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This paper deals with the transient simulation of large, nonlinear magnetoquasista-
tic field models which are monolithically coupled to electric circuits. Solid- and
stranded-conductor models embedded in the field model are connected to the external
circuit. In order to guarantee the numerical efficiency of the field-circuit coupled
formulation, conductor models coupling the circuit to the field at a reference cross-
section, have to be preferred over conductor models that couple the whole conduc-
tor volume to the circuit. The circuit is formulated in terms of both voltage drops
and currents in order to avoid fill-in in the field matrix parts. For time stepping, an
error-controlled, adaptive singly diagonally Runge-Kutta method is applied. A dense
output solution is used to detect and localise switching events in the circuit. The
actual time step is restricted to the time instant of switching at which consistent ini-
tial conditions are determined before restarting the time integration. The transient
field-circuit coupling is applied to the models of a capacitor motor and a three-phase
transformer.

1 Introduction

Contemporary designs of electrical-energy convertors force the machine to operate
at higher flux densities and higher frequencies, leading to higher levels of ferromag-
netic saturation and eddy currents, respectively. Two- and three-dimensional field
simulation are indispensable to resolve these kinds of local effects. However, the
power-electronic components connected to the device and, in the two-dimensional
case, the interconnections between the different conductors, are commonly excluded
from the field model. To uniquely define the field model, the voltage drops along
the massive conductors and the currents through the coils have to be known a-priori,
which is impractical. The interaction of the device with external excitation and load
circuits can be very complicated such that engineers are obliged to iterate between
the field and the circuit model, an approach which is called simulator coupling. Sim-
ulator coupling especially performs well when the time constants considered by both
simulators are different by orders of magnitude. For situations where this is not the
∗ Invited Paper at SCEE-2006
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case, a monolithic coupling, i.e., combining both the field and the circuit model into
a single system of equations, is recommended. Monolithic coupling is especially
valuable for coupling electromagnetic field and circuit simulation because the cou-
pling itself is linear and can therefore be adequately represented at the algebraic
level. Monolithic coupling requires, however, all stages of the coupling process to
be designed carefully. A bad coupling approach and implementation leads to sys-
tems of equations that cause difficulties at the algebraic level, which may cause the
performance of the monolithic coupling to be degenerated to the one of a simulator
coupling.
The paper exemplarily describes the coupling of an electric circuit to a magne-
toquasistatic field model. Couplings in other physical disciplines can be devel-
oped similarly. The field model is discretised by the finite-element method or the
finite-integration technique. The coupling is designed from the field point-of-view,
adding a few circuit equation to a large system of field equations, without too much
influencing typical field simulation techniques to loose their performance. Hence, the
approach is complementary to coupling procedures where field-simulation actions
are embedded in an established circuit simulator.

2 Discrete Magnetoquasistatic Formulation

The magnetic flux density B is forced to be divergence-free by stating B = ∇× A
with A the magnetic vector potential. The integration of the Faraday-Lenz law yields
the electric field strength E = − ∂

∂tA − ∇φ with the gradient of the electric scalar
potential φ as an integration constant. The material properties are expressed in their
easiest form. B is related to the magnetic field strength H by the reluctivity ν, i.e.,
H = νB where ν may depend on B. The current density J is related to E by the
conductivity σ, i.e., J = σE. The combination of the material laws and the potentials
within Ampères law directly leads to the magnetoquasistatic formulation

∇× (ν∇× A) + σ
∂A
∂t

= −σ∇φ . (1)

The righthandside is called the source current density Js = −σ∇φ.
In the case of the finite-integration technique (FIT), (1) is transferred to a staggered
grid pair (G, G̃) [35, 36]. Here, only the special case of a structured, orthogonal
grid pair is considered. The degrees of freedom are the magnetic vector potentials
integrated along the edges Li of the primary grid G, collected into the algebraic
vector �a, i.e.,

�ai =
∫

Li

A · ds . (2)

The application of the primary curl operator C gives
��

b = C�a where the components
of

��

b are the magnetic fluxes through the primary facets Sp. The magnetic material
law is expressed at the crossing points between primary facets and dual edges. The
magnetic voltage

