

Lecture Notes in Computer Science 4443
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ramamohanarao Kotagiri
P. Radha Krishna Mukesh Mohania
Ekawit Nantajeewarawat (Eds.)

Advances in Databases:
Concepts, Systems
and Applications

12th International Conference on Database Systems
for Advanced Applications, DASFAA 2007
Bangkok, Thailand, April 9-12, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Ramamohanarao Kotagiri
The University of Melbourne
Department of Computer Science and Software Engineering
Victoria 3010, Australia
E-mail: kotagiri@unimelb.edu.au

P. Radha Krishna
Institute for Development and Research in Banking Technology
Masab Tank, Hyderabad 500 057, Andhra Pradesh, India
E-mail: prkrishna@idrbt.ac.in

Mukesh Mohania
IBM India Research Laboratory
Institutional Area, Vasant Kunj, New Delhi 110 070, India
E-mail: mkmukesh@in.ibm.com

Ekawit Nantajeewarawat
Thammasat University - Rangsit Campus
Sirindhorn International Institute of Technology
Pathum Thani 12121, Thailand´
E-mail: ekawit@siit.tu.ac.th

Library of Congress Control Number: 2007923774

CR Subject Classification (1998): H.2, H.3, H.4, H.5, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-71702-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71702-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12043323 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

The 12th International Conference on Database Systems for Advanced Applications
(DASFAA), organized jointly by the Asian Institute of Technology, National
Electronics and Computer Technology Center and Sirindhorn International Institute of
Technology, sought to provide information to users and practitioners of database and
database systems on advanced applications.

The DASFAA conference series has already established itself and it continues to
attract, each year, participants from all over the world. In this context, it may be
recalled that the previous DASFAA conferences were successfully held in Seoul,
Korea (1989), Tokyo, Japan (1991), Daejeon, Korea (1993), Singapore (1995),
Melbourne, Australia (1997), Taiwan, ROC (1999), Hong Kong (2001), Kyoto, Japan
(2003), Jeju Island, Korea (2004), Beijing, China (2005) and Singapore (2006).
Thailand had the opportunity to host this prestigious and important international
conference and join the league.

This conference provides an international forum for academic exchanges and
technical discussions among researchers, developers and users of databases from
academia, business and industry. DASFAA focuses on research in database theory,
development of advanced DBMS technologies and their advanced applications. It also
promotes research and development activities in the field of databases among
participants and their institutions from Pacific Asia and the rest of the world .

This proceedings volume puts together 112 accepted papers from more than 18
countries in the areas of XML Databases, Mobile Databases, Query Language, Query
Optimization and Data Mining etc., of which 68 are full papers, 24 are short papers,
17 are posters and 3 are industrial track papers. The conference received 375
submissions and such a rigorous selections helped retain DASFAA's reputation as a
highly selective conference that publishes only quality research.

We are delighted to feature two invited talks from Guy M. Lohman, IBM Almaden
Research Center, and Masaru Kitsuregawa, University of Tokyo. DASFAA 2007
also featured an excellent tutorial program covering three tutorials related to Matching
Words and Pictures, Time Series Databases, XML Databases and Streams. In
addition, there were three demonstrations, panel sessions and two workshops.

The members of the DASFAA Organizing Committee worked extremely hard to
make this conference a success. The members of the Program Committee, consisting
of renowned data management experts, undertook the arduous task of reviewing all
the submitted papers and invested their valuable time and expertise, despite their
extremely tight schedules. We would like to thank all the reviewers who very
carefully reviewed the papers on time, the authors who submitted their papers and all
the participants.

We are grateful to Alfred Hofmann and the staff of Springer for their support in
publishing these proceedings.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

The conference was sponsored by IBM, Thailand, the Database Society of Japan,
Korea Information Science Society, National Electronics and Computer Technology
Center and Software Industry Promotion Agency.

April 2007 Ramamohanarao Kotagiri
P. Radha Krishna
Mukesh Mohania

Ekawit Nantajeewarawat

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

DASFAA 2007 Conference Organization

Conference Chair

Vilas Wuwongse Asian Institute of Technology, Thailand

Program Committee Co-chairs

Ramamohanarao Kotagiri University of Melbourne, Australia
Mukesh Mohania IBM India Research, India
Ekawit Nantajeewarawat Sirindhorn International Institute of Technology,

 Thammasat University, Thailand
Demo Co-chairs

Mizuho Iwaihara Kyoto University, Japan
Xuemin Lin University of New South Wales, Australia

Industrial Co-chairs

Prasan Roy IBM India Research, India
Masashi Tsuchida Software Division, Hitachi, Ltd., Japan

Panel Co-chairs

Sourav Bhowmick NTU, Singapore
Masaru Kitsuregawa University of Tokyo, Japan

Tutorial Committee Co-chairs

Tharam Dillon University of Technology, Sydney, Australia
Haruo Yokota Tokyo Institute of Technology, Japan

Publication Chair

P. Radha Krishna Institute for Development and Research in
 Banking Technology, India

Publicity Co-chairs

Chin-Wan Chung KAIST, Korea
Qing Li City University of Hong Kong, PRC

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Regional Chairs

Asia Yasushi Kiyoki Keio University, Japan
Australia and New Zealand Millist Vincent University of South

 Australia, Australia
Europe Michael Schrefl University of Linz, Austria
USA Sanjay Madria University of
 Missouri-Rolla, USA

Local Arrangements Chair

Suranart Tanvejsilp NECTEC, Thailand

Program Committee

Akiyo Nadamoto NICT, Japan
Amol Deshpande University of Maryland at College Park, USA
Anirban Mondal University of Tokyo, Japan
Arkady Zaslavsky Monash University, Australia
Arnd Christian Konig Microsoft Research, USA
Atsuyuki Morishima University of Tsukuba, Japan
Bala Iyer IBM, USA
Balaraman Ravindran IIT Madras, India
Barbara Catania University of Genoa, Italy
Charnyot Pluempitiwiriyawej Mahidol University, Thailand
Chiang Lee National Cheng Kung University, Taiwan
Cholwich Nattee Thammasat University, Thailand
Chutiporn Anutariya Shinawatra University, Thailand
Dan Lin National University of Singapore, Singapore
David Embley Brigham Young University, USA
David Taniar Monash University, Australia
Dimitrios Gunopulos UCR, USA
Egemen Tanin University of Melbourne, Australia
Elena Ferrari University of Insubria, Italy
Ernesto Damiani University of Milan, Italy
Evaggelia Pitoura University of Ioannina, Greece
Gao Cong University of Edinburgh, UK
Gill Dobbie University of Auckland, New Zealand
Gunther Pernul University of Regensburg, Germany
Haibo Hu Hong Kong University of Science and

 Technology, China
Haixun Wang IBM T.J. Watson Research Center, USA
Hakan Ferhatosmanoglu Ohio State University, USA
Hayato Yamana Waseda University, Japan
Heng Tao Shen University of Queensland, Australia
H.V. Jagadish University of Michigan, USA
Hyunchul Kang Chung-Ang University, South Korea

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Organization IX

Ibrahim Kamel University of Sharjah, UAE
Indrakshi Ray Colorado State University, USA
James Bailey University of Melbourne, Australia
Jeffrey Xu Yu Chinese University of Hong Kong, Hong Kong,

 China
Jialie Shen University of Glasgow, UK
Jinyan Li Institute for Infocomm Research, Singapore
Jun Miyazaki Nara Institute of Science and Technology, Japan
Kamal Karlapalem IIIT, Hyderabad, India
Katsumi Tanaka Kyoto University, Japan
Keishi Tajima Kyoto University, Japan
Kenji Hatano Doshisha University, Japan
K. Selcuk Candan Arizona State University, USA
Kazumasa Yokota Okayama Prefectural University, Japan
Kazunari Ito Aoyama Gakuin University, Japan
Kazutoshi Sumiya University of Hyogo, Japan
Kyoji Kawagoe Ritsumeikan University, Japan
Kyu-Young Whang KAIST, Korea
Ladjel Bellatreche LISI/ENSMA, France
Linhao Xu National University of Singapore, Singapore
Li Yang Western Michigan University, USA
Luc Bouganim INRIA, France
Manolis Koubarakis National and Kapodistrian University of Athens,

 Greece
Markus Schneider University of Florida, USA
Masatoshi Arikawa The University of Tokyo, Japan
Masayoshi Aritsugi Gunma University, Japan
Matthew Dailey Asian Institute of Technology, Thailand
Md Maruf Hasan Shinawatra University, Thailand
Miyuki Nakano University of Tokyo, Japan
Mizuho Iwaihara Kyoto University, Japan
Nandlal Sarda Indian Institute of Technology Bombay, India
Oded Shmueli Technion-Israel Institute of Technology, Israel
Ozgur Ulusoy Bilkent University, Turkey
Panos Kalnis National University of Singapore, Singapore
Photchanan Ratanajaipan Shinawatra University, Thailand
Pierangela Samarati Universita` degli Studi di Milano, Italy
Pongtawat Chippimolchai Asian Institute of Technology, Thailand
P. Radha Krishna Institute for Development and Research in

 Banking Technology, India
Qiankun Zhao The Pennsylvania State University, USA
Rachada Kongkachandra Thammasat University, Thailand
Rachanee Ungrangsi Shinawatra University, Thailand
Rajugan R. University of Technology, Sydney (UTS),

 Australia
Rui Zhang University of Melbourne, Australia
Sanghyun Park Yonsei University, Korea

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Organization

Sanjay Madria University of Missouri-Rolla, USA
Sean Wang The University of Vermont, USA
Sengar Vibhuti Singh Microsoft Research, India
Sergio Lifschitz Pontifícia Universidade

 Católica do Rio de Janeiro, Brazil
Shuigeng Zhou Fudan University, China
Shyam Kumar Gupta IIT Delhi, India
Simonas Saltenis Aalborg University, Denmark
Sonia Berman University of Cape Town, South Africa
Sourav Bhowmick Nanyang Technological University, Singapore
Sreenivasa Kumar P. IIT Madras, India
Stefan Manegold CWI, The Netherlands
Stephane Bressan National University of Singapore, Singapore
Steven Gordon Thammasat University, Thailand
Sujeet Pradhan Kurashiki University of Science and the Arts,

 Japan
Sunil Prabhakar Purdue University, USA
Sushil Jajodia George Mason University, USA
Takahiro Hara Osaka University, Japan
Takashi Tomii Yokohama National University, Japan
Takeo Kunishima Okayama Perfectural University, Japan
Takuya Maekawa NTT, Japan
Thanaruk Theeramunkong Sirindhorn International Institute of Technology,

 Thammasat University, Thailand
Thanwadee Sunetnanta Mahidol University, Thailand
Theo Haerder University of Kaiserslautern, Germany
Tore Risch Uppsala University, Sweden
Toshiyuki Amagasa University of Tsukuba, Japan
Vasilis Vassalos Athens University of Economics and Business,

