
Optimizing Moving Queries over Moving Object Data
Streams

Dan Lin1, Bin Cui2,�, and Dongqing Yang2

1 National University of Singapore
lindan@comp.nus.edu.sg

2 Peking University, China
{bin.cui,dqyang}@pku.edu.cn

Abstract. With the increasing in demand on location-based aware services and
RFIDs, efficient processing of continuous queries over moving object streams be-
comes important. In this paper, we propose an efficient in-memory processing of
continuous queries on the moving object streams. We model moving objects using
function of time and use it in the prediction of usefulness of objects with respect
to the continuous queries. To effectively utilize the limited memory, we derive
several replacement policies to discard objects that are of no potential interest to
the queries and design efficient algorithms with light data structures. Experimen-
tal studies are conducted and the results show that our proposed method is both
memory and query efficient.

1 Introduction

With rapid advances in electronic miniaturization, wireless communication and posi-
tion technologies, moving objects that acquire and transmit data are increasing rapidly.
This fuels the demand for the location-based services and also deployment of Radio Fre-
quency Identification (RFID) in tracking and inventory management applications. In in-
ventory tracking like applications, disclosure of object positions forms spatio-temporal
data streams with high arrival rate, and queries act upon them tend to be continuous and
moving. Consequently, queries must be continuously updated and any delay of query
response may result in an obsolete answer [7]. Moving object data stream manage-
ment systems [3,8] have been designed to handle massive numbers of location-aware
moving objects. Such systems receive their input as streams of location updates from
the moving objects. These streams are characterized by their high input rate, and they
cannot be stored and need to be processed on the fly to answer queries. Clearly, the
disk-based structures are not able to support the fast updates and provide quick re-
sponse time. The PLACE [8] extended data streaming management systems to support
location-aware environments. However, the PLACE can only manage the snapshots of
objects and queries at each timestamp, which inevitably increases the amount of data
information. Additionally, it stores the entire dataset in the server for query process-
ing, which may not be applicable for data stream management system. On the other
hand, studies of real positional information obtained from GPS receivers installed in

� Contact author. This work is supported by the NSFC under grant No. 60603045.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 563–575, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

564 D. Lin, B. Cui, and D. Yang

cars show that representing positions as linear functions of time reduces the numbers
of updates needed to maintain a reasonable precision by as much as a factor of three in
comparison to using constant functions [2]. Linear functions are thus much better than
constant functions in the data streaming environment.

As with other data streams, processing of continuous spatio-temporal queries over
the moving object stream requires the support of in-memory processing. Existing disk-
based algorithms cannot be easily turned into in-memory methods, because the under-
lying structures tend to be bulky and index all data points due to the availability of
cheap storage space. Existing tree-based indexing structures [4,10,11,14] for moving
objects focus on reducing disk accesses since the execution time is dominated by the
I/O operations. In fact, for some indexes, fast retrieval is achieved by preprocessing and
optimization before insertion into the index [14]. In this paper, we propose an efficient
approach which is able to handle moving objects and queries represented by functions.
Due to the limited amount of memory, we design light data structures, based on hash
tables and bitmaps. To manage the limited amount of buffer space, we design several
replacement policies to discard objects that are of no potential interest to the queries.
Experimental results demonstrate that our algorithms can achieve fast response time
and high accuracy with a small memory requirement.

The rest of the papers is organized as follows. Section 2 defines the problem and re-
views the related work. Section 3 introduces the overall mechanism. Section 4 presents
the algorithms of continuous range queries. In section 5, we report the experimental
results. Finally, Section 6 concludes with the paper.

