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Summary. We extend the positive real balancing procedure for passive linear systems to the
nonlinear systems case. We show that, just like in the linear case, model reduction based on
this technique preserves passivity.
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1 Introduction
Positive Real Balancing for linear systems is an attractive tool for passivity preserving model
reduction [Ant05]. The method deals with the class of passive linear systems. It combines the
useful properties of the balancing technique with the passivity theory. The latter provides a
particular pair of energy functions to be balanced. The balanced form of the energy functions
reveal the positive real singular values. They measure the energetic importance of the states.
The less important states are omitted to obtain a reduced order system. If the full order system
were passive then the reduced model would be passive too [Ant05].
The idea in this paper is to extend this method to the case of passive nonlinear systems.
It is motivated by the wide range of applications such as power systems stability analysis
and controller design, see e.g. [Giu05]. We use the nonlinear balancing method developed in
[Sch93, Sch94] in combination with the passivity theory in [Wil72, vdS00]. In this case, the
positive real singular values are nonlinear positive functions of the state, having the same sig-
nificance as in the linear case, i.e. measure the energetic importance of the states.
In Section 2, a brief overview of the passivity and positive realness properties is given and
the energy functions, the available storage and the required supply, will be defined. Section
3 shortly reviews the positive real balancing procedure for linear systems and the properties
of the reduced model. Section 4 presents the energy functions as the solutions of a Hamilton
Jacobi equation. Section 5 is an adaptation of the nonlinear balancing procedure to the positive
real systems case. We define the positive real singular value functions. The outcome of it is
used in Section 6, where the truncation itself is done and the reduced system will pe proved to
be passive. Some conclusions and future work make up Section 7.
The nonlinear systems we treat are given in the state space representation as:

x = f(x) + g(x)u, y = h(x) + d(x)u, (1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, with m = p. x is called the state vector, u is the input and

y is the output of the system. f , g, h are smooth nonlinear vectorfields depending on the state
vector x. n is called the dimension of system (1). The input u will be considered to have finite
energy, i.e. u ∈ L2(R

p).

2 Passivity, Energy Functions and Positive Realness
In this section, we give a brief overview on the dissipativity theory as in [Wil72, Wil71,
vdS00]. A function w : R

p × R
p → R will be called the supply rate. The dissipativity

property is defined with respect to the supply rate w.
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Definition 1 [Wil72, vdS00] A system (1) is called dissipative with respect to the supply rate
w(u, y), if there exists a storage function S : R

n → R, with the following properties:

1. S(x) ≥ 0

2. S(x0) +
∫ t1

t0
w(u, y)dt ≥ S(x1),

where x0 = x(t0) and x1 = x(t1). A particular case is when the supply rate represents the
energy supplied at the terminals of the system, that is w(u, y) = uT y. In this case the system
is called passive. �
Remark 2 If the inequality is strict, we will call the system strictly passive, that is the internal
energy of the system is decreasing even when supplied at the terminals. In case of equality the
system is called lossless. It means that the internal energy of the system is not changing.
Property 2. can also be written in a differential form as:

∂S(x)

∂x
(f(x) + g(x)u) ≤ uTh(x) + uT d(x)u (2)

�
For our purpose, from the set of storage functions satisfying the definition or (2), two particular
types of storage functions are of interest: the available storage and the required supply.

Definition 3 [Wil72, vdS00] The available storage function of a system (1) is the energy
function:

Sa(x0) = −min
u

∫ ∞

0

uT y dt, x(0) = x0, x(∞) = 0 (3)

The required supply function of system (1) is the energy function:

Sr(x0) = min
u

∫ 0

−∞
uT y dt, x(0) = x0, x(−∞) = 0 (4)

�
Sa(x) represents the maximal amount of energy that can be extracted from the terminals of
the system when starting at the initial state x0. Sr(x) represents the minimal amount of energy
required to be supplied to the system in order to reach x0 from the equilibrium.
The property of the system being reachable from x0 is a condition for the existence and non-
negativity of the energy functions defined above.

