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Summary. We compare different model reduction methods applied to the dynamical sys-
tem of a coupled transmission line: balanced truncation (BT), truncation by balancing one
gramian (or PMTBR - poor man’s truncated balanced reduction), positive real balanced trunca-
tion (PRBT) and its Hamiltonian implementation (PRBT-Ham), PRIMA, spectral zero method
(SZM) and its Hamiltonian implementation (SZM-Ham), and finally, optimal H2. Their per-
formance is analyzed in terms of several criteria such as: preservation of controllability,
observability, stability and passivity, relative H2 and H∞ norms, and the computational cost
involved.

1 Introduction
This paper presents different reduction methods together with results obtained by
applying each method on a dynamical system given by a coupled transmission line.
In Sect. 2, a modified nodal analysis (MNA)-similar representation of the system is
derived. The model reduction methods are grouped in two main categories, gramian
based and Krylov based, discussed in sections 3 and 4 respectively. Sect. 3 outlines
the theory behind gramian based reduction methods: BT, PMTBR and PRBT. Krylov
based reduction methods PRIMA, SZM and optimal H2 are described in Sect. 4. In
Sect. 5 we compare all methods in terms of: preservation of some important proper-
ties like controllability, observability, stability and passivity, the relative H2 and H∞
norms and in terms of the computational cost. In Sect. 6, error systems resulting
from different methods are compared. This allows us to identify frequency ranges
where one particular method approximates the original system more accurately. Sect.
7 presents additional results obtained with the optimal H2 method. Finally, Sect. 8
summarizes our analysis and motivates further research.

2 State-space representation

The model reduction problem of transmission lines has been studied extensively,
see for instance [8]. Our system consists of two transmission lines with inductive
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Fig. 1: Two coupled transmission lines

coupling as shown in Fig. 1. Each section consists of an inductor and its associated
resistor, in series with a capacitor and its associated resistor. The first section has no
inductor. All capacitor values Ci are equal. The same holds for the inductors Li, the
coupling inductors Mij , the resistors associated with the capacitors RCi

, the resistors
associated with the inductors RLi

and the input resistors, R1 and R2.

To simulate this circuit, the state-space representation of the system needs to be
derived. Choosing the state variables as the currents through the inductors and the
voltages across the capacitors, we obtain a system of order n = 4N − 2, where N
is the number of sections of the circuit. The state-space representation in modified
nodal analysis (MNA)-similar form is the following:

Cẋ(t) = Gx(t) + Bu(t)
y(t) = Lx(t) + Du(t)

}
(1)

where C ∈ R
n×n, G ∈ R

n×n, B ∈ R
n×2, L ∈ R

2×n, D ∈ R
2×2 and x(t) ∈ R

n,
u(t) ∈ R

2, y(t) ∈ R
2.

The problem will be studied under the following simplifying assumptions:

(1) the equations are in an MNA-similar form so that the resulting C matrix in (1) is
nonsingular and positive definite (this means that all variables are state variables
and none is redundant). In general, C resulting from circuit simulation is sin-
gular, due to additionally generated variables at the nodes between Li and RLi

.

(2) The transmission line has one input and one output, that is u2 = 0 and only y1

is observed, so that u = u1 and y = y1.

These assumptions are made to ease certain technical issues and allow a comparison
of all reduction methods enumerated above; for instance, the optimal H2 method is
currently available for single-input-single-output (SISO) systems only. None of these
assumptions is essential for the validity of the results presented. Similar results for
a system with MNA equations (where C is singular), using in part results from [5],
will be reported in a future analysis.
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For simplicity we will show the form of the equations by deriving them for N = 3
sections, namely for a circuit with 6 capacitors and 4 inductors, resulting in 10 states.
In particular, the elements of the first line, from left to right will be

R1, C1, RC1 ; L1, RL1 , C2, RC2 ; L2, RL2 , C3, RC3 ,
and those of the second line from left to right

R2, C4, RC4 ; L3, RL3 , C5, RC5 ; L4, RL4 , C6, RC6 .
The state variables are:

xC1 , xL1 , xC2 , xL2 , xC3 ,xC4 , xL3 , xC5 , xL4 , xC6 ,
and the state is chosen as:

x =
(

xC

xL

)
, xC =

⎛
⎜⎜⎜⎜⎜⎜⎝

xC1

xC2

xC3

xC4

xC5

xC6

⎞
⎟⎟⎟⎟⎟⎟⎠

, xL =

⎛
⎜⎜⎝

xL1

xL3

xL2

xL4

⎞
⎟⎟⎠ .

The associated system matrices are2:

C =
(

C̃ 0
0 L̃

)
, G =

(
−RC Ẽ

−Ẽ
∗ − RL

)
, B =

(
1

R1
0 0 0 0 0 0 0 0 0

)∗
,

L = −B∗ and D = 1
R1

, where:

C̃ = diag(C1, C2, C3, C4, C5, C6), L̃ =

⎛
⎜⎜⎝

L1 M13

M13 L3

L2 M24

M24 L4

⎞
⎟⎟⎠ and

Ẽ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0
1 0 −1 0
0 0 1 0
0 −1 0 0
0 1 0 −1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
RC = diag( 1

R1
+ 1

RC1
, 1

RC2
, 1

RC3
, 1

R2
+ 1

RC4
, 1

RC5
, 1

RC6
)

RL = diag(RL1 , RL3 , RL2 , RL4 ).

The values of the elements used in the simulation are as follows: the input resistors
are R1 = R2 = 10Ω, the capacitors are Ci = 5.4 · 10−12F and the associated
resistors RCi

= 103Ω, (i = 1, . . . , 6), the inductors are Li = 0.25 · 10−9H, (i =
1, . . . , 4), the mutual inductors are Mij = 0.2Li (i = 1, 2, j = 3, 4) of that value.
The associated resistors are zero RLi

= 0, (i = 1, . . . , 4).

