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Summary. We present a method for converting 1-D Maxwell equation into a linear system
using the Multivariable Output Error State Space (MOESP) method, a subspace system iden-
tification method. To show the efficiency of the method, we first apply it to a set of ordinary
differantial equations. Input and output from the equation set are computed by numerical meth-
ods and the obtained data is used for building the required matrices. An appropriate Single
Input Single Output (SISO) linear system is estimated by MOESP algorithm for the equation
at hand. The goal of the research is to build a low order linear state space system model for
the Maxwell equation. On the other hand the order estimation for the system can be used in
other way. For example, with this estimation one can determine an appropriate order for the
physical system, for which one of the well-known model order reduction techniques can be
used to obtain a reduced order model.

1 Introduction

In general, system identification methods are mainly developed in the area of automatic con-
trol to determine the best model (in the sense of input-output relationship) from a given
observed input-output data set. In this study, a 1-D Maxwell equation is converted into a set
of state-space equations using MOESP algorithm, which is a member of subspace system
identifacation family of algorithms. The idea can be useful when simulation of the VLSI
interconnections are considered. The computation of the effects of VLSI interconnections is
mainly based on the solution of the Maxwell equations on chip geometries. The RLC parasitic
circuits are realized with the solution of Maxwell equations. Finally, the model order reduc-
tion algorithms are employed to reduce the dimension of the linear subsystem of these RLC
circuits [ANT05]. In this study, 1-D Maxwell equation is directly converted into a small order
SISO system without using any model reduction algorithm. Therefore, it can be also useful for
finding an appropriate reduction order of the model order reduction process. Before dealing
with the Maxwell equations however, let us use an ordinary differential equation set to show
the usage and the details of the method.
The remaining of the paper is organized as follows. In section 2, the methodology and the
MOESP algorithm are briefly explained, whereas section 3 contains some numerical results
and discussions. We present, in section 4 some concluding remarks and the future work.
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2 Definition of the Problem

2.1 Introduction

To explain the basics of and the implementations details of the MOESP algorithm, a general
nth order ordinary differential equation (ODE) is considered. We also present numerical
results for this case in the paper. Then the method is applied to the partial differential equations
(PDE), more specifically to the Maxwell equations.

2.2 nth Ordinary Differential Equation as a Discrete Linear System

A general linear differential equation of order n with zero inital values on an interval I is
defined as,

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t) = u(t), t ∈ I (1)

This system can be reduced to an associated first order ordinary differential equation system.

d

dt
X = AX +Bu (2)

where;

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xn−1

xn

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎦ (3)

Matrix A is called companion matrix. Components of the X vector are called state variables.
Furthermore, it is always possible to define the desired output as a linear combination of these
state variables [CARL97].

Y = CX +Du (4)

It is also possible to convert this continuos system into a discrete system with the help of any
numerical integration algorithm. For example, if we choose Euler method for integration we
obtain below difference equations for xn at time tk+1,

xk+1
n − xk

n

h
= an1x

k
1 + an2x

k
2 + · · ·+ annx

k
n + bnu

k

(5)

or in matrix form,

Xk+1 = (I + hA)Xk +Buk

Yk+1 = CXk+1 +Duk+1

(6)

Using (6), one can write the input-output formulas for each data point;

Yk+j = C(I + hA)jXk +

j∑
i=1

C(I + hA)i−1Buk+j−i +Duk+j (7)

Using (7) we can derive matrix input-output equations which play a fundamental role in sub-
space identification,
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⎡
⎢⎢⎣

yk

yk+1

...
yk+j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C

CÂ
...

CÂj

⎤
⎥⎥⎥⎦Xk +

⎡
⎢⎢⎣

D
CB D

...
. . .

. . .
CÂj−1B . . . CB D

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uk

uk+1

...
uk+j

⎤
⎥⎥⎦ (8)

where Â = (I+hA). One can define two Hankel matrices in terms of uk and yk to generalize
the structure. These Hankel matrices are called as U0|k−1 and Y0|k−1 respectively.

