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Prediction Distributions
and Intervals

Point forecasts for each of the state space models were given in Table 2.1
(p. 18). It is also useful to compute the associated prediction distributions
and prediction intervals for each model. In this chapter, we discuss how to
compute these distributions and intervals.

There are several sources of uncertainty when forecasting a future value
of a time series (Chatfield 1993):

1. The uncertainty in model choice—maybe another model is correct, or
maybe none of the candidate models is correct.

2. The uncertainty in the future innovations εn+1, . . . , εn+h.
3. The uncertainty in the estimates of the parameters: α, β, γ, φ and x0.

Ideally, the prediction distribution and intervals should take all of these into
account. However, this is a difficult problem, and in most time series analysis
only the uncertainty in the future innovations is taken into account.

If we assume that the model and its parameters (including x0) are known,
then we also know xn, the state vector at the last period of observation,
because the error in the transition equation can be calculated from the obser-
vations up to time n. Consequently, we define the prediction distribution as
the distribution of a future value of the series given the model, its estimated
parameters, and xn. A short-hand way of writing this is yn+h|n ≡ yn+h | xn.

We briefly discuss how to allow for parameter estimation uncertainty in
Sect. 6.1. We do not address how to allow for model uncertainty, although
this is an important issue. Hyndman (2001) showed that model uncertainty
is likely to be a much bigger source of error than parameter uncertainty.

The mean of the prediction distribution is called the forecast mean and is
denoted by µn+h|n = E(yn+h | xn). The corresponding forecast variance is
given by vn+h|n = V(yn+h | xn). We will find expressions for these quantities
for many of the models discussed in this book.
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We are also interested in “lead-time demand” forecasting, where we pre-
dict the aggregate of the next h observations rather than each of the next h
observations individually. We discuss this briefly here and in more detail in
Chap. 18.

The most direct method of obtaining prediction distributions is to simu-
late many possible future sample paths from the fitted model, and to estimate
the distributions from the simulated data. This approach will work for any
time series model, including all of the models discussed in this book. We
describe the simulation method in more detail in Sect. 6.1.

While the simulation approach is simple and can be applied to any
well-specified time series model, the computations can be time-consuming.
Furthermore, the resulting prediction intervals are only available numeri-
cally rather than algebraically. Therefore, the approach does not allow for
algebraic analysis of the prediction distributions.

An alternative approach is to derive the distributions analytically. Ana-
lytical results on prediction distributions can provide additional insight and
can be much quicker to compute. These results are relatively easy to derive
for some models (particularly the linear models), but very difficult for others.
In fact, there are analytical results on prediction distributions for only 15 of
the 30 models in our exponential smoothing framework.

When discussing the analytical prediction distributions, it is helpful to
divide the thirty state space models given in Tables 2.2 and 2.3 (pp. 21–22)
into five classes; Classes 1–4 are shown in Table 6.1.

For each of Classes 1–3, we give expressions for the forecast means and
variances. Class 1 consists of the linear models with homoscedastic errors;
these are discussed in Sect. 6.2. In Sect. 6.3 we discuss Class 2, which contains
the linear models with heteroscedastic errors. Class 3 models are discussed

Table 6.1. The models separated in the exponential smoothing framework split into
Classes 1–5.

A,N,N A,N,A
Class 1 −→ A,A,N A,A,A

A,Ad,N A,Ad,A

M,N,N M,N,A M,N,M
Class 2 −→ M,A,N M,A,A M,A,M ←− Class 3

M,Ad,N M,Ad,A M,Ad,M

Class 4 −→ M,M,N M,M,M
M,Md,N M,Md,M

M,M,A A,N,M A,M,N A,Md,N
Class 5 −→ M,Md,A A,A,M A,M,A A,Md,A

A,Ad,M A,M,M A,Md,M
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in Sect. 6.4; these are the models with multiplicative errors and multiplicative
seasonality but additive trend.

Class 4 consists of the models with multiplicative errors, multiplicative
trend, and either no seasonality or multiplicative seasonality. For Class 4,
there are no available analytical expressions for forecast means or variances,
and so we recommend using simulation to find prediction intervals.

The remaining 11 models are in Class 5. For these models, we also rec-
ommend using simulation to obtain prediction intervals. However, Class 5
models are those that can occasionally lead to numerical difficulties with
very long forecast horizons. Specifically, the forecast variances are infinite,
although this does not usually matter in practice for short- or medium-term
forecasts. This issue is explored in Chap. 15.

Section 6.5 discusses the use of the forecast mean and variance formulae
to construct prediction intervals even in cases where the prediction distribu-
tions are not Gaussian. In Sect. 6.6, we discuss lead-time demand forecasting
for Class 1 models.

Most of the results in this chapter are based on Hyndman et al. (2005) and
Snyder et al. (2004), although we use a slightly different parameterization in
this book, and we extend the results in some new directions.

To simplify some of the expressions, we introduce the following notation:

h = mhm + h+
m ,

where1 h is the forecast horizon, m is the number of periods in each season,
hm = 
(h − 1)/m� and h+

m =
[
(h − 1) mod m

]
+ 1. In other words, hm is the

number of complete years in the forecast period prior to time h, and h+
m is the

number of remaining times in the forecast period up to and including time h.
Thus, h+

m can take values 1, 2, . . . , m.

6.1 Simulated Prediction Distributions and Intervals

Recall from Chap. 4 that the general model with state vector

xt = (�t, bt, st, st−1, . . . , st−m+1)′

has the form
yt = w(xt−1) + r(xt−1)εt,
xt = f(xt−1) + g(xt−1)εt,

where w(·) and r(·) are scalar functions, f(·) and g(·) are vector functions,
and {εt} is a white noise process with variance σ2.

One simple approach to obtaining the prediction distribution is to sim-
ulate sample paths from the models, conditional on the final state xn. This

1 The notation 
u� means the integer part of u.
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Fig. 6.1. Quarterly French exports data with 20 simulated future sample paths gener-
ated using the ETS(M,A,M) model assuming Gaussian innovations. The solid vertical
line on the right shows a 90% prediction interval for the 16-step forecast horizon,
calculated from the 0.05 and 0.95 quantiles of the 5,000 simulated values.

was the approach taken by Ord et al. (1997) and Hyndman et al. (2002). That

is, we generate observations {y(i)
t }, for t = n + 1, . . . , n + h, starting with

xn from the fitted model. Each εt value is obtained from a random number
generator assuming a Gaussian or other appropriate distribution. This pro-
cedure is repeated for i = 1, . . . , M, where M is a large integer. (In practice,
we often use M = 5,000.)

Figure 6.1 shows a series of quarterly exports of a French company (in
thousands of francs) taken from Makridakis et al. (1998, p. 162). We fit an
ETS(M,A,M) model to the data. Then the model is used to simulate 5,000
future sample paths of the data. Twenty of these sample paths are shown in
Fig. 6.1.

Characteristics of the prediction distribution of yn+h|n can then be esti-
mated from the simulated values at a specific forecast horizon: yn+h|n =

{y(1)
n+h, . . . , y(M)

n+h}. For example, prediction intervals can be obtained using
quantiles of the simulated sample paths. An approximate 100(1 − α)% pre-
diction interval for forecast horizon h is given by the α/2 and 1 − α/2
quantiles of yn+h|n. The solid vertical line on the right of Fig. 6.1 is a 90%
prediction interval computed in this way from the 0.05 and 0.95 quantiles of
the simulated values at the 16-step horizon.