2 Problem Statement and Related Work

2.1 Problem Statement

The moving object data stream is made up of a sequence of update information of
moving objects. We assume that moving objects are capable of repeatedly transmitting
their positions and velocities to a central server. Then, each tuple in the stream includes
〈OID, Op, Ov, Ot〉, where OID is the object ID, Ot is the update time, Op and Ov
are the position and velocity at time Ot respectively. The incoming tuple is the update
information of the existing tuple with the same OID. To reduce the update frequency,
a linear function is used to model the trajectory of a moving object. A moving object
is required to transmit a new location to the server when the deviation between its real
location and its server-side location exceeds a threshold, dictated by the services to be
supported. In keeping with this, we define the maximum update time (U) as a problem
parameter. This quantity denotes the maximum time duration in-between two updates
of the position of any moving object.

The query data stream is comprised of a sequence of two types of queries: continuous
static range query and continuous moving range query. They are defined as follows:

– Continuous static range query: Given a static range R at time Qt, the query needs
continuously reporting all the moving objects within the range R from time Qt.

– Continuous moving range queries: Given a range R moving at the velocity Qv, and
a time Qt, the query needs continuously reporting all the moving objects inside
R(t) from time Qt, where R(t) denotes the range at time t after Qt.

Optimizing Moving Queries over Moving Object Data Streams 565

In fact, the static query can be treated as the special case of the moving query where
the velocity is equal to zero. Therefore, each tuple in the query data stream can be
represented using the same format 〈QID, R, Qv, Qt〉. Similar to the moving object
data stream, the newly incoming query will replace the tuples with the same QID in
the memory. Without loss of generalization, we consider the square range throughout
the paper.

2.2 Related Work

There are numerous work in the area of spatio-temporal query processing on moving
objects (e.g.,[1,4,6,12,10,11,14,16]). However, these disk-based approaches may not be
suitable for scalable, real-time location based queries because of high I/O costs, even
when sophisticate buffer management is employed. Although it is possible to tailor
these methods and put the entire data and indexes into the main memory to speed up,
this may consume too much memory. In this paper, we have proposed a main memory
based index approach. Our approach does not intend to store the data of all moving
objects, because only some objects will be included in the queries answers.

In [5,15], continuous range queries are made over moving objects. The queries being
considered are however static. In [7,8,9], the problem of moving queries over moving
objects are discussed. However, their approaches are to store snapshots of queries and
objects at each timestamp making it necessary to store and process these snapshots on
the disk. To ensure efficient processing, our work here try to address the same problem
using only in-memory processing.

3 Continuous Query Processing on Moving Object Streams

3.1 System Architecture

In this section, we introduce the QMOS (Query Moving Object Stream) system.
Figure 1 gives an overview of the QMOS system. There are four in-memory stor-
ages (shaded boxes): object pool, query pool, event queue and query filter; and two
processors (white boxes): query processor and discarding processor.

Processor
Query

Processor

Discarding

Time

Buffer

Filter

Answers

Event

Stream

Data

Stream

Query
Query

Object

Queue

Query

Fig. 1. An Overview of the System Architecture

566 D. Lin, B. Cui, and D. Yang

An incoming object is first put into the object pool, and then will be sent to the query
processor together with selected queries from the query filter. The query processor
will generate three kinds of results: current answer, potential answer, and none answer.
Current answer means that the incoming object is one of the answers of the query at
the current time, which will be directly reported to the user. Potential answer means
that the incoming object will be one of the answers of the query at some future time
(within the maximum update time interval U). None answer means that the incoming
object is neither a current answer nor a potential answer. Both of them will be further
sent to the discarding processor. Since the memory is limited, potential answers and
none answers need to be judged whether they are valuable to be stored. The discarding
processors will provide a feedback to the object pool if the incoming object can be
discarded. Valuable potential answers will then be stored as events in the event queue.
As time passes, potential answers may turn into current answers and be reported to the
users. In addition, the event queue also handles objects which leave the query answer
sets. It is worth noting that the query answer set is maintained incrementally. There is
an output only when the query result has been changed, due to adding or deleting an
object from the answer set.