Lemma 4 [Wil71] Let system (1) be passive as in Definition 1 and reachable from the state
x0. Then, the energy functions Sa and Sr as in Definition 3 exist and are nonnegative. More-
over, Sa ≤ Sr . �
Definition 5 [BIW91] A system (1) is called positive real if, for all u ∈ L2(R

p),∫ t

0

u(τ)T y(τ)dτ ≥ 0. (5)

�
Combined with Lemma 4, we obtain:

Proposition 6 [BIW91] A passive system (1) is positive real. Conversely, a positive real sys-
tem (1), that is reachable from the state x0, is passive. �
Remark 7 If the inequality is strict, the system is strictly positive real. �
3 Linear Systems Case
A linear system is a particular case of system (1), given as: ẋ = Ax + Bu, y = Cx + Du,
where A, B, C, D are constant matrices of appropriate dimensions. The system is assumed to
be reachable and observable (minimal) and R = D +DT > 0. Then, strict positive realness,
can be studied with the Kalman-Yakubovitch-Popov lemma, see e.g. [Ant05]. The energy
functions are quadratic and related to a pair of matrices called the positive real Gramians of
the system.
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Theorem 8 [Wil72] Assume that the linear system is strictly passive. Then Sa(x) = 1
2
xTKminx

and Sr(x) = 1
2
xTKmaxx, where Kmin and Kmax are the minimal, respectively maximal

solution of the Positive Real Algebraic Riccati equation:

KA+ATK + (KB − CT )R−1(BTK − C) = 0 (6)

�
Definition 9 [Ant05] A positive real linear system is called positive real balanced if Kmin =
(Kmax)−1 = diag(π1Is1 , π2Is2 , ..., πqIsq ), where 1 ≥ π1 > π2 > ... > πq > 0, s1 + s2 +
...sq = n. �
The positive real singular value πk, k = 1, ..., q represents the energetic measure of the state
components xs1+...+sk−1+1, ..., xs1+...sk . If πl is much larger than πl+1, then the state vector
can be truncated from w = s1 + ...+sl +1 to n, i.e. xs1+...+sl+1 = 0, ..., xn = 0. A reduced
model of dimension n̂ = s1 + ...+ sl < n is obtained. Then:

Theorem 10 Let the passive linear system be brought into the positive real balanced form
(Ab, Bb, Cb, Db). The reduced system obtained after truncation with dimension l, i.e. dim
x̂ = n̂, is minimal and passive. �
4 Nonlinear Systems Case
In this section we consider a system (1), under the following assumptions:

1. 0 is an equilibrium point of the system and h(0) = 0;
2. the system is strictly positive real, i.e. r(x) = d(x) + dT (x) > 0, and reachable from

x0;
3. x ∈ Y , where Y is a neghbourhood of 0.

Assumption 1 is made for the sake of simplicity, but generality is not lost. Assumption 2 is in
accordance with the nonlinear version of the Kalman-Yakubovitch-Popov lemma which char-
acterizes the property of (strict) positive realness [Moy74, HilMoy76]. We mention that the
smoothness assumed in the definition of system (1) guarantees the existence of solutions to be
introduced. This condition could be relaxed, but it is kept for convenience.
Denote by ||v||2M = vTMv, (∀)v ∈ R

n,M ∈ R
n×n.

The energy functions are computed as the stabilizing and antistabilizing solution, respectively,
of a Hamilton-Jacobi equation, which is the nonlinear generalization of the Positive Real
Algebraic Riccati equation, (6) from the previous section.

Theorem 11 Let system (1) be, satisfying Assumptions 1-3. Then the Hamilton-Jacobi
equation:

∂S(x)

∂x
f(x) +

1

2

(
∂S(x)

∂x
g(x)− hT (x)

)
r−1(x)

(
gT (x)

∂ST (x)

∂x
− h(x)

)
= 0 (7)

has the smooth solution Sa(x), Sa(0) = 0, such that

f(x) + g(x)r−1(x)

(
gT (x)

∂Sa
T

∂x
− h(x)

)
(8)

is asymptotically stable and the smooth solution Sr(x), Sr(0) = 0, such that

−
(
f(x) + g(x)r−1(x)

(
gT (x)

∂Sr
T

∂x
− h(x)

))
(9)

is asymptotically stable. �
Proof: Because system (1) is passive and reachable, according to Lemma 4, Sa(x(t)) and
Sr(x(t)) exist and are nonnegative. We develop the proof for Sr(x). The sequel follows the
idea in Scherpen [Sch94], Section 3, Theorem 3.1.3. By definition, Sr(x) = minu,x(−∞)=0
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∫ t

