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Summary. In this paper we extend the Trajectory Piecewise Linear (TPWL) model order
reduction (MOR) method for nonlinear differential algebraic equations (DAE). The TPWL
method is based on combining several linear reduced models at different time points, which
are created along a typical trajectory, to approximate the full nonlinear model.
We discuss how to select the linearization tuples for linearization and the choice of linear
MOR method. Then we study how to combine the local linearized reduced systems to create
a global TPWL model. Finally, we show a numerical result.

1 Introduction

Nowadays a lot of circuits which are used in many fields are not only purely digital or ana-
logue. These circuits are a mixture of analogue and digital and are called mixed-signal circuits.
For developing these large circuits there is a need of tools which can simulate these circuits
efficiently during the design phase as well as during the verification phases. The digital part
in mixed-signal designs contains also several sub-circuits that are reused several times. So,
simplifying these circuits could give a speed-up for the transient analysis.
To do this we could use MOR methods, which are based on linear or quadratic reduction
[PH00] or nonlinear methods, e.g. proper orthogonal decomposition (POD) [VOL99]. How-
ever, these methods are mostly developed for weakly nonlinear systems. Therefore these meth-
ods are not so useful in circuit simulation, which often deals with highly nonlinear circuits. To
overcome this issue, a TPWL [REW03] approach for ordinary differential equations (ODE)
was developed. We will show how we can adapt this method to DAEs. We handle here only
DAEs of index 1, because a large number of circuits can be modeled with an index 1 DAE.
In the next section we present our TPWL approach for nonlinear DAEs. In Section 3 we show
how the method performs in practice. Finally in Section 4 we draw our conclusions.

2 Trajectory Piecewise Linear Model Order Reduction

In this section we discuss how we can apply the TPWL method to a nonlinear DAE which is
used to describe the dynamical behavior of a circuit. The DAE system we want to reduce is

d

dt
q(t,x) + j(t,x) + B̃ũ(t) = 0,x(0) = x0
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where q, j : R × R
n → R

n, B̃ ∈ R
n×m and ũ : R → R

m. Here q represents contributions
from capacitances and the inductances, j represents contributions from resistances while B̃ is
the input distribution matrix and ũ is the given input for the circuit.
The idea behind the TPWL method is to linearize the system at special time points ti along
a typical trajectory. The trajectory itself should represent the full nonlinear behavior of the
system. Then we reduce each locally linearized system with a linear model reduction technique
and store the basis of each locally reduced subspace Si. With the help of the Si we compute a
globally reduced subspace S. S is then used as the subspace for all locally linearized systems.
The final TPWL model is a weighted sum of all locally linearized reduced systems. The TPWL
model can then be solved by a standard DAE time integrator. In the following subsection we
show how we apply the described steps.

2.1 Creating the local linearized models
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Fig. 1: Creating the linearization tuples, and curves with different sources
and/or initial values

The disadvantage of the stan-
dard linearization methods is that
we can only trust in the results
if the solutions stays close to
the linearization tuple (LT), time
and solution space, around which
we have created the linearized
model1. To overcome this draw-
back the idea is to take several
linearized models to create the
TPWL model. These LTs will be
taken along a trajectory which
represents the typical behavior of

that system. If we do this we can trust in the results as long as the solution stays close to one
of the LT. Figure 1 illustrates a typical situation. In this situation we have 5 LTs (x0, . . . , x4),
which are created along trajectory A, and their related accuracy region (the gray region). We
can see that trajectory B and C stay in the accuracy region even if they have different inputs
(B) or different initial values (C). And as long as the trajectories stay in the accuracy region
we can also be sure that we have a good approximation of the original system.
We will discuss an approach which will choose as many LTs as needed to reach a given accu-
racy and as few as possible to get the maximum speed-up in the TPWL model. In [REW03]
they propose more accurate methods for selecting the LTs, but these methods are only applica-
ble to ODEs, because they assume that ∂q

∂x
(x0, t0) is regular, but since we handle DAEs so

∂q
∂x

(x0, t0) is singular.
To get the LTs we need a solution of the original model. But we only need low accuracy of
this solution because it is enough if the LTs are close to the exact trajectory. The reason why
we need only low accuracy is that we just need the LTs to stay close to the exact trajectory.
With this in mind, we see that it is a good idea to include the selection of the LTs directly in a
solver of a nonlinear DAE.
Similarly to a step size controller, the accuracy of the actual local reduced model depends on
the selection of the future LTs. The reason for this is that for calculating the global reduced
subspace we use all local subspaces we have created along the trajectory, also future ones.
In consequence, we can only make local accuracy assumptions and so, we use a quite simple
strategy for selecting a new LT.
From the overview we know that the final TPWL model consists of a weighting of several
reduced linearized systems. We create the reduced linearized systems by projecting all of them
into the same reduced global subspace. The basis for the global reduced subspace is created
by merging all locally reduced subspaces which we got during the creation of the linearized

