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Summary. With roots dating back to many years ago and applications in a wide variety of
areas, model order reduction has emerged in the last few decades as a crucial step in the simula-
tion, control, and optimization of complex physical systems. Reducing the order or dimension
of models of such systems, is paramount to enabling their simulation and verification. While
much progress has been achieved in the last few years regarding the robustness, efficiency
and applicability of these techniques, certain problems of relevance still pose difficulties or
renewed challenges that are not satisfactorily solved with the existing approaches. Further-
more, new applications for which dimension reduction is crucial, are becoming increasingly
relevant, raising new issues in the quest for increased performance.

Keywords—Model order reduction, massively coupled systems, orthogonal projection,
parametric systems, circuit simulation.

1 Introduction

Model reduction algorithms are standard techniques nowadays in many areas, including the
microelectronics design community. The goal of model order reduction is to replace a large-
scale model of a physical system by a model of lower dimension which exhibits similar
behavior, typically measured in terms of its frequency or time response characteristics. Such
techniques are commonly used for analysis, approximation, and simulation of models arising
from electromagnetic formulation of physical structures. The need to accurately account for
all relevant physical effects implies that the mathematical formulation used to describe such
structures often results in very large models. Reducing the order or dimension of these models
is crucial to enabling the simulation and verification of such systems [2, 1].
An area to which extensive research has been devoted in the last few years is the problem of
order reduction of nonlinear systems [20, 18, 4]. A discussion of such methods is however
beyond the scope of this paper. Due to space constraints we will restrict the discussion to
issues arising from linear systems reduction. Nevertheless this discussion is still relevant in
the nonlinear case as most existing nonlinear reduction algorithms are based on extensions
of linear methods or the solution of carefully selected sequences of linear problems. While
enormous progress has been achieved in the last decades in this field, both from a theoretical as
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well as a practical standpoint, still greater challenges lie ahead as new and exciting applications
are being researched for which order reduction is again a crucial step.
Existing methods for linear model reduction can be broadly characterized into two types:
those that are based on projection methods, and those based on balancing techniques (some-
times also referred to as SVD3-based [1]). Among the first, Krylov subspace projection meth-
ods such as PVL [6] and PRIMA [15] have been the most widely studied over the past decade.
They are very appealing because of their simplicity and performance in terms of efficiency and
accuracy, despite the fact that they exhibit several known shortcomings. The lack of a general
strategy for error control and order selection, as well as a dependence on the original model’s
structure if passivity is to be guaranteed after the reduction are among the more obvious such
shortcomings. The alternative methods, those in the truncated balanced realization (TBR) fam-
ily [14], perform reduction based on the concept of controllability and observability of the
system states and are purported to produce nearly optimal models and have easy to compute
a-posteriori error bounds. However, they are awkward to implement and expensive to apply,
which limits their applicability to small and medium sized problems. Hybrid techniques that
combine some of the features of each type of methods have also been presented [11, 9, 10].
Recently, a new technique was also proposed that attempts to establish a bridge between
the two techniques. The Poor Man’s TBR [19] is based on a projection scheme where the
projection matrix approximately spans the dominant eigenspaces of the controllability and
observability matrices and provides an interesting platform for bridging between the two types
of techniques. Still the technique is not without drawbacks, as it relies on proper choice of
sampling points, a non-trivial task in general.
In spite of their shortcomings, all of the mentioned methods are in widespread use
nowadays. Still, there are situations that challenge the existing knowledge in the field. For
instance, consider the problem of reducing systems with a large number of ports, also known
as massively coupled systems. Such systems typically occur in substrate, power grid and pack-
age parasitic networks. Furthermore, the trend to nano-scale dimensions together with the
increasing frequencies of operation implies that non-neglectable electromagnetic effects have
to be accounted for in the models, which will also give rise to these massively coupled prob-
lems. Projection-based algorithms are inefficient for such systems as they rely on block itera-
tions, where the size of the block equals the number of ports. Therefore, each block iteration
increases the size of the model by an amount equal to the number of ports, leading to large
models even for moderate reduction order. This trend is particularly troublesome when simula-
tion with such models is necessary. TBR is intrinsically somewhat less sensitive to the number
of input ports. Unfortunately such systems are typically very large, which makes reduction
based on balancing techniques impractical.
Additionally, new challenges are being posed that require further research. As an example,
consider the problem of order reduction of parametrized systems. Parameter-based des-
criptions are now starting to be used as the basis for variability-aware design models. For
high frequencies, at nano-scale feature sizes, process variability effects, as well as depen-
dence on operating conditions become extremely relevant and should be accounted for in the
models. Existing techniques for handling such systems are, for the most part, straightforward
extensions of the basic order reduction algorithms [3, 12]. Projection-based techniques match
Taylor-series coefficients, which in parameter-based descriptions are multidimensional
moments. Unfortunately this technique has exponential cost increase with the number of para-
meters and is thus expensive except for small size and small number of parameters. Building
a projection space assuming small perturbations around the nominal operating point is also
problematic: it is hard to do anything beyond first-order and thus it is not clear how to dial
in accuracy. Sampling the parameter space also presents a challenge, as it is not clear where
to place sample point in such a multidimensional space. Still if some information regarding
the statistical distribution of the parameter values is available, this can be used to guide the
sampling and to build the model accordingly.

