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Abstract. Vehicles have been developed with an objective of safety. A
large number of sensors will be required in Advanced Safety Vehicles
that provide intelligent and automatic services in future ITS(Intelligent
Transport Systems) circumstances. Because current in-vehicle networks
must be changed to add new sensors, the number of sensors that can be
added is restricted in current in-vehicle networks. To manage the sen-
sors more efficiently and to provide extensibility, we propose a SCSN
(Smart Car Sensor Network), which is an in-vehicle architecture based
on AMI-C and OSGi standards. In this architecture, Vehicle Interface
(VI), defined in the AMI-C standard, performs as a gateway in an AMI-
C network. An integrated VI structure has been developed to provide a
Vehicle Service (VS) on a standard platform. An interworking structure
with a CAN(Controller Area Network) interface is implemented to pro-
vide an efficient VI. In current telematics architecture, time delay occurs
between the CAN network start-up time and the platform booting time.
Message loss occurs during this time delay. In this paper, we propose an
efficient gateway architecture to minimize message loss due to this time
delay. The efficiency of this platform has been verified using CANoe,
which is a vehicle-network simulation tool.

Keywords: SCSN(Smart Car Sensor Network), Telematics, ITS, Sensor
Network, Sensor Network Gateway, Sensor Clustering Node.

1 Introduction

At present, the stability of in-vehicle networks is suboptimal due to increases in
wire length, difficulty in diagnosing sensor failures, and fault tolerance issues. Be-
cause control and sensing data are transmitted in a single network, it is difficult
for in-vehicle portable devices to collect sensor data to check a vehicle status.
Furthermore, current in-vehicle networks have problems adding new sensors. To
solve this problem, we propose an additional in-vehicle sensor network, namely
SCSN (Smart Car Sensor Network). The proposed in-vehicle sensor network col-
lects sensor data from distributed smart sensors, using a sensor clustering node,

F. Stajano et al. (Eds.): ICUCT 2006, LNCS 4412, pp. 232–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Efficient Sensor Network Architecture Using Open Platform 233

and sends these data to sensor network gateway. The role of the sensor network
gateway is to maintain and manage the overall network, as well as to process
sensor data. The processing module of a sensor network gateway creates new
information using sensor data fusion techniques.

New information created by sensor network gateway is provided to in-vehicle
devices, multimedia terminals, and additional control boxes. For this, vehicle
middleware is necessary to provide a vehicle status and travel information to
in-vehicle devices.

The SCSN platform is based on OSGi[10] and AMI-C[11], which are open
standards for telematics. These standards provide extensibility and interoper-
ability for next-generation in-vehicle software and devices.

The rest of this paper is organized, as follows. Section 2 investigates the
current in-vehicle network technologies and problems. Section 3 outlines the
proposed SCSN platform architecture and components and illustrates the im-
plementation challenges of the gateway in our SCSN. Section 4 explains the
simulation environments and evaluates the performance of the SCSN network,
compared with current in-vehicle networks.

2 Related Works

2.1 Architecture of Current In-Vehicle Networks and Its Problems

A vehicle consists of about 11,136 electrical devices, 60 electrical control units
(ECU) and 3 Controller Area Network (CAN)[1] buses, with 2,500 signals and
250 CAN messages.

Fig. 1. Current in-vehicle network

Each ECU has multiple sensor nodes and communicates using multi-master
communication technology. Sensing data to be collected by ECU are broadcast
on the in-vehicle network. Sensing data created by distributed sensors are sent
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to the actuator in order to perform a job. However, it is difficult to distinguish
needed information from all sensing data. Additional overhead is required to
acquire proper data from CAN messages collected by ECU. Only proper CAN
data needs to be retained from the complete CAN message. Fig 1 shows an
example of a current in-vehicle network. Current in-vehicle networks do not
support a telematics terminal for travel conditions and location information
[2][5].

2.2 Current In-Vehicle Sensor Allocation and Its Problems

A vehicle has many kinds of sensors, such as for safety and airbags. These sen-
sors are connected to each other over a single in-vehicle network. Fig. 2 shows
an example of current vehicle sensor allocation. These sensors consist of exist-
ing sensors, advanced airbag system sensors, hybrid vehicle sensors, and safety
sensors.

