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Summary. This work concerns the multiobjective optimization of an monolithic ESBT�
device aimed to get a characterization of the best design. The optimization will select the epi-
taxial specifications (thickness, doping concentration) which minimize the energy dissipation,
maximize the current flow and keep a breakdown voltage of 1000V. Since these goals are in
conflict with each other the best solution must be characterized with respect to all trade-offs.
The search was carried out with an extension of the DIRECT algorithm to the multiobjective
case.
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1 Introduction

On-state voltage, breakdown voltage and switching losses represent the key points in the
design of power devices devoted to high voltage and high frequency applications. In order to
achieve significant efficiency improvements in DC-DC converter applications, which demand
high currents and high switching frequencies, both conduction and switching energy losses
need to be minimized.

ESBT� (Emitter Switching Bipolar Transistors) is an innovative power device particularly
suitable for high voltage and high frequency applications [1]. The epitaxial structure of the
collector region is a critical parameter of the ESBT� design:

- it characterizes the highest voltage sustainable during the off-state,
- it characterizes the current which flows into the device during the on-state,
- it characterizes the energy dissipation during a on-off cycle

The above specifications consist of the pair given by the collector region thickness and the dop-
ing concentration of the region (it must be noticed that the doping concentration is strongly re-
lated to the resistivity). A multiobjective problem formulation is necessary in order to achieve
an optimal design with respect to the trade-offs of the operational performances.
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2 The ESBT� Device

ESBT� consists of a high-voltage power BJT and low-voltage power MOSFET that are con-
nected in cascode connection (see figure 1). It is a monolithic solution achieved through the
integration of the MOSFET inside the emitter fingers of the BJT (see figure 2). It has been
created a family of devices which can reach high breakdown voltage (up to 1.7 kV) with high
switching frequency, while a low forward voltage drop is maintained. The driving of the bipo-
lar transistor in a cascode connection is realized by the switching of a MOSFET connected in
series with the emitter of the BJT. As a matter of fact by switching off the MOSFET, the emit-
ter current of the BJT is immediately cut-off and then the whole collector current is diverted
to the base terminal. By this way the bipolar transistor is turned-off very quickly because the
charge stored in the base and collector is fast removed. In this way the BJT can operate at
very high operating frequencies (up to 200 KHz). This device is useful in many applications
as lighting and power supply.

Fig. 1: The ESBT� symbol.

Fig. 2: Half elementary cell of the ESBT� device with su-
perimposed the equivalent electrical circuit.

3 MultiDIRECT optimization Algorithm

A multiobjective problem is defined as

min
x∈S
{f1(x), f2(x), . . . , fk(x)} (1)

where we have k ≥ 2 objective functions fi : R
N → R. S is called decision space and

defines an objective space Z ⊆ R
k through the objective functions [2].

Minimization process follows the Pareto optimality criterion:
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A decision vector x∗ is Pareto optimal if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗) for at least one index j.

The MODirect method is an extension to the multiobjective case [3] of the DIRECT algorithm
[4]. The method is based on three operations:

• Lipschitz constant estimation,
• choice for potential optimality of domain subregions,
• domain subdivision.

The choice for potential optimality is based on the estimation of Lipschitz constant for the
objective function in a partition of the domain. This partition is built by hyperrectangles which
are sampled in their centers in order to evaluate the value of the objective function. Therefore
the estimation of Lipschitz constant leads to a possible choice of the hyperrectangles in the
partition for a further sampling which exploits the estimation to balance global and local search
and reaches a quasi-global solution in a large domain. In the main loop of the algorithm 1,
hyperrectangles are selected for sampling if they have a large area, an high Lipschitz constant
estimation, and a good value of the function in their center. Formally it is possible to give the
following definition for the single objective problem in one variable:

Definition 1. [Potential optimality relative to the objective i] Let S be the set of hyperrectan-
gles generated by the algorithm after k iterations, and let fmin and fmax be respectively the
ideal and nadir points of the cone centered in f(c

R̃
). An hyperrectangle R̃ ∈ S with center

c
R̃

and measure α(R̃) is said potentially partial optimal relative to the i-th objective if there
exists at least a Lipschitz constant Klower

i > 0 such that

fi(c
R̃
)−Klower

i α(R̃) ≤ fi(cR)−Klower
i α(R) (2)

fi(c
R̃
)−Klower

i α(R̃) ≤ fmin
i − ε|fmin

i |. ∀R ∈ S (3)

or a constant Kupper
i > 0 such that

fi(c
R̃
) +Kupper

i α(R̃) ≤ fi(cR) +Kupper
i α(R) (4)

fi(c
R̃
) +Kupper

i α(R̃) ≤ fmax
i − ε|fmax

i |. ∀R ∈ S (5)

where ε ∼ 10−4 is a constant to control the clustering during the search [4].

This definition is easily extendible to the case of n variables.

