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Preface

The sixth international conference on Scientific Computing in Electrical Engi-
neering (SCEE) was another event in the SCEE series, aiming to bring together
scientists from universities and industry with the goal of intensive discussions
about modeling and simulation of electronic circuits and electromagnetic fields.
It was held in Sinaia, Romania, from 17th to 22nd September 2006 and it was
endorsed by Philips Research Laboratories, Eindhoven (http://www.philips.nl), Infi-
neon Technologies from Munich (http://www.infineon.com), ST Microelectronics
(http://www.st.com), Computer Simulation Technology (http://www.cst.com), IEEE
Romania Section (http://www.ieee.ro), Romanian Ministry of Education and
Research by the CEEX program (http://www.mct-excelenta.ro).

The history of SCEE begun in 1997, as a national German meeting held in Darmstadt
and then in Berlin (1998), both under the auspices of the DMV (Deutscher Math-
ematiker Verein). In 2000, the first truly international workshop was organized in
Warnemünde by the University of Rostock, Germany (http://www.scee-2000.uni-
rostock.de/). In 2002, the 4th SCEE conference was jointly organized by the
Eindhoven University of Technology (TU/e) and Philips Research Laboratories
Eindhoven, The Netherlands (http://www.win.tue.nl/scee2002/). In 2004, the 5th
SCEE conference took place in Capo D’Orlando, Italy, organized by Universita
di Catania and Consorzio Catania Ricerche (http://www.dmi.unict.it/scee2004/).
A SCEE Summer School on Computational methods for microelectronics was orga-
nized in 2005 as a follow up of the SCEE04 conference (http://unict.it/sceeschools).
The 6th conference was organized by “Universitatea Politehnica din Bucuresti (UPB),
Centrul de Inginerie Electrica Asistata de Calculator (CIEAC) - Laboratorul de Metode
Numerice (LMN)” in Sinaia, Romania (http://www.scee06.org/).

As on all previous occasions, the conference was supported both from the indus-
trial sector and academia, thus being guaranteed the relevance of work to practical
situations and challenging open problems.

One of the main aims of the SCEE events is to strengthen the interaction between
electrical or electronic engineers and the mathematics community. This aim is also



VI Preface

illustrated by the SCEE logo which has some lines that might be interpreted as field
lines or wave fronts and part of a bracket which stands for mathematical bracket but
also symbolizes the idea of connecting together several communities mathemati-
cians and engineers, university and industry. This logo was designed by Ramona
Weyde-Ferch for SCEE 2000.

The conference provided an excellent opportunity to the European Community
for project meetings (www.chameleon-rf.org, www.comson.org) or to discuss new
research projects in the EU seventh research program FP7.

The conference topics were: Computational Electromagnetics (Modelling and
parameter extraction, Discretization and Solution Methods, Applications :Antennas,
Microwave, Interconnects and on-chip passive structures), Circuit Simulation and
Design (Reduced Order Modeling, Numerical Integration Techniques, TCAD/EDA
tools and techniques, Applications: Radio Frequency, Power Electronics,Optical
Networks), Coupled Problems (Field-circuit coupled problems, Multi-physics
(coupling, Coupling with electrical, thermal and mechanical problems, Applica-
tion: Co-Simulation, Electromagnetic Compatibility, Bio-engineering), Mathemat-
ical and Computational Methods (Inverse Problems, Optimization, Multi-Scale
Schemes, Solutions methods for large linear systems, Differential-Algebraic Equa-
tions, Grid Computing, Grid Computing).

The Program Committee consisted of:

- Prof. A. M. Anile - Universita di Catania, Italy

- Dr. A. Bossavit - Ecole Superiore delectricite Gif sur Yvette, France

- Assoc. Prof. Dr. G. Ciuprina - Univ. Politehnica din Bucuresti, Romania

- Dr. U. Feldmann - Infineon Technologies AG, Germany

- Prof. Dr. M. Günther - Bergische Universitat Wuppertal, Germany

- Prof. Dr. D. Ioan - Univ. Politehnica din Bucuresti, Romania

- Prof. Dr. U. Langer - Johannes Kepler Univ., Austria

- Dr. E. J. W. ter Maten - Philips Research, The Netherlands

- Prof. Dr. U. van Rienen - Univ. Rostock, Germany

- Prof. Dr. W. H. A. Schilders - Philips Research, Eindhoven Univ. of Technology,
The Netherlands

- Prof. Dr. T. Weiland - Technische Univ. Darmstadt, Germany

The Program Committee selected invited speakers from industry and academia
for each of the four topics. Thus, SCEE 2006 was honoured by the presence of the
following invited speakers:
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• Prof. Athanasios C. Antoulas, (Rice University - Electrical and Computer Engi-
neering Dpt. ECE, Houston, Texas - USA): “Approximation of large-scale dy-
namical systems: An overview and some new results”;

• Dr. Janne Roos, (Helsinki University of Technology, Circuit Theory Lab -APLAC
- Finland): “Overview of Circuit-Simulation Activities at TKK CTL”;

• Prof. Luis Miguel Silveira, (Technical University of Lisbon (IST), School of
Engineering, Department of Electrical and Computer Engineering, INESC-ID,
Lisbon - Portugal): “Outstanding Challenges in Model Order Reduction”;

• Dr. Francois Henrotte, (RWTH - Aachen University - Institut fur Elektrische
Maschinen, Germany): “The energy viewpoint in computational electromagnet-
ics”;

• Dr. Irina Munteanu, (CST - Germany): “RF & Microwave Simulation with the
Finite Integration Technique - From component to system design”;

• Dr. Herbert De Gersem, (Technical University Darmstadt, Computational Elec-
tromagnetics Lab. - TEMF - Germany): “Transient field-circuit coupled models
with switching elements for the simulation of electric energy transducers”;

• Dr. Andrea Marmiroli, (STMicroelectronics, - Italy): “Technology and Device
modelling in micro and nanoelectronics: current and future challenges”;

• Prof. Barbara Wohlmuth, (Stuttgart University - Institut fur Angewandte Analy-
sis und Numerische Simulation IANS - Germany): “Advances in Mathematical
and Computational Methods Applied in Electrical Engineering”;

• Prof. Piet Hemker, (Centre for Mathematics and Computer Science - CWI, Dpt.
Modelling, Analysis and Simulation, Amsterdam, Univ. of Amsterdam, Dpt. of
Mathematics, - The Netherlands): “Space mapping and defect correction for effi-
cient optimization:.

Overall, there were about 100 contributions (40 oral presentations and 60 posters)
including the talks of the Invited Speakers. As in previous editions, there were
sessions dedicated to short oral introduction of poster, where each contributor was
given two minutes to advertise his/her work.

It has always been the policy of these conferences to encourage participants from all
countries, and this conference has been remarkably succesfull, there were about 90
participants from 14 countries. This confirmed that SCEE 2006 was a truly interna-
tional event.

The papers appearing in this book represent a selection of papers presented at the
conference. Each paper was carefully referreed by two or three referees chosen by
the Program Committee. The Program Commitee supervised the reviewing iterative
process, aiming to improve the published form of the articles.
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The selected papers have been organized according to the scientific area. Therefore,
there are four parts, respectively devoted to Coupled Problems, Circuit Simulation,
Electromagnetism and General Mathematical Computational Methods.

We would like to thank the referees of the papers who have spent a lot of time in order
to ensure a high quality scientific level of the papers in this book and also to their
effort to help us in completing the reviewing process according to the time schedule.

The local organizing committee is greatly indebted to the financial support received
from the sponsors and to all the people whose enthusiasm and hard work ensured the
success of the conference. Special thanks go to Prof. Mihai Iordache, the Dean of
the Electrical Engineering Faculty of the Politehnica University of Bucharest for his
constant and precious support. Finally, we would like to thank Ph.D. students Diana
Mihalache and Alexandra Stefanescu for the care they have shown in assembling all
the information into this book.

Bucharest, Gabriela Ciuprina
March, 2007 Daniel Ioan
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Coupled Problems



Comparison of Model Reduction Methods
with Applications to Circuit Simulation∗

Roxana Ionutiu, Sanda Lefteriu, and Athanasios C. Antoulas

Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
rlonutiu@rice.edu, slefteri@rice.edu, aca@rice.edu

Summary. We compare different model reduction methods applied to the dynamical sys-
tem of a coupled transmission line: balanced truncation (BT), truncation by balancing one
gramian (or PMTBR - poor man’s truncated balanced reduction), positive real balanced trunca-
tion (PRBT) and its Hamiltonian implementation (PRBT-Ham), PRIMA, spectral zero method
(SZM) and its Hamiltonian implementation (SZM-Ham), and finally, optimal H2. Their per-
formance is analyzed in terms of several criteria such as: preservation of controllability,
observability, stability and passivity, relative H2 and H∞ norms, and the computational cost
involved.

1 Introduction
This paper presents different reduction methods together with results obtained by
applying each method on a dynamical system given by a coupled transmission line.
In Sect. 2, a modified nodal analysis (MNA)-similar representation of the system is
derived. The model reduction methods are grouped in two main categories, gramian
based and Krylov based, discussed in sections 3 and 4 respectively. Sect. 3 outlines
the theory behind gramian based reduction methods: BT, PMTBR and PRBT. Krylov
based reduction methods PRIMA, SZM and optimal H2 are described in Sect. 4. In
Sect. 5 we compare all methods in terms of: preservation of some important proper-
ties like controllability, observability, stability and passivity, the relative H2 and H∞
norms and in terms of the computational cost. In Sect. 6, error systems resulting
from different methods are compared. This allows us to identify frequency ranges
where one particular method approximates the original system more accurately. Sect.
7 presents additional results obtained with the optimal H2 method. Finally, Sect. 8
summarizes our analysis and motivates further research.

2 State-space representation

The model reduction problem of transmission lines has been studied extensively,
see for instance [8]. Our system consists of two transmission lines with inductive
∗ This work was supported in part by the NSF through Grants CCR-0306503, ACI-0325081,

and CCF-0634902. Invited Paper at SCEE-2006
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Fig. 1: Two coupled transmission lines

coupling as shown in Fig. 1. Each section consists of an inductor and its associated
resistor, in series with a capacitor and its associated resistor. The first section has no
inductor. All capacitor values Ci are equal. The same holds for the inductors Li, the
coupling inductors Mij , the resistors associated with the capacitors RCi

, the resistors
associated with the inductors RLi

and the input resistors, R1 and R2.

To simulate this circuit, the state-space representation of the system needs to be
derived. Choosing the state variables as the currents through the inductors and the
voltages across the capacitors, we obtain a system of order n = 4N − 2, where N
is the number of sections of the circuit. The state-space representation in modified
nodal analysis (MNA)-similar form is the following:

Cẋ(t) = Gx(t) + Bu(t)
y(t) = Lx(t) + Du(t)

}
(1)

where C ∈ R
n×n, G ∈ R

n×n, B ∈ R
n×2, L ∈ R

2×n, D ∈ R
2×2 and x(t) ∈ R

n,
u(t) ∈ R

2, y(t) ∈ R
2.

The problem will be studied under the following simplifying assumptions:

(1) the equations are in an MNA-similar form so that the resulting C matrix in (1) is
nonsingular and positive definite (this means that all variables are state variables
and none is redundant). In general, C resulting from circuit simulation is sin-
gular, due to additionally generated variables at the nodes between Li and RLi

.

(2) The transmission line has one input and one output, that is u2 = 0 and only y1

is observed, so that u = u1 and y = y1.

These assumptions are made to ease certain technical issues and allow a comparison
of all reduction methods enumerated above; for instance, the optimal H2 method is
currently available for single-input-single-output (SISO) systems only. None of these
assumptions is essential for the validity of the results presented. Similar results for
a system with MNA equations (where C is singular), using in part results from [5],
will be reported in a future analysis.
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For simplicity we will show the form of the equations by deriving them for N = 3
sections, namely for a circuit with 6 capacitors and 4 inductors, resulting in 10 states.
In particular, the elements of the first line, from left to right will be

R1, C1, RC1 ; L1, RL1 , C2, RC2 ; L2, RL2 , C3, RC3 ,
and those of the second line from left to right

R2, C4, RC4 ; L3, RL3 , C5, RC5 ; L4, RL4 , C6, RC6 .
The state variables are:

xC1 , xL1 , xC2 , xL2 , xC3 ,xC4 , xL3 , xC5 , xL4 , xC6 ,
and the state is chosen as:

x =
(

xC

xL

)
, xC =

⎛
⎜⎜⎜⎜⎜⎜⎝

xC1

xC2

xC3

xC4

xC5

xC6

⎞
⎟⎟⎟⎟⎟⎟⎠

, xL =

⎛
⎜⎜⎝

xL1

xL3

xL2

xL4

⎞
⎟⎟⎠ .

The associated system matrices are2:

C =
(

C̃ 0
0 L̃

)
, G =

(
−RC Ẽ

−Ẽ
∗ − RL

)
, B =

(
1

R1
0 0 0 0 0 0 0 0 0

)∗
,

L = −B∗ and D = 1
R1

, where:

C̃ = diag(C1, C2, C3, C4, C5, C6), L̃ =

⎛
⎜⎜⎝

L1 M13

M13 L3

L2 M24

M24 L4

⎞
⎟⎟⎠ and

Ẽ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0
1 0 −1 0
0 0 1 0
0 −1 0 0
0 1 0 −1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
RC = diag( 1

R1
+ 1

RC1
, 1

RC2
, 1

RC3
, 1

R2
+ 1

RC4
, 1

RC5
, 1

RC6
)

RL = diag(RL1 , RL3 , RL2 , RL4 ).

The values of the elements used in the simulation are as follows: the input resistors
are R1 = R2 = 10Ω, the capacitors are Ci = 5.4 · 10−12F and the associated
resistors RCi

= 103Ω, (i = 1, . . . , 6), the inductors are Li = 0.25 · 10−9H, (i =
1, . . . , 4), the mutual inductors are Mij = 0.2Li (i = 1, 2, j = 3, 4) of that value.
The associated resistors are zero RLi

= 0, (i = 1, . . . , 4).

3 Gramian based methods

Gramian based methods involve diagonalization of gramians by congruence. These
can either be the positive definite solutions to the Lyapunov equations (called con-
trollability and observability gramians) or the positive definite solutions to alge-
braic Ricccati equations (called positive real controllability and observability grami-
ans). The methods that we discuss are balanced truncation (BT) in Sect. 3.1 which

2 For a matrix M, M∗ denotes transposition followed by complex conjugation if the matrix
is complex.
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performs simultaneous diagonalization of the controllability and the observability
gramians, an equivalent of poor man’s truncated balanced reduction (PMTBR) in
Sect. 3.2 in which only one of the gramians is diagonalized and positive real balanced
truncation (PRBT) in Sect. 3.3 in which positive definite solutions to the algebraic
Ricatti equations are simultaneously diagonalized.

3.1 Balanced truncation (BT)

The idea behind balanced truncation is to simultaneously diagonalize the two infinite
gramians, P and Q [1]. These are the solutions to the controllability and observability
Lyapunov equations respectively, which are associated with the state space formua-
tion (1). The mathematical model of the system may come in two representations:
standard state-space and MNA-similar representation (or invertible descriptor form),
respectively. We describe the application of model reduction methods for both cases
of models.

Standard state-space representation

The standard state-space representation (Ass,Bss,Css,Dss) is obtained from (1)
by inverting the C matrix.

Ass = C
−1G,Bss = C

−1B,Css = −B∗,Dss = D

The controllability and observability gramians are given by the symmetric positive
definite solutions to the controllability and observability Lyapunov equations:

AssP + PA∗
ss + BssB∗

ss = 0 (2)
A∗

ssQ + QAss + C∗
ssCss = 0 (3)

BT is performed in two steps. First, the balancing projection is computed (both
gramians become equal and diagonal, with the Hankel singular values (HSVs) on
the diagonal). Second, the states which are equally difficult to reach and to observe
are truncated. This amounts to eliminating the states corresponding to the HSVs
which are below a certain tolerance. Setting a tolerance for the reduced system a
priori defines the number of states to be kept. The procedure is the following.

1. Compute the Cholesky factors of P = UU∗ and Q = LL∗

2. Compute the singular value decomposition of the product U∗L
U∗L = ZSY∗ (4)

The diagonal elements: S = diag(σ1, . . . σn), σ1 ≥ σ2 ≥ . . . ≥ σn, where
σi =

√
λi(PQ) are the Hankel singular values of the system. Choosing only

the first k singular values and the first k columns of Z and Y gives the reduced
system of order k after applying the projection Π

3. Π = VW∗ where V = UZkS
− 1

2
k , V ∈ R

n×k, W = LYkS
− 1

2
k , W ∈ R

n×k

4. Compute the representation of the reduced system:
Ãss = W∗AssV, B̃ss = W∗Bss, C̃ss = CssV, D̃ss = Dss

The corresponding diagonalized controllability and observability gramians are given
by P̃ = W∗PW = Sk, Q̃ = V∗QV = Sk where Sk is the matrix containing the
largest k HSV’s on the diagonal.
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Descriptor form representation

The MNA-similar representation is precisely (1). For simplicity, we rename the
matrices in (1) to match the standard descriptor system representation:3

Eds = C,Ads = G,Bds = B,Cds = L,Dds = D

The gramians are now the solutions to the following Lyapunov equations:

AdsPE∗
ds + EdsPA∗

ds + BdsB∗
ds = 0 (5)

A∗
dsQ̂Eds + E∗

dsQ̂Ads + C∗
dsCds = 0, (6)

where P in (5) is precisely the solution of (2), while the original observability
gramian corresponding to the solution of (3) is obtained by means of the

congruence transformation Q = E∗
dsQ̂Eds

The balancing and truncation procedures follow as described in Sect. 3.1, where (4)
is replaced by:

U∗EdsL = ZSY∗

The system representation in the new basis now becomes:

Ẽds = W∗EdsV = Ik, Ãds = W∗AdsV,

B̃ds = W∗Bds, C̃ds = CdsV, D̃ds = Dds.

Gramians P and Q are simultaneously diagonalized as mentioned in Sect. 3.1.

Solving the Lyapunov equation

There are many methods for solving the Lyapunov equation AP + PA∗ = Q [1].
We will use the so-called square-root method, which directly computes U such that
P = UU∗. In MATLAB, this is implemented by lyapchol. Another important
tool is the sign function method, which is discussed next.

The Lyapunov equation is a particular form of the Sylvester equation AX + XB = C.
To treat this generalized case, consider a matrix of the type

Z =
(

A − C
0 − B

)
,

where A ∈ R
n×n, �(λi(A)) < 0, B ∈ R

k×k, �(λi(B)) < 0, and C ∈ R
n×k. The

sign function iteration Zn+1 = (Zn + Z−1
n )/2, Z0 = Z converges to

lim
j→∞

Zj =
(
−In 2X

0 Ik

)

where X is the solution to the equation AX + XB = C.

For the Lyapunov equation AP + PA∗ = Q, the starting matrix is

3 As mentioned earlier, our analysis of the system in descriptor form is restricted to the case
in which matrix Eds = C is invertible.
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Z =
(

A − Q
0 − A∗

)
, A ∈ R

n×n, �(λi(A)) < 0 ⇒ Zj =
(

Aj − Qj

0 − A∗
j

)

where the iterations can be written as follows

Aj+1 = 1
2

(
Aj + A−1

j

)
, A0 = A; Qj+1 = 1

2

(
Qj + A−1

j QjA−∗
j

)
, Q0 = Q.

The limits of these iterations are A∞ = −In and Q∞ = 2P where P is the solution
of the Lyapunov equation AP + PA∗ = Q.

Often, the constant term in the Lyapunov equation above is provided in factored form
Q = RR∗. As a consequence, it is possible to obtain the solution in factored form.
In particular, the (j + 1)st iterate in factored form is

Qj+1 = Rj+1R∗
j+1 where Rj+1 = 1√

2

[
Rj ,A−1

j Rj

]
⇒ Q∞ = R∞R∗

∞ = 2P

R∞ has infinitely many columns, although its rank cannot exceed n. This can be
avoided by performing at each step a rank revealing RQ factorization RjPj = TjUj

with Pj the permutation matrix and TjPj =
[
∆∗

j , 0
]∗

. ∆j is upper triangular and
UjU∗

j = Ij . Thus, at the jth step, Rj is replaced by ∆j which has as many columns
as the rank of Rj . For accelerating convergence, the eigenvalues of A can be scaled
[3]: at each step, Aj is replaced by 1

γj
Aj where the factors γj can be chosen as

γj = |det(Aj)|
1
n in order to minimize the distance of the geometric mean of the

eigenvalues of Aj from 1.

Convergence of the iteration which uses scaling is quadratic. The time required to
compute the Cholesky factor by MATLAB’s lyapchol function versus the iterative
implementation of the sign function method in [3] is as follows: on a Pentium M at
1.3Ghz with 768MB RAM, lyapchol runs in 0.751s for a matrix A of dimension
242, while the implementation in [3] requires 5.423s and converges in 16 ≈

√
242

steps. Even if, in theory, no scaling should also give quadratic convergence, in prac-
tice, due to numerical issues, convergence occurs after 20 steps.

3.2 Truncation by diagonalization of one gramian or poor man’s truncated
balanced reduction (PMTBR)

For the standard state-space representation, the procedure is the following [1].

1. Compute the gramian to be diagonalized (controllability gramian P in our case)

2. Compute the eigenvalue decomposition of P = VΣV∗

3. Choose the eigenvectors corresponding to the largest k eigenvalues to obtain the
transformation T = V∗

k

4. The reduced system is

Ãss = TAssT∗, B̃ss = TBss, C̃ss = CssT∗, D̃ss = Dss

PMTBR is presented in [10] and uses numerical quadrature to approximate the
gramian P , without solving the Lyapunov equation. The algorithm used in our analy-
sis, however, diagonalizes the exact solution P of the Lyapunov equation. As men-
tioned in Sect. 3.1, the solution to the Lyapunov equation can be computed either by
using the sign function method or by using MATLAB’s lyapchol function.
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3.3 Positive real balanced truncation (PRBT)

Coupled transmission lines such as the one in Fig. 1 are passive systems, with
positive real transfer functions (further information on passivity and positive real-
ness is provided in [1]). We are therefore interested in reduced order models that
are passive. In general, BT is not a passivity preserving method, since the result-
ing reduced system may have a non-positive real transfer function. PRBT, however,
is a passivity preserving method. It yields reduced order models with positive real
transfer functions by simultaneously diagonalizing the positive definite solutions P
and Q of the controllability and observability algebraic Riccati equations respec-
tively. This desirable result cannot be guaranteed with BT, where the solutions to
the Lyapunov equations are diagonalized, rather than the solutions the Riccati equa-
tions. Riccati equations have a different form depending on whether the system is in
standard state-space form or in descriptor form.

Historical note: this method was first introduced by Ober [6] and rediscovered by
Phillips, Daniel and Silveira [9]. For an overview see also [1].

Standard state-space representation
The controllability and observability positive real Riccati equations are:

AssP + PA∗
ss + (PC∗

ss − Bss)∆(PC∗
ss − Bss)∗ = 0 (7)

A∗
ssQ + QAss + (QBss − C∗

ss)∆(QBss − C∗
ss)

∗ = 0 (8)

where ∆ = (Dss + D∗
ss)

−1.
The procedure is the same as for BT (see Sect. 3.1), except that now balancing is
performed on the minimal solutions of the Riccati equations. The diagonal elements
of S in (4) are the positive real singular values of the system, which we denote by
πi: S = diag(π1, . . . πn), where π1 ≥ π2 ≥ . . . ≥ πn.

Descriptor form representation
The corresponding algebraic Riccati equations in descriptor form are

AdsPE∗
ds + EdsPA∗

ds + (EdsPC∗
ds − Bds)∆(EdsPC∗

ds − Bds)∗ = 0 (9)
A∗

dsQ̂Eds + E∗
dsQ̂Ads + (E∗

dsQ̂Bds − C∗
ds)∆(E∗

dsQ̂Bds − C∗
ds)

∗ = 0 (10)

where ∆ = (Dds + D∗
ds)

−1. The observability gramian given by the solution of ( 8)
is obtained via the congruence transformation Q = E∗

dsQ̂Eds.

Balancing and truncation are now performed on the solutions to (9) and (10) and the
procedure follows as in 3.1.

Hamiltonian Riccati Balanced Truncation (PRBT-Ham)
Solutions to Riccati equations ((7),(8)) (or ((9),(10)) for MNA-similar form) can be
obtained using the MATLAB function care. This can be applied to a system in
usual state space form or in descriptor form. An alternative is to solve for P and Q̂
by means of the Hamiltonian eigenvalue problem [11]:
[
Ads − Bds∆Cds − Bds∆B∗

ds

C∗
ds∆Cds − A∗

ds + C∗
ds∆B∗

ds

] [
X
Y

]
=
[
Eds

E∗
ds

] [
X
Y

] [
Λ−

Λ+

]

(11)
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where ∆ = (Dds + D∗
ds)

−1, and Λ−, Λ+ are the Hamiltonian eigenvalues, with
negative and positive real parts respectively (i.e. the stable and antistable spectral
zeros of the system). We can partition X and Y according to the stable and antistable
eigenvalues of the Hamiltonian into

[
X
Y

]
=
[
X− X+

Y− Y+

]

The minimal solutions to (9) and (10) are given by:
P = −X+(Y+)−1E−∗

ds (12)

Q̂ = −Y−(X−)−1E−1
ds (13)

and are the same as the ones resulting from the MATLAB care routine. The sta-
bilizing solution (corresponding to the stable spectral zeros) is Q̂ while P is the
antistabilizing solution (corresponding to the antistable spectral zeros). Both Q̂ and
P are obtained form the same Hamiltonian eigenvalue computation (11). The origi-
nal positive real observability gramian as solution to (8) is Q = E∗

dsQ̂Eds, so the
positive real Hankel singular values are πi =

√
λi(PQ), i.e. the diagonal elements

of X+(Y+)−1Y−(X−)−1. We see that the positive real Hankel singular values can
be computed without any inversion of Eds. The reduction procedure follows as in
Sect. 3.1 using the computed (12) and (13).

If the system is the in usual state space form rather than in descriptor form, Eds in
(11) is simply replaced by I. The resulting solutions P and Q̂ computed as (12) and
(13) respectively, are precisely the positive real gramians solving (7) and (8). They
are also the same as the solutions obtained with the MATLAB care routine in the
usual state space form. The reduction procedure follows as in Sect. 3.3.

NOTE: The gramians used in balanced truncation, i.e. the solutions to the Lyapunov
equations ((2), (3)) (and correspondingly ((5), (6)) for descriptor form) can be
obtained using (11) with ∆ = I, C = 0 (for controllability) and B = 0 (for
observability).

4 Krylov based methods
Krylov based reduction methods exploit the use of Krylov subspace iterations to
achieve system approximation by moment matching [1]. Three such methods are:
PRIMA, the spectral zero method (SZM) and optimal H2. As outlined next, PRIMA
matches k moments at zero by means of an orthogonal projection. SZM matches 2k
moments of the original system, at k stable spectral zeros and their mirror images
(the corresponding k antistable spectral zeros), by means of an oblique projection.
Finally, using an oblique projection, the optimal H2 method matches 2k moments
of the original system at the mirror images of the k poles of the reduced system (2
moments are matched at each pole). Hence an iteration is required.

4.1 PRIMA
For PRIMA, the moments of the transfer function H(s) = L(sC − G)−1B + D
are defined as the coefficients of the Taylor expansion of H(s) around s0 = 0:
H(s) = M0 + M1s + M2s

2 + . . ., where
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M0 = D − LG−1B and Mk = (−1)(k+1)L(C−1G)−(k+1)
C

−1B, for k > 0.

PRIMA computes a kth order reduced system by matching k moments of the original
system. This is achieved by computing the orthogonal projection Π = XkX∗

k such
that X∗

kC
−1GXk = Hk with Hk upper Hessenberg; the column span of Xk is the

same as the column span of:

[C−1B, (C−1G)−1
C

−1B, (C−1G)−2
C

−1B, . . . , (C−1G)−(k−1)
C

−1B].

The procedure is as follows [7].

1. Solve GR = B for R.

2. (X0,T) =QR(R); QR Factorization of R

3. For i = 1, 2, . . . , k
Set V = CXi−1

Solve GX(0)
i = V for X(0)

i

For j = 1, 2, . . . , i

H = X∗
i−jX

(j−1)
i

X(j)
i = X(j−1)

i − Xi−jH
(Xi,T) = QR(X(i)

i ); QR Factorization of X(i)
i

4. Set X = [X0 X1, . . . ,Xi−1] and truncate X so that it has k columns only

5. Compute Ĉ = X∗
CX, Ĝ = X∗GX, B̂ = X∗B and L̂ = LX

4.2 Spectral zero method (SZM)

With PRIMA, system approximation was achieved by matching k moments of the
transfer function at zero. In the general case, using the rational Krylov approach [1],
reduced systems are obtained which match moments at preassigned interpolation
points in the complex plane. SZM is a rational Krylov reduction method, in which
the interpolation points are chosen as a subset of the spectral zeros of the original
system [2], [11]. This selection guarantees the stability and passivity of the reduced
system [2], [11]. The spectral zeros are given by Λ in (11). The real spectral zeros si

come in pairs (si, −si) while the complex spectral zeros come in quadruples of the
form:

si = �(si) + j · �(si),
si+1 = �(si) − j · �(si) = s∗i ,
si+2 = −�(si) + j · �(si) = −s∗i ,
si+3 = −�(si) − j · �(si) = −si,

where without loss of generality, we assume �(si) < 0.

The usual procedure

The usual procedure for obtaining a kth order reduced system with SZM is as fol-
lows.

1. Construct matrices V and W using 2k interpolation points:

V =
[
(s1Eds − Ads)−1Bds, (s2Eds − Ads)−1Bds, · · · , (skEds − Ads)−1Bds

]
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W =

⎡
⎢⎢⎢⎣

Cds(−s1Eds − Ads)−1

Cds(−s2Eds − Ads)−1

...
Cds(−skEds − Ads)−1

⎤
⎥⎥⎥⎦

where si, i = 1, 2, . . . , k are k spectral zeros that we select a priori. In our case,
we selected the spectral zeros which are closest to the real axis.

2. The reduced system: Ẽds = WEdsV, Ãds = WAdsV, B̃ds = WBds, C̃ds =
CdsV, D̃ds = Dds, matches the chosen 2k spectral zeros of the original system,
si and −si, i = 1, . . . , k.

Note: Since no inversion of Eds is involved, the SZM method is also applicable to
systems with singular Eds. Also, the oblique projection that reduces the system is
Π = V̄W̄, where: WEdsV = LU, V̄ = VU−1 and W̄ = L−1W.

Hamiltonian spectral zero method (SZM-Ham)

An alternative way to build V and W is without inverting the matrix siEds − Ads

for each spectral zero si we choose. This is achieved as presented in [11], by solving
the Hamiltonian eigenvalue problem (11).

Once the eigenvectors and eigenvalues of the Hamiltonian are obtained, the spectral
zeros which are closest to the real axis are chosen. Matrices V and W are now
computed from the eigenvectors corresponding to the k chosen spectral zeros:

W∗ = Y∗
k, V = Xk

The reduced system is Ẽds = W∗EdsV, Ãds = W∗AdsV, B̃ds = W∗Bds,
C̃ds = CdsV, D̃ds = Dds.

Note: As for SZM, Eds may be singular, so the SZM-Ham method also applies
to the general case of descriptor systems since it involves no inversion of Eds. We
emphasize that SZM-Ham gives the same reduced model as the usual procedure in
Sect. 4.2, the difference is only in how W and V are computed.

4.3 Optimal H2

The optimal H2 method, as the name suggests, produces reduced order models which
minimize the H2 norm of the error system. The problem formulation follows [4].

Given an n-dimensional single-input, single-output dynamical system in the MNA-
similar form (1) (where C may be singular), with transfer function H(s) = L(sC −
G)−1B, find a stable reduced system of order k < n such that its transfer function
Hk(s) = Lk(sCk − Gk)−1Bk minimizes the H2 error, i.e.:

Hk(s) = arg min
deg(Ĥ)=k

‖ H(s)− Ĥ(s) ‖H2 , ‖ H(s) ‖2
H2

:=
1
2π

∫ ∞

−∞
|H(jω)|2dω

The reduced order model that achieves this is constructed using the iterative rational
Krylov algorithm (IRKA) [4]:

1. Make an initial shift selection σi ∈ C, i = 1, . . . , k
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2. Construct W = [ (σ1C
∗ − G∗)−1L∗, · · · , (σkC

∗ − G∗)−1L∗ ] and
V = [ (σ1C − G)−1B, · · · , (σkC − G)−1B ]

3. Repeat:

a) Ck = W∗
CV, Gk = W∗GV

b) σi ←− − λi(Gk, Ck) for i = 1, · · · , k

c) W = [ (σ1C
∗ − G∗)−1L∗, · · · , (σkC

∗ − G∗)−1L∗ ]

d) V = [ (σ1C − G)−1B, · · · , (σkC − G)−1B ]

until
∑k

i=1 |σi − σi| < ε, where σi and σi, i = 1, . . . , k, are the shifts at
iterations j and j + 1 respectively and ε is the desired convergence tolerance.

4. Project the system matrices

Ck = W∗
CV, Gk = W∗GV, Bk = W∗B, Lk = LV

Upon convergence, the reduced order model satisfies the necessary H2 optimality
conditions:

H(−λ̂i) = Hk(−λ̂i),
d

ds
H(s) |s=−λ̂i

=
d

ds
Hk(s) |s=−λ̂i

i = 1, . . . , k,

where λ̂i are the eigenvalues of (Gk, Ck) (Ritz values). The reduced system there-
fore matches 2k moments of the original at the mirror images of the reduced order
poles. Initial shifts σi can be arbitrarily chosen and influence the convergence rate.
Since this algorithm produces a locally optimal reduced model, some initial shifts
may not lead to convergence. Future work will investigate the optimal choice of
initial shifts, how they influence the convergence rate of the Ritz values and the
approximation error of the resulting reduced model.

Note: If the initial shift selection in step 1. is a subset of the spectral zeros of the
original system, reducing the system directly after step. 2. makes optimal H2 equi-
valent to SZM. The resulting reduced system will, however, not be optimal in the H2

norm. H2 norm optimality is guaranteed only through the iterative procedure; this
however cannot guarantee passivity for the reduced model like SZM does.

Table 1: Classification of all methods
Reduction Method Type Iterative Moments Matched Projection

Balanced truncation (BT) Gramian based No - Oblique
One Gramian Method (PMTBR) Gramian based No - Orthogonal

Riccati Balanced Truncation (PRBT) Gramian based No - Oblique
Hamiltonian Riccati

Balanced Truncation (PRBT-Ham)
Gramian based No - Oblique

PRIMA Krylov based No k moments at 0 Orthogonal
Spectral Zero Method (SZM) Krylov based No 2k spectral zeros Oblique

Hamiltonian
Spectral Zero Method (SZM-Ham)

Krylov based No 2k spectral zeros Oblique

OptimalH2 Krylov based Yes
2k moments

at mirror images of
reduced order poles

Oblique

A classification of all methods used in our analysis is presented in Tab. 1.
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5 Comparison of all methods: performance

A first indication of how easily these systems can be approximated is given by the
Hankel singular values and the positive real Hankel singular values. Figure 2 shows a
logarithmic plot of the normalized Hankel singular values and the eigenvalues of the
gramians for the system associated with the circuit in Fig. 1 with N = 61 sections,
resulting in n = 242 states. The eigenvalues of P and Q decay at about the same rate.
The Hankel singular values and the positive real Hankel singular values (see Sect.
3.1 and 3.3) also decay at about the same rate, but not as fast as the controllability
or observability gramian eigenvalues.

Since the gramian eigenvalues decay much faster than the Hankel singular values,
a reduction method which balances the system by diagonalizing only one gramian
seems justifiable. However, as will be shown in Sect. 6, the decay rate of the gramian
eigenvalues do not provide sufficient information for the efficiency of the reduction
algorithm. For example, a method that balances the system by simultaneously dia-
gonalizing both gramians is more efficient, even though it exploits the slower decay
rate of the Hankel singular values. The relative H∞ and H2 norms of the associated
error systems in Sect. 6 support the above statement.

Fig. 2: Hankel singular values, positive real Hankel singular val-
ues, eigenvalues of P , eigenvalues of Q.

Fig. 2 also shows the trade-off between accuracy and complexity [1]. Choosing a
larger order k of the reduced system by truncating the last n−k states gives a smaller
approximation error. In particular, for an error of 10%, one needs to keep about half
the states, namely 120. We conclude that our circuit is difficult to approximate as the
decay of both Lyapunov and Riccati Hankel singular values is slow.

We further investigate whether the properties of the original system are preserved.
We would like to check which of the methods used produce a reduced system which
is controllable, observable, stable and passive.

Controllability and observability are equivalent to the controllability and observabil-
ity gramians P and Q having full rank. Stability is equivalent to all poles lying in
the left half plane. Passivity is ensured by the nonexistence of spectral zeros on the
jω axis.
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Starting from an initial system with N = 61 sections (n = 242 states), both reduced
systems (k = 11 and k = 21) preserve the same characteristics.

Table 2: Preservation of Controllability, Observability, Stability and Passivity for each Reduction Method

Reduction Method Controllable Observable Stable Passive

Balanced truncation (BT) Yes Yes Yes Yes
One Gramian Method (PMTBR) Yes Yes Yes Yes

Riccati Balanced Truncation (PRBT) Yes Yes Yes Yes
Hamiltonian Riccati

Balanced Truncation (PRBT-Ham)
Yes Yes Yes Yes

PRIMA No No Yes Yes
Spectral Zero Method (SZM) Yes Yes Yes Yes

Hamiltonian
Spectral Zero Method (SZM-Ham)

Yes Yes Yes Yes

OptimalH2 Yes Yes Yes Yes

Tab. 2 shows that all methods produce controllable and observable reduced sys-
tems, except for PRIMA. However, all reduced systems are stable. Even though only
PMTBR, PRBT, PRIMA and SZM are passivity preserving methods for MNA rep-
resentations, all the methods preserve passivity for our system.

Table 3: Relative norms of the error systems, k = 21, k = 11

Reduction Method
N = 61, n = 242

H∞
k = 21

H2

k = 21
H∞

k = 11
H2

k = 11

Balanced Truncation (BT) 0.4746 0.4230 0.5409 0.4599
One Gramian (PMTBR) 0.7204 0.5284 0.5867 0.5322

Riccati Balanced Truncation (PRBT) 0.5247 0.5318 0.6486 0.7068
Hamiltonian Riccati Balanced Truncation (PRBT-Ham) 0.5247 0.5318 0.6486 0.7068

PRIMA 0.8519 0.6762 0.8147 0.8134
Spectral Zero Method (SZM) 0.6498 0.7259 0.6946 0.8392

Hamiltonian Spectral Zero Method (SZM-Ham) 0.6498 0.7259 0.6946 0.8392
OptimalH2 0.3554 0.2676 0.3561 0.2909

To assess the performance of these methods, Tab. 3 collects the relative norms of
the error systems, that is ‖Σorig−Σk‖

‖Σorig‖ . The surprising result in Tab. 3 is that optimal
H2 yields the smallest relative error both in the H∞ and H2 norms; it is superior
for instance to BT, which is usually considered as the overall best approximation
method. From Tab. 3, it is also evident that relative errors for PRBT and PRBT-Ham
are identical. The same holds for SZM and SZM-Ham. This shows that SZM and
PRBT are equivalent to their Hamiltonian counterparts respectively. Reduction by
diagonalizing one gramian method yields the best approximant out of all the pas-
sivity preserving methods. PRIMA gives a reduced system which approximates the
original one very well for low frequencies (much better than any other method). This
is a consequence of the fact that the expansion point in the Arnoldi algorithm is the
origin.

The H∞ norm of a stable system is the maximum singular value of the transfer
function or the value of the highest peak in the frequency response plot. Notice that,
in case of one gramian and PRIMA, a larger dimension of the reduced system does
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not yield a smaller H∞ relative norm of the error system: the value for the reduced
system of size k = 21 is larger than the value obtained for the reduced system of
size k = 11. This could be explained by the fact that a higher dimension of the
reduced system yields peaks of higher amplitude. The H2 norm of a stable SISO
system with the D term equal to 0 is a measure of the area frequency response over
the entire frequency range. Notice that there is no norm which captures all aspects of
the reduced system. The ones used here are the most popular.

Table 4: Elapsed Times

Reduction Method
N = 61, n = 242

Elapsed Time (s)
k = 21

Elapsed Time(s)
k = 11

Balanced Truncation (BT) 1.915538 1.956464
One Gramian (PMTBR) 0.972908 0.974607

Riccati Balanced Truncation (PRBT) 65.47625 66.20935
Hamiltonian Riccati Balanced Truncation (PRBT-Ham) 39.64582 40.97727

PRIMA 0.355047 0.189727
Spectral Zero Method (SZM) 12.208282 8.749104

Hamiltonian Spectral Zero Method (SZM-Ham) 5.017118 4.746759
OptimalH2 136.5 111.35

Elapsed times are useful for comparing the computational cost of each method ver-
sus the quality of the resulting reduced system. The computational times in Tab. 4
were obtained on a Pentium M at 1.3Ghz with 768MB RAM. The most expensive
method is optimal H2; it requires a certain number of iteration steps to converge,
depending on the initial shift selection. PRBT is also expensive, when implemented
using MATLAB’s care function for obtaining the positive definite solutions to the
algebraic Riccati equations. On the other hand, PRIMA is the most computation-
ally efficient, having the complexity of an iterative Arnoldi algorithm. This is more
computationally efficient than performing eigenvalue decompositions, singular value
decompositions or solving the Lyapunov or algebraic Riccati equations, which are
needed in the other reduction methods.

Another aspect worth noticing in Tab. 4 is that, indeed, for the spectral zero method,
computing the projectors from the eigenvectors of the Hamiltonian matrix (SZM-
Ham) requires about half the time needed to compute the projectors by inverting the
matrix siEds − Ads for each spectral zero si we choose (SZM). A similar perfor-
mance improvement is achieved when the Riccati solutions in PRBT were computed
with the Hamiltonian eigenvalue problem (PRBT-Ham) rather than with the MAT-
LAB care routine (PRBT). Considering that relative error norms for PRBT and
PRBT-Ham are identical (the same holds for SZM and SZM-Ham), we conclude
that performing PRBT (and SZM) via the Hamiltonian approach is more efficient.

Also, from Tab. 4 we notice the small difference between elapsed times for the two
reduced dimensions (k = 21 and k = 11), since most of the computational effort is
used in computing the projectors, not in obtaining the reduced systems themselves.
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6 Comparison of all methods: plots

We first provide pairwise comparisons of error systems resulting from applying each
reduction procedure on the circuit in Fig. 1. Next, the preservation of stability and
passivity is shown in the distributions of poles and spectral zeros for the original and
each reduced system (Figs. 13-18). Figures for methods PRBT-Ham and SZM-Ham
are omitted, because they are identical to figures for PRBT and SZM respectively.
The original system has n = 242 states (resulting from N = 61 sections) and we
reduce it to dimension k = 21.

6.1 Error systems

Fig. 3 shows the frequency response of the original system together with all reduced
systems. Fig. 4 shows the frequency response of the systems obtained by taking the
difference between the original and each of the reduced systems.

Comparing the errors for BT and PRBT in Fig. 5 shows that the first one is a better
approximant of the original system since the error plot is almost always below the
error plot for PRBT. However, we notice that the shapes of the plots are almost the
same, with the second one shifted up by a few decibels.

Comparing the error systems for PRBT and PRIMA in Fig. 6 shows that, even though
PRIMA gives small error for low frequencies, PRBT performs better in the middle
range, where the response is harder to capture because of the large number of oscil-
lations.

Comparing BT with PMTBR essentially means comparing diagonalization of only
one gramian versus simultaneous diagonalization of both controllability and observ-
ability gramians. Fig. 7 shows that BT gives a smaller approximation error. Diago-
nalizing both gramians therefore leads to a better approximation than diagonalizing
only one gramian. This is because after simultaneous diagonalization, truncation is
performed on states that are equally difficult to reach and to observe.

From Fig. 8, it is clear that the spectral zero method performs comparably to balanced
truncation. The advantage of the spectral zero method over balanced truncation is that
it guarantees the passivity of the reduced system, irrespective of whether the system
is in MNA-similar form. As shown in figures 9 and 10, the spectral zero method also
performs similarly to the other two passivity preserving methods, one gramian and
PRIMA.

Inspecting Fig. 22, we emphasize that with randomly chosen initial shifts, optimal
H2 yields an approximation error smaller than BT. Fig. 11 shows that optimal H2

gives a smaller approximation error than PRIMA, except for low frequencies, as
expected. Optimal H2 also provides a better approximant than SZM, as seen from
Fig. 12.
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Fig. 3: Frequency response of original and all
reduced systems

Fig. 4: Error for all reduced systems

Fig. 5: Error systems: Balanced truncation
and Positive Real Balanced Truncation

Fig. 6: Error systems: Positive Real Balanced
Truncation and PRIMA

Fig. 7: Error systems: Balanced truncation
and One Gramian

Fig. 8: Error systems: Balanced truncation
and Projection using spectral zeros
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Fig. 9: Error systems: One Gramian and Pro-
jection using spectral zeros

Fig. 10: Error systems: PRIMA and Projec-
tion using spectral zeros

  

 

Fig. 11: Error systems: Optimal H2 and
PRIMA

Fig. 12: Error systems: Optimal H2 and Spz
method

6.2 Poles and spectral zeros of reduced systems

The following figures show the location of poles and spectral zeros of the original,
stable and passive system together with the poles and spectral zeros of each reduced
system. As already indicated in Tab. 2, all reduction methods yielded stable and
passive reduced order systems. This is shown in Figs. 13-18, where the poles of all
reduced system lie in the left half plane and the spectral zeros of all reduced systems
are located away from the jω axis.

No spectral zero matching or similarity in pole distribution occurs for reduced mod-
els obtained with BT, one gramian or PRBT, as seen from Figs. 13, 14 and 15. In
particular, Fig. 13 shows that poles and spectral zeros resulting from BT are scat-
tered, while in Fig. 14, the poles and spectral zeros from one gramian are clustered
close to the jω axis. Spectral zeros resulting from PRBT are aligned along some of
the spectral zeros of the original system, as seen in Fig. 15.



20 Roxana Ionutiu, Sanda Lefteriu, and Athanasios C. Antoulas

However, comparing Figs. 16, 17, and 18, we identify a similarity between the dis-
tribution of spectral zeros and poles resulting from PRIMA, SZM, and optimal H2

respectively. The poles of these reduced systems follow a pattern, being located
close to the real axis. Furthermore, the spectral zeros resulting from optimal H2,
match some of the spectral zeros of the original system, similarly to the spectral zero
method and PRIMA.

Fig. 16 shows that PRIMA preserves some of the poles as well as some of the spectral
zeros of the original system. This is the only method for which some poles of the
reduced system are close to the poles of the original system.

In Fig. 18, as expected, the spectral zeros of the reduced system match the chosen
spectral zeros of the original system with smaller imaginary parts.
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Fig. 13: Spectral zeros and poles for original
system and reduced with Balanced truncation

Fig. 14: Spectral zeros and poles for original
system and reduced with One Gramian

0. 6 0. 4 0. 2 0 0.2 0.4 0.6
80

60

40

20

0

20

40

60

80

Re

Im

Spectral zeros and poles: Positive Real Balanced truncation
n = 242, k = 21

 

 
Spzeros
Poles
Spz PR BalTr
Poles PR BalTr

0. 6 0. 4 0. 2 0 0.2 0.4 0.6
80

60

40

20

0

20

40

60

80

Re

Im

Spectral zeros and poles: PRIMA
n = 242, k = 21

 

 
Spzeros
Poles
Spz PRIMA
Poles PRIMA

Fig. 15: Spectral zeros and poles for origi-
nal system and reduced with Riccati Balanced
truncation

Fig. 16: Spectral zeros and poles for original
system and reduced with PRIMA
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Fig. 17: Random initial shifts: Poles and
Spectral zeros of original system and reduced
with Optimal H2

Fig. 18: Spectral zeros and poles of origi-
nal and reduced with projection using spectral
zero selection

7 Optimal H2 results: errors, convergence and initial shifts
We compare reduced order models obtained with balanced truncation and optimal
H2, since these methods yield the smallest relative H2 error norms. We approximate
the initial order n = 242 system with reduced models of orders k = 21 and k = 11.
The corresponding relative error norms are found in Tab. 3, Sect. 5. From these
results, it is clear that optimal H2 is the overall best method with respect to both
relative error norms: H∞ and H2.

The selection of initial shifts can be determined to influence the convergence rate, the
approximation error and the distribution of poles and spectral zeros for the reduced
system. Results were obtained for two different sets of initial shifts: the poles result-
ing from BT and randomly generated complex shifts. The table below summarizes
the number of iterations needed for IRKA to converge, with a threshold difference
of 10−4 between successively generated shifts. Choosing random complex numbers
as initial shifts yielded convergence which was almost twice as fast.

Intial Shift Choice Red. order: k = 21 Red. order: k = 11
Poles from BT 49 steps 85 steps

Random complex 28 steps 47 steps

1. n = 242, k = 21

Figs. 19-22 show that the reduced system obtained with optimal H2 using ran-
domly generated shifts approximates the original system more accurately than
when the initial shifts are the poles of the reduced system obtained from bal-
anced truncation. The error systems in Fig. 22 show that when initial shifts are
randomly chosen, optimal H2 yields a better approximant than BT. This is not
the case when initial shifts are the poles from BT, as seen from the error systems
in Fig. 21. Additionally, when the initial shifts are randomly chosen, some of the
spectral zeros of the reduced system closely match spectral zeros of the original
system, as shown in figure 24. This appealing behavior is not present in Figure
23, where the initial shifts are the poles resulting from BT: no spectral zeros are
matched and the corresponding approximation error is larger.
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Fig. 19: BT poles as initial shifts: Frequency
response of original and reduced systems

Fig. 20: Random intial shifts: Frequency
response of original and reduced systems

Fig. 21: BT poles as initial shifts: Error sys-
tems Fig. 22: Random initial shifts: Error systems
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Spectral zeros of original system and reduced
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Fig. 24: Random initial shifts: Poles and
Spectral zeros of original system and reduced
with Optimal H2
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2. n = 1002, k = 71

Promising results for optimal H2 were also obtained on a system of dimension
n = 1002 (N = 251). As shown in Figs. 25 and 26, the reduced model of
dimension k = 71 clearly approximates the original more accurately than the
reduced model obtained with BT. Again, optimal H2 is superior to BT with
respect to both relative error norms, H2 and H∞.

Reduction Method: n = 1002, k = 71 H∞ H2

Balanced Truncation 0.1488 0.1124
OptimalH2 0.09467 0.06408

Fig. 25: Random initial shifts: Frequency
response: original, reduced with balanced
truncation and Optimal H2

Fig. 26: Random initial shifts: Error systems
for balanced truncation and Optimal H2

8 Conclusion and further research
This paper compares several model reduction methods used in circuit simulation, in
particular for systems in invertible descriptor form. The methods are grouped in two
categories, gramian and Krylov based respectively. Theoretical considerations for all
methods are outlined, and their performance is evaluated by reducing the dynami-
cal system of a coupled transmission line. Approximation error and computational
cost analysis for each method shows that while some methods yield better reduced
systems, others are computationally cheaper. Furthermore, not all methods that yield
small relative approximation errors preserve important properties of the original sys-
tem, such as controllability, observability or passivity.

Optimal H2 is the overall best in terms of both relative H∞ and H2 norms, but
requires the highest computational complexity and cannot guarantee passivity for
the reduced system. It can also be applied to the general class of descriptor systems,
where C in (1) may be singular. Further research is needed for determining how the
choice of initial shifts in optimal H2 influences the distribution of poles and spectral
zeros of the reduced system and the convergence rate.
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Among passivity preserving methods, SZM provides the best trade-off between
approximation error, computational cost, and preservation of stability and passiv-
ity. Furthermore, SZM can be applied to the general class of descriptor systems.
However, determining the optimal selection of spectral zeros in SZM is an open
problem.

SZM overcomes the limitations of PRIMA: controllability and observability loss for
the reduced system (due to possible pole-zero cancelations) and larger approxima-
tion error for high frequencies. PRIMA however provides the best fit for low fre-
quencies from all methods considered. SZM is also computationally cheaper than
PRBT. PRBT on the other hand yields an approximation error comparable to BT and
has the benefit of preserving passivity.

Since our analysis is conducted on a SISO circuit with invertible descriptor form (C
in (1) was invertible), a further step would be to reproduce these results for a system
in general descriptor form, where C is singular, partly using the work in [5]. Applying
these reduction methods on a MIMO network is currently under investigation.
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This paper deals with the transient simulation of large, nonlinear magnetoquasista-
tic field models which are monolithically coupled to electric circuits. Solid- and
stranded-conductor models embedded in the field model are connected to the external
circuit. In order to guarantee the numerical efficiency of the field-circuit coupled
formulation, conductor models coupling the circuit to the field at a reference cross-
section, have to be preferred over conductor models that couple the whole conduc-
tor volume to the circuit. The circuit is formulated in terms of both voltage drops
and currents in order to avoid fill-in in the field matrix parts. For time stepping, an
error-controlled, adaptive singly diagonally Runge-Kutta method is applied. A dense
output solution is used to detect and localise switching events in the circuit. The
actual time step is restricted to the time instant of switching at which consistent ini-
tial conditions are determined before restarting the time integration. The transient
field-circuit coupling is applied to the models of a capacitor motor and a three-phase
transformer.

1 Introduction

Contemporary designs of electrical-energy convertors force the machine to operate
at higher flux densities and higher frequencies, leading to higher levels of ferromag-
netic saturation and eddy currents, respectively. Two- and three-dimensional field
simulation are indispensable to resolve these kinds of local effects. However, the
power-electronic components connected to the device and, in the two-dimensional
case, the interconnections between the different conductors, are commonly excluded
from the field model. To uniquely define the field model, the voltage drops along
the massive conductors and the currents through the coils have to be known a-priori,
which is impractical. The interaction of the device with external excitation and load
circuits can be very complicated such that engineers are obliged to iterate between
the field and the circuit model, an approach which is called simulator coupling. Sim-
ulator coupling especially performs well when the time constants considered by both
simulators are different by orders of magnitude. For situations where this is not the
∗ Invited Paper at SCEE-2006
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case, a monolithic coupling, i.e., combining both the field and the circuit model into
a single system of equations, is recommended. Monolithic coupling is especially
valuable for coupling electromagnetic field and circuit simulation because the cou-
pling itself is linear and can therefore be adequately represented at the algebraic
level. Monolithic coupling requires, however, all stages of the coupling process to
be designed carefully. A bad coupling approach and implementation leads to sys-
tems of equations that cause difficulties at the algebraic level, which may cause the
performance of the monolithic coupling to be degenerated to the one of a simulator
coupling.
The paper exemplarily describes the coupling of an electric circuit to a magne-
toquasistatic field model. Couplings in other physical disciplines can be devel-
oped similarly. The field model is discretised by the finite-element method or the
finite-integration technique. The coupling is designed from the field point-of-view,
adding a few circuit equation to a large system of field equations, without too much
influencing typical field simulation techniques to loose their performance. Hence, the
approach is complementary to coupling procedures where field-simulation actions
are embedded in an established circuit simulator.

2 Discrete Magnetoquasistatic Formulation

The magnetic flux density B is forced to be divergence-free by stating B = ∇× A
with A the magnetic vector potential. The integration of the Faraday-Lenz law yields
the electric field strength E = − ∂

∂tA − ∇φ with the gradient of the electric scalar
potential φ as an integration constant. The material properties are expressed in their
easiest form. B is related to the magnetic field strength H by the reluctivity ν, i.e.,
H = νB where ν may depend on B. The current density J is related to E by the
conductivity σ, i.e., J = σE. The combination of the material laws and the potentials
within Ampères law directly leads to the magnetoquasistatic formulation

∇× (ν∇× A) + σ
∂A
∂t

= −σ∇φ . (1)

The righthandside is called the source current density Js = −σ∇φ.
In the case of the finite-integration technique (FIT), (1) is transferred to a staggered
grid pair (G, G̃) [35, 36]. Here, only the special case of a structured, orthogonal
grid pair is considered. The degrees of freedom are the magnetic vector potentials
integrated along the edges Li of the primary grid G, collected into the algebraic
vector �a, i.e.,

�ai =
∫

Li

A · ds . (2)

The application of the primary curl operator C gives
��

b = C�a where the components
of

��

b are the magnetic fluxes through the primary facets Sp. The magnetic material
law is expressed at the crossing points between primary facets and dual edges. The
magnetic voltage

�

hp along a dual edge L̃p reads

�

hp =
∫

L̃p

H · ds ≈ Mν,p,p

��

bp =
ν|L̃p|
|Sp|

(3)
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where the entries Mν,p,p are gathered in the diagonal reluctivity matrix Mν . Sim-
ilarly, the current

��

j q through a dual facet S̃q is related to the electric voltage �eq

allocated at the associated primary edge by

��

j q =
∫

S̃q

J · dS ≈ Mσ,q,q
�eq =

σ|S̃q|
|Lq|

(4)

with the conductivity matrix Mσ . The discrete equivalent of Ampères law reads
��

j = C̃
�

h where C̃ is the discrete curl operator at the dual grid. The operators C and
C̃ do not incorporate any discretisation . The discretisation error is solely attributed
to the material matrices Mν and Mσ . The discrete counterpart of (1) reads

C̃MνC�a + Mσ
d�a
dt

=
��

j s (5)

with
��

j s the vector of the discrete source currents [7].
In the case of the finite-element (FE) method, the magnetic vector potential is
expressed as a linear combination of nfe edge elements wj . The FE formulation
follows from weighting (1) by the test functions wi and integrating by parts. The
introduction of the discrete curl operators C and C̃ to the FE grid leads to the same
formulation as (5) but with slightly different material matrices and source currents,
here indicated by a superscript ·(fe):

M(fe)
ν,p,q =

∫
Ω

νzp · zq dΩ ; (6)

M(fe)
σ,i,j =

∫
Ω

σwi · wj dΩ ; (7)

��

j
(fe)

s,i =
∫

Ω

(−σ∇φ) · wi dΩ (8)

where Ω denotes the computational domain and zp is the facet element associated
with the primary grid facet Sp. In the following, a distinction between FIT and FE
formulations is only made when absolutely necessary.

3 Conductor Models

3.1 Solid-conductor model

A massive conductor which covers the volume Ωsol,q is excited by a voltage drop
usol,q between two electrodes (Fig. 1a). From the application of the Faraday-Lenz
law along a closed contour passing along the massive conductor and through the
voltage source, one finds that

usol,q = −
∫

�sol,q

∇φ · ds (9)

with �sol,q an arbitrary path between both electrodes. The potentials A and φ are,
however, not unique, i.e., when (A, φ) solves (1), so does

(
A + ψ, φ + ∂

∂tψ
)

where
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(a)

isol,q

usol,q�sol,q

Ssol,q

Γsol,q

(b)

istr,p

ustr,p�str,p

Sstr,p

Sw,p

Γstr,p

(c)

ifoil,f

ufoil,f�foil,f

Sfoil,f

Sf,f

Γfoil,f

(d)

imc,g

umc,g�mc,g

Smc,g

Sb,g

Γmc,g

Fig. 1: (a) Solid-conductor model, (b) stranded-conductor model, (c) foil-conductor model and (d) multi-conductor
model.

ψ is an arbitrary scalar field. As a consequence, the division of J into a source-
current density Js = −σ∇φ and an eddy-current density Je = −σ ∂

∂tA is not unique
as well. Commonly, the formulation is closed by forcing the source-current density
and the eddy-current density to be divergence-free. Then, the source-current density
Js = −σ∇φs is obtained by solving the stationary-current problem −∇ · (σ∇φs) =
0 with the boundary conditions φs = φ1 and φs = φ2 at the electrodes such that
usol,q = φ2 − φ1. The discrete equivalent reads

S̃MσS̃T Φs = 0 (10)

where S̃ is the discrete divergence operator at the dual grid, −S̃T equals the
discrete gradient operator at the primary grid and Φs is the vector of electrical
scalar potentials allocated at the primary nodes. A particular field-circuit coupling
scheme consists of solving (10) where a unit voltage drop between the electrodes
is applied as a boundary condition. The resulting discrete source-current distribu-
tion is MσQsol,q = MσS̃T Φs and defines a coupling operator Qsol,q which allows
to express the discrete source current generated by an arbitrary voltage drop usol,q

across the massive conductor q by
��

j s = MσQsol,qusol,q . The column vector Qsol,q

contain nonzero contributions for all primary edges in the massive-conductor vol-
ume. Hence, it represents a 3D-to-0D coupling between the field and the circuit. The
number of nonzeros scales as O

(
n3

1D

)
where n1D stands for the number of degrees

of freedom in one spatial direction. The number of nonzeros in C̃MνC and Mσ

scales by O
(
n3

1D

)
as well, such that the computation time for the application of

Qsol,q is expected to have the same complexity as the one for the application of the
field model.
A second coupling strategy exploits the non-uniqueness of A and φ and even may
consider potentials that are not continuous in parts of Ω [14]. The voltage drop is
introduced as a step potential difference at an arbitrary reference cross-section Γsol,q
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which cuts Ωsol,q in two parts without touching the electrodes. In the discrete setting,
the voltage drop is assigned to the primary edges corresponding to a set of dual facets
covering Γsol,q . The discrete source-current vector then reads

��

j s = MσQ̃sol,qusol,q

where Q̃sol,q contains 0, 1 and −1 indicating the contribution and orientation of
primary edges with respect to the reference cross-section Γsol,q . In contrast to Qsol,q ,
the coupling operator Q̃sol,q represents a 2D-to-0D field-circuit coupling which has
a complexity that only scales by O

(
n2

1D

)
and which consequently guarantees the

efficiency of the field-circuit coupling scheme.
The total current isol,q through the massive conductor q is integrated at Γsol,q which,
in the discrete setting, boils down to a summation of the currents through the dual
facets covering Γsol,q:

isol,q = G̃sol,qusol,q − Q̃sol,q
d�a
dt

(11)

where G̃sol,q = Q̃T
sol,qMσQ̃sol,q reflects the discrete conductance of the reference

cross-section. A field-circuit coupling involving only the massive conductor q excited
by a current source then reads
[
C̃MνC −MσQ̃sol,q

0 G̃sol,q

] [
�a

usol,q

]
+
[

Mσ 0
−Q̃T

sol,qMσ 0

]
d

dt

[
�a

usol,q

]
=
[

0
isol,q

]

(12)
which after time discretisation and appropriate scaling of the single circuit equa-
tion yields a symmetric, semi-positive-definite system of equations. A symmet-
ric coupling can also be achieved using Qsol,q instead of Q̃sol,q and Gsol,q =
QT

sol,qMσQsol,q instead of G̃sol,q . In that case, Gsol,q is the DC conductance of the
massive conductor and the summation by QT

sol,q computes the current by averaging
the currents evaluated at all possible discrete cross-sections of the massive conductor
with the dual grid.
The 3D-to-0D coupling operator Qsol,q is disadvantageous for reasons of numerical
efficiency. In Table 1, the performance of the Conjugate-Orthogonal Conjugate-
Gradient (COCG) solver [34], preconditioned by the Symmetric Successive Over-
relaxation (SSOR) algorithm is compared for a coupling with Qsol,q and a coupling
with Q̃sol,q . For both test models, the number of iterations is smaller for the 3D-to-0D
coupling than for the 2D-to-0D coupling, indicating the better condition of the sys-
tem matrix resulting from the tighter 3D-to-0D coupling. This advantage causes the
computation time for the small single-phase transformer model to be in favour of
the 3D-to-0D coupling. For the larger three-phase transformer model, however, the
matrix-vector multiplications by a denser system matrix adversely influences the
overall computation time.
ThecouplingbyQsol,q splits thecurrent

��

j inasource-currentpart
��

j s =MσQsol,qusol,q

and an eddy-current part
��

j e = −Mσ
d
dt

�a that are both free of divergence. The
sparser coupling by Q̃sol,q is related to a division of the divergence-free current
��

j into two non-divergence-free parts
��

j s = MσQ̃sol,qusol,q and
��

j e = −Mσ
d
dt

�a
for which a physical interpretation is cumbersome. Special care has to be taken for
the algebraic solution of (12). The coupling operator Q̃sol,q and hence also the dis-
crete magnetic vector potential �a do not mimic continuous fields. Hence, the system
solver may experience increasingly worse condition numbers as the discretisation
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Table 1: Iteration counts and solution times for SSOR-COCG applied to a field-circuit coupling with the coupling matri-
ces Qsol,q and Pstr,p or with the coupling matrices Q̃sol,q and P̃str,p.

coupling matrices number of iterations solution time (s)
single-phase Q̃sol,q and P̃str,p 198 15
transformer Qsol,q and Pstr,p 127 12
three-phase Q̃sol,q and P̃str,p 756 145
transformer Qsol,q and Pstr,p 465 176

is refined. A stable system solver is mandatory to ensure that the solution for �a
alleviates the discontinuity of Q̃sol,q such that the non-divergence-free source- and
eddy-current densities combine to a physically sound, divergence-free discrete cur-
rent distribution.
The field-circuit coupling approach can be understood as an agglomeration of local
field quantities into global circuit quantities [14]. In the FIT and in other discretisa-
tion techniques closely related to differential geometry, this agglomeration is repre-
sentable by a simple incidence relation [25, 14, 19].

3.2 Stranded-conductor model

When the wire diameter of a coil is significantly smaller than the expected skin depth,
is not necessary to resolve each individual wire by the computational grid. Instead,
the stranded-conductor model includes the assumption that the current is homoge-
neously distributed along the cross-section of the coil. The conventional treatment of
coils in a 3D field model is to compute the discrete current distribution due to a unit
current applied to coil p by a geometric algorithm, yielding the vector field Junit,p.
In the FIT case, this continuous current is integrated over the dual facets, whereas in
the FE case, edge elements are applied for weighting:

P(fit)
str,p,i =

∫
S̃i

Junit,p · dS ; (13)

P(fe)
str,p,i =

∫
Ωstr,p

Junit,p · widΩ . (14)

In both cases, the applied current density reads
��

j = Pstr,pistr,p. The coupling
operator Pstr,p connects all dual facets inside the coil volume Ωstr,p to the circuit
and hence, also has the nature of a 3D-to-0D coupling, possibly causing a degener-
ation of the performance of the coupled simulation. Eddy currents are prohibited by
omitting the eddy-current term in the field formulation. The voltage drop along the
coil is

ustr,p = Rstr,pistr,p + PT
str,p

d�a
dt

(15)

where Rstr,p is the DC resistance of the coil and Pstr,p averages the voltage drop of
all filamentary wires in the coil. The field-circuit coupling of a single coil p excited
by a voltage source reads

[
C̃MνC −Pstr,p

0 R̃str,p

] [
�a

istr,p

]
+
[

0 0
PT

str,p 0

]
d

dt

[
�a

istr,p

]
=
[

0
ustr,p

]
. (16)
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Also for coils, a 2D-to-0D coupling scheme can be developed [17, 14]. The homo-
geneous current distribution is only applied to the dual facets covering a refer-
ence cross-section Γstr,p, i.e.,

��

j = P̃str,pistr,p where the dimension-less coupling
operator P̃str,p contains the relative orientations of the participating dual facets with
respect to Γstr,p. The current distribution is forced to remain homogeneous through-
out the entire coil by an anisotropic conductivity matrix added to the magnetoquasi-
static field problem. In the FE case, the conductivity matrix reads

Mfe
σ,coil,i,j =

∫
Ωstr,p

σ (wi · tstr,p) (wj · tstr,p) dΩ (17)

where tstr,p denotes the direction of the wires of coil p. The summation by P̃str,p

corresponds to an integration of the electric field along a reference layer. R̃str,p =
P̃T

str,pM
†
σ,coilP̃str,p where † denotes a pseudo-inverse carried out for the nonzero

parts of Mσ,coil only, represent the resistance of the reference layer. The 2D-to-0D
coupling of a stranded-conductor model is found by replacing Pstr,p by P̃str,p and
Rstr,p by R̃str,p in (16). The same remarks concerning the algebraic solver apply as
for the solid-conductor case.

3.3 Specialised conductor models

Massive conductors and wire coils are adequately modelled by solid- and stranded-
conductor models respectively. In engineering practice, however, more complicated
coils and winding schemes exist. Particular distribution transformers and inductors
contain foil windings, which are constructed by rolling up sheets of conductive
material. The current through the sheet cross-section remains constant. However,
a significant redistribution of the current towards the tips of the sheet occurs. In par-
ticular devices, the eddy-current effects can also not be neglected in the individual
wires of the windings. Especially when then number of turns becomes very large, it
is not recommended to resolve the individual sheets or wires by the FE or FIT mesh,
even if significant eddy-current effects are expected [9]. The discretisation for the
magnetic vector potential should resolve the skin depth but should not necessarily
adapt to the size of individual wires. The choice for a particular conductor model is
motivated by the ratio of the conductor sizes dx and dy and the expected skin depths
δx and δy (Fig. 2). The magnetic flux penetrates a stranded-conductor model because
no eddy currents occur (Fig. 3a). For a solid-conductor model, the magnetic flux is
expelled in both directions because of eddy-current effects (Fig. 3c), whereas in the
foil-conductor case, the magnetic flux is only expelled in the direction towards the
tips of the sheets (Fig. 3b).
For foil windings, dedicated foil-conductor models applicable within 2D and 3D FE
models have been proposed in [9] and [16]. For windings with a rectangular wire
cross-section, a multi-conductor model has been proposed in [10]. These methods
avoid the explicit consideration of the separate turns by assuming a smooth variation
of the turn voltages over the reference cross-section of the winding. This voltage drop
is discretised at an additional mesh defined at the reference cross-section. A weak
formulation is applied to force the currents through the turns to be the same at the
control volumes corresponding to the turn-voltage discretisation. Such coil models
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Fig. 3: Magnetic flux lines within (a) a stranded, (b) a foil and (c) a solid conductor of equal size and with the same
number of Ampère-turns.

are especially efficient for windings where the spatial scale of the turn-voltage vari-
ation and the spatial scale of the eddy-current redistribution is substantially larger
than the smallest dimension of the individual wires or sheets. More details about the
mathematical formulation of the foil-conductor model can be found in [9] and [16].
The formulation of the wire-conductor case is developed in [10].

4 Field-Circuit Coupling

The relations between the currents and the voltage drops of solid- and stranded-
conductor models connected within the circuit are expressed by (11) and (15)
respectively. These relation can be interpreted as controlled current and voltage
sources [13, 11]. The inversion of the expression is cumbersome because of the pres-
ence of the time derivative and especially because of the coupling to the field model.
No additional circuit equations are needed if the voltage drops along the massive
conductors and the currents through the coils are known on beforehand [23, 33]. If
this is not the case, the voltage drops along the massive conductors and the currents
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through the stranded conductors should appear as degrees of freedom in the circuit
system. A systematic description of the circuit problem accounting for this consists
of a division of the circuit into a tree and a co-tree while forcing the solid conduc-
tors (together with the voltage sources and the capacitors) and the stranded con-
ductors (together with the current sources and the inductors) to be part of the tree
and the co-tree respectively. Here, we assume that such a decomposition is possible.
When this is not the case, appropriate mitigation techniques are discussed in [13] and
[11]. The fundamental cutset matrix D and the fundamental loop matrix B are parti-
tioned with respect to the solid-conductor, capacitor and resistor tree branches by the
subscript ·two, with respect to the stranded-conductor, inductor and resistor links by
the subscript ·lno and with respect to the independent voltage and current sources by
the subscripts ·twu and ·lni respectively. The coupling operators are brought together
into Qsol and Pstr, possibly adding zero columns to account for non-coupled circuit
branches. The conductances and resistances of the circuit resistors and the coupled
solid- and stranded-conductor models are collected in the diagonal matrices Gtwo

and Rlno. Similarly, the capacitances and inductances of the circuit branches are
gathered in Ctwo and Llno respectively. The voltages and currents of the independent
sources are denoted by utwu and ilni respectively. Then, the field-circuit coupling
reads ⎡

⎣ C̃MνC −MσQsol −Pstr

0 Gtwo Dtwo,lno

0 Blno,two Rlno

⎤
⎦
⎡
⎣

�a
utwo

ilno

⎤
⎦

+

⎡
⎣ Mσ 0 0
−QT

solMσ Ctwo 0
PT

str 0 Llno

⎤
⎦ d

dt

⎡
⎣

�a
utwo

ilno

⎤
⎦ =

⎡
⎣ 0

−Dtwo,lniilni

−Blno,twuutwu

⎤
⎦ . (18)

Notice that the circuit description is organised such that no fill-in in the field system
part appears.

5 Time Integration

5.1 Singly diagonally implicit Runge-Kutta method

The coupled system of equations, here abbreviated to Kx+M d
dtx = f , is integrated

in time by an implicit Runge-Kutta method [24, 28, 6]. The stage vectors x̄i and the
stage derivatives ẋi for nstage stages i = 1, . . . , nstage of the algorithm relate the
solution xn at the old time instant tn to two solutions xn+1 and x̃n+1 of different
order of approximation at the new time instant tn+1 = tn + τn+1 by

x̄i = xn + τn+1

nstage∑
j=1

aij ẋj , i = 1, . . . , nstage (19)

xn+1 = xn + τn+1

nstage∑
j=1

bj ẋj (20)

x̃n+1 = xn + τn+1

nstage∑
j=1

b̃j ẋj . (21)
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Fig. 4: Butcher table for the applied singly diagonally implicit Runge-Kutta method with four stages, a solution of 3rd
order, an embedded solution of 2nd order and an embedded solution of 1st order.

The coefficients aij , bj and b̃j are collected in a Butcher table [6]. Here, we consider a
singly diagonally implicit Runge-Kutta method with four stages, achieving a solution
of 3rd order and an embedded solution of 2nd order (SDIRK-3(2)) for which the
coefficients are listed in Fig. 4. For each stage i, the system

(
K +

1
aiiτn+1

M
)

x̄i = f (tn + ciτn+1) +
1

aiiτn+1
Mxn + M

i−1∑
j=1

aij

aii
ẋj (22)

with ci the coefficients of the left column in Fig. 4, has to be solved. The nonlinearity
caused by the dependence of the reluctivity on the magnetic field is resolved by the
successive-substitution approach or by the Newton method. The Kirchhoff voltage
law (second row in (18)) is scaled by aiiτn+1 whereas the Kirchhoff current law
(3rd row in (18)) is scaled by −aiiτn+1 in order to achieve a symmetric system of
equations. The resulting system is indefinite and is solved by the Minimal Residual
method [29] or the Quasi-Minimal Residual method [20] for symmetric, indefinite
systems. The system is preconditioned by a block preconditioner using multigrid for
the field part and an exact inverse for the circuit part [12]. The 2D examples given
in the paper are preconditioned by a multigrid approach developed for field-circuit
coupled systems [26].

5.2 Adaptive time-step selection

The difference of both solutions y = xn+1 − x̃n+1 is used to control the error of the
time-integration process [8, 4]. The error, measured in the norm

‖y‖err =

√√√√∑
j

(
yj

|xn+1,j | + δabs

)2

(23)

where δabs is an absolute tolerance, is compared to a user-defined error tolerance
εtol multiplied by an acceleration factor µ, typically set slightly larger than 1. If
‖y‖err > µεtol, the last time step is rejected, otherwise the time step is accepted.
The last time step is repeated or a new time step is computed with the time-step
length

τn+2 = ρsafety

(
εtol

‖y‖err

)1/(p̃+1)

τn+1 (24)
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where p̃ is the order of the embedded solution and ρsafety is a safety factor, typically
set to 0.9 [22].

5.3 Sinusoidal dynamics

Many electrotechnical devices are excited by sinusoidal voltages and currents. For
that case, a bad performance of the above described error-controlled adaptive time-
stepping scheme was observed [5]. This phenomenon is explained by the fact that
every second term of the Taylor series expansion of harmonic functions vanishes at
particular time instants. Then, the difference between the 3rd order accurate solution
and the 2nd order accurate embedded solution is negligible which motivates the time
integrator to put very large time steps. A possible alleviation of this problem consists
of using an embedded solution that differs by two orders of approximation, e.g., an
SDIRK-3(1) method (Fig. 4).

5.4 Time-integration over discontinuities

When field effects due to the switching of power electronic components are consid-
ered, the switching events have to be considered by the time integrator [1, 31, 15]. A
next time step is computed under the assumption that no switching events occur [2].
Afterwards, a possible event is detected by a sign checking procedure in the case of
a θ-type time integrator [30, 18] or by evaluating Sturm sequences in the case of a
higher-order time integrator [32, 3]. The time step is reduced to the instant of switch-
ing. At this time instant, the field and circuit solutions are determined relying upon
the dense output capabilities of the implicit Runge-Kutta method [6]. When due to
the switching events, capacitors are short-circuited or inductive chains are opened,
a direct redistribution of charge and flux, respectively, is carried out. It also makes
sense to carry out direct redistributions in all capacitive loops and all inductive cutsets
where the associate time constants are significantly smaller than the time constants
of the field problem. Such strategy avoids irrelevant time steps to be carried out for
the entire field-circuit coupled system. Another possibility would include the use of
a multi-rate time stepping scheme [21], e.g., performing additional small time steps
for the circuit, especially when a switching event has occurred. After the computa-
tion of consistent initial conditions, the time-integration procedure is restarted with a
changed circuit [27]. In our implementation, we favour to change the topology of the
circuit, and by that, also the structure and possibly also the size of the system matrix,
instead of the approach where switches are modelled by highly nonlinear resistors,
causing bad condition numbers of the systems of equations [18, 31].

6 Examples

The first example is a single-phase machine with a start/run capacitor (Fig. 5). Its
2D cross-section is discretised by a finite-element method, resolves local saturation
and eddy-current effects by adaptive mesh refinement and models rotor motion by a
sliding-surface technique. By transient simulation, the currents through the main and
auxiliary windings at start-up are computed.
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Lmain and Laux modelling the end winding parts and the resistances Rbar and Rring modelling the rotor ring and
rotor-bar parts outside the finite-element model; (d) current through the main stator winding during start-up.

The second example is a three-phase transformer of which the primary side is con-
nected to the grid and the second side is connected to a diode rectifier with an induc-
tive load (Fig. 6). The detection and treatment of switching instants is carried out by
a modified SDIRK-3(2) time integrator. Here, the capability of simulating immediate
flux redistribution is exploited (Fig. 7).

7 Conclusions

Field-circuit coupling is extremely important to obtain reliable simulation results for
electrical devices in an efficient way. The coupling between the degrees of freedom
of the field formulation and the ones of the circuit formulation has to be designed
such that no computational bottleneck arises, e.g., by too dense algebraic coupling
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Fig. 7: Current through the first coil at the high-voltage side of the three-phase transformer.

matrices. Besides the traditional solid- and stranded-conductor models commonly
applied for massive bars and wire coils within the field model, specialised conductor
models exist and should be applied, e.g. for foil windings. An arbitrary connection of
conductor models within an external circuit possibly incorporating switches is pos-
sible. The time integrator applied to the field-circuit coupled problem should detect
and localise the switching events. The time step is restricted to this time instant. Fast
dynamics due to (almost) short-circuited capacitors and opened inductive chains are
resolved without superfluously evaluating the expensive field problem.
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Abstract
The number of physical effects that have to be taken into account to accurately
model and design current and future micro- and nano-electronics devices is con-
tinuously increasing. At the same time, the importance of the coupling among them
is increasing as well. An accurate simulation of such effects with strong interactions
is often non-trivial and in many cases a satisfactory solution is not yet available. Two
challenging problems are presented in more detail: the first one refers to the thermo-
mechanical problem of silicon oxidation, the second is the electrical coupling which
occurs in strained silicon substrate.

1 Introduction

The peculiar driving force of micro- and nano-electronic industry is the shrink of
dimensions. This shrink allows to use less silicon and to pack more devices on the
same wafer, reducing the production costs. At the same time it results in the increase
of transistors’ driven current and in the reduction of the total capacitance (as the
coupling capacitance remains roughly constant and the capacitance between different
layers reduces). Moreover, such shrinkage allows the reduction of the dimensions of
the final equipments (cellular phones, portable computers, etc.), increasing the added
value of the integrated circuits. Along this shrink path, the minimum features defined
by today’s technology are in few tens of nanometers range [ITR05].
A second driving force is the integration of different functions in the same integrated
circuit or in the same package. This is driven by the reduction of dimensions of the
final equipment and by the increase of performances of the same equipments, thanks
to faster communications between different blocks.
A further driving force deals with innovation: to increase the added value of inte-
grated circuit, new functions have to be included in the circuits.
Because of this continuous shrinkage, increased integration of functions and new
features development, to design and to manufacture semiconductor devices, more
and more physical mechanisms, which were previously negligible, have now to be
taken into account. Among the most important there are:

∗ Invited Paper at SCEE-2006
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• diffraction and interference effects in lithography
• modeling of coupled electro-thermal phenomena
• electrical behavior of strained silicon
• electro-magnetic coupling between conduction lines which are closer and closer
• resistance of the parasitic interconnect metal lines
• effects of power dissipation
In this paper, in the next section we will present different examples of coupled prob-
lems, with a particular emphasis on the modeling aspects. Next two examples are dis-
cussed in details to show our modeling approach: the coupling between thermal and
mechanical effects which will be discussed in section 3 and the coupling between
electrical and mechanical effects presented in section 4, with particular attention
to the application of the simulation methodology and tool to a silicon nano-wire
MOSFET case.

2 Coupled Problems: general case studies

The first case we address refers to the coupling between electrical and thermal effects
which has to be taken into account to understand the phenomena involved in the prin-
ciples of operation of Phase Change Memories (see [Pir05] and references therein).
The principle is described in fig. 1:

Fig. 1: Phase Change Memory (PCM) description: low and high resistivity of PCM material is associated to the crystalline
and amorphous state, respectively. At the left side, bottom part of the figure the schematic pictures of a cross section of
the bit architecture are sketched: the “T” shape at the lower side correspond to the low resistance state, with the material
partially modified in the crystalline configuration. The upper “T” shape corresponds to the high resistance state, with the
material in the amorphous phase.

a) Top left: the storing mechanism of the bit information is based on the different
conductivity of the amorphous and of the poly-crystalline phases of the selected
material (chalcogenide). The TEM photographs show the two different states.

b) Bottom left: the sensing mechanism exploits the different resistance of the two
states. The two different current/voltage characteristics are reported.

c) Right: Finally the writing mechanism based on the joule effect due to the cur-
rent flow in the chalcogenide film. The temperature profiles to reach the reset
(amorphous) and set (crystalline) are reported.
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The second case deals with the coupling between electrical and mechanical aspects.
The conductivity in semiconductors depends on crystals strain. To accurately model
the current flowing in the devices it is necessary to take such strain into account.
Fig. 2 shows the impact of this effect (see [Fan05]). At the upper left corner a top
view of the layout of an MOS transistor is reported. As shown at the lower right
corner, the electrical behaviour depends, besides the obvious W, L values on the total
active area dimension LOD (Length Of Device, is given by “2a+L”). The lower left
corner shows the stress field in 2 dimensions, while the upper right corner shows the
1-Dimensional cutline for different LOD values.
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Fig. 2: Strain effect in mosfet transistors

3 Silicon Oxidation study

In this section we will discuss in detail the modeling of silicon oxidation. The mod-
eling of such phenomenon has two main objectives: first to predict the exact shape of
silicon and of silicon dioxide, then to evaluate the stress and strain in the two films as
the electrical performances, some failure and degradation mechanisms are strongly
dependent on the stress/strain level [Rim01], [Tho04]. An accurate modeling of sili-
con oxidation, has to deal with two linked problems: the diffusion of the oxidizing
species in silicon oxide and the solution of the mechanical problem related to the
formation of silicon dioxide (whose volume is twice as large as that of the original
silicon). These two issues are strongly linked by means of a nonlinear dependence
of the main physical quantities which are used in the diffusion-reaction problem:
the diffusivity, the reaction rate and the oxide viscosity (respectively Ddiff , Kreact,
νoxi) and the stress quantities which are calculated in the mechanical problem: pres-
sure and maximum shear stress (P, σ), as shown in Fig.3.
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This coupled algorithm has been published for the first time by Kao [Kao88] et al.
who studied the oxidation of concave and convex silicon surfaces. During these
studies they observed that the thickness of the oxide growth along cylinders with
different radius was very different and that it was not related only to a geometrical
effect. It was in particular noticed that the silicon oxide growth in a convex surface
was even smaller with respect to the one growth on a flat silicon surface. This is in
contrast with the expected consideration based on purely geometrical issues: a con-
vex structure exposes more area than a flat surface, therefore the oxidant flux should
be larger. It has been supposed that diffusivity of oxidant in the oxide layer and reac-
tion rate and the silicon interface were both reduced by the stress field inside oxide
and normal at the silicon surface. Furthermore, it was also supposed on the basis of
previous studies on silica performed by Eyring [Eyr36] that silicon oxide viscosity
was affected by the stress inside the material, reducing its value when larger amount
of stress were accumulated in oxide. To our knowledge the non-linear relationship
between stress and viscosity has not been further investigated.

Fig. 3: Solution algorithm coupling oxidation rates and stress calculations
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This model has been widely accepted by the scientific community and most of the
simulation program adopted it for the correct calculation in two dimensions of the
isolation oxide shape in flash memory arrays.
In a more recent past, it has become more and more important to evaluate the stress
field distribution not only in the memory cell array, but also in the devices devoted to
manage the internal voltage (circuitry or logic circuits). These structures are basically
3D (see fig.4), and are strongly affected by stress in silicon due to the impact on
carrier mobility, as highlighted in the next section.

Fig. 4: A SEM picture of a silicon active area (oxide has been removed during stripping operation) and the corresponding
3D structure (pink region are silicon, brown is oxide and violet is poly-silicon material).

Unfortunately, the complexity of this task is largely increased by the computational/
mathematical problem of managing in three dimensions (3D) the moving bound-
aries describing the silicon-silicon oxide and the silicon-gas interfaces. At the present
time, the commercial tool [Syn07] available for the industrial research activity only
allows to manage the stress related effects due to thermal mismatch between dif-
ferent materials for a given fixed, but 3D, geometry. The simple continuous model
suitable to calculate the strain induced by thermal mismatch between two materials
is expressed by the following equation:

ε(x, y) = (αsil − αox) × (Tfin − Tini)

where αsil,αox are the linear coefficient thermal expansion for silicon and oxide,
respectively, and Tfin, Tini are the initial and final temperatures.
The strain, calculated at the interface between the materials, is a isotropic quantity
acting in the plane parallel to the same interface.
The results in terms of accuracy and CPU time are largely affected by the solution
given by the meshing strategy used in the program.
The state-of-the-art for what regards silicon oxidation in a 3D framework is repre-
sented by FEDOS [Tuv06] simulator program, a code which is developed at the Uni-
versity of Vienna and which is still under development. The models implemented in
this code are based on a new approach, which calculates the growth of silicon oxide
starting from a diffusion-reaction approach. In fact, one assumes the following mech-
anism: the oxidant species reaches the silicon interface after a diffusion step in silicon
oxide and then the reaction with silicon is able to create a new product which is the
silicon oxide molecule, consuming a single silicon atom and two oxygen atoms. The
equation set is the following:
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∂ρox

∂t
= D

∂2ρox

∂x2
− kρoxρsil

∂ρsil

∂t
= −kρoxρsil

In the above equations D and k are respectively the diffusion of oxidant in silicon
oxide and the reaction rate of oxidant at silicon / silicon dioxide interface, and ρox,
ρsil are the density of oxide and silicon, respectively.
For given process parameters (temperature, oxidant gas flow, time) this model
incorporates oxidation when dealing in non-stationary regime. The largest difficulty
is represented in the modeling of the silicon oxide interface: in fact, in order to solve
the mechanical problem it is necessary to define a material interface for each time
step after the solution of diffusion-reaction problem and to apply to the interface the
correct velocity fields which are derived from the solution of the previous problem.

Fig. 5: At the left, the pressure distribution calculated with FEDOS without stress dependent oxidation. At the right stress
dependent oxidation is included [Hol05].

4 Transport in NanoWire mosfets study

The second detailed case deals with device simulation of silicon NanoWire MOS-
FETs. NanoWire MOSFETs (NW MOSFETs) like the one reported in [Yan04] are
gaining increasingly popularity due to their superior channel control. This is achieved
by reducing the silicon channel to a thin wire surrounded as much as possible by the
gate. This makes this kind of devices intrinsically 3D.
In addition, highly non-equilibrium transport still dominated by scattering is expected
in this kind of devices [Gil05]. This complex non-stationary/ballistic transport can be
accurately accounted for by semi-classical Monte Carlo (MC) simulation. However,
for such small devices, quantum mechanical and strain-induced effects play a funda-
mental role that must be accounted for in conjunction with the real 3D geometry of
the device. Therefore it is necessary to include quantum mechanical (QM) and strain
effects in the framework of semi-classical 3D MC device simulation.
In this section we report on a new MC simulator (called MC++ [Ghe06]) that solves
self-consistently in 1D, 2D or 3D, the Schrdinger Eq. for the QM correction of the
potential, while mechanical strain effects are accounted for by an appropriate change
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of the band structure. We will show that QM corrected 3D semi-classical Monte
Carlo device simulation can accurately address all the above issues.

Fig. 6: Main blocks of the simulation program and their interactions. Simulation starts by reading an initial guess com-
puted with conventional programs.

Fig. 6 graphically depicts the interaction among the main blocks of MC++. It solves
the Schrdinger Eq. (SE) and the Poisson Eq. (PE) self-consistently with the semi-
classical 3D Monte Carlo simulation of carrier transport through an iterative proce-
dure. The linear PE is solved using standard box methods for the potential (Ψ ) profile
frequently enough (every 2fs) to assure time stability. The solution of the SE pro-
vides the QM correction term (Λ) of the potential accounting for charge quantization
[Kat03]. Both Ψ and Λ act as driving force in the Boltzmann Transport Equation that
is solved for via semi-classical 3D Monte Carlo simulation providing carrier/pseudo-
potential profiles to be used in the solution of both PE and SE.
In case of 3D structures, the SE is solved using a “Quasi 3D” approach [Wan04]:
the simulation domain is cut in several sections normal to the channel in which
the 2D SE is solved for. Then, a continuous 3D description of the QM charge
is recovered by interpolating the results of two adjacent sections. This approach
is valid as long as the confinement region does not change shape, as in the case
of NW-MOSFET [Wan04]. The 2D SE is solved as in [Abr00]. Assuming a rec-
tangular domain with zero boundary conditions the solution can be expanded as
Φ(x, y) =

∑N
ij Aijsin

(
ki

xx
)
sin

(
kj

yy
)
. Hence, the 2D SE can be transformed into

a standard eigenvalue problem (solved by highly optimized libraries [And99]) invol-
ving the Fourier transform of the potential that can be efficiently computed exploiting
FFT algorithms [Fri05].
This methodology can be applied to more arbitrary geometries, as illustrated in Fig.
7 for the case of a circular well with radius R. First, the initial domain (Fig. 7.a) is
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mapped onto a uniformly spaced tensor product grid (Fig. 7.b) needed by the FFT
algorithm. Then, the energy profile is interpolated on the new grid. Points outside
the initial domain are assigned an arbitrary high value (Fig. 7.c, 7.d). This assures no
wave penetration outside the original domain.

Fig. 7: Numerical solution of the 2D SE in the case of a circular well with R=5nm. a) initial finite element mesh; b)
domain map to a uniform tensor product grid; c) contour plot of the energy profile; d) partial 3D view of the energy
profile.