The full prediction density can be estimated using a kernel density esti-
mator (Silverman 1986) applied to yn+h|n. Figure 6.2 shows the prediction
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Fig. 6.2. The 16-step forecast density estimated from 5,000 simulated future sample
paths. The 90% prediction interval is calculated from the 0.05 and 0.95 quantiles.

density for the data in Fig. 6.1 obtained in this way, along with the 90%
prediction interval.

There are several advantages in computing prediction distributions and
intervals in this way:

• If the distribution of εt is not Gaussian, another distribution can be used to
generate the εt values when simulating the future sample paths.

• The historical εt values can be resampled to give bootstrap prediction
distributions without making any distributional assumptions.

• The method can be used for nonlinear models where εt may be Gaussian
but yt is not Gaussian.

• The method avoids the complex formulae that are necessary to compute
analytical prediction intervals for some nonlinear models.

• For some models (those in Classes 4 and 5), simulation is the only method
available for computing prediction distributions and intervals.

• It is possible to take into account the error in estimating the model parame-
ters. In this case, the simulated sample paths are generated using the same
model but with randomly varying parameters, reflecting the parameter
uncertainty in the fitted model. This was done in Ord et al. (1997) for mod-
els with multiplicative error, and in Snyder et al. (2001) for models with
additive error.

• The increasing speed of computers makes the simulation approach more
viable every year.
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6.1.1 Lead-Time Forecasting

In inventory control, forecasts of the sum of the next h observations are often
required. These are used for determination of ordering requirements such as
reorder levels, order-up-to levels and reorder quantities.

Suppose that a replenishment decision is to be made at the beginning of
period n + 1. Any order placed at this time is assumed to arrive a lead-time
later, at the start of period n + h + 1. Thus, we need to forecast the aggregate
of unknown future values yn+j, defined by

Yn(h) =
h

∑
j=1

yn+j.

The problem is to make inferences about the distribution of Yn(h) which
(in the inventory context) is known as the “lead-time demand.” The results
from the simulation of single periods give the prediction distributions and
intervals for individual forecast horizons, but for re-ordering purposes it
is more useful to have the lead-time prediction distribution and interval.
Because Yn(h) involves a summation, the central limit theorem states that
its distribution will tend towards Gaussianity as h increases. However, for
small to moderate h, we need to estimate the distribution.

The simulation approach can easily be used here by computing values of
Yn(h) from the simulated future sample paths. For example, to get the distri-
bution of Yn(3) for the quarterly French exports data, we sum the first three
values of the simulated future sample paths shown in Fig. 6.1. This gives us
5,000 values from the distribution of Yn(3) (assuming the model is correct).
Figure 6.3 shows the density computed from these 5,000 values along with a
90% prediction interval.

Here we have assumed that the lead-time h is fixed. Fixed lead-times are
relevant when suppliers make regular deliveries, an increasingly common
situation in supply chain management. For stochastic lead-times, we could
randomly generate h from a Poisson distribution (or some other count distri-
bution) when simulating values of Yn(h). This would be used when suppliers
make irregular deliveries.

6.2 Class 1: Linear Homoscedastic State Space Models

We now derive some analytical results for the prediction distributions of the
linear homoscedastic (Class 1) models. These provide additional insight and
can be much quicker to compute than the simulation approach. Derivations
of the results in this section are given in Appendix “Derivation of Results for
Class 1.”

The linear ETS models are (A,N,N), (A,A,N), (A,Ad,N), (A,N,A), (A,A,A)
and (A,Ad,A). The forecast means are given in Table 6.2. Because of the linear
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Fig. 6.3. The 3-step lead-time demand density estimated from 5,000 simulated
future sample paths assuming Gaussian innovations. The 90% prediction interval is
calculated from the 0.05 and 0.95 quantiles.

Table 6.2. Forecast means and cj values for the linear homoscedastic (Class 1) and
linear heteroscedastic (Class 2) state space models.

Model Forecast mean: µn+h|n cj

(A,N,N)/(M,N,N) �n α
(A,A,N)/(M,A,N) �n + hbn α + βj
(A,Ad,N)/(M,Ad,N) �n + φhbn α + βφj
(A,N,A)/(M,N,A) �n + sn−m+h+

m
α + γdj,m

(A,A,A)/(M,A,A) �n + hbn + sn−m+h+
m

α + βj + γdj,m
(A,Ad,A)/(M,Ad,A) �n + φhbn + sn−m+h+

m
α + βφj + γdj,m

The values of cj are used in the forecast variance expressions
(6.1) and (6.2). Here, dj,m = 1 if j = 0 (mod m) and 0 otherwise,
and φj = φ + φ2 + · · · + φj.

structure of the models, the forecast means are identical to the point forecasts
given in Table 2.1 (p. 18).

The forecast variances are given by

vn+h|n = V(yn+h | xn) =

⎧⎪⎨
⎪⎩

σ2 if h = 1;

σ2

[
1 +

h−1

∑
j=1

c2
j

]
if h ≥ 2; (6.1)

where cj is given in Table 6.2. Note that vn+h|n does not depend on xn or n,
but only on h and the smoothing parameters.
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Table 6.3. Forecast variance expressions for each linear homoscedastic state space
model, where vn+h|n = V(yn+h | xn).

Model Forecast variance: vn+h|n
(A,N,N) vn+h|n = σ2[1 + α2(h − 1)

]
(A,A,N) vn+h|n = σ2

[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}]

(A,Ad,N) vn+h|n = σ2
[

1 + α2(h − 1) + βφh
(1−φ)2 {2α(1 − φ) + βφ}

− βφ(1−φh)
(1−φ)2(1−φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}]

(A,N,A) vn+h|n = σ2
[
1 + α2(h − 1) + γhm(2α + γ)

]
(A,A,A) vn+h|n = σ2

[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

+ γhm
{

2α + γ + βm(hm + 1)
}]

(A,Ad,A) vn+h|n = σ2
[

1 + α2(h − 1) + βφh
(1−φ)2 {2α(1 − φ) + βφ}

− βφ(1−φh)
(1−φ)2(1−φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}
+ γhm(2α + γ)

+ 2βγφ
(1−φ)(1−φm)

{
hm(1 − φm)− φm(1 − φmhm)

}]

Because the models are linear and εt is assumed to be Gaussian, yn+h | xn
is also Gaussian. Therefore, prediction intervals are easily obtained from the
forecast means and variances.

In practice, we would normally substitute the numerical values of cj from
Table 6.2 into (6.1) to obtain numerical values for the variance. However,
it is sometimes useful to expand (6.1) algebraically by substituting in the
expressions for cj from Table 6.2. The resulting variance expressions are given
in Table 6.3.

We note in passing that vn+h|n is linear in h when β = 0, but cubic in h
when β > 0. Thus, models with non-zero β tend to have prediction intervals
that widen rapidly as h increases.

Traditionally, prediction intervals for the linear exponential smoothing
methods have been found through heuristic approaches or by employing
equivalent or approximate ARIMA models. Where an equivalent ARIMA
model exists (see Chap. 11), the results in Table 6.3 provide identical forecast
variances to those from the ARIMA model.