3 SVD – Singular value decomposition.
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In this paper we review some of these current and future challenges for which much research
is still needed in model order reduction. In Section 2 we discuss the problem of reducing mas-
sively coupled problems, and in Section 3 we discuss the reduction of parametrized systems,
a recent topic of much research work. Finally in Section 4, we present some conclusions.

2 Massively Coupled Systems

As an illustration of the problems pertaining to massively coupled systems, results from the
study of the reduction of power distribution networks, also known as power grids, will be
presented. Power grids are fairly regular structures which must cover the whole area of the
chip for power delivery purposes. Since all devices, wells and substrate plugs, are connected
to the power grid, the total number of ports of such circuits can be as high as hundreds of
thousands, or millions. This unfortunately brings added difficulty to the reduction process.

2.1 Background

Modeling a power grid as an RC network and using the nodal analysis formulation leads to:

Cv̇ +Gv = Mu
y = NT v

(1)

where C,G ∈ �n×n are the capacitance and conductance matrices, respectively, M ∈ �n×p

is a matrix that relates the inputs u ∈ �p to the states v ∈ �n that describe the node voltages,
N ∈ �n×q being its counterpart with respect to the outputs y ∈ �q , n is the number of
states, p the number of inputs and q the number of outputs. The p× q matrix transfer function
of the network is then given by H(s) = NT (G+ sC)−1M . Typically, matrices C and G are
very sparse but also very large. For a typical power grid, the number of nodes will be in the
order of several millions but the number of ports, input and output, is also quite large. Solving
Eqn. (1) directly or using it inside a circuit simulator is therefore too expensive.
The goal of model-order reduction is, generically, to determine a reduced model,

Hk(s) = N̂T (Ĝ+ sĈ)−1M̂ (2)

of size k � n, that closely matches the input-output behavior of the original model, and where
the state description is given by z = V T v ∈ �k. However, even if k � n, the reduced-order
model may fail to provide relevant compression. This may happen because, for large networks,
the matrices C and G are sparse, having a number of non-zeros entries of order O(n). If the
number of non-zero entries in the reduced-order model increases with the number of ports, the
benefits of reduction may vanish with increasingly large p and q.

Projection-based framework

Projection-based Krylov subspace algorithms, such as PRIMA [15], provide a general-purpose,
rigorous framework for deriving interconnect modeling algorithms and have been shown to
produce excellent compression in many scenarios involving on- and off-chip interconnect and
packaging structures. In its simplest form, they can be used to compute individual approxima-
tions to each of the p× q matrix transfer function entries. However, more commonly, they are
used to generate a single approximation to the full system transfer function. The PRIMA algo-
rithm [15], for instance, reduces a state-space model in the form of (1) by use of a projection
matrix V , through the operations:

Ĝ = V TGV, M̂ = V TM, Ĉ = V TCV, N̂ = V TN (3)
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to obtain a reduced model in the form of (2). In the standard approach, the projection
matrix V is chosen as an orthogonal basis of a block Krylov subspace, Km(A, b) =
span{b, Ab, . . . , Am−1b}, a typical choice being A = G−1C and b = G−1M . The con-
struction of the projection matrix V is done iteratively by blocks, with each block being gen-
erated through a back-orthogonalizing procedure. When the projection matrix is constructed
in this way, the moments of the reduced model can be shown to match the moments of the
original model to some order. Consequently, the reduced model size is proportional to the
number of matched moments multiplied by the number of ports. Furthermore, the reduced
system matrices will be dense. Therefore, these methods present two problems when dealing
with networks with a large number of ports. First, the cost associated with model computation
is directly proportional to the number of inputs, p, i.e. to the number of columns in the matrices
defining the inputs. This is easy to see by noting that the number of columns in the projection
matrix V in (3) is directly proportional to p (a direct result of the block construction procedure
described). This implies that model construction for systems with large number of ports is
costly. Second, the size of the reduced model is also proportional to p, as was discussed earlier
and can directly be seen from (3). While the cost of model construction can perhaps be amor-
tized in later simulations, the large size of the model is more problematic since it directly
affects simulation cost.

Truncated balanced realizations

An alternative class of reduction algorithms are based on Truncated Balanced Realization
(TBR). The TBR algorithm first computes the observability and controllability Gramians, X
and Y , by solving the Lyapunov equations:

GXCT + CXGT = MMT , (4)
GTY C + CTY G = NTN (5)

and then reduces the model by projection onto the space associated with the dominant eigen-
values of the product XY [14]. Model size selection and error control in TBR is based on
the eigenvalues of XY , also known as the Hankel singular values. In the proper case, there
is an a-posteriori theoretical bound on the frequency-domain error for the TBR model given
by [14]:

‖H −Hk‖ ≤ 2

n∑
i=k+1

σi (6)

The existence of such an error bound is an important advantage of the TBR class of algorithms
as there is no counterpart in the projection-based algorithms. Theoretically, the model selec-
tion criteria, and therefore the size of the generated model, can be done independently of the
number of inputs. However, there is an indirect dependence in most problems and in particular
for networks such as power grids, that exhibit a large number of inputs (see [19] for additional
discussion on the topic). In this case, useful reductions are not achievable. Furthermore, the
solution of the Lyapunov equations required to obtain X and Y is computationally intensive
for large systems and as such the technique is only of theoretical interest in this context. A
variety of approximate methods have been proposed that attempt to circumvent this problem
(see [19] and references therein).

2.2 Methods

As stated previously, the difficulty with standard projection algorithms like PRIMA or multi-
point projection schemes, is that the models produced have size proportional to the number
of ports. This limits their applicability to problems such as power grids, where the number
of network ports is likely to be very large. An interesting question that might be raised is
whether this restriction is inherent to the system, given the number of ports, or an artifact of
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the computation scheme chosen. In other words, one might ask whether accurate modeling and
analysis of a power grid, modeled as a large RC mesh, does indeed require so much dynamic
information. This question is all the more relevant as there is a common popular belief that
only a few poles are required to accurately model an RC circuit. It is now widely accepted
that in certain settings that is indeed the case, but this conclusion is emphatically not general
(see [22]).
In the following, two recently proposed methods for overcoming the difficulties faced by stan-
dard MOR methods are presented. The first method is based on the analysis of singular values
of the system moments while the second one is a “cheaper” version of a TBR class method
previously mentioned [19], also based on projection.

Singular Value Decomposition MOR (SVDMOR)

The SVDMOR [5] algorithm was developed to address the reduction of systems with a large
number of ports, like power grids. While the size of a reduced model produced via PRIMA
is directly proportional to the number of ports in the circuit, SVDMOR theoretically over-
comes this problem using singular value decomposition (SVD) analysis in order to truncate
the system to any desired order.
The main idea behind SVDMOR is to assume that there is a large degree of correlation
between the various inputs and outputs. SVDMOR further assumes that such input-output
correlation can be captured from observation of structural system properties, evidenced in
matrices M and N . The method can, for instance, use an input-output correlation matrix,
like the one given by the zero order moment matrix SDC = NTG−1M , which contains
only DC information. Alternatively, more complicated response correlations can be used such
as frequency, sj-shifted moments, S(sj)

DC = NT (G + sjC)−1M , a more generic k-order
moment, Sk =NT(G−1C)kG−1M , or even combinations of these. Let K be the appropri-
ate correlation matrix. If the basic correlation hypothesis holds true, then K can be appro-
ximated by a low-rank matrix. This low rank property can be revealed by computing the
SVD of K, K = UΣWT , where U and W are orthogonal matrices and Σ is the diago-
nal matrix containing the ordered singular values. Assuming correlation, there will be only
a small number, m � p + q, of dominant singular values. Therefore, we can approximate
K ≈ UmΣmV