For the energy profile in Fig. 7, the 2D SE admits the following analytical solution:

Ψmm = AmmJm (zmmr/R)
{

cos(mϕ)
sin(mϕ) (1)

Emm =
�

2z2
mm

2m∗R2
(2)

where Jm is the Bessel function of first kind of order m, while zmm is the n −
th zero of Jm. Fig. 8 demonstrates the accuracy of this procedure by comparing
quantitatively the numerical and analytical solution.
Both physical and phase spaces are discretized with a tetrahedral mesh. This allows
for the greatest flexibility in describing device geometry and makes the free-flight
equations linear [Bud94], i.e. easy and fast to be solved.
The silicon band structure is computed with the Empirical Pseudo-potential Method
[Rid06] that accounts for strain-induced band structure distortion. The Density of
State (DOS) is computed by directly calculating the area of the equi-energy surfaces
that are also stored in memory to speed up the determination of the state after scat-
tering [Bud94].
Scattering mechanisms are assumed to be isotropic and to depend on strain through
the variation of the DOS. Scattering mechanisms include: elastic acoustic phonon
scattering, inelastic optical phonon scattering, ionized impurity scattering (isotropic
model of [Buf00], impact ionization. Scattering against an interface is treated empir-
ically as a mixture of reflecting and randomizing scattering [Buf00].
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Fig. 8: Validation of the numerical solution of the 2D SE in the case of a circular well with R=5nm. Solid line: analytical
solution; symbols: simulation. Left: eigenstate energy; right: first eigenstate wave function.

Fig. 9: Simulated electron bulk mobility (�/�) in comparison with calculation of [Fis96] (◦/•) for un-doped silicon
under biaxial strain. Closed/open symbols refer to in-plane/out-of-plane mobility.

Phonon scattering for electrons and holes has been extensively calibrated to repro-
duce a large variety of experiments including strain dependent mobility for electrons
(Fig. 9) and holes (Fig. 10) [Fan05], [Ghe06], [Fer06].
As an application example we used MC++ to simulate the NW-MOSFET reported
in [Yan04] and shown in Fig. 11. The actual iteration scheme is shown in Fig. 12.
The simulation starts by reading an initial bias profile computed with conventional
QM, i.e. density-gradient, hydrodynamic simulation (QM HD).
Then, the Poisson and Schrdinger equations are solved self-consistently keeping the
pseudo-potential Φ0

n found in the initial profile. This step has been introduced to
provide a better initial guess for the potential QM correction (Λ1 in Fig.13) than the
one provided by QM HD (Λ0), thus speeding up convergence.
Please notice in Fig. 13 that Λ1 significantly deviates from Λ0. Incidentally, this
questions the accuracy of the standard density-gradient approach for 2D/3D cases.
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Fig. 10: Monte Carlo simulation of hole mobility enhancement in comparison with experimental data from wafer bending
experiments of [Tho04] under uniaxial stress.
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Indeed, one observes that this density-gradient usually is calibrated to reproduce
Poisson-Schrdinger results in 1D. Next, the real iteration loop is entered by perform-
ing a Monte Carlo-Poisson self-consistent simulation until a steady-state solution
is reached. This is necessary to get a smooth solution for the potential and carrier
pseudo-potential to be used in the Schrdinger Eq. solution to update Λ. Notice that
any “noise” on Ψand Φdirectly impacts Λ, and, if it is too large, may lead to unphysi-
cal results. The loop is then closed by solving the Schrödinger Equation as explained
in the previous section. As it is possible to see in Fig. 13, only a couple of iterations
are needed to get a stable solution for Λ. Finally, once a stable solution for Λ has
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Fig. 12: Schematic representation of the iteration scheme. Convergence is reached after a few iterations. (Notice that
Φ1 = Φ0)

been obtained, a longer Monte Carlo-Poisson loop is performed to collect smoother
statistics data.

Fig. 13: Evolution of the potential QM correction during iterations. Λ0 is the initial profile computed with conventional
density-gradient hydrodynamic simulation (QM-HD). Λ1 is the first guess provided by the self-consistent solution of the
Schrödinger-Poisson Eq. (S+P).

All simulation results shown in the following have been obtained with the inclusion
of strain. The strain tensor symmetry that can be inferred from the geometry of the
device under investigation exhibits a biaxial compressive component in the plane
perpendicular to the channel direction due to the gate all-around. Consequently, the
current flows in the out-of-plane direction benefiting from the effect of mechanical
strain (see Fig. 9).
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Using the analytical model of [Kao88] and the process information available in
[Yan04], the biaxial compressive strain is estimated to be 0.5%.

Fig. 14: Comparison of experimental (line) and simulated (symbols) drain current with (QM MC, �) and without (Classic
MC, ◦) QM correction. a) trans-characteristics; b) output characteristics.

Fig. 15: Simulated electron density (a) and velocity (b) averaged on a channel cross-section as a function of the position
for VG = 0.5V , VDS = 1V with (QM MC, dot-dashed line) and without (CL MC, solid line) QM correction.

Simulated drain current with (QM MC) and without (Classic MC) QM correction
is compared to experimental data in Fig. 14. A good agreement with experimental
data is found only if QM effects are accounted for, while CL MC provides a higher
current, as expected. This can be understood by looking at the electron concentration
along the channel shown in Fig. 15.a. When QM effects are accounted for, there is a
decrease of the free carrier density inside the channel, thus a smaller current, simply
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because quantization reduces the number of allowed states. This effect is of particular
importance for small devices such as NW-MOSFET. However, this is not the only ef-
fect due to quantization. Fig. 15.b also reports the average velocity along the channel
in the two cases. When QM effects are accounted for, electrons attain a larger aver-
age velocity while transiting in the channel (≈ +25 %), thus partially compensating
the reduced charge concentration (≈ −50 %). This is due to the particular shape of
the carrier space distribution resulting from the inclusion of QM correction. QM ef-
fects push electrons away from the interface providing the maximum concentration
at the center of the NanoWire. On the contrary, without QM correction the maximum
carrier concentration is attained at the gate oxide interface. Thus, in this latter case,
electrons will experience more surface scattering (as confirmed by the larger average
number of surface scattering per simulated particle), resulting in a smaller velocity.

5 Conclusions

The continuous technology shrinking mandates the need to account for more and
more coupled physical effects. We showed how this is the case for two of the most
important problems in the technology and device modeling area. These developments
require further investment and collaboration between industry, research centers and
software vendors, in order to provide accurate tools in time for effective usage.
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Atmospheric aerosols exhibit a high degree of variability in their properties and their
spatial and temporal distribution. Laser remote sensing is now-days used to provide
systematic monitoring of the temporal evolution of the aerosol in order to understand
the radiative, physical, chemical and dynamic processes in the atmosphere. In this
paper, we present a new method for solving the inverse problem in LIDAR sounding
based on a hybrid regularization procedure.

1 Background of atmosphere investigation by LIDAR

Optical remote sensing techniques are used today for monitoring atmospheric char-
acteristics due to the fact that, conformal to the diffraction theory, an obstacle can be
“seen” by an electromagnetic wave having a wavelength of the same magnitude as
the geometric dimension of the obstacle. The return signal of a LIDAR system (Light
Detection And Ranging) contains information about the concentration and some
physical characteristics of particles in the laser beam direction, in vertical profiles,
but to extract this information complex data processing algorithms are necessary.
The description of the laser beam interaction with atmospheric constituents (i.e.
molecules, particles, clouds) is based on the fundamental theory of electromag-
netic wave propagation in various media, well represented in the scientific litera-
ture [MHT00]. But in fact, one must consider for the theoretical approach that the
atmosphere contains a wide range of constituents extending from atoms and mole-
cules (Angstrom range d∼ 10−3 − 10−4µm) to aerosols (d∼ 10−2 − 5µm), cloud
water droplets and ice crystals (d∼ 1 − 15µm and even larger). In the last decades,
atmospheric composition and properties were studied by various laboratories or in
situ techniques can be “seen” by an electromagnetic wave having a wavelength of the
same magnitude as the geometric dimension of the obstacle. The return signal of a
LIDAR system (Light Detection And Ranging) contains information about the con-
centration and some physical characteristics of particles in the laser beam direction,
in vertical profiles, but to extract this information complex data processing algo-
rithms are necessary.
The description of the laser beam interaction with atmospheric constituents (i.e.
molecules, particles, clouds) is based on the fundamental theory of electromagnetic
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wave propagation in various media, well represented in the scientific literature
[MHT00]. But in fact, one must consider for the theoretical approach that the
atmosphere contains a wide range of constituents extending from atoms and mole-
cules (Angstrom range d∼ 10−3 − 10−4µm) to aerosols (d∼ 10−2 − 5µm), cloud
water droplets and ice crystals (d∼ 1 − 15µm and even larger). In the last decades,
atmospheric composition and properties were studied by various laboratories or in
situ techniques in different meteorological conditions and for different classifica-
tions [Hin99, KVP03, Jae93, Kop03]. From the laser remote sensing point of view,
the basic information that can be used from these studies is that the mixture of these
different components results in a series of complex atmospheric interactions that
take place with a laser beam. All these phenomena can be used to derive informa-
tion about the atmosphere. For that, the set-up of the system is different according to
the selected phenomena. In all cases, the intensity of the light resulting from these
processes is proportional with the initial intensity I0, the number density of the active
diffusers n and the differential angular cross - section σ and this can be used to derive
some optical/microphysical parameters of the diffusers in the beam path.

1.1 LIDAR equation and inversion algorithm

Due to its relatively low cost, high reliability and easy operation, the backscatter
LIDAR is commonly used for the study of aerosols and clouds. It measures the
backscatter at the laser wavelength due to molecules (Rayleigh scattering) and parti-
cles (Mie scattering). In the presence of particles of size comparable to the excitation
wavelength (> 0.1µm), Mie scattering processes become important (Mie theory).
Thus the laser radiation is elastically scattered (λD = λL) by small atmospheric
particles (i.e. aerosols) of size comparable to the radiation wavelength.
The magnitude of the received LIDAR signal is proportional to the number density
of the atmospheric diffusers (molecules or aerosols), their intrinsic properties (i.e.
probability of interaction with the electromagnetic radiation at the laser wavelengths,
called cross-section value) and with the laser incident energy. In that sense, the direct
problem in laser remote sensing is described by the so-called “LIDAR equation”,
which in the simplest case of elastic backscattering LIDAR can be written as follows
[Mea92]:

RCS(λ,Z) = CS(Z) · [βm(λ,Z) + βa(λ,Z)]

·exp

[
−2

∫ Z

Z0

[αm(λ,Z) + αa(λ,Z)]dz

]
(1)

where: λ is the wavelength of sounding radiation, RCS(λ,Z) = S(λ,Z) · Z2 is
the range corrected signal, S is the LIDAR signal, Z is the distance in the laser path
from the transmitter, CS is the system constant, βm is the molecular backscatter
coefficient, βa is the aerosol backscatter coefficient, αm s the molecular extinction
coefficient, αa is the aerosol extinction coefficient and Z0 is the minimum relevant
distance from the transmitter. In general, the inverse problem does not have unique
solutions but finitely many branches of solutions. In the above equation, βa and αa

are unknown parameters.
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The atmospheric backscattering coefficient, βatm(λ,Z) is a key element of the
LIDAR equation (1), and is proportional to the cross-section of the With these
assumptions, the Ricatti solution of the backscatter LIDAR equation can be written
[FHR72, Kle81]:

β(Z) = −βm(Z) + RCS(Z) · exp

[
−2(LRa(Z) − LRm) ·

∫ Z

ZC

βm(z)dz

]

[
−2LRa(Z)

∫ Z

ZC

RCS(z)exp

[
−2(LRa(Z) − LRm) ·

∫ Z

ZC

βm(z
′
)dz

′

]
dz+

+
RCS(ZC)
βa(ZC)

+ βm(ZC)
]−1

(2)

where LRm is the molecular LIDAR ratio and has a constant value of 8π/3. All
molecular parameters can be calculated with sufficient accuracy from ground val-
ues of pressure and temperature using atmospheric model [KM94], for the reference
value of backscattering coefficient a molecular assumed value at high altitude can
be considered, but for solving the equation for the aerosol backscatter, the LIDAR
ratio profile must be evaluated. LRa depends on the aerosol microphysics and can
vary between less than 10 sr (ice crystals) and more than 100 sr (heavily polluted air)
[KVP03]. It depends on humidity and aerosol mixture and therefore, on height. One
possibility is to measure LRa using either high spectral resolution LIDAR, either
Raman LIDAR. But even so, LRa can only be measured for the lowest part of the
profile, where the Raman signal is strong enough, and only when the background
radiation is small enough to have a significant signal to noise ratio (nighttime gener-
ally). For this reason, additional methods to eliminate nondetermination in LIDAR
equation were developed. If the backscattering coefficient in the calibration point
can be measured by other methods or estimated from atmospheric model, the main
parameter which can introduce significant errors remains the LIDAR ratio due to the
fact that to know its values over the entire laser path is practically impossible.

2 Methodology

In order to overcome the nondetermination in the LIDAR equation and the lack of
direct LIDAR ratio measurements, we improved the processing algorithm by using
complementary data, such as those provided by the Ackermann model [Ack97].
LiSA system signal processing method (fig.1) is based on Fernald-Klett combined,
atmospheric model and Mie algorithm for direct problem (theoretical calculation of
optical parameters), all integrated in an iterative program to identify the proportions
of aerosol components for which the best fit between theoretical and retrieved optical
parameters is achieved.
The iterative hybrid regularization technique for lidar data processing and retrieval of
the aerosols optical parameters is also used by EARLINET, but they consider as con-
trol parameter the pair of effective radius-refractive index of aerosol particle,set into
a matrix of possible values. The aerosol is considered a spherical particle character-
ized by radius and refractive index. In LiSA hybrid algorithm (fig. 1), it is assumed
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Fig. 1: LiSA hybrid algorithm

that the aerosol is an external mixture of internally mixed components. Each aerosol
component is log-normally distributed with respect to the particle radius and rep-
resentative to tropospheric continental aerosol type. Therefore we consider 3 types
of aerosol particles [Ack97]: soluble(s), insoluble (i) and carbonic components (c)
characterized by the number mixing ratio µs, µi, µc.
For given optical properties and a distinct relative humidity RH, the the variability of
the LIDAR ratio is caused by different number mixing ratios µk. For given optical
properties and a distinct relative humidity RH, the the variability of the LIDAR ratio
is caused by different number mixing ratios µk. The iterative hybrid regularization
technique for lidar data processing and retrieval of the aerosols optical parameters
is also used by EARLINET, but they consider as control parameter the pair of ef-
fective radius-refractive index of aerosol particle,set into a matrix of possible values.
The aerosol is considered a spherical particle characterized by radius and refractive
index. In LiSA hybrid algorithm (fig. 1), it is assumed that the aerosol is an external
mixture of internally mixed components. Each aerosol component is log-normally
distributed with respect to the particle radius and representative to tropospheric con-
tinental aerosol type. Therefore we consider 3 types of aerosol particles [Ack97]:
soluble(s), insoluble (i) and carbonic components (c) characterized by the number
mixing ratio µs, µi, µc.
For given optical properties and a distinct relative humidity RH, the the variability
of the LIDAR ratio is caused by different number mixing ratios µk. The water sol-
uble component is the only component whose properties are affected by the relative
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humidity. The mixing ratio µs can be varied between 0.1 and 1 in steps of 0.1.
Accordingly, since µi is about four orders less, µc, chosen to be chosen to be the
controlling parameter in our algorithm, is iterated in 0.01 steps from 0.1 to 1. On
each iteration we calculate humid log-normal distribution parameters and refractive
indices for each aerosol component using Akermann’s model [Ack97]:

nRH
k =

Ntot · µk

(2π)1/2 · r · lnσk
· exp

[
− ln(r/rRH

k )
2ln2σk

]
(3)

mRH
k = ma + (m0

k − ma)
(

r0
k

rRH
k

)

where k is referring to the soluble(s), insoluble (i) and carbonic components (c), the
index “0” refers to the dry values of microphysical parameters and the “RH” indices
refers to the corresponding value at relative humidity RH. These will be input in the
Mie model for determination of the theoretical extinction and backscatter coefficients
βt(Z) and theoretical LIDAR ratio.

LRRH
a =

f∑
k=s,i,c

QRH
ext.k(r,mRH

k , λ)πr2nRH
k (r)dr

∑
k=s,i,c

QRH
bksc.k(r,mRH

k , λ)πr2nRH
k (r)dr

=

∑
k=s,i,c

αRH
k

∑
k=s,i,c

βRH
k

(4)

Molecular backscattering coefficients calculated by the atmospheric model, the
LIDAR signal and βa(ZC) in the calibration point Zc are used by the Fernald-Klett
algorithm to derive the experimental backscattering coefficient βe(Z) conform to eq.
(3). The control parameter µc will be varied until the difference between βt(Z) and
βe(Z) is less then a threshold. At this point the conclusion is that the hypothesis
made for the aerosols components is correct and microphysical aerosols parameters
like AOD, effective radius, total volume concentration, can be derived. Also now
we have the correct value for extinction and backscatter coefficients. For the next
profile point the iteration will start with the controlling parameter determined. The
method we are using is a regularization one because implies a regularization cycle
for controlling parameter, µc until we are getting a theoretical profile of βa almost
equivalent to the measured one. This is a hybrid method because it on each itera-
tion, for derivation of experimental βa by LIDAR inversion we are using as an input
the theoretical value of the LIDAR ratio LRa obtained with the Akermann and Mie
model.

3 Results

To illustrate the advantages of the algorithm, a dust intrusion episode was analysed,
using both simple Fernald-Klett and our new algorithm for data processing. The
intrusion was recorded on April 5th, 2006, during a LIDAR measurements campaign.
Generally, no information about the origin of detected aerosols can be extracted from
elastic backscatter LIDAR data, but running the iterative hybrid program we obtained
the LIDAR ratio profile, being able in this way to discern between the local aerosol
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and the dust aerosols coming from the Iberic Peninsula. The phenomena is consistent
with the prognosis of DREAM (The Dust REgional Atmospheric Model) developed
by Dr. Slobodan Nickovic [NPK01] and running at the Supercomputing Center in
Barcelona. An example which demonstrates the importance of considering a variable
LIDAR ratio as input parameter in inversion algorithm is the case of cloudy sky. In
the following figure some profiles of processed LIDAR data recorded during this
event are presented.

Fig. 2: The retrieval of backscattering coefficient (left) using Fernald-Klett (gray line) and LiSA (black line) algorithm
5th, and LIDAR ratio (right) in case of cloudy sky

Inside clouds the LIDAR ratio has an important variation due to the cloud particles
composition and their refractive index. LIDAR ratio can no longer be considered
constant with altitude. In the figure above only the profiles measured in the pres-
ence of cirrus clouds were considered and one can see that in this case the differ-
ence between the two methods becomes important. Inside a cloud, the dimension of
hygroscopic aerosol increases, the refractive index varies inducing a stronger scat-
tering and weaker absorption of light. For this reason, clouds are isibledirectly in
LIDAR signal, unlike dust aerosols. The hygroscopic characteristics of cloud par-
ticles correspond to a incresing of soluble particles proportion and a decreasing of
soot particles proportion.
It must be noted although that, in elaborating this algorithm, the multiple scattering
was neglected, that’s why the quantitative information referring to cloud particles’s
optical properties must be carrefully analyzed. Also, the calibration point must be
properly chosen, above PBL and above the cloud, where the aerosol backscattering
coefficient has a minimum value. This choice assures the convergence of the solution,



New Algorithm For The Retrieval Aerosol’s Optical Parameters 61

which is not always evident, especially if both foreward and backward integration
is used.
For the presented case, the calibration point was chosen at 5500m altitude, above
the cloud, and a 87 % soot proportion in that point was considered. This value
was given by Ackermann [Ack97] as the average value for continental urban tro-
posphere. The relative humidity profile was extracted from NOAA database. For
the dry values of effective radius and refractive index of every aerosol component
the Ackermann hypothesis were used. With these considerations, the backscattering
coefficient obtained in calibration point was 4.5 · e−7m−1m−1 for 1064 nm, respec-
tively 1.16 · e−6m−1m−1 for 532 nmand the corresponding LIDAR ratio was 51
sr for 1064 nm, respectively 50 sr for 532 nm, those values being used as input in
Fernald-Klett algorithm.

4 Conclusions

Inherent assumptions made for the inversion of data, the quantitative results must be
carefully analyzed and data validation must be done.
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A Demonstrator Platform for Coupled Multiscale
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Summary. In this communication we present the CoMSON Demonstrator Platform (DP), a
software tool designed to help researchers in testing and validating models and algorithms
for coupled simulation of nanoelectronic circuits and devices. The structure of the DP is pre-
sented with an explanation of the motivations behind the critical design choices. A multilevel
simulation of a CMOS AND gate using two different coupling algorithms is provided as an
application example. The example is intended to demonstrate the suitability of the DP as a
flexible prototyping environment and its ability to cope with real life industrial problems. In
the numerical simulations both the semi-classical Drift-Diffusion model (DD) and a Quantum
Corrected DD model (QCDD) are employed and their predictions are compared.

1 Introduction

Currently, to design new integrated circuits or to port existing designs to a new tech-
nological platform, designers follow a path composed of different, almost indepen-
dent, steps. At each stage of this path different software tools are used to support
the design flow. Process simulators are used to predict geometries, doping profiles
and other physical parameters of devices that can be produced in a given technologi-
cal process. Device simulators are then used to predict electrical/thermal behavior of
the new devices. Using physical considerations, often based on the drift-diffusion
framework with simplifying assumptions on geometry, doping profiles, material
parameters, one has to define compact models to describe the device behavior with
simple, explicit analytical expressions. Very often a priori considerations lack predic-
tiveness and accurate a posteriori calibration of model parameters based on numerical
simulations and experimental data is needed. The compact device models are used
in circuit simulations to predict the behavior of new circuit topologies or to evaluate
the performance of existing topologies implemented with new technologies. Finally,
an optimization step is used to maximize circuit performance by perturbing device
parameters in the vicinity of the given values. This design flow presents some dis-
advantages that are becoming more relevant as CMOS technology is scaled down
to its physical limits. To be as accurate as possible, compact models have grown
to include several hundreds of parameters (see, for example, [7]) with little or no
connection with physical characteristics of the devices. The lack of connection be-
tween model parameters and physical properties renders, on one hand, very delicate
and cumbersome the parameter calibration stage and, on the other hand, it makes it
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almost impossible to perform an optimization of the circuits based on the geometry
and doping profiles of the devices. The latter effect is even more evident at the cur-
rent stage of technological advancement where not only device dimensions are being
scaled but completely new device geometries are being considered (DG, Tri-Gate,
GAA, FinFET, nanotubes, . . . see, for example, [12])
A possible approach to the solution of the problems described above is to create
simulation tools where the behavior of the devices is represented not by evaluating
the explicit analytical relations given by the compact models but by performing a
direct simulation based on more accurate physical models taking the complete 2D/3D
device geometry and realistic doping profiles as obtained by process simulation into
account. This clearly comes at the cost of a great increase in computational effort,
but the advantages are many-fold. First of all the use of few physically based design
variables instead of many fitting parameters gives designers a much higher level of
understanding which can lead faster to better design decisions and, furthermore, it
can greatly help the construction of automatic optimization tools.

2 The CoMSON Demonstrator Platform

To achieve the above goal, many open problems still need to be solved. Apart from
the computational cost (which will need to be reduced as much as possible, for
example via Model Order Reduction techniques [5], or parallelization, but cannot be
expected to be anywhere close to that of compact models) the coupling itself can lead
to instability and convergence issues that need to be addressed properly by resorting
to suitable numerical schemes. For this reason within the EU RTN project CoMSON
(http://www.comson.org) a Demonstrator Platform (http://www.comson.org/dem)
will be developed to connect numerical simulation tools available throughout the
nodes of the CoMSON consortium through a common interface. In this way,
researchers willing to be confronted with the problems arising in the framework of
coupled simulation will be given the opportunity to abstract from the implementa-
tion of the basic tools (device simulator, circuit simulator, heat transfer simulator,
. . . ) and to concentrate on the coupling itself. The architecture of the Demonstrator
Platform will be the main focus of this communication.

2.1 Goals of the CoMSON Demonstrator Platform

The basic idea behind the Demonstrator Platform is to provide an integrated testing
framework for researchers interested in new strategies for coupling simulation tools
from different physical domains. Within this framework they will be able to imple-
ment, test and assess the applicability of their methods to real life problems without
having to enter the details of the lower level tools. At the same time, researchers
interested in new mathematical models for the basic physical phenomena can asses
their relevance for overall system behavior taking advantage of the coupling with
system level simulation tools.
It has has been designed to achieve the following objectives:
• providing a fast prototyping environment in which new and existing algorithms

can be tested compared and assessed;
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• allowing application of the algorithms, once assessed, to real life industrial
problems.

2.2 The Structure of the CoMSON Demonstrator Platform

To achieve the results listed above, the structure depicted in Fig. 1 has been devised.
The main components of the DP are:
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Fig. 1: The structure of the DP

1. a library of test examples and experimental measurements to be used as bench-
marks for any new method,

2. a set of modules each consisting of a collection of functions providing the basic
functionality of the single domain simulators,

3. a controlling programming language with which the aforementioned functions
can be connected to form simulation algorithms. To separate the implementation
of the basic functions from that of the coupling algorithms, the single domain
simulators are organized as independent external libraries from which the DP
functions are obtained via interfaces (bindings for the controlling language to
the external libraries).

The test example library will contain both real-life industrial problems from the
industrial nodes of the CoMSON consortium (NXP, Qimonda and STMicroelectron-
ics) and simplified academic examples which display the same phenomena but with-
out complications that are not essential for the understanding of the problem. This
latter class of examples is especially fit for training purposes.
The initial set of functions in each module will be enriched if new algorithms will be
studied that require lower level functions not initially available.
The programming language chosen as a controlling language is Octave. The main
factors driving this choice were:
• the availability of a free language interpreter, and of a free API for building lan-

guage extensions in C, C++, Fortran;
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• the very high level of compatibility of the Octave interpreter with the Matlab
programming language syntax which is the de-facto standard for teaching
numerical algorithms;

• GPL licensing terms make it simple to distribute a fully functional system based
on Octave including all needed software dependencies.

To better demonstrate the structure of the Demonstrator Platform and its use we
will resort to a practical example. We will consider device/circuit coupling strategies
belonging to two different classes:
• based on the extension of the device simulator by considering the network equa-

tions as general boundary conditions. Such an approach is used in [2] (in the
case of stationary semiconductor equations) and in [1] (in the case of evolution-
ary semiconductor equations) to derive analytical results for the coupled system.

• Based on extension of the circuit simulator by adding the spatially discretized
semiconductor equations to the system of network equations. This approach was
applied in [11] for the numerical analysis of the coupled system and, together
with a staggered solution approach, in [8, 9] for the simulation of the electro-
thermal behavior of an operational amplifier.

By implementing solvers based on such different coupling strategies, we demon-
strate the flexibility of the Demonstrator Platform architecture. Moreover, we show
how the abstraction layer provided by the Demonstrator Platform can be exploited
for further generalization of the implemented algorithms by extending the coupling
strategies considered to the case where more complex semiconductor models (like
the Quantum-Corrected Drift-Diffusion class of models as described in [6]) are used
for device simulation.

3 Two algorithms for coupled circuit-device simulation

In the current section we introduce two different strategies for simulating an elec-
tronic circuit where part of the composing elements is described through a full 2D
Finite Element model and part is represented by lumped elements.
In Sec. (3.1) we introduce the system of equations stemming from the coupling of
circuit and device equations.
The first algorithm is outlined in Sec. 3.2 and is referred to as circuit-driven algorithm
because it is an approach that could be applied if one were to extend an existing cir-
cuit simulator to include distributed device models. The second algorithm, described
in Sec. 3.3 is a viable option to extend a device simulation program based on the
Gummel Map algorithm to include coupled simulation capabilities. In describing the
algorithms we will point out which functionalities need to be exposed to the control-
ling language by the single domain simulators for their implementation.
For more details on implementation we invite the interested readers to download the
software code and documentation which will be soon available at http://www.comson.
com/dem.

3.1 The Circuit/Device Coupled Problem

Using charge/flux based MNA modeling for the network (see, for example, [10] for
more details), we can write
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Aqq,t(t) + f(x(t), t) = jN
q(t) − g(x(t)) = 0 (1)

where Aq is a constant incidence matrix, f(x(t), t) and g(x(t)) are non-linear func-
tions, x is a vector formed by the values of the voltage nodes and of the currents
through the inductors and voltage sources and q is the vector containing the values
of the capacitor charges and the magnetic fluxes through the inductors. jN represents
the currents flowing from the circuit into the contacts of the distributed device. Fur-
thermore note that the subscript (·),t indicates differentiation with respect to time.
Considering, for sake of brevity, the effect of charge transport due to electron carriers
only, a very general form to express the equations for the distributed device which
can fit the whole class of Quantum Corrected Drift Diffusion (QCDD, see [6]) is as
follows

P (Φ, n, p) = 0 in Ω
n,t + Cn(Φ, n) = 0 in Ω

Φ|Γi
= φi

n|Γi
= ni

(2)

In (2) Φ, n, p are the electric potential, electron density and hole density inside the
device computational domain Ω respectively; P and Cn are non-linear differential
operators for the Poisson equation and electron current continuity equation respec-
tively; Γi is the ith contact of the device and Φi and ni are the values of the electric
potential and electron density on each of the contacts.
From the values of Φ and n one can compute the charges qSi

and currents jSi
at the

contacts of the device as ∫
Γi

ε∇Φ · ν dγ = qsi∫
Γi

Jn(Φ, n) · ν dγ = jsi

where Jn represents the current density in the device, and ν being the unit outward
normal to the boundary of the device. Finally the circuit and device can be coupled
by enforcing charge conservation:

jN + As(js + qs,t) = 0
α(φN + VBI) = AT

s x (3)

In (3) As is an incidence matrix indicating to which nodes in the network the contacts
of the distributed device are connected, ΦN are the voltages of the network nodes
connected to the device and VBI are the corresponding built-in voltages, α is a
scaling factor and the vectors js = [js1 . . . js1 ]

T and qs = [qs1 . . . qs1 ]
T are the

currents and charges flowing through the distributed device contacts.

3.2 The Circuit-Driven Algorithm

The basic idea behind this approach is to express the complete coupled system in a
form as similar as possible to the MNA equations (1).
By using (1) and (3) and discretizing in time by applying Rothe’s method and a
BDF(m) formula, we can write the coupled problem as

β0 (Aqq(tn) + Asqs(tn)) +

+ f(x(tn), tn) + Asjs(AT
s x) = −

∑
k=1...m

βk (Aqq (tn−k) + Asqs(tn))

q(tn) − g(x(tn)) = 0
qs(tn) − gs(AT

s x(tn)) = 0

(4)
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To solve this system with a Newton method we need a function to compute
• Currents and charges flowing through the distributed device contacts as a func-

tion of the node voltages
• Derivatives of such currents and charges with respect to the node voltages (local

capacitance and conductance matrices)
Such function is implemented along the following lines.

1 Solve the DD equations with the Gummel map algorithm
2 Linearize the Poisson equation around the solution and compute the charges

as the flux of −ε∇Φ through the contacts
3 Linearize the Continuity equation around the solution and compute the cur-

rents as the flux of −εµn(n∇Φ − Vth∇n) through the contacts
4 Obtain the capacitance and conductance matrices via a Schur complement

technique from the linearized Poisson (continuity) equation

The main requirement to implement this algorithm in the framework we described is
that, to perform steps 2-3, we need the device simulation module to define functions
that, given the contact potentials as input, produce as output the matrices for the
linearized Poisson and continuity equation at each integration time point.
Once such matrices are available the computation of conductance and capacitance
matrices is very straightforward.
Consider for example the Poisson equation for a device with two contacts. The dis-
crete, linearized Poisson equation has the form

⎡
⎣P11 0 P1I

0 P22 P2I

PI1 PI2 PII

⎤
⎦
⎡
⎣ (φ1 + vBI1)1Γ1

(φ2 + vBI2)1Γ2

ΦI

⎤
⎦ =

⎡
⎣ q′s1

q′s2

0

⎤
⎦ (5)

where 1Γi
represents a column vector of all ones with as many elements as there

are on the mesh for the i-th contact, ΦI is the vector with the values of the electric
potential at the internal mesh nodes, and q′s1

is the vector of the charges at the mesh
nodes on the i-th contact.
The total charge at the contacts can be expressed as

qs1 = 1T
Γ1

q′s1
; qs2 = 1T

Γ2
q′s2

and by eliminating ΦI one can get a relation for the charges in terms of the contact
potentials of the form

(
qs1

qs2

)
=
(

c11 c12

c21 c22

)(
φ1

φ2

)
+ . . .

where cij is the derivative of charge qi with respect to node voltage Φj .

3.3 The Device-Driven Algorithm

The Device-Driven algorithm we present is a generalization of the well-known
Gummel algorithm for the solution of the DD equations where the circuit equations
are included as boundary conditions for each of the decoupled problems.
To set up such algorithm we need to decouple the problem into two subproblems,
corresponding to the Poisson and continuity equations respectively:
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Problem A (Poisson)

P (AT
s x, ΦI ,qs) = 0

β0(Aqq(tn) + Asqs(tn))+ f(x(tn), tn) + Asjs =

= −
∑

k=1...m

βk(Aqq(tn−k) + Asqs(tn−k))

q(tn) − g(x(tn)) = 0

(6)

Problem B (Continuity)

Cn

(
AT

s x, ΦnI
, js

)
= 0

β0(Aqq(tn) + Asqs(tn))+ f(x(tn), tn) + Asjs =

= −
∑

k=1...m

βk(Aqq(tn−k) + Asqs(tn−k))

q(tn) − g(x(tn)) = 0

(7)

In (6) ΦI is the value of the electrical potential at the internal nodes of the device
mesh x(tn) is the vector of the network node voltages, the network and device node
charges are q(tn) and qs(tn) and the current through the device contacts is js. In (7)
ΦnI

represents the vector of the values of the quasi-Fermi potentials at the internal
nodes of the device mesh. As in Sec. 3.2 a BDF(m) formula has been applied for
time discretization.
Having defined the two subproblems above, the procedure to be carried out at each
time step can be described as follows:

Iterate through steps 1 and 2 below until consistency is reached:
1 Solve the non-linear Poisson equation [A] for the unknowns ΦI , x(tn), q(tn),

qs(tn) considering js a known quantity.
2 Solve the non-linear continuity equation with unknowns ΦnI

,x(tn),q(tn), js
and considering qs(tn) fixed

Note that both step 1 and step 2 involve the solution of a system of non-linear
equations so they require two more Newton loops to be nested within the iteration
described above.
To be able to impose the appropriate boundary conditions we need the circuit simu-
lation module to define a function that, given the values of the network unknowns
as input, produces as output the matrices for the linearized MNA equations. This
is the main requirement to be able to implement the Device-Driven method in our
framework.

4 An Application Example

As an application for the algorithms described above, the test circuit in Fig.2(a),
representing a CMOS AND gate, has been considered. For sake of simplicity only
the n-type MOSFET in the output stage has been simulated using a full 2D simulation
as shown in Fig. 2(b). The simulated device is a very aggressively scaled MOSFET



70 Carlo de Falco, Georg Denk, Reinhart Schultz

with a gate length of 15nm. For such small devices, according to traditional scaling
rules a Vdd voltage of 0.8V should be appropriate.
Fig. 3(a) displays the switching behavior of the AND gate computed with a DD
Model for the distributed device and using both the Circuit and the Device-Driven
algorithms. As stated in the previous section both coupling approaches can be applied

(a) The CMOS AND gate simulated (b) The set-up for coupled simulation of the
AND gate

Fig. 2:

with no effort to more advanced semiconductor models. To demonstrate this we
repeated the simulation using a Density Gradient model (See [3], [4] for a descrip-
tion of the model). The impact of quantum correction on the performance of the
circuit is shown in Fig. 2(b). Essentially the circuit does not behave as a digital gate
at all. This is mainly due to a shift in the threshold voltage of the device connected
to the increased Equivalent Oxide Thickness (see [6] for a description of this effect).
Indeed, as shown in Fig. 3(c), if Vdd = 1.6V is applied, the circuit displays better
performance.

(a) Simulation results using a DD
model with Vdd = 0.8V

(b) Simulation results using a QDD
model with Vdd = 0.8V

(c) Simulation results using a QDD
model with Vdd = 1.6V

Fig. 3:
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Abstract - The paper presents an investigation of the magnetic field influence within
low voltage switching process in vacuum, in the case of strong currents interrupting.
The axial, transverse and radial magnetic field action upon the vacuum electric arc
behavior is analyzed on a mono-phase model. The conclusions obtained by model-
ing the electromagnetic field in the vacuum quenching chamber are compared with
the experimental results. The experimental set-up can reproduce the real switching
conditions of the power vacuum circuit-breaker. The goal of the study is the improve-
ment of the circuit-breaker switching capabilities.

1 Introduction

In spite of the very good dielectric properties of vacuum, the vacuum interrupters
have to overcome some difficulties connected with the electric arc behavior. At low
currents, up to 10 kA, the arc burns in diffuse mode, so that the contacts erosion and
heating is acceptable. But currents up to 10 kA represent a range for which other
interrupters, much cheaper, can be utilized with success. Thats why, larger currents,
up to 100 kA, represent the goal for the vacuum interrupters performances.
At currents over 10 kA, owing to the Pinch effect, the arc column is concentrated,
by the interaction between the current flowing through it and its own magnetic field.
The result is a severe erosion of the contacts surfaces, caused by the intense heating
and melting at the electric arc base.
Finally, the resulting contact surfaces rugosity diminishes the dielectric rigidity of
the contact gap and the interrupters breaking capability.
A magnetic field (axial, transverse or radial) interacting with the current flowing
through the arc has a beneficial action and increases the switchgear breaking perfor-
mances. These magnetic fields are produced by the interrupted current itself, owing
to a specific contact parts design.
The measurements were performed by using equipment able to provide asymmetric
short-circuit currents up to 54 kArms (110 kAmax - for asymetrical short circuit
current) at 1360 Vrms. It is provided also with the possibility of performing light
intensity and spectroscopic measurements.



74 S Nitu, D Pavelescu, C Nitu, Gh Dumitrescu, P Anghelita

2 The axial Magnetic Field Action

The axial magnetic field (AMF) can modify the state of the electric arc in vacuum,
by the interaction with the electric arc plasma. The result is the arc maintaining in the
diffuse burning state up to large values of the current and a more uniform distribution
of the electric arc power on the contact device surfaces. These consequences are more
evident if the magnetic field is uniform in the area of interest.
The simplest solution to obtain a uniform magnetic field in the gap between the
contact plates is an external coil placed around the quenching chamber (Fig.1). In the
main electric circuit, the coil L is parallel connected to a resistor Rp which allows
the adjustment of the coil current and, consequently, the one of the AMF. There are
also specific contact parts design solutions capable to create an axial magnetic field,
but in this case it is impossible to vary the magnetic field value in order to study its
influence and establish the optimum value.

Fig. 1: Active functional part of the testing equipment

When the current passes through zero, the magnetic field phase is shifted behind
the current, like in a real circuit breaker (Fig.2) [FL96]. The current limit for which
breakdown failures appear is rising if an axial magnetic field is applied, up to a limit,
at which the residual conductance at current zero moment, is stabilized [PDN99]. A
too large residual magnetic field (B0) can favor the arc reigniting, by maintaining the
residual conductivity of the gap between the contacts, at large values.
A systematic analysis of the dependence on magnetic field variation (0...1 T) of the
five parameters (Fig.2) which characterize the voltage drop on the large power elec-
tric arc developed in a vacuum chamber, with small gap between contacts and low
voltage supply is presented.
Experimentally was observed the major influence of the magnetic field upon Ua4 and
the moderate one upon Ua3, the most important voltages as concerns the switching
process.
As a consequence of the performed experimental determinations, it was found out
that, for low voltage range and a variation of Bmax between 0 and 1000 mT, Ua3 and
Ua4 are power functions of B with under unit exponent. So, the average value of the
arc voltages can be approximated by:
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Fig. 2: Typical oscillogram of a successful interruption

Ua3 = a + b · Bδ
max, where : 0 < δ < 1 (1)

Ua4 = U∗
a4 + b · Bδ

max (2)

with U∗
/rma4, the value of Ua4 for the case of no external magnetic field, dependent

upon the current and approximated by an exponential law. Finally the variation of
Ua4 is found to be a curve family, with the current as parameter:

Ua4 =
[(

cÎ − d
)

exp
(
Î/k

)
+ b · Bδ

max

]
· η

(
Î − I0

)
(3)

where Î is the hitting current, I0 is the limit current for which the electric arc in
vacuum exists, η is the unit step function and b, c, d and k are constants, determined
from experimental values. This dependence of the final voltage Ua4 is represented
like a family of curves with the current as parameter, in Fig.3.
From these curves results the variation of maximum magnetic field magnitude versus
the hitting value of the breaking current, when the 100% failure emerges. It is to be
noticed a variation over 500 mT of the magnetic field magnitude has no significant
effect upon breaking current raise.
So, the AMF produced by an outside coil is much stronger that the required one. In
spite of the benefic action of an AMF, commercial applications are strongly affected
by the Ohmic losses in the coil. The manufacturers found solutions to minimize the
losses and optimize the axial magnetic field, to the minimum required.

3 Transverse and Radial Magnetic Field Action

The transverse (TMF) is obtained in a cup shaped contact (Fig.4) and the radial mag-
netic field (RMF) is created by the current flow through a spiral type contact (Fig.6).
The TMF and RMF influence the arc behavior by yielding its motion on the con-
tact plates surface, under the Laplaces force. Thus, the arc remains concentrate, but
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Fig. 3: Calculated values of Ua4 and the probability of 5% and 100% (E=5%, E=100%) interruption failure (determined
in a previous investigation [PTN96])

changing continuously its position, avoids the electrodes over heating and minimize
the electrode surface erosion.

3.1 Transverse Magnetic Field

The TMF produces the column movement on the contact rim.
The graphics from Fig.4 represent the light intensity of the arc column distributed
over the contact rim.

Fig. 4: Arc appearance for a 12 kA asymmetrical current (t=2ms and t=6ms)

In order to measure the light intensity emitted by the arc in points placed at 30◦ on
the contact circumference were used 8 channels (Fig.5): Cxi, i=1..4 for recording the
arc light intensity along the Ox direction and Cyj, j=1..4 for recording it along the Oy
direction. The 8 signals are proportional to the line integral of the light emitted along
the chosen direction. The intersection point Aij of the observing directions of the
channels Cxi and Cyj is assumed to be on the medium circle of the contact rim. The
arc light intensity in each such point is proportional to the values measured through
the channels Cxi and Cyj.
The arc evolution was evidenced in the case of an asymmetrical current successful
interruption of 12 kA in Fig.4.
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Fig. 5: The position of the 8 channels used for the electric arc investigation in the vacuum chamber

The arc velocity can be approximated by the maximum light point velocity, which is
5 - 8 m/s in the case of an interrupted current of 12 kA.

3.2 Radial Magnetic Field

The RMF is created by a specific geometry (Fig.6 - spiral type contact), at which
the contact disc is divided in four curved petals, with variable transversal section.
The electric arc is obliged by the Laplaces force to move from the base of the petal,
where it is initiated, to the petals end, and than around the contact. The Laplaces
force is calculated by a 2D FEM software, for a certain position of the arc, which is
considered to have a cylindrical form, with a diameter of 10 mm. The difficulty is
to appreciate the plasma mass of the electric arc and the resistant force, due to the
viscosity.
The arc velocity is calculated using the relation deduced from [DSS02]:

varc = I5/6
√

j ·
[
2 ·

(
L · br · hev

mN

)2 1
(Ts − T0)

√
πκcρ

2

] 1/3

(4)

as function of the current intensity I and density j, with the same notations and in the
same simplifying hypotheses.
The direction of the arc velocity is assumed to be the same as the tangential compo-
nent of the electrodynamic force, numerically calculated from the electromagnetic
field distribution. This calculation was performed for every arc position. In the varc

relation, I (the interrupted current intensity), j (the current density), L (the arc length)
and b (the magnetic field density) are calculated at each time step (∆t = 0.05ms), that
is at each arc position. The other terms from the relation (4) are considered to be con-
stant, like in the following relation:

varc(t) = K1 · K2 · I(t)5/6 · j(t)1/2 · [L(t) · b(t)]2/3 (5)

with the constants:
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Fig. 6: Magnetic field distribution at t=6ms

K1 =
(

hev

mN

)2/3

; K2 =

[
2

(Ts − T0)
√

πκcρ
2

] 1/3

(6)

The arc movement is considered to be uniform accelerated upon each time step.
The calculated velocity values are presented in Fig.7, together with the interrupted
current, the arc voltage and the light intensity measured by the F1 optical fiber from
Fig.5. The arc velocity is also experimentally determined, from the light intensity
measurements: between a maximum and a minimum of the light intensity, the arc is
moving along a quarter of the contact circumference.
In Fig.7 point 1 represents the moment of the arc ignition; at moment 2 the current
has 10 kA and the arc is constricted; at moment 3 the contact gap has 4 mm and the
arc begins to move around.
So, the calculated results (dashed line in Fig.7) are much different from the experi-
mental ones at the maximum current values, that is at current densities of 190...230
A/mm2 (up to 40%). At current densities j = 100...120 A/mm2, at the beginning
and end of the arc movement, these differences are less, like in [DSS02]. The total
arc displacement is 1.5 contact circumferences.

4 Conclusions

An efficient tool to predict arc behavior in the vacuum circuit breakers, under the
magnetic field influence, is very necessary in order to optimize the apparatus design.
The proposed model seems to be promising, but it will be improved by the compu-
tation of the eddy currents, caused by the magnetic flux variations, produced by the
electric arc movement on the electrodes surface. This is necessary because the lack
of the eddy currents influence in the contact model is the explanation for the great
difference between the real and the calculated arc velocity values.
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Fig. 7: Arc velocity, correlated with the interrupted current
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Abstract. Next-generation nano-scale RF-IC designs have an unprecedented complexity and
performance that will inevitably lead to costly re-spins and loss of market opportunities. In
order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to
develop methodologies and prototype tools for a comprehensive and highly accurate analysis
of complete functional IC blocks. These blocks will operate at RF frequencies of up to 60
GHz. In this paper an overview of the CHAMELEON RF project will be given and the first
results achieved in the CHAMELEON RF project will be presented.

1 Introduction

IC design automation tools are indispensable for RF designers in the transition
to the nano-scale era. These tools are needed to develop nano-scale designs of
unprecedented complexity and performance and, in addition, enable the achieve-
ment of single-pass design success to avoid costly re-spins and the loss of market
opportunities.
Next generation designs will be challenged by an increased number of trouble spots,
many of which negligible at lower frequencies but representing a significant limi-
tation for future designs. These trouble spots will have to be accounted for during
the design phase in order to avoid costly mishaps that can originate potential failures
and additional design and silicon iterations, and must be addressed in future design
automation tools.
New coupling and loss mechanisms, including EM field coupling and substrate noise
as well as process-induced variability, are becoming too strong and too relevant to be
neglected, whereas more traditional coupling and loss mechanisms are more difficult
to describe given the wide frequency range involved and the greater variety of struc-
tures to be modeled. All this will cause extra design iterations, over-dimensioning
or complete failures, unless appropriate solutions are found to resolve these design
issues.

∗ The CHAMELEON RF project is funded under the European Union IST 6th Framework
Program: FP6/2004/IST/4-027378.
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2 CHAMELEON RF

The key to these solutions is the recognition that devices, both active and passive,
can no longer be treated in isolation. Complete RF blocks must be considered as one
entity, and be treated as such by the design automation tools. Today, it is not possible
to perform such analyses of complete RF blocks.
The CHAMELEON RF project will deliver the methodologies and prototype tools
to make this possible.

Table 1: CHAMELEON RF Consortium

PARTNER NAME COUNTRY
NXP Semiconductors Research Eindhoven NL
austriamicrosystems AT
MAGWEL BE
Interuniversity Micro Electronics Centre BE
INESC-ID PT
Polytechnic University of Bucharest RO
Delft University of Technology NL

3 Objectives

Current state-of-the-art modeling techniques, such as developed in the FP5/IST
project CODESTAR [1], include compact models for the active and passive com-
ponents, as well as field solving and model order reduction procedures and tools for
simulating such devices. Whereas the CODESTAR project aimed primarily at the
creation of design tools suitable to study the coupling of electromagnetic effects by
analyzing elementary design units such as spiral inductors, varactors, capacitors and
interconnects, here, we will build on these results by actually combining them via
the proposed ‘hierarchical field solving using compact models with connectors’ par-
adigm, with the goal of handling full circuit blocks instead of just one or a small
number of devices in isolation. This requires revisiting modeling procedures and
assumptions. The development of the design methods is further complicated by the
fact that the behavior of these blocks is increasingly sensitive to external factors that
are hard to control. Shrinking feature sizes lead to higher fabrication variability. Ris-
ing frequencies of operations also increase dependence on temperature and other
operating conditions.
Therefore the general objective of the consortium is that of developing a methodol-
ogy and prototype tools that take a layout description of typical RF functional blocks
that will operate at RF frequencies up to 60 GHz and transform them into sufficiently
accurate, reliable electrical simulation models taking variability into account.
The main goal of the project, against which the progress of the project work will be
measured, is the silicon-accurate modeling of RF functional blocks (such as a VCO
or an LNA) with up to 10 transistors, 10 passive devices and implemented in 90 and
180 nano-meter technology with a maximum of 10 levels of metal for frequencies
up to 60 GHz.
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4 Advance over state of the art

At the moment, no commercial RF simulation tools for large interconnect struc-
tures on semiconductor substrates exist. In the CHAMELEON RF project, prototype
tools to accurately predict the behavior of complete RF functional blocks will be
developed.
The functional requirements set for any future design framework allowing for the
high-fidelity verification of RF blocks must include the following:
• Simulation tools need to allow for a multi-scale (MS) and a multi-resolution

(MR) approach.
• Feedback effects should be estimated and approximations should be justified by

sub-threshold feedback.
• Functional blocks should be described in terms of netlists (SPICE) to allow

inclusion in the design flows.
• Extraction best practices need to be provided to actualize the SPICE models.
• Models of functional blocks must be manageable in size to allow accurate behav-

ior verification. Such models must also account for the dependence on relevant
design or operating parameters.

Currently, there is no standard framework that meets these requirements.
The contribution of CHAMELEON RF to advance the state-of-the-art in order to

Fig. 1: Overview of the Chameleon RF system. For 4-60 GHz frequencies made possible by nano-scale integration
technologies, electromagnetic and substrate noise effects require hierarchical connector-equipped models of full RF
functional blocks in order to enable creation of working chips. The models will be variability-aware to account for
relatively increasing effects of manufacturing tolerances.

fulfill the above requirements will come from the following:
• Hierarchical modeling procedures delivering compact models with connectors at

the lower level(s).
• Top level modeling procedure for layout environment, working with connector-

equipped compact models as gray boxes.
• Advanced Reduced Order Modeling (ROM) procedures including parametric

support for variability and capable of dealing with the large number of inputs
related to the compact model connectors and the variety of operating points.
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5 Goals
The results will lead to design automation tools, in particular design verification
tools, that can be used for comprehensive and highly accurate modeling of electro-
magnetic effects and other trouble spots in complete nano-scale RF blocks, thereby
enabling designers to minimize turnaround time without compromising design qual-
ity and first-time-right requirements.

6 Work plan

In order to achieve the goals, the scientific and technical activities have been grouped
in 5 work packages.
WP1 deals with the field solving aspects of coupling, at component level. The out-
come will be a collection of method to build libraries of variable compact models
with connectors of the typical parametric structures for the complete RF functional
block.
WP2 aims at efficient and accurate methods of modeling the global interactions
between the physical (on-chip) realizations of the circuit elements from the schematic.
These elements include the active as well as the passive devices. Also process vari-
ability will be taken into account.
WP3 is aimed at developing efficient methods for generating compressed representa-
tions of parameterized inter-connected sets of compact models of interaction effects
(ROM). WP4 is devoted to design and manufacturing of benchmark structures and
WP5 is about validation of the solution against these benchmark results.

7 CODESTAR project results

Fig. 2: Layout of coplanar line, 3 µm wide and 8.2 mm long, with 1 µm spacing between the line and ground.

As described in the CODESTAR final report [1], the project results were considered
to be very successful. As an illustration we will describe an example of a coplanar
line, of which the ground is situated next to the line in the same plane above the
dielectric. The simulation of a coplanar line was successfully achieved for a number
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Fig. 3: Comparison of simulations with measurementsof the line parameters R and L (calculated from the impedance
Z=R=jωL) for the coplanar line.

of EM solvers. In Fig. 2 the layout is shown (top view). The compact models
obtained in CODESTAR cover a large frequency range: 0 - 30 GHz. Equiva-
lent SPICE netlists of reduced order models were created and matching between
measurement and (SPICE) simulation results was found in good agreement. The
reduction was carried out using a vector fitting procedure [1] and a reduced model of
order 10 was obtained.
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8 Preliminary CHAMELEON RF project results

Preliminary simulations were performed on a substrate isolation structure, injecting
noise into the substrate and analyzing the noise pick-up at the structure. A full-
wave, 3D EM analysis is performed, where the substrate is modeled as a true semi-
conductor, using drift-diffusion equations with complex doping profiles [2]. The
layout of the structure is shown in Fig. 4 and in Fig. 5 the S-parameters of simu-
lations versus measurements are displayed, showing good agreement up to 10 GHz.

Fig. 4: Substrate isolation structure layout.

9 Conclusions

The aim of the CHAMELEON RF project is to develop methodologies and prototype
tools for a comprehensive and highly accurate analysis of complete next-generation
nano scale functional IC blocks that will operate at RF frequencies of up to 60 GHz.
The project has started in November 2005, and will run for a period of two and a half
years.
In the context of this project, attention is focused on the extension of the model
order reduction work in two directions. First, the addition of parameters to handle
geometric and process variability. Secondly, the two-level hierarchy pursued in the
project asks for the possibility of hierarchical reduction of systems before assembling
the full network.
Further information about the CHAMELEON RF project can be found at the project
website [3].
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Fig. 5: S11 and S12 curves: the comparison between measurement and simulation shows good agreement (¡1 dB error)
for frequencies up to 10 GHz.
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Abstract − The paper reports the use of Finite Element (FE) simulation and
experiments meant to explore the operation conditions of the PieZoelectric wafer
Transducer (PZT). Piezoelectrics is the coupling of structural and electric fields and
may be solved using the multi-physics approach. Accordingly, three different multi-
physics models were developed to investigate a plane strain problem. The first one
includes two PZTs mounted on an aluminium plate and is used to model both the
emission and reception signals. The next two ones are developed to separately model
the emission and detection processes, in order to decrease the computational effort.
The wave displacements are generated by a PZT-like actuator and the output voltage
is obtained at a PZT receiver both by a multi-physics approach. The analysis consid-
ered the transducer lengths, the effects of the finite pulse width, the pulse dispersion
and the detailed interaction between the piezoelectric element and the transmitting
medium. The transmitted and received signals for so-called A0 and S0 modes have
maxima close to the frequencies predicted in other works. A series of sensitivity
curves relating the generation and receiving of Lamb waves were also determined
and plotted as a function of the pulse center frequency and of the PZT lengths.
Keywords − Lamb wave, multi-physics finite element models, piezoelectric effect,
piezoelectric transducers.

1 Introduction

Many authors considered the use of Lamb waves for non-destructive testing. Lamb
waves can propagate on long distances in plates and tubes, making it possible to
detect flaws over a considerable area by a set of transducers [5], [6]. Complications
that are encountered include the existence of multiple modes and their dispersive
character. A partial solution to this complexity is the use of transducers that excite
only a single mode, and various strategies have been employed to this end [6]. Re-
cently there has been increasing interest in the use of PZT wafers as transducers,
mainly due to the simplicity and low cost of such transducers [2]. PZT wafers have
been excited with continuous sinusoidal or pulse signals for defect detection in plates
and the influence of flaws on the Lamb wave transmission has been modelled in trial
simulations.
In most papers, the mechanical interactions between the PZT wafer and the structure
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to be inspected are not directly included. Recently, it was observed that the wave
emission and the reception using a PZT are physically distinct and both show a spe-
cific dependence on the pulse centre frequency [2], [3]. Taking the piezoelectric phe-
nomena and the possible complicated geometry of the inspected items into account,
a more accurate analysis of the whole coupled structural and electrical problem by
the FE method is evaluated in this work.

2 Review of wave propagation and FE modelling

Piezoelectrics consists in the coupling of structural and electric fields, exploiting the
natural material properties of quartz and of ceramics. A voltage difference applied
to a piezoelectric material creates a displacement, and, reversely, vibrating a piezo-
electric material generates a voltage difference. The electromechanical constitutive
equations for linear material behaviour are [1], [7]:

{T} = [c]{S} − [e]{E}; {D} = [e]T {S} + [ε]{E}, (1)

where {T} is the stress vector, {D} is the electric flux density vector, {S} is the
strain vector, {E} is the electric field vector, [c] is the elasticity matrix, [e] is the
piezoelectric stress matrix and [ε] is the dielectric matrix (evaluated at constant
mechanical strain).
Using the variational principle, it is possible to derive a second order time-dependent
system of equations that can be discretized using the FEM and that include the piezo-
electric effect (for details see [1] and [7]):

[
[M ] [0]
[0] [0]

]{
{ü}
{V̈ }

}
+
[

[C] [0]
[0] [0]

]{
{u̇}
{V̇ }

}
+
[

[K] [KZ ]
[KZ

T ] [Kd]

]{
{u}
{V }

}
=
{
{F}
{L}

}

(2)
where the submatrices and vectors used are: [M ]-structural mass matrix; [C]-structural
damping matrix; [K]-structural stiffness matrix; [KZ ]-piezoelectric stiffness matrix;
[Kd]-dielectric coefficient matrix; {F}-applied nodal force vector; {L}-applied
nodal charge vector; {u}-displacement vector; {V }-electric potential vector. The dot
and double dots denote differentiation(s) with respect to time. To integrate this sys-
tem, a full transient analysis using the Newmark method (with α = 0.25, δ = 0.5
and θ = 0.5) was performed using ANSYS 7.0 code [7].
For a given PZT, the emitted and received wave modes depend on the applied sig-
nal frequency. This phenomenon is usually called mode selectivity and is particu-
larly addressed. The obtained results provide more accurate predictions of the mode
selectivity than previously reported ones using a simplified PZT model in the wave
emission process [2]. Finally, this approach is readily adapted to explore the wave
interactions with flaws and contour conditions.
In [3], for a similar study, a plate with thickness h = 1.59 mm has been used,
together with a particular PZT. Here also several material properties have been made
available. In our experiments we used the same input data for the numerical sim-
ulation, but allowed for different PZT dimensions. Simulations were made in the
100 − 600 kHz range frequency. For the studied aluminium plate, only S0 and A0
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Lamb modes (Fig. 1) exist at frequencies below 1 MHz, as it can be found on the
dispersion curves in figure 2. Dispersion curves can be obtained by assuming a par-
ticular harmonic solution of the displacements into the Naviers equation for which
the boundary conditions must be fulfilled. More detailed information about the dis-
persion curves can be found in [2], [4].

Fig. 1: Lamb modes in a plate. The wave propagates into X direction; λ denotes the wave length and the arrows show
the instantaneous particle motion

Fig. 2: Dispersion curves of an aluminium plate of 1.59 mm thickness

Figure 3 shows two similar wafer-type transducers bonded on an aluminium plate.
The plate and the wafers are assumed to be of infinite extent in the Z direction (per-
pendicular to this paper), an ordinary plane strain assumption in structural mechan-
ics. Only half of the plate was considered, with symmetry at the Y-axis. The wafer
is a piezoelectric material with the poling direction normal to the surface of the plate
and metallized on the top and bottom surfaces. The PZT actuation was excited with
the pulse signal

V (t) =

{
0.5V0

[
1 − cos

(
2πf0t

n0

)]
cos(2πf0t); if t ≤ n0

f0

0; if t > n0
f0

(3)

where V0 = 10V ; the number of cycles n0 = 5, and where the pulse centre fre-
quency f0 ranges between 100 and 600 kHz, is applied as input voltage between the
metallized surfaces of the transducer (see Fig. 3).
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Fig. 3: The physical model used in finite element analysis

In FE simulations, the two PZTs and the plate were modelled individually using
the PLANE13 element type within ANSYS. The Degrees Of Freedom (DOFs) of
the two PZTs are the horizontal and the vertical displacements (UX and UY) and
the electric potential (VOLT), while the DOFs of the plate are only UX and UY.
The mesh parameters were chosen such that the element sizes were substantially
smaller than a wavelength. Usually 10-20 elements per wavelength guarantee a good
accuracy [7], in this case element size results between 0.2 and 0.4 mm (function of
exciting frequency, see Fig.2a). The bottom surfaces of the PZTs were electrically
grounded (V = 0) and an equipotential boundary condition was set on the top sur-
faces. Because the PZTs are bonded on the plate and the adhesive layer is neglected,
the coincident nodes of the PZTs and the plate mesh were coupled both in X and Y
direction. By symmetry, the X-displacement UX=0 at the origin. All other bound-
aries, except the input potential, were free. Simulations were performed in the time
dependent mode with output time steps typically under one twentieth of a period
(0.1 − 0.25µs).
The above described approach more accurately matches with the actual PZT wafer
/plate physical interaction. The generated 2D waves are propagating in the plate,
inducing, by a similarly simulated interaction, an output voltage, collected at PZT 2.
A simulation for a particular case (L1 = 200 mm; L2 = 300 mm; 2a = 6.4 mm;
average element size 0.4 mm - a total of 6333 nodes) shows the expected two propa-
gating modes with S0 and A0 character (Fig. 4). The S0 mode has the highest group
velocity (see also Fig.2) and shows particle displacements mostly in the X direction,
and the slower A0 wave mode shows particle displacements mostly in the Y direc-
tion, asymmetric at the centre of the plate. It can be observed that the PZT 2 behaves
like a reflecting flaw, converting the incident modes as physically must occur.

3 Emission of ultrasonic waves

In this section, simulations of the guided wave emission using PZT 1 as source are
presented, putting in evidence the influence of the PZT length (2a in Fig. 3) upon the
generated S0 and A0 Lamb modes. For reasons of computational effort, the model
used in these simulations neglects the PZT 2 existing in figure 3, and considers a
total plate length L1 + L2 = 300 mm. In order to quantify the variation of wave
magnitudes with frequency, the maximum absolute value of UX for S0 mode and the
maximum absolute value of UY for A0 mode were determined as maximum wave
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Fig. 4: Propagation of S0 and A0 modes at a central frequency of 300 kHz. The thickness of the plate has been exaggerated
by a factor of 5 for improved visibility. The displacements have been scaled with a factor of 100000

magnitude when the two generated modes were clearly separated, for example at
t = 30µs in figure 4.
The sensitivity of generated waves, measured as maximum wave magnitude divided
by the maximum input voltage, of about V0 = 10V , is plotted in figure 5, separately
for S0 and A0 mode, as a function of frequency bottom scale and Lamb wave length
top scale, for different PZT lengths.
According to the simplified analytic model proposed by Giurgiutiu and Lyshevski
[2], peak and null (or minimum) emission occur at wave length respectively, where
n is an integer greater or equal to one. From relations (4) and dispersion curves (see
Fig. 2a), the frequencies under 1 MHz, corresponding to maximum and minimum
sensitivity, are determined and then summarized in the Tables 1 and 2, respectively.

λ(max) =
2a

n − 1
2

; λ(min) =
2a

n
; (4)

Fig. 5: The sensitivity to emission Lamb wave function of pulse centre frequency and PZT length
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n 1 2 3 4
2a[mm] S0 A0 S0 A0 S0 A0 S0 A0

3.2 817.6 282.3 - - - - - -
6.4 418.7 86.13 - 516.8 - - - -
12.8 210.4 23.04 622.3 176.2 998.5 397.2 - 638.7
25.6 105.3 - 316.0 33.9 521.3 128.6 721.3 227.8

Table 1: Lamb wave fequencies [kHz] for maximum sensitivity as said by Eq. 4a

n 1 2 3 4
2a[mm] S0 A0 S0 A0 S0 A0 S0 A0

3.2 - 761.7 - - - - - -
6.4 817.6 282.3 - 761.7 - - - -
12.8 418.7 86.1 817.6 282.3 - 516.8 - 761.7
25.6 210.4 23.04 418.7 86.1 622.3 176.2 817.6 282.3

Table 2: Lamb wave fequencies [kHz] for minimum sensitivity as said by Eq. 4b

Comparing the results from figure 5 with the results from Table 1 and 2, a fair agree-
ment between the Giurgiutiu & Lyshevski analytic results and the finite element
results can be observed, especially for S0 mode.

4 Reception of Lamb waves

During the emission process, the complex motion of the plate and PZT 1 is symmetric
about the Y axis and is later separated into S0 and A0 modes. During detection,
the transducer interacts with a single mode which is propagating unidirectionally.
Consequently, the displacements of PZT 2 will not be the same as during emission.
Moreover, wave interaction with PZT generates additional reflected waves.
For computational effort reasons, the response of receiving PZT 2 was separately
analysed for S0 and A0 modes. A particular S0 or A0 mode was selectively gener-
ated by adequately imposed displacements in interface nodes at X = 0. Therefore,
PZT 1 was not included into the model and it was possible to consider L1 = 100
mm and L2 = 100 mm. The sensitivity of received waves (input voltage against
maximum wave magnitude, measured by UX for S0 mode and UY for A0 mode) is
plotted in figure 6.
It is clear that sensitivity increases as the PZT length decreases. However, especially
for S0 mode, there are some optimal PZT lengths, function of the pulse centre fre-
quency.

5 Global results and comparison with experiment

Figure 7 plots the ratio of the maximum received pulse amplitude to the exciting
pulse amplitude as a function of frequency, namely the global sensitivity. Results are
shown for four different transducer pairs, all separated by L1 = 200 mm.
Measurements of the A0 and S0 wave amplitudes as a transfer functions have been
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Fig. 6: The sensitivity to received Lamb wave function of pulse centre frequency and PZT length

reported in [3] only for 2a = 6.4 mm and are in good agreement, in terms of fre-
quencies for maximum sensitivity, with the results obtained during the numerical
simulations presented in this work.

6 Conclusions

The operation of a PZT wafer transducer was analyzed for the generation and detec-
tion of guided Lamb waves using a multi-physics FE simulation and then compared
with experiments reported in literature. The numerical simulations were intended to
assess the possibility to follow a realistic mechanical interaction between the trans-
ducers and the transmitting inspected medium.
The results prove that multi-physics FE simulations are offering more accurate val-

Fig. 7: The global sensitivity, or overall system transfer function Vout
Vin

, as a function of pulse centre frequency and PZT
length

ues for the peak frequencies and the mode selectivity. In addition, FE simulations
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make it possible to determine the optimum transducer length, which may be differ-
ent for emission and reception.
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In a load-commutated synchronous motor, the torque is driven by the currents in
the stator windings, and these currents depend on the rotor position. Since the stator
phases are star-connected, the static torque generated by two stator phases connected
in series and powered with a constant current offers sufficient information to design a
suitable current control strategy. The synchronous machine studied has a reverse type
of construction. The switching sequence for the current inverter is correlated with the
rotor position by magnetostatic simulation in FLUX2D, using the maximization of
static torque as optimization criteria. This study also covers a computational method
for determining the operating parameters of a synchronous machine using simulation
of the Standstill Frequency Response Test (SSFR).
Keywords synchronous machine, finite element, static torque, optimization.

1 Introduction

A synchronous machine with reverse type of construction has three identical phase-
windings spaced around the internal periphery of the rotor magnetic core with a
geometrical angle of 2π/3p between them (where p is the number of pole pairs). The
rotor core is made of electrical-steel laminations, electrically insulated and slotted.
The stator magnetic core (either with salient or non-salient poles) contains a d.c.
(direct current) excitation winding.
The Park-Blondel equations are much used in studying the dynamic operation of a
synchronous motor. In this reference system, the axis of a North pole of the stator is
called the direct axis (denoted d) and the leading axis (with respect to the direction
of the speed Ω) is called quadrature axis (denoted q).
In this paper a load-commutated synchronous machine model is studied. This model
takes into account both the magnetic circuit configuration of the machine and the
realistic construction of the damper winding.
These machines are robust and have a good weight/size to power ratio. Compared
to a conventional brushed d.c. motor in which commutation is handled by carbon or
copper brushes, the load-commutated synchronous motor commutation is controlled
by electronics. In Fig.1 a schematic layout of the synchronous motor fed by current
inverter is presented.
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Fig. 1: Synchronous motor fed by a current inverter

An electronic supply by time-shaped rectangular currents uses a very simple and
cheap rotor position sensor. The position of the rotor is needed to determine a proper
timing of commutation.
Moreover, in using this kind of supply, the choice of a fractional number of slots per
pole and phase ensures low torque ripple.
For this kind of synchronous motors, the drive of air compressors is an interesting
application. In this case, since the starting (load) torque is very high, by replacing
the asynchronous motor with a synchronous motor, the operating proves to be more
economical.
Controlling without a position sensor is possible if the back electromotive force (emf)
is measured; this control is recommended for applications where high starting torque
is not required.
Since for the load-commutated synchronous motor the electromagnetic torque is
affected by the back emf and the rotor (armature) currents, it is important to have
a thorough knowledge of the static torques for designing a suitable current control
strategy. For this reason, the static torque can be measured by connecting two rotor
phases in series, using a constant current as source.
At the same time, the motor parameters affect the switching control. The useful char-
acteristic parameters appear in equivalent circuits associated with the direct-axis and
quadrature-axis of the synchronous machine.
By the FLUX 2D [FLU05] program 2D FEM field calculations can be made to
determine these parameters as well as the static torque. This program offers a lot
of useful features like partially automatic mesh generation, sliding air gap band for
calculations in rotation, and external coupling circuits.
For determining the operating parameters of a synchronous machine, the simulation
of the Standstill Frequency Response Test (SSFR) was used.
This approach can be used not only for the verification of the important characteristic
quantities of an existing machine, but also allows optimization in designing a new
machine.
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2 Methods

The current supply of synchronous machine consists in imposing current amplitude
in the machine windings and its phase with respect to the electromotive force E. To
detect the phase angle of the electromotive force (leading angle) x0, a rotor position
sensor is generally used. In Fig.2 a simplified phasor diagram of a load-commutated
synchronous motor is presented. The phasor diagram has been drawn using standard
notations (Xd and Xq for direct-axis and quadrature-axis synchronous reactances,
β for internal electrical angle) neglecting the winding resistance and commutation
overlapping effect. In a natural commutation process, the current always leads the
voltage and the machine power factor cosϕ(1) is determined by the phase angle
between the inverter triggering pulses and the machine voltage [Bos86].

Fig. 2: The simplified phasor diagram of a synchronous motor with load commutation

The commutation angle, µ, is a function of commutation reactance Xc . At commu-
tation limit (with negligible margin angle of commutation) the critical value of µ can
be given as

cos µk = 1 − π

3
νXc

U
I(1), (1)

where ν is the frequency expressed in per-unit value, I(1) the r.m.s. (root mean
squared) value of the fundamental wave of armature current and U the armature
voltage.
Also, the commutation reactance can be calculated in terms of subtransient reac-
tances X”

d and X”
q and the leading angle of commutation x0, as follows:

A Finite Element two-dimensional analysis can be performed due to FLUX2D’s
unique features in simulating motion and allowing input from external electric cir-
cuits.
By maximizing the average torque calculated from the field analysis, the firing
instants of the involved inverter thyristors can be determined.
The whole control imposes the leading angle x0 determining the thyristors ignition
instants with respect to the zero crossing instants of the electromotive force E. The
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leading angle variation has the same meaning as the shift of brushes from the neutral
axis in a direct current motor.

2.1 Static torque analysis using FLUX2D

In order to calculate the static torque with FLUX2D, a conventional circuit analysis
method is used, to assemble the magnetic potential equations together with the cur-
rent and voltage equations for each conductor. Non-linear functions like flux linkage-
current relations are taken into account.
The nonlinear system is iteratively solved using the Newton-Raphson algorithm
exploiting a conjugate gradient method to solve the intermediate linear systems.
The characteristics of the analyzed laboratory-used synchronous machine are: PN =
3.2 kW, UN = 220 V, 4 salient poles, in rotor: 27 slots, 198 turns/phase. The discreti-
sation frame applied to the transverse section of the synchronous machine is shown
in Fig.3.
Due to the fractional slot number (per pole and phase), (q = 9/4) the entire motor
must be modeled. The discretisation frame contains 7675 triangular elements (second
order) and 15405 nodes.
The static torque generated by two stator phases connected in series and powered
with a constant current offers sufficient information to design a suitable current con-
trol strategy [TLW96]. This will be explained next.
First, energizing the same two rotor windings (A−X and B−Y ) connected in series,
the static torque was computed for position angle (θ) values spaced at 15 electrical
degrees, for a complete rotation of the rotor. The resulting curve of static torque Tst

= f(θ) shows a quasi-sinusoidal variation [MK99].
Next, the positions corresponding to the maximum values of the static torque were
quantisized in terms of the leading angle x0 (as example, for x0 = 60 electrical
degrees the first maximum value of the static torque was obtained for a position
angle θ = - 30 electrical degrees).

Fig. 3: Discretisation frame applied to the magnetic circuit of the synchronous motor
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A magnetostatic simulation in FLUX2D was applied to the circuit structure of Fig.4.
The on and off states of each thyristor (T1 to T6) are modeled using a resistance with
a low value (1 mΩ for on state) or high value (100 kΩ for off state).

Fig. 4: Structure of the complete circuit for static torque simulation

The supply of the inverter is ensured by a direct current source (value of d.c. link
current) i0.
Each rotor winding is modeled by two stranded conductors (e.g. A−A′ and X−X ′)
plus a resistance and a inductance (lumped parameters). The resistance and induc-
tance represent the end turns of winding which are not part of the finite element
domain. The values used for modeling the end winding resistance and inductance
are 0.1Ω and 1mH, respectively. The damper winding was modeled by four identical
circuits, parallel-connected, each composed by a solid conductor resistance and end
winding resistances (Rew,d = 2.87×10−6Ω) and inductances (Lew,d = 0.174mH).
The field winding circuit is modeled by two stranded conductors (CEX1 and CEX2)
and a direct current source (value of field current) if .
The obtained variation of maximized static torque is shown in Fig.5, for per-unit
(p.u.) values of field current (if = 1.52) and constant d.c. link current (i0 = 0.81)
[MK99].
Now, the switching moments of the inverter thyristors, can be determined; depend-
ing on the rotor position, the thyristors are turned on and off, for each conduction
sequence (60 electrical degrees rotation), to produce a maximum average torque.

2.2 Simulation of the Standstill Frequency Response test

The Standstill Frequency Response test (SSFR) is carried out at standstill and consist
in obtaining the Bode diagram for the operational inductance (in direct and quadra-
ture axis) by measuring the armature voltage and current in a range of frequencies
[NFC97].
The Finite Element simulation of the Standstill Frequency Response test (SSFR) was
carried out by using FLUX2D in linear, quasi-static mode, with coupling to circuit
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Fig. 5: The maximized static torque

equations. This approach allows to check the operating parameters (inductances and
time constants) of a synchronous machine and to compare the simulated values of
parameters with those obtained from the short-circuit and SSFR tests.
The circuit structure is shown in Fig.6, with the same notations as in Fig.4.

Fig. 6: Structure of the circuit for SSFR test simulation

The sinusoidal a.c. (alternating current) source of tension used in the armature circuit
has the value: Ui = 31 mV and the simulation was carried out in a frequency range
from 10 mHz to 1000 Hz.
The d-axis operational inductance was calculated by the following relation:

Ld(jω) =
Zd(jω) − Ra

jω
, (2)

with Ra - the armature resistance, ω = 2πf , and:
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Zd(jω) =
2
3

Ui(jω)
Ii(jω)

(3)

The complex d-axis operational inductance depends on the applied frequency of the
source. By studying the Bode plot of the amplitude, we can extrapolate linearly this
to f = 0, (giving the direct-axis synchronous inductance Ld) and to f = 1000Hz,
(giving the direct-axis subtransient inductance, L”

d).

3 Results

3.1 Static torque analysis

For unsymmetrical supply (two-phase, without correlation with the rotor position)
the flux lines shows a non-uniform distribution (Fig.7).

Fig. 7: Flux lines for one rotor position (unoptimized)

For optimized control (two-phase supply, correlated with the rotor position), flux
lines becomes much more uniform (Fig.8).
Due to the fractional number of slots per pole and phase the harmonic content of
electromotive forces is very small. Consequently, the electromagnetic torque is less
affected by non-linearities due to the inverter operation.
For this control optimization was investigated for two cases of a synchronous motor:
one with and one without damper winding. The difference between the maximum
static torque for the two cases is quite small: Tst = 8.138Nm - with damper winding
and Tst = 8.0Nm - without damper winding [MBM98].
By compensating variations of the current harmonics and by the reduction of over-
lapping commutation angle, the damper winding acts in reduction of the power factor
angle, ϕ(1), thus determining an increase in the overload capability of the motor.
The copper damper winding takes over a part of the imposed magnetomotive force
and thus reduces iron losses. The reduction becomes most notable after applying the
optimization strategy.
As stated in [MK99], the static torque maximization allows for the correlation
between the rotor position angle, θ, and the leading angle x0 for the firing instants
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Fig. 8: Flux lines for one rotor position (optimized)

of every inverter thyristor. For example, for an arbitrary value of the leading angle
x0 ∈ (0, π/2) rad., the rotor position angle has the value: θ = π/2 − x0 at the
moment when the thyristor T6 commutates with T2.

3.2 Simulation of the SSFR test

By simulating the problem of the SSFR test with FLUX2D, for input voltage
Ui = 31mV , a synchronous inductance Ld = 34.385mH and a subtransient
inductance, L”

d = 4.87mH , were obtained. These values are in good agreement
with experimental ones (Ld = 36mH , respectively, L”

d = 5.4mH).
For an increased value of Ui(Ui = 12.4V ) the saturated values were calculated as
well: Ld,sat = 31.4mH and L”

d,sat
∼= L”

d.
Also, for a configuration without a damper winding, an increased value of the sub-
transient inductance, L”

d = 5.67mH was obtained.
The simulation of the SSFR test was used, also, for computing the q-axis synchro-
nous parameters: the synchronous q-axis inductance, Lq , and the sub-transient q-axis
inductance, L”

q .
The computed results of the machine parameters are compared to values obtained
from experimental determinations. The results, expressed in per-unit values, are pre-
sented in Table 1.

Table 1: Parameters comparison

Method ld lq l
′
d l”d l”q

Experimental 1.10 0.75 0.38 0.16 0.22

Computation FLUX2D 1.10 0.73 0.35 - -

Simulation SSFR test 1.05 0.68 - 0.15 0.28

One can observe that the simulation of SSFR test gives satisfactory results, especially
in the cases where the skin effect should be taken into account [MBM98].
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4 Conclusions

For the synchronous motor studied, the harmonic content of emf’s is very small due
to the fractional number of slots per pole and phase. Consequently, the electromag-
netic torque is less affected by non-linearities due to the inverter operation.
Maximum torque per unit current control strategy is the most widely studied approach
in practice. For a given torque, this control strategy minimizes the current; thus, cop-
per losses are minimized in the process.
An accurate determination of the parameters of synchronous machines at the design
stage is very important to design engineers, allowing the determination of appro-
priate materials for machine manufactures by predicting electrical and mechanical
overloads during transients.
The Finite Element analysis validates the parameters and evidentiates the need to
consider the sub-subtransient reactances due to the skin effect.
By the Standstill Frequency Response test (SSFR) simulation using FLUX2D one
can replace different tests performed by the manufacturer, making this tool useful
for the design optimization of machines.
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This paper presents a possibility of modelling the electromagnetic field, by taking
into account the symmetry of the domains. The domain discretisation and implic-
itly the finite volume shape will be derived from the type of the symmetry. Thus, a
reduction of the problem size, as well as a guaranteed symmetry of the solution, and
a better approximation of the borders and of the discontinuity surfaces are achieved.

1 Introduction

Cell complexes are basic tools of algebraic topology. A cell complex can be based
on a coordinate system; in such a case the edges of the cells lie on the coordinate
lines and the faces on the coordinate surfaces. The advantages of these complexes
are the easy utilization, the amount of memory may be not too high and they are
used to develop fast algorithms that are adapted to the vectorial architecture. Their
limitations come from the domain borders and from the object discretisation, where
special treatments are necessary, the main problem being the approximation of the
solution near the borders and in the interface zones.
For numerical applications one prefers to drop out these cell complexes based on
coordinates and to use non-structured cells of triangular or tetrahedral finite element
type. These cells can easily be adapted to any complex geometry. Moreover finite
element method was developed in great detail, the problem of the domain discreti-
sation in triangular or tetrahedral cells being already solved. Almost all the software
instruments for field modelling use the discretisation of triangular finite element type.
These cell complexes have advantages on those that are based on coordinates: (1) the
simplified cells can easily be adapted to the domain border; (2) can include regions
of different materials; (3) the points can be taken on the separation surface; (4) the
cells can have different dimensions in one zone or another. In order to model the elec-
tromagnetic field two cells complexes will be considered in this work: the Delaunay
complex (primal complex) and associated Voronoi complex (dual complex) [Ton01].
In literature, the orthogonal grids were not completely abandoned. Some researchers
try to find out solutions in order to eliminate the inconveniences of the method,
for example by introducing a new consistent subgridding method, which allows an
increased flexibility of mesh configurations with local refinement [PCW03].
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This paper tries to find out a possibility of modelling the electromagnetic field in the
symmetrical structures case, using curvilinear grids. This solution, even if it is not
applicable to general problems, aims to simplify the problem size and to eliminate
inconveniences near specific borders.

2 Symmetrical Structures Modelling

2.1 Electromagnetic Field Modelling

In rotationally symmetric structures, generation and adaptation of the grid may
involve primal and dual cell complexes, as shown in Fig. 1.

Fig. 1: Cells of the primal and dual complexes

A Yee-type scheme was chosen; every element (volume) of a cell complex includes a
point of the other (dual) cell complex. Thus every surface of a grid will be intersected
by a single line of the other grid. One associates the components of the electric field
vector to the lines of the primal grid and the components of the magnetic field vector
to the lines of the dual grid.
In order to model the electromagnetic field, the Maxwell’s equations will be used:∮

Γ

E · dr = − d

dt

∫
SΓ

B · dS (1)
∮

Γ

H · dr = iSΓ
+

d

dt

∫
SΓ

D · dS

∮
Σ

D · dS = qΣ∮
Σ

B · dS = 0

where E, B, H and D are the electric field strength, the magnetic induction, the mag-
netic field strength and the electric induction respectively; qΣ is the electric charge
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inside Σ and iSΓ
is the current through the surface delimited by Γ . These equations

are completed by the constitutive equations.
With the notations:l- a line of the primal grid that belongs to the face f of this grid,
l̃- the face of the dual grid crossed by the line l and f̃ - the line of the dual grid that
crosses the face f , the first two relations of Maxwell’s equations (1), applied to cells
of the primal grid and of the dual grid respectively, becomes:

−∂ϕf

∂t
=

∑
l∈∂f

±uel (2)

∂ψ
l̃

∂t
+ ĩ

l
=

∑
f̃∈∂l̃

±u
mf̃

where ϕf is the magnetic flux through the face f , uel is the electric voltage cor-
responding to the line l, ψ

l̃
is the electric flux through the face l̃ and u

mf̃
is the

magnetic voltage corresponding to the line f̃ ; ∂f is the border of the face f and ∂l̃

is the border of the face l̃; the sign is “+” if the sign of the line l (f̃ ) is associated to
the sense of the face f (l̃) by the rule “of the screw” and “-” if it is opposite.
Considering that on every face and on every line the electric or magnetic field value
is constant and choosing as unknowns the magnetic fluxes and the electric voltages
(corresponding to the primal grid), the system (2) becomes:

−∂ϕf

∂t
=

∑
l∈∂f

±uel (3)

∂

∂t
(ε

A
l̃

Ll
uel) + σ

A
l̃

Ll
uel =

∑
f̃∈∂l̃

(± 1
µ
·
L

f̃

Af
· ϕf )

where ε is the permittivity of the medium, σ is the electrical conductivity, µ is the
permeability; Af (A

l̃
) is the area of the face f (l̃) and Ll (L

f̃
) is the length of the

line l (f̃ ).
If the field variables do not depend on the z-coordinate and the domain has a cylin-
drical geometry, the problem is reduced to a 2-dimensional case (see Fig.2). In this
case the first equation of (3) remains identical, while the second one is written as:

∂

∂t
(ε

∆r

larc
uel) + σ

∆r

larc
uel =

∑
f̃∈∂l̃

(± 1
µ
· 1
Asector

· ϕf ) (4)

or

∂

∂t
(ε

larc

∆r
uel) + σ

larc

∆r
uel =

∑
f̃∈∂l̃

(± 1
µ
· 1
Asector

· ϕf ) (5)

in accordance to the line type that was considered (a part of an arc or of a radius).
For temporal discretisation the FDTD method was chosen.
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Fig. 2: Cylindrical symmetry structure - 2-dimensional case

2.2 Thermal Field Modelling

If the thermal field modelling is also wanted, the primal grid will be used. Thus
coupled problems can be solved [MEU02].
The thermal conduction equation in a variable regime is considered. In a cylindrical
symmetry case, one finds [POP02]:

ρcp
∂T

∂t
=

1
r
· ∂

∂r
(rλ

∂T

∂r
) +

1
r2

· ∂

∂θ
(λ

∂T

∂θ
) +

∂

∂z
(λ

∂T

∂z
) + S (6)

where ρ is the material density, cp is the specific heat, T is the temperature, λ is
the thermal conductivity and S is the power generated in a volume unit (function of
electromagnetic field).
In the 2-dimensional case, if the field distribution in the section is not symmetrical,
this equation becomes:

ρcp
∂T

∂t
=

1
r
· ∂

∂r
(rλ

∂T

∂r
) +

1
r2

· ∂

∂θ
(λ

∂T

∂θ
) + S (7)

For the primal grid represented in the Fig. 2, where the angle θ can be considered
having the same value for all the sectors, this relation, integrated on a control volume
built around a point (i,j) of the grid, becomes:

∫ t+∆t

t

∫
V C

ρcp
∂T

∂t
dV dt =

∫ t+∆t

t

∫
V C

1
r
· ∂

∂r
(rλ

∂T

∂r
)dV dt + (8)

+
∫ t+∆t

t

∫
V C

1
r2

· ∂

∂θ
(λ

∂T

∂θ
)dV dt +

∫ t+∆t

t

∫
V C

SdV dt

where dV = dθ · r · dr · 1.
Applying Euler-backward time integration to (8), the following relation is obtained:
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ρcpθ(Ti,j − T 0
i,j) · ri · ∆r = ri+ 1

2
· λi+ 1

2
· θ · ∆t

Ti+1,j − Ti,j

∆ri
− (9)

−ri− 1
2
· λi− 1

2
· θ · ∆t

Ti,j − Ti−1,j

∆ri−1
+ λj+ 1

2

2ri∆r∆t

r2
i− 1

2
· r2

i+ 1
2

· Ti,j+1 − Ti,j

∆θ
−

−λj− 1
2

2ri∆r∆t

r2
i− 1

2
· r2

i+ 1
2

· Ti,j − Ti,j−1

∆θ
+ S · θ · ∆r · ri · ∆t

where Ti+k,j+l for k = −1, 0, 1 , l = −1, 0, 1 are the (unknown) temperatures at the
gridpoints at the current time level and T 0

i+k,j+l is the (known) temperatures at the
gridpoints at the previous time level.

2.3 Application

For the validation of the analysed discretisation technique, a numerical application
was considered. The simple case of the conductor of copper, placed in air was stud-
ied, with radius a = 0.02 m. The r.m.s. value of the current through this conductor is
I=200A. Two different frequencies are analysed: f = 50 Hz and 500 Hz.
A MATLAB program was developed for modelling both the electromagnetic field
and the thermal field. The modelling results, obtained for the steady-state case, are
presented in figures 3-8.

Fig. 3: The radial variation of the electric field

In figures 3 and 4 the electric field and the magnetic field are shown, for the two
frequencies, in a comparative manner. Different types of radial variations in conduc-
tor and in air were observed. While the electric field increases from the conductor-
air border to the domain border, the magnetic field maximum was obtained at the
conductor-air border, having the same maximum value for the both values of the
frequency.
In figures 5 and 6 the electrical and magnetic fields are presented as functions of r.
In both cases f = 500 Hz was taken. We observe that near the z-axis both fields have
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Fig. 4: The radial variation of the magnetic field

a different orientation when compared to the fields further away. This is a result of
the high level of the frequency in the conductive medium.

Fig. 5: The radial variation of the electric field (the vector field, for f = 500 Hz )

As for the thermal field, it was shown in figures 7 and 8 only for the conductive
medium, for the same frequencies. A forced air cooling was considered. The bound-
ary condition was of convection type. Because of the thinness of the conductor and of
the cooling type that it was chosen, the variation of the temperature in the conductor
resulted, in this case, very small.
Because of the symmetry of the resulted distributions, only the radial variations of
the electric field, of the magnetic field and of the thermal field were represented here.
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Fig. 6: The radial variation of the magnetic field (the vector field, for f = 500 Hz )

Fig. 7: The radial variation of the temperature for f =50 Hz

These results correspond to the electromagnetic field theory [MOC91]and to the ther-
mal field theory [POP02] and they are similar to those obtained and published by the
researchers.
The results were verified by using a dedicated software based on the discretisation of
triangular finite element type (Quickfield). The Quickfield software cannot be used
for coupled problems, but, using simplifications to accommodate for the couplings,
results can be obtained that are approximative to those obtained by our MATLAB
program.

3 Conclusion

The paper deals with the specific features of the electromagnetic - thermal coupled
modelling in the particular case of the symmetrical distributions. This alternative
method aims to increase the accuracy of the solution and to decrease the geometrical
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Fig. 8: The radial variation of the temperature for f =500Hz

complexity of the problem when compared to the case when the cartesian coordi-
nates are used. This approach is an alternative to the discretisation of triangular finite
element type.
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1 Introduction

The design of microwave and millimeter wave devices requires more and more accu-
rate synthesis procedures to satisfy the increasingly stringent specifications of mod-
ern communication systems [1]. Most of the available synthesis techniques are based
on models that do not conveniently describe the physical behavior of circuits.
The goal of the present paper is to calculate the scattering matrix for the case of sin-
gle and cascaded strip gratings.
The strip gratings allow a complete transmission of certain frequencies and a com-
plete reflection at other frequencies and, then, exists a simple type of frequency selec-
tive surface [2]. A wide variety of filter characteristics can be obtained by cascading
multiple layers of frequencies-selective surfaces. In this paper, a new method for
scattered matrix analysis is presented. This method is based on Floquet harmonics
analysis.

