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Conventional State Space Models

The primary purpose of this book is to demonstrate that the innovations
form of the state space model provides a simple but flexible approach to
forecasting time series. However, for reasons that are not completely clear,
the innovations form has been largely over-shadowed in the literature by
another version of the state space model that has multiple sources of ran-
domness. We refer to this version as the multi-disturbance or multiple source
of error (MSOE) model. The two approaches are compared and contrasted in
this chapter. When we are comparing the two frameworks directly, both the
finite and infinite start-up assumptions are valid; however, when the two are
compared via their ARIMA reduced forms, the infinite start-up assumption
will be used. The emphasis will be almost exclusively upon linear state space
models, because, as we shall see in Sect. 13.4, the MSOE formulation becomes
difficult to manage in the nonlinear case.

In Chap. 2, we introduced the local level and local trend models, together
with their seasonal extensions. It will be seen that these innovations, or single
source of error (SSOE), models all have their counterparts within a multiple
source of error framework. It is often thought that the MSOE provides a bet-
ter modeling framework than the SSOE because the multiple sources of error
appear to allow greater generality. We will show that any MSOE model has
an innovations representation, so that this viewpoint cannot be correct.

A general definition of the state space framework is presented in
Sect. 13.1. It is seen to encompass both the innovations and the multiple
disturbance forms of the state space model. Several important special cases
of the MSOE are also given. A general approach to estimation is given in
Sect. 13.2. Reduced forms of the MSOE models are examined in Sect. 13.3.
The SSOE and MSOE approaches are then compared in Sect. 13.4.
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13.1 State Space Models

The overall state of a system in period t is represented by a random vector
zt, which incorporates both the observations and the unobservable states.
The elements in zt are arranged so that zt = (yt, xt)′, where yt denotes the
observation at time t, which will be recorded over the periods 1 to n, and xt
is the random vector of k unobservable states.

The evolution of the state of the system is governed by the first-order
recurrence relationship

zt = Azt−1 + ut, (13.1a)
where ut ∼ NID(0, Vu), (13.1b)

A is a fixed matrix and Vu is a positive semi-definite variance matrix. This
general format is particularly useful when we consider parameter estimation
in Sect. 13.2. When expressed in terms of the observable and unobservable
states, (13.1) may be written as

yt = w′xt−1 + εt, (13.2a)
xt = Fxt−1 + ηt, (13.2b)[

εt
ηt

]
∼ NID

([
0
0

]
,
[

Vε Vεη

Vηε Vη

])
, (13.2c)

where w is a fixed vector and F is a fixed matrix. That is, zt =
[

yt
xt

]
, A =[

0 w′
0 F

]
, ut =

[
εt
ηt

]
, and Vu =

[
Vε Vεη

Vηε Vη

]
.

As in earlier chapters, (13.2a) and (13.2b) are called the measurement and
transition equations respectively. Further, we again assume that the observa-
tion yt depends only on the unobserved states xt−1 as they prevailed at the
beginning of period t (at time t − 1).

When ηt = gεt (where g is a fixed vector of persistence parameters), the
state space model becomes

yt = w′xt−1 + εt, (13.3a)
xt = Fxt−1 + gεt, (13.3b)
εt ∼ NID(0, Vε). (13.3c)

Equations (13.3) describe the vector form of the innovations model, which
was introduced in Sect. 2.5.2. Another form of state space model assumes
that Vεη = 0 and that Vη is diagonal. We refer to this model as the multi-
disturbance or MSOE state space model. Both possibilities involve restrictions,
but the second form places independence assumptions on the disturbances.
When there are k states, this formulation includes k + 1 unknown variances
as parameters, just as the innovations model includes k + 1 parameters: a
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single variance and k persistence parameters. These choices represent the
maximum number of parameters that can be built into the models that retain
the estimability (or identifiability) of all parameters.

At first sight the MSOE model appears to be more general than the inno-
vations form because it involves more random disturbances. However, as we
will show in Sect. 13.4, any MSOE model may be represented in innovations
form so that there is only a need for one primary source of randomness for
each observable state. This conclusion, it should be noted, is derived under
the assumption that the disturbances have a Gaussian distribution; it may
not be true for non-Gaussian state space models. Nevertheless, because most
applications rely upon the mean and variance structures of the models, the
practical implication is that little, if anything, will be lost by using the SSOE
approach. Furthermore, as we will see later in this chapter, the innovations
model approach provides several benefits.

In earlier chapters, we have examined the use of the innovations form
of the state space framework to model evolving common features such as
trends and seasonal patterns. Particularly important cases included the local
level, local trend and damped trend, and their seasonal extensions. It will
now be shown that each case has a multi-disturbance analogue.