3 Gramian based methods

Gramian based methods involve diagonalization of gramians by congruence. These
can either be the positive definite solutions to the Lyapunov equations (called con-
trollability and observability gramians) or the positive definite solutions to alge-
braic Ricccati equations (called positive real controllability and observability grami-
ans). The methods that we discuss are balanced truncation (BT) in Sect. 3.1 which

2 For a matrix M, M∗ denotes transposition followed by complex conjugation if the matrix
is complex.
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performs simultaneous diagonalization of the controllability and the observability
gramians, an equivalent of poor man’s truncated balanced reduction (PMTBR) in
Sect. 3.2 in which only one of the gramians is diagonalized and positive real balanced
truncation (PRBT) in Sect. 3.3 in which positive definite solutions to the algebraic
Ricatti equations are simultaneously diagonalized.

3.1 Balanced truncation (BT)

The idea behind balanced truncation is to simultaneously diagonalize the two infinite
gramians, P and Q [1]. These are the solutions to the controllability and observability
Lyapunov equations respectively, which are associated with the state space formua-
tion (1). The mathematical model of the system may come in two representations:
standard state-space and MNA-similar representation (or invertible descriptor form),
respectively. We describe the application of model reduction methods for both cases
of models.

Standard state-space representation

The standard state-space representation (Ass,Bss,Css,Dss) is obtained from (1)
by inverting the C matrix.

Ass = C
−1G,Bss = C

−1B,Css = −B∗,Dss = D

The controllability and observability gramians are given by the symmetric positive
definite solutions to the controllability and observability Lyapunov equations:

AssP + PA∗
ss + BssB∗

ss = 0 (2)
A∗

ssQ + QAss + C∗
ssCss = 0 (3)

BT is performed in two steps. First, the balancing projection is computed (both
gramians become equal and diagonal, with the Hankel singular values (HSVs) on
the diagonal). Second, the states which are equally difficult to reach and to observe
are truncated. This amounts to eliminating the states corresponding to the HSVs
which are below a certain tolerance. Setting a tolerance for the reduced system a
priori defines the number of states to be kept. The procedure is the following.

1. Compute the Cholesky factors of P = UU∗ and Q = LL∗

2. Compute the singular value decomposition of the product U∗L
U∗L = ZSY∗ (4)

The diagonal elements: S = diag(σ1, . . . σn), σ1 ≥ σ2 ≥ . . . ≥ σn, where
σi =

√
λi(PQ) are the Hankel singular values of the system. Choosing only

the first k singular values and the first k columns of Z and Y gives the reduced
system of order k after applying the projection Π

3. Π = VW∗ where V = UZkS
− 1

2
k , V ∈ R

n×k, W = LYkS
− 1

2
k , W ∈ R

n×k

4. Compute the representation of the reduced system:
Ãss = W∗AssV, B̃ss = W∗Bss, C̃ss = CssV, D̃ss = Dss

The corresponding diagonalized controllability and observability gramians are given
by P̃ = W∗PW = Sk, Q̃ = V∗QV = Sk where Sk is the matrix containing the
largest k HSV’s on the diagonal.
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Descriptor form representation

The MNA-similar representation is precisely (1). For simplicity, we rename the
matrices in (1) to match the standard descriptor system representation:3

Eds = C,Ads = G,Bds = B,Cds = L,Dds = D

The gramians are now the solutions to the following Lyapunov equations:

AdsPE∗
ds + EdsPA∗

ds + BdsB∗
ds = 0 (5)

A∗
dsQ̂Eds + E∗

dsQ̂Ads + C∗
dsCds = 0, (6)

where P in (5) is precisely the solution of (2), while the original observability
gramian corresponding to the solution of (3) is obtained by means of the

congruence transformation Q = E∗
dsQ̂Eds

The balancing and truncation procedures follow as described in Sect. 3.1, where (4)
is replaced by:

U∗EdsL = ZSY∗

The system representation in the new basis now becomes:

Ẽds = W∗EdsV = Ik, Ãds = W∗AdsV,

B̃ds = W∗Bds, C̃ds = CdsV, D̃ds = Dds.

Gramians P and Q are simultaneously diagonalized as mentioned in Sect. 3.1.

Solving the Lyapunov equation

There are many methods for solving the Lyapunov equation AP + PA∗ = Q [1].
We will use the so-called square-root method, which directly computes U such that
P = UU∗. In MATLAB, this is implemented by lyapchol. Another important
tool is the sign function method, which is discussed next.

The Lyapunov equation is a particular form of the Sylvester equation AX + XB = C.
To treat this generalized case, consider a matrix of the type

Z =
(

A − C
0 − B

)
,

where A ∈ R
n×n, �(λi(A)) < 0, B ∈ R

k×k, �(λi(B)) < 0, and C ∈ R
n×k. The

sign function iteration Zn+1 = (Zn + Z−1
n )/2, Z0 = Z converges to

lim
j→∞

Zj =
(
−In 2X

0 Ik

)

where X is the solution to the equation AX + XB = C.

For the Lyapunov equation AP + PA∗ = Q, the starting matrix is

3 As mentioned earlier, our analysis of the system in descriptor form is restricted to the case
in which matrix Eds = C is invertible.
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Z =
(

A − Q
0 − A∗

)
, A ∈ R

n×n, �(λi(A)) < 0 ⇒ Zj =
(

Aj − Qj

0 − A∗
j

)

where the iterations can be written as follows

Aj+1 = 1
2

(
Aj + A−1

j

)
, A0 = A; Qj+1 = 1

2

(
Qj + A−1

j QjA−∗
j

)
, Q0 = Q.

