
A Workload-Driven Unit of Cache Replacement for
Mid-Tier Database Caching

Xiaodan Wang1, Tanu Malik1, Randal Burns1, Stratos Papadomanolakis2,
and Anastassia Ailamaki2

1 Johns Hopkins University, USA
{xwang, tmalik, randal}@cs.jhu.edu

2 Carnegie Mellon University, USA
{stratos, natassa}@cs.cmu.edu

Abstract. Making multi-terabyte scientific databases publicly accessible over the
Internet is increasingly important in disciplines such as Biology and Astronomy.
However, contention at a centralized, backend database is a major performance
bottleneck, limiting the scalability of Internet-based, database applications. Mid-
tier caching reduces contention at the backend database by distributing database
operations to the cache. To improve the performance of mid-tier caches, we propose
the caching of query prototypes, a workload-driven unit of cache replacement in
which the cache object is chosen from various classes of queries in the workload. In
existing mid-tier caching systems, the storage organization in the cache is statically
defined. Our approach adapts cache storage to workload changes, requires no prior
knowledge about the workload, and is transparent to the application. Experiments
over a one-month, 1.4 million query Astronomy workload demonstrate up to 70%
reduction in network traffic and reduce query response time by up to a factor of
three when compared with alternative units of cache replacement.

1 Introduction

The sciences are collecting and analyzing vast amounts of observational data. In Astron-
omy, cataloging and mapping spectral characteristics of objects in only a fraction of the
sky requires several terabytes of storage. Data are made available to remote users for
processing, for example through SkyQuery [1], a federation of Astronomy databases
and part of the World-Wide Telescope [2]. However, SkyQuery faces an impending
scalability crisis. The federation is expected to expand from roughly a dozen members
today to over a hundred in the near future [3]. Furthermore, member databases, such as
the Sloan Digital Sky Survey (SDSS) [4], are accumulating data at an astonishing rate.

Mid-tier caching is an attractive solution for increasing scalability, availability, and
performance of distributed database applications [5]. We study mid-tier caching in the
context of SkyQuery using bypass-yield caching [6]. Bypass-yield caching replicates
database objects, e.g. columns (attributes), tables, or views, at caches deployed near the
clients so that queries are served locally, reducing network bandwidth requirements.
Caches service some queries in cache and ship other queries to be evaluated at the
backend database.

Our experience with bypass-yield caching indicates that query evaluation perfor-
mance in the cache is also critical. Despite the network benefits, poor I/O

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 374–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 375

performance in caches may result in inferior overall performance. Mid-tier caches lack
the indices that are vital to I/O efficiency in databases. Maintaining indexes in a cache
is prohibitively expensive given that (1) index construction is time consuming and I/O-
intensive, (2) cache data are continuously changing, and (3) indices consume space,
polluting the cache with replicated data. In this paper, we extend previous work on
network traffic reduction with bypass-yield caching [6] by exploring ways to simulta-
neously improve query execution performance in the cache.

In existing mid-tier caching models, the storage organization employed by the cache
is either tied to the backend database or defined a priori, e.g. columns [6], tables [5],
vertical or horizontal fragments of base tables [7,8], or views [9]. Our work differs from
previous caching approaches in two ways. First, we explore dynamic cache storage or-
ganizations that take into account workload information to improve query performance.
Second, we evaluate alternative units of cache replacement in terms of their network
traffic reduction benefits.

We propose a workload-driven technique for choosing the unit of cache replacement
that is adaptive and self-organizing. Our model employs query prototypes in which each
prototype is a combination of attributes that is accessed by the same class of queries.
Prototypes serve as the logical unit of cache replacement. Query prototypes are adap-
tive in that prototypes are defined dynamically based on the access pattern of queries
that appear in the workload. This is useful for scientific databases in which an a priori
workload is not available. In particular, Astronomers are constantly finding new exper-
iments to conduct in SkyQuery, making it difficult to identify a static set of frequently
accessed database objects. Query prototypes are self-organizing in that changes to the
storage organization are part of the cache replacement decision. Each prototype is opti-
mized for a specific class of queries and, as workloads change, the storage layer changes
accordingly. This makes it unnecessary to reorganize the cache contents periodically to
improve query performance.

