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Abstract. This paper examines the formulation and solution of the discrete 
version of the stochastic Network Design Problem (NDP) with incorporated 
network travel time reliability requirements. The NDP is considered as a two-
stage Stackelberg game with complete information and is formulated as a 
combinatorial stochastic bi-level programming problem. The current approach 
introduces the element of risk in the metrics of the design process through 
representing the stochastic nature of various system components related to 
users’ attributes and network characteristics. The estimation procedure 
combines the use of mathematical simulation for the risk assessment with 
evolutionary optimization techniques (Genetic Algorithms), as they can suitably 
address complex non-convex problems, such as the present one. The 
implementation over a test network signifies the potential benefits of the 
proposed methodology, in terms of intrinsically incorporating stochasticity and 
reliability requirements to enhance the design process of urban road networks. 
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1   Introduction 

The role of the design of transportation networks has been recognized as a crucial 
element to foster the mobility of people and goods in growing metropolitan areas. The 
conflicting goals of saving scarce resources, such as land and public funds, allocated 
to road infrastructure and accommodating the increased demand for passenger and 
freight transportation prompt the need for deploying compromise and efficient design 
solutions. In addition to the supply of adequate capacity, the volatile traffic conditions 
caused by recurrent congestion phenomena and incidents amplify the complexity of 
the design problem, since they raise risk concerns with regard to the reliability of the 
provided transportation services. Further risk concerns also emerge from the need for 
making urban transportation networks capable to provide sufficient lifelines during 
unexpected, emergency situations, due to man-made or physical disasters. 

The question of determining the optimum network design, typically referred to as 
the Network Design Problem (NDP), can be traditionally addressed through two 
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different mathematical forms (for general reviews, see [1], [2]). The first form refers 
to the Continuous-NDP (C-NDP), where the capacity of the system is treated as a 
continuous variable and can be expressed in terms of vehicles, passengers and unit 
loads. The second form refers to the Discrete-NDP (D-NDP), which is formulated in 
terms of discrete (integer or binary) variables, such as the number of new links, in the 
case of network expansion, or the number of lane additions, in the case of network 
enhancement etc. Despite that current research on the NDP is particularly active, the 
majority of existing studies deals with the continuous form, which can be regarded as 
a relaxation of the discrete one. Moreover, although several reliability considerations 
have been incorporated into the structure of the C-NDP (see [3], [4], [5]), no such 
attempt has been made for the case of the D-NDP. 

The present study addresses the reliable D-NDP, i.e. the D-NDP with reliability 
requirements. The solution of such a problem is infrastructure related, since it 
corresponds to the number of added lanes and new links, which may have a greater 
bearing to designing the required civil works, in comparison to the solution of the 
corresponding C-NDP. The total travel time reliability is considered here as a network 
quality performance indicator, since it reflects the ability of the network to respond to 
different states of the system. The study provides a formulation and a solution 
algorithm for the reliable D-NDP, whose application is illustrated for a simplified 
network with typical urban road settings. Section 2 presents the formulation of the 
reliable D-NDP. Section 3 analyzes the components of the network reliability and 
describes a simulation method for performing the risk assessment. Section 4 presents 
an evolutionary algorithm for the efficient solution of the complex D-NDP. Section 5 
includes the results obtained from the application of the method into the test network 
and Section 6 concludes. 

2   Formulation of the Reliable D-NDP 

Similar to many other transportation planning problems, the network design process is 
essentially affected by decisions made on multiple hierarchical levels, concerning 
both the demand and supply properties of the system [6]. The design process of 
transportation networks (system) is regarded as a game among two players namely the 
system designer and the system users, whose decisions made individually affects both 
their performance. The particular structure of the above game has the form of  a two-
stage leader-follower Stackelberg game with perfect information, with the system 
designer to be the leader imposing modifications on the network attempting the 
optimization of the system performance while the users reacting as followers to 
alternative design plans. The formulation of such games is usually has the form of bi-
level programming problems, where optimum strategies are sought by taking into 
account a number of constraints, including those of physical feasibility and budget 
availability, while considering the demand and supply attributes of the system as 
known but not necessarily fixed. This study extends the standard game-theoretic, bi-
level programming formulation of the D-NDP so that include reliability requirements. 

