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Linear Innovations State
Space Models

In Chap. 2, state space models were introduced for all 15 exponential smooth-
ing methods. Six of these involved only linear relationships, and so are
“linear innovations state space models.” In this chapter, we consider linear
innovations state space models, including the six linear models of Chap. 2,
but also any other models of the same form. The advantage of working with
the general framework is that estimation and prediction methods for the gen-
eral model automatically apply to the six special cases in Chap. 2 and other
cases conforming to its structure. There is no need to derive these results on
a case by case basis.

The general linear innovations state space model is introduced in Sect. 3.1.
Section 3.2 provides a simple algorithm for computing the one-step predic-
tion errors (or innovations); it is this algorithm which makes innovations
state space models so appealing. Some of the properties of the models,
including stationarity and stability, are discussed in Sect. 3.3. In Sect. 3.4 we
discuss some basic innovations state space models that were introduced
briefly in Chap. 2. Interesting variations on these models are considered in
Sect. 3.5.

3.1 The General Linear Innovations State Space Model

In a state space model, the observed time series variable yt is supplemented
by unobserved auxiliary variables called states. We represent these auxiliary
variables in a single vector xt, which is called the state vector. The state vector
is a parsimonious way of summarizing the past behavior of the time series
yt, and then using it to determine the effect of the past on the present and
future behavior of the time series.
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The general1 linear innovations state space model is

yt = w′xt−1 + εt, (3.1a)
xt = Fxt−1 + gεt, (3.1b)

where yt denotes the observed value at time t and xt is the state vector. This
is a special case of the more general model (2.12). In exponential smoothing,
the state vector contains information about the level, growth and seasonal
patterns. For example, in a model with trend and seasonality, xt = (�t, bt,
st, st−1, . . . , st−m+1)′.

From a mathematical perspective, the state variables are essentially
redundant. In Chap. 11, it will be shown that the state variables contained in
the state vector can be substituted out of the equations in which they occur to
give a reduced form of the model. So why use state variables at all? They help
us to define large complex models by first breaking them into smaller, more
manageable parts, thus reducing the chance of model specification errors.
Further, the components of the state vector enable us to gain a better under-
standing of the structure of the series, as can be seen from Table 2.1. In
addition, this structure enables us to explore the need for each component
separately and thereby to carry out a systematic search for the best model.

Equation (3.1a) is called the measurement equation. The term w′xt−1
describes the effect of the past on yt. The error term εt describes the unpre-
dictable part of yt. It is usually assumed to be from a Gaussian white noise
process with variance σ2. Because εt represents what is new and unpre-
dictable, it is referred to as the innovation. The innovations are the only source
of randomness for the observed time series, {yt}.

Equation (3.1b) is known as the transition equation. It is a first-order recur-
rence relationship that describes how the state vectors evolve over time.
F is the transition matrix. The term Fxt−1 shows the effect of the past on
the current state xt. The term gεt shows the unpredictable change in xt. The
vector g determines the extent of the effect of the innovation on the state. It is
referred to as a persistence vector. The transition equation is the mechanism for
creating the inter-temporal dependencies between the values of a time series.

The k-vectors w and g are fixed, and F is a fixed k × k matrix. These fixed
components usually contain some parameters that need to be estimated.

The seed value x0 for the transition equation may be fixed or random.
The process that generates the time series may have begun before period 1,
but data for the earlier periods are not available. In this situation, the start-up
time of the process is taken to be −∞, and x0 must be random. We say that
the infinite start-up assumption applies. This assumption is typically valid in
the study of economic variables. An economy may have been operating for
many centuries but an economic quantity may not have been measured until
relatively recent times. Consideration of this case is deferred to Chap. 12.

1 An even more general form is possible by allowing w, F and g to vary with time,
but that extension will not be considered here.
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Alternatively, the process that generates a time series may have started
at the beginning of period 1, and x0 is then fixed. In this case we say that
the finite start-up assumption applies. For example, if yt is the demand for
an inventory item, the start-up time corresponds to the date at which the
product is introduced. The theory presented in this and most subsequent
chapters is based on the finite start-up assumption with fixed x0.