 Greece
Verayuth Lertnattee Silpakorn University, Thailand
Vicenc Torra IIIA-CSIC, Catalonia, Spain
Vijay Atluri Rutgers University, USA
Wang-Chien Lee Penn State University, USA
Weining Qian Fudan University, P.R. China
Wei Wang University of North Carolina at Chapel Hill, USA
Weiyi Meng SUNY at Binghamton University, USA
Willem Jonker Philips Research, The Netherlands
Wolfgang Nejdl L3S and University of Hannover, Germany
Xiaofang Zhou University of Queensland, Australia
Xiaofeng Meng Renmin University of China, China
Xuemin Lin University of New South Wales, Australia
Yanfeng Shu The University of Queensland, Australia
Yang-Sae Moon Kangwon National University, Korea
Yan Wang Macquarie University, Australia
Yasuhiko Morimoto Hiroshima University, Japan

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Organization XI

Yasushi Sakurai NTT, Japan
Ying Chen IBM, China
Young-Koo Lee Kyoung Hee University, Korea
Yufei Tao Chinese University of Hong Kong, China

Industrial Program Committee

Arvind R Hulgeri Persistent Systems, India
Katsumi Takahashi NTT Lab, Japan
Ming Xiong Lucent/Bell Labs, USA
Prasad M Deshpande IBM Research, India
Yasuhiko Kanemasa Fujitsu Lab, Japan

External Referees

Alex Liu University of Texas, USA
Amit Garde Persistent Systems, India
Chavdar Botev Cornell University, USA
Fan Yang Cornell University, USA
Feng Shao Cornell University, USA
L. Venkata Subramaniam IBM IRL, India
Man Lung Yiu University of Hong Kong, China
Meghana Deodhar IBM IRL, India
Mirek Riedewald Cornell University, USA
Panagiotis Karras University of Hong Kong, China
Pankaj Kankar IBM IRL, India
R. Venkateswaran Persistent Systems, India
Shipra Agrawal Bell Labs Research, India
Sourashis Roy IBM IRL, India
Suju Rajan University of Texas, USA
Sunita Sarawagi IIT Bombay, India
Umesh Bellur IIT Bombay, India

External Reviewers

A. Balachandran Persistent Systems, India
Amit Garde Persistent Systems, India
Atsushi Kubota Fujitsu Laboratories, Japan
Daniel Lieuwen Bell Labs, USA
Deepak P IBM Research, India
Iko Pramudiono NTT, Japan
Krishna Kummamuru IBM Research, India
Masanori Goto Fujitsu Laboratories, Japan
Noriaki Kawamae NTT, Japan
Nicolas Anciaux INRIA, France
Nicolas Travers University of Versailles, France
Philippe Pucheral INRIA, France

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XII Organization

R. Venkateswaran Persistent Systems, India
Satyanarayana Valluri IIIT-Hyderabad, India
Takeshi Motohashi NTT, Japan
Toshikazu Ichikawa NTT, Japan
Vijil E. Chenthamarakshan IBM Research, India
Vinod G. Kulkarni Persistent Systems, India

Sponsoring Institutions

IBM, Thailand

Korea Information Science
Society

Database Society of Japan

National Electronics and
Computer Technology
Center

Software Industry
Promotion Agency

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Invited Talks

‘Socio Sense’ and ‘Cyber Infrastructure for Information Explosion Era’:
Projects in Japan . 1

Masaru Kitsuregawa

Is (Your) Database Research Having Impact? . 3
Guy M. Lohman

Part I: Full Papers

Query Language and Query Optimization - I

Improving Quality and Convergence of Genetic Query Optimizers 6
Victor Muntés-Mulero, Néstor Lafón-Gracia,
Josep Aguilar-Saborit, and Josep-L. Larriba-Pey

Cost-Based Query Optimization for Multi Reachability Joins 18
Jiefeng Cheng, Jeffrey Xu Yu, and Bolin Ding

A Path-Based Approach for Efficient Structural Join with
Not-Predicates . 31

Hanyu Li, Mong Li Lee, Wynne Hsu, and Ling Li

Query Language and Query Optimization - II

RRPJ: Result-Rate Based Progressive Relational Join 43
Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

GChord: Indexing for Multi-Attribute Query in P2P System with Low
Maintenance Cost . 55

Minqi Zhou, Rong Zhang, Weining Qian, and Aoying Zhou

ITREKS: Keyword Search over Relational Database by Indexing Tuple
Relationship . 67

Jiang Zhan and Shan Wang

Data Mining and Knowledge Discovery

An MBR-Safe Transform for High-Dimensional MBRs in Similar
Sequence Matching . 79

Yang-Sae Moon

Mining Closed Frequent Free Trees in Graph Databases 91
Peixiang Zhao and Jeffrey Xu Yu

Mining Time-Delayed Associations from Discrete Event Datasets 103
K.K. Loo and Ben Kao

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XIV Table of Contents

Clustering

A Comparative Study of Ontology Based Term Similarity Measures on
PubMed Document Clustering . 115

Xiaodan Zhang, Liping Jing, Xiaohua Hu, Michael Ng, and
Xiaohua Zhou

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm for
Sports Video . 127

Jia Liao, Guoren Wang, Bo Zhang, Xiaofang Zhou, and Ge Yu

A Robust Feature Normalization Scheme and an Optimized Clustering
Method for Anomaly-Based Intrusion Detection System 140

Jungsuk Song, Hiroki Takakura, Yasuo Okabe, and Yongjin Kwon

Detection and Visualization of Subspace Cluster Hierarchies 152
Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger,
Ina Müller-Gorman, and Arthur Zimek

Outlier Detection

Correlation-Based Detection of Attribute Outliers . 164
Judice L.Y. Koh, Mong Li Lee, Wynne Hsu, and Kai Tak Lam

An Efficient Histogram Method for Outlier Detection 176
Matthew Gebski and Raymond K. Wong

Privacy Preserving Data Mining

Efficient k-Anonymization Using Clustering Techniques 188
Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li

Privacy Preserving Data Mining of Sequential Patterns for Network
Traffic Data . 201

Seung-Woo Kim, Sanghyun Park, Jung-Im Won, and
Sang-Wook Kim

Privacy Preserving Clustering for Multi-party . 213
Weijia Yang and Shangteng Huang

Privacy-Preserving Frequent Pattern Sharing . 225
Zhihui Wang, Wei Wang, Baile Shi, and S.H. Boey

Parallel and Distributed Databases

KnBest - A Balanced Request Allocation Method for Distributed
Information Systems . 237

Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez

The Circular Two-Phase Commit Protocol . 249
Heine Kolltveit and Svein-Olaf Hvasshovd

Towards Timely ACID Transactions in DBMS . 262
Marco Vieira, António C. Costa, and Henrique Madeira

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XV

Data Warehouse

BioDIFF: An Effective Fast Change Detection Algorithm for Biological
Annotations . 275

Yang Song, Sourav S. Bhowmick, and C. Forbes Dewey Jr.

An Efficient Implementation for MOLAP Basic Data Structure and Its
Evaluation . 288

K.M. Azharul Hasan, Tatsuo Tsuji, and Ken Higuchi

Information Retrieval

Monitoring Heterogeneous Nearest Neighbors for Moving Objects
Considering Location-Independent Attributes . 300

Yu-Chi Su, Yi-Hung Wu, and Arbee L.P. Chen

Similarity Joins of Text with Incomplete Information Formats 313
Shaoxu Song and Lei Chen

Self-tuning in Graph-Based Reference Disambiguation 325
Rabia Nuray-Turan, Dmitri V. Kalashnikov, and Sharad Mehrotra

Probabilistic Nearest-Neighbor Query on Uncertain Objects 337
Hans-Peter Kriegel, Peter Kunath, and Matthias Renz

Indexing and Caching Databases

Making the Most of Cache Groups . 349
Andreas Bühmann and Theo Härder

Construction of Tree-Based Indexes for Level-Contiguous Buffering
Support . 361

Tomáš Skopal, David Hoksza, and Jaroslav Pokorný

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database
Caching . 374

Xiaodan Wang, Tanu Malik, Randal Burns,
Stratos Papadomanolakis, and Anastassia Ailamaki

J+-Tree: A New Index Structure in Main Memory . 386
Hua Luan, Xiaoyong Du, Shan Wang, Yongzhi Ni, and Qiming Chen

CST-Trees: Cache Sensitive T-Trees . 398
Ig-hoon Lee, Junho Shim, Sang-goo Lee, and Jonghoon Chun

Security and Integrity Maintenance

Specifying Access Control Policies on Data Streams 410
Barbara Carminati, Elena Ferrari, and Kian Lee Tan

Protecting Individual Information Against Inference Attacks in Data
Publishing . 422

Chen Li, Houtan Shirani-Mehr, and Xiaochun Yang

Quality Aware Privacy Protection for Location-Based Services 434
Zhen Xiao, Xiaofeng Meng, and Jianliang Xu

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVI Table of Contents

Implementation of Bitmap Based Incognito and Performance
Evaluation . 447

Hyun-Ho Kang, Jae-Myung Kim, Gap-Joo Na, and Sang-Won Lee

Prioritized Active Integrity Constraints for Database Maintenance 459
Luciano Caroprese, Sergio Greco, and Cristian Molinaro

Image and Ontology-Based Databases

Using Redundant Bit Vectors for Near-Duplicate Image Detection 472
Jun Jie Foo and Ranjan Sinha

OLYBIA: Ontology-Based Automatic Image Annotation System Using
Semantic Inference Rules . 485

Kyung-Wook Park, Jin-Woo Jeong, and Dong-Ho Lee

OntoDB: An Ontology-Based Database for Data Intensive
Applications . 497

Hondjack Dehainsala, Guy Pierra, and Ladjel Bellatreche

Sensor and Scientific Database Applications

Continuously Maintaining Sliding Window Skylines in a Sensor
Network . 509

Junchang Xin, Guoren Wang, Lei Chen, Xiaoyi Zhang, and
Zhenhua Wang

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 522
Ankur Jain, Edward Y. Chang, and Yuan-Fang Wang

Telescope: Zooming to Interesting Skylines . 539
Jongwuk Lee, Gae-won You, and Seung-won Hwang

Eliciting Matters – Controlling Skyline Sizes by Incremental Integration
of User Preferences . 551

Wolf-Tilo Balke, Ulrich Güntzer, and Christoph Lofi

Mobile Databases

Optimizing Moving Queries over Moving Object Data Streams 563
Dan Lin, Bin Cui, and Dongqing Yang

MIME: A Dynamic Index Scheme for Multi-dimensional Query in
Mobile P2P Networks . 576

Ping Wang, Lidan Shou, Gang Chen, and Jinxiang Dong

Temporal and Spatial Databases

Interval-Focused Similarity Search in Time Series Databases 586
Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath,
Alexey Pryakhin, and Matthias Renz