The multi-disturbance versions form what has been called a structural
approach to time series (Harvey 1989), one that has been widely used in
economic studies. The following table shows corresponding standard struc-
tural models from the two approaches. We note that although the common
symbols �, b and ε are used to represent the level, slope and innovation
respectively, their values and meaning differ between the two frameworks.
The multiple disturbance versions presented here differ slightly from those
of Harvey (1989); a point we explore in the next subsection.

Model Conventional models Innovations models

Level yt = �t−1 + εt yt = �t−1 + εt
�t = �t−1 + ηt �t = �t−1 + αεt

Trend yt = �t−1 + bt−1 + εt yt = �t−1 + bt−1 + εt
�t = �t−1 + bt−1 + ηt �t = �t−1 + bt−1 + αεt
bt = bt−1 + ξt bt = bt−1 + βεt

Seasonal yt = �t−1 + bt−1 + st−m + εt yt = �t−1 + bt−1 + st−m + εt
�t = �t−1 + bt−1 + ηt �t = �t−1 + bt−1 + αεt
bt = bt−1 + ξt bt = bt−1 + βεt
st = st−m + ωt st = st−m + γεt

13.1.1 Canonical Forms

The MSOE scheme assumes that the various error processes are inde-
pendent. Thus, in (13.2) we would set Vεη = 0. However, most MSOE
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formulations (e.g., Harvey 1989; West and Harrison 1997) specify the mea-
surement equation as

yt = w′xt + ε∗t . (13.4)

If we substitute the transition equation (13.2b) into this expression we
arrive at

yt = w′Fxt−1 + w′ηt + ε∗t ,

so that the errors in the measurement and transition equations are now corre-
lated. In order to make the independence assumption operational, we must
choose a specific model, termed the canonical model by West and Harrison
(1997, Chap. 5). Further, we must recognize that any transformation of the
state variables may result in previously uncorrelated errors becoming corre-
lated. The innovations approach provides a simple way out of this dilemma.
Because the errors are perfectly correlated, any linear transformation leaves
them perfectly correlated. The details are provided in Exercise 13.2. It may
be shown that the different forms of the model have no effect on predictions,
but the choices mean that individual components such as the local level may
have different values; see Exercise 13.3.

13.1.2 Other State Space Models

A number of other formulations have appeared in the literature over the
years. Akaike (1974) proposed an innovations model that maps directly into
an ARMA(k, k− 1) scheme. The details are given in Exercise 13.1. Aoki (1987)
also presents an innovations form, but we do not pursue these alternatives
further in this book.

13.2 Estimation

The unknown parameters of both innovations and multi-disturbance state
space models must be estimated. Because they both conform to the struc-
ture described in (13.1), a theory of estimation encompassing both cases is
developed in terms of the more general framework. The seed state vector z0
is assumed to be random rather than fixed. Two points need to be made at
this stage. The first is that virtually all the current literature on the multi-
disturbance model relies upon the Kalman filter to develop the estimates.
The second is that this reliance is not necessary as the information filter that is
described in Sect. 12.3 is applicable in both frameworks. We proceed by first
providing a general framework and then adapting the Kalman filter from
Sect. 12.7 to its familiar MSOE form.

Using arguments similar to those in Chap. 12, it may be argued that
the likelihood function can be rewritten in a prediction error form. For the
moment, the focus is restricted to the case where all the states, both observ-
able and unobservable, are stationary. The observations are represented by
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the n-vector y. The unknown parameters are collected together into a vec-
tor θ. The prediction error decomposition of the likelihood function is (see
Schweppe 1965)

L(θ | y) =
n

∏
t=1

(vt|t−1)
−1/2 exp

(
− 1

2

(
yt−µt|t−1

)2
/

vt|t−1

)
,

where µt|t−1 and vt|t−1 are the mean and variance of the one-step-ahead pre-
diction distribution. We use θ to denote the variances of the different error
terms in the general model (13.1). The aim is to maximize the likelihood with
respect to θ. To implement the maximum likelihood approach, we need a
mechanism to generate the updated values µt|t−1 and vt|t−1.

13.2.1 Kalman Filter

The Kalman filter was considered in Sect. 12.7 for the innovations state space
model. The version presented here is based on the more general model (13.1)
and so encompasses both the innovations model and the MSOE model as
special cases. The argument follows along the same lines as that in Sect. 12.7.
We let y1:s = y1, . . . , ys and define

µt|s = E(yt | y1:s),

vt|s = V(yt | y1:s),

mt|s = E(x | y1:s),

Vt|s = V(x | y1:s),

ζt|t−1 = Cov(xt, yt | y1:t−1),

mz
t|s = E(z | y1:s),

and V z
t|s = V(z | y1:s) =

[
vt|s ζ ′

t|s
ζt|s Vt|s

]
.

