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Summary. In this paper we compare the numerical results obtained by different model
order reduction software tools, in order to test their scalability for relevant problems of the
microelectronic-industry. MOR for ANSYS is implemented in C++ and ROM Workbench is a
MATLAB code. We further compare two Arnoldi-based reduction algorithms, which seems to
be the most promising for microsystem design applications. The chosen benchmarks are large
scale linear ODE systems, which arise from the finite element discretisation of electro-thermal
MEMS models.

1 Introduction

Decreasing size of silicon chips and their increasing integration density require permanently
new and more powerful simulation tools and strategies in microelectronics and microsystem
technology. Model order reduction (MOR) approaches [1] are successfully used to consid-
erably reduce both the computational time and the resources. Mathematical development of
MOR is an active area of research, which is growing from the reduction of linear ordinary
differential equation systems (ODEs) towards the reduction of parameterized and nonlinear
differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs).
The implementation aspects of model order reduction are advancing as well. Practical MOR
has developed from academic prototyping environments to several strong tools that can be
easily used as an extension of the commercial simulators like e. g. ANSYS [2].
In today’s age of fast computers it is possible to use quick prototyping tools like MATLAB or
Mathematica for convenient implementation and testing of new MOR methods. However, the
run time for the usually large-scale industry relevant problems enforces the use of program-
ming languages, like for example C++. Such implementations offer better performances, but
also demand more time and programming skills from the developer.
The goal of this paper is to numerically compare two MOR tools, which belong to the men-
tioned streams: MOR for ANSYS (M4A) [2] and ROM Workbench (RW) [3]. The first was
developed at the university of Freiburg, Germany, as an extension to the commercial finite
element simulator ANSYS. However, it can be easily coupled to an arbitrary circuit simula-
tor, provided the matrices of the linear dynamical system are exported in the Matrix Market
format [4]. Back coupling of the reduced model with the rest of the circuitry might be done by
either converting a reduced ODE/DAE system into equivalent electrical circuit, or by enabling
a simulator to incorporate a reduced model as a black-box. M4A implements block Arnoldi
algorithm from [5] and SOAR from [6]. RW is a MATLAB library of different MOR methods,
which has been developed at the University Politehnica of Bucharest, Romania, within the
European project CODESTAR. It implements a PRIMA version of block-Arnoldi based on
[7]. Both tools are planned for use in the European project COMSON [8], which joins the
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efforts of the major European semiconductor companies and academic nodes to develop a
demonstrator platform in a software code, that could fulfill the demands of the modern mi-
croelectronic industry. Such a comparison will give us a clear understanding up to which size
and for what structure of the industrial problem the MATLAB code can be used and at which
point one should switch to the compiled language implementation.
In section 2 we prove the equivalence of algorithms [5] and [7]. In section 3 we comment
on the implementations within two codes and describe two electro-thermal MEMS (micro-
electro-mechanical-systems) devices used as case studies for model order reduction. In section
4, the numerical results for block Arnoldi-based order reduction with both tools are presented.
In section 5, we conclude the paper.

2 Block Arnoldi Algorithms
In microsystem simulation, the spatial discretization of computational domain often results in
a linear multiple-input multiple-output ODE systems of the form

C · ẋ +G · x = B · u(t)

y = LT · x , (1)

with initial condition x(0) = x0. Here, t is the time variable, x(t) ∈ Rn the state vector,
u(t) ∈ Rm the input excitation vector and y(t) ∈ Rp the output measurement vector. G,
C ∈ Rn×n are linear (not depending on x and t) symmetric and sparse system matrices, B ∈
Rn×m and L ∈ Rn×p are (constant) input and output distribution arrays, respectively. n is
the dimension of the system and m and p are the number of inputs and outputs.
Model order reduction is based on the projection of (1) onto some low-dimensional subspace.
Most MOR methods generate two projection matrices V,W ∈ Rn×ν , to construct a reduced
system of the order ν as