Algorithm 1 DIRECT pseudocode
Require: Set of rectangles S
n← 0 {number of function calls}
while n < TotCalls do

Choose P ⊆ S, set of potential optimal rectangles;
Sample the rectangles in P updating the counter n;
Subdivide the rectangles of P . Let subdivision be DP = {R1, R2, . . . , Rm}
S = S \ P ∪DP

end while
return the best minimum;

In order to obtain the heuristic which extends the above definition to the multiobjective case,
let us redefine the Pareto optimality in general terms of efficiency [5].
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Definition 2. [Efficiency criterion] A decision vector x∗ ∈ X is efficient with respect to the
convex cone D if there does not exist another decision vector x ∈ X such that

f(x∗)− f(x) ∈ D (6)

The cone D is called ordering cone and if D = Rn
+ the efficiency criterion produces a partial

ordering for the Pareto optimality criterion. This ordering is used by the algorithm as surrogate
of linear ordering.

Remark 1. [Multiple estimation of the Lipschitz constants] Starting from the conditions 2
and 4 in Definition 1 it is possible to define the multiobjective optimality in terms of expected
efficiency. For every objective i, from the above conditions we obtain estimates for Klower

i in
the form of an upper bound K

lower
i ≥ 0 and a lower bound Klower

i ≥ 0 for Klower
i . Analo-

gously, for Kupper
i there will be an upper bound K

upper
i ≥ 0 and a lower bound Kupper

i ≥ 0.

The heuristic criterion leading to the choice of the optimal hyperrectangles in the multiobjec-
tive case is motivated by the potential increase of the expected efficiency.

Definition 3. [Multiobjective potential optimality] Given the estimations of the upper bounds
and the lower bounds for the Lipschitz constant of every objective i in the cone centered in
f(c

R̃
), the hyperrectangle R̃ is said potentially optimal if

√√√√ k∑
i=1

[Klower
i ]2 ≤

√√√√ k∑
i=1

[K
lower
i ]2 (7)

or √√√√ k∑
i=1

[Kupper
i ]2 ≤

√√√√ k∑
i=1

[K
upper
i ]2 (8)

Moreover, let fmin and fmax be respectively the ideal and nadir points of the cone centered
in f(c

R̃
). The choice of hyperrectangle R̃ leads to a non trivial improvement of objective

functions

k∑
i=1

[fi(c
R̃
)−Klower

i α(R̃)]2 ≤
k∑

i=1

[fmin
i − ε|fmin

i |]2 (9)

or

k∑
i=1

[fi(c
R̃
) +Kupper

i α(R̃)]2 ≤
k∑

i=1

[fmax
i − ε|fmax

i |]2 (10)

The above definition gives a heuristic rule to choose hyperrectangles which are potentially
optimal in the sense of either increasing the efficiency of the objective vector or taking
into account possible trade-off (the latter arises from considering both lower and upper
bounds for the Lipschitz constant). Equations 9 and 10 can be interpreted as controlling
the clustering nearby the optimal points. If an hyperrectangle is potential optimal then
it will be sampled in the points c ± δei, i = 1 . . . N , where c is the center point of the
hyperrectangle, δ is one-third the side length of the hyperrectangle, and ei is the ith unit vector.

Afterwards the hyperrectangle will be subdivided in thirds along its widest sides based on a
dominance sorting of function values f(c± δei) with respect to their efficiency. This strategy
increases the attractiveness of searching near points with good function values in the large
hyperrectangles.
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Fig. 3: The simulation flow.

4 Simulation Flow and Results

A simulation flow performed by c©SILVACO tools has been planned and it was used to
evaluate the above target (see figure 3). The flow accepts as input collector thickness and
doping concentration of the collector region, then a process simulation simulates the device
structures. Then three device simulations extract the values of energy dissipation, current
capability and breakdown voltage. Notice that the device simulations are independent and
therefore can be performed in parallel.

The optimization has been carried out with respect to 3 targets:
- energy dissipation of a on-off cycle (minimizing),
- current capability (maximizing),
- breakdown voltage (to fix at 1130 Volt).

The last target constrains the optimization to functional solution which assure good process
tolerances. A budget of 350 simulations has been established to perform the whole optimiza-
tion.
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Fig. 4: The design variable space against performances.

The figure 4 shows the sampling in the design space of collector thickness and doping concen-
tration of the collector region against each performance. The figure 5 shows the Pareto front
which follows the optimization sampling. The sampling allows to characterize the optimal pair
collector thickness-concentration and several alternative designs were found.
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Fig. 5: Sampling in the objective space.

These results are also useful to evaluate the behaviour of the overall performances, their trade-
offs, and the correlations with respect to the two design variables. For instance the following
linear relations were discovered with respect to the design variable for energy (E), current
flow (CF ) and breakdown voltage (BV )

E(t, d) = 1.2972t+ 2.2429 · 10−19d− 8.5939 · 10−5

CF (t, d) = −76477t+ 1.7183 · 10−15d+ 11.097

BV (t, d) = 12429000t− 1.4664 · 10−12d+ 311.59

where t is the collector thickness (in µm) and d is the doping concentration (cm−3) of the
collector region. Also the correlations were computed and the results are shown in table 1

Energy Current Flow Breakdown voltage
Energy 1 -0.83036 0.47727

Current Flow -0.83036 1 -0.87562
Breakdown voltage 0.47727 -0.87562 1

Table 1: Table of correlation among objectives

5 Conclusion

A successful optimization test on a power device has been done. The multiobjective method-
ology was proved useful to guide device design. Furthermore the sampling could become a
knowledge base for the future scaling of the power device towards higher breakdown voltages.
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