⎡
⎢⎢⎣

u(0) u(1) . . . u(N − 1)
u(1) u(2) . . . u(N)

...
...

...
u(k − 1) u(k) . . . u(k +N − 2)

⎤
⎥⎥⎦∈RkmxN

⎡
⎢⎢⎣

y(0) y(1) . . . y(N − 1)
y(1) y(2) . . . y(N)

...
...

...
y(k − 1) y(k) . . . y(k +N − 2)

⎤
⎥⎥⎦∈RkpxN

(9)
where k is strictly greater than the order of the system n, p is the number of the
outputs of the system, m is the number of the inputs and finally N is a sufficiently
large number for fixing the Hankel matrix. 0 and k − 1 values in the definitions of
Hankel matrices are used for determination of the upper-left and lower-left elements
respectively. Using this Hankel matrix definitions one can write below equations for
the nth order ordinary differential system.

Y0|k−1 = OkX0 + ΦkU0|k−1

Yk|2k−1 = OkXk + ΦkUk|2k−1 (10)

where

Ok =

⎡
⎢⎢⎢⎣

C

CÂ
...

CÂj

⎤
⎥⎥⎥⎦ , Φk =

⎡
⎢⎢⎢⎣

D
CB D

...
. . . . . .

CÂj−1B . . . CB D

⎤
⎥⎥⎥⎦ (11)

Here, X0 and Xk are the initial states respectively. U0|k−1 and Y0|k−1 are called
past inputs and outputs and Uk|2k−1 and Yk|2k−1 are called future inputs and outputs
[KAT05].
Data matrices U0|k−1, Y0|k−1 can be written in more compact form as:

[
U0|k−1

Y0|k−1

]
=
[
Ikm 0kmxn

Φk Ok

] [
U0|k−1

X0

]
(12)

Finally, it can be said that it is always possible to rewrite (1) as a matrix equation as
given in (12).

2.3 MOESP Algorithm

LQ decomposition, which is the dual of the QR decomposition, is used to make
the upper-right block of the data matrix zero. LQ decomposition of a matrix can be
given as,

[
U0|k−1

Y0|k−1

]
=
[
L11 0
L21 L22

] [
QT

1

QT
2

]
(13)



398 E. F. Yetkin, H. Dag̃, and W. H. A. Schilders

where L11 ∈ Rkmxkm, L22 ∈ Rkpxkp, Q1 ∈ RNxkm Q2 ∈ RNxkp.
The actual computation of LQ decomposition is performed by taking transpose of
the QR decomposition of the matrix.
Using orthogonality conditions on the input output spaces, below equation can be
obtained for L22,

OkX0Q2 = L22 (14)

where Ok is extended observability matrix, X0 is the initial states. If we take the
SVD of the L22 matrix we get,

L22 = [U1U2]
[
Σ1 0
0 0

] [
V T

1

V T
2

]
= U1Σ1V

T
1 (15)

In MOESP algorithm, the system dimension is determined by the singular values of
the L22 matrix and with this decomposition we have,

OkX0Q2 = U1Σ1V
T
1 . (16)

From last identity, we can define the extended observability matrix as

Ok = U1Σ
1/2
1 . (17)

With (17) we have the C matrix of the estimated system as C = Ok(1 : p, 1 : n)
and the A matrix as a a solution of below least square equation Ok(1 : p(k − 1), 1 :
n)A = Ok(p + 1 : kp, 1 : n).
Computation of the B and the D matrices are more complex. We refer the reader to
work in [CIG98], [VD92-1], and [VD92-2] for further information. Algorithm of the
method is given in Fig. (1).

Fig. 1: Main MOESP Algorithm

3 Numerical Examples

3.1 Example ODE System

A second order ODE equation is selected for estimation. The equation is
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d2ϕ(t)
dt2

+
dϕ(t)

dt
− 10 = 0 (18)

Here, the input u is constant and equals to 10 and initial values of equation taken
as zero. The output y is computed by a Runge-Kutta algorithm. Data matrices are
created after the input and output data collected. Then the SMI Toolbox employed to
produce the estimation [SMI]. The singular value distribution of L22 matrix is shown
in Fig. (2).