2 Floquet harmonics

The cross-sectional view of a strip grating is illustrated in Figure 1. This 2D geom-
etry is an infinite periodic extension of a “unit cell” containing a single strip also
illustrated in Figure 1. The precise location of the unit cell is arbitrary, and it may
straddle two strips or even contain more than one complete strip, provided that its
periodic repetition produces the original structure. We wish to determine the electro-
magnetic response of the grating due to a plane wave excitation of the form

Einc
z (x, y) = E0e

−jk(x cos θ+y sin θ) (1)

The electromagnetic response to such kind of excitation can be expressed as a super-
position of Floquet harmonics [3].
The Floquet harmonics form a complete orthogonal set over one period of the geom-
etry in x and preserve the desired progressive phase shift imposed by the excitation
for all x. From the infinite number of Floquet harmonics, generally only a few are
associated with true propagation. The set of Floquet harmonics is entirely determined
by the geometric period and the assumed phase progression along x and thus does
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Fig. 1: Strip grating

not depend on the specific dimensions of the strip in the gratings [4].
The scattered electromagnetic field as the response of the plane wave excitation 1
can be expressed as

Es
z(x, y) =

∞∑
m=−∞

emΨm(x, y) (2)

where
Ψm(x, y) = e−jkxmxe±j

√
k2−k2

xmy (3)

kxm = kx − 2π

a
m (4)

a =unite cell length (defined in Figure 1)
When k2 > k2

xm, Floquet harmonics are waves that propagate away from the grating.
When k2

xm > k2, that sign of the square root is taken which ensures that the harmon-
ics decay in a direction away from the grating. Because of the phase shift imposed by
an incident field, the fields and currents of interest are not strictly periodic functions
of x. Instead, they are modulated periodic functions of the general form

Amp(x) =
∞∑

l=−∞
A(x − la)e−jkxla (5)

The convolution theorem applied to the Fourier transform dictates that

Ãmp(f) = Ã(f)P̃ (f + f0) = ∆f

∞∑
l=−∞

A(l∆f − f0)δ(f − l∆f + f0) (6)

where
∆f =

1
a
; f0 =

kx

2π
and P̃ (f + f0) (7)

is the Fourier transform of comb function P.
The comb function is defined as

P (f) =
∞∑

l=−∞
δ(f − iδf).
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As a consequence of the modulation, the transform of [5] is sampled at values of the
transform variable f. Every periodic geometry can be associated with a spatial lat-
tice at points in the original domain and a reciprocal lattice in the Fourier transform
domain. The spatial lattice − reciprocal lattice concept is often useful in multidimen-
sional applications, in the case in which the propagating harmonics can be identified.
For the periodic structure depicted in Figure 1, the spatial lattice is defined by values
of x

x = l · a (8)

in the set {..,−2, 0, 2, ..} and the reciprocal lattice is defined by values of f

f = l
l

a
(9)

in the set {..,−1,−1
2 , 0, 1

2 , 1, ..}
The range

(
kx

2p − 1
)

< f <
(

kx

2p + 1
)

defines the “visible region” of the spectrum
containing the propagating Floquet harmonics [5].

3 The scattering from a conducting strip grating electric field
integral equation approach

Consider a TM plane wave having the form of equation (1) incident on the infinite
periodic structure grating illustrated in Figure 1.
The surface equivalence principle [2] can be used to replace the perfect conducting
strip by an equivalent electric current density Jz(x). Due to the phase progression
imposed by the incident field, the equivalent currents must satisfy the Floquet condi-
tions

Jz(x + a) = Jz(x)e−jkxa (10)

A conventional electric field integral equation (EFIE) formulation requires the super-
position of the field of each of the currents.
If Jz(x) is considered nonzero only when x is located on the area of the conducting
strips, the EFIE can be written as

Einc
z (x, 0) = jkη

∫ ∞

−∞
Gp(x, x′)Jz(x′)dx′ (11)

where k =
√

ω2µ0ε0, η = z√
µ
ε0

, and Gp(x̄, x̄′) is the Green’s function. For our

periodic distribution the Green’s function can be write as a Fourier series.

∫
Gp (x, x′) dx′ =

1
4j

∞∑
l=−∞

H
(2)
0 (k | x − la |) e−jlkxa (12)

where x′ = la, H
(2)
0 is the two rank, 0−order, Hankel function [3].

By restricting the domain of the equation to a simple unit cell, the electrical size of
the problem has been reduced to manageable proportions. The method of moments
(MOM) discretization of the EFIE [6] follows in the usual manner. Suppose that the
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conducting strip contained in the unit cell is divided into N intervals, over which
pulse basis functions will reside. A Dirac delta testing function can be located in the
center of each interval.
The resulting system has the general form

⎡
⎢⎢⎣

z11 z12 . . . z1N

· · · ·
· · · ·

zN1 zN2 . . . zNN

⎤
⎥⎥⎦

⎡
⎢⎢⎣

j1
·
·

jN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e1

·
·

eN

⎤
⎥⎥⎦ (13)

zmn = jkη

∫
celln

Gp(xm − x′)dx′ (14)

em = E0e
−jkxxm (15)

The current density can be expressed in terms of Floquet harmonics as:

Jz(x) = − 2
kη

∞∑
n=−∞

en

√
k2 − k2

xne−jkxnx (16)

Using the orthogonality of the Floquet harmonics, the coefficients are

en = − kη

2a
√

k2 − k2
xn

∫ 2

0

Jz (x) ejkxnxdx (17)

Reflection and transmission coefficients can be defined as

R0 =
e0

E0
; T0 = 1 − e0

E0
(18)

Figure 2 shows a plot of the reflection coefficient for a strip grating having conduct-
ing material occupying exactly half of the unit cell as a function of the unit cell size.

Fig. 2: Reflection coefficient magnitude vs. unit cell size
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4 Acceleration procedure for the calculation of Green’s function

The magnitude of the l-th term in the periodic Green’s function (12) can be estimated
from the asymptotic form of the Hankel function for large arguments [7].

H
(2)
0 (kx) =

√
2j

πkx
e−jkx (19)

Obviously, the summation in (12) would diverge if not for oscillating behavior of
the exponential function. In practice, the direct summation required in (12) is pro-
hibitively slow. We consider an acceleration technique based on the Fourier trans-
form pair. This procedure is sometimes known as the “Poisson sum transformation”
[1]. Using the Fourier transform of Hankel function

H̃
(2)
0 (k | x |) =

2
βy

(20)

βy =

⎧⎪⎨
⎪⎩

√
k2 − (2πf)2

−j
√

(2πf)2 − k2

if

⎧⎨
⎩

k > (2πf)

k > (2πf)
(21)

The Fourier transform of Gp(x) can be found similar to (6) resulting to

G̃p(f) =
1

2ja

∞∑
l=−∞

δ

(
f − l

a
+

kx

2π

)
1
βy

(22)

Applying the inverse Fourier transform to (22) yields the result

Gp(x) =
1

2ja

∞∑
l=−∞

[
ej2πfx

βy

]
f= l

a− kx
2π

(23)

The magnitude of the lth term behaves as

O

(
1
l

)
as l → ∞ (24)

5 Computing the Transversal Magnetic (TM) scattered field

The electromagnetic incident field is the TM plane wave with π/2 incident angle
having the form presented in figure 3a and b.
The conducting strip grating is embedded into a dielectric slab having the electric
permittivity ε0εr and located at d = 0, as shown in Figure 4.
In figure 5 is presented the scattered field (real and imaginary components) for the
unit cell length a = 1.5λ
If the unit cell length satisfies the condition a ≤ 1.22λ

2 [3], the diffraction of the
electromagnetic incident wave is not possible; this situation is illustrated in figure 6,
for a = λ/2.
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Fig. 3: The electromagnetic incident field a)Real component of TM electric field; b) Imaginary component of TM electric
field

Fig. 4: The strip grating embedded into a dielectric slab, εr = 4.7

Fig. 5: The scattered field for a = 1.5λ. a)real component; b) imaginary component

6 Scattering matrix analysis of cascaded periodic surface

Because strip gratings allow complete transmission of certain frequencies and com-
plete reflection at other frequencies, they are a simple type of frequency-selective
surface.
To efficiently analyze multilayered structures, each periodic surface can be modeled
as a multiport network with each port representing one Floquet harmonics determin-
ing the “far−field” reflection and transmission characteristics of periodic surfaces.
Generalized scattering and transmission matrices representing each individual sur-
face can subsequently be employed as a building block in the electromagnetic model
of the multilayered structures.
The definition of the scattering matrix is presented in the context of the two port
network in figure 7.
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Fig. 6: The scattered field for a = λ/2. a)real component; b) imaginary component

Fig. 7: Two port scattering parameters: strip grating or cascade strip gratings

The definition of S−parameters is given in Annex 1. For TM excitation, the scatter-
ing matrix arising from the strip grating problem is a 2 × 2 block matrix

S =
[

S11 S12

S21 S22

]
(25)

where each of the blocks is infinite dimensional matrix relating the coefficients of
the scattered Floquet harmonics to those of the incident harmonics. The blocks take
the form

S =

⎡
⎢⎢⎢⎣

S11
11 S11

12 . . . S11
1n

S11
21 S11

22 . . . . . .
...

...
...

...
S11

m1 S11
m2 . . . S11

mn

⎤
⎥⎥⎥⎦ (26)

In practice, these matrices are truncated to finite dimensions. The entries of the gen-
eralized scattering matrices depend on the location of reference planes as indicated
in Figure 8.
The (m,n) entry in the scattering matrix of equation (26) is proportional to the square
root of the ratio of the power carried by the m−th reflected harmonic to the power
carried by the n−th incident harmonic. In general, this is a complex quantity, having
magnitude

mag
(
S11

mn

)
=

√√√√
∫ a

0
| Ēs

m × H̄s
m · ŷ |y=−ddx∫ a

0
| Ēinc

n × H̄inc
n · ŷ |y=−ddx

(27)

and phase
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Fig. 8: Location of reference planes for the definition of S parameters

phase
(
S11

mn

)
= phase {Es

zm (0,−d)} − phase
{
Einc

zn (0,−d)
}

. (28)

The entries of the S21 matrix are defined in a similar manner, only in terms of the
total transmitted fields instead of the scattered reflected field.

mag
(
S21

mn

)
=

√√√√
∫ a

0
| Ētot

m × H̄tot
m · ŷ |y=cdx∫ a

0
| Ēinc

n × H̄inc
n · ŷ |y=−ddx

(29)

phase
(
S21

mn

)
= phase

{
Etot

zm (0, c)
}
− phase

{
Einc

zn (0,−d)
}

(30)

The S12 and S22 matrices are defined in analogous manner.
For a single surface “illuminated” by a plane wave, generalized reflection and trans-
mission coefficients are sometimes employed as an alternative to the scattering
matrix description.
The magnitudes of these expressions simplify to

| Rn |= mag
(
S11

n0

)
=

| en |
| E0 |

√√√√
∣∣∣∣∣
√

k2 − k2
xn

k2 − kx

∣∣∣∣∣ (31)

| Tn |= mag
(
S21

n0

)
=

∣∣∣∣∣∣δ
n
0 +

en

E0

√√
k2 − k2

xn√
k2 − kx

∣∣∣∣∣∣ (32)

where δn
0 is Kronecker symbol with properties δn

0 =
{

1 if n = 0
0 otherwise

and the

phase defined in accordance with equations (28) and (30).
For cascading several layers, we use the transmission matrix representation

[
b2

a2

]
=
[

T11 T12

T21 T22

] [
a1

b1

]
(33)

is more convenient than the scattering matrix description

T11 = S21 − S22S
−1
12 S11

T12 = S22S
−1
12

T21 = −S−1
12 S11

T22 = S−1
12

(34)

The cascading of layers just maps onto multiplication of the transmission matrices.
In Table 1, we present the results obtained for one conducting strip grating with cell
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Fig. 9: a) One conducting strip grating; b) cascade of two strip gratings

length a = 1.5λ and for a cascade of two similar conducting strip gratings located at
y = 0 and y = λ respectively, presented in Figure 9.
For normal illumination (inclination angle π/2), for the mode 0, one conducting

Inclination angle mode One conducting Cascade of two
strip grating conducting strip

grating
R T R T

π/2 0 0 1 0 1
1 1 0 1 0
2 1 0 1 0

π/3 0 0 1 1 0
1 1 0 1 0
2 1 0 0 1

π/4 0 0 1 0 1
1 1 0 0 1
2 0 1 0 1

Table 1:

strip grating and the cascade of two strip gratings present total transmission (T = 1)
and reflection does not exist (R = 0). For modes 1 and 2 the strip grating and the
cascade present total reflection (R = 1, T = 0).
For illumination at π/3, for mode 0, one strip grating performs a total transmission
but the cascade performs a total reflection. For mode 1, one strip and the cascade
perform total reflection.
For mode 2, one strip has total reflection, the cascade has total transmission.
For π/4, for modes 0 and 2, the reflection coefficient is 0 and the transmission is
complete, and for mode 1, for one strip grating is total reflection and for two strip
gratings the total transmission is performed.

7 Conclusions
The analysis of the scattering matrix for the case of single and multiple periodic sur-
faces is made using the Floquet harmonics method. TM scattering from a conducting
strip grating is calculated using EFIE approach.
A very simple but efficient procedure for acceleration Green’s function is presented.
In this case, the use of only 25 basis functions for EFIE discretization has been abso-
lutely enough. For TM excitation, the scattering matrix arising from the strip grating
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problem is a 2 × 2 block matrix, where each of the blocks is a matrix of infinite-
dimension. For this type of description, only 400 Floquet harmonics are sufficient,
because the convergence in the sense of norm is smaller than 3 × 10−5 reported to
the case in which 450 Floquet harmonics are used.
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Annex 1. Definition of S−parameters[
b1

b2

]
=
[

S11 S12

S21 S22

] [
a1

a2

]

The independent variables a1 and a2 represent the amplitudes of incident waves at
port 1 and 2, normalized to characteristic impedance of the two − port network
viewed as a transmission line

a1 =
amplitude of the wave incident at port 1√

Z0

a2 =
amplitude of the wave incident at port 2√

Z0

The dependent variables b1 and b2 are normalized reflected amplitude wave

b1 =
amplitude of the wave reflected at port 1√

Z0

b2 =
amplitude of the wave reflected at port 2√

Z0

The S−parameters are
S11 = b1

a1
|a2=0 = input reflection coefficient with the output port terminated by a

matched load
S22 = b2

a2
|a1=0 = output reflection coefficient with the input port terminated by a

matched load
S21 = b2

a1
|a2=0 = forward transmission gain with the output part terminated in a

matching load
S12 = b1

a2
|a1=0 = reverse transmission gain
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1 Introduction

This paper summarizes the recent circuit-simulation activities [Roo04]–[Sil06] at
Helsinki University of Technology (TKK), Circuit Theory Laboratory (CTL). This
paper is mostly based on the results of the national projects Advanced Radio Fre-
quency SImulation and Modeling (ARFSIM 2002–2003) [Roo04], MOdeling and
Simulation for Advanced Integrated Circuits and Systems (MOSAICS 2004–2005),
and Accurate Models Aim for Zero Errors (AMAZE 2006–2008). All these projects
have been funded by the National Technology Agency of Finland, Nokia Corpo-
ration, and AWR–APLAC Corporation; the annual volume at TKK CTL has been
4.0–5.5 man years. In these projects, APLAC circuit simulation and design tool
[A06] has been used as a common platform for the circuit analysis and modeling
methods developed.
This paper is organized as follows. Section 2 very briefly reviews transistor-model
development. Section 3 lists our recent work with various analysis methods. In the
following two sections, the current research interests of the author are treated in
some more detail: Sections 4 and 5 discuss model-order reduction and behavioral
modeling, respectively. Finally, Section 6 briefly summarizes that part of our recent
research that has been carried out outside the ARFSIM, MOSAICS, and AMAZE
projects.

2 Transistor models

During the ARFSIM, MOSAICS, and AMAZE projects, the C-code implementation
of several BJT, MESFET [Kal02], and MOSFET semiconductor models has been
improved. Also, an attempt has been made to make the transistor-model develop-
ment more fluent: both a C-code model interface and a Philips SiMKit adapter have
been implemented in APLAC. What comes to fundamental research, a new rule for
MESFET gate-charge division based on the energy-conservation principle has been
presented [KV04].

∗ Invited Paper at SCEE-2006
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3 Analysis methods

During the ARFSIM, MOSAICS, and AMAZE projects, the following analysis
methods have been studied and/or developed and/or implemented in APLAC:
• DC

– speed/convergence improvements based on industrial feedback
– piecewise-linear solution algorithm [RVV02], [Roo05], [Roo06]
– nonmonotone norm-reduction method [Hon02a], [Hon02b]
– nonlinear iteration/optimization methods [HRK06]
– homotopy methods [Lin06]
– parallel hierarchical analysis [Hon02c], [HK02], [KH02], [Hon03]

• AC
– minor improvements

• Transient
– event-based time-step control
– truncation-error criteria
– treatment of transmission lines
– parallel hierarchical analysis [Hon03]
– optimization of C-code implementation

• Multi-tone Harmonic Balance (HB)
– reducing the memory consumption and increasing speed
– efficient formulation of HB equations [Vir05]
– inexact-Newton method with GMRES solver [Vir05]
– nonmonotone norm-reduction method [Hon02b]
– transient-assisted HB
– multi-dimensional frequency mappings
– sampling of nonlinear component-model functions [Vir05]
– parallelization using threads [KH04]
– oscillator analysis [Vir05]
– frequency-divider analysis [Poh06]

• Multi-variate steady state time domain
– GMRES preconditioners [LVV03], [Leh03]
– multi-grid approach [Leh03]

• Large-signal–small-signal
– GMRES preconditioners
– amplitude/phase noise analysis [Vir05]

• Envelope
– self-starting polynomial collocation/projection ODE-solver
– MATLAB–APLAC prototype implementation

• Finite Difference Time Domain (FDTD)
– FDTD–circuit/system co-simulation [Cos05]
– optimization of C-code implementation [Cos05], [Cos06]

4 Model-order reduction for EM/circuit simulation

Let us divide the whole Model-Order Reduction (MOR) chain into three steps:
1. Interconnect modeling: model, using Electro-Magnetics (EM) simulation or

other methods, the interconnect (e.g., layout parasitics) by a large RLC network.
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2. Linear MOR: reduce the RLC network to obtain a reduced-order frequency-
domain interconnect model (e.g., a set of poles and residues).

3. Macromodel realization: link the model obtained to transient simulation of the
whole nonlinear circuit by generating an appropriate equivalent-circuit represen-
tation.

These three steps are treated in Sections 4.1, 4.2, and 4.3, respectively.

4.1 Interconnect modeling

Interconnects can be modeled using RC/RLC networks, (dispersive multi-conductor)
transmission lines, (measurement or EM-simulation-based) tabulated frequency-
domain scattering parameters, or even 3D full-wave models. The selection of a
proper interconnect model depends on operation frequency, desired accuracy, avail-
able computational resources, etc.
In [Aal03], a dispersive inhomogenous two-conductor transmission line was treated
in conjunction with the MOR method Padé-via-Lanczos (PVL). In [Pal04], in turn, a
RLC lumped-element approximation for a dispersive multi-conductor transmission
line was implemented in APLAC and treatment of tabulated frequency-domain scat-
tering parameters was considered. Although we have studied interconnect modeling,
it has not been the main focus area; in most cases, our starting point for MOR has
been a given RLC netlist.

4.2 Linear MOR

During the last 15 years, various MOR methods have been proposed in the electrical-
engineering literature. The first MOR methods were able to calculate single-input
single-output transfer functions of linear circuits. The current MOR methods, in turn,
are able to reduce large RLC networks such that the reduced-order models obtained
can be consistently linked to the transient simulation of the whole nonlinear circuit
(see Section 4.3).
In [Aal03], the following linear MOR methods were evaluated: Asymptotic Wave-
form Evaluation (AWE), Complex Frequency Hopping (CFH), Padé-via-Lanczos
(PVL), reduction via split congruence transforms, coordinate-transformed Arnoldi
algorithm, Passive Reduced-Order Interconnect Macromodeling Algorithm (PRIMA),
and the PVL derivatives SyPVL, MPVL, and SyMPVL (see [Aal03] for all the refer-
ences). According to [Aal03], “Most of these methods were coded in a combination
of C, MATLAB, and APLAC input language. Several test RLC networks were then
reduced with the methods. In some cases, the result was a transfer function that was
compared with that of the original circuit. In others, the result was a macromodel.
Then, APLAC was used to run AC and transient analyses on both the original circuit
and the reduced one. ... The best methods found were PRIMA and MPVL.”
Based on this information, PRIMA [OCP98] was studied in more detail in [Pal04],
where it was found that “PRIMA provided passive reduced-order macromodels for
interconnect circuits with excellent accuracy up to microwave frequencies. During
this work, an attempt was made to develop a stopping criterion which would allow
PRIMA iteration to be stopped right after numerical accuracy has been lost, thus
allowing the easy generation of passive reduced-order models with the maximum
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available order. This attempt, however, proved futile: the instability of the reduced-
order models could not be predicted from the properties of the matrices available
during the iteration. In addition to this, an error estimate for PRIMA, presented in
the literature, was evaluated. The results obtained with the error estimate were not
always accurate enough, and the computation of the error estimate was too CPU-
time consuming in some cases.”
In [Aal03], the test RLC networks were quite small. While these small RLC networks
were excellent in revealing the shortcomings of the reduction methods, they did not
show all the potential of PRIMA (and MPVL). In [Pal04], in turn, much larger RLC
networks (having nearly 1000 nodes) were reduced, and the overall impression of
PRIMA was much more positive than in [Aal03], yet there were the problems men-
tioned above.
In [Pal04], PRIMA was implemented in APLAC, where it can be used as an off-line
preprocessing tool for a large nonlinear circuit to be simulated. Namely, each large
RLC block is treated as an N -port and reduced with PRIMA, the result being a file
containing poles common for all the N -port Y-parameters, and the corresponding
individual sets of residues for each Y-parameter.
Here, let us emphasize that PRIMA is by no means the last published linear MOR
method; there are many newer methods that would be worth studying, too.

4.3 Macromodel realization

Since the reduced-order models are described in the frequency domain (or as dif-
ferential equations), they have to be linked to the time-domain simulation of the
total nonlinear circuit. This can be done by replacing the reduced-order models with
appropriate macromodels.
Most of our scientific MOR activity has been just in this area: [Aal03], [Pal04] con-
centrate partially, and [AR02], [PR03], [PR04] fully on the macromodel realization.
In particular, in [PR04] a comprehensive comparison of nine reduced-order inter-
connect macromodels for time-domain simulation is presented: the macromodels
are reviewed, presented in a unified manner, and compared both theoretically and
numerically.
The reduced-order macromodels can be divided into two groups:
• Equivalent-circuit realizations: a SPICE, APLAC, etc. netlist is synthesized

using basic circuit elements. Nearly any time-domain circuit simulator can then
be used.

• Time-varying macromodels: a macromodel with time explicitly present in the
updating equations is generated. For most simulators, this method requires a
modification of the simulator’s source code.

In [PR04], we found the best macromodels for both categories. The overall fastest
macromodel was the time-domain Differential-Equation Macromodel (DEM), which
we proposed in [PR03]. In the course of the work of [Pal04], the time-domain DEM
was implemented in APLAC. This time-varying macromodel is used as such in tran-
sient analysis. In other analysis methods (DC, AC, HB, etc.), another version of DEM
is internally invoked; for example, in the case of AC analysis, s = jω is inserted into
relevant frequency-domain Y-parameter expressions.
The main message of [PR04] is that the macromodel realization has a great impact
on the transient-simulation CPU time; in fact, the transient simulation of a poorly
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realized macromodel (along with the nonlinear circuit) may last longer than that of
the original, unreduced, circuit.

5 Behavioral modeling of components and circuit blocks

In Behavioral Modeling (BM), there is no (fast and accurate) model available, only
the input-output data; therefore, BM corresponds to nonlinear system identification.
The BM methods can be classified in many ways, e.g., as follows:
• analog ↔ digital
• static ↔ dynamic
• linear ↔ nonlinear
• white box ↔ black box
• single component ↔ circuit block
• measurement/simulation based BM [WR05] ↔ nonlinear MOR [Vos05]
Sections 5.1–5.4 (that are partly based on the ongoing Ph.D. Thesis work of Tuomo
Kujanpää) will concentrate on Artificial Neural Network (ANN) based “analog, sta-
tic, nonlinear, black-box-like” BM of a single component. Then, Section 5.5 will
very briefly discuss our most recent research on Dynamic Neural Network (DNN)
based “analog, dynamic, nonlinear, black-box-like, simulation-based” BM of a cir-
cuit block.

5.1 Motivation

The modeling of RF/microwave components for computer-aided design continuously
faces new challenges because of increasing operation frequencies, circuit complexity,
integration density, and decreasing time to market. It is often impossible to derive
analytical models for new devices. Conventional numerical methods like 3D EM
simulation are accurate but CPU-expensive. Empirical models, in turn, are fast but
inaccurate over a wide operation range. Recently, it has been shown that ANNs offer
benefits to urgent modeling needs; fast and accurate ANN models have been created
for a wide range of components [ZG00].
Our goal has been to develop and implement an easy-to-use ANN-model gener-
ator for industrial model developers and circuit designers, who are neither ANN
experts nor willing to switch between various modeling tools and simulators. In
order to reach this goal, we first implemented an ANN-model generator prototype
[RSP03] using the flexible input language of APLAC. Later on, we implemented
ANNModelGenerator in APLAC using C language. Thus, the trained ANN mod-
els can be readily used in the same simulation framework.

5.2 Multi-layer perceptron ANNs

The most widely used ANN in RF/microwave component modeling is the Multi-
Layer Perceptron MLP [ZG00] (yet we have also studied radial basis function ANNs
[Poh03]). In our ANNModelGenerator, any number of MLP layers can be spec-
ified, but let us, for simplicity and due to the universal approximation theorem
[Hay99], concentrate on a three-layer MLP that realizes the following nonlinear
mapping:
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ỹl(x,w) = wl0 +
Nh∑
j=1

wlj tanh

(
wj0 +

Ni∑
i=1

wjixi

)
, (1)

l = 1, 2, . . . , No,

where Ni, No, and Nh represent the number of inputs, outputs, and hidden-layer neu-
rons, respectively; x = (x1, x2, . . . , xNi), ỹ = (ỹ1, ỹ2, . . . , ỹNo), and
w=(w10, w11, . . . , wNoNh) represent ANN inputs, outputs, and weights, respectively.
Let y = y(x) be an unknown, nonlinear, multi-dimensional function to be approxi-
mated by the MLP mapping (1), that is, ỹ = ỹ(x,w). Let {(xk,yk),
k = 1, 2, . . . , Ntr} be an appropriate training set, Ntr being the number of samples,
and the training-set inputs and outputs being scaled in the range [−1, 1]. Furthermore,
let us define the normalized ANN training error as [ZG00]

Etr(w) =

√√√√ 1
NtrNo

Ntr∑
k=1

No∑
l=1

(
ỹl(xk,w) − yk

l

2

)2

. (2)

The training of the ANN means minimizing of Etr(w) with respect to weights, w,
by optimization. The generalization capability of the trained ANN is evaluated by
applying (2) to an independent test set, {(xk,yk), k = 1, 2, . . . , Nte}.

5.3 ANN-model generation

Overview

A block diagram of ANN-model generation (ANNModelGenerator) and ANN-
model usage (MODEL FILE, ANNModel, and ANNFunc) is shown in Fig. 1. The
obligatory and optional blocks are drawn with solid and dashed lines, respectively.
The operation of (most of) these blocks is explained in the following five subsections.

Fig. 1: ANN-model generation and usage.
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ANN-structure selection

One challenge in ANN-based modeling is the determination of the number of hid-
den layers and their neurons; a very simple MLP with few weights may not offer
enough degrees of freedom for the approximation problem, while a complex MLP
structure results in many weights to be optimized. In ANNModelGenerator, the
default number of hidden layers is one, which should be enough in many cases.
The (optimistic) default number of neurons in that hidden layer is Nh = Ni + No.
Naturally, the user can increase the number of layers and/or neurons (by adjusting
‘PARAMETERS’, See Fig. 1), if needed.

Training/validation/test-set generation

The very first step in ANN training is to generate a training-set file. The training-
set file (obligatory ANNModelGenerator input TRAIN FILE in Fig. 1) includes
a collection of data samples, each consisting of relevant inputs (e.g., MOSFET
DC-bias voltages Vgs and Vds) and desired outputs (e.g., MOSFET drain current
Ids(Vgs, Vds)), obtained from measurements or simulations.
If ANN training continues for too long, overlearning, or oscillatory overfitting to
(noisy) training data, may occur [Hay99]. Therefore, an independent validation set
may be used to avoid overlearning by early stopping [Hay99] at the lowest vali-
dation error obtained. Moreover, the generalization ability of the ANN should be
tested with an independent test set after ANN training. The optional validation-set
file (VALID FILE) and test-set file (TEST FILE) should be constructed such that
all their inputs, xk = (xk

1 , xk
2 , . . . , xk

Ni
), k = 1, 2, . . . , {Nva, Nte}, are located inside

the region defined by the training-set inputs; otherwise, this data will be also used
for validating/testing the (non-guaranteed) extrapolation capability of the ANN.

Data scaling

In the literature, many heuristic methods have been suggested for improving ANN
training [Hay99]. One of these methods is scaling: since in typical RF/microwave
modeling applications the orders of magnitude of input/output parameter values are
very different from one another, scaling of training data is desirable for ANN training
[ZG00].
In ANNModelGenerator, each ANN input and output, that is, each column of
the training (and validation/test) set, is scaled in the range [−1, 1] before the actual
ANN training. Linear scaling is used by default, but there is also another option,
namely automatic scaling (AUTO SCALE) that is based on our work in [RP04]. The
automatic scaling first finds a suitable logarithmic scaling function [ZG00] for each
column, after which it optimizes the shape parameter of the function such that the
scaled values are spread as equally as possible in the range [−1, 1].

ANN training

APLAC contains 10 optimization methods:
• Global methods:

– Genetic algorithm
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– Simulated annealing
• Gradient-based methods:

– Steepest descent
– Conjugate gradient

• Direct-search methods:
– Hooke–Jeeves
– Nelder–Mead
– Multi-directional search

• Other methods:
– MinMax
– Random
– Exhaustive search

All these methods can be used to optimize virtually any (circuit) variable with respect
to any design goal. Thanks to the internal ‘ANNModelGenerator↔ optimization
methods’ C-code interface, all these 10 methods are readily available for ANN train-
ing, too. Until now, we have only modified the gradient-based methods for ANN
training by adding the Error Back Propagation (EBP) algorithm [Hay99] for fast and
accurate gradient evaluation. In ANNModelGenerator, the default optimization
method is conjugate gradient with EBP and Hestenes–Stiefel search-direction deter-
mination [KRH05].
One important factor in ANN training is weight initialization [Hay99]. Currently, we
initialize the weights randomly in the range [−0.25, 0.25]; this simple scheme will
be improved in the future [KR06].
ANNModelGenerator calculates the normalized training error, Etr, from (2). If,
say, Etr ≤ 0.5 %, ANN training was succesful.

ANN validation/testing

If VALID FILE is specified, ANNModelGenerator calculates the normalized
validation error, Eva, by applying (2) at every 10th optimization cycle. If Eva

is smaller than the previous one, the current ANN model (only) is saved (the
memory requirement being mainly determined by the, say, 50 . . . 500 ANN weights,
w10, w11, . . . , wNoNh ). When ANN training terminates (e.g., at the maximum number
of optimization cycles), the best ANN model, with the lowest Eva at the early-
stopping point, is fetched. If TEST FILE has been specified, ANNModelGenerator
calculates, at the end of ANN training, the normalized test error, Ete. If, say,
Ete ≤ 1 %, the generalization capability of the ANN is very good.

5.4 Connection to circuit simulation

The end result of ANN training is the ANN-model file (MODEL FILE) that contains,
e.g., the ANN structure, the values of ANN weights, and relevant comment lines for
ANN training/validation/test error, ANN-training CPU-time, etc.
The trained ANN model can be connected to APLAC circuit simulation by ANNModel
(see Fig. 1), which reads in MODEL FILE and stores the parameters. The actual
on-line calculation of ANN outputs (during circuit simulation) is done using ANN-
evaluation functions ANNFunc and ANNFuncD, which use the parameters stored
by ANNModel. In nonlinear modeling applications (e.g., MOSFET drain current
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Ids(Vgs, Vds)), the use of ANNFuncD is recommended, since it also returns the
analytically calculated derivatives [AO00] (e.g., ∂Ids/∂Vgs and ∂Ids/∂Vds) that are
needed in circuit simulation for the Newton–Raphson iteration method.
To summarize, in our approach both ANN-model generation and usage can be seam-
lessly done inside the same circuit-simulation framework: APLAC.

5.5 Dynamic behavioral modeling using DNNs

Very recently, we have also started to study behavioral modeling of dynamic non-
linear circuit blocks like Power Amplifiers (PAs) using Dynamic Neural Networks
(DNNs) [WR05] (Ch. 6 and 7), [Mei96], [PAS01]. Untill now, we have developed
and implemented a prototype version of DNNModelGenerator using a combina-
tion of ANNModelGenerator and APLAC input language. We have tested this
tool by generating a DNN model for an audio amplifier and for a 5 GHz PA. These
DNN models could be used to replace the original circuit block in a HB simulation.

6 Other research activities

Finally, it is worth mentioning that during the years 2002–2006, we have also
carried out research outside the ARFSIM, MOSAICS, and AMAZE projects. In
[Kuj02], digital components were modeled (for mixed-mode simulation with the
in-house development version of APLAC). In [Sun04], APLAC simulation models
for striplines with conductor surface roughness were generated. In [Vei06], in turn,
several APLAC simulation models for Micro-Electro-Mechanical Systems (MEMS)
are documented and the related MEMS publications of TKK CTL are listed. Finally,
it is worth mentioning (outside the topic ‘circuit simulation’) that [Sil06] contains a
list of publications on network analyzer calibration methods.
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[KRH05] Kujanpää, T., Roos, J., Honkala, M.: Experimental comparison of optimization
methods in ANN training. In: Proc. PRIME 2005, 2, 430–433 (2005)



Overview of Circuit-Simulation Activitiesat TKK CTL 137
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Summary. With roots dating back to many years ago and applications in a wide variety of
areas, model order reduction has emerged in the last few decades as a crucial step in the simula-
tion, control, and optimization of complex physical systems. Reducing the order or dimension
of models of such systems, is paramount to enabling their simulation and verification. While
much progress has been achieved in the last few years regarding the robustness, efficiency
and applicability of these techniques, certain problems of relevance still pose difficulties or
renewed challenges that are not satisfactorily solved with the existing approaches. Further-
more, new applications for which dimension reduction is crucial, are becoming increasingly
relevant, raising new issues in the quest for increased performance.

Keywords—Model order reduction, massively coupled systems, orthogonal projection,
parametric systems, circuit simulation.

1 Introduction

Model reduction algorithms are standard techniques nowadays in many areas, including the
microelectronics design community. The goal of model order reduction is to replace a large-
scale model of a physical system by a model of lower dimension which exhibits similar
behavior, typically measured in terms of its frequency or time response characteristics. Such
techniques are commonly used for analysis, approximation, and simulation of models arising
from electromagnetic formulation of physical structures. The need to accurately account for
all relevant physical effects implies that the mathematical formulation used to describe such
structures often results in very large models. Reducing the order or dimension of these models
is crucial to enabling the simulation and verification of such systems [2, 1].
An area to which extensive research has been devoted in the last few years is the problem of
order reduction of nonlinear systems [20, 18, 4]. A discussion of such methods is however
beyond the scope of this paper. Due to space constraints we will restrict the discussion to
issues arising from linear systems reduction. Nevertheless this discussion is still relevant in
the nonlinear case as most existing nonlinear reduction algorithms are based on extensions
of linear methods or the solution of carefully selected sequences of linear problems. While
enormous progress has been achieved in the last decades in this field, both from a theoretical as
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well as a practical standpoint, still greater challenges lie ahead as new and exciting applications
are being researched for which order reduction is again a crucial step.
Existing methods for linear model reduction can be broadly characterized into two types:
those that are based on projection methods, and those based on balancing techniques (some-
times also referred to as SVD3-based [1]). Among the first, Krylov subspace projection meth-
ods such as PVL [6] and PRIMA [15] have been the most widely studied over the past decade.
They are very appealing because of their simplicity and performance in terms of efficiency and
accuracy, despite the fact that they exhibit several known shortcomings. The lack of a general
strategy for error control and order selection, as well as a dependence on the original model’s
structure if passivity is to be guaranteed after the reduction are among the more obvious such
shortcomings. The alternative methods, those in the truncated balanced realization (TBR) fam-
ily [14], perform reduction based on the concept of controllability and observability of the
system states and are purported to produce nearly optimal models and have easy to compute
a-posteriori error bounds. However, they are awkward to implement and expensive to apply,
which limits their applicability to small and medium sized problems. Hybrid techniques that
combine some of the features of each type of methods have also been presented [11, 9, 10].
Recently, a new technique was also proposed that attempts to establish a bridge between
the two techniques. The Poor Man’s TBR [19] is based on a projection scheme where the
projection matrix approximately spans the dominant eigenspaces of the controllability and
observability matrices and provides an interesting platform for bridging between the two types
of techniques. Still the technique is not without drawbacks, as it relies on proper choice of
sampling points, a non-trivial task in general.
In spite of their shortcomings, all of the mentioned methods are in widespread use
nowadays. Still, there are situations that challenge the existing knowledge in the field. For
instance, consider the problem of reducing systems with a large number of ports, also known
as massively coupled systems. Such systems typically occur in substrate, power grid and pack-
age parasitic networks. Furthermore, the trend to nano-scale dimensions together with the
increasing frequencies of operation implies that non-neglectable electromagnetic effects have
to be accounted for in the models, which will also give rise to these massively coupled prob-
lems. Projection-based algorithms are inefficient for such systems as they rely on block itera-
tions, where the size of the block equals the number of ports. Therefore, each block iteration
increases the size of the model by an amount equal to the number of ports, leading to large
models even for moderate reduction order. This trend is particularly troublesome when simula-
tion with such models is necessary. TBR is intrinsically somewhat less sensitive to the number
of input ports. Unfortunately such systems are typically very large, which makes reduction
based on balancing techniques impractical.
Additionally, new challenges are being posed that require further research. As an example,
consider the problem of order reduction of parametrized systems. Parameter-based des-
criptions are now starting to be used as the basis for variability-aware design models. For
high frequencies, at nano-scale feature sizes, process variability effects, as well as depen-
dence on operating conditions become extremely relevant and should be accounted for in the
models. Existing techniques for handling such systems are, for the most part, straightforward
extensions of the basic order reduction algorithms [3, 12]. Projection-based techniques match
Taylor-series coefficients, which in parameter-based descriptions are multidimensional
moments. Unfortunately this technique has exponential cost increase with the number of para-
meters and is thus expensive except for small size and small number of parameters. Building
a projection space assuming small perturbations around the nominal operating point is also
problematic: it is hard to do anything beyond first-order and thus it is not clear how to dial
in accuracy. Sampling the parameter space also presents a challenge, as it is not clear where
to place sample point in such a multidimensional space. Still if some information regarding
the statistical distribution of the parameter values is available, this can be used to guide the
sampling and to build the model accordingly.

3 SVD – Singular value decomposition.
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In this paper we review some of these current and future challenges for which much research
is still needed in model order reduction. In Section 2 we discuss the problem of reducing mas-
sively coupled problems, and in Section 3 we discuss the reduction of parametrized systems,
a recent topic of much research work. Finally in Section 4, we present some conclusions.

2 Massively Coupled Systems

As an illustration of the problems pertaining to massively coupled systems, results from the
study of the reduction of power distribution networks, also known as power grids, will be
presented. Power grids are fairly regular structures which must cover the whole area of the
chip for power delivery purposes. Since all devices, wells and substrate plugs, are connected
to the power grid, the total number of ports of such circuits can be as high as hundreds of
thousands, or millions. This unfortunately brings added difficulty to the reduction process.

2.1 Background

Modeling a power grid as an RC network and using the nodal analysis formulation leads to:

Cv̇ +Gv = Mu
y = NT v

(1)

where C,G ∈ �n×n are the capacitance and conductance matrices, respectively, M ∈ �n×p

is a matrix that relates the inputs u ∈ �p to the states v ∈ �n that describe the node voltages,
N ∈ �n×q being its counterpart with respect to the outputs y ∈ �q , n is the number of
states, p the number of inputs and q the number of outputs. The p× q matrix transfer function
of the network is then given by H(s) = NT (G+ sC)−1M . Typically, matrices C and G are
very sparse but also very large. For a typical power grid, the number of nodes will be in the
order of several millions but the number of ports, input and output, is also quite large. Solving
Eqn. (1) directly or using it inside a circuit simulator is therefore too expensive.
The goal of model-order reduction is, generically, to determine a reduced model,

Hk(s) = N̂T (Ĝ+ sĈ)−1M̂ (2)

of size k � n, that closely matches the input-output behavior of the original model, and where
the state description is given by z = V T v ∈ �k. However, even if k � n, the reduced-order
model may fail to provide relevant compression. This may happen because, for large networks,
the matrices C and G are sparse, having a number of non-zeros entries of order O(n). If the
number of non-zero entries in the reduced-order model increases with the number of ports, the
benefits of reduction may vanish with increasingly large p and q.

Projection-based framework

Projection-based Krylov subspace algorithms, such as PRIMA [15], provide a general-purpose,
rigorous framework for deriving interconnect modeling algorithms and have been shown to
produce excellent compression in many scenarios involving on- and off-chip interconnect and
packaging structures. In its simplest form, they can be used to compute individual approxima-
tions to each of the p× q matrix transfer function entries. However, more commonly, they are
used to generate a single approximation to the full system transfer function. The PRIMA algo-
rithm [15], for instance, reduces a state-space model in the form of (1) by use of a projection
matrix V , through the operations:

Ĝ = V TGV, M̂ = V TM, Ĉ = V TCV, N̂ = V TN (3)
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to obtain a reduced model in the form of (2). In the standard approach, the projection
matrix V is chosen as an orthogonal basis of a block Krylov subspace, Km(A, b) =
span{b, Ab, . . . , Am−1b}, a typical choice being A = G−1C and b = G−1M . The con-
struction of the projection matrix V is done iteratively by blocks, with each block being gen-
erated through a back-orthogonalizing procedure. When the projection matrix is constructed
in this way, the moments of the reduced model can be shown to match the moments of the
original model to some order. Consequently, the reduced model size is proportional to the
number of matched moments multiplied by the number of ports. Furthermore, the reduced
system matrices will be dense. Therefore, these methods present two problems when dealing
with networks with a large number of ports. First, the cost associated with model computation
is directly proportional to the number of inputs, p, i.e. to the number of columns in the matrices
defining the inputs. This is easy to see by noting that the number of columns in the projection
matrix V in (3) is directly proportional to p (a direct result of the block construction procedure
described). This implies that model construction for systems with large number of ports is
costly. Second, the size of the reduced model is also proportional to p, as was discussed earlier
and can directly be seen from (3). While the cost of model construction can perhaps be amor-
tized in later simulations, the large size of the model is more problematic since it directly
affects simulation cost.

Truncated balanced realizations

An alternative class of reduction algorithms are based on Truncated Balanced Realization
(TBR). The TBR algorithm first computes the observability and controllability Gramians, X
and Y , by solving the Lyapunov equations:

GXCT + CXGT = MMT , (4)
GTY C + CTY G = NTN (5)

and then reduces the model by projection onto the space associated with the dominant eigen-
values of the product XY [14]. Model size selection and error control in TBR is based on
the eigenvalues of XY , also known as the Hankel singular values. In the proper case, there
is an a-posteriori theoretical bound on the frequency-domain error for the TBR model given
by [14]:

‖H −Hk‖ ≤ 2

n∑
i=k+1

σi (6)

The existence of such an error bound is an important advantage of the TBR class of algorithms
as there is no counterpart in the projection-based algorithms. Theoretically, the model selec-
tion criteria, and therefore the size of the generated model, can be done independently of the
number of inputs. However, there is an indirect dependence in most problems and in particular
for networks such as power grids, that exhibit a large number of inputs (see [19] for additional
discussion on the topic). In this case, useful reductions are not achievable. Furthermore, the
solution of the Lyapunov equations required to obtain X and Y is computationally intensive
for large systems and as such the technique is only of theoretical interest in this context. A
variety of approximate methods have been proposed that attempt to circumvent this problem
(see [19] and references therein).

2.2 Methods

As stated previously, the difficulty with standard projection algorithms like PRIMA or multi-
point projection schemes, is that the models produced have size proportional to the number
of ports. This limits their applicability to problems such as power grids, where the number
of network ports is likely to be very large. An interesting question that might be raised is
whether this restriction is inherent to the system, given the number of ports, or an artifact of
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the computation scheme chosen. In other words, one might ask whether accurate modeling and
analysis of a power grid, modeled as a large RC mesh, does indeed require so much dynamic
information. This question is all the more relevant as there is a common popular belief that
only a few poles are required to accurately model an RC circuit. It is now widely accepted
that in certain settings that is indeed the case, but this conclusion is emphatically not general
(see [22]).
In the following, two recently proposed methods for overcoming the difficulties faced by stan-
dard MOR methods are presented. The first method is based on the analysis of singular values
of the system moments while the second one is a “cheaper” version of a TBR class method
previously mentioned [19], also based on projection.

Singular Value Decomposition MOR (SVDMOR)

The SVDMOR [5] algorithm was developed to address the reduction of systems with a large
number of ports, like power grids. While the size of a reduced model produced via PRIMA
is directly proportional to the number of ports in the circuit, SVDMOR theoretically over-
comes this problem using singular value decomposition (SVD) analysis in order to truncate
the system to any desired order.
The main idea behind SVDMOR is to assume that there is a large degree of correlation
between the various inputs and outputs. SVDMOR further assumes that such input-output
correlation can be captured from observation of structural system properties, evidenced in
matrices M and N . The method can, for instance, use an input-output correlation matrix,
like the one given by the zero order moment matrix SDC = NTG−1M , which contains
only DC information. Alternatively, more complicated response correlations can be used such
as frequency, sj-shifted moments, S(sj)

DC = NT (G + sjC)−1M , a more generic k-order
moment, Sk =NT(G−1C)kG−1M , or even combinations of these. Let K be the appropri-
ate correlation matrix. If the basic correlation hypothesis holds true, then K can be appro-
ximated by a low-rank matrix. This low rank property can be revealed by computing the
SVD of K, K = UΣWT , where U and W are orthogonal matrices and Σ is the diago-
nal matrix containing the ordered singular values. Assuming correlation, there will be only
a small number, m � p + q, of dominant singular values. Therefore, we can approximate
K ≈ UmΣmV

T
m , where truncation is performed keeping the m most significant singular

values. The method further approximates:

M ≈ bMV T
m = MVm(V T

mVm)−1V T
m

N ≈ bNU
T
m = NUm(UT

mUm)−1UT
m

(7)

where bM and bN are obtained using the Moore-Penrose pseudo-inverse, resulting in:

H(s) ≈ Um bT
N (G+ sC)−1bM︸ ︷︷ ︸

Hm(s)

V T
m (8)

Standard MOR methods, like PVL or PRIMA, can now be applied to Hm(s), leading to
H̃m(s), an r-th order model, from which a final model approximation H(s) ≈ Hr(s) =

UmH̃m(s)V T
m is computed. The reduced system is p× q with a number of nonzero elements

of order O(r2).

Input-Correlated Poor Man’s TBR (PMTBR)

The PMTBR algorithm [19, 22] was motivated by a connection between frequency-domain
projection methods and approximation to truncated balanced realization. The method is less
expensive in terms of computation, but tends to TBR when the order of the approxima-
tion increases. The actual mechanics of the algorithm are akin to multi-point projection. In
a multi-point rational approximation the projection matrix columns are computed by sam-
pling at several frequency points along a desired frequency interval. The samples are given by
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zi = (G+siC)−1M , where si = jωi (with i = 1, 2, . . . , P ) are P frequency sample points.
The frequency-sampled matrix thus obtained can then be used to project the original system
in order to obtain a reduced model. In the PMTBR algorithm, a similar procedure is used. The
connection to TBR methods is made by noting that an approximation X̂ to the Gramian X
can be can be computed as:

X̂ =
∑

i

wiziz
H
i (9)

where the ωi which defines each sample, and the wi can be interpreted as nodes and weights
of a quadrature scheme applied to a frequency-domain interpretation of the Gramian matrix
(see [19] for details). Let Z be a matrix whose columns are the zi, and W the diagonal matrix
of the square root of the weights. Eqn. (9) can be written more compactly as:

X̂ = ZW 2ZH (10)

If the quadrature rule applied is accurate, X̂ will converge to X , which implies the domi-
nant eigenspace of X̂ converges to the dominant eigenspace of X . Computing the singular
value decomposition of ZW , ZW = VZSZUZ (with SZ real diagonal, and VZ , UZ unitary
matrices), it is easy to see that VZ converges to the eigenspaces of X , and the Hankel singular
values are obtained directly from the entries of SZ . VZ can then be used as the projection
matrix in a model order reduction scheme. The method was shown to perform quite well in a
wide variety of settings [19].
An interesting additional interpretation was more recently presented [22] which is of relevance
in our context. It has been shown that if further information revealing time-domain correlation
between the ports is available, a variant of PMTBR can be used that can lead to significant
efficiency improvement. This idea is akin to the basic assumptions in SVDMOR and relate
to exploiting correlation between the inputs. Unlike SVDMOR, however, it is assumed that
the correlation information is not contained in the circuit information directly, but rather in
its inputs. In this variant of PMTBR, a correlation matrix K is formed by columns which are
samples of port values along the time-steps of some interval. Those samples should charac-
terize as well as possible the values expected at the inputs of the system, i.e. K should be a
suitably representative model of the possible inputs. An SVD is then performed over K in
order to retain only the r most significant components of the input correlation information,
K ≈ UrΣrV

T
r . With this additional correlation information, the samples relative to multi-

point approximation become zi = (G + siC)−1MUrΣr . Using these zi as columns of the
Z matrix in (10), leads to the input-correlated TBR algorithm (ICTBR). See [19] for more
details and a more thorough description of the probabilistic interpretation of both PMTBR as
well as ICTBR.

2.3 Results

Both the standard model order reduction as well as the methods described in the previous sec-
tion can be applied to massively coupled systems. Methods like SVDMOR are reported to pro-
vide significant advantages over the standard algorithms if certain conditions are met, namely
that significant port correlation exists and can be ascertained in a practical way. PMTBR is a
more general algorithm for model reduction, which can nonetheless be applied to large sys-
tems, given its reduced computational complexity.
In this section, results are presented for two types of topologies: a first mesh, grid A, with
voltage inputs on the left side and current outputs on the right one, and a second mesh, grid B,
with voltage ports along the left side and current ports randomly distributed over the remain-
ing nodes. For practical reasons, we have kept the mesh sizes smaller than they would be in
realistic applications but scaling of all appropriate dimensions and sizes would produce qual-
itatively the same results. There are two main differences between the two setups described.
The first one concerns formulation. While in grid A matrices M and N in Eqn. (1) are distinct
(M yields input information and N yields output information), in grid B, M = N , thus all
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ports are controllable and observable. The second main difference consists in the separation
between ports. In grid A the separation between inputs and outputs is maximal, while in grid B
not only every port is both input and output, but also the geometric proximity between ports is
reduced. Grid A is thus expected to be fairly compressible, but smaller reductions are expected
for grid B. Grid A is similar to the one used in [5], while grid B was created in order to illus-
trate a more realistic setup. The electrical model of all grids is as follows: every connection
between nodes is purely resistive and at every node there is a capacitance to ground. While this
is not necessary, it simplifies the ensuing description (furthermore, a parasitic capacitance is
usually extracted at all nodes). Resistance and capacitance values were randomly generated in
the interval (0.9, 1.1). In the following set of experiments the size of the reduced model is the
same for all methods and was pre-determined. The correlation matrix of SVDMOR is the DC
moment matrix. For this method, after computing the SVD and choosing how many singular
values to keep, a number of PRIMA iterations is performed in order to generate a model of
the required size. The number of frequency samples of PMTBR was set such that a model of
the same size can be drawn from matrix Z. Samples were chosen uniformly in the frequency
range shown in the plots, with an additional sample added at DC.

Highly-correlated ports

The previously discussed methods were first used to reduce grid A. The Bode plot of an arbi-
trarily selected transfer function is presented in Figure 1 (left). The number of retained states
was forced at r = 1200. In the case of SVDMOR, 15 singular values were kept and 80 PRIMA
iterations were run, yielding the reduced model of 15× 80 = 1200 states. One observes that
SVDMOR shows good results, better than PRIMA and PMTBR. In order to understand the
reason for these results the plot of the singular values of SVDMOR and PMTBR methods
is presented in Figure 1 (right). The singular values (s.v.) of the DC moment, used by SVD-
MOR to guide the reduction, decay quite fast. Therefore keeping just the first 15 yields a
good approximation. On the other hand the PMTBR s.v. decay very slowly. Table 1 shows the
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Fig. 1: Results for grid A (r = 1200): Bode plot of arbitrarily selected entry of 100 × 100 transfer function matrix
(left); normalized plot of singular values: SVDMOR moment matrix and PMTBR samples matrix (right).

maximum absolute error of the transfer matrix, max{|H(s)−Hr(s)|}. Analysis of the table
indicates that in the overall model, SVDMOR shows the smallest error as expected for this
grid setup.



146 J.M.S. Silva, J. Fernández, P. Flores, L. M. Silveira

Table 1: Maximum absolute error of |H(s) − Hr(s)| for 100 × 100 mesh with 100 inputs on the left side and 100
outputs on the right side. SVDMOR used 15 singular values.

r = 1200 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.443× 10−6 1.406× 10−7 1.160× 10−5
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Fig. 2: Results for grid B (r = 2500): Bode plot of arbitrarily selected entry of 100 × 100 transfer function matrix
(left); normalized plot of singular values: SVDMOR moment matrix and PMTBR samples matrix (right).

Table 2: Maximum absolute error of |H −Hr| for 100×100 mesh with 100 ports on the left side and 1150 randomly
distributed ports over the mesh.

r = 2500 PRIMA SVDMOR PMTBR

max{|H −Hr|} 1.284e× 10−2 2.533× 10−1 1.545× 10−3

Weakly-correlated ports

In grid B the objective was to emulate a more realistic situation whereby potentially many
devices, modeled as current sources, are attached to the power grid and can draw or sink
current from/to it when switching. The number of current sources was chosen to be 1/8 of the
number of nodes. There are 1150 current sources and 100 voltage sources (for a total of 10000
nodes). This is a harder problem to reduce, due to port proximity, and thus interaction, and the
results show it. Again the Bode plot of an arbitrarily selected transfer function is presented in
Figure 2 (left). The number of retained states was now forced at r = 2500 already showing
smaller reduction than for grid A. In this case, the approximation produced by SVDMOR is
less accurate. This is expected from inspection of Figure 2 (right), where one observes that the
s.v. of SVDMOR decay slower than in the previous case. Clearly, the assumption of highly
correlated ports is not valid here. The results concerning the error of the transfer matrix are
in Table 2. PMTBR produces the most accurate model, while PRIMA shows a reasonable
approximation.
Note that while the Bode plots show large errors for higher (normalized) frequencies, concern-
ing to higher order moments which are harder to match, these frequencies are uninteresting in
practical simulations. Note also that the matrices in the reduced models for all methods in both
experiences are full, which has drastic consequences for usage of these models in a simulation
environment.
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3 Parametrized System Descriptions

In any manufacturing process there is always a certain degree of uncertainty involved given
our limited control over the environment and other physical conditions. For the most part this
uncertainty was previously ignored when analyzing or simulating systems, but as we step
towards the nano-scale and higher frequency eras, such environmental, geometrical and elec-
tromagnetic fluctuations become more significant. Nowadays, parameter variability can no
longer be disregarded, and its effect must be accounted for in early design stages so that
unwanted consequences can be minimized. This leads to parametric descriptions of systems,
including the effects of the manufacturing variability, which further increases the complex-
ity of such models. When model reduction is required, these parametric representations must
be addressed and the resulting reduced models must retain the ability to model the effects of
small random fluctuations, in order to accurately predict behavior and optimize designs. This
is the aim of the Parametric Model Order Reduction (pMOR).

3.1 Background

Actual fabrication of physical devices is prone to the variation of certain circuit parameters
due to deliberate adjustment of the process or from random deviations inherent to this manu-
facturing. This variability leads to a dependence of the extracted circuit elements on several
parameters, of electrical or geometrical origin. This dependence results in a parametric state-
space system representation, which in descriptor form can be written as

C(λ1, . . . , λL)v̇(λ1, . . . , λL) +G(λ1, . . . , λL)v(λ1, . . . , λL) = Mu
y = NT v(λ1, . . . , λL)

(11)

where C,G ∈ �n×n are again, respectively, the capacitance and conductance matrices,
M ∈ �n×p is the matrix that relates the input vector u ∈ �p to the inner states v ∈ �n

and N ∈ �n×q is the matrix that links those inner states to the outputs y ∈ �q . The elements
of the matrices C and G, as well as the states of the system v, depend on a set of L para-
meters λ = [λ1, λ2, . . . , λL] which model the effects of the mentioned uncertainty. Usually
the system is formulated so that the matrices related to the inputs and outputs (M and N )
do not depend on the parameters. This time-domain descriptor yields a parametric dependent
frequency response modeled via the transfer function

H(s, λ1, . . . , λL) = NT (sC(λ1, . . . , λL) +G(λ1, . . . , λL))−1M (12)

for which we seek to generate a reduced order approximation, able to accurately capture the
input-output behavior of the system for any point in the parameter space.

Ĥ(s, λ1, . . . , λL) = N̂T (sĈ(λ1, . . . , λL) + Ĝ(λ1, . . . , λL))−1M̂ (13)

In general, one attempts to generate a reduced order model whose structure is, as much as
possible, similar to the original, i.e. exhibiting a similar parametric dependence.

3.2 Methods

In the following we summarize the main methods presented for dealing with this problem.

Perturbation-Based Techniques

One of the earliest attempts to address this variational issue was to combine perturbation the-
ory with moment matching MOR algorithms [13]. To model the variational effects of the
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interconnects, an affine model can be built for the capacitance and conductance matrices, so
that

G(λ1, . . . , λL) = G0 + λ1G1 + . . .+ λLGL

C(λ1, . . . , λL) = C0 + λ1C1 + . . .+ λLCL
(14)

where now C0 and G0 are the nominal matrix values, i.e. the value of the matrices under no
parameter variation, and Ci and Gi, i = 1, · · · , L, are its sensitivities with respect to those
parameters. For small parameter variations, the projection matrix obtained via a moment-
matching type algorithm such as PRIMA also suffers small perturbations. Therefore, the idea
was to draw several samples in the parameter space for the system matrices G(λ1, . . . , λL)
and C(λ1, . . . , λL), and for each sample PRIMA was applied so a projection matrix is
obtained. Fitting is later applied over all the computed projectors in order to determine the
coefficients of a parameter dependent projection matrix

V (λ1, . . . , λL) = V0 + λ1V1 + . . .+ λLVL (15)

which is in turn applied in a congruence-like transformation to the parametric system in (11),
yielding a reduced system parametrized with respect to the set [λ1, λ2, . . . , λL].
Another approach also based on perturbation theory arguments was applied to the Truncate
Balanced Realization (TBR) [14, 17] framework, so that a theoretically based perturbation
matrix was obtained starting from the affine models shown in (14) [8]. This matrix was then
applied via a congruence transformation over the Gramians to address the variability, and
yield the perturbed Gramians. These in turn were used inside a balancing truncation proce-
dure. As with most TBR-inspired methods, this one is also expensive to compute and hard to
implement.
The above methods have obvious drawbacks, perhaps the most glaring of which is the heavy
computation cost required for obtaining the reduced models and the limitation that comes from
first order approximations possibly leading to inaccuracy in certain cases.

Multi-Dimensional Moment Matching

These techniques appear as extensions to nominal moment-matching techniques [15, 6, 21].
Moment matching algorithms have gained a well deserved fame in nominal MOR due to their
simplicity and efficiency. The extensions of these techniques to the parametric case are usually
based in the implicit or explicit moment matching of the parametric transfer function (12).
This type of algorithms assumes small fluctuations of the parameters, so that a model based
on the Taylor Series expansion can be used for approximating the behavior of the conductance
and capacitance, G(λ) and C(λ), expressed as a function of the parameters

G(λ1, . . . , λL) =
∑∞

i1=0
· · ·

∑∞
iL=0

Gi1,...,iLλ
i1
1 . . . λiL

L

C(λ1, . . . , λL) =
∑∞

i1=0
· · ·

∑∞
iL=0

Ci1,...,iLλ
i1
1 . . . λiL

L

(16)

where G0, C0, Gi1,...,iL and Ci1,...,iL are the multidimensional Taylor series coefficients.
This Taylor series can be extended up to the desired (or required) order, including cross deri-
vatives, for the sake of accuracy. If this formulation is used, the structure for parameter depen-
dence may be maintained if the projection is not only applied to the nominal matrices, but to
the sensitivities as well.
The Multi-Parameter Moment Matching method is a single-point expansion of the transfer
function (12) in the joint space of the frequency s and the parameters λi, i = 1, · · · , L, in
order to obtain a power series in several variables s, λ1, . . . , λL [3],

v(s, λ1, . . . , λL) =

∞∑
k=0

k∑
ks=0

k−ks∑
k1=0

· · ·
k−ks−k1....−kL−1∑

kL=0

Mk,ks,k1,...,kLs
ksλk1

1 . . . λkL
L

(17)
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where Mk,ks,k1,...,kL is a k-th (k = ks + k1 + . . . + kL) order multi-parameter moment
corresponding to the coefficient term sksλk1

1 . . . λkL
L . Following the same idea used in the

nominal moment matching techniques, a basis for the subspace formed from these moments
can be built and the resulting matrix V can be used as a projection matrix for reducing the
original system. It has been shown that this parametrized reduced model matches up to the
k-th order multi-parameter moment of the original system. The main inefficiency of this
method is that process parameters fluctuate in a small range around their nominal value,
whereas the frequency range is much larger, and a higher number of moments are necessary in
order to capture the global response for the whole frequency range. For this reason, the reduced
model size grows exponentially with the number of parameters and the moments to match.
A similar idea but more efficient, is to rely in a two-step moment matching scheme [12]. In
this method, one first matches in an explicit way the multi-parameter moments for the process
variability parameters (by expanding the state space vector v and the matrices G and C in its
Taylor Series only w.r.t. the parameters), and in a second stage implicitly match moments with
respect to the frequency via Krylov projection. This two-step approach avoids the exponential
growth of model size with the number of moments matched, suffered by the multi-parameter
moment matching. This method allows a certain degree of flexibility as the number of
moments matched with respect to the frequency and to the parameters can be different. In
principle, in spite of the larger size of the augmented model, the order of the reduced system
can be much smaller than in the previous cases. On the other hand, the structure of the depen-
dence with respect to the parameters is lost since the parametric dependence is shifted to the
later projected output related N matrix.
A different multi-dimensional moment matching approach was also presented [7], which relies
on the computation of several subspaces, built separately for each dimension, i.e. the frequency
s and the parameter set λ. So given a parametric system (11), the first step of the algorithm is
to obtain the ks block moments of the transfer function with respect to the frequency when the
parameters take their nominal value (for example, via PRIMA). This block moments will be
denoted as Qs. The next step is to obtain the subspaces which match kλi block moments of v
with respect to each of the parameter λi, and will be denoted by Qλi . Once all the subspaces
have been computed, an orthonormal basis can be obtained so that its columns spans the
joint of all subspaces. Applying the resulting matrix in a projection scheme ensures that the
parametric ROM4 matches ks moments of the original system with respect to the frequency,
and kλi moments with respect to the parameter λi. If the cross-term moments are needed for
accuracy reasons, the subspace that spans these moments can be also included by following
the same scheme.

Variational PMTBR

A novel approach was recently proposed that extends the PMTBR algorithm to include vari-
ability [16]. This approach is based on the statistical interpretation of the algorithm (see [19]
for details) and enhances its applicability. In this interpretation, the Gramian is seen as a
covariance matrix for a Gaussian variable, v(0), obtained by exciting the (presumed stable)
system with white noise. Rewriting the Gramian as

Xλ =

∫
Sλ

∫ ∞

−∞
(sCλ +Gλ)−1MMT (sCλ +Gλ)−Hp(λ)dwdλ (18)

where p(λ) is the probability density of λ in the parameter space, Sλ. Just as in PMTBR, a
quadrature rule can be applied in the overall parameter plus frequency space to approximate
the Gramian via numerical computation. But in this case the weights are chosen taking into
account the PDF5 of λi and the frequency constraints. This can be generalized to a set of

4 Reduced Order Model
5 PDF – Probability density function.
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Fig. 3: Variational PEEC: effects on the frequency response (left) and performance of parametric MOR methods (right).

parameters, where a joint PDF of all the parameters can be applied to the joint parameter
space, or the individual PDF of each parameter can be used. The ability to do this represents
an interesting advantage, since a-priori knowledge of the parameters and the frequency can
be included in order to constrain the sampling and yield a more accurate reduced model. As
in the deterministic case, an error analysis and control can be included, via the eigenvalues of
the SVD, but in this variational case only an expected error bound can be given:

E{‖v̂0 − v0‖22} ≤
n∑

i=r+1

σ2
i (19)

where r is the reduced order and n the original number of states. In this method, the issue of
sample selection, already an important one in the deterministic version, becomes even more
relevant, since the sampling must now be done in a potentially much higher-dimensional space.

3.3 Results

To illustrate (for a qualitative analysis mostly) the effect of parameter variability on the res-
ponse of a circuit we resort to a simple example of a partial equivalent electric circuit (PEEC)
model. The system under analysis is an RLC model of a connector of order 304. In this exam-
ple we consider the effect of five geometric parameters, each having a different effect on the
conductance and capacitance matrices. Figure 3(left) shows the effect of random variations
on each parameter up to a limit of 5%, 15% and 30%. It can be seen that even small range
variations in the parameters can result in large deviations from nominal. An important effect
of the parameter variation is that those deviations not only can change the overall shape of
the frequency response but also cause frequency shifts in the pole location. Figure 3(right)
shows a comparison of the reduction of the variational system with two different methods:
variational PMTBR and parametrized time-domain macromodels [7], all of the same order,
versus the nominal response and the system response under parameter variation (Perturbed).
As can be seen, the parametric MOR algorithms are able to maintain an acceptable accuracy
up to high frequencies in the presence of strong variations.

4 Conclusions

Model order reduction is a crucial enabling technique for simulation, control, and optimiza-
tion of complex physical systems. In this paper we discussed how, in spite of the progress
achieved in the area in the last few years, certain types of problems such as those derived
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from massively coupled systems, still pose difficulties to the existing approaches. We also
discussed new challenges in the field, brought by new applications such as the reduction of
parametric systems, that are becoming increasingly relevant, raising new issues in the quest
for increased performance. Clearly, we have but scratched the surface of the relevant issues
facing us. Other challenging problems exist, like the reduction on nonlinear systems, which
has also been subject to extensive research.
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Summary. We extend the positive real balancing procedure for passive linear systems to the
nonlinear systems case. We show that, just like in the linear case, model reduction based on
this technique preserves passivity.

Keywords—positive real, passive, energy functions, Hamilton-Jacobi equations, nonlin-
ear balancing, truncation.

1 Introduction
Positive Real Balancing for linear systems is an attractive tool for passivity preserving model
reduction [Ant05]. The method deals with the class of passive linear systems. It combines the
useful properties of the balancing technique with the passivity theory. The latter provides a
particular pair of energy functions to be balanced. The balanced form of the energy functions
reveal the positive real singular values. They measure the energetic importance of the states.
The less important states are omitted to obtain a reduced order system. If the full order system
were passive then the reduced model would be passive too [Ant05].
The idea in this paper is to extend this method to the case of passive nonlinear systems.
It is motivated by the wide range of applications such as power systems stability analysis
and controller design, see e.g. [Giu05]. We use the nonlinear balancing method developed in
[Sch93, Sch94] in combination with the passivity theory in [Wil72, vdS00]. In this case, the
positive real singular values are nonlinear positive functions of the state, having the same sig-
nificance as in the linear case, i.e. measure the energetic importance of the states.
In Section 2, a brief overview of the passivity and positive realness properties is given and
the energy functions, the available storage and the required supply, will be defined. Section
3 shortly reviews the positive real balancing procedure for linear systems and the properties
of the reduced model. Section 4 presents the energy functions as the solutions of a Hamilton
Jacobi equation. Section 5 is an adaptation of the nonlinear balancing procedure to the positive
real systems case. We define the positive real singular value functions. The outcome of it is
used in Section 6, where the truncation itself is done and the reduced system will pe proved to
be passive. Some conclusions and future work make up Section 7.
The nonlinear systems we treat are given in the state space representation as:

x = f(x) + g(x)u, y = h(x) + d(x)u, (1)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, with m = p. x is called the state vector, u is the input and

y is the output of the system. f , g, h are smooth nonlinear vectorfields depending on the state
vector x. n is called the dimension of system (1). The input u will be considered to have finite
energy, i.e. u ∈ L2(R

p).

2 Passivity, Energy Functions and Positive Realness
In this section, we give a brief overview on the dissipativity theory as in [Wil72, Wil71,
vdS00]. A function w : R

p × R
p → R will be called the supply rate. The dissipativity

property is defined with respect to the supply rate w.
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Definition 1 [Wil72, vdS00] A system (1) is called dissipative with respect to the supply rate
w(u, y), if there exists a storage function S : R

n → R, with the following properties:

1. S(x) ≥ 0

2. S(x0) +
∫ t1

t0
w(u, y)dt ≥ S(x1),

where x0 = x(t0) and x1 = x(t1). A particular case is when the supply rate represents the
energy supplied at the terminals of the system, that is w(u, y) = uT y. In this case the system
is called passive. �
Remark 2 If the inequality is strict, we will call the system strictly passive, that is the internal
energy of the system is decreasing even when supplied at the terminals. In case of equality the
system is called lossless. It means that the internal energy of the system is not changing.
Property 2. can also be written in a differential form as:

∂S(x)

∂x
(f(x) + g(x)u) ≤ uTh(x) + uT d(x)u (2)

�
For our purpose, from the set of storage functions satisfying the definition or (2), two particular
types of storage functions are of interest: the available storage and the required supply.

Definition 3 [Wil72, vdS00] The available storage function of a system (1) is the energy
function:

Sa(x0) = −min
u

∫ ∞

0

uT y dt, x(0) = x0, x(∞) = 0 (3)

The required supply function of system (1) is the energy function:

Sr(x0) = min
u

∫ 0

−∞
uT y dt, x(0) = x0, x(−∞) = 0 (4)

�
Sa(x) represents the maximal amount of energy that can be extracted from the terminals of
the system when starting at the initial state x0. Sr(x) represents the minimal amount of energy
required to be supplied to the system in order to reach x0 from the equilibrium.
The property of the system being reachable from x0 is a condition for the existence and non-
negativity of the energy functions defined above.

Lemma 4 [Wil71] Let system (1) be passive as in Definition 1 and reachable from the state
x0. Then, the energy functions Sa and Sr as in Definition 3 exist and are nonnegative. More-
over, Sa ≤ Sr . �
Definition 5 [BIW91] A system (1) is called positive real if, for all u ∈ L2(R

p),∫ t

0

u(τ)T y(τ)dτ ≥ 0. (5)

�
Combined with Lemma 4, we obtain:

Proposition 6 [BIW91] A passive system (1) is positive real. Conversely, a positive real sys-
tem (1), that is reachable from the state x0, is passive. �
Remark 7 If the inequality is strict, the system is strictly positive real. �
3 Linear Systems Case
A linear system is a particular case of system (1), given as: ẋ = Ax + Bu, y = Cx + Du,
where A, B, C, D are constant matrices of appropriate dimensions. The system is assumed to
be reachable and observable (minimal) and R = D +DT > 0. Then, strict positive realness,
can be studied with the Kalman-Yakubovitch-Popov lemma, see e.g. [Ant05]. The energy
functions are quadratic and related to a pair of matrices called the positive real Gramians of
the system.
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Theorem 8 [Wil72] Assume that the linear system is strictly passive. Then Sa(x) = 1
2
xTKminx

and Sr(x) = 1
2
xTKmaxx, where Kmin and Kmax are the minimal, respectively maximal

solution of the Positive Real Algebraic Riccati equation:

KA+ATK + (KB − CT )R−1(BTK − C) = 0 (6)

�
Definition 9 [Ant05] A positive real linear system is called positive real balanced if Kmin =
(Kmax)−1 = diag(π1Is1 , π2Is2 , ..., πqIsq ), where 1 ≥ π1 > π2 > ... > πq > 0, s1 + s2 +
...sq = n. �
The positive real singular value πk, k = 1, ..., q represents the energetic measure of the state
components xs1+...+sk−1+1, ..., xs1+...sk . If πl is much larger than πl+1, then the state vector
can be truncated from w = s1 + ...+sl +1 to n, i.e. xs1+...+sl+1 = 0, ..., xn = 0. A reduced
model of dimension n̂ = s1 + ...+ sl < n is obtained. Then:

Theorem 10 Let the passive linear system be brought into the positive real balanced form
(Ab, Bb, Cb, Db). The reduced system obtained after truncation with dimension l, i.e. dim
x̂ = n̂, is minimal and passive. �
4 Nonlinear Systems Case
In this section we consider a system (1), under the following assumptions:

1. 0 is an equilibrium point of the system and h(0) = 0;
2. the system is strictly positive real, i.e. r(x) = d(x) + dT (x) > 0, and reachable from

x0;
3. x ∈ Y , where Y is a neghbourhood of 0.

Assumption 1 is made for the sake of simplicity, but generality is not lost. Assumption 2 is in
accordance with the nonlinear version of the Kalman-Yakubovitch-Popov lemma which char-
acterizes the property of (strict) positive realness [Moy74, HilMoy76]. We mention that the
smoothness assumed in the definition of system (1) guarantees the existence of solutions to be
introduced. This condition could be relaxed, but it is kept for convenience.
Denote by ||v||2M = vTMv, (∀)v ∈ R

n,M ∈ R
n×n.

The energy functions are computed as the stabilizing and antistabilizing solution, respectively,
of a Hamilton-Jacobi equation, which is the nonlinear generalization of the Positive Real
Algebraic Riccati equation, (6) from the previous section.

Theorem 11 Let system (1) be, satisfying Assumptions 1-3. Then the Hamilton-Jacobi
equation:

∂S(x)

∂x
f(x) +

1

2

(
∂S(x)

∂x
g(x)− hT (x)

)
r−1(x)

(
gT (x)

∂ST (x)

∂x
− h(x)

)
= 0 (7)

has the smooth solution Sa(x), Sa(0) = 0, such that

f(x) + g(x)r−1(x)

(
gT (x)

∂Sa
T

∂x
− h(x)

)
(8)

is asymptotically stable and the smooth solution Sr(x), Sr(0) = 0, such that

−
(
f(x) + g(x)r−1(x)

(
gT (x)

∂Sr
T

∂x
− h(x)

))
(9)

is asymptotically stable. �
Proof: Because system (1) is passive and reachable, according to Lemma 4, Sa(x(t)) and
Sr(x(t)) exist and are nonnegative. We develop the proof for Sr(x). The sequel follows the
idea in Scherpen [Sch94], Section 3, Theorem 3.1.3. By definition, Sr(x) = minu,x(−∞)=0
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∫ t

−∞ uT (s)y(s)ds. Because Sr(x) exists, there exists an optimal input u∗, i.e. Sr(x(t)) =∫ t

−∞ u∗T (s)y∗(s)ds, where y∗(s) is the output of the system with the input u∗. Differentiat-
ing Sr(x(t)) with respect to time we get:

Ṡr(x(t)) = u∗T

y∗ ⇒ ∂S(x)

∂x
(f(x) + g(x)u∗)− u∗T y∗ = 0. (10)

On the other hand, using completion of squares and (7), we have that

uT y−1

2

∣∣∣∣
∣∣∣∣u− r−1

(
gT ∂S

T

∂x
− h

)∣∣∣∣
∣∣∣∣
2

r

=
∂Sr

∂x
gu−1

2

(
∂Sr

∂x
g − hT

)
r−1

(
gT ∂S

T
r

∂x
− h

)

=
∂Sr

∂x
(f + gu) = Ṡr. (11)

Relation (10), can be written as ∂Sr
∂x

f + ∂Sr
∂x

gu∗ − u∗T

y∗ = 0. Relations (11), (7) give:

u∗T

y∗− ∂ST
r

∂x
gu∗ = − 1

2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)
+ 1

2

∣∣∣
∣∣∣u− r−1

(
gT ∂ST

∂x
− h

)∣∣∣
∣∣∣2
r

⇒ ∂Sr
∂x

f + 1
2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)
− 1

2

∣∣∣
∣∣∣u∗ − r−1

(
gT ∂ST

r
∂x
− h

)∣∣∣
∣∣∣2
r

= 0

(12)
Now we show that u∗ = r−1

(
gT ∂ST

∂x
− h

)
. Let u be any continuous admissible control that

steers the state from x(t) to x(−∞) = 0 (as the system is considered reachable). Let

û(t) =

{
u(t), t− δ ≤ t ≤ t
u∗(t), −∞ ≤ t ≤ t− δ

Denoting by ŷ(s) the output of system (1) with input û(s) and by J(û) =
∫ t

−∞ ûT (s)ŷ(s)ds,

we have: J(û) =
∫ t−δ

−∞ u∗T (t)y∗(t)dt+
∫ t

t−δ
ûT (t)ŷ(t)dt = Sr(x(t−δ))+

∫ t

t−δ
ûT (t)ŷ(t)dt.

The integral can be approximated as follows:
∫ t

t−δ
ûT (t)ŷ(t)dt = δûT (t)ŷ(t) + o(δ),

where o(δ)/δ → 0, as δ → 0. By the smoothness of Sr(x) we have that: Sr(x(t)) =

Sr(x(t− δ)) + δ dSr(x(t))
dt

+ o(δ) = Sr(x(t− δ)) + δ ∂Sr(x)
∂x

(f(x) + g(x)u) + o(δ).
At the same time we know that Sr(x) ≤ J(û) which leads to: ∂Sr(x)

∂x
(f(x)+g(x)u)−uT y ≤

0. Using relation (12) we conclude that ∂Sr
∂x

f + 1
2

(
∂Sr
∂x

g − hT
)
r−1

(
gT ∂ST

r
∂x
− h

)

− 1
2

∣∣∣
∣∣∣u− r−1

(
gT ∂ST

r
∂x
− h

)∣∣∣
∣∣∣2
r
≤ 0 Taking into account equation (12) the equality holds

for u = u∗ = r−1
(
gT ∂ST

r
∂x
− h

)
. Hence, because Sr(0) = 0 and u∗ steers the state from

t to −∞ in 0, we conclude that Sr(x) satisfies (7) such that (9) is asymptotically stable. The
proof for Sa(x) follows the exact same line. �
Sa and Sr are the minimal, respectively maximal solution of (7).

Remark 12 If Sa and Sr were quadratic as in the linear systems case, everything would boil
down to the Positive Real Algebraic Riccati equation and the positive real Gramians from
Theorem 8, in Section 3. �
Proposition 13 If S(x) ≥ 0 is a solution of (7), then 0 ≤ Sa ≤ S ≤ Sr . �
Proof: Follows the ideas of [Moy74]. �
Remark 14 This result is in accordance with the ideas in [Wil72, vdS00]. �
The energy functions can be used according to [Wil72] as Lyapunov functions for system (1).

Lemma 15 If the system (1) is passive and zero-state observable then any solution S(x) of
(7) is positive definite (∀) x �= 0. �
Proof: This follows the line in [Moy74, Lemma 2]. �
Corollary 16 A system (1) that is passive, with r(x) > 0 and zero state observable is asymp-
totically stable. �
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5 Nonlinear Balancing
In this section a system (1) is considered, under assumptions 1, 2, 3, and:

4. it is zero-state observable on Y ;
5. Sa(x) and Sr(x) exist and are smooth on Y ;

According to the previous section, the Assumptions 1-5 insure that Sa and Sr are the mini-
mal, respectively the maximal positive definite solutions of the equation (7), for all x ∈ Y .
The sequel follows the procedure in Scherpen [Sch93]. The goal is to find the coordinate
transformation z = ξ(x) which brings the system into the positive real balanced form.

Theorem 17 [Sch93] There exists a coordinate transformation x = φ(x), φ(0) = 0 s.t., in
the new coordinates Sa(φ(x)) = 1

2
xTx and Sr(φ(x)) = 1

2
xTM(x)x, where M(x) is an

n× n symmetric matrix whose entries are smooth functions of x. �
Proof: See Lemma 3.2.2 in [Sch93], Chapter 3. �
For the sequel an extra assumption is needed

6. on Y , M(x) has a constant number of distinct eigenvalues ([Sch94], Lemma 3.2.3)
According to Kato’s result, [Ka82, Theorem 5.13a], Assumption 6 insures that M(x) can be
brought into a diagonal form, while leaving Sa in the same form.

Theorem 18 [Sch93] Under assumptions 1-6, there exists a coordinate transformation
x = ψ(z), s.t.

Sa(z) = Sa(ψ(z)) =
1

2
zT z, (13)

and
Sr(z) = Sr(ψ(z)) =

1

2
zT diag(v1(z), ..., vn(z))z (14)

�
The nonlinear system (1) is brought in positive real balanced form using the following coordi-
nate transformation z = η(z) = [η1(z1) ... ηn(zn)]T , where ηi(zi) = vi(0, ..., zi, ..., 0)

1
4 zi >

0. Applying the transformation we get:

Sa(z) =
1

2
zT diag(π1(z1)

−1, ..., πn(zn)−1)z (15)

Sr =
1

2
zT diag(π1(z1)

−1v1(η
−1(z)), ..., πn(zn)−1vn(η−1(z)))z (16)

vk(η−1(z)) > 0 for all k, can be called the positive real singular value functions of (1)
and πk(zk) =

√
vk(0, ..., η−1

k (zk), ..., 0). Applying this coordinate transformation to (1), it
becomes:

ż = f(z) + g(z)u, y = h(z) + d(z).

A system having the available storage and required supply of the form (15) and (16) is in the
positive real balanced form.
So, given a system (1), by directly applying the coordinate change z = ξ(x) = (η ◦ ψ−1 ◦
φ−1)(x), it is brought into positive real balanced form.
The available energy extracted at component zk is given by the quantity
Sa(0, ..., zk, ...0) = 1

2
z2

kπ
−1
k (zk) and the energy supply required to reach component

zk is measured as Sr(0, ..., zk, ..., 0) = 1
2
z2

kπk(zk). So, if vk(z) � vk+1(z), then
π−1

k (z)vk(z) � π−1
k+1(z)vk+1(z). This means that to reach state component zk less sup-

ply of energy is required than for the component zk+1 and at state component zk is stored
more energy available than at state component zk+1. This makes components z1, ..., zk more
important from energetic point of view than state components zk+1, ..., zn. Thus, model trun-
cation can be applied, meaning that the zk+1, ..., zn components can be made 0.

6 Model Reduction - Truncation
Partition the state vector z into [z1T

, z2T

]T , where z1 = [z1 ..., zk]T and z2 = [zk+1 ... zn]T .
Accordingly, the system can be partitioned into:
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f(z) =

[
f1(z

1, z2)

f2(z
1, z2)

]
, g(z) =

[
g1(z

1, z2)
g2(z

1, z2)

]
, h(z) = h(z1, z2), d(z) = d(z1, z2).

According to the previous section, the energetic analysis of the state components tells that z2

is less important than z1. Hence, to reduce the system, we truncate i.e. we set z2 = 0. The
reduced system is described by:

ż1 = f1(z
1, 0) + g1(z

1, 0)u, y = h(z1, 0) + d(z1, 0)u (17)

The available storage of the reduced system is: Sa(z1, 0). Because of the form in (15) we have
that ∂Sa

∂z2 (z1, 0) = 0.
The Hamilton-Jacobi equation (7) is satisfied as follows:

∂Sa

∂z1
(z1, 0)f1(z

1, 0) +
1

2

(
∂Sa

∂z1
(z1, 0)g1(z

1, 0)− h
T
(z1, 0)

)
r−1(z1, 0)·

(
gT
1 (z1, 0)

∂TSa

∂z1
(z1, 0)− h(z1, 0)

)
= 0

Substituting the required supply Sr(z
1, 0) from relation (16) it is obtained that:

∂Sr

∂z1
(z1, 0)f1(z

1, 0) +
1

2

(
∂Sr

∂z1
(z1, 0)g1(z

1, 0)− h
T
(z1, 0)

)
r−1(z1, 0)·

(
gT
1 (z1, 0)

∂TSr

∂z1
(z1, 0)− h(z1, 0)

)
+ F

(
∂Sr

∂z2
(z1, 0), g2(z

1, 0), h(z1, 0)
)

= 0

where

F =
∂Sr

∂z1
f2 +

(
∂Sr

∂z1
g1 − h

T
)
r−1gT

2

∂TSr

∂z2
+
∂Sr

∂z2
g2r

−1gT
2

∂TSr

∂z2

The required supply of the reduced system does not equal the reduced required supply, unless
an extra condition is fulfilled, i.e. F = 0.

Remark 19 Being an input-output property, (strict) passivity is not affected by the coordinate
transformation which brings the original system into (strictly) positive real balanced form. It
means that the (strictly) positive real balanced system is again (strictly) passive. �
Theorem 20 The reduced order system is strictly passive. �
Proof: We check if the strict passivity property in (2) is satisfied by the reduced system. We
can write (2) for the full order strictly positive real balanced system:

[
∂Sa

∂z1

∂Sa

∂z2

]([
f1(z

1, z2)

f2(z
1, z2)

]
+

[
g1(z

1, z2)
g2(z

1, z2)

]
u

)
< uTh(z1, z2) + uT d(z1, z2)u.

Setting z2 = 0 we have that ∂Sa

∂z2 (z1, 0) = 0, Sa(z1, 0) > 0. Substituting in the above
inequality we get:

∂Sa

∂z1
(z1, 0)(f1(z

1, 0) + g1(z
1, 0)u) < uTh(z1, 0) + uT d(z1, 0)u.

It means that the reduced order system satisfies inequality (2), hence the reduced system is
strictly passive. �
Theorem 21 If F

(
∂Sr

∂z2 (z1, 0), g2(z
1, 0), h(z1, 0)

)
= 0 for all z1 around 0, then the

reduced system is in strictly positive real balanced form having the singular value functions:
v1(z

1, 0) ≥ ... ≥ vk(z1, 0), for z1 = η−1(z1, 0). �
Proof: If the condition on F is satisfied, then Sr(z

1, 0) as in (16) is the required supply of
the reduced system. Sa(z1, 0) as in (15) satisfies directly the Hamilton-Jacobi equation (7),
so it is the available storage of the reduced system. Thus, the system is in positive real bal-
anced form with the positive real singular value functions v1(z

1, 0) ≥ . . . ≥ vk(z1, 0), where
z1 = [η−1(z1) ... η

−1(zk)]T . �
Remark 22 If the singular value functions are independent of z2, then ∂Sr

∂z2 (z1, 0) = 0. Then
immediately F

(
∂Sr

∂z2 (z1, 0), g2(z
1, 0), h(z1, 0)

)
= 0 follows. �
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7 Future Work
We present a passivity preserving model reduction technique, based on positive real balanced
truncation. The results in Section 5 are coordinate dependent, leading to the fact that the bal-
anced representation and the singular value functions are not unique, i.e. the choice of dif-
ferent sets of singular value functions gives different reduced systems. For future research,
developments such as in [FujSch05], is to be taken into account for the nonlinear positive real
balancing case.
If the system is not strictly positive real, but is positive real, there is no Hamilton-Jacobi equa-
tion to solved. However, if one can compute Sa and Sr in a different way, the balancing
procedure and the results of this paper can still be applied. Additionally, for physical systems,
such as port-Hamiltonian systems (see [vdS00]) it may be useful to preserve besides passivity,
an additional energy/power-based structure in the model for control purposes. This is also a
topic for future research.
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1 Introduction

The modeling of RF/microwave components for computer-aided design is facing new chal-
lenges because of increasing operation frequencies, circuit complexity, integration density,
and decreasing time to market. Recently, it has been shown that Artificial Neural Networks
(ANNs) offer solutions to urgent modeling problems encountered with conventional numeri-
cal methods (e.g., 3-D EM simulation) and empirical models. Fast and accurate models based
on ANNs have been created for a wide range of components [ZG00k], [PAR01].
The crucial part in ANN-based modeling is ANN training, that is, optimization of ANN
weights with given measurements or, say, 3-D EM simulation data. In [TF97] several ANN
weight-initialization methods were introduced and compared mainly by means of classifica-
tion problems. It was shown how the choice of an initialization method influences the con-
vergence of the optimization and the optimal initial weights are, by some means, determined
by the measurement/simulation data set. However, weight-initialization methods have not pre-
viously been systematically evaluated for electrical component modeling problems and the
nature of the problems — the functions to be approximated — differs significantly from, e.g.,
classification problems with discrete/Boolean input/target values.
In this paper, three methods for an initialization of ANN weights are experimentally evalu-
ated for electrical component modeling applications. The third method, a special modification
of the second method, is not found in literature. The methods are evaluated with respect to
average ANN training error, ANN test error, and ANN training CPU time. Also, the stan-
dard deviations of ANN training and test errors are calculated for robustness analysis of the
methods.

2 Artificial neural networks

The most widely used ANN in the field of RF/microwave component modeling is the Multi-
Layer Perceptron (MLP) [ZG00k]. The three-layer MLP used in this work realizes the nonlin-
ear mapping

ỹl(x,w) = wl0 +

Nh∑
j=1

wlja tanh

(
b · (wj0 +

Ni∑
i=1

wjixi)

)
, (1)

l = 1, 2, . . . , No,

where Ni, Nh, and No represent the number of inputs, hidden-layer neurons, and outputs,
respectively; x=(x1, x2, . . . , xNi), ỹ=(ỹ1, ỹ2, . . . , ỹNo), and w=(w10, w11, . . . , wNoNh)
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represents ANN inputs, outputs, and weights, respectively. The function a tanh(bvj) is called
the Activation Function (AF), where the parameters a and b determine the maxima and the
steepness, respectively, and vj = wj0 +

∑Ni
i=1

wjixi is the induced local field of the function.
Let y = y(x) be an unknown, nonlinear, multidimensional function to be approximated by
the MLP mapping (1): ỹ = ỹ(x,w). Let {(xk,yk), k = 1, 2, . . . , Ntr} be an appropriate
training set, Ntr being the number of samples, and the training-set inputs and targets being
scaled linearly in the range [−1, 1]. Furthermore, let us define the normalized training error as

Etr(w) =

√√√√ 1

NtrNo

Ntr∑
k=1

No∑
l=1

(
ỹl(xk,w)− yk

l

2

)2

. (2)

The training of the ANN means minimizing Etr(w) with respect to the weights, w, using a
suitable optimization method — in this work, Hestenes–Stiefel conjugate-gradient with Error
Back Propagation (EBP) [KRH05k]. The generalization capability of the trained ANN is eval-
uated by applying Eq. (2) to an independent test set, {(xk,yk), k = 1, 2, . . . , Nte}, to obtain
the normalized test error Ete(w).

