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1 Introduction

The modeling of RF/microwave components for computer-aided design is facing new chal-
lenges because of increasing operation frequencies, circuit complexity, integration density,
and decreasing time to market. Recently, it has been shown that Artificial Neural Networks
(ANNs) offer solutions to urgent modeling problems encountered with conventional numeri-
cal methods (e.g., 3-D EM simulation) and empirical models. Fast and accurate models based
on ANNs have been created for a wide range of components [ZG00k], [PAR01].
The crucial part in ANN-based modeling is ANN training, that is, optimization of ANN
weights with given measurements or, say, 3-D EM simulation data. In [TF97] several ANN
weight-initialization methods were introduced and compared mainly by means of classifica-
tion problems. It was shown how the choice of an initialization method influences the con-
vergence of the optimization and the optimal initial weights are, by some means, determined
by the measurement/simulation data set. However, weight-initialization methods have not pre-
viously been systematically evaluated for electrical component modeling problems and the
nature of the problems — the functions to be approximated — differs significantly from, e.g.,
classification problems with discrete/Boolean input/target values.
In this paper, three methods for an initialization of ANN weights are experimentally evalu-
ated for electrical component modeling applications. The third method, a special modification
of the second method, is not found in literature. The methods are evaluated with respect to
average ANN training error, ANN test error, and ANN training CPU time. Also, the stan-
dard deviations of ANN training and test errors are calculated for robustness analysis of the
methods.

2 Artificial neural networks

The most widely used ANN in the field of RF/microwave component modeling is the Multi-
Layer Perceptron (MLP) [ZG00k]. The three-layer MLP used in this work realizes the nonlin-
ear mapping

ỹl(x,w) = wl0 +

Nh∑
j=1

wlja tanh

(
b · (wj0 +

Ni∑
i=1

wjixi)

)
, (1)

l = 1, 2, . . . , No,

where Ni, Nh, and No represent the number of inputs, hidden-layer neurons, and outputs,
respectively; x=(x1, x2, . . . , xNi), ỹ=(ỹ1, ỹ2, . . . , ỹNo), and w=(w10, w11, . . . , wNoNh)
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represents ANN inputs, outputs, and weights, respectively. The function a tanh(bvj) is called
the Activation Function (AF), where the parameters a and b determine the maxima and the
steepness, respectively, and vj = wj0 +

∑Ni
i=1

wjixi is the induced local field of the function.
Let y = y(x) be an unknown, nonlinear, multidimensional function to be approximated by
the MLP mapping (1): ỹ = ỹ(x,w). Let {(xk,yk), k = 1, 2, . . . , Ntr} be an appropriate
training set, Ntr being the number of samples, and the training-set inputs and targets being
scaled linearly in the range [−1, 1]. Furthermore, let us define the normalized training error as

Etr(w) =

√√√√ 1

NtrNo

Ntr∑
k=1

No∑
l=1

(
ỹl(xk,w)− yk

l

2

)2

. (2)

The training of the ANN means minimizing Etr(w) with respect to the weights, w, using a
suitable optimization method — in this work, Hestenes–Stiefel conjugate-gradient with Error
Back Propagation (EBP) [KRH05k]. The generalization capability of the trained ANN is eval-
uated by applying Eq. (2) to an independent test set, {(xk,yk), k = 1, 2, . . . , Nte}, to obtain
the normalized test error Ete(w).

3 Weight-initialization methods

Weight initialization tries to provide initial weight values close to the global minimum of
Etr(w), in the hope of avoiding local minima. There are several strategies for initializing the
MLP weights; the most developed strategies can also be regarded as training methods [EFP05].
However, the most widely utilized strategy for ANN-based RF/microwave component model-
ing is, still, initializing the weights as random real numbers from a Uniform Distribution (UD)
with fixed or variable range. The weight-initialization Methods (Ms) evaluated in this work
include: M1. random initialization from UD with fixed range [ZG00k], M2. random initializa-
tion from UD with variable range and special input data scaling [Hay99k], and M3. random
initialization from UD with variable range and special input and target training data scaling.
Utilizing M1 [ZG00k], one sets a = b = 1 and wji, wlj ∈ [−c, c], where, e.g., c = 1.0. This
heuristic initialization tries to ensure the local field (vj) of the AFs to be such that it forces
the AFs to operate in an approximately linear transition region determined by maxima of the
second derivative, max(∂2 tanh(vj)/∂v

2
j ). This would be desirable for the convergence of

optimization because, when using EBP [Hay99k], ∂E2
tr/∂wji ∼ ∂ tanh(vj)/∂vj and the lat-

ter has its maximum value in the transition region. However, the heuristic weight initialization
does not take into account the mean, x̄i, and the standard deviation of input data, σxi , and,
therefore, AFs may operate in saturation regions slowing down the optimization [Hay99k].
M2 [Hay99k] forces the specific AFs to operate in the transition region (between (–1,–
1) and (1,1) for a = 1.7159 and b = 2/3) with wji ∈ [−

√
3/Ni,

√
3/Ni], wlj ∈

[−
√

3/Nh,
√

3/Nh], wj0 = 0, and wl0 = 0. This initialization is based on a special input
data scaling, with x̄i = 0 and σxi = 1.
When one utilizes M2 and approximates the transition region of AFs as a straight line going
through the origin with slope 1, the distribution parameters of the MLP outputs, ỹl, are ¯̃

ly = 0
and σỹl = 1 as for MLP inputs xi. A hypothesis to be tested is presented (M3): scaling
of the target training data, yl, such that ȳl = 0 and σyl = 1, improves the convergence of
optimization. The idea of M3 is to equalize the distribution parameters of the MLP outputs
and the target training data, possibly aiding the convergence.