�

hp along a dual edge L̃p reads

�

hp =
∫

L̃p

H · ds ≈ Mν,p,p

��

bp =
ν|L̃p|
|Sp|

(3)
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where the entries Mν,p,p are gathered in the diagonal reluctivity matrix Mν . Sim-
ilarly, the current

��

j q through a dual facet S̃q is related to the electric voltage �eq

allocated at the associated primary edge by

��

j q =
∫

S̃q

J · dS ≈ Mσ,q,q
�eq =

σ|S̃q|
|Lq|

(4)

with the conductivity matrix Mσ . The discrete equivalent of Ampères law reads
��

j = C̃
�

h where C̃ is the discrete curl operator at the dual grid. The operators C and
C̃ do not incorporate any discretisation . The discretisation error is solely attributed
to the material matrices Mν and Mσ . The discrete counterpart of (1) reads

C̃MνC�a + Mσ
d�a
dt

=
��

j s (5)

with
��

j s the vector of the discrete source currents [7].
In the case of the finite-element (FE) method, the magnetic vector potential is
expressed as a linear combination of nfe edge elements wj . The FE formulation
follows from weighting (1) by the test functions wi and integrating by parts. The
introduction of the discrete curl operators C and C̃ to the FE grid leads to the same
formulation as (5) but with slightly different material matrices and source currents,
here indicated by a superscript ·(fe):

M(fe)
ν,p,q =

∫
Ω

νzp · zq dΩ ; (6)

M(fe)
σ,i,j =

∫
Ω

σwi · wj dΩ ; (7)

��

j
(fe)

s,i =
∫

Ω

(−σ∇φ) · wi dΩ (8)

where Ω denotes the computational domain and zp is the facet element associated
with the primary grid facet Sp. In the following, a distinction between FIT and FE
formulations is only made when absolutely necessary.

3 Conductor Models

3.1 Solid-conductor model

A massive conductor which covers the volume Ωsol,q is excited by a voltage drop
usol,q between two electrodes (Fig. 1a). From the application of the Faraday-Lenz
law along a closed contour passing along the massive conductor and through the
voltage source, one finds that

usol,q = −
∫

�sol,q

∇φ · ds (9)

with �sol,q an arbitrary path between both electrodes. The potentials A and φ are,
however, not unique, i.e., when (A, φ) solves (1), so does

(
A + ψ, φ + ∂

∂tψ
)

where
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(a)
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Fig. 1: (a) Solid-conductor model, (b) stranded-conductor model, (c) foil-conductor model and (d) multi-conductor
model.

ψ is an arbitrary scalar field. As a consequence, the division of J into a source-
current density Js = −σ∇φ and an eddy-current density Je = −σ ∂

∂tA is not unique
as well. Commonly, the formulation is closed by forcing the source-current density
and the eddy-current density to be divergence-free. Then, the source-current density
Js = −σ∇φs is obtained by solving the stationary-current problem −∇ · (σ∇φs) =
0 with the boundary conditions φs = φ1 and φs = φ2 at the electrodes such that
usol,q = φ2 − φ1. The discrete equivalent reads

S̃MσS̃T Φs = 0 (10)

where S̃ is the discrete divergence operator at the dual grid, −S̃T equals the
discrete gradient operator at the primary grid and Φs is the vector of electrical
scalar potentials allocated at the primary nodes. A particular field-circuit coupling
scheme consists of solving (10) where a unit voltage drop between the electrodes
is applied as a boundary condition. The resulting discrete source-current distribu-
tion is MσQsol,q = MσS̃T Φs and defines a coupling operator Qsol,q which allows
to express the discrete source current generated by an arbitrary voltage drop usol,q

across the massive conductor q by
��

j s = MσQsol,qusol,q. The column vector Qsol,q

contain nonzero contributions for all primary edges in the massive-conductor vol-
ume. Hence, it represents a 3D-to-0D coupling between the field and the circuit. The
number of nonzeros scales as O