Fig. 2. Vehicle sensor allocation

Current in-vehicle networks are becoming very complex due to increasing
numbers of sensors and wire lengths. This network needs to change the existing
in-vehicle network to add new sensors. Because all information collected by ECU
must be examined to distinguish needed sensing data, technical overhead exists
to obtain only the sensing data needed by the ECU.

2.3 Current Telematics Architecture and Its Problems

The AMI-C standard defines a logical vehicle information architecture, namely
Vehicle Service (VS) [6][7]. This architecture provides a vehicle information and
control service to a platform application by cooperating with the in-vehicle net-
work. The telematics platform based on OSGi operates on the Java Virtual
Machine ( JVM ) [8]. This platform has a problem in that it cannot support VS
with the AMI-C standard.

As we see in Fig. 3, this platform uses a vehicle network driver using Java
Native Interface (JNI) [8] to provide vehicle information to in-vehicle devices.
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JNI on JVM is a method to communicate with other communication technology
except TCP/IP [9]. Because a single bundle handles all real-time vehicle mes-
sages, using only JNI in this architecture, this communication method is not
efficient. A message created by the in-vehicle network may be lost due to plat-
form start-up time delay when the vehicle is started up or when the bundle is
restarted. This is further explained in section 3.2.

Fig. 3. Current telematics platform architecture[9]

Architecture based on AMI-C provides vehicle travel and status information to
in-vehicle devices through middleware [11]. This architecture efficiently provides
sensing data management and a processing function for multiple sensors. In
this paper, we propose an additional in-vehicle sensor network, using the AMI-
C standard, namely a smart car sensor network. The role of this network is to
collect and manage sensor data. This network consists of several sensor clustering
nodes to collect sensing data from sensors and one sensor network gateway to
provide this data to a telematics terminal, multimedia devices, and an additional
control box.

3 Smart Car Sensor Network (SCSN)

3.1 Smart Car Sensor Network Architecture

Fig. 4 shows the proposed SCSN architecture. This network architecture provides
flexibility to add new sensors and efficient sensor data management using a
sensor network gateway and sensor clustering nodes. As we see in Fig. 4, the
SCSN consists of one sensor network gateway, several sensor clustering nodes,
the current in-vehicle network, in-vehicle devices, and an additional control box.
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Fig. 4. Smart car sensor network architecture

The sensor network gateway networks among the current in-vehicle network,
the sensor clustering node, in-vehicle devices, and an additional control box.
The sensor network gateway collects sensing data from the existing in-vehicle
network and sensor clustering nodes. This gateway sends this data to a telematics
terminal, multimedia devices, and an additional control box. Also, this gateway
performs functions, such as data maintenance, processing, and management. The
sensor clustering node collects sensing data from distributed sensors. This node
transmits sensing data to the sensor network gateway and manages many kinds
of sensors connected to this node.

In this architecture, the existing in-vehicle network does not need to be
changed to add new sensors so new sensors may be installed on the right side
of Fig. 4. A new sensor is connected to a sensor clustering node and is managed
by it. This characteristic of SCSN provides flexibility and extensibility for new
sensor installation.

3.2 Implementation of the Sensor Network Gateway

Fig. 5 shows the internal architecture of an in-vehicle sensor network gateway.
As we mentioned in Section 2.3, message loss occurs during the platform start-up
time delay or platform initiation time in current in-vehicle network communi-
cation technology. Current in-vehicle communication operates on a JNI driver.
This communication technology creates a time delay between the CAN network
start-up time and the platform boot time. In current in-vehicle architecture,
message loss occurs during this time delay. In our SCSN architecture, the sensor
network gateway has components to reduce message loss by decreasing this time
delay. These components are as follows.
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– CAN gateway
– Vehicle Service Interface (VSI) gateway bundle to provide AMI-C standard

vehicle service based on the OSGi platform
– Vehicle Service

Fig. 5. Internal architecture of sensor network gateway

The CAN gateway cooperates with the VSI gateway using a TCP/IP protocol
that is supported by JVM. This communication technology uses mutual commu-
nication to request service from the VSI gateway bundle to the CAN gateway.
For this communication, we propose a new protocol, namely the GCP (Gateway
Communication Protocol), which has the following functions:

1. Receiving/Transmitting the CAN message request
2. ID-based CAN message Registration/Release
3. Inquiry/Modification of routing and status table in CAN gateway
4. Confirm/Reset of processed messages

Mainly, function 1 performs the CAN message receiving/transmitting request
and sends the stored message in a status table to the proper application bundle.
Function 2 performs ID start/stop for a specific message by message subscription
and message transmission request by setting a period. Function 3 and function 4
manage the routing and status table. In other words, the CAN gateway performs
processing of vehicle status and sensing data by a message subscription method
to control message transmission. This gateway sends the needed message to the
VSI gateway so that it performs the role to control CAN and the AMI-C message
conversion rate.