T
m , where truncation is performed keeping the m most significant singular

values. The method further approximates:

M ≈ bMV T
m = MVm(V T

mVm)−1V T
m

N ≈ bNU
T
m = NUm(UT

mUm)−1UT
m

(7)

where bM and bN are obtained using the Moore-Penrose pseudo-inverse, resulting in:

H(s) ≈ Um bT
N (G+ sC)−1bM︸ ︷︷ ︸

Hm(s)

V T
m (8)

Standard MOR methods, like PVL or PRIMA, can now be applied to Hm(s), leading to
H̃m(s), an r-th order model, from which a final model approximation H(s) ≈ Hr(s) =

UmH̃m(s)V T
m is computed. The reduced system is p× q with a number of nonzero elements

of order O(r2).

Input-Correlated Poor Man’s TBR (PMTBR)

The PMTBR algorithm [19, 22] was motivated by a connection between frequency-domain
projection methods and approximation to truncated balanced realization. The method is less
expensive in terms of computation, but tends to TBR when the order of the approxima-
tion increases. The actual mechanics of the algorithm are akin to multi-point projection. In
a multi-point rational approximation the projection matrix columns are computed by sam-
pling at several frequency points along a desired frequency interval. The samples are given by
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zi = (G+siC)−1M , where si = jωi (with i = 1, 2, . . . , P ) are P frequency sample points.
The frequency-sampled matrix thus obtained can then be used to project the original system
in order to obtain a reduced model. In the PMTBR algorithm, a similar procedure is used. The
connection to TBR methods is made by noting that an approximation X̂ to the Gramian X
can be can be computed as:

X̂ =
∑

i

wiziz
H
i (9)

where the ωi which defines each sample, and the wi can be interpreted as nodes and weights
of a quadrature scheme applied to a frequency-domain interpretation of the Gramian matrix
(see [19] for details). Let Z be a matrix whose columns are the zi, and W the diagonal matrix
of the square root of the weights. Eqn. (9) can be written more compactly as:

X̂ = ZW 2ZH (10)

If the quadrature rule applied is accurate, X̂ will converge to X , which implies the domi-
nant eigenspace of X̂ converges to the dominant eigenspace of X . Computing the singular
value decomposition of ZW , ZW = VZSZUZ (with SZ real diagonal, and VZ , UZ unitary
matrices), it is easy to see that VZ converges to the eigenspaces of X , and the Hankel singular
values are obtained directly from the entries of SZ . VZ can then be used as the projection
matrix in a model order reduction scheme. The method was shown to perform quite well in a
wide variety of settings [19].
An interesting additional interpretation was more recently presented [22] which is of relevance
in our context. It has been shown that if further information revealing time-domain correlation
between the ports is available, a variant of PMTBR can be used that can lead to significant
efficiency improvement. This idea is akin to the basic assumptions in SVDMOR and relate
to exploiting correlation between the inputs. Unlike SVDMOR, however, it is assumed that
the correlation information is not contained in the circuit information directly, but rather in
its inputs. In this variant of PMTBR, a correlation matrix K is formed by columns which are
samples of port values along the time-steps of some interval. Those samples should charac-
terize as well as possible the values expected at the inputs of the system, i.e. K should be a
suitably representative model of the possible inputs. An SVD is then performed over K in
order to retain only the r most significant components of the input correlation information,
K ≈ UrΣrV

T
r . With this additional correlation information, the samples relative to multi-

point approximation become zi = (G + siC)−1MUrΣr . Using these zi as columns of the
Z matrix in (10), leads to the input-correlated TBR algorithm (ICTBR). See [19] for more
details and a more thorough description of the probabilistic interpretation of both PMTBR as
well as ICTBR.