(
n3

1D

)
where n1D stands for the number of degrees

of freedom in one spatial direction. The number of nonzeros in C̃MνC and Mσ

scales by O
(
n3

1D

)
as well, such that the computation time for the application of

Qsol,q is expected to have the same complexity as the one for the application of the
field model.
A second coupling strategy exploits the non-uniqueness of A and φ and even may
consider potentials that are not continuous in parts of Ω [14]. The voltage drop is
introduced as a step potential difference at an arbitrary reference cross-section Γsol,q
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which cuts Ωsol,q in two parts without touching the electrodes. In the discrete setting,
the voltage drop is assigned to the primary edges corresponding to a set of dual facets
covering Γsol,q . The discrete source-current vector then reads

��

j s = MσQ̃sol,qusol,q

where Q̃sol,q contains 0, 1 and −1 indicating the contribution and orientation of
primary edges with respect to the reference cross-section Γsol,q. In contrast to Qsol,q,
the coupling operator Q̃sol,q represents a 2D-to-0D field-circuit coupling which has
a complexity that only scales by O

(
n2

1D

)
and which consequently guarantees the

efficiency of the field-circuit coupling scheme.
The total current isol,q through the massive conductor q is integrated at Γsol,q which,
in the discrete setting, boils down to a summation of the currents through the dual
facets covering Γsol,q:

isol,q = G̃sol,qusol,q − Q̃sol,q
d�a
dt

(11)

where G̃sol,q = Q̃T
sol,qMσQ̃sol,q reflects the discrete conductance of the reference

cross-section. A field-circuit coupling involving only the massive conductor q excited
by a current source then reads
[
C̃MνC −MσQ̃sol,q

0 G̃sol,q

] [
�a

usol,q

]
+
[

Mσ 0
−Q̃T

sol,qMσ 0

]
d

dt

[
�a

usol,q

]
=
[

0
isol,q

]

(12)
which after time discretisation and appropriate scaling of the single circuit equa-
tion yields a symmetric, semi-positive-definite system of equations. A symmet-
ric coupling can also be achieved using Qsol,q instead of Q̃sol,q and Gsol,q =
QT

sol,qMσQsol,q instead of G̃sol,q . In that case, Gsol,q is the DC conductance of the
massive conductor and the summation by QT

sol,q computes the current by averaging
the currents evaluated at all possible discrete cross-sections of the massive conductor
with the dual grid.
The 3D-to-0D coupling operator Qsol,q is disadvantageous for reasons of numerical
efficiency. In Table 1, the performance of the Conjugate-Orthogonal Conjugate-
Gradient (COCG) solver [34], preconditioned by the Symmetric Successive Over-
relaxation (SSOR) algorithm is compared for a coupling with Qsol,q and a coupling
with Q̃sol,q. For both test models, the number of iterations is smaller for the 3D-to-0D
coupling than for the 2D-to-0D coupling, indicating the better condition of the sys-
tem matrix resulting from the tighter 3D-to-0D coupling. This advantage causes the
computation time for the small single-phase transformer model to be in favour of
the 3D-to-0D coupling. For the larger three-phase transformer model, however, the
matrix-vector multiplications by a denser system matrix adversely influences the
overall computation time.
ThecouplingbyQsol,q splits thecurrent

��

j inasource-currentpart
��

j s =MσQsol,qusol,q

and an eddy-current part
��

j e = −Mσ
d
dt

�a that are both free of divergence. The
sparser coupling by Q̃sol,q is related to a division of the divergence-free current
��

j into two non-divergence-free parts
��

j s = MσQ̃sol,qusol,q and
��

j e = −Mσ
d
dt

�a
for which a physical interpretation is cumbersome. Special care has to be taken for
the algebraic solution of (12). The coupling operator Q̃sol,q and hence also the dis-
crete magnetic vector potential �a do not mimic continuous fields. Hence, the system
solver may experience increasingly worse condition numbers as the discretisation
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Table 1: Iteration counts and solution times for SSOR-COCG applied to a field-circuit coupling with the coupling matri-
ces Qsol,q and Pstr,p or with the coupling matrices Q̃sol,q and P̃str,p.