The limits of these iterations are A∞ = −In and Q∞ = 2P where P is the solution
of the Lyapunov equation AP + PA∗ = Q.

Often, the constant term in the Lyapunov equation above is provided in factored form
Q = RR∗. As a consequence, it is possible to obtain the solution in factored form.
In particular, the (j + 1)st iterate in factored form is

Qj+1 = Rj+1R∗
j+1 where Rj+1 = 1√

2

[
Rj ,A−1

j Rj

]
⇒ Q∞ = R∞R∗

∞ = 2P

R∞ has infinitely many columns, although its rank cannot exceed n. This can be
avoided by performing at each step a rank revealing RQ factorization RjPj = TjUj

with Pj the permutation matrix and TjPj =
[
∆∗

j , 0
]∗

. ∆j is upper triangular and
UjU∗

j = Ij . Thus, at the jth step, Rj is replaced by ∆j which has as many columns
as the rank of Rj . For accelerating convergence, the eigenvalues of A can be scaled
[3]: at each step, Aj is replaced by 1

γj
Aj where the factors γj can be chosen as

γj = |det(Aj)|
1
n in order to minimize the distance of the geometric mean of the

eigenvalues of Aj from 1.

Convergence of the iteration which uses scaling is quadratic. The time required to
compute the Cholesky factor by MATLAB’s lyapchol function versus the iterative
implementation of the sign function method in [3] is as follows: on a Pentium M at
1.3Ghz with 768MB RAM, lyapchol runs in 0.751s for a matrix A of dimension
242, while the implementation in [3] requires 5.423s and converges in 16 ≈

√
242

steps. Even if, in theory, no scaling should also give quadratic convergence, in prac-
tice, due to numerical issues, convergence occurs after 20 steps.

3.2 Truncation by diagonalization of one gramian or poor man’s truncated
balanced reduction (PMTBR)

For the standard state-space representation, the procedure is the following [1].

1. Compute the gramian to be diagonalized (controllability gramian P in our case)

2. Compute the eigenvalue decomposition of P = VΣV∗

3. Choose the eigenvectors corresponding to the largest k eigenvalues to obtain the
transformation T = V∗

k

4. The reduced system is

Ãss = TAssT∗, B̃ss = TBss, C̃ss = CssT∗, D̃ss = Dss

PMTBR is presented in [10] and uses numerical quadrature to approximate the
gramian P , without solving the Lyapunov equation. The algorithm used in our analy-
sis, however, diagonalizes the exact solution P of the Lyapunov equation. As men-
tioned in Sect. 3.1, the solution to the Lyapunov equation can be computed either by
using the sign function method or by using MATLAB’s lyapchol function.
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3.3 Positive real balanced truncation (PRBT)

Coupled transmission lines such as the one in Fig. 1 are passive systems, with
positive real transfer functions (further information on passivity and positive real-
ness is provided in [1]). We are therefore interested in reduced order models that
are passive. In general, BT is not a passivity preserving method, since the result-
ing reduced system may have a non-positive real transfer function. PRBT, however,
is a passivity preserving method. It yields reduced order models with positive real
transfer functions by simultaneously diagonalizing the positive definite solutions P
and Q of the controllability and observability algebraic Riccati equations respec-
tively. This desirable result cannot be guaranteed with BT, where the solutions to
the Lyapunov equations are diagonalized, rather than the solutions the Riccati equa-
tions. Riccati equations have a different form depending on whether the system is in
standard state-space form or in descriptor form.

Historical note: this method was first introduced by Ober [6] and rediscovered by
Phillips, Daniel and Silveira [9]. For an overview see also [1].

Standard state-space representation
The controllability and observability positive real Riccati equations are:

AssP + PA∗
ss + (PC∗

ss − Bss)∆(PC∗
ss − Bss)∗ = 0 (7)

A∗
ssQ + QAss + (QBss − C∗

ss)∆(QBss − C∗
ss)

∗ = 0 (8)

where ∆ = (Dss + D∗
ss)

−1.
The procedure is the same as for BT (see Sect. 3.1), except that now balancing is
performed on the minimal solutions of the Riccati equations. The diagonal elements
of S in (4) are the positive real singular values of the system, which we denote by
πi: S = diag(π1, . . . πn), where π1 ≥ π2 ≥ . . . ≥ πn.

Descriptor form representation
The corresponding algebraic Riccati equations in descriptor form are

AdsPE∗
ds + EdsPA∗

ds + (EdsPC∗
ds − Bds)∆(EdsPC∗

ds − Bds)∗ = 0 (9)
A∗

dsQ̂Eds + E∗
dsQ̂Ads + (E∗

dsQ̂Bds − C∗
ds)∆(E∗

dsQ̂Bds − C∗
ds)

∗ = 0 (10)

where ∆ = (Dds + D∗
ds)

−1. The observability gramian given by the solution of ( 8)
is obtained via the congruence transformation Q = E∗

dsQ̂Eds.

Balancing and truncation are now performed on the solutions to (9) and (10) and the
procedure follows as in 3.1.