Cr · z +Gr · z = Br · u(t)

yr = LT
r · z , (2)

with Cr = V TCW, Gr = V TGW, Br = V TB, and Lr = WTL. The ultimate goal of
MOR is to find matrices V and W in such a way that ν � n, while minimizing the error
between the full and the reduced system in either time domain min||y − yr|| or Laplace
domain. Furthermore, the stability and passivity of the original system should be preserved
in (2).
The basic idea behind the Krylov-subspace based block-Arnoldi algorithm is to transfer (1)
into the implicit (left-hand side) formulation

Aẋ = x +Ru

y = LT x , (3)

with A = −(G + s0C)−1C, and R = −(G + s0C)−1B, and to write down the transfer
function of (3) in the frequency domain, using a Taylor series in s0 as

H(s) = −LT (I − (s− s0)A)−1R =

∞∑
i=0

mi(s− s0)
i, (4)

where mi = −LTAiB is called the i-th moment around s0. One aims to find a reduced
system whose transfer function Hr(s) will have the same moments as H(s) up to a degree
ν. However, due to numerical instabilities, the moments are not computed explicitly, but via
the right-sided Krylov subspace Kr(A,R, ρ) := span(R,AR,A2R, . . . , Aρ−1R). Block
Arnoldi algorithm generates a single orthonormal basis W for Kr(A,R, ρ) and the system
(3) is reduced by projection to
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Arż = z +Rru

yr = LT
r z , (5)

with Ar = WTAW, Rr = WTR and Lr = WTL. The order of (5) is ν = ρ · m. The
property of the Krylov subspace is such that the first ν moments of Hr(s) = −LT

r (I − (s−
s0)Ar)

−1Rr and of H(s) are identical.
As the reduced system (5) is not necessarily passive (this means that the system generates no
energy, which property is important for applications in circuit simulation), two alternatives to
”classical” block-Arnoldi have been suggested: PRIMA algorithm [7] and Freund’s Arnoldi
[5]. Both are described and compared below.

2.1 PRIMA

The PRIMA algorithm was designed in 1998 to guarantee the passivity of the reduced system.
PRIMA [7] stands for Passive Reduced-order Interconnect Macromodeling Algorithm. An
orthonormal basis, X , is generated such that span(X) = Kr(A,R, ρ), but X is used for an
explicit projection of (1), which means that Cr = XTCX, Gr = XTGX, Br = XTB
and Lr = XTL. In [7] is proven that for this reduced system the passivity is preserved if C
is positively semi-definite and that the first n moments of the transfer function of the original
and the reduced system are matched. Introducing the notation Xk = [xkm+1| . . . |x(k+1)m],
an implementation of PRIMA can be found in Algorithm 1.

2.2 Freund’s Arnoldi

Freund suggests in [5] that vectors which are almost linearly dependent with other vectors
in the span of the orthonormal matrix should be eliminated. He calls this method of elim-
inating vectors deflation. His algorithm is vector based, although there is a block structure
visible for multiple input multiple output systems. Instead of generating orthonormal blocks
the algorithm generates candidate vectors, and each vector v̂k that satisfies

||v̂k|| < DTOL, (6)

for some appropriate threshold DTOL, is removed. Therefore, the number of vectors per
orthonormal block m can be ither smaller then, or equal to, the number of vectors of block
m− 1. If the deflation is omitted we get Algorithm 2.
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Algorithm 1
Block-Arnoldi as in PRIMA [7]
1: X̂0 = R
2: for j = 1, . . . ,m do
3: xj = x̂j/||x̂j ||
4: for i = j + 1, . . . ,m do
5: x̂i = x̂i − xjx

T
j x̂i

6: end for
7: end for
8: for k = 1, 2, . . . , ρ− 1 do
9: Determine X̂k = AXk−1

10: for j = 1, . . . , k do
11: X̂k = X̂k −Xk−jX

T
k−jX̂k

12: end for
13: for j = km + 1, . . . , (k + 1)m

do
14: xj = x̂j/||x̂j ||
15: for i = j + 1, . . . , (k + 1)m

do
16: x̂i = x̂i − xjx

T
j x̂i

17: end for
18: end for
19: end for

Algorithm 2
Freund’s Arnoldi ignoring deflation
1: for i = 1, . . . ,m do
2: v̂i = ri, ri being the i-th col-

umn of R
3: end for
4: for k = 1, 2, . . . , ν do
5: vk = v̂k/||v̂k||
6: Determine v̂k+m = Avk