coupling matrices number of iterations solution time (s)
single-phase Q̃sol,q and P̃str,p 198 15
transformer Qsol,q and Pstr,p 127 12
three-phase Q̃sol,q and P̃str,p 756 145
transformer Qsol,q and Pstr,p 465 176

is refined. A stable system solver is mandatory to ensure that the solution for �a
alleviates the discontinuity of Q̃sol,q such that the non-divergence-free source- and
eddy-current densities combine to a physically sound, divergence-free discrete cur-
rent distribution.
The field-circuit coupling approach can be understood as an agglomeration of local
field quantities into global circuit quantities [14]. In the FIT and in other discretisa-
tion techniques closely related to differential geometry, this agglomeration is repre-
sentable by a simple incidence relation [25, 14, 19].

3.2 Stranded-conductor model

When the wire diameter of a coil is significantly smaller than the expected skin depth,
is not necessary to resolve each individual wire by the computational grid. Instead,
the stranded-conductor model includes the assumption that the current is homoge-
neously distributed along the cross-section of the coil. The conventional treatment of
coils in a 3D field model is to compute the discrete current distribution due to a unit
current applied to coil p by a geometric algorithm, yielding the vector field Junit,p.
In the FIT case, this continuous current is integrated over the dual facets, whereas in
the FE case, edge elements are applied for weighting:

P(fit)
str,p,i =

∫
S̃i

Junit,p · dS ; (13)

P(fe)
str,p,i =

∫
Ωstr,p

Junit,p · widΩ . (14)

In both cases, the applied current density reads
��

j = Pstr,pistr,p. The coupling
operator Pstr,p connects all dual facets inside the coil volume Ωstr,p to the circuit
and hence, also has the nature of a 3D-to-0D coupling, possibly causing a degener-
ation of the performance of the coupled simulation. Eddy currents are prohibited by
omitting the eddy-current term in the field formulation. The voltage drop along the
coil is

ustr,p = Rstr,pistr,p + PT
str,p

d�a
dt

(15)

where Rstr,p is the DC resistance of the coil and Pstr,p averages the voltage drop of
all filamentary wires in the coil. The field-circuit coupling of a single coil p excited
by a voltage source reads

[
C̃MνC −Pstr,p

0 R̃str,p

] [
�a

istr,p

]
+
[

0 0
PT

str,p 0

]
d

dt

[
�a

istr,p

]
=
[

0
ustr,p

]
. (16)
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Also for coils, a 2D-to-0D coupling scheme can be developed [17, 14]. The homo-
geneous current distribution is only applied to the dual facets covering a refer-
ence cross-section Γstr,p, i.e.,

��

j = P̃str,pistr,p where the dimension-less coupling
operator P̃str,p contains the relative orientations of the participating dual facets with
respect to Γstr,p. The current distribution is forced to remain homogeneous through-
out the entire coil by an anisotropic conductivity matrix added to the magnetoquasi-
static field problem. In the FE case, the conductivity matrix reads

Mfe
σ,coil,i,j =

∫
Ωstr,p

σ (wi · tstr,p) (wj · tstr,p) dΩ (17)

where tstr,p denotes the direction of the wires of coil p. The summation by P̃str,p

corresponds to an integration of the electric field along a reference layer. R̃str,p =
P̃T

str,pM
†
σ,coilP̃str,p where † denotes a pseudo-inverse carried out for the nonzero

parts of Mσ,coil only, represent the resistance of the reference layer. The 2D-to-0D
coupling of a stranded-conductor model is found by replacing Pstr,p by P̃str,p and
Rstr,p by R̃str,p in (16). The same remarks concerning the algebraic solver apply as
for the solid-conductor case.