Then, using the notation of (13.1), the Kalman filter is given in part by the
equations

zt|t−1 = Azt−1|t−1 + ut, (13.5a)

mz
t|t−1 = Amz

t−1|t−1, (13.5b)

V z
t|t−1 = AV z

t−1|t−1A
′ + Vu. (13.5c)

It is assumed that the distribution of zt−1|t−1 is available from the preced-
ing iteration of the filter after processing t − 1 observations. The exception is
period t = 1 where z0|0 is described by the steady state distribution. Equa-
tions (13.5) are obtained from the general model (13.1). These equations form
the prediction step, whose application yields the quantities µt|t−1 and vt|t−1
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from the top part of (13.5). The remaining part of the Kalman filter is the revi-
sion step. By an argument similar to that employed in Sect. 12.7.2, we arrive
at the relationships:

mt|t = mt|t−1 + kt(yt − µt|t−1)

and Vt|t = Vt|t−1 − vt|t−1ktk
′
t,

where kt = ζt|t−1/vt|t−1.

These expressions provide all the information needed to evaluate the likeli-
hood function for given values of the parameters.

As soon as the assumption of stationarity is dropped, the variances of
nonstationary components are infinite and the Kalman filter formulae have
no proper limiting form (Ansley and Kohn 1985). Moreover, the likelihood,
as defined for stationary time series, is 0 everywhere. The traditional escape
from this dilemma is to condition on the first p values of the time series,
where p is the number of free nonstationary unobservable components. The
density upon which the likelihood is based is then given by

p(yp+1, yp+2, . . . , yn|θ, y1, y2, . . . , yp) =
n

∏
t=p+1

(vt|t−1)
−1/2 exp

(
− 1

2

(
yt − µt|t−1

)2
/

vt|t−1

)
.

One approach (Harvey 1989) is based on the assumption that all the
unobserved states are nonstationary, so that p = k. A set of simultaneous
equations is formed by stacking the model equations for the first k periods.
The number of unknown unobservable state variables then exactly matches
the number of equations and may normally be solved for the unobserved
components including the moments of xp|p. The Kalman filter is then seeded
with the distribution of xp|p in period p + 1 and used to generate the predic-
tions and associated variance matrices for periods p + 1, p + 2, . . . , n needed
to evaluate the likelihood function. This approach works in most circum-
stances, but must be adapted to handle potential complexities such as linear
dependencies in the equations, missing values or partially known starting
conditions when there is a mix of stationary and nonstationary unobserved
state variables. A modern recursive version that allows for these potential
complications may be found in de Jong (1991a, b). His algorithm is referred
to as an augmented Kalman filter.

13.2.2 Convergence of Estimates

As the length of the series t increases, the variance matrix for xt|t, defined as
Vt|t (see (12.18) for this expression in the innovations case) converges to a lim-
iting value, say V0; for a proof, see Anderson and Moore (1979) and Harrison
(1997). Harrison’s proof applies to the MSOE scheme and does not require
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an assumption of Gaussian errors. His approach can be extended using the
general form of the Kalman filter outlined in Sect. 12.7. For the MSOE model,
this matrix is non-null, but for the innovations model, the limiting value is
0 as shown by Leeds (2000, pp. 78–79). This latter proof is a correction to
errors in both the original proof by Caines and Mayne (1970) and a revised
proof by the same authors (1971). Thus, it has been shown that, as t increases,
the estimates of the state variables in the innovations model will converge in
probability to the true values of the unobserved state variables at time t.

Many computer implementations ignore the distinction between states
and their estimates. This result suggests that, in sufficiently long series, this
practice is justifiable in the innovations framework.

13.3 Reduced Forms

13.3.1 Multi-Disturbance Models

Unobserved components are very useful in the sense that they enable us to
specify plausible candidate state space models for the patterns that one may
observe in a time series. However, from a strict mathematical perspective,
their role is largely redundant. If a time series is stationary, its behavior is
essentially determined by its autocorrelation function (ACF). Two state space
models may appear to have a different structure because they are based on
different states. However, if they yield the same mean, variance and ACF,
they are equivalent from a forecasting perspective. Matters are more com-
plicated for nonstationary time series because the unconditional mean and
variances are not defined. An appropriate level of differencing may yield a
stationary series. In this case, if the same transformations are applied to two
models to induce stationarity, and both transformed models have the same
mean, variance and ACF, they have the same properties. In the terminology
of Chap. 10, the two models have the same minimal state representation.

The Wold representation theorem states that any linear stationary time
series can be expressed as a moving average process and that this represen-
tation is unique. These moving average representations may involve infinite
series and a more parsimonious structure is often achieved by converting to
autoregressive moving average (ARMA) processes (Box et al. 1994).

The ARIMA representation is the reduced form corresponding to the
minimal dimension representation of the state space model.