Hamiltonian Riccati Balanced Truncation (PRBT-Ham)
Solutions to Riccati equations ((7),(8)) (or ((9),(10)) for MNA-similar form) can be
obtained using the MATLAB function care. This can be applied to a system in
usual state space form or in descriptor form. An alternative is to solve for P and Q̂
by means of the Hamiltonian eigenvalue problem [11]:
[
Ads − Bds∆Cds − Bds∆B∗

ds

C∗
ds∆Cds − A∗

ds + C∗
ds∆B∗

ds

] [
X
Y

]
=
[
Eds

E∗
ds

] [
X
Y

] [
Λ−

Λ+

]

(11)
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where ∆ = (Dds + D∗
ds)

−1, and Λ−, Λ+ are the Hamiltonian eigenvalues, with
negative and positive real parts respectively (i.e. the stable and antistable spectral
zeros of the system). We can partition X and Y according to the stable and antistable
eigenvalues of the Hamiltonian into

[
X
Y

]
=
[
X− X+

Y− Y+

]

The minimal solutions to (9) and (10) are given by:
P = −X+(Y+)−1E−∗

ds (12)

Q̂ = −Y−(X−)−1E−1
ds (13)

and are the same as the ones resulting from the MATLAB care routine. The sta-
bilizing solution (corresponding to the stable spectral zeros) is Q̂ while P is the
antistabilizing solution (corresponding to the antistable spectral zeros). Both Q̂ and
P are obtained form the same Hamiltonian eigenvalue computation (11). The origi-
nal positive real observability gramian as solution to (8) is Q = E∗

dsQ̂Eds, so the
positive real Hankel singular values are πi =

√
λi(PQ), i.e. the diagonal elements

of X+(Y+)−1Y−(X−)−1. We see that the positive real Hankel singular values can
be computed without any inversion of Eds. The reduction procedure follows as in
Sect. 3.1 using the computed (12) and (13).

If the system is the in usual state space form rather than in descriptor form, Eds in
(11) is simply replaced by I. The resulting solutions P and Q̂ computed as (12) and
(13) respectively, are precisely the positive real gramians solving (7) and (8). They
are also the same as the solutions obtained with the MATLAB care routine in the
usual state space form. The reduction procedure follows as in Sect. 3.3.

NOTE: The gramians used in balanced truncation, i.e. the solutions to the Lyapunov
equations ((2), (3)) (and correspondingly ((5), (6)) for descriptor form) can be
obtained using (11) with ∆ = I, C = 0 (for controllability) and B = 0 (for
observability).

4 Krylov based methods
Krylov based reduction methods exploit the use of Krylov subspace iterations to
achieve system approximation by moment matching [1]. Three such methods are:
PRIMA, the spectral zero method (SZM) and optimal H2. As outlined next, PRIMA
matches k moments at zero by means of an orthogonal projection. SZM matches 2k
moments of the original system, at k stable spectral zeros and their mirror images
(the corresponding k antistable spectral zeros), by means of an oblique projection.
Finally, using an oblique projection, the optimal H2 method matches 2k moments
of the original system at the mirror images of the k poles of the reduced system (2
moments are matched at each pole). Hence an iteration is required.

4.1 PRIMA
For PRIMA, the moments of the transfer function H(s) = L(sC − G)−1B + D
are defined as the coefficients of the Taylor expansion of H(s) around s0 = 0:
H(s) = M0 + M1s + M2s

2 + . . ., where
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M0 = D − LG−1B and Mk = (−1)(k+1)L(C−1G)−(k+1)
C

−1B, for k > 0.

PRIMA computes a kth order reduced system by matching k moments of the original
system. This is achieved by computing the orthogonal projection Π = XkX∗

k such
that X∗

kC
−1GXk = Hk with Hk upper Hessenberg; the column span of Xk is the

same as the column span of:

[C−1B, (C−1G)−1
C

−1B, (C−1G)−2
C

−1B, . . . , (C−1G)−(k−1)
C

−1B].

The procedure is as follows [7].

1. Solve GR = B for R.

2. (X0,T) =QR(R); QR Factorization of R

3. For i = 1, 2, . . . , k
Set V = CXi−1

Solve GX(0)
i = V for X(0)

i

For j = 1, 2, . . . , i

H = X∗
i−jX

(j−1)
i

X(j)
i = X(j−1)

i − Xi−jH
(Xi,T) = QR(X(i)

i ); QR Factorization of X(i)
i

4. Set X = [X0 X1, . . . ,Xi−1] and truncate X so that it has k columns only

5. Compute Ĉ = X∗
CX, Ĝ = X∗GX, B̂ = X∗B and L̂ = LX

4.2 Spectral zero method (SZM)

With PRIMA, system approximation was achieved by matching k moments of the
transfer function at zero. In the general case, using the rational Krylov approach [1],
reduced systems are obtained which match moments at preassigned interpolation
points in the complex plane. SZM is a rational Krylov reduction method, in which
the interpolation points are chosen as a subset of the spectral zeros of the original
system [2], [11]. This selection guarantees the stability and passivity of the reduced
system [2], [11]. The spectral zeros are given by Λ in (11). The real spectral zeros si

come in pairs (si, −si) while the complex spectral zeros come in quadruples of the
form:

si = �(si) + j · �(si),
si+1 = �(si) − j · �(si) = s∗i ,
si+2 = −�(si) + j · �(si) = −s∗i ,
si+3 = −�(si) − j · �(si) = −si,

where without loss of generality, we assume �(si) < 0.

The usual procedure

The usual procedure for obtaining a kth order reduced system with SZM is as fol-
lows.

1. Construct matrices V and W using 2k interpolation points:

V =
[
(s1Eds − Ads)−1Bds, (s2Eds − Ads)−1Bds, · · · , (skEds − Ads)−1Bds

]
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W =

⎡
⎢⎢⎢⎣

Cds(−s1Eds − Ads)−1

Cds(−s2Eds − Ads)−1

...
Cds(−skEds − Ads)−1

⎤
⎥⎥⎥⎦

where si, i = 1, 2, . . . , k are k spectral zeros that we select a priori. In our case,
we selected the spectral zeros which are closest to the real axis.

2. The reduced system: Ẽds = WEdsV, Ãds = WAdsV, B̃ds = WBds, C̃ds =
CdsV, D̃ds = Dds, matches the chosen 2k spectral zeros of the original system,
si and −si, i = 1, . . . , k.

