly realize the stochastic
trapezoidal rule for the so called inherent regular SDE of (2) that governs the dynam-
ical components. One possibility is to discretize the constraints differently, which
requires the explicit knowledge of the constraints or, equivalently, a projector R
along imA. The discrete equations

A
q(X�) − q(X�−1)

h�
+

1
2
(I − R)

(
f(X�, t�) + f(X�−1, t�−1)

)

+Rf(X�, t�) +
m∑

r=1

gr(X�−1, t�−1)
∆W �

r

h�
= 0, (4)

� = 1, . . . , N , imply the correct constraints and realize the trapezoidal rule for the
inherent regular SDE.
Both the BDF2 (3) and the trapezoidal rule (4) have only an asymptotic order of
strong convergence of 1/2, i.e.,

‖X(t�) − X�‖L2(Ω) := max
�=1,...,N

(E|X(t�) − X�|2)1/2 ≤ c · h1/2, (5)

where h := max�=1,...,N h� is the maximal step-size of the grid. (For additive noise
the order may be 1.) This holds true for all numerical schemes that include only
information on the increments of the Wiener process.
However, the noise densities given in Sec. 1 contain small parameters and the error
behaviour is much better. In fact, the errors are dominated by the deterministic terms
as long as the step-size is large enough [BuWi05]. In more detail, the error of the
given methods behaves like O(h2 + εh + ε2h1/2), when ε is used to measure the
smallness of the noise (gr(x, t) = εĝr(x, t), r = 1, . . . ,m, ε � 1). Thus we can
expect order 2 behaviour if hgε.
The smallness of the noise also allows special estimates of the local error terms,
which can be used to control the step-size. In [RoWi05] the authors presented a step-
size control for the drift-implicit Euler scheme in the case of small noise that leads to
adaptive step-size sequences that are uniform for all paths, see also [DeWi03, Wi04].
The estimates of the dominating local error term are based on values of the drift



406 Thorsten Sickenberger and Renate Winkler

term and do not cost additional evaluations of the coefficients of the SDE or their
derivatives. In [SWW06, SWW07] we extend this strategy to stochastic linear multi-
step methods with deterministic order 2 and present an estimate of the mean-square
local errors. Again it is based on divided differences of values of the drift term and
leads to step-size sequences that are identical for all computed paths.

3 Numerical results

Here, we illustrate the potential of the step-size control strategy by simulation results
for the stochastic BDF2 applied to three test problems. For the first and the second
example we use an implementation of the adaptive methods discussed in the previous
section in fortran code. To be able to handle real-life problems, a slightly modified
version of the schemes for MNA together with the new step-size control has been
implemented in Qimonda’s in-house simulator TITAN. The third example shows the
performance of this industrial implementation.

A nonlinear test-SDE

First, we consider a nonlinear scalar SDE with known explicit solution. The drift and
diffusion coefficients are tunable by real parameters α and β, which we have chosen
as α = −10 and β = 0.01:

X(t) =
t�

0

−(α +β2X(s))(1−X(s)2)ds+
t�

0

β(1−X(s)2)dW (s), t ∈ [0, T ] . (6)

The solution is given by

X(t) =
exp(−2αt + 2βW (t)) − 1
exp(−2αt + 2βW (t)) + 1

. (7)

In Figure 1 we present a work-precision diagram. We plotted the tolerance (�) and
the mean-square norm of the errors for adaptively chosen (+) and constant (×) step-
sizes for 100 computed paths vs. the number of steps in logarithmic scale. Lines with
slopes −2 and −0.5 are provided to enable comparisons with convergence of order
2 or 1/2. We observe order 2 behaviour up to accuracies of 10−4. The results show
that the proposed step-size control works very well for step-sizes above this threshold
and provides considerably more accurate results than the computation with the same
number of constant steps.

A MOSFET inverter circuit

Secondly, we consider a model of an inverter circuit with a MOSFET-transistor under
the influence of thermal noise. The equivalent circuit diagram is given in Figure 2.
The MOSFET is modelled as a current source from source to drain that is controlled
by the nodal potentials at gate, source and drain.
The thermal noise of the resistor and of the MOSFET is modelled by additional white
noise current sources that are shunt in parallel to the original, noise-free elements.
To make the effect of the noise more visible we scaled the noise intensities by a fac-
tor of 1000. For the simulation we used the BDF2 with adaptively chosen step-sizes.
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Fig. 1: Tolerance and accuracy versus steps for a test-SDE.
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Fig. 2: Thermal noise sources in a MOSFET inverter circuit
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Fig. 3: Simulation results for the noisy inverter circuit:
1 path 127(+29 rejected) steps; 100 paths 134(+11 rejected) steps

In Figure 3 we present simulation results, where we plotted the input voltage Uin and
values of the output voltage e1 versus time. We compare the results for the computa-
tion of a single path (left picture) with those for the computation of 100 simultane-
ously computed solution paths (right picture), where the dark lines additionally show
the values of two different solution paths, the dotted line gives the mean of 100 paths
and the gray lines the 3σ-confidence interval for the output voltage e1. Moreover, the
applied step-sizes, suitably scaled, are shown by means of single crosses. Using the
information of an ensemble of simultaneously computed solution paths smoothes the
step-size sequence and reduces the number of rejected steps considerably, compared
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to the simulation of a single path. Also the computational cost mainly determined by
the number of integration steps is reduced.

A voltage controlled oscillator

Finally, we present simulation results for a voltage controlled oscillator that has been
used as a test application. It is a simplified version of a fully integrated 1.3 GHz VCO
for GSM in 0.25 µm standard CMOS (see [Ti00]). For simulation, the oscillator
is embedded in a test environment, using a virtual output buffer load and tuning
voltage as well as core current modelled as independent DC sources. The VCO is
tunable from about 1.2 GHz up to 1.4 GHz. The unknowns of the VCO in the MNA
system are the charges of the six capacities, the fluxes of the four inductors, the 15
nodal potentials and the currents through the voltage sources. This circuit contains
5 resistors and 6 MOSFETs, which induce 53 sources of thermal or shot noise. To
make the differences between the solutions of the noisy and the noise-free model
more visible, the noise intensities had been scaled by a factor of 500.
Numerical results obtained with a combination of the BDF2 and the trapezoidal
rule are shown in Fig. 4, where we plotted the difference of the nodal potential
V (7) − V (8) of node 7 and 8 versus time. The solution of the noise-free system
is given by a dashed line. Four sample paths (dark solid lines) are shown. They can-
not be considered as small perturbations of the deterministic solution, phase noise is
highly visible. To analyze the phase noise we repeated the simulation ten times with

Noisy transient output signal V(7)  V(8) of the vcoBi oscillator

noisefree
Path 1
Path 2
Path 3
Path 4

Fig. 4: Noisy transient output signal of a VCO.

different initialization of the pseudo-random numbers. Then we computed the length
of the first 50 periods for each solution path. On Fig. 5 the mean µ of the frequencies
(horizontal lines), the smallest and the largest frequencies (boundaries of the vertical
thin lines) and the boundaries of the confidence interval µ ± σ (the plump lines) are
presented, where σ was computed as the empirical estimate of the standard devia-
tion. The mean appears increased and differs by about +0.25% from the noiseless,
deterministic solution. Further on, the frequencies vacillate from 1.18 GHz (-0.95%)
up to 1.21 GHz (+1.55%). So the transient noise analysis shows that the voltage con-
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Fig. 5: Boxplots of the phase noise, scaled by a factor of 500

trolled oscillator runs in a noisy environment with increased frequencies and smaller
phases, respectively.
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