Common multi-disturbance state space models and their reduced forms
are shown in Table 13.1. The right hand sides of the reduced forms are multi-
disturbance moving average processes. However, the Granger–Newbold
theorem (Granger and Newbold 1986) asserts that

(a) The sum of uncorrelated moving average processes is itself a moving
average process

(b) The covariance function of the sum is the sum of the component covari-
ance functions
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Table 13.1. Reduced forms of multi-disturbance state space models.

Multi-disturbance model Reduced form

Level
yt = �t−1 + εt ∆yt = ∆εt + ηt−1
�t = �t−1 + ηt

Trend
yt = �t−1 + bt−1 + εt ∆2yt = ζt−1 + ∆ηt−1 + ∆2εt
�t = �t−1 + bt−1 + ηt
bt = bt−1 + ζt

Seasonal
yt = �t−1 + bt−1 + st−m + εt ∆2∆myt = ∆mζt−1 + ∆∆mηt−1 + ∆2ωt−m
�t = �t−1 + bt−1 + ηt + ∆2∆mεt
bt = bt−1 + ζt
st = st−m + ωt

In other words, any multiple disturbance moving average process has
an equivalent traditional innovations moving average representation. The
reduced forms, in terms of the multiple error terms, are shown in Table 13.1.
Note that in the table, the difference operators are defined as ∆xt = xt − xt−1
and ∆mxt = xt − xt−m. The reduced forms for the innovations models follow
immediately when we replace the error terms from the transition equations
by the appropriate linear functions of the single source of error.

The reduced forms may be obtained as an equation solving exercise.
In any period, the model consists of k + 1 equations. Stacking the model
k + 1 equations over the k periods (t − 1), . . . , (t − k) gives k(k + 1) equa-
tions involving the k + 1 state vectors xt−1, . . . , xt−k−1; these equations also
involve yt−1, . . . , yt−k−1 and the disturbances. Because each state vector con-
tains k elements, the number of state variables exactly matches the number
of equations. Ignoring the possibility of linear dependence for the moment,
the stacked equations can be solved for the state variables in terms of the
lagged y values and the disturbances. The solution for xt−1 found in this
manner can be substituted into the measurement equation to yield an expres-
sion that no longer depends on the state variables. It is the required reduced
form.

In deriving the reduced form, ultimately only the solution for xt−1 is
required. It is possible to adapt the above procedure to avoid finding the
solutions for xt−2, . . . , xt−k−1. The procedure can be understood by plac-
ing the stacked equations in tableau form; the tableau is then supplemented
by the equation for yt, which is placed in the final row. We then apply
Gaussian elimination to eliminate the state variables from the measure-
ment equation. The approach is illustrated in Example 13.1 for a local level
model (k = 1).



13.3 Reduced Forms 217

Example 13.1: Local level model

The relevant equations for the local level may be stacked in detached form
as follows:

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 0 1 0 1 0 0

The aim is to eliminate all the state variables from the final row. The process
begins by eliminating the state �t−1 by adding the first row to the final row
to give

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 0 0 1 1 0 1

Now �t−2 appears in the final row. It is eliminated by subtracting the second
row to give:

yt yt−1 �t−1 �t−2 εt εt−1 ηt−1

0 0 −1 1 0 0 1
0 1 0 1 0 1 0

1 −1 0 0 1 −1 1

The reduced form is shown in the final row of the third tableau. It was
obtained without explicitly solving for the local levels.

It may be observed that only the bottom row was changed by the transfor-
mation process in this example. This is not true in general. The rows before
the final row may not always have a triangular structure in the columns cor-
responding to the state variables. Then below-diagonal elements must be
eliminated using conventional pivoting operations associated with Gaussian
elimination. It is also sensible to undertake simple pivots to ensure that all
diagonal elements equal one. Only then should the elements in the final row
of the tableau corresponding to state variables be eliminated, as illustrated
in the example, to yield the reduced form.

The tableaux associated with this method explode in size when models
with more states are considered, and so the derivation of the reduced form is
more difficult to illustrate in the available space. Nevertheless, the method is
readily coded and is quite tractable when implemented on a computer.
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When a zero pivot is encountered, the elements in the pivot column below
the pivot are searched for a non-zero value. The row containing this non-zero
value is swapped with the pivot row so that resulting new pivot element in
the new pivot row is non-zero. Then the reduction algorithm continues as
normal.

When no non-zero element lies below a zero pivot element, the required
row swap is not possible. In this case, there is not a unique solution for some
of the state vectors in terms of the observations, and so the states are not
identifiable. This occurs when the model is not of minimal dimension (see
Chap. 10).

Identifiability of the state variables is not always necessary in order to
derive a unique reduced form. In the ETS(A,A,A) model, the level and sea-
sonal indexes are not identified, yet the reduced form is unique because
the linear combination of the state vectors in the measurement equation is
unique. The above reduction method can be adapted to handle such cases.
As shown in Chap. 10, the solution typically involves the elimination of com-
mon factors from the two sides of the reduced model to achieve a canonical
form.