3 Weight-initialization methods

Weight initialization tries to provide initial weight values close to the global minimum of
Etr(w), in the hope of avoiding local minima. There are several strategies for initializing the
MLP weights; the most developed strategies can also be regarded as training methods [EFP05].
However, the most widely utilized strategy for ANN-based RF/microwave component model-
ing is, still, initializing the weights as random real numbers from a Uniform Distribution (UD)
with fixed or variable range. The weight-initialization Methods (Ms) evaluated in this work
include: M1. random initialization from UD with fixed range [ZG00k], M2. random initializa-
tion from UD with variable range and special input data scaling [Hay99k], and M3. random
initialization from UD with variable range and special input and target training data scaling.
Utilizing M1 [ZG00k], one sets a = b = 1 and wji, wlj ∈ [−c, c], where, e.g., c = 1.0. This
heuristic initialization tries to ensure the local field (vj) of the AFs to be such that it forces
the AFs to operate in an approximately linear transition region determined by maxima of the
second derivative, max(∂2 tanh(vj)/∂v

2
j ). This would be desirable for the convergence of

optimization because, when using EBP [Hay99k], ∂E2
tr/∂wji ∼ ∂ tanh(vj)/∂vj and the lat-

ter has its maximum value in the transition region. However, the heuristic weight initialization
does not take into account the mean, x̄i, and the standard deviation of input data, σxi , and,
therefore, AFs may operate in saturation regions slowing down the optimization [Hay99k].
M2 [Hay99k] forces the specific AFs to operate in the transition region (between (–1,–
1) and (1,1) for a = 1.7159 and b = 2/3) with wji ∈ [−

√
3/Ni,

√
3/Ni], wlj ∈

[−
√

3/Nh,
√

3/Nh], wj0 = 0, and wl0 = 0. This initialization is based on a special input
data scaling, with x̄i = 0 and σxi = 1.
When one utilizes M2 and approximates the transition region of AFs as a straight line going
through the origin with slope 1, the distribution parameters of the MLP outputs, ỹl, are ¯̃

ly = 0
and σỹl = 1 as for MLP inputs xi. A hypothesis to be tested is presented (M3): scaling
of the target training data, yl, such that ȳl = 0 and σyl = 1, improves the convergence of
optimization. The idea of M3 is to equalize the distribution parameters of the MLP outputs
and the target training data, possibly aiding the convergence.

4 Experimental setup

In the evaluation, we had eight representative modeling problems: 1. approximation of a mod-
ulated sinusoidal function, 2. the same problem with additive normal-distributed noise, 3.
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MEMS gas-damper behavior, 4. rounded-stripline-bend parallel capacitance and series induc-
tance vs. device geometries, 5. JFET DC characteristics, 6. spiral-inductor S-parameters vs.
geometries, 7. power amplifier output power vs. supply voltage and frequency, and 8. MES-
FET drain and gate currents vs. bias voltages and temperature.
For each problem, three appropriately sized MLPs (Nh and Nw get three different values
as given in Table 1) were utilized. The modeling-problem characterization and corresponding
MLPs are shown in Table 1, where Nw is the resulting number of ANN weights, i.e., optimiza-
tion variables, Ntr is the number of training-set samples, and Ng = NtrNo is the resulting
number of optimization goals.

Table 1: Modeling-problem characterization

problem Ni Nh No Ntr Nw Ng

1 1 {5,10,15} 1 20 {16,31,46} 20
2 1 {5,10,15} 1 20 {16,31,46} 20
3 3 {5,10,15} 1 40 {26,51,76} 40
4 3 {5,10,15} 2 50 {32,62,92} 100
5 2 {5,10,20} 3 306 {33,63,123} 918
6 5 {10,15,25} 5 486 {115,170,280} 2430
7 2 {10,20,30} 1 4667 {41,81,121} 4667
8 3 {10,15,25} 2 37597 {62,92,152} 75194

Each MLP was trained 30 times with each weight-initialization method — M1 with c =
0.001, 0.005, 0.01, 0.1, 0.5, 1.0, 5.0 — andEtr,Ete, and training CPU time noted in hundred-
step increments. The results obtained for each method were averaged over all runs at each
value of the optimization cycles. In addition, the standard deviations of the training and test
errors were calculated for each problem and method. Finally, the standard deviations were
averaged over all the problems at each value of the optimization cycles.
A total number of 6480 runs were carried out by semi-automatic scripts using APLAC 8.2
ANNModelGenerator [A06k] on an Ia64 HP Server rx5670 with a 1.3 GHz processor and
4 Gbyte memory.

5 Analysis of results

A set of representative results is shown in Figs. 1–5. The convergence of M1 degraded rapidly
with increasing or decreasing c (as in [TF97]), and therefore only the best results (obtained
with c = 0.5) for M1 are shown.
According to the results obtained, the hypothesis presented is true; comparing the new M3 to
M1 (with c = 0.5), the training and test errors decreased by 13.6 % and 1.4 %, respectively.
The smallest standard deviations for training and test errors show that M3 is also more robust
than other methods (41.6 % and 2.1 % improvement, respectively, compared to M1 with c =
0.5). The performance improvement is obtained with a slight increase in the training CPU
time (7.0 % increase compared to M1 with c = 0.5).
M2 forces the AFs to operate in the transition region and improves the convergence when
compared to heuristic M1 with other values of c. Thus, one can conclude that when a = b = 1,
c = 0.5, and the training-set inputs and targets are scaled linearly in the range [−1, 1], the AFs
are forced, on the average, to operate in the transition region. However, this may not be true
with a single modeling problem.
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6 Conclusions

Three methods for the initialization of MLP-ANN weights were experimentally evaluated
for electrical component modeling applications. A new weight-initialization method was also
presented. The methods were evaluated with respect to average training error, test error and
training CPU time. Also, the standard deviations of training and test errors were calculated
and utilized to analyze robustness of the methods.
According to the results obtained, the hypothesis presented is true: the new method proposed
(M3) improves the convergence and robustness of MLP-ANN training for electrical compo-
nent modeling problems. The performance is improved because the AFs are forced to operate
in the transition region and the target training data is scaled so that its distribution parameters
correspond to the ones of the MLP outputs. This is not true with the heuristic weight initial-
ization (M1), even though it is possible to find empirically a good value of c for a specific
modeling problem.
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Fig. 3: Standard deviation boundaries for training error vs. optimization cycles
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Summary. In this paper we extend the Trajectory Piecewise Linear (TPWL) model order
reduction (MOR) method for nonlinear differential algebraic equations (DAE). The TPWL
method is based on combining several linear reduced models at different time points, which
are created along a typical trajectory, to approximate the full nonlinear model.
We discuss how to select the linearization tuples for linearization and the choice of linear
MOR method. Then we study how to combine the local linearized reduced systems to create
a global TPWL model. Finally, we show a numerical result.

1 Introduction

Nowadays a lot of circuits which are used in many fields are not only purely digital or ana-
logue. These circuits are a mixture of analogue and digital and are called mixed-signal circuits.
For developing these large circuits there is a need of tools which can simulate these circuits
efficiently during the design phase as well as during the verification phases. The digital part
in mixed-signal designs contains also several sub-circuits that are reused several times. So,
simplifying these circuits could give a speed-up for the transient analysis.
To do this we could use MOR methods, which are based on linear or quadratic reduction
[PH00] or nonlinear methods, e.g. proper orthogonal decomposition (POD) [VOL99]. How-
ever, these methods are mostly developed for weakly nonlinear systems. Therefore these meth-
ods are not so useful in circuit simulation, which often deals with highly nonlinear circuits. To
overcome this issue, a TPWL [REW03] approach for ordinary differential equations (ODE)
was developed. We will show how we can adapt this method to DAEs. We handle here only
DAEs of index 1, because a large number of circuits can be modeled with an index 1 DAE.
In the next section we present our TPWL approach for nonlinear DAEs. In Section 3 we show
how the method performs in practice. Finally in Section 4 we draw our conclusions.

2 Trajectory Piecewise Linear Model Order Reduction

In this section we discuss how we can apply the TPWL method to a nonlinear DAE which is
used to describe the dynamical behavior of a circuit. The DAE system we want to reduce is

d

dt
q(t,x) + j(t,x) + B̃ũ(t) = 0,x(0) = x0
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where q, j : R × R
n → R

n, B̃ ∈ R
n×m and ũ : R → R

m. Here q represents contributions
from capacitances and the inductances, j represents contributions from resistances while B̃ is
the input distribution matrix and ũ is the given input for the circuit.
The idea behind the TPWL method is to linearize the system at special time points ti along
a typical trajectory. The trajectory itself should represent the full nonlinear behavior of the
system. Then we reduce each locally linearized system with a linear model reduction technique
and store the basis of each locally reduced subspace Si. With the help of the Si we compute a
globally reduced subspace S. S is then used as the subspace for all locally linearized systems.
The final TPWL model is a weighted sum of all locally linearized reduced systems. The TPWL
model can then be solved by a standard DAE time integrator. In the following subsection we
show how we apply the described steps.

2.1 Creating the local linearized models

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

C
B

Ax4

x2

x0

x1

x3

Fig. 1: Creating the linearization tuples, and curves with different sources
and/or initial values

The disadvantage of the stan-
dard linearization methods is that
we can only trust in the results
if the solutions stays close to
the linearization tuple (LT), time
and solution space, around which
we have created the linearized
model1. To overcome this draw-
back the idea is to take several
linearized models to create the
TPWL model. These LTs will be
taken along a trajectory which
represents the typical behavior of

that system. If we do this we can trust in the results as long as the solution stays close to one
of the LT. Figure 1 illustrates a typical situation. In this situation we have 5 LTs (x0, . . . , x4),
which are created along trajectory A, and their related accuracy region (the gray region). We
can see that trajectory B and C stay in the accuracy region even if they have different inputs
(B) or different initial values (C). And as long as the trajectories stay in the accuracy region
we can also be sure that we have a good approximation of the original system.
We will discuss an approach which will choose as many LTs as needed to reach a given accu-
racy and as few as possible to get the maximum speed-up in the TPWL model. In [REW03]
they propose more accurate methods for selecting the LTs, but these methods are only applica-
ble to ODEs, because they assume that ∂q

∂x
(x0, t0) is regular, but since we handle DAEs so

∂q
∂x

(x0, t0) is singular.
To get the LTs we need a solution of the original model. But we only need low accuracy of
this solution because it is enough if the LTs are close to the exact trajectory. The reason why
we need only low accuracy is that we just need the LTs to stay close to the exact trajectory.
With this in mind, we see that it is a good idea to include the selection of the LTs directly in a
solver of a nonlinear DAE.
Similarly to a step size controller, the accuracy of the actual local reduced model depends on
the selection of the future LTs. The reason for this is that for calculating the global reduced
subspace we use all local subspaces we have created along the trajectory, also future ones.
In consequence, we can only make local accuracy assumptions and so, we use a quite simple
strategy for selecting a new LT.
From the overview we know that the final TPWL model consists of a weighting of several
reduced linearized systems. We create the reduced linearized systems by projecting all of them
into the same reduced global subspace. The basis for the global reduced subspace is created
by merging all locally reduced subspaces which we got during the creation of the linearized

1 For simplicity we sometimes omit the time dependency of the LT
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models. This is done in such a way that the global reduced subspace represents the most
dominant parts of the locally reduced subspaces. So a good approximation for the globally
reduced subspace is then just the actual locally reduced subspace. This means that we create
the local reduced subspace with a linear model reduction technique and we use this subspace
to create the local linearized subspace. Next we simulate both systems, the original and the
local linearized reduced system, until the distance between the solutions of both systems is
bigger then a given bound. At this point we set a new LT. Algorithm 1 shows the procedure
to find LT i + 1. We continue with this procedure until we have reached the end of the given

Algorithm 1 Linearization tuple controller
1. Set an accuracy factor ε > 0
2. Linearize the system around the last (i-th) LT (xi, ti). So we get

Ciẋ +Gix +Bu(t) = 0

where Ci = ∂q
∂x

(xi, ti) ∈ R
n×n, detCi = 0 and Gi = ∂j

∂x
(xi, ti) ∈ R

n×n . Save
Ci, Gi and B.

3. Reduce the i-th linearized system to dimension ri � n with a linear model reduction
method, e.g. ’Poor Man’s TBR (PMTBR) [PS05], and project the system to this locally
reduced subspace which is spanned by Pi. Be aware of that ri can be different for all
different LTs

Cr
i ẏ +Gr

i y +Bru(t) = 0

where Cr
i = P�

i CiPi, Gr
i = P�

i GiPi and Br = P�
i B with Pi ∈ R

n×ri . y ∈ R
ri is

the approximation to x with x ≈ Piy. Save Pi.
4. Simulate both the locally linearized reduced system with yi

0 = P�
i xi and the original

system with a step size determined from the original nonlinear system. If at t the relative
distance between the two solutions ||Piy−x||

||x|| becomes bigger than ε we set the (i+ 1)-th
LT to (x, t) and go to step 2.

trajectory.
An extension to this approach is to calculate several typical trajectories to create a bigger
accuracy region. However the more LTs we have, the more memory for saving the TPWL
model we need, and the more involving the weighting procedure will be.

2.2 Creating the global reduced subspace

After we have created p linearized systems and p related local reduced subspaces we have to
construct the global reduced subspace. We need a global reduced subspace because we want
a smooth transition from one accuracy region to another accuracy region while solving the
TPWL model. If we had for each local subspace a separate reduced subspace the transition
from one to another subspace would be way too difficult.
Let us assume we have p local reduced subspaces which are spanned by Pi ∈ R

n×ri , i =
0, . . . , p − 1. The columns Pi span the optimal reduced subspace for the i-th local linearized
system. So one idea is to create a new matrix P̃ which contains all columns of the Pi’s. So
P̃ := [P1, . . . , Pp] spans then the union of all reduced subspaces.Of course the columns of P̃
are in general linearly dependent and also the number of columns is in general larger than n, so
P̃ is not a good global projection matrix. It is even high likely that several Pi are quite similar
because the linearized systems are also. Hence the columns of these Pi are quite dominant
in the matrix P̃ . To extract the most dominant columns of P̃ , and so the most dominant part
of the union of the local reduced subspaces, we use a singular value decomposition (SVD) of
P̃ = UΣV �. Then U contains the most dominant columns of P̃ , and so from all Pi, ordered
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by their importance. As the global reduced subspace we take the one which is spanned by the
first r columns of U . With this global reduced subspace we can establish a smooth transition
from one local system to another one. Summarizing we obtain Algorithm 2.

Algorithm 2 Creating the global reduced subspace
1. Define P̃ = [P1, . . . , Pp].
2. Calculate the SVD of P̃ . So P̃ = UΣV � with U = [u1, . . . , un] ∈ R

n×n,Σ ∈ R
n×rp

and V ∈ R
rp×rp.

3. Define P as [u1, . . . , ur].
4. Create the p local linearized reduced systems given as Cirẏ+Giry+Biru(t) = 0 with

Cir = P�CiP , Gir = P�GiP and Bir = P�B

2.3 Creating the TPWL reduced order model by weighting

Now we have p locally linearized reduced systems which are all lying in the same global
reduced subspace, but we still need to combine them to get a global TPWL model. We do this
by calculating a weighted sum of local models

p−1∑
i=0

wi(y) (Cirẏ +Giry +Biru(t)) = 0.

t0 t1 t2

x0

y2

y0

y1
x2x1

t

x

Fig. 2: Simple TPWL model

To see how we should choose the weights
we take a look to a simple example, see
Figure 2. In this example we have 3 LTs
x0,x1 and x2 and the related accuracy
region, shown as circles. We also have
3 possible trajectory points of the TPWL
model. y0 lies only in the accuracy region
of x1 so the related local system should
have the biggest influence to the TPWL
model. Hence we should choose w1 ≈ 1
and w0, w2 ≈ 0. If we look to y1 we see
that this point lies in the accuracy region
related to x1 and x2, so we should take a combination of both local models this means that
we should choose the weights as following: w1 + w2 ≈ 1 and w3 ≈ 0. For y2 we have the
following situation: the solution has left all accuracy regions so we should stop the simulation
at this point or give at least a warning. A template for a weighting procedure is described in
Algorithm 3.
After calculating the weights we normalize them to get a convex combination of the local
linearized reduced systems. If we choose the weight in the way described in the example we
get a distance depending weighting scheme as shown in Algorithm 4.
There also is an extended approach which uses instead of the distance an approximation of the
linearization error to calculate the weights [VO05]. This approach is more complex because
we have to compute an estimate of the Hessian’s of q and j but in this way we obtain an even
better TPWL model.
To summarize we have changed, compared to [REW03], the way how the LTs are chosen.
We also tried several linear model order reduction techniques to see which performs the best.
Additionally we tried to improve the weighting procedure.
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Algorithm 3 Weighting template
given p LTs (tli ,yli), i = 0, . . . , p− 1 and b = 0
for i = 0 to p− 1

if y lies in the accuracy region of the i-th LT
0� wi ≤ 1, b = 1

else
0 ≤ wi � 1

end
end
if b = 0

Create warning
end
Such that

∑p−1

i=0
wi = 1

Algorithm 4 Distance dependent weights
Given actual state y, actual time t, p LTs (tli ,yli) and αy, αt ≥ 0 with αy + αt = 1

1. For i = 0, . . . , p− 1 compute di = αy ‖y − yli‖+ αt |t− tli |
2. For i = 0, . . . , p− 1 calculate w̃i = e−

diβ

m with m = mini=0,...,p−1 di, β > 0
3. Normalize the weights such that the given constraints hold

wi = w̃i
s

with s =
∑p−1

i=0
w̃i

3 Example

We show how the TPWL method performs on a practical example. As a test circuit we have
chosen a chain of inverters, which consists of 100 inverters, connected in series. The circuit
behaves nonlinearly so it is a good test for the TPWL method. Additionally, we have depen-
dencies between all nodes which is also not an optimal behavior for a model reduction process.
The DAE which is describing the dynamics of the circuit has 104 states. For selecting the LTs
we have used Algorithm 4. For linear model reduction technique we used PMTBR [PS05],
that was adapted to deal with our DAE.
In Figure 3 we illustrate the results of our test setup. The upper picture shows the relative
error of the TPWL model compared to a highly accurate solution, calculated with a backward
differential formula (BDF) method. The lower one compares the solution for the voltage of
node 50 of the TPWL method to the solution of the BDF method. As input for both figures
we used a slightly different input than for training the TPWL model. We used an input signal
with a added sinus wave and/or delayed input signal.
In Table 1 we sum-up the speed-up for the simulation with the same input as the training
input. Extr. time + BDF is the time it needs to create a TPWL model including the time for
BDF method. Simul. time is the time needed to simulate the final TPWL model.

r # LTs Extr. time + BDF Simul. time max. error Speed-up mean error
PMTBR 50 62 240s (220s BDF) 41s 0.037484 5.4 0.012051
PMTBR 40 62 236s (220s BDF) 31s 0.033233 7.2 0.016672
PMTBR 35 62 233s (220s BDF) 27s 0.057046 8.3 0.026128

Table 1: Final LT controller

It can be seen that the relative error is most of the time lower then the given error bound, see
Figure 3. For all orders we have to use the same number of LTs (62), which comes from the
fact that the local systems only need relatively small subspaces to get the desired accuracy.
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Fig. 3: Relative error of the PMTBR-TPWL method compared to high accurate BDF method (top) Voltage at node 50
compared to a high accurate BDF solution (bottom)

The resulting speed-up is between 5.4 and 8.3 compared to a BDF method, which needs 220s.
This speed-up is related to the fact that we are solving linear reduced systems instead of the full
nonlinear DAEs, which require a nonlinear solver including Newton iterations. The speed-up
would be even bigger if we used a circuit with a lot of devices which have all to be evaluated.
We can also notice that in our example the extraction time is quite high, since we have used
a high accuracy for the BDF-method during the extraction. We can reduce this time if we use
a lower accuracy during the extraction because we only need a rough approximation of the
solution to create the TPWL model.
Even if we can reduce the extraction time using a lower accuracy during the extraction time,
one can argue that a full simulation of the circuit is just a bit more expensive. This is of course
correct but if we think about that we reduce parts of the circuit which are reused a lot, it is
easy to see that we still get a quite large speed-up. So we propose to use the TPWL method in
a kind of library approach.
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4 Conclusion

The TPWL method, applied to nonlinear DAEs, is a promising technique to reduce the sim-
ulation time. It has several advantages compared to other methods. First of all we can get a
big speed-up in simulation time. We can also use the well-developed linear model reduction
techniques. And we are able to create a linearization tuple controller that can be used directly
in a BDF method. In future we plan to apply this method to a more practical example, then we
will also address open questions, e.g. what happens if the circuit contains a feed back. We also
aim to improve the method for selecting the LTs and the weighting procedure and to quantify
the speed-up obtained a priori.
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Summary. In this paper we compare the numerical results obtained by different model
order reduction software tools, in order to test their scalability for relevant problems of the
microelectronic-industry. MOR for ANSYS is implemented in C++ and ROM Workbench is a
MATLAB code. We further compare two Arnoldi-based reduction algorithms, which seems to
be the most promising for microsystem design applications. The chosen benchmarks are large
scale linear ODE systems, which arise from the finite element discretisation of electro-thermal
MEMS models.

1 Introduction

Decreasing size of silicon chips and their increasing integration density require permanently
new and more powerful simulation tools and strategies in microelectronics and microsystem
technology. Model order reduction (MOR) approaches [1] are successfully used to consid-
erably reduce both the computational time and the resources. Mathematical development of
MOR is an active area of research, which is growing from the reduction of linear ordinary
differential equation systems (ODEs) towards the reduction of parameterized and nonlinear
differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs).
The implementation aspects of model order reduction are advancing as well. Practical MOR
has developed from academic prototyping environments to several strong tools that can be
easily used as an extension of the commercial simulators like e. g. ANSYS [2].
In today’s age of fast computers it is possible to use quick prototyping tools like MATLAB or
Mathematica for convenient implementation and testing of new MOR methods. However, the
run time for the usually large-scale industry relevant problems enforces the use of program-
ming languages, like for example C++. Such implementations offer better performances, but
also demand more time and programming skills from the developer.
The goal of this paper is to numerically compare two MOR tools, which belong to the men-
tioned streams: MOR for ANSYS (M4A) [2] and ROM Workbench (RW) [3]. The first was
developed at the university of Freiburg, Germany, as an extension to the commercial finite
element simulator ANSYS. However, it can be easily coupled to an arbitrary circuit simula-
tor, provided the matrices of the linear dynamical system are exported in the Matrix Market
format [4]. Back coupling of the reduced model with the rest of the circuitry might be done by
either converting a reduced ODE/DAE system into equivalent electrical circuit, or by enabling
a simulator to incorporate a reduced model as a black-box. M4A implements block Arnoldi
algorithm from [5] and SOAR from [6]. RW is a MATLAB library of different MOR methods,
which has been developed at the University Politehnica of Bucharest, Romania, within the
European project CODESTAR. It implements a PRIMA version of block-Arnoldi based on
[7]. Both tools are planned for use in the European project COMSON [8], which joins the



176 A.J. Vollebregt et al

efforts of the major European semiconductor companies and academic nodes to develop a
demonstrator platform in a software code, that could fulfill the demands of the modern mi-
croelectronic industry. Such a comparison will give us a clear understanding up to which size
and for what structure of the industrial problem the MATLAB code can be used and at which
point one should switch to the compiled language implementation.
In section 2 we prove the equivalence of algorithms [5] and [7]. In section 3 we comment
on the implementations within two codes and describe two electro-thermal MEMS (micro-
electro-mechanical-systems) devices used as case studies for model order reduction. In section
4, the numerical results for block Arnoldi-based order reduction with both tools are presented.
In section 5, we conclude the paper.

2 Block Arnoldi Algorithms
In microsystem simulation, the spatial discretization of computational domain often results in
a linear multiple-input multiple-output ODE systems of the form

C · ẋ +G · x = B · u(t)

y = LT · x , (1)

with initial condition x(0) = x0. Here, t is the time variable, x(t) ∈ Rn the state vector,
u(t) ∈ Rm the input excitation vector and y(t) ∈ Rp the output measurement vector. G,
C ∈ Rn×n are linear (not depending on x and t) symmetric and sparse system matrices, B ∈
Rn×m and L ∈ Rn×p are (constant) input and output distribution arrays, respectively. n is
the dimension of the system and m and p are the number of inputs and outputs.
Model order reduction is based on the projection of (1) onto some low-dimensional subspace.
Most MOR methods generate two projection matrices V,W ∈ Rn×ν , to construct a reduced
system of the order ν as

Cr · z +Gr · z = Br · u(t)

yr = LT
r · z , (2)

with Cr = V TCW, Gr = V TGW, Br = V TB, and Lr = WTL. The ultimate goal of
MOR is to find matrices V and W in such a way that ν � n, while minimizing the error
between the full and the reduced system in either time domain min||y − yr|| or Laplace
domain. Furthermore, the stability and passivity of the original system should be preserved
in (2).
The basic idea behind the Krylov-subspace based block-Arnoldi algorithm is to transfer (1)
into the implicit (left-hand side) formulation

Aẋ = x +Ru

y = LT x , (3)

with A = −(G + s0C)−1C, and R = −(G + s0C)−1B, and to write down the transfer
function of (3) in the frequency domain, using a Taylor series in s0 as

H(s) = −LT (I − (s− s0)A)−1R =

∞∑
i=0

mi(s− s0)
i, (4)

where mi = −LTAiB is called the i-th moment around s0. One aims to find a reduced
system whose transfer function Hr(s) will have the same moments as H(s) up to a degree
ν. However, due to numerical instabilities, the moments are not computed explicitly, but via
the right-sided Krylov subspace Kr(A,R, ρ) := span(R,AR,A2R, . . . , Aρ−1R). Block
Arnoldi algorithm generates a single orthonormal basis W for Kr(A,R, ρ) and the system
(3) is reduced by projection to
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Arż = z +Rru

yr = LT
r z , (5)

with Ar = WTAW, Rr = WTR and Lr = WTL. The order of (5) is ν = ρ · m. The
property of the Krylov subspace is such that the first ν moments of Hr(s) = −LT

r (I − (s−
s0)Ar)

−1Rr and of H(s) are identical.
As the reduced system (5) is not necessarily passive (this means that the system generates no
energy, which property is important for applications in circuit simulation), two alternatives to
”classical” block-Arnoldi have been suggested: PRIMA algorithm [7] and Freund’s Arnoldi
[5]. Both are described and compared below.

2.1 PRIMA

The PRIMA algorithm was designed in 1998 to guarantee the passivity of the reduced system.
PRIMA [7] stands for Passive Reduced-order Interconnect Macromodeling Algorithm. An
orthonormal basis, X , is generated such that span(X) = Kr(A,R, ρ), but X is used for an
explicit projection of (1), which means that Cr = XTCX, Gr = XTGX, Br = XTB
and Lr = XTL. In [7] is proven that for this reduced system the passivity is preserved if C
is positively semi-definite and that the first n moments of the transfer function of the original
and the reduced system are matched. Introducing the notation Xk = [xkm+1| . . . |x(k+1)m],
an implementation of PRIMA can be found in Algorithm 1.

2.2 Freund’s Arnoldi

Freund suggests in [5] that vectors which are almost linearly dependent with other vectors
in the span of the orthonormal matrix should be eliminated. He calls this method of elim-
inating vectors deflation. His algorithm is vector based, although there is a block structure
visible for multiple input multiple output systems. Instead of generating orthonormal blocks
the algorithm generates candidate vectors, and each vector v̂k that satisfies

||v̂k|| < DTOL, (6)

for some appropriate threshold DTOL, is removed. Therefore, the number of vectors per
orthonormal block m can be ither smaller then, or equal to, the number of vectors of block
m− 1. If the deflation is omitted we get Algorithm 2.
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Algorithm 1
Block-Arnoldi as in PRIMA [7]
1: X̂0 = R
2: for j = 1, . . . ,m do
3: xj = x̂j/||x̂j ||
4: for i = j + 1, . . . ,m do
5: x̂i = x̂i − xjx

T
j x̂i

6: end for
7: end for
8: for k = 1, 2, . . . , ρ− 1 do
9: Determine X̂k = AXk−1

10: for j = 1, . . . , k do
11: X̂k = X̂k −Xk−jX

T
k−jX̂k

12: end for
13: for j = km + 1, . . . , (k + 1)m

do
14: xj = x̂j/||x̂j ||
15: for i = j + 1, . . . , (k + 1)m

do
16: x̂i = x̂i − xjx

T
j x̂i

17: end for
18: end for
19: end for

Algorithm 2
Freund’s Arnoldi ignoring deflation
1: for i = 1, . . . ,m do
2: v̂i = ri, ri being the i-th col-

umn of R
3: end for
4: for k = 1, 2, . . . , ν do
5: vk = v̂k/||v̂k||
6: Determine v̂k+m = Avk

7: for i = 1, . . . , k do
8: v̂k+m = v̂k+m−viv

T
i v̂k+m

9: end for
10: for i = k − 1, . . . , k −m + 1

do
11: v̂i+m = v̂i+m − vkv

T
k v̂i+m

12: end for
13: end for

2.3 Comparison between both Algorithms

We state that the exact results of Algorithm 1 and Algorithm 2 are the same. In other words,
Freund’s Arnoldi is PRIMA with deflation. We are now going to prove that this is indeed the
case.
Proving that the exact results of both algorithms are the same, is equivalent to proving that
X = V (V is the orthonormal projection basis of Algorithm 2), i. e. that both methods produce
the same space and that for V holds that

∀j, 0 < j ≤ ν : vj =
ṽj

||ṽj ||
, ṽj = (1−

j−1∑
i=1

viv
T
i )g(vj−m), (7)

with g(vj−m) = Avj−m if j > m and g(vj−m) = rj if 0 < j ≤ m, g : Rm → Rm.
(7) states that the columns of V indeed form the wanted Krylov space with orthogonalization,
which is the wanted result of the original Arnoldi algorithm for multiple starting vectors. In the
following we will call the projection matrix for both algorithms V . Introducing the notation

q(vj , τ, ϕ) = (1−
ϕ∑

i=τ

viv
T
i )g(vj), (8)

we need to prove that for all j between 0 and q we have vj =
q(vj−m,1,j−1)

||q(vj−m,1,j−1)|| . Also, intro-
duce the set of invariants

• Γ (p) ≡ {∀j, 0 < j ≤ p− 1 : vj =
q(vj−m,1,j−1)

||q(vj−m,1,j−1)||}, Γ : N → B = {false, true}.
• Λ(p, τ, ϕ) ≡ {v̂p = q(vp−m, τ, ϕ− 1)}, Λ : N3 → B.
• Ω(p, τ, ϕ, ω) ≡ Λ(p, τ, ϕ) ∧ . . . ∧ Λ(p+ ω − 1, τ, ϕ), Ω : N4 → B.

If we can prove that Γ (ν+1) holds at the end of Algorithm 1 and Algorithm 2 we can conclude
that V = X . We use Lemma 1 in the proof.
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Lemma 1. If for the set parameters (p, τ, ϕ) the invariant Λ(p, τ, ϕ) holds, then after

v̂p = v̂p − vϕvT
ϕ v̂p, (9)

is executed, Λ(p, τ, ϕ+ 1) holds.

Proof. Assume Λ(p, τ, ϕ) holds. Then

v̂p = q(vp−m, τ, ϕ− 1). (10)

Substitute this into (9) we get

v̂p := (1− vϕvT
ϕ )q(vp−m, τ, ϕ− 1)

= (1−
ϕ−1∑
j=τ

vjv
T
j )g(vp−m)− vϕvT

ϕ [(1−
ϕ−1∑
j=τ

vjv
T
j )g(vp−m)]

= (1−
ϕ∑

j=τ

vjv
T
j )g(vp−m), (11)

since vT
i vj = 0 for all i and j, i �= j. �

Theorem 1. Γ (ν + 1) holds at the end of both algorithms.

Proof. We start with the observation that Γ (1)∧Ω(1, 1, 1,m) holds after line 3 in Algorithm
2 and after line 1 in Algorithm 1. Afterwards, we prove that Γ (k) ∧ Ω(k, 1, k,m) implies
Γ (k+1)∧Ω(k+1, 1, k+1,m) within the loop. This can be done by using Lemma 1. Then
it indeed follows by induction that Γ (ν+1) holds at the end of both algorithms. The complete
proof can be found in [9]. �

3 Implementation and Case Studies

In the previous section we have proved the mathematical equivalence of the generated sub-
spaces, while neglecting the numerical errors. In this section we will comment on the imple-
mentation of both algorithms within the software tools MOR for ANSYS and RW and will
point out what adjustments we have made to the RW function in order to improve the perfor-
mance for chosen case-studies.

3.1 MOR for ANSYS

MOR for ANSYS is an extension to the commercial finite element simulator ANSYS. It
takes as input a linear ANSYS model (file.full), reduces it and gives as output the matrices
of the reduced system (2) in MatrixMarket format. However, for the purpose of the COMSON
project it has been adjusted to also take as input the matrices of the arbitrary linear dynamical
system (1). The code is a C++ implementation of Algorithm 2. The solve step in line 6 can be
done with several forward-backward substitution methods (like LU- and Cholesky decompo-
sition), which are available via the TAUCS-library. The reordering is done with METIS [10].

3.2 ROM Workbench (RW) and its Modification (symRW)

Rom Workbench is written in MATLAB. It implements several MOR methods including the
Algorithm 1. The PRIMA function takes as input the matrices of the linear system (1) in
MATLAB-(sparse)array format. Unfortunately, the efficiency of this implementation is limited
because it has no special treatment for symmetric C and G, as the only available factorization
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is the LU decomposition of MATLAB with colamd as re-ordering scheme. However, the
dynamical systems which arise from technical applications, as MEMS or electrical circuits,
usually do have symmetric system matrices. As the COMSON Demonstrator Platform [8]
should be able to handle a wide variation of industry-relevant problems, we have adjusted
the PRIMA function of RW in such a way, that for symmetric matrices the performance is
increased. We have implemented Cholesky-decomposition (as Cholesky is at least two times
faster than LU decomposition) with symamd as re-ordering scheme. In the following we will
call our adjusted version symRW. Please note, that it is further possible to generate C code
directly from MATLAB function. This would speed up the loops, but one would still need the
quick solvers from the TAUCS-library.

3.3 Case Studies

In order to test the presented MOR tools on industry-relevant problems, we have chosen two
electro-thermal MEMS devices [11]. The pyrotechnical microthruster is based on the integra-
tion of the solid fuel with a silicon micro-machined structure. The thermally tunable optical
filter is a Fabry-Perot interferometer fabricated as a free-standing membrane. Both models
have been made and meshed in ANSYS, using low and high-order finite elements.

4 Numerical Results

We have reduced the described case studies using MOR for ANSYS, RW and its adjusted
version symRW. We have limited opurselfs to the single-input case, so that deflation had no
impact and no error control has been used. In Fig. 1 a good match between the step response of
the full-scale and that of the reduced order model at a single output node of the pyrotechnical
microthruster are displayed. The difference between the reduced model computed with MOR
for ANSYS and RW/symRW is neglectable, as expected. In Tables 2 and 1 we compare the
reduction time (down to order 30) of M4A, RW and symRW.To analyze the bottlenecks of
different implementations we divide the algorithm courses into several phases. These are

• Phase 1: Reading the original matrices into the memory from file and writing the reduced
matrices to file.

• Phase 2: Reordering the matrix G.
• Phase 3: Factoring G and constructing the first basis vector.
• Phase 4: Constructing the rest basis vectors via the back substitution in each iteration.

CPU time of RW is up to 60 times longer than the CPU time of MOR for ANSYS. Due
to our improvement, this difference has been reduced to 12 times for the largest case study.
As expected the main speed up was achieved by introducing Cholesky factorization for the
symmetric G and a more effective ordering. The remaining CPU time difference is mainly
due to the interpretation overhead in MATLAB.

5 Conclusion

We have compared two software tools (a single MOR routine), which are meant to be inte-
grated into the COMSON demonstrator platform. They belong to the two main implemen-
tation streams, fast prototyping in the interpreter environment and the compiled language
implementation in C++. We have proven that both algorithms generate the same reduced basis
and that the most important bottleneck for MATLAB is the decomposition phase. We have
implemented Cholesky factorization for the symmetric problems in RW and have switched to
a symamd re-ordering. Hence, the present run times in MATLAB allow for testing moderate-
size industry-relevant problems within the COMSON demonstrator platform.
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Fig. 1: Step response of the full scale and reduced models (computed with MOR for ANSYS and RW) in a single output
node of microthruster (model C).

Table 1: Complete reduction times in s for all the case studies on AMD Opteron with 2.4 GHz and 16 Gb RAM. nnz is
the number of nonzero matrix elements of G and its factor l (from the LU decomposition).

Model M4A RW symRW
n nnz(G) time nnz(l) time nnz(l) time nnz(l)

A 1668 6.21e3 0.19 2.46e4 0.2 3.39e4 0.2 2.32e4
B 106437 1.41e6 45.5 1.89e7 402 4.82e7 114 2.84e7
C 26360 2.65e5 7.34 5.00e6 216 1.68e7 53.8 1.06e7
D 79171 2.22e6 98.5 4.56e7 6600 1.88e8 1660 1.24e8

Table 2: Computational times in seconds on AMD Opteron with 2.4 GHz and 16 Gb RAM.
Model A M4A RW symRW
Phase 1 0.08 0.11 0.06
Phase 2 0.02 0.01 0.03
Phase 3 0.05 0.02 0.01
Phase 4 0.02 0.06 0.01

Model B M4A RW symRW
Phase 1 22.4 11 10.4
Phase 2 3.42 2.35 2.21
Phase 3 10.5 349 73
Phase 4 9.22 39.8 28.5

Model C M4A RW symRW
Phase 1 2.34 1.09 1.07
Phase 2 0.465 1.31 0.28
Phase 3 2.52 202 44.8
Phase 4 2.02 11.3 7.65

Model D M4A RW symRW
Phase 1 3.54 16.8 16.6
Phase 2 4.04 7.63 2.50
Phase 3 41.9 6460 1560
Phase 4 17.1 113 76.8
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Summary. Sensitivity analysis is an important tool that can be used to assess and improve
the design and accuracy of a model describing an electronic circuit. Given a model description
in the form of a set of differential-algebraic equations it is possible to observe how a circuit’s
output reacts to varying input parameters, which are introduced at the requirements stage of
design. In this paper we consider the adjoint method more closely. This method is efficient
when the number of parameters is large. We extend the transient sensitivity work of Petzold et
al., in particular we take into account the parameter dependency of the dynamic term. We also
compare the complexity of the direct and adjoint sensitivity and derive some error estimates.
Finally we sketch out how Model Order Reduction techniques could be used to improve the
efficiency of adjoint sensitivity analysis.

Keywords – Sensitivity Analysis; Transient Analysis; Adjoint Method; Model Order Reduc-
tion

1 Introduction

A typical quantity in circuit analysis is the product of voltage difference times the current
through an electronic component (power) and, when integrated of time, this reflects the total
power that is dissipated. Another time domain problem is the determination of the time
moment when a certain unknown, or an expression, crosses a particular value. Such a moment
can be the moment at which synchronization is required in co-simulation between a circuit
simulator and another simulation tool.
In transient analysis, the adjoint method can be formulated as a convolution of the circuit
equations with a carefully constructed function, that, by its nature, requires a backward inte-
gration in time of a related DAE (and for which a proper initial value has to be determined).
The method has been popularized in [8, 12] for linear problems. For more general DAEs the
method has been studied in [7] in a more mathematical way.
In [16] the application to the nonlinear DAEs of circuit equations was studied more closely.
Nice applications can be derived for the problem of finding optimal sources in detecting faults
in analog circuits [5]. However, in studying sizing problems (in which for instance the physical
area of a capacitor has to be taken into account), it appears that especially parameters of
capacitors give rise to terms that require additional investigation. Here the effect of the index
of the related DAE shows up.
Apart from purposes of optimization, adjoint systems are of interest in determining optimal
reduced order models [3, 10], in which case a large number of parameters occurs. Because the
adjoint systems are linear the equations themselves can be made subject to a reduced order
modeling process.
We will describe ways how to calculate sensitivities in a stable and an efficient way.
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2 Transient sensitivity analysis

Equation (1) is a general Differential-Algebraic Equation (DAE) that can be used to describe
how any circuit behaves over a period of time. In Modified Nodal Analysis [12], x(t) ∈ R

N

is the state vector and represents the node voltages and the currents through voltage sources
and inductors, j and q are vector functions that describe the current and charge (capacitors) or
flux (inductors) behavior. All source values are comprised in s(t)

d

dt
[q(x(t))] + j(x(t)) = s(t). (1)

The initial solution at t = 0, the DC-solution xDC, satisfies

j(xDC) = s(0). (2)

Applying Euler-Backward time integration between time points tn and tn+1 = tn + ∆t
enables to calculate xn+1 as approximation at tn+1:

1

∆t
[q(xn+1)− q(xn)] + j(xn+1)− s(tn+1) = 0 (3)

A Newton-Raphson procedure involves the coefficient matrix Y = 1
∆t

C + G, in which
C = ∂q/∂x and G = ∂j/∂x. Making explicit that the equations and their solution depend
on a parameter p ∈ R

P we will write

d

dt
[q(x(t,p),p)] + j(x(t,p),p) = s(t,p). (4)

By adjusting these parameters it is possible to optimize the behavior of a required function-
ality. The sensitivity of x(t,p) with respect to p is denoted by x̂(t,p) ≡ ∂x(t,p)/∂p =
(∂xi(t,p)/∂pj) ∈ R

N×P , and similarly for x̂DC(p). After solving (3), and saving of the
LU-decomposition of the matrix Y = LU, the sensitivity x̂n+1(p) ≈ x̂(tn+1,p) may be
calculated by recursion [9, 11]

x̂n+1(p) = Y−1f , in which (5)

f = − 1

∆t

[
∂q

∂p

n+1

− ∂q

∂p

n]
− ∂j

∂p

n+1

+
∂s

∂p

n+1

+
1

∆t
Cx̂n(p). (6)

The vector f requiresO(PN2) operations for the last term in addition toO(PN) evaluations
for a term like ∂q

∂p
etc... For simplicity we assume full matrices. Solving the system requires

an additional O(PN2) operations.
A more general basic observation function is denoted by F(x(t,p),p) ∈ R

F from which
other observation functions can be obtained, like

G(x(p),p) =

∫ T

0

F(x(t,p),p)dt. (7)

From (7) we derive

d

dp
G(x(p),p) =

∫ T

0

(
∂F

∂x
· x̂ +

∂F

∂p

)
dt. (8)

If ∂F
∂x

can be determined rather cheaply in (8), the main emphasis in sensitivity analysis is in
the efficient calculation of x̂, or even in efficiently calculating the inner-product ∂F

∂x
· x̂. Note

that, from (5), we derive ∂F
∂x
· x̂ = ∂F

∂x
·Y−1f = [Y−T [ ∂F

∂x
]T ]T f , which can be calculated

in O(min(F, P )N2 + FPN) operations (in addition to those already mentioned above: the
overall leading N2-term still has coefficient P ). This is a direct, forward, analysis.
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When, additionally, some library for evaluating q, j, or s, does not allow symbolic differ-
entiation, here also a symmetric finite difference will be made (at the cost of two additional
evaluations for each quantity dq

dp
≈ q(p+∆p)−q(p−∆p)

2∆p
). This means that at each interior

time point of (8) the integrand will have an error O(||∆p||2) (assuming this discretization
error is dominant). A quadrature rule like the Trapezoidal Rule adds up to O(||∆p||2/∆t)
leading to ||∆p|| = o(

√
∆t) if ∆t→ 0 and no persistent errors in sensitivities are wanted.

In the sequel, we now consider an approach based on (backward) adjoint integration [7]. We
differentiate (4) w.r.t. p and multiply the result with a function λ	(t) ∈ R

F×N (in which the
	 means transpose), yielding

0 =

∫ T

0

λ	(t)
[

d

dt

dq

dp
+

dj

dp
− ∂s

∂p

]
dt (9)

=
[
λ	(t)

dq

dp

]
|T0 +

∫ T

0

[
− dλ	

dt

dq

dp
+ λ	

(
dj

dp
− ∂s

∂p

)]
dt

=
[
λ	(t)

dq

dp

]
|T0 +

∫ T

0

[
− dλ	

dt

(
∂q

∂x
· ∂x
∂p

+
∂q

∂p

)
+ λ	

(
∂j

∂x
· ∂x
∂p

+
∂j

∂p
− ∂s

∂p

)]
dt

=
[
λ	(t)

dq

dp

]
|T0 +

∫ T

0

[
− dλ	

dt

(
Cx̂ +

∂q

∂p

)
+ λ	

(
Gx̂ +

∂j

∂p
− ∂s

∂p

)]
dt

=
[
λ	(t)

dq

dp

]
|T0 +

∫ T

0

[
−
(

dλ	

dt
C− λ	G

)
x̂− dλ	

dt

∂q

∂p
+ λ	

(
∂j

∂p
− ∂s

∂p

)]
dt (10)

This result holds for any λ	. We now consider some choices.

2.1 Backward, adjoint sensitivity for d
dp

G(x(p), p)

In (8) we encounter the product ∂F
∂x
· x̂. Equation (10) will enable us to get rid of the x̂, which

does not need to be calculated explicitly. We choose λ(t) ∈ R
N×F appropriately and require

that λ(t) satisfies the linear ‘adjoint’ DAE (we assume the index 1 case, which is not trivial
[4]).

C	 dλ

dt
−G	λ = −

(
∂F

∂x

)	

. (11)

This does not yet make λ(t) unique, because we did not specify the initial value yet. But we
are now able to express ∂F

∂x
· x̂ in terms of [C	 dλ

dt
−G	λ] · x̂, after which we can apply (10).

d

dp
G(x(p),p) =

∫ T

0

(
∂F

∂x
· x̂ +

∂F

∂p

)
dt

=

∫ T

0

([
− dλ	

dt
C + λ	G

]
· x̂ +

∂F

∂p

)
dt

= −
[
λ	(t)

dq

dp

]
|Tt=0 +

∫ T

0

(
dλ	

dt

∂q

∂p
− λ	

(
∂j

∂p
− ∂s

∂p

)
+
∂F

∂p

)
dt.

(12)

The first term involves x̂(0) = x̂DC, which we know. However, if λ	(T ) ∂q
∂x

(T ) �= 0, one still
needs x̂(T ), which we did not want to determine explicitly. Hence good choices to define the
initial conditions for λ(t) are

C(T ) =
∂q

∂x
(T ) �= 0 =⇒ λ(T ) = 0, or if (13)

C(t) =
∂q

∂x
(t) ≡ 0 =⇒ λ(T ) ≡ λDC, with −G	λDC = −

(
∂F

∂x

)	

t=0

(14)
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Note that (13) is only allowed for DAEs of index up to 1. With this choice (12) simplifies to

d

dp
G(x(p),p) = λ	(0)

[
∂q

∂x
(0) · x̂DC +

∂q

∂p
(0)

]
+

∫ T

0

(
dλ	

dt

∂q

∂p
− λ	

(
∂j

∂p
− ∂s

∂p

)
+
∂F

∂p

)
dt. (15)

The circuit that describes the adjoint system (11) is described in more details in [8, 12]. There
the above expression is derived by conservation properties based on the Kirchhoff Laws
which imply Tellegen’s Theorem. Note that (9) is just the time integral of inner-products of
”branch-currentsAdjointCircuit * branch-voltagesOriginalCircuit”.
The formulation used above follows [7], but reveals more closely the effect of a non-trivial
function q in (12) that explicitly depends on p. By this, also the velocity dλ�

dt
will be needed.

Already a linear function q(x,p) = C(p)x requires this. Because of the DAE-nature of
the problem (1), in [16], dλ�

dt
was estimated by symmetric finite differences in the interior

of the interval and with one-sided approximations at the boundaries. When, as before,
a library for evaluating q, j, or s, does not allow symbolic differentiation, here also a
symmetric finite difference will be made (at the cost of two additional evaluations for
each quantity). This means that at each interior time point the integrand will have an error
O(∆t2 + ||∆p||2). Any quadrature rule (like the Trapezoidal Rule) may add these errors up
to an errorO(∆t+ ||∆p||2/∆t) which is additional to the error of the quadrature rule, which
means that one will require ||∆p|| = O(∆t) (note that a one-sided difference will even need
||∆p|| = O(∆t2)). It also shows that the Trapezoidal Rule may not give better results than
simple, first order, Euler integration.
System (11) can be determined by integrating backwards in time after x(t,p) has been
determined in the nominal analysis. This backward time integration of (11) requires Jacobian
matrices 1

∆t
C+G (assuming Euler backwards), similar as in the forward analysis. When the

same step sizes are used and the LU-decompositions of the Jacobian matrices at the converged
values have been saved from the nominal analysis, the transposed decompositions can be
reused for the Jacobians when integrating (11) (one may also save approximative inverse
matrices, or preconditioning matrices). However we will assume that one will re-decompose
them during the backward integration.
Note that in [6] it is remarked that if the same time step is used in the forward (for x) and
backward analysis (for λ) this may give rise to very inaccurate solutions for λ. This general
step size approach introduces effects due to interpolation (effects which we have not yet
studied).
Let W = O(Nα) represent the number of operations for the LU-decompositions with
1 � α � 2 for sparse systems and α = 3 for full systems. Note that λ	(0) ∂q

∂x
(0) · x̂DC =

[C	λ(0)]∗x̂DC, which can be handled similarly as in adjoint sensitivity analysis in the
DC-problem, without explicitly calculating x̂DC, in W + O(min(F, P )N2 + FPN)
operations (assuming that G has been decomposed again at t = 0). Each time integration
step of (11) requiresW +O(FN2) operations, after which the integrand in (15) at each time
point requires O(PN + FP ) evaluations and O(FPN) additional operations. In practise
F � P , which (apart from the W term) makes (15) more efficient as the direct, forward
method for (5)-(6).
Reduction of theW term is discussed in Section 2.2.

2.2 MOR applied to the global adjoint sensitivity equations

The main burden of the backward adjoint sensitivity equations still is theW = O(Nα) work
needed for the LU-decompositions in the case α = 3 when integrating backwards in time
for the adjoint equations for λ(t). In order to reduce this we observe that in the interior we
only need to know λ(t) for coordinates where ∂q

∂p
, ∂j

∂p
, and ∂s

∂p
are non trivial. However, at
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t = 0 also for the nontrivial rows of ∂q
∂x

(0) coordinates of λ(t) should be known (which may
significantly increase the number of needed coordinates). More precisely, in (15) a term like
λ	(0) ∂q

∂x
(0) · x̂DC ∈ R

F×P shows that the total number of output is r′ = F × P , and when
r′ � N , one may think to apply MOR.
We observe that there is a tentative opportunity to apply Proper Orthogonal Decomposition
(POD) [1, 13], since the forward time integration to determine x(t) delivered a nice series
of snapshots {x(t0), . . . ,x(tN )} (and, even cheaply, also of ∂F

∂x
(tk)). With POD a matrix

V ∈ R
N×r is found such that x ≈ Vx̃, x̃ ∈ R

r, r � N , in which V is time independent
and similar snapshots could have been obtained from a modified problem

d

dt
[VT q(Vx̃(t))] + VT j(Vx̃(t)) = VT s(t). (16)

For (16) the matrices are of size r × r, which indicates a nice option for MOR. In this paper
we apply the VT,V matrices from the POD directly to the adjoint problem (11). Note that
in this approach we can neglect the dependency of V on p. For each p one integrates (1)
and calculates the snapshots, resulting in a POD Model Order reduction projection matrix V.
With V we can reduce the system of DAEs for λ (in which only the error due to POD matters)
resulting in λPOD(t) ∼ λ(t) (please see [13] for error estimates). Note that POD can also
be used to reduce (1) itself. In this case the dependency of V on p introduces an additional
error in the procedure that can not be neglected. This last approach could further reduce costs
and has to be studied further. In [2] it was shown that (in general) POD not directly applies
to DAEs. Here a Least-Square POD remedy was introduced that can be applied to the linear
DAE (11).
Alternatively to POD, during the forward integration one could additionally determine
projection matrices for the Trajectory Piecewise-Linear Method [14, 15]. Next, similarly as
to the POD case, a global matrix V is determined that allows for Piecewise-Linear MOR. In
this case the reduced DAE problems can directly be solved [15].

3 Results

p=lR(m) dG/dp dG/dp withPOD

0.02 -0.235 ×10−10 -0.235 ×10−10

0.021 -0.247 ×10−10 -0.247 ×10−10

0.022 -0.256 ×10−10 -0.256 ×10−10

Table 1. Sensitivities, where p is the parameter, in this case the parameter is the length of
the second resistor. Units are (Wattsec.m−1)

Equation (12) was implemented in Matlab for a simple circuit and the sensitivities of the
energy G dissipated for a resistor R = R(lR) were observed while changing the length
parameter lR

G =

∫ T

0

I(R) ∗V(R)dt. (17)

To see the dependency of VR for different values of p, in Fig.1. we plotted,
A: (VR(p = 0.021)−VR(p = 0.020))(t)
B: (VR(p = 0.022)−VR(p = 0.021))(t).
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Fig. 1: Voltage differences for successive sensitivity values, node 2

In Table 1 the sensitivity dG/dp , calculated by the backward adjoint method, is shown for
3 different values of p. To test POD we created a larger, equivalent system by splitting one
resistor in to a number of smaller resistors. Doing this enabled us to compare the sensitivity
of our observed resistor in the reduced large system with the sensitivity in the original system.
We generated our projection matrices by applying the singular value decomposition on the
new state snapshot matrix for the enlarged problem. Indeed the number of nontrivial singular
values for both systems was the same. We applied the projection matrices to reduce only the
backward adjoint calculation steps. The size of the matrices was considerably reduced and the
calculated sensitivities from the reduced system were exact to at least 3 significant figures,
please see Table 1 for sensitivity results for the POD and for the non POD approach.

4 Conclusions

The backward, adjoint sensitivity methods are immediately attractive when the original DAE
(1) is linear and when the number of parameters P�1. Direct forward and backward adjoint
approaches impose different accuracy conditions to finite difference approximations. The
direct forward method exploits the re-use of LU-decompositions. The backward adjoint meth-
ods becomes more of interest when MOR can be applied, or when otherwise approximate
LU-decompositions could have been saved during the forward time integration. In these cases
they can outperform the direct forward method when the number of parameters P is large (but
still smaller than N , usually F � P ).
We have shown that applying POD MOR to the backward adjoint step is possible and works
very well. MOR techniques can also be used to reduce the effort in sensitivity calculation in
the forward analysis. In future we want to study more closely the application of our sensitivity
calculations to larger circuits and with more industrial relevance. We also want to consider the
effect of different time stepping in forward and backward analysis. And, finally, we want to
study the sensitivity of the reduced DAE (16) in which V = V(p) depends on p as well.
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Summary. In this paper we will discuss certain aspects of the transient simulation of electri-
cal circuits. It is a well known problem that DAEs in circuit simulation may possess a higher
index (e.g. 2) and thus exhibit undesirable numerical behaviour. While methods for the re-
duction of the higher index exist, they are usually algebraic in nature. The large size of the
systems in VLSI circuit simulation prohibits the use of algebraic methods for index reduction.
We will present a topological approach to index reduction that changes certain elements of the
circuit netlist to obtain a circuit DAE with usually improved numerical behaviour with respect
to workload or accuracy.

1 Introduction

Simulation of electrical circuits is a commonly used tool to test new electrical circuits prior
to producing an actual prototype. Especially in chip design it is important to be able to have
a quick and reliable method for simulating the behaviour of a circuit. But, in this context,
the respective circuits tend to contain millions of elements. Thus, numerical simulation may
become difficult, just because of the sheer size of the problem.
The main methods for the simulation of circuits are the Modified Nodal Analysis (MNA), the
charge-/flux-oriented MNA (MNA c/f) and the Sparse Tableau Approach, cf. [9]. Kirchhoff’s
Laws and branch constitutive relations are set up to form a system of equations describing the
important properties of the circuit, e.g., voltages and currents.
As this system contains differential relations as well as algebraic ones, it is called ’Differential-
Algebraic-Equation’ (DAE). A well known problem of DAEs is that besides obvious algebraic
relations, they may contain so-called hidden constraints that are revealed only by differentiat-
ing certain equations or linear combinations of equations. In circuit simulation, these DAEs are
known to have index 2, given some topological properties of the network, cf. [6]. This higher
index leads to several undesirable effects in the numerical solution of the DAEs, e.g. loss of ac-
curacy, unnecessary small stepsizes and difficulties when computing consistent initial values.
Recent approaches try to lower the index of DAEs to improve the numerical behaviour, see
[13] and references therein. These methods usually involve numerical rank determinations and
costly algebraic transformations of the equations. Especially, for large scale circuit equations,
these transformations become too costly to be efficient.
The hidden constraints in the case of the MNA and the MNA c/f can been determined, and
in [8] it has been shown, how they can be obtained without algebraic transformations of the
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circuit equations by only using information contained in the topology of the circuit. The infor-
mation gained this way has until now mainly been used to determine consistent initial values,
fulfilling the hidden constraints as well as the explicit constraints, for numerical integration of
the circuit equations [6]. Recently, a concept called minimal extension, see [12], has been used
to include the hidden constraints into the process of integration, see [2]. The DAE obtained in
this way is of index 1, while many systems arising in practice can be of index 2. The problem
with this approach is that in order to include hidden constraints into the system, the number of
variables increases. We will take a slightly different approach to the topological analysis, one
that focuses on index reduction. It will be shown that it is possible to incorporate the hidden
constraints into the network equations while retaining the MNA or MNA c/f structure of the
equations. The method proposed here will use the results of the topological index analysis on
a circuit element level. The main advantage will be, that no algebraic transformations of the
full circuit equations will have to be performed, but the method will change the circuit itself.
Hence, prior to the actual simulation, a preprocessing step will have to be performed, analyz-
ing the structure of the circuit and exchanging certain elements by newly defined elements, in
order to obtain a circuit that is described by a DAE of index 1. The advantage of this approach
is that after the preprocessing, no more algebraic transformations have to be performed, but the
netlist, i.e., the list containing all structure- and element related information, itself is changed.
The changed netlist can then be processed by the same simulation tools as the original netlist,
provided they are able to handle the introduced new elements. As the new netlist produces
circuit equations of index 1, the integration process is often faster and more accurate than for
the index 2 case. The linear systems arising from discretization are usually better conditioned.
Additionally, it is much easier to obtain a set of consistent initial values for the index 1 case.
The only extra cost is a one-time preprocessing step, while existing software can be used for
integration of the equations.
Here, we will give an overview of the element replacement technique and point out some re-
strictions for its applicability. We present a numerical example where the method is applied to
a NAND gate test circuit.

2 Element replacement

We will subsequently assume that we are dealing with circuits consisting of general resistances
and two-term capacitances and inductances. These capacitances and inductances are assumed
to be locally controlled and independent of time, which means

jC =
d

dt
qC(uC) = C(uC)

d

dt
uC , uL =

d

dt
φL(jL) = L(jL)

d

dt
jL.

Here, u∗ and j∗, ∗ ∈ {C,L} denote voltage and current across the respective element,
qC denotes charge of a capacitance and φL flux in an inductance. The charge-voltage- and
flux-current-relations qC(uC) and φL(jL) are assumed to be strictly monotonous such that
C(uC) = ∂

∂uC
q(uC) and L(jL) = ∂

∂jL
φ(jL) are positive for all arguments uC and jL. The

main topological properties of a circuit that are responsible for a higher-index behaviour are
CV loops, i.e. loops formed by branches that are occupied by capacitances or voltage sources,
and LI cutsets, i.e. cutsets formed by branches containing inductances and current sources
only. For capacitances and inductances not appearing in such structures the strict ’locally
controlled two-term element’ restriction above may be dropped. We will not consider hidden
constraints that arise due to special choices of circuit parameters and controlled sources that
do not fulfill the requirements in [6]. Under these assumptions the index of the circuit equa-
tions is guaranteed to be not higher than 2.
For every loop and every cutset, an orientation can be chosen. A more detailed description of
these structures is given in [4]. Loops of voltage sources and cutsets of current sources are
generally not allowed, because they might lead to inconsistent equations.
We will derive expressions for the hidden constraints in such a way that the steps needed to
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perform an index reduction become clearly visible. Consider one specific CV loop. Let nloop
C

and nloop
V be the number of capacitances and voltage sources in the loop, respectively. The

hidden constraint arising from that CV loop can be interpreted as follows:

• Denote the voltages across capacitances in the loop by uloop
C,k , k = 1 . . . nloop

C ,
• denote the source voltages by vloop

k , k = 1 . . . nloop
V .

• Set α∗,k = ±1, where ∗ ∈ {C, V }. For every element in the loop, the constant α∗,k is 1
if the element is oriented in the same way as the loop and −1 otherwise.

• Kirchhoff’s voltage law over that loop states that

n
loop
C∑

k=1

αC,ku
loop
C,k +

n
loop
V∑

k=1

αV,kv
loop
k = 0. (1)

• The derivative of (1) holds as well,

n
loop
C∑

k=1

αC,k
d

dt
uloop

C,k +

n
loop
V∑

k=1

αV,k
d

dt
vloop

k = 0. (2)

As the currents through capacitances depend on the derivatives of the respective capacitance
voltages, Equation (2) imposes a constraint on the branch currents as well. This constraint is
not originally visible in the system and has been obtained by differentiation, thus representing
a hidden constraint.
We want condition (2) to be fulfilled, hence, it has to appear explicitly in the circuit equations.
For this purpose, we choose one of the involved capacitances. Without loss of generality,
we assume that this is Cloop

1 and that the direction of the loop is identical to the one of the
capacitance. The corresponding voltage is uloop

C,1 . Then, we split (2) as follows

d

dt
uloop

C,1 = −
n

loop
C∑

k=2

αC,k
d

dt
uloop

C,k −
n

loop
V∑

k=1

αV,k
d

dt
vloop

k . (3)

We multiply this equation by Cloop
1 to obtain

jloop
C,1 = Cloop

1

d

dt
uloop

C,1 = −
n

loop
C∑

k=2

αC,kC
loop
1

d

dt
uloop

C,k −
n

loop
V∑

k=1

αV,kC
loop
1

d

dt
vloop

k . (4)

By definition, the term Cloop
1 uloop

C,1 describes the charge qloop
1 of the capacitance and

Cloop
1

d
dt
uloop

C,1 = d
dt
qloop
1 is the current through this capacitance. In this way, we have ex-

pressed one branch current explicitly. Hence, we can remove the capacitance Cloop
1 and re-

place it by a current source iloop
C,1 that provides the current given by the right hand side of

(4). Here, i is used instead of j to characterize the difference between a current as an un-
known of the system and a current source. This differentially controlled current source (DCS)
is an element not easily available in many common circuit simulators, e.g. SPICE [11]. For
this reason it has to be emulated using common elements such as current-controlled current
sources (CCCS). To this end, we again use the relation Cloop

k
d
dt
uloop

C,k = d
dt
qloop

k = jloop
k , or

to be more precise d
dt
uloop

C,k = 1

C
loop
k

d
dt
qloop

k = 1

C
loop
k

jloop
k . Using this expression for d

dt
uloop

C,k ,

Equation (4) can be rewritten as

iloop
C,1 = −

n
loop
C∑

k=2

αC,k
Cloop

1

Cloop
k

jloop
C,k −

n
loop
V∑

k=1

αV,kC
loop
1

d

dt
vloop

k . (5)
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In this way, the current iloop
C,1 can be expressed as a linear combination of the other capacitance

currents of the loop and some terms generated by the voltage sources of the loop. It also
allows, to model the current source iloop

C,1 by means of standard current sources and CCCS.
However, since capacitance currents usually do not appear as variables in MNA and charge-
oriented MNA equations, these currents have to be introduced artificially. This is commonly
done by inserting a zero-voltage voltage source in series with the current to measure. The
current through the voltage source appears as a variable in the equations and can thus be used
as controlling current for the CCCS.
The approach in the case of LI cutsets is similar. Using an analogous notation as in the case
of CV loops, we can select one inductance in an LI cutset (here Lcut

1 ) and using Kirchhoff’s
current law, we can express the voltage across the element as follows

vcut
L,1 = Lcut

1
d

dt
jcut
L,1 = −

ncut
L∑

k=2

αL,kL
cut
1

d

dt
jcut
L,k −

ncut
I∑

k=1

αI,kL
cut
1

d

dt
icut
k . (6)

Here, v has been used instead of the original u to underline the role of the element as controlled
voltage source instead of an inductance. Again, for the sake of emulation of this differentially
controlled voltage source (DVS) by common sources, we use the relationship Lcut

k
d
dt
jcut
L,k =

d
dt
φcut

k = ucut
L,k.

vcut
L,1 = −

ncut
L∑

k=2

αL,k
Lcut

1

Lcut
k

ucut
L,k −

ncut
I∑

k=1

αI,kL
cut
1

d

dt
icut
k . (7)

Remark 1. It has to be pointed out that the choice of the capacitance or inductance to be re-
placed is not completely arbitrary. If for instance one capacitance appears in several loops at
once, it cannot be replaced in neither. This is due to the fact that once a capacitance is replaced
in one loop it cannot be used as controlling element in the other. Similar restrictions limit the
choice of inductances in overlapping cutsets. However, in [3] it has been proven, that with an
adequate choice of loops and cutsets a correct selection and consecutive element replacement
is always feasible. For the relevant graph algorithms, we refer to the same source.

Remark 2. In the previous considerations it has always been assumed that all considered ca-
pacitances and inductances are only locally controlled two-term elements. Admittedly, this
imposes a severe restriction on the applicability of the method. Currently, an extension of the
method is in preparation that also allows multi-port capacitances and inductances.
Until now, no in-depth investigations with respect to charge- and flux conservation of the
reduced-index network have been undertaken and will not be undertaken in this paper.

Remark 3. While it is relatively simple to implement emulated DVS in LI cutsets such as in
(7) in a SPICE type simulator, this becomes more difficult for the emulated DCS in CV loops.
Conversely to the DVS case, the controlling currents are not explicitly present as variables.
It has been suggested to put zero-voltage voltage sources in series with capacitances in order
to measure the respective currents. It has to be noted, that each such voltage source adds two
unknowns to the system, one for the current through the source and one for the extra node
between capacitance and voltage source. This has to be done for every capacitance that in
some way is part of a CV loop. For networks with many CV loops and especially with many
capacitances mounted in parallel, this may become infeasible and increase the size of the DAE
system considerably.

3 Numerical Example

The following example has been taken from [3]. It represents a NAND gate test circuit orig-
inally found at [15]. The circuit equations have been set up with QPSIM [3], an extension of
PSIM, cf. [14], to the charge/flux oriented MNA formulation.
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The MOSFETs have been simulated using LEVEL B replacement circuits. These replacement
models include nonlinear but locally controlled capacitances. For details and specifications we
refer to [15, 3]. Initial values have been taken from [7]. The used input signals and a reference
solution for the output signal are depicted in 2. The reference solution has been computed with
RADAU5, [10], with index reduction for tolerance settings of 10−15, as this was the setting
with the best possible tolerance. The element replacement procedure has been applied to the
circuit to obtain a DAE of index 1. In the process 7 voltage sources have to be introduced in
order to measure capacitance currents. The size of the MNA c/f system increased from 29 to
36 unknowns. QPSIM exploits the structure of the MNA c/f equations for the inserted voltage
sources such that only the currents through these sources are added as unknowns while the
node potentials of the inserted nodes need not be considered, hence only 7 additional vari-
ables have to be introduced instead of 14 as asserted in Remark 3. Numerical solutions have
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Fig. 1: NAND gate replacement circuit, index 2 circuit (left), index 1 circuit with additional voltage sources (right)
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been computed with both RADAU5 and DASPK3.1, see [1], a variant of DASSL, cf. [5]. For
the numerical integration, different tolerances from 10−3 to 10−12 have been used. Figure 3
depicts the obtained accuracies of the node potential at node 1, i.e. the output signal, and the
computation time on a Pentium 4 desktop PC with 1.4GHz and 1GByte RAM. Here, ’error’
means the maximum absolute difference of the computed solution and the reference solution
at intervals of 0.1 ns.
It can be seen, that both methods manage to reproduce the reference solution. DASPK cannot
achieve a greater accuracy than 10−5, while RADAU gets to 10−8. With DASPK, the index
does not seem to have a great influence on efficiency. In the index 1 case however, RADAU5
gains gains one order of magnitude in accuracy, starting at tolerances of 10−7, that is roughly
in the region of an obtained accuracy of 10−3.
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Fig. 3: workload vs. error for the NAND gate example

4 Conclusions

We have presented a method for reducing the index of circuit equations under some restrictions
on the elements of the network, see Remarks 2 and 3. The method relies on circuit topology
only and is, thus, applicable even for large scale systems - in contrast to known algebraic
index reduction methods, cf. [13]. The equations arising with the use of DCS can be inter-
preted as the DAE after the minimal extension procedure with an extra elimination step. The
emulated-sources approach differs from the minimal extension as it is specially conceived for
the structure of circuit equations. The method is principally independent of the used method
for equation setup and also of the solver used to actually solve these equations. It represents
a one-time preprocessing step, so little to no extra work is required after the preprocessing.
The procedure may increase the size of the system to solve, depending on the number of CV
loops and involved capacitances. However, recent tests with a 4-Bit adding unit, composed
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of NAND gates as in the example, showed an increase of only about 15% in the number of
variables. Tests in the previous section with a relatively small example show satisfactory re-
sults and confirm the claim that the extra work for index reduction pays off with respect to
accuracy of the obtained solution, especially for higher accuracy requirements. Other exam-
ples that have been presented e.g. in [3] also show an improvement of the computation time
but they are purely academic and have been omitted here.
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8. D. Estévez-Schwarz and C. Tischendorf. Structural analysis for electric circuits and con-
sequences for the MNA. Int. J. Circ. Theor. Appl., 28:139–159, 1998.

9. M. Günther and U. Feldmann. CAD-based electric-circuit modeling in industry, II. impact
of circuit configuration and parameters. Surveys on Mathematics for Industry, 8:131–157,
1999.

10. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II - Stiff and
Differential-Algebraic Problems. Springer, Berlin Heidelberg, 2nd edition, 1996.

11. H. Khakzar, A. Mayer, and R. Oetinger. Entwurf und Simulation von Halbleiterschaltun-
gen mit SPICE. expert Verlag, 1992.

12. P. Kunkel and V. Mehrmann. Index reduction for differential-algebraic equations by min-
imal extension. ZAMM, 84:579–597, 2004.

13. P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical
Solution. EMS Publishing House, Zürich, Switzerland, 2006.
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1 Introduction

Characterization of microstrip discontinuities is an important task in computer aided design
(CAD) of microstrip circuits. Many methods for modeling the discontinuities have been de-
veloped, such as integral equation [1],[2] spectral domain approach [3], finite difference time
domain [4], and finite element method [5].
he method of moments (MoM) is a core engine for analysis of microstrip circuits [6]. Most
of the Central Processing Unit (CPU) time is consumed in evaluation of the MoM matrix
elements since Greens functions converge slowly and a large number of basis functions are
required for expanding surface current densities on conductor. The MoM matrix elements
are computed by two-dimensional discrete fast Fourier transforms (2D-FFT). In this method,
however, the mesh scheme is restricted to be uniform. Obviously, uniform grids are very ineffi-
cient for analysis of a general microstrip circuit because electrical currents have fast variations
along microstrip edges, thus, time local discretization becomes a need for accurate analysis
of the whole circuit. In [7], in order to reduce the number of unknowns, the currents are ex-
panded by a linear combination of the current distributions of the first few resonant modes of
the circuit. However, there are yet required very fine discretization and a 2D FFT of large size
to find solutions of the resonant modes.
In this paper, a two dimensional non uniform fast Fourier transform (2D NUFFT) [8] incorpo-
rated into the spectral domain approach (SDA) is developed for analysis of microstrip circuits.
The mesh scheme for the microstrip circuit can be very flexible, although each subdivision
must be rectangular.

2 NUFFT algorithm

The FFT is a fast algorithm for calculating discrete Fourier transforms, and has multiple ap-
plications in electrical and electromechanic engineering, physics, applied mathematics etc. It
requires that the sampled data should be equally spaced.
The idea of the NUFFT is to approximate a non-uniform sample point in the space domain by
interpolating over the sampled uniform Fourier basis using a FFT with finite nonzero coeffi-
cients.
Consider the following summation with unequally spaced output data dp:

dp =

Nf
2 −1∑

k=−
Nf
2

fke
jksp p = 1, 2, ...Na (1)
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where the sampled modes sp ∈ [π, π] can be unequally spaced. The input sequence fk can be
equally or unequally spaced, and Nf and Na are the numbers of input and output data points,
respectively.
To evaluate eq.1 with unequally spaced sp, the key step of the NUFFT is to approximate each
ejksp with a sum of weighted complex exponentials at q + 1 equally spaced modes in the
vicinity of sp as following:

ejksp ≈ ϕ−1
k

q
2∑

l=− q
2

γl (sp) e
j(νp+l− q

2−1)2π k
mNf (2)

The accuracy factors ϕk (normalization constant) in eq.2 are chosen to minimize the error
of approximation in the square sense. Here q is an even positive integer and m ≥ 2 is an
index indicating the over sampling rate of the approximation. The sampling points of the
complex exponentials on the right hand side of eq.2 collocate with those of a regular FFT

with size mNf ≥ 2Nf . A larger value of m improves accuracy. In eq.2, νf =
[
spm

Nf

2π

]
denotes the integer nearest to spm

Nf

2π
. For each sp, the q+1 interpolation coefficients, γl(sp),

1 ≤ l ≤ q + 1 are given as [8], [9]

γ̄ = ¯̄F−1P̄ (3)
where the entries of the (q + 1)× (q + 1) matrix ¯̄F and (q + 1)× 1 column vector P̄ are

Fln =

⎧⎨
⎩

ej(l−n)/mπ−e−j(l−n)/mπ

1−e
−j2l−nπ/mNf

l �= n

Nf l = n

(4)

Pl(sp) = j
sin

(
2l−q−2δp−3

2m
π
)

1− e−j(2l−q−2δp−3)/mNf π
+ j

sin
(

2l−q−2δp−1

2m
π
)

1− e−j(2l−q−2δp−1)/mNf π
(5)

and

δp =
spmNf

2π
− νp (6)

3 2D NUFFT algorithm
In figure 1, the cross is a nonuniform sample point (xt, ys), −π ≤ xt ≤ π and −π ≤ ys ≤
π, and the circles and large black dots are (q + 1) × (q + 1) uniformly oversampled grid
points (Xi, Yi), which are called the square neighborhood of (xt, ys) therein. We are going to
evaluate the following 2D Fourier transform:

Dst =

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

Gmne
jmxtejnys (7)

where Dst and Gmn are finite complex sequences and M and N are even integers.
In the similar manner as in the non-uniform fast Fourier transform (NUFFT) algorithm

ejmxtejnys = ϕ−1
mn

q
2∑

p=− q
2

q
2∑

g=− q
2

rpg(xt, ys)e
j(νt+p)2π m

CM · ej(us+g)2π n
CN (8)

where νt =
[
xt

CM
2π

]
and us =

[
ys

CN
2π

]
denote the integers nearest to xt

CM
2π

and ys
CN
2π

,
respectively. The accuracy factors jm are chosen to minimize the error of eq.8 in the least
square sense [8], [9].
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Substituting eq.8 into eq.7 yields

Dst =

q
2∑

p=− q
2

q
2∑

g=− q
2

rpg(xt, ys)Hpg(s, t) (9)

where

Hpg(s, t) =

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

Gmnϕ
−1
mne

j(νt+p)2π m
CM · ej(us+g)2π n

CN (10)

The calculation of eq.10 can be performed by regular 2D FFT of size CMxCN. In eq.9 the
interpolated coefficients rpg can be obtained by two sets of (q + 1)2 NUFFT coefficients, i.e.
the square neighborhood in figure 1.

Fig. 1: 2 D NUFFT algorithm: the cross is a nonuniform sample point (xt, ys); the circles and large block dates are
(q + 1) × (q + 1) uniformly oversampled grid points (xi, yi) - called the square neighbourhood of (xt, ys); the
line delimits octagonal or non square neighbourhood (large block dots) from essential neighbouring squares, represented
only by blank dots

4 Incorporating the 2D NUFFT into the SDA

For a microstrip circuit enclosed in a rectangular shielded box of dimensions axbxc, one of
the spatial domain Green’s functions can be written as

Gxx(x, x′, y, y′) =
∑
m

∑
n

G̃xxcos(kxmx
′)sin(kyny

′)cos(kxmx)sin(kyny) (11)

where kxm = mπ/a, Kyn = nπ/b and Gxx is the Green’s function in the spectral domain.
Other Greens functions can be expressed in a similar manner.
In the solution procedure, asymmetric rooftop functions are used to expand current densities
on conductors, and the half rooftop functions in [10] are used for modeling the external source
and load terminals. Let the current densities be expressed as

J(x, y) =
∑

axαJxα(x, y) +
∑

byβJyβ(x, y) (12)



202 Raimond Grimberg, Adriana Savin and Sorin Leitoiu

where axα and byβ are unknown constants to be determined. The Fourier transform of the
basis functions can be easily derived. For example, let the αth basis function for the current
in the x direction be

Jxα = Jxx(x, xα)Jxy(y, yα) (13)

where

Jxx(x, xα) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−xα
∆xα1

+ 1, xα −∆xα1 ≤ x ≤ xα

x−xα
∆xα2

+ 1, xα ≤ x ≤ xα +∆xα2

0 otherwise

(14)

Jxy(y, yα) =

{
1 yα − ∆yα

2
≤ y ≤ yα + ∆yα

2

0 otherwise

Their 2D Fourier transform can be derived as

J̃xx =
cos(kxmxα)− cos(kxm(xα −∆xα1))

∆xα1k2
xm

+
cos(kxmxα)− cos(kxm(xα +∆xα1))

∆xα2k2
xm

(15)

J̃xy =
cos

(
kyn

(
yα − ∆yα

2

))
kyn

−
cos

(
kyn

(
yα + ∆yα

2

))
kyn

The transformations (15) are trigonometric functions weighted by powers kxm or kyn. It can
be validated that the transforms of basis functions for currents in the y direction can be ex-
pressed in a similar way.
The Galerkin’s procedure is used to set up the final MOM matrix, whose (d, e) element can be
expressed as

zxx(d, e) =
∑
m

∑
n

G̃xx(m,n)J̃xd(m,n)J̃xe(m,n) (16)

After some trigonometric calculus, evaluation of zuv(d, e) given by eq.16 can be reduced to

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

G̃uv(m,n)

kg
xmkh

yn
×

{
sin (kxm (xd ± xe)) cos (kyn (yd ± ye))

cos (kxm (xd ± xe)) sin (kyn (yd ± ye))
(17)

where u, v = x or y and g and h = 2, 3 or 4.
Figure 2 summarizes the procedure for establishing the final MOM matrix:

• first step partition the circuit and find the required 2D NUFFT interpolation coefficients
for four sets of sampling points (xd ± xe, yd ± ye)

• second step evaluate the double summations of products in eq.17 by the 2D NUFFT . If
the impressed and load currents are in the same directions, only five cells of 2D NUFFTs
will be needed.

• last step recombine the five sum terms to set up the final MOM matrix.

When the currents on input and output feed lines are obtained, the complex amplitudes of
the incident and reflected current waves can be extracted by using the generalized pencil of
function (GPOF) method [11], and the scattering parameters can be obtained via standard
circuit theory.
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Fig. 2: The procedure for establishing the final MoM matrix.

5 Results

One example, a compact miniaturized hairpin resonator is used to demonstrate the proposed
technique for the analysis of microstrip circuit. Consider a hairpin resonator with geometrical
dimensions presented in figure 3. The thickness of the dielectric substrate is f = 1.27mm and
electrical permittivity is εr = 10.2. The hairpin resonator is embedded in a shielded box with
dimension 23.6 × 18.15 × 16mm3. The sampling points (centers of mesh cells) are chosen
according to (S/2) [1 + cos (kπ/T )] where k = 1, 2, ..., T . S can an be the length or width
of the conductor. The sampling points are presented in figure 4.

Fig. 3: Hairpin resonator.
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Fig. 4: Hairpin resonator with sampling points.

We select q = 6, that suppose a L2 error (norm’s error) of 5.51 × 10−6 and CPU time
128.84s, which is sufficient for the precision of calculus. If q = 8, the L2 diminishes with an
approximate one order and CPU time will double.
We have written a numerical code in Matlab 7.0 which allows calculation of the S-parameter
of this hairpin resonator. The matrix S, named scattering matrix, was calculated, because it can
relatively easily be measured in the domain of microwaves [12], and thus experimental data
exists, which allow the comparison between numerical calculus and experiment. The elements
of S were calculated as function of the impedance matrix (Z parameters) from eqs.16 and 17
in the basis of usual relations [12].
The CPU time has been 257.01 seconds on a PC with Pentium IV processor at 3.2GHz and
with 2Gb RAM.
The dependencies |S11| and |S21| vs frequency are presented in Figure 5.
To validate the proposed method and the numerical code, the dimensions of the hairpin res-
onator were identically taken as those from [13]. Comparing the results, the relative error of
the calculated values reported to experimental ones presented in [13] was smaller than 1.2%.

6 Conclusions

A 2D NUFFT technique incorporated with SDA has been proposed for efficient analysis of
microstrip circuits in a rectangular enclosure. In this method, the mesh scheme has good flex-
ibility since conductors can be discretized into fine cells near the edges and relatively large
cells in region with smooth current densities. The comparison between experimental data and
calculated data via our model validates the method.
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Fig. 5: The dependences |S11| and |S12| vs. frequency
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Abstract - The paper presents a method for generating filter transfer functions optimized in
respect to a wide range of behavioral and implementation criteria. The optimization engine is
the SQP algorithm, with the main parameters provided by a genetic algorithm tailored to this
application.
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1 Introduction

Continuous time filters are widely used functional blocks, from simple anti-aliasing filters pre-
ceeding ADCs to high-spec channel-select filters in integrated RF transceivers. Filter design
is challenging, even more when the system has to meet a wide set of constraints. Numerous
CAD tools for filter design are available [The04], [Fil], but most of them are based on the
classical transfer functions, which meet only requirements related to the magnitude or phase
responses.
This paper proposes a new method for deriving filter transfer functions which takes into con-
sideration not only the gain and phase requirements, but also the peak overshoot, the rise and
settling times and even the values of the quality factor of the biquads in a cascade implemen-
tation of the filter.
Section II provides a general mathematical description of the filter. In Section III the mul-
ticriteria optimization method used for deriving filter transfer functions for a wide range of
requirements is presented. Next its enhancement by devising the genetic algorithm into the
optimization procedure is described. In Section V a design example is given.

2 Mathematical description of a time-continuous filter

The paper focuses on the most challenging step in designing a filter: the so-called approx-
imation, which is the derivation of the filter transfer function. Classical approximations, as
Butterworth, Chebyshev, Cauer, available in usual filter design software are meeting only gain
or phase requirements. Usually filters have to meet also additional practical specifications as
peak overshoot, rise- and settling-time and/or implementation properties as spread of same-
type components values, biquads quality factors, tunability etc. Our CAD tool solves this
problem and takes several specifications into account.
The method starts from the framework proposed in [VB99]. A general conti- nuous-time filter
is defined by its transfer function with n complex-conjugate pole pairs:
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pk = ak + jbk, p̄k = ak − jbk, ak, bk < 0, k = 1, ..., n (1)

and r complex-conjugate zero pairs:

zl = cl + jdl, z̄l = cl − jdl, cl < 0, bk ≤ 0, l = 1, ..., r (2)

where r ≤ n. The symbolic expression of the transfer function is:

H (s) =

∏n

k=1

(
a2

k + b2k
)
·
∏r

l=1
(s− zl) (s− z̄l)∏r

l=1
(c2l + d2

l ) ·
∏n

k=1
(s− pk) (s− p̄k)

(3)

Next, all behavioral properties - the magnitude, phase and step response - are expressed in
symbolic form as well [NTN03].

3 Multicriteria optimization in filter transfer function design

An ideal normalized filter has unitary magnitude in the pass-band, zero magnitude in the
stop-band, a zero transition band, a linear phase and fast step-response with low overshoot.
A real analog filter approximates (some of) the above-mentioned behavioral properties with
inevitable errors. As no classical approximation can cope with both magnitude and phase re-
quirements, let alone additional constraints (as peak overshoot, value of quality factor, etc.),
one needs to derive a multicriteria transfer function in order to meet the requirements men-
tioned above. The first steps towards such a transfer function were achieved in the framework
presented in [VB99], [NTN03] and the solution was obtained by a SQP (sequential quadratic
programming) optimization procedure. The objective function for weighted multicriteria op-
timization was:

F = Wpbσpb +Wtbσtb +Wsbσsb +Wlpσlp +WlpσQ +Wlpσt (4)
where Wpb is the weight on magnitude response in passband,Wtb the weight on magnitude
response in transition band,Wsb the weight on magnitude response in stopband,Wlp the weight
on deviation from linear phase,WQ the weight on quality factor cost,Wt the weight on percent
overshoot cost. The graphical response areas σpb, σtb, σsb measure the deviation from ideal
magnitude response for a lowpass filter in the pass, transition and stop-band:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σpb =
1

ωp

∫ ωp

0
(|H(jω)| − 1)2 dω

σtb =
1

ωs − ωp

∫ ωs

ωp

(
|H(jω)| − ω − ωs

ωp − ωs

)2

dω

σsb =
1

10dωs − ωs

∫ 10dωs

ωs
(|H(jω)|))2 dω

(5)

where 10dωs ≈ ∞. Similarly, one can derive the symbolic forms of the deviation from Wlp

the weight on deviation from linear phase the ideal quality factor σQ and peak overshoot
in the step response σt.[VB99]. A user-selected classical approximation is used as the ini-
tial guess in the multicriteria optimization. The input is a set of data derived from the filter
specifications passband ripple Da, passband corner frequency Ωp, stopband attenuation A and
stopband corner frequency Ωs by using a correction factor for extra margin. During the multi-
criteria optimization process the parameters are computed by inspection of the gain plots. For
example, in the pass-band, the ripple da and the corner frequency ωp are obtained as follows:

ω ≤ |pk|, da = −20 log(max|H(jω)t| −min|H(jω)| (6)
ωp ≥ max|pk|, H(jωp) = min|H(jω)|
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where pk are the poles of the transfer function. In the stop-band, the parameters stopband
attenuation a and stopband corner frequency ωs are computed as follows:

ω1 ≤ ωp, ω2 ≥ ωs, da = −20 log(max|H(jω1)| −min|H(jω2)|) (7)
0 < ω < ωp, ωs < min|zk|, |H(jωs)| = max|H(jω)| − 10−0.1a

where zk are the zeros of the transfer function. Other parameters as slope, overshoot may be
computed also by general inspection of the corresponding plotted graphs. The SQP optimiza-
tion algorithm is performed on a normalized low-pass filter. The variables are the locations
of the poles pk and zeros zl, which define the transfer function (equations (1)(3)). The mul-
ticriteria optimization problem was first solved by a simple repetitive (iterative) running of
the procedure, with different values for the weights or different types of the initial guesses
[NTN03]. This method was strongly influenced by the designer experience and very accurate
solutions with respect to the requirements were hard to be obtained. The new proposed ex-
tension of the method consists in devising a genetic algorithm able to provide the values of
these weights [HH04]. The complete flowchart of the proposed method is presented in Fig. 1.
The filter specifications vector is a complete set of the prescribed values for the parameters of
interest:

S = [S1...SN ]t. (8)

A subset, called S∗, comprising only Da, Ωp, A, Ωs, is used to calculate the parameters of
the initial classical approximation; its type (Butterworth, Chebyshev or Cauer) is chosen by
the user. Note that in order to create the necessary headroom for the optimization in the next
step, tighter specifications are considered for the classical approximation; these are derived
by multiplying the subset S∗ with a set of pre-distorting factors, called here the pre-distorting
vector P, generated by the natural genetic algorithm. By comparing S with the corresponding
parameters of the initial (classical approximation) filter, one can derive the deviation vector:

� = [σpbσtbσsp...] (9)

The procedure continues as long as the deviations from the prescribed specifications are not
in the imposed limits.

4 Genetic algorithm for multicriteria optimization

In our method a chromosome Ci of the population consists of a set of N pre-distorting co-
efficients and 5 weighting factors (see 5 weights in equation (4)). The chromosome has Nv

elements, where Nv = N + 5.

Ci = [PiWi]
t, (10)

For the genetically mutated Pi and Wi, the SQP algorithm determines the locations of the new
poles pk and zeros zk, such that the objective function (4) is minimized. The corresponding
filter parameters are estimated numerically and compared with the specifications S. The re-
sulting differences are gathered in an error vector which determines the fitness function of the
chromosome Ci (Fig. 1)

Ei = [ε1iεNi]
t (11)

The goal is to get at least one chromosome for which the filter parameters are close enough
to the specifications; the values of the tolerances (limit error) set by the user determines the
duration of the optimization procedure. The continuous genetic algorithm has six operation
stages:
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Fig. 1: The stucture of the proposed method

• Generate initial population - The population consists of a set of Np chromosomes, there-
fore the program generates an NpxNv array of continuous random values. The matrix is
stored in a database. All variables are normalized and take continuous values between 0
and 1 with three digit precision (the range of a uniform random number generator).

• Natural Selection - The transfer function associated with each chromosome is generated
and the error vector (11) is derived. They are ranked from the lowest to highest cost,
considering a certain priority order among the Ei elements (11). Of the Np chromosomes
in a given generation, only the top Nk are kept for mating; the value of Nk is determined
by the selection rate, set by the user.

• Pairing - The Nk most-fit chromosomes form the mating pool, from each two mothers
and fathers pair in some random fashion. Each pair produces two offsprings that contain
traits from each parent. Both the parents and their offsprings survive to be part of the next
generation.

• Mating - The offsprings are derived as combination of the parents using the Radcliff ap-
proach [HH04].

• Mutations - The number of variables that will be mutated is determined by the mutation
rate, set by the user. The total number of mutations results as the product of the mutation
rate, (Np− 1) and Nv . Next, the position (the row and column numbers in the population
matrix) of the variables to be mutated are chosen in a random process. A mutated variable
is replaced by a new value, also randomly generated.

• Next Generation - The next generation is obtained from all previews steps and it is stored
in a new database. The algorithm procedure is repeated until one of the following three
events happens: (a) a solution is found; (b) the population average remains constant for a
number of generations (no evolution); (c) the algorithm reaches the maximum number of
generations NG, set by the user. The input data for the genetic algorithm procedure are:
population size Np, number of generations NG, selection and mutation rates. The main
parameters are stored at each generation: the errors average, population average and mean
cost. The algorithm is written in C++, using Paradox database and SQL [Cel05].

5 A design example

Let us design a high-pass filter to the following specifications: Da = 0.5dB20%, A =
60dB10%, Ωp = 30MHz7%, Ωs = 10MHz10%, Dt passband group delay deviation=
30ns10%. For the genetic algorithm the following restrictions were set: Np = 300, NG =
250, selection rate= 50% and mutation rate= 30%. Table 1 summarizes the specifications
and the main parameters of three filters from the designing process. The Ist and IInd filter
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are Cauer ones and meet either predistorted requirements (Ist filter) or not distorted require-
ments (IInd filter). The IIIrd filter is obtained as a result of an optimization procedure. One
can easily see that group delay specifications are not reached at all by the IInd filter, but gain
requirements are in the imposed limits. The Ist filter is the initial guess for the optimization
procedure; most of its parameters are far away from the imposed requirements. After running
a multicriteria optimization combined with the genetic algorithm on the initial guess (Ist fil-
ter), the solution (IIIrd filter) was obtained. It meets all the specs (compare second and last
columns in Table 1). Figure 2 shows the magnitude response and group delay of the initial
guess (dashed line) and the multicriteria optimized filters (line) for comparison. There is an
important improvement in the group delay characteristics without significant losses in the gain
plot.

Table 1: Main parameters of the filters in the process

Parameter Specs Ist filter
(initial
guess)

IInd filter
(Cuer)

IIIrd filter
(optimized
filter)

Ripple in PassBand 0.4÷ 0.6 dB 1.2 dB 0.55 dB 0.55 dB
StopBand attenuation 54÷ 66 dB 60 dB 56 dB 56 dB
PassBand frequency 27.9 ÷

32.1 MHz
30.062
MHz

28.079
MHz

28.079
MHz

StopBand Frequency 9÷11MHz 11.909
MHz

10.598
MHz

10.598
MHz

Group Delay Deviation in
PassBand

27÷ 33 ns 97.749 ns 72.557 ns 31.311 ns

Fig. 2: Magnitude response and group delay of the multicriteria optimized filter
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Figure 3 presents the average population during the operation of the genetic algorithm. There
is no evolution after the 98th generation.