The processing of an incoming query is relatively simple. If the memory is enough,
we store it in the query pool, and register its summary information in the query filter.
Otherwise, the Discarding processor is triggered to find out whether there is some space
can be used for the new query.

3.2 Storage Components

The object pool stores the information of the moving objects. Each tuple in the object
pool is in the form of 〈OID, Op, Ov, Ot, PA, Ca, Evt〉, where OID, Op, Ov, Ot
are used to represent the object, PA is the number of queries of which the object is a
potential answer, Ca is a bit-map storing the entries to the queries of which the object
is a current answer, and Evt is also a bit-map used to locate the related events of this
object.

The query pool stores the information of the queries. Each tuple in the query pool
consists of 〈QID, R, Qt, Qa, Evt〉, where QID is the query ID, R is the query range,
Qt is the query starting time, Qa is a pointer to the query results, and Evt is used to
locate the related events of the query (the same as the corresponding part in the object
pool). Further, R is represented by (Qp, Qv, L), where Qp stores the left bottom corner
of the query window, Qv is the moving velocity of the query window, and L is the
length of the query window.

The event queue stores future events when an object will join or leave current query
answer set. Each tuple consists of four components: t, pO, pQ, and M . t is the time that
the event may happen. pO is a pointer to the object stored in the object pool, and pQ
refers to the query that this object may affect. M is a one-bit mark: if in the event the
object will become one of the query answers, M is set to 1; if the object will no longer
be the answer, M is set to 0.

Object pool, query pool and event queue are all organized as hash tables where the
keys are OID, QID and t respectively. The lengths of the hash tables are determined
by the memory size. The hash structure is preferred over other kinds of data structures

Optimizing Moving Queries over Moving Object Data Streams 567

since (i) these data are usually retrieved by their key values and hashing techniques
provide fast and direct access; (ii) the memory is limited and hash structures have less
storage overhead.

The query filter is designed to accelerate the query processing. It is a grid structure
which captures the current and future positions of moving queries. Basically, we par-
tition the space into a regular grid where each cell is a bucket. Each bucket contains
pointers to the queries passing this bucket.

3.3 Data Processing

We proceed to present how the system manages the two kinds of incoming data (moving
objects and queries) and the internal data – events. During all processes, whenever there
is not enough memory, discarding policies are applied to remove useless data to collect
memory. We defer the discussion of the discarding policies to the next subsection.

• Moving Object Data Streams
An incoming object O is processed as follows. First, we check whether the object ID has
already existed in the object pool. If yes, we modify the corresponding tuple by using
the new information including position Op, velocities Ov, update time Ot. Information
with regards to this object O in the query results and the event queue is removed, since
they become obsolete now. Then object O will be computed with queries selected by
the query filter. We need to decide whether we store this object in the memory. We
will store it only if it proves to be useful. In particular, the coming object is useful if
it is a current/ potential answer of a query, and there is enough memory after applying
discarding policies. After the object O is successfully stored in the memory, the pointer
to the object will be inserted to the query answer set where it is a current answer, and
the leaving events and potential answers will be added into the event queue.

The details of query and discarding processes will be addressed later. The deletion
and insertion of the object in the object pool is done fast by hashing the OID, similarly
to the insertion of the related events and query answers. While the deletion of related
events and query answers is a little more complex. The straightforward way is to scan
the whole event queue (query pool) to find the events (queries) related to the object,
which is obviously inefficient and may result in an unbearable delay when the memory
size is large. To avoid such a brute force method, we propose the following techniques.

1 0 1 0

3

...
3

31
2
3

Evt

OID = 3 U = 16 time

14
15

13

Event Queue

12

0

0 0 0 1 0 0 0 00 0 0 0

04812

(a) Evt Attribute

..

...

QID

QID
...

...

...

...

Hq(QID) = QID mod Nq

Query Pool

...

...

Ca

Hca(Hq(QID))
= QID mod Nq mod Nca

.

0..

...

Nca bits

Nca−1

Nq−1

0

.

