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In this paper, a numerical algorithm solving large sparse linear systems that arise in electro-
magnetic field computation will be presented. It is based on hierarchical partitioning of the
matrix and uses block-wise low-rank approximation in combination with element dropping
in order to construct a preconditioner for iterative solution. Within the BE-FE coupling, this
approximate factorisation is applied as preconditioner for the FE system. The treatment of
multiply connected domains will also be described. The efficiency of the presented solver will
be shown by means of an electromagnetic valve.

1 Introduction

In the design of electromagnetic components, numerical field computation of three-
dimensional problems plays an important role. Efficient solver concepts are necessary to
retrieve information about the components behaviour already at an early stage of develop-
ment. The spatial discretisation is done by coupling of the boundary element method (BEM)
and the finite element method (FEM) both based on edge elements. Fine discretisation of
complex problems leads to large systems of equations. The BEM part is solved with asymp-
totically optimal complexity by using block-wise adaptive cross approximation (ACA) [2].
In larger problems, the main cost is then caused by the FEM part. In this paper, an efficient
preconditioner for the large sparse FE matrix will be investigated.
The use of BE-FE coupling for complicated geometry can lead to multiply connected subdo-
mains. Therefore, the discrete space approximating the boundary data needs to be extended
in order to consider those degrees of freedom corresponding to the holes. This was already
described in [10] for the Galerkin BEM. In this work, these degrees of freedom will be consid-
ered for the edge collocation method as described in [9, 11] (cf. Section 2). The discretisation
then yields a regular non-symmetric system of equations consisting of sparse FE matrices and
dense BE matrices, which is solved iteratively.
Due to the ill conditioning of the FE matrix, a preconditioner needs to be constructed.
In [6], different strategies of hierarchical concepts solving the sparse FE system were
presented. Especially, a non-recursive algorithm computing a preconditioner was developed
that combines a block Cholesky decomposition with low-rank approximation and element
dropping (Section 3). In this work, the efficiency of this preconditioner will be shown within
the solution of the coupled BE-FE problem.
For this, a component of the fuel injection system is simulated using BE-FE coupling and
considering multiply connected domains (Section 4). The FE stiffness matrix will be precon-
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ditioned by the method described in Section 3 and two other preconditioning concepts. With
this, an evaluation of the preconditioners will be carried out.

2 Discretisation and solver

Magnetostatic field problems in R
3 can be described in terms of the magnetic vector potential

A by

curl
1

µ
curlA = j, (1)

where j is the electric current density. The material parameter µ describes the magnetic per-
meability and may depend on the magnetic field. It is assumed that divj = 0. In order to use
BE-FE coupling, the domain is decomposed into an inner domain Ω− containing all conduct-
ing and magnetic materials of the component and an exterior infinite domain Ω+ = R

3\Ω−

(cf. Figure 1). The FEM will be applied in Ω− while the BEM is used in Ω+. At the coupling

c1

c2

−

+

Fig. 1: Decomposition into Ω+ and Ω− and two homology cycles c1 and c2 of the boundary

boundary Γ of these two domains, the boundary data A × n and curlA × n needs to be
continuous. Here, n is the outer normal field on Γ .
The variational formulation of (1) is constructed in the Hilbert space H(curl, Ω−) contain-
ing all square integrable functions with an existing curl in the weak sense. With w ∈
H(curl, Ω−) it reads

�
Ω−

1

µ
curlA · curlwdx−

�
Γ

γNA · γDwdSx =
�

Ω−

j ·wdx, (2)

with the Dirichlet and Neumann trace operators γD and γN . The respective trace spaces
are H

−1/2
⊥ (curl Γ , Γ ) and H

−1/2

‖ (divΓ 0, Γ ). The trace operators as well as the surface curl
and the surface divergence operators are defined in [4]. The boundary integral in (2) pre-
pares the coupling to Ω+. With the help of the fundamental solution of the Laplace operator
A∗(x,y) = I/4π|x − y|, one can derive a representation formula [9]. In case of j = 0 in
Ω+, it only contains boundary integrals:

A(y) =
�
Γ

(γNA∗(x,y))T γDA(x)dSx −
�
Γ

γDA∗(x,y)γNA(x)dSx

+
�
Γ

γ(divA∗(x,y))T γnA(x)dSx. (3)