2.3 Results

Both the standard model order reduction as well as the methods described in the previous sec-
tion can be applied to massively coupled systems. Methods like SVDMOR are reported to pro-
vide significant advantages over the standard algorithms if certain conditions are met, namely
that significant port correlation exists and can be ascertained in a practical way. PMTBR is a
more general algorithm for model reduction, which can nonetheless be applied to large sys-
tems, given its reduced computational complexity.
In this section, results are presented for two types of topologies: a first mesh, grid A, with
voltage inputs on the left side and current outputs on the right one, and a second mesh, grid B,
with voltage ports along the left side and current ports randomly distributed over the remain-
ing nodes. For practical reasons, we have kept the mesh sizes smaller than they would be in
realistic applications but scaling of all appropriate dimensions and sizes would produce qual-
itatively the same results. There are two main differences between the two setups described.
The first one concerns formulation. While in grid A matrices M and N in Eqn. (1) are distinct
(M yields input information and N yields output information), in grid B, M = N , thus all
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ports are controllable and observable. The second main difference consists in the separation
between ports. In grid A the separation between inputs and outputs is maximal, while in grid B
not only every port is both input and output, but also the geometric proximity between ports is
reduced. Grid A is thus expected to be fairly compressible, but smaller reductions are expected
for grid B. Grid A is similar to the one used in [5], while grid B was created in order to illus-
trate a more realistic setup. The electrical model of all grids is as follows: every connection
between nodes is purely resistive and at every node there is a capacitance to ground. While this
is not necessary, it simplifies the ensuing description (furthermore, a parasitic capacitance is
usually extracted at all nodes). Resistance and capacitance values were randomly generated in
the interval (0.9, 1.1). In the following set of experiments the size of the reduced model is the
same for all methods and was pre-determined. The correlation matrix of SVDMOR is the DC
moment matrix. For this method, after computing the SVD and choosing how many singular
values to keep, a number of PRIMA iterations is performed in order to generate a model of
the required size. The number of frequency samples of PMTBR was set such that a model of
the same size can be drawn from matrix Z. Samples were chosen uniformly in the frequency
range shown in the plots, with an additional sample added at DC.

Highly-correlated ports

The previously discussed methods were first used to reduce grid A. The Bode plot of an arbi-
trarily selected transfer function is presented in Figure 1 (left). The number of retained states
was forced at r = 1200. In the case of SVDMOR, 15 singular values were kept and 80 PRIMA
iterations were run, yielding the reduced model of 15× 80 = 1200 states. One observes that
SVDMOR shows good results, better than PRIMA and PMTBR. In order to understand the
reason for these results the plot of the singular values of SVDMOR and PMTBR methods
is presented in Figure 1 (right). The singular values (s.v.) of the DC moment, used by SVD-
MOR to guide the reduction, decay quite fast. Therefore keeping just the first 15 yields a
good approximation. On the other hand the PMTBR s.v. decay very slowly. Table 1 shows the
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Fig. 1: Results for grid A (r = 1200): Bode plot of arbitrarily selected entry of 100 × 100 transfer function matrix
(left); normalized plot of singular values: SVDMOR moment matrix and PMTBR samples matrix (right).

maximum absolute error of the transfer matrix, max{|H(s)−Hr(s)|}. Analysis of the table
indicates that in the overall model, SVDMOR shows the smallest error as expected for this
grid setup.
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Table 1: Maximum absolute error of |H(s) − Hr(s)| for 100 × 100 mesh with 100 inputs on the left side and 100
outputs on the right side. SVDMOR used 15 singular values.

r = 1200 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.443× 10−6 1.406× 10−7 1.160× 10−5
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Fig. 2: Results for grid B (r = 2500): Bode plot of arbitrarily selected entry of 100 × 100 transfer function matrix
(left); normalized plot of singular values: SVDMOR moment matrix and PMTBR samples matrix (right).

Table 2: Maximum absolute error of |H −Hr| for 100×100 mesh with 100 ports on the left side and 1150 randomly
distributed ports over the mesh.

r = 2500 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.284e× 10−2 2.533× 10−1 1.545× 10−3

