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Abstract. Quantum effects are a natural phenomenon and just like evo-
lution, or immune systems, can serve as an inspiration for the design of
computing algorithms. This study illustrates how a quantum-inspired
evolutionary algorithm can be constructed and examines the utility of
the resulting algorithm on Option Pricing model calibration. The results
from the algorithm are shown to be robust and comparable to those of
other algorithms.

1 Introduction

The objective of this study is to illustrate the potential for using a quantum
rather than a traditional encoding representation in an evolutionary algorithm,
and also to assess the utility of the resulting algorithm for the purposes of cali-
brating an option pricing model. This purpose of this paper is to test the QIEA
on a relatively simple option pricing model with the intention of testing the al-
gorithm on more comprehensive option pricing models using more option data
at a later stage.

In recent years there has been a substantial interest in the theory and design
of quantum computers, and the design of programs which could run on such
computers. One interesting strand of research has been the use of natural com-
puting (for example GP) to generate quantum circuits or programs (algorithms)
for quantum computers [1]. There has also been associated work in a reverse
direction which draws inspiration from concepts in quantum mechanics in order
to design novel natural computing algorithms. This is currently an area of active
research interest. For example, quantum-inspired concepts have been applied to
the domains of evolutionary algorithms [2,3,4,5,6], social computing [8], neuro-
computing [9,10,11], and immuno-computing [12,13]. A claimed benefit of these
algorithms is that because they use a quantum representation, they can main-
tain a good balance between exploration and exploitation. It is also suggested
that they offer computational efficiencies as use of a quantum representation can
allow the use of smaller population sizes than typical evolutionary algorithms.

Quantum-inspired algorithms offer interesting potential. As yet, due to their
novelty, only a small number of recent papers have implemented a QEA, typically

M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pp. 189–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



190 K. Fan et al.

reporting good results [5,6]. Consequently, we have a limited understanding of
the performance of these algorithms and further testing is required in order
to determine both their effectiveness and their efficiency. It is also noted that
although a wide-variety of biologically-inspired algorithms have been applied for
financial modelling [7], the QEA methodology has not yet been applied to the
finance domain. This study addresses both of these gaps.

2 The Quantum-Inspired Genetic Algorithm

The best-known application of quantum-inspired concepts in evolutionary com-
puting is the quantum-inspired genetic algorithm (QIGA) [2,5,6]. The (QIGA)
is based on the concepts of a qubit (quantum bit) and the superposition of
states. In essence, in QIGAs the traditional representations used in evolutionary
algorithms (binary, numeric and symbolic) are extended to include a quantum
representation. Under a quantum representation, the basic unit of information is
no longer a bit which can assume two distinct states (0 or 1), but is a quantum
system. Hence, a qubit (the smallest unit of information in a two-state quantum
system) can assume either of the two ground states (0 or 1) or any superposition
of the two ground states (the quantum superposition). A qubit can therefore be
represented as

|qi〉 = α|0〉 + β|1〉 (1)

where |0〉 and |〉 are the ground states 0 and 1, and α & β are complex numbers
that specify the probability amplitudes of the two ground states. The act of
observing (or measuring) a qubit projects the quantum system onto one of the
ground states. |α|2 is the probability that the qubit will be in state 0 when
it is observed, and |β|2 is the probability that it will be in state 1. Hence, a
qubit encodes the probability that a specific ground state will be seen when an
observation takes place, rather than encoding the ground states themselves. In
order to ensure this probabilistic interpretation remains valid, the values for α
and β are constrained such that |α|2 + |β|2 = 1.

More generally, a quantum system of m qubits can represent a total of 2m

states simultaneously. In the language of evolutionary computation a system of
m qubits can be referred to as a quantum chromosome and can be written as a
matrix [

α1 α2 . . . αm

β1 β2 . . . βm

]
(2)

A key point when considering quantum systems is that they can compactly
convey information on a large number of possible system states. In classical bit
strings, a string of length n can represent 2n possible states. However, a quantum
space of n qubits has 2n dimensions. This means that even a short qubit can con-
vey information on many possible system states. For example, a 3 bit quantum
system can encode 8 (23) distinct binary strings, and an 8 bit quantum system
can encode 256 distinct strings. Due to its probabilistic interpretation, a single
qubit of length m can simultaneously represent all possible bit strings of length
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2m. This implies that it is possible to modify standard evolutionary algorithms
to work with a single quantum individual, rather than having to use a population
of solution encodings. The qubit representation of the system states can also help
maintain diversity during the search process of an evolutionary algorithm, due
to its capability to represent multiple system states simultaneously.