Our experiments show that query prototypes result in a factor of three reduction in
query response time when compared with caching of columns, tables, and vertical par-
titions of backend tables. Prototypes also exhibit low cache pollution and high network
savings. This is especially true at low cache sizes in which 40% less network traffic was
generated when compared with the next best method.

We emphasize that this paper does not introduce a new caching algorithm, but presents
a technique for specifying the unit of cache replacement that improves performance
without sacrificing the inherent merits of mid-tier database caching.

2 Caching for Scientific Databases

We briefly describe the framework used to study our approach and explain why choos-
ing the unit of cache replacement is relevant to database caching.

2.1 Cache Environment

SkyQuery [1], a federation of Astronomy databases, is a Web-based application in
which caching drastically reduces network traffic. In SkyQuery, Web mediators or por-
tals located in close proximity to the users serve as the interface between user queries



376 X. Wang et al.

Web Portal

DB

Wrapper WrapperWrapper

Q
ueries

Sub−Queries

SO
A

P

Cache

DB

UserUser

DB

WAN
LAN

Fig. 1. Mid-tier database caching in SkyQuery

and member databases in the federation. As shown in Figure 1, the portal communicates
with member databases via a wrapper interface. The wrapper interface allows member
databases to remain autonomous and heterogeneous entities. We are currently building
a cache prototype in SkyQuery in which the cache resides at the portal and utilizes the
wrapper interface to transfer data, process queries, and collect schema information.

The SkyQuery workload is read-only and contains a rich variety of range, aggre-
gate, identity, and spatial queries submitted through a large community of Astronomers.
User queries either execute locally in the cache or are shipped to backend databases.
However, executing queries at the backend database generates a lot of network traffic
over WAN, because query results are transferred back to the user. The goal is to cache
database objects so that most of the data transfer is from the cache to the user over LAN.

We employ bypass-yield caching (BYC) [6], which was developed for SkyQuery.
The primary goal of caching in this environment is network traffic reduction because
queries are network-bound [6]. BYC is an economic framework in which network band-
width is the currency and network traffic reduction is the goal. The decision to ship a
database object to the cache represents an investment in which the cost to load an object
is recovered through expected network savings. Queries that access objects which fail to
yield positive network savings in this economic model are bypassed, i.e. shipped to the
backend database for execution. BYC is also flexible with respect to the unit of cache
replacement; replacement can be performed on individual columns, tables, or tuples.

Query prototypes is an extension to BYC by making storage management part of the
cache replacement decision. Storage management is important because mid-tier caches
operate in index-free environments in which cache data are continuously changing and
cache space is constrained. While BYC identifies data that are beneficial to the cache, it



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 377

does not consider how data layout on disk impacts query execution performance. Query
prototypes not only capture data that are useful to cache but also how data should be
organized on disk.

2.2 Choosing the Unit of Cache Replacement

The granularity of cache replacement has a significant impact on the overall network
performance [6]. Network performance is governed by the utilization of cache space. In
general, caching objects at too fine a granularity increases maintenance overhead. For
example, if data granularity is chosen at the level of individual tuples, then significant
cache space is needed to maintain the relationships among all of the cached tuples. On
the other hand, too coarse a granularity degrades cache utilization by emptying a large
portion of the cache during object replacement [10].

Query performance is governed by the effective clustering of data in the cache. The
best clustering is obtained if groups of workload-related tuples are cached, as in seman-
tic caching. However, semantic caching requires that workloads exhibit query locality,
which is not true of Astronomy workloads [6]. Furthermore, splitting, coalescing, and
containment checking is difficult when workloads consist of complex queries, and not
just range queries [7]. Thus, from the perspective of query performance, cache replace-
ment must be performed at the granularity of tables, columns, or vertical or horizontal
fragments of the backend database. However, these database objects are defined dur-
ing the database design process, which is concerned with eliminating redundancy and
update anomalies in addition to workload access patterns. Naively choosing any of the
above as the choice of caching granularity forces columns that are logically related but
rarely accessed together to be stored together in the cache. This hurts both query and
network performance. In contrast, if the unit of cache replacement is adaptive so that
columns are grouped in a manner that reflects changing query access patterns, then
overall cache performance is improved.