State space models with multiple sources of error have also been used to
find forecast variances for SES and Holt’s method (Harrison 1967; Johnston
and Harrison 1986). With these models, the variances are limiting values,



6.4 Class 3: Some Nonlinear Seasonal State Space Models 83

although the convergence is rapid. The variance formulae arising from these
two cases are the same as in our results.

Prediction intervals for the additive Holt-Winters method have previ-
ously been considered by Yar and Chatfield (1990). They assumed that the
one-period ahead forecast errors are independent, but they did not assume
any particular underlying model for the smoothing methods. The formulae
presented here for the ETS(A,A,A) model are equivalent to those given by
Yar and Chatfield (1990).

6.3 Class 2: Linear Heteroscedastic State Space Models

Derivations of the results in this section are given in Appendix “Derivation
of Results for Class 2.”

The ETS models in Class 2 are (M,N,N), (M,A,N), (M,Ad,N), (M,N,A),
(M,A,A) and (M,Ad,A). These are similar to those in Class 1 except that mul-
tiplicative rather than additive errors are used. Consequently, the forecast
means of Class 2 models are identical to the forecast means of the analogous
Class 1 model (assuming the same parameters), but the prediction intervals
and distributions will be different. The forecast means for Class 2 also coin-
cide with the usual point forecasts. Specific values of the forecast means are
given in Table 6.2.

The forecast variance is given by

vn+h|n = (1 + σ2)θh − µ2
n+h|n, (6.2)

where

θ1 = µ2
n+1|n and θh = µ2

n+h|n + σ2
h−1

∑
j=1

c2
j θh−j, (6.3)

where each cj is identical to that for the corresponding additive error model
from Class 1 in Table 6.2.

For most models, there is no non-recursive expression for the variance,
and we simply substitute the relevant cj values into (6.2) and (6.3) to obtain
numerical expressions for the variance. However, for the ETS(M,N,N) model,
we can go a little further (Exercise 6.1).

6.4 Class 3: Some Nonlinear Seasonal State Space Models

Derivations of the results in this section are given in Appendix “Derivation
of results for Class 3.”

The Class 3 models are (M,N,M), (M,A,M) and (M,Ad,M). These are sim-
ilar to the seasonal models in Class 2 except that the seasonal component is
multiplicative rather than additive.
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Table 6.4. Values of µn+h|n, µ̃n+h|n and cj for the Class 3 models.

Approx µn+h|n µ̃n+h|n cj

ETS(M,N,M) �nsn−m+h+
m

�n α

ETS(M,A,M) (�n + hbn)sn−m+h+
m

�n + hbn α + βj

ETS(M,Ad,M) (�n + φhbn)sn−m+h+
m

�n + φhbn α + βφj

Here, φj = φ + φ2 + · · · + φj. Values of cj are used in the forecast
variance expressions (6.5).

6.4.1 Approximate Forecast Means and Variances

For these models, the exact forecast means and variances are complicated to
compute when h ≥ m. However, by noting that σ2 is usually small (much
less than 1), we can obtain approximate expressions for the mean and vari-
ance which are often useful. Let ŷn+h|n be the usual point forecast as given in
Table 2.1. Then,

µn+h|n ≈ ŷn+h|n (6.4)

and vn+h|n ≈ s2
n−m+h+

m

[
θh(1 + σ2)(1 + γ2σ2)hm − µ̃2

n+h|n
]
, (6.5)

where
µ̃n+h|n = ŷn+h|n/sn−m+h+

m

is the seasonally adjusted point forecast, θ1 = µ̃2
n+1|n, and

θh = µ̃2
n+h|n + σ2

h−1

∑
j=1

c2
j θh−j, h ≥ 2. (6.6)

These expressions are exact for h ≤ m, but are only approximate for h > m.
The variance formula (6.5) agrees with those in Koehler et al. (2001) and
Chatfield and Yar (1991) (who only considered the first year of forecasts).

Specific values for µn+h|n, µ̃n+h|n and cj for the particular models in
Class 3 are given in Table 6.4.

Example 6.1: ETS(M,N,M) model

For the ETS(M,N,M) model, θ1 = �2
n, and for h ≥ 2,

θh = �2
n + α2σ2

h−1

∑
j=1

θh−j

= �2
n + α2σ2(θ1 + θ2 + · · ·+ θh−1).
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Then, by induction, we can show that θh = �2
n(1 + α2σ2)h−1. Plugging this

into (6.5) gives the following simpler expression for vn+h|n:

vn+h|n ≈ s2
n−m+h+

m
�2

n

[
(1 + σ2)(1 + α2σ2)h−1(1 + γ2σ2)hm − 1

]
.

The expression is exact for h ≤ m.

6.4.2 Exact Forecast Means and Variances

To obtain the exact formulae for h > m, we first write the models in Class 3
using the following nonlinear state space model:

yt = w′
1xt−1w

′
2zt−1(1 + εt),

xt = (F1 + G1εt)xt−1,
zt = (F2 + G2εt)zt−1,

where F1, F2, G1, G2, w′
1 and w′

2 are all matrix or vector coefficients, and
xt and zt are unobserved state vectors at time t. As for Class 2, {εt} is
NID(0, σ2), where the lower tail of the distribution is truncated so that 1 + εt
is positive.

Let k be the length of vector xt and q be the length of vector zt. Then the
orders of the above matrices are as follows:

F1 (k × k) G1 (k × k) w′
1 (1 × k)

F2 (q × q) G2 (q × q) w′
2 (1 × q)

• For the ETS(M,N,M) model, xt = �t, zt = (st, . . . , st−m+1)′, and the matrix
coefficients are w1 = 1, w′

2 = [0, . . . , 0, 1],

F1 = 1, F2 =
[
0′m−1 1
Im−1 0m−1

]
, G1 = α, and G2 =

[
0′m−1 γ
Om−1 0m−1

]
.

• For the ETS(M,Ad,M) model, xt = (�t, bt)′, w′
1 = [1, 1],

F1 =
[

1 φ
0 φ

]
, G1 =

[
α α
β β

]
,

and z2, w2, F2 and G2 are the same as for the ETS(M,N,M) model.
• The ETS(M,A,M) model is equivalent to the ETS(M,Ad,M) model with

φ = 1.
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For models in this class,

µn+h|n = w′
1Mh−1w2 (6.7)

and

vn+h|n = (1 + σ2)(w′
2 ⊗w′

1)Vn+h−1|n(w′
2 ⊗w′

1)
′ + σ2µ2

n+h|n, (6.8)

where ⊗ denotes a Kronecker product (Schott 2005, Sect. 8.2), M0 = xnz′
n,

V0 = O2m, and for h ≥ 1,

Mh = F1Mh−1F
′
2 + G1Mh−1G

′
2σ2 (6.9)

and

Vn+h|n = (F2 ⊗F1)Vn+h−1|n(F2 ⊗F1)′

+ σ2
[
(F2 ⊗F1)Vn+h−1|n(G2 ⊗G1)′ + (G2 ⊗G1)Vn+h−1|n(F2 ⊗F1)′

]
+ σ2(G2 ⊗F1 + F2 ⊗G1)

[
Vn+h−1|n +

−→
M h−1

−→
M ′

h−1

]
(G2 ⊗F1 + F2 ⊗G1)′

+ σ4(G2 ⊗G1)
[
3Vn+h−1|n + 2

−→
M h−1

−→
M ′

h−1

]
(G2 ⊗G1)′, (6.10)

where
−→
M h−1 = vec(Mh−1). (That is, the columns of Mh−1 are stacked

to form a vector.) Note, in particular, that µn+1|n = (w′
1xn)(w′

2zn) and
vn+1|n = σ2µ2

n+1|n. While these expressions look complicated and provide
little insight, it is relatively easy to compute them using computer matrix
languages such as R and Matlab.