1 For simplicity we sometimes omit the time dependency of the LT
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models. This is done in such a way that the global reduced subspace represents the most
dominant parts of the locally reduced subspaces. So a good approximation for the globally
reduced subspace is then just the actual locally reduced subspace. This means that we create
the local reduced subspace with a linear model reduction technique and we use this subspace
to create the local linearized subspace. Next we simulate both systems, the original and the
local linearized reduced system, until the distance between the solutions of both systems is
bigger then a given bound. At this point we set a new LT. Algorithm 1 shows the procedure
to find LT i + 1. We continue with this procedure until we have reached the end of the given

Algorithm 1 Linearization tuple controller
1. Set an accuracy factor ε > 0
2. Linearize the system around the last (i-th) LT (xi, ti). So we get

Ciẋ +Gix +Bu(t) = 0

where Ci = ∂q
∂x

(xi, ti) ∈ R
n×n, detCi = 0 and Gi = ∂j

∂x
(xi, ti) ∈ R

n×n . Save
Ci, Gi and B.

3. Reduce the i-th linearized system to dimension ri � n with a linear model reduction
method, e.g. ’Poor Man’s TBR (PMTBR) [PS05], and project the system to this locally
reduced subspace which is spanned by Pi. Be aware of that ri can be different for all
different LTs

Cr
i ẏ +Gr

i y +Bru(t) = 0

where Cr
i = P�

i CiPi, Gr
i = P�

i GiPi and Br = P�
i B with Pi ∈ R

n×ri . y ∈ R
ri is

the approximation to x with x ≈ Piy. Save Pi.
4. Simulate both the locally linearized reduced system with yi

0 = P�
i xi and the original

system with a step size determined from the original nonlinear system. If at t the relative
distance between the two solutions ||Piy−x||

||x|| becomes bigger than ε we set the (i+ 1)-th
LT to (x, t) and go to step 2.

trajectory.
An extension to this approach is to calculate several typical trajectories to create a bigger
accuracy region. However the more LTs we have, the more memory for saving the TPWL
model we need, and the more involving the weighting procedure will be.

2.2 Creating the global reduced subspace

After we have created p linearized systems and p related local reduced subspaces we have to
construct the global reduced subspace. We need a global reduced subspace because we want
a smooth transition from one accuracy region to another accuracy region while solving the
TPWL model. If we had for each local subspace a separate reduced subspace the transition
from one to another subspace would be way too difficult.
Let us assume we have p local reduced subspaces which are spanned by Pi ∈ R

n×ri , i =
0, . . . , p − 1. The columns Pi span the optimal reduced subspace for the i-th local linearized
system. So one idea is to create a new matrix P̃ which contains all columns of the Pi’s. So
P̃ := [P1, . . . , Pp] spans then the union of all reduced subspaces.Of course the columns of P̃
are in general linearly dependent and also the number of columns is in general larger than n, so
P̃ is not a good global projection matrix. It is even high likely that several Pi are quite similar
because the linearized systems are also. Hence the columns of these Pi are quite dominant
in the matrix P̃ . To extract the most dominant columns of P̃ , and so the most dominant part
of the union of the local reduced subspaces, we use a singular value decomposition (SVD) of
P̃ = UΣV �. Then U contains the most dominant columns of P̃ , and so from all Pi, ordered
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by their importance. As the global reduced subspace we take the one which is spanned by the
first r columns of U . With this global reduced subspace we can establish a smooth transition
from one local system to another one. Summarizing we obtain Algorithm 2.

Algorithm 2 Creating the global reduced subspace
1. Define P̃ = [P1, . . . , Pp].
2. Calculate the SVD of P̃ . So P̃ = UΣV � with U = [u1, . . . , un] ∈ R

n×n,Σ ∈ R
n×rp

and V ∈ R
rp×rp.

3. Define P as [u1, . . . , ur].
4. Create the p local linearized reduced systems given as Cirẏ+Giry+Biru(t) = 0 with

Cir = P�CiP , Gir = P�GiP and Bir = P�B

2.3 Creating the TPWL reduced order model by weighting

Now we have p locally linearized reduced systems which are all lying in the same global
reduced subspace, but we still need to combine them to get a global TPWL model. We do this
by calculating a weighted sum of local models

p−1∑
i=0

wi(y) (Cirẏ +Giry +Biru(t)) = 0.