3 Related Work

In this section, we summarize work on mid-tier caches that define static and dynamic
units of cache replacement. We also review several database design methods for im-
proving query performance, including vertical partitioning and materialized views.

3.1 Statically-Defined Cache Replacement

Mid-tier caching provides greater scalability and availability, increased performance,
and quality of service guarantees [5]. Several high performance mid-tier caching sys-
tems allow for flexibility in defining the unit of cache replacement [7,8,9]. Cache Tables
[7] allows for the caching of declarative cache tables, which corresponds to a table, col-
umn, or materialized view from the backend database. Similar flexibility in the unit of
cache replacement is achieved in TimesTen [9] through the definition of cache groups
and MTCache [8] through the use of select-project views. However, the unit of cache
replacement in these systems is specified a priori during initialization. Also, the unit
of cache replacement is static and does not adapt to workload changes. We found that



378 X. Wang et al.

adapting the storage organizations of cached contents by changing the unit of cache
replacement over time significantly improves query performance.

3.2 Dynamically-Defined Cache Replacement

Predicate-based or semantic caching supports an adaptive unit of cache replacement
[11]. Caching is performed on groups of spatially related tuples, as defined by a set
of predicate conditions, which exhibit high semantic reuse. Unlike statically-defined
caching schemes, which are susceptible to poor clustering, semantic regions can grow
or shrink in size to adapt to workload changes. Judicious data placement, accomplished
by preserving spatial locality of data that are frequently accessed together, improves
query performance significantly over static schemes [10].

While semantic caching is attractive, there are some drawbacks. Maintaining a se-
mantic description of the data is feasible when workloads consist mostly of simple
select-project-join queries [7]. Also, workloads should exhibit semantic reuse in which
data items contained in the result of a query are later reused. These properties allow for
efficient checking of query containment against cached data [11]. However, Astronomy
workloads comprise of nested queries with user-defined functions and complex joins,
which are unsuitable for semantic caching. More importantly, scientific workloads ex-
hibit little semantic reuse but frequent syntactic reuse [6]; i.e. specific data items expe-
rience little to no reuse, but queries request data from the same group of columns. We
exploit syntactic reuse by caching dynamically-defined groups of columns.

3.3 Database Design Methods

Vertical partitioning identifies I/O efficient placement of columns at the storage layer to
improve query performance [12,13,14,15,16,17]. Early works introduced the notion of
affinity, the frequency in which attributes are accessed together, to evaluate the place-
ment of columns [12,13,18]. Data columns are grouped together by applying a cluster-
ing algorithm on affinity values. Recent work suggests that affinity value is decoupled
from actual I/O cost and is a poor predictor of query performance. They propose more
sophisticated cost models that estimate the I/O cost of performing database operations
[14,15]. AutoPart [15] is a workload-based, automated database design tool that im-
proves query performance through vertical and horizontal partitioning. While query
prototypes can be described as a vertical fragmentation of the database, it does not
partition the database algorithmically. Also, prototypes are not disjoint in that multiple
prototypes may replicate the same data column.

Materialized views allow for arbitrary vertical and/or horizontal fragmentations of
base tables. Materialized views are concrete tables derived from underlying base rela-
tions to enable I/O efficient accesses. In ViewCache, a framework for managing mate-
rialized views is provided that balances storage overhead with performance [19]. Views
are made compact by storing pointers to records in the base relation and are materialized
on demand. However, ViewCache does not specify the appropriate views to create.

Multi-query optimization, a technique used in data warehouse systems, provides one
solution to view selection [20]. The goal is to exploit shared data between a set of
queries or views and identify additional views for transient or permanent materializa-
tion that are used to share intermediate results and improve performance. Multi-query



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 379

optimization has been successfully applied in view maintenance [21] and in the op-
timization of inter-query execution [22]. However, evaluating shared sub-expressions
increases the complexity of query optimization. Query prototype caching does not in-
crease optimization cost because each query is evaluated against a single prototype.
Moreover, multi-query optimization is applied to known workloads that are fairly static
and that have high overlap across queries. Neither are assumptions for query prototypes.