Adaptive Distance Measurement for Time Series Databases 598
Van M. Chhieng and Raymond K. Wong

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XVII

Clustering Moving Objects in Spatial Networks . 611
Jidong Chen, Caifeng Lai, Xiaofeng Meng, Jianliang Xu, and
Haibo Hu

Data Streams

The Tornado Model: Uncertainty Model for Continuously Changing
Data . 624

Byunggu Yu, Seon Ho Kim, Shayma Alkobaisi, Wan D. Bae, and
Thomas Bailey

ClusterSheddy: Load Shedding Using Moving Clusters over
Spatio-temporal Data Streams . 637

Rimma V. Nehme and Elke A. Rundensteiner

Evaluating MAX and MIN over Sliding Windows with Various Size
Using the Exemplary Sketch . 652

Jiakui Zhao, Dongqing Yang, Bin Cui, Lijun Chen, and Jun Gao

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets
Mining over Stream Data . 664

Guojie Song, Dongqing Yang, Bin Cui, Baihua Zheng,
Yunfeng Liu, and Kunqing Xie

P2P and Grid-Based Data Management

Capture Inference Attacks for K-Anonymity with Privacy Inference
Logic . 676

Xiaojun Ye, Zude Li, and Yongnian Li

Schema Mapping in P2P Networks Based on Classification and
Probing . 688

Guoliang Li, Beng Chin Ooi, Bei Yu, and Lizhu Zhou

ABIDE: A Bid-Based Economic Incentive Model for Enticing
Non-cooperative Peers in Mobile-P2P Networks . 703

Anirban Mondal, Sanjay Kumar Madria, and Masaru Kitsuregawa

XML Databases

An Efficient Encoding and Labeling for Dynamic XML Data 715
Jun-Ki Min, Jihyun Lee, and Chin-Wan Chung

An Original Semantics to Keyword Queries for XML Using Structural
Patterns . 727

Dimitri Theodoratos and Xiaoying Wu

Lightweight Model Bases and Table-Driven Modeling 740
Hung-chih Yang and D. Stott Parker

XML Indexing

An Efficient Index Lattice for XML Query Evaluation 753
Wilfred Ng and James Cheng

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVIII Table of Contents

A Development of Hash-Lookup Trees to Support Querying Streaming
XML . 768

James Cheng and Wilfred Ng

Efficient Integration of Structure Indexes of XML . 781
Taro L. Saito and Shinichi Morishita

Efficient Support for Ordered XPath Processing in Tree-Unaware
Commercial Relational Databases . 793

Boon-Siew Seah, Klarinda G. Widjanarko, Sourav S. Bhowmick,
Byron Choi, and Erwin Leonardi

XML Query Processing

On Label Stream Partition for Efficient Holistic Twig Join 807
Bo Chen, Tok Wang Ling, M. Tamer Özsu, and Zhenzhou Zhu

Efficient XML Query Processing in RDBMS Using GUI-Driven
Prefetching in a Single-User Environment . 819

Sandeep Prakash, Sourav S. Bhowmick,
Klarinda G. Widjanarko, and C. Forbes Dewey Jr.

Efficient Holistic Twig Joins in Leaf-to-Root Combining with
Root-to-Leaf Way . 834

Guoliang Li, Jianhua Feng, Yong Zhang, and Lizhu Zhou

TwigList: Make Twig Pattern Matching Fast . 850
Lu Qin, Jeffrey Xu Yu, and Bolin Ding

Part II: Short Papers

Query Language and Query Optimization

CircularTrip: An Effective Algorithm for Continuous kNN Queries 863
Muhammad Aamir Cheema, Yidong Yuan, and Xuemin Lin

Optimizing Multiple In-Network Aggregate Queries in Wireless Sensor
Networks . 870

Huei-You Yang, Wen-Chih Peng, and Chia-Hao Lo

Visible Nearest Neighbor Queries . 876
Sarana Nutanong, Egemen Tanin, and Rui Zhang

On Query Processing Considering Energy Consumption for Broadcast
Database Systems . 884

Shinya Kitajima, Jing Cai, Tsutomu Terada, Takahiro Hara, and
Shojiro Nishio

Data Mining and Knowledge Discovery

Mining Vague Association Rules . 891
An Lu, Yiping Ke, James Cheng, and Wilfred Ng

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XIX

An Optimized Process Neural Network Model . 898
Guojie Song, Dongqing Yang, Yunfeng Liu, Bin Cui, Ling Wu, and
Kunqing Xie

Clustering XML Documents Based on Structural Similarity 905
Guangming Xing, Zhonghang Xia, and Jinhua Guo

The Multi-view Information Bottleneck Clustering 912
Yan Gao, Shiwen Gu, Jianhua Li, and Zhining Liao

Web and Information Retrieval

Web Service Composition Based on Message Schema Analysis 918
Aiqiang Gao, Dongqing Yang, and Shiwei Tang

SQORE: A Framework for Semantic Query Based Ontology Retrieval . . . 924
Chutiporn Anutariya, Rachanee Ungrangsi, and Vilas Wuwongse

Graph Structure of the Korea Web . 930
In Kyu Han, Sang Ho Lee, and Soowon Lee

EasyQuerier: A Keyword Based Interface for Web Database Integration
System . 936

Xian Li, Weiyi Meng, and Xiaofeng Meng

Database Applications and Security

Anomalies Detection in Mobile Network Management Data 943
Marco Anisetti, Claudio A. Ardagna, Valerio Bellandi,
Elisa Bernardoni, Ernesto Damiani, and Salvatore Reale

Security-Conscious XML Indexing . 949
Yan Xiao, Bo Luo, and Dongwon Lee

Framework for Extending RFID Events with Business Rule 955
Mikyeong Moon, Seongjin Kim, Keunhyuk Yeom, and Heeseok Choi

Ontology and Data Streams

Approximate Similarity Search over Multiple Stream Time Series 962
Xiang Lian, Lei Chen, and Bin Wang

WT-Heuristics: A Heuristic Method for Efficient Operator Ordering 969
Jun-Ki Min

An Efficient and Scalable Management of Ontology 975
Myung-Jae Park, Jihyun Lee, Chun-Hee Lee, Jiexi Lin,
Olivier Serres, and Chin-Wan Chung

Estimating Missing Data in Data Streams . 981
Nan Jiang and Le Gruenwald

XML Databases

AB-Index: An Efficient Adaptive Index for Branching XML Queries 988
Bo Zhang, Wei Wang, Xiaoling Wang, and Aoying Zhou

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XX Table of Contents

Semantic XPath Query Transformation: Opportunities and
Performance . 994

Dung Xuan Thi Le, Stephane Bressan, David Taniar, and
Wenny Rahayu

TGV: A Tree Graph View for Modeling Untyped XQuery 1001
Nicolas Travers, Tuyêt Trâm Dang Ngoc, and Tianxiao Liu

Indexing Textual XML in P2P Networks Using Distributed Bloom
Filters . 1007

Clement Jamard, Georges Gardarin, and Laurent Yeh

Towards Adaptive Information Merging Using Selected XML
Fragments . 1013

Ho-Lam Lau and Wilfred Ng

Part III: Posters

Data Warehouse and Data Mining

LAPIN: Effective Sequential Pattern Mining Algorithms by Last
Position Induction for Dense Databases . 1020

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa

Spatial Clustering Based on Moving Distance in the Presence of
Obstacles . 1024

Sang-Ho Park, Ju-Hong Lee, and Deok-Hwan Kim

Tracing Data Transformations: A Preliminary Report 1028
Gang Qian and Yisheng Dong

Query Processing

QuickCN: A Combined Approach for Efficient Keyword Search over
Databases . 1032

Jun Zhang, Zhaohui Peng, and Shan Wang

Adaptive Join Query Processing in Data Grids: Exploring Relation
Partial Replicas and Load Balancing . 1036

Donghua Yang, Jianzhong Li, and Hong Gao

Efficient Semantically Equal Join on Strings . 1041
Juggapong Natwichai, Xingzhi Sun, and Maria E. Orlowska

Database Modeling and Information Retrieval

Integrating Similarity Retrieval and Skyline Exploration Via Relevance
Feedback . 1045

Yiming Ma and Sharad Mehrotra

An Image-Semantic Ontological Framework for Large Image
Databases . 1050

Xiaoyan Li, Lidan Shou, Gang Chen, and Kian-Lee Tan

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XXI

Flexible Selection of Wavelet Coefficients for Continuous Data Stream
Reduction . 1054

Jaehoon Kim and Seog Park

Versioned Relations: Support for Conditional Schema Changes and
Schema Versioning . 1058

Peter Sune Jørgensen and Michael Böhlen

Network and XML Databases

Compatibility Analysis and Mediation-Aided Composition for BPEL
Services . 1062

Wei Tan, Fangyan Rao, Yushun Fan, and Jun Zhu

Expert Finding in a Social Network . 1066
Jing Zhang, Jie Tang, and Juanzi Li

Efficient Reasoning About XFDs with Pre-image Semantics 1070
Sven Hartmann, Sebastian Link, and Thu Trinh

Part IV: Industrial Track

Context RBAC/MAC Access Control for Ubiquitous Environment 1075
Kyu Il Kim, Hyuk Jin Ko, Hyun Sik Hwang, and Ung Mo Kim

Extending PostgreSQL to Support Distributed/Heterogeneous Query
Processing . 1086

Rubao Lee and Minghong Zhou

Geo-WDBMS: An Improved DBMS with the Function of Watermarking
Geographical Data . 1098

Min Huang, Xiang Zhou, Jiaheng Cao, and Zhiyong Peng

Part V: Demonstrations Track

TinTO: A Tool for the View-Based Analysis of Streams of Stock
Market Data . 1110

Andreas Behrend, Christian Dorau, and Rainer Manthey

Danäıdes: Continuous and Progressive Complex Queries on RSS
Feeds . 1115

Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

OntoDB: It Is Time to Embed Your Domain Ontology in Your
Database . 1119

Stéphane Jean, Hondjack Dehainsala, Dung Nguyen Xuan,
Guy Pierra, Ladjel Bellatreche, and Yamine Aı̈t-Ameur

Author Index . 1123

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1–2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

‘Socio Sense’ and ‘Cyber Infrastructure for
Information Explosion Era’: Projects in Japan

Masaru Kitsuregawa

University of Tokyo
kitsure@tkl.iis.u-tokyo.ac.jp

Some of the large projects in Japan where I am serving PI are introduced in this talk.