The last integral, where γ is a standard and γn a normal trace operator, corresponds to a gauge
potential which will be eliminated by the discretisation with collocation over cycles [9].
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Let Ω−
h be a discretisation of Ω− having kE edges and kN nodes. The respective boundary

mesh Γh has kΓ
E edges and kΓ

N nodes. Equation (2) and (3) will be discretised by the use of
Whitney p-forms Wp, p = 0, 1. For p = 0 they are formed by the continuous Lagrangian
nodal elements, and for p = 1 they are tangentially continuous vector fields defined along
edges [3]. With the Whitney 1-forms ωi ∈ W1(Ω−

h ), the approximation of A reads Ah =∑kE

i=1
βiωi. The approximation of the Dirichlet data contains the degrees of freedom βΓ

i

corresponding to the boundary, so that (γDA)h =
∑kΓ

E
i=1 β

Γ
i ωΓ

i with ωΓ
i ∈ W1(Γh). As

explained in [9], the Neumann data has a zero surface divergence divΓ γNA = 0. In order to
exploit this, the discrete kernel space

ker(divΓ ) = curlΓW0(Γh) ∪ K1(Γh) ⊂ W1(Γh)

is used to discretise γNA. The operator curlΓ acts on scalar functions and is the adjoint oper-
ator of curl Γ [4]. Here, K1(Γh) is a finite-dimensional space discretising cohomology fields
due to the holes in the domain. The Betti number b = dim(K1(Γh)) denotes its dimension,
which is given by twice the number of holes of Ω−

h . The discrete representation of the coho-
mology group was described in [10]. Therefore, b representative cycles on Γh surrounding the
holes need to be constructed (cf. c1 and c2 in Figure 1). The discrete spaceK1(Γh) is spanned
with the help of scalar functions ψk being piecewise linear and continuous on Γh except for a
jump [ψk]ck = 1 across the corresponding homology cycle ck. With c̃urlΓ being the surface
curl on Γ\ck, ηk = c̃urlΓψk, k = 1, . . . , b yields a basis ofK1(Γh). The discrete Neumann
data reads

(γNA)h =

kΓ
N∑

i=1

ϕicurlΓλi +

b∑
k=1

ϕck

∑
(j,m)∈Sk

curlΓλj,m,

with λi ∈ W0(Γh) and λj,m being a restriction of λj on the m-th element. The pair (j,m)
belongs to the index set Sk if the m-th element lies on one side of the oriented cycle ck and
the j-th node is contained in ck.
The DeRham collocation method for boundary integral equations was considered in [9] for
trivial domains. The evaluation of the discretised representation formula along kΓ

N closed
cycles yields a fully populated unsymmetric system of equations. For multiply connected
domains, b additional cycles given by the homology paths of Γh are used for the colloca-
tion. With this, kΓ

N + b linearly independent equations form the BE system. This discretisation
of (2) and (3) yields the system

(
QΩΩ QΩΓ 0
QΓΩ QΓΓ T

0 H G

)(
βΩ

βΓ

ϕ

)
=

(
gΩ

gΓ

0

)
(4)

with kE + kΓ
N + b unknowns and equations.

The vector potential ansatz is unique up to gradient and cohomology fields. Because of this
ambiguity,Q is singular having a large kernel. The regularisation of the system by constructing
a matrix of representative vectors spanning the kernel due to gradient fields is applied, so that
K = Q + UUT , U ∈ R

kE×kN . The kernel matrix contains discrete gradient fields given
by the incidence matrix between edges and nodes of the mesh [3]. The kernel properties of
the block matrices stated in [11] allow the regularisation of the system (4). The kernel due
to the cohomology fields is eliminated by consideration of the cohomology in the BEM and
therefore, the BE-FE system matrix is regular.
This regularised unsymmetric system is solved iteratively by the GMRES method. The BE
matricesH andG are well conditioned, so that no preconditioning is required. In Section 3, the
construction of a preconditioner for the FE stiffness matrix K ∈ R

kE×kE will be described.
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3 The hierarchical preconditioner