(b) Ca Attribute

Fig. 2. Examples of Evt and Ca Attributes

568 D. Lin, B. Cui, and D. Yang

The search of the related events is managed with the aid of the Evt attribute of the
object. Specifically, one bit in the Evt is related with one timestamp in the event queue,
and the bit will be set to 1 if there is an event with respect to the object happening at the
corresponding timestamp. For example (see Figure 2(a)), assuming that OID = 3 and
U = 16, the object has related events at time 1, 3 and 12. Then the 1st, 3rd and 12th
bits in the Evt are set to 1, others are 0. By checking the Evt, we can easily find the
entries to the related events of the object and avoid scanning the entire event queue.

The search of the related queries is accelerated by the Ca attribute of the object.
Different from the Evt, the one-one map (i.e. one bit to one entry in the hash table of
the query pool) may lead to a long Ca, because the number of queries in memory could
be large when the memory scales up (i.e. the length of the hash table of the query pool
may grow up). Therefore, we employ a second level hashing over the query IDs, where
each bit of Ca corresponds to a series of entries in the hash table of the query pool. As
shown in Figure 2, suppose that the length of the hash table of the query pool is Nq,
and the number of the bits in Ca is Nca. Queries are first hashed to the hash table of the
query pool by the function Hq(QID) = QID mod Nq. Then the mapping function for
the Ca is Hca(QID) = Hca(Hq(QID)) = (QID mod Nq) mod Nca.

• Queries
For an incoming query Q, we insert 〈QID, Qp, Qv, L, Qt, NULL〉 into the query table
to represent the new query. The trajectory of the new query will be registered in the
query filter. The new query only considers the objects coming after it, which means it
needs some time to “warm up”. The “warming-up” time could be short since objects
are updated frequently. If the query expires, we remove the entry from the query pool,
and the events related to the old query (the procedure is similar to that in the previous
section). Note that objects become none answers after the deletion of the query are
automatically discarded from the memory.

• Events
As time passes, the event queue is checked to update current answers of queries. All
events whose start time is less than or equal to current time are evaluated. Recall that,
the events are stored in a hash table with the length equal to the maximum update
interval U . By hashing the current timestamp t, we can find its entry in the hash table.

There are two kinds of events: objects leaving or entering the query range. According
to the type of an event, different actions are performed. Given an event 〈t, pO, pQ, M〉,
if the mark M equals to 1, the object pO pointing to should be inserted into the answer
list of the corresponding query that pQ points to. If M equals to 0, which means the
object O is no longer an answer of the query Q, then O is removed from the answer list
of Q. In both situations, the Ca and Evt attributes of O should be adjusted. Finally, we
delete the event itself.

3.4 Discarding Policy

Continuous queries over infinite streams may require infinite working memory. Thus,
an essential solution to answer such queries in bounded memory is to discard some
unimportant data when the memory is full. Our proposed discarding policies comply
with the basic rule that discarding data of lowest priority first. In our scenario, we define

Optimizing Moving Queries over Moving Object Data Streams 569

the priorities of the data as that: the query data is most important, followed by the current
answer and the potential answer.

Each time the memory is full, we first attempt to discard objects which are neither
current answers nor potential answers. If this operation fails, we further apply any of
the following three policies.

1. Discard the oldest object according to its insertion time. The idea behind the Policy
1 is that the oldest object has the highest probability to be updated first, and thus
the influence of discarding this object may be ended within the shortest time.

2. Discard the object whose first appearance in the event queue is latest than that of
any other object and it is an entering event. The motivation of Policy 2 is to keep the
query answers unaffected as long as possible. Therefore, it picks the object which
is the last one to become a potential answer. Combined with the idea of Policy 1,
we may have a variation of Policy 2: discard the object which has the longest time
interval between its insertion time and the time it becomes an answer.

3. Discard the object that affects fewest queries. Different from the first two policies
that both take into account the time effect, Policy 3 aims to minimize the number
of queries that the object affects.