Note: Since no inversion of Eds is involved, the SZM method is also applicable to
systems with singular Eds. Also, the oblique projection that reduces the system is
Π = V̄W̄, where: WEdsV = LU, V̄ = VU−1 and W̄ = L−1W.

Hamiltonian spectral zero method (SZM-Ham)

An alternative way to build V and W is without inverting the matrix siEds − Ads

for each spectral zero si we choose. This is achieved as presented in [11], by solving
the Hamiltonian eigenvalue problem (11).

Once the eigenvectors and eigenvalues of the Hamiltonian are obtained, the spectral
zeros which are closest to the real axis are chosen. Matrices V and W are now
computed from the eigenvectors corresponding to the k chosen spectral zeros:

W∗ = Y∗
k, V = Xk

The reduced system is Ẽds = W∗EdsV, Ãds = W∗AdsV, B̃ds = W∗Bds,
C̃ds = CdsV, D̃ds = Dds.

Note: As for SZM, Eds may be singular, so the SZM-Ham method also applies
to the general case of descriptor systems since it involves no inversion of Eds. We
emphasize that SZM-Ham gives the same reduced model as the usual procedure in
Sect. 4.2, the difference is only in how W and V are computed.

4.3 Optimal H2

The optimal H2 method, as the name suggests, produces reduced order models which
minimize the H2 norm of the error system. The problem formulation follows [4].

Given an n-dimensional single-input, single-output dynamical system in the MNA-
similar form (1) (where C may be singular), with transfer function H(s) = L(sC −
G)−1B, find a stable reduced system of order k < n such that its transfer function
Hk(s) = Lk(sCk − Gk)−1Bk minimizes the H2 error, i.e.:

Hk(s) = arg min
deg(Ĥ)=k

‖ H(s)− Ĥ(s) ‖H2 , ‖ H(s) ‖2
H2

:=
1
2π

∫ ∞

−∞
|H(jω)|2dω

The reduced order model that achieves this is constructed using the iterative rational
Krylov algorithm (IRKA) [4]:

1. Make an initial shift selection σi ∈ C, i = 1, . . . , k



Comparison of Model Reduction Methods with Applications to Circuit Simulation 13

2. Construct W = [ (σ1C
∗ − G∗)−1L∗, · · · , (σkC

∗ − G∗)−1L∗ ] and
V = [ (σ1C − G)−1B, · · · , (σkC − G)−1B ]

3. Repeat:

a) Ck = W∗
CV, Gk = W∗GV

b) σi ←− − λi(Gk, Ck) for i = 1, · · · , k

c) W = [ (σ1C
∗ − G∗)−1L∗, · · · , (σkC

∗ − G∗)−1L∗ ]

d) V = [ (σ1C − G)−1B, · · · , (σkC − G)−1B ]

until
∑k

i=1 |σi − σi| < ε, where σi and σi, i = 1, . . . , k, are the shifts at
iterations j and j + 1 respectively and ε is the desired convergence tolerance.

4. Project the system matrices

Ck = W∗
CV, Gk = W∗GV, Bk = W∗B, Lk = LV

Upon convergence, the reduced order model satisfies the necessary H2 optimality
conditions:

H(−λ̂i) = Hk(−λ̂i),
d

ds
H(s) |s=−λ̂i

=
d

ds
Hk(s) |s=−λ̂i

i = 1, . . . , k,

where λ̂i are the eigenvalues of (Gk, Ck) (Ritz values). The reduced system there-
fore matches 2k moments of the original at the mirror images of the reduced order
poles. Initial shifts σi can be arbitrarily chosen and influence the convergence rate.
Since this algorithm produces a locally optimal reduced model, some initial shifts
may not lead to convergence. Future work will investigate the optimal choice of
initial shifts, how they influence the convergence rate of the Ritz values and the
approximation error of the resulting reduced model.

Note: If the initial shift selection in step 1. is a subset of the spectral zeros of the
original system, reducing the system directly after step. 2. makes optimal H2 equi-
valent to SZM. The resulting reduced system will, however, not be optimal in the H2

norm. H2 norm optimality is guaranteed only through the iterative procedure; this
however cannot guarantee passivity for the reduced model like SZM does.

Table 1: Classification of all methods
Reduction Method Type Iterative Moments Matched Projection

Balanced truncation (BT) Gramian based No - Oblique
One Gramian Method (PMTBR) Gramian based No - Orthogonal

Riccati Balanced Truncation (PRBT) Gramian based No - Oblique
Hamiltonian Riccati

Balanced Truncation (PRBT-Ham)
Gramian based No - Oblique

PRIMA Krylov based No k moments at 0 Orthogonal
Spectral Zero Method (SZM) Krylov based No 2k spectral zeros Oblique

Hamiltonian
Spectral Zero Method (SZM-Ham)

Krylov based No 2k spectral zeros Oblique

OptimalH2 Krylov based Yes
2k moments

at mirror images of
reduced order poles

Oblique

A classification of all methods used in our analysis is presented in Tab. 1.
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5 Comparison of all methods: performance

A first indication of how easily these systems can be approximated is given by the
Hankel singular values and the positive real Hankel singular values. Figure 2 shows a
logarithmic plot of the normalized Hankel singular values and the eigenvalues of the
gramians for the system associated with the circuit in Fig. 1 with N = 61 sections,
resulting in n = 242 states. The eigenvalues of P and Q decay at about the same rate.
The Hankel singular values and the positive real Hankel singular values (see Sect.
3.1 and 3.3) also decay at about the same rate, but not as fast as the controllability
or observability gramian eigenvalues.