A recent development of numerical linear algebra is the application of hierarchical matrices
(H-matrices) to dense matrices arising from integral equations. H-matrices are based on a
geometrical clustering of the degrees of freedom so that the matrix can be partitioned into
smaller blocks A ∈ R

n×m where low-rank approximation A = UV T with U ∈ R
n×r and

V ∈ R
m×r , r � n can be applied. In the context of sparse matrices, the idea of hierarchical

approximation can be reused in order to approximate the much more populated matrix of the
Cholesky decomposition. This was already done for general elliptic differential equations [1].
In [6], we investigated the H-matrix based Cholesky decomposition under consideration of
memory reducing clustering. The more promising method was given by a non-recursive way
of an approximate decomposition, called HSILLT. It is based on low-rank approximation in
combination with element dropping . For this algorithm, we will show the performance in
Section 4 so that it is briefly explained.
By a hierarchical interface clustering of the degrees of freedom, a permuation is computed
which reorders the system matrix K ∈ R

kE×kE so that a block structure as shown in Figure 2
arises. The idea stems from a reordering strategy reducing the memory requirement of the
Cholesky decomposition called nested-dissection [5]. This permutation is computed with the
help of the geometry information corresponding to the degrees of freedom. The clustering
algorithm consists of recursive repeats of the two steps: 1. Geometrical bisection, 2. Construc-
tion of the interface cluster.

KI1

K11

K22

K12

K21I

11

12

21

22

I1 I2

KI

KI2

Fig. 2: Hierarchical interface clustering, geometry (left), matrix partitioning (right)

With the application of the clustering, the matrix can be organised in block rows as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

K11 KT
∗1

K∗1

. . . . . .

...

K(i−1)(i−1) KT
∗(i−1)

K∗(i−1)

Kii KT
∗i

K∗i

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The Cholesky decomposition works block column wise with two accuracies εdrop and εappr.
The first one controls the zero bound of small sub-diagonal block rows and the second one is
the bound for low-rank approximation of the Schur complement.
The exact decomposition of the first block column would yield(

K11 K
T
∗1

K∗1 K

)
=

(
L11 0
L∗1 I

)(
I 0
0 K − L∗1L

T
∗1

)(
LT

11 L
T
∗1

0 I

)
,

where K11 ∈ R
k1×k1 and K∗1 ∈ R

(n−k1)×k1 . Here, K11 = L11L
T
11 and LT

∗1 = L−1
11 K

T
∗1.

The low-rank approximation of the matrix LT
∗1 is given by a reduced QR-decomposition with
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accuracy εappr so that LT
∗1 ≈ U1V1. Here, U1 ∈ R

k1×r contains r orthonormal columns, i.e.
UT

1 U1 = I ∈ R
r×r and V1 ∈ R

r×(n−k1). This yields(
K11 K

T
∗1

K∗1 K

)
≈
(

L11 0
V T

1 UT
1 I

)(
I 0
0 K − V T

1 V1

)(
LT

11 U1V1

0 I

)
.

Since the block KT
∗1 is column sparse with only k2 non-zero columns, a column sparse struc-

ture of V1 results respectively. Thus, only the non-zero columns of this matrix will be stored
as a fully populated matrix together with an additional information about the indices of the
non-zero columns.
The computation of the Schur complement K − V T

1 V1 will be postponed until the decom-
position of the ith column is done. There the additional fill-in appears, and it is important to
explain how we deal with it.
In the ith elimination step, there are (i − 1) matrices V1, . . . , Vi−1 which must be used to
compute the Schur complement updates of the matrices Kii and KT

∗i. Thus, some additional
non-zero columns will arise in KT

∗i. Here, the second accuracy εdrop is used. It allows this
fill-in only if the norm of the additional column is larger than the norm of the diagonal block
times εdrop.

Algorithm 1 HSILLT
1: for all block columns i do
2: Compute the updates for the matrices Kii and K∗i arising from the previous Schur

complements,
3: Compute the Cholesky decomposition of the diagonal block Kii = LiiL

T
ii,

4: Compute the sub-diagonal block
k2 < k1 : L∗i = K∗iL

−T
ii ,

k2 ≥ k1 : with K∗i ≈ ṼiŨi, Ṽ
T

i Ṽi = I, compute L∗i = Ṽi(ŨiL
−T
ii ),

5: k2 < k1: Compute a low-rank approximation of L∗i ≈ ViUi, UT
i Ui = I,

k2 ≥ k1: Do postcompression for Ṽi(ŨiL
−T
ii ) ≈ ViUi, UT

i Ui = I .
6: end for

This algorithm has a memory complexity of O(rn log2 n) and the number of operations is
O(r3n log2

2 n) [6].