Fig. 3: The evolution of the average popultion in genetic algorithm

6 Conclusions

The paper presents a framework for designing filter transfer functions with a wide range of
behavioural and implementation requirements, which is a necessity for electronic circuits de-
signers. No available software is reported in the literature. The method starts with deriving an
initial guess, obtained by classical approximations. Then this solution is refined using a multi-
criteria optimization procedure that combines numerical optimization with symbolic compu-
tation. The weighting factors in the objective function are controlled by a genetic algorithm.
This algorithm ensures good convergence even for less experienced designers. The whole pro-
cedure is included in a software package, which designs cascaded active filter. Further work
will include introduction of additional requirements and an increased range of classical ap-
proximations types handled by the design framework.
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Abstract - The paper presents basic principles of the thermal networks method. Modeling
of network elements has been shown for convection and radiation. A concept of hierarchical
thermal network models for complex geometries has been explained. A formulation of a mass
transfer model and a new iterative method of coupling ventilation and thermal networks have
been introduced. The last section includes an example of the thermal network computation
and a comparison with test results.

1 Introduction

The Thermal Network Method (TNM) is based on a substitution of an arbitrary 3D geome-
try by a circuit consisting of thermal resistances, capacitances and heat sources. For such a
network the currents correspond to heat flow and the nodal potentials to temperatures. Due to
similarity of mathematical formulations the electrical circuit programs can be used to obtain
a solution. The basic advantage of the thermal network analysis is the fast computation time:
steady state computations of large models can be performed within a few seconds. Therefore
the TNM is very suitable for parameter studies and became popular as a tool supporting the
industrial design. A drawback of TNM is the creation of the network, in particular transition
from the real geometry to a network based model. This drawback can be mitigated by applying
hierarchical modelling approach and reusable library elements with ready-to-use representa-
tions of the whole devices.
An important effect that can be modelled using TNM technology is ventilation. For complex
models of power devices consisting of many compartments we introduced a concept of ven-
tilation networks that allow a comprehensive analysis of mass transfer coupled with TNM. In
this paper we describe the hierarchical TNM approach including ventilation networks and its
application to real design cases.

2 Basic Concept of Thermal Networks

The basic concept of substituting the geometrical objects by a thermal network model is shown
for an example of a coated conductor carrying electrical current I, Fig. 1. The current gener-
ates temperature dependent power losses that are conducted along the conductor (in metal)



214 C. Gramsch, A. Blaszczyk, H. Löbl and S. Grossmann

as well as through the insulation layer and dissipated via convection and radiation. A part of
the generated heat can be stored in the conductor material represented by the capacitance C
(used for the transient computations only). In this paper we present basic formulas for the
calculation of the circuit elements corresponding to convection Rconv and radiation Rrad.
More details and formulations for other network elements (Rcond, Rcoat, C, P ) are included
in [Hol02, Boe05, Loe99].

Fig. 1: Thermal network model of coated conductor

The thermal resistance of convection can be expressed as follows:

Rconv =
1

αconvAconv
(1)

with the convection coefficient αconv and the surface area Aconv . The calculation of αconv

is based on the similarity theory [Hol02, Boe05, Loe99], which requires evaluation of the
characteristic numbers of Nusselt (Nu), Grasshof (Gr), Prandtl (Pr) and Reynolds (Re). The
following basic relationship can be used:

αconv =
Nu · λfluid

lch
(2)

where λfluid is the thermal conductivity of fluid and lch the characteristic length (e.g. the
height of a vertical plate or the diameter of a horizontal cylinder). The Nusselt number is
calculated for the natural convection with coefficients c1 and n1:

Nu = c1(GrPr)
n1 (3)

while for the forced convection with coefficients c2 and n2:

Nu = c2(RePr)
n2 . (4)

The values of coefficients c1, n1, c2, n2 are obtained experimentally for typical geometri-
cal configurations [Boe05]. The products GrPr, RePr and λfluid depend on temperature
[Loe99]. The implemented convection resistances can be used for the laminar and turbulent
flow models in different fluids (air, SF6, oil, H2O).
The radiation resistance is expressed in a similar way as (1):
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Rrad =
1

αradArad
. (5)

The radiation coefficient αrad is based on the Stefan-Boltzmann-constant σ = 5.67 ·
10−8W/(m2K4), the emissivity ε12 between the radiating and absorbing surfaces and the
absolute temperatures T1 and T2 of both surfaces:

αrad =
ε12 · σ(T 4

1 − T 4
2 )

T1 − T2
. (6)

The value of ε12 depends on emissivity of the emitting and absorbing surfaces, their surface
area and the viewing factor between them. In case of a conductor located in a free space the
emissivity of the conductor outer surface can be used for ε12.
Due to the temperature dependency of convection and radiation resistances as well as
power losses the network problem is nonlinear. This kind of problems can be efficiently
solved using programs for analysis of electric circuits like Spice or its commercial derivates
(www.pspice.com). The nonlinear resistors have been implemented as voltage controlled cur-
rent sources.

3 Hierarchical Approach

The generation of a thermal network for a complex device is a time consuming process. To
make it easier and faster we introduced a concept of hierarchical thermal networks. In hier-
archical approach we create networks consisting not only of primitive elements representing
physical phenomena like resistors or sources but also models of whole components. For ex-
ample, the network scheme of a conductor shown in Fig. 1 consists of 5 thermal resistances,
one capacitance and one source. These elements can be wrapped together into a new element
representing the whole conductor with pins corresponding to the heat conduction (L,LX), con-
vection (C), radiation (R) and the outer surface (S). The example in Fig. 2 shows application
of the new “coated conductor” element (denoted here as CN gICYL1) in a network model
representing encapsulated conductor. In this model additionally radiation (RRA1), convection
(RCO1/2) and eddy losses (PI2R1) related to enclosure walls as well as ventilation (RFR1)
have been included. The network in Fig. 2 can be again wrapped into a new “encapsulated
conductor” element and applied in higher hierarchical levels.
For complex devices we use up to 5 hierarchical network levels. The hierarchical approach
allows a better management of large models and reusability of components.

L

S R C

LX

Fig. 2: Example of a hierarchical thermal network representing coated conductor in a ventilated enclosure
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4 Modeling of ventilation

4.1 Formulation

Air insulated electrical power system devices are usually manufactured with openings in the
outer walls in order to ensure better natural ventilation, e.g. compact substations, air insu-
lated medium voltage switchgear and control panels. Typically, a compartment including heat
sources has at least one inlet and one outlet that enable transfer of air as shown in Fig. 3.

Fig. 3: Basic relationships for the natural ventilation of a compartment

The heat power P transferred via ventilation inside of a compartment can be calculated as:

P = ṁ · cp(ϑout − ϑin) = 2ṁ · cp(ϑm − ϑ0) (7)

and consequently the resistor representing ventilation heat flow through the outlet is expressed
as follows (Rv is connected between the inner air node at temperature ϑm and the air node
outside):

Rv =
1

2ṁ · cp
(8)

where cp is the specific heat of air.
The mass flow ṁ can be obtained from the basic relationship between the velocity v and the
pressure difference ∆p for turbulent flows through barriers (like inlet and outlet) as follows
[RSS95] (see explanation of symbols in Fig. 3):

∆p = ζ
1

2
ρ · v2. (9)

After substituting in (9) the velocity v by mass flow and introducing the temperature depen-
dency of ρ:

v =
V̇

A
=

ṁ

ρ ·A , (10)

ρ =
ρ0◦C

1 + β · ϑ (11)

the following basic formula can be obtained:

∆p = ṁ2 · S = ṁ · Sm (12)
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where S denotes the flow resistance calculated as a function of flow parameters ϑ,A, ζ (see
explanation of symbols in Fig. 3) while Sm is a nonlinear, mass flow dependent resistance
(Sm = ṁ · S) for the use in ventilation networks (as described in the next subsection). In the
configuration shown in Fig. 3 the pressure difference occurs due to flow through both openings
including inlet and outlet. Consequently the total pressure drop can be expressed as a sum:

∆p = ∆pin +∆pout = ṁ2(Sin + Sout) (13)
where the flow resistances S for inlet and outlet are calculated according to the following
formula (see also Fig. 3):

S{in,out} = ζ{in,out}
1

2A2
{in,out}

1 + β · ϑ{in,out}

ρ0◦C
. (14)

The pressure difference ∆p can be calculated based on density difference between the air
outside and inside of the compartment:

∆p = g · h · ρ0◦C

(
1

1 + β · ϑ0
− 1

1 + β · ϑm

)
. (15)

The formulas (14)-(15) applied to (13) allow to calculate the mass flow and consequently the
temperature dependent value of Rv in (8). The ventilation resistor is usually placed between
the gas nodes representing air inside and outside of a compartment, see resistor RFR1 shown
in Fig. 2.

4.2 Ventilation Networks

Based on formula (12) complex nonlinear networks representing ventilation mass flows can
be created. Similarly to thermal networks we use in case of ventilation networks the analogy
to electric circuits: the electric current is represented by the mass flow ṁ while the voltage
by the pressure difference ∆p. An example of a ventilation problem that requires a network
based analysis is shown in Fig. 4.
For the model in Fig. 4a we create two networks: a ventilation network that allows analysis of
mass flow, Fig. 4b, as well as a more complex thermal network for the calculation of tempera-
tures and heat flow, Fig 4c. The main purpose of the ventilation network is to obtain the mass
flow values that can be applied in ventilation resistors of the thermal network. The iterative
computation procedure includes the following steps:

1. Assume initial values of the nodal temperatures ϑ in the thermal network.
2. For known temperatures calculate the values of resistors S and the pressure differences

∆p between all openings according to (14), (15) and create the nonlinear ventilation
network, Fig. 4b.

3. Solve the ventilation network in Fig. 4b and apply the obtained mass flow values to cal-
culate the values of Rv resistors (8).

4. Solve the thermal network in Fig. 4c and obtain the new values of nodal temperatures ϑ.
5. Check the differences between the new values of nodal temperatures and the correspond-

ing values applied for computations in step 2. If the differences are small enough stop
iterations, otherwise go to step 2.

Typically a few iteration steps are sufficient to achieve the convergence (changes of nodal
temperatures below 0.1 K) in case of real ventilation problems.

5 Example
An example of a complex power device is shown in Fig. 5a. Based on hierarchical thermal
network approach we computed steady state temperatures along the phase conductors. The
deviations between computations and tests are for most measured points in the range of 3 K,
see Fig. 5b. The created model allows simulation of mass transfer phenomena and has been
used to study different ventilation solutions.
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Fig. 4: Example of an arrangement with air flow between compartments (a) and the corresponding models of (b) venti-
lation network and (c) thermal network. (The configuration of compartments and the ventilation openings is the same as
in the arrangement shown in Fig. 5.)
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Fig. 5: Air insulated medium voltage switchgear arrangement. The numbers shown in circles on geometry view (a) denote
positions of measurement/calculation points at the metal surface of the current carrying conductors. These positions
correspond to the values shown on the X-axis of the temperature distribution (b)

6 Conclusion

Thermal network method has been effectively applied to thermal design of complex power de-
vices like high and medium voltage switchgear, transformers, bushings and circuit-breakers.
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The hierarchical modeling approach allows efficient handling of complex geometries. A good
agreement with experimental results can be achieved. The fast computation times enable com-
prehensive parameter studies for modeled devices.
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Summary. In most applications large integrated circuits comprise subcircuits of different
functionality causing heterogeneous transient behaviour. Multirate methods exploit local late-
ncy by using different stepsizes according to the subcircuits’ activity levels at each time point.
Following the idea of mixed multirate for ordinary differential equations a hierarchical ROW-
based multirate method that can deal with an arbitrary number of subcircuits is developed.

1 Modular Modelling

Large electrical circuits are usually built up in a modular way. Several subcircuits of different
functionality are developed separately, or taken from some library, and glued together.
To enable the embedding of a single subcircuit into a complex design, each module needs to
have terminals at which it can connect to its surrounding. For this purpose a subset of its nodes
is declared “pins”. Only at these pins a current flow across the subcircuit’s border is permitted.
We identify each single module with an index λ ∈ � and introduce the vector jPλ ∈ �nPλ

of the pin currents. Furthermore, we agree that they are leaving the unit at the terminals.
Therefore, the mapping of the pin currents to the corresponding nodes of the subcircuit can be
described by the additional incidence matrix APλ ∈ {0, 1}neλ

×nPλ , where neλ and nPλ �
neλ are the number of nodes and pins, respectively in the λth subcircuit.
Regarding fundamental units, i. e. modules that do not contain other subcircuits’ instantiations,
charge oriented modified nodal analyis (MNA) [3] yields network equations of the following
form:

∗ The author is indebted to Infineon Technologies München, and especially to Drs. Feldmann
and Schultz, for supporting his PhD project.
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0 = ACλ q̇λ +ARλr(A
t
Rλ

eλ) +ALλjLλ +AVλjVλ+

+AIλ ıλ(t) + APλjPλ , (1a)

0 = Φ̇λ −At
Lλ
eλ, (1b)

0 = At
Vλ
eλ − vλ(t), (1c)

0 = qλ − qCλ(At
Cλ
eλ), (1d)

0 = Φλ − φLλ(jLλ). (1e)

From the outside each subcircuit can be regarded as a black box element with a specific
number of terminals. Therefore, it can be instantiated in a more complex subcircuit. A
hierarchical circuit design is generated in this way. However, in the following we consider
circuits consisting of r ∈ � subcircuits that that can be described according to (1). Note that
in a hierarchical design this representation can be obtained from fanning out the subcircuits’
hierarchical structure. First, we describe some strategies to couple r subcircuits.
A master circuit, which acts as a carrier network presents the most flexible strategy. It consists
of nM master nodes and r subcircuit instantiations as the only elements. As the pin currents
leave the subcircuits and flow into the master nodes, the master’s topology can be described
by the incidence matrix

AM = (AZ1 , . . . , AZr ),

with AZλ ∈ {0,−1}nM×nPλ assembling the pin currents of the λth subcircuit.
Kirchoff’s current law, applied to the master nodes yields

AZ1jP1 + · · ·+AZr jPr = 0. (2a)

As the subcircuits, or slaves, are attached to the master’s nodes, the appropriate nodal voltages
have to coincide, i. e.

At
Pλ
eλ +At

Zλ
eM = 0, for each λ = 1, . . . , r. (2b)

The system (1,2) with λ = 1, . . . , r determines the slaves’ quantities eλ, jLλ , jVλ , qλ, Φλ,
i. e. node potentials, currents through inductors and voltage sources, charges and fluxes, and
the pin currents jPλ as well as the master’s node potentials eM .
A peer-to-peer network where interrelated subcircuits are connected directly by short-circuit
is another strategy. The compound is described by r subcircuits and a set w of nW cou-
pling currents. A subcircuit’s pin currents APλjPλ is replaced by a specific selection AWλw
of the coupling currents, where also the coupling currents’ direction is allowed for by the
matrix AWλ ∈ {−1, 0, 1}neλ

×nW . As no additional nodes are needed the interconnection is
described by

At
W1e1 + . . .+At

Wr
er = 0, (3)

reflecting that voltages of connected subcircuits have to coincide. Again, (1,3) serve as a model
for a modular design.

Compatibility

The shorts to the master nodes (2b) and to other subcircuits’ pins (3), respectively, can be
understood as paths built by virtual voltage sources that provide a zero-voltage drop [1].
Therefore, there is an upward compatibility of the two approaches as each virtual voltage
source can be added to the set of voltage sources of one subcircuit.
The model equations of the master circuit and the peer-to-peer network approach can be writ-
ten as a differential-algebraic equation (DAE):

0
0

=
=
Aλẏλ + fλ(xλ) +Aλ,extxext,
yλ − gλ(xλ),

}
for λ = 1, . . . , r (4a)

0 = Aext,1x1 + · · ·+Aext,rxr (4b)
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with the charges/fluxes in yλ, the node potentials and currents through inductors and voltage
sources (and the pin currents) in xλ and the coupling currents (or the master nodes’ potentials)
in xext, respectively. On the basis of the well known argument we omit time dependency.
In the following we will stick to the peer-to-peer network for analysis and to the master circuit
approach for the implementation. Actually, in circuit simulators that support a hierarchical
circuit design the the pin currents are not needed explicitly as additional unknowns. There
they arise naturally from the factorisations of the matrices that display the subcircuits’ inner
topology and their contribution to the master circuits (see [9]). However, we introduce them
as additional unknowns for some reasons we will mention later on.

Index Properties

The network equations (4) consists of a set of r subcircuit models (4a) coupled by (4b).
Restricting ourself to index-1 problems we demand:

(C1) The overall system (4a,4b) has index 1 (with respect to x1, . . . , xr, xext).
(C2) All systems (4a) define index-1 systems with respect to xλ (with xext = w given as

input).

From [3] we know, that (C2) holds, if there are neither CV-loops nor LI-cutsets in the sub-
circuits. Note, that the virtual voltage sources are regarded as current sources that provide the
current w in this context. Following these lines, we can show that (C1) holds if there are also
no loops of capacitors, voltage sources and virtual voltage sources in the overall circuit [1, 7].
Under these conditions (4) is equivalent to the semi-explicit system:

ẏλ

0
=
=
fλ(zλ, w),
hλ(yλ, zλ, w),

}
for λ = 1, . . . , r (5a)

0 = g(z1, . . . , zr) , (5b)

where fλ, hλ are linear in w and yλ, w, respectively and g is linear in z1, . . . , zr .

2 Multirate Methods

The modular design of complex systems often implies heterogeneous transient behaviour.
Different parts of the overall system make different demands on the stepsizes in order to
guarantee given error tolerances. The basic idea of multirate methods is to integrate each
subsystem with its appropriate stepsize and thus prevent parts to be integrated with smaller
stepsizes than necessary.
We associate activity levels with the range of the stepsizes at each timepoint. Subsystems that
propose a small stepsize are called active and those content with a large stepsize are called
latent. Fig. 1 shows the typical multi-

...
Fig. 1 Macro- and microsteps: step-

size selection.

rate situation: One large macrostep can be applied
to the latent part whereas the active part can only
be integrated with small microsteps without leav-
ing the prescribed accuracy range. In multirate
schemes an overhead is caused by the necessity to
balance approximations on different timegrids, i. e.
each timestep for one

part needs information about the other parts’ state. To save expenses in comparison with clas-
sical schemes, this overhead has to be outbalanced by the reduction of computational costs for
the less active parts’ discretisation. Hence systems showing heterogeneous transient behav-
iour are said to have multirate potential if the different timescales are widely seperated, the
latent parts are larger than the active ones and the coupling amongst subsystems representing
different activity levels is weak.
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Various multirate strategies emerge from addressing the aspects of underlying method,
mediation across the time grids and sequence of computation. Onestep and multistep based
approaches working with interpolation, extrapolation and Runge-Kutta (RK) like formulas to
map the transition between the different timegrids are being analysed. For an overview see [4].
Furthermore, there is a refinement strategy being investigated for both BDF methods [8] and
onestep methods [5].
With regards to circuit simulation we intend to develop a Rosenbrock-Wanner (ROW) based
onestep multirate scheme because here stepsize selection and error control in terms of node
potentials and currents is possible and no nonlinear equation has to be solved.

2.1 Mixed Multirate for ODEs

We start with a system of coupled ordinary differential equations

ẏL = fL(yL, yA), yL(t0) = yL,0, (6a)
ẏA = fA(yL, yA), yA(t0) = yA,0, (6b)

and suppose that, at the actual timepoint t0, the latent part (subscript L) can be integrated with
one macrostep HL whereas a sequence of q microsteps HA,1, . . . ,HA,q is needed for the
active part (subscript A) to reach t0 +HL.
In its most general way the onestep formalism of this procedure is

yL,1 = yL,0 +

sL∑
i=1

bL
i · kL

i , (7a)

yA,µ = yA,µ−1 +

sA∑
i=1

bA
i · kA,µ

i (µ = 1, . . . , q), (7b)

kL
i = ΦL(HL; yL,0, Y

A
i , kL

1 , . . . , k
L
sL

) (i = 1, . . . , sL), (7c)

kA,µ
i = ΦA(HA,µ; yA,µ−1, Y

L,µ
i , kA,µ

1 , . . . , kA,µ
sA

) (i = 1, . . . , sA), (7d)

where ΦL denotes an sL stage RK or ROW scheme with coefficients bL, AL, BL, ΓL (L =
L,A). For ROW schemes the equations (7c,d) which determine the increments are linear in
kL

i , kA,µ
i , respectively.

As the subsystems are coupled, the computation of the increments kL for each part depends
on information on the other one at some supporting timepoints:

Y A
i ≈ yA(t0 + αL

i HL) (i = 1, . . . , sL), (8a)

Y L,µ
i ≈ yL(t0 +

µ−1∑
ν=1

HA,ν + αA
i HA,µ) (i = 1, . . . , sA;µ = 1, . . . , q). (8b)

Mixed multirate [2] is characterised by a “compound step” and a series of “later microsteps”.
In the former the macrostep (7a) and the first microstep (7b) (µ = 1) are done at once. Y A

i ,
Y L,1

i are determined in RK-like manner. For this, additional coefficient δLL̄, νLL̄ ({L, L̄} =

{L,A}) are introduced and the increments kA,1
i and kL

i are scaled with the stepsize ratio
m = HL

HA,1
and its inverse m

−1, respectively. Note, that m = q ifHA,1 ≡ · · · ≡ HA,q .
For the later microsteps dense output formulas are applied to get reasonable values
Y L,2

i , . . . , Y L,q
i . Dense output formulas a-posteriori provide cheap numerical approximations,

e. g.

yL(t0 + θ · HL) ≈ yL,0 +

s∑
i=1

bds
i (θ) · kL

i with bds
i (θ) =

s∑
k=1

bik · θk (9)

on the interval [t0, t0 +HL], i. e. with θ ∈ [0, 1].
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2.2 Mixed multirate scheme for coupled index-1 DAE systems

The next step towards a multirate method for the system (5) that is capable of handling an
arbitrary amount of activity levels, is to restrict to a two level scheme for the index-1 system

ẏL = fL(zL, w)
0 = hL(yL, zL, w)

ẏA = fA(zA, w)
0 = hA(yA, zA, w)

0 = g(zL, zA).

(10)

The coupling current w, affecting both subsystems, is assumed to be latent.
Using a ROW scheme with s(= sL = sA) stages, the compound step for the index-1 DAE-
system (10), with weights bL and increments lL, kL, pL reads:(

yL,1

zL,1

w1

)
=

(
yL,0

zL,0

w0

)
+ (bL)t

(
lL

kL

p

)
,

(
yA,1

zA,1

)
=

(
yA,0

zA,0

)
+ (bA)t

(
lA

kA

)
. (11a)

According to (7c,d) the stage increments are defined by the linear system

M	 · (lL,i, kL,i|lA,i, kA,i|pi)
t = RHSi, for i = 1, . . . , s (11b)

with M	 =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

IyL −HLγ
L ∂fL

∂zL
−HLγ

L ∂fL
∂w

−γL ∂hL
∂yL

−γL ∂hL
∂zL

−γL ∂hL
∂w

IyA −HAγ
A ∂fA

∂zA
− 1

m
· HAν

AL ∂fA
∂w

−γA ∂hA
∂ya

−γA ∂hA
∂zA

− 1
m
· νAL ∂hA

∂w

−γL ∂g
∂zL

−m · νLA ∂g
∂zA

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and a right-hand side RHSi depending on both stepsizesHL,HA, the stepsizeratio m := HL
HA

,
the increments lLj , k

L
j , pj of the former steps j = 1, . . . , i − 1 and a set of coefficients bL,

AL, BL, ΓL, DLL̄, NLL̄ ({L, L̄} = {L,A}).
In the later microsteps it remains, to solve [ẏA = fA, 0 = hA] with respect to yA, zA and
w(t) entering the right-hand-side. We want to avoid additional interpolation schemes for the
coupling part. As we introduced the coupling currents (pin currents) as additional unknowns,
we can obtain an approximation to w(t0 + θ · HL) in a cheap way via dense output formulas
(see (9)).
For lack of space we refer to [7] for an accurate definition.

MA-Trees and MA-series

Order conditions for the method’s coefficients have to be derived and fulfilled to get approxi-
mations of prescribed accuracy. Derivatives of numerical approximation (11) and exact solu-
tion (10) soon become hardly manageable, e. g. the first derivative of the coupling consists of
two elementary differentials:

ẇ = S−1 ∂g

∂zL

(
−∂hL

∂zL

)−1 ∂hL

∂yL
fL + S−1 ∂g

∂zA

(
−∂hA

∂zA

)−1 ∂hA

∂yA
fA

with Schur complement S := −
[
∂g

∂zL

(
−∂hL

∂zL

)−1 ∂hL

∂w
+

∂g

∂zA

(
−∂hA

∂zA

)−1 ∂hA

∂w

]

Therefore, we extend the B-series’ concept to the theory of MA-series, where we have to deal
with five types of nodes and the stepsize ratio m entering the order conditions. To be able to
do this, we have to demand
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DLL̄ +NLL̄ = AL + ΓL.

Two conditions arise for order 1, eight more for order 2 and again 36 more conditions have to
be fulfilled to get a method of order 3.
This applies to the compound step only. The later microsteps are a combination of a classi-
cal DAE-solver and a dense-output scheme that has provides approximations of appropriate
accuracy. For a detailed discussion see [7].

3 Hierarchical mixed multirate
Aiming at a multirate method that can deal with an arbitrary amount of activity levels, hier-
archical mixed multirate seems to be the most feasible approach. The main idea is to nest
compound steps and later micro-steps in a way, that at each time merely a two-level multirate
scheme is engaged. At each timepoint of integration each subsystem has either the status

Fig. 2: Hierarchical mixed multirate for three blocks

asleep or latent or active.
A part is asleep if the last timepoint at which an approximation is available is beyond the
current one. The set of not sleeping subsystems is split into a subset of systems that propose a
large individual stepsize and one containing those, demanding a small step. The former ones
are called latent, the latter ones active.
While the set of not sleeping systems can be decomposed in this way, a compound step is
applied. Otherwise later microsteps are executed. The sleeping subsystems contribute to the
current step via dense-output (Fig. 2).

Numerical Tests

A hierarchical mixed multirate method of order 2 with and embedded scheme of order 1
for stepsize control for network equations (4) has been embedded into Qimonda’s in-house
simulator titan.
Great importance is attached to the problem of traversing signals, forcing sleeping subsystems
to “wake up”, i. e. causing an a-posteriori rejection of a macrostep tn−1 to tn = tn−1 +HL.
In this implementation the detection of such situations is based on comparing pin voltages
of connected subsystems: each timepoint twup ∈ (tn−1, tn) where the deviation between the
voltages computed with the not sleeping part and their equivalent that is recalculated by dense-
output formulas applied to the sleeping part becomes too large, is considered a wake up point.
However, not the whole macrostep is restored, but there is a re-initialisation at twup, again
using dense-output formulas to get appropriate initial values. Furthermore, starting at twup a
fixed number nfrc ∈ � of singlerate steps is done to stabilise integration.
It has been tested, amongst others, with an inverter chain that comprises 500 inverter stages.
These are arranged in five blocks, each containing 100 inverters, see Fig. 3. At node “inM ” we
apply a single pulse of width 17 ns, see Fig. 4 (left). Moreover Fig. 4 (right) shows how this
signal passes each blocks’ output node. The timepoints (60.14, 113.7, 166.8 and 220.2 ns) at
which the blocks 2-5 awake are detected automatically (with nfrc = 100). Furthermore, each
single block is touched only about one fourth as often as the singlerate integration (ROW-
scheme of order 2 with the same set of coefficients) implies. For a detailed report on the
numerical test we refer to [7].
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Fig. 3: Distributed inverter chain
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Fig. 4: Inverter chain: input signal (left), passing signal (right)

4 Conclusion

A multirate scheme for circuit simulation that can deal with an arbitrary amount of subsys-
tems has been derived. Domain decomposition of large electrical circuits has been reached
by introducing extra variables. The hierarchical multirate method has been embedded in a
sophisticated industrial simulators.
Future tasks are a partitioning strategy and stepsize control that are tailored to multirate needs.
Higher order schemes and extensions to higher index problems are desirable. Concerning wake
up situation, also the currents at the pins must be taken into account. Furthermore the stepsize
control, especially after synchronisation points or wake up situation are encountered, should
be improved.
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Summary. The (nonlinear) transient analysis of electrical circuit models plays an important
role in circuit design. Multirate time integration can be able to achieve the same accuracy for
much lower costs. An essential assumption is the existence of a good partition of the circuit in
a slow and fast part. This paper describes how this can be done automatically.

1 Introduction

Analogue electrical circuits are usually modeled by differential-algebraic equations (DAEs)
of the following type:

d

dt
[q(t, x)] + j(t, x) = 0. (1)

The vector-valued functions q, j are constructed by Modified Nodal Analysis and represent
the charges and currents in the network model. The state vector x(t) ∈ Rd represents the
nodal voltages and the currents through the voltage-defined elements like voltage sources and
inductors and depends on the time variable t. A common analysis is the transient analysis,
which computes the solution x(t) of this nonlinear DAE along the time interval [0, T ] for a
given initial state. Often, parts of electrical circuits have multirate behaviour, which means
that some variables are slowly varying, compared to other variables.
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Fig. 1: At the left the circuit diagram of test example and at the right the typical shape of the corresponding error vector
for M = 3, N = 6.

Figure 1 shows an example, which is a two-dimensional scalable circuit withM×N inverters,
which hasM×2N nodal voltages. The subcircuits are connected with linear filters which were
chosen such that only 3 subcircuits are active and nearly decoupled from the other subcircuits.
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This property implies that the shape of the error vector looks like an iceberg, which is also
visible in the right picture in Figure 1.
For those circuits it is very attractive to partition the model and use multirate methods [1,
3, 5, 6, 8]. First we will give a brief introduction to multirate in section 2. Partitioning is
an important attribute for multirate methods. Together with the time-steps it can be used to
control the local discretization error. Because still little attention has been payed to this topic,
the subsequent sections deal with this. Finally also some results are shown from the application
to multirate simulations.

2 Multirate transient algorithm

2.1 The DAE system

For a multirate method it is necessary to partition the variables and equations into an active
(A) and a latent (L) part. This can be done by the user or automatically. Let BA ∈ RdA×d and
BL ∈ RdL×d with dA +dL = d be selection matrices, which satisfy BABT

A = IdA ,BLBT
L =

IdL ,BABT
L = O,BLBT

A = O where Id ∈ Rd2
is the identity matrix and O the zero matrix.

Then the variables and functions can be split in active (A) and latent (L) parts: x = BT
AxA +

BT
LxL, q = BT

AqA + BT
LqL and j = BT

AjA + BT
LjL. Because of the properties of BA,BL we

have xA = BAx, xL = BLx, qA = BAq, etc. Now equation (1) is equivalent to the following
partitioned system:

d

dt
[qA(t, xA, xL)] + jA(t, xA, xL) = 0, (2)

d

dt
[qL(t, xA, xL)] + jL(t, xA, xL) = 0. (3)

For DAEs the partition should be properly chosen such that the parts (2) and (3) are also
solvable. Furthermore it is a nice property if also the stability and index are preserved. In
practice this is not always the case.

2.2 Compound-Fast BDF algorithm

Multirate methods integrate both parts using different time-steps H and h. For circuits with
multirate behaviour, like the previous example, the multirate factor m = H

h
should be a large

number.
We use the BDF Compound-Fast algorithm on both the coarse and refined grid. This method
is described in [8, 7]. It splits the circuit model in a slow and fast part. Each iteration first
the complete system is integrated by one large compound step. The active part is relaxed
during the Newton process. Afterwards only the fast part is integrated (or “refined”), while the
connected slow interface variables are replaced by interpolated values. In [8] it is proved that
this is a numerically stable scheme if the both parts are weakly coupled and the active part is
asymptotically stable.
The discretization error �e ∈ Rd is controlled by independent stepsize control of the large
compound step and of the much smaller refinement steps [7]. It has been shown that the
active local error BA

�e consists of a discretization part and an interpolation part, which depend
on H and h, respectively. If these parts are equal to (1 − w)TOL and wTOL, respectively,
where w ∈ [0, 1] is a balance number, the active local error is equal to the tolerance level
TOL. The proposed compound steps are equal to min{HC , HI}, where HC keeps the latent
discretization error at TOL and HI keeps the interpolation error at wTOL.

2.3 Efficiency analysis of multirate methods

Although we introduced the Compound-Fast BDF algorithm, the next analysis is valid for
a much larger family of multirate methods. Let WC ,WR be the computational work per
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timestep for the compound phase and the refinement phase and define the workload ratio
by E = WR

WC
. Let WS be the computational work per step for the standard singlerate ver-

sion, which satisfies WS
WC

= F ≈ 1. If H,h are the average compound and refinement steps
and m = H

h
is the average multirate factor, then a multirate method on [0, T ] will need the

following computational workload:

Wmult = WR
T

h
+WC

T

H
= WCT (E

1

h
+

1

H
) = WC

T

h
(E +

1

m
), (4)

while a singlerate method with step hs would need Wsing = WS
T
hs

. Thus we have the fol-
lowing speed-up factor for the multirate method

S =
Wsing

Wmult
=

WS
1

hs

WC
1
h
(E + 1

m
)

= F
h

hs

1
1
m

+ E
≈ h

hs

1
1
m

+ E
. (5)

Here m is the multirate factor which is large if the dynamics of the refined part are more active
than the other slow part. The ratio E is determined by the partition and describes the relative
costs of a refinement step which depends on the size dA of the refinement part. It applies that
S → F

E
h
hs

for m → ∞ and S → Fm h
hs

for E → 0. Clearly, we get a large speed-up
factor if m is large and E is small. Only if S > 1 it could be attractive to use for instance the
multirate version of a certain integration scheme.
The multirate factor m can be approximated by the ratio between the proposed steps for the
next step of a multirate and singlerate method m̂ = Hnew

hnew
. Here Hnew, hnew are the proposed

stepsizes for the next compound step or singlerate step, respectively. Any integration method
has an algorithm for Hnew, hnew, which always depend on the integration order p. In fact m̂
depends on the estimated local error vector �̂e and approximately behaves like

m̂ =

(
‖BA

�̂e‖
‖BL

�̂e‖

) 1
p+1

. (6)

The workload ratio E is approximated by

Ê =
(
dA

d

)α

, (7)

where α ∈ (1, 3) depends on the application. By default we use α = 2. Note that it is also
possible to model E by a parameterized rational function of dA and d, where the parameters
can be identified by using experimental data.

3 Automatic partitioning

This section gives first some algorithms for partitioning. Afterwards it is shown how these
algorithms can be applied dynamically. Finally some implementation issues are discussed.

3.1 The optimal partition

Although h can be smaller than hs, we assume that

F
h

hs
≈ 1 is independent of the partition.

Thus the partition is optimal if Ŝ = 1
1
m

+E
achieves its maximal value. Let the index sets of

the active and latent parts be indA, indL of lengths dA, dL such that d = dA + dL. Then both
m and E are functions of indA, indL. Thus the optimal partition satisfies:
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max
indA,indL

S ≈ max
indA,indL

1
1
m

+ E
. (8)

The exact solution of optimization problem (8) is an 0-1 program which has exponential com-
plexity. It is simply not possible to consider all possible transitions of the index sets. There-
fore, we should use approximations which e.g. only determine the optimum for all transitions
in subsets of size k. Then the algorithm has a polynomial complexity O(dk).

3.2 Partitioning algorithms

We considered the following types of algorithms:

1. The first type tries to find a solution of (8) by only considering the multirate factor m,
which is approximated by m̂ from (6). It is assumed that Hnew only depends of BL

�̂e ,
which is the latent discretization error estimate of the compound step. Then the particular
latent element is determined which has the largest local error element êi and should be
refined such that m̂ becomes larger. Also the active element which has the smallest êi is
determined. Thus the most active latent element and the most latent active element are
selected. Then all four possible transitions of these two found elements are compared
with respect to their corresponding estimated speed-up factors and the optimal transition
is performed. Iteratively the transition with maximum estimated speed-up factor is per-
formed until convergence. This algorithm needs an initial guess to start with. It could be
the previous partition, a partition computed by another algorithm or it is given by the user.

2. All nodes become refined when the estimated local error satisfies

êi > εrel‖�̂e‖max, (9)

where εrel < 1.
3. A different approach considers the absolute criterion

êi > εabs, (10)

where εabs <TOL. The tolerance level TOL is given by the user such that the local error
satisfies ‖�̂e‖ ≤TOL.

4. A fourth approach computes the needed stepsizes per element from the local error vector
�̂e and detects the largest gap between the stepsizes. Then this gap is used to separate the
system in a fast and a slow part.

All four algorithms only need the information contained in the local error vector �̂e . The first
algorithm really tries to optimize the speed-up factor, while the second algorithm just uses a
tolerance level for the relative activity. For algorithm 2 and 3 the values of εabs or εrel are
free and have to be chosen. The optimal values depend on the properties of the vector �̂e . In
practice algorithm 2 works better than 3 because then the partition only depends on the ratio
between the errors of the active and latent parts. The approach (10) depends much more on
the quality of the error estimation itself. In this paper we restricted our attention to algorithm
1 and 2.
There are also some add-ons for the algorithms which could improve the performance. One
could always refine the nodes which are connected to sources if they can suddenly become
active. Furthermore, a safety region of distance γ around the active part can be used. This
means that all nodes whose distance to the active part is at most γ are also refined. This makes
it possible to predict sudden wake-ups and reduces the number of repartitionings.
For real-world applications it might be necessary to take care with the already existing struc-
ture, e.g. a hierarchical structure for circuit models. Instead of element-wise partitioning the
submodels are treated like connected blocks which can be active or latent.
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3.3 Dynamically changing partitioning
For e.g. digital circuits it is impossible to apply multirate with a static partition. Then dynam-
ical partitioning techniques [2, 4] are needed which are able to follow the moving active part.
This means that the partition should be updated during the multirate time-integration. Because
repartitionings are not cheap, it is not allowed to change the partition during the refinement.
Thus repartitionings only can occur just after the compound step or just after the refinement
phase. There exist the following three alternatives:

A The partition is updated just after the compound step by use of the computed error vector
at the coarse grid.

B The partition is updated just after the refinement phase where also the active errors of the
refined time-grid are used.

C First a singlerate step is done and then its error vector is used to repartition.

Methods B and C are better suited for the stepsize control and the relaxation of the Newton
process, because the active part of the coarse error vector in method A is not accurate. Never-
theless, method A has been used for the numerical experiments in the next section because it
is better able to detect sudden wake-ups of latent variables. Figure 2 shows a combination of
these methods. Note that method A is applied with the restriction that only latent elements can
be transfered to the refinement part. By keeping the old partition for an acceptable speed-up
factor Ŝ, the number of repartitionings is reduced.

3.4 Consequences for multirate algorithm

Perform a compound step

Perform the refinement

Update the partition (B)

Compute the error estimate vector

Accepted compound
timestep?

Compute new timesteps
H and h

Update the partition for
the slow part (A)

Accepted speedup? no

Accepted speedup?yes

Start of singlerate integration step
Update the partition (C)

Accepted speedup?

Accepted speedup?

yes

no

yes

yes

no

no

yes

Start of multirate time integration

t
n 

= t
n-1

 + h

End of multirate time integration

tn < T

no

no

yes

Fig. 2: The multirate algorithm with dynamically changing partitions

Dynamical partitioning also
has some consequences for the
existing multirate algorithm.
Firstly, there is the storage
problem. Now, each node can
have its own time-points, the-
oretically. Because the lengths
of these time-grids will differ
for each unit, it is impossible
to store the solutions and
time-grids in a normal array.
Furthermore, for multistep
methods there is the initializa-
tion problem for the waked up
fast nodes which were slow
during the previous compound
step. Restarting with onestep
methods, like Euler Backward,
can reduce the gained effi-
ciency. We use the previous
coarse-grid polynomial also as
a predictor polynomial for the
new refinement phase using
upgraded results. A nice prop-
erty of dynamical partitioning
is that the estimated speed-up
factor also can be used to
decide whether the next step
will be a compound step or a
singlerate step. This is a benefit
of the Compound-Fast method
actually.
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4 Numerical experiments

4.1 Model problems

In this section we show how dynamical partitioning works in practice for some model prob-
lems in MATLAB. Firstly, we look at the circuit model (ODE) of an inverter chain, which
is described in more detail in [2]. It is a chain consisting of 500 inverters. If we excite the
first node by a short pulse, a voltage wave is traveling through the chain from left to right.
Secondly, we look at the circuit model which is shown in Figure 1 for M = 5, N = 10. The
subcircuits are connected by C-elements that can filter the voltages and currents. The circuit is
driven by M voltage sources which can have different frequencies. The location of the active
part is controlled by the C-elements and the voltage sources. We used the voltage sources
ei = 5

2
(1− cos(ωit)), where ω1 = 100 · 109, and for i > 1, ωi = 109.

4.2 Results for inverter chain

For TOL = 10−2, N = 100 we did an experiment on [0, 75 ns] by several dynamical parti-
tioning algorithms of type A. Algorithm 1 is used with the workload model (7) but for different
values of α. In all cases at most 4 iterations are performed during a compound step. Algorithm
2 is used for different values of εrel. All algorithms use γ = 3 as overlap value. Table 1
shows the results. Note that ni and ki are the numbers of timesteps and Newton iterations,
respectively. Clearly, for each case the number of refinement steps, nR, is much larger than
the number of compound steps, nC . It is larger than the number of steps for the singlerate ver-
sion because of error control reasons. In the column below av( dA

d
) the average relative size of

the active part is shown. The required CPU time also includes the repartitioning time effort.

Method α εrel nC nR kC kR av( dA
d

)(%) time (s) S
Singlerate 1340 0 5440 0 0 266

1 2 82 1651 1008 3415 16 87 3.1
1 3

2
94 1663 996 3429 15 86 3.1

2 10−1 166 1953 1313 4034 9 100 2.7
2 10−2 97 2001 1225 4105 16 105 2.5
2 10−3 94 1992 1637 4093 22 133 2.0

Table 1: Statistics of singlerate and multirate method using algorithms 1 and 2 of type A for the inverter chain model.

If we compare the algorithms for lower accuracy TOL = 10−1 it appears that the method
2 does not converge in contrast to 1. Also for other experiments it appears that the method
1 implies better convergence than 2. All methods are able to follow the active wave front.
Figure 3 shows the timepoints per element for case (1) with α = 3

2
. The two flanks of the

traveling wave are easy to observe in the picture.
For small N the speed-up factor is relatively small because of the overhead. But for large N
it is indeed possible to get a large speed-up. This is also the case for increasing accuracy.

4.3 Results for Matrix circuit

If the Matrix circuit has a fixed latent part it is possible to get high speed-up factors while
keeping the accuracy [7]. In this case also the previous techniques can be used to find the
static partition in an automatic way. For really dynamically changing partitions problems can
occur because of ill-conditioned systems during the refinement.
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Fig. 3: Timepoints per element for the inverter chain (case 1 with α = 3
2 ).

5 Conclusion

We studied two partitioning algorithms. It appears that algorithm 1 is much more robust
than algorithm 2, which strongly depends on the relative tolerance. We showed how these
techniques can be applied in a dynamical way. For the ODE model of an inverter chain it
already appeared that dynamical partitioning indeed can be attractive to use. For more general
DAE models still research is necessary. We also intend to apply these partitiong algorithms to
industrial circuit models in Pstar3.
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Summary. A multidimensional model yields an alternative strategy for the numerical simula-
tion of frequency-modulated signals. Thus the differential algebraic equations (DAEs), which
describe an electric circuit, change into warped multirate partial differential algebraic equa-
tions (MPDAEs). Houben [6] introduced an approach for solving efficiently initial-boundary
value problems of such MPDAE systems. Thereby, envelope-modulated solutions of the DAEs
are reproduced. In this paper, the technique is analysed for obtaining quasiperiodic solutions
of the DAEs. The crucial question is if biperiodic solutions of the MPDAEs are generated
automatically by Houben’s approach provided that the initial values of a biperiodic solution
are applied.

1 Introduction
In radio-frequency applications, electric circuits often produce oscillatory signals with widely-
separated time scales. For example, the amplitude as well as the frequency of a high-frequency
oscillation may change relatively slowly. A numerical simulation of the circuit demands to
solve the corresponding time-dependent system of differential algebraic equations (DAEs),
see [4]. Thus the simulation becomes inefficient, since fast oscillations limit the step size in
time, whereas the slow time scale determines the total time interval.
A multivariate signal model yields an alternative strategy, where each separate time scale
is given an own variable. Brachtendorf et al. [1] introduced the corresponding system of
multirate partial differential algebraic equations (MPDAEs), which yields an efficient simula-
tion of purely amplitude-modulated signals. Narayan and Roychowdhury [7] generalised the
approach for signals, which are amplitude-modulated (AM) as well as frequency-modulated
(FM). Accordingly, a system of warped MPDAEs arises, where the determination of an
appropriate local frequency function is crucial for the efficiency of the multidimensional
model. Rough choices produce unnecessary oscillations in the multivariate solutions of the
system.
Houben [5, 6] introduced a minimisation criterion with respect to partial derivatives, which
shall reduce oscillatory behaviour in the solutions of the MPDAE system. This strategy yields a
formula for the unknown local frequency function depending on the multivariate solution. The
approach can be used to solve initial-boundary value problems of MPDAEs, which reproduce
envelope-modulated solutions of the DAEs.
The direct determination of quasiperiodic solutions of the DAEs demands to solve biperiodic
boundary value problems of corresponding MPDAEs, see [10]. A method of characteristics
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can be used to compute biperiodic solutions of an MPDAE system efficiently, see [8]. This
technique becomes inappropriate in case of initial-boundary value problems.
We investigate the performance of Houben’s strategy when initial values from a biperiodic
solution are given. If the resulting solution is biperiodic, too, then a method for biperiodic
boundary value problems can be constructed based on the original strategy. Although the
method of characteristics still seems to be superior for biperiodic problems, the results give
more insight in the properties of Houben’s method.

2 Multidimensional Model

The mathematical model of electric circuits yields a system of DAEs, see [4]. We consider a
system of the form

dq(x)

dt
= f(b(t),x(t)),

x : �→ �k, q : �k → �k,
b : �→ �l, f : �l ×�k → �k,

(1)

where x denotes unknown node voltages and branch currents. We assume that the predeter-
mined input signals b vary relatively slowly. In contrast, the solution x shall include high-
frequency oscillations, whose amplitude as well as frequency are changed slowly by the input
signals. Thus the signals x include widely-separated time scales. Hence solving the DAEs (1)
demands a huge number of time steps and a transient analysis becomes inefficient.
Brachtendorf et al. [1] introduced a multivariate signal model for purely AM signals, where
each time scale is assigned an own variable. Narayan and Roychowdhury [7] generalised this
model for signals including AM as well as FM. In case of two time scales, a multivariate
function (MVF) x̂ : �2 → �

k and a local frequency amplification function ν : � → � of
the signal x are introduced. Thus an efficient model is achieved by decoupling the time scales.
Consequently, the system of DAEs (1) is transformed into the system of warped MPDAEs

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(b(t1), x̂(t1, t2)),

x̂ : �2 → �k,
ν : �→ �. (2)

We assume q, x̂ ∈ C1 and b, f , ν ∈ C0. The local frequency amplification ν is a priori
unknown, too. The input signals vary just slowly and thus do not require a multivariate
description. An arbitrary solution of the MPDAEs (2) yields a solution of the DAEs (1) using
the reconstruction

x(t) = x̂
(
t,
∫ t

0
ν(σ)dσ

)
, (3)

i.e., the MVF includes the original signal. In this general case, ν represents a local frequency
amplification and thus ν is physically dimensionless.
This model is suitable only if the fast time scale is periodic, since we want to resolve many
oscillations in a bounded and relatively small multidimensional domain. Hence two types of
problems arise. Firstly, initial-boundary value problems of the system (2) read

x̂(0, t2) = h(t2), x̂(t1, t2) = x̂(t1, t2 + 1) for all t1 ≥ 0, t2 ∈ � (4)

with a predetermined periodic function h : � → �
k. The period is standardised to 1 and

thus the second argument t2 of the MVF becomes dimensionless. Hence ν in (3) includes the
magnitude of the fast time scale and exhibits the physical dimension of a frequency now. The
problems (4) are solved in a domain [0, T ] × [0, 1] for some T > 0. Secondly, biperiodic
boundary value problems exhibit the conditions

x̂(t1, t2) = x̂(t1 + T1, t2) = x̂(t1, t2 + 1) for all t1, t2 ∈ �, (5)

which correspond to the domain [0, T1] × [0, 1]. In this case, the input signals as well as the
local frequency function have to be T1-periodic. Note that we require a smooth solution of (2)
to fulfil the biperiodicity condition (5).
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Applying (3), solutions satisfying (4) reproduce envelope-modulated signals, whereas solu-
tions fulfilling (5) yield quasiperiodic signals. Note that both envelope-modulated and quasi-
periodic signals include FM here.
For appropriate choices of the local frequency functions, the corresponding MVF exhibits a
simple structure in [0, T ] × [0, 1]. Thus we can compute the solution of the MPDAEs (2)
using a relatively low number of grid points and achieve an efficient numerical simulation.
The desired solution of the DAEs (1) is reconstructed via (3).
Solutions of the MPDAEs (2) corresponding to different local frequency functions are
interconnected by a transformation, see [9]. If x̂ is a MVF satisfying the system for the local
frequency ν, then the transformed MVF

ŷ(t1, t2) := x̂
(
t1, t2 +

∫ t1

0
ν(σ)− µ(σ) dσ

)
(6)

represents a solution of the system with local frequency µ. The initial values at t1 = 0 are
invariant in this transformation. Thus, for solving initial-boundary value problems (4), the
local frequencies are completely free parameters, which can be used to achieve an efficient
representation. In case of biperiodic problems (5), an additional requirement is necessary to
preserve the periodicity in the slow time scale, namely

∫ T1

0
µ(σ) dσ =

∫ T1

0
ν(σ) dσ, (7)

which means that the average frequency coincides.

3 Houben’s Method

A suitable local frequency function for representing the signals efficiently is unknown a priori.
Inappropriate selections cause undesired oscillations in the MVFs, see [9]. Houben [5, 6]
formulated the minimisation problem

s(t1) :=
∫ 1

0
‖ ∂q(x̂)

∂t1
(t1, u)‖2 du −→ min. for each t1 ≥ 0 (8)

using the Euclidean norm ‖·‖. Thus oscillatory behaviour is reduced via minimising the impact
of the partial derivative with respect to the slow time scale. For example, a method of lines
can be employed to solve the initial-boundary value problem (2),(4). Hence a corresponding
optimal solution allows for using relatively large step sizes in the numerical simulation.
The demand (8) implies a necessary condition for an optimal solution:

ν(t1) =

∫ 1

0
〈f(b(t1), x̂(t1, u)), ∂q(x̂)

∂t2
(t1, u)〉 du∫ 1

0
‖ ∂q(x̂)

∂t2
(t1, u)‖2 du

for all t1 ≥ 0 (9)

with the Euclidean inner product 〈·, ·〉. This formula can be used to eliminate the unknown
local frequency function. Thus initial-boundary value problems can be solved by proceeding
in the slow time scale. Furthermore, the condition (9) is equivalent to the orthogonality relation∫ 1

0
〈 ∂q(x̂)

∂t1
(t1, u), ∂q(x̂)

∂t2
(t1, u)〉 du = 0 for all t1 ≥ 0. (10)

In the following, we assume the existence of a smooth biperiodic solution ẑ corresponding to
the periodic local frequency κ. Let h := ẑ(0, ·) be its initial values. We investigate the results
from the initial-boundary value problem (4) applying Houben’s technique. In [3], the case of
ordinary differential equations (q(x) ≡ x) has already been considered.
An arbitrary solution x̂, ν of the MPDAEs (2) with the same initial values h can be obtained
from the biperiodic solution ẑ via the transformation (6). We define the quantity

c :=
∫ T1

0
ν(σ)− κ(σ) dσ. (11)
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Using the transformation (6), it follows

x̂(T1, t2) = ẑ(T1, t2 + c) = ẑ(0, t2 + c) = x̂(0, t2 + c) for all t2 ∈ �. (12)

We have achieved the following result.

Theorem 1. If x̂, ν is an arbitrary solution of the system (2) with initial values from a biperi-
odic solution, then it holds x̂(T1, t2) = x̂(0, t2 + c) for all t2, i.e., the end values represent a
time shift of the initial values.

In Houben’s approach, the question is if this time shift is equal to zero or not. In the formula (9)
for the corresponding local frequency function, the arising integrals are invariant with respect
to a shift in the fast time scale t2. Thus the following theorem holds.

Theorem 2. If x̂, ν is a solution of the system (2) with initial values from a biperiodic solu-
tion and satisfying (9), then it holds ν(0) = ν(T1) and thus the local frequency function is
periodic.

Note that this theorem does not imply that the corresponding MVF is biperiodic. Nevertheless,
the local frequency becomes periodic and thus a biperiodic solution may result from Houben’s
approach. However, a proof is still missing.
On the other hand, a minimisation demand for biperiodic solutions has been introduced in [9].
Similar to this approach, we consider the formulation

γ :=
∫ T1

0

∫ 1

0
‖ ∂q(x̂)

∂t1
(v, u)‖2 du dv −→ min. (13)

here. A variational calculus yields the necessary condition

∫ 1

0
〈 ∂

2q(x̂)

∂t12 (t1, u), ∂q(x̂)
∂t2

(t1, u)〉 du = 0 for all t1 ≥ 0, (14)

which an optimal solution has to satisfy. Thereby, the periodicity of the solution in t1 is cru-
cial to obtain this requirement. A biperiodic solution, which minimises (8), also represents a
minimum of (13). This fact yields the following statement.

Theorem 3. Given a biperiodic solution x̂, ν of the system (2), which is minimal with respect
to Houben’s criterion (8), then the MVF x̂ satisfies the orthogonality property (10) as well
as (14).

This result indicates that a solution obtained by Houben’s approach is not biperiodic in gen-
eral. If it is biperiodic, then two orthogonality properties are satisfied, which do not seem to
be equivalent. Likewise, we consider an optimal biperiodic solution with respect to (13). This
solution may become better by a transformation (6) to the optimal local frequency (9). Con-
sequently, we may loose the periodicity as the price to be paid for the further reduction of the
impact of partial derivatives.

4 Illustrative Example

As test example, we consider a voltage controlled oscillator, which is illustrated in Fig. 1 (left).
The mathematical model of this circuit can be written as a system of ordinary differential
equations (ODEs). We apply this formulation, since the examinations on the periodicity do
not differ significantly if ODEs instead of DAEs are considered. The system reads

u̇ = (−ıR(u)− ı) /(Cb(t)), ı̇ = u/L (15)

with the node voltage u and the branch current ı. For the input signal, we choose the slowly
varying oscillation
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Fig. 1: Circuit diagram of voltage controlled oscillator (left) and current-voltage relation ı = ıR(u) of nonlinear resistor
(right).

b(t) = 1 + 0.8 cos
(

2π
T1
t
)

with T1 = 1 ms (f := T1
−1 = 1 kHz). (16)

The current-voltage relation of the nonlinear resistor is given by

ıR(u) = (G0 −G∞)Uk tanh (u/Uk) +G∞u. (17)

The used parameters are C = 1 nF, L = 1 µH, Uk = 1 V, G0 = −0.1 A/V, G∞ =
0.25 A/V. Fig. 1 (right) shows the corresponding relation (17).
For constant input b ≡ 1, the system (15) exhibits a periodic limit cycle with a frequency of
about 4 MHz. The input signal (16) changes the capacitance and thus introduces a frequency
modulation. Since the input is periodic, a quasiperiodic signal arises. Consequently, we trans-
form the ODEs (15) into a system (2) of partial differential equations (PDEs). We compute a
biperiodic solution of the system via the method presented in [9]. Its initial values are used to
apply Houben’s strategy now.
To solve the initial-boundary value problem (4), we use a method of lines. The integrals in (9)
are replaced by finite sums evaluated on the lines. The derivatives with respect to t2 are substi-
tuted by BDF2-formulae, see [2], which are applied in the PDEs (2) as well as in the local fre-
quencies (9). The arising system of ODEs is solved by trapezoidal rule in the interval [0, T1],
where a relatively high accuracy is demanded in the step size control.
Firstly, we apply m = 100 lines in the semidiscretisation to demonstrate the optimal solution.
Fig. 2 shows the resulting optimal local frequency, which is periodic in view of our discus-
sions. The local frequency is physically reasonable, since it becomes low for high capacitances
and vice versa. The corresponding optimal MVFs are illustrated in Fig. 3. On the one hand, we
recognise that û is nearly constant in the slow time scale, which is caused by the minimisation.
On the other hand, ı̂ exhibits a slight change in the slow time scale, which describes an AM
signal and thus can not be reduced further.
Secondly, we compare the initial values at t1 = 0 with the end values at t1 = T1 for several
numerical simulations using different numbers of lines, namely m = 25, 50, 100. Table 1
demonstrates the maximum of the differences obtained from the discrete values on the lines.
We recognise that the differences become smaller for an increasing accuracy in the method.
This behaviour indicates that the exact solution is biperiodic or nearly (except for small differ-
ences) biperiodic. In [3], other numerical simulations, where a Van-der-Pol-oscillator is used,
indicate that it can not be excluded that the resulting solution is biperiodic, too.
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Fig. 2: Capacitance Cb [nF] (left) and optimal local frequency ν [MHz] (right).
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Fig. 3: Optimal MVFs û [V] (left) and ı̂ [A] (right).

Table 1: Maximum differences between initial and end values.
number of lines m = 25 m = 50 m = 100

max |û(0, ·)− û(T1, ·)| 8 · 10−2 2 · 10−2 4 · 10−5

max |̂ı(0, ·)− ı̂(T1, ·)| 3 · 10−3 8 · 10−4 1 · 10−6
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5 Conclusions

The approach of Houben permits to solve initial-boundary value problems of warped MPDAEs
efficiently, which yields envelope-modulated signals. We consider initial values of a biperiodic
solution to investigate the determination of quasiperiodic signals. It follows that the resulting
local frequency function becomes periodic in this case. However, it is still an open question
if the corresponding MVF is always biperiodic. We performed numerical simulations with
Houben’s strategy via a method of lines. The results illustrate that it can not be excluded that
the arising solution is automatically biperiodic. In practice, the resulting MVFs seem to be
biperiodic or at least nearly (except for a small difference) biperiodic. If the solution is exactly
biperiodic, then a method for computing biperiodic solutions of the warped MPDAEs can be
constructed based on Houben’s technique. For example, the initial conditions in the method of
lines are just replaced by periodic boundary conditions.
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Summary. The paper presents a historical review and the current state-of-the-art of the Finite
Integration Technique (FIT), method which has been successfully used for almost 30 years for
the solution of electromagnetic field problems. The presented applications are in the range of
high-end RF and microwave technologies.

Keywords—Finite Integration Technique, FEM, 3D field simulation, microwaves, high-
frequency, numerical techniques

1 A Short Historical Review

The Finite Integration Technique, for short FIT [1] was first proposed almost 30 years ago, as a
method for the simulation of electromagnetic fields and of various coupled problems. The key
idea was to use in the discretization the integral, rather than the differential form of Maxwells
equations. This early intuition proved to be correct and to have numerous theoretical, algo-
rithmic and numerical advantages. Moreover, recently the same viewpoint seems to become
predominant also in a historically completely different method, the finite element method [2].
FIT was first proposed with application to the solution of Maxwells equations in frequency
domain (Fig. 1). It was the first eigenmode algorithm able to reliably eliminate all spurious
modes [1] whereas for other methods, such as the FEM, a solution to this issue could be found
only 10 years later.
The first application of FIT to eddy current problems was presented one year after the
first paper (1978) [3], followed by (to mention just a few) the extension of FIT to FDTD-
like schemes, including the extension to r-f-z coordinate system (1980) [4], application to
triangular meshes (1987) [5], waveguide boundary conditions to allow accurate S-parameter
extraction from time domain simulations (1988) [6], stable subgridding algorithm (1995) [7],
application to non-orthogonal grids, including triangular fillings (1998, 1999) [8], model order
reduction in conjunction with FIT (2000) [9].
Around 1980, the FIT gained instantaneous fame in the international accelerator physics
community, as the first code ever which was able to calculate transient field of charged parti-
cles at ultra-relativistic energies. This was the starting point of the MAFIA Collaboration (an
acronym for “solving MAxwell’s equations with the Finite Integration Algorithm”), a consor-
tium of universities, research institutes, accelerator laboratories with the goal to develop an

∗ Invited Paper at SCEE-2006
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Fig. 1: High accuracy mode computation for a 22 Gap IH Ion Accelerator designed entirely based on FIT simulations;
the mesh of the 20m long structure contained 3 million cells (simulation and experimental model)

FIT-based, general software package, for the solution of electromagnetic problems. The result
of the 10 years of existence of this consortium was a full electromagnetic, thermal and particle
tracking software, distributed to (and widely used in) research facilities from 26 countries.
The success of the Finite Integration Technique is probably mainly due to three factors. First,
it is an algorithm with a sound theoretical foundation (among others, stability, orthogonality
of numerically computed modes, energy and charge conservation were demonstrated in a very
early stage). Second, it is applicable not only in frequency, but also in time domain, allowing
thus the simulation of very large or very complex structures. Last but not least, it is applicable
to a variety of mesh types.

2 The Finite Integration Technique

FIT generates exact algebraic analogues to Maxwells equations, which guarantee that the
physical properties of fields are maintained in the discrete space, and lead to a unique solution.
Maxwell’s equations and the related material equations are transformed from the continuous
to the discrete space by allocating electric voltages on the edges and electric fluxes on the
faces of a grid (“primary grid”) and magnetic voltages on the edges and magnetic fluxes on
the faces of a second grid (“dual grid”).
The use of integral degrees of freedom, i.e. voltages and fluxes, instead of field components
(such as used in FDTD) allows not only a very elegant way of writing the matrix form
of Maxwells equations, but also has important algorithmic-theoretical and numerical conse-
quences [10]. In fact, measurable quantities are also of integral type: for instance, the electric
field strength cannot be measured directly, but through the intermediary of the electric voltage
along a very short path.
In the very first step, the problem has to be discretized in either coordinate meshes or tetrahe-
dral meshes, as shown in Fig. 2.
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Fig. 2: FIT allocation of voltages and fluxes along edges and through surfaces, respectively

The next step is to write the first Maxwells equation on all surfaces of the elementary cells:∫
∂A

E · ds = −
∫

A

∂

∂t
B · dA , (1)

where A denotes any open surface, ∂A is its boundary (a closed curve), dA and ds are the
vectorial area and line element, respectively.
The result of the integration of (1) over the cell of the cube using the notations of Fig. 2 reads

�e � + �ek − �e j − �e i = −d/dt
��
bn . (2)

In case of the tetrahedral cell the summation on the left hand side has one component less than
in (2):

�ek − �e j − �e i = −d/dt
��
bn . (3)

After collecting all electric and magnetic unknowns in vectors, one may write the discrete
analogue of the Maxwell equation (1) in a simple matrix form as:

C�e = − d

dt

��
b . (4)

The “curl”-matrix C is a topological matrix (has only elements 0, +1 or -1) and represents the
edges-to-faces incidence matrix on the primary grid. In an almost identical way one may write
down the second Maxwell equation on a dual grid for the quantities

�
h,

��
d and

��
j respectively.

Similarly, the remaining Maxwells equations may be transformed into a discrete set, so that
one finally obtains the so-called Maxwells Grid Equations produced by the FIT approach as:

∫
∂A

E · ds = −
∫

A

∂

∂t
B · dA ↔ C�e = − d

dt

��
b ; (5)

∫
∂A

H · ds = −
∫

A

(
∂D

∂t
+ J

)
· dA ↔ C̃

�
h =

��
j +

d

dt

��
d ; (6)

∫
∂V

B · dA = 0 ↔ S
��
b = 0 ; (7)

∫
∂V

D · dA =

∫
V

ρ dv ↔ S̃
��
d = q . (8)

It is well known that there are two kinds of errors which affect the numerical solution. The
space discretization error is inherent to any numerical method and results from the fact that
the computational domain is discretized into a finite number of mesh cells. The “method
discretization error” on the other hand results from the numerical discretization of the
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continuous operators. For any given set of open surfaces (e.g. mesh faces), the right side of the
equations (5-8) is exact in the sense that it has no method discretization error error involved
(unlike the case in which the differential form of Maxwell’s equations would be discretized
by finite differences). The methods approximation only intervenes when the material relations
are discretized.
The algebraic structure of the discrete material relations is independent of the method for the
local field approximation and results in

D = εE + P ↔
��
d = Mε

�e + ϕ ; (9)

B = µH + M ↔
��
b = Mµ

�
h +

��m ; (10)

J = σE ↔
��
j = Mσ

�e . (11)

The matrices Mε, Mµ are positive definite, while Mσ is in general semi-positive definite.
On Cartesian meshes these matrices have a diagonal form. It must be noted that a similar idea
for discretizing Maxwell’s equations is used in the cell method by Tonti [11], although the
material matrix discretization in this method generally leads to unsymmetric matrices.
The method not only works for virtually any kind of mesh, be it tetrahedral, non-orthogonal
hexahedral or any other coordinate grid, but it may also employ various discretization methods
in the classical language when modeling the material relations locally, including edge elements
as used in many Finite Element approaches. On Cartesian meshes, equations (5-11) can be re-
written to yield the classical FDTD method [12].
The beauty of equations (5-8) is that they represent a one-to-one discrete counterpart of the
corresponding continuous relations (just try it: read C as “curl”, S as “divergence” !). This way,
deriving any second-order equation in the discrete space can be done just as straightforwardly
as in the continuous case.
Take for example the harmonic case (where the time derivatives are replaced by iω), in lossfree
materials with no source currents. The use of the discrete material property relations (9-10) in
equations (5-6) leads to

Mµ−1C�e = −iω
�
h ; (12)

C̃
�
h = iωMε

�e . (13)

The application of the dual curl operator C̃ to the relation (12), and the use of (13) in the
right-hand side yields the discrete form of the well-known wave equation:

C̃Mµ−1C�e = ω2Mε
�e . (14)

The generality of the FIT approach, applicable to different frequency ranges, from DC to THz,
yields an ideal base for implementations in computer codes. Starting almost 30 years ago, a
long series of codes has been written by several authors [13] [5], [14], [15] for many different
applications ranging from statics over quasistatics to high frequency problems. Computer
codes based on FIT have become a routine tool in industry and research.

3 State of the Art

The domain of RF and microwave simulation is characterized by a tremendous variety: many
different types of devices (filters, connectors, antennas, cavities, ...), each requiring specific
postprocessing capabilites; large variety in the geometric complexity and level of detail (e.g.
rounded parts, thin layers, small details in otherwise large structures, complicated shapes),
which imposes tough requirements for the generation of a discretization mesh; various types
of materials (lossy, anisotropic, dispersive, ...); both narrow-band and wide-band applications,
ranging from the MHz to multi-GHz.
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(a) (b)

(c)

Fig. 3: Mesh types for a coaxial connector: (a) Tetrahedral; (b) hexahedral-staircase (some dielectric parts hidden for better
visibility); (c) hexahedral-PBA mesh

While there is no single method which can solve every problem, due to its versatility FIT is
probably the 3D numerical method which covers the largest possible spectrum of simulation
needs. Some of them will be discussed in the present section.

3.1 Meshtypes

Before solving an electromagnetic problem, the structure needs to be spatially discretized,
i.e. a discretization mesh needs to be mapped onto the structures geometry. One of the main
strengths of FIT is the “translation” of Maxwells equations onto any (2D or 3D) given mesh.
The most often employed discretization meshes are the tetrahedral, the staircase-hexahedral
and the conformal-hexahedral meshes (Fig. 3).
The tetrahedral meshes (Fig. 3 a) have the advantage of allowing a good approximation of
curved surfaces. Their main disadvantage is that such a mesh is not appropriate for time-
domain algorithms: the resulting matrices (for any numerical method) can be efficiently solved
in frequency-domain but due to their nondiagonal character, they are inefficient in time-
domain algorithms. Last, but not least, it should be pointed out that the generation of the
tetrahedral mesh is not a trivial task.
The classical hexahedral meshes (Fig. 3 b) have the advantage that they can be easily applied
in both time- and frequency-domain algorithms. In time domain they lead to very memory-
and computing-time-efficient algorithms. The mesh generation is quite straightforward, even
for very complicated geometries. The main disadvantages of the classical hexahedral mesh
are the staircase approximation of curved surfaces, sometimes with severe consequences on
the solutions accuracy [16], and the fact that if a fine mesh is needed in a small zone of the
structure, it will be extended through the entire computational domain.
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Fig. 4: Eigenfrequency variation for a simple cavity with the number of cells in the discretization mesh

Fortunately, there are solutions for both these disadvantages [17] [18] [19] [20], the most
widely used being the PERFECT BOUNDARY APPROXIMATION (PBA) R©(Fig. 3 c), which
maintains all the advantages of the structured Cartesian grids, while allowing an accurate
modeling of curved boundaries.
The PBA geometry improvement allows to use a much coarser mesh than in the staircase
approximation, for the same required accuracy. This effect is illustrated in Fig. 4, which shows
the evolution of a cavity eigenfrequency with the number of meshcells. To reach an accurate
(< 0.1%) value of 1.277 GHz for the eigenfrequency, 20000 meshcells are sufficient in the
PBA mesh, whereas with a staircase mesh more than 500,000 meshcells are needed.
The PBA-extension Thin Sheet TechniqueTM(TST) allows the accurate geometric modeling of
structures with thin layers, such as the curved patch antenna array of Fig. 5 (which is difficult
to mesh with any numerical method).
A new development is the subgridding technique which allows the local refinement of the
Cartesian grid, in regions with high field variation or with fine geometrical details. The total
number of meshcells and the overall computing time are thus reduced considerably (Fig. 6).
Note that in each refined cell the PBA R©and TSTTMalgorithms allow for even more accurate
description of the geometry. Unlike most known subgridding techniques, the one implemented
in CST MWS has guaranteed stability, thus ensuring that the accuracy of the results is not
negatively affected.
For every problem depending on its size and on its geometrical characteristics, there is a
type of mesh which is optimal from the point of view of memory requirements and of the
accuracy of geometry approximation. Disposing of several types of mesh generators within
a single simulation environment can increase tremendously the efficiency of modeling RF
components.

3.2 Time and Frequency Domain Simulations

Contrary to the common belief, FIT is not just a time-domain method: it offers, to mention
just a few solver types, frequency domain (general-purpose, modal analysis and model order
reduction), as well as time domain explicit and implicit.
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Fig. 5: Thin Sheet Technique applied to a curved patch antenna array. Staircase approximation, as well as too small mesh
steps are avoided

Fig. 6: Multilevel Subgridding Scheme showing the flexibility in this hierarchical type of mesh. The small cell area
follows details in a similar way to unstructured meshes leading to a 10-fold reduction of the number of meshcells for the
same solution accuracy

This way, one can often solve one and the same problem with completely different algorithms.
This gives not only the possibility to choose the most efficient algorithm (in terms of
computing time and memory requirements) d uring the time-consuming phase of the struc-
ture design, but it also offers independent results for cross checking in the verification and
prototyping phase.
The time-domain (TD) solvers are the preferred ones when broadband results are required,
since they deliver broadband results with a single run. A typical time-domain application is
shown in Fig. 7: the full 3D simulation of a 30 meter-long airplane illuminated by a plane
wave at 500 MHz. Although quite large (9 million cells), with the efficient FIT/PBA time
domain algorithm it takes under two hours to simulate on a common PC. This problem would
be simply too big for a volume-based frequency domain solution.
TD solvers are also a must if predefined or complicated time signals are needed in the simula-
tion. Ultrawideband (UWB) antenna applications, or Time Domain Reflectometry (TDR) are
just two examples.
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Fig. 7: Surface currents (at 500 MHz) on an airplane illuminated by a plane wave

Fig. 8: Left: Electric field at 10 GHz in a Split Ring Resonator unit cell, Right: reflection and transmission coefficients

Frequency domain (FD) solvers on the other side may be the most efficient when narrow-
band or single-frequency results are required, for small structures in terms of both number of
cells and electrical size, or when periodic boundary conditions with nonzero phase shifts are
needed.
An example of the latter are the Frequency Selective Surfaces (FSS). They are made up of a
large (theoretically infinite) number of identical cells, so that in a first approximation just one
unit cell (with periodic boundary conditions) can be simulated. Fig. 8 shows such a surface:
a metallic surface with regularly-placed slots in the shape of split rings (only one repeating
element is simulated). The surface is illuminated by a plane wave with a specific incidence.
The frequency selective character is evident in reflection and transmission coefficient plot of
Fig. 8 right: transmission is permitted only for some specific frequencies (here, around 9.8
GHz and around 19 Ghz).
It is the common belief that strongly resonant structures are also a case for FD-only, since
the time signals within a resonant structure tend to oscillate for a very long time, making
the TD simulation time also very long. However, the use of signal processing techniques
for the time signals, such as the autoRegressive filtering, can change the situation again in
favor of TD techniques. Moreover, if (relatively) broad-band results are required in a FD
solution, the frequency range needs to be “intelligently” sampled, otherwise key-frequency
points, such as resonances could be simply missed (this cannot happen with a TD technique).
Advanced Multipoint frequency interpolation techniques can be used to interpolate between
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Fig. 9: Left: resonant cavity with excitation antenna and slot; Right: reflection coefficient S11

Fig. 10: Left: Crossection of an RF filter structure (Hexahedral PBA mesh is also shown). Right: S-parameters

calculated frequency points, in order to speed up the broadband calculation (the quite well-
known Asymptotic Waveform Evaluation AWE method performs an extrapolation around
every single calculated frequency point and may fail in case of complicated frequency be-
haviour).
For example, Fig. 9 shows the geometry of an EMC problem: a resonant cavity with a thin
slot. From the S-parameter plot it is obvious that the structure is strongly resonant. The time
domain solver (combined with an autoregressive filtering technique) and the frequency domain
solver (combined with a powerful multi-point fast frequency sweep) were used. Interestingly
enough, for this problem the time-domain solver is the quickest: To reach the same accuracy,
it needed 8 minutes on a standard PC, while the frequency domain solver took more than 1
hour.
For special applications, yet another method might be the most efficient: the Model Order
Reduction (MOR). This is the case of the classical RF filter shown in crossection in Fig. 10:
due to the fine mesh, the initial system has a very high order of 130,000. This is reduced by
MOR to a system with only about 1,000 unknowns, which can be then solved in roughly one
minute on a standard PC.
Meshing alone is only half of the story: full efficiency is reached in combination with auto-
matic optimization and full parameterization. New research has been done on automatic mesh
generation, based on an expert system which takes into account not only the geometry, but also
the physical properties of the device. The most recent trend is to combine the expert system
with the classical automatic mesh adaptation.
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Fig. 11: Electric field inside a circulator structure, containing in the middle a cylinder made of gyrotropic ferrite material

3.3 Material Models

Material models are clearly one of the main “factors” for the accuracy of the electromag-
netic simulation. Real materials most often obey to complicated relationships, are anisotropic
or have properties which vary with frequency. In FIT, anisotropic, lossy, as well as disper-
sive materials with various dispersion behavior types (Debye first and second order, Lorentz,
gyrotropic), are available. They allow the simulation of most complicated devices, such as
plasma devices, or circulators. In Fig. 11, the electric field inside a circulator structure (with a
gyrotropic-material cylinder placed in the middle) is depicted. It was obtained through an FIT-
based magnetostatic simulation to determine the magnetization of the ferrite part, followed by
high-frequency time domain simulation. The circulator effect is evident.
Recently, EMC/EMI concerns, as well as new medical investigation techniques require more
and more simulations involving human body models. These are strongly inhomogeneous, con-
tain many different dispersive materials, and require typically a large and fine mesh. Fig. 12
shows a human head model exposed to the radiation of a mobile phone. Due to the relatively
large size of the model, the a time-domain simulation was used (FD would have required too
much memory). The Specific Absorbtion Rate (SAR) within the head is shown in Fig. 12
(right).
Whereas 3D field simulation is perfectly suited for simulating components and devices of high
complexity, it would be inefficient to apply to the simulation of entire systems: the numeri-
cal effort for obtaining a desired accuracy would simply be too large. For such applications,
a hybrid approach is needed. FIT has been successfully integrated in such a design environ-
ment, in which numerical methods may be arbitrarily mixed: one may e.g. easily combine
fully three dimensional blocks with planar solution tools, analytical solution or mode match-
ing techniques, or virtually with any other technique that is capable of describing an element
by some port behavior [21]. Most importantly, this open architecture approach allows to inter-
face with other specialized software and thus eliminates the dependence on single proprietary
software.
As an example, Fig. 13 shows a block schematic containing a patch antenna array block and its
feeding network. The feeding network contains both lumped circuit elements (amplifier, resis-
tors, capacitors, etc.), as well as 2D microstrip blocks (simulated with a planar field simulator).
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Fig. 12: EMI Study on the human head: Left: Human head with mobile phone. Right: Specific Absorbtion Rate (SAR)
within the head, at eye-level. Light-grey colours indicate zones of high SAR

Fig. 13: Co-Simulation and co-optimization of a circuit-3D EM problem: patch antenna array with feeding network

The antenna array itself is simulated with a full 3D solver. After optimizing the circuit para-
meters to ensure a good matching at the frequency of interest, the combined farfield of the two
patches can be obtained.

4 New Domains of Application and Future Trends

The needs of todays industry go more and more in the direction of computer simulation:
operating frequencies grow and make existing design techniques difficult to apply; device
complexity increases every year; prototyping becomes more expensive and time-consuming.
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Fig. 14: Surface currents on an IC package at 10 GHz

High-frequency electromagnetic simulation today continues of course to be needed in the
classical areas of microwave applications: filters, connectors, waveguide structures, antennas.
The characteristic of this area of applications is that the models become very large, requiring
very efficient algorithms in terms of computational complexity and memory requirements.
A new tendency is to apply field simulation to domains in which until recently only circuit-
simulation techniques were needed: PCBs, integrated circuit components, etc. This is due to
the partial failure of the circuit design techniques, when the operating frequencies of integrated
circuits grow. Figure 14 presents such an example: the surface currents on a Ball Grid Array
Package, at a quite high frequency, 10 GHz. The field effects are clearly visible, and would
not be captured by any circuit simulation.
Another example of a challenging problem is shown in Fig. 15: the full layout and 3D view
of a small portion of a PCB [22]. The geometrical complexity of the 8-layer structure requires
a very fine discretization mesh of up to 109 mesh cells. The structure was simulated on a
24-CPU Intel-based cluster in order to obtain crosstalk between the lines at very high frequen-
cies [23].
Last but not least, there are two other trends which became evident in the last few years.
The first one is the increasing need for coupled problems (electromagnetic coupled with ther-
mal, mechanical, or fluid dynamic systems). The second is the integration of electromagnetic
simulation tools into major design flows (Cadence, Mentor Graphics, etc.), triggered by the
increasing operating frequencies of todays integrated circuits, leading to field effects which
cannot be taken into account by the existing circuit models.
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Fig. 15: PCB Structure from IBM. Left: Layout view; Right: 3D view. The left picture also shows a possible partitioning
of the structure, each portion being simulated on a different processor

5 Conclusion

The Finite Integration Technique, now 30 years young, is probably the numerical method for
electromagnetic field simulation with the most dynamic development.
Due to its capability to solve electromagnetic problems in both time- and frequency-domain,
to the variety of material properties, and to its exceptional numerical efficiency and accuracy,
FIT was used worldwide in the simulation of a wide range of devices, from DC to THz.
In the time-domain, the major break through was the introduction of the Perfect Boundary
Approximation, which allows accurate modelling of curved surfaces while maintaining all
advantages of time-domain algorithms.
Moreover, the Finite Integration Techniques theoretical background contributed, in the last
decade, to fundamental changes of viewpoint for other numerical methods, such as the Finite
Element Method.
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1 Introduction

Opening a textbook on electromagnetism, it is likely that the first set of equations presented
will be Maxwell’s equations

curlh− ∂td = j (1)
curl e + ∂tb = 0 (2)

div b = 0 (3)
div d = ρQ (4)

complemented by a set of constitutive relations of the form

b = µ h , d = ε e , j = σ e (5)

with the mention that the first set are universal (always valid) and the second one contains any
relation one would need to ‘close the system’ and be able to solve it. Electromagnetism is in
this way seen as a set of fields whose evolution in time and distribution in space are ruled by
partial differential equations (PDE) and constitutive relations. There is no place in this setting
for any energy considerations.
Further in the same book however, some energy related notions are likely to be introduced.
The magnetic energy, for instance, is usually defined as a functional of b or h (or even both).
Different materials will be considered, starting with the simplest medium (vacuum) and pro-
ceeding in a bottom-up fashion towards more complex materials : linear, anisotropic, nonlin-
ear, etc. Not for long however, because the definitions become quickly rather technical and fall
outside the scope of a general monograph.
Classical presentations of the theory of electromagnetism leave thus the impression that en-
ergy aspects are by-products of the field theory, somehow accessory and difficult to exploit.
The principles of Thermodynamics however are universal and they must apply to electromag-
netic phenomena also. Maxwell’s equations say actually something yet about electromagnetic
energy conservation, but they do so in a way that makes it impossible to disentangle the differ-
ent energy flows in presence. Moreover, classical presentations of the theory leave unanswered
fundamental questions like

• What are the state variables in an electromagnetic system ?
• How are magnetic and electric energy defined in the general case ?
• What are the possible dissipation mechanisms ?
• How is magnetic energy converted into electric energy ?

∗ Invited Paper at SCEE-2006
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∫
Ω j · Lv a

∫
Ω Lv d · Lv a

∫
Ω j · grad u

∫
Ω hi · curl Lv a

∫
∂Ω h∂ × Lv a · n

∫
Ω Lv d · ei

∫
Ω Lv d · grad u

∫
Ω j · ej

∫
∂Ω u (j + Lv d) · n

ẆM ẆE

ΨK(j)

ΨM( curl a, z) ΨE(d, z)

Fig. 1: EM energy flow diagram in the Euclidean space E.

• How is electromagnetic energy converted into other forms of energy ?
• etc.

Those shortcomings are particularly hampering when one deals with problems like the com-
putation of local electromagnetic forces (energy conversion), magnetic hysteresis (energy dis-
sipation) or magnetostriction (both) or multiphysics problems in general. For such problems,
it really makes sense to dispose of a theory of electromagnetism where energy aspects are
considered from the beginning and throughout.
After pursuing theoretical investigations in those domains, and accumulating along the way
pieces of knowledge about how energy behaves in electromagnetic systems, a big picture has
eventually, and somewhat unexpectedly, formed that gives rise to an energy-based theory of
electromagnetism [1]. This representation of Electromagnetism takes the form of a flow dia-
gram. It provides more information than the classical theory and gives answers to the questions
listed above. Being expressed in integral form instead of by a set of PDE’s, the governing equa-
tions can be established straightforwardly in arbitrary coordinate systems. Finally, the energy-
based theory provides operative concepts, which clarify issues like hysteresis modelling and
give many clues how to deal in a consistent way with coupling terms in multiphysics problems
and parameters in reduced order models.

2 Energy flow diagram

The energy-based theory of electromagnetism is now briefly presented. More details can be
found in [1]. The representation in an Euclidean space of the electromagnetic energy flow
diagram is depicted in Fig. 1. The diagram consists of four interconnected energy reservoirs,
each one associated with a state variable. The state variables are the two electromagnetic
potentials, i.e. the magnetic vector potential a and the electric scalar potential u, and the two
fields associated with electric charges, i.e. the electric displacement d and the current density
j.
The a−reservoir contains the magnetic energy

ΨM (curla, z) ≡
∫

Ω

ρΨ
M (curla, z), (6)

which is the integral over the domain Ω under consideration of the magnetic energy density
ρΨ

M , a function of the induction curla and possibly also of one or several additional non-
electromagnetic quantities (e.g. the strain) represented in a generic way by the unspecified
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variable z. Similarly, the d−reservoir contains the electric energy ΨE(d, z). The u−reservoir
is always empty. The j−reservoir finally, contains the kinetic energy of the charge carriers,
ΨK(j) = α|j|2/2, where α is a constant depending on the mass of the charge carriers. Ex-
cept for superconductors, the inertia of charge carriers is negligible and the j−reservoir can
therefore be considered empty as well.
The co-moving time derivative Lv is a time derivative that accounts for a possible motion
or deformation of the domain Ω under consideration. It is also called material derivative but,
as electromagnetic fields do not need material support, the name co-moving time derivative is
preferred in this context. One has

∂tΨ = ∂t

∫
Ω

ρψ =

∫
Ω

Lvρ
Ψ , (7)

where v is the velocity field. The co-moving time derivative allows obtaining the local form
(partial differential equations) of global energy balances on moving domains. In the absence
of motion, v ≡ 0 and Lv ≡ ∂t. See also [2, 3].
Whereas the internal flows (the flows connecting two reservoirs of the diagram) depend on the
state variables only, the external flows depend on four generalised forces acting on the system.
The dissipative forces hi, ei and ej are associated respectively with magnetic hysteresis,
dielectric hysteresis and Joule losses. The surface generalised force h∂ is associated
with the magnetic energy crossing the surface of the system, by means of an electromagnetic
wave or a boundary condition. The second surface flow represents the energy entering the
system through the conductors crossing its surface. Finally, the flows ẆM and ẆE account
respectively for the electric or magnetic energy converted into non-electromagnetic forms of
energy (e.g. mechanical, chemical, etc.)
The structure of the diagram constitutes the basis of the theory. It tells something fundamental
about how electromagnetic fields interact with matter and spacetime. It makes up a framework
wherein any electromagnetic system, including dissipative and coupled ones, should inscribe.

3 Conservation equations

As the state variables are independent variables describing the system, they can be varied
freely in order to obtain, following a variational line of argument, the conservation equations
implied by the structure of the diagram. By expressing on the one hand energy conservation in
integral form (the variation of energy in the reservoir is equal to the sum of all incoming fluxes
minus the sum of all outgoing fluxes) at all nodes of the diagram and applying on the other
hand the chain rule of derivatives to the algebraic expression of the energy functionals, two
expressions are obtained for the variation of the energy in each reservoir that can be identified
with each other. Conservation equations in local form are then derived by applying the funda-
mental lemma of Calculus of variations, with the arbitrary co-moving time derivatives of the
state variables Lv x, x = a,d, j, u, playing the role of the variations δx. The Euler-Lagrange
equations obtained this way are

curl h̄ = j + Lv d (8)
ē = −Lv a− gradu (9)

ej + αLv j = −Lv a− gradu (10)
0 = div (j + Lv d) (11)

on Ω and h∂ = h̄ on ∂Ω, with the shorthand notations

h̄ =
(
∂b ρΨ

M

)
(curla, z) + hi (12)

ē =
(
∂d ρΨ

E

)
(d, z) + ei (13)
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involving the Frchet derivatives ∂b and ∂d.
On can recognize in (8) Ampere’s law. Faraday’s law is obtained by applying curl to (9).
Equation (10) is a generalisation of Ohm’s law, since the classical material law for conductors
assumes α ≡ 0 and ej ≡ σ−1j. Finally, (11) is redundant with (8), as a consequence of the
fact that the u−reservoir is always empty.
Equation (12) shows that the magnetic field is composed of a reversible part hr ≡ ∂bρ

Ψ
M that

accounts for the magnetization phenomenon (alignment of microscopic magnetic moments),
and an irreversible part hi that accounts for the local dissipation process. The magnetic field
h̄ is thus not a fundamental quantity but a composite one representing at the same time two
different phenomena. A similar remarks holds for ē.

4 Convex analysis

In order to draw all the benefit from the diagram presented in the previous section, some
concepts from Convex analysis are useful. See e.g. [4] for a sufficient introduction to the
subject.
Let X be a set. A function f : dom f ⊂ X �→ R is defined by fixing a domain dom f ⊂ X
and a rule x → f(x) that makes sense ∀x ∈ dom f with f(x) ∈ R.2 The epigraph of f is
the subset of X × R defined by epi f = {(x, z) : x ∈ dom f, z ≥ f(x)}. The function f
is upper-bounded iff ∀x ∈ dom f , ∃ α ∈ R : f(x) ≤ α. The smallest upper bound for f is
denoted by sup f .
Let us suppose now that X is vector space. A subset K ⊂ X is convex iff ∀x, y ∈ K, ax +
(1 − a)y ∈ K with real 0 ≤ a ≤ 1. A function f : dom f ⊂ X �→ R is convex if its
epigraph is convex.
Let us now additionally assume a norm |x| is defined on the vector space X . This notion
allows for consideration of convergence. The set K ⊂ X is closed if it contains the limits
of all its convergent sequences. The function f is lower semi-continuous if its epigraph is
closed.
Let finally X and Y be two Hilbert spaces with the scalar product 〈y, x〉, x ∈ X, y ∈ Y . The
Legendre transform of a function Ψ : domΨ ⊂ X �→ R is the function Ψ∗ : Q ⊂ Y �→ R

defined by the rule
y → sup

x∈dom Ψ

{x �→ 〈y, x〉 − Ψ(x)}. (14)

and the domain Q that is the set of the points y ∈ Y for which the function x→ 〈y, x〉−Ψ(x)
is upper bounded. It can be shown that the functions Ψ∗ defined this way is convex and lower
semi-continuous (clsc) and that Ψ∗∗ = Ψ if Φ is cslc itself.
The functions Ψ : domΨ ⊂ X �→ R and Φ : domΦ ⊂ Y �→ R, are said to be dual iff both

Φ(y) = sup
x∈dom Ψ

{x �→ 〈y, x〉 − Ψ(x)} (15)

Ψ(x) = sup
y∈dom Φ

{x �→ 〈y, x〉 − Φ(y)}

are true. Dual functions are automatically clsc. Note that a pair of functions Φ and Ψ that are
the Legendre transform of each other (i.e. Ψ∗ = Φand Φ∗ = Ψ ) are dual by definition but, as
Q might be different from a prescribed domain domΦ, Φ and Ψ might be dual without having
Φ∗ = Ψ .
It is obvious from the definitions of Ψ and Φ that the inequality

Λ(x, y) = Ψ(x) + Φ(y)− 〈y, x〉 ≥ 0 (16)

holds ∀x ∈ X and ∀y ∈ Y .

2 Note that the domain dom f might be prescribed as being a subset only of the domain on
which the rule x→ f(x) is actually defined.
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The subdifferential ∂xΨ of the function Ψ(x) is the set ∂xΨ = {y ∈ Y : Ψ(x′) − Ψ(x) ≥
〈y, x′ − x〉, ∀x′ ∈ domΨ}. The elements of that set are called subgradients. If the function
Ψ(x) happens to be differentiable at x, its gradient is the only element of ∂xΨ and y = ∂xΨ
can be written instead of y ∈ ∂xΨ . An important result is that the inequality (16) becomes an
equality if either y ∈ ∂xΨ or x ∈ ∂yΦ. Finally, the applications x �→ ∂xΨ and y �→ ∂yΦ are
monotonous in the sense that 〈y2 − y1, x2 − x1〉 ≥ 0 for any given x1, x2 ∈ domΨ and
∀y1 ∈ ∂xΦ(x1), ∀y2 ∈ ∂xΦ(x2).