7: for i = 1, . . . , k do
8: v̂k+m = v̂k+m−viv

T
i v̂k+m

9: end for
10: for i = k − 1, . . . , k −m + 1

do
11: v̂i+m = v̂i+m − vkv

T
k v̂i+m

12: end for
13: end for

2.3 Comparison between both Algorithms

We state that the exact results of Algorithm 1 and Algorithm 2 are the same. In other words,
Freund’s Arnoldi is PRIMA with deflation. We are now going to prove that this is indeed the
case.
Proving that the exact results of both algorithms are the same, is equivalent to proving that
X = V (V is the orthonormal projection basis of Algorithm 2), i. e. that both methods produce
the same space and that for V holds that

∀j, 0 < j ≤ ν : vj =
ṽj

||ṽj ||
, ṽj = (1−

j−1∑
i=1

viv
T
i )g(vj−m), (7)

with g(vj−m) = Avj−m if j > m and g(vj−m) = rj if 0 < j ≤ m, g : Rm → Rm.
(7) states that the columns of V indeed form the wanted Krylov space with orthogonalization,
which is the wanted result of the original Arnoldi algorithm for multiple starting vectors. In the
following we will call the projection matrix for both algorithms V . Introducing the notation

q(vj , τ, ϕ) = (1−
ϕ∑

i=τ

viv
T
i )g(vj), (8)

we need to prove that for all j between 0 and q we have vj =
q(vj−m,1,j−1)

||q(vj−m,1,j−1)|| . Also, intro-
duce the set of invariants

• Γ (p) ≡ {∀j, 0 < j ≤ p− 1 : vj =
q(vj−m,1,j−1)

||q(vj−m,1,j−1)||}, Γ : N → B = {false, true}.
• Λ(p, τ, ϕ) ≡ {v̂p = q(vp−m, τ, ϕ− 1)}, Λ : N3 → B.
• Ω(p, τ, ϕ, ω) ≡ Λ(p, τ, ϕ) ∧ . . . ∧ Λ(p+ ω − 1, τ, ϕ), Ω : N4 → B.

If we can prove that Γ (ν+1) holds at the end of Algorithm 1 and Algorithm 2 we can conclude
that V = X . We use Lemma 1 in the proof.
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Lemma 1. If for the set parameters (p, τ, ϕ) the invariant Λ(p, τ, ϕ) holds, then after

v̂p = v̂p − vϕvT
ϕ v̂p, (9)

is executed, Λ(p, τ, ϕ+ 1) holds.

Proof. Assume Λ(p, τ, ϕ) holds. Then

v̂p = q(vp−m, τ, ϕ− 1). (10)

Substitute this into (9) we get

v̂p := (1− vϕvT
ϕ )q(vp−m, τ, ϕ− 1)

= (1−
ϕ−1∑
j=τ

vjv
T
j )g(vp−m)− vϕvT

ϕ [(1−
ϕ−1∑
j=τ

vjv
T
j )g(vp−m)]

= (1−
ϕ∑

j=τ

vjv
T
j )g(vp−m), (11)

since vT
i vj = 0 for all i and j, i �= j. �

Theorem 1. Γ (ν + 1) holds at the end of both algorithms.

Proof. We start with the observation that Γ (1)∧Ω(1, 1, 1,m) holds after line 3 in Algorithm
2 and after line 1 in Algorithm 1. Afterwards, we prove that Γ (k) ∧ Ω(k, 1, k,m) implies
Γ (k+1)∧Ω(k+1, 1, k+1,m) within the loop. This can be done by using Lemma 1. Then
it indeed follows by induction that Γ (ν+1) holds at the end of both algorithms. The complete
proof can be found in [9]. �

3 Implementation and Case Studies

In the previous section we have proved the mathematical equivalence of the generated sub-
spaces, while neglecting the numerical errors. In this section we will comment on the imple-
mentation of both algorithms within the software tools MOR for ANSYS and RW and will
point out what adjustments we have made to the RW function in order to improve the perfor-
mance for chosen case-studies.