Consider a network composed of L  links, R  origins and S  destinations. The 

travel demand srq  gives rise to equilibrium flows sr
kf  along path srKk ∈  connecting 
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sr −  pair and to equilibrium flows ( )yxa  along link a , with sr
kaδ  be the path-link 

incidence variable and srk
sr Cc ∈  be the cost of traveling along the k th path between 

sr −  pair. The travel cost, at equilibrium state, of some link a  with capacity ay  is 

denoted as ( )( )yxc aa
, with y  be the total network link capacity, and aw  is a binary 

decision variable of link a , as follows: 1 if link a  is added to the network or an extra 
lane is added to link a , and 0 otherwise. Also, ( )aa wV  denotes the monetary 

expenditures for adding a link a  or a lane on link a , B  is the total available 
construction budget for network capacity improvement, and θ  is a factor converting 
monetary values to travel times. Then, the Upper-Level Problem, which comprises the 
objectives of the optimum NDP, and the Lower-Level Problem, which provides the 
path and link equilibrium flows, can be given as follows: 
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In the Upper-Level Problem, ( )yxF ,  represents the objective function of the NDP, 

wherein the first component refers to the travel cost expressed in terms of the 
expectation E  of network Total Travel Time (TTT), and the second component 
corresponds to the total expenditures (in time units) for capacity improvements. The 
choice set defined in relationship (2) represents the binary selection of link (or lane) 
addition, while inequality (3) imposes budgetary restrictions. The reliability 
requirements are introduced in constraint (4), through restricting the probability of the 
TTT to be lower than or equal to a pre-specified upper limit T , with Z  defining the 
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acceptable confidence interval ( 10 ≤≤ Z ) for this hypothesis. Such a condition 
essentially depicts the stability of the system [7].  

The Lower-Level Problem, which consists of functions (5) to (8), performs the trip 
demand assignment process, based on the expected (perceived) value E  of the path 

travel cost k
src . Specifically, it estimates the response of users to the capacity 

improvements made at the Upper-Level Problem, through determining the probability 
sr

kP  that a traveler chooses to use path k  between sr −  pair. The Stochastic User 

Equilibrium (SUE) model [8] is used here for the assignment of demand onto the 
network and the solution Method of Successive Averages (MSA) is employed to 
calculate equilibrium flows.  

3   Modeling Reliability Assessment in the D-NDP 

The operational performance of transportation systems typically relies on variables of 
uncertain nature, as their values are influenced by random events and human decision-
making processes. The risk involved in the operation of transportation networks can 
be mainly attributed to the uncertainty pertaining to four different components: the 
demand, the supply (capacity), the level of service (link travel time) and the users’ 
characteristics (route choice behavior). By and large, travel demand patterns in urban 
transportation networks can be considered as recurrent, at typical operating 
conditions. Nonetheless, several disturbances can be observed, as expressed by 
seasonal or random spatial and temporal variations of demand between origins and 
destinations, due to special (planned or unexpected) events in different network 
localities, causing significant fluctuations in link travel times. These disturbances are 
additionally influenced by several characteristics of travelers, which are mostly 
related to factors involved in the route choice decision-making process, including 
perception of travel cost, value of travel time and driving behavior. Capacity 
fluctuations is also a typical phenomenon in transportation networks, which can 
emerge from several factors, such as changes in the composition of traffic, congestion 
effects and other, random phenomena, like accidents, road workzones and adverse 
weather conditions. The problem of network reliability degradation considering 
fluctuations in link capacities has been extensively investigated in the literature (see 
[9], [10], [11]). 

The current study provides a mathematical simulation framework for representing 
the stochastic properties and, in turn, the fluctuations of the values of variables, i.e., 
demand, supply and travel time, which affect the system performance. In particular, 
the demand is considered here as a random variable following the normal distribution 

( )2, srsrN σμ , with srμ  denoting its mean for each sr −  pair and 2
srσ  denoting its 

variance. Despite the fact that travel time can be also described by the normal 
distribution [7], an alternative, more explanatory assumption is made here, assuming 
that link speeds follow a multinomial normal distribution correlated with the speeds 
of the neighboring links. A similar assumption is adopted for the distribution of link 
capacities. 