−∞ uT (s)y(s)ds. Because Sr(x) exists, there exists an optimal input u∗, i.e. Sr(x(t)) =∫ t

−∞ u∗T (s)y∗(s)ds, where y∗(s) is the output of the system with the input u∗. Differentiat-
ing Sr(x(t)) with respect to time we get:

Ṡr(x(t)) = u∗T

y∗ ⇒ ∂S(x)

∂x
(f(x) + g(x)u∗)− u∗T y∗ = 0. (10)

On the other hand, using completion of squares and (7), we have that

uT y−1

2

∣∣∣∣
∣∣∣∣u− r−1

(
gT ∂S

T

∂x
− h

)∣∣∣∣
∣∣∣∣
2

r

=
∂Sr

∂x
gu−1

2

(
∂Sr

∂x
g − hT

)
r−1

(
gT ∂S

T
r

∂x
− h

)

=
∂Sr

∂x
(f + gu) = Ṡr. (11)

Relation (10), can be written as ∂Sr
∂x

f + ∂Sr
∂x

gu∗ − u∗T

y∗ = 0. Relations (11), (7) give:

u∗T

y∗− ∂ST
r

∂x
gu∗ = − 1

2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)
+ 1

2

∣∣∣
∣∣∣u− r−1

(
gT ∂ST

∂x
− h

)∣∣∣
∣∣∣2
r

⇒ ∂Sr
∂x

f + 1
2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)
− 1

2

∣∣∣
∣∣∣u∗ − r−1

(
gT ∂ST

r
∂x
− h

)∣∣∣
∣∣∣2
r

= 0

(12)
Now we show that u∗ = r−1

(
gT ∂ST

∂x
− h

)
. Let u be any continuous admissible control that

steers the state from x(t) to x(−∞) = 0 (as the system is considered reachable). Let

û(t) =

{
u(t), t− δ ≤ t ≤ t
u∗(t), −∞ ≤ t ≤ t− δ

Denoting by ŷ(s) the output of system (1) with input û(s) and by J(û) =
∫ t

−∞ ûT (s)ŷ(s)ds,

we have: J(û) =
∫ t−δ

−∞ u∗T (t)y∗(t)dt+
∫ t

t−δ
ûT (t)ŷ(t)dt = Sr(x(t−δ))+

∫ t

t−δ
ûT (t)ŷ(t)dt.

The integral can be approximated as follows:
∫ t

t−δ
ûT (t)ŷ(t)dt = δûT (t)ŷ(t) + o(δ),

where o(δ)/δ → 0, as δ → 0. By the smoothness of Sr(x) we have that: Sr(x(t)) =

Sr(x(t− δ)) + δ dSr(x(t))
dt

+ o(δ) = Sr(x(t− δ)) + δ ∂Sr(x)
∂x

(f(x) + g(x)u) + o(δ).
At the same time we know that Sr(x) ≤ J(û) which leads to: ∂Sr(x)

∂x
(f(x)+g(x)u)−uT y ≤

0. Using relation (12) we conclude that ∂Sr
∂x

f + 1
2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)

− 1
2

∣∣∣
∣∣∣u− r−1

(
gT ∂ST

r
∂x
− h

)∣∣∣
∣∣∣2
r
≤ 0 Taking into account equation (12) the equality holds

for u = u∗ = r−1
(
gT ∂ST

r
∂x
− h

)
. Hence, because Sr(0) = 0 and u∗ steers the state from

t to −∞ in 0, we conclude that Sr(x) satisfies (7) such that (9) is asymptotically stable. The
proof for Sa(x) follows the exact same line. �
Sa and Sr are the minimal, respectively maximal solution of (7).

Remark 12 If Sa and Sr were quadratic as in the linear systems case, everything would boil
down to the Positive Real Algebraic Riccati equation and the positive real Gramians from
Theorem 8, in Section 3. �
Proposition 13 If S(x) ≥ 0 is a solution of (7), then 0 ≤ Sa ≤ S ≤ Sr . �
Proof: Follows the ideas of [Moy74]. �
Remark 14 This result is in accordance with the ideas in [Wil72, vdS00]. �
The energy functions can be used according to [Wil72] as Lyapunov functions for system (1).