Upon further consideration, we see that even when a series has not
been observed from the outset, we may choose to condition upon the state
variables at time zero. We then employ the finite start-up assumption with
fixed x0.

Model (3.1) is often called the Gaussian innovations state space model
because it is defined in terms of innovations that follow a Gaussian distribu-
tion. It may be contrasted with alternative state space models, considered in
Chap. 13, which involve different and uncorrelated sources of randomness in
(3.1a) and (3.1b), rather than a single source of randomness (the innovations)
in each case.

The probability density function for y = [y1, . . . , yn] is a function of the
innovations and has the relatively simple form

p(y | x0) =
n

∏
t=1

p(yt | y1, . . . , yt−1, x0)

=
n

∏
t=1

p(yt | xt−1)

=
n

∏
t=1

p(εt).

If we assume that the distribution is Gaussian, this expression becomes:

p(y | x0) = (2πσ2)−n/2 exp
(
− 1

2

n

∑
t=1

ε2
t /σ2

)
. (3.2)

This is easily evaluated provided we can compute the innovations {εt}.
A simple expression for this computation is given in the next section.

3.2 Innovations and One-Step-Ahead Forecasts

If the value for x0 is known, the innovation εt is a one-step-ahead prediction
error. This can be seen by applying (3.1a) and (3.1b) to obtain

E(yt | yt−1, . . . , y1, x0) = E(yt | xt−1) = w′xt−1.

Then the prediction of yt, given the initial value x0 and observations
y1, . . . , yt−1, is w′xt−1. If we denote the prediction by ŷt|t−1, the innovations
can be computed recursively from the series values using the relationships
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ŷt|t−1 = w′xt−1, (3.3a)

εt = yt − ŷt|t−1, (3.3b)

xt = Fxt−1 + gεt. (3.3c)

This transformation will be called general exponential smoothing. It was first
outlined by Box and Jenkins (Box et al. 1994, pp. 176–180) in a much
overlooked section of their book.

The forecasts obtained with this transformation are linear functions of
past observations. To see this, first substitute (3.3a) and (3.3b) into (3.3c) to
find

xt = Dxt−1 + gyt, (3.4)

where D = F − gw′. Then back-solve the recurrence relationship (3.4) to
give

xt = Dtx0 +
t−1

∑
j=0

D jgyt−j. (3.5)

This result indicates that the current state xt is a linear function of the seed
state x0 and past and present values of the time series. Finally, substitute
(3.5), lagged by one period, into (3.3a) to give

ŷt|t−1 = at +
t−1

∑
j=1

cjyt−j, (3.6)

where at = w′Dt−1x0 and cj = w′D j−1g. Thus, the forecast is a linear
function of the past observations and the seed state vector.

Equations (3.1), (3.3), and (3.4) demonstrate the beauty of the innovations
approach. We may start from the state space model in (3.1) and generate
the one-step-ahead forecasts directly using (3.3). When a new observation
becomes available, the state vector is updated using (3.4), and the new one-
step-ahead forecast is immediately available. As we shall see in Chap. 13,
other approaches achieve the updating and the transition from model to
forecast function with less transparency and considerably more effort.

3.3 Model Properties

3.3.1 Stability and Forecastability

When the forecasts of yt are unaffected by observations in the distant past,
we describe the model as forecastable. Specifically, a forecastable model has
the properties

∞

∑
j=1

|cj| < ∞ and lim
t→∞

at = a. (3.7)
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Our definition of forecastability allows the initial state x0 to have an ongoing
effect on forecasts, but it prevents observations in the distant past having any
effect. In most cases, a = 0, but not always; an example with a �= 0 is given
in Sect. 3.5.2.

A sufficient, but not necessary, condition for (3.7) to hold is that the eigen-
values of D lie inside the unit circle. In this case, D j converges to a null
matrix as j increases. This is known as the “stability condition” and such
models are called stable. D is called the discount matrix. In a stable model, the
coefficients of the observations in (3.6) decay exponentially. The exponential
decline in the importance of past observations is a property that is closely
associated with exponential smoothing.