All the policies share the same purpose that minimizes the error rate of the query an-
swers after the discarding. Note that the query data will be discarded only when the
memory is fully occupied with queries.

Next, we introduce the discarding process. Any policy is realized by scanning the
object pool once. Policy 1 compares the insertion time Ot of each object and discards
the one with smallest Ot. Policy 2 is done by examining the attribute Evt of an object,
where the lowest none-zero bit refers to the first event of the object. We then need to
check whether the event is an entering event or a leaving event. For the Policy 3, the
number of related queries can be approximated by the sum of none-zero bits in Ca and
Evt. If the exact number is required, we can further access corresponding tuples in the
event queue and query pool according to Ca and Evt.

4 Algorithms of Continuous Range Queries

4.1 Processing a Single Query

In the two-dimensional space, given a continuous range query 〈QID, Qp, Qv, L, Qt〉,
the query range at time t (Qt ≤ t) can be represented by the left-bottom and right-
top corner, [(Qpx + Qvx(t − Qt), Qpy + Qvy(t − Qt)), (Qpx + Qvx(t − Qt) +
L, Qpy + Qvy(tQt) + L)]. For an incoming object 〈OID, Op, Ov, Ot〉, we need to
identify whether it is a current answer or a potential answer.

An object is a current answer to the range query if its position at current time tc is
inside the query range at time tc. We first compute the query range at tc by its moving
function, and then compare the position of the object with the left-bottom and right-top
corner of the query range directly.{

Qpx + Qvx(tc − Qt) ≤ Opx ≤ Qpx + Qvx(tc − Qt) + L
Qpy + Qvy(tc − Qt) ≤ Opy ≤ Qpy + Qvy(tc − Qt) + L

570 D. Lin, B. Cui, and D. Yang

If the above conditions are satisfied, the object is a current answer to the range query
and will be added into the answer list. The remaining task is to compute the time it
leaves the query range, and insert the leaving event to the event queue. As the object is
already inside the query range, its future trajectory will have only one intersection point
with the query range, and the intersection time is the leaving time. The details of the
computation will be explained shortly.

An object is a potential answer to the range query if its position at future time tf (not
later than the maximum update interval) is inside the query range at time tf . Then we
need to compute the time when the object enters the query range, and insert this future
event to the event queue. As the object is currently outside the query range, its future
trajectory may have at most two intersection points with the query range. The earlier
intersection time is the entering time and the other one is the leaving time.

We proceed to present how to compute the intersection time. Figure 3 shows a con-
tinuous range query and an incoming moving object, where the solid rectangle presents
the query range at the current time, the rectangles with broken line denotes the query
ranges at near future, the black point is the moving object, and the connecting line
with arrow shows the object’s future trajectory. To check whether the object’s future
trajectory intersects with the query range, let us consider the four borders of the query
range, AB,BC,CD,DA, one by one. The border AB moves at the speed of Qvx, and
thus the line at time t (denoted as Lab) it resides in can be described by the equa-
tion: x = Qpx + Qvx(t − Qt). If the object’s trajectory intersects with AB, it must
also intersects with Lab. In other words, the object’s x coordinate should be on Lab at
the intersection time. Assuming that the intersection time is tab, we have the equation:
Opx + Ovx(tab − Ot) = Qpx + Qvx(tab − Qt). By solving the equation, we obtain
the following results:

tab =

{
(Qpx−Ox)−(Qvx·Qt−Ovx·Ot)

Ovx−Qvx
, Ovx �= Qvx;

+∞, Ovx = Qvx.

Note that, when Ovx = Qvx, i.e. the object and the border AB move at the same speed
and same direction, they will never meet each other. Therefore, the tab is set to be the
infinite large +∞ in this case.