2.1 The Algorithm

There is no single QIGA, rather there are a family of possible algorithms which
could be derived from the joint quantum-evolutionary metaphor. However, the
following algorithm provides an example of a canonical QIGA
Set t=0
Initalise Q(t)

Create P(t) by undertaking an observation of Q(t)

Evaluate P(t) and select the best solution

Store the best solution in P(t) into B(t)

While (t < max t)
t=t+1
Create P*(t) by undertaking observations of Q(t-1)
Evaluate P*(t)
Update Q(t)
Store the best solutions in B(t-1) and P(t) into B(t)

Endwhile

Initially, the population of quantum chromosomes is created

Q(t) = q1(t), q2(t), . . . , qn(t),

where n is the population size, and each member of the population consists of
an individual qubit of length m. The α and β values for each qubit are set to
1√
2

in order to ensure that the states 0 and 1 are equally likely for each qubit.If
there is domain knowledge that some states are likely to lead to better results,
this can be used to seed the initial quantum chromosome(s). Once a population
of quantum chromosomes are created, these can be used to create a population
of binary (or solution encoding) strings by performing an ‘observation’ on the
quantum chromosomes. One way of performing the observation step is to draw a
random number rnd ∈ [0, 1]. If rnd > |αi(t)|2, the corresponding bit (j) in pj

i (t)
is assigned state 1, otherwise it is assigned state 0. Due to the stochastic nature
of the observation step, the QIGA could be implemented using a single quan-
tum chromosome, where this chromosome is observed multiple times in order
to generate the population P (t) = p1(t), p2(t), . . . , pi(t). Alternatively, a small
population of quantum chromosomes could be maintained, with each chromo-
some being observed a fixed number of times in order to generate P (t). In the
while loop, an update step is performed on the quantum chromosome(s). This
update step could be performed in a variety number of ways, for example by us-
ing pseudo-genetic operators, or by using a suitable quantum gate [3]. However
the step is undertaken, its essence is that the quantum chromosome is adjusted
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in order to make the generation of the best solution found so far, more likely in
the next iteration. As the optimal solution is approached by the QIGA system,
the values of each element of the quantum chromosome tend towards either 0
or 1, corresponding to a high probability that the quantum chromosome will
generate a specific solution vector (pi) when observed.

Quantum Mutation. Quantum mutation is loosely inspired by the standard
GA mutation operator. However, this is adapted so that the mutation step is
guided by the best individual found to date, with the quantum chromosome
being altered in order to make the generation of this solution more likely in
future iterations of the algorithm [5,6].

Qpointer(t) = a ∗ Bbestsolution(t) + (1 − a) ∗ (1 − Bbestsolution(t)) (3)

Q(t + 1) = Qpointer(t) + b ∗ randnorm(0, 1) (4)

where Bbestsolution(t) is the best solution found by iteration t. Qpointer(t) is a
temporary quantum chromosome which is used to guide the generation of Q(t+1)
towards the form of Bbestsolution. The term randnorm(0, 1) is a random number
drawn from a (0,1) normal distribution. The parameters a and b control the
balance between exploration and exploitation, with a governing the importance
attached to Bbestsolution(t) and b governing the degree of variance generation,
centred on Qpointer(t). Values of a ∈ [0.1, 0.5] and b ∈ [0.05, 0.15] are suggested
by [5,6].

3 Option Pricing Model Calibration

An optimisation problem in financial modelling is considered to test the per-
formance of the QIGA. The optimisation involves calibrating an option pricing
model to observed market data. Calibration is a method of choosing model pa-
rameters so that the distance between a set of model option prices and market
option prices is minimised, where distance is some metric such as the sum of
squared errors or the sum of squared percentage errors. The parameters can
be thought to resemble the market’s view on current option prices and the un-
delying asset price. In calibration we do not explicitly take into account any
historical data. All necessary information is contained in today’s option prices
which can be observed in the market. Practitioners frequently calibrate option
pricing models so that the models provides a reasonable fit to current observed
market option prices and they then use these models to price exotic derivatives
or for hedging purposes. In this paper we calibrate a popular extension of the
Black-Scholes [16] option pricing model known as the Variance Gamma (V G)
model [17,18,19] to FTSE 100 index option data.