It turns out that sometimes at converges to a constant and the coefficients
{cj} converge to zero even when D has a unit root. In this case, the forecasts
of yt are unaffected by distant observations, while the forecasts of xt may
be affected by distant past observations even for large values of t. Thus, any
stable model is also forecastable, but some forecastable models are not sta-
ble. Examples of unstable but forecastable models are given in Chap. 10. The
stability condition on D is closely related to the invertibility restriction for
ARIMA models; this is discussed in more detail in Chap. 11.

3.3.2 Stationarity

The other matrix that controls the model properties is the transition matrix,
F . If we iterate (3.1b), we obtain

xt = Fxt−1 + gεt

= F 2xt−2 + Fgεt−1 + gεt
...

= F tx0 +
t−1

∑
j=0

F jgεt−j.

Substituting this result into (3.1a) gives

yt = dt +
t−1

∑
j=0

kjεt−j, (3.8)

where dt = w′F t−1x0, k0 = 1 and kj = w′F j−1g for j = 1, 2, . . . . Thus,
the observation is a linear function of the seed state x0 and past and present
errors. Any linear innovations model may be represented in the form (3.8);
this is an example of a finite Wold decomposition (Brockwell and Davis 1991,
p. 180).
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The model is described as stationary2 if

∞

∑
j=0

|kj| < ∞ and lim
t→∞

dt = d. (3.9)

In such a model, the coefficients of the errors in (3.8) converge rapidly to zero,
and the impact of the seed state vector diminishes over time.

We may then consider the limiting form of the model, corresponding to
the infinite start-up assumption. Equation (3.8) becomes

yt = d +
∞

∑
j=0

kjεt−j.

This form is known as the Wold decomposition for a stationary series. It
follows directly that E(yt) = d and V(yt) = σ2 ∑∞

j=0 k2
j .

A sufficient, but not necessary, condition for stationarity to hold is for
the absolute value of each eigenvalue of F to lie strictly in the unit interval
(0, 1). Then F j converges to a null matrix as j increases. As with the stabil-
ity property, it turns out that sometimes dt converges to a constant and the
coefficients {kj} converge to zero even when F has a unit root. However,
this does not occur with any of the models we consider, and so it will not be
discussed further.

Stationarity is a rare property in exponential smoothing state space mod-
els. None of the models discussed in Chap. 2 are stationary. The six linear
models described in that chapter have at least one unit root for the F
matrix. However, it is possible to define stationary models in the exponen-
tial smoothing framework; an example of such a model is given in Sect. 3.5.1,
where all of the transition equations involve damping.

3.4 Basic Special Cases

The linear innovations state space model effectively contains an infinite num-
ber of special cases that can potentially be used to model a time series; that is,
to provide a stochastic approximation to the data generating process of a time
series. However, in practice we use only a handful of special cases that pos-
sess the capacity to represent commonly occurring patterns such as trends,
seasonality and business cycles. Many of these special cases were introduced
in Chap. 2.

The simplest special cases are based on polynomial approximations of
continuous real functions. A polynomial function can be used to approxi-
mate any real function in the neighborhood of a specified point (this is known

2 The terminology “stationary” arises because the distribution of (yt, yt+1, . . . , yt+s)
does not depend on time t when the initial state x0 is random.
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as Taylor’s theorem in real analysis). To demonstrate the idea, we temporar-
ily take the liberty of representing the data by a continuous path, despite the
fact that business and economic data are typically collected at discrete points
of time.

The first special case to be considered, the local level model, is a zero-
order polynomial approximation. As depicted in Fig. 3.1a, at any point along
the data path, the values in the neighborhood of the point are approximated
by a short flat line representing what is referred to as a local level. As its
height changes over time, it is necessary to approximate the data path by
many local levels. Thus, the local level effectively represents the state of a
process generating a time series.

The gap between successive levels is treated as a random variable. More-
over, this random variable is assumed to have a Gaussian distribution that
has a zero mean to ensure that the level is equally likely to go up or down.