3.1 MOR for ANSYS

MOR for ANSYS is an extension to the commercial finite element simulator ANSYS. It
takes as input a linear ANSYS model (file.full), reduces it and gives as output the matrices
of the reduced system (2) in MatrixMarket format. However, for the purpose of the COMSON
project it has been adjusted to also take as input the matrices of the arbitrary linear dynamical
system (1). The code is a C++ implementation of Algorithm 2. The solve step in line 6 can be
done with several forward-backward substitution methods (like LU- and Cholesky decompo-
sition), which are available via the TAUCS-library. The reordering is done with METIS [10].

3.2 ROM Workbench (RW) and its Modification (symRW)

Rom Workbench is written in MATLAB. It implements several MOR methods including the
Algorithm 1. The PRIMA function takes as input the matrices of the linear system (1) in
MATLAB-(sparse)array format. Unfortunately, the efficiency of this implementation is limited
because it has no special treatment for symmetric C and G, as the only available factorization
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is the LU decomposition of MATLAB with colamd as re-ordering scheme. However, the
dynamical systems which arise from technical applications, as MEMS or electrical circuits,
usually do have symmetric system matrices. As the COMSON Demonstrator Platform [8]
should be able to handle a wide variation of industry-relevant problems, we have adjusted
the PRIMA function of RW in such a way, that for symmetric matrices the performance is
increased. We have implemented Cholesky-decomposition (as Cholesky is at least two times
faster than LU decomposition) with symamd as re-ordering scheme. In the following we will
call our adjusted version symRW. Please note, that it is further possible to generate C code
directly from MATLAB function. This would speed up the loops, but one would still need the
quick solvers from the TAUCS-library.

3.3 Case Studies

In order to test the presented MOR tools on industry-relevant problems, we have chosen two
electro-thermal MEMS devices [11]. The pyrotechnical microthruster is based on the integra-
tion of the solid fuel with a silicon micro-machined structure. The thermally tunable optical
filter is a Fabry-Perot interferometer fabricated as a free-standing membrane. Both models
have been made and meshed in ANSYS, using low and high-order finite elements.

4 Numerical Results

We have reduced the described case studies using MOR for ANSYS, RW and its adjusted
version symRW. We have limited opurselfs to the single-input case, so that deflation had no
impact and no error control has been used. In Fig. 1 a good match between the step response of
the full-scale and that of the reduced order model at a single output node of the pyrotechnical
microthruster are displayed. The difference between the reduced model computed with MOR
for ANSYS and RW/symRW is neglectable, as expected. In Tables 2 and 1 we compare the
reduction time (down to order 30) of M4A, RW and symRW.To analyze the bottlenecks of
different implementations we divide the algorithm courses into several phases. These are

• Phase 1: Reading the original matrices into the memory from file and writing the reduced
matrices to file.

• Phase 2: Reordering the matrix G.
• Phase 3: Factoring G and constructing the first basis vector.
• Phase 4: Constructing the rest basis vectors via the back substitution in each iteration.

CPU time of RW is up to 60 times longer than the CPU time of MOR for ANSYS. Due
to our improvement, this difference has been reduced to 12 times for the largest case study.
As expected the main speed up was achieved by introducing Cholesky factorization for the
symmetric G and a more effective ordering. The remaining CPU time difference is mainly
due to the interpretation overhead in MATLAB.