Lemma 15 If the system (1) is passive and zero-state observable then any solution S(x) of
(7) is positive definite (∀) x �= 0. �
Proof: This follows the line in [Moy74, Lemma 2]. �
Corollary 16 A system (1) that is passive, with r(x) > 0 and zero state observable is asymp-
totically stable. �
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5 Nonlinear Balancing
In this section a system (1) is considered, under assumptions 1, 2, 3, and:

4. it is zero-state observable on Y ;
5. Sa(x) and Sr(x) exist and are smooth on Y ;

According to the previous section, the Assumptions 1-5 insure that Sa and Sr are the mini-
mal, respectively the maximal positive definite solutions of the equation (7), for all x ∈ Y .
The sequel follows the procedure in Scherpen [Sch93]. The goal is to find the coordinate
transformation z = ξ(x) which brings the system into the positive real balanced form.

Theorem 17 [Sch93] There exists a coordinate transformation x = φ(x), φ(0) = 0 s.t., in
the new coordinates Sa(φ(x)) = 1

2
xTx and Sr(φ(x)) = 1

2
xTM(x)x, where M(x) is an

n× n symmetric matrix whose entries are smooth functions of x. �
Proof: See Lemma 3.2.2 in [Sch93], Chapter 3. �
For the sequel an extra assumption is needed

6. on Y , M(x) has a constant number of distinct eigenvalues ([Sch94], Lemma 3.2.3)
According to Kato’s result, [Ka82, Theorem 5.13a], Assumption 6 insures that M(x) can be
brought into a diagonal form, while leaving Sa in the same form.

Theorem 18 [Sch93] Under assumptions 1-6, there exists a coordinate transformation
x = ψ(z), s.t.

Sa(z) = Sa(ψ(z)) =
1

2
zT z, (13)

and
Sr(z) = Sr(ψ(z)) =

1

2
zT diag(v1(z), ..., vn(z))z (14)

�
The nonlinear system (1) is brought in positive real balanced form using the following coordi-
nate transformation z = η(z) = [η1(z1) ... ηn(zn)]T , where ηi(zi) = vi(0, ..., zi, ..., 0)

1
4 zi >

0. Applying the transformation we get:

Sa(z) =
1

2
zT diag(π1(z1)

−1, ..., πn(zn)−1)z (15)

Sr =
1

2
zT diag(π1(z1)

−1v1(η
−1(z)), ..., πn(zn)−1vn(η−1(z)))z (16)

vk(η−1(z)) > 0 for all k, can be called the positive real singular value functions of (1)
and πk(zk) =

√
vk(0, ..., η−1

k (zk), ..., 0). Applying this coordinate transformation to (1), it
becomes:

ż = f(z) + g(z)u, y = h(z) + d(z).

A system having the available storage and required supply of the form (15) and (16) is in the
positive real balanced form.
So, given a system (1), by directly applying the coordinate change z = ξ(x) = (η ◦ ψ−1 ◦
φ−1)(x), it is brought into positive real balanced form.
The available energy extracted at component zk is given by the quantity
Sa(0, ..., zk, ...0) = 1

2
z2

kπ
−1
k (zk) and the energy supply required to reach component

zk is measured as Sr(0, ..., zk, ..., 0) = 1
2
z2

kπk(zk). So, if vk(z) � vk+1(z), then
π−1

k (z)vk(z) � π−1
k+1(z)vk+1(z). This means that to reach state component zk less sup-

ply of energy is required than for the component zk+1 and at state component zk is stored
more energy available than at state component zk+1. This makes components z1, ..., zk more
important from energetic point of view than state components zk+1, ..., zn. Thus, model trun-
cation can be applied, meaning that the zk+1, ..., zn components can be made 0.

6 Model Reduction - Truncation
Partition the state vector z into [z1T

, z2T

]T , where z1 = [z1 ..., zk]T and z2 = [zk+1 ... zn]T .
Accordingly, the system can be partitioned into:
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f(z) =

[
f1(z

1, z2)

f2(z
1, z2)

]
, g(z) =

[
g1(z

1, z2)
g2(z

1, z2)

]
, h(z) = h(z1, z2), d(z) = d(z1, z2).