The current framework connects link travel time to link speed and capacity 
fluctuations and it enables to express the interaction between the costs of each link. In 
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this way, link travel time variability (which is the result) is intrinsically modeled, in 
the structure of the D-NDP, with regard to its causal phenomenon (which is the link 
capacity and speed variability). More specifically, the Lower-Level Problem enables 
the estimation of the statistical properties of the TTT, i.e. its mean value and variance, 
which are subsequently fed to the Upper-Level problem, through iterating the solution 
of the assignment procedure, comprising the set of link and path equilibrium flows, 
the values of origin-destination demand, link capacity, and the link free flow travel 
time, in accordance with the stochastic characteristics assigned to these variables, as 
described previously. 

The estimation of the statistical properties of TTT and, hence, the reliability 
assessment, are performed through the simulation method of the Latin Hypercube 
sampling. In comparison to other simulation methods, such as that of Monte Carlo 
simulation, Latin Hypercube is based on a stratified random procedure which 
provides an efficient way to capture the properties of the stochastic variables from 
their distributions, namely, it produces results of higher accuracy without the need for 
increasing the sampling size, and it allows to model correlations among different 
variables. In particular, the procedure of Iman and Conover [12] is followed here in 
order to produce correlated random numbers from the normal distribution, based on 
the Cholesky decomposition of the correlation matrix. The assumptions concerning 
the usage of the simulation method in the network design process are: 

i) The duration of changes in link speeds and capacities allows users to re-estimate 
route choices, and 

ii) Link speed reduction is due to random events (like accident, physical disaster or 
other) which affect a locality of the network and, hence, link capacities and speeds 
are correlated with those of neighboring ones. 

4   Evolutionary Algorithm for Solving the Reliable D-NDP 

The D-NDP, as well as the C-NDP, can be generally characterized as problems of 
increased computational complexity. This complexity arises from the fact that bi-level 
programming problems, even for simple linear cases, are Non-deterministic 
Polynomial-time (NP)-hard problems [13]. In particular, the D-NDP is a NP-hard, 
non-convex combinatorial problem [14], since its set of constraints involves non-
linear formulations, such as those of the SUE assignment of the Lower-Level 
Problem. Several algorithms, appropriate for addressing complex combinatorial 
(integer or mixed-integer programming) problems, have been hitherto proposed and 
implemented to solve the D-NDP. Such algorithms include the branch-and-bound 
method [15], Lagrange relaxation and dual ascent procedures [1] and a method based 
on the concept of support function [16]. 

The present study uses evolutionary strategies, in particular, a Genetic Algorithm 
(GA) [17] to address the difficulties of obtaining optimal solutions within the 
proposed framework of the D-NDP. GAs have been extensively used in solving 
complex, NP-hard, combinatorial problems. Furthermore, they have been widely used 
in various bi-level programming problems (see [18]) and, especially, in addressing the 
C-NDP [19]. This wide applicability of GAs can be attributed to their convenience in 
handling variables of stochastic nature and multiple constraints in a seamless way, 



 Evolutionary Combinatorial Programming 683 

without requiring information about the nature of the problem but only about the 
performance of a ‘fitness’ function for various candidate states.  

GAs are population-based stochastic, global search methods. In the context of the 
D-NDP, an individual of the population corresponds to alternative binary codings of 
the link and lane additions. For every individual of the population, a Latin Hypercube 
simulation is performed altering the travel demand, link travel time and capacities, 
based on the framework described in Section 3, in order to estimate TTT reliability. 
The steps of the solution procedure are given to the pseudo-code shown below: 

 

Step 1. (Initialization) 

Produce an initial random population of candidate 
feasible solutions (link capacity improvements or link 
additions) and select the properties of the genetic 
operators  

DO UNTIL CONVERGENCE: 

Step 2. (Path Enumeration) 

Perform path enumeration for every candidate solution  

Step 3. (Simulation) 

Estimate the TTT reliability for every candidate 
solution by Latin Hypercube simulation. 