4 Numerical example

In order to evaluate the presented method by an industrial application, a magnetic valve as an
essential component of a fuel injection system is simulated by BE-FE coupling. It consists of
a ringshaped coil to carry the exciting current, a core and a yoke as well as a moving armature.
The discretisation of the three-dimensional domain is performed with the help of tetrahedral
and prismal edge elements. Due to the toroidal geometry, its discretisation has one hole along
the z-axis of the mesh (cf. Figure 3). Therefore, two additional degrees of freedom are added
in order to construct the correct discretisation space for the Neumann data as explained in
section 2. The domain has 4000 boundary elements and 31000 finite elements. The excitation
is given by a current of 10A and the coil has 100 windings. We assume a non-linear material
with an approximated magnetisation curve. Because of this, the Newton-Raphson method
is applied. In every Newton step, the resulting linear system of equations is solved by the
GMRES method.
For increasing problem size, the FE matrix K is getting more ill-conditioned. Therefore, a
preconditioner is constructed by HSILLT (cf. Section 3). For the comparison, two other solver
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Fig. 3: A quarter of the valve geometry, where only material components and the coil are shown. The colour scale
indicates the magnitude of the magnetic induction.

GMRES- MemL tLLT ttot
Iter [MB] [min] [min]

HSILLT 1255 232 9 34
Kaporin 1305 227 130 171
Taucs 1287 258 36 64

Table 1: Comparison of different preconditioner concepts for the magnetic valve.

concepts are also applied: an incomplete factorisation method by Kaporin [7] and one given by
the Taucs library [12]. The preconditioner HSILLT uses the interface clustering for reordering
the matrix. In the other cases, we choose a reordering also based on a nested-dissection strategy
given by the Metis library [8]. The accuracies of the preconditioners are chosen in order to get
similar convergence of the iterative method.
With all three preconditioners, the solution as shown in Figure 3 was computed. The magni-
tude of the magnetic induction in the material domain is shown in a quarter of the valve. The
maximum field can be found in the centre of the core and its value is 2.1 Tesla.
In Table 1, the performance of the preconditioners is compared. The number of Newton
iteration steps is 10 for all three preconditioners in order to reach a Newton residual of 10−9.
In every Newton step the GMRES method terminates with a residual of 10−12. The com-
plete number of required GMRES steps is stated in the first column. The memory required
for storing the incomplete Cholesky factor L is given by MemL, and the required time for its
computation is tLLT . Moreover, the total computation time ttot can be seen.
The factorisation time of HSILLT is four times faster than that of Taucs. Taucs computes a
decomposition column-wise by dropping elements via an accuracy criterion, whereas HSILLT
uses a low-rank approximation of sub-diagonal blocks. The block structure of those sub-
diagonal entries allows us to use fast level-3-blas matrix operations (cf. Algorithm 1). The
Kaporin method is said to yield high quality preconditioners. However, it doesn’t use a block
structure and requires a lot of index searches, so that it operates very slowly. A comparison
for more complicated materials should be done in the future.
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5 Conclusions

In this paper, we have presented a method to compute magnetic field problems on multiply
connected domains with edge based BE-FE coupling and the time efficient preconditioner
HSILLT. The efficiency of HSILLT was succesfully demonstrated by means of the numerical
example of the fuel injection system.

References

1. M. Bebendorf. Why approximate LU decomposition of finite element discretisations of
elliptic operators can be computed with almost linear complexity. preprint 8/2005, Max-
Planck-Insitut MiS, Leipzig, 2005.

2. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices.
Computing, 70(1):1–24, 2003.

3. Bossavit, A. Computational Electromagnetism. Academic Press series in Electromag-
netism. Academic Press, 1997.

4. A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations.
Part I: An integration by parts formula in Lipschitz polyhedra. Meth. Appl. Sci., 24:9–30,
2001.

5. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.,
10:345–363, 1973.

6. I. Ibragimov, S. Rjasanow, and K. Straube. Hierarchical Cholesky decomposition of sparse
matrices arising from curl-curl-equation. to appear in J. Numer. Math., 2006.

7. I. E. Kaporin. High quality preconditioning of a general symmetric positive definite matrix
based on its UTU +UTR+RTU -decomposition. Numer. Linear Algebra Appl., 5:483–
509, 1998.

8. G. Karypis and V. Kumar. MeTis: Unstructured graph partitioning and sparse matrix
ordering system, version 2.0, 1995.

9. S. Kurz, O. Rain, V. Rischmüller, and S. Rjasanow. Discretization of boundary integral
equations by differential forms on dual grids. IEEE Trans. Mag., 40(2):826–829, 2004.

10. J. Ostrowski. Boundary element methods for inductive hardening. PhD thesis, Universität
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