In general, the reduced form may be written as

yt =
k

∑
i=1

φiyt−i −
k

∑
j=1

θjεt−j + εt, (13.6)

where εt is formed from all the disturbances associated with period t via
the Granger–Newbold theorem. The autoregressive elements may involve
unit roots, which can be separated out as in Chap. 10. As is evident from
Table 13.1, the moving average component can be expressed as the sum of
uncorrelated moving average components:

yt =
k

∑
i=1

φiyt−i +
k

∑
j=0

ξ′jηt−j, (13.7)

where ηt represents the independent errors in the state equations, as in
(13.2b) with coefficients ξj. The individual moving average components have
autocovariance functions that can be combined to provide the autocovari-
ance function for εt.

13.3.2 Innovations Models

The triangularization method described in the previous section for finding
the reduced form of a multi-disturbance state space model is readily adapted
to the innovations state space model. The independence assumption of the
disturbances is nowhere used in the algorithm, and so it applies in exactly the
same way when the disturbances are correlated. In the particular case where
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the disturbances are perfectly correlated, the reduced form of an innovations
model can be obtained from the reduced form of a multi-disturbance model
using the substitution ηt = gεt. For example, in the case of a local trend
model, the substitutions ηt = αεt and ξt = βεt yield the innovations reduced
form ∆yt = −θ2εt−2 − θ1εt−1 + εt where θ1 = 2 − α − β and θ2 = α − 1.

13.4 Comparison of State Space Models

Multi-disturbance state space models encompass two special cases: the
MSOE model where the disturbances are uncorrelated and the innovations
form where they are perfectly correlated. It is often thought that the first
assumption is less restrictive than the second; the argument is that the MSOE
model has many sources of randomness, and should therefore be more
flexible than the innovations form.

Paradoxically, the opposite is true. Anderson and Moore (1979) appear to
be the first to have asserted, for discrete time contexts at least, that any multi-
disturbance linear state space model has an equivalent innovations form.
Their claim was remarkably general: it encompassed non-invariant as well
as invariant state space models. They provided strong evidence that this has
to be true by recognizing that the Kalman filter for any multi-disturbance
state space model is always expressed in terms of the one-step-ahead predic-
tion error, and that this implies the existence of an innovations model with
the same gains. Their proof is opaque and possibly incomplete, so we do not
pursue it further.

Hannan and Deistler (1988) proved the conjecture for stationary time
series. They relied on transfer functions (i.e., polynomial functions of the lag
operator) for their proof. They did not cover nonstationary time series. How-
ever, for those nonstationary time series that can be differenced to create a
stationary time series, the same basic theory may be applied.

The general result can be stated as follows and the proof is derived by
identifying various results presented earlier in the book.

Theorem 13.1. The following statements hold for linear time series with invariant
coefficients and Gaussian disturbances:

A. Any MSOE model may be represented as an ARIMA model
B. Any innovations model may be represented as an ARIMA model
C. Any ARIMA model may be represented as an innovations model
D. Not all ARIMA models are representable by an MSOE model

Proof. This proof is somewhat informal and proceeds by drawing together
results presented earlier in the book:

A. This property was discussed in Chap. 11 and in Sect. 13.3. The property
holds provided that (13.7) corresponds to a minimal state space model.
That is, the AR component φ(L) = 0 has roots on or outside the unit
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circle, the MA component is invertible and any common factors in the
two polynomials have been eliminated.

B. This property was demonstrated in Sect. 11.3. The same requirements on
the polynomials apply.

C. This property was demonstrated in Sect. 11.5, but we should recall that
the innovations model will correspond specifically to an exponential
smoothing form only when the polynomial θ(L) = 0 has real roots.

D. This negative statement can be demonstrated by means of counter-
examples. Two models are equivalent in this framework if their (dif-
ferenced) reduced forms have the same autocorrelation function (ACF).
We define the autocorrelations by ρj = γj/γ0, where j = 1, 2, . . . and
γj = Cov(yt, yt−j).

The ACF of the MSOE reduced form depends on the system vari-
ances; for the innovations model it is determined by the persistence
parameters.

The ACFs for the local level and local trend models are given in
Table 13.2; all autocovariances not listed in the table are zero. Examina-
tion of the expressions in the table reveals that for the local level model
−0.5 < ρ1 ≤ 0 for MSOE with the limiting value corresponding to σ2

η = 0.
The ARIMA scheme has −0.5 < ρ1 < 0.5, with the limits corresponding
to |θ1| = 1. Thus, an ARIMA(0,1,1) model with θ1 < 0 does not have an
MSOE counterpart.

Likewise, for the local trend model, we have −0.667 < ρ1 ≤ 0 for the
MSOE, but −0.707 < ρ1 < 0.707 for the ARIMA scheme, so that some
ARIMA(0,2,2) models do not possess an MSOE form. The derivation is
left as an exercise.