t0 t1 t2

x0

y2

y0

y1
x2x1

t

x

Fig. 2: Simple TPWL model

To see how we should choose the weights
we take a look to a simple example, see
Figure 2. In this example we have 3 LTs
x0,x1 and x2 and the related accuracy
region, shown as circles. We also have
3 possible trajectory points of the TPWL
model. y0 lies only in the accuracy region
of x1 so the related local system should
have the biggest influence to the TPWL
model. Hence we should choose w1 ≈ 1
and w0, w2 ≈ 0. If we look to y1 we see
that this point lies in the accuracy region
related to x1 and x2, so we should take a combination of both local models this means that
we should choose the weights as following: w1 + w2 ≈ 1 and w3 ≈ 0. For y2 we have the
following situation: the solution has left all accuracy regions so we should stop the simulation
at this point or give at least a warning. A template for a weighting procedure is described in
Algorithm 3.
After calculating the weights we normalize them to get a convex combination of the local
linearized reduced systems. If we choose the weight in the way described in the example we
get a distance depending weighting scheme as shown in Algorithm 4.
There also is an extended approach which uses instead of the distance an approximation of the
linearization error to calculate the weights [VO05]. This approach is more complex because
we have to compute an estimate of the Hessian’s of q and j but in this way we obtain an even
better TPWL model.
To summarize we have changed, compared to [REW03], the way how the LTs are chosen.
We also tried several linear model order reduction techniques to see which performs the best.
Additionally we tried to improve the weighting procedure.
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Algorithm 3 Weighting template
given p LTs (tli ,yli), i = 0, . . . , p− 1 and b = 0
for i = 0 to p− 1

if y lies in the accuracy region of the i-th LT
0� wi ≤ 1, b = 1

else
0 ≤ wi � 1

end
end
if b = 0

Create warning
end
Such that

∑p−1

i=0
wi = 1

Algorithm 4 Distance dependent weights
Given actual state y, actual time t, p LTs (tli ,yli) and αy, αt ≥ 0 with αy + αt = 1

1. For i = 0, . . . , p− 1 compute di = αy ‖y − yli‖+ αt |t− tli |
2. For i = 0, . . . , p− 1 calculate w̃i = e−

diβ

m with m = mini=0,...,p−1 di, β > 0
3. Normalize the weights such that the given constraints hold

wi = w̃i
s

with s =
∑p−1

i=0
w̃i

3 Example

We show how the TPWL method performs on a practical example. As a test circuit we have
chosen a chain of inverters, which consists of 100 inverters, connected in series. The circuit
behaves nonlinearly so it is a good test for the TPWL method. Additionally, we have depen-
dencies between all nodes which is also not an optimal behavior for a model reduction process.
The DAE which is describing the dynamics of the circuit has 104 states. For selecting the LTs
we have used Algorithm 4. For linear model reduction technique we used PMTBR [PS05],
that was adapted to deal with our DAE.
In Figure 3 we illustrate the results of our test setup. The upper picture shows the relative
error of the TPWL model compared to a highly accurate solution, calculated with a backward
differential formula (BDF) method. The lower one compares the solution for the voltage of
node 50 of the TPWL method to the solution of the BDF method. As input for both figures
we used a slightly different input than for training the TPWL model. We used an input signal
with a added sinus wave and/or delayed input signal.
In Table 1 we sum-up the speed-up for the simulation with the same input as the training
input. Extr. time + BDF is the time it needs to create a TPWL model including the time for
BDF method. Simul. time is the time needed to simulate the final TPWL model.

r # LTs Extr. time + BDF Simul. time max. error Speed-up mean error
PMTBR 50 62 240s (220s BDF) 41s 0.037484 5.4 0.012051
PMTBR 40 62 236s (220s BDF) 31s 0.033233 7.2 0.016672
PMTBR 35 62 233s (220s BDF) 27s 0.057046 8.3 0.026128

Table 1: Final LT controller

It can be seen that the relative error is most of the time lower then the given error bound, see
Figure 3. For all orders we have to use the same number of LTs (62), which comes from the
fact that the local systems only need relatively small subspaces to get the desired accuracy.
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Fig. 3: Relative error of the PMTBR-TPWL method compared to high accurate BDF method (top) Voltage at node 50
compared to a high accurate BDF solution (bottom)

The resulting speed-up is between 5.4 and 8.3 compared to a BDF method, which needs 220s.
This speed-up is related to the fact that we are solving linear reduced systems instead of the full
nonlinear DAEs, which require a nonlinear solver including Newton iterations. The speed-up
would be even bigger if we used a circuit with a lot of devices which have all to be evaluated.
We can also notice that in our example the extraction time is quite high, since we have used
a high accuracy for the BDF-method during the extraction. We can reduce this time if we use
a lower accuracy during the extraction because we only need a rough approximation of the
solution to create the TPWL model.
Even if we can reduce the extraction time using a lower accuracy during the extraction time,
one can argue that a full simulation of the circuit is just a bit more expensive. This is of course
correct but if we think about that we reduce parts of the circuit which are reused a lot, it is
easy to see that we still get a quite large speed-up. So we propose to use the TPWL method in
a kind of library approach.
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4 Conclusion

The TPWL method, applied to nonlinear DAEs, is a promising technique to reduce the sim-
ulation time. It has several advantages compared to other methods. First of all we can get a
big speed-up in simulation time. We can also use the well-developed linear model reduction
techniques. And we are able to create a linearization tuple controller that can be used directly
in a BDF method. In future we plan to apply this method to a more practical example, then we
will also address open questions, e.g. what happens if the circuit contains a feed back. We also
aim to improve the method for selecting the LTs and the weighting procedure and to quantify
the speed-up obtained a priori.
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