Weakly-correlated ports

In grid B the objective was to emulate a more realistic situation whereby potentially many
devices, modeled as current sources, are attached to the power grid and can draw or sink
current from/to it when switching. The number of current sources was chosen to be 1/8 of the
number of nodes. There are 1150 current sources and 100 voltage sources (for a total of 10000
nodes). This is a harder problem to reduce, due to port proximity, and thus interaction, and the
results show it. Again the Bode plot of an arbitrarily selected transfer function is presented in
Figure 2 (left). The number of retained states was now forced at r = 2500 already showing
smaller reduction than for grid A. In this case, the approximation produced by SVDMOR is
less accurate. This is expected from inspection of Figure 2 (right), where one observes that the
s.v. of SVDMOR decay slower than in the previous case. Clearly, the assumption of highly
correlated ports is not valid here. The results concerning the error of the transfer matrix are
in Table 2. PMTBR produces the most accurate model, while PRIMA shows a reasonable
approximation.
Note that while the Bode plots show large errors for higher (normalized) frequencies, concern-
ing to higher order moments which are harder to match, these frequencies are uninteresting in
practical simulations. Note also that the matrices in the reduced models for all methods in both
experiences are full, which has drastic consequences for usage of these models in a simulation
environment.
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3 Parametrized System Descriptions

In any manufacturing process there is always a certain degree of uncertainty involved given
our limited control over the environment and other physical conditions. For the most part this
uncertainty was previously ignored when analyzing or simulating systems, but as we step
towards the nano-scale and higher frequency eras, such environmental, geometrical and elec-
tromagnetic fluctuations become more significant. Nowadays, parameter variability can no
longer be disregarded, and its effect must be accounted for in early design stages so that
unwanted consequences can be minimized. This leads to parametric descriptions of systems,
including the effects of the manufacturing variability, which further increases the complex-
ity of such models. When model reduction is required, these parametric representations must
be addressed and the resulting reduced models must retain the ability to model the effects of
small random fluctuations, in order to accurately predict behavior and optimize designs. This
is the aim of the Parametric Model Order Reduction (pMOR).

3.1 Background

Actual fabrication of physical devices is prone to the variation of certain circuit parameters
due to deliberate adjustment of the process or from random deviations inherent to this manu-
facturing. This variability leads to a dependence of the extracted circuit elements on several
parameters, of electrical or geometrical origin. This dependence results in a parametric state-
space system representation, which in descriptor form can be written as

C(λ1, . . . , λL)v̇(λ1, . . . , λL) +G(λ1, . . . , λL)v(λ1, . . . , λL) = Mu
y = NT v(λ1, . . . , λL)

(11)

where C,G ∈ �n×n are again, respectively, the capacitance and conductance matrices,
M ∈ �n×p is the matrix that relates the input vector u ∈ �p to the inner states v ∈ �n

and N ∈ �n×q is the matrix that links those inner states to the outputs y ∈ �q . The elements
of the matrices C and G, as well as the states of the system v, depend on a set of L para-
meters λ = [λ1, λ2, . . . , λL] which model the effects of the mentioned uncertainty. Usually
the system is formulated so that the matrices related to the inputs and outputs (M and N )
do not depend on the parameters. This time-domain descriptor yields a parametric dependent
frequency response modeled via the transfer function

H(s, λ1, . . . , λL) = NT (sC(λ1, . . . , λL) +G(λ1, . . . , λL))−1M (12)

for which we seek to generate a reduced order approximation, able to accurately capture the
input-output behavior of the system for any point in the parameter space.

Ĥ(s, λ1, . . . , λL) = N̂T (sĈ(λ1, . . . , λL) + Ĝ(λ1, . . . , λL))−1M̂ (13)

In general, one attempts to generate a reduced order model whose structure is, as much as
possible, similar to the original, i.e. exhibiting a similar parametric dependence.

3.2 Methods

In the following we summarize the main methods presented for dealing with this problem.

Perturbation-Based Techniques

One of the earliest attempts to address this variational issue was to combine perturbation the-
ory with moment matching MOR algorithms [13]. To model the variational effects of the
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interconnects, an affine model can be built for the capacitance and conductance matrices, so
that

G(λ1, . . . , λL) = G0 + λ1G1 + . . .+ λLGL

C(λ1, . . . , λL) = C0 + λ1C1 + . . .+ λLCL
(14)

where now C0 and G0 are the nominal matrix values, i.e. the value of the matrices under no
parameter variation, and Ci and Gi, i = 1, · · · , L, are its sensitivities with respect to those
parameters. For small parameter variations, the projection matrix obtained via a moment-
matching type algorithm such as PRIMA also suffers small perturbations. Therefore, the idea
was to draw several samples in the parameter space for the system matrices G(λ1, . . . , λL)
and C(λ1, . . . , λL), and for each sample PRIMA was applied so a projection matrix is
obtained. Fitting is later applied over all the computed projectors in order to determine the
coefficients of a parameter dependent projection matrix