MEXT (Ministry of Education, Culture, Sports, Science and Technology) approved
new project named ‘Cyber Infrastructure for Information Explosion Era’ in 2005. The
year of 2005 was a preparation stage and we asked research proposals under this
program. Totally seventy four research teams were accepted. The project effectively
started on April 2006.This is the largest IT related project in the category of Grant-in-
Aid for Scientific Research on Priority Areas. Around 5 million dollars for 2006. The
project supposed to continue until FY2010. The amount of information created by
people, generated by sensors and computers is explosively increasing recent years.
Especially the growth ratio of web contents is very high. People do not ask questions
to the friends anymore if they want to know something but use search engine and
people are now really heavily dependent on the web. Knowledge workers are using a
lot of time just for ‘search’. The more the information be generated, the more we find
difficulty to locate appropriate information. In order to achieve higher quality search,
we are currently developing an open next generation search engine incorporating deep
NLP capabilities. By deep, we mean we put more machine power to web contents
analysis. In another words, we do not care about response time, since current 1 sec
response time is dependent on the advertisement based monetization scheme. We
believe we should provide service, which is more than ordinary search. In addition to
web, we do have yet another information explosion in the area so called e-science.
Through introduction of very powerful supercomputer and various kinds of advanced
sensor systems, science is now becoming very data intensive. We plan to build tools
for science discovery over the sea of data explosion. Another area would be health
care. A lot of patient health care records are now becoming to be digitally stored.
Monitoring the human activities with sensors and mining the archived HCR would be
typical data driven application.

Explosion of the information incurs several problems not just in search but also in
computer system management. A lot of information means a lot of applications,
which gives so much stresses against the system. Cost of maintaining the system is
now increasing more and more. Self monitoring the system activities also generate
huge amount of information. BAM is one typical higher level example. We are now
building large scale distributed cluster test bed over Japan, which is a shared platform
for next generation system software development.

Human interaction is also very important research issue. All the information
finally has to be absorbed by people. Highly functional human interaction capturing
room are being developed. Various kinds of sensors are prepared and eight video

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 M. Kitsuregawa

cameras capture the interaction process in synchronously from different angles.
Building the interaction corpus would be important for several modal analysis
researches.

Thus information explosion project covers almost all the computer science areas.
More than 200 researchers are now participating.

Socio-sense project will be also introduced. People are spending more time in the
cyber world in addition to in the real world. Most of the important events are
immediately reflected onto the cyber world, which means we can capture the
activities of the real world through the cyber world, whose information can be
crunched by information technology. Cyber world can be regarded as a SENSOR for
the real world. By viewing the evolution of cyber world, we can interpret various
interesting social activities. The system of socio sense is not a search engine but a
kind of tool to see the societal behavior. This is also supported by MEXT.

METI is going to start ‘Grand Information Voyage’ project from April 2007.
Several national projects on information explosion starts(ed) in Japan. We are

considering the possibilities of international collaboration.
Information explosion project:

 http://itkaken.ex.nii.ac.jp/i-explosion/ctr.php/m/IndexEng/a/Index/

Consortium for Grand Information Voyage project:

 http://www.jyouhoudaikoukai-consortium.jp/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 3–5, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Is (Your) Database Research Having Impact?

Guy M. Lohman

IBM Almaden Research Center
650 Harry Rd., San Jose, CA 95120

lohman@almaden.ibm.com

Is your research having real impact? The ultimate test of the research done by this
community is how it impacts society. Perhaps the most important metric of this
impact is acceptance in the marketplace, i.e. incorporation into products that bring
value to the purchaser. Merely publishing papers and getting them referenced has no
intrinsic value unless the ideas therein are eventually used by someone. So let us ask
ourselves candidly – is (my) database research having (positive) impact? Concisely:
Are they buying my stuff? Have the “hot topics” of the past withstood the test of time
by actually being used in products that sold? If so, what characteristics were
instrumental in their success? And if not, why did something that got so many people
excited fail to gain traction with users? Perhaps more importantly, what can we learn
from our track record of the past in order to have better impact in the future? How
can we better serve our user community by solving their real problems, not the ones
we may imagine?

Let us first critique our historical track record as a community. Over the last thirty
years, a few major topics seem to have dominated the interest of the research
community in databases. Waves of “hot topics” appear to rise to predominance, in
terms of the number of papers submitted (and hence published), and after a few years
of excitement get replaced by another topic. Not that these waves exclude other
topics or are cleanly delineated – they simply seem to coincidentally interest a large
proportion of our community. I will not attempt to justify this premise with statistics
on topics; it’s just an observation that many experienced researchers recognize. The
first of these with which I’m familiar was relational databases, themselves, which
captivated the attention of database researchers in the last half of the 1970s, resulting
in major prototypes such as System R, Ingres, and others that formed the foundation
of products in the early 1980s. Distributed databases seemed to dominate the early
1980s, but this thread rapidly evolved into separate threads on parallel databases and
the integration of disjoint (and often heterogeneous) databases, usually called
federated databases. In the late 1980s and early 1990s, object-oriented databases
attempted to address the requirements of some under-served applications, and the
relational crowd fought back by creating “extensible” databases with “object-
relational” extensions to meet the OODBMS challenge. About the same time, interest
in Datalog created strong interest in deductive databases. The mid- and late-1990s
saw the birth and explosion of interest in data warehousing and data mining,
eventually spawning a whole new research community in knowledge discovery.
Around 1999, standardization of XML rocketed XML databases into the forefront.
The early- to mid-2000s have seen great interest in streams and sensor databases.
And along the way, numerous other variations on these themes have enjoyed the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 G.M. Lohman

spotlight for a while: database machines, temporal databases, multi-media and spatial
databases, scientific and statistical databases, active databases, semantic databases
and knowledge bases, and a recent favorite of mine that has yet to gain much interest
from academia – self-managing databases. To what extent has each of these topics
successfully impacted the marketplace, and why? We must learn from our successes
and failures by carefully examining why the market accepted or rejected our
technology.

My assessment is that our success has depended upon the consumability of our
technology: how well it meets a customer need, how simple it is to understand and
use, and how well standardization has stabilized its acceptance across vendors.
Relational technology succeeded and has grown spectacularly to become a U.S. $14
Billion industry in 2004 largely because it was simpler and easier to understand than
its predecessors, with a declarative query language (SQL) that simplified application
development, and was standardized early in its (product) evolution. However,
attempts to “augment” it with object-relational, temporal, and deductive extensions
have been either: (a) too complicated, (b) insufficiently vital to most consumers’
applications, and/or (c) not standardized or standardized too late in its evolution.
Parallel databases exploited increasingly inexpensive hardware to facilitate growth
and performance requirements with generally acceptable increases in complexity
(mostly in administration, not querying), whereas federated databases have seen less
success because the complexity of integrating diverse data sources largely fell on the
user. Data mining, while a genuine success in the research community, evoked a
comparative yawn in the marketplace largely because users needed to understand it to
use it, and they had difficulty understanding it because of its novelty and
mathematical intricacies. The jury is still out on XML databases, but my fear is that,
despite the need for storing increasing volumes of XML data, XQuery is far more
complicated than SQL. Similarly, stream databases are too new to be judged
adequately, but I question the market size and whether the research in the database
community adequately suits the “lean and mean” real-time requirements of the
primary market – the investment and banking industries.

How then should we increase the impact of our research in the future? First, we
must candidly assess our strengths and weaknesses. Our strengths lie in modeling the
semantics underlying information, enabling better precision in our queries than the
keyword search upon which Information Retrieval and the popular search engines are
based. We have much to offer the IR and search communities here, and they have
recognized this by aggressively hiring from the database community in the last few
years. Our models also permit reasoning about the data through complex OLAP-style
queries to extract actionable information from a sea of data. We know how to
optimize a declarative language, and how to exploit massive parallelism, far better
than any other discipline. Our primary weakness is in simplicity / usability,
particularly in setting up and administering databases. This is certainly exacerbated by
database researchers not gaining firsthand experience by routinely using databases to
store their own data. Secondly, we must reach out to other disciplines with
complementary strengths, and learn from them. Despite the lack of precision of
keyword search, why is it vastly preferred over SQL? Third, we must engage with
real users (which should include ourselves) and listen carefully to what they say.
Have you ever tried to query or manage a non-trivial database of at least 500 tables

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Is (Your) Database Research Having Impact? 5

that was not constructed by you? Have you ever tried to add disks or nodes to an
existing database that exceeded its initial space allocation? Have you ever built and
administered a real application using a database? Did your research remedy any of
the pain points you encountered or heard from a user? Fourth, we must go back to
basics and design our systems based upon user requirements, not upon what
technology we understand or want to develop.

Pursuing the fourth item in greater detail, we should honestly ask ourselves why
less than 20% of the world’s data is stored in databases. Weren’t object-relational
extensions supposed to rectify this by enabling storage of unstructured and semi-
structured data, as well as structured data? Currently, users rely upon content
managers to manage this unstructured and semi-structured content. Though content
managers are built upon relational DBMSs, the content is stored in files, so isn’t
easily searched, and the search interface isn’t SQL. This certainly isn’t what users
want. Users want a single, uniform interface to all their data, particularly for
searching. Increasingly, they recognize that the majority of their costs are for people
and their skills, as hardware costs are driven downward by Moore’s Law. So lowering
the Total Cost of Ownership (TCO) requires systems that are easier to manage and
require fewer skilled people to manage. Users also want a scalable solution that
permits easily adding more capacity to either the storage or the computing power in
an incremental fashion as their needs for information management increase. The
increasing requirements for compliance with government regulations, as well as
business imperatives to extract more value out of information already collected in
diverse application “silos”, are driving their need to integrate systems never designed
to interact with other systems, and to be able to more pro-actively and quickly derive
business intelligence than with today’s data warehouses. Ultimately, users want to be
able to quickly and easily find, integrate, and aggregate the data that they need to
make business decisions. But that data is currently scattered throughout their
enterprise in a staggering array of incompatible systems, in a daunting tangle of
differing formats. The usual lament is that they know the data is out there somewhere,
but they can’t find it.

Clearly there are plenty of hard research problems – as well as business
opportunities! – in all of these requirements! We simply have to listen and be willing
to change our research agendas to the problems that matter most to our “customers”.
And focusing on customer pain points doesn’t preclude attempting risky, imaginative,
cool, technically advanced, and occasionally far-out technical approaches. In fact,
problems having origins in reality tend to be the most challenging. Only by doing so
will our research withstand the test of time in the marketplace of ideas, and truly have
the impact we all want for our work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic

Query Optimizers�

Victor Muntés-Mulero1, Néstor Lafón-Gracia1, Josep Aguilar-Saborit2, and
Josep-L. Larriba-Pey1

1 DAMA-UPC, Computer Architecture Dept., Universitat Politècnica de Catalunya,
Campus Nord UPC, C/Jordi Girona Módul D6 Despatx 117 08034 Barcelona, Spain

{vmuntes,nlafon,larri}@ac.upc.edu,
http://www.dama.upc.edu

2 IBM Canada Ltd. IBM Toronto Lab. 8200 Warden Ave. Markham, Ontario.
Canada L6G1C7

jaguilar@ca.ibm.com

Abstract. The application of genetic programming strategies to query
optimization has been proposed as a feasible way to solve the large join
query problem. However, previous literature shows that the potentiality
of evolutionary strategies has not been completely exploited in terms of
convergence and quality of the returned query execution plans (QEP).