According to the previous section, the energetic analysis of the state components tells that z2

is less important than z1. Hence, to reduce the system, we truncate i.e. we set z2 = 0. The
reduced system is described by:

ż1 = f1(z
1, 0) + g1(z

1, 0)u, y = h(z1, 0) + d(z1, 0)u (17)

The available storage of the reduced system is: Sa(z1, 0). Because of the form in (15) we have
that ∂Sa

∂z2 (z1, 0) = 0.
The Hamilton-Jacobi equation (7) is satisfied as follows:

∂Sa

∂z1
(z1, 0)f1(z

1, 0) +
1

2

(
∂Sa

∂z1
(z1, 0)g1(z

1, 0)− h
T
(z1, 0)

)
r−1(z1, 0)·

(
gT
1 (z1, 0)

∂TSa

∂z1
(z1, 0)− h(z1, 0)

)
= 0

Substituting the required supply Sr(z
1, 0) from relation (16) it is obtained that:

∂Sr

∂z1
(z1, 0)f1(z

1, 0) +
1

2

(
∂Sr

∂z1
(z1, 0)g1(z

1, 0)− h
T
(z1, 0)

)
r−1(z1, 0)·

(
gT
1 (z1, 0)

∂TSr

∂z1
(z1, 0)− h(z1, 0)

)
+ F

(
∂Sr

∂z2
(z1, 0), g2(z

1, 0), h(z1, 0)
)

= 0

where

F =
∂Sr

∂z1
f2 +

(
∂Sr

∂z1
g1 − h

T
)
r−1gT

2

∂TSr

∂z2
+
∂Sr

∂z2
g2r

−1gT
2

∂TSr

∂z2

The required supply of the reduced system does not equal the reduced required supply, unless
an extra condition is fulfilled, i.e. F = 0.

Remark 19 Being an input-output property, (strict) passivity is not affected by the coordinate
transformation which brings the original system into (strictly) positive real balanced form. It
means that the (strictly) positive real balanced system is again (strictly) passive. �
Theorem 20 The reduced order system is strictly passive. �
Proof: We check if the strict passivity property in (2) is satisfied by the reduced system. We
can write (2) for the full order strictly positive real balanced system:

[
∂Sa

∂z1

∂Sa

∂z2

]([
f1(z

1, z2)

f2(z
1, z2)

]
+

[
g1(z

1, z2)
g2(z

1, z2)

]
u

)
< uTh(z1, z2) + uT d(z1, z2)u.

Setting z2 = 0 we have that ∂Sa

∂z2 (z1, 0) = 0, Sa(z1, 0) > 0. Substituting in the above
inequality we get:

∂Sa

∂z1
(z1, 0)(f1(z

1, 0) + g1(z
1, 0)u) < uTh(z1, 0) + uT d(z1, 0)u.

It means that the reduced order system satisfies inequality (2), hence the reduced system is
strictly passive. �
Theorem 21 If F

(
∂Sr

∂z2 (z1, 0), g2(z
1, 0), h(z1, 0)

)
= 0 for all z1 around 0, then the

reduced system is in strictly positive real balanced form having the singular value functions:
v1(z

1, 0) ≥ ... ≥ vk(z1, 0), for z1 = η−1(z1, 0). �
Proof: If the condition on F is satisfied, then Sr(z

1, 0) as in (16) is the required supply of
the reduced system. Sa(z1, 0) as in (15) satisfies directly the Hamilton-Jacobi equation (7),
so it is the available storage of the reduced system. Thus, the system is in positive real bal-
anced form with the positive real singular value functions v1(z

1, 0) ≥ . . . ≥ vk(z1, 0), where
z1 = [η−1(z1) ... η

−1(zk)]T . �
Remark 22 If the singular value functions are independent of z2, then ∂Sr

∂z2 (z1, 0) = 0. Then
immediately F

(
∂Sr

∂z2 (z1, 0), g2(z
1, 0), h(z1, 0)

)
= 0 follows. �
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7 Future Work
We present a passivity preserving model reduction technique, based on positive real balanced
truncation. The results in Section 5 are coordinate dependent, leading to the fact that the bal-
anced representation and the singular value functions are not unique, i.e. the choice of dif-
ferent sets of singular value functions gives different reduced systems. For future research,
developments such as in [FujSch05], is to be taken into account for the nonlinear positive real
balancing case.
If the system is not strictly positive real, but is positive real, there is no Hamilton-Jacobi equa-
tion to solved. However, if one can compute Sa and Sr in a different way, the balancing
procedure and the results of this paper can still be applied. Additionally, for physical systems,
such as port-Hamiltonian systems (see [vdS00]) it may be useful to preserve besides passivity,
an additional energy/power-based structure in the model for control purposes. This is also a
topic for future research.
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