V (λ1, . . . , λL) = V0 + λ1V1 + . . .+ λLVL (15)

which is in turn applied in a congruence-like transformation to the parametric system in (11),
yielding a reduced system parametrized with respect to the set [λ1, λ2, . . . , λL].
Another approach also based on perturbation theory arguments was applied to the Truncate
Balanced Realization (TBR) [14, 17] framework, so that a theoretically based perturbation
matrix was obtained starting from the affine models shown in (14) [8]. This matrix was then
applied via a congruence transformation over the Gramians to address the variability, and
yield the perturbed Gramians. These in turn were used inside a balancing truncation proce-
dure. As with most TBR-inspired methods, this one is also expensive to compute and hard to
implement.
The above methods have obvious drawbacks, perhaps the most glaring of which is the heavy
computation cost required for obtaining the reduced models and the limitation that comes from
first order approximations possibly leading to inaccuracy in certain cases.

Multi-Dimensional Moment Matching

These techniques appear as extensions to nominal moment-matching techniques [15, 6, 21].
Moment matching algorithms have gained a well deserved fame in nominal MOR due to their
simplicity and efficiency. The extensions of these techniques to the parametric case are usually
based in the implicit or explicit moment matching of the parametric transfer function (12).
This type of algorithms assumes small fluctuations of the parameters, so that a model based
on the Taylor Series expansion can be used for approximating the behavior of the conductance
and capacitance, G(λ) and C(λ), expressed as a function of the parameters

G(λ1, . . . , λL) =
∑∞

i1=0
· · ·

∑∞
iL=0

Gi1,...,iLλ
i1
1 . . . λiL

L

C(λ1, . . . , λL) =
∑∞

i1=0
· · ·

∑∞
iL=0

Ci1,...,iLλ
i1
1 . . . λiL

L

(16)

where G0, C0, Gi1,...,iL and Ci1,...,iL are the multidimensional Taylor series coefficients.
This Taylor series can be extended up to the desired (or required) order, including cross deri-
vatives, for the sake of accuracy. If this formulation is used, the structure for parameter depen-
dence may be maintained if the projection is not only applied to the nominal matrices, but to
the sensitivities as well.
The Multi-Parameter Moment Matching method is a single-point expansion of the transfer
function (12) in the joint space of the frequency s and the parameters λi, i = 1, · · · , L, in
order to obtain a power series in several variables s, λ1, . . . , λL [3],

v(s, λ1, . . . , λL) =

∞∑
k=0

k∑
ks=0

k−ks∑
k1=0

· · ·
k−ks−k1....−kL−1∑

kL=0

Mk,ks,k1,...,kLs
ksλk1

1 . . . λkL
L

(17)
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where Mk,ks,k1,...,kL is a k-th (k = ks + k1 + . . . + kL) order multi-parameter moment
corresponding to the coefficient term sksλk1

1 . . . λkL
L . Following the same idea used in the

nominal moment matching techniques, a basis for the subspace formed from these moments
can be built and the resulting matrix V can be used as a projection matrix for reducing the
original system. It has been shown that this parametrized reduced model matches up to the
k-th order multi-parameter moment of the original system. The main inefficiency of this
method is that process parameters fluctuate in a small range around their nominal value,
whereas the frequency range is much larger, and a higher number of moments are necessary in
order to capture the global response for the whole frequency range. For this reason, the reduced
model size grows exponentially with the number of parameters and the moments to match.
A similar idea but more efficient, is to rely in a two-step moment matching scheme [12]. In
this method, one first matches in an explicit way the multi-parameter moments for the process
variability parameters (by expanding the state space vector v and the matrices G and C in its
Taylor Series only w.r.t. the parameters), and in a second stage implicitly match moments with
respect to the frequency via Krylov projection. This two-step approach avoids the exponential
growth of model size with the number of moments matched, suffered by the multi-parameter
moment matching. This method allows a certain degree of flexibility as the number of
moments matched with respect to the frequency and to the parameters can be different. In
principle, in spite of the larger size of the augmented model, the order of the reduced system
can be much smaller than in the previous cases. On the other hand, the structure of the depen-
dence with respect to the parameters is lost since the parametric dependence is shifted to the
later projected output related N matrix.
A different multi-dimensional moment matching approach was also presented [7], which relies
on the computation of several subspaces, built separately for each dimension, i.e. the frequency
s and the parameter set λ. So given a parametric system (11), the first step of the algorithm is
to obtain the ks block moments of the transfer function with respect to the frequency when the
parameters take their nominal value (for example, via PRIMA). This block moments will be
denoted as Qs. The next step is to obtain the subspaces which match kλi block moments of v
with respect to each of the parameter λi, and will be denoted by Qλi . Once all the subspaces
have been computed, an orthonormal basis can be obtained so that its columns spans the
joint of all subspaces. Applying the resulting matrix in a projection scheme ensures that the
parametric ROM4 matches ks moments of the original system with respect to the frequency,
and kλi moments with respect to the parameter λi. If the cross-term moments are needed for
accuracy reasons, the subspace that spans these moments can be also included by following
the same scheme.