A counter-claim to these examples could be that the parameter spaces
may be extended by allowing correlation among the disturbances. We
explore this conjecture below. ��
We may use the entries in Table 13.2 to explore the relationships between

the MSOE and innovations models. The general point may be illustrated
using the local level model. The first-order autocorrelation is always negative
for the MSOE version. It may be either positive or negative in the innovations
model. When the autocorrelation is negative, it is always possible to find a

Table 13.2. Reduced forms of common state space models.

Model Multiple error Innovations

Local γ0 = σ2
η + 2σ2

ε γ0 = [(α − 1)2 + 1]σ2
ε

Level γ1 = −σ2
ε γ1 = (α − 1)σ2

ε

Local γ0 = (σ2
ξ + 2σ2

η + 6σ2
ε ) γ0 =

[
(α + β − 2)2 + (1 − α)2 + 1

]
σ2

ε

Trend γ1 = −(σ2
η + 4σ2

ε ) γ1 = −(2 − α − β)(2 − α)σ2
ε

γ2 = σ2
ε γ2 = (1 − α)σ2

ε
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corresponding value for α by equating the two expressions and solving the
quadratic in α to obtain

α = − q
2

+

√(
1 +

q
2

)2 − 1, (13.8)

where q is the so-called signal-to-noise ratio defined by q = σ2
η/σ2

ε .
This analysis serves to illustrate a further point, relating to the relative

ease of use of the MSOE and innovations models. As we saw in Sect. 11.3,
the relationships between the parameters in the ARIMA and innovations
models are linear. Those between the MSOE model and the other two are
quadratic, making it more difficult to establish relationships between the sets
of parameters.

13.4.1 Size of the Parameter Space

In order to explore the size of the parameter space under different assump-
tions about the correlations among the error terms in the measurement and
transition equations, we revert to a consideration of the general form given in
(13.2). The general argument is due to Leeds (2000, pp. 50–56), and the details
are given in the Appendix. The argument given there shows that when there
are J transition equations, we must consider 2J possible solutions, and only
one of these solutions will satisfy the forecastability conditions. To be spe-
cific, we demonstrate the argument for the local trend model, although it
applies quite generally.

We first put the problem into an appropriate framework that enables
us to apply the linear fractional programming approach described in the
Appendix. The notation we now use is specific to this subsection and purely
for convenience in the present discussion. The local trend model has three
error terms in the general case, and we may write the variance matrix for
(εt, ηt, ξt) as ⎡

⎣ v2
0 ρ1v0v1 ρ2v0v2

ρ1v0v1 v2
1 ρ3v1v2

ρ2v0v2 ρ3v1v2 v2
2

⎤
⎦ .

Extending the result in Table 13.2, the general form of the lag one autocorre-
lation for the twice-differenced series is

−(4v2
0 + 4ρ1v0v1 + 2ρ2v0v2 + v2

1 + ρ3v1v2)
(6v2

0 + 6ρ1v0v1 + 2ρ2v0v2 + 2v2
1 + 2ρ3v1v2 + v2

2)
.

A comparable expression may be obtained for the autocorrelation at lag two;
see Exercise 13.4. All higher-order autocorrelations are zero. We may deter-
mine the maximum size of the parameter space by finding the smallest and
largest possible values for each autocorrelation, provided the extremes are
achieved for the same choices of the correlations.
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If we fix the value of v = (v0, v1, v2)′, the numerator and denominator
of the autocorrelation are linear in the correlations, and we may maximize
(minimize) the value of the expression using linear fractional programming.
The details are given in the Appendix. We find that the same extreme solu-
tions apply whatever the value of v, and so we conclude that the size of
the parameter space is maximized when the errors are perfectly correlated.
However, an innovations model with J transition equations still has 2J pos-
sible solutions, and we now proceed to select a unique solution from this
set.

The local trend model has J = 2, and the transition equations have the
error terms (g1εt, g2εt). From Table 13.1 we may write the right hand side of
the reduced form equation for the local trend model as

εt − (2 − g1 − g2)εt−1 − (g1 − 1)εt−2 ≡ (1 − θ1L − θ2L2)εt.

The forecastability conditions may be written as:

|θ2| < 1, 1 − θ1 − θ2 > 0, 1 + θ1 − θ2 > 0.

These conditions reduce to the requirements that (g1 > 0, g2 > 0), which
establishes the uniqueness of the solution. The reader is asked to verify these
conditions in Exercise 13.5.