In Appendix “Derivation of results for Class 3,” we show that the approx-
imations (6.4) and (6.5) follow from the exact expressions (6.7) and (6.8).
Note that the usual point forecasts for these models are given by (6.4) rather
than (6.7).

6.4.3 The Accuracy of the Approximations

In order to investigate the accuracy of the approximations (6.4) and (6.5)
for the exact mean and variance given by (6.7) and (6.8), we provide some
comparisons for the ETS(M,A,M) model in Class 3.

These comparisons are done for quarterly data, where the values for the
components are assumed to be the following: �n = 100, bn = 2, sn = 0.80,
sn−1 = 1.20, sn−2 = 0.90 and sn−3 = 1.10. We use the following base level
values for the parameters: α = 0.2, β = 0.06, γ = 0.1, and σ = 0.05. We vary
these parameters one at a time as shown in Table 6.5.

The results in Table 6.5 show that the mean and approximate mean
are always very close, and that the percentage difference in the standard
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Table 6.5. Comparison of exact and approximate means and standard deviations for
the ETS(M,A,M) model in Class 3.

Period Exact Approximate Exact Approximate SD percent
ahead mean (6.7) mean (6.4) SD (6.8) SD (6.5) difference
h µn+h|n

√vn+h|n

σ = 0.05, α = 0.2, β = 0.06, γ = 0.1

5 121.01 121.00 7.53 7.33 2.69
6 100.81 100.80 6.68 6.52 2.37
7 136.81 136.80 9.70 9.50 2.07
8 92.81 92.80 7.06 6.93 1.80
9 129.83 129.80 10.85 10.45 3.68

10 108.03 108.00 9.65 9.34 3.21
11 146.44 146.40 13.99 13.60 2.81
12 99.22 99.20 10.13 9.88 2.47

σ = 0.1, α = 0.2, β = 0.06, γ = 0.1

5 121.05 121.00 15.09 14.68 2.73
6 100.84 100.80 13.39 13.07 2.40
7 136.86 136.80 19.45 19.04 2.11
8 92.84 92.80 14.15 13.89 1.84
9 129.93 129.80 21.77 20.96 3.75

10 108.11 108.00 19.39 18.75 3.29
11 146.55 146.40 28.11 27.30 2.89
12 99.30 99.20 20.35 19.83 2.55

σ = 0.05, α = 0.6, β = 0.06, γ = 0.1

5 121.02 121.00 10.87 10.60 2.47
6 100.82 100.80 9.96 9.76 2.04
7 136.83 136.80 14.76 14.51 1.72
8 92.82 92.80 10.86 10.70 1.47
9 129.86 129.80 16.64 16.19 2.71

10 108.05 108.00 14.83 14.48 2.37
11 146.46 146.40 21.45 21.00 2.09
12 99.24 99.20 15.45 15.16 1.86

σ = 0.05, α = 0.2, β = 0.18, γ = 0.1

5 121.03 121.00 10.19 9.87 3.08
6 100.82 100.80 9.88 9.66 2.27
7 136.83 136.80 15.55 15.29 1.69
8 92.82 92.80 12.14 11.98 1.28
9 129.87 129.80 19.67 19.16 2.56

10 108.06 108.00 18.41 18.04 2.03
11 146.48 146.40 27.86 27.41 1.64
12 99.26 99.20 20.93 20.65 1.35

σ = 0.05, α = 0.2, β = 0.06, γ = 0.3

5 121.04 121.00 8.10 7.53 7.12
6 100.83 100.80 7.13 6.68 6.36
7 136.84 136.80 10.28 9.70 5.64
8 92.83 92.80 7.42 7.05 4.97
9 129.90 129.80 11.89 10.77 9.46

10 108.08 108.00 10.47 9.59 8.42
11 146.51 146.40 15.04 13.91 7.49
12 99.27 99.20 10.79 10.07 6.67
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deviations only becomes substantial when we increase γ. This result for the
standard deviation is not surprising because the approximation is exact if
γ = 0. In fact, we recommend that the approximation not be used if the
smoothing parameter for γ exceeds 0.10.

6.5 Prediction Intervals

The prediction distributions for Class 1 are clearly Gaussian, as the models
are linear and the errors are Gaussian. Consequently, 100(1− α)% prediction
intervals can be calculated from the forecast means and variances in the usual
way, namely µn+h|n ± zα/2

√vn+h|n, where zq denotes the qth quantile of a
standard Gaussian distribution.

In applying these formulae, the maximum likelihood estimator for σ2 (see
p. 68) is simply

σ̂2 = n−1
n

∑
t=1

ε̂2
t ,

where ε̂t = yt − µt|t−1.
The prediction distributions for Classes 2 and 3 are non-Gaussian because

of the nonlinearity of the state space equations. However, prediction inter-
vals based on the above (Gaussian) formula will usually give reason-
ably accurate results, as the following example shows. In cases where the
Gaussian approximation may be unreasonable, it is necessary to use the
simulation approach of Sect. 6.1.

6.5.1 Application: Quarterly French Exports

As a numerical example, we consider the quarterly French exports data given
in Fig. 6.1, and use the ETS(M,A,M) model. We estimate the parameters to
be α = 0.8185, β = 0.01, γ = 0.01 and σ = 0.0352, with the final states
�n = 757.3, bn = 15.7, and zn = (0.873, 1.141, 1.022, 0.964)′.

Figure 6.4 shows the forecast standard deviations calculated exactly using
(6.8) and approximately using (6.5). The approximate values are so close to
the exact values in this case (because σ2 and γ are both very small) that it is
almost impossible to distinguish the two lines.

The data with three years of forecasts are shown in Fig. 6.5. In this
case, the conditional mean forecasts obtained from model ETS(M,A,M) are
virtually indistinguishable from the usual forecasts because σ is so small
(they are identical up to h = m). The solid lines show prediction intervals
calculated as µn+h|n ± 1.96√vn+h|n, and the dotted lines show prediction
intervals computed by generating 20,000 future sample paths from the fit-
ted model and finding the 2.5 and 97.5% quantiles at each forecast horizon.
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Fig. 6.4. Forecast standard deviations calculated (a) exactly using (6.8); and (b)
approximately using (6.5).
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Fig. 6.5. Quarterly French exports data with 3 years of forecasts. The solid lines show
prediction intervals calculated as µn+h|n ± 1.96√vn+h|n, and the dotted lines show pre-
diction intervals computed by generating 20,000 future sample paths from the fitted
model and finding the 2.5 and 97.5% quantiles at each forecast horizon.
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Clearly, the variance-based intervals are a good approximation despite the
non-Gaussianity of the prediction distributions.

6.6 Lead-Time Demand Forecasts for Linear Homoscedastic
Models

For Class 1 models, it is also possible to obtain some analytical results on the
distribution of lead-time demand, defined by

Yn(h) =
h

∑
j=1

yn+j. (6.11)

In particular, the variance of lead-time demand can be used when imple-
menting an inventory strategy, although the basic exponential smoothing
procedures originally provided only point forecasts, and rather ad hoc
formulae were the vogue in inventory control software.