5 Conclusion

We have compared two software tools (a single MOR routine), which are meant to be inte-
grated into the COMSON demonstrator platform. They belong to the two main implemen-
tation streams, fast prototyping in the interpreter environment and the compiled language
implementation in C++. We have proven that both algorithms generate the same reduced basis
and that the most important bottleneck for MATLAB is the decomposition phase. We have
implemented Cholesky factorization for the symmetric problems in RW and have switched to
a symamd re-ordering. Hence, the present run times in MATLAB allow for testing moderate-
size industry-relevant problems within the COMSON demonstrator platform.
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Fig. 1: Step response of the full scale and reduced models (computed with MOR for ANSYS and RW) in a single output
node of microthruster (model C).

Table 1: Complete reduction times in s for all the case studies on AMD Opteron with 2.4 GHz and 16 Gb RAM. nnz is
the number of nonzero matrix elements of G and its factor l (from the LU decomposition).

Model M4A RW symRW
n nnz(G) time nnz(l) time nnz(l) time nnz(l)

A 1668 6.21e3 0.19 2.46e4 0.2 3.39e4 0.2 2.32e4
B 106437 1.41e6 45.5 1.89e7 402 4.82e7 114 2.84e7
C 26360 2.65e5 7.34 5.00e6 216 1.68e7 53.8 1.06e7
D 79171 2.22e6 98.5 4.56e7 6600 1.88e8 1660 1.24e8

Table 2: Computational times in seconds on AMD Opteron with 2.4 GHz and 16 Gb RAM.
Model A M4A RW symRW
Phase 1 0.08 0.11 0.06
Phase 2 0.02 0.01 0.03
Phase 3 0.05 0.02 0.01
Phase 4 0.02 0.06 0.01

Model B M4A RW symRW
Phase 1 22.4 11 10.4
Phase 2 3.42 2.35 2.21
Phase 3 10.5 349 73
Phase 4 9.22 39.8 28.5

Model C M4A RW symRW
Phase 1 2.34 1.09 1.07
Phase 2 0.465 1.31 0.28
Phase 3 2.52 202 44.8
Phase 4 2.02 11.3 7.65

Model D M4A RW symRW
Phase 1 3.54 16.8 16.6
Phase 2 4.04 7.63 2.50
Phase 3 41.9 6460 1560
Phase 4 17.1 113 76.8



182 A.J. Vollebregt et al

Acknowledgment

We would like to thank Dr. Evgenii B. Rudnyi from the University of Freiburg for helping
us with MOR for ANSYS, Prof. Dr. Gabriela Ciuprina from the University Politehnica of
Bucharest for her help with ROM Workbench and to acknowledge the EU support through the
COMSON project.

References

1. A.C. Antoulas: Approximation of Large-Scale Dynamical Systems, SIAM, 2005.
2. http://www.imtek.de/simulation/mor4ansys
3. http://www.imek.be/codestar
4. http://math.nist.gov/MatrixMarket/
5. R.W. Freund: Krylov-subspace methods for reduced order modeling in circuit simulation,

Journal of Comp. and Appl. Math., Vol. 123, pp. 395–421, 2000.
6. Z.J. Bai, K. Meerbergen, Y. F. Su: Arnoldi methods for structure-preserving dimension

reduction of second-order dynamical systems, in P. Benner, V. Mehrmann, D. Sorensen
(eds), Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Sci-
ence and Engineering, Springer-Verlag, Berlin/Heidelberg, Germany, 2005

7. A. Odabasioglu, M. Celik, T. Pileggi: PRIMA: Passive Reduced-order Interconnect
Macromodeling Algorithm, IEEE Trans. Comp. Aid. Design Int. Circ. Syst., Vol. 17,
pp. 645-654, 1998.

8. http://www.comson.org
9. S. Vollebregt, T. Bechtold, A. Verhoeven, E.J.W. ter Maten: Model Order Reduction of

Large Scale ODE Systems: MOR for ANSYS versus ROM Workbench, CASA-Report 06-
38, 2006, ftp://ftp.win.tue.nl/pub/rana/rana06-38.pdf.

10. G. Karypis, V. Kumar: A Fast and High Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs, Technical Report TR 95-035, Department of Computer Science, University
of Minnesota, 1995.

11. Oberwolfach Model Reduction Benchmark Collection, http://www.imtek.de/simulation