The resultant tab value is invalid if it does not satisfy the constraints: (i) tab > Ot,
i.e. the intersection time should be later than the object insertion time; (ii) tab > Qt,

Qx

t

B C

A D

y

O
Qy

x

Fig. 3. An Example of a Continuous Range Query

Optimizing Moving Queries over Moving Object Data Streams 571

i.e., the intersection time should be later than the query starting time; (iii) tab < Ot+U ,
i.e., the intersection time should not exceed the validity period of the object. Invalid tab

will also be reset to the infinite large +∞.
So far the tab we computed is only the intersection time of the object’s trajectory and

the line that the AB belongs to. We need to further check whether the intersection point
lies in the line segment AB. Suppose that the tab is valid, we can use it to compute the
intersection point P (Px, Py), where Px = Opx + Ovx(tab − Ot), and Py = Opy +
Ovy(tab − Ot). Then we compare the y coordinate of P and points A, B. If Ay ≤
Py ≤ By, the intersection point is in the segment AB, which means we obtain one
useful intersection time. Otherwise, we again set the tab to be +∞.

The similar computation is carried out for the other three borders BC, CD and DA.
The entering time te is the minimum value of the four intersection times, and the leaving
time tl is the finite maximum value of the four intersection times. Note that we may not
need to compute the four intersection times. If we have obtained two intersection times
which are not +∞, we do not need to process the remaining borders.

4.2 Processing Multiple Queries

An incoming object could be a current or potential answer of multiple queries in the
memory. Comparing it with all the queries one by one may result in high query cost.
Therefore, we propose a query filter to prune the searching space.

The query filter is a regular grid structure which partition the space into equal cells.
Each cell stores pointers to queries which pass by the cell during the maximum update
interval U . The pointer to one query may be stored several times in the grid due to
the movement of the query. To reduce the number of duplications, we need to decide
a reasonable grid cell size. For example, we can set the extent of cell to be slightly
larger than vmax · U , where the vmax is the maximum speed of a query. For a query
with a long lifetime, we will update its information in the grid every U time interval.
Moreover, in order to speed up the mapping process, we do not compute the exact cells
that the queries intersects with. Instead, we map the minimum bounding rectangle of
the query sweeping region (during U) to the grid as shown in Figure 4(a).

We are now ready to look at how the query filter works. For example, in Figure 4(b),
given an incoming object O at time Ot, we will map it to the grid in the similar way as
we have done to the query. First we compute its position at time Ot + U . The search

q q

q

q

q

q q

q

(a) MBR of Query Sweeping Region

q2

o

q2q2 q2

q3

q1−q3q3

q1−q3
q3

q1

(b) Query Filter

Fig. 4. Query Filter Construction

572 D. Lin, B. Cui, and D. Yang

space (the dashed rectangle in the figure) is the rectangle determined by the two posi-
tions at Ot and Ot + U respectively. Then only queries registered inside this rectangle
need to be computed.

5 Performance Study

All the experiments are conducted on a 2.6G Hz P4 machine with 1Gbyte of main mem-
ory. The memory for our application is limited from 100K to 2M. Moving objects are
represented as points in the space domain of 1000 × 1000. The datasets were gener-
ated by a typical data generator [11]. The maximum interval between two successive
updates of an object is equal to 30 time units. Queries follow the same distribution of
the moving objects. The moving speed of the queries is half of the speed of objects. The
query window size is 0.01% of the space. The number of queries existing at the same
time varies from 100 to 500. Unless noted otherwise, we use 300K memory for 100K
moving objects when there are 100 queries at each timestamp.

We evaluate the memory requirement, the accuracy and the response time of the
proposed three policies. The memory requirement is compared with the Bx-tree. The
accuracy function is Accuracy = Number of answers produced by the algorithm

Number of correct answers . The re-
sponse time is defined as the time interval between the input of a data and the output of
the result regarding to this data.

• Effect of Memory Size. The first round of experiments evaluate efficiency of the
three discarding policies when varying the total available memory size from 100K bytes
to 500K bytes. The number of moving objects are 100K, and the data streams of their
update information is of size 217K tuples during 30 timestamps.