4 Experimental setup

In the evaluation, we had eight representative modeling problems: 1. approximation of a mod-
ulated sinusoidal function, 2. the same problem with additive normal-distributed noise, 3.
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MEMS gas-damper behavior, 4. rounded-stripline-bend parallel capacitance and series induc-
tance vs. device geometries, 5. JFET DC characteristics, 6. spiral-inductor S-parameters vs.
geometries, 7. power amplifier output power vs. supply voltage and frequency, and 8. MES-
FET drain and gate currents vs. bias voltages and temperature.
For each problem, three appropriately sized MLPs (Nh and Nw get three different values
as given in Table 1) were utilized. The modeling-problem characterization and corresponding
MLPs are shown in Table 1, where Nw is the resulting number of ANN weights, i.e., optimiza-
tion variables, Ntr is the number of training-set samples, and Ng = NtrNo is the resulting
number of optimization goals.

Table 1: Modeling-problem characterization

problem Ni Nh No Ntr Nw Ng

1 1 {5,10,15} 1 20 {16,31,46} 20
2 1 {5,10,15} 1 20 {16,31,46} 20
3 3 {5,10,15} 1 40 {26,51,76} 40
4 3 {5,10,15} 2 50 {32,62,92} 100
5 2 {5,10,20} 3 306 {33,63,123} 918
6 5 {10,15,25} 5 486 {115,170,280} 2430
7 2 {10,20,30} 1 4667 {41,81,121} 4667
8 3 {10,15,25} 2 37597 {62,92,152} 75194

Each MLP was trained 30 times with each weight-initialization method — M1 with c =
0.001, 0.005, 0.01, 0.1, 0.5, 1.0, 5.0 — andEtr,Ete, and training CPU time noted in hundred-
step increments. The results obtained for each method were averaged over all runs at each
value of the optimization cycles. In addition, the standard deviations of the training and test
errors were calculated for each problem and method. Finally, the standard deviations were
averaged over all the problems at each value of the optimization cycles.
A total number of 6480 runs were carried out by semi-automatic scripts using APLAC 8.2
ANNModelGenerator [A06k] on an Ia64 HP Server rx5670 with a 1.3 GHz processor and
4 Gbyte memory.

5 Analysis of results

A set of representative results is shown in Figs. 1–5. The convergence of M1 degraded rapidly
with increasing or decreasing c (as in [TF97]), and therefore only the best results (obtained
with c = 0.5) for M1 are shown.
According to the results obtained, the hypothesis presented is true; comparing the new M3 to
M1 (with c = 0.5), the training and test errors decreased by 13.6 % and 1.4 %, respectively.
The smallest standard deviations for training and test errors show that M3 is also more robust
than other methods (41.6 % and 2.1 % improvement, respectively, compared to M1 with c =
0.5). The performance improvement is obtained with a slight increase in the training CPU
time (7.0 % increase compared to M1 with c = 0.5).
M2 forces the AFs to operate in the transition region and improves the convergence when
compared to heuristic M1 with other values of c. Thus, one can conclude that when a = b = 1,
c = 0.5, and the training-set inputs and targets are scaled linearly in the range [−1, 1], the AFs
are forced, on the average, to operate in the transition region. However, this may not be true
with a single modeling problem.
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Fig. 1: Average training error vs. optimization cycles
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Fig. 2: Average test error vs. optimization cycles

6 Conclusions

Three methods for the initialization of MLP-ANN weights were experimentally evaluated
for electrical component modeling applications. A new weight-initialization method was also
presented. The methods were evaluated with respect to average training error, test error and
training CPU time. Also, the standard deviations of training and test errors were calculated
and utilized to analyze robustness of the methods.
According to the results obtained, the hypothesis presented is true: the new method proposed
(M3) improves the convergence and robustness of MLP-ANN training for electrical compo-
nent modeling problems. The performance is improved because the AFs are forced to operate
in the transition region and the target training data is scaled so that its distribution parameters
correspond to the ones of the MLP outputs. This is not true with the heuristic weight initial-
ization (M1), even though it is possible to find empirically a good value of c for a specific
modeling problem.
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Fig. 3: Standard deviation boundaries for training error vs. optimization cycles
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Fig. 4: Standard deviation boundaries for test error vs. optimization cycles
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