Harrison (1967) and Johnston and Harrison (1986) derived a variance for-
mula for lead-time demand based on simple exponential smoothing using
a state space model with independent error terms. They utilized the fact
that simple exponential smoothing emerges as the steady state form of the
model predictions in large samples. Adopting a different model, Snyder et al.
(1999) were able to obtain the same formula without recourse to a restrictive
large sample assumption. Around the same time, Graves (1999) obtained the
formula using an ARIMA(0,1,1) model.

Harrison (1967) and Johnston and Harrison (1986) also obtained a
variance formula for lead-time demand when trend-corrected exponential
smoothing is employed. Yar and Chatfield (1990), however, suggested a
slightly different formula. They also provide a formula that incorporates
seasonal effects for use with the additive Holt-Winters method.

The approach we adopt here is based on Snyder et al. (2004), although the
parameterization in this book is slightly different from that used in Snyder
et al. (2004). The results obtained subsume those in Harrison (1967), Johnston
and Harrison (1986), Yar and Chatfield (1990), Graves (1999) and Snyder et al.
(1999). In addition, for ETS(A,A,A), the recursive variance formula in Yar and
Chatfield (1990) has been replaced with a closed-form counterpart.

6.6.1 Means and Variances of Lead-Time Demand

In Appendix “Derivation of Cj values” we show that

yn+j = µn+j|n +
j−1

∑
i=1

cj−iεn+i + εqn+j,
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where µn+j|n and ck are given in Table 6.2. Substitute this into (6.11) to give

Yn(h) =
h

∑
j=1

(
µn+j|n +

j−1

∑
i=1

cj−iεn+i + εn+j

)
=

h

∑
j=1

µn+j|n +
h

∑
j=1

Cj−1εn+h−j+1,

(6.12)
where

C0 = 1 and Cj = 1 +
j

∑
i=1

ci for j = 1, . . . , h − 1. (6.13)

Thus, lead-time demand can be resolved into a linear function of the
uncorrelated level and error components.

From (6.12), it is easy to see that the point forecast (conditional mean) is
simply

Ŷn(h) = E(Yn(h) | xn) =
h

∑
j=1

µn+j|n (6.14)

and the conditional variance is given by

V (Yn(h) | xn) = σ2
h−1

∑
j=0

C2
j . (6.15)

The value of Cj for each of the models is given in Table 6.6. These
expressions are derived in Appendix “Derivation of Cj values.”

As with the equations for forecast variance at a specific forecast horizon,
we can substitute these expressions into (6.15) to derive a specific formula
for each model. This leads to a lot of tedious algebra that is of limited value.
Therefore we only give the result for model ETS(A,N,N):

Table 6.6. Values of Cj to be used in computing the lead-time variance in (6.15).

Model Cj

(A,N,N) 1 + jα

(A,A,N) 1 + j
[

α + 1
2 β(j + 1)

]
(A,Ad,N) 1 + jα + βφ

(1−φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
(A,N,A) 1 + jα + γjm

(A,A,A) 1 + j
[

α + 1
2 β(j + 1)

]
+ γjm

(A,Ad,A) 1 + jα + βφ
(1−φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
+ γjm

Here m is the number of periods in each season and jm = 
 j/m�
is the number of complete seasonal cycles that occur within j time
periods.
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V(Yn(h) | xn) =
h−1

∑
j=0

(1 + jα)2

= σ2h
[
1 + α(h − 1) + 1

6 α2(h − 1)(2h − 1)
]

. (6.16)

6.6.2 Matrix Calculation of Means and Variances

The mean and variance of the lead-time demand, and the forecast mean and
variance for a single period, can also be computed recursively using matrix
equations. From Chap. 3, we know that the form of the Class 1 models is

yt = w′xt−1 + εt,
xt = Fxt−1 + gεt,

where w′ is a row vector, g is a column vector, F is a matrix, xt is the
unobserved state vector at time t, and {εt} is NID(0, σ2).

Observe that the lead-time demand can be determined recursively by

Yn(j) = Yn(j − 1) + yn+j, (6.17)

where Yn(0) = 0 and Yn(j) = ∑
j
i=1 yn+i. Consequently, (6.17) can be

written as
Yn(j) = Yn(j − 1) + w′xn+j−1 + εn+j. (6.18)

So, if the state vector xn+j is augmented with Yn(j), the first-order recurrence
relationship [

xn+j
Yn(j)

]
=
[

F 0
w′ 1

] [
xn+j−1

Yn(j − 1)

]
+
[
g
1

]
εn+j

is obtained. This has the general form zn+j = Azn+j−1 + bεn+j. If the mean
and variance of the zn+j are denoted by mz

n+j|n = E(zn+j | xn) and V z
n+j|n =

V(zn+j | xn), then they can be computed recursively using the equations

mz
n+j|n = Amz

n+j−1|n,

V z
n+j|n = AV z

n+j−1|nA
′ + σ2bb′.

The mean of the lead-time demand Yn(h) is the last element in mz
n+h|n, and

the variance of Yn(h) is the bottom right element of V z
n+h|n.

This same procedure of using an augmented matrix can also be applied to
find the forecast mean and variance of yn+h for any single future time period
t = n + h. In this case, the state vector xn+j is augmented with yn+j in place
of Yn(j), and

A =
[

F 0
w′ 0

]
.
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Then, the mean and variance of yn+h are the last elements in mz
n+h|n and

V z
n+h|n respectively. Of course, one can use A = [F , w′]′ and the general

form zn+j = Axn+j−1 + bεn+j to remove the unnecessary multiplications by
0 in an actual implementation.

6.6.3 Stochastic Lead-Times

In practice, lead-times are often stochastic, depending on various factors
including demand in the previous time periods. We explore the effect of
stochastic lead-times on forecast variances in the case of the ETS(A,N,N)
model for simple exponential smoothing.

Let the lead-time, T, be stochastic with mean E(T) = h. The mean lead-
time demand, given the level at time n, is

E(Yn(T) | �n) = ET[E(Yn(T) | T, �n)] = h�n,

as in the case of a fixed lead-time. The variance of the lead-time demand
reduces to

V(Yn(T) | �n) = VT [E(Yn(T) | T, �n)] + ET [V(Yn(T) | T, �n)]

= VT(�nT) + ET

[
σ2

T

∑
j=1

C2
j,T

]

= �2
nV(T) + σ2ET

[ T

∑
j=1

{
1 + 2α(T − j) + α2(T − j)2

} ]

= �2
nV(T) + σ2h + σ2α

[
(1 + 1

2 α)h[2] +
1
3 αh[3]

]
,

where h[j] = E[T(T − 1) . . . (T − j + 1)], j = 1, 2, . . . , is known as the jth
factorial moment of the distribution of T.

For example, when the lead-time is fixed, h[j] = h(h − 1) . . . (h − j + 1).
When the lead-time is Poisson with mean h, then h[j] = hj. Therefore, the
lead-time demand variance becomes

V(Yn(T) | �n) = (�2
n + σ2)h + σ2α

[
(1 + 1

2 α)h2 + 1
3 αh3

]
.