Figure 5(a) shows the results of the accuracy at timestamp 30. As shown, the perfor-
mances of all the policies improve with the increasingly large memory size. The reason
is straight forward: larger memory can hold more answers. When the memory size
reaches beyond a certain point (> 300K), the accuracy of all the policies approaches
100%. Note that 300K is about only 13% of the space used to store all the objects. This
is because our algorithm only catches query answers and the result demonstrates its
space efficiency. We can also observe that Policy 2 always yields higher accuracy than
the other two policies. The reason could be that Policy 2 maximizes the valid period of
query results.

Figure 5(b) shows the average response time of the three policies during one maxi-
mum update interval. We can see that as the memory size increases, the response time
of three policies first increases slightly and then almost keep constant. For an object,
the response time is the sum of query processing time and the discarding processing
time. The query processing time will not be affected by the memory size when the
query number is fixed, and thus the variation of the response time is mainly due to the
variation of the discarding processing time. As the memory increases, the time to find
a replacement slows down, whereas the need to execute a discarding policy is reduced.
When these two factors reach a balancing station, the performance becomes stable. In
addition, the resultant three curves are close to one another possibly because that the
discarding process is only different in the selection metric, and hence the processing
time is similar.

Optimizing Moving Queries over Moving Object Data Streams 573

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500

Memory Size (Kbytes)

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(a) Memory Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

100 150 200 250 300 350 400 450 500

Memory Size (Kbytes)

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(b) Memory Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Unit

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(c) Effect of Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Unit

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(d) Effect of Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500

Number of Queries per Time Unit

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(e) Query Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500

Number of Queries Per Time Unit

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(f) Query Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

100K 200K 300K 400K 500K

Number of Moving Objects

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(g) Response Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 200 300 400 500

Number of Queries per Time Unit

M
in

im
al

 M
em

or
y

R
eq

ui
re

m
en

t
(M

by
te

s) Bx-tree

Policy 1

Policy 2

Policy 3

(h) Minimum Memory

0

2

4

6

8

10

12

14

16

100K 200K 300K 400K 500K

Number of Moving Objects

M
in

im
al

 M
em

or
y

R
eq

ui
re

m
en

t
(M

by
te

s)

Bx-tree

Policy 1

Policy 2

Policy 3

(i) Minimum Memory

Fig. 5. Experimental Results

• Effect of Time. Next, we investigate performance degradation across time. The
100K moving objects are kept updated during 60 timestamps (two times of maximum
update interval). As shown in Figure 5(c) and (d), the performance of all the policies
decreases a little as time passes, which is due to the execution of the discarding policies,
and the larger query range.

• Effect of Number of Queries Per Time Unit. In this set of experiments, we vary the
number of queries at the same timestamp. We fix the memory size to 300K and test the
accuracy and response time. From Figure 5(e) and (f), we observe that the performance
degenerates with growing number of queries at the same time. The decrease of the
accuracy is mainly caused by the increase of the result dataset. Due to the memory
limitation, even potential answers at near future time may be discarded, which affects
the accuracy and also increases the processing time.

• Effect of Data Size. To study the scalability of our algorithms, we examine the
method with varying the number moving objects from 100K to 500K. For the response
time (see Figure 5(i)), Policy 2 is the best since it requires the smallest memory so that
the discarding process can be executed fastest.

574 D. Lin, B. Cui, and D. Yang

• Comparison with the Bx-tree. To show the effectiveness of the proposed method,
we compare it with the Bx-tree [4] which has much smaller space requirement com-
pared with other existing index structures, e.g. the TPR∗-tree [14]. We first explore the
minimum memory required for each policy to achieve high accuracy (above 99%) by
varying the numbers of queries per time unit. Not that, the Bx-tree stores all the objects
for queries. Figure 5(h) shows the results. Not surprisingly, the minimum memory re-
quired for all policies increases with the number of queries. However, our algorithms
can save up to 90% space compared with the Bx-tree. Among three policies, Policy 2
has the smallest space requirement, followed by Policy 3 and 1. This is consistent with
the previous results in Figure 5(a). Those policies perform better when using the same
size of memory, will need less space to reach high accuracy.