3.3 Specialised conductor models

Massive conductors and wire coils are adequately modelled by solid- and stranded-
conductor models respectively. In engineering practice, however, more complicated
coils and winding schemes exist. Particular distribution transformers and inductors
contain foil windings, which are constructed by rolling up sheets of conductive
material. The current through the sheet cross-section remains constant. However,
a significant redistribution of the current towards the tips of the sheet occurs. In par-
ticular devices, the eddy-current effects can also not be neglected in the individual
wires of the windings. Especially when then number of turns becomes very large, it
is not recommended to resolve the individual sheets or wires by the FE or FIT mesh,
even if significant eddy-current effects are expected [9]. The discretisation for the
magnetic vector potential should resolve the skin depth but should not necessarily
adapt to the size of individual wires. The choice for a particular conductor model is
motivated by the ratio of the conductor sizes dx and dy and the expected skin depths
δx and δy (Fig. 2). The magnetic flux penetrates a stranded-conductor model because
no eddy currents occur (Fig. 3a). For a solid-conductor model, the magnetic flux is
expelled in both directions because of eddy-current effects (Fig. 3c), whereas in the
foil-conductor case, the magnetic flux is only expelled in the direction towards the
tips of the sheets (Fig. 3b).
For foil windings, dedicated foil-conductor models applicable within 2D and 3D FE
models have been proposed in [9] and [16]. For windings with a rectangular wire
cross-section, a multi-conductor model has been proposed in [10]. These methods
avoid the explicit consideration of the separate turns by assuming a smooth variation
of the turn voltages over the reference cross-section of the winding. This voltage drop
is discretised at an additional mesh defined at the reference cross-section. A weak
formulation is applied to force the currents through the turns to be the same at the
control volumes corresponding to the turn-voltage discretisation. Such coil models
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dx/δx

dy/δy

solid

stranded

foil

foil

multi-conductor

1

1

Fig. 2: Application range of the solid-, stranded-, foil- and multi-conductor models.

a) b) c)

dx

dy

δδ

δ

Fig. 3: Magnetic flux lines within (a) a stranded, (b) a foil and (c) a solid conductor of equal size and with the same
number of Ampère-turns.

are especially efficient for windings where the spatial scale of the turn-voltage vari-
ation and the spatial scale of the eddy-current redistribution is substantially larger
than the smallest dimension of the individual wires or sheets. More details about the
mathematical formulation of the foil-conductor model can be found in [9] and [16].
The formulation of the wire-conductor case is developed in [10].

4 Field-Circuit Coupling

The relations between the currents and the voltage drops of solid- and stranded-
conductor models connected within the circuit are expressed by (11) and (15)
respectively. These relation can be interpreted as controlled current and voltage
sources [13, 11]. The inversion of the expression is cumbersome because of the pres-
ence of the time derivative and especially because of the coupling to the field model.
No additional circuit equations are needed if the voltage drops along the massive
conductors and the currents through the coils are known on beforehand [23, 33]. If
this is not the case, the voltage drops along the massive conductors and the currents
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through the stranded conductors should appear as degrees of freedom in the circuit
system. A systematic description of the circuit problem accounting for this consists
of a division of the circuit into a tree and a co-tree while forcing the solid conduc-
tors (together with the voltage sources and the capacitors) and the stranded con-
ductors (together with the current sources and the inductors) to be part of the tree
and the co-tree respectively. Here, we assume that such a decomposition is possible.
When this is not the case, appropriate mitigation techniques are discussed in [13] and
[11]. The fundamental cutset matrix D and the fundamental loop matrix B are parti-
tioned with respect to the solid-conductor, capacitor and resistor tree branches by the
subscript ·two, with respect to the stranded-conductor, inductor and resistor links by
the subscript ·lno and with respect to the independent voltage and current sources by
the subscripts ·twu and ·lni respectively. The coupling operators are brought together
into Qsol and Pstr, possibly adding zero columns to account for non-coupled circuit
branches. The conductances and resistances of the circuit resistors and the coupled
solid- and stranded-conductor models are collected in the diagonal matrices Gtwo

and Rlno. Similarly, the capacitances and inductances of the circuit branches are
gathered in Ctwo and Llno respectively. The voltages and currents of the independent
sources are denoted by utwu and ilni respectively. Then, the field-circuit coupling
reads ⎡

⎣ C̃MνC −MσQsol −Pstr

0 Gtwo Dtwo,lno

0 Blno,two Rlno

⎤
⎦
⎡
⎣

�a
utwo

ilno

⎤
⎦

+

⎡
⎣ Mσ 0 0
−QT

solMσ Ctwo 0
PT

str 0 Llno

⎤
⎦ d

dt

⎡
⎣

�a
utwo

ilno

⎤
⎦ =

⎡
⎣ 0

−Dtwo,lniilni

−Blno,twuutwu

⎤
⎦ . (18)

Notice that the circuit description is organised such that no fill-in in the field system
part appears.