4 Query Prototype Caching

This section provides a formal description of query prototypes. The method for speci-
fying query prototypes takes as input a set of queries Q and outputs a set of prototypes
P, which serve as the unit of cache replacement. Each query is matched against exactly
one prototype, whereas each prototype is derived from a set of related queries.

4.1 Definition

Let R = R1, ..., Rn be the set of all tables at the backend database. Each table consists
of a set of attributes. Let A = A11, ..., A1m, A21, ..., Anp as the set of all attributes at
the backend database in which Aij is the j th attribute in relation Ri.

Let Q be the set all queries in the workload in which qi∈Q is the ith query in the
workload. AutoPart [15] introduced the concept of a Query Access Set (QAS), which
is the subset of attributes from a single relation in R that are referenced by a query in
Q. For query prototypes, we redefine Query Access Set to be the set of attributes from
every relations in R that are referenced by a query in Q.

Let QAS(qi, A) be defined as the set of attributes from A that are referenced by query
qi. For query prototype caching, we consider queries qi and qj to be equivalent if and
only if QAS(qi, A) = QAS(qj , A) – that is, they access the same set of attributes. A set
of queries, in which the QAS of these queries are identical, make up an equivalence
class in the workload. Each prototype in P represents a unique equivalence class in the
workload. Thus, to cache a prototype Pk, the set of attributes referenced by queries in
Pk are loaded into the cache as one unit.

We demonstrate the concept of query prototypes using three queries derived from an
Astronomy workload [4]:

q1: SELECT objID FROM Galaxy, SpecObj
WHERE objID = bestobjID and specclass = 2 and z between 0.121 and 0.127

q2: SELECT objID, ra, dec FROM PhotoPrimary WHERE dec between 2.25 and 2.75
q3: SELECT top 1 ra, dec FROM PhotoPrimary WHERE objID = 5877311875315

The example shows two unique query prototypes in which the Query Access Set for
q2 and q3 are identical:

QAS(q1, A) = {Galaxy:objID, SpecObj:bestobjID, SpecObj:specclass, SpecObj:z}
QAS(q2, A)=QAS(q3, A)={PhotoPrimary:objID,PhotoPrimary:ra,PhotoPrimary:dec}



380 X. Wang et al.

4.2 Discussion

To materialize a prototype in the cache, the group of attributes belonging to the pro-
totype is allocated a unique set of relation files in the storage layer. Spatial locality
among attributes belonging to each prototype is preserved because storage is not shared
between prototypes with overlapping attributes. Queries serviced from the cache are
matched against a prototype and are rewritten to address relations in the cache. Further-
more, loading or evicting a prototype simply requires that the corresponding relations
be added or dropped from the database.

Two properties are worth noting for query prototypes. Prototypes are rarely disjoint;
attributes appear in multiple prototypes. This introduces attribute replication because
prototypes that overlap do not share storage. A prototype can also contain attributes
from multiple tables. One option for storing attributes from multiple tables computes
the cross product and stores the result in a single table. However, this utilizes cache
storage unwisely, because the storage required scales exponentially with the number
of joins [23]. Instead, we store attributes belonging to different backend relations in
separate tables and compute the join during query execution.

Theoretically, the number of query prototypes can be very large, equal to min(# of
queries, 2n where n is the number of attributes referenced by the workload). In practice,
query prototypes provide a compact summary of the workload, even those with millions
of queries. We found that much of the science is conducted through prepared SQL
queries via form-based applications or custom scripts that iterate over the database by
accessing the same combination of attributes. This observation was exploited in a work
on active, form-based proxy caching for backend databases [24]. Luo and Naughton
acknowledged that while caching for queries with arbitrary SQL syntax is difficult,
queries submitted through HTML forms exhibit only a handful of distinct types. The
semantic information from these queries is captured through a compact set of templates,
which are parameterized query specification in which parameter values are provided
at runtime. Our approach applies to general queries and does not distinguish between
form-based and arbitrary user queries.