13.4.2 Seasonal Models

In order to compare the seasonal models we make use of the autocovariance
generating function (ACGF) for the differenced series. Consider an ARIMA
model written in moving average form with the error variance equal to 1
(without loss of generality) and the auxiliary polynomial

θ(z) = 1 − θ1z − θ2z2 − · · · − θqzq − · · · . (13.9)

The ACGF is then defined as:

C(z) = θ(z)θ(z−1). (13.10)

The coefficient of zj is the autocovariance at lag j. Thus γ0 = 1 + θ2
1 + θ2

2 + · · · ,
γ1 = −θ1 + θ1θ2 + · · · , and so on. The general forms for the seasonal models
are cumbersome, and it is convenient to summarize them in somewhat dif-
ferent ways. Thus, for the innovations model, using the canonical reduced
form given in Example 11.6, (13.9) becomes

θ(z) = 1 − (1 − α − β)z + β(z2 + · · ·+ zm−1) − (1 − β − γ)zm

+ (1 − α − γ)zm+1.

For the MSOE model, it is easier to specify the autocovariances directly.
Again using the canonical reduced form, we arrive at the expressions:
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γ0 = (mσ2
ξ + 2σ2

η + 2σ2
ω + 6σ2

ε ),

γ1 = (m − 1)σ2
ξ − (σ2

ω + 2σ2
ε ),

γj = (m − j)σ2
ξ , j = 1, 2, . . . , m − 2,

γm−1 = σ2
ξ + σ2

ε ,

γm = −(σ2
η + 2σ2

ε ),

γm+1 = σ2
ε .

For these two seasonal models, any attempt to equate autocovariances of the
same order leads to more equations than unknowns. No solution exists that
matches the autocovariances, other than the degenerate form with σ2

ω = 0.
Thus, the two models are not equivalent. Interestingly, McKenzie (1976)
derived an ARIMA representation of this additive Holt-Winters scheme.
Careful reading of his paper reveals that he used an innovations form of
the state space model to obtain the result. The covariance expressions just
derived do not allow a simple mapping from the state space parameters to
the ARIMA coefficients. More generally, because the autocovariances are typ-
ically quadratic in the moving average parameters, it is only in special cases
that explicit solutions are available for the mapping from the MSOE model
to its ARIMA reduced form. There can be multiple solutions to such equa-
tions, but the requirement of invertibility ensures that there is at most one
acceptable solution.

13.4.3 Nonlinear Models

We saw in Chap. 4 that it was possible to specify nonlinear and heteroscedas-
tic schemes using the innovations form, and that the resulting (albeit
approximate) Gaussian likelihood was readily obtained, as seen in Chap. 5.
Comparable models may be specified in the MSOE framework, but compu-
tational difficulties immediately arise. The probability density function now
involves terms for each of the unobserved errors and there is no simple way
to integrate these out to obtain the likelihood for the unknown parameters.
We could make use of Markov Chain Monte Carlo (MCMC) methods, but
Gaussian likelihood remains an approximation and adding an extra layer of
simulations adds to the computational burden.

13.5 Smoothing and Filtering

Harvey and Koopman (2000) showed that the MSOE scheme leads to optimal
symmetric two-sided smoothers. These were defined for an infinite series,
although applications will clearly involve truncation after a finite number
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of terms. This smoother corresponds to the Wiener-Kolmogorov (WK) fil-
ter. They also noted that when the components are correlated, as in the
innovations formulation, the resulting signal extraction filter is asymmet-
ric. Indeed, the perfect correlation among the components of the innovations
model led to our observation in Sect. 12.6 that the two-sided filter does not
improve the estimates of the state variables asymptotically. However, the
WK filter remains available, once we recognize that its role is to smooth the
series, not to estimate the state variables as such. Because any innovations
model may be expressed in ARIMA form, an appropriate WK filter may be
developed within that framework.

The following example illustrates how an appropriate WK smoother can
be constructed.

Example 13.2: Local level model

Consider the local level model, written as the reduced ARIMA(0,1,1):

(1 − L)yt = [1 − (1 − α)L]εt.

The (doubly infinite) WK filter is given by:

�S,t =
α2yt

[1 − (1 − α)L][1 − (1 − α)L−1]
=

α

2 − α

∞

∑
j=−∞

(1 − α)|j|yt−j.

This smoother also corresponds to the two-sided Beveridge–Nelson (BN)
filter given by Proietti and Harvey (2000), although it should be noted that
the filter is admissible only for 0 < α < 1. The WK and BN filters often do
not have the same form.

As pointed out by Gijbels et al. (1999), when exponential smoothing is
interpreted as a kernel estimate, simple exponential smoothing is the natural
forecast and the filter given above is the natural smoother.

The approach just described provides a smoothed estimator for the mean
of the process, and we now turn to consider the individual components.
Key elements in the analysis of economic time series are the creation of the
deseasonalized series and the creation of a smoothed trend. Bell (1984) and
Burridge and Wallis (1988) extended the WK filter to nonstationary series to
enable the extraction of unobserved components.