5 Time Integration

5.1 Singly diagonally implicit Runge-Kutta method

The coupled system of equations, here abbreviated to Kx+M d
dtx = f , is integrated

in time by an implicit Runge-Kutta method [24, 28, 6]. The stage vectors x̄i and the
stage derivatives ẋi for nstage stages i = 1, . . . , nstage of the algorithm relate the
solution xn at the old time instant tn to two solutions xn+1 and x̃n+1 of different
order of approximation at the new time instant tn+1 = tn + τn+1 by

x̄i = xn + τn+1

nstage∑
j=1

aij ẋj , i = 1, . . . , nstage (19)

xn+1 = xn + τn+1

nstage∑
j=1

bj ẋj (20)

x̃n+1 = xn + τn+1

nstage∑
j=1

b̃j ẋj . (21)
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1−
√

2/2 1−
√

2/2 0 0 0

1
√

2/2 1−
√

2/2 0 0√
2/2 5− 3

√
2 2

√
2− 6 1−

√
2/2 0

1
√

2/3 + 1/6
√

2/6− 1/3 1/6 1−
√

2/2

order 3
√

2/3 + 1/6
√

2/6− 1/3 1/6 1−
√

2/2

order 2
√

2/2 1−
√

2/2 0 0
order 1 1/2 1/8 1/4 1/8

Fig. 4: Butcher table for the applied singly diagonally implicit Runge-Kutta method with four stages, a solution of 3rd
order, an embedded solution of 2nd order and an embedded solution of 1st order.

The coefficients aij , bj and b̃j are collected in a Butcher table [6]. Here, we consider a
singly diagonally implicit Runge-Kutta method with four stages, achieving a solution
of 3rd order and an embedded solution of 2nd order (SDIRK-3(2)) for which the
coefficients are listed in Fig. 4. For each stage i, the system

(
K +

1
aiiτn+1

M
)

x̄i = f (tn + ciτn+1) +
1

aiiτn+1
Mxn + M

i−1∑
j=1

aij

aii
ẋj (22)

with ci the coefficients of the left column in Fig. 4, has to be solved. The nonlinearity
caused by the dependence of the reluctivity on the magnetic field is resolved by the
successive-substitution approach or by the Newton method. The Kirchhoff voltage
law (second row in (18)) is scaled by aiiτn+1 whereas the Kirchhoff current law
(3rd row in (18)) is scaled by −aiiτn+1 in order to achieve a symmetric system of
equations. The resulting system is indefinite and is solved by the Minimal Residual
method [29] or the Quasi-Minimal Residual method [20] for symmetric, indefinite
systems. The system is preconditioned by a block preconditioner using multigrid for
the field part and an exact inverse for the circuit part [12]. The 2D examples given
in the paper are preconditioned by a multigrid approach developed for field-circuit
coupled systems [26].

5.2 Adaptive time-step selection

The difference of both solutions y = xn+1 − x̃n+1 is used to control the error of the
time-integration process [8, 4]. The error, measured in the norm

‖y‖err =

√√√√∑
j

(
yj

|xn+1,j | + δabs

)2

(23)

where δabs is an absolute tolerance, is compared to a user-defined error tolerance
εtol multiplied by an acceleration factor µ, typically set slightly larger than 1. If
‖y‖err > µεtol, the last time step is rejected, otherwise the time step is accepted.
The last time step is repeated or a new time step is computed with the time-step
length

τn+2 = ρsafety

(
εtol

‖y‖err

)1/(p̃+1)

τn+1 (24)
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where p̃ is the order of the embedded solution and ρsafety is a safety factor, typically
set to 0.9 [22].