A European call option on an asset St with maturity date T and strike price
K is defined as a contingent claim with payoff at time T given by max [ST − K, 0].
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The well known Black-Scholes (BS) formula for the price of a call on this asset
is given by

CBS (St, K, r, q, τ ; σ) =Ste
−qτN (d1) − Ke−rτN (d1)

d1 =
− ln m +

(
r − q + 1

2σ2
)
τ

σ
√

τ
d2 = d1 − σ

√
τ

where τ = T − t is the time-to-maturity, t is the current time, m = K/S is
the moneyness of the option, r and q are the continuously compounded risk-free
rate and dividend yield and N(·) is the cumulative normal distribution function.
Suppose a market option price, denoted by CM (St, K), is observed. The Black-
Scholes implied volatility for this option price is that value of volatility which
equates the BS model price to the market option price as follows

σBS (St, K) >0
CBS (St, K, r, τ ; σBS (St, K)) =CM (St, K)

If the assumptions underlying the BS option pricing model were correct, the BS
implied volatilities for options on the same underlying asset would be constant
for different strike prices and maturities.

Many different option pricing models have been proposed as alternatives to
the BS model. Examples include stochastic volatility models and jump diffusion
models which allow for more complex asset price dynamics. We examine one such
simple extension of the BS model known as the Variance Gamma (V G) option
pricing model. The idea is to model stock price movements occurring on business
time rather than on calendar time using a time transformation of a Brownian
motion. The resulting model is a three parameter model where roughly speaking
we can interpret the parameters as controlling volatility, skewness and kurtosis,
denoted respectively as σ, θ and ν, of the underlying asset returns distribution.
Closed form option pricing formulae exist under the V G model [19].

CV G (St, K, r, τ ; {σ, ν, θ}) =Ste
−qτΨ

(
d

√
1 − c1

ν
, (α + s)

√
ν

1 − c1
,
τ

ν

)

−Ke−rτΨ

(
d

√
1 − c2

ν
, αs

√
ν

1 − c2
,
τ

ν

)

where

d =
1
s

[
ln

(
St

K

)
+ (r − q) τ +

τ

ν
ln

(
1 − c1

1 − c2

)]

α =ςs, ς = − θ

σ2 , s =
σ√

1 +
(

θ
σ

)2 ν
2

c1 =
ν (α + s)2

2
, c2 =

να2

2
and where Ψ is defined in terms of the modified Bessel function of the second
kind.
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Table 1. Market BS implied volatilities and option prices for FTSE 100 index options
on the 17 March 2006. The strike prices are given in the table and the other observable
inputs are S = 5999.4, τ = 35

365 , r = 0.0452 and q = 0.0306.

Strike price 5695.2 5845.1 5995.0 6144.9 6294.7

IV (%) 13.76 12.41 11.13 10.44 10.94
Call($) 323.67 193.63 88.67 28.03 7.99
Put ($) 12.44 31.63 75.89 164.48 293.67

4 Experimental Approach

Market makers in the options markets quote BS implied volatilities rather than
option prices even though they realise BS is a flawed model. The first row in
Table 1 depicts end-of-day settlement Black-Scholes implied volatilities for FTSE
100 European options on the 17 March 2006 for different strike prices and a
time-to-maturity of 35 days. As can be seen the BS implied volatilities are not
constant across the strike price. The second and third row in Table 1 converts
the BS implied volatities into market call and put prices by substituting the BS
implied volatilities into the Black-Scholes formula. The following input param-
eters were used to calculate the option prices, the index price is the FTSE 100
index itself St = 5999.4, the interest rate is the one month Libor rate converted
into a continuously compounded rate r = 0.0452 and the dividend yield is a
continuously compounded dividend yield downloaded from Datastream and is
q = 0.0306. These prices are then taken to be the observed market option prices.
Out-of-the money (OTM) option prices are considered most suitable for calibra-
tion purposes because of their liquidity and informational content. Hence OTM
put prices were used for K < S and OTM call prices were used for K > S in
the calibration. The calibration problem now amounts to choosing an optimum
parameter vector Θ = {σ, ν, θ} such that an objective function G (Θ) is min-
imised. In this paper the objective function is chosen to be the absolute average
percentage error (APE)