Step 4. (Genetic Evolution Process) 

  4.1 Check for the consistency of constraints and 
estimate the ‘fitness function’ (1) of each candidate 
solution.  

  4.2 Perform a stochastic selection of the ‘fittest’ 
solution set and the crossover operation among the 
selected ‘individuals’ 

  4.3 Perform the mutation of individuals 

  4.4 Produce a new population of genetically improved 
candidate solutions 
 

Though the extended use of meta-heuristic techniques such as GAs for solving 
complex problems, the solutions provided by them have met some skepticism. This is 
mainly because they are heavily dependent on initial conditions and random search 
processes incorporated into them. In order to confront this problem, multiple runs of 
the GA are performed in this study to confirm that the solution provided is optimal (or 
adequately near-optimal). 

5   Test Application and Results of the Algorithm 

The proposed methodology for solving the reliable D-NDP is implemented into a test 
network. The specific network layout has been used in [16] and is composed of a 
single origin-destination pair (from node #1 to node #12), 12 nodes, 17 existing links 
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and 6 candidate new links. Fig. 1 shows the complete configuration of the test 
network, including a total of 23 links and 25 paths, after making all possible 
improvements, i.e. adding the links figured #18-23. The network is considered as 
fully degradable, in the sense that all links exhibit fluctuations in speed and capacity. 
The complexity of this specific combinatorial problem, although the small scale of the 
given network, can be considered as high, since it contains L =23 links (variables), 
yielding 2L=223=8388608 possible combinations (alternative construction plans) of 
network capacity improvement. 

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

21 22 23

18 19 20

 

Fig. 1. The test network layout: existing links (solid lines) available for lane additions and 
potential new links (dashed lines) 

In the current study, the link travel time at  at some link a  is expressed as a 

function of the random free-flow travel time f
at , traffic flow ax  and random capacity 

ay  at this link and is carried out by using the standard formulation of the Bureau of 

Public Roads (BPR), as follows: 
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where β  and m  are scale parameters depending on the operational characteristics of 

the network. Although the estimation of link travel time is based here on the BPR 
formula, which typically applies to uncongested road networks, other formulations 
could also be adopted for taking into account congestion effects, like queues or 
bottlenecks in the links of the network. 

The capacity of each of the existing links is set equal to 20 vehicles per hour 
(veh/hr), while, after a lane addition, the capacity increases to 30 veh/hr. The capacity 
of each of the new links is set equal to 20 veh/hr. The demand between the origin-
destination pair is set equal to 80 veh/hr. The cost of lane addition in each of the 
existing links is set equal to 30 monetary values, while the construction cost of each 
of the new links is set equal to 50 monetary values. This study adopts a conversion 
factor 1=θ . The free-flow travel time, which is proportional to the link length, is set 

equal to 1=f
at  min, for the existing links, and 4.1=f

at  min, for the new links. The 

complete reconstruction of the given network, which requires a lane addition to each 
of the 17 existing links and construction of 6 new links, amounts to a total of 810 
monetary values, corresponding to 810 vehicle-minutes (veh-min), in time units, since 
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1=θ . Nonetheless, such a scenario may be considered as too expensive and, hence, 
impractical in real-world situations. For this reason, the half of this amount, i.e. 400 
veh-min, is set here as the total available construction budget B , which can be 
regarded as sufficient for enhancing the capacity of the existing network. The 
estimation of the stochastic user-equilibrium link flows employs a total of 200 MSA 
iterations, which were found to be adequate for providing a stable solution to the 
Lower-Level Problem for the given test network. 