One way to develop a WK filter for the components of an innova-
tions process is to generate the corresponding ARIMA model and then
apply a canonical decomposition, such as that developed by Hillmer and
Tiao (1982). However, if we recall from Sect. 13.2.2 that the estimates of
the state variables converge to their true values, a much simpler approach
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is possible. We may construct the seasonally adjusted or detrended series
directly, and then smooth the remaining components. This is illustrated in
the next example.

Example 13.3: Seasonal levels model

Consider the following innovations model, which should also include the
appropriate normalization as described in Chap. 8:

yt = �t−1 + st−m + εt,
�t = �t−1 + αεt,
st = st−m + γεt.

We may generate the approximately detrended series as:

z1t = yt − �t|n ≈ st−m + εt.

It follows from Example 13.2 that the smoothed seasonal components may
be computed as:

sS,t ≈ γ2z1t

[1 − (1 − γ)Lm][1 − (1 − γ)L−m]
=

γ

2 − γ

∞

∑
j=−∞

(1 − γ)|j|z1,t−jm.

In turn, the seasonal components lead to the deseasonalized series:

z2t = yt − st ≈ �t + εt.

The smoothed trend is then given by:

�S,t ≈ α2z2t

[1 − (1 − α)L][1 − (1 − α)L−1]
=

α

2 − α

∞

∑
j=−∞

(1 − α)|j|z1,t−j.

We may iterate between the seasonal and trend components until conver-
gence is obtained, although the differences may be expected to be small
provided the series is of reasonable length.

In summary, we observe that while the primary motivation for using the
innovations approach is that it is more directly beneficial for forecasting (the
focus of this text), smoothing and filtering operations may also be performed
within the innovations framework.
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13.6 Exercises

Exercise 13.1. Consider a state space model in the general form of (13.3) with

w′ = (1, 0, . . . , 0), g′ = (1, ψ1, . . . , ψk−1) and F =

⎡
⎢⎢⎢⎣

0 0 0 . . . 0
0 1 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
φk φk−1 . . . . . . φ1

⎤
⎥⎥⎥⎦ .

The state vector is defined as xt = (yt, yt+1|t, . . . , yt+k−1|t) and εt is deleted
from the measurement equation. Show that this model reduces to an
ARMA(k, k − 1) model.

Exercise 13.2. Consider the innovations model with measurement equation
(13.4) used in place of (13.1). Show that the form of the model given by (13.2)
still applies, with revised coefficients w1 = F ′w and g1 = g

1+w′g .

Exercise 13.3. Show that the reduced forms of the two MSOE schemes given
in Sect. 13.1.1 result in the same ARIMA reduced forms.

Exercise 13.4. Show that the general form of the lag 2 autocovariance for the
local trend model (in the notation of Sect. 13.4.1) is

v2
0 + ρ1v0v1 + ρ2v0v2.

Hence show that the first and second order autocorrelations have the same
set of conditions for extreme values.

Exercise 13.5. Show that the conditions for forecastability discussed in
Sect. 13.4.1 lead to a unique local trend model with a maximal parameter
space.
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Appendix: Maximizing the Size of the Parameter Space

In a seminal paper on Linear-Fractional Programming (LFP), Charnes and
Cooper (1962) showed that the LFP optimization problem

max
u

∑j Ajuj

∑j Bjuj
, subject to 0 ≤ uj ≤ cj for all j,

may be reformulated as a linear program of the form:

max
u ∑

j
Ajuj subject to ∑

j
Bjuj = c and 0 ≤ uj ≤ cj for all j.

In our application, the denominator is always a strictly positive variance
term and the {uj} represent either the positive or negative parts of corre-
lation coefficients, so that cj = 1 for all j.

When there are J transition equations and one measurement equation,
the joint error distribution involves K = J(J + 1)/2 correlation coefficients.
The LFP optimization is subject to 2K constraints and K non-negativity con-
straints on the correlations plus one equality constraint. By inspection, we
can see that K − 1 of the correlations must each take on one of the three val-
ues (−1, 0, +1); the remaining correlation is then determined by the equality
constraint. We now proceed to incorporate additional features of the partic-
ular problem to arrive at a unique solution:

• A simple reparameterization of the problem (replacing each correlation ρ
by ρ∗ = ρ + 1) serves to demonstrate that the zero values are internal solu-
tions and can be ignored.

• We now have that K − 1 of the correlations are ±1; it follows that the
remaining correlation must be ±1.

• We can now return to the state space formulation, because the correlations
are generated by the J + 1 terms (εt, g1εt, g2εt, . . . , gJεt). The J coefficients
gj give rise to the 2J possible solutions after setting the coefficient in the
measurement equation equal to +1, without loss of generality.

• Finally, we may demonstrate that the only solution to satisfy the forecasta-
bility conditions is that with all gj > 0. The argument for the local trend
model is illustrated in Sect. 13.4.1.

In principle, other formulations may provide parameter spaces of equal
size for specific cases, but there is no loss in restricting attention to the
innovations models.