(a) Local level approximation
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(b) Local trend approximation
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Fig. 3.1. Schematic representation of (a) a local level model; and (b) a local trend
model.
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The final local level is projected into the future to give predictions. As
the approximation is only effective in a small neighborhood, predictions
generated this way are only likely to be reliable in the shorter term.

The second special case involves a first-order polynomial approximation.
At each point, the data path is approximated by a straight line. In the deter-
ministic world of analysis, this line would be tangential to the data path at
the selected point. In the stochastic world of time series data, it can only be
said that the line has a similar height and a similar slope to the data path.
Randomness means that the line is not exactly tangential. The approximat-
ing line changes over time, as depicted in Fig. 3.1b, to reflect the changing
shape of the data path. The state of the process is now summarized by the
level and the slope at each point of the path. The stochastic representation is
based on the assumption that the gaps between successive slopes are Gaus-
sian random variables with a zero mean. Note that the prediction is obtained
by projecting the last linear approximation into the future.

It is possible to move beyond linear functions to higher order polynomials
with quadratic or cubic terms. However, these extensions are rarely used
in practice. It is commonly thought that the randomness found in real time
series typically swamps and hides the effects of curvature.

Another strategy that does often bear fruit is the search for periodic
behavior in time series caused by seasonal effects. Ignoring growth for the
moment, the level in a particular month may be closer to the level in the
corresponding month in the previous year than to the level in the preceding
month. This leads to seasonal state space models.

3.4.1 Local Level Model: ETS(A,N,N)

The simplest way to transmit the history of a process is through a single
state, �t, called the level. The resulting state space model is defined by the
equations

yt = �t−1 + εt, (3.10a)
�t = �t−1 + αεt, (3.10b)

where εt ∼ NID(0, σ2). It conforms to a state space structure with xt = �t,
w = 1, F = 1 and g = α. The values that are generated by this stochastic
model are randomly scattered about the (local) levels as described in (3.10a).
This is illustrated in Fig. 3.2 with a simulated series.

In demand applications, the level �t−1 represents the anticipated demand
for period t, and εt represents the unanticipated demand. Changes to the
underlying level may be induced by changes in the customer base such as
the arrival of new customers, or by new competitors entering the market.
Changes like these transcend a single period and must affect the underlying
level. It is assumed that the unanticipated demand includes a persistent and
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Fig. 3.2. Simulated series from the ETS(A,N,N) model. Here α = 0.1 and σ = 5.

a temporary effect; αεt denotes the persistent effect, feeding through to future
periods via the (local) levels governed by (3.10b).

The degree of change of successive levels is governed by the size of the
smoothing parameter α. The cases where α = 0 and α = 1 are of special
interest.

Case: α = 0 The local levels do not change at all when α = 0. Their com-
mon level is then referred to as the global level. Successive values of the
series yt are independently and identically distributed. Its moments do
not change over time.

Case: α = 1 The model reverts to a random walk yt = yt−1 + εt. Successive
values of the time series yt are clearly dependent.

The special case of transformation (3.3) for model (3.10) is

ŷt|t−1 = �t−1,

εt = yt − �t−1,
�t = �t−1 + αεt.

It corresponds to simple exponential smoothing (Brown 1959), one of the
most widely used methods of forecasting in business applications. It is a
simple recursive scheme for calculating the innovations from the raw data.
Equation (3.4) reduces to

�t = (1 − α)�t−1 + αyt. (3.11)
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The one-step-ahead predictions obtained from this scheme are linearly
dependent on earlier series values. Equation (3.6) indicates that

ŷt+1|t = (1 − α)t�0 + α
t−1

∑
j=0

(1 − α)jyt−j. (3.12)

This is a linear function of the data and seed level. Ignoring the first term
(which is negligible for large values of t and |1 − α| < 1), the prediction
ŷt|t−1 is an exponentially weighted average of past observations. The coefficients
depend on the “discount factor” 1 − α. If |1 − α| < 1, then the coefficients
become smaller as j increases. That is, the stability condition is satisfied if and
only if 0 < α < 2. The coefficients are positive if and only if 0 < (1 − α) < 1,
and (3.11) can then be interpreted as a weighted average of the past level �t−1
and the current series value yt. Thus, the prediction can only be interpreted
as a weighted average if 0 < α < 1.