5 Applications

5.1 Formulations

In many problems encountered in electromagnetism, it is not necessary to solve the complete
set of Maxwell equations. According to the dimensions and the time scale under considera-
tion, the materials in presence and the configuration of the system, it happens often that sim-
plifications are possible. Those simplifications consist generally in dropping terms in the full
Maxwell’s equations and weak formulations are then obtained by applying Galerkin’s method
to the simplified equations.
The alternative top-down approach, which consists in deriving weak formulations directly
from the energy diagram, is not necessarily more straightforward but has nevertheless several
advantages. Firstly, the assumptions done take on a physical justification this way, instead of
a mathematical one. The different terms in the weak formulation also maintain their interpre-
tation in terms of energy, so that they can be exploited to establish the global energy balance
of the device or to express coupling terms in multi-physics problems.
Spelling out the wide variety of weak formulations encountered in computational electro-
magnetism would be fastidious. We are going to consider only electrostatics and
magnetodynamics.

Electrostatics

The electrostatic regime is obtained by setting to zero the state variables a and j and preventing
the system from any energy conversion, i.e. ∂tz ≡ 0, ẆM ≡ 0, and assuming no motion,
v ≡ 0⇒ Lv ≡ ∂t. Since dissipative forces act over time, it is also natural to assume ei ≡ 0
in a static problem. Two conservation equations then remain.
At node u, (11) becomes

div ∂td = ∂tdiv d = 0, (17)

which shows that the quantity div d is conserved. The state variable d is therefore constrained.
The vector potential c is then defined as a new unconstrained state variable, such that d =
d0 + curl c with ∂td0 = 0, div d0 = div d.
The conservation equation at node d in integral form,

∂tΨE +

∫
Ω

gradu · ∂td = 0 ∀ d(t), (18)

becomes then ∫
Ω

{
∂dρ

Ψ
E(d0 + curl c) + gradu

}
· ∂tcurl c = 0 ∀ c(t), (19)

and after an integration by part∫
Ω

∂dρ
Ψ
E(d0 + curl c) · curl ∂tc +

∫
∂Ω

gradu× ∂tc · n = 0 ∀ c(t). (20)
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∫
Ω j · Lv a

∫
Ω j · grad u

∫
Ω hi · curl Lv a

∫
∂Ω h∂ × Lv a · n

ẆM

� M( curl a, z)

∫
Ω σ−1|j|2

� K = 0

∫
∂Ω u j · n

Fig. 2: EM energy flow diagram for the magnetodynamics regime.

This is the vector potential weak formulation for electrostatics. The arbitrary ∂tc can be chosen
equal to the shape functions of the field c. At the boundary, either c (Dirichlet boundary
condition) or −n× gradu (Neumann boundary condition) must be specified.
The formulation in terms of the scalar potential u, is obtained thanks to the concept of duality
introduced above. The dual variables are in this case x = d ≡ d0 + curl c and y = −gradu.
Since (19) is a condition stronger than ∂dρ

Ψ
E � −gradu, the coenergy ΦE defined by (15) as

the dual of the energy ΨE satisfies the equality

ΦE = −
∫

Ω

gradu · d− ΨE , (21)

so that

∂tΦE = −
∫

Ω

∂tgradu · d−
∫

Ω

gradu · ∂td− ∂tΨE

= −
∫

Ω

∂tgradu · d−
∫

Ω

{
gradu+ ∂dρ

Ψ
E

}
· ∂tcurl c

= −
∫

Ω

∂tgradu · d ∀u(t)

by (19). Making now an integration by part, one has∫
Ω

∂grad uΦE · grad ∂tu =

∫
Ω

∂tu div d−
∫

∂Ω

∂tu d · n ∀u(t)

with div d = div d0 the charge density. This is the scalar potential formulation for electro-
statics. At the boundary, either u (Dirichlet boundary condition) or d · n (Neumann boundary
condition) must be specified.

Magnetodynamics

The magnetodynamics regime is obtained by setting d ≡ 0. The corresponding energy dia-
gram is depicted in Fig. 2. Dissipation (Joule and hysteresis) and electromechanical coupling
(v �= 0) are going to be considered in this dynamical formulation, but additional dependencies
represented by z are disregarded, as well as the kinetic energy of charge carrier, i.e. Lv z = 0,
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ih
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Fig. 3: Equilibrium equation (29). The grey circle represents the subgradient G.

ΨK ≡ 0. Energy conservation in integral form at node a and the application of the chain rule
of derivatives to the magnetic energy ΨM write respectively

∂tΨM =

∫
Ω

j · Lv a−
∫

Ω

hi · curl Lv a−
∫

∂Ω

h∂ × Lv a · n− ẆM

∂tΨM =

∫
Ω

{
∂bρ

Ψ
M

}
(curla) · curl Lv a +

∫
Ω

{
Lv ρ

Ψ
M

}
(curla)

and, after identification of both right hand sides,

0 =

∫
Ω

{
∂bρ

Ψ
M (curla) + hi

}
· curl Lv a−

∫
Ω

j · Lv a +

∫
∂Ω

h∂ × Lv a · n

+

∫
Ω

{
Lv ρ

Ψ
M

}
(curla) + ẆM ∀ a(t). (22)

Being independent of Lv a, the last two terms must sum up to zero separately, which defines
the power delivered by magnetic forces (See also [3]).

ẆM = −
∫

Ω

{
Lv ρ

Ψ
M

}
(curla). (23)

The other terms make up the vector potential weak formulation of Magnetodynamics, with an
imposed current density.
If on the other hand the dissipation force ej is assumed to be an invertible function of j
(one has for instance ej = σ−1j for normal conductors), one can with (10) express j =
f(Lv a − gradu) and substitute this in the weak formulation above in order to obtain the
weak formulation of Magnetodynamics with imposed voltages. In practice, the voltage sources
is not modelled explicitly and represented by a discontinuity of u over a given cross section of
the conductor.

5.2 Magnetic hysteresis

The energy diagram indicates that the natural variable to represent the magnetic state of a
material is the induction b ≡ curla. In the presence of hysteresis, this variable is subjected to
a force hr = ∂bρ

Ψ
M deriving from a potential (the magnetic energy ρΨ

M ) and to a dissipative
force hi. It is now shown how complying with this decomposition yields naturally a vector
hysteresis model, in contrast to Preisach and Jiles-Atherton, which are basically scalar models.
Starting from the vector potential formulation (22), using curl h̄ = j and making an integra-
tion by part, the conservation equation at node a in integral form can be put into the form of
the First Principle of Thermodynamics ∂tΨM = Ẇ + Q̇ with
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Q̇ = −
∫

Ω

hi · ḃ , Ẇ =

∫
Ω

h̄ · ḃ (24)

and where ḃ is shorthand for curl Lv a. It follows directly that∫
Ω

{
hr − h̄ + hi

}
· ḃ = 0 ∀ b(t) (25)

so that the conservation equation is h̄ = hr + hi.
The principle of the dynamic hysteresis model is introduced by making a mechanical analogy.
The dissipative phenomenon can be accurately represented by the friction force hi = hκ

i +hλ
i

obtained from the non-smooth non-negative convex potential

Q̇(ḃ) = −
∫

Ω

{
κ |ḃ|+ λḃ

2
}
≤ 0. (26)

Since the dissipation functional Q̇ is a function of ḃ, and not of b like ΨM is, the relation
between Q̇ and hi is not a differential one (subgradient) but an algebraic one (a kind of di-
vision of ρ̇Q by ḃ). However, for a large class of dissipation functionals, this division can be
expressed easily in terms subgradients of convex functionals thanks to the notion of homoge-
neous function. A homogenous function of order n is a function such that f(ξx) = ξnf(x).
It has the property x∂xf = nf . This can be written f/x = (∂xf)/n, which is precisely the
sought relation.
The quadratic term in (26) represents a viscous friction force. It stands for microscopic eddy
currents induced in the material by the variation with time of induction. Since this term is a
homogenous function of order 2 of ḃ, one has

hλ
i =

1

2
∂ḃ(λḃ

2
) = λḃ. (27)

The pinning phenomenon, which is at the origin of magnetic hysteresis, is on the other hand
represented by the dry friction force associated with the term κ |ḃ|. This term is not differen-
tiable at ḃ = 0, but, as it is a convex function, it has a subgradient G defined by

G = {hκ
i , |hκ

i | ≤ κ if ḃ = 0,hκ
i = κ eḃ if ḃ �= 0} (28)

where ex ≡ x/|x|. Since it is a homogeneous function of degree 1, one has hκ
i = ∂ḃκ|ḃ|,

i.e. one can identify hκ
i with the subgradient G.

The equilibrium equation writes finally

h̄− hr − hλ
i = hκ

i ∈ G. (29)

The memory effect originates from the non-univocity of the friction force hκ
i at ḃ = 0. The

subgradient, i.e. the set of possible forces hκ
i , is represented by the grey circle of radius κ in

Fig. 3. If the tip of h̄ is inside the circle, one has ḃ = 0 by (28), which implies ḣr = 0. A
given induction can thus persist although the applied magnetic field h̄ has decreased, whence
the memory effect. If on the contrary the tip of h̄ tends to get out of the circle, hr is updated
according to the differential equation in time

h̄− hr − hλ
i = κeḣr

, (30)

where we have noted that eḃ = eḣr
. Details on the implementation can be found in [5].

The use of non-smooth functionals is essentially a theoretical issue. In the implementation, it
amounts to a simple if statement.
This model is able to represent minor loops, Fig. 4. By combination of several submodels
with different values of κ, the number of parameters of the model can be increased for a better
accuracy. Fig. 5 shows the agreement obtained with 5 submodels. As this hysteresis model
is based on a real physical description of the phenomenon, it makes sense to use it in a 3D
model, even when the parameter identification has been done on basis of uniaxial quasi-static
measurements.
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Fig. 4: Internal loops (left) and minor loops (right) are represented by the model.

Fig. 5: Measurements (left) and model (right) obtained with 5 cells for electrical steel.

5.3 Model reduction

It is getting more and more important in modern computations to dispose of a concise, compu-
tationally tractable, but nevertheless accurate representation of a given large system, in order
to allow real time computation, coupling with other parts of a larger system, etc. There are
essentially two ways to create such simplified representations.
The first approach consists in truncating an asymptotical (in some sense) representation of the
initial system. These are e.g. the Model Order Reduction (MOR) techniques, which are mostly
applicable to linear problems [6]. In this case the initial and simplified representations are of
the same nature. The approximation error is measured by the mathematical norm in terms
of which the convergence of the asymptotical representation is expressed. As this norm has
however scarcely a physical meaning, the neglected terms turn out often to have a significant
impact on the physical properties of the reduced model. Therefore, special actions need be
taken in order to preserve physical properties like passivity, stability, etc.
The second category gathers Parameter Identification methods, which are often based on en-
ergy criteria. When it comes to construct detailed models, energy turns out indeed very often
to be the fundamental quantity to preserve. This holds also for Information Technology (IT)
devices for instance, where information is carried over under the form of a propagating elec-
tromagnetic energy pulses, and distortion is a manifestation of energy diffusion. A good model
is therefore a model able to account accurately for the energy stored in the system, and for the
main energy flows entering the system, being converted inside it, or leaving it.
Various applications of reduction methods implicitly based on energy criteria can be found
in the literature, see e.g. [7, 8, 9]. This approach can be seen also as the one that leads to
the definition of RLC lumped parameters in electrical circuits. Lacking a unifying theoretical
background, it has however not been identified yet as a specific method but the energy diagram
introduced in this paper contributes to providing such a theoretical framework.
The identification method proceeds as follows. The first step consists in identifying subsys-
tems that interact through controllable and monitorable channels. The variables that represent
those interaction channels are usually averaged or global quantities in terms of which engi-
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ẆM

ΨK = 0
RrI

2
r UrIr

ΨM(ϕr, z)
Ii
rϕ̇r

I∂
r ϕ̇r

Irϕ̇r

Fig. 6: EM energy flow diagram in scalar representation.

neers think to their system or measure it. They are thus natural variables for a reduced model
and their number is usually limited. Now, the initial system and the reduced model have their
own energy diagram. Since they both represent the same physical system, corresponding terms
can be identified with each other. This gives the relations necessary to determine the parame-
ters of the reduced model. It is enough to achieve this identification, to construct a map from
the state variables of the large system onto the state variables of the reduced model. The def-
inition of this map is based on the exploitation of existing regularities or simplifying features
of the system.

Application to a synchronous electrical machine

As an example, a synchronous electrical machine is considered, for which one disposes of a
detailed representation (e.g. a finite element model) in terms of the field state variables a, j and
u, and for which one wishes to extract a reduced model in terms of the corresponding scalar
state variables ϕ, Ir and Ur , r = 0, . . . , N , where N is the number of phases of the motor.
The energy diagrams of the field representation and the scalar representation are depicted at
Fig. 2 and 6 respectively.
The simplifying feature that allows reducing the model is the banal observation that the current
density j can be written

j =
∑

r

Irwr, (31)

where the current shape functions wr have support in the conducting regions C ⊂ Ω. Note
that (31) entails no approximation if the wr’s are allowed to depend on time.
Requiring now that the magnetic work is exactly represented, i.e. the corresponding energy
flows in the field and scalar energy diagrams are equal,∫

Ω

j · Lv a ≡
∑

r

Irϕ̇r ⇒ ϕ̇r =

∫
Ω

wr · Lv a (32)

a mapping between ϕ̇ and Lv a is obtained, whereas one needs a mapping between the state
variables ϕ and a. One makes therefore the assumption that the wr’s do not depend on time,
so that one obtains the sought mapping

ϕr : a �→ R , ϕr =

∫
Ω

wr · a. (33)

This single approximation allows identifying all lumped parameters of the reduced model.
It determines therefore also the domain of validity of the reduced model. The reduction is
accurate if the actual wr’s do not vary too much in time. This assumption is true for ideal
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coils, but it can also be fulfilled in a more restrictive way, e.g. for a given frequency in time-
harmonic problems, or on a limited time interval for a linearised model.
Phase resistances are determined by identification of the dissipation functionals

RrI
2
r =

∫
Ω

σ−1|j|2 ⇒ Rr =

∫
Ω

σ−1|wr|2. (34)

There are two different ways to identify the magnetic energy, i.e. the inductance matrix, of the
reduced model. Either one makes a global identification or a linearisation around a given work-
ing point. For a global identification, the inductance is defined as the matrix of multiplicative
factors such that

ΨM (curla) =

∫ ϕr(a)

0

L−1
rs ϕs dx ⇒ L−1

rs ϕs = Ir. (35)

The inductance is in this case a non-linear function of all state variables, and of the ϕr’s in
particular. In practice, the magnetic energy of the system or the fluxes are pre-computed by
static finite element computations over the state space of the system (i.e for all rotor positions,
Ir , . . . ) and the computed values are stored in look-up tables.
This approach has two drawbacks. Firstly, the size of the look-up tables grows exponentially
when the number of parameters increases. Secondly, differentiation of the stored values must
be approximated numerically by finite differences. The discretisation of the state space must
therefore be fine enough, yielding again an increase of the look-up table dimensions. One
avoids one differentiation by storing directly the fluxes ϕr’s, instead of the energy, but one
numerical differentiation is still required to evaluate Ur = RrIr + ϕ̇r .
The second approach consists in linearising the magnetic behaviour of the system around a
given working point. This approach is very useful when one wants to couple the reduced
model of the motor with a high dynamic model of the supplying inverter. The state variables
of the linearised model are denoted by δϕr , and the governing equations are

L−∂
rs δϕs +R−1

r (∂tδϕr − δUr) = 0 (36)

where L−∂
rs ≡ (L∂

rs)
−1 denotes the inverse of the tangent inductance matrix of the reduced

system. It is defined by

L−∂
rs = ∂ϕr∂ϕsΨM (ϕ∗) ⇒ L−∂

rs ϕ̇s = İr. (37)

It can be shown it can be evaluated as follows

L∂
rs = WriJ

−1
ij Wsj , Wri =

∫
Ω

wr · αi (38)

where Jij is the Jacobian matrix of the non-linear system and αi denotes the ith edge shape
function.

5.4 Equivalent time-harmonic reluctivity

Another interesting application of energy-based parameter identification is the definition of
equivalent material characteristics for time-harmonic models. Periodic phenomena are ubiq-
uitous in electromagnetic applications but, due to magnetic saturation or the presence of non-
linear electronic components, actual wave shapes are scarcely sinusoidal, which invalidates
the phasor representation. Still, the complex formalism is so practical and offers so many use-
ful mathematical properties that it is often worth in practice to seek for approximative phasor
representations. In this case again, it is meaningful to adopt energy as identification criterion.
In frequency domain, vector fields are represented by two vectors, e.g. for an harmonic induc-
tion field, one has bω = br + jbi. The associated time domain vector field
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bω(t) = br cosωt− bi sinωt (39)

describes an ellipsis in the three-dimensional geometrical space, of which the two axis are
given by

bmax

bmin

}
=

√
|br|2 + |bi|2

2
±∆ , ∆2 =

(
|br|2 − |bi|2

2

)2

+ (br · bi)
2 .

The general relation between an induction phasor and a magnetic field phasor, when anisotropy
is disregarded, is represented by a complex reluctivity ν = νr + jνi, where νr and νi are real
constants. The corresponding representation in time-domain is the operator

ν = νr +
νi

ω
∂t. (40)

In time domain, considering magnetic hysteresis but disregarding anisotropy, the local relation
between the induction vector b and the magnetic field vector h can be written formally

b(t) = H[h, t], (41)

where H denotes an hysteresis operator. Numerous theoretical and phenomenological repre-
sentations of hysteresis operators can be found in literature. We use here the one presented in
Sect. 5.2. The principle of the identification is now to determine νr and νi so that the energy
balance of the equivalent material represented by the complex ν matches as closely as possible
the energy balance of the hysteretic material represented byH. Since we have two parameters
to identify, we may impose two conditions.
Let us first assume that one has been able, for a given bω(t), to determine a field h	(t) such
thatH[h	, t] = bω(t). From this particular hysteresis curve, the model described in Sect. 5.2
can provide the value of the amount of energy dissipated over one period

Q	 ≡
∫ T

0

h	 · ∂tbω (42)

and the amplitude of the fluctuation of the magnetic energy density ρΨ
M

(∆ρΨ
M )	 ≡

{
max
[0,T ]
−min

[0,T ]

}
ρΨ

M (bω) = ρΨ
M (bmax)− ρΨ

M (bmin). (43)

On the other hand, the magnetic field in the material represented by the complex ν

hω(t) ≡ νbω(t) = (νr +
νi

ω
∂t) bω(t) (44)

allows to write the energy balance

hω · ∂tbω = ∂t

{
νr

2
|bω|2

}
+
νi

ω
|∂tbω|2, (45)

where the bracketed term represents the magnetic energy density. One has therefore the two
relations ∫ T

0

hω · ∂tbω =
ωT

2
νi

(
|br|2 + |bi|2

)
= πνi

(
b2min + b2max

)
≡ Q	 (46)

{
max
[0,T ]
−min

[0,T ]

}
νr
|bω|2

2
= νr∆ ≡ (∆ρΨ

M )	 (47)

that allow identifying νr and νi.
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6 Conclusion

The energy-based formulation of Electromagnetism is not just a re-formulation. It offers sub-
stantial improvements with regard to the classical theory, and in particular a stronger link with
the universal principles of Thermodynamics. The purpose of this paper was to review the ben-
efits of the energy-based formulation from the point of view of numerical simulations. We
have shown that governing equations are obtained in a form that is directly usable by the finite
element method and convex analysis. Moreover, all terms retain a clear physical understand-
ing. This helps in the definition of coupling terms in multiphysics modelling and provides
meaningful criteria for parameter identification.
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Summary. The paper describes the application of the Newton method in conjunction with
the Finite Integration Technique. Even on orthogonal grid pairs, the material matrices
become nondiagonal and lead to higher algorithmic complexity. A uni-directional version of
these matrices provides a computationally inexpensive alternative. The paper compares and
discusses the two algorithms’ order of convergence and their computational complexity.

Keywords—electromagnetic field simulation, Finite Integration Technique, Newton
method, nonlinear constitutive equations

1 Introduction

The Finite Integration Technique (FIT) [WEI96] is often applied in combination with an
orthogonal, staggered grid pair [CW02], leading to sparser algebraic matrices than in the case
of unstructured grids, and to a higher efficiency of the numerical simulation scheme.
In this paper, we show that these beneficial algebraic properties do not apply when using the
Newton method for linearizing a nonlinear field problem. We analyse the reasons for this
and formulate an approximate Newton method that overcomes this. For selected test models,
we show in which cases the approximate Newton method should be preferred over the exact
Newton method and in which cases such approximation is not recommended. The classical
successive approximation method is used for comparison.

2 Finite Integration Technique

2.1 Discretization of the Maxwell equations

The Finite Integration Technique (FIT) [WEI96] is a discretization method for vectorial partial
differential equations, first proposed in 1977 for discretizing the Maxwell equations. The dis-
cretization process is carried out on a primary-dual, staggered grid complex (G, G̃) (Fig. 1a).
The considered degrees of freedom are global ones, such as electric voltages �ep along primary
edges Lp, magnetic fluxes

��
bp through primary faces Ap, or magnetic voltages

�
hp along dual
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Fig. 1: (a) Primary-dual grid pair. (b) Local numbering of primary faces and dual edges associated at a primary grid cell

edges L̃p. The discrete divergence operators S and S̃ and the discrete curl operators C and C̃
on the primary grid G and the dual grid G̃, respectively, are represented by incidence matrices
containing 0, 1 and -1.
The discretized Maxwell equations become [WEI96]:

S
��
b = 0 (1)

C�e = − d

dt

��
b (2)

S̃
��
d = q (3)

C̃
�
h =

��
j +

d

dt

��
d . (4)

The metric and material properties are described by the discretized material relations
��
d =

Mε
�e ,

�
h = Mν

��
b,

��
j = Mσ

�e .
In this paper, we analyze nonlinear magnetostatic formulations∇× (ν∇×A) = Js, whose
FIT-discretized counterpart reads C̃MνC�a =

��
j s, where Mν = Mν(�a) nonlinearly depends

on �a . This dependence is given by the B −H curve.
The solution of the discretized magnetostatic system of equations corresponds to finding the
root of the nonlinear matrix function

F(�a) = C̃MνC�a −
��
j s . (5)

2.2 Assembly of linear material matrices

In FIT, the assembly of linear material matrices is efficiently organized as a loop over the
primary faces. In more complicated cases, however, it is more convenient to assemble material
matrices element by element by introducing a local numbering at the level of a single material
cell Ve. Let the number of primary faces and the number of primary edges be npf , and the
matrix Qe be a 6 × npf -matrix for selecting a local vector associated with cell Ve from the
corresponding global vector, i.e.,

��
be = Qe

��
b and

�
he = Qe

�
h. The primary face areas and the

lengths of the parts of the dual edges inside the primary cell are collected in the 6×6 diagonal
matrices Se and L̃e, respectively.
With these notations, the local reluctivity matrix is computed by

Mν,e = L̃eνeS
−1
e , (6)

with νe the reluctivity of the material in the cell e, and the global reluctivity matrix is assem-
bled by Mν =

∑
e
QT

e Mν,eQe .
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3 Newton Method

3.1 Iteration scheme

The Newton method applied to (5) reads

F′ (�a(k)
)
δ�a(k+1) = −F

(
�a(k)

)
. (7)

The Jacobian F′(�a) is derived from the algebraic formulation (5) as follows

F′(�a) = C̃
d

d
��
b

(
Mν

��
b
)

C = C̃MνdC,

where Mνd is the differential reluctivity matrix.
Similarly as for the chord reluctivity matrix Mν , the differential reluctivity matrix can be
assembled cell per cell: Mνd =

∑
e
QT

e Mνd,eQe .
The cell differential reluctivity matrices Mνd,e are computed by differentiating (6) with
respect to the fluxes at the local faces:

Mνd,e =
d

d
��
be

(
Mν,e

��
be

)
(8)

= Mν,e + L̃e

��
be

dνe

dB2

dB2
cell,e

d
��
be

S̃−1
e , (9)

where dνe
dB2 follows from evaluating the material characteristic. According to the local num-

bering depicted in Fig. 1b, the square of the magnitude of the magnetic flux density in cell e
can be determined by averaging the x, y and z components:

B2
cell,e =

(��
b1 +

��
b2

2Se,x

)2

+

(��
b3 +

��
b4

2Se,y

)2

+

(��
b5 +

��
b6

2Se,z

)2

. (10)

The square root of this value is used to determine the working point on the nonlinear charac-
teristic. The differentiation of (10) leads to the 1-by-6 vector

dB2
cell,e

d
��
be

=
[ ��

b1+
��
b2

2S2
e,x

��
b1+

��
b2

2S2
e,x

��
b3+

��
b4

2S2
e,y

��
b3+

��
b4

2S2
e,y

��
b5+

��
b6

2S2
e,z

��
b5+

��
b6

2S2
e,z

]
. (11)

The second term of (9) is not symmetric, therefore the overall system matrix in (7) is also non-
diagonal and nonsymmetric. The reason is that different shape functions are combined in the
material matrices, which catalogues the FIT in the family of the Petrov-Galerkin techniques:
The reluctivity matrix considers fluxes discretized by some kind of primary facet functions
and voltages discretized by functions defined along dual edges [SW00]. Despite the nonsym-
metry, when the applied material characteristics are monotonically increasing, one can prove
that the differential reluctivity matrix is positive definite. For solving the resulting magne-
tostatic system (7), a Krylov subspace solver for nonsymmetric systems such as the BiCG
Stabilized (BiCGStab) method, has to be applied. Instead of algebraic multigrid techniques,
only single-level algebraic preconditioners such as e.g. Incomplete LU-factorization (ILU) are
directly applicable. The nondiagonal character of the differential reluctivity matrix reflects a
coupling between spatial directions. As will be shown in the numerical examples, this is an
essential property for taking cross-magnetization into account and for ensuring second order
convergence of the Newton method.
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Fig. 2: Double C-core configuration: (a) Geometry, (b) Convergence of different linearization techniques

3.2 Uni-directional differential reluctivity matrix

To overcome the drawbacks of the denser reluctivity matrix, the dense differential reluc-

tivity tensor νd,e = νe1 +
��
be

dνe
dB2

dB2
cell,e

d
��
be

can be replaced by a diagonal approximation

ν
(e)
d,uni = 1 ν

(e)
d,uni on the basis of the scalar differential reluctivity ν

(e)
d,uni = ∂He/∂Be

[DW00]. This uni-directional differential reluctivity matrix Mνd,uni is diagonal and therefore
does not include cross-magnetization effects.

4 Numerical Examples

4.1 C-magnet

To compare the Newton and uni-directional Newton methods, a simple test model was used.
It consists of a C-core driven by a single-wire coil generating a magnetic flux through an iron
cube, and an additional core and winding arranged around the nonlinear piece of iron in a
perpendicular direction (Fig. 2). The relative permeability of the C-core is taken as high as
106 in order to enforce an almost straight flux through the nonlinear piece of material. The
currents in the coils have different magnitudes and are chosen such that the nonlinear part is
highly saturated.
The convergence behaviour for the various methods is plotted in Fig. 2b. The convergence
criterion is the relative correction of the solution in the Euclidian norm ||�ak+1−�ak||/||�ak||.
It is seen that the Newton approach features second-order convergence while the successive
substitution with and without backtracking does not even guarantee first-order convergence.
Although originally also of second order, the convergence of the uni-directional Newton
approach breaks down at a relatively high error, i.e., at 10−2. The explanation is that in this
device the magnetic flux in one direction drives the nonlinear iron piece into saturation, which
also influences the magnetic flux in the perpendicular direction. In the uni-directional New-
ton method, the true differential reluctivity tensor is replaced by a diagonal approximation.
Thus, the coupling between space directions is only weakly taken into account, namely when
determining the new working point between two nonlinear steps iterations.

4.2 Nuclotron-magnet

The behaviour of the successive substitution, Newton and uni-directional Newton methods has
been tested on a real-life application: a superconductive dipole magnet (Fig. 3) designed for the
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Fig. 3: Geometry of the Nuclotron magnet device.
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Fig. 4: Comparison of convergence for the nuclotron magnet example. Left: number of nonlinear iteration steps. Right:
simulation time.

new Facility for Antiproton and Ion Research (FAIR) [KMZ04] to be built at the Gesellschaft
für Schwerionenforschung (GSI) in Darmstadt, Germany. The magnet consists of a super-
conductive coil wound inside a ferromagnetic yoke with additional shimming and air slits to
guarantee a homogeneous magnetic field in the magnet aperture. The geometry was meshed
with 14616 cells corresponding to approximately 40000 degrees of freedom for the magnetic
vector potential. The comparison of the convergence of the nonlinear iteration according to the
number of nonlinear iteration steps indicates the beneficial properties of the Newton method
(Fig. 4a). However, when comparing the three linearization approaches according to the simu-
lation time (Fig. 4b), the advantage of the Newton method is less pronounced, mainly because
of the significantly higher computational cost of assembling the denser material matrix.

5 Conclusions

In contrast to the chord reluctivity matrix, the differential reluctivity matrix arising in the
Newton-FIT discretization of a magnetostatic formulation has off-diagonal entries even on
an orthogonal grid pair. These entries reflect the connection between the spatial directions
through the nonlinearity of the material characteristic. The attempt to construct a diagonal
differential reluctivity matrix leads to the uni-directional Newton method which, for the
numerical examples in the paper, outperformed the exact Newton method when a tolerance
of only 10−2 was required for the nonlinear loop.
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Abstract: - Two armatures of a linear actuator are discretized by the Finite Integration Tech-
nique at two independent three-dimensional Cartesian grids. The fixed and the moving arma-
ture are coupled at a sliding surface, situated in the middle of the air-gap. The moving armature
is displaced in x-direction, on a plane parallel to the coupling plane and the generated forces
are calculated. The mobile armature is made from laminated iron, in which the eddy current
losses are negligible, but the fixed armature is made from massive iron in which the eddy cur-
rents have a significant influence. A coupled transient simulation is carried out, considering
both the magnetic and the mechanic behavior of the actuator.

1 Introduction

Many electromagnetic devices have 2 parts that are moving relatively to each other. Usually,
the relative position can be simulated by remeshing for each displacement position, either the
whole geometry or just a part of it. In this paper, however, two different independent meshes
are coupled at a common interface, which eliminates the need for remeshing and decreases
the computational time.
In order to model the dynamic behavior of the actuator, a transient model combining the
equation of motion with an electromagnetic field is simulated.
In this paper, the Finite Integration Technique is accomplished by a sliding-surface technique
in order to account for nonlinear motion.

2 Electromagnetic Model

The studied linear actuator is a linear, hybrid stepper motor that employs the principle of re-
luctance forces. The actuator is developed and traded by PASIM Direktantriebe [PASIM] and
is commonly applied in industrial applications where accurate linear positioning is required.
The fixed and the moving armature of the 3-D linear actuator (Fig. 1) are modeled indepen-
dently, with the help of the commercial package EM Studio [CST]. The Finite Integration
Technique [Weil96] is used for discretizing the electromagnetic field formulation.
The 2 meshes are connected at a sliding surface situated in the middle of the air gap. The fixed
armature (rail) is made from massive iron, whereas the modules of the mobile armature are
made from laminated iron. A pole pitch consists of a single tooth and a single slot of the rail.
The model in the z-direction (perpendicular to the cross-sectional plane shown in Fig. 1) is
discretized by only one mesh cell. Consequently end-effects occurring within the real ma-
chine are not considered within the FIT model. The solver is programmed in C++ and allows
the coupling of the two meshes and the coupling of the magnetic model with a mechanical
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Fig. 1: Linear actuator

model. It is in this way possible to completely model the actuator’s behavior by calculating
the generated force and how the force is influenced by the relative position of the armatures.
The magnetoquasistatic formulation discretized by the FIT in terms of the magnetic vector
potential integrated along primary edges, �a , reads:

C̃MνC�a + Mσ
d�a

dt
=

��
j s − C̃Mν

��
br , (1)

where C and C̃ represent the discrete curl matrices at the primary and dual grid respectively,
��
j s is the current applied in the coils,

��
br is the remanence of the permanent magnets integrated

over primary facets, Mν is the reluctivity matrix and Mσ is the conductivity matrix. More
details about the spatial discretization can be found in [Weil96], [Ion05].
The mobile armature is displaced in the x-direction, Dirichlet boundaries condition are applied
at the exterior boundary of the model. The formulation couples the �ax and �az components
of the magnetic vector potential allocated at the set of edges tangential to the common inter-
face [DeGe05]. The moving and the fixed meshes do not match at the common interface and
therefore, a 2D interpolation has to be applied. The degrees of freedom (dofs) �amv allocated
at the moving side of the interface have to be coupled to the dofs �a fx allocated at the fixed
side of the coupling interface, here represented by a sliding operator kslid = kεk

p
shift, i.e.,

�amv = kslid
�a fx , where kshift is the shift operator, responsible for the displacement by an

integer number p = [α/∆θ] of grid lines, α is the displacement and ∆θ is the mean value of
the distances between two adjacent grid lines. kε is the interpolation operator, responsible for
the displacement by a fraction of a grid cell.
For example, the displacement of a slightly non-equidistant grid by 1 grid line corre-

sponds to the operator: kslid = kshift =

⎡
⎢⎣

0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 ... 0 0 0

⎤
⎥⎦ . The operator: kslid =

kε =

⎡
⎢⎣

1− ε1 ε1 0 ... 0
0 1− ε2 ε2 ... 0
... ... ... ... ...
0 ... 0 0 1− εn

⎤
⎥⎦ corresponds to a displacement by the fractions

εi =
θmv,i−θfx,i−p+p∆θ

θfx,i−p+1−θfx,i−p
, i = 1...n.

This 2D interpolation technique assumes that the meshes at both sides of the interface are
staggered, i.e., each dof from the slave side of the interface is connected with 2 dofs from
the master side of the interface. In case of a highly non-uniform grid, this assumption is no
longer valid and dangling edges in the z-direction can occur on the master mesh. These master
edges are not connected to edges at the slave side of the interface. This problem is alleviated
by linearly interpolating the dofs of the neighboring coupled edges at the master side onto the
dangling edges at the master side.
The decoupled system of equations obtained by independently discretizing both FIT models
reads:[

Kfx 0
0 Kmv

][
�an+1

fx
�an+1

mv

]
=

[
0

��
j mv

]
−
[

0
Br,mv

]
+

[
Mκ,fx

∆t
0

0
Mκ,mv

∆t

][
�an

fx
�an

mv

]
(2)
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where Kfx = C̃fxMν,fxCfx +
Mκ,fx
∆t

and Kmv = C̃mvMν,mvCmv +
Mκ,mv

∆t
are the stiffness

matrices of the fixed and moving armatures, respectively. The integrated magnetic vector po-
tentials �a fx and �amv are the unknowns in the models, Mκ,fx and Mκ,mv are the conductivity
matrices,

��
j mv is the source current and Br,mv = C̃mvMν,mv

��
br is the contribution of the

permanent magnet.
The coupling is done by interpolating the dofs from the fixed to the moving part. The interpo-
lation procedure is represented by a projection P mapping an arbitrary vector of dofs upon a
vector satisfying the interface conditions, i.e., �amv = P�a fx [DeGe04]. The coupled system
(2) to be solved is:

PH

[
Kfx 0
0 Kmv

]
P

[
�an+1

fx
�an+1

mv

]
=

= PH

([
0

��
j mv

]
−
[

0
Br,mv

]
+

[
Mκ,fx

∆t
0

0
Mκ,mv

∆t

][
�an

fx
�an

mv

])
. (3)

The reluctivity matrix Mν is constructed by FIT [Weil96] by:
Mν = diag(l̃) ν diag(S)−1, where diag(l̃) is the diagonal matrix of dual-lengths, diag(S)
is the diagonal matrix of primary-surfaces and ν is a diagonal matrix of reluctivities [Weil96].
The uni-directional Newton method [DeGe06] is used to ensure a rapid convergence of the
nonlinear iteration. The method uses a differential reluctivity:

νd = ν +
∂ν

∂ | B | | B | , (4)

where the material matrix is constructed on the basis of νd, i.e.,
Mν,d = diag(l̃) νd diag(S)−1. The magnetostatic system equation changes to:

PH

[
Kfx,d 0

0 Kmv,d

]
P

[
pn+1,k+1

fx

pn+1,k+1
mv

]
= PH

[
Kfx 0
0 Kmv

]
P

[
�an+1,k

fx
�an+1,k

mv

]
−

−PH

[
0

��
j mv

]
−PH

[
0

Br,mv

]
+ PH

[
Mκ,fx

∆t
0

0
Mκ,mv

∆t

][
�an

fx
�an

mv

]
(5)

where the superscript n stands for the transient iteration, k stands for the nonlinear itera-
tion and the term p is the increment to the solution. The solution �a reads: �an+1,k+1

fx =
�an+1,k

fx − pn+1,k+1
fx . The system matrices read: Kfx,d = C̃fxMν,fx,dCfx +

Mκ,fx
∆t

and
Kmv,d = C̃mvMν,mv,dCmv +

Mκ,mv
∆t

.

3 Mechanical Model

The displacement of the moving part obeys:

m
d2x

dt2
+ c

dx

dt
+ kx = Fx , (6)

where the first term is related to the inertia of the moving armature, the second term represents
the friction force and the third is the spring force. Here, m is the mass of the moving armature,
c is the mechanical damping coefficient and k is the spring coefficient. Fx is the magnetic force
in the x-direction which is obtained by integrating the Maxwell Stress Tensor on a surface that
encloses the mobile armature [Ion05].
The mechanical equation can be written as a system of first order differential equation:

d

dt

[
x(t)
vx(t)

]
=

[
0 1
−k
m

−c
m

][
x(t)
vx(t)

]
+

[
0

Fx(t)
m

]
, (7)
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and is resolved numerically by an explicit Euler scheme, yielding:
[
xk+1

vk+1
x

]
=

[
xk

vk
x

]
+

[
0 1
−k
m

−c
m

][
xk

vk
x

]
∆t+

[
0

F k
x

m
∆t

]
. (8)

4 Examples

The moving armature is constructed from laminated iron with a negligible conductivity,
whereas the rail is made from massive iron, with a conductivity of 5e6 S/m. Eddy currents
are induced due to the movement.

x
z

y

x

x x x

Fig. 2: A 3-phased linear actuator.

Single-Phase Machine. A first field simulation is carried out for a single module of the actu-
ator (Fig. 1). A stable and an instable equilibrium position is encountered for every excitation
current. As can be seen in Fig. 5 a), the applied force vanishes at a displacement of half of a
pole pitch. Hence, a single module does not feature a self-starting capability.
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Fig. 3: Position and speed for a block current.
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Fig. 4: Displacement force Fx and vertical attraction force Fy for a block current.

In Fig. 3, the position versus time and the speed versus time in the case of a linear actuator with
and without conductivity, launched with an initial speed of 0.1 m/s is shown. In the presence
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Fig. 5: Forces versus position: Fx a) and Fy b).

of eddy current effects, a substantially smaller acceleration is found. Also, the vertical attrac-
tion force Fy in the case of a block current with the amplitude of 3 A and the displacement
force Fx have smaller values in the case of a conductive rail material (Fig. 4).
Three-Phase Machine. Secondly, a simulation of three-phase configuration is carried out.
The simulation makes use of the static force-position characteristic which is calculated for a
single pole pitch τp and for different excitations currents. The permanent magnets magneti-
cally prestress the magnetic circuit in a certain direction. Hence, except for the situation of
the equilibrium positions (Fig.5 a), applying a positive or a negative current to the actuator’s
winding, will displace the module to the left or to the right. The 3-phase machine (Fig. 2)
consists of three modules where each neighboring module is displaced by an integer number
of pole pitches plus a third part of a pole pitch. The performance of the three-phase actuator is
computed by a semi-analytical model using the static force-position characteristic. The exci-
tation currents of the different modules are dephased in time. In the first simulation, sinusoidal
currents with an amplitude of Î = 3 A are applied (Fig. 6):

i1 = Îsin(
x

τp
2π) ; i2 = Îsin(

x+
τp

3

τp
2π) ; i3 = Îsin(

x+
2τp

3

τp
2π) . (9)

In Eq. (9), the currents are directly expressed in terms of the relative positions of the armatures.
This reflects the synchronous nature of the current excitation where the time variation of the
currents is linked to the actuator’s speed, i.e., x = vx t.
The forces for all three modules are derived from the static force-position characteristic by:

Fx1 = Fx(x, i1) ; Fx2 = Fx(x+
τp

3
, i2) ; Fx3 = Fx(x+

2τp

3
, i3) . (10)

The total force is the sum of the three forces. The 3-phase actuator is simulated by combining
the mechanical equation (8), the expressions (9) - (10) and the static force-position character-
istic, organized as a look-up table. The cascaded simulation approach applied to the 3-phase
actuator neglects eddy-current effects in the rail.
In a second simulation, a controlled block current of I = 3 A is applied (Fig. 7):

i1 =

{
−I if x < τp

2

I else ; i2 =

{
−I if x+

τp

3
<

τp

2

I else ; i3 =

{
−I if x+

2τp

3
<

τp

2

I else
.

This control scheme is relatively primitive and leads to a highly oscillating force.The sinu-
soidal current excitations achieves a smaller force, but also exhibits smaller oscillations. It is
therefore possible to reduce the oscillations in the thrust force by an adequate control.

5 Conclusions
A linear hybrid stepper motor is simulated. The fixed and the moving part are independently
discretized by the FIT and coupled at a sliding surface. The 3-phase actuator was calculated
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Fig. 7: First phase block current and the resulted total force Fx.

semi-analytically using the numerically obtained forces. A block current produces a bigger
thrust than a sinusoidal current, but causes large oscillations.
A single-phase actuator constructed from a single module has stable and instable equilibrium
positions. Due to the conductivity of the standstill armature, eddy current losses reduce the
forces.
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Abstract − An efficient methodology to extract reduced order models for electromagnetic
devices is presented. To solve field-circuits coupled problems, the electromagnetic field equa-
tions are discretized by the dual Finite Integration Technique (dFIT), a numerical method
which allows the accuracy control of the extracted parameters. Several techniques are used to
accelerate the extraction process, such as minimal virtual boundary, minimal mesh and min-
imal frequency samples set. The frequency characteristic of the device is then approximated
by a rational function of appropriate degree in order to extract the reduced order model and
its SPICE equivalent circuit. The behavior of the synthesized model extracted with proposed
algorithm, in the case of passive on-chip devices placed on silicon substrate shows good agree-
ment with respect to the measurements.

1 Introduction

With the shrinking of on-chip devices, according to the Moore law, the operating fre-
quency is increased. In this context, the literature reflects much interest in the computation
of frequency-dependent characteristics of on-chip interconnects and passive components [1].
Generally, the electromagnetic simulation by numerical methods is still considered too time
consuming to be a viable solution for computer aided design of integrated systems. However,
the validity of any other new approach is checked by comparison with them. This is why the
International Technology Roadmap for Semiconductors (ITRS, www.public.itrs.net) declared
the high-frequency modelling (> 5 GHz) of interconnect and on-chip passives as a grand chal-
lenge that should be solved in order to continue the pace of progress that was witnessed in the
last three decades.
The goal of the present paper is to present techniques that speed-up the numerical electromag-
netic simulation of on-chip passive components, in order to make it suitable for the CAD
environments and current Electronic Design Automation (EDA) frameworks. These tech-
niques resulted from the research carried on within the European projects FP5/IST/Codestar
(www.imec.be/codestar) and FP6/IST/ STREP/Chameleon RF (www.chame
leon-rf.org). In these projects were designed, fabricated and characterized by experimental
measurements a series of test structures comprising among others on-chip passive compo-
nents. The spiral inductor presented in Fig.1 is a typical example of such structures, used as
benchmarks to validate several modeling and simulation methodologies developed during the
projects duration.
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Fig. 1: A typical on-chip component (www.imec.be/codestar)

2 The Numerical Method

The combination of ALLROM technique [2] with the Very Fast Simulation (VFS) [3]
strategy leads to the following algorithm for modeling of the passive components:

A) Grid calibration − a minimal orthogonal grid is successively refined, until the extracted
resistances and capacitances are accurate enough;

B) Virtual boundary calibration − the computational domain is successively extended, until
the extracted inductance is accurate enough;

C) Frequency analysis − using the grid resulted after refining and extension process, the
frequency dependent matrix of the circuit functions
Z(ω) = R(ω) + jωL(ω) and Y(ω) = Z(ω)−1 = G(ω) + jωC(ω) are computed in a
minimal set of frequency samples, solving the Maxwell equations, by FIT;

D) Optimal order of the compact model − compact models of increasing order and their
SPICE equivalent circuits are extracted and simulated in the frequency domain, until the
result is close to previous computed Y(ω);

E) Validation − based on the results of the SPICE simulation in frequency domain, the scat-
tering parameters S(ω) are computed and compared with the measurements, for a series
of test structures, of practical interest - the Codestar benchmarks.

Below is detailed how this algorithm achieves the optimal tradeoff between solution error and
the required computational resources.

A) Grid calibration by dFIT

The matrices of resistance R and capacitance C for the multi-polar passive components are
extracted from the solution of the 3D field-problems of the static current distribution in con-
ductive domains combined electrostatic field distribution in insulators. Apparently, two simple
3D Laplace problems with Dirichlet boundary conditions for the scalar potential have to be
solved. However in these problems, it is not an easy task to handle the singularities of charge
distribution at edges and corners of conductors. It has been well noticed that the convergence
of capacitance versus discretisation is rather slow due to these singularities, especially in the
most commonly used first-order FDM, FIT, FEM, or BEM based on collocation or Galerkin
method [4]. The high order method we propose is suitable for non-homogeneous dielectrics
being based on Finite Integrals Technique - FIT, and thus not requiring Green function. The
improvement of FIT, able to handle the singularities of charge distribution is called dual Fi-
nite Integration Technique (dFIT) [5]. The main idea of dFIT is to solve the field problem two
times, the first time using the primary grid and the second time using the secondary, dual grid.
The numerical solution of dFIT
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Rd =
Rp + Rs

2
, (1)

is the average of primary and secondary solutions of the problem of the static current-
distribution.

Theorem 1. Theorem on dFIT scissors relationship:
The primary Rp and the secondary Rs solutions are the lower and upper bounds respectively
of the exact solution R:

Rp ≤ R ≤ Rs (2)

and therefore

ε =
‖Rd −R‖
‖Rd‖

≤ ‖Rp −Rs‖
‖Rd‖

(3)

Here A ≤ B means xT(A − B)x ≤ 0 for any vector x. A similar statement states for the
capacitance matrix, extracted from the solution of the electrostatic problem.
The proof of this theorem [5] is based on following remarks: the exact value of the electric
power iTRi is higher than the power iTRpi of primary FIT solution, which is curl-conform,
while the power iTRsi of the secondary FIT solution, which is div-conform is lower than the
exact energy.
This surprising behavior may be explained considered a (curl-conform) scalar potential which
interpolate the voltages in the nodes of the primary grid and a (div-conform) vector potential
which interpolate the edge-values of the dual grid. The curl-conform and div-conform solu-
tions provide lower and upper bounds of the exact solution, regardless the used interpolation.
P.w.l. interpolation on the grid cells generate diagonal discrete Hodge operators with simplest
expressions, which provide the complementary numerical solutions have as graphs the dual
FIT grids.
The accuracy provided by dFIT is similar to that of the second order FEM, but dFIT has
additional advantages, requiring less CPU time to compute the solution, providing a reliable
method to evaluate the numerical error of the solution and first of all simplicity. In order to
understand the outstanding power of the proposed method, let consider a simple example of a
2D field problem: the resistance of a L-shaped conducting sheet. The coarsest grid in this case
contains three rectangular cells and the FIT solution on this grid has a relative error of 17.2%,
while the solution provided by dFIT has an error of only 3.3%. If the harmonic average (the
conductance average) is used then the numerical error became 1.4%, while the computational
effort is reduced to only 15 arithmetic operations. In fig. 2 are presented the resistance stamps
applied in each of the three primary and secondary cells, and how they are assembled in the
L-shaped computational domain.
The initial coarsest mesh is successively refined, dividing each cell in 8 sub-cells and the
refined process continues until the difference between the two bounds became low enough.
This difference is an excellent error estimator for the FIT solution, but it is too pessimistic for
dFIT (which provides in practical cases a 10 times better accuracy). What is more important
is the higher order of the convergence rate for dFIT, as compared with first order traditional
FIT [5].

B) Virtual boundary calibration

The inductance matrix L is extracted from the solution of the 3D magneto-static field
problem. The relative important magnetic energy of the field outside the truncated computa-
tional domain makes the dc inductance very sensitive to the position of the virtual boundary
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Fig. 2: Dual circuit for the L-shape resistor: a) Primary stamp b) Primary dFIT circuit (Rp = 16/7Rsq) c) Secondary
stamp d) Secondary dFIT circuit (Rs = 3Rsq)

and the conditions on it. A large variety of open boundary techniques were developed for
static and quasi-static electromagnetic field problems [6]. Each of them has advantages and
shortcomings. While there is not an all-purpose powerful technique, the selection of the best
technique, suitable for our case, is not trivial. The authors experimented with two approaches:
Equivalent Layer of Open Boundary condition − ELOB and the Strategic Dual Image − SDI
technique [7]. The first approach uses a layer of one cell thickness, with artificial material
properties, mapped on the boundary. Optimal choice of layer parameters yields the first-order
Asymptotic Boundary Condition (ABC) for the magnetic scalar potential ϕ:

∂ϕ

∂r
+
ϕ

r
= 0, (4)

which is actually a homogeneous Robin boundary condition. In the second approach the prob-
lem is solved two times with homogeneous Dirichlet (DBC) and Neumann (NBC) boundary
conditions, and the arithmetic or the harmonic average of extracted parameters,

La =
LNBC + LDBC

2
, or Lh = 2((LNBC)−1 + (LDBC)−1)−1, (5)

respectively is adopted as the numerical solution. The two dual solutions allow the error esti-
mation for the extracted parameters.

Theorem 2. Theorem on scissors relationship for boundary conditions:
Inductance matrix LNBC computed with NBC and inductance matrix LDBC computed with
DBC are lower and upper bounds respectively of the exact solution L, as well as of LELOB,
for any non-negative values of ELOB material parameters:

LNBC ≤ L ≤ LDBC, LNBC ≤ LELOB ≤ LDBC, (6)

and therefore

εa =
‖La − L‖
‖La‖

≤ ‖LNBC − LDBC‖
‖La‖

, (7)

εh =
‖Lh − L‖
‖Lh‖

≤ ‖LNBC − LDBC‖
‖Lh‖

. (8)

The Euclidian norm is natural in this case, but the result is valid for other equivalent norms.
The proof of this theorem is based on the following lemma: a given current distribution
”stores” higher magnetic energy iTL′ i

2
≤ iTL′′ i

2
in materials with higher permeability

µ′(r) ≤ µ′′(r). Neumann and Dirichlet boundary conditions are degenerate cases of the
ELOB condition, with µ→ 0 and µ→∞, respectively.
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Fig. 3: Numerical error of inductance vs. the boundary position.

To improve the accuracy of the brute force truncation of the outer boundary, an iterative
scheme is proposed; virtual boundary shifted (inflated) until the threshold of estimated er-
ror is reached. The boundary of the computational domain is pushed outward recursively with
a fixed geometric progression.
Apparently, ELOB is better then SDI approach, because it does not requires solving the field
problem two times. However, the two dual solutions provide a robust error estimator, and,
based on it, the extension process can be stopped near the optimal position of the virtual
boundary.
Fig.3 shows the relative error of the inductance extracted from the magnetic field distribution
with several boundary conditions for the magnetic scalar potential, such Neumann, Dirichlet,
Robin, as well as the arithmetic and harmonic average between inductances computed as func-
tion of boundary position. As we expected all errors tend to zero when the virtual boundary
goes to infinity. However the convergence of the average values is more accelerated than the
classical Neumann and Dirichlet boundary condition. We notice again the increasing of the
order of convergence in the case of the dual approach.

C) Frequency analysis

The frequency dependent circuit-function Y(ω) is extracted from the solution of the elec-
tromagnetic field problem with appropriate boundary conditions [8]. The full-wave approach
provides the best approximation. However in the practical case of the today on-chip compo-
nents, the electro-magnetic-quasi-static (EMQS) approach is sufficient. That means to accept
magneto-quasi-static approximations inside metallic conductors and electro-quasi-static ap-
proximations inside insulator dielectrics and in the semiconductor substrate. In this way, the
propagation occurs only along the interface surfaces between conductors and insulators, along
interconnection wires.
The final grid obtained after the successive refinement in stage A and successive extension in
stage B is used in the frequency analysis. Since the numerical solution of Maxwell equations is
computed by dFIT, which requires two numerical solutions on two dual grids, the combination
with SDI approach to model open boundary is a natural choice. This combination is proven
to be in practical cases about 300 times more efficient than traditional FIT+NBC approach
with same accuracy. To build numerical scissors for the exact solution, a practical approach
we propose is to use the dual (complementary) solutions, solving the Maxwell Grid Equations
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two times, and computing the admittance matrix using the two dual-staggered grids and two
kind of boundary conditions, for a sequence of frequency samples ω:
• Yp(ω) is computed by FIT on the primary grid with ELOB parameters: εr = M >>

1, µr = 1;
• Ys(ω) is computed by FIT on the secondary grid with ELOB parameters: εr = 1, µr =

M >> 1.
According to the theorems above, the exact matrices of capacity C and inductance L,
extracted from the static field solutions, and the average matrices Ca = (Cp + Cs)/2,
La = (Lp + Ls)/2 comply with the inequalities: Cs ≤ C (and Ca) ≤ Cp;
Lp ≤ L (and La) ≤ Ls. By averaging the two admittance, a numerical solution
Ya(ω) = (Yp(ω) + Ys(ω))/2 is generated, which provides a better accuracy than any of
two direct extracted admittance Yp(ω) or Ys(ω), at least at low frequencies. The dynamic
dFIT+ELOB model is a parallel connection of two dual semi-models with different ELOB
conditions. The equivalent extracted capacitance and conductance correspond to the arithmetic
average, while the equivalent extracted inductance and resistance correspond to the harmonic
average.
The scissor theorems are results of the energy minimization in the case of the solutions of the
elliptic PDE, therefore they are strictly valid only for Electrostatic and Magnetostatic fields.
The general Maxwell equations are hyperbolic PDE, and then there is not expected to be a
similar scissor theorem valid for full-wave fields.
An Adaptive Frequency Sampling (AFS) algorithm automatically selects the interpolation
points, reducing their number and the global computational effort, because the frequency
analysis is by far the most time consuming step.

D) Extraction of the compact model

In this algorithm step, the frequency characteristic Y(ω) of the analyzed component is
approximated by rational functions using the Vector Fitting procedure [9] and then a SPICE
equivalent circuit is synthesized by the Differential Equation Macromodel [10]. The couple
of procedures is iterated, successively increasing the order of the extracted model. Compact
models of increasing order and their equivalent circuits are extracted and simulated in the
frequency domain with SPICE, until the result is close to Y(ω) previously computed, on the
frequency range of interest. In this way, the compact model and its SPICE equivalent circuit
for the given components having an optimal order are generated.

3 Validation of results - CODESTAR benchmarks
The described procedure was validated by comparing simulation results with measured

data for a series of 16 benchmarks developed within FP5/IST/ CODESTAR European project.
Test structures relevant for several technologies Al-SiO2, Cu-Lowk, with different geometries
(meander resistor, MIM capacitors, spiral inductors, several transmission lines and other more
complex configurations) were designed, fabricated and characterized. On wafer measurement
up to 40 GHz were carried out and specific de-embedding procedures were applied, in order
to eliminate the parasitic effects inherent at such frequencies.
Fig.4 shows the good agreement between measurement and simulation of scattering parame-
ters for the benchmark no. 3 (a spiral inductor SP SMALL over Silicon substrate). Errors less
than 5% between simulation of extracted models (of order up to 10) and measurements are
obtained for all the standard test structures.
More data related to the benchmark results are included in the Table 1. Files correspond-
ing to the standard benchmarks described in the first four columns of this table (macro-
models, reduced order models and measured frequency characteristics) may be found at
www.lmn.pub.ro/codestar.
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Fig. 4: Comparison between measurements and simulation.

The proposed strategy has proven to be an efficient methodology for modeling and simulation
of advanced on-chip passive components. It consists of a series of techniques, each having
its characteristic efficiency, measured by the degree-of-freedom (dof) reduction rate. Due to
its higher order, dFIT requires a lower number of grid nodes compared with classical FIT, in
order to obtain the same accuracy of the numerical solution. Therefore, due to necessary finer
grid FIT requires more DOFs to describe the same phenomena. For instance in the case of the
Codestar benchmarks FIT with 330 000 DOFs has the same accuracy as dFIT with 10 000
DOFs. In this sense, the efficiency of the order reduction of dFIT related to FIT is about 33
higher. Despite of the necessity to solve the problem two times, as dFIT requires, the global
computational effort is drastically reduced, due to the smaller size of the linear systems which
are solved. If the systems are solved with direct methods for full matrices the necessary CPU
times is therefore more than 15 000 higher in the FIT case than in the dFIT case. Of course
this impressive speed-up is lower when sparse matrix and/or iterative methods are used.

Table 1: Benchmarks results

Benchmark Meander MIM Spiral Transmission Coupled SP-CMIM
resistor capacitor inductor line inductors LC cell

Nodes of
initial mesh 368,200 833,280 596,068 2,860,441 681,876 458,304
Macromodel
DOFs 19,510 29,925 39,920 19,972 43,138 29,862
No. of AFS
in 0-20GHz 11 15 17 12 15 35
ALLROM
CPU time [s] 145 3326 4278 161 2969 9467
Rel. error
mes-sim [%] 1.4 2.5 13.6 5.0 15 20
Reduced
order 4 4 4 10 4 8
Rel. error
red-sim [%] 0.16 0.02 0.05 1.3 0. 0.5
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On the other hand, the open boundary conditions we propose proves to be in the case of
Codestar test structures about 10 times more efficient than the classical Neumann boundary
conditions. It means that the computational domain extension with ELOB can be reduced so
that the number of DOFs is ten times lower than in the case of the domain with classical
Neumann conditions. This boundary shrinking is made keeping the numerical error at an ac-
ceptable level. Comparing the Vector Fitting with other aposteriori Krylov-type methods for
order reduction, such as PRIMA, it was noticed a better efficiency in the order reduction with
the former approach, which provided models having for the Codestar test structures ten times
less state variables than PRIMA models. An explanation of the Vector Fitting better behavior
could be its capability to consider only the system response in given frequencies, while the
Kylov-type methods take care of the system behavior in all frequency space, including very
high frequency range not-relevant for our case.
Combining these rates of the order-reduction efficiency, the ALPROM approach we propose
became an effective methodology for the model extraction. Taking care of the order reduction
in each modelling stage, the final result is better than the model reduced only with aposteriori
methods. Moreover, working with macro-models reduced at previous stages, each modelling
step requires lower computational resources, such as CPU time and memory.
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1 Introduction

One of the major goals in designing of the integrated EMI filters is to improve their high-
frequency characteristics. To achieve this, special technologies need to be developed, includ-
ing the mechanisms for suppression of the equivalent parallel capacitance (EPC) and of the
equivalent series inductance (ESL), in spite of increasing the high-frequency losses. In this
light, the main goal of the paper is to develop and analyse the effectiveness of several EPC-
reducing technologies. The study is performed using the numerical analysis software Maxwell
Q2D Extractor that is able to give at the end of the numerical analysis process the values of the
lumped per-unit-length capacitance or inductance of the geometrical structure proposed. There
are calculated the EPC of the four single winding structures and of the coupled windings.
The main component of an EMI filter is the low pass filter; therefore, in order to develop the
integrated low pass filter, the integrated L-C structure must be carefully studied and modelled.
The planar integrated L-C structure consists of alternating layers of conductors, dielectrics,
insulation and ferrite materials that produce an integrated structure with similar terminal char-
acteristics as the lumped components. The exploded view of an integrated L-C structure was
shown in Figure 1 [WLD03]. The integrated L-C winding consists of a dielectric substrate
with conductor windings directly deposited on both sides, thus resulting in a structure having
both sufficient inductance and capacitance. This realizes the equivalent integrated capacitance
as well as the inductance. By appropriately terminating the four terminals A, B, C and D of
the integrated L-C winding, the same structure could be configured as equivalent L-C series
resonator, parallel resonator or low pass filter. To integrate the EMI filter, the L-C low pass
filter configuration is used, where AD is the input port and CD is the output.

Fig. 1: The integrated LC structure

The schematic to illustrate the integrate EMI filter composition is shown in Figure 2. The
exploded view of the physical structure is shown in Figure 3 [SW03].
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Fig. 2: Integrated EMI filter composition

Fig. 3: Physical structure of integrated EMI filter

The existing integrated L-C technologies and design methodologies were mostly developed
for high-frequency power passive components integration in order to achieve high efficiency
and high power density. Since functions and requirements are different for passive components
in EMI filters, special technologies need to be developed for EMI filter integration.

2 Numerical Examples

To evaluate the effectiveness of the EPC-reducing technologies, the EPC of the four single
winding structures shown in Figure 4 (a-d) are calculated by using the Ansoft Maxwell Field
Solver - 2D Extractor modules. Each figure in Figure 4 (a-d) is the cross-section view of a
half winding window of the ferrite cores. The blue rectangles are the cross-sections of spi-
ral winding conductor. All the conductors have the same dimensions, which are 1.2 x 0.3
mm. The relative permittivity of the materials used in the simulation is given in Table 1. In
order to perform the numerical simulations a 2D working space has been considered. The
discretization mesh consists of about 20000 linear triangular elements for each structure.

Materials Ferrite Air Copper Kapton Ceramic
εr 12 1 1 3.6 84

Table 1: Material properties used in the simulation

The structure shown in Figure 4a is the original structure, which has two winding layers and
six turns per layer. The first winding layer is an integrated L-C winding, consisting of a thin
copper winding, a ceramic layer and a thick copper winding. The second winding layer is a
normal copper-foil winding. The thickness of the insulation kapton between winding layers is
0.1 mm. The structure shown in Figure 4b is similar to that of Figure 4a, except the insulation
kapton thickness is increased to 0.5 mm. The structure shown in Figure 4c replaces kapton in
Figure 4b with air. The structure shown in Figure 4d is the staggered winding structure. To
achieve non-overlapping windings, the total number of winding layers is increased to four and
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Structure (A) (B) (C) (D)
EPC (pF) 93.6 23.81 10.3 10.7

Table 2: Calculated EPCs of four structures

the number of turns per layer is reduced to three, accordingly. Assuming a linear voltage dis-
tribution along the winding length, the equivalent capacitance is calculated based on equation
Ce = 2WEV

−2, where WE is the stored electric field energy and V is the winding terminal
voltage. The calculation results are given in Table 2. It is evident that the EPC of the proposed
staggered winding structure in Figure 4d is more than 9 times smaller than that of the original
structure shown in Figure 4a.

3 EPC of coupled windings

The calculated capacitance in Table 2 is the EPC of a single winding. For Common Mode
(CM) chokes, there are two magnetically-coupled windings; hence the total equivalent struc-
tural winding capacitance will be increased. The equivalent circuit of two coupled windings
with winding capacitance is shown in Figure 5.

(a) original structure

(b) increased insulation thickness
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(c) ”air spacer”

(d) staggered winding

Fig. 4: FEA Simulation models of different winding structures

Fig. 5: EPC of two coupled windings

Under common mode excitation [WCWLO05], the equivalent circuit can be simplified to
Figure 6.

Fig. 6: Simplified circuit under CM excitation

The equivalent winding capacitance of the coupled windings is Ce = C1 + C2 + C3, where
C1 and C2 are the winding capacitances of each winding, and C3 is the structural capacitance
between windings. So the EPC of the CM choke is at least the sum of the EPCs of each
winding. The FEA simulation model of a planar CM choke is shown in Figure 7, with a
staggered winding structure for each winding. The calculated EPC under CM excitation is
28.237 pF.
To reduce the increased EPC caused by magnetic coupling, the two windings of CM chokes
can be interleaved. Under common mode excitation, the two interleaved windings can be re-
garded as a single winding from an electrostatic point of view. Hence the total equivalent
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Fig. 7: Two staggered windings not interleaved

winding capacitance will be equal to the structural capacitance of a single winding. Figure 8
shows a structure in which the staggered and interleaved winding techniques are combined.
With the same material and geometry parameters, the calculated equivalent winding capaci-
tance is only 8 pF.

Fig. 8: Staggered and interleaved windings

4 Conclusions

The paper proposes several techniques for reducing the EPC of the integrated EMI filters, such
as: ”air spacer”, increased insulation thickness, staggered winding, for the case of the single
winding structure and two staggered windings not interleaved, respectively the staggered and
interleaved winding for the case of the two coupled windings. By applying these technologies,
the EPC of a constructed prototype is reduced from originally around 100 pF to less than
10 pF.
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Abstract - The buffered block forward backward method is described and applied to the prob-
lem of scattering from dielectric cylinders. Numerical results suggest that the method con-
verges in the case of scattering from bodies closed at infinity while it produces divergent
results in the case of scattering from closed bodies.

1 Introduction

The problem of wave scattering computation is of central importance in the domain of compu-
tational electromagnetics. There are different techniques for solving such problems, ranging
from asymptotic methods which are efficient but less accurate to full wave methods which are
highly accurate but computationally intensive. In this paper we describe the Buffered Block
Forward Backward Method (BFBB) which has been used in the past to efficiently compute
scattering from perfectly conducting bodies. We formulate the problem of scattering from
homogeneous dielectric bodies using the coupled Electric Field Integral Equation (EFIE) for-
mulation. While scattering from a perfectly conducting object can be described in terms of a
single integral equation describing fields external to the scatterer, scattering from a homoge-
neous dielectric body is described in terms of coupled electric field integral equations involv-
ing expressions for both interior and exterior fields. The integral equations are discretized by
applying the method of moments with N suitable basis and testing functions. This results in a
matrix equation that has to be solved for the unknown basis function amplitudes.

ZJ = V (1)

Z is a N × N complex valued dense matrix. J and V are column vectors of length N . For
objects small in terms of the wavelength this equation can be solved by direct matrix inversion.
For larger objects we are forced to use iterative methods.

Iterative Solvers

The matrix equation obtained after applying the Method of Moments can not be solved us-
ing direct inversion because of its prohibitive size. Instead iterative solvers are used so that
the solution J is sequentially build up. Golub and van Loan present a very good overview
of iterative methods in [1]. There are two main categories of iterative solvers, stationary and
non stationary. Non stationary methods are usually based on the development of a Krylov sub
space for the Z matrix. The most common non stationary solvers are the Conjugate Gradi-
ent (CG) method and its varations such as Generalised Minimum Residual (GMRES). The



302 Conor Brennan and Diana Bogusevschi

practical use of these solvers for electromagnetic wave scattering applications is thoroughly
described by Peterson, Ray, and Mittra in [2]. Examples of stationary methods include Gauss-
Seidel, Jacobi, Successive Overrelaxation and Symmetric Successive Overrelaxation The last
two are variations on the basic Gauss-Seidel Method.
The block versions of these algorithms are derived in a straightforward fashion from the clas-
sical stationary algorithms. We note that stationary solvers were historically not favored in
solving electromagnetic wave scattering problems due to their questionable convergence prop-
erties. Nevertheless in [3] West and Sturm showed that in the situation when these algorithms
converge they can outperform the non stationary solvers. However they noted that the classical
stationary methods can diverge when applied to bodies which exhibit the possibility of much
multiple scattering. The advantage of the non stationary algorithms is that they are much less
affected by the geometry of the scattering body. The non stationary methods will converge in
most cases, even though at a much slower rate as the amount of multiple scattering increases.

2 Coupled Electric Field Integral Equations for homogeneous
dielectric bodies

In this work the problem of scattering from a dielectric body is formulated using the the
Coupled Electric Field Integral Equations. The derivation of these equations can be found in
[1]:

Einc
z (t) = Kt(t) + jk0η0A

(0)
z + {∂F

(0)
y

∂x
− ∂F

(0)
x

∂y
}S+ (2)

0 = −Kt(t) + jkdηdA
d
z + {∂F

(d)
y

∂x
− ∂F

(d)
x

∂y
}S− (3)

The formulation invokes the surface equivalence principle and expresses the fields interior and
exterior to the scatterer in terms of vector potentials A and F. These potentials are written in
terms of the tangential magnetic field (electric current) and the tangential electric field (the so
called magnetic current K). Applying the method of moments with N pulse basis functions
and Dirac Delta testing functions yields [1][

A B
C D

][
j
k

]
=

[
E
0

]
(4)

Each of A,B,C,D is aN×N matrix. In order to best describe the forward backward method
we explicitly rewrite equation (4) illustrating the matrix entries

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 . . . A1N B11 B12 B13 . . . B1N

A21 A22 A23 . . . A2N B21 B22 B23 . . . B2N

...
...

...
...

...
...

...
...

...
...

AN1 AN2 AN3 . . . ANN BN1 BN2 BN3 . . . BNN

C11 C12 C13 . . . C1N D11 D12 D13 . . . D1N

C21 C22 C23 . . . C2N D21 D22 D23 . . . D2N

...
...

...
...

...
...

...
...

...
...

CN1 CN2 CN3 . . . CNN DN1 DN2 DN3 . . . DNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1
j2
...
jN
k1

k2

...
kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

E2

...
EN

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The unknowns can be re-arranged to sequentially run through the unknowns in each domain
j1, k1, j2, k2, · · · jN , kN rather than first running through the unknown electric current am-
plitudes j1, j2, · · · jN and then the magnetic current amplitudes k1, k2, · · · kN . This trivial
re-arrangement yields



BBFB Applied to EM Wave Scattering from Homogeneous Dielectric Bodies 303

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 B11 A12 B12 A13 B13 . . . A1N B1N

C11 D11 C12 D12 C13 D13 . . . C1N D1N

A21 B21 A22 B22 A23 B23 . . . A2N B2N

C21 D21 C22 D22 C23 D23 . . . C2N B2N

...
...

...
...

...
...

...
...

...
AN1 BN1 AN2 BN2 AN3 BN3 . . . ANN BNN

CN1 DN1 CN2 BN2 CN3 DN3 . . . CNN DNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

j1
k1

j2
k2

...
jN
kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1

0
E2

0
...

EN

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

This can be re-written more compactly as
⎡
⎢⎢⎣

Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

...
...

ZN1 ZN2 . . . ZNN

⎤
⎥⎥⎦

⎡
⎢⎢⎣

J1

J2

...
JN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

V1

V2

...
VN

⎤
⎥⎥⎦ (7)

where Zmn is a 2×2 matrix containing interactions between the unknowns jm, km and jn, kn.

Zmn =

[
Amn Bmn

Cmn Dmn

]
(8)

If we group basis function domains together into M groupings each containing N
M

basis func-
tions we can write a block version of equation (8) as

⎡
⎢⎢⎣

Z̃11 Z̃12 . . . Z̃1M

Z̃21 Z̃22 . . . Z̃2M

...
...

...
...

Z̃M1 Z̃M2 . . . Z̃MM

⎤
⎥⎥⎦

⎡
⎢⎢⎣

J̃1

J̃2

...
J̃M

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ṽ1

Ṽ2

...
ṼM

⎤
⎥⎥⎦ (9)

where Z̃mn contains the interactions between all basis functions in groups m and n. A
forward-backward solver finds a global solution by solving a sequence of problems, each
one describing the surface current in one grouping. By ’marching’ the currents forward and
backward from group to group a solution can be found in manner that can be more efficient
than using other iterative solvers. A block forward backward proceeds by

Z̃mmJ̃
(k+ 1

2 )
m = Ṽm −

∑
n<m

Z̃mnJ̃
(k+ 1

2 )
n −

∑
n>m

Z̃mnJ̃(k)
n (10)

Z̃mmJ̃(k+1)
m = Ṽm −

∑
n<m

Z̃mnJ̃
(k+ 1

2 )
n −

∑
n>m

Z̃mnJ̃(k+1)
n (11)

In [4] and [5] a variation on the block successive over relaxation method is introduced and
applied to the case of scattering from perfectly conducting objects. Rather than solving for
the unknowns in each group individually the interactions with neighbouring groups (referred
to as buffer regions) are included in order to suppress spurious diffraction effects that would
otherwise arise and cause the solution to diverge. Specifically the following equation describes
the forward sweep of the BBFB scheme [4]:

[
Z̃m Z̃m(m+1)

Z̃(m+1)m Z̃(m+1)(m+1)

][
J̃
(k+ 1

2 )
m

B̃m+1

]
=

[
Ṽm

Ṽm+1

]
−
[

L̃m

L̃m+1

]
−
[

Ũm

Ũm+1

]
(12)

In the forward sweep group m + 1 acts as a buffer zone for group m. B̃m+1 is a dummy
unknown used to temporarily compute the unknowns in group m + 1 in order to allow their
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accurate interaction with the unknowns in group m. The last two quantities on the right incor-
porate scattering from other groups and are given by

[
L̃m

L̃m+1

]
=

[ ∑
n<m

Z̃mnJ̃
(k+ 1

2 )
n∑

n<m
Z̃(m+1)nJ̃

(k+ 1
2 )

n

]
(13)

and [
Ũm

Ũm+1

]
=

[ ∑
n>m+1

Z̃mnJ̃
(k+ 1

2 )
n∑

n>m+1
Z̃(m+1)nJ̃

(k+ 1
2 )

n

]
(14)

In the backward sweep the group m−1 acts as a buffer for group m and the process is updated
as [

Z̃(m−1)(m−1) Z̃(m−1)m

Z̃m(m−1) Z̃mm

][
B̃m−1

J̃
(k+1)
m

]
=

[
Ṽm−1

Ṽm

]
−
[
L̃m−1

L̃m

]
−
[
Ũm−1

Ũm

]
(15)

where the lower sum in L̃ is now over n < m− 1 and the upper sum in Ũ is over n > m.

3 Results

The first example presented involves the computation of scattering from an infinite surface
separating a homogeneous dielectric from free-space. The surface is illuminated by fields from
a line-source radiating at 300MHz as depicted in figure (1). To solve the problem numerically
we must truncate the surface which will introduce non-physical diffraction effects. Obviously,
the longer the surface considered the lesser these effects and the more accurate the fields
will be in the central 18m section under the source. In order to ascertain how far away the
truncation must be to achieve acceptable accuracy in the central region we solved a sequence of
problems, where the straight sections of the surface leading to±∞ were truncated at different
points. It was found that truncating the straight segments at (−6, 0) and (6, 0) produced fields
in the central region which differed to those obtained by truncating at (−8, 0) and (8, 0) by on
average 0.13%. We concluded that truncating the surface at (−6, 0) and (6, 0) gives results
in the central section which are essentially identical to those which would be obtained by
considering an infinite surface. We then applied the BBFB to solve this truncated problem.
For this example there were 1320 unknowns which, for the purposes of applying the block
forward-backward method were grouped together into groups of 10. No buffer zones were
used. Figure (2) shows the electric current after only 3 iterations compared to that obtained
using direct matrix inversion. Figure (3) shows the magnetic current after 3 iterations com-
pared to that obtained by direct matrix inversion. We see that excellent agreement is achieved
in both cases. To see how the algorithm performs as the number of iterations is increased
consider figure (4) which shows the convergence properties of the BBFB. Specifically it plots
the normalised error in the solution of the matrix equation

log10

‖V − ZJBBFB‖
‖V‖

against iteration number where JBBFB denotes the surface fields computed using the BBFB.
The norm used is the L2 norm. The results confirm that the BBFB produces convergent results
as the number of iterations is increased.
The second example applies the BBFB to a closed dielectric cylinder schematically shown in
figure (5). The line-source is positioned at (−5, 0) and is radiating at 300MHz. The radius of
the cylinder is 2m and it is centred at the origin. The constitutive parameters of the cylinder
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Fig. 1: Dielectric Homogeneous Surface Closed at infinity
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Fig. 2: Results for Electric Currents for the homogeneous dielectric surface closed at infinity after 3 iterations. The index
on the x-axis refers to the index number of the basis functions used.

are εr = 15 − 0.01j, µr = 1. Discretising at a rate of 10 unknowns per wavelength leads to
972 unknowns. The groups were identified by imposing a rectangular grid over the cylinder
as depicted in figure (5). Each strip in the rectangular grid was λ0

2
= 0.5m in width and the

groups consisted of all basis functions residing in the various strips as indicated. In practice
this produced 12 groups, containing up to 115 discretisation points each. The BBFB was then
applied and the fields were marched forwards and backwards through the structure.
The convergence of the BBFB when applied to this problem is confirmed by examining figure
(6). The algorithm produces convergent results as the number of iterations increases and rea-
sonable results can be obtained with only a few iterations. Figure(7) shows the electric current
after 3 iterations compared to the exact value obtained using direct matrix inversion. Figure
(8) shows the magnetic current after 3 iterations compared to the exact value. Both display
satisfactory agreement despite only requiring a small amount of computational effort.
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Fig. 3: Results for Magnetic Currents for the homogeneous dielectric surface closed at infinity after 3 iterations. The
index on the x-axis refers to the index number of the basis functions used.

1 2 3 4 5 6 7 8 9 10
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Iteration

E
rr

or

Convergence rate of BBFB

Fig. 4: Normalised error log10
‖V−ZJ‖

‖V‖ of BBFB algorithm applied to truncated surface.

4 Conclusions

A buffered block forward backward method has been presented for solving 2D scattering
problems involving homogeneous dielectric bodies. Numerical results suggest that the method
produces quickly convergent results when applied both to scattering from a body closed at
infinity (such as a surface) and to scattering from closed bodies.
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Fig. 5: Closed Homogeneous Dielectric body
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Fig. 6: Normalised error log10
‖V−ZJ‖

‖V‖ of BBFB algorithm applied to cylinder.
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Fig. 7: Results for Electric Currents for the closed homogeneous dielectric cylinder after 3 iterations. The index on the
x-axis refers to the index number of the basis functions used.
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Fig. 8: Results for Magnetic Currents for the closed homogeneous dielectric cylinder after 3 iterations. The index on the
x-axis refers to the index number of the basis functions used.
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Summary. The electrodynamic simulation of 3D high-voltage technical devices can be per-
formed under the electro-quasistatic assumption. In order to avoid large spatial discretization
domains, a Finite-Element-Method (FEM) is coupled to a Boundary-Element-Method (BEM)
which implicitly asserts the electrophysical asymptotic attenuation condition. A symmetric
FEM-BEM coupled formulation in time domain is presented. Numerical results are shown for
the simulation of a three dimensional high-voltage application.

1 Introduction

In this paper, transient simulations under the electro-quasistatic (EQS) assumption are pre-
sented, where the time derivative of the magnetic flux density in the induction law is omitted.
These simulations can be performed for the analysis of technical devices for which electro-
magnetic wave propagation effects are negligible and where the electric energy density of
the problem is much greater than the magnetic energy density. Typically, these conditions are
valid for applications from high-voltage technology or microelectronics. Electro-quasistatic
simulations in the time domain have already been presented using volume-based discretiza-
tion schemes e.g. in [2, 9, 12]. The methods provide the simulation of inhomogenous and
nonlinear material behavior. However, the volume-based methods have in common that the
simulation domain has to be bounded, implicating that one has to provide boundary condi-
tions on the boundary of the domain. This stands for a specific disadvantage of these methods,
especially in the simulation of free-standing high-voltage devices for which usual boundary
conditions cannot model the electrical far field accurately. In the frame of this paper, this
problem is addressed by a symmetric coupling of the FEM and the BEM. Symmetric BEM
or FEM-BEM formulations, respectively, have been proposed e.g. in [10] for the solution of
stationary flow field problems, in [11] for the solution of magnetic field problems or in [6] for
the computation of eddy current problems. Here, a symmetric FEM-BEM coupled formula-
tion for electro-quasistatic field computations in the time domain is presented which takes the
electrophysical asymptotic attenuation of the electric scalar potential, |ϕ (r)| = O(|r|−1) for
|r| → ∞, into account.
The paper is organized as follows: In section 2, the governing differential equation for EQS
fields is stated and the domain decomposition in use is described. The symmetric coupled
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formulation is derived in section 3 while section 4 is devoted to the time discretization and so-
lution of the resulting linear systems of equations. Numerical results are presented in section 5.

2 Domain Decomposition for Electro-Quasistatic Fields

2.1 Transient Electro-Quasistatic Fields

Introducing the electro-quasistatic assumption ∂tB (r, t) = 0 into Maxwell’s equations, a
scalar potential function ϕ (r, t) exists which allows to compute the resulting irrotational elec-
tric field via E (r, t) = −gradϕ (r, t). As a consequence, together with Faraday’s law, the
governing differential equation describing electro-quasistatic fields reads

− div ((κ (ϕ, r) + ε (r) ∂t) gradϕ (r, t)) = 0.

Here, the electric conductivity is denoted by κ, while the electric permittivity is denoted by
ε. Because of the relevance in technical applications, the electric conductivity is assumed to
depend on the governing electric field, thus on the governing electric potential ϕ.

2.2 Model Problem

As inhomogenous electric permittivities and field-strength dependent electric conductivities
can easily be taken into account by the finite-element method while the physical attenuation
condition can be incorporated by the boundary-element method, the computational domain is
decomposed accordingly, see Fig. 1. In ΩFEM, ε = ε (r) as well as κ = κ (ϕ, r) are valid,

�FEM

�BEM
�c

Fig. 1: Geometry of the model problem

whereas in ΩBEM ε = ε0 as well as κ = 0 holds. In the following, the dependence of the
position vector r as well as the time t are omitted. With these conditions, the model problem
is defined as follows:

− div (κ (ϕ) + ε∂t) gradϕ = 0 in ΩFEM, (1)

− div (ε0∂t) gradϕ = 0 in ΩBEM, (2)

in the unbounded domain Ω = ΩFEM ∪ Γc ∪ ΩBEM with the interface boundary Γc. Fur-
thermore, ΩFEM = ΩFEM ∪ Γc and ΩBEM = ΩBEM ∪ Γc holds. The normal vector on the
boundary Γc is assumed to be directed from the domain ΩFEM to the domain ΩBEM.

2.3 Finite-Element Formulation

For the closure of ΩFEM, the standard variational formulation of (1) can be achieved by mul-
tiplication with a test function v and application of Green’s first integral theorem:�

ΩFEM

(gradϕ) (κ+ ε∂t) (grad v) dΩ −
�
Γc

(κ+ ε∂t) γ
int
1 ϕ γint

0 v dΓ = 0, (3)

with the interior trace operator γint
0 and the operator of the interior co-normal derivative γint

1 .
The second integral term allows for the coupling to the boundary element formulation.
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2.4 Boundary-Element Formulation

The solution of (2) in ΩBEM can be formulated based on Kirchhoff’s representation formula,

∂tϕ (r)=
�
Γc

γ′
0
ext 1

4π|r− r′|γ
′
1
ext
∂tϕ

(
r′
)
dΓ ′−

�
Γc

γ′
1
ext 1

4π|r− r′|γ
′
0
ext
∂tϕ

(
r′
)
dΓ ′, (4)

considering the time derivative which occurs in (2). Application of the exterior trace operator
γext
0 and the operator of the exterior co-normal derivative γext

1 , respectively, on eqn. (4) results
in a system of boundary integral equations(

γext
0 ∂tϕ
γext
1 ∂tϕ

)
=

(
1
2
I +K −V
−D 1

2
I − K′

)(
γext
0 ∂tϕ
γext
1 ∂tϕ

)
(5)

with the factor 1/2 for points on a smooth boundary [4]. In (5), the single-layer potential
operator V , the hypersingular integral operator D and the double-layer potential operator K
and its adjoint K′, respectively, are used. The identity operator is denoted by I. Furthermore,

Cext =

(
1
2
I +K −V
−D 1

2
I − K′

)

is usually denoted as Caldern-projector.

3 Symmetric FEM-BEM Coupling

3.1 Continuous Formulation

The BEM formulation (5) can be coupled to the finite-element formulation (3) by expressing
γint
1 ϕ by the second boundary integral equation of the system (5), [4, 3], and by applying the

interface conditions:

γint
0 ϕ = γext

0 ϕ, (6)

(κ+ ε∂t) γ
int
1 ϕ = (ε0∂t) γ

ext
1 ϕ. (7)

Eqn. (7) expresses the normal continuity of the total (conduction + displacement) current
density. According to (7), substituting (ε0∂t) γ

ext
1 ϕ for (κ+ ε∂t) γ

int
1 ϕ in (3), and inserting

ε0γ
ext
1 ∂tϕ from (5) yields the variational equation�

ΩFEM

(gradϕ) (κ+ ε∂t) (grad v) dΩ−

�
Γc

ε0

(
−Dγext

0 ∂tϕ+
(

1

2
I − K′

)
γext
1 ∂tϕ

)
γint
0 v dΓ = 0. (8)

Another variational equation is obtained from the first equation of (5), by multiplication with
another test function τ :
�
Γc

ε0

((
−1

2
I +K

)
γext
0 ∂tϕ− Vγext

1 ∂tϕ
)
τ dΓ = 0. (9)

By (8) and (9), the coupled scalar potential problem is described in the unbounded domain
Ω = ΩFEM ∪ Γc ∪ΩBEM.
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3.2 Discrete Formulation

The variational problem given with eqns. (8) and (9) can be discretized using the Galerkin
scheme with piecewise linear basis functions for ϕ and piecewise constant basis functions for
γext
1 ϕ. This proceeding results in finite-element stiffness matrices C for the electrical con-

ductivity and P for the electrical permittivity. The potential operators of the boundary integral
equations are discretized using the Galerkin-scheme, too, resulting in the single-layer potential
matrix V, the hypersingular potential matrix D and the double-layer potential matrix K. Ad-
ditionally, a mass matrix M is introduced. This leads to the following matrix equation, which
is a system of ordinary differential equations (ODE) in the time domain:

(
Cii Cic 0
Cci Ccc 0
0 0 0

)(
Φi

Φc

t

)
+

⎛
⎝Pii Pic 0

Pci Pcc + D
(
− 1

2
MT + KT

)
0
(
− 1

2
M + K

)
−V

⎞
⎠ d

dt

(
Φi

Φc

t

)
= 0. (10)

Herein, the vector of the degrees of freedom (DoF) is divided into three partitions. The par-
titions Φi and Φc represent the DoF of the scalar potential inside the domain ΩFEM and on
the interface boundary Γc, respectively. The third partition contains the DoF of the co-normal
derivative values t of the scalar potential on the interface boundary Γc. The latter two partitions
are needed to evaluate the scalar potential in ΩBEM by Kirchhoff’s representation formula.
Both matrices in eqn. (10) are symmetric for two reasons: On the one hand, the finite-element
stiffness matrices C, P as well as the boundary-element single-layer potential matrix V and
the hypersingular matrix D, respectively, are symmetric. On the other hand, the non-vanishing
secondary-diagonal matrix blocks related to − 1

2
M + K are transposed to each other.

Because the Galerkin discretization of the BEM operators in (10) results in dense ma-
trix blocks, low-rank approximations of V, D and K, generated by the adaptive-cross-
approximation (ACA, see [1, 8]), are used here. These approximated matrix blocks are stored
in the H-matrix format [5]. Hence, matrix assembly as well as matrix-vector multiplications
of BEM matrix blocks are enabled with almost linear complexity.

4 Solution of the ODE System

4.1 Time Integration Scheme

The system (10) is of the form HκΦ + Nε
d
dt

Φ = 0. In order to perform the time integration,
a singly-diagonal-implicit-Runge-Kutta-method (SDIRK) with four internal stages is applied
to the system, [2]. In each stage of the time integrator, a nonlinear system of equations,

(Nε + aii∆tHκ (Φn
i ))Φn

i = Nε

(
Φ(n) +

i−1∑
j=1

aijΦ
′(n)
j

)
, (11)

has to be solved. Here, Φ′(n)
i =

(
Φ

(n)
i −Φ(n) −

∑i−1

j=1
aijΦ

′(n)
j

)
/aii and Φ

(n)
4 =

Φ(n+1) hold. In (11), the time step length is denoted by ∆t while aij denotes coefficients
of the specific SDIRK3(2) method in use.

4.2 Solution of the Linear Systems

The resulting systems of linear equations (11) are, as a rule, symmetric but indefinite (the ma-
trix blocks C, P and D are positive definite whereas the matrix block−V is negative definite).
Therefore, a biconjugate-gradient-stabilized (BiCGStab) method is used for their numerical
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solution. An algebraic multigrid method (AMG) is used as a preconditioner for the FEM
degrees of freedom solely, whereas the BEM degrees of freedom are currently not precondi-
tioned.
The application of an efficient preconditioner of the whole system matrix will improve the
solution process further on. Its construction is subject of our ongoing research, but is not in
the focus of the paper at hand.

5 Numerical Results

5.1 Charged Sphere

The first numerical example shows a sphere with radius r0. Inside the sphere, the scalar poten-
tial is set to 1 V· sin (ωt). A high electric permittivity results in a nearly homogenous distribu-
tion of the scalar potential inside the sphere and on its surface. The scalar potential is computed
by the proposed FEM-BEM coupling with the surface of the ball as coupling boundary. In the
frame of this example, the electric conductivity is set to zero in order to compare the sim-
ulation result with an analytical solution. The discrete model consists of 4.623 nodes in the
domainΩFEM and 1.369 nodes and 2.734 triangles on Γc, respectively. Fig. 2 shows the scalar
potential distribution at a time instant of maximum voltage at Γc. Inside the sphere, the scalar

Fig. 2: Geometry (left) and scalar electric potential (right)

potential is constant, while outside it shows the expected O
(
|r|−1

)
characteristic. In Fig. 3

the simulation result of this example is compared to its related analytical solution. The relative
error of the simulation result is found to be of the order of 10−3 which could be diminished
further on by an enhanced accuracy for the ACA matrix compression (the ACA accuracy used
here is set to 10−3) and a more refined discretization.

5.2 High-Voltage Surge Arrester

A 3D high-voltage surge arrester, a common technical device in the high-voltage technology
for outdoor installations is a structure which mainly consists of metal, insulators and varistor
material, is presented. In this EQS simulation, the electrical conductivity of the metal-oxide
varistor material is taken into account by a nonlinear characteristic given in [12]. As excitation,
the top of the device is set to a sinusoidal high-voltage of 471 kV with an angular frequency of
50 Hz while its stand is set to 0 V. The discrete model consists of 33.964 nodes in the domain
ΩFEM while the coupling boundary is discretized with 5.972 nodes and 2.988 triangles. The
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Fig. 3: Numerical and analytical computed solution (left), relative error of the numerical solution (right)

application of the ACA results in a reduction of the memory requirement to 10-25% of the
uncompressed matrix blocks. Fig. 4 shows the geometry of this problem as well as the scalar

Fig. 4: Geometry, scalar electric potential computed by FEM and by FEM-BEM (from left). While the boundary is set to
0 V in the FEM simulation, the effect of the open boundary in the FEM-BEM simulation is obvious.

potential distribution at a time instant of maximum excitation voltage computed by a pure
FEM simulation as well as by a simulation based on the proposed FEM-BEM coupling. For
the FEM simulation, the boundary is provided with a Dirichlet boundary condition of 0 V [7].

6 Conclusion

A symmetric FEM-BEM coupled formulation for transient simulations of electro-quasistatic
fields in the time domain was proposed. This formulation takes local nonlinear material be-
havior as well as the physical attenuation of the scalar potential condition for regular charge
distributions into account. Discretization leads to symmetric, but in general indefinite linear
systems of equations. Numerical results of a validation example and a realistic three dimen-
sional technical application are presented.
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Abstract - The paper analyzes the influence of the computational errors on the accuracy of
magnetic material modelling with scalar Preisach model. The numerical tests on magnetic
recording media allow the correct choosing of numerical algorithms for model parameter iden-
tification.
Keywords - Hysteresis modelling, Preisach model, computational errors, magnetic materials.