An initial solution is first obtained by solving the D-NDP without reliability 
requirements. The assignment of the travel demand onto the initial network (with no 
link improvements or additions) results in a TTT equal to 886 veh-min. A total 
number of 50 runs of the solution algorithm are performed. The current GA employs a 
population of 50 individuals and its convergence criterion requires, on average, a 
number of 50 generations, which ensures that no further significant improvement of 
the objective function value can be achieved. For each individual, 200 iterations of the 
Latin Hypercube simulation are performed to obtain the stochastic properties of the 
system variables (see Section 3). Both the variances of the multinomial normal 
distributions of the free flow speed and link capacity are set here equal to the 20% of 
their corresponding theoretical (nominal) mean values. Similarly, the variance of the 
normal distribution of travel demand is set equal to the 20% of its mean (set) value. 

The initial solution provides a construction plan encompassing the addition of the 
new links #18 and #23 and lane addition to the existing links #1, #9 and #17. The 
resulting construction cost amounts to 190 veh-min, which is lower than the total 
available budget (400 veh-min). The TTT reduces from 886 veh-min to 449 veh-min. 
Thus, the total cost (TTT + construction cost) comes to 449+190=639 veh-min. The 
existence of a considerable remaining (not allocated) portion of the total available 
budget, i.e., 400-190=210 veh-min, can be attributed to the fact that there is a 
threshold beyond which network capacity improvements become very expensive, in 
comparison to their contribution to the reduction of the TTT. 

A new solution of the D-NDP is then obtained by imposing, as reliability 
requirement, the probability of the occurrence of the TTT to be higher than T =500 
veh-min not to exceed 10%. This upper limit value expresses the 10% increment of 
the TTT value (449 veh-min) resulted from the initial problem solution. The new 
solution leads to the construction of two more links, i.e. links #19 and #22, in addition 
to the improvements resulted from the initial solution of the problem. The TTT is 
further reduced from 449 veh-min to 423 veh-min, while the construction cost is 
raised to 290 veh-min, which is still less than the total available budget. The raised 
construction cost is attributed to the need for increasing the amount of the sparse total 
network link capacity (system redundancy) in order to ensure the desired level of 
network reliability. The new solution results in the increase of the total cost from 639 
veh-min to 423+290=713 veh-min. The resulting probability of the TTT to be higher 
than 500 veh-min was estimated to 9.94%, which is lower than the acceptable upper 
bound of 10%. As it is shown in the two histograms of Fig. 2, the dispersion of the 
TTT obtained from the initial solution without imposing reliability requirements, 
having ( ) 25.0min500 ≈−≥ vehTTTP  (see left diagram) is considerably wider than the 

dispersion of the TTT obtained from solving the reliable D-NDP, having 
( ) 1.0min500 <−≥ vehTTTP  (see right diagram). 
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Fig. 2. Distribution of the TTT for the case without reliability requirements (left) and with 
reliability requirements (right) 

6   Conclusions and Future Research 

The current study provided a formulation and a solution algorithm for the Discrete-
Network Design Problem (D-NDP). The formulation seeks the optimal network 
capacity improvements, subject to budgetary and physical restrictions, and, 
additionally, reliability requirements, in terms of the probability of the Total Travel 
Time (TTT) to be less than a pre-specified value. The model enables the inclusion of 
four different sources of uncertainty, i.e., demand, capacity, link travel time and route 
choice, into the reliability assessment, through applying the Latin Hypercube 
sampling simulation method. The estimation procedure uses a Genetic Algorithm, 
which is suitable for solving such types of stochastic combinatorial optimization 
problems. The test network application of the method demonstrated the beneficial 
impact of including reliability requirements into the standard bi-level programming 
formulation of the D-NDP. The benefits correspond to the reduction of the TTT, while 
satisfying the desired level of network reliability and the budget constraints.  

Future developments of the method refer to the incorporation of other types of 
uncertainty, which affect network reliability, such as those concerning the information 
acquisition and the day-to-day (or period-to-period) adjustment of the decision- 
making process of users. Moreover, the current estimation framework could be 
extended into the more general case of multi-modal networks with multiple-class 
users, in order to address issues related to the sustainable network development. 
Finally, a comparison of the current evolutionary approach with other derivative-free 
algorithms suitable to handle such combinatorial problems could provide useful 
insight into the properties of the solution of the NDP. 
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