Fig. 2: (a) Singular value distribution of data matrix for u(t)=10 and estimated system order n = 2, (b) Original and
estimated outputs for a estimated system order n = 2

3.2 Maxwell Equation

Consider a one-dimensional space where there are only variations in the x dimension.
Assume that the electric field has only a z component. With Faraday and Ampere’s
laws we can write 1-D Maxwell equations as

µ
∂Hy

∂t
=

∂Ez

∂x
,

ε
∂Ez

∂t
=

∂Hy

∂x
. (19)

The source function is applied to the 0th node of the computational domain and data
is collected as the electrical field of 50th node. After discretization, FDTD (Finite
Difference Time Domain) algorithm is employed to obtain the input data uk and
output data yk. The singular value distribution of the L22 matrix and the original
and estimated outputs are given in Figs. 3 and 4. Here, two source functions are
considered. First one is a sinusoidal and second one is an exponential function . For
exponential source function MOESP algorithm works more accurately. Estimated
order n, is selected as 2 in both cases.
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Fig. 3: (a) Singular value distribution of L22 matrix for u(t) = cos(10t) (b) Original and estimated outputs and
relative error for u(t) = cos(10t) where the estimated system order n = 2

Fig. 4: (a) Singular value distribution of L22 for u(t) = exp−(t−30)2/100, (b) Original and estimated outputs and
relative error for estimated system order n = 2

3.3 Comparison of Estimations

For ODE systems, singular value distributions of the L22 matrix is reasonable if
one considers that a second order differential equation is estimated. Ratios of its
maximum two singular values to the other singular values are sufficiently small and
the singular values except first two largest ones can be neglected. This situation can
be seen from the Fig. 2, the outputs are exactly matched.
This can be verified with one of the possible measures of accuracy which named as
VAF (Variance According For) [SMI]. It is defined as,

V AF = 1 − variance(y − yest)
variance(y)

∗ 100% (20)

where y is the original output and yest is the estimated output. The VAF of two
signals that are the same is 100%. If they differ, the VAF will be lower and if the two
signals are completly different then VAF gets value of -1000.
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For ODE example, VAF is equal to 100%. It means that the estimation works very
successfully for this set of equation.
In the Figs. 3 and 4, singular values of the L22 matrix are relatively close to each
other and we cannot select an exact estimation order like for the ODE system in
Fig. 2. Therefore, it can be said that, for Maxwell equations the accuracy of the
estimations is more sensitive to the selection of the estimation order. VAF values for
these equations are 86% and 96.5% respectively. It can be also said that for exponen-
tial source functions, MOESP algorithm produces more accurate result. This fact can
be observed from Figs 3 and 4. Its possible reason is the periodicity of the input and
output vectors. Linear dependency of the columns of data matrices are determined
by the input output vectors. Here we can say that, for non-periodic input sources
Maxwell equations also can be modeled as a linear system with high accuracy. But
in the case of the periodical input sources some other methodologies have to be used
to improve the accuracy of the method.

4 Conclusion and Future Work

We examined the algorithm MOESP to convert a 1-D Maxwell equation into a SISO
linear discrete state-space system.
Method is applied to an ordinary differential equation first and it is observed that the
method produces a linear system quadruple (A,B,C,D) with high accuracy. However,
when applying the same method to 1D-Maxwell equation accuracy of the method
varies depending on the input source. With non-periodical input signals results are
more accurate than those of the periodical input signal case. There can be a rela-
tionship between the periodicity of the input-output data and the behaviour of the
algorithm. The future work will be focused on finding this relationship, i.e., the
relationship between the order of the estimated system and the properties of data
matrices.
We so far have studied the SISO modeling of the equations. In SISO models one has
to define only one output point. On the other hand, in realistic systems more than one
output point are required for modelling. Therefore, the method has to be extended
to MIMO (Multiple Input Multiple Output) cases for extending the implementation
area.
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