1 Introduction

The magnetic excitation systems are very useful in technical applications. Their design starts
from the required distribution (in time and space) of the magnetic field, in order to produce
the desired effects. But, this behaviour depends on the magnetic properties of the target object
and requires a material model that includes the hysteresis phenomenon.
For technical applications, the Preisach hysteresis model [May91], [Tor99] offers a good rate
between the computational efficiency and the result accuracy [LPA00]. The classical Preisach
model considers that a ferromagnetic material is made up of dipoles (hysterons) having a
magnetic behavior described by a rectangular hysteresis cycle. The distribution of these el-
ementary operators with respect to their up- and down-switching values (a,b) is represented
by Preisach function P(a,b) and it identifies the modeled material. The magnetization (model
output) is computed by the superposition of the hysteron contributions. In this way, the ma-
terial evolution can be followed in the Preisach triangle (−Hs ≤ b ≤ a ≤ +Hs), Hs being
the saturation magnetic field. This evolution corresponds to a moving staircase line between
the areas corresponding to the positive and the negative saturated hysterons, in the Preisach
triangle; the staircase line depends on all the previous values of the magnetic field H (model
input).
The Preisach function identification may be done by analytical or numerical approximation.
In the first case, one can determine the Preisach function by identifying the parameters of
particular density functions (e.g. a factored -Lorentzian or a lognormal-Gauss distributions
[Tor99]); it presents unpredictable modeling errors because there is not a real justification
for assuming a particular distribution function. The numerical approximation involves a step-
function defined on the meshed Preisach triangle and may use a limited set of experimental
data [HR02].
The modelling errors may be: intrinsic model errors (according to the Preisach’ hysteresis
theory), experimental errors (e.g. measurement noise) or intrinsic computational errors. The
computational errors of the model parameter identification influence the model accuracy in any
electromagnetic field computation that uses it [DSA06]. One will assume that the Preisach
function is identified in a numerical form, started from a set of experimental FORCs (first-
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order reversal curves) which are obtained for bank cards, subway tickets, floppy disks and
hard disks, with a vibrating sample magnetometer (VSM 7304 LakeShore(R)). The FORCs
number imposes the number of cells in the Preisach triangle mesh. The non-intrinsic exper-
imental influences are controlled by choosing the maximum applied magnetic field and the
field step, which determine the Preisach triangle boundary and meshing. Then, the numerical
Preisach distribution is used in the computational model by superposing each cell contribution
(identified from FORCs by solving the equation system using sequential substitution or direct
methods) or by using the Everett integrals. Each procedure involves specific numerical errors.
The impact of these experimental and numerical errors is presented for different histories of
the applied magnetic field.

2 Computational Errors Generated by Experimental Data

The paper is focused on the computational errors of the classical Preisach identification proce-
dure, in order to minimize them, but the origin of these errors may be in the used experimental
data. The experimental FORCs are obtained by a vibrating sample magnetometer (VSM) for
magnetic recording materials: bank cards, access card tapes, floppy disks. In these cases, the
scalar Preisach model can be used, but the conclusions are also valid for any generalized model
[IP06].
The experimental setup uses a thin sample, having (4x4) mm2, which is vibrated into the
airgap between the two poles of the VSM electromagnet. The applied magnetic field, which is
parallel with the sample surface, is controlled by the current passing through the electromagnet
coils and is measured with a Hall probe. For each field value, the corresponding magnetic
moment of the sample is measured. The all measurement process is automated, the desired
succession of the applied field values being built before the experiment, with a dedicated
software on the computer that controls the VSM. The FORCs’ measurement starts from the
positive saturation. The applied field is decreased to the starting point of the first FORC;
then, it is gradually increased to the saturation value, obtaining the first FORC. The process is
repeated for the next FORC, which has the starting point for a smaller value of the magnetic
field, and so on. The quasi-stationary variation of the magnetic field uses the desired field step.
The measurement parameters influence the model identification. A correct value of the sat-
uration magnetic field is usually high for magnetic recording materials and imposes a large
number of FORCs. Our tests show that identification with 80 FORCs is more sensitive to the
numerical errors, comparing to identification with 40 FORCs: for floppy disk sample, the con-
ditioning number of the algebraic system matrix that must be solved is nc=1020 vs. nc=287
for 40 FORCs. At the same time, the equipment errors in fixing each applied magnetic field
value have a greater influence if the field step is smaller.
A second problem is the presence of the reptation phenomenon and the saturation of the VSM
yoke [Fio04], which affects the FORCs measurement. Indeed, the measurement of 5 consecu-
tive cycles shows a relative mean increasing of the reversal field value, which depends of the
magnetization level: for bank card sample, one obtains 0.4 % for saturation zone and 11.3 %
for small negative magnetization. A solution could be the normalization of each FORC by its
maximum value, before proceeding to the identification.
The equipment noise could also affect the experimental data accuracy, especially for small
samples with weak magnetic moment. The FORCs smoothing can improve the numerical
identification, but it changes the numerical hysteresis curves. For example, Figure 1 shows the
effect of a low-pass filtering by calculating an average of adjacent points, for a subway mag-
netic ticket sample having (4x4) mm2. The filtering reduces the local peaks of the Preisach
function - see Figure 2 for unfiltered experimental data and Figure 3 for filtered data. The dis-
tribution shape shows that a numerical Preisach function is more accurate than an analytical
distribution function [LPA00].
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3 Numerical Errors

The identification assumes that the Preisach function is constant in each cell of the meshed
triangle. These values are computed from a linear algebraic equation system, either by se-
quential substitution, or by direct methods (e.g. pivoting Gauss) because the FORCs number
is small (less than 100) in order to have an efficient computational model [DSA06]. The ob-
tained Preisach function presents small differences (10−12 % in only 6 cells) between the two
methods of the system solving. The use of Everett function instead of Preisach function dimin-
ishes, by double integration, the errors. A good compromise can be obtained if the computed
unknowns are the values of the Preisach function integral on each cell of the meshed Preisach
triangle. The local peaks can produce local anomaly in numerical curves, like in Figure 4.

Fig. 1: Effect of the experimental data filtering on numerical simulation of subway magnetic ticket

Fig. 2: Preisach function for identification with 80 FORCs
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Fig. 3: Preisach function for identification with 80 filtered FORCs

4 Testing of Preisach Model Accuracy

The numerical simulation follows different histories of the applied magnetic field: evolution
on first-order asymmetrical cycles (with constant or variable field step) and evolution on as-
cending and descending curves of different order. The experimental and numerical curves for a
magnetic bank card sample are presented in Figure 4, 5 and 6. The model accuracy is sufficient
for a technical purpose, like the electromagnetic field computation in devices with hysteretic
magnetic materials. Significant errors could arise in the hysteresis cycle reversal points if the
magnetic field step is variable and the magnetization (model output) must be interpolated on
the Preisach triangle mesh (see Fig.5). A variable step meshing is better, but it could be pro-
hibitive from the computation point of view.
Indeed, the errors are bigger for the hysteresis curves that start from the magnetic fields values
which are close to the coercive one (see also [DSA06]), especially for hard magnetic materi-
als. The explanation is that the slope of the major hysteresis cycle around the coercive field is
big and two FORCs, starting from points having the magnetic field values close to the coercive
field, are very different. At the same time, for the saturation zone, the use of the same field step
generates FORCs that are very close to each other and are affected by the reptation phenom-
enon. The conclusion is that the FORCs’ number is not so important as their distribution: the
starting points of FORCs must have the magnetization values that are approximately equidis-
tant. Unfortunately, this constraint leads to a more difficult experimental setup (the field step
is variable) and to a non-uniform mesh of the Preisach triangle. Perhaps, these inconveniences
could be overcome if a greater accuracy is imposed in a particular application.

5 Conclusions

The study outlines the sources of errors that could occur in hysteresis modelling. The experi-
mental data used in model identification (FORCs in our case) must be carefully analyzed and
filtered for generating a smooth numerical distribution function. The FORCs number must be
correlated with the saturation magnetization, but it must not be very high, because the exper-
imental noise and the reptation influence are amplified in the ill-conditioning identification
procedure. It is more convenient, from the computation point of view, to use the Everett
functions and a constant mesh step.
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Fig. 4: Experimental and numerical asymmetrical hysteresis cycles for a bank card.

Fig. 5: Experimental and numerical hysteresis curves with variable step field for a magnetic bank card.

Fig. 6: Experimental and numerical symmetrical cycles for a magnetic bank card.
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Summary. We first show the idea behind a space-mapping iteration technique for the effi-
cient solution of optimization problems. Then we show how space-mapping optimization can
be understood in the framework of defect correction. We observe a difference between the
solution of the optimization problem and the computed space-mapping solutions. We repair
this discrepancy by exploiting the correspondence with defect correction iteration and we con-
struct the manifold-mapping algorithm, which is as efficient as the space-mapping algorithm
but converges to the accurate solution.

1 Introduction
Space mapping (Bandler et al. [1, 2]) is a technique to reduce the computing time in demand-
ing optimization procedures by means of simple surrogate models. Space mapping makes use
of both accurate (and time-consuming) models and less accurate (but cheaper) ones.
The original space-mapping procedure corresponds with right-preconditioning the coarse (in-
accurate) model in order to accelerate the iterative procedure for the optimization of the fine
(accurate) one. The iterative procedure used in space mapping for optimization can be under-
stood as a defect correction iteration [3] and the convergence can be analyzed accordingly.
We show that, right-preconditioning is generally insufficient and (also) left-preconditioning
is needed. This leads to the improved space-mapping or ‘manifold-mapping’ procedure. This
manifold mapping is shown in some detail in Section 5

2 Fine and coarse models in optimization

The optimization problem.

The specifications of an optimization problem are denoted by (t,y) ≡ (ti, yi)i=1,...,m. The
independent variable is t ∈ R

m. The dependent variable y ∈ Y ⊂ R
m represents the quanti-

ties that describe the behavior of the phenomena under study. The set Y is the set of possible
aims.
The variable y does not only depend on t but also on control/design variables, x. The differ-
ence between the measured data yi and the values y(ti,x) may be the result of, e.g., measure-
ment errors or the imperfection of the mathematical description.
Models that describe reality appear in several degrees of sophistication. Space mapping ex-
ploits the combination of the simplicity of the less sophisticated methods with the accuracy of
the more complex ones. Therefore we distinguish the fine and the coarse model.

∗ Invited Paper at SCEE-2006
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The fine model.

The fine model response is denoted by f(x) ∈ R
m, with x ∈ X ⊂ R

n the fine model control
variable. The set f(X) ⊂ R

m represents the fine model reachable aims. Notice that, with
n < m, f(X) is an n-dimensional manifold in Y ⊂ R

m. The fine model is assumed to be
accurate but expensive to evaluate. For the optimization problem a fine model cost function
||| f(x)− y||| should be minimized. So we look for

x∗ = argmin
x∈X

||| f(x)− y||| . (1)

A design problem, characterized by the model f(x), the aim y ∈ Y , and the space of possible
controls X ⊂ R

n, is a reachable design if the equality f(x∗) = y can be achieved for some
x∗ ∈ X .

The coarse model.

The coarse model is denoted by c(z) ∈ R
m, with z ∈ Z ⊂ R

n the coarse model control
variable. This model is assumed to be cheap to evaluate but less accurate than the fine model.
The set c(Z) ⊂ R

m is the set of coarse model reachable aims reachable aims! coarse model.
For the coarse model we have the coarse model cost function ||| c(z) − y||| and we denote its
minimizer by z∗,

z∗ = argmin
z∈Z

||| c(z)− y||| . (2)

The space-mapping function.

The similarity or discrepancy between the responses of two models is expressed by the
misalignment function r(z,x) = ||| c(z) − f(x)||| . For a given x ∈ X it is useful to
know which z ∈ Z yields the smallest discrepancy. Therefore, the space-mapping function
p : X ⊂ R

n → Z ⊂ R
n is introduced,

p(x) = argmin
z∈Z

r(z,x) = argmin
z∈Z

||| c(z)− f(x)||| . (3)

Perfect mapping.

To identify the cases where the accurate solution x∗ is related with the less accurate solution
z∗ by the space mapping function, a space-mapping function p is called a perfect mapping iff
z∗ = p(x∗).
We notice that perfection is not a property of the space-mapping function alone, but it also
depends on the data y considered. A space-mapping function can be perfect for one data set
but imperfect for a different data set, and if a design is reachable a space mapping is always
perfect irrespective of the coarse model used.

3 Primal and dual space-mapping solutions

In literature many space mapping based algorithms can be found [1, 2], where two types can
be distinguished: the primal and the dual.
The primal space-mapping approach seeks for a solution of the minimization problem

x∗
p = argmin

x∈X

‖p(x)− z∗‖ . (4)

The dual determines
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x∗
d = argmin

x∈X

||| c(p(x))− y||| , (5)

where we can recognize c(p(x)) as a surrogate model.
Both approaches coincide when z∗ ∈ p(X) and p is injective. If, in addition, the mapping
is perfect both x∗

p and x∗
d are equal to x∗. However, in general the space-mapping function p

will not be perfect, and hence, a space-mapping based algorithm may not yield the solution of
the fine model optimization. The principle of the approach is summarized in Figure 1.

The surrogate model: c(p(x)) ≈ f(x).
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c
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Fig. 1: The space mapping function p(x) = argmin
z∈Z

||| c(z) − f(x)||| .

4 Defect correction iteration

The efficient solution of a complex problem by the iterative use of a simpler one, is known
since long in computational mathematics as defect correction iteration [3].
To solve a nonlinear operator equation

F x = y, (6)

where F : D ⊂ E → D̂ ⊂ Ê is a continuous, generally nonlinear operator and E and Ê are
Banach spaces, defect correction iteration reads{

x0 = G̃0 y ,

xk+1 = G̃k+1

(
F̃k xk − F xk + y

)
,

(7)

where F̃k is a simpler version of F and G̃k is the (simple-to-evaluate) left-inverse of F̃k.
For our optimization problems, where the design may be not reachable, y ∈ D̂ but y /∈ F(D),
so that no solution for (6) exists. We want to find the solution of (1), or

x∗ = argminx∈D ‖Fx− y‖
Ê
,

which we associate with it a defect correction process for iterative optimization by taking
E = R

n, Ê = R
m, D = X , D̂ = Y and by substitution of the operators:



328 Pieter W. Hemker and David Echeverrı́a

Fx = y ⇔ f(x) = y ,
x = Gy ⇔ x = argmin

ξ∈E

‖f(ξ)− y‖
Ê
,

F̃kx = y ⇔ c(pk(x)) = y ,

x = G̃ky ⇔ x = argmin
ξ∈E

‖c(pk(ξ))− y‖
Ê
.

(8)

Here pk is not the space-mapping function but an arbitrary (easy to compute) bijection, e.g.,
the identity if X = Z. Notice that, in principle, also c = ck might be adapted during the
iteration.
With (8) we derive from (7) the defect-correction iteration scheme for optimization:

x0 = argminx∈X ‖c(p0(x))− y‖ , (9)

xk+1 = argminx∈X ‖c(pk+1(x))− c(pk(xk)) + f(xk)− y‖ . (10)

In this iteration every minimization involves the surrogate model, c ◦ pk.

Orthogonality and the need for left-preconditioning.

For the stationary points of the above process, limk→∞ xk = x, we can derive [5]:

f(x)− y ∈ c(Z)⊥(z∗) . (11)

Like the space-mapping methods, the above iteration has the disadvantage that, in general, the
fixed point does not coincide with the solution of the fine model minimization problem. This
is due to the fact that the approximate solution x satisfies (11), whereas the (local) minimum
x∗ satisfies

f(x∗)− y ∈ f(X)⊥(x∗) .

Hence, differences between x and x∗ will be larger for larger distances between y and the
sets f(X) and c(Z) and for larger angles between the linear manifolds tangential at c(Z) and
f(X) near the optima.
By these orthogonality relations we see that it is advantageous, both for the conditioning of the
problem and for the minimization of the residual, if the manifolds f(X) and c(Z) are found
parallel in the neighborhood of the solution. However, by space mapping or by right-precond-
itioning, the relation between f(X) and c(Z) remains unchanged. This causes that the fixed
point of traditional space mapping does, generally, not correspond with x∗. This, however, can
be improved by the introduction of an additional left-preconditioner. Therefore we consider
such a preconditioner S so that near c(z∗) ∈ Y the manifold c(Z) ⊂ Y is mapped onto
f(X) ⊂ Y :

f(x) ≈ S(c(p(x))) .

In the next section we propose our manifold-mapping algorithm, where an affine operator
maps c(Z) onto f(X) in the neighborhood of the solution. More precisely: it maps c(p(xk))
to f(xk) and it approximately maps one tangential linear manifold onto the other. This restores
the orthogonality relation f(x)−y ∈ f(X)⊥(x). Thus it improves significantly the traditional
space-mapping approach and makes the solution x∗ a stationary point of the iteration.

5 Manifold Mapping, the improved space mapping algorithm

We introduce the affine mapping S : Y → Y such that Sc(z) = f(x∗) for a proper z ∈ Z,
and the linear manifold tangential to c(Z) in c(z) maps onto the one tangential to f(X) in
f(x∗). Because both f(X) and c(Z) are n-dimensional manifolds in R

m, the mapping S can
be described by

Sv = f(x∗) + S (v − c(z)) ,



Manifold Mapping for Multilevel Optimization 329

where S is an m×m-matrix of rank n. A full rank m×m-matrix S can be constructed, which
has a well-determined part of rank n, while a remaining part of rank m− n is free to choose.
Because of the supposed similarity between the models f and c we keep the latter part close
to the identity. The meaning of the mapping S is illustrated in Figure 2.
So we propose the following algorithm, where the optional right-preconditioner p : X → Z
is still an arbitrary non-singular operator, which can be adapted to the problem. Often we will
simply take p = I , the identity.

1. Set k = 0, set S0 = I the m×m identity matrix, and compute

x0 = argminx∈X ||| c(p(x))− y||| .

2. Compute f(xk) and c(p(xk)).
3. If k > 0, with ∆ci = c(p(xk−i)) − c(p(xk)) and ∆fi = f(xk−i) − f(xk), i =

1, · · · ,min(n, k), we define ∆C and ∆F to be the rectangular m×min(n, k)-matrices
with respectively ∆ci and ∆fi as columns.
The generalized singular value decomposition of these (rectangular) matrices is ∆C =
UcΣcV

T and ∆F = UfΣfV
T , with Uc, Uf orthonormal, Σc and Σf diagonal and V

non-singular.
4. The next iterant is computed as

xk+1 = argminx∈X ||| c(p(x))− c(p(xk)) + (12)[
UcΣcΣ

†
fU

T
f + (I−UcU

T
c )(I−UfU

T
f )
]
(f(xk)− y)||| .

5. Set k := k + 1 and goto 2.

Here, Σ†
f denotes the pseudo-inverse of Σf . It can be shown that (12) is asymtotically equiv-

alent to
xk+1 = argminx∈X |||Sk(c(p(x)))− y||| , (13)

where the approximate affine mapping is

Sk v = f(xk) + Sk(v − c(p(xk)) ,

with Sk = UfΣfΣ
†
cU

T
c + (I − Uf U

T
f ) (I − Uc U

T
c ).

If the above iteration converges with fixed point x and mapping S, we have

f(x)− y ∈ S(c(p(X)))⊥(x) = f(X)⊥(x) .

This, and the fact that Sk(c(p(xk))) = f(xk), makes that, under convergence to x, the fixed
point is a (local) optimum of the fine model minimization.
The improved space-mapping scheme

xk+1 = argmin
x

|||Sk(c(pk(x))))− y||| ,

can also be recognized as defect correction iteration with either F̃k = Sk ◦ c ◦pk and F = f

or with F̃k = Sk ◦ c and F = f ◦ p−1
k .

An analysis and conditions for convergence of manifold mapping are found in [7]. To make
the the algorithm more robust for ill-conditioned models, regularization can be used by means
of the generalized singular value decomposition [8]. Notice that the singular value decompo-
sition is applied to relatively small matrices so that the time for its computation is negligiable.
Reports showing results of the manifold mapping technique for problems from practice can
be found, e.g., in [4, 6]
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The surrogate model: Sk ◦ c ◦ p ≈ f .

!!!!!!!!"

#

$

f(X)

c(Z)

Skp

f

c

y

Fig. 2: Manifold Mapping.

6 Conclusion

By left preconditioning, manifold mapping improves traditional space mapping because it
delivers the accurate optimum with the same computational efficiency as the space mapping
algorithm.
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1 Introduction

Resistive, capacitive and inductive parasitic coupling effects are very important in integrated
circuit technology development and must be taken into account in the global circuit analy-
sis and design. These values are seldom possible to be computed analytically because often
we deal with complex multi-route layout geometries. Optimizing the placement of the routes
inside the integrated design, in accordance with imposed constraints, one may lead to the
decrease of the coupling effects.
Due to the high number of the design parameters involved, stochastic optimization methods
based on Genetic Algorithms (GA) have been previously involved. The first solution proposed
consisted in using a basic GA in which a single global fitness function is built up from the
partial objectives. The main drawback of this method is that even if the global fitness function
decreases during the optimal design process, there are partial objectives that get an important
increase.
A first trial to eliminate this drawback has been done using the method of objective weighting
[TMM03]. The drawback of this method is the fact that it requires some prior knowledge about
the partial objectives behaviour in order to proper select the weighting values. This is quite dif-
ficult to be done in practice. Therefore the best solution would be to built up an algorithm that
takes into account the information from partial objectives behaviour during the optimization
process without any prior knowledge and also to take into account the global fitness func-
tion behaviour. The solution consists of setting-up a multi-objective optimal design algorithm
based on Strength Pareto Evolutionary Algorithms (SPEA). The software package developed
based on the above mentioned method, together with a practical application example will be
presented in this paper.

2 Elitist Multi-Objective Optimal Design

Many industrial problems involve simultaneous optimization of several competing objectives.
Usually, there is no single optimal solution, but rather a set of alternative solutions. These
solutions are optimal in the wider sense that no other solutions in the search space are superior
to them when all objectives are considered. They are known as Pareto optimal solutions.
Mathematically, the concept of Pareto optimality can be defined as follows.
If one considers a multi objective minimisation problem with m parameters (decision vari-
ables) and n objectives:

Minimize : y =f (x) = (f1 (x) , f1 (x) , ..., fn (x)) (1)
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where x = (x1, x2, ..., xn) ∈ X , y = (y1, y2, ..., yn) ∈ Y .
A decision vector a ∈ X is said to dominate a decision vector b ∈ Y (also written as a � b)
if:

∀ i ∈
{
1, n

}
: fi (a) ≤ fi (b) ∧ ∃ j ∈

{
1, n

}
: fj (a) < fj (b) (2)

All decision vectors that are not dominated by any other decision vector are called non-
dominated or Pareto - optimal. Often, there is a special interest in finding or approximating the
Pareto optimal set, mainly to gain deeper insight into the problem and knowledge about al-
ternate solutions respectively. Evolutionary Algorithms (EA) seem to be especially suited for
this task, because they process a set of solutions in parallel, eventually exploiting similarities
of solutions by crossover.
The algorithm implemented is based on the Strength Pareto Evolutionary Algorithms (SPEA).
This algorithm introduces elitism by explicitly maintaining an external population P . This
population stores a fixed number of the non-dominated solutions that are found until the begin-
ning of a simulation. At every generation, newly found non-dominated solutions are compared
with the existing external population and the resulting non-dominated solutions are preserved.
The SPEA does more than just preserving the elites; it also uses these elites to participate in the
genetic operations along with the current population in the hope of influencing the population
to steer towards good regions in the search space.
In this light, the general structure of the algorithm implemented is briefly described below
[Deb01]:
Step 1. Find the best non-dominated set A1 (Pt) of Pt. Copy these solutions to P t or perform
P t = P t ∪A1 (Pt), where P t is the external population at iteration t;
Step 2. Find the best non-dominated solutions A1

(
P t

)
of the modified population P t and

delete all dominated solutions or perform P t = A1 (Pt);
Step 3. If the size of P t > N , where N is the bounding limit of the external population
size, use a clustering technique to reduce the size to N . Otherwise, keep P t unchanged. The
resulting population is the external population P t+1 of the next generation;
Step 4. Assign fitness to each elite solution i ∈ P t+1 by using the strength Si = ni

N+1
, where

ni is the number of the current population members that an external solution i dominates and
N is the size of the population P . Then, assign fitness to each population member j ∈ Pt by
using Fj = 1 +

∑
i∈P t∧i≺j

Si. The addition of 1 makes the fitness of any current population

member Pt to be better than the fitness of any external population member P t. In this way, a
solution with smaller fitness is the best;
Step 5. Apply a binary tournament selection with these fitness values (in a minimization sense),
a crossover and a mutation operator to create the new population Pt+1 of size N from the
combined population

(
P t+1 ∪ Pt

)
.

There exist a number of real - parameter GA implementations, where crossover and muta-
tion operators are applied directly to real parameter values. Since real parameters are used
directly (without any string coding), solving real-parameter optimization problems is a step
easier when compared to the binary-coded GA. For the optimization module has being used
Simulated Binary Crossover (SBX) and Polynomial Mutation.

3 The MOOP Integrated Software Package

The integrated SPEA software package developed was called MOOP (Multi Objective Opti-
mization Package) and it was written in C# language [Mar05].
In order to calculate the objective functions, the application uses a numerical analysis module
built as an external component library. The package flowchart is presented in Figure 1.
For better usability, the input parameters can be kept into a file, MOOP providing new, open,
and save functions. A screenshot of the MOOP main menu is shown in Figure 2.
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Fig. 1: Flowchart of the MOOP Software package

Fig. 2: Screenshot of the MOOP software package

After the optimization has completed, the user can view the charts from the last generation, all
the values from the external population, the execution time, minimal and maximal values for
all objectives and a proposed solution. The proposed solution is the solution with the smallest
global fitness function. These values are saved in a Microsoft Excel type file.

4 Numerical Example

The SPEA algorithm developed was used for the shape optimization of the multi-terminal
resistor presented in Figure 3 in order to decrease the partial resistances between its terminals
[WY92]. The resistor has 8 terminals, represented by the thick segments numbered with the
white bullets in Figure 3. The optimal design problem contains 28 partial objectives (the partial
resistances between each pair of terminals) and uses 8 design parameters (the y coordinates of
the black-marked nodes in Figure 3). One has to remark that by modifying the y coordinates
of one of the ‘movable’ nodes during the optimization process, the y coordinates of the nearby
segments’ nodes are determined using parabolic interpolation.
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GA SPEA
Chromosome length 32 −
Main population size 40 200
Ext. population size − 150
Number of generations 1000 100
Crossover probability 0.8 0.8
Mutation probability 0.05 0.1
Crossover parameter − 2
Mutation parameter − 2
Total running time 7h 44 min 33h 43 min

Table 1: The optimal design algorithm settings

Using 204 boundary elements for the discretization of the whole geometry [Mun97], consider-
ing the resistor made by copper with 1 mm thickness, the partial resistance values for the initial
geometry from in Figure 3 have been computed. In order to have a better relevance about the
shape optimization process and results, the resistance values corresponding to the initial shape
of the resistor are considered as reference values (unit values). Thus one can notice that for
the starting process, the sum of all objectives is FSUM = 28.

Fig. 3: The initial shape of the multi-terminal resistor

In order to emphasize the advantages of the optimization algorithm proposed, the numerical
results are compared with those obtained by using an ordinary GA that looks for the min-
imisation of global objective function defined as suggested in [TMD00]. Table 1 presents the
general settings for the optimal design algorithms.
The results using ordinary GA are presented in Table 2 while the corresponding optimal shape
of the resistor is presented in Figure 4. One can notice that the overall sum decreases to
FSUM = 24.98, which means a global reduction of 11%. There are significant reduction
of few partial resistances, for instance R58 and R68 with a factor of 0.6. In spite of these very
good results, there are two resistances R12 and R45 with a high increasing factor of 1.48,
while another 8 resistances have also increased values but with smaller factors.
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2O 3O 4O
1.48 0.76 0.80 1O

7O 0.73 1.06 1.15 2O
6O 0.60 0.73 1.06 3O
5O 0.60 0.73 0.67
4O 0.84 1.13 1.17 1.48
3O 0.81 1.05 0.82 0.76
2O 1.12 1.10 0.83 0.81
1O 0.69 0.76 0.62 0.62

8O 7O 6O 5O
Table 2: Partial resistance ratios, results using simple GA

Thus, as expected, the simple GA optimal design algorithm is suitable for a global optimiza-
tion process but it does not take into account the variation of the partial objectives. For the
actual type of applications this fact represents an important drawback.
Using the MOOP optimal design software, the interpretation of the results at the end of the
optimization process is very much depending on the user interests. Of course, the overall
decrease of the objectives sum value is a general indicator that the objectives are decreasing
in ensemble but as it was proven in the case of the simple GA, this indicator is not relevant for
partial objectives behaviour during optimization process.

Fig. 4: Resistor optimal shape, results using ordinary GA

Of course the best result would be if one could get an as much as possible low overall sum,
a high decrease of partial resistances and as much as possible low number and low values of
resistances increase. In this light, the best result obtained is the one presented in Figure 5 and
Table 3, where FSUM = 24.395. As it can be noticed in this case, 27 of the partial resistances
decreased with factors up to 0.63, while a single resistance has a very small increase, with
factor 1.05.
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2O 3O 4O
0.95 0.93 0.94 1O

7O 0.76 0.97 0.93 2O
6O 0.63 0.75 0.97 3O
5O 0.75 0.87 0.78
4O 0.76 0.98 0.95 0.8
3O 0.84 1.05 0.84 0.88
2O 0.96 0.98 0.76 0.83
1O 0.88 0.92 0.76 0.90

8O 7O 6O 5O
Table 3: Partial resistance ratios, results using MOOP

Fig. 5: Resistor optimal shape, results using MOOP

5 Conclusions

The paper emphasizes a multi-objective optimal design software package named MOOP that
has been developed by the authors. The advantages of the new optimization technique with
respect to the ordinary GA are outlined by a numerical example. The algorithm is suitable
and effective for applications that require the control of the partial objectives evolution during
the optimization process. The software package allows coupling with external solvers, being
useful for a wide range of electromagnetic field optimal design applications.

Acknowledgement. The authors are grateful to the Ministry of Education and Research for the
support within the frame of the Project 9 CEEX I 03 / 06.10.2005.
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Summary. This work concerns the multiobjective optimization of an monolithic ESBT�
device aimed to get a characterization of the best design. The optimization will select the epi-
taxial specifications (thickness, doping concentration) which minimize the energy dissipation,
maximize the current flow and keep a breakdown voltage of 1000V. Since these goals are in
conflict with each other the best solution must be characterized with respect to all trade-offs.
The search was carried out with an extension of the DIRECT algorithm to the multiobjective
case.

Keywords—Multiobjective optimization, ESBT�, process simulation, device simula-
tion, Mixed-mode simulation.

1 Introduction

On-state voltage, breakdown voltage and switching losses represent the key points in the
design of power devices devoted to high voltage and high frequency applications. In order to
achieve significant efficiency improvements in DC-DC converter applications, which demand
high currents and high switching frequencies, both conduction and switching energy losses
need to be minimized.

ESBT� (Emitter Switching Bipolar Transistors) is an innovative power device particularly
suitable for high voltage and high frequency applications [1]. The epitaxial structure of the
collector region is a critical parameter of the ESBT� design:

- it characterizes the highest voltage sustainable during the off-state,
- it characterizes the current which flows into the device during the on-state,
- it characterizes the energy dissipation during a on-off cycle

The above specifications consist of the pair given by the collector region thickness and the dop-
ing concentration of the region (it must be noticed that the doping concentration is strongly re-
lated to the resistivity). A multiobjective problem formulation is necessary in order to achieve
an optimal design with respect to the trade-offs of the operational performances.
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2 The ESBT� Device

ESBT� consists of a high-voltage power BJT and low-voltage power MOSFET that are con-
nected in cascode connection (see figure 1). It is a monolithic solution achieved through the
integration of the MOSFET inside the emitter fingers of the BJT (see figure 2). It has been
created a family of devices which can reach high breakdown voltage (up to 1.7 kV) with high
switching frequency, while a low forward voltage drop is maintained. The driving of the bipo-
lar transistor in a cascode connection is realized by the switching of a MOSFET connected in
series with the emitter of the BJT. As a matter of fact by switching off the MOSFET, the emit-
ter current of the BJT is immediately cut-off and then the whole collector current is diverted
to the base terminal. By this way the bipolar transistor is turned-off very quickly because the
charge stored in the base and collector is fast removed. In this way the BJT can operate at
very high operating frequencies (up to 200 KHz). This device is useful in many applications
as lighting and power supply.

Fig. 1: The ESBT� symbol.

Fig. 2: Half elementary cell of the ESBT� device with su-
perimposed the equivalent electrical circuit.

3 MultiDIRECT optimization Algorithm

A multiobjective problem is defined as

min
x∈S
{f1(x), f2(x), . . . , fk(x)} (1)

where we have k ≥ 2 objective functions fi : R
N → R. S is called decision space and

defines an objective space Z ⊆ R
k through the objective functions [2].

Minimization process follows the Pareto optimality criterion:
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A decision vector x∗ is Pareto optimal if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗) for at least one index j.

The MODirect method is an extension to the multiobjective case [3] of the DIRECT algorithm
[4]. The method is based on three operations:

• Lipschitz constant estimation,
• choice for potential optimality of domain subregions,
• domain subdivision.

The choice for potential optimality is based on the estimation of Lipschitz constant for the
objective function in a partition of the domain. This partition is built by hyperrectangles which
are sampled in their centers in order to evaluate the value of the objective function. Therefore
the estimation of Lipschitz constant leads to a possible choice of the hyperrectangles in the
partition for a further sampling which exploits the estimation to balance global and local search
and reaches a quasi-global solution in a large domain. In the main loop of the algorithm 1,
hyperrectangles are selected for sampling if they have a large area, an high Lipschitz constant
estimation, and a good value of the function in their center. Formally it is possible to give the
following definition for the single objective problem in one variable:

Definition 1. [Potential optimality relative to the objective i] Let S be the set of hyperrectan-
gles generated by the algorithm after k iterations, and let fmin and fmax be respectively the
ideal and nadir points of the cone centered in f(c

R̃
). An hyperrectangle R̃ ∈ S with center

c
R̃

and measure α(R̃) is said potentially partial optimal relative to the i-th objective if there
exists at least a Lipschitz constant Klower

i > 0 such that

fi(c
R̃
)−Klower

i α(R̃) ≤ fi(cR)−Klower
i α(R) (2)

fi(c
R̃
)−Klower

i α(R̃) ≤ fmin
i − ε|fmin

i |. ∀R ∈ S (3)

or a constant Kupper
i > 0 such that

fi(c
R̃
) +Kupper

i α(R̃) ≤ fi(cR) +Kupper
i α(R) (4)

fi(c
R̃
) +Kupper

i α(R̃) ≤ fmax
i − ε|fmax

i |. ∀R ∈ S (5)

where ε ∼ 10−4 is a constant to control the clustering during the search [4].

This definition is easily extendible to the case of n variables.

Algorithm 1 DIRECT pseudocode
Require: Set of rectangles S
n← 0 {number of function calls}
while n < TotCalls do

Choose P ⊆ S, set of potential optimal rectangles;
Sample the rectangles in P updating the counter n;
Subdivide the rectangles of P . Let subdivision be DP = {R1, R2, . . . , Rm}
S = S \ P ∪DP

end while
return the best minimum;

In order to obtain the heuristic which extends the above definition to the multiobjective case,
let us redefine the Pareto optimality in general terms of efficiency [5].
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Definition 2. [Efficiency criterion] A decision vector x∗ ∈ X is efficient with respect to the
convex cone D if there does not exist another decision vector x ∈ X such that

f(x∗)− f(x) ∈ D (6)

The cone D is called ordering cone and if D = Rn
+ the efficiency criterion produces a partial

ordering for the Pareto optimality criterion. This ordering is used by the algorithm as surrogate
of linear ordering.

Remark 1. [Multiple estimation of the Lipschitz constants] Starting from the conditions 2
and 4 in Definition 1 it is possible to define the multiobjective optimality in terms of expected
efficiency. For every objective i, from the above conditions we obtain estimates for Klower

i in
the form of an upper bound K

lower
i ≥ 0 and a lower bound Klower

i ≥ 0 for Klower
i . Analo-

gously, for Kupper
i there will be an upper bound K

upper
i ≥ 0 and a lower bound Kupper

i ≥ 0.

The heuristic criterion leading to the choice of the optimal hyperrectangles in the multiobjec-
tive case is motivated by the potential increase of the expected efficiency.

Definition 3. [Multiobjective potential optimality] Given the estimations of the upper bounds
and the lower bounds for the Lipschitz constant of every objective i in the cone centered in
f(c

R̃
), the hyperrectangle R̃ is said potentially optimal if

√√√√ k∑
i=1

[Klower
i ]2 ≤

√√√√ k∑
i=1

[K
lower
i ]2 (7)

or √√√√ k∑
i=1

[Kupper
i ]2 ≤

√√√√ k∑
i=1

[K
upper
i ]2 (8)

Moreover, let fmin and fmax be respectively the ideal and nadir points of the cone centered
in f(c

R̃
). The choice of hyperrectangle R̃ leads to a non trivial improvement of objective

functions

k∑
i=1

[fi(c
R̃
)−Klower

i α(R̃)]2 ≤
k∑

i=1

[fmin
i − ε|fmin

i |]2 (9)

or

k∑
i=1

[fi(c
R̃
) +Kupper

i α(R̃)]2 ≤
k∑

i=1

[fmax
i − ε|fmax

i |]2 (10)

The above definition gives a heuristic rule to choose hyperrectangles which are potentially
optimal in the sense of either increasing the efficiency of the objective vector or taking
into account possible trade-off (the latter arises from considering both lower and upper
bounds for the Lipschitz constant). Equations 9 and 10 can be interpreted as controlling
the clustering nearby the optimal points. If an hyperrectangle is potential optimal then
it will be sampled in the points c ± δei, i = 1 . . . N , where c is the center point of the
hyperrectangle, δ is one-third the side length of the hyperrectangle, and ei is the ith unit vector.

Afterwards the hyperrectangle will be subdivided in thirds along its widest sides based on a
dominance sorting of function values f(c± δei) with respect to their efficiency. This strategy
increases the attractiveness of searching near points with good function values in the large
hyperrectangles.
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Fig. 3: The simulation flow.

4 Simulation Flow and Results

A simulation flow performed by c©SILVACO tools has been planned and it was used to
evaluate the above target (see figure 3). The flow accepts as input collector thickness and
doping concentration of the collector region, then a process simulation simulates the device
structures. Then three device simulations extract the values of energy dissipation, current
capability and breakdown voltage. Notice that the device simulations are independent and
therefore can be performed in parallel.

The optimization has been carried out with respect to 3 targets:
- energy dissipation of a on-off cycle (minimizing),
- current capability (maximizing),
- breakdown voltage (to fix at 1130 Volt).

The last target constrains the optimization to functional solution which assure good process
tolerances. A budget of 350 simulations has been established to perform the whole optimiza-
tion.
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Fig. 4: The design variable space against performances.

The figure 4 shows the sampling in the design space of collector thickness and doping concen-
tration of the collector region against each performance. The figure 5 shows the Pareto front
which follows the optimization sampling. The sampling allows to characterize the optimal pair
collector thickness-concentration and several alternative designs were found.



ESBT� Multiobjective Optimization 345

0
1

2
3

4
5

6

x 10
5

4.5

5

5.5

6

6.5

1000

1050

1100

1150

1200

1250

1300

1350

Collector Current (A)

Energy (J)

B
re

ak
do

w
n 

V
ol

ta
ge

 (
V

)

Fig. 5: Sampling in the objective space.

These results are also useful to evaluate the behaviour of the overall performances, their trade-
offs, and the correlations with respect to the two design variables. For instance the following
linear relations were discovered with respect to the design variable for energy (E), current
flow (CF ) and breakdown voltage (BV )

E(t, d) = 1.2972t+ 2.2429 · 10−19d− 8.5939 · 10−5

CF (t, d) = −76477t+ 1.7183 · 10−15d+ 11.097

BV (t, d) = 12429000t− 1.4664 · 10−12d+ 311.59

where t is the collector thickness (in µm) and d is the doping concentration (cm−3) of the
collector region. Also the correlations were computed and the results are shown in table 1

Energy Current Flow Breakdown voltage
Energy 1 -0.83036 0.47727

Current Flow -0.83036 1 -0.87562
Breakdown voltage 0.47727 -0.87562 1

Table 1: Table of correlation among objectives

5 Conclusion

A successful optimization test on a power device has been done. The multiobjective method-
ology was proved useful to guide device design. Furthermore the sampling could become a
knowledge base for the future scaling of the power device towards higher breakdown voltages.

Acknowledgment

The authors want to thank Prof. A. M. Anile for the useful suggestions and discussions about
this work.



346 Salvatore Spinella et al.

References

1. S. Musumeci, R. Pagano, A. Raciti, S. Buonomo, C. Ronsisvalle, and R. Scollo, “A
new monolithic emitter-switching bipolar trasistor (esbt) in high voltage converter applica-
tions,” in IAS ’03, 2003.

2. Kaisa M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publisher,
1998.

3. Spinella S. and A. M. Anile, “A posteriori multiobjective optimization,” in Applied and
Industrial Mathematics in Italy, 2005, pp. 520 – 529.

4. D. R. Jones, C.D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the
lipschitz constant,” J. Optim. Theory Appl., vol. 79, no. 1, pp. 157 – 181, 1993.

5. Yoshikazu Sawaragi, Hirotaka Nakayama, and Tetsuzo Tanino, Theory of Multiobjective
Optimization, Academic Press Inc., 1985.



On Fast Optimal Control for Energy-Transport-based
Semiconductor Design

C. R. Drago

Dipartimento di Matematica e Informatica, Università di Catania,
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Abstract. This papers deals with the optimal design of semiconductor devices, based on
the adjoint method and the Energy Transport model. A partially decoupled adjoint system
is obtained by considering the electrostatic potential as the new design variable and by
interpreting the Poisson equation as a state equation for the doping profile. This leads to an
efficient iterative optimization algorithm based on a variant of the Gummel iteration.

1 Introduction

The interest in optimal control for semiconductor design has attracted considerable recent at-
tention in both the engineering and applied mathematics community. A major objective in the
optimal design is to improve the current flow over some contacts, for fixed applied voltages,
by a slight modification of the device doping profile. Besides standard black box optimization
methods [9], [12], which, in general, requiring many solvers of the forward model, have an
high computational cost, the adjoint method, recently proposed in the field of optimal semi-
conductor design [5], [6], provides good results by drastically reducing the amount of compu-
tational costs. Using the adjoint calculus, the evaluation of the complete gradient vector of the
objective functional requires a single run of the (non-linear) forward model and one solve of
the (linear) adjoint system, independently of the dimension of the parameters space.
The simulations of semiconductor devices, on the other hand, have been addressed, during
the last years, by using different types of models, which range from microscopic models, like
the Boltzmann-Poisson model to the macroscopic ones, like the hydrodynamic, the standard
Drift-Diffusion and the Energy Transport model.
The adjoint method based on Drift Diffusion model has been proposed and analyzed in [5],[6].
Herein, the doping profile, which enters as a source term into the state equations, was consid-
ered as a control variable. Meanwhile, the same approach was extended to the Energy Trans-
port model in [2].
The Energy Transport model, unlike the drift diffusion one, that is based on the assump-
tion of isothermal motion, takes into account also the thermal effects related to the electron
flow through the semiconductor crystal; due to the ongoing miniaturization of semiconductor
devices, those effects cannot be neglected any longer, if one wants to improve the physical
description of the device.
The dimensionless stationary energy-transport (ET) model for charge carriers in a semicon-
ductor enclosed in a bounded domain Ω ⊂R

d
, d = 1, 2, 3, in the unipolar case and by using

the dual entropy variables w = (w1 = (µ− V )/T,w2 = −1/T ), is given by the following
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balance equations for the electron density and the energy, coupled to the Poisson equation for
the electrostatic potential V (see [8] for a complete overview):

divI1 = 0, (1)

divI2 = Q(w, V ), (2)

λ2∆V = N(w, V )− C(x), (3)

where

I1 = −
2∑

k=1

D1k(w, V )∇wk, I2 = −
2∑

k=1

D2k(w, V )∇wk. (4)

I1 is the carrier flux density, µ is the chemical potential, T the temperature, C(x) the doping

concentration, λ =
√

εsUT
qCmL2 the Debye length.

Assuming the parabolic band approximation one has for the electron density N(w, V )

= (−1/w2)
3/2 exp(w1 − w2V ). Moreover the energy relaxation term is given by:

Q(w, V ) = − 3
2
N(w, V )(− 1

w2
− 1)/τw, where τw = τ0µ0Ut/L

2 is the scaled energy
relaxation time. For the physical parameters see Table 1. The diffusion matrix (Dij) is sym-
metric and positive definite [8].
To get a well posed problem, system (1)-(4) has to be supplemented with appropriate boundary
conditions. We assume that the boundary ∂Ω of the domainΩ splits into two disjoint parts ΓD

and ΓN , where ΓD models the Ohmic contacts of the device and ΓN represents the insulating
parts of the boundary. Let ν denote the unit outward normal vector along the boundary, we
consider the following mixed boundary conditions

w1 = w1D, w2 = w2D, V = VD on ΓD, (5)

Ii · ν = ∇V · ν = 0 i = 1, 2 on ΓN , (6)

where w1D, w2D and VD are the H1(Ω)–extensions of fixed functions defined on ΓD .
In [5], [6], [2] an optimal control approach have been presented, where the natural design
variable was the doping profile and a penalty term related to C was introduced in the cost
functional to stabilize the system.
A different approach, which leads to fast optimization algorithm, was investigated in [1] for
the drift diffusion model. The main idea was to consider the doping profileC as a state variable
and the electrostatic potential V as a control variable. The Poisson equation was reinterpreted
as a state equation for the state variable C and a penalty dependence of the functional on

W = �(V − V ∗), (7)

rather than on C − C∗ was introduced.
In the present communication we are addressing some analytical and numerical results con-
cerning the ET model, using and extending previous results from [1].

2 The optimal design problem and the analytical setting

In order to introduce a functional analytic framework, we consider the following minimization
problem:

min
D

Fγ(w, V,W ) (8)

with the admissible domain

D =
{
(w, V,W ) ∈ H1(Ω)2 ×

(
H1(Ω) ∩ L∞(Ω)

)
× L2(Ω) satisfying(1)− (2), (7)

}
and functionals of the type
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Fγ(w, V,W ) =
1

2

[�
Γ

I1dν − Ī

]2

+
γ

2

�
Ω

|W (x)| 2dx, (9)

where γ > 0 balances the effective cost.
As initial guess V ∗, we assume the one obtained as solution of the ET model, with C∗ as
reference doping profile. Moreover we assume Ī = 1.5 · I∗, i.e we try to gain an amplification
by 50% of the reference current I∗, corresponding to the reference doping profile C∗.

Remark 1. The above objective functional Fγ is weak lower semicontinuous in H1(Ω)3 ×
L2(Ω) and the admissible domain D weakly closed, if∇(V − V ∗) remains in L2(Ω).

Theorem 1. Let γ > 0 then the constrained minimization problem (8) admits a solution

(w̄, V̄ , W̄ ) ∈ H1(Ω)2 ×
(
H1(Ω) ∩ L∞(Ω)

)
× L2(Ω)

Proof. Let {wn, Vn,Wn} a minimizing sequence, then {Wn} is bounded in L2(Ω), and
by standard elliptic regularity, Vn − V ∗ is uniformly bounded in H2(Ω) ↪→ C(Ω̄). since
V ∗ ∈ L∞(Ω), we may conclude that Vn is uniformly bounded in L∞(Ω). On the other hand,
in [8], Jüngel proves that ‖wn‖H1(Ω) ≤ c1, where c1 > 0 depends on the L∞(Ω)-norm
of Vn and the H1(Ω)-norm of wD . Hence, from the previous estimates, there exists a
subsequence, again denoted by {wn, Vn}, such that

(wn, Vn)→
(
w̄, V̄

)
weakly in H1(Ω)3

which, by Rellich theorem, implies strong convergence in L2(Ω)3. For the uniform L∞-
bound, we also have Vn → V̄ weakly-* in L∞(Ω). Finally {Wn} converges weakly in
L2(Ω). For the weak closedness of the admissible domain and the weak lower semiconti-
nuity of the objective function one can conclude that the weak limit of the subsequence is a
minimizer of problem (8).

3 The Karush Kuhn Tucker conditions

Since we want to tackle a constrained optimization problem [7], we write the Karush Kuhn
Tucker system by using the Lagrangian associated to the minimization problem

L(w1, w2, V,W ;µ1, µ2, µ3)
def
= Fγ(w1, w2, V,W ) +

�
Ω

2∑
i,j=1

Dij(w, V )∇wj · ∇µidx−

−
�
Ω

Qµ2dx+
�
Ω

Wµ3dx+
�
Ω

∇(V − V ∗) · ∇µ3dx

assuming (µ1, µ2, µ3) ∈ H1
0,D(Ω)3, where H1

0,D(Ω) =
{
ϕ ∈ H1(Ω)| ϕ|∂ΩD = 0

}
[13].

The first-order optimality conditions are given by imposing the variations of the Lagrangian
with respect to all the state variables and the dual variables (µ1, µ2, µ3) equal to zero. It is a
simple matter to show that the variation with respect to the dual variables gives the equality
constraint system itself (1)-(2),(7). Moreover the variation with respect to the state variable
(w1, w2, V,W ) yields the following conditions

∂Fγ

∂w1
ŵ1 +

�
Ω

2∑
i,j=1

∂Dij(w, V )

∂w1
ŵ1∇wj · ∇µidx+ (10)

+
�
Ω

2∑
k=1

Dk1(w, V )∇ŵ1 · ∇µkdx−
�
Ω

∂Q(w, V )

∂w1
ŵ1µ2dx = 0,
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∂Fγ

∂w2
ŵ2 +

�
Ω

2∑
i,j=1

∂Dij(w, V )

∂w2
ŵ2∇wj · ∇µidx+ (11)

+
�
Ω

2∑
k=1

Dk2(w, V )∇ŵ2 · ∇µkdx−
�
Ω

∂Q(w, V )

∂w2
ŵ2µ2dx = 0,

∂Fγ

∂V
V̂ +

�
Ω

2∑
i,j=1

∂Dij(w, V )

∂V
V̂∇wj · ∇µidx−

�
Ω

∂Q(w, V )

∂V
V̂ µ2dx+

+
�
Ω

∇V̂ · ∇µ3dx = 0 (12)

�
Ω

Ŵ (γW + µ3)dx = 0, (13)

for all the variations of (ŵ1, ŵ2, V̂ , Ŵ ) ∈ H1(Ω)3 × L2(Ω). From (13) it follows µ3 =
−γW and eliminating the µ3 from (12) one gets, finally

∂Fγ

∂V
V̂ +

�
Ω

2∑
i,j=1

∂Dij(w, V )

∂V
V̂∇wj · ∇µidx−

�
Ω

∂Q(w, V )

∂V
V̂ µ2dx−

−
�
Ω

γ∇V̂ · ∇Wdx = 0 (14)

which will be taken as the optimality condition for the design variable W , corresponding to
the minimization problem. From now on, we will proceed, assuming the particular functionals
Fγ in (9), which is of particular interest in the following numerical results.
For every (ŵ1, ŵ2, V̂ ) ∈ H1

0,D(Ω), it is a simple matter to show that

F ′
γ(w1, w2, V )(ŵ1, ŵ2, V̂ ) =

(�
Γ

I1dν − I∗

)�
Γ

(
−

2∑
k=1

D1k(w, V )∇ŵk · ν

)
dσ

If we choose the lagrangian µ1 such that µ1 = 0 only on ∂ΩD \ Γ and µ1 = η on Γ the
optimality system will assume a simpler form.
First of all the Lagrangian becomes

L(w1, w2, V,W ;µ1, µ2, µ3)
def
= Fγ(w1, w2, V,W ) +

�
Ω

2∑
i,j=1

Dij(w, V )∇wj · ∇µidx

−
�
Ω

Qµ2dx+
�
Ω

Wµ3dx+
�
Ω

∇(V − V ∗) · ∇µ3dx+ η
�
Γ

I1dσ

and the optimality with respect to w1 yields(�
Γ

I1 · dν − I∗ + η

) �
Γ

−D11(w, V )∇ŵ1 · νdσ +
�
Ω

2∑
i,j=1

∂Dij(w, V )

∂w1
ŵ1∇wj · ∇µidx

+
�
Ω

2∑
k=1

Dk1(w, V )∇ŵ1 · ∇µkdx−
�
Ω

∂Q(w, V )

∂w1
ŵ1µ2dx = 0.

Then assuming finally η = −
�
Γ
I1 · dν + I∗, this reduces to the weak form corresponding to

the following elliptic partial differential equations
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−
2∑

k=1

div (Dk1(w, V )∇µk) +

2∑
ij=1

(
∂Dij(w, V )

∂w1
∇wj

)
· ∇µi −

−∂Q(w, V )

∂w1
µ2 = 0, (15)

subject to the following boundary conditions

µ1 −
�
Γ

J · ν + I∗ = 0 on Γ

µ1 = 0 on ∂ΩD \ Γ
∂µ1

∂ν
= 0 on ∂ΩN

Analogously one gets for the optimality with respect to µ2

−
2∑

k=1

div (Dk2(w, V )∇µk) +

2∑
i,j=1

(
∂Dij(w, V )

∂w2
∇wj

)
· ∇µi −

−∂Q(w, V )

∂w2
µ2 = 0, (16)

subject to the following boundary conditions

µ2 = 0 on ∂ΩD

∂µ2

∂ν
= 0 on ∂ΩN

Finally, the optimality condition with respect to W in strong form reads as

γ �W +

2∑
i,j=1

(
∂Dij(w, V )

∂V
∇wj

)
· ∇µi −

∂Q(w, V )

∂V
µ2 = 0 (17)

subject to homogeneous Dirichlet condition on ∂ΩD and homogeneous Neumann boundary
condition on ∂ΩN .
The equations (15)-(16) can be written in the simplified form

div

(
−

2∑
k=1

Dki(w, V )∇µk

)
+

2∑
k=1

bki · ∇µk − ci · µ = 0, (18)

where i = 1, 2 and

bki =

2∑
j=1

∂Dkj

∂wi
∇wj , ci =

(
0,

∂Q

∂wi

)
, µ = (µ1, µ2).

Remark 2. The matrix (Dki) is symmetric positive definite and there exists a δ = δ(V ) > 0
such that

2∑
i,k=1

Dkiξkξi ≥ δ(V )|ξ|2 for all ξ ∈R
2
.

Moreover, taking into account the L∞(Ω)–bound on V , there exists some δ0 > 0 such that
δ(V ) ≥ δ0 (see [8]).
If we define

h =

(
2∑

k=1

(
∂D1k

∂V
∇wk

)
,

2∑
k=1

(
∂D2k

∂V
∇wk

))
and g = (0,

∂Q

∂V
),
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equation (17) can be written as

−γ �W = h · ∇µ− g · µ (19)

where∇µ = (∇µ1,∇µ2).

Remark 3. With respect to the direct optimal control approach (cf. [2]), where analyzing the
adjoint system was a difficult task, here the adjoint system (10)-(12) has a partially decoupled
structure with respect to the Lagrangian variables, then proving existence and uniqueness of
Lagrangian variables (µ1, µ2, µ3) ∈ H1

0,D(Ω)3, for given primal variables, consists of the
analysis of two subsequently variational problems, which in turn are coercive in H1

0,D(Ω).

Theorem 2. Assuming all the coefficients Dij , bij , ci, hi, gi ∈ L∞(Ω). There exists a con-
stant l = l(Ω,C, ‖bik‖L∞(Ω), δ0) > 0 such that for each (w1, w2, V ) ∈ D with

2∑
i=1

‖ci‖L∞(Ω) ≤ l and
2∑

i,k=1

‖bik‖L∞(Ω) <
δ0
C

(where C = C(Ω) > 0 is the Poincaré constant), system (18)-(19) admits a unique solution
(µ1, µ2,W ) ∈ H1

0,D(Ω)3.

Proof. It is a straight-forward application of the Lax-Milgram Theorem.

4 A Fast Optimization Algorithm and Numerical Optimal
Designs

The partially decoupling in the adjoint systems suggests a fast iterative optimization algorithm,
based on a variant of the Gummel iteration [1], [4], [11]. This avoids solving the fully coupled
ET system, but only needs solving the continuity equations and their adjoints.
Namely, one first solves (7) with given W , for the potential V , then the coupled continuity
equations (1)-(2) with given potential V , for w1 and w2. Furthermore for given potential
V and given w1 and w2, one solves the coupled adjoint equations (15)-(16) to obtain the
lagrangian variables µ1 µ2. Finally, a gradient step will be performed with respect to the
design variable W by using the optimality equation (17). In fact, by introducing an additional
damping parameter τ one can interpret this iteration as a descent algorithm

−γ �W + τW = τW ∗ +

2∑
i,j=1

(
∂Dij(w, V )

∂V
∇wj

)
· ∇µi −

∂Q(w, V )

∂V
µ2,

here, W ∗ is the old value of W .
Altogether we will perform the following algorithm.

ALGORITHM 1

1. Let W 0 = 0.
2. For n = 1, 2, . . . solve ∆V n = ∆V ∗ +Wn−1.
3. Solve the continuity equation (1)- (2), with given V n, for wn

1 and wn
2 .

4. Solve the adjoints equations (15)-(16), with given V n, wn
1 and wn

2 .
5. Perform a gradient step by updating W :

−γ�Wn + τWn = τWn−1 +

2∑
i,j=1

(
∂Dij(w

n, V n)

∂V
∇wn

j

)
· ∇µn

i −
∂Q(wn, V n)

∂V
µn

2 ,
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6. Independent update of C by: Cn − C∗ = −λ2Wn +Nn −N∗.

Now we are showing some numerical results of a one-dimensional n+−n−n+ ballistic diode,
which is a simple model for the channel of a MOS transistor. The semiconductor domain
is given by the interval Ω = (0, L), with L > 0. In the n+-regions a maximal doping
concentration of Cm = 5 · 1017 cm−3 is prescribed. In the n–channel the minimal doping
density is 2 · 1015 cm−3. The length of the n+–regions is 0.1µm, whereas the length of the
channel region equals 0.4µm. The numerical values of the physical parameters are given in
Table 1. The scaled parameters were set to λ2 = 9.0278 · 10−5 and τw = 4 · 10−3. We

Parameter Physical meaning Numerical value
q elementary charge 1.60219 · 10−19As
εs permittivity constant 1.04479442 · 10−12AsV−1cm−1

µ0 (low field) mobility constant 1.5 · 103cm2V−1s−1

UT thermal voltage at T0 = 300K 0.025852V
τ0 energy relaxation time 0.4 · 10−12s
L length of the device 0.6µm

Table 1: Physical Parameters

solve the constrained optimization problem (8) by using Algorithm 1. For the parameter γ we
have chosen 10−8 and τ = 10−1 for the constant damping parameter. The state system was
discretized by a variant of the well–known exponentially fitted Scharfetter–Gummel scheme
[11, 4]. The computations were performed on a uniform grid of 301 points to ensure to have
no grid effects, but the same results can be already obtained for 101 points. For the biasing
voltage at the working point we chose Ū = 1V and tried to gain an amplification of the
current I∗ by 50%, i.e. we set Ī = 1.5 · I∗. In Figure 1 we present the optimal doping
profile as well as the reference doping C∗. Further, we depict the densities, velocities and
temperatures before and after the optimization. Note, that the change in the potential, as well
as in the velocities and temperatures before and after the optimization is quite small while
a more significant change happens just in the electron density. Nevertheless, we reach our
objective as can be also seen from the given current–voltage characteristics (IVC). The overall
performance of the algorithm is promising, since already 10 gradient steps are sufficient to
reach the optimum.

5 Conclusion and future works

In this work a fast optimization method was performed and validate in the framework of
energy transport-based optimal semiconductor design. An inspection of the evolution of the
objective demonstrates the efficiency of the approach, since the minimum is obtained with
only few iterations. Since in each iteration, we only have to solve two systems of elliptic
partial differential equations, the numerical effort per iteration is similar to two Gummel-type
iterations per step. The overall performance of the algorithm is already very promising for a
one-dimensional numerical test. Applications of the algorithm for two-dimensional cases will
be the aim of future works.

Acknowledgments. The author would like to thank prof. R. Pinnau and A. M. Anile
for helpful discussions.
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Fig. 1: Optimized doping profile, electron density, electron mean velocity, temperature, evolution of the cost functional
for a biasing voltage of 1 V, and the corresponding IVCs
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Summary. In this paper we present a hierarchy of extended hydrodynamical models for elec-
tron transport in Silicon, which differ from each other for the number of scalar and vector
moments of the electron distribution function used as state variables. The closure of the mo-
ment equations is achieved by means of the Maximum Entropy Principle. The main scattering
mechanisms between electrons and phonons are taken into account. An application to the case
of bulk Silicon is presented.

1 Introduction

The description of the functioning of modern electron devices requires an increasingly accu-
rate physical modeling of carrier transport in semiconductors [AMR03], since the presence
of very high and rapidly varying electric fields produces phenomena which cannot be de-
scribed by means of the standard drift-diffusion or energy transport models. This has led to
the construction of new models that are, loosely speaking, called hydrodynamical models.
These models are usually derived from the infinite hierarchy of the moment equations of the
Boltzmann transport equation by suitable truncation procedures. However most of them suf-
fered from serious theoretical drawbacks due to the ad hoc treatment of the closure problem.
Recently [Rom00, MR02, AMR03], these drawbacks have been overcome by means of an
appropriate method based on the Extended Thermodynamics of moments [MuR98, Lev96].
This method allows one to obtain approximate distribution functions, the so called Maximum
entropy distribution functions, by means of which it is possible to solve the closure problem
in a physically grounded way.
In many hydrodynamical models [AMR03], only two scalar moments and two vector moments
of the electron distribution function are used: the number density, the average energy, the
velocity and the energy flux. These moments are the only scalar and vector moments which
have an immediate physical meaning. However in situations where very high or very rapidly
varying fields are present, those models may fail and a higher number of moments may be
required to have a satisfactory description of the physical situation [MuR98, Str00].
In this paper we construct models where the numbers of scalar and vector moments can be
arbitrarily great and different from each other. The main difficulty which occurs in the con-
struction of these models is the inversion of the constraint relations which, however, can be
tackled by means of suitable approximations and numerical procedures. We consider the prob-
lem of electron transport in Si, but the models can be easily extended to other semiconductors.
A non parabolic approximation, the Kane dispersion relation, is used for the electron energy
in the conduction band and all the main scattering mechanisms of electrons with phonons are
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treated. We also try to investigate how the number of moments affects the results at least in
the case of bulk Silicon.

2 The electron transport in Si, the semiclassical Boltzmann
equation

We consider the case of Silicon unipolar devices for which the charge transport is due to the
electrons in the six equivalent valleys around the six minima of the conduction band [JR83].
We assume that, for those electrons, the relation between the energy E and the quasi-wave
vector k, both measured from the bottom of the valley, is given by the Kane dispersion relation

E(k) [1 + α E(k)] =
�

2k2

2m∗ , k ∈ R
3, (1)

which involves a parameter α, called the non-parabolicity factor, while m∗ is the electron
effective mass. In the semiclassical kinetic approach, the charge transport is described by the
Boltzmann equation [Tom93], which reads 3

∂f

∂t
+ vi(k)

∂f

∂xi
− qEi

�

∂f

∂ki
= C[f ], (2)

where f(x,k, t) is the electron distribution function, v is the electron group velocity related
to the energy E by v = 1

�
∇kE , � is the Planck reduced constant, q is the absolute value of

the electron charge and C[f ], the collision term, represents the effects due to scatterings with
phonons and impurities. The electric field E is calculated by solving the Poisson equation for
the electric potential φ

E = −∇xφ, ∇x(ε∇xφ) = −q(N+ −N− − n), (3)

N+ and N− respectively being the donor and acceptor densities (which depend only on the
position), ε the dielectric constant and n the electron number density

n =
�
R3

fdk.

The equations (2)-(3) constitute the Boltzmann-Poisson system that is the basic semiclassical
model of electron transport in semiconductors.
As said, C[f ] reflects the various scattering mechanisms the electrons undergo in a semicon-
ductor [Tom93, AMR03]. Some of them leave the electrons in the same valley as they are
before the collision (intravalley transitions), while other scatterings can drive the electrons
into a different valley (intervalley transitions) according to suitable selection rules. In the non-
degenerate case the form of C[f ] is

C[f ] =
�
R3

[
w(k′,k) f(x,k′, t)− w(k,k′)f(x,k, t)

]
dk′ ,

where w(k,k′) represents the sum of the various electron scattering rates from a state with
wave vector k to one with wave vector k′. We take into account the following scattering
mechanisms for Silicon

3 summation over repeated indices is understood.
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• electron - acoustical phonon intravalley scattering for which the transition rate, in its elas-
tic approximation (valid when the thermal energy is much greater than that of the phonon
involved in the scattering), reads

wac(k,k
′) = Kac δ(E ′ − E) ,

with Kac acoustical intravalley scattering kernel coefficient and δ Dirac function,
• electron - phonon intervalley scattering, for which there are six contributions

wα(k,k′) = Kα

[
nα δ(E ′ − E − �ωα) + (nα + 1)δ(E ′ − E + �ωα)

]
,

where α runs over the three g1, g2, g3 and the three f1, f2, f3 intervalley scatterings
[JR83], Kα are the correspondent optical or acoustical intervalley scattering kernel co-
efficients and

nα =
1

exp
(

�ωα
KBTL

)
− 1

is the occupation number of phonons with frequency ωα, KB and TL respectively being
the Boltzmann constant and the lattice temperature.

3 Moment equations and maximum entropy principle

Starting from the transport equation (2), it is possible to get balance equations for macroscopic
quantities associated with the electron flow. In fact, multiplying eq. (2) by a sufficiently regular
function ψ(k) and integrating over B = R

3, the first Brillouin zone in the Kane approxima-
tion, the generic moment equation [AMR03] is obtained

∂Mψ

∂t
+

�
R3

ψ(k)vi(k)
∂f

∂xi
dk− q

�
Ej

�
R3

ψ(k)
∂f

∂kj
dk =

�
R3

ψ(k)C[f ]dk, (4)

with
Mψ =

�
R3

ψ(k)fdk,

moment relative to the weight function ψ.
In this paper, at difference with [Rom00, MR02, AMR03], we use as ψ the functions
1, E , E2, . . . , EN ,v, Ev, . . . , EMv, with N and M to be suitably chosen according to the
physical situation under study. The resulting moment equations are

∂(nFA)

∂t
+
∂(nF i

A)

∂xi
+ qEi AnF i

A−1 = nCFA , A = 0, . . . , N, (5)

∂(nF i
B)

∂t
+
∂(nF ij

B )

∂xj
+

q

�
Ejn

(
Gi j

B + B F i j
B−1

)
= nCF i

B
, B = 0, . . . ,M, (6)

where

nFA =
�
R3

EAf d3k, nF i
B =

�
R3

EBvif d3k,

nF ij
B =

�
R3

EBvivjf d3k, nGij
B =

1

�

�
R3

EB ∂vi

∂kj
f d3k, (7)

nCFA =
�
R3

EAC[f ] d3k, nCF i
B

=
�
R3

EBviC[f ] d3k.
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n, FA (A ≥ 1) and F i
B are the variables used to describe the electrons, while F ij

B , Gij
B ,

CFA and CF i
B

are extra-variables which respectively are fluxes, the former two sets, and pro-
duction terms the latter ones.
For A = 1 and B = 0, 1, FA and F i

B are respectively equal to W , V, and S which, together
with the number density n, represent the usual fundamental variables used in the models de-
scribed in [Rom00, MR02, AMR03]: the average energy, the velocity and the energy flux.
Therefore, if one takes N = M = 1, those models are recovered. The higher moments do
not have an immediate physical meaning. The moment equations (5), (6) do not form a closed
system, since the number of the unknowns is greater than that of the equations. It is necessary
to find closure relations for the fluxes (7)2 and the production terms (7)3, that is to express
them as functions of the fundamental variables (7)1.
A way to get constitutive relations, founded on sound physical bases, consists of using the
maximum entropy principle [AMR03, MuR98, Lev96]. This principle furnishes the form of
the distribution function which makes the best use of the knowledge of a finite number of
moments. In particular, in the present case the maximum entropy distribution is the one which
makes the electron entropy extremal under the constraints of fixed values of the fundamental
variables. The electron entropy can be written as

s[f ] = −kB

�
R3

(f log f − f) d3k ,

therefore the maximum entropy distribution function is

fME = exp

[
− 1

kB
(ΛAEA + Λi

BEBvi)

]
,

where the Λ’s are the Lagrange multipliers which take care of the constraints (7)1.
In order to determine the Lagrange multipliers in terms of n, FA, F i

B , A = 1, . . . , N,
B = 0, . . . ,M, one has to insert the expression of the maximum entropy distribution func-
tion into (7)1 and solve the resulting system. After that the closure relations can be obtained
by evaluating the appropriate moments of f , and C[f ], with f replaced by the corresponding
maximum entropy function. However, on account of the algebraic difficulties, we can get only
approximate expressions for the Lagrange multipliers under reasonable physical assumptions
on the distribution function.
At equilibrium the distribution function is isotropic

f (eq) = exp
[
−
(

1

kB
Λ

(eq)
0 +

E
kB TL

)]
,

that is at equilibrium

Λ
(eq)
1 =

1

TL
, Λ

(eq)
A = 0, A = 2, . . . , N ,

Λ
i (eq)
B = 0, B = 0, . . . ,M .

On the basis of Monte Carlo results, we assume that the anisotropy of fME , remains small
even out of equilibrium. We formally introduce a small anisotropy parameter δ, assume that
the Lagrange multipliers are analytic in δ and expand them around δ = 0 up to the first
order. By taking into account the representation theorems for isotropic functions, consistently
with the small anisotropy assumption, one has that the ΛA’s are of order zero in δ, while the
Λi

B’s are of the first order in δ. Therefore the maximum entropy distribution function can be
approximated as

fME ≈ exp
(
− 1

kB
ΛAEA

)[
1− δ

kB
Λi

B viEB
]
. (8)
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4 Inversion of the constraint relations

In order to express the Lagrange multipliers in terms of the fundamental moments, we have to
invert the following two systems of equations

nFA =
�
R3

exp(− 1

kB
ΛCEC)EA d3k, A = 0, . . . , N , (9)

nF i
B = CBDΛ

i
D , B,D = 0, . . . ,M , (10)

where

CBD = −8π

3

√
2m∗

�3kB

∞�
0

EB+D

[
E(1 + αE)

] 3
2

1 + 2αE exp(− 1

kB
ΛCEC) dE ,

The first equation in the first system, corresponding to A = 0, immediately gives Λ0 in terms
of n and ΛA, A = 1, . . . , N , while the inversion of the remaining equations in the first
system has to be performed numerically. Once this is done, the inversion of the second system
of equations only requires the computation of C−1

A B , whose elements are functions of n and
FA, A = 1, . . . , N

Λi
A = C−1

ABnF
i
B .

5 Fluxes

Once the Lagrangian multipliers are expressed as functions of the fundamental variables, the
constitutive equations for the fluxes can be obtained. Up to the first order terms in δ, one has
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3�3
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] 3
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∞�
0

[
1− 4
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√
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× exp(− 1

kB
ΛCEC) dE , B = 0, . . . ,M ,

δij being the Kronecker delta.

6 Production terms

By using the same procedure as before, also the expressions of the moments of the collision
term can be found.

6.1 Acoustic phonon intravalley scattering

Since we are considering this scattering in its elastic approximation, we get

CFA = 0 , A = 0, . . . , N (11)
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π2m

∗2

�6
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−1
EDF

i
D

∞�
0

E(B+E+2) (1 + α E)2

× exp
(
− 1

kB
ΛCEC

)
dE , B,D,E = 0, . . . ,M. (12)
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6.2 Intervalley scatterings

These scattering mechanisms are inelastic, therefore we obtain

nC
(α)
FA

= 32
m∗3

�6
π2Kα

[
nαψ

(A)
1 ,α(ΛC)− (nα + 1)ψ
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]
, (13)
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where, defining Eα
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7 Application to bulk Silicon

We test the hierarchy of models in a one-dimensional homogeneous case in a semiconductor
with constant doping and applied electric field, using various values of N and M . In figure
1, we show the drift velocity versus the electric field. Fixing N=2 and changing M, one can
see that the results at high electric fields vary up to M=10, for greater values of M practi-
cally no more changes are present. Taking N=3 and changing M, the variations are very small.
Comparing the results with the Monte Carlo ones shown in [Tom93] together with the exper-
imental data, we can conclude that the best results are obtained by using a higher number of
scalar moments. We believe that this is due to the fact that no expansion is done with respect
to the scalar Lagrange multipliers at variance with the vector ones. The drawback is that when
a higher number of scalar moments is used, the Maxwellian is at the boundary of the real-
izability region in the Lagrange multipliers space so that instabilities arise in the numerical
resolution at low fields.
In order to get an idea about the computational costs, in table 1 we report the run time with a
pentium 3 pc, for a single value of the electric field, at the varying of the number of moments.
The model with N = M = 3 requires a CPU time about a factor 2.4 greater than that of the
model with N = M = 2. However the computing effort, even in the most accurate case, is
still adequate for CAD purposes considering the very good agreement with the much more
CPU time consuming Monte Carlo simulations.
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Fig. 1: Drift velocity vs the electric field

N M time(s) N M time(s)
2 2 17 3 2 29
2 5 57 3 3 40
2 10 200 3 5 72

Table 1: Run times
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1 Introduction

A typical problem in engineering is to find a numerical solution to a partial differential equa-
tion (or a coupled set thereof), given a number of boundary conditions, and the usual approach
of solving the problem starts by discretizing the domain into elementary volumes. In this
paper, we focus on mesh generation suitable for the solution of field problems in arbitrary
VLSI structures. We assume that the problem cannot be easily reduced to a lower dimension-
ality by exploiting symmetry or regularity, so that the problem-domain is intrinsically three-
dimensional. Also, we assume that the selected numerical technique (e.g., the finite element
method) requires a three-dimensional discretization (as opposed to a surface-discretization).
Surveys on mesh generation are given in [2] and [5]. The mesh generator described in this
paper is based on techniques from the Delaunay-based mesh generation literature. The main
benefit of these techniques is that the quality of the resulting meshes can be guaranteed, and,
equally important, that the meshes are still small enough to be practically useful. An additional
advantage is that computation of the mesh is efficient in practice. In general, mesh computation
is much faster than solving the subsequent numerical problems. An example mesh generated
by our implementation is shown in Figure 1.
Although the principles of Delaunay-based mesh generation are well-known, implementing a
mesh generator of this kind is a real challenge. Besides the fact that coding the topological
manipulation of the three-dimensional basic elements (tetrahedra in our case) is tedious, one
must make sure that the algorithm is robust against floating point errors. Furthermore, the
Delaunay-based mesh generation theory allows fast construction of the mesh using only local
operations, and it is not trivial to exploit this fact.

2 Delaunay Refinement

Our mesh-generator follows the traditional approach of Delaunay-based mesh refinement.
Limitation of space prohibits us to give a full account of the method and its theoretical
underpinnings, hence we are obliged to refer the reader to the literature. See, e.g., [5], or [10]
for especially good expositions.
For later reference, the global Delaunay refinement algorithm is depicted in Figure 2.
The terms SPLIT1, SPLIT2, and SPLIT3 denote the operations of subsegment, sub-
facet and tetrahedron splitting, respectively. Given a tetrahedron t, γ(t) denotes its
circumradius-to-shortest-edge ratio. Further, the constant B reflects the “minimum tetrahe-
dron quality,” and should be selected greater than 2.
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Fig. 1: Example PLC and corresponding mesh. The structure is contained in a bounding box (not shown) and the exterior
of the structure is meshed as well in this case.

The input of the algorithm is restricted to a piecewise linear complex (PLC) with angles greater
than or equal to π/2 (this holds both for inter-edge angles and dihedral angles). In our case
of VLSI structures, this forms no real limitation. In cases where smaller input-angles are
unavoidable, a remedy is to clip-off the offending angles, thereby introducing a slight modi-
fication of the original geometry, but one could even mesh the clipped domains separately, in
some cases.

3 Delaunay Tetrahedrization

An essential data-structure maintained by the mesh-generator is the Delaunay tetrahedrization
(abbreviated DT; we use the same abbreviation for the Delaunay triangulation, but add the
prefix ‘2d’ or ‘3d’ when confusion may occur) [4]. The DT is constructed incrementally: we
start with a basic DT (in fact a single tetrahedron), and as new points are added to the mesh,
the representation of the DT is updated. Mathematical tools described in Section 4 guarantee
that the DT is uniquely defined.
For incremental point-insertion, we use the Bowyer-Watson method [3, 11]. In essence, given
a point p to be inserted into the DT, the method computes the so called Bowyer-Watson poly-
hedron, which is the union of tetrahedra which have p in their circumsphere (it can be shown
that this polyhedron can be computed in O(t), where t is the number of tetrahedra in the
polyhedron; a simple breadth-first search can be used). Then, the polyhedron is emptied (its
constituent tetrahedra are removed from the mesh), and new tetrahedra are formed between
p and the triangular faces of the polyhedron. It is theoretically guaranteed that the resulting
complex is the DT.
Note that the initial DT, consisting exclusively of the points in the input PLC, can be con-
structed more efficiently by using a sweepline algorithm, as mentioned in [10].
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while True:
(STEP 1) if some subsegment s is encroached:

SPLIT1 s

else (STEP 2) if some subfacet u is encroached:
let c be the circumcenter of u

if c encroaches upon a subsegment s:
SPLIT1 s

else:
SPLIT2 u

else (STEP 3) if there exists a tetrahedron t with γ(t) > B:
let c be the circumcenter of t

if c encroaches upon some subsegment s:
SPLIT1 s

else if c encroaches upon some subfacet u:
SPLIT2 u

else:
SPLIT3 t

else:
break

Fig. 2: Pseudo-code for the three-dimensional mesh-refinement algorithm.

4 Geometric Predicates

The mesh generator depends on geometric predicates for making elementary decisions.
Essentially, geometric predicates form the connection between topological information (how
elements are connected together) and geometric information (where elements are physically
located). Reducing the number of geometrical predicates to a minimum creates the best
opportunities for making our algorithm robust w.r.t. degeneracies and round-off error.
We require only two different predicates. One predicate, ORIENT3D, determines the relative
orientation of four points in 3d space. Another predicate, INSPHERE, determines, given four
points in 3d space, whether a fifth points lies inside or outside the circumscribing sphere of
those four points. Both predicates can be computed by evaluating the sign of a determinant.
See [10] for precise definitions of these predicates. Note that the algorithm does not utilize
two-dimensional equivalents of the predicates (see also Section 8).
In order to uniquely define the Delaunay tetrahedrization, it is necessary and sufficient that any
degeneracies are expelled from the geometric predicates. This means that the corresponding
determinants must be either positive or negative, but never exactly zero.
We implement non-degeneracy by using the Simulation of Simplicity (SoS) method devised
by Edelsbrunner and Mücke [6]. However, it would be highly inefficient to use the SoS method
directly for all geometric predicates that need to be evaluated, since the method relies on exact
arithmetic. Therefore, we compute first, for every predicate we encounter, the sign of the
determinant without the symbolic perturbation exerted by SoS. Only if a degeneracy is found,
we resort to SoS.
For the computation of regular signs of determinants, we rely on Shewchuk’s adaptive floating
point predicate library [9]. For SoS, we have implemented a module capable of performing
the necessary symbolic manipulations, where the handling of exact floating-point arithmetic
is delegated to the GNU multiprecision library (libgmp [1]). In order to reduce the probabil-
ity of degeneracies, we (physically) perturb the inserted points slightly. The result is that in
practice, the SoS-module is used only in a small fraction of the cases, and thus its efficiency
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is marginal. Most of the optimizations mentioned in [6] can be ignored (at least in our case)
since they do not result in any appreciable advantage.

5 Elementary Data-structures

A fair amount of research was needed to come up with the actual data-structures to be used
in the mesh-generator. Of course, having proper data-structures is of paramount importance
to the efficiency of the algorithm. Here we give a overview of the types of object that the
mesh generator handles. This overview is a necessary aid in understanding the algorithm and
in seeing why it is efficient.
For every point inserted in the mesh, a node-object is allocated, which contains the physi-
cal x, y, z-coordinates of the point. The address of the node is used as the perturbation-index
for the SoS method (see Section 4). All other objects (subsegments, subfacets, tetrahedra,
etc.) refer to a point by a pointer to the corresponding node-object. Every subsegment-object
records an (arbitrarily large) set of subfacet-objects to which it is attached (its ‘wings’). Every
subfacet records a set of (at most two) abutting tetrahedra. Each subfacet contains three point-
ers to neighboring subfacets (a pointer can be null in case a neighbor does not exist). Similarly,
every tetrahedron contains four pointers to its neighbors.
As a local optimization, a subfacet stores the orientation of each neighboring subfacet, by
storing the neighbor’s edge-number. Similarly, a tetrahedron stores the orientation of each
neighboring tetrahedron, by storing its face-number and by storing the orientation of that face.
Note however, that this information can be easily obtained by a local topological investigation
based on node-comparisons.

6 Detached Elements

In the final mesh, every subfacet has two abutting tetrahedra associated with it (assuming the
subfacet is not at the boundary of the mesh). However, during mesh refinement, a subfacet
may of course be detached from its two potentially abutting tetrahedra.
We keep subfacets attached to tetrahedra as much as possible. Thus, when inserting a point into
the mesh (modifying the three-dimensional DT, and/or two-dimensional DTs), we examine
every face of every modified tetrahedron, and see if it matches some subfacet which is in a
detached state. If we find such a subfacet, we simply attach it to the tetrahedron. The table
used for attaching subfacets and tetrahedra is implemented as a hash-table. Indexing is done
using the set of the three corresponding node pointers.
A similar mechanism is used to attach subsegments to subfacets. In our implementation, we
also explicitly attach subsegments to tetrahedra (thus requiring an extra table).

7 Encroached Elements

Throughout the refinement process, certain subsegments and subfacets may become encroached
[8, 10] and they remain encroached until the corresponding subsegment or subfacet is split
(note that a subfacet may also disappear from the mesh due to some other splitting).
Subfacets which are (possibly) encroached are kept in a list. Any time a subfacet may have
become encroached (this happens during point-insertion), we add it to the list. It turns out that
the Bowyer-Watson insertion-polyhedron (see Section 3) used during point-insertion contains
exactly those subfacets which may have become encroached by the point to be inserted, thus
the amount of elements to be inserted into the encroachment-list is limited to the neighborhood
of the given point.
The actual encroachment-test is delayed until the elements are fetched from the encroachment-
list: whenever we need to select an arbitrary encroached subfacet, we pick one from the
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encroachment-list, and we check whether the subfacet still exists, and whether it is indeed
encroached; encroachment is easily detected by examining the apices of the two tetrahedra
abutting the subfacet. It remains to be said that for subsegments, the approach is similar.

8 Representation of Facets

For every facet of the PLC, we need to keep a separate (2d) Delaunay triangulation (all nodes
contained in the facet are inserted into both the corresponding 2d DT and the global 3d DT,
but not vice versa). Each 2d DT is actually implemented using three-dimensional predicates
(we define an auxiliary node at some distance from the plane of the facet, and use this node to
augment the set of parameters of our three-dimensional predicates).
Most operations on 2d DT’s are straighforward modifications of the corresponding operations
on 3d DT’s. In 2d DT’s, however, we remove subfacets at the exterior of the facet, for effi-
ciency. The boundaries of a facet thus form the constraining edges in a constrained Delaunay
triangulation (CDT), see, e.g., [5]. Using the fact that these edges form a set of contiguous
boundaries, one can show that (in 2d) the Bowyer-Watson insertion scheme is still applicable
and retains its efficiency (with only some trivial modifications).

9 Zone Bookkeeping

For each tetrahedron, we record whether it is inside, or outside the part of the domain to be
meshed, and this information is updated dynamically. Whenever it is unknown in what part of
the domain a tetrahedron resides, its zone is marked as ‘unknown’.
If, when querying the zone of a tetrahedron τ , its zone is not ‘unknown’, we can be sure that we
have the correct zone. Otherwise, we perform a straight walk through the mesh towards some
point at infinity, and we count the number of walls crossed. When we run into the boundary
of the mesh, or if we encounter some tetrahedron with a known zone, we can reconstruct the
zone information of τ . After a query, in order to optimize future queries, we record the zone
information with τ , and also recursively with its neightbors.
Note from Figure 2 that the concept of the zone in which a tetrahedron lies is properly defined
only at STEP 3, since then all subfacets are unencroached and guaranteed to be part of the
mesh (in this case no tetrahedron can pierce through a wall of the domain). Fortunately, we
need the zone-information exclusively in this step: when splitting skinny tetrahedra, we need
to consider just the tetrahedra which are on the ‘inside’ of the domain, as refinement of the
exterior would be wasteful.
Note that in the context of physical VLSI layout, the domain is often bounded by a large
cuboid; in that case, determining the zone of a tetrahedron is quite simple. However, when
analyzing a design in parts, one can easily end up with different types of geometry.

10 Point-location

We frequently need to determine the tetrahedron in which a given point lies. For example,
when splitting a tetrahedron τ1, we need to insert a node into the tetrahedron τ2 containing
the circumcenter of τ1. Finding a tetrahedron containing a given point, or ‘point-location’, is
implemented using a linear walk (see, e.g., [7]).
A linear walk takes time proportional to the number of tetrahedra visited, and thus the main
trick is to always make sure that the initial tetrahedron is topologically close to the final
tetrahedron. In the case of splitting a skinny tetrahedron, an obvious candidate for the ini-
tial tetrahedron is of course the skinny one, and fortunately, in practice, with this choice one
observes that the amount of intermediate tetrahedra visited is generally below a small constant.
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There are other situations in which point-location is required. For example, when splitting
a subfacet f , we need to find the tetrahedron containing the circumcenter of f (because we
need to insert a node into it). Now since the subfacet is not guaranteed to be attached to a
tetrahedron (in fact, it is encroached so it is likely not attached), we have no simple initial
tetrahedron. To remedy this, we record with each detached subfacet a tetrahedron which is
in its proximity (basically, the tetrahedron to which it was attached most recently) so that we
can use this tetrahedron as our starting point. Of course, once a subfacet is detached, it can
‘drift’ away from this tetrahedron (due to insertions elsewhere), but practice shows that point-
location still approximately takes constant time. Intuitively, the effect of drifting is only small,
since all operations on the mesh are designed to be as localized as possible for additional
efficiency reasons.
We also need point-location in two dimensions, i.e., we need the ability to find the subfacet in
which a given point lies. The operation is similar to that described above, except that in 2d, the
elements at the exterior of the domain are not present. Thus, a linear walk may prematurely
halt at the border of the domain. In such cases, we perform an additional breadth-first search
from the subfacet at which the linear walk ended. This search is expected to be relatively
inexpensive (practice confirms this) since we already assume that the starting subfacet is close
to the target subfacet.

11 Conclusion
Although limitation of space precluded an in-depth treatment, we have described the most
important ingredients of an efficient three-dimensional mesh generator. Our implementation
works and produces around 15.000 tetrahedra per second on a 2.4GHz Intel-based worksta-
tion. The reader may obtain a copy of the implementation by contacting the authors.
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7. E. P. Mücke, I. Saias, and B. Zhu. Fast randomized point location without preprocessing

in two- and three-dimensional delaunay triangulations. In Proceedings of the 11th Annual
Symposium on Computational Geometry, pages 274–283, 1996.

8. J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In
Proc. 4th ACM-SIAM Symp. on Disc. Algorithms, pages 83–92, 1993.

9. Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Ro-
bust Geometric Predicates. Discrete & Computational Geometry, 18(3):305–363, October
1997.

10. Jonathan Richard Shewchuk. Delaunay refinement mesh generation. PhD thesis, School
of Computer Science, Carnegie Mellon University, 1997.

11. D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes. Computer J., 24:167–171, 1981.



Coupled FETI/BETI Solvers for Nonlinear Potential
Problems in (Un)Bounded Domains

Ulrich Langer1, 2 and Clemens Pechstein2

1 Institute of Computational Mathematics, Johannes Kepler University, Altenberger Str. 69,
4040 Linz, Austria ulanger@numa.uni-linz.ac.at

2 Special Research Program SFB F013, Johannes Kepler University, Altenberger Str. 69,
4040 Linz, Austria clemens.pechstein@numa.uni-linz.ac.at

Summary. In nonlinear electromagnetic field computations, one is not only faced with large
jumps of material coefficients across material interfaces but also with high variation in these
coefficients even inside homogeneous materials due to the nonlinearity. The radiation con-
dition can conveniently be taken into account by a coupled boundary integral and domain
integral variational formulation. The coupled finite and boundary element discretization leads
to large-scale nonlinear algebraic systems. In this paper we propose special inexact Newton
methods where the Jacobi systems arising in every step of the Newton method are solved by
a special preconditioned finite and boundary element tearing and interconnecting solver. The
numerical experiments show that the preconditioner proposed in the paper can handle large
jumps in the coefficients across the material interfaces as well as high variation in these coef-
ficients on the subdomains. Furthermore, the convergence does not deteriorate if many inner
subdomains touch the unbounded exterior subdomain.

Keywords—Nonlinear problems, electromagnetic field computations, domain decompo-
sition, FEM, BEM, Newton’s methods, unbounded computational domains

1 Introduction

Domain decomposition (DD) methods of iterative substructuring type, such as the widely used
classical finite element tearing and interconnecting (FETI) methods [3], dual-primal FETI
(FETI-DP) methods [4] and balanced domain decomposition by constraints (BDDC) [5], are
powerful methods for large-scale field computations on parallel computers. In the classical
FETI method, the finite element subspaces are treated separately on each subdomain including
its boundary. The global continuity across the interfaces is enforced by Lagrange multipliers,
which leads to a saddle point problem that can be solved iteratively via its dual problem. From
the Lagrange multipliers, the solution can easily be computed. The iteration process is nothing
but a preconditioned conjugate gradient (PCG) subspace iteration.
To obtain a fast method, a careful choice of the preconditioner is essential. For the case that
the coefficients of the underlying elliptic partial differential equation (PDE) are constant in
each subdomain, quasi-optimal preconditioners are available. It is proved that the condition
number grows proportionally to (1+log(H/h))2, where h is the mesh size and H the average
diameter of the subdomains. Moreover, the preconditioners are robust with respect to jumps
in the coefficients across subdomain interfaces [7, 13]. The PCG subspace iteration involves
the use of standard Dirichlet and Neumann solvers.



372 Ulrich Langer and Clemens Pechstein

To summarize, the main success of FETI, FETI-DP and BDDC methods is certainly due
to their rather general structure, wide applicability, moderate complexity, robustness, and
finally their scalability with respect to parallel computing. For a comprehensive introduction
to domain decomposition methods, FETI and FETI-DP methods, we refer to the monograph
by Toselli and Widlund [18].

Recently, Langer and Steinbach have introduced the boundary element tearing and intercon-
necting (BETI) methods [11] as a boundary element counterpart of the FETI methods, as well
as the coupled FETI/BETI methods [12]. The BETI method uses boundary-element-based
analogs of the FETI operators. Due to spectral arguments, all the properties of FETI meth-
ods mentioned above remain valid for BETI methods. Furthermore, inexact and data-sparse
techniques are available, cf. [9].
Coupling boundary element and finite element discretizations, one can benefit from the
advantages of both discretization techniques. For instance, in electromagnetics, source terms
and nonlinearities can be treated more efficiently by the finite element method (FEM) than
by the boundary element method (BEM), whereas unbounded domains, moving parts and
air regions can efficiently be handled by BEM. We refer to [2] for the symmetric coupling
of finite and boundary elements, and to [6, 8] for using this coupling technique to construct
domain decomposition solvers.