Figure 5(i) shows that our algorithms scale very well compared with the Bx-tree for
large data sizes. By using our algorithm, less than 2M bytes memory is required for the
500K data, whereas the Bx-tree needs about 15M bytes space.

6 Conclusion

In this paper, we proposed a novel scheme which can handle infinite data streams in
memory, and provide prompt response, by compromising with small errors. Our ap-
proach supports continuously moving queries over moving objects, both of which are
represented by linear functions. Due to the constraints of the memory size and response
time, we propose light data structures, and employ hashing techniques. Also, we derive
several replacement policies to discard objects that are of no potential interest to the
queries. Experimental studies were conducted and the results show that our proposed
method is both memory and query efficient.

References

1. Y. Chen, F. Rao, X. Yu, D. Liu, and L. Zhang. Managing Location Stream Using Moving
Object Database. Proc. DEXA, pp. 916–920, 2003.

2. A. Čivilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Efficient Tracking of Moving Objects
with Precision Guarantees. Proc. Mobiquitous, pp. 164–173, 2004.

3. H. G. Elmongui, M. Ouzzani and W. G. aref. Challenges in Spatio-temporal Stream Query
Optimization. Proc. MobiDE, pp. 27–34, 2006.

4. C. S. Jensen, D. Lin and B. C. Ooi. Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. Proc. VLDB, pp. 768–779, 2004.

5. D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch. Efficient Evaluation of
Continuous Range Queries on Moving Objects. Proc. DEXA, pp. 731–740, 2002.

6. Y. Li, J. Yang, and J. Han. Continuous K-Nearest Neighbor Search for Moving Objects.
Proc. SSDBM, pp. 123–126, 2004.

7. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Con-
tinuous Queries in Spatio-temporal Databases. Proc. SIGMOD, pp. 623–634, 2004.

8. M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous Query Processing of
Spatio-temporall Data Streams in PLACE. Proc. STDBM, pp. 57–64, 2004.

9. R. V. Nehme, and E. A. Rundensteiner. SCUBA: Scalable Cluster-Based Algorithm for
Evaluating Continuous Spatio-temporal Queries on Moving Objects. Proc. EDBT, pp.
1001–1019, 2006.

Optimizing Moving Queries over Moving Object Data Streams 575

10. J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Efficient Index for Predicted Trajecto-
ries. Proc. SIGMOD, pp. 637–646, 2004.

11. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of
Continuously Moving Objects. In Proc. SIGMOD, pp. 331–342, 2000.

12. D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main Memory Evaluation of
Monitoring Queries Over Moving Objects. Distributed and Parallel Databases,pp. 117–135,
2004.

13. Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. Proc.
VLDB,pp. 287–298, 2002.

14. Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In Proc. VLDB, pp. 790–801, 2003.

15. K. L. Wu, S. K. Chen, and P. S. Yu. Indexing continual Range Queries with Covering Tiles
for Fast Locating of Moving Objects. Proc. ICDCSW,pp. 470–475, 2004.

16. M. Yiu, Y. Tao, and N. Mamoulis. The Bdual-Tree: Indexing Moving Objects by Space-
Filling Curves in the Dual Space. To appear in VLDB Journal, 2006.

	Introduction
	Problem Statement and Related Work
	Problem Statement
	Related Work

	Continuous Query Processing on Moving Object Streams
	System Architecture
	Storage Components
	Data Processing
	Discarding Policy

	Algorithms of Continuous Range Queries
	Processing a Single Query
	Processing Multiple Queries

	Performance Study
	Conclusion