In this paper, we propose two alternatives to improve the performance
of a genetic optimizer and the quality of the resulting QEPs. First, we
present a new method called Weighted Election that proposes a criterion
to choose the QEPs to be crossed and mutated during the optimization
time. Second, we show that the use of heuristics in order to create the
initial population benefits the speed of convergence and the quality of the
results. Moreover, we show that the combination of both proposals out-
performs previous randomized algorithms, in the best cases, by several
orders of magnitude for very large join queries.

1 Introduction

Query optimization based on evolutionary approaches is still an intriguing alter-
native to solve the very large join query problem. Advanced applications such
as SAP or those involving information integration often need to combine a large
set of tables to reconstruct complex business objects. For instance, the SAP
schema may contain more than 10,000 relations [6] and may join more than 20
of these in a single SQL query. As the number of relations involved in a SQL
statement increases, traditional optimizers, which are usually based on dynamic
programming techniques [13], fail to perform satisfactorily. The main problem

� Research supported by the IBM Toronto Lab Centre for Advanced Studies and UPC
Barcelona. The authors from DAMA-UPC want to thank Generalitat de Catalunya
for its support through grant number GRE-00352 and Ministerio de Educacin y
Ciencia of Spain for its support through grant TIN2006-15536-C02-02.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 6–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 7

lies in the size of the search space, which grows exponentially with the increase
of the number of relations involved in the query. In this scenario, users, or even
the DBMS [20], are usually forced to split the query in smaller subqueries in
order to optimize it, obtaining QEPs that are typically far from the optimum.

Genetic approaches have proven to be a good alternative since they are in-
cluded among the best randomized approaches in terms of quality and speed of
convergence [15]. However, there are still important aspects to be studied in order
to improve the performance of genetic approaches. On the one hand, evolution-
ary algorithms perform a beam search, based on the evolution of a population,
instead of focusing on the evolution of a single individual [1], as opposed to
random-walk algorithms like iterative improvement or simulated annealing. Al-
though this can be beneficial in terms of quality, it may jeopardize the ability
of the optimizer to converge quickly. On the other hand, recent studies show, by
means of a statistical model, that the random effects of the initial population
cannot be neglected, since they have a significant impact on the quality of the
returned QEP after the optimization process [11]. In other words, depending
on the small sample of QEPs created at random for the initial population, the
genetic optimizer will experience difficulties to find a near optimal QEP. This is
aggravated by the fact that the search space grows exponentially as the number
of relations increases, which implies that the size of the initial population should
also grow exponentially.

In order to remedy these two drawbacks, we propose two different approaches.
We call our first proposal Weighted Election (WE) and it tackles the problem
of the speed of convergence mentioned above. In all the traditional evolution-
ary algorithms, the members of the population chosen to be crossed with other
members or mutated are chosen at random. WE proposes a new approach where
the QEPs are chosen with a certain probability depending on their associated
cost, giving more probability to low-costed plans to be chosen as opposed to
high-costed plans. Our second approach is aimed at reducing the variability in
the quality of the results, introduced by the random effects of the initial popu-
lation, by using heuristics to assure that the first sample of QEPs is not blindly
chosen from the search space, but it follows a minimum quality criterion. We
call this approach Heuristic Initial Population (HIP).

Finally, we show that the combination of both approaches is beneficial. Specifi-
cally, we compare our new approach with the Two-Phase Optimization algorithm
(2PO) [4], which is considered to be the best randomized algorithm presented in
the literature. We show that our techniques significantly improve a genetic opti-
mizer and, in addition, are more suitable than previous randomized techniques
for very large join queries.

This paper is organized as follows. Section 2 introduces genetic optimization
and the genetic optimizer used in this work. Section 3 and 4 describe our pro-
posals in detail. In Section 5, we present the results obtained by the comparison
of the different algorithms. Finally, in Sections 6 and 7, we present related work
and conclude.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 V. Muntés-Mulero et al.

2 The Carquinyoli Genetic Optimizer (CGO)

The Carquinyoli Genetic Optimizer (CGO) is, to the best of our knowledge,
the most sophisticated genetic approach presented in the literature and the first
genetic optimizer tested against a well-known commercial optimizer [8]. For this
reason we use CGO as the baseline of our work.

CGO is based on genetic programming. Inspired by the principles of nat-
ural selection, the basic idea of genetic programming is, given an initial set of
programs, generally called members of an initial population, to perform a set
of operations in order to get a well-fitted program able to solve a specific task.
Each member or program in the population represents a way to achieve a specific
objective and has an associated cost.

Starting with this initial population, usually created from scratch, two oper-
ations are used to produce new members in the population: (i) crossover op-
erations, which combine properties of two members in the population chosen
at random, and (ii) mutation operations, which introduce new properties into
a randomly chosen member in the population. In order to keep the size of the
population constant, a third operation, usually referred to as selection, is used
to discard the worst fitted members, using a fitness function. This process gen-
erates a new population, also called generation, that includes both the old and
the new members that have survived to the selection operation. This is repeated
iteratively until a stop condition ends the execution. Once the stop criterion is
met, the best solution is taken from the final population. Query optimization
can be reduced to a search problem where the DBMS needs to find the optimum
query execution plan (QEP) in a vast search space. Each QEP can be consid-
ered as a possible solution (or program) for the problem of finding a good access
path to retrieve the required data. Therefore, in a genetic query optimizer, every
member of the population is a QEP. Further details of CGO can be found in [8].

3 Weighted Election (WE)

Among the randomized algorithms, two different classes of algorithms have been
applied to query optimization. On the one hand, we have the random-walk based
algorithms, typically represented by iterative improvement and simulated anneal-
ing and all the improvements and combinations of these two, such as 2PO. On
the other hand, there are proposals in the literature for the use of evolution-
ary techniques as an alternative way to achieve a near-optimal QEP. There is a
fundamental difference between both alternatives: the philosophy of the search
space is different. While random-walk algorithms rely on a single individual
(QEP) and a sequence of transformations on this individual, evolutionary al-
gorithms apply the transformations on a population. As a consequence, while
genetic approaches keep more information than random-walk algorithms, which
may lead the optimizer to find better-costed QEPs, they might experience a
lower speed of convergence. This is sustained by the fact that they do not only
keep the best QEP, but they spend some time optimizing QEPs that are not
close to the optimal plan.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 9

In order to improve this drawback of evolutionary strategies, we propose and
analyze a new technique called Weighted Election (WE). This technique aims
at directing the search towards the directions marked by the best QEPs in the
population, by giving more opportunities to these QEPs to be crossed and mu-
tated than QEPs with higher costs. Note that high-costed QEPs still have an
opportunity to participate in the genetic operations performed by the optimizer,
although the probability is lower.

In order to assign the weight of a QEP p in the population Pop, denoted by
Wp, we use the following formula:

Wp = max

(
μ 1

2
− Cp

μ 1
2

− BPop
· α, 1

)
(1)

where Cp is the cost associated with QEP p, μ 1
2

is the median cost in the
population and BPop is the best cost in the population. Note that Wp ranges
from 1 to α, where α > 1. Specifically, QEPs with costs lower than the median
are assigned a weigh from 1 to α, while QEPs with costs higher than the median
are assigned a cost of 1. Depending on the value of α we can give more or less
importance to the differences between the costs of the QEPs in the population.
For example, for α = 2 and α = 100, the probability of the QEP with the lowest
cost in the population to be chosen is 2 and 100 times the probability of the
highest-costed QEP, respectively.

4 Heuristic Initial Population (HIP)

The quality of the initial population can be decisive in order to obtain near-
optimal QEPs. Unfortunately, since the initial population is usually created at
random [15], its affect on the quality of the results is unpredictable. Our proposal
assures that the quality of the initial population is higher than a randomly
created population, using heuristics to create part of the plans in it.

Several heuristic algorithms have been proposed in the literature aiming at
solving the query optimization problem. Representatives of this class of algo-
rithms are the KBZ algorithm [7], the AB algorithm [19], the Augmentation
algorithm (AG), and other greedy algorithms [14,15,17].

Because of its working principle, the KBZ algorithm requires the assignment of
join implementations to join graph edges before the optimization is carried out.
This requirement and the restrictions concerning the cost model do not allow the
algorithm to approximate the real solution, when it deals with a sophisticated
and detailed cost model [15]. AB was developed in order to solve the restrictions
imposed by KBZ on the join implementation placement. However, even with the
AB extension it is difficult to make use of a complex cost model.

The Augmentation algorithm (AG) is an incremental heuristic method to
build QEPs. Specifically, 5 different criteria are studied, namely, choosing the
relation with minimum cardinality, choosing the relation participating in the
largest number of joins, choosing the joins with minimum selectivity, choosing
an operation using the combination of the first and the third criteria and, finally,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 V. Muntés-Mulero et al.

using the so-called KBZ rank, related to the KBZ algorithm. Among the five
criteria, the minimum selectivity criterion turned out to be the most efficient
and, for this reason, it is the one selected for this work. Depending on the relation
chosen to start the optimization process, different QEPs can be generated. In
general, we consider that the AG algorithm does not generate a single QEP, but
as many QEPs as relations involved in the query.

Algorithm 1. HIP: Initial Population generation pseudocode
1: procedure IniPop(time maxTime, int maxPlans)
2: int numPlan ← 0;

3: p ← generateMinimumJoinSelectivityPlan();
4: currentTime ← getCurrentTime();
5: while (p ∧ currentTime < maxTime

2 ∧ numPlan < maxPlans) do
6: insertPlanToPopulation(p);
7: numPlan ← numPlan + 1;
8: p ← generateMinimumJoinSelectivityPlan();
9: currentTime ← getCurrentTime();

10: end while

11: if (numPlans < maxPlans) then
12: genRemainingRandomMembers(maxPlans - numPlans);
13: end if
14: end procedure

Algorithm 1 summarizes the working principles of HIP. In order to simplify
the implementation and the experiments, we assume that we fix the optimization
time a priori. This optimization time is passed to Algorithm 1 using the para-
meter maxTime. A number of QEPs are created (lines 3 and 8) and introduced
in the population (line 6) using the Minimum Join Selectivity heuristic (MJS).
Since MJS has a non-trivial computational cost, generating all the members of
the population with the heuristic could be very time-consuming, exhausting the
whole optimization time, and preventing the genetic optimizer from performing
an operation. Therefore, as shown in line 5, the heuristic is applied until the
maximum number of possible QEPs generated by the heuristic is reached. Thus,
we create as many QEPs as needed in the population or we spend about half
of the optimization time. Finally, if the population is not completed after the
loop, the remaining QEPs are created at random using the function genRemain-
ingRandomMembers(). This function has a parameter that specifies the number
of remaining QEPs to be created at random (line 12).