5.3 Sinusoidal dynamics

Many electrotechnical devices are excited by sinusoidal voltages and currents. For
that case, a bad performance of the above described error-controlled adaptive time-
stepping scheme was observed [5]. This phenomenon is explained by the fact that
every second term of the Taylor series expansion of harmonic functions vanishes at
particular time instants. Then, the difference between the 3rd order accurate solution
and the 2nd order accurate embedded solution is negligible which motivates the time
integrator to put very large time steps. A possible alleviation of this problem consists
of using an embedded solution that differs by two orders of approximation, e.g., an
SDIRK-3(1) method (Fig. 4).

5.4 Time-integration over discontinuities

When field effects due to the switching of power electronic components are consid-
ered, the switching events have to be considered by the time integrator [1, 31, 15]. A
next time step is computed under the assumption that no switching events occur [2].
Afterwards, a possible event is detected by a sign checking procedure in the case of
a θ-type time integrator [30, 18] or by evaluating Sturm sequences in the case of a
higher-order time integrator [32, 3]. The time step is reduced to the instant of switch-
ing. At this time instant, the field and circuit solutions are determined relying upon
the dense output capabilities of the implicit Runge-Kutta method [6]. When due to
the switching events, capacitors are short-circuited or inductive chains are opened,
a direct redistribution of charge and flux, respectively, is carried out. It also makes
sense to carry out direct redistributions in all capacitive loops and all inductive cutsets
where the associate time constants are significantly smaller than the time constants
of the field problem. Such strategy avoids irrelevant time steps to be carried out for
the entire field-circuit coupled system. Another possibility would include the use of
a multi-rate time stepping scheme [21], e.g., performing additional small time steps
for the circuit, especially when a switching event has occurred. After the computa-
tion of consistent initial conditions, the time-integration procedure is restarted with a
changed circuit [27]. In our implementation, we favour to change the topology of the
circuit, and by that, also the structure and possibly also the size of the system matrix,
instead of the approach where switches are modelled by highly nonlinear resistors,
causing bad condition numbers of the systems of equations [18, 31].

6 Examples

The first example is a single-phase machine with a start/run capacitor (Fig. 5). Its
2D cross-section is discretised by a finite-element method, resolves local saturation
and eddy-current effects by adaptive mesh refinement and models rotor motion by a
sliding-surface technique. By transient simulation, the currents through the main and
auxiliary windings at start-up are computed.
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Fig. 5: Capacitor motor: (a) photograph; (b) finite-element mesh and magnetic flux lines at no-load operation; (c) external
circuit with the applied sinusoidal voltage U , the capacitance C, the resistances Rmain and Raux and inductances
Lmain and Laux modelling the end winding parts and the resistances Rbar and Rring modelling the rotor ring and
rotor-bar parts outside the finite-element model; (d) current through the main stator winding during start-up.

The second example is a three-phase transformer of which the primary side is con-
nected to the grid and the second side is connected to a diode rectifier with an induc-
tive load (Fig. 6). The detection and treatment of switching instants is carried out by
a modified SDIRK-3(2) time integrator. Here, the capability of simulating immediate
flux redistribution is exploited (Fig. 7).

7 Conclusions

Field-circuit coupling is extremely important to obtain reliable simulation results for
electrical devices in an efficient way. The coupling between the degrees of freedom
of the field formulation and the ones of the circuit formulation has to be designed
such that no computational bottleneck arises, e.g., by too dense algebraic coupling
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Fig. 7: Current through the first coil at the high-voltage side of the three-phase transformer.

matrices. Besides the traditional solid- and stranded-conductor models commonly
applied for massive bars and wire coils within the field model, specialised conductor
models exist and should be applied, e.g. for foil windings. An arbitrary connection of
conductor models within an external circuit possibly incorporating switches is pos-
sible. The time integrator applied to the field-circuit coupled problem should detect
and localise the switching events. The time step is restricted to this time instant. Fast
dynamics due to (almost) short-circuited capacitors and opened inductive chains are
resolved without superfluously evaluating the expensive field problem.
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