Compare this with the variance for a fixed lead-time as given in (6.16). The
two variances are plotted in Fig. 6.6 for α = 0.1, σ = 1 and �n = 2, showing
that a stochastic lead-time can substantially increase the lead-time demand
variance.
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Fig. 6.6. Lead-time demand variance for an ETS(A,N,N) model with fixed and
stochastic lead-times. Here, α = 0.1, σ = 1 and �n = 2.

6.7 Exercises

Exercise 6.1. For the ETS(M,N,N) model, show that

θj = �2
n(1 + α2σ2)j−1

and

vn+h|n = �2
n

[
(1 + α2σ2)h−1(1 + σ2)− 1

]
.

Exercise 6.2. For the ETS(A,A,A) model, use (6.23) replacing φj by j to show
that

vn+h|n = σ2
[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

+ γhm {2α + γ + βm(hm + 1)}
]

.

Exercise 6.3. Monthly US 10-year bonds data were forecast with an
ETS(A,Ad,N) model in Sect. 2.8.1 (p. 28). Find the 95% prediction intervals
for this model algebraically and compare the results obtained by simulating
5,000 future sample paths using R.

Exercise 6.4. Quarterly UK passenger vehicle production data were forecast
with an ETS(A,N,A) model in Sect. 2.8.1 (p. 28). Find the 95% prediction
intervals for this model algebraically and compare the results obtained by
simulating 5,000 future sample paths using R.
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Appendix: Derivations

Derivation of Results for Class 1

The results for Class 1 models are obtained by first noting that all of the
linear, homoscedastic ETS models can be written using the following linear
state space model, introduced in Chap. 3:

yt = w′xt−1 + εt (6.19)
xt = Fxt−1 + gεt, (6.20)

where w′ is a row vector, g is a column vector, F is a matrix, and xt is the
unobserved state vector at time t. In each case, {εt} is NID(0, σ2).

Let Ik denote the k × k identity matrix, and 0k denote a zero vector of
length k. Then

• The ETS(A,N,N) model has xt = �t, w = F = 1 and g = α;
• The ETS(A,Ad,N) model has xt = (�t, bt)′, w′ = [1 φ],

F =
[

1 φ
0 φ

]
and g =

[
α
β

]
;

• The ETS(A,N,A) model has xt = (�t, st, st−1, . . . , st−(m−1))′,
w′ = [1 0′m−1 1],

F =

⎡
⎣ 1 0′m−1 0

0 0′m−1 1
0m−1 Im−1 0m−1

⎤
⎦ and g =

⎡
⎣ α

γ
0m−1

⎤
⎦ ;

• The ETS(A,Ad,A) model has xt = (�t, bt, st, st−1, . . . , st−(m−1))′,
w′ = [1 φ 0′m−1 1],

F =

⎡
⎢⎢⎣

1 φ 0′
m−1 0

0 φ 0′
m−1 0

0 0 0′m−1 1
0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎦ and g =

⎡
⎢⎢⎣

α
β
γ

0m−1

⎤
⎥⎥⎦ .

The matrices for (A,A,N) and (A,A,A) are the same as for (A,Ad,N) and
(A,Ad,A) respectively, but with φ = 1.

Forecast Mean

Let mn+h|n = E(xn+h | xn). Then mn|n = xn and

mn+h|n = Fmn+h−1|n = F 2mn+h−2|n = · · · = F hmn|n = F hxn.
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Therefore

µn+h|n = E(yn+h|xn) = w′mn+h−1|n = w′F h−1xn.

Example 6.2: Forecast mean of the ETS(A,Ad,A) model

For the ETS(A,Ad,A) model, w′ = [1 φ 0′m−1 1] and

F j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 φj 0 0 . . . 0
0 φj 0 0 . . . 0
0 0 dj+m,m dj+m+1,m . . . dj+2m−1,m
0 0 dj+m−1,m dj+m,m . . . dj+2m−2,m
...

...
...

...
. . .

...
0 0 dj+1,m dj+2,m . . . dj+m,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where φj = φ + φ2 + · · · + φj, and dk,m = 1 if k = 0 (mod m) and dk,m = 0
otherwise. Therefore,

w′F j = [1, φj+1, dj+1,m, dj+2,m, . . . , dj+m,m] (6.21)

and
µn+h|n = �n + φhbn + sn−m+h+

m
.

The forecast means for the other models can be derived similarly, and are
listed in Table 6.2

Forecast Variance

Define the state forecast variance as Vn+h|n = V(xn+h | xn). Note that Vn|n =
O, where O denotes a matrix of zeros. Then, from (6.20),

Vn+h|n = FVn+h−1|nF ′ + gg′σ2,

and therefore

Vn+h|n = σ2
h−1

∑
j=0

F jgg′(F j)′.

Hence, using (6.19), the forecast variance for h periods ahead is

vn+h|n = V(yn+h | xn)

= w′Vn+h−1|nw + σ2 =

⎧⎪⎨
⎪⎩

σ2 if h = 1;

σ2

[
1 +

h−1

∑
j=1

c2
j

]
if h ≥ 2; (6.22)

where cj = w′F j−1g.
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Example 6.3: Forecast variance for the ETS(A,Ad,A) model

Using (6.21), we find that cj = w′F j−1g = α + βφj + γdj,m. Consequently,
from (6.22) we obtain

vn+h|n = σ2

[
1 +

h−1

∑
j=1

(α + βφj + γdj,m)2

]

= σ2
[

1 +
h−1

∑
j=1

(
α2 + 2αβφj + β2φ2

j + {γ2 + 2αγ + 2βγφj}dj,m

)]
. (6.23)

In order to expand this expression, first recall the following well known
results for arithmetic and geometric series (Morgan 2005):

p

∑
j=1

j = 1
2 p(p + 1),

p

∑
j=1

j2 = 1
6 p(p + 1)(2p + 1) and

p

∑
j=1

aj =
a(1 − ap)

1 − a
,

where a �= 1, from which it is easy to show that

p

∑
j=1

jaj =
a[1 − (p + 1)ap + pap+1]

(1 − a)2 ,
p

∑
j=1

j(p − j + 1) = 1
6 p(p + 1)(p + 2)

and φj = φ(1 − φj)/(1 − φ) when φ < 1. Then the following expressions
also follow for φ < 1:

h−1

∑
j=1

φj =
φ

(1 − φ)2

[
h(1 − φ) − (1 − φh)

]

and
h−1

∑
j=1

φ2
j =

φ2

(1 − φ)2

h−1

∑
j=1

(1 − 2φj + φ2j)

=
φ2

(1 − φ)2(1 − φ2)

[
h(1 − φ2) − (1 + 2φ − φh)(1 − φh)

]
.

Furthermore,
h−1

∑
j=1

dj,m = hm. If h − 1 < m (i.e., hm = 0), then
h−1

∑
j=1

φjdj,m = 0,

and if h − 1 ≥ m (i.e., hm ≥ 1), then

h−1

∑
j=1

φjdj,m =
hm

∑
�=1

φ�m =
φ

1 − φ

hm

∑
�=1

(1 − φ�m)

=
φ

(1 − φ)(1 − φm)

[
hm(1 − φm)− φm(1 − φmhm)

]
.