Consequently, there are two possible ranges for α that have been pro-
posed: 0 < α < 2 on the basis of a stability argument, and 0 < α < 1 on
the basis of an interpretation as a weighted average. The narrower range is
widely used in practice.

The impact of various values of α may be discerned from Fig. 3.3. It shows
simulated time series from an ETS(A,N,N) model with �0 = 100 and σ = 5
for various values of α. The same random number stream from a Gaussian
distribution was used for the three series, so that any perceived differences
can be attributed entirely to changes in α. For the case α = 0.1, the underlying
level is reasonably stable. The plot has a jagged appearance because there is a
tendency for the series to switch direction between successive observations.
This is a consequence of the fact, shown in Chap. 11, that successive first-
differences of the series, ∆yt and ∆yt−1, are negatively correlated when α is
restricted to the interval (0, 1). When α = 0.5, the underlying level displays
a much greater tendency to change. There is still a tendency for successive
observations to move in opposite directions. In the case α = 1.5, there is
an even greater tendency for the underlying level to change. However, the
series is much smoother. This reflects the fact, also established in Chap. 11,
that successive first-differences of the series are positively correlated for cases
where α lies in the interval (1, 2).

3.4.2 Local Trend Model: ETS(A,A,N)

The local level model can be augmented by a growth rate bt to give

yt = �t−1 + bt−1 + εt, (3.13a)
�t = �t−1 + bt−1 + αεt, (3.13b)
bt = bt−1 + βεt, (3.13c)
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Fig. 3.3. Comparison of simulated time series from a local level model. Here σ = 5.

where there are now two smoothing parameters α and β. The growth rate
(or slope) bt may be positive, zero or negative. Model (3.13) has a state space
structure with

xt =
[
�t bt

]′ , w =
[
1 1
]′ , F =

[
1 1
0 1

]
and g =

[
α β
]′ .

The size of the smoothing parameters reflects the impact of the innova-
tions on the level and growth rate. Figure 3.4 shows simulated values from
the model for different settings of the smoothing parameters. When β = 0,
the growth rate is constant over time. If, in addition, α = 0, the level changes
at a constant rate over time. That is, there is no random change in the level
or growth. This case will be called a global trend. The constant growth rate
is sometimes interpreted as a long-term growth rate. For other values of the
smoothing parameters, the growth rate follows a random walk over time. As
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Fig. 3.4. Comparison of simulated time series from a local trend model. Here σ = 5.

the smoothing parameters increase in size, there is a tendency for the series
to become smoother.

For this model, the transformation (3.3) of series values into innovations
becomes

ŷt|t−1 = �t−1 + bt−1,

εt = yt − ŷt|t−1,

�t = �t−1 + bt−1 + αεt,
bt = bt−1 + βεt.

This corresponds to Holt’s linear exponential smoothing (Holt 1957). An
equivalent system of equations is

ŷt|t−1 = �t−1 + bt−1, (3.14a)
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εt = yt − ŷt|t−1, (3.14b)

�t = αyt + (1 − α)(�t−1 + bt−1), (3.14c)
bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (3.14d)

where β∗ = β/α. The term �t − �t−1 is often interpreted as the “actual
growth” as distinct from the predicted growth bt−1.

Equations (3.14c) and (3.14d) may be interpreted as weighted averages if
0 < α < 1 and 0 < β∗ < 1, or equivalently, if 0 < α < 1 and 0 < β < α. These
restrictions are commonly applied in practice. Alternatively, it can be shown
(see Chap. 10) that the model is stable (i.e., the discount matrix D j converges
to 0 as j increases) when α > 0, β > 0 and 2α + β < 4. This provides a much
larger parameter region than is usually allowed.