Since the gramian eigenvalues decay much faster than the Hankel singular values,
a reduction method which balances the system by diagonalizing only one gramian
seems justifiable. However, as will be shown in Sect. 6, the decay rate of the gramian
eigenvalues do not provide sufficient information for the efficiency of the reduction
algorithm. For example, a method that balances the system by simultaneously dia-
gonalizing both gramians is more efficient, even though it exploits the slower decay
rate of the Hankel singular values. The relative H∞ and H2 norms of the associated
error systems in Sect. 6 support the above statement.

Fig. 2: Hankel singular values, positive real Hankel singular val-
ues, eigenvalues of P , eigenvalues of Q.

Fig. 2 also shows the trade-off between accuracy and complexity [1]. Choosing a
larger order k of the reduced system by truncating the last n−k states gives a smaller
approximation error. In particular, for an error of 10%, one needs to keep about half
the states, namely 120. We conclude that our circuit is difficult to approximate as the
decay of both Lyapunov and Riccati Hankel singular values is slow.

We further investigate whether the properties of the original system are preserved.
We would like to check which of the methods used produce a reduced system which
is controllable, observable, stable and passive.

Controllability and observability are equivalent to the controllability and observabil-
ity gramians P and Q having full rank. Stability is equivalent to all poles lying in
the left half plane. Passivity is ensured by the nonexistence of spectral zeros on the
jω axis.
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Starting from an initial system with N = 61 sections (n = 242 states), both reduced
systems (k = 11 and k = 21) preserve the same characteristics.

Table 2: Preservation of Controllability, Observability, Stability and Passivity for each Reduction Method

Reduction Method Controllable Observable Stable Passive

Balanced truncation (BT) Yes Yes Yes Yes
One Gramian Method (PMTBR) Yes Yes Yes Yes

Riccati Balanced Truncation (PRBT) Yes Yes Yes Yes
Hamiltonian Riccati

Balanced Truncation (PRBT-Ham)
Yes Yes Yes Yes

PRIMA No No Yes Yes
Spectral Zero Method (SZM) Yes Yes Yes Yes

Hamiltonian
Spectral Zero Method (SZM-Ham)

Yes Yes Yes Yes

OptimalH2 Yes Yes Yes Yes

Tab. 2 shows that all methods produce controllable and observable reduced sys-
tems, except for PRIMA. However, all reduced systems are stable. Even though only
PMTBR, PRBT, PRIMA and SZM are passivity preserving methods for MNA rep-
resentations, all the methods preserve passivity for our system.

Table 3: Relative norms of the error systems, k = 21, k = 11

Reduction Method
N = 61, n = 242

H∞
k = 21

H2

k = 21
H∞

k = 11
H2

k = 11

Balanced Truncation (BT) 0.4746 0.4230 0.5409 0.4599
One Gramian (PMTBR) 0.7204 0.5284 0.5867 0.5322

Riccati Balanced Truncation (PRBT) 0.5247 0.5318 0.6486 0.7068
Hamiltonian Riccati Balanced Truncation (PRBT-Ham) 0.5247 0.5318 0.6486 0.7068

PRIMA 0.8519 0.6762 0.8147 0.8134
Spectral Zero Method (SZM) 0.6498 0.7259 0.6946 0.8392

Hamiltonian Spectral Zero Method (SZM-Ham) 0.6498 0.7259 0.6946 0.8392
OptimalH2 0.3554 0.2676 0.3561 0.2909

To assess the performance of these methods, Tab. 3 collects the relative norms of
the error systems, that is ‖Σorig−Σk‖

‖Σorig‖ . The surprising result in Tab. 3 is that optimal
H2 yields the smallest relative error both in the H∞ and H2 norms; it is superior
for instance to BT, which is usually considered as the overall best approximation
method. From Tab. 3, it is also evident that relative errors for PRBT and PRBT-Ham
are identical. The same holds for SZM and SZM-Ham. This shows that SZM and
PRBT are equivalent to their Hamiltonian counterparts respectively. Reduction by
diagonalizing one gramian method yields the best approximant out of all the pas-
sivity preserving methods. PRIMA gives a reduced system which approximates the
original one very well for low frequencies (much better than any other method). This
is a consequence of the fact that the expansion point in the Arnoldi algorithm is the
origin.

The H∞ norm of a stable system is the maximum singular value of the transfer
function or the value of the highest peak in the frequency response plot. Notice that,
in case of one gramian and PRIMA, a larger dimension of the reduced system does
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not yield a smaller H∞ relative norm of the error system: the value for the reduced
system of size k = 21 is larger than the value obtained for the reduced system of
size k = 11. This could be explained by the fact that a higher dimension of the
reduced system yields peaks of higher amplitude. The H2 norm of a stable SISO
system with the D term equal to 0 is a measure of the area frequency response over
the entire frequency range. Notice that there is no norm which captures all aspects of
the reduced system. The ones used here are the most popular.

Table 4: Elapsed Times

Reduction Method
N = 61, n = 242

Elapsed Time (s)
k = 21

Elapsed Time(s)
k = 11

Balanced Truncation (BT) 1.915538 1.956464
One Gramian (PMTBR) 0.972908 0.974607

Riccati Balanced Truncation (PRBT) 65.47625 66.20935
Hamiltonian Riccati Balanced Truncation (PRBT-Ham) 39.64582 40.97727

PRIMA 0.355047 0.189727
Spectral Zero Method (SZM) 12.208282 8.749104

Hamiltonian Spectral Zero Method (SZM-Ham) 5.017118 4.746759
OptimalH2 136.5 111.35

Elapsed times are useful for comparing the computational cost of each method ver-
sus the quality of the resulting reduced system. The computational times in Tab. 4
were obtained on a Pentium M at 1.3Ghz with 768MB RAM. The most expensive
method is optimal H2; it requires a certain number of iteration steps to converge,
depending on the initial shift selection. PRBT is also expensive, when implemented
using MATLAB’s care function for obtaining the positive definite solutions to the
algebraic Riccati equations. On the other hand, PRIMA is the most computation-
ally efficient, having the complexity of an iterative Arnoldi algorithm. This is more
computationally efficient than performing eigenvalue decompositions, singular value
decompositions or solving the Lyapunov or algebraic Riccati equations, which are
needed in the other reduction methods.