(continued)
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Using the above results, we can rewrite (6.23) as

vn+h|n = σ2
[

1 + α2(h − 1) +
βφh

(1 − φ)2 {2α(1 − φ) + βφ} (6.24)

− βφ(1 − φh)
(1 − φ)2(1 − φ2)

{
2α(1 − φ2) + βφ(1 + 2φ − φh)

}

+ γhm(2α + γ) +
2βγφ

(1 − φ)(1 − φm)

{
hm(1 − φm)− φm(1 − φmhm)

}]
.

This is the forecast variance for the ETS(A,Ad,A) model when h ≥ 2.

Example 6.4: Forecast variance for the ETS(A,A,A) model

To obtain the forecast variance for the ETS(A,A,A) model, we could take
the limit as φ → 1 in (6.24) and apply L’Hospital’s rule. However, in many
ways it is simpler to go back to (6.23) and replace φj with j. This yields
(Exercise 6.2)

vn+h|n = σ2
[
1 + (h − 1)

{
α2 + αβh + 1

6 β2h(2h − 1)
}

(6.25)

+ γhm {2α + γ + βm(hm + 1)}
]

.

The forecast variance expressions for all other models can be obtained as
special cases of either (6.24) or (6.25):

• For (A,Ad,N), we use the results of (A,Ad,A) with γ = 0 and st = 0 for all
t.

• For (A,A,N), we use the results of (A,A,A) with γ = 0 and st = 0 for all t.
• The results for (A,N,N) are obtained from (A,A,N) by further setting β = 0

and bt = 0 for all t.
• The results for (A,N,A) are obtained as a special case of (A,A,A) with β = 0

and bt = 0 for all t.

Derivation of Results for Class 2

The models in Class 2 can all be written using the following state space
model:

yt = w′xt−1(1 + εt), (6.26)

xt = (F + gw′εt)xt−1, (6.27)

where w, g, F , xt and εt are the same as for the corresponding Class 1 model.
The lower tail of the error distribution is truncated so that 1 + εt is positive.
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The truncation is usually negligible as σ is usually relatively small for these
models.

Let mn+h|n = E(xn+h | xn) and Vn+h|n = V(xn+h | xn) as in Sect. 6.2.
The forecast means for Class 2 have the same form as for Class 1, namely

µn+h|n = w′mn+h−1|n = w′F h−1xn.

From (6.26), it can be seen that the forecast variance is given by

vn+h|n = w′Vn+h−1|nw(1 + σ2) + σ2w′mn+h−1|nm′
n+h−1|nw

= w′Vn+h−1|nw(1 + σ2) + σ2µ2
n+h|n.

To obtain Vn+h−1|n, first note that xt = Fxt−1 + get, where et = yt −
w′xt−1 = w′xt−1εt. Then it is readily seen that Vn+h|n = FVn+h−1|nF ′ +
gg′V(en+h | xn). Now let θh be defined such that V(en+h | xn) = θhσ2. Then,
by repeated substitution,

Vn+h|n = σ2
h−1

∑
j=0

F jgg′(F j)′θh−j.

Therefore,

w′Vn+h−1|nw = σ2
h−1

∑
j=1

c2
j θh−j, (6.28)

where cj = w′F j−1g. Now

en+h =
[
w′(xn+h−1 −mn+h−1|n) + w′mn+h−1|n

]
εn+h,

which we square and take expectations to give θh = w′Vn+h−1|nw + µ2
n+h|n.

Substituting (6.28) into this expression for θh gives

θh = σ2
h−1

∑
j=1

c2
j θh−j + µ2

n+h|n, (6.29)

where θ1 = µ2
n+1|n. The forecast variance is then given by

vn+h|n = (1 + σ2)θh − µ2
n+h|n. (6.30)

Derivation of Results for Class 3

Note that we can write (see p. 85)

yt = w′
1xt−1z

′
t−1w2(1 + εt).
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So let Qh = xn+hz
′
n+h, Mh = E(Qh | xn, zn) and Vn+h|n = V(

−→
Q h | xn, zn)

where
−→
Q h = vec(Qh). Note that

Qh = (F1xn+h−1 + G1xn+h−1εn+h)(z′
n+h−1F

′
2 + z′

n+h−1G
′
2εn+h)

= F1Qh−1F
′
2 + (F1Qh−1G

′
2 + G1Qh−1F

′
2)εn+h + G1Qh−1G

′
2ε2

n+h.

It follows that M0 = xnz′
n and

Mh = F1Mh−1F
′
2 + G1Mh−1G

′
2σ2. (6.31)

For the variance of Qh , we find V0 = 0, and

Vn+h|n = V
[
vec(F1Qh−1F

′
2) + vec(F1Qh−1G

′
2 + G1Qh−1F

′
2)εn+h

+ vec(G1Qh−1G
′
2)ε2

n+h
]

= (F2 ⊗F1)Vn+h−1|n(F2 ⊗ F1)′

+ (G2 ⊗ F1 + F2 ⊗G1)V(
−→
Q h−1εn+h)(G2 ⊗ F1 + F2 ⊗G1)′

+ (G2 ⊗G1)V(
−→
Q h−1ε2

n+h)(G2 ⊗G1)′

+ (F2 ⊗F1)Cov(
−→
Q h−1,

−→
Q h−1ε2

n+h)(G2 ⊗G1)′

+ (G2 ⊗G1)Cov(
−→
Q h−1ε2

n+h,
−→
Q h−1)(F2 ⊗F1)′.

Next we find that

V(
−→
Q h−1εn+h) = E[

−→
Q h−1(

−→
Q h−1)′ε2

n+h]

= σ2[Vn+h−1|n +
−→
M h−1(

−→
M h−1)′

]
,

V(
−→
Q h−1ε2

n+h) = E
[−→
Q h−1(

−→
Q h−1)′ε4

n+h
]− E(

−→
Q h−1)E(

−→
Q h−1)′σ4

= 3σ4[Vn+h−1|n +
−→
M h−1(

−→
M h−1)′

]−−→
M h−1(

−→
Mh−1)′σ4

= σ4[3Vn+h−1|n + 2
−→
M h−1(

−→
Mh−1)′

]
,

and

Cov(
−→
Q h−1,

−→
Q h−1ε2

n+h) = E
[−→
Q h−1(

−→
Q h−1)′ε2

n+h
]− E(

−→
Q h−1)E(

−→
Q h−1)′σ2

= σ2(Vn+h−1|n +
−→
M h−1(

−→
M h−1)′)− σ2−→M h−1(

−→
M h−1)′

= σ2Vn+h−1|n.

It follows that

Vn+h|n = (F2 ⊗ F1)Vn+h−1|n(F2 ⊗F1)′

+ σ2
[
(F2 ⊗F1)Vn+h−1|n(G2 ⊗G1)′ + (G2 ⊗G1)Vn+h−1|n(F2 ⊗F1)′

]
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+ σ2(G2 ⊗F1 + F2 ⊗G1)
[
Vn+h−1|n +

−→
M h−1(

−→
M h−1)′

]
× (G2 ⊗F1 + F2 ⊗G1)′

+ σ4(G2 ⊗G1)
[
3Vn+h−1|n + 2

−→
M h−1(

−→
M h−1)′

]
(G2 ⊗G1)′.