3.4.3 Local Additive Seasonal Model: ETS(A,A,A)

For time series that exhibit seasonal patterns, the local trend model can be
augmented by seasonal effects, denoted by st. Often the structure of the
seasonal pattern changes over time in response to changes in tastes and tech-
nology. For example, electricity demand used to peak in winter, but in some
locations it now peaks in summer due to the growing prevalence of air con-
ditioning. Thus, the formulae used to represent the seasonal effects should
allow for the possibility of changing seasonal patterns. The ETS(A,A,A)
model is

yt = �t−1 + bt−1 + st−m + εt, (3.15a)
�t = �t−1 + bt−1 + αεt, (3.15b)
bt = bt−1 + βεt, (3.15c)
st = st−m + γεt. (3.15d)

This model corresponds to the first-order state space model where

w′ =
[
1 1 0 · · · 0 1

]
,

xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�t
bt
st

st−1
...

st−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 0 0 · · · 0 1
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and g =

⎡
⎢⎢⎢⎢⎢⎢⎣

α
β
γ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Careful inspection of model (3.15) shows that the level and seasonal terms
are confounded. If an arbitrary quantity δ is added to the seasonal elements
and subtracted from the level, the following equations are obtained

yt = (�t−1 − δ) + bt−1 + (st−m + δ) + εt,
�t − δ = �t−1 − δ + bt−1 + αεt,

bt = bt−1 + βεt,
(st + δ) = (st−m + δ) + γεt,

which is equivalent to (3.15). To avoid this problem, it is desirable to con-
strain the seasonal component so that any sequence {st, st+1, . . . , st+m−1}
sums to zero (or at least has mean zero). The seasonal components are said
to be normalized when this condition is true. Normalization of seasonal fac-
tors involves a subtle modification of the model and will be addressed in
Chap. 8. In the meantime, we can readily impose the constraint that the sea-
sonal factors in the initial state x0 must sum to zero. This means that the
seasonal components start off being normalized, although there is nothing to
constrain them from drifting away from zero over time.

The transformation from series values to prediction errors can be shown
to be

ŷt|t−1 = �t−1 + bt−1 + st−m,

εt = yt − ŷt|t−1,

�t = �t−1 + bt−1 + αεt,
bt = bt−1 + βεt,
st = st−m + γεt.

This corresponds to a commonly used additive version of seasonal expo-
nential smoothing (Winters 1960). An equivalent form of these transition
equations is

ŷt|t−1 = �t−1 + bt−1 + st−m, (3.16a)

εt = yt − ŷt|t−1, (3.16b)

�t = α(yt − st−m) + (1 − α)(�t−1 + bt−1), (3.16c)
bt = β∗(�t − �t−1) + (1 − β∗)bt−1, (3.16d)
st = γ∗(yt − �t) + (1 − γ∗)st−m, (3.16e)

where the series value is deseasonalized in the trend equations and
detrended in the seasonal equation, β∗ = β/α and γ∗ = γ/(1 − α). Equa-
tions (3.16c–e) can be interpreted as weighted averages, in which case the
natural parametric restrictions are that each of α, β∗ and γ lie in the (0, 1)
interval. Equivalently, 0 < α < 1, 0 < β < α and 0 < γ < 1 − α. However, a
consideration of the properties of the discount matrix D leads to a different
parameter region; this will be discussed in Chap. 10.
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3.5 Variations on the Common Models

A number of variations on the basic models of the previous section can be
helpful in some applications.

3.5.1 Damped Level Model

One feature of the models in the framework described in Chap. 2 is that the
mean and variance are local properties. We may define these moments given
the initial conditions, but they do not converge to a stable value as t increases
without limit. In other words, the models are all nonstationary; the F matrix
has at least one unit root in every case. However, it is possible to describe
analogous models that are stationary.

Consider the damped local level model

yt = µ + φ�t−1 + εt,
�t = φ�t−1 + αεt.

The transition matrix is simply F = φ, which has no roots greater than one
provided |φ| < 1. Thus, the model is stationary for |φ| < 1.

The discount matrix is D = φ − α. Thus, the model is stable provided
|φ − α| < 1, or equivalently, φ − 1 < α < φ + 1.

We may eliminate the state variable to arrive at

yt = µ + φt�0 + εt + α[φεt−1 + φ2εt−2 + · · ·+ φt−1ε1].