In this contribution, we use coupled FETI/BETI methods to solve nonlinear potential problems
as they appear in nonlinear magnetostatics in two dimensions,

div(ν(x, |∇u(x)|)∇u(x)) = f(x) for x ∈ Ω . (1)

Additionally we may have suitable transmission conditions, Dirichlet boundary conditions
and/or–in case Ω is unbounded–a radiation condition.
In Section 2 we give a review of the coupled FETI/BETI methods for the case that the
coefficient ν is constant in the subdomains Ωi, considering a bounded domain with Dirichlet
boundary conditions.
Solving the nonlinear problem (1) in a bounded domain Ω with FETI/BETI methods has been
investigated by the present authors in [10]. We give an outline of the main issues in Section 3.
Applying Newton’s method to the global formulation, the spectrum of the Jacobi matrices in
the nonlinear subdomains may show high variation, especially if there are singularities in the
solution. We propose a special preconditioner to overcome these difficulties and show its good
numerical behavior in a typical magnetostatic model problem.
Section 4 is devoted to unbounded domains. We show how the BETI operators change and give
some analytic results. Up to now, we can only prove a suboptimal condition number estimate
whereas the performance of the numerical experiments is far more promising.

2 Coupled FETI/BETI Methods

Let Ω ⊂ R
d (where d = 2, 3) be a bounded, connected domain with a Lipschitz bound-

ary Γ and the outward unit normal vector n. We assume that Ω is decomposed into p non-
overlapping simply-connected Lipschitz domains Ωi, i. e. Ω =

⋃p

i=1
Ωi. It is assumed that

the diameters Hi = diam Ωi are all of comparable size and bounded by the maximal diameter
H . We define the local boundaries Γi = ∂Ωi and the interfaces Γij = Ωi∩Ωj , and denote the
outward unit normal vector on Γi by ni. In the following, we consider the Poisson problem
with homogeneous Dirichlet boundary conditions and piecewise constant coefficients, to find
u satisfying

−div(αi∇u) = f in Ωi ,

u = 0 on Γ , αi
∂u
∂ni

+ αj
∂u
∂nj

= 0 on Γij ,
(2)
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with αi = const. The generalization to inhomogeneous and mixed boundary conditions is
straightforward.

2.1 Dirichlet-to-Neumann maps

The solution ui of the local subproblem

−div(αi∇ui) = 0 in Ωi , ui = gi on Γi , (3)

defines the Steklov-Poincaré operator Si gi := αi
∂ui
∂ni

, mapping the Dirichlet trace gi to the
corresponding Neumann trace. The contribution of a right hand side fi to the Neumann trace
of the solution is described by the Newton potential Ni fi = −αi

∂vi
∂ni

, where vi solves

−div(αi∇vi) = fi in Ωi , vi = 0 on Γi . (4)

These operators can be approximated by the FEM. Fixing a triangulation Ti, h of Ωi with a
mesh size h, we denote by Ki the FEM stiffness matrix and partition it according to boundary
unknowns (subscript Γ) and inner unknowns (subscript I). The Schur complement

SFEM
i, h := KII, i −KΓI, i K

−1
II, i KIΓ, i (5)

is a symmetric and stable approximation of Si, and

NFEM
i, h f

i
:= f

Γ, i
−KΓI, i K

−1
II, i fI i

(6)

is a stable approximation of the Newton potential Ni, cf. [17].
On the other hand, one can approximate the Steklov-Poincaré operator by means of the BEM,
cf. [6, 17]. The solution of (3) satisfies the Caldéron equation(

gi

ti

)
=

(
αi
2
I −Ki Vi

Di
αi
2
I +K′

i

)(
gi

ti

)
(7)

where ti is the co-normal derivative and Vi, Ki, K′
i, Di are the usual boundary integral

operators, the single layer potential operator, the double layer potential operator, its adjoint,
and the hypersingular integral operator, respectively. In three dimensions the single layer
potential operator Vi is always elliptic, whereas in two dimensions, due to the logarithm in
the fundamental solution, it is only elliptic if diam Ωi < 1. This property can always be
achieved by a suitable coordinate scaling.
After discretizing and eliminating ti, one obtains the symmetric and stable approximation

SBEM
i, h := Di, h +

(
αi
2
M�

i, h +K�
i, h

)
V −1

i, h

(
αi
2
Mi, h +Ki, h

)
, (8)

where Vi, h, Ki, h, Di, h are the boundary element matrices corresponding to Vi, Ki, Di,
respectively, and Mi, h is a mass matrix.
Note that the two approximations SFEM

i, h and SBEM
i, h are compatible and both spectrally equiv-

alent to the Galerkin matrices of the exact Steklov-Poincaré operators Si. The application of
SFEM

i, h or SBEM
i, h simply corresponds to the solution of local Dirichlet problems. For details we

refer to [11, 12].

2.2 Tearing and Interconnecting

Introducing separate variables ui on the local subdomains, one can re-enforce the continuity
of the solution u across interfaces Γij by the constraints∑p

i=1
Bi ui = 0 , (9)
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where the Bi are incidence matrices.
Problem (2) can be written as a constraint minimization problem, as well as a saddle point
problem involving Lagrange multipliers. Using the notion of the pseudo-inverse (†) and a
special projection P addressing the kernels of the subproblems, it is possible to eliminate the
primal unknowns ui. Finally, one obtains the discrete dual FETI/BETI formulation, to find the
Lagrange multiplier λ such that

PTF λ = d , (10)

where the FETI/BETI operator F is defined by

F = B
[
SFEM/BEM

h

]†
B� =

∑p

i=1
Bi

[
SFEM/BEM

i,h

]†
B�

i , (11)

where B =
[
Bi

]p

i=1
, SFEM/BEM

h :=
[
SFEM/BEM

i, h

]p

i=1
. The application of the pseudo-inverses

[SFEM/BEM
i, h ]† can be realized by the simple solution of regularized local Neumann problems.

Since F is symmetric positive definite on range(P ), one can solve the dual problem (10) by a
preconditioned conjugate gradient subspace iteration. The preconditioner

M−1
S,α = (BD−1

α B�)−1BDα S
FEM/BEM
h DαB

�(BD−1
α B�)−1 , (12)

first introduced and fully analyzed by Klawonn and Widlund [7], satisfies the quasi-optimal
condition number estimate

κ(PM−1
S,αP

TPTFP ) ≤ C(1 + log(H/h))2 , (13)

independent of the values–and therefore possible jumps–of the coefficientsαi. It is well known
that an appropriate norm of the iteration error of the conjugate gradient method will decrease
at least by a factor 2

(√
κ−1√
κ+1

)n
in n steps. The robustness with respect to the jumps in the

coefficients αi is due to the special diagonal scaling matrix Dα, involving weighted mean
values of αi on cross points, interface lines and interfaces between the subdomains. We further
point out that one step of the PCG subspace iteration is performed by the solution of one local
Dirichlet and one local Neumann problem on each of the subdomains, and the application of
the projection and some scaling matrices, which are both global operations but of a rather
small dimension. This is why these tearing and interconnecting methods are most suitable for
parallelization. For a more detailed description see e. g. [7, 10, 12]

2.3 Varying coefficients

In this subsection, we consider a varying matrix coefficient Ai(x) instead of a constant coeffi-
cient αi on some of the subdomains discretized by the FEM. We assume Ai(x) to be constant
on the finite elements T ∈ Ti, h. In order to determine the amount of variance, we introduce
the spectral variance measure

mSV(Ai) :=
supx∈Ωi

αi(x)

infx∈Ωi
αi(x)

, (14)

where αi(x) and αi(x) denote the maximal and minimal local eigenvalues of Ai(x),
respectively. The application of a preconditioner with Steklov-Poincaré operators correspond-
ing to constant coefficients leads in the worst case to a condition number proportional to
maxi mSV(Ai), which is not at all acceptable in magnetostatic applications. In [10] the present
authors have proposed a new preconditioner M̂−1

S,A based on a varying scalar coefficient α̂i(x)
which can be easily computed from Ai(x), together with a suitable diagonal scaling matrix
D

α̂
. If the local anisotropy measure

manis(Ai) := supx∈Ωi

αi(x)
α

i
(x)

(15)

is moderate, our new preconditioner works fine, cf. Table 1 and [10].



Coupled FETI/BETI Solvers – Nonlinear, Unbounded 375

d.o.f. Lagr. H/h manis(ζ) mSV(ζ) Newt. PCG-steps ref

806 408 6.3 12.0 187.4 6 14.0 12
3539 777 12.6 12.0 469.9 4 17.8 14

14357 1515 25.3 12.0 852.4 4 21.3 17
57833 2991 20.6 12.0 1496.4 3 25.3 19

232145 5943 101.2 12.4 2670.9 4 27.8 21

Table 1: Average number of FETI PCG iterations to get a reduction of 10−8 in the residual of linear subproblems during
Newton’s iteration, with 70 subdomains, compared to a linear reference problem (ref.) of the same size.

3 Nonlinear Problems

We now consider the following nonlinear magnetostatic model problem:

−div[νi(|∇u|)∇u] = f in Ωi ,

u = 0 on Γ , νi(|∇u|) ∂u
∂ni

+ νj(|∇u|) ∂u
∂nj

= 0 on Γij .
(16)

Assuming that the functions t �→ νi(t) t : [0,∞) → [0,∞) are strongly monotonically
increasing and piecewise C2, (16) is uniquely solvable in the weak sense and the corre-
sponding Newton iteration converges locally at a quadratic rate. For our computations, we
generated these material curves from noisy measurements using the robust interproximation
technique introduced by Pechstein and Jüttler in [15]. In the linearized problems a varying
matrix coefficient ζi(∇u(k)

h (x)) appears. In our numerical experiments, it turns out that typi-
cally the anisotropy measuremanis(ζi(∇u(k)

h )) is small, whereas the spectral variance measure
mSV(ζi(∇u(k)

h )) becomes rather large. As one can observe in Table 1, with our new precon-
ditioner M̂−1

S,A such linearized Newton-problems can be solved satisfactorily. In order to get a
good initial guess for Newton’s iteration, it is convenient to set up a hierarchy of nested grids
and use coarse grid solutions as initial guesses on finer levels. For details, see [10].

4 Unbounded domains

In this section we allow that one of the subdomains, namely Ω0, is the unbounded exterior
ext(Γ0) of its boundary Γ0, where the interior int(Γ0) is bounded. Usually, for a typical do-
main decomposition, H0 := diam int(Γ0)gHi for i �= 0. In Ω0, we assume that the homoge-
neous Poisson equation is satisfied together with a suitable radiation condition, e. g. for d = 3,

−α0∆u = 0 in Ω0 , |u(x)| = O(|x|−1) for |x| → ∞ , (17)

cf. [14, 16]. In magnetostatic field computations, α0 could equal 1/µ0, where µ0 is the per-
meability of vacuum. The Dirichlet-to-Neumann map on Ω0 reads

Sext
0 = D0 +

(
α0
2
I −K′

0

)
V−1

0

(
α0
2
I −K0

)
. (18)

This means the difference between the interior and exterior Steklov-Poincaré operator is just
the sign in front of the double layer potential operators K and K′. As a consequence, Sext

0 is
always a one-to-one mapping, and Ω0 must be treated as a non-floating subdomain, cf. [7]. It
can be shown that

〈Sext
0 v, v〉 # |v|2H1/2(Γ0) + 1

H0
‖v‖2L2(Γ0) , (19)

where in two dimensions the coordinates have to be scaled such that H0 # 1. The BEM-
approximation of Sext

0 works analogously to (8).
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p H0/HF (HF /hF ) 4 8 16 32

10 3 (PCG) 8 9 11 13
37 6 9 11 13 16

145 12 9 13 15 17
577 24 11 14 16 –

2305 48 12 – – –

Table 2: Iteration numbers of the PCG subspace iteration of the FETI/BETI method in presence of a twodimensional
exterior domain. p: Number of subdomains.

By means of Sobolev interpolation techniques and the auxiliary results stated in [7, 18], one
can show that the FETI/BETI preconditioner defined in (12) yields the following condition
number estimate in the presence of one exterior domain Ω0,

κ(P M−1
S,α P

� P� F P ) ≤ C
(
1 + log

(
max
F⊂ΓS

HF
hF

))2

max
F⊂Γ0

H0
HF

, (20)

where ΓS =
⋃p

i=1
Γi is the skeleton of the domain decomposition, and F runs over interfaces

of subdomains, i. e. F = Γij for some i �= j, and HF := diamF . By hF we denote the min-
imal mesh size on the interface F . As in the standard case, C is independent of the diameters
Hi, HF , the mesh size hF and possible jumps in the coefficients αi.
Note that ( H0

HF
)d−1 is proportional to the number of subdomains touching Γ0. Our first

numerical experiments show even better performance than expected from the estimate (20).
In Table 2 one can observe a logarithmic instead of a linear growth in the condition numbers,
when increasing H0

HF
.

Whenever computing on parallel machines with such exterior domains, one has to keep the
load balancing of the processors in mind. Our suggestion is either to use a special decom-
position with different mesh sizes to obtain balance, or to treat the exterior subdomain on a
group of processors and apply an inner parallelization of the corresponding local problem,
e. g. using the techniques described in [1] and the references therein. In experiments, we have
observed that for nonlinear problems in unbounded domains, a coarse solution of a homoge-
neous Dirichlet problem (without considering the exterior domain) may serve as a good initial
guess for the Newton iteration on the fine level including the exterior domain.

5 Conclusion

In this work we gave an overview on the standard FETI and BETI methods for linear large-
scale potential problems on bounded domains, and an outline on how to extend and use these
techniques in the presence of nonlinearities and unbounded domains. Our numerical results
are rather promising in both cases.
For a proof of the effectiveness of our new preconditioner that can be applied to nonlinear
problems, an analysis of FETI/BETI methods for varying coefficients is needed, which is
certainly a challenging subject of future research. For the unbounded case, we could give
gave some analysis leading to a suboptimal condition number estimate, while our numerical
experiments show an even better, quasioptimal behavior.
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In this paper, a numerical algorithm solving large sparse linear systems that arise in electro-
magnetic field computation will be presented. It is based on hierarchical partitioning of the
matrix and uses block-wise low-rank approximation in combination with element dropping
in order to construct a preconditioner for iterative solution. Within the BE-FE coupling, this
approximate factorisation is applied as preconditioner for the FE system. The treatment of
multiply connected domains will also be described. The efficiency of the presented solver will
be shown by means of an electromagnetic valve.

1 Introduction

In the design of electromagnetic components, numerical field computation of three-
dimensional problems plays an important role. Efficient solver concepts are necessary to
retrieve information about the components behaviour already at an early stage of develop-
ment. The spatial discretisation is done by coupling of the boundary element method (BEM)
and the finite element method (FEM) both based on edge elements. Fine discretisation of
complex problems leads to large systems of equations. The BEM part is solved with asymp-
totically optimal complexity by using block-wise adaptive cross approximation (ACA) [2].
In larger problems, the main cost is then caused by the FEM part. In this paper, an efficient
preconditioner for the large sparse FE matrix will be investigated.
The use of BE-FE coupling for complicated geometry can lead to multiply connected subdo-
mains. Therefore, the discrete space approximating the boundary data needs to be extended
in order to consider those degrees of freedom corresponding to the holes. This was already
described in [10] for the Galerkin BEM. In this work, these degrees of freedom will be consid-
ered for the edge collocation method as described in [9, 11] (cf. Section 2). The discretisation
then yields a regular non-symmetric system of equations consisting of sparse FE matrices and
dense BE matrices, which is solved iteratively.
Due to the ill conditioning of the FE matrix, a preconditioner needs to be constructed.
In [6], different strategies of hierarchical concepts solving the sparse FE system were
presented. Especially, a non-recursive algorithm computing a preconditioner was developed
that combines a block Cholesky decomposition with low-rank approximation and element
dropping (Section 3). In this work, the efficiency of this preconditioner will be shown within
the solution of the coupled BE-FE problem.
For this, a component of the fuel injection system is simulated using BE-FE coupling and
considering multiply connected domains (Section 4). The FE stiffness matrix will be precon-
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ditioned by the method described in Section 3 and two other preconditioning concepts. With
this, an evaluation of the preconditioners will be carried out.

2 Discretisation and solver

Magnetostatic field problems in R
3 can be described in terms of the magnetic vector potential

A by

curl
1

µ
curlA = j, (1)

where j is the electric current density. The material parameter µ describes the magnetic per-
meability and may depend on the magnetic field. It is assumed that divj = 0. In order to use
BE-FE coupling, the domain is decomposed into an inner domain Ω− containing all conduct-
ing and magnetic materials of the component and an exterior infinite domain Ω+ = R

3\Ω−

(cf. Figure 1). The FEM will be applied in Ω− while the BEM is used in Ω+. At the coupling

c1

c2

−

+

Fig. 1: Decomposition into Ω+ and Ω− and two homology cycles c1 and c2 of the boundary

boundary Γ of these two domains, the boundary data A × n and curlA × n needs to be
continuous. Here, n is the outer normal field on Γ .
The variational formulation of (1) is constructed in the Hilbert space H(curl, Ω−) contain-
ing all square integrable functions with an existing curl in the weak sense. With w ∈
H(curl, Ω−) it reads

�
Ω−

1

µ
curlA · curlwdx−

�
Γ

γNA · γDwdSx =
�

Ω−

j ·wdx, (2)

with the Dirichlet and Neumann trace operators γD and γN . The respective trace spaces
are H

−1/2
⊥ (curl Γ , Γ ) and H

−1/2

‖ (divΓ 0, Γ ). The trace operators as well as the surface curl
and the surface divergence operators are defined in [4]. The boundary integral in (2) pre-
pares the coupling to Ω+. With the help of the fundamental solution of the Laplace operator
A∗(x,y) = I/4π|x − y|, one can derive a representation formula [9]. In case of j = 0 in
Ω+, it only contains boundary integrals:

A(y) =
�
Γ

(γNA∗(x,y))T γDA(x)dSx −
�
Γ

γDA∗(x,y)γNA(x)dSx

+
�
Γ

γ(divA∗(x,y))T γnA(x)dSx. (3)

The last integral, where γ is a standard and γn a normal trace operator, corresponds to a gauge
potential which will be eliminated by the discretisation with collocation over cycles [9].
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Let Ω−
h be a discretisation of Ω− having kE edges and kN nodes. The respective boundary

mesh Γh has kΓ
E edges and kΓ

N nodes. Equation (2) and (3) will be discretised by the use of
Whitney p-forms Wp, p = 0, 1. For p = 0 they are formed by the continuous Lagrangian
nodal elements, and for p = 1 they are tangentially continuous vector fields defined along
edges [3]. With the Whitney 1-forms ωi ∈ W1(Ω−

h ), the approximation of A reads Ah =∑kE

i=1
βiωi. The approximation of the Dirichlet data contains the degrees of freedom βΓ

i

corresponding to the boundary, so that (γDA)h =
∑kΓ

E
i=1 β

Γ
i ωΓ

i with ωΓ
i ∈ W1(Γh). As

explained in [9], the Neumann data has a zero surface divergence divΓ γNA = 0. In order to
exploit this, the discrete kernel space

ker(divΓ ) = curlΓW0(Γh) ∪ K1(Γh) ⊂ W1(Γh)

is used to discretise γNA. The operator curlΓ acts on scalar functions and is the adjoint oper-
ator of curl Γ [4]. Here, K1(Γh) is a finite-dimensional space discretising cohomology fields
due to the holes in the domain. The Betti number b = dim(K1(Γh)) denotes its dimension,
which is given by twice the number of holes of Ω−

h . The discrete representation of the coho-
mology group was described in [10]. Therefore, b representative cycles on Γh surrounding the
holes need to be constructed (cf. c1 and c2 in Figure 1). The discrete spaceK1(Γh) is spanned
with the help of scalar functions ψk being piecewise linear and continuous on Γh except for a
jump [ψk]ck = 1 across the corresponding homology cycle ck. With c̃urlΓ being the surface
curl on Γ\ck, ηk = c̃urlΓψk, k = 1, . . . , b yields a basis ofK1(Γh). The discrete Neumann
data reads

(γNA)h =

kΓ
N∑

i=1

ϕicurlΓλi +

b∑
k=1

ϕck

∑
(j,m)∈Sk

curlΓλj,m,

with λi ∈ W0(Γh) and λj,m being a restriction of λj on the m-th element. The pair (j,m)
belongs to the index set Sk if the m-th element lies on one side of the oriented cycle ck and
the j-th node is contained in ck.
The DeRham collocation method for boundary integral equations was considered in [9] for
trivial domains. The evaluation of the discretised representation formula along kΓ

N closed
cycles yields a fully populated unsymmetric system of equations. For multiply connected
domains, b additional cycles given by the homology paths of Γh are used for the colloca-
tion. With this, kΓ

N + b linearly independent equations form the BE system. This discretisation
of (2) and (3) yields the system

(
QΩΩ QΩΓ 0
QΓΩ QΓΓ T

0 H G

)(
βΩ

βΓ

ϕ

)
=

(
gΩ

gΓ

0

)
(4)

with kE + kΓ
N + b unknowns and equations.

The vector potential ansatz is unique up to gradient and cohomology fields. Because of this
ambiguity,Q is singular having a large kernel. The regularisation of the system by constructing
a matrix of representative vectors spanning the kernel due to gradient fields is applied, so that
K = Q + UUT , U ∈ R

kE×kN . The kernel matrix contains discrete gradient fields given
by the incidence matrix between edges and nodes of the mesh [3]. The kernel properties of
the block matrices stated in [11] allow the regularisation of the system (4). The kernel due
to the cohomology fields is eliminated by consideration of the cohomology in the BEM and
therefore, the BE-FE system matrix is regular.
This regularised unsymmetric system is solved iteratively by the GMRES method. The BE
matricesH andG are well conditioned, so that no preconditioning is required. In Section 3, the
construction of a preconditioner for the FE stiffness matrix K ∈ R

kE×kE will be described.
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3 The hierarchical preconditioner

A recent development of numerical linear algebra is the application of hierarchical matrices
(H-matrices) to dense matrices arising from integral equations. H-matrices are based on a
geometrical clustering of the degrees of freedom so that the matrix can be partitioned into
smaller blocks A ∈ R

n×m where low-rank approximation A = UV T with U ∈ R
n×r and

V ∈ R
m×r , r � n can be applied. In the context of sparse matrices, the idea of hierarchical

approximation can be reused in order to approximate the much more populated matrix of the
Cholesky decomposition. This was already done for general elliptic differential equations [1].
In [6], we investigated the H-matrix based Cholesky decomposition under consideration of
memory reducing clustering. The more promising method was given by a non-recursive way
of an approximate decomposition, called HSILLT. It is based on low-rank approximation in
combination with element dropping . For this algorithm, we will show the performance in
Section 4 so that it is briefly explained.
By a hierarchical interface clustering of the degrees of freedom, a permuation is computed
which reorders the system matrix K ∈ R

kE×kE so that a block structure as shown in Figure 2
arises. The idea stems from a reordering strategy reducing the memory requirement of the
Cholesky decomposition called nested-dissection [5]. This permutation is computed with the
help of the geometry information corresponding to the degrees of freedom. The clustering
algorithm consists of recursive repeats of the two steps: 1. Geometrical bisection, 2. Construc-
tion of the interface cluster.

KI1

K11

K22

K12

K21I

11

12

21

22

I1 I2

KI

KI2

Fig. 2: Hierarchical interface clustering, geometry (left), matrix partitioning (right)

With the application of the clustering, the matrix can be organised in block rows as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

K11 KT
∗1

K∗1

. . . . . .

...

K(i−1)(i−1) KT
∗(i−1)

K∗(i−1)

Kii KT
∗i

K∗i

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The Cholesky decomposition works block column wise with two accuracies εdrop and εappr.
The first one controls the zero bound of small sub-diagonal block rows and the second one is
the bound for low-rank approximation of the Schur complement.
The exact decomposition of the first block column would yield(

K11 K
T
∗1

K∗1 K

)
=

(
L11 0
L∗1 I

)(
I 0
0 K − L∗1L

T
∗1

)(
LT

11 L
T
∗1

0 I

)
,

where K11 ∈ R
k1×k1 and K∗1 ∈ R

(n−k1)×k1 . Here, K11 = L11L
T
11 and LT

∗1 = L−1
11 K

T
∗1.

The low-rank approximation of the matrix LT
∗1 is given by a reduced QR-decomposition with
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accuracy εappr so that LT
∗1 ≈ U1V1. Here, U1 ∈ R

k1×r contains r orthonormal columns, i.e.
UT

1 U1 = I ∈ R
r×r and V1 ∈ R

r×(n−k1). This yields(
K11 K

T
∗1

K∗1 K

)
≈
(

L11 0
V T

1 UT
1 I

)(
I 0
0 K − V T

1 V1

)(
LT

11 U1V1

0 I

)
.

Since the block KT
∗1 is column sparse with only k2 non-zero columns, a column sparse struc-

ture of V1 results respectively. Thus, only the non-zero columns of this matrix will be stored
as a fully populated matrix together with an additional information about the indices of the
non-zero columns.
The computation of the Schur complement K − V T

1 V1 will be postponed until the decom-
position of the ith column is done. There the additional fill-in appears, and it is important to
explain how we deal with it.
In the ith elimination step, there are (i − 1) matrices V1, . . . , Vi−1 which must be used to
compute the Schur complement updates of the matrices Kii and KT

∗i. Thus, some additional
non-zero columns will arise in KT

∗i. Here, the second accuracy εdrop is used. It allows this
fill-in only if the norm of the additional column is larger than the norm of the diagonal block
times εdrop.

Algorithm 1 HSILLT
1: for all block columns i do
2: Compute the updates for the matrices Kii and K∗i arising from the previous Schur

complements,
3: Compute the Cholesky decomposition of the diagonal block Kii = LiiL

T
ii,

4: Compute the sub-diagonal block
k2 < k1 : L∗i = K∗iL

−T
ii ,

k2 ≥ k1 : with K∗i ≈ ṼiŨi, Ṽ
T

i Ṽi = I, compute L∗i = Ṽi(ŨiL
−T
ii ),

5: k2 < k1: Compute a low-rank approximation of L∗i ≈ ViUi, UT
i Ui = I,

k2 ≥ k1: Do postcompression for Ṽi(ŨiL
−T
ii ) ≈ ViUi, UT

i Ui = I .
6: end for

This algorithm has a memory complexity of O(rn log2 n) and the number of operations is
O(r3n log2

2 n) [6].

4 Numerical example

In order to evaluate the presented method by an industrial application, a magnetic valve as an
essential component of a fuel injection system is simulated by BE-FE coupling. It consists of
a ringshaped coil to carry the exciting current, a core and a yoke as well as a moving armature.
The discretisation of the three-dimensional domain is performed with the help of tetrahedral
and prismal edge elements. Due to the toroidal geometry, its discretisation has one hole along
the z-axis of the mesh (cf. Figure 3). Therefore, two additional degrees of freedom are added
in order to construct the correct discretisation space for the Neumann data as explained in
section 2. The domain has 4000 boundary elements and 31000 finite elements. The excitation
is given by a current of 10A and the coil has 100 windings. We assume a non-linear material
with an approximated magnetisation curve. Because of this, the Newton-Raphson method
is applied. In every Newton step, the resulting linear system of equations is solved by the
GMRES method.
For increasing problem size, the FE matrix K is getting more ill-conditioned. Therefore, a
preconditioner is constructed by HSILLT (cf. Section 3). For the comparison, two other solver
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����	
z

y x

Fig. 3: A quarter of the valve geometry, where only material components and the coil are shown. The colour scale
indicates the magnitude of the magnetic induction.

GMRES- MemL tLLT ttot
Iter [MB] [min] [min]

HSILLT 1255 232 9 34
Kaporin 1305 227 130 171
Taucs 1287 258 36 64

Table 1: Comparison of different preconditioner concepts for the magnetic valve.

concepts are also applied: an incomplete factorisation method by Kaporin [7] and one given by
the Taucs library [12]. The preconditioner HSILLT uses the interface clustering for reordering
the matrix. In the other cases, we choose a reordering also based on a nested-dissection strategy
given by the Metis library [8]. The accuracies of the preconditioners are chosen in order to get
similar convergence of the iterative method.
With all three preconditioners, the solution as shown in Figure 3 was computed. The magni-
tude of the magnetic induction in the material domain is shown in a quarter of the valve. The
maximum field can be found in the centre of the core and its value is 2.1 Tesla.
In Table 1, the performance of the preconditioners is compared. The number of Newton
iteration steps is 10 for all three preconditioners in order to reach a Newton residual of 10−9.
In every Newton step the GMRES method terminates with a residual of 10−12. The com-
plete number of required GMRES steps is stated in the first column. The memory required
for storing the incomplete Cholesky factor L is given by MemL, and the required time for its
computation is tLLT . Moreover, the total computation time ttot can be seen.
The factorisation time of HSILLT is four times faster than that of Taucs. Taucs computes a
decomposition column-wise by dropping elements via an accuracy criterion, whereas HSILLT
uses a low-rank approximation of sub-diagonal blocks. The block structure of those sub-
diagonal entries allows us to use fast level-3-blas matrix operations (cf. Algorithm 1). The
Kaporin method is said to yield high quality preconditioners. However, it doesn’t use a block
structure and requires a lot of index searches, so that it operates very slowly. A comparison
for more complicated materials should be done in the future.
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5 Conclusions

In this paper, we have presented a method to compute magnetic field problems on multiply
connected domains with edge based BE-FE coupling and the time efficient preconditioner
HSILLT. The efficiency of HSILLT was succesfully demonstrated by means of the numerical
example of the fuel injection system.
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Summary. We investigate the solution of linear systems that appear when model reduction via
system balancing is applied in circuit simulation and design. We show how the properties and
structure of the coefficient matrices allow the development and use of efficient parallel algo-
rithms for the solution of the corresponding linear systems. Experimental results are reported
on an Intel SMP multiprocessor.
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1 Introduction

We consider dynamical linear systems, given in generalized state-space form by

Eẋ(t) = Ax(t) +Bu(t), t > 0,
y(t) = Cx(t) +Du(t), t ≥ 0,

(1)

where A,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and x(0) = x0 ∈ R
n is the

initial state. Here, n is the order of the system and the associated transfer function matrix
(TFM) is G(s) = C(sE − A)−1B + D. In model order reduction (MOR) we are interested
in finding

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r � n, and TFM Ĝ(s) = Ĉ(sÊ− Â)−1B̂+ D̂ which “approximates” G(s).
Systems of the form (1) arise in circuit simulation and design (CSD) [4]. When modeling
the interconnect or the pin package of VLSI circuits, the order is often too large to allow
simulation in an adequate time or to even tackle the model using differential equation solvers.
Therefore, MOR is frequently used to replace the circuit model by one of much smaller order.
Here we will only consider methods based on system balancing, which are specially appealing
in that they provide global computable error bounds and can preserve the system properties.
For a survey of different MOR techniques, see [1].

∗ This research was supported by the DAAD programme Acciones Integradas HA2005-0081,
the CICYT project TIN2005-09037-C02-02 and FEDER, and project No. P1B-2004-6 of
the Fundación Caixa-Castelló/Bancaixa and UJI.
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There exist various methods for MOR which aim at balancing the system [1]. The core com-
putation in many of these is the solution of the Lyapunov equations

AWoE
T + EWoA

T +BBT = 0,
ATWcE + ETWcA+ CTC = 0,

(3)

for Cholesky or full rank factors of Wo,Wc ∈ R
n×n. Lyapunov solvers based on the LR-

ADI iteration [7] are specially efficient when both A and E are sparse, and the constant terms
in (3) are of low numerical rank (a usual case in CSD). The LR-ADI method requires, at a
given iteration j, the solution of a linear system of the form

Uj+1 := Â−1
j Uj = (A+ γjE)−1 Uj , (4)

where {γj}∞j=0 are scalars with periodicity ts, and {Uj}∞j=0 have all m or p columns, dep-
ending respectively on whether the first or the second equation in (3) is being solved for.
Therefore, the linear systems in iterations j and j + ts share the same coefficient matrix and
the use of direct solvers is highly recommendable. For further details on the LR-ADI iteration
and its parallelization on distributed-memory parallel architectures see, respectively, [7, 6]
and [2, 3].
The coefficient matrices of the linear systems (4) associated with CSD models often present a
band structure (or can be transformed to that form), allowing the use of band solvers in LA-
PACK. In this paper we describe how specialized band solvers can be designed to efficiently
exploit the properties and structure of these matrices. In particular, we describe new algorithms
for the factorization and backward/forward substitution stages with band symmetric positive
definite matrices. Combined with a multithreaded implementation of BLAS, the codes allow
the parallel solution of large-scale linear systems on current multicore and SMP architectures
in reasonable time. Experimental results on a 14-way Intel Itanium2 multiprocessor provide
evidence in support.

2 Efficient Solvers for Band Linear Systems

In this section we first review the codes in LAPACK for the factorization of band matrices.
We then propose two new variants with the potential to attain higher efficiency. To illustrate
this, we employ the routine in LAPACK for the Cholesky factorization of a band matrix,
xPBTRF [5]. The same modifications carry over to the LU factorization of band matrices [8].
We conclude the section by describing how to improve the performance of the routine for the
solution of triangular band systems in current implementations of BLAS, xTBSV.

2.1 LAPACK routine xPBTRF

Given a symmetric positive definite (s.p.d.) matrix Â ∈ R
n×n with bandwidth kd, routine

xPBTRF delivers a lower (or upper) triangular factor L ∈ R
n×n, of bandwidth kd, such that

Â = LLT . Upon completion, L overwrites the lower triangular part of Â. Now, let Â be
partitioned as

(
ATL ATR

ABL ABR

)
=

⎛
⎜⎜⎜⎝

A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

⎞
⎟⎟⎟⎠ , (5)

where ATL, A00 ∈ R
k×k, A11, A33 ∈ R

nb×nb , and A22 ∈ R
kd−nb×kd−nb . Here, the block

size nb is chosen to tune the performance of the routine and is related with the size of the
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Fig. 1: Compact storage of a 5 × 5 symmetric band matrix.

cache of the architecture. At a given iteration of the right-looking algorithm in xPBTRF, ABL

and the lower triangular part of ATL have been overwritten with the corresponding blocks of
L, and ABR has been updated conformally. The following operations are then performed on
different parts of ABR during the current iteration:

1.1) Factorize A11 = L11L
T
11, (xPOTF2)

2.1) A21 (= L21) := A21L
−T
11 , (xTRSM)

2.2) TRIL(A22) := TRIL(A22)− L21L
T
21, (xSYRK)

W := TRIU(A31),

3.1) W := WL−T
11 , (xTRSM)

3.2) A32 := A32 −WLT
21, (xGEMM)

3.3) TRIL(A33) := TRIL(A33)−WWT , (xSYRK)
TRIU(A31) (= L31) := TRIU(W ).

(6)

Here TRIU(Aij) and TRIL(Aij) denote, respectively, the upper and lower triangular parts of
Aij , and the expressions are annotated with the LAPACK/BLAS routines that are employed
for their computation. Provided nb � kd, a major part of the floating-point arithmetic opera-
tions (flops) are performed in terms of the BLAS-3 computation in 2.2), and high performance
is to be expected if a tuned implementation of xSYRK is utilized. On the other hand, no attempt
is made to exploit the upper triangular structure of A31 in 3.1)–3.3) as there is no appropriate
kernel in BLAS. The packed storage scheme utilized for symmetric band matrices (illustrated
in Fig. 1), and the use of BLAS kernels in 3.1)–3.3), results in the copies to/from the work
space W .
Operations involving small blocks during the factorization stage in general do not attain high
performance. While theoretically the influence (cost) of the computations involving A11, A31,
and A33 on the overall process should be small, practice has shown us otherwise. In some
experiments with s.p.d. matrices, the optimal block size nb determines that as much as 20–
30% of the time is spent in these small operations; the ratio is even higher when multiple
processors and a multithreaded BLAS are employed.
In order to overcome this problem, we propose two different algorithms with a common goal:
to integrate the updates on the small blocks with those of larger operations. The first algorithm,
xPBTRF+A, requires padding the data structure containing Â with nb rows of zeros in the
bottom. In this way, the update of A31 can be combined with that of A21 in a single call to
xTRSM, and a single call to xSYRK suffices to update A22, A32, and A33. Access to the strictly
lower triangular part of A31 in routines xTRSM and xSYRK only touches the zero entries in the
padded zone (see Fig. 2 (left)) and therefore does not affect the result. This strategy requires
space for an extra nb × n block which, provided nb � kd, is small.
In the second algorithm, xPBTRF+B, no padding is required. As access to the strictly lower
triangular of A31 in routines xTRSM and xSYRK would actually involve the elements in A11 in
the compact storage (see Fig. 2 (right)), we first copy the latter block to an auxiliary nb × nb
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Fig. 2: Access to elements in the strictly lower triangle of A31 in the compact storage for the symmetric band matrix in
xPBTRF+A (left) and xPBTRF+B (right).

workspace, W , while simultaneously setting its entries to zero. Now, the updates of A21 and
A31 can be combined in a single call to xTRSM, and a single call to routine xSYRK suffices to
update all three A22, A32, and A33. When these operations have been completed, the elements
of A11 are restored from those in W .

2.2 BLAS implementations of xTBSV

We have experimentally evaluated several implementations of the routine for the solution of
linear systems with triangular band coefficient matrix, xTBSV. Our tests included some of the
most efficient implementations of BLAS for the Intel family of processors, as MKL (http:
//www.intel.com), Goto BLAS (http://www.tacc.utexas.edu/resources/
software), and ATLAS (http://www.netlib.org/atlas). Invariably, these imple-
mentations delivered low performance, probably due to the little interest of tuning such a
routine to vendors.
As the performance of the xTBSV routine is crucial in our CSD problems, we have devel-
oped our own implementation. For that purpose, we started from the legacy code for xTBSV
at http://www.netlib.org/blas. This implementation is a “direct” code, with no
references to BLAS. We then substituted as many lines of this code by calls to BLAS. We
expect that, depending on the actual bandwidth of the triangular band matrix, the use of BLAS
outpeforms a direct code.
On the other hand, there is no specification in BLAS for a triangular band solver with multiple
right-hand sides, although such routine is necessary, e.g., in the solution of linear systems
arising in CSD. Besides, the presence of multiple right-hand side vectors enables the use of
a BLAS-3 version instead of having to perform multiple calls to a BLAS-1/2 routine xTBSV,
one per right-hand side. Certainly, such routine could benefit much our band linear system
solvers and we therefore developed it. Following the LAPACK convention the new routine
was named as xTBSM.

3 Experimental Results

The following experiments were performed using IEEE double-precision (real) arithmetic
on a parallel SMP platform consisting of 14 Intel Itanium2 processors@1.5 GHz, with
6 MB of L3 cache per processor, and 30 GB of shared RAM. The multithreaded BLAS
implementation in MKL 8.1 was employed. We consider three different examples from the
Oberwolfach MOR benchmark collection (http://www.imtek.uni-freiburg.de/
simulation/benchmark). Matrices −A and E in the systems are s.p.d. allowing the use
of the Cholesky factorization during the factorization of the corresponding linear systems.
MATLAB routine symrcm was used to reduce the bandwidth in the second and third exam-
ples below. A brief description of the examples follows:
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Example Time (in secs.) Time (in secs.) Speed-up
p× DTBSV DTBSM DTBSM

t2dah 2.09e−1 2.32e−2 9.37
chip v0 4.13e−1 8.26e−2 5.00
gas 5.79e+0 1.29e+0 4.46

Table 1: Performance of the triangular band solvers.

Example t2dah. This is a model of a µ thruster array with n=11,445 states, m = 1 input,
p = 7 outputs, and bandwidth kd=231.
Example chip v0. This model is used for 3D simulation of convective thermal flow in a
chip with n=20,082, m = 1, p =5, and kd=1,226.
Example gas. This is a µ machined metal oxide gas sensor array with n=66,917, m = 1,
p = 28, and kd=1,957.
Although sparse (parallel) linear system solvers as SuperLU or MUMPS could be used, in
some of these examples this leads to explosive fill-in so that memory is rapidly exhausted
and the factorization is not possible and/or keeping the factors during the LR-ADI iteration
becomes infeasible.
Our first experiment evaluates the performance of the (double-precision) factorization routine
DPBTRF, and the two variants we described in the previous section, DPBTRF+A and DPB-
TRF+B, when linked with a multithreaded implementation of BLAS (MKL). The plots in
the left-hand side of Fig. 3 report the execution times of the three routines for the narrow-
(t2dah), medium- (chip v0), and wide-band (gas) problems as the number of threads
(and therefore processors) is increased. The bandwidth of the different problems determines
the maximum number of threads that should be used in order to reduce the solution time of
the linear systems. Thus, 2, 4, and 8 threads produce the lowest execution times for examples
t2dah, chip v0, and gas, respectively. Using more threads does produce an increase of
the execution time due to the overhead of communications among processors.
The plots in the right-hand side of Fig. 3 show the speed-ups attained by modified variants,
computed as the ratio between the execution time of DPBTRF and those of routines DPBTRF+A
and DPBTRF+B. For the narrow-band case, the speed-up of the new variants using 2 threads
is between 25% and 37%. However, we recognize that this is due to the poor performance of
the LAPACK routine DPBTRF, which should have been executed using a single thread. For the
other two examples, the speed-ups range from 5% and 10% except in very few cases (the use
of three threads seems to be problematic here).
Our next experiment investigates the performance of triangular band solvers when multiple
linear systems are to be solved. This is the case, e.g., for the Lyapunov equations associated
with the three CSD examples considered in this section. Linear systems as in (4) with (p=)7, 5,
and 28 right-hand sides need to be solved in the iteration for examples t2dah, chip v0, and
gas, respectively. Table 1 reports the execution routines obtained by solving the triangular
band systems associated with the three examples using a single processor. We note that p calls
to routine DTBSV are necessary while a single call to DTBSM suffices. The third column in the
table reports remarkable speed-ups when solving the systems via routine DTBSM over DTBSV.

4 Conclusions

We have addressed the parallel solution of band linear systems as those arising in model or-
der reduction of dynamical linear systems for circuit simulation and design. Current codes
for band linear systems in LAPACK, and implementations in BLAS are not optimal when
executed on SMP parallel architectures. We have presented two new routines for the factor-
ization of s.p.d. band matrices that outperform the routine in LAPACK by 5–10%, depending
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Fig. 3: Performance of the parallel factorization routines.

on the bandwidth of the problem and the number of threads/processors that are employed. We
have also coded a BLAS-like routine for the solution of triangular band systems with multi-
ple right-hand sides. By enabling the introduction of BLAS-3 kernels, the new routine clearly
outperforms implementations of routine DTBSV in all BLAS that were tested. The codes allow
the solution of large-scale linear systems on current parallel multicore and SMP architectures
in a reduced time while avoiding explosive fill-in of sparse linear system solvers in certain
examples.
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Summary. We present a method for converting 1-D Maxwell equation into a linear system
using the Multivariable Output Error State Space (MOESP) method, a subspace system iden-
tification method. To show the efficiency of the method, we first apply it to a set of ordinary
differantial equations. Input and output from the equation set are computed by numerical meth-
ods and the obtained data is used for building the required matrices. An appropriate Single
Input Single Output (SISO) linear system is estimated by MOESP algorithm for the equation
at hand. The goal of the research is to build a low order linear state space system model for
the Maxwell equation. On the other hand the order estimation for the system can be used in
other way. For example, with this estimation one can determine an appropriate order for the
physical system, for which one of the well-known model order reduction techniques can be
used to obtain a reduced order model.

1 Introduction

In general, system identification methods are mainly developed in the area of automatic con-
trol to determine the best model (in the sense of input-output relationship) from a given
observed input-output data set. In this study, a 1-D Maxwell equation is converted into a set
of state-space equations using MOESP algorithm, which is a member of subspace system
identifacation family of algorithms. The idea can be useful when simulation of the VLSI
interconnections are considered. The computation of the effects of VLSI interconnections is
mainly based on the solution of the Maxwell equations on chip geometries. The RLC parasitic
circuits are realized with the solution of Maxwell equations. Finally, the model order reduc-
tion algorithms are employed to reduce the dimension of the linear subsystem of these RLC
circuits [ANT05]. In this study, 1-D Maxwell equation is directly converted into a small order
SISO system without using any model reduction algorithm. Therefore, it can be also useful for
finding an appropriate reduction order of the model order reduction process. Before dealing
with the Maxwell equations however, let us use an ordinary differential equation set to show
the usage and the details of the method.
The remaining of the paper is organized as follows. In section 2, the methodology and the
MOESP algorithm are briefly explained, whereas section 3 contains some numerical results
and discussions. We present, in section 4 some concluding remarks and the future work.
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2 Definition of the Problem

2.1 Introduction

To explain the basics of and the implementations details of the MOESP algorithm, a general
nth order ordinary differential equation (ODE) is considered. We also present numerical
results for this case in the paper. Then the method is applied to the partial differential equations
(PDE), more specifically to the Maxwell equations.

2.2 nth Ordinary Differential Equation as a Discrete Linear System

A general linear differential equation of order n with zero inital values on an interval I is
defined as,

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t) = u(t), t ∈ I (1)

This system can be reduced to an associated first order ordinary differential equation system.

d

dt
X = AX +Bu (2)

where;

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xn−1

xn

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎦ (3)

Matrix A is called companion matrix. Components of the X vector are called state variables.
Furthermore, it is always possible to define the desired output as a linear combination of these
state variables [CARL97].

Y = CX +Du (4)

It is also possible to convert this continuos system into a discrete system with the help of any
numerical integration algorithm. For example, if we choose Euler method for integration we
obtain below difference equations for xn at time tk+1,

xk+1
n − xk

n

h
= an1x

k
1 + an2x

k
2 + · · ·+ annx

k
n + bnu

k

(5)

or in matrix form,

Xk+1 = (I + hA)Xk +Buk

Yk+1 = CXk+1 +Duk+1

(6)

Using (6), one can write the input-output formulas for each data point;

Yk+j = C(I + hA)jXk +

j∑
i=1

C(I + hA)i−1Buk+j−i +Duk+j (7)

Using (7) we can derive matrix input-output equations which play a fundamental role in sub-
space identification,
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⎡
⎢⎢⎣

yk

yk+1

...
yk+j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C

CÂ
...

CÂj

⎤
⎥⎥⎥⎦Xk +

⎡
⎢⎢⎣

D
CB D

...
. . .

. . .
CÂj−1B . . . CB D

⎤
⎥⎥⎦

⎡
⎢⎢⎣

uk

uk+1

...
uk+j

⎤
⎥⎥⎦ (8)

where Â = (I+hA). One can define two Hankel matrices in terms of uk and yk to generalize
the structure. These Hankel matrices are called as U0|k−1 and Y0|k−1 respectively.

⎡
⎢⎢⎣

u(0) u(1) . . . u(N − 1)
u(1) u(2) . . . u(N)

...
...

...
u(k − 1) u(k) . . . u(k +N − 2)

⎤
⎥⎥⎦∈RkmxN

⎡
⎢⎢⎣

y(0) y(1) . . . y(N − 1)
y(1) y(2) . . . y(N)

...
...

...
y(k − 1) y(k) . . . y(k +N − 2)

⎤
⎥⎥⎦∈RkpxN

(9)
where k is strictly greater than the order of the system n, p is the number of the
outputs of the system, m is the number of the inputs and finally N is a sufficiently
large number for fixing the Hankel matrix. 0 and k − 1 values in the definitions of
Hankel matrices are used for determination of the upper-left and lower-left elements
respectively. Using this Hankel matrix definitions one can write below equations for
the nth order ordinary differential system.

Y0|k−1 = OkX0 + ΦkU0|k−1

Yk|2k−1 = OkXk + ΦkUk|2k−1 (10)

where

Ok =

⎡
⎢⎢⎢⎣

C

CÂ
...

CÂj

⎤
⎥⎥⎥⎦ , Φk =

⎡
⎢⎢⎢⎣

D
CB D

...
. . . . . .

CÂj−1B . . . CB D

⎤
⎥⎥⎥⎦ (11)

Here, X0 and Xk are the initial states respectively. U0|k−1 and Y0|k−1 are called
past inputs and outputs and Uk|2k−1 and Yk|2k−1 are called future inputs and outputs
[KAT05].
Data matrices U0|k−1, Y0|k−1 can be written in more compact form as:

[
U0|k−1

Y0|k−1

]
=
[
Ikm 0kmxn

Φk Ok

] [
U0|k−1

X0

]
(12)

Finally, it can be said that it is always possible to rewrite (1) as a matrix equation as
given in (12).

2.3 MOESP Algorithm

LQ decomposition, which is the dual of the QR decomposition, is used to make
the upper-right block of the data matrix zero. LQ decomposition of a matrix can be
given as,

[
U0|k−1

Y0|k−1

]
=
[
L11 0
L21 L22

] [
QT

1

QT
2

]
(13)
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where L11 ∈ Rkmxkm, L22 ∈ Rkpxkp, Q1 ∈ RNxkm Q2 ∈ RNxkp.
The actual computation of LQ decomposition is performed by taking transpose of
the QR decomposition of the matrix.
Using orthogonality conditions on the input output spaces, below equation can be
obtained for L22,

OkX0Q2 = L22 (14)

where Ok is extended observability matrix, X0 is the initial states. If we take the
SVD of the L22 matrix we get,

L22 = [U1U2]
[
Σ1 0
0 0

] [
V T

1

V T
2

]
= U1Σ1V

T
1 (15)

In MOESP algorithm, the system dimension is determined by the singular values of
the L22 matrix and with this decomposition we have,

OkX0Q2 = U1Σ1V
T
1 . (16)

From last identity, we can define the extended observability matrix as

Ok = U1Σ
1/2
1 . (17)

With (17) we have the C matrix of the estimated system as C = Ok(1 : p, 1 : n)
and the A matrix as a a solution of below least square equation Ok(1 : p(k − 1), 1 :
n)A = Ok(p + 1 : kp, 1 : n).
Computation of the B and the D matrices are more complex. We refer the reader to
work in [CIG98], [VD92-1], and [VD92-2] for further information. Algorithm of the
method is given in Fig. (1).

Fig. 1: Main MOESP Algorithm

3 Numerical Examples

3.1 Example ODE System

A second order ODE equation is selected for estimation. The equation is
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d2ϕ(t)
dt2

+
dϕ(t)

dt
− 10 = 0 (18)

Here, the input u is constant and equals to 10 and initial values of equation taken
as zero. The output y is computed by a Runge-Kutta algorithm. Data matrices are
created after the input and output data collected. Then the SMI Toolbox employed to
produce the estimation [SMI]. The singular value distribution of L22 matrix is shown
in Fig. (2).

Fig. 2: (a) Singular value distribution of data matrix for u(t)=10 and estimated system order n = 2, (b) Original and
estimated outputs for a estimated system order n = 2

3.2 Maxwell Equation

Consider a one-dimensional space where there are only variations in the x dimension.
Assume that the electric field has only a z component. With Faraday and Ampere’s
laws we can write 1-D Maxwell equations as

µ
∂Hy

∂t
=

∂Ez

∂x
,

ε
∂Ez

∂t
=

∂Hy

∂x
. (19)

The source function is applied to the 0th node of the computational domain and data
is collected as the electrical field of 50th node. After discretization, FDTD (Finite
Difference Time Domain) algorithm is employed to obtain the input data uk and
output data yk. The singular value distribution of the L22 matrix and the original
and estimated outputs are given in Figs. 3 and 4. Here, two source functions are
considered. First one is a sinusoidal and second one is an exponential function . For
exponential source function MOESP algorithm works more accurately. Estimated
order n, is selected as 2 in both cases.



400 E. F. Yetkin, H. Dag̃, and W. H. A. Schilders

0  10 20 30 40
5

0

5

time(s)

O
u
tp

u
t

Real and estimated outputs 

0  10 20 30 40
0

50

100

150

Data Points

R
e
la

ti
v
e
 E

rr
o
r 

(%
) Relative error graph for outputs

estimated

real

(a) (b)

Fig. 3: (a) Singular value distribution of L22 matrix for u(t) = cos(10t) (b) Original and estimated outputs and
relative error for u(t) = cos(10t) where the estimated system order n = 2

Fig. 4: (a) Singular value distribution of L22 for u(t) = exp−(t−30)2/100, (b) Original and estimated outputs and
relative error for estimated system order n = 2

3.3 Comparison of Estimations

For ODE systems, singular value distributions of the L22 matrix is reasonable if
one considers that a second order differential equation is estimated. Ratios of its
maximum two singular values to the other singular values are sufficiently small and
the singular values except first two largest ones can be neglected. This situation can
be seen from the Fig. 2, the outputs are exactly matched.
This can be verified with one of the possible measures of accuracy which named as
VAF (Variance According For) [SMI]. It is defined as,

V AF = 1 − variance(y − yest)
variance(y)

∗ 100% (20)

where y is the original output and yest is the estimated output. The VAF of two
signals that are the same is 100%. If they differ, the VAF will be lower and if the two
signals are completly different then VAF gets value of -1000.
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For ODE example, VAF is equal to 100%. It means that the estimation works very
successfully for this set of equation.
In the Figs. 3 and 4, singular values of the L22 matrix are relatively close to each
other and we cannot select an exact estimation order like for the ODE system in
Fig. 2. Therefore, it can be said that, for Maxwell equations the accuracy of the
estimations is more sensitive to the selection of the estimation order. VAF values for
these equations are 86% and 96.5% respectively. It can be also said that for exponen-
tial source functions, MOESP algorithm produces more accurate result. This fact can
be observed from Figs 3 and 4. Its possible reason is the periodicity of the input and
output vectors. Linear dependency of the columns of data matrices are determined
by the input output vectors. Here we can say that, for non-periodic input sources
Maxwell equations also can be modeled as a linear system with high accuracy. But
in the case of the periodical input sources some other methodologies have to be used
to improve the accuracy of the method.

4 Conclusion and Future Work

We examined the algorithm MOESP to convert a 1-D Maxwell equation into a SISO
linear discrete state-space system.
Method is applied to an ordinary differential equation first and it is observed that the
method produces a linear system quadruple (A,B,C,D) with high accuracy. However,
when applying the same method to 1D-Maxwell equation accuracy of the method
varies depending on the input source. With non-periodical input signals results are
more accurate than those of the periodical input signal case. There can be a rela-
tionship between the periodicity of the input-output data and the behaviour of the
algorithm. The future work will be focused on finding this relationship, i.e., the
relationship between the order of the estimated system and the properties of data
matrices.
We so far have studied the SISO modeling of the equations. In SISO models one has
to define only one output point. On the other hand, in realistic systems more than one
output point are required for modelling. Therefore, the method has to be extended
to MIMO (Multiple Input Multiple Output) cases for extending the implementation
area.
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Stochastic differential algebraic equations (SDAEs) arise as a mathematical model
for electrical network equations that are influenced by additional sources of Gaussian
white noise. In this paper we discuss adaptive linear multi-step methods for the
numerical integration of SDAEs, in particular stochastic analogues of the trapezoidal
rule and the two-step backward differentiation formula, together with a new step-size
control strategy. Test results illustrate the performance of the presented methods.

1 Transient noise analysis in circuit simulation

Transient analysis is often performed without taking noise effects into account.
But due to the parasitic effects, this is no longer possible. The increasing scale of
integration, high clock frequencies and low supply voltages cause smaller signal-
to-noise ratios. In several applications the noise influences the system behaviour in
an essentially nonlinear way such that linear noise analysis is no longer satisfactory
and transient noise analysis, i.e., the simulation of noisy systems in the time domain,
becomes necessary (see [DeWi03, Wi04]). Here we deal with the thermal noise of
resistors as well as the shot noise of semiconductors that are modelled by additional
sources of additive or multiplicative Gaussian white noise currents that are shunt in
parallel to the noise-free elements [DS98].
Thermal noise of resistors having a resistance R is caused by the thermal motion
of electrons and is described by Nyquist’s theorem. Hence, the associated current is
modelled by additive noise,

ith =

√
2kT

R
ξ(t), k = 1.3806 × 10−23,

where T is the temperature, k is Boltzmann’s constant and ξ(t) is a standard
Gaussian white noise process. Shot noise of pn-junctions, caused by the discrete
nature of currents due to the elementary charge, is modelled by multiplicative noise.
If the noise-free current through the pn-junction is described by a characteristic
i = g(u) in dependence on a voltage u, the associated Gaussian white noise current is
modelled by

ishot =
√

qe|g(u)|ξ(t), qe = 1.602 × 10−19,
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where ξ(t) again is a standard Gaussian white noise process and qe is the elementary
charge. Combining Kirchhoff’s Current law with the element characteristics and
using the charge-oriented formulation yields a stochastic differential algebraic
equation (SDAE) of the form (see [GF99] for the deterministic case)

A
d

dt
q(x(t)) + f(x(t), t) +

m∑
r=1

gr(x(t), t)ξr(t) = 0 , (1)

where A is a constant singular incidence matrix determined by the topology of the
dynamic circuit parts, the vector q(x) consists of the charges and the fluxes, and x
is the vector of unknowns consisting of the nodal potentials and the branch currents
through voltage-defining elements. The term f(x, t) describes the impact of the static
elements, gr(x, t) denotes the vector of noise intensities for the r-th noise source, and
ξ is an m-dimensional vector of independent Gaussian white noise sources (see e.g.
[DeWi03, Wi04]). Hence, one has to deal with a large number of equations as well
as of noise sources. Compared to the other quantities the noise intensities gr(x, t)
are small.
We understand (1) as a stochastic integral equation

Aq(X(s))
∣∣∣t
t0

+
t�

t0

f(X(s), s)ds +
m∑

r=1

t�
t0

gr(X(s), s)dWr(s) = 0, t ∈ [t0, T ] , (2)

where the second integral is an Itô-integral, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P ) with
a filtration (Ft)t≥t0 . The solution is a stochastic process depending on the time t and
on the random sample ω. For a fixed sample ω representing a fixed realization of
the driving Wiener noise, the function X(·, ω) is called a realization or a path of the
solution. Due to the influence of the Gaussian white noise, typical paths are nowhere
differentiable.
Especially for oscillating solutions in circuit simulation one is interested in the phase
noise. We aim at the simulation of solution paths that reveal the phase noise. From
the solution paths statistical data of the phase as well as of moments of the solution
can be computed in a post-processing step. We therefore use the concept of strong
solutions and strong (mean-square) convergence of approximations.
Using techniques from the theory of DAEs as well as of the theory of stochastic
differential equations (SDEs) one derives existence and uniqueness for the solutions
as well as convergence results for certain drift-implicit methods for systems with
index 1 DAE [Wi03].

2 Adaptive numerical methods

An efficient integrator must be able to change the step-size. We present adaptations
of known schemes for SDEs that are implicit in the deterministic part (drift) and
explicit in the stochastic part (diffusion) of the SDAE. Designing the methods such
that the iterates have to fulfill the constraints of the SDAE at the current time-point
is the key idea to adapt known methods for the SDEs to (2).
We consider stochastic analogues of the two-step backward differentiation formula
(BDF2) and the trapezoidal rule, where only the increments of the driving Wiener
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process are used to discretize the diffusion part. Analogously to the Euler-Maruyama
scheme we call such methods multi-step Maruyama methods. The variable step-
size BDF2 Maruyama method for the SDAE (2) has the form (see [Si05] and e.g.
[BuWi05] in the case of constant step-sizes)

A
q(X�) − (κ
+1)2

2κ
+1 q(X�−1) + κ2



2κ
+1q(X�−2)

h�
+

κ� + 1
2κ� + 1

f(X�, t�)

+
m∑

r=1

gr(X�−1, t�−1)
∆W �

r

h�
− κ2

�

2κ� + 1

m∑
r=1

gr(X�−2, t�−2)
∆W �−1

r

h�
= 0, (3)

� = 2, . . . , N . Here, X� denotes the approximation to X(t�), h� = t� − t�−1, and
∆W �

r = Wr(t�) − Wr(t�−1) ∼ N(0, h�) on the grid 0 = t0 < t1 < · · · <
tN = T . The coefficients of the two-step scheme (3) depend on the step-size ratio
κ� = h�/h�−1 and satisfy the conditions for consistency of order one and two in the
deterministic case and of order 1/2 in the stochastic case (see [Si05]).
A correct formulation of the stochastic trapezoidal rule for SDAEs requires more
structural information (see [SiWi06]). It should implicitly realize the stochastic
trapezoidal rule for the so called inherent regular SDE of (2) that governs the dynam-
ical components. One possibility is to discretize the constraints differently, which
requires the explicit knowledge of the constraints or, equivalently, a projector R
along imA. The discrete equations

A
q(X�) − q(X�−1)

h�
+

1
2
(I − R)

(
f(X�, t�) + f(X�−1, t�−1)

)

+Rf(X�, t�) +
m∑

r=1

gr(X�−1, t�−1)
∆W �

r

h�
= 0, (4)

� = 1, . . . , N , imply the correct constraints and realize the trapezoidal rule for the
inherent regular SDE.
Both the BDF2 (3) and the trapezoidal rule (4) have only an asymptotic order of
strong convergence of 1/2, i.e.,

‖X(t�) − X�‖L2(Ω) := max
�=1,...,N

(E|X(t�) − X�|2)1/2 ≤ c · h1/2, (5)

where h := max�=1,...,N h� is the maximal step-size of the grid. (For additive noise
the order may be 1.) This holds true for all numerical schemes that include only
information on the increments of the Wiener process.
However, the noise densities given in Sec. 1 contain small parameters and the error
behaviour is much better. In fact, the errors are dominated by the deterministic terms
as long as the step-size is large enough [BuWi05]. In more detail, the error of the
given methods behaves like O(h2 + εh + ε2h1/2), when ε is used to measure the
smallness of the noise (gr(x, t) = εĝr(x, t), r = 1, . . . ,m, ε � 1). Thus we can
expect order 2 behaviour if hgε.
The smallness of the noise also allows special estimates of the local error terms,
which can be used to control the step-size. In [RoWi05] the authors presented a step-
size control for the drift-implicit Euler scheme in the case of small noise that leads to
adaptive step-size sequences that are uniform for all paths, see also [DeWi03, Wi04].
The estimates of the dominating local error term are based on values of the drift
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term and do not cost additional evaluations of the coefficients of the SDE or their
derivatives. In [SWW06, SWW07] we extend this strategy to stochastic linear multi-
step methods with deterministic order 2 and present an estimate of the mean-square
local errors. Again it is based on divided differences of values of the drift term and
leads to step-size sequences that are identical for all computed paths.

3 Numerical results

Here, we illustrate the potential of the step-size control strategy by simulation results
for the stochastic BDF2 applied to three test problems. For the first and the second
example we use an implementation of the adaptive methods discussed in the previous
section in fortran code. To be able to handle real-life problems, a slightly modified
version of the schemes for MNA together with the new step-size control has been
implemented in Qimonda’s in-house simulator TITAN. The third example shows the
performance of this industrial implementation.

A nonlinear test-SDE

First, we consider a nonlinear scalar SDE with known explicit solution. The drift and
diffusion coefficients are tunable by real parameters α and β, which we have chosen
as α = −10 and β = 0.01:

X(t) =
t�

0

−(α +β2X(s))(1−X(s)2)ds+
t�

0

β(1−X(s)2)dW (s), t ∈ [0, T ] . (6)

The solution is given by

X(t) =
exp(−2αt + 2βW (t)) − 1
exp(−2αt + 2βW (t)) + 1

. (7)

In Figure 1 we present a work-precision diagram. We plotted the tolerance (�) and
the mean-square norm of the errors for adaptively chosen (+) and constant (×) step-
sizes for 100 computed paths vs. the number of steps in logarithmic scale. Lines with
slopes −2 and −0.5 are provided to enable comparisons with convergence of order
2 or 1/2. We observe order 2 behaviour up to accuracies of 10−4. The results show
that the proposed step-size control works very well for step-sizes above this threshold
and provides considerably more accurate results than the computation with the same
number of constant steps.

A MOSFET inverter circuit

Secondly, we consider a model of an inverter circuit with a MOSFET-transistor under
the influence of thermal noise. The equivalent circuit diagram is given in Figure 2.
The MOSFET is modelled as a current source from source to drain that is controlled
by the nodal potentials at gate, source and drain.
The thermal noise of the resistor and of the MOSFET is modelled by additional white
noise current sources that are shunt in parallel to the original, noise-free elements.
To make the effect of the noise more visible we scaled the noise intensities by a fac-
tor of 1000. For the simulation we used the BDF2 with adaptively chosen step-sizes.
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Fig. 3: Simulation results for the noisy inverter circuit:
1 path 127(+29 rejected) steps; 100 paths 134(+11 rejected) steps

In Figure 3 we present simulation results, where we plotted the input voltage Uin and
values of the output voltage e1 versus time. We compare the results for the computa-
tion of a single path (left picture) with those for the computation of 100 simultane-
ously computed solution paths (right picture), where the dark lines additionally show
the values of two different solution paths, the dotted line gives the mean of 100 paths
and the gray lines the 3σ-confidence interval for the output voltage e1. Moreover, the
applied step-sizes, suitably scaled, are shown by means of single crosses. Using the
information of an ensemble of simultaneously computed solution paths smoothes the
step-size sequence and reduces the number of rejected steps considerably, compared
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to the simulation of a single path. Also the computational cost mainly determined by
the number of integration steps is reduced.

A voltage controlled oscillator

Finally, we present simulation results for a voltage controlled oscillator that has been
used as a test application. It is a simplified version of a fully integrated 1.3 GHz VCO
for GSM in 0.25 µm standard CMOS (see [Ti00]). For simulation, the oscillator
is embedded in a test environment, using a virtual output buffer load and tuning
voltage as well as core current modelled as independent DC sources. The VCO is
tunable from about 1.2 GHz up to 1.4 GHz. The unknowns of the VCO in the MNA
system are the charges of the six capacities, the fluxes of the four inductors, the 15
nodal potentials and the currents through the voltage sources. This circuit contains
5 resistors and 6 MOSFETs, which induce 53 sources of thermal or shot noise. To
make the differences between the solutions of the noisy and the noise-free model
more visible, the noise intensities had been scaled by a factor of 500.
Numerical results obtained with a combination of the BDF2 and the trapezoidal
rule are shown in Fig. 4, where we plotted the difference of the nodal potential
V (7) − V (8) of node 7 and 8 versus time. The solution of the noise-free system
is given by a dashed line. Four sample paths (dark solid lines) are shown. They can-
not be considered as small perturbations of the deterministic solution, phase noise is
highly visible. To analyze the phase noise we repeated the simulation ten times with

Noisy transient output signal V(7)  V(8) of the vcoBi oscillator

noisefree
Path 1
Path 2
Path 3
Path 4

Fig. 4: Noisy transient output signal of a VCO.

different initialization of the pseudo-random numbers. Then we computed the length
of the first 50 periods for each solution path. On Fig. 5 the mean µ of the frequencies
(horizontal lines), the smallest and the largest frequencies (boundaries of the vertical
thin lines) and the boundaries of the confidence interval µ ± σ (the plump lines) are
presented, where σ was computed as the empirical estimate of the standard devia-
tion. The mean appears increased and differs by about +0.25% from the noiseless,
deterministic solution. Further on, the frequencies vacillate from 1.18 GHz (-0.95%)
up to 1.21 GHz (+1.55%). So the transient noise analysis shows that the voltage con-
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Fig. 5: Boxplots of the phase noise, scaled by a factor of 500

trolled oscillator runs in a noisy environment with increased frequencies and smaller
phases, respectively.
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Abstract
Grid technologies offer powerful computing resources for all domains, but the highly
heterogeneous and dynamic nature of the Grids needs adaptable, scalable and exten-
sible scheduling systems. In this paper we describe a dynamic, centralized schedul-
ing mechanism based on Master-Worker paradigm for efficient execution of a set of
loosely coupled tasks in a Grid environment. This mechanism offers high program-
mability features, adaptability and reliability towards processor failure. Experiments
are presented that demonstrate the effectiveness of our approach.
Key-words: parallel and distributed systems, grid computing, service-oriented archi-
tecture, dynamic scheduling, master-worker model

1 Introduction

The grid computing paradigm aggregates the view on existing hardware and software
resources, coordinating resource sharing and problem solving in dynamic, multi-
institutional virtual organizations [FKT01]. Grid platforms are now developed in a
service-oriented architecture, defined as Open Grid Service Architecture (OGSA)
[FKN02], which standardizes all the services one finds in a grid application. There
are two implementation specifications for OGSA: Open Grid Services Infrastructure
(OGSI), released in 2003 and Web Services Resource Framework (WSRF) [OASIS]
introduced in 2004 by a team from IBM and the Globus Alliance [GLOBS]. WSRF
is an attempt to re-factor many of the concepts in OGSI to be more consistent with
today’s Web Services, allowing the manipulation of state, with no modifications to
Web Services tooling.
Currently the Globus project is the highly favourite grid toolkit, having been adopted
by IBM, HP, etc.
Another interesting grid toolset is WSRF.NET, which is an open-source implementa-
tion of the WSRF suite of specifications developed at Virginia University [WSRFN]
for Windows systems under .NET platform. For this toolset, a remote job execution
service, which allows remote execution and data movement between Windows ma-
chines across the grid platform, and a Scheduler Service, based on WS-Notification
services were developed [WHE05]. In this work we developed a dynamic scheduling
mechanism based on Master-Worker paradigm [MWWIS] in a WSRF.NET grid, in
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order to study the efficiency of the execution of a set of loosely coupled tasks in a
grid-aware approach.
The outline of this paper is as follows. Section 2 describes a Master-Worker model
for execution of distributed applications composed of a set of loosely coupled tasks in
a grid platform. Section 3 presents a discussion of the implementation of the Master-
Worker model in a WSRF.NET grid. Section 4 contains experimental results and
conclusions.

2 Master-Worker execution model for a set of loosely coupled
tasks

The Master-Worker (MW) model (also known as Master-Slave model) has been
widely used for developing parallel applications. In the MW model there are two
distinct types of processes: master and workers. The master process assigns the tasks
to the workers taking into account the dependencies between them. The workers typ-
ically perform most of computational work by just executing those tasks. The MW
model has proved to be efficient in developing applications with different degrees of
granularity of parallelism (grain size) and is particularly useful when the dependen-
cies between tasks are low.
The aim of our work is to demonstrate the viability of the MW paradigm for efficient
execution of a set of loosely coupled tasks in a Grid environment. To this end, we
have written a Grid implementation prototype of the model using the WSRF.NET
toolset and have deployed it on the local network platform consisting of 18 PC nodes
(Pentium IV 2GHz, 80GB HDD, 512 MB RAM) connected with one Gigabit Ether-
net switch. Each node runs .NET framework under Windows XP operation system,
offering the grid fabric needed for experiments.
For this experiment, we used a generic parallel application in the form of an acyclic
task dependence graph (TDG), represented by the couple G = (V,E), where V is the
set of vertices in the graph, corresponding to the tasks, and E is the set of directed
edges, indicating the precedence relations between tasks. There is no need for com-
munication between tasks and the synchronizations took place only at the start and
the end of tasks. The communications on the network involve only short messages
exchanged between master and workers, containing parameters and returned values
of the methods invoked by the master process on the workers, so that loosely coupled
tasks and bandwidth unlimited communications can be assumed.
The tasks in the graph are simple loop (vector) operations, and the grain size can be
estimated from the vector length (iteration count) and can be stored as a computation
cost (execution time) of the graph node. The estimated grain size of tasks (computa-
tion cost) is not needed for Master-Worker algorithm and is used only for analysis of
the algorithm behavior.
The graphs used for experiments were generated off-line and stored in files available
on the disk, each task containing its execution parameters (vector length and opera-
tion), a list of all precedent tasks (parent tasks) and a list of all dependent tasks (child
tasks).
The master and worker components are developed as WSRF Grid Services (Master
Service and Worker Service), deployed in different nodes of the grid. The Master
Service receives an execution command (containing a TDG) from a client application
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and distributes the tasks to all available Worker Services, hosted in Worker Nodes of
the grid.
The worker Grid service publishes an interface with at least one operation (doTask())
that the Master Service calls in order to dispatch a task to a worker. The master Grid
Service publishes an interface with different operations, such as doGraph() function
that the client calls in order to start the distributed execution of the program repre-
sented as a TDG. The client is just a simple C# application with a graphical interface,
which collects different parameters of the tasks (vector length and operations) and
passes these parameters to the Master Service operation (doGraph()).

3 Implementation of the Master-Worker model

The master maintains a list of all available workers (AW), a list of all running workers
(RW) and processes the received TDG, creating a list of ready tasks (RT) and a list
of waiting tasks (WT). A task is ready to be executed if it has no parents or all its
parents were already executed. The distributed execution of a TDG is accomplished
as a loop in the main thread of the master service, which runs until all tasks are
processed, as is presented in Fig. 1.
In this loop, the available workers list is checked and, if the list is not empty, an
available worker is selected; else, the main thread is waiting until a worker becomes
available. When an available worker is selected, the main thread checks the list of
ready tasks and, if this list is not empty, a ready task is selected.
At this point of the execution, the main thread creates an auxiliary thread and loops
back to available workers list check. The auxiliary thread calls the doTask() function
of the selected Worker Service, with the parameters of the selected task, runs until
the function returns, updates the list of available workers, the list of ready tasks and
the list of waiting tasks and exits. Every worker task is invocated in a new thread, so
that they can execute concurrently, while the main thread returns and tests for waiting
tasks to be distributed.
When the main thread checks the list of ready tasks, if this list is empty and the wait-
ing tasks list is not empty, the main thread is waiting until a task becomes ready; if
both waiting tasks list (WT) and running workers list (RW) are empty, the execution
of all tasks of the TDG is accomplished, the final execution time is measured and
total execution time is returned to the client.
All lists described before are shared variables, concurrently accessed by the main
thread and auxiliary threads: the main thread extracts workers from AW list and
tasks from RT list; the auxiliary threads insert available workers in the AW list and
move tasks from the WT list into the RT list. All these operations are implemented
as synchronized thread-safe operations available in C#.

4 Experimental results and conclusions

This section contains several experiments, showing the dependence of the efficiency
of parallel applications on the characteristics of the task dependence graph. The ex-
periments are not meant to be comprehensive, but only to give the reader an image
of aspects that application programmers must consider when building master-worker
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[else]

[Available Workers
list not empty]

[else]

Select a ready task

[Ready tasks list
not empty]

Worker Service Invocation

Update tasks and workers lists

[Waiting tasks list
not empty]

Select a worker

[ else]

Start execution
on Master Service

Initial processing

Create a new
thread for invocation
the Worker Service

Stop auxiliary
thread

Stop main
thread

Fig. 1: Activity diagram of the Master Service

applications for grid environments. The computing environment (a WSRF.NET grid
prototype) was used in dedicated mode for these experiments.
For each TDG, several executions, with different task size and different number of
workers (grid nodes) were accomplished. The sequential execution time (TS) of a
TDG with a given size of the tasks, was measured executing only in the Master Ser-
vice, by replacing the call of doTask() function on a worker service, with a local call.
The parallel execution time (TP ) of a TDG with a given size of the tasks, on a given
number of workers (p) was measured in the Master Service in a normal operation
of master-worker mechanism, described in the previous section. The efficiency E is
computed with the well-known expression: E = TS/(p ∗ TP ).
The results obtained for a TDG with 64 tasks on 1, 2, 4, 8, 16 workers (grid nodes),
for different task medium grain size (given in seconds) are presented in Fig. 2.
These results show that the efficiency decreases when the number of workers (proces-
sors) increases and when the task size decreases. This behavior is mainly caused by
the centralized control of scheduling operation (executed in master), which repre-
sents a fraction α of unparallelizable computation. As Amdahls law establishes, a
fraction α of inherently sequential or unparallelizable computation limits the effi-
ciency that can be achieved with p processors to a value given by the expression
1/(α ∗ (p − 1) + 1).
Indeed, when the medium task grain size decreases, the total execution time
decreases, the unparalellizable computations (consumed in Master Service for
tasks distribution) represent a greater fraction α from this execution, and the effi-
ciency decreases; the same effect is determined by the increasing of the number of
workers (p).
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Fig. 2: Efficiency vs number of workers for different task grain size

Many other parameters of the system, which are not comprised here, can also in-
fluence the efficiency of the distributed execution: the number of tasks that can be
concurrently executed (that depends on the total number of tasks and the degree of
task dependences of the TDG), the unbalance of tasks size, the heterogeneous com-
puting power of workers etc.
In our approach, master-worker paradigm offers a good scalability as long as task
size is high enough, but the efficiency decreases with increassing number of workers
for small task size. However, this paradigm offers a lot of interesting features in
a grid environment, which can be easily obtained with some extensions of the base
implementation presented in this paper: programmability (users should easily be able
to take an existing application code and integrate it with the system), adaptability
(the system should transparently adapt to the dynamic and heterogeneous execution
environment) and reliability (the system should perform the correct computations in
the presence of worker processors failure).
Acknowlegement: This work was supported by CNCSIS Project 36-GR/ 2.06.2006
Code A44 (UPB Part 14) started in 2006.
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Comparison of model reduction methods with applications
to circuit simulation

Roxana Ionutiu, Sanda Lefteriu, Athanasios C. Antoulas

Fig. 2 (p. 14) Hankel singular values, positive real Hankel singular values, eigenvalues of P ,
eigenvalues ofQ.

Fig. 3 (p. 18) Frequency response
of original and all reduced systems

Fig. 4 (p. 18) Error for all reduced
systems
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Fig. 5 (p. 18) Error systems:
Balanced truncation and Positive Real

Balanced Truncation

Fig. 6 (p. 18) Error systems:
Positive Real Balanced Truncation and

PRIMA

Fig. 7 (p. 18) Error systems:
Balanced truncation and One Gramian

Fig. 8 (p. 18) Error systems:
Balanced truncation and Projection using

spectral zeros

Fig. 9 (p. 19) Error systems: One Gramian
and Projection using spectral zeros

Fig. 10 (p. 19) Error systems: PRIMA and
Projection using spectral zeros
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Fig. 11 (p. 19) Error systems: Optimal
H2 and PRIMA

  

 

Fig. 12 (p. 19) Error systems: OptimalH2

and Spz method
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Fig. 13 (p. 20) Spectral zeros and poles
for original system and reduced with

Balanced truncation
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Fig. 14 (p. 20) Spectral zeros and poles
for original system and reduced with One
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Fig. 15 (p. 20) Spectral zeros and poles
for original system and reduced with
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Fig.17 (p. 21) Random initial shifts:
Poles and Spectral zeros of original

system and reduced with OptimalH2
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Fig. 18 (p. 21) Spectral zeros and poles of
original and reduced with projection using

spectral zero selection

Fig. 19 (p. 22) BT poles as initial shifts:
Frequency response of original and

reduced systems

Fig. 20 (p. 22) Random intial shifts:
Frequency response of original and

reduced systems

Fig. 21 (p. 22) BT poles as initial shifts:
Error systems

Fig. 22 (p. 22) Random initial shifts: Error
systems
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Fig. 23 (p. 22) BT poles as initial
shifts: Poles and Spectral zeros of
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Fig. 24 (p. 22) Random initial
shifts: Poles and Spectral zeros of
original system and reduced with
OptimalH2

Fig. 25 (p. 23) Random initial
shifts: Frequency response: original,
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Transient Field-Circuit Coupled Models with Switching Elements
for the Simulation of Electric Energy Transducers

Herbert De Gersem, Galina Benderskaya, Thomas Weiland
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Fig. 5 (p. 36) Capacitor motor: (a) photograph; (b) finite-element mesh and magnetic flux
lines at no-load operation; (c) external circuit with the applied sinusoidal voltage U , the

capacitance C, the resistances Rmain and Raux and inductances Lmain and Laux modelling
the end winding parts and the resistances Rbar and Rring modelling the rotor ring and

rotor-bar parts outside the finite-element model; (d) current through the main stator winding
during start-up.
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Fig. 6 (p. 37) 3D finite-integration model of a three-phase transformer connected to an
external electric circuit for the power grid, diode rectifier and inductive load.
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Technology and Device Modeling in Micro and Nano-electronics:
Current and Future Challenges

Andrea Marmiroli, Gianpietro Carnevale, Andrea Ghetti

Fig. 1 (p. 42) Phase Change Memory (PCM) description: low and high resistivity of PCM
material is associated to the crystalline and amorphous state, respectively. At the left side,

bottom part of the figure the schematic pictures of a cross section of the bit architecture are
sketched: the “T” shape at the lower side correspond to the low resistance state, with the

material partially modified in the crystalline configuration. The upper “T” shape corresponds
to the high resistance state, with the material in the amorphous phase.
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Fig. 4 (p. 45) A SEM picture of a silicon active area (oxide has been removed during stripping
operation) and the corresponding 3D structure (pink region are silicon, brown is oxide and
violet is poly-silicon material).

Fig. 5 (p. 46) At the left, the pressure distribution calculated with FEDOS without stress
dependent oxidation. At the right stress dependent oxidation is included [Hol05].

Fig. 6 (p. 47) Main blocks of the simulation program and their interactions. Simulation starts
by reading an initial guess computed with conventional programs.
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Fig. 7 (p. 48) Numerical solution of the 2D SE in the case of a circular well with R=5nm. a)
initial finite element mesh; b) domain map to a uniform tensor product grid; c) contour plot

of the energy profile; d) partial 3D view of the energy profile.
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Fig. 8 (p. 49) Validation of the numerical solution of the 2D SE in the case of a circular well
with R=5nm. Solid line: analytical solution; symbols: simulation. Left: eigenstate energy;

right: first eigenstate wave function.
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Fig. 9 (p. 49) Simulated electron bulk mobility (�/�) in comparison with calculation of
[Fis96] (◦/•) for un-doped silicon under biaxial strain. Closed/open symbols refer to

in-plane/out-of-plane mobility.

Fig. 10 (p. 50) Monte Carlo simulation of hole mobility enhancement in comparison with
experimental data from wafer bending experiments of [Tho04] under uniaxial stress.
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Fig. 12 (p. 51) Schematic representation of the iteration scheme. Convergence is reached
after a few iterations. (Notice that Φ1 = Φ0)

Fig. 13 (p. 51) Evolution of the potential QM correction during iterations. Λ0 is the initial
profile computed with conventional density-gradient hydrodynamic simulation (QM-HD).
Λ1 is the first guess provided by the self-consistent solution of the Schrödinger-Poisson Eq.

(S+P).

Fig. 15 (p. 52) Simulated electron density (a) and velocity (b) averaged on a channel
cross-section as a function of the position for VG = 0.5V , VDS = 1V with (QM MC,

dot-dashed line) and without (CL MC, solid line) QM correction.
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A Demonstrator Platform for Coupled Multiscale Simulation

Carlo de Falco, Georg Denk

Fig. 2(a) (p. 70) The CMOS AND
gate simulated

Fig. 2(b) (p. 70) The set-up for cou-
pled simulation of the AND gate

Accurate Modeling of Complete Functional RF Blocks:
CHAMELEON RF

H.H.J.M. Janssen, J. Niehof and W.H.A. Schilders

Fig. 1 (p. 83) Overview of the Chameleon RF system.
For 4-60 GHz frequencies made possible by nano-scale integration technologies,

electromagnetic and substrate noise effects require hierarchical connector-equipped models
of full RF functional blocks in order to enable creation of working chips. The models will be

variability-aware to account for relatively increasing effects of manufacturing tolerances.
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Fig. 2 (p. 84) Layout of coplanar line, 3 µm wide and 8.2 mm long, with 1 µm spacing
between the line and ground.

Fig. 3 (p. 85) Comparison of simulations with measurementsof the line parameters R and L
(calculated from the impedance Z=R=jωL) for the coplanar line.
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Fig. 4 (p. 86) Substrate isolation structure layout.

Fig. 5 (p. 87) S11 and S12 curves: the comparison between measurement and simulation
shows good agreement (¡1 dB error) for frequencies up to 10 GHz.
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Finite Volume Method Applied To Symmetrical Structures
in Coupled Problems

Ioana - Gabriela Sı̂rbu

Fig. 3 (p. 111) The radial variation of the electric field

Fig. 4 (p. 112) The radial variation of the magnetic field

Fig. 7 (p. 113) The radial variation of the temperature for f = 50 Hz
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Scattering Matrix Analysis of Cascaded Periodic Surfaces

Adriana Savin, Raimond Grimberg, Rozina Steigmann

Fig. 2 (p. 118) Reflection coefficient magnitude vs. unit cell size

Fig. 3 (p. 120) The electromagnetic incident field a) Real component of TM electric field; b)
Imaginary component of TM electric field

Fig. 5 (p. 120) The scattered field for a = 1.5λ. a) real component; b) imaginary component
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Fig. 6 (p. 121) The scattered field for a = λ/2. a) real component; b) imaginary component

Outstanding Issues in Model Order Reduction

João M. S. Silva, Jorge Fernández Villena, Paulo Flores, L. Miguel Silveira
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parametric MOR methods (right).
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Adjoint Transient Sensitivity Analysis in Circuit Simulation

Z. Ilievski, H. Xu, A. Verhoeven, E.J.W.ter Maten, W.H.A. Schilders, R.M.M. Mattheij

Fig. 1 (p. 188) Voltage differences for successive sensitivity values, node 2

Index Reduction by Element-Replacement for Electrical Circuits

Simone Bächle and Falk Ebert
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Fig. 1 (p. 195) NAND gate replacement circuit, index 2 circuit (left), index 1 circuit with
additional voltage sources (right)
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A Filter Design Framework with Multicriteria Optimization Based
on a Genetic Algorithm

Neag Marius, Marina Topa, Liviu Nedelea, Lelia Festila, Vasile Topa

Fig. 2 (p. 211) Magnitude response and group delay of the multicriteria optimized filter

Thermal Network Method in the Design of Power Equipment

C. Gramsch, A. Blaszczyk, H. Lbl, S. Grossmann

Fig. 1 (p. 214) Thermal network model of coated conductor
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L

S R C

LX

Fig. 2 (p. 215) Example of a hierarchical thermal network representing coated conductor in a
ventilated enclosure

Fig. 3 (p. 216) Basic relationships for the natural ventilation of a compartment

Fig. 4 (p. 218) Example of an arrangement with air flow between compartments (a) and the
corresponding models of (b) ventilation network and (c) thermal network.

(The configuration of compartments and the ventilation openings is the same as in the
arrangement shown in Fig. 5.)
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Automatic partitioning for multirate methods

A. Verhoeven, B. Tasić, T.G.J. Beelen, E.J.W. ter Maten, R.M.M. Mattheij
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Newton and Approximate Newton Methods in Combination
with the Orthogonal Finite Integration Technique

H. De Gersem, I. Munteanu, T. Weiland
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Fig. 1 (p. 276) (a) Primary-dual grid pair. (b) Local numbering of primary faces and dual
edges associated at a primary grid cell
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Fig. 3 (p. 279) Geometry of the Nuclotron magnet device.

Transient Simulation of a Linear Actuator Discretized
by the Finite Integration Technique

Mariana Funieru, Herbert De Gersem, Thomas Weiland
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Fig. 1 (p. 282) Linear actuator
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Reduced Order Electromagnetic Models for on-chip passives
based on dual Finite Integrals Technique

Gabriela Ciuprina, Daniel Ioan, Diana Mihalache

Fig. 1 (p. 288) A typical on-chip component (www.imec.be/codestar)

Techniques to Reduce the Equivalent Parallel Capacitance
for EMI Filters Integration

Adina Racasan, Calin Munteanu, Vasile Topa, Claudia Racasan

Fig. 1 (p. 295) The integrated LC structure

Fig. 2 (p. 296) Integrated EMI filter composition
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Fig. 3 (p. 296) Physical structure of integrated EMI filter

(a) original structure

(b) increased insulation thickness

(c) “air spacer”

(d) staggered winding
Fig. 4 (p. 298) FEA Simulation models of different winding structures
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Fig. 7 (p. 299) Two staggered windings not interleaved

Fig. 8 (p. 299) Staggered and interleaved windings
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Symmetric Coupling of the Finite-Element and the Boundary-
Element Method for Electro-Quasistatic Field Simulations

T. Steinmetz, N. Gödel, G. Wimmer, M. Clemens, S. Kurz, M. Bebendorf,
S. Rjasanow

Fig. 2 (p. 285) Geometry (left) and scalar electric potential (right)

Fig. 2 (p. 285) Geometry, scalar electric potential computed by FEM and by FEM-BEM (from
left). While the boundary is set to 0 V in the FEM simulation, the effect of the open boundary
in the FEM-BEM simulation is obvious.



448 Colour Figures

Computational Errors in Hysteresis Preisach Modelling

Valentin Ionita, Lucian Petrescu

Fig. 1 (p. 319) Effect of the experimental data filtering on numerical simulation of subway
magnetic ticket

Fig. 2 (p. 319) Preisach function for identification with 80 FORCs

Fig. 3 (p. 320) Preisach function for identification with 80 filtered FORCs
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Fig. 4 (p. 321) Experimental and numerical asymmetrical hysteresis cycles for a bank card.

Fig. 5 (p. 321) Experimental and numerical hysteresis curves with variable step field for a
magnetic bank card.

Fig. 6 (p. 321) Experimental and numerical symmetrical cycles for a magnetic bank card.
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Manifold Mapping for Multilevel Optimization

Pieter W. Hemker, David Echeverrı́a

The surrogate model: c(p(x)) ≈ f(x).
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Fig. 2 (p. 330) Manifold Mapping.
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Software Package for Multi-Objective Optimal Design
of Electromagnetic Devices

Calin Munteanu, Gheorghe Mates, Vasile Topa

Fig. 1 (p. 333) Flowchart of the MOOP Software package

Fig. 2 (p. 333) Screenshot of the MOOP software package
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Optimal Design of Monolithic ESBT� Device carried out
by Multiobjective Optimization

Salvatore Spinella, Vincenzo Enea, Daniele Kroell, Michele Messina, Cesare
Ronsisvalle

Fig. 2 (p. 340) Half elementary cell of the ESBT� device with superimposed the equivalent
electrical circuit.
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Fig. 3 (p. 343) The simulation flow.
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On Fast Optimal Control for Energy-Transport-based
Semiconductor Design

C. R. Drago
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Extended Hydrodynamical Models for Charge Transport in Si

Roberto Beneduci, Giovanni Mascali, Vittorio Romano
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Fig. 1 (p. 363) Drift velocity vs the electric field

On the Implementation of a Delaunay-based 3-dimensional Mesh
Generator

K.J. van der Kolk, N.P. van der Meijs

Fig. 1 (p. 366) Example PLC and corresponding mesh. The structure is contained in a bound-
ing box (not shown) and the exterior of the structure is meshed as well in this case.
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A Hierarchical Preconditioner within Edge Based BE-FE
Coupling in Electromagnetism

K. Straube, I. Ibragimov, V. Rischmüller, S. Rjasanow

����	
z

y x

Fig. 3 (p. 384) A quarter of the valve geometry, where only material components and the coil
are shown. The colour scale indicates the magnitude of the magnetic induction.

Solution of Band Linear Systems in Model Reduction for VSLI
Circuits

Alfredo Remón, Enrique S. Quintana-Ortı́, Gregorio Quintana-Ortı́

Fig. 3 (p. 392) Performance of the parallel factorization routines.
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Fig. 3 (p. 392) Performance of the parallel factorization routines.

MOESP Algorithm for Converting One-dimensional Maxwell
Equation into a Linear System

E. F. Yetkin, H. Dağ, W. H. A. Schilders

(a) (b)
Fig. 2 (p. 399) (a) Singular value distribution of data matrix for u(t)=10 and estimated system

order n = 2, (b) Original and estimated outputs for a estimated system order n = 2
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Adaptive Methods for Transient Noise Analysis

Thorsten Sickenberger, Renate Winkler
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