5 Experimental Results

Our first concern is to provide means to assure a fair comparison between the
approaches studied in this paper. With this purpose, we have used the meta-
structures created for CGO in order to implement the new techniques and 2PO,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 11

i.e., the QEP metadata, the functions to calculate the cost of a plan, etc. With
this, we guarantee that the efforts put on the performance optimization of CGO
are also used by the other approaches.

Our new techniques are tested first with star schemas and for random queries,
since they represent one of the most typical scenarios in Decision Support Sys-
tems, similar to those used for TPC-H. In order to provide means to generalize
our conclusions, we also test our techniques with random queries. We do not
show the results using the TPC-H benchmark since the number of relations in
this schema does not allow the creation of large join queries.

Star Join Queries. For star join queries [3] we have randomly generated two
databases containing 20 and 50 relations. Both schemas contain a large fact table
or central relation and 19 and 49 smaller dimension tables, respectively. The fact
table contains a foreign key attribute to a primary key in each dimension relation.
We have distributed the cardinalities in order to have most of the dimensions
with a significantly lower cardinality compared to the fact table. A few set of
dimensions would have cardinalities closer to the cardinality of this fact table,
but still at least one order of magnitude smaller, which typically corresponds to
real scenarios (similar to the TPC-H database schema). The number of attributes
per dimension, other than those included in the primary key, ranges from 1 to 10.
The exact number of attributes per dimension and the attribute type is chosen
at random. We define an index for every primary key.

We randomly define two sets of 9 star join queries, Q20 and Q50, one for
each database schema. Each set contains queries involving 20 and 50 relations,
respectively. Every query includes all the relations of its corresponding database
schema with at least one explicit join condition associated with each relation.
Therefore, since CGO avoids cross products, we ensure that our queries are well
defined star join queries.

Let Q be a SQL statement reading from a set of relations and γ the set of
constraints in Q. Every constraint c in γ has an associated selectivity factor s(c).
In a star join query, every dimension table typically adds some information to
the data flow or, if a constraint is affecting one of its attributes, it acts as a
filter to discard those results not matching the constraint. Let us define S as the
selectivity of the query calculated as S = Πc∈γs(c). Each set of queries Q20 and
Q50 contains 9 queries qi, i = 1..9 and, in both cases, S(q1) = S(q2) = S(q3) ≈
10−2, S(q4) = S(q5) = S(q6) ≈ 10−4 and S(q7) = S(q8) = S(q9) ≈ 10−8.

Random Queries. We have generated 30 random queries to evaluate our pro-
posal. The set of random queries is divided into three groups involving 20, 50
and 100 join operations, respectively. In order to generate random queries we
use two tools that we have created and called rdbgen and rqgen, described in [9].

Execution details. Every algorithm has been tested on all the queries. For each
star join query, we have created 5 populations. Each population is used by all the
algorithms, except for HIP, which creates a different initial population. This way,
we eliminate possible noise relative to the random effects of the initial population
and perform a fairer comparison. Every test on every evolutionary algorithm and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 V. Muntés-Mulero et al.

population consists of 10 executions each. We also run 10 executions for 2PO.
In total, we have run 5280 executions. The experiments have been run on an
Intel R© Xeon R© processor at 2.8 GHz with 2 GB of RAM. Either for evolutionary
algorithms or 2PO, we use the scaled cost to compare results:

ScaledCost =
{

Corig/CTech − 1 if Corig ≥ CTech

1 − CTech/Corig if Corig < CTech
(2)

where Corig represents the best cost obtained by the original implementation
of CGO and CTech represents the best cost achieved by the specified technique
to be tested. This way, the scaled cost in formula (2) allows us to obtain the
average from the execution of different queries and databases and it is centered
in 0. So if a technique has a positive scaled cost sc (sc > 0), it obtains QEPs
with costs that are, on average, more than sc times lower than those obtained
by CGO. A negative value indicates that the QEP obtained by that technique
is, on average, worse than those obtained by CGO. From here on, we compare
the techniques analyzed in this paper to CGO using formula (2).

Carquinyoli Genetic Optimizer (CGO). In order to parameterize CGO we
use the recommendations obtained by the statistical analysis presented in [11].
Table 1 summarizes the values used to configure CGO.

Two-Phase Optimization (2PO). We have parameterized 2PO using the
configuration proposed in [4]. During the first phase of 2PO, we perform 10
local optimizations using iterative improvement. The best QEP obtained in this
first phase is used as the starting point, in the second phase, for the simulated
annealing algorithm. The starting value for the initial temperature is the 10% of
the cost of this QEP. The same parametrization for 2PO was also used in [15].

5.1 Weighted Election Analysis

As explained before, the difference between the probability to choose the best
and the probability to choose the worst QEP in the population can be magnified
depending on the value of parameter α. In order to study the effect of this
parameter, each run is tested using five different values for α: 2, 10, 102, 103 and
104. We run our experiments using the two different sets of queries mentioned
above, namely the star join query set, executing all the policies 10 times per
each of the 5 populations created per query, and 30 random queries, where each
policy is also run 10 times per configuration, in order to obtain averages.

Table 1. Parameters set used depending on the number of relations in the query. The
number of crossover and mutation operations presented is executed per generation.

PARAMETER # members # cross # mut
Relations 20 50 100 20 50 100 20 50 100
Value 160 400 800 80 200 300 50 100 150

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 13

Figure 1 shows the results obtained after these experiments. The uppermost
row shows the behavior of WE for star join queries involving 20 relations. The
leftmost plot (plot a) corresponds to the star join queries with highest selectivity,
i.e., those queries that return a larger number of matches (S ≈ 10−2). The plot in
the middle (plot b) corresponds to queries with S ≈ 10−4 and the rightmost plot
(plot c) to queries with lowest selectivity S ≈ 10−8. Since the number of relations
is relatively small, close to what can still be handled by dynamic programming
techniques, there is still little room for improvement. In general, the larger the
value of α, the more significant the improvements introduced by WE. However,
the plots show that the difference between α = 1000 and α = 10000 is not
significant. We can also observe that, for very low selectivity, the gains of WE
are reduced (plot c). This effect is explained by the fact that, when the selectivity
is very small, most of the potential tuple results are discarded, resulting in a very
low data flow cardinality in the QEP. Since the join operations can be executed
in memory and do not incur extra I/O, all the QEPs have a similar cost and
most of the executions of CGO are likely to reach a QEP with a near-optimal
cost, reducing the chances for good performance.

Analogously, the central row of plots shows the same results for star join
queries involving 50 relations. Our first observation is that, in some cases the
gains obtained by WE are several orders of magnitude larger than those obtained
by CGO. Again, we can observe that the general trend is to reward large values of

Star Join 20 Rel (a)

-0,2

0

0,2

0,4

0,6

0,8

1

2 s 5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

Star Join 50 Rel (a)

-200

0

200

400

600

800

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

Random Queries 20 Rel

-5

0

5

10

15

20

25

30

2 s 5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

Star Join 20 Rel (b)

-0,2

0

0,2

0,4

0,6

0,8

2 s 5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

Star Join 50 Rel (b)

-1500

-1000

-500

0

500

1000

1500

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

Random Queries 50 Rel

-10

-5

0

5

10

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

Star Join 20 Rel (c)

-0,1

0

0,1

0,2

0,3

0,4

2 s 5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

Star Join 50 Rel (c)

-5

0

5

10

15

20

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

Random Queries 100 Rel

-20

-10

0

10

20

30

40

50

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

Fig. 1. Scaled Cost evolution for different values of α and different configurations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 V. Muntés-Mulero et al.

Scaled Cost Evolution (20 Relations)

-0,5

0

0,5

1

1,5

2

2,5

3

5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

2PO

HIP

HIP + WE

WE

Scaled Cost Evolution (50 Relations)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

2PO

HIP

HIP + WE

WE

(HIP →→→→ 7979)

(HIP+WE →→→→ 8233)

Fig. 2. Scaled Cost evolution for WE using α = 1000, HIP, the combination of both
and 2PO studying different number of relations for star join queries

α with better performance. Also, we would prefer the performance achieved for
α = 1000 instead of that achieved for α = 10000, which is not as stable in all the
situations. There is a trade-off for parameter α: it is recommendable to use larger
values to achieve good performance (i.e., larger than 100), but too large values
increase the probability of the best plan in the population to be chosen in such
a way that, in practice, we are almost forcing the exclusive use of the best QEPs
in the population, destroying one of the main differences between the genetic
approaches and the random-walk approaches. Similarly, the improvements of WE
decrease as the selectivity decreases for the reason explained above. However,
in the worst cases we still obtain QEPs with costs that, in general, are several
times larger than those obtained by CGO.

Finally, for random queries, in the lowermost row of plots, we observe the same
trends as with the star join queries. Again, the best value of α tested is 1000,
independently of the number of relations involved in the query. Extreme cases
like α = 2 or α = 10000 must be avoided since they might lead to performances
worst than those by CGO.

5.2 Heuristic Initial Population Analysis

In this section we analyze the benefits obtained by generating part of the pop-
ulation using HIP. Specifically, we run the same number of executions as in the
previous analysis, using the same configurations. Figures 2 and 3 show the re-
sults of our analysis of this technique, and also the results described in the next
subsection.

We first study the behavior for star join queries. In general, the use of HIP
does always improve the performance of CGO. As suggested in [11], spending
extra time generating good initial plans is clearly beneficial. Similar to what
happens with WE, the improvements are in general very limited in the case of
star join queries with 20 relations (left plot in Figure 2), since the search space
has not grown enough to obtain QEPs that clearly differ, in terms of quality, from
those obtained by CGO. However, for 50 relations (right plot in Figure 2) HIP
obtains results that are three orders of magnitude better than those obtained by
CGO. As the plot shows, for small optimization times, the improvement of our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 15

techniques is around 10 times better than 2PO. It takes CGO about 4 minutes
to achieve results similar to those generated by HIP, which implies that HIP
converges much faster without losing quality. For random queries (Figure 3), we
can observe that HIP also obtains results similar to those obtained for star join
queries achieving, for queries containing 100 joins, improvement of more than
four orders of magnitude.

5.3 Combining WE and HIP vs. 2PO

Finally, we combine both techniques and compare their behavior with the best
random-walk algorithm presented in the literature: 2PO. All the experiments
in this subsection have been run using α = 1000. As it can be observed in
Figures 2 and 3, the combination of HIP and WE in CGO clearly outperforms
2PO with star join and random queries, except for the case of 20 relations,
where they behave very similarly. The benefits obtained by the combination of
the two techniques presented in this paper obtain QEPs that are, on average,
20 times better than those obtained by 2PO, with 50 joins, and four orders of
magnitude better for 100 joins. These results show that 2PO can be used as an
intermediate solution for queries with about 20 joins, but it quickly fails to find
QEPs for very large join queries, since the search space expands exponentially,
and the random-walk algorithms potentiality degraded.