3.3 Sequence of Gateway Internal Cooperation

After start-up of the CAN gateway, the VSI on the platform receives stored
vehicle data by connecting with the CAN gateway. After this procedure, the VSI
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on the platform cooperates with the in-vehicle network. This VSI converts each
message transmission requirement to a suitable GCP and controls transmission
rates by checking the arrival of messages.

Fig. 6 shows sequence diagram of VSI cooperation with the CAN gateway.

Fig. 6. Sequence diagram of VSI cooperating with the CAN gateway

4 Simulation

4.1 Simulation Environment

Fig. 7 shows a simulation environment using the CANoe vehicle network simu-
lation tool. The simulation environment consists of a power train network with
500 kbps and a body network with 125 kbps. The power train network consists
of the engine, ABS, gear box, and body network, which consists of a door control
module, dashboard, and radio channel control console.

These components connect with the sensor network gateway and synchro-
nize the vehicle velocity with the vehicle status information. Window and head-
light information for the vehicle are controlled by the VS of the simulation
environment.

Fig. 7. Simulation environments
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4.2 Simulation Results

Vehicle start-up time delay is defined by the OS, CAN driver, VM, and OSGi
message processing time, which depends on the bundle initiation time of a stan-
dard telematics platform. After this time delay, the sensor network gateway can
process CAN messages.

This simulation measures time delay, message loss, and processing efficiency
according to two different message processing methods.

1. Message processing method using a CAN module based on JNI
2. Message processing method using a CAN gateway in cooperation with VSI.

The measured items are as follows:

1. Time and message loss until CAN driver initiation
2. Message loss depending on the time from module initiation to message re-

ception completion
3. The number of messages created by the platform application, which is con-

trolled by message processing methods

Fig. 8 shows the overall results for time delay, message loss, and the number
of processed messages.

Fig. 8. Overall results for time delay, message loss, and the number of processed
messages

The number of message loss cooperated with gateway is less than the number
of message loss on JNI architecture, because the start-up time delay of proposed
architecture is less than current telematics architecture.

Tables 1 and 2 show the averages of measurement results. PT stands for
powertrain and BC stands for body control.

These 2 tables show that message loss is decreased by 27% in the case of
powertrain and 25% in the case of body control. These results related to the
average start-up time delay. In the case of sensor network gateway, average start-
up time delay is decreased by 1.3 seconds in comparison with current telematics
architecture.
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Table 1. Message loss according to driver start-up delay time

Average of
start-up

delay(sec)

Average of vehicle message loss
Number of
PT message Frame/sec

Number of
BC message Frame/sec

2.711 273 132 168 83

Table 2. Start-up delay time and message loss according to architecture

Architecture
Average of
start-up

delay(sec)

Average of vehicle message loss
Number of

PT message
Number of

BC message
Currnet
telematics 4.5 558 335

Sensor network
gateway 3.2 404.6 251

5 Conclusion

In this paper, we have proposed a SCSN platform to solve the problem presented
by an increasing numbers of sensors. The SCSN consists of a sensor network
gateway and a sensor clustering node, which transmits sensing data to multime-
dia devices, an additional control box, and a telematics terminal. This network
architecture improves sensing data sharing and management efficiency.

According to the simulation results, the SCSN platform is more efficient than
current in-vehicle network architecture in terms of message loss and message
processing rates. The SCSN platform provides extensibility, using an in-vehicle
network standard, and supports easy installation of additional devices or sensors.

The merits of the SCSN platform are as follows:

1. Provides extensibility for an in-vehicle sensor network
2. Shares sensing data using sensor data management
3. Increases interoperability using a vehicle network standard
4. Improves in-vehicle network management by separating control and sensor

data
5. Guarantees a predictive start-up time and efficient message processing

In the future, we will refine our proposed network architecture through im-
provement of the sensor network gateway function. A refined scheme should
include an efficient data fusion algorithm and transmission algorithm from the
sensor clustering node to the sensor network gateway. We will also study fault-
tolerant architecture in an in-vehicle network.
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