G (Θ) =
1
N

N∑
i=1

∣∣∣∣Ci − Ci (Θ)
Ci

∣∣∣∣
where Ci is the observed market price on the i-th option (could be a call or a put)
and Ci (Θ) is the V G model price of the i-th option with parameter vector Θ. One
of the difficulties in model calibration is that the available market information
may be insufficient to completely identify the parameters of a model [20]. If
the model is sufficiently rich relative to the number of market prices available,
a number of possible parameter vector combinations will be compatible with
market prices and the objective function G (Θ) may not be convex function
of Θ. A plot of the objective function versus the two parameters controlling
skewness and kurtosis of the asset returns distribution, θ and ν, whilst keeping
σ fixed at σ = 0.1116 is shown in figure 1(a).
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Fig. 1. Objective function versus model parameters ν and θ and objective function
versus generation number

It displays a flat profile near the minimum where many parameter combinations
will yield equivalent fits. The error surface is not a straightforward error surface
and a local optimiser might not converge to the true optimum. There are regions
where the error surface is very flat for changes in the parameter values and there
are regions where the optimiser might get not converge to global optimum.

5 Results

In all runs of the QIGA, a population size of 50 observed chromosomes was used,
the algorithm was allowed to run for 200 generations, and all reported results
are averaged over 30 runs. In order to provide a benchmark for the results ob-
tained by the QIGA a deterministic Matlab optimiser called fminsearch was run 30
times with different initial parameter vectors. Fminsearch uses the simplex search
method of [21]. This is a direct search method that does not use numerical or an-
alytic gradients. The optimiser converged to different values for Θ for different

Table 2. Results of QIGA where the mean parameter values after 30 runs and the
best performing parameter values are compared with the parameters from the matlab
optimiser fminsearch. The resulting mean model prices from the 30 runs are compared
with the market prices and the mean APE is reported.

Parameter Mean Best Matlab Market Mean Model Best Model
QIGA QIGA Price Price Price

σ 0.0926 0.1055 0.1143 12.44 17.13 13.43
ν 0.3302 0.0234 0.0638 31.64 32.62 35.50
θ -0.2316 -0.4258 -0.1429 75.90 65.66 83.13

28.02 22.10 32.41
APE 2.5099 0.6000 7.99 7.03 6.75
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Table 3. This table reports the QIGA objective function for different values of the
exploitation and exploration parameters, respectively given by a and b

a \ b 0.4 2.0 3.6 5.2 6.8 8.4
0.05 0.5035 0.1808 0.4192 0.0411 0.0273 0.2265
0.25 0.5035 0.0791 0.4868 0.3789 0.1536 0.0992
0.45 0.5035 0.3560 0.2080 0.1984 0.0993 0.2870
0.65 0.5035 0.1298 0.1015 0.0179 0.0633 0.0907
0.85 0.5035 0.3385 0.5035 0.5035 0.5035 0.4114
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Fig. 2. Evolution of parameters ν and θ as a function of the generation number

initialisations of the parameter vector so the one with the optimal value for the
objective function G was chosen. The results are reported in the Tables 2 and 3.
As can be seen when averaged over only 30 runs the QIGA parameter vector Θ is
reasonably close to the optimal parameter vector from matlab. Figure 1(b) depicts
the evolution of the global objective function G (also known as APE) as a func-
tion of the generation number. Figures 2(a) and 2(b) depict the evolution of the
parameters ν and θ as a function of the generation number. The results reported
in Table 3 depicts the sensitivity of the objective function value to the exploitation
and exploration parameters, respectively a and b. In this table a and b are varied
to those values reported in while everything else remains fixed. It can be seen that
the performance of the QIGA is not good when b is low regardless of what value
a takes. As b increases more exploration takes place and the performance of the
algorithm improves especially when a is set to intermediate values (approx. 0.65).
Further sensitivity analysis would need to be conducted to find optimal values for
these parameters.

6 Conclusions and Future Work

This study illustrates how a quantum-inspired evolutionary algorithm can be
constructed and examines the utility of the resulting algorithm on a problem in
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financial modelling known as model calibration. The results from the algorithm
are shown to be robust and comparable to those of other algorithms.

Several extensions of the methodology in this study are indicated for future
work. Algorithms extensions would include developing and testing a real val-
ued QIGA and comparing its performance to the binary algorithm used in this
paper. Financial applications include the calibration of more complex higher di-
mensional option pricing models that may contain many local minima to market
data in an evolutionary setting. The use of QIGA in these types of problems
may be crucial due to the potential reduction in computational time.
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