6 Related Work

The first approaches that applied genetic algorithms to query optimization con-
sidered a reduced set of QEP properties in crossover and mutation operations
[2,15]. In these first proposals, the amount of information per plan is very lim-
ited because plans are transformed to chromosomes, represented as strings of
integers. This lack of information usually leads to the generation of invalid plans
that have to be repaired. In [16], a genetic-programming-based optimizer is pro-
posed that directly uses QEPs as the members in the population, instead of
using chromosomes. A first genetic optimizer prototype was created for Post-
greSQL [12], but its search domain is reduced to left-deep trees and mutation
operations are deprecated, thus bounding the search to only those properties
appearing in the QEPs of the initial population. Besides, execution plans are

Scaled Cost Evolution (20 Rel)

-2

0

2

4

6

5 s 10 s 30 s 60 s

S
c

a
le

d
 C

o
s

t

2PO HIP HIP + WE WE

Scaled Cost Evolution (50 Rel)

-1000

0

1000

2000

3000

4000

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

2PO HIP HIP + WE WE

Scaled Cost Evolution (100 Rel)

-5000

0

5000

10000

15000

30 s 60 s 90 s 120 s 240 s

S
c

a
le

d
 C

o
s

t

2PO HIP HIP + WE WE

Fig. 3. Scaled Cost evolution for WE using α = 1000, HIP, the combination of both
and 2PO studying different numbers of relations for random queries

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 V. Muntés-Mulero et al.

represented as strings of integers, thereby losing a lot of important information.
CGO is presented in [8] and later analyzed in [10,11] showing that it is possible
to find criteria to parameterize a genetic optimizer for star-join queries. Also,
several variants of random-walk algorithms have been proposed in [4,5,15,18].
Randomized search techniques try to remedy the exponential explosion of dy-
namic programming techniques by iteratively exploring the search space and
converging to a nearly optimal solution.

7 Conclusions

In this paper we present two techniques, namely Weighted Election (WE) and
Heuristic Initial Population (HIP). These techniques tackle two important as-
pects of genetic optimization: the time wasted optimizing some QEPs in the
population with a large cost and the effects of the initial population on the
quality of the best QEP generated by the optimizer. WE is able to speed up
a genetic optimizer and achieve a quick convergence compared to the original,
meaning that, without de-randomizing the genetic evolution, it is important to
focus on those QEPs with lower associated cost, and avoid spending time opti-
mizing QEPs that are far from the best QEP in the population. HIP is the first
technique combining heuristics with genetic query optimizers, and it shows that
using simple rules to generate the initial population allows the genetic optimizer
to quickly generate good-fitted QEPs, improving the speed and the quality of
the optimizer. The combination of both techniques, which are orthogonal, is very
simple and it is shown to outperform the best random-walk approach presented
in the literature. All in all, we show that, for very large join queries, as the num-
ber of relations increases it is advisable to use genetic methods based on beam
search strategies, rather than random-walk techniques.

References

1. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, dpunkt.verlag, Jan. 1998.

2. K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A genetic algorithm for database
query optimization. In R. Belew and L. Booker, editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 400–407, San Mateo, CA,
1991. Morgan Kaufman.

3. S. Chaudhuri and U. Dayal. Data warehousing and OLAP for decision support.
SIGMOD’97: In Proceedings of the ACM SIGMOD international conference on
Management of data, pages 507–508, 1997.

4. Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join
queries. In SIGMOD ’90: Proc. of the 1990 ACM SIGMOD international confer-
ence on Management of data, pages 312–321, New York, NY, USA, 1990. ACM
Press.

5. Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In
SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international conference on
Management of data, pages 9–22, New York, NY, USA, 1987. ACM Press.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Quality and Convergence of Genetic Query Optimizers 17

6. A. Kemper, D. Kossmann, and B. Zeller. Performance tuning for sap r/3. IEEE
Data Eng. Bull., 22(2):32–39, 1999.

7. R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.
In VLDB, pages 128–137, 1986.

8. V. Muntés-Mulero, J. Aguilar-Saborit, C. Zuzarte, and J.-L. Larriba-Pey. Cgo:
a sound genetic optimizer for cyclic query graphs. In Proc. of ICCS 2006, pages
156–163, Reading, UK, May 2006. Springer-Verlag.

9. V. Muntés-Mulero, J. Aguilar-Saborit, C. Zuzarte, V. Markl, and J.-L. Larriba-Pey.
Genetic evolution in query optimization: a complete analysis of a genetic optimizer.
Technical Report UPC-DAC-RR-2005-21, Dept. d’Arqu. de Comp. Universitat Po-
litecnica de Catalunya (http://www.dama.upc.edu), 2005.

10. V. Muntés-Mulero, J. Aguilar-Saborit, C. Zuzarte, V. Markl, and J.-L. Larriba-
Pey. An inside analysis of a genetic-programming optimizer. In Proc. of IDEAS
’06., December 2006.

11. V. Muntés-Mulero, M. Pérez-Cassany, J. Aguilar-Saborit, C. Zuzarte, and J.-L.
Larriba-Pey. Parameterizing a genetic optimizer. In Proc. of DEXA ’06, pages
707–717, September 2006.

12. PostgreSQL. http://www.postgresql.org/.
13. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proceedings
of the 1979 ACM SIGMOD international conference on Management of data, pages
23–34. ACM Press, 1979.

14. E. J. Shekita, H. C. Young, and K.-L. Tan. Multi-join optimization for symmetric
multiprocessors. In R. Agrawal, S. Baker, and D. A. Bell, editors, 19th Interna-
tional Conference on Very Large Data Bases, August 24-27, 1993, Dublin, Ireland,
Proceedings, pages 479–492. Morgan Kaufmann, 1993.

15. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. VLDB Journal: Very Large Data Bases,
6(3):191–208, 1997.

16. M. Stillger and M. Spiliopoulou. Genetic programming in database query optimiza-
tion. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 388–393,
Stanford University, CA, USA, 28–31 July 1996. MIT Press.

17. A. Swami. Optimization of large join queries: combining heuristics and combina-
torial techniques. In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD inter-
national conference on Management of data, pages 367–376. ACM Press, 1989.

18. A. Swami and A. Gupta. Optimization of large join queries. In SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international conference on Management
of data, pages 8–17, New York, NY, USA, 1988. ACM Press.

19. A. N. Swami and B. R. Iyer. A polynomial time algorithm for optimizing join
queries. In Proceedings of the Ninth International Conference on Data Engineering,
pages 345–354, Washington, DC, USA, 1993. IEEE Computer Society.

20. Y. Tao, Q. Zhu, C. Zuzarte, and W. Lau. Optimizing large star-schema queries
with snowflakes via heuristic-based query rewriting. In CASCON ’03: Proceedings
of the 2003 conference of the Centre for Advanced Studies on Collaborative research,
pages 279–293. IBM Press, 2003.

Trademarks. IBM is a registered trademark of International Business Machines Cor-
poration in the United States, other countries, or both. Intel and Intel Xeon are regis-
tered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for
Multi Reachability Joins

Jiefeng Cheng, Jeffrey Xu Yu, and Bolin Ding

The Chinese University of Hong Kong, China
{jfcheng,yu,blding}@se.cuhk.edu.hk

Abstract. There is a need to efficiently identify reachabilities between different
types of objects over a large data graph. A reachability join (R-join) serves as a
primitive operator for such a purpose. Given two types, A and D, R-join finds all
pairs of A and D that D-typed objects are reachable from some A-typed objects.
In this paper, we focus on processing multi reachability joins (R-joins). In the
literature, the up-to-date approach extended the well-known twig-stack join algo-
rithm, to be applicable on directed acyclic graphs (DAGs). The efficiency of such
an approach is affected by the density of large DAGs. In this paper, we present
algorithms to optimize R-joins using a dynamic programming based on the esti-
mated costs associated with R-join. Our algorithm is not affected by the density
of graphs. We conducted extensive performance studies, and report our findings
in our performance studies.

1 Introduction

With the rapid growth of World-Wide-Web, new data archiving and analyzing tech-
niques bring forth a huge volume of data available in public, which is graph structured
in nature including hypertext data, semi-structured data and XML [1]. A graph provides
great expressive power for people to describe and understand the complex relationships
among data objects. As a major standard for representing data on the World-Wide-
Web, XML provides facilities for users to view data as graphs with two different links,
the parent-child links (document-internal links) and reference links (cross-document
links). In addition, XLink (XML Linking Language) [7] and XPointer (XML Pointer
Language) [8] provide more facilities for users to manage their complex data as graphs
and integrate data effectively. Besides, RDF [3] explicitly describes semantical resource
in graphs.

Upon such a graph, a primitive operation, reachability join (or simply R-join) was
studied [11,6]. In brief, a reachability join, A↪→D, denoted R-join, is to find all the
node-pairs, (a,d), in the underlying large data graph such that d is reachable from a,
denoted a � d, and the labels of a and d are A and D respectively. R-joins help users to
find information effectively without requesting them to fully understand the schema of
the underlying graph. We explain the need of such R-join using an XML example. In
Figure 1, it shows a graph representation (Figure 1 (b)) for an XML data (Figure 1 (a)).
In Figure 1 (b), solid links represent document-internal links whereas dashed links rep-
resent cross-document links. We consider Figure 1 (b) as a graph with all links being
treated in the same way. With R-join, we can easily find all the topics that a researcher

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 18–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 19

<Reseach>
· · · · · ·
<Institute>

<researcher>
<name>Jim</name>

</researcher>
<researcher>

<name>Joe</name>
</researcher>

</Institute>
<Lab>

<researcher>
<name>Linda</name>
<projectref idref=“proj1”/>

</researcher>
<researcher>

<name>John</name>
<projectref idref=“proj2”/>

</researcher>
</Lab>
<institute>

<researcher>
<name>Keith</name>
<projectref idref=“proj2”/>

</researcher>
</institute>
<projects>

<project id=“proj1”>
<topic>XML</topic>

</person>
<project id=“proj2”>

<topic>RDF</topic>
</person>

</projects>
</Reseach>

(a) XML Data

“Jim”

7

name

5

researcher

“Joe”

8

name

6
researcher

1

Institute

“Linda”

11

name
12

projref

9

researcher

“John”

14

name
15

projref

10

researcher

2

Lab

“XML”

20

topic

13

proj

“RDF”

21

topic

16

proj

4

Projects

“Keith”

18

name
19

projref

17

researcher

3

Institute

0

Research

(b) XML Data Graph

Fig. 1. An Example

is interested in using researcher↪→topic. However, it would be difficult for a user
to find the same information using XPath queries, because XPath supports document-
internal links using a descendants-or-self-axis operator // and cross-document links
using value-matching based on a notion called ID/IDREF in XML. It cannot find such
information using an XPath query, researcher//topic, because topic is a child of
proj, and there is an ID/IDREF from researcher to proj. XPath requests users to
fully understand the schema and understand that the two different kinds of links are
processed in two different ways in XML data. In this paper, we focus ourselves on
optimizing and processing multi R-join queries.