Another aspect worth noticing in Tab. 4 is that, indeed, for the spectral zero method,
computing the projectors from the eigenvectors of the Hamiltonian matrix (SZM-
Ham) requires about half the time needed to compute the projectors by inverting the
matrix siEds − Ads for each spectral zero si we choose (SZM). A similar perfor-
mance improvement is achieved when the Riccati solutions in PRBT were computed
with the Hamiltonian eigenvalue problem (PRBT-Ham) rather than with the MAT-
LAB care routine (PRBT). Considering that relative error norms for PRBT and
PRBT-Ham are identical (the same holds for SZM and SZM-Ham), we conclude
that performing PRBT (and SZM) via the Hamiltonian approach is more efficient.

Also, from Tab. 4 we notice the small difference between elapsed times for the two
reduced dimensions (k = 21 and k = 11), since most of the computational effort is
used in computing the projectors, not in obtaining the reduced systems themselves.
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6 Comparison of all methods: plots

We first provide pairwise comparisons of error systems resulting from applying each
reduction procedure on the circuit in Fig. 1. Next, the preservation of stability and
passivity is shown in the distributions of poles and spectral zeros for the original and
each reduced system (Figs. 13-18). Figures for methods PRBT-Ham and SZM-Ham
are omitted, because they are identical to figures for PRBT and SZM respectively.
The original system has n = 242 states (resulting from N = 61 sections) and we
reduce it to dimension k = 21.

6.1 Error systems

Fig. 3 shows the frequency response of the original system together with all reduced
systems. Fig. 4 shows the frequency response of the systems obtained by taking the
difference between the original and each of the reduced systems.

Comparing the errors for BT and PRBT in Fig. 5 shows that the first one is a better
approximant of the original system since the error plot is almost always below the
error plot for PRBT. However, we notice that the shapes of the plots are almost the
same, with the second one shifted up by a few decibels.

Comparing the error systems for PRBT and PRIMA in Fig. 6 shows that, even though
PRIMA gives small error for low frequencies, PRBT performs better in the middle
range, where the response is harder to capture because of the large number of oscil-
lations.

Comparing BT with PMTBR essentially means comparing diagonalization of only
one gramian versus simultaneous diagonalization of both controllability and observ-
ability gramians. Fig. 7 shows that BT gives a smaller approximation error. Diago-
nalizing both gramians therefore leads to a better approximation than diagonalizing
only one gramian. This is because after simultaneous diagonalization, truncation is
performed on states that are equally difficult to reach and to observe.

From Fig. 8, it is clear that the spectral zero method performs comparably to balanced
truncation. The advantage of the spectral zero method over balanced truncation is that
it guarantees the passivity of the reduced system, irrespective of whether the system
is in MNA-similar form. As shown in figures 9 and 10, the spectral zero method also
performs similarly to the other two passivity preserving methods, one gramian and
PRIMA.

Inspecting Fig. 22, we emphasize that with randomly chosen initial shifts, optimal
H2 yields an approximation error smaller than BT. Fig. 11 shows that optimal H2

gives a smaller approximation error than PRIMA, except for low frequencies, as
expected. Optimal H2 also provides a better approximant than SZM, as seen from
Fig. 12.
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Fig. 3: Frequency response of original and all
reduced systems

Fig. 4: Error for all reduced systems

Fig. 5: Error systems: Balanced truncation
and Positive Real Balanced Truncation

Fig. 6: Error systems: Positive Real Balanced
Truncation and PRIMA

Fig. 7: Error systems: Balanced truncation
and One Gramian

Fig. 8: Error systems: Balanced truncation
and Projection using spectral zeros
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Fig. 9: Error systems: One Gramian and Pro-
jection using spectral zeros

Fig. 10: Error systems: PRIMA and Projec-
tion using spectral zeros

  

 

Fig. 11: Error systems: Optimal H2 and
PRIMA

Fig. 12: Error systems: Optimal H2 and Spz
method

6.2 Poles and spectral zeros of reduced systems

The following figures show the location of poles and spectral zeros of the original,
stable and passive system together with the poles and spectral zeros of each reduced
system. As already indicated in Tab. 2, all reduction methods yielded stable and
passive reduced order systems. This is shown in Figs. 13-18, where the poles of all
reduced system lie in the left half plane and the spectral zeros of all reduced systems
are located away from the jω axis.

No spectral zero matching or similarity in pole distribution occurs for reduced mod-
els obtained with BT, one gramian or PRBT, as seen from Figs. 13, 14 and 15. In
particular, Fig. 13 shows that poles and spectral zeros resulting from BT are scat-
tered, while in Fig. 14, the poles and spectral zeros from one gramian are clustered
close to the jω axis. Spectral zeros resulting from PRBT are aligned along some of
the spectral zeros of the original system, as seen in Fig. 15.
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However, comparing Figs. 16, 17, and 18, we identify a similarity between the dis-
tribution of spectral zeros and poles resulting from PRIMA, SZM, and optimal H2

respectively. The poles of these reduced systems follow a pattern, being located
close to the real axis. Furthermore, the spectral zeros resulting from optimal H2,
match some of the spectral zeros of the original system, similarly to the spectral zero
method and PRIMA.

Fig. 16 shows that PRIMA preserves some of the poles as well as some of the spectral
zeros of the original system. This is the only method for which some poles of the
reduced system are close to the poles of the original system.