When |φ| < 1, the mean and variance approach finite limits as t → ∞:

E(yt | �0) = µ + φt�0 → µ,

V(yt | �0) = σ2
[

1 +
α2φ2(1 − φ2t−2)

1 − φ2

]
→ σ2

[
1 +

α2φ2

1 − φ2

]
.

Thus, whenever |φ| < 1, the mean reverts to the stable value µ and the vari-
ance remains finite. When the series has an infinite past, the limiting values
are the unconditional mean and variance. Such stationary series play a major
role in the development of Auto Regressive Integrated Moving Average
(ARIMA) models, as we shall see in Chap. 11.

There are two reasons why our treatment of mean reversion (or station-
arity) is so brief. First, the use of a finite start-up assumption means that
stationarity is not needed in order to define the likelihood function. Sec-
ond, stationary series are relatively uncommon in business and economic
applications. Nevertheless, our estimation procedures (Chap. 5) allow mean
reverting processes to be fitted if required.
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3.5.2 Local Level Model with Drift

A local trend model allows the growth rate to change stochastically over
time. If β = 0, the growth rate is constant and equal to a value that will
be denoted by b. The local level model then reduces to

yt = �t−1 + b + εt,
�t = b + �t−1 + αεt,

where εt ∼ NID(0, σ2). It is called a “local level model with drift” and has a
state space structure with

xt =
[
�t b
]′ , w =

[
1 1
]′ , F =

[
1 1
0 1

]
and g =

[
α 0
]′ .

This model can be applicable to economic time series that display an
upward (or downward) drift. It is sometimes preferred for longer term
forecasting because projections are made with the average growth that has
occurred throughout the sample rather than a local growth rate, which
essentially represents the growth rate that prevails towards the end of the
sample.

The discount matrix for this model is

D =
[

1 − α 1 − α
0 1

]
,

which has eigenvalues of 1 and 1 − α. Thus, the model is not stable as D j

does not converge to 0. It is, however, forecastable, provided 0 < α < 2.
The model is also forecastable when α = 0, as it then reduces to the linear
regression model yt = �0 + bt + εt. Discussion of this type of discount matrix
will occur in Chap. 10.

The local level model with drift is also known as “simple exponential
smoothing with drift.” Hyndman and Billah (2003) showed that this model
is equivalent to the “Theta method” of Assimakopoulos and Nikolopoulos
(2000) with b equal to half the slope of a linear regression of the observed
data against their time of observation.

3.5.3 Damped Trend Model: ETS(A,Ad,N)

Another possibility is to take the local trend model and dampen its growth
rate with a factor φ in the region 0 ≤ φ < 1. The resulting model is

yt = �t−1 + φbt−1 + εt,
�t = �t−1 + φbt−1 + αεt,
bt = φbt−1 + βεt.
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The characteristics of the damped local trend model are compatible with fea-
tures observed in many business and economic time series. It sometimes
yields better forecasts than the local trend model. Note that the local trend
model is a special case where φ = 1.

The ETS(A,Ad,N) model performs remarkably well when forecasting real
data (Fildes 1992).

3.5.4 Seasonal Model Based only on Seasonal Levels

If there is no trend in a time series with a seasonal pattern, the ETS(A,N,A)
model can be simplified to a model that has a different level in each season.
A model for a series with m periods per annum is

yt = �t−m + εt, (3.17a)
�t = �t−m + αεt. (3.17b)

It conforms to a state space model where

w′ =
[
0 0 · · · 1

]
,

xt =

⎡
⎢⎢⎢⎣

�t
�t−1

...
�t−m+1

⎤
⎥⎥⎥⎦ F =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ and g =

⎡
⎢⎢⎣

α
0
...
0

⎤
⎥⎥⎦ .

The weighted average requirement is satisfied if 0 < α < 1. Because there is
no link between the observations other than those m periods apart, we may
consider the m sub-models separately. It follows directly that the model is
stable when all the sub-models are stable, which is true provided 0 < α < 2.