Variational PMTBR

A novel approach was recently proposed that extends the PMTBR algorithm to include vari-
ability [16]. This approach is based on the statistical interpretation of the algorithm (see [19]
for details) and enhances its applicability. In this interpretation, the Gramian is seen as a
covariance matrix for a Gaussian variable, v(0), obtained by exciting the (presumed stable)
system with white noise. Rewriting the Gramian as

Xλ =

∫
Sλ

∫ ∞

−∞
(sCλ +Gλ)−1MMT (sCλ +Gλ)−Hp(λ)dwdλ (18)

where p(λ) is the probability density of λ in the parameter space, Sλ. Just as in PMTBR, a
quadrature rule can be applied in the overall parameter plus frequency space to approximate
the Gramian via numerical computation. But in this case the weights are chosen taking into
account the PDF5 of λi and the frequency constraints. This can be generalized to a set of

4 Reduced Order Model
5 PDF – Probability density function.
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Fig. 3: Variational PEEC: effects on the frequency response (left) and performance of parametric MOR methods (right).

parameters, where a joint PDF of all the parameters can be applied to the joint parameter
space, or the individual PDF of each parameter can be used. The ability to do this represents
an interesting advantage, since a-priori knowledge of the parameters and the frequency can
be included in order to constrain the sampling and yield a more accurate reduced model. As
in the deterministic case, an error analysis and control can be included, via the eigenvalues of
the SVD, but in this variational case only an expected error bound can be given:

E{‖v̂0 − v0‖22} ≤
n∑

i=r+1

σ2
i (19)

where r is the reduced order and n the original number of states. In this method, the issue of
sample selection, already an important one in the deterministic version, becomes even more
relevant, since the sampling must now be done in a potentially much higher-dimensional space.

3.3 Results

To illustrate (for a qualitative analysis mostly) the effect of parameter variability on the res-
ponse of a circuit we resort to a simple example of a partial equivalent electric circuit (PEEC)
model. The system under analysis is an RLC model of a connector of order 304. In this exam-
ple we consider the effect of five geometric parameters, each having a different effect on the
conductance and capacitance matrices. Figure 3(left) shows the effect of random variations
on each parameter up to a limit of 5%, 15% and 30%. It can be seen that even small range
variations in the parameters can result in large deviations from nominal. An important effect
of the parameter variation is that those deviations not only can change the overall shape of
the frequency response but also cause frequency shifts in the pole location. Figure 3(right)
shows a comparison of the reduction of the variational system with two different methods:
variational PMTBR and parametrized time-domain macromodels [7], all of the same order,
versus the nominal response and the system response under parameter variation (Perturbed).
As can be seen, the parametric MOR algorithms are able to maintain an acceptable accuracy
up to high frequencies in the presence of strong variations.

4 Conclusions

Model order reduction is a crucial enabling technique for simulation, control, and optimiza-
tion of complex physical systems. In this paper we discussed how, in spite of the progress
achieved in the area in the last few years, certain types of problems such as those derived
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from massively coupled systems, still pose difficulties to the existing approaches. We also
discussed new challenges in the field, brought by new applications such as the reduction of
parametric systems, that are becoming increasingly relevant, raising new issues in the quest
for increased performance. Clearly, we have but scratched the surface of the relevant issues
facing us. Other challenging problems exist, like the reduction on nonlinear systems, which
has also been subject to extensive research.
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