4.3 Performance Implications

Query prototypes improve query performance at the cache by reducing the amount of
data read from disk. Since prototypes contain only the attributes referenced by a query,
accessing them is much faster than accessing the entire base table. Query prototypes
reduce scan costs by ensuring that only data from columns requested by a query are
read from disk. Also, each query is executed against a single prototype in which the
number of join operations is never more than the number of backend tables a query
accesses.

Besides improving performance for the queries executed in the cache, query proto-
types perform well in terms of network bandwidth. Contrary to using entire tables as
the cache replacement unit, query prototypes avoid unnecessary transfers of attributes
that are not referenced by the workload. Although single-column partitions also have
this property [6], they suffer from the file-bundling effect [25] in which evicting a single
column from a group of columns that are accessed together renders the cache ineffective
for the entire group.



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 381

Cache pollution is the loading of redundant or unused database objects that ad-
versely impact performance by evicting useful objects. Pollution limits the applicability
of query prototypes to general workloads. Since prototypes are not disjoint, the cache
allocates storage for duplicate columns. If the number of prototypes is too high, then
no single prototype serves enough queries to provide positive network savings. If the
overlap between prototypes is high, then attribute replication quickly pollutes the cache.

5 Experiments

Our experiments use a one-month query trace from the Sloan Digital Sky Survey (SDSS),
a major site in SkyQuery [4]. The trace consists of 1.4 million read-only, SQL queries
generating nearly 360GB of network traffic against Data Release 4 (DR4), which is a
two-terabyte database. To finish I/O experiments in a reasonable time, we take a ten
percent sample of the DR4 database, roughly 200GB in size.

We evaluate query prototypes against three units of cache replacement: columns,
tables, and logical groupings of columns as determined through vertical partitioning.
For column caching, we store related columns in the same table rather than storing each
column in a separate table. Query performance in the latter approach is disastrous using
row-oriented, relational databases.

We adapt existing vertical partitioning algorithms to caching. Traditionally, parti-
tioning takes as input a representative set of queries and outputs an alternative, I/O
efficient database schema. Thus, partitioning algorithms are designed for a different set
of goals than caching – that is, improving query performance rather than network usage.
Nonetheless, we expect that the same technique for improving spatial locality among
columns that are accessed together will group columns that are relevant to the cache.
We choose AutoPart [15], a high-performance vertical partitioning algorithm, for our
experiments. To ensure that the unit of cache replacement is adaptive, we periodically
update the column groupings by rerunning the algorithm with new queries. We also
restrict input to the algorithm to queries with results sizes greater than one megabyte
because it is not economical to cache for queries with small result sizes.

All experiments use the DR4 database running on Microsoft’s SQL Server 2000. Our
main workstation is a 3GHz Pentium IV machine with 1GB of main memory and two
SATA disks. SQL Server uses one disk for logging and stores the database on a second,
500GB disk.

5.1 Query Workload

Upon analyzing the DR4 trace, we discover that query prototypes provide a compact
representation of the workload. The entire 1.4 million trace consists of only 1176 proto-
types, owing to schema reuse in which a limited combination of columns are repeatedly
accessed. Moreover, a handful of prototypes capture most of the workload. 11 unique
prototypes describe 91% of the entire workload while 6 unique prototypes generate
89% of the network traffic. Query prototypes that occur frequently do not correspond
to those that generate most of the network traffic. The latter dictate cache replacement
decisions whereas the former do not.



382 X. Wang et al.

5.2 Query Performance

We measure query performance by deploying the cache for the sampled database and
using the entire 1.4 million query workload as input to the cache. The cache size
is set at 1% of the sampled database. Using a small relative cache size is appropri-
ate, because caches are likely to have only a fraction of the several terabytes of stor-
age available to backend databases. Figure 2 shows the performance of queries exe-
cuted at the cache. Caching query prototypes results in the best performance with an
average query response time of 474ms, which is up to three times faster than other
strategies.