In Fig. 18, as expected, the spectral zeros of the reduced system match the chosen
spectral zeros of the original system with smaller imaginary parts.
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Fig. 13: Spectral zeros and poles for original
system and reduced with Balanced truncation

Fig. 14: Spectral zeros and poles for original
system and reduced with One Gramian
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Spectral zeros and poles: Positive Real Balanced truncation
n = 242, k = 21
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Fig. 15: Spectral zeros and poles for origi-
nal system and reduced with Riccati Balanced
truncation

Fig. 16: Spectral zeros and poles for original
system and reduced with PRIMA
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Spectral zeros and poles: Original and Spz method (Lanczos with Hamiltonian)
n = 242, k = 21
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Fig. 17: Random initial shifts: Poles and
Spectral zeros of original system and reduced
with Optimal H2

Fig. 18: Spectral zeros and poles of origi-
nal and reduced with projection using spectral
zero selection

7 Optimal H2 results: errors, convergence and initial shifts
We compare reduced order models obtained with balanced truncation and optimal
H2, since these methods yield the smallest relative H2 error norms. We approximate
the initial order n = 242 system with reduced models of orders k = 21 and k = 11.
The corresponding relative error norms are found in Tab. 3, Sect. 5. From these
results, it is clear that optimal H2 is the overall best method with respect to both
relative error norms: H∞ and H2.

The selection of initial shifts can be determined to influence the convergence rate, the
approximation error and the distribution of poles and spectral zeros for the reduced
system. Results were obtained for two different sets of initial shifts: the poles result-
ing from BT and randomly generated complex shifts. The table below summarizes
the number of iterations needed for IRKA to converge, with a threshold difference
of 10−4 between successively generated shifts. Choosing random complex numbers
as initial shifts yielded convergence which was almost twice as fast.

Intial Shift Choice Red. order: k = 21 Red. order: k = 11
Poles from BT 49 steps 85 steps

Random complex 28 steps 47 steps

1. n = 242, k = 21

Figs. 19-22 show that the reduced system obtained with optimal H2 using ran-
domly generated shifts approximates the original system more accurately than
when the initial shifts are the poles of the reduced system obtained from bal-
anced truncation. The error systems in Fig. 22 show that when initial shifts are
randomly chosen, optimal H2 yields a better approximant than BT. This is not
the case when initial shifts are the poles from BT, as seen from the error systems
in Fig. 21. Additionally, when the initial shifts are randomly chosen, some of the
spectral zeros of the reduced system closely match spectral zeros of the original
system, as shown in figure 24. This appealing behavior is not present in Figure
23, where the initial shifts are the poles resulting from BT: no spectral zeros are
matched and the corresponding approximation error is larger.
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Fig. 19: BT poles as initial shifts: Frequency
response of original and reduced systems

Fig. 20: Random intial shifts: Frequency
response of original and reduced systems

Fig. 21: BT poles as initial shifts: Error sys-
tems Fig. 22: Random initial shifts: Error systems
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Fig. 23: BT poles as initial shifts: Poles and
Spectral zeros of original system and reduced
with Optimal H2

Fig. 24: Random initial shifts: Poles and
Spectral zeros of original system and reduced
with Optimal H2
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2. n = 1002, k = 71

Promising results for optimal H2 were also obtained on a system of dimension
n = 1002 (N = 251). As shown in Figs. 25 and 26, the reduced model of
dimension k = 71 clearly approximates the original more accurately than the
reduced model obtained with BT. Again, optimal H2 is superior to BT with
respect to both relative error norms, H2 and H∞.

Reduction Method: n = 1002, k = 71 H∞ H2

Balanced Truncation 0.1488 0.1124
OptimalH2 0.09467 0.06408

Fig. 25: Random initial shifts: Frequency
response: original, reduced with balanced
truncation and Optimal H2

Fig. 26: Random initial shifts: Error systems
for balanced truncation and Optimal H2

8 Conclusion and further research
This paper compares several model reduction methods used in circuit simulation, in
particular for systems in invertible descriptor form. The methods are grouped in two
categories, gramian and Krylov based respectively. Theoretical considerations for all
methods are outlined, and their performance is evaluated by reducing the dynami-
cal system of a coupled transmission line. Approximation error and computational
cost analysis for each method shows that while some methods yield better reduced
systems, others are computationally cheaper. Furthermore, not all methods that yield
small relative approximation errors preserve important properties of the original sys-
tem, such as controllability, observability or passivity.

Optimal H2 is the overall best in terms of both relative H∞ and H2 norms, but
requires the highest computational complexity and cannot guarantee passivity for
the reduced system. It can also be applied to the general class of descriptor systems,
where C in (1) may be singular. Further research is needed for determining how the
choice of initial shifts in optimal H2 influences the distribution of poles and spectral
zeros of the reduced system and the convergence rate.
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Among passivity preserving methods, SZM provides the best trade-off between
approximation error, computational cost, and preservation of stability and passiv-
ity. Furthermore, SZM can be applied to the general class of descriptor systems.
However, determining the optimal selection of spectral zeros in SZM is an open
problem.

SZM overcomes the limitations of PRIMA: controllability and observability loss for
the reduced system (due to possible pole-zero cancelations) and larger approxima-
tion error for high frequencies. PRIMA however provides the best fit for low fre-
quencies from all methods considered. SZM is also computationally cheaper than
PRBT. PRBT on the other hand yields an approximation error comparable to BT and
has the benefit of preserving passivity.

Since our analysis is conducted on a SISO circuit with invertible descriptor form (C
in (1) was invertible), a further step would be to reproduce these results for a system
in general descriptor form, where C is singular, partly using the work in [5]. Applying
these reduction methods on a MIMO network is currently under investigation.
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