The forecast mean and variance are given by

µn+h|n = E(yn+h | xn, zn) = w′
1Mh−1w2

and

vn+h|n = V(yn+h | xn, zn) = V[vec(w′
1Qh−1w2 + w′

1Qh−1w
′
2εn+h)]

= V[(w′
2 ⊗w′

1)
−→
Q h−1 + (w′

2 ⊗w′
1)
−→
Q h−1εn+h]

= (w′
2 ⊗w′

1)[Vn+h−1|n(1 + σ2) + σ2−→M h−1(
−→
M h−1)′](w2 ⊗w1)

= (1 + σ2)(w′
2 ⊗w′

1)Vn+h−1|n(w′
2 ⊗w′

1)
′ + σ2µ2

n+h|n.

When σ is sufficiently small (much less than 1), it is possible to obtain
some simpler but approximate expressions. The second term in (6.31) can
be dropped to give Mh = F h−1

1 M0(F h−1
2 )′, and so

µn+h|n ≈ w′
1F

h−1
1 xn(w′

2F
h−1
2 zn)′.

The order of this approximation can be obtained by noting that the obser-
vation equation may be written as yt = u1,tu2,tu3,t, where u1,t = w′

1xt−1,
u2,t = w′

2zt−1 and u3,t = 1 + εt. Then

E(yt) = E(u1,tu2,tu3,t) = E(u1,tu2,t)E(u3,t),

because u3,t is independent of u1,t and u2,t. Therefore, because E(u1,tu2,t) =
E(u1,t)E(u2,t) + Cov(u1,t, u2,t), we have the approximation:

µn+h|n = E(yn+h | xn, zn) = E(u1,n+h | xn)E(u2,n+h | zn)E(u3,n+h) + O(σ2).

When u2,n+h is constant the result is exact. Now let

µ1,h = E(u1,n+h+1 | xn) = E(w′
1xn+h | xn) = w′

1F
h
1 xn,

µ2,h = E(u2,n+h+1 | zn) = E(w′
2zn+h | zn) = w′

2F
h
2 zn,

v1,h = V(u1,n+h+1 | xn) = V(w′
1xn+h | xn),

v2,h = V(u2,n+h+1 | zn) = V(w′
2zn+h | zn),

and v12,h = Cov(u2
1,n+h+1, u2

2,n+h+1 | xn, zn)

= Cov([w′
1xn+h]2, [w′

2zn+h]2 | xn, zn).

Then
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µn+h|n = µ1,h−1µ2,h−1 + O(σ2) = w′
1F

h−1
1 xnw′

2F
h−1
2 zn + O(σ2).

By the same arguments, we have

E(y2
t ) = E(u2

1,tu
2
2,tu

2
3,t) = E(u2

1,tu
2
2,t)E(u2

3,t),

and

E(y2
n+h | zn, xn) = E(u2

1,n+hu2
2,n+h | xn, zn)E(u2

3,n+h)

=
[
Cov(u2

1,n+h, u2
2,n+h | xn, zn) + E(u2

1,n+h | xn)E(u2
2,n+h | zn)

]
E(u2

3,n+h)

= (1 + σ2)[v12,h−1 + (v1,h−1 + µ2
1,h−1)(v2,h−1 + µ2

2,h−1)].

Assuming that the covariance v12,h−1 is small compared to the other terms,
we obtain

vn+h|n ≈ (1 + σ2)(v1,h−1 + µ2
1,h−1)(v2,h−1 + µ2

2,h−1) − µ2
1,h−1µ2

2,h−1.

We now simplify these results for the ETS(M,Ad,M) case where xt = (�t, bt)′
and zt = (st, . . . , st−m+1)′, and the matrix coefficients are w′

1 = [1, φ], w′
2 =

[0, . . . , 0, 1],

F1 =
[

1 φ
0 φ

]
, F2 =

[
0′m−1 1
Im−1 0m−1

]
,

G1 =
[

α α
β β

]
, and G2 =

[
0′m−1 γ
Om−1 0m−1

]
.

Many terms will be zero in the formulae for the expected value and the
variance because of the following relationships: G2

2 = Om, w′
2G2 = 0′m,

and (w′
2 ⊗ w′

1)(G2 ⊗ X) = 0′2m where X is any 2 × 2 matrix. For the
terms that remain, w′

2 ⊗ w′
1 and its transpose will only use the terms from

the last two rows of the last two columns of the large matrices because
w′

2 ⊗w′
1 = [0′2m−2, 1, 1].

Using the small σ approximations and exploiting the structure of the
ETS(M,Ad,M) model, we can obtain simpler expressions that approximate
µn+h|n and vn+h|n.

Note that w′
2F

j
2G2 = γdj+1,mw′

2. So, for h < m, we have

w′
2zn+h | zn = w′

2

h

∏
j=1

(F2 + G2εn+h−j+1)zn = w′
2F

h
2 zn = sn−m+h+1

Furthermore,

µ2,h = sn−m+h+
m

and v2,h =
[
(1 + γ2σ2)hm − 1

]
s2

n−m+h+
m

.
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Also note that xn has the same properties as for ETS(M,Ad,N) in Class 2.
Thus

µ1,h = �n + φhbn

and v1,h = (1 + σ2)θh − µ2
1,h.

Combining all of the terms, we arrive at the approximations

µn+h|n = µ̃n+h|nsn−m+h+
m

+ O(σ2)

and vn+h|n ≈ s2
n−m+h+

m

[
θh(1 + σ2)(1 + γ2σ2)hm − µ̃2

n+h|n
]
,

where µ̃n+h|n = �n + φhbn, θ1 = µ̃2
n+1|n, and

θh = µ̃2
n+h|n + σ2

h−1

∑
j=1

(α + βφj)2θh−j, h ≥ 2.

These expressions are exact for h ≤ m. The other cases of Class 3 can be
derived as special cases of ETS(M,Ad,M).

Derivation of Cj Values

We first demonstrate that for Class 1 models, lead-time demand can be
resolved into a linear function of the uncorrelated level and error compo-
nents. Back-solve the transition equation (6.20) from period n + j to period n,
to give

xn+j = F jxn +
j

∑
i=1

F j−igεn+i.

Now from (6.19) and (6.20) we have

yn+j = w′xn+j−1 + εn+j

= w′Fxn+j−2 + w′gεn+j−1 + εn+j

...

= w′F j−1xn +
j−1

∑
i=1

w′F j−i−1gεn+i + εn+j

= µn+j|n +
j−1

∑
i=1

cj−iεn+i + εn+j,

where ck = w′F k−1g. Substituting this into (6.11) gives (6.15).
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To derive the value of Cj for the ETS(A,Ad,A) model, we plug the value
of ci from Table 6.2 into (6.13) to obtain

Cj = 1 +
j

∑
i=1

(α + βφi + γdi,m)

= 1 + αj + β
j

∑
i=1

φi + γ
j

∑
i=1

di,m

= 1 + αj +
βφ

(1 − φ)2

[
(j + 1)(1 − φ) − (1 − φj+1)

]
+ γjm,

where jm = 
j/m� is the number of complete seasonal cycles that occur
within j time periods.

A similar derivation for the ETS(A,A,A) model leads to

Cj = 1 +
j

∑
i=1

(α + iβ + γdi,m) = 1 + j
[
α + 1

2 β(j + 1)
]
+ γjm.

The expressions for Cj for the other linear models are obtained as special
cases of either ETS(A,Ad,A) or ETS(A,A,A) and are given in Table 6.6.