Total Queries Result Size
Response

Time
l1 r1 Pages Read

Table 177228 6.96 1656 0 0 11214
Column 177932 21.11 1057 0 0 6290

Vertical Partition 177907 15.93 1054 0 0 6133
Query Prototype 3762 20.85 474 2962

Unit of Cache 
Replacement

Average Response Time

0

200

400

600

800

1000

1200

1400

1600

1800

Table Column Vertical

Partition

Query

Prototype

Unit of Cache Replacement

Q
ry

 R
es

p
o

n
se

 T
im

e 
(m

s)

Average Pages Read

0

2000

4000

6000

8000

10000

12000

Table Column Vertical

Partition

Query

Prototype

Unit of Cache Replacement

L
o

g
ic

al
 P

ag
es

 R
ea

d
/Q

ry
(#

 o
f 

8K
B

 P
ag

es
)

Fig. 2. Query performance by unit of cache replacement

The lack of prior knowledge about the workload limits the effectiveness of vertical
partitioning. The partitioning algorithm takes all high-yield queries from the workload
as input, but only a fraction of those queries are executed in the cache. This results in
a mismatch between the workload executed in the cache and the workload provided as
input to the partitioning algorithm.

We also measure logical database pages read to compare sequential access perfor-
mance. Unlike physical reads, buffering and fragmentation on disk do not affect logical
reads. The trend is consistent with query response times; query prototypes employ the
most I/O-efficient layout of data and incur the fewest page reads.

5.3 Network Savings

In Figure 3, we compare network performance on the un-sampled database for different
caching strategies at various increments of cache size. Query prototypes outperform col-
umn caching at cache sizes lower than 2% of the database, while table caching lags far
behind. The enormous size of each table means that for cache sizes less than 0.5%, only
a handful of objects fits in cache when table caching is used. As cache size increase,
column caching exhibits a slight advantage over query prototypes. With the cache



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 383

Fig. 3. Network traffic by unit of cache replacement. Network cost without caching is 357GB

at 3% of the database, query prototype caching generates 104GB of network traffic
versus 102GB for column caching. Vertical partition caching also performs well and do
a good job of grouping columns that provide positive network savings.

A conspicuous feature at cache sizes lower than 2% is that query prototype out-
performs column caching by a large margin, generating up to 40% less traffic. This
is explained by the file-bundling effect [25]. Specifically, column caching makes poor
replacement decisions at low cache sizes when cache resident times are shorter and ob-
ject evictions are more frequent. The resulting mix of columns in the cache have a lower
probability of satisfying incoming queries.

5.4 Cache Pollution

In query prototypes, pollution arises from attribute replication. For table and vertical
partition caching, columns that do not provide any network savings pollute the cache
because they are grouped with columns that yield positive network savings.

Figure 4 shows cache pollution on the un-sampled database for different caching
strategies. Attribute replication for query prototypes remains at 5% or lower for the
most part. There is a sharp rise at 0.6% cache size, which does not significantly impact
network savings because cache space is not fully utilized. Immediately after is a sharp
drop because prototypes that were previously too large to fit into the cache are loaded.
This displaces several smaller prototypes, resulting in fewer, large prototypes. Pollution
remains fairly stable afterwards as the number of cached prototypes increases. Caching
vertical partitions exhibit significantly more pollution than query prototypes. This is
because partitioning algorithms are not designed for caching and do not always separate
attributes that provide network savings from those that do not.



384 X. Wang et al.

Fig. 4. Cache pollution, as a percent of cache space utilized, by unit of cache replacement

6 Conclusions and Future Work

We present a workload-driven approach to specifying the unit of cache replacement
for scientific workloads that is adaptive and self-organizing. Our experiments illustrate
that query prototypes achieve superior query and network performance with little cache
pollution. However, prototypes are susceptible to cache pollution for workloads with
high attribute overlap. To address this, we are considering merging prototypes with
shared attributes in order to strike a balance between query performance and cache pol-
lution. Vertical partition caching is promising because unlike query prototypes, it is not
susceptible to a high degree of attribute replication. However, directly adapting exist-
ing partitioning algorithms to caching is unsuitable because these algorithms optimize
query execution cost but do not consider network costs. We will extend partitioning
algorithms to optimize for multiple costs in the future. Finally we plan to extend query
prototypes to support updates.