3.5.5 Parsimonious Local Seasonal Model

The problem with the seasonal models (3.15) and (3.17) is that they poten-
tially involve a large number of states, and the initial seed state x0 contains a
set of parameters that need to be estimated. Modeling weekly demand data,
for example, would entail 51 independent seed values for the seasonal recur-
rence relationships. Estimation of the seed values then makes relatively high
demands on computational facilities. Furthermore, the resulting predictions
may not be as robust as those from more parsimonious representations.

To emphasize the possibility of a more parsimonious approach, consider
the case of a product with monthly sales that peak in December for Christ-
mas, but which tend to be the same, on average, in the months of January
to November. There are then essentially two seasonal components, one for
the months of January to November, and a second for December. There is no
need for 12 separate monthly components.
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We require a seasonal model in a form that allows a reduced number
of seasonal components. First, redefine m to denote the number of seasonal
components, as distinct from the number of seasons per year. In the above
example, m = 2 instead of 12. An m-vector zt indicates which seasonal com-
ponent applies in period t. If seasonal component j applies in period t, then
the element ztj = 1 and all other elements equal 0. It is assumed that the typ-
ical seasonal component j has its own level, which in period t is denoted by
�tj. The levels are collected into an m-vector denoted by �t. Then the model is

yt = z′
t�t−1 + bt−1 + εt, (3.18a)

�t = �t−1 + 1bt−1 + (1α + ztγ)εt, (3.18b)
bt = bt−1 + βεt, (3.18c)

where 1 represents an m-vector of ones. The term z′
t�t−1 picks out the level

of the seasonal component relevant to period t. The term 1bt−1 ensures that
each level is adjusted by the same growth rate. It is assumed that the random
change has a common effect and an idiosyncratic effect. The term 1αεt repre-
sents the common effect, and the term ztβεt is the adjustment to the seasonal
component associated with period t.

This model must be coupled with a method that searches systematically
for months that possess common seasonal components. We discuss this prob-
lem in Chap. 14. In the special case where no common components are found
(e.g., m = 12 for monthly data), the above model is then equivalent to the
seasonal model in Sect. 3.4.3. If, in addition, there is no growth, the model is
equivalent to the seasonal level model in Sect. 3.5.4.

Model (3.18) is easily adapted to handle multiple seasonal patterns. For
example, daily demand may be influenced by a trading cycle that repeats
itself every week, in addition to a seasonal pattern that repeats itself annually.
Extensions of this kind are also considered in Chap. 14.

An important point to note is that this seasonal model does not conform
to the general form (3.1), because the g and w vectors are time-dependent. A
more general time-varying model must be used instead.

3.5.6 Composite Models

Two different models can be used as basic building blocks to yield even
larger models. Suppose two basic innovations state space models indexed
by i = 1, 2 are given by

yt = w′
ixi,t−1 + ε it,

xit = Fixi,t−1 + giε it,



3.6 Exercises 51

where ε it ∼ NID(0, vi). A new model can be formed by combining them as
follows:

yt = w′
1x1,t−1 + w′

2x2,t−1 + εt,[
x1t
x2t

]
=
[
F1 0
0 F2

] [
x1,t−1
x2,t−1

]
+
[
g1
g2

]
εt.

For example, the local trend model (3.13) in Sect. 3.4.2 and the seasonal
model (3.17) in Sect. 3.5.4 can be combined using this principle. To avoid con-
flict with respect to the levels, the �t in the seasonal model (3.17) is replaced
by st. The resulting model is the local additive seasonal model (3.15) in
Sect. 3.4.3.

3.6 Exercises

Exercise 3.1. Consider the local level model ETS(A,N,N). Show that the pro-
cess is forecastable and stationary when α = 0 but that neither property holds
when α = 2.

Exercise 3.2. Consider the local level model with drift, defined in Sect. 3.5.2.
Define the detrended variable z1t = yt − bt and the differenced variable z2t =
yt − yt−1. Show that both of these processes are stable provided 0 < α < 2
but that only z2t is stationary.

Exercise 3.3. Consider the local level model ETS(A,N,N). Show that the mean
and variance for yt|�0 are �0 and �0

2(1 + (t − 1)α2) respectively.

Exercise 3.4. For the damped trend model ETS(A,Ad,N), find the discount
matrix D and its eigenvalues.