References

1. Malik, T., Szalay, A.S., Budavri, A.S., Thakar, A.R.: SkyQuery: A Web Service Approach
to Federate Databases. In: CIDR. (2003)

2. Gray, J., Szalay, A.: Online Science: The World-Wide Telescope as a Prototype for the New
Computational Science. Presentation at the Supercomputing Conference (2003)

3. Szalay, A., Gray, J., Thakar, A., Kuntz, P., Malik, T., Raddick, J., Stoughton, C., Vandenberg,
J.: The SDSS SkyServer - Public Access to the Sloan Digital Sky Server Data. In: SIGMOD.
(2002)

4. The Sloan Digital Sky Survey. http://www.sdss.org
5. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton,

J.F.: Middle-tier Database Caching for E-Business. In: SIGMOD. (2002)
6. Malik, T., Burns, R., Chaudhary, A.: Bypass Caching: Making Scientific Databases Good

Network Citizens. In: ICDE. (2005)



A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 385

7. Altinel, M., Bornhvd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache
Tables: Paving the Way for An Adaptive Database Cache. In: VLDB. (2003)

8. Larson, P., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-Tier Database Caching for SQL
Server. In: ICDE. (2004)

9. The TimesTen Team: Mid-tier Caching: The TimesTen Approach. In: SIGMOD. (2002)
10. Dar, S., Franklin, M.J., Jonsson, B.T., Srivastava, D., Tan, M.: Semantic Data Caching and

Replacement. In: VLDB. (1996)
11. Keller, A.M., Basu, J.: A Predicate-based Caching Scheme for Client-Server Database Ar-

chitectures. VLDB (1996)
12. Hammer, M., Niamir, B.: A Heuristic Approach to Attribute Partitioning. In: SIGMOD.

(1979)
13. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical Partitioning Algorithms for Database

Design. ACM Trans. Database Syst. 9(4) (1984) 680–710
14. Chu, W.W., Ieong, I.T.: A Transaction-Based Approach to Vertical Partitioning for Relational

Database Systems. IEEE Trans. Softw. Eng. 19(8) (1993) 804–812
15. Papadomanolakis, S., Ailamaki, A.: AutoPart: Automating Schema Design for Large Scien-

tific Databases Using Data Partitioning. In: SSDBM. (2004)
16. Cornell, D.W., Yu, P.S.: An Effective Approach to Vertical Partitioning for Physical Design

of Relational Databases. IEEE Trans. Softw. Eng. 16(2) (1990) 248–258
17. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating Vertical and Horizontal Partitioning Into

Automated Physical Database Design. In: SIGMOD. (2004)
18. Navathe, S.B., Ra, M.: Vertical Partitioning for Database Design: A Graphical Algorithm.

In: SIGMOD. (1989)
19. Roussopoulos, N.: An Incremental Access Method for ViewCache: Concept, Algorithms,

and Cost Analysis. ACM Trans. Database Syst. 16(3) (1991) 535–563
20. Sellis, T.K.: Multiple-Query Optimization. ACM Trans. Database Syst. 13(1) (1988) 23–52
21. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized View Selection and Main-

tenance Using Multi-Query Optimization. In: SIGMOD. (2001)
22. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and Extensible Algorithms for Multi

Query Optimization. In: SIGMOD. (2000)
23. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join Results.

In: SIGMOD. (1991)
24. Luo, Q., Naughton, J.F.: Form-Based Proxy Caching for Database-Backed Web Sites. In:

VLDB. (2001)
25. Otoo, E., Rotem, D., Romosan, A.: Optimal File-Bundle Caching Algorithms for Data-Grids.

In: ACM/IEEE Supercomputing (SC). (2004)


	Introduction
	Caching for Scientific Databases
	Cache Environment
	Choosing the Unit of Cache Replacement

	Related Work
	Statically-Defined Cache Replacement
	Dynamically-Defined Cache Replacement
	Database Design Methods

	Query Prototype Caching
	Definition
	Discussion
	Performance Implications

	Experiments
	Query Workload
	Query Performance
	Network Savings
	Cache Pollution

	Conclusions and Future Work