A query with more than one R-joins can be naturally be represented by a query
graph. The existing approaches [5,12] extended the well-known tree-specific method,
namely, twig-stack join algorithm [4], to process such a query graph over a DAG. We
observed that this approach is very sensitive to the density of the underlying DAG. In
this paper, we propose a dynamic programming approach that optimizes multi R-joins
in a similar fashion as to optimize multi joins, based on the estimated costs associated
with an R-join. The advantage of our approach is that it is not sensitive to the density
of the underlying DAG. We conducted extensive experimental studies on multi R-join
queries using large XMark benchmark dataset [9], which confirms the efficiency of
our approach.

The rest of paper is organized as follows. Section 2 gives our problem statement on
multi reachability join query processing. Section 3 briefly review the existing technique
which extended the well-known twig-stack join algorithm. Together with the motiva-
tion of our approach, we discuss drawbacks of such an approach for multi R-join queries
processing. In Section 4, we review the multiple interval encoding for DAGs, followed
by discussions on our cost-based approach that optimizes R-joins using a dynamic
programming approach for multi R-join queries. Section 5 reports the performance
evaluation on our proposed method. Section 6 concludes this paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 J. Cheng, J. Xu Yu, and B. Ding

researcher

topicInstitute

Fig. 2. A R-join Query

n+1

............

vv v2n−2

vv v v

2n−1

1 2 n−1 n

Fig. 3. A Example DAG for TwigStackD

2 Multi Reachability Joins

We consider a database as a directed node-labeled data graph G = (V,E,L,φ). Here, V
is a set of elements, E is a set of edges, L is a set of labels, and φ is a mapping function
which assigns a node a label. Given a label l ∈ L, the extent of l is defined as a set of
nodes in G whose label is l, denoted ext(l). Below, we use V (G) and E(G) to denote the
set of nodes and the set of edges of a graph G, respectively. Such a data graph example
is shown in Figure 1 (b).

A reachability join, A↪→D, called R-join, is to find all the node-pairs, (a,d), in the
data graph G such that d is reachable from a, denoted a � d, and φ(a) = A and φ(d) =
D. We also use D←↩A, instead of A↪→D, if needed. A↪→D ≡ D←↩A. In this paper, we
concentrate on processing conjunctive multi R-join queries in the form of

A↪→B∧B↪→C ∧·· · ∧X ↪→Y

The following holds for R-joins.

– Asymmetric: A↪→B �≡ B↪→A.
– Transitive: If A↪→B∧B↪→C hold, then A↪→C.
– Associative: (A↪→B)↪→C ≡ A↪→(B↪→C)1

A multi R-join query can be represented as a directed query graph, Gq(Vq,Eq,Lq,λ).
Here, Vq is a set of nodes. The node-label of a node v ∈ Vq is represented as λ(v).
An edge v → u represents an R-join A↪→D, where the labels of v and u are A and D,
respectively. A graph representation of a multi R-join query, A↪→C ∧B↪→C ∧C↪→D, is
shown in Figure 2.

We evaluate a query graph Gq(Vq,Eq,Lq,λq) over a data graph G(V,E,L,φ). The
result of the query graph, Gq, denoted R (Gq), consists of a set of n-ary tuples. A tuple
consists of n nodes in the data graph G, if the query graph Gq has n nodes (|V (Gq)| = n),
in the form of t = [v1,v2, · · · ,vn], where there is a one-to-one mapping between vi in t
and ui in V (Gg) such that φ(vi) = λ(ui). In addition, all nodes in the n-ary tuple r satisfy
all the reachability join conditions specified in the query graph Gq.

Table 1. The Graph Encoding of [2]

l v pov Iv
Institute 1 5 [1 : 5]
Institute 3 20 [12 : 13][17 : 20]

researcher 5 2 [1 : 2]
researcher 6 4 [3 : 4]
researcher 9 10 [6 : 10]
researcher 10 15 [11 : 15]
researcher 17 19 [12 : 13][17 : 19]

topic 20 7 [7 : 7]
topic 21 12 [12 : 12]

Table 2. The Graph Encoding of [5]

(a) Tree Interval Encoding

v Interval v Interval
1 [2 : 11] 13 [17 : 20]
3 [34 : 41] 16 [27 : 30]
4 [42 : 43] 17 [35 : 40]
5 [3 : 6] 19 [38 : 39]
6 [7 : 10] 20 [18 : 19]
9 [13 : 22] 21 [28 : 29]
10 [23 : 32]

(b) SSPI Index

v preds
13 {4}
16 {19,4}
20 {13}
21 {16}

1 The chain query A↪→B∧B↪→C ∧·· ·∧X ↪→Y is abbreviated to A↪→B↪→C↪→··· ↪→X ↪→Y .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 21

Example 1. Fig. 2 represents a simple multi R-join query as a directed graph. This
query graph has a node labeled Institute, a node labeled researcher and a node labeled
topic. And two edges are in the query graph. The edge from Institute node to researcher
node requires that the data node pair (i,r), i ∈ext(Institute) and r ∈ext(researcher),
such that i � r, should be returned; in the same time, the edge from researcher node to
topic node requires that the data node pair (r,t), r ∈ext(researcher) and t ∈ext(topic),
such that r � t, should be returned.

3 Motivation

Recently, as an effort to extend Twig-Join in [4] to be workable on graphs, Chen et al.
studied multi R-join query processing(called pattern matching) over a directed acyclic
graph (DAG) in [5]. As an approach along the line of Twig-join [4], Chen et al. used
the interval-based encoding scheme, which is widely used for processing queries over
an XML tree, where a node v is encoded with a pair [s,e] and s and e together specify
an interval. Given two nodes u and v in an XML tree, u is an ancestor of v, u � v, if
u.s < v.s and u.e > v.e or simply u’s interval contains v’s.

The test of a reachability relationship in [5] is broken into two parts. First, like the ex-
isting interval-based techniques for processing pattern matching over an XML tree, they
first check if the reachability relationships can be identified over a spanning tree gen-
erated by depth-first traversal of a DAG. Table 2(a) lists the intervals from a spanning
tree over the DAG of our running example. Second, for the reachability relationship that
may exist over DAG but not in the spanning tree, they index all non-tree edges (named
remaining edges in [5]), and all nodes being incident with any such non-tree edges in
a data structure called SSPI in [5]. Thus, all predecessor/successor relationships that
can not be identified by the intervals alone can be found with the help of SSPI. For our
running example, Table 2(b) shows SSPI.

As given in [5], for example, the procedure to find the predecessor/successor rela-
tionship of 17 � 21 in the DAG of Fig. 1 as follows. First, it checks the containment
of tree intervals for 17 and 21, but there is no such a path between them in the tree.
Then, because 21 has entries of predecessor in SSPI, it tries to find a reachability rela-
tionship between 17 and all 21’s predecessors in SSPI by checking the containment of
tree interval for 17 and that of each of 21’s predecessors in SSPI recursively.

As shown above, in order to identify a reachability relationship between two nodes,
say, a and d, TwigStackD need to recursively search on SSPI to check if a predecessor
of d can be reached by a. This overhead over a DAG can be costly. Consider the DAG
of 2n−1 nodes in Fig. 2, where the solid lines are edges in the spanning tree generated
by a depth-first search, and dashed lines are the remaining edges. Note that in the SSPI,
the entry for vn contains nodes vn+1,vn+2, · · · ,v2n−1. Thus to determine the reachability
relationship from node v2n−1 to node vn, TwigStackD needs n − 1 times of checking to
see if v2n−1 can reach any node in the entry. The cost of processing R-joins queries is
considerable high.

We conducted tests to confirm our observations. We generate a DAG by collapsing all
strongly connected components in a graph that is obtained using XMark data generator
dataset with a factor 0.01 (16K nodes). Here both XML tree edge and ID/IDREF links
are treated as the edges in the graph. Fig. 4 shows the performance of TwigStackD

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 J. Cheng, J. Xu Yu, and B. Ding

70K

60K

50K

40K

30K

20K

10K

5040302010

I/O

s

Remaining Edges Included (%)

Q1(TSD)
Q4(TSD)

Q1(DP)
Q4(DP)

(a) Number of I/Os

8K

6K

4K

2K

5040302010

El
ap

se
d

Ti
m

e
(s

ec
)

Remaining Edges Included (%)

Q1(TSD)
Q4(TSD)

Q1(DP)
Q4(DP)

(b) Elapsed Time (sec)

10M

8M

6M

4M

2M

5040302010

In

de
x

Se
ek

 o
n

SS
PI

Remaining Edges Included (%)

Q1(TSD)
Q4(TSD)

(c) Number of Index Seek

Fig. 4. The Test on DAGs with Increasing Densities

on 5 DAGs, with 10%, 20%, 30%, 40% and 50% of non-tree edges (called remaining
edges) as the percentage of the total tree edges in the spanning tree obtained from the
graph. The queries used are , Q1 and Q4, which are listed in Fig. 7 (a) and (d). In Fig. 4,
Q(T SD) and Q(DP) are the processing costs to process Q using Chen TwigStackD and
our dynamic programming approach, respectively.

Fig. 4 (a) shows the I/O number when more remaining edges are added to the under-
lying DAG. As an example, for query Q4(TSD), the I/O number increased by 4,606 from
10% to 20% on the y-axis, while it increased by 38,881 from 40% to 50% on the y-axis.
When 5 times of number of remaining edges is included, the I/O number increases about
35 times. As for the number of index seeks in SSPI, namely the number of times to seek
an leaf page from the B+-Tree that implements the SSPI, which is showed in Fig. 4 (c),
this value increased by 616,052 from 10% to 20% on the y-axis, while it increased by
5,201,991 from 40% to 50% on the y-axis. The correlation coefficient for such two
types of measurements is as hight as above 0.999, which speaks that such an behavior
for the number of I/Os during processing is mainly caused by the number of index seek
of SSPI. Similar situation for processing time can also be observed in Figure 4 (c), since
the I/O number is the dominating factor for total processing cost. This test empirically
showed that TwigStackD performs better for DAGs with fewer remaining edges, but its
performance degrades rapidly when more edges being included in the underneath DAG.

Fig. 4 (a) and (b) also show the efficiency of our dynamic programming approach.
Our approach is not so sensitive as TwigStackD is to the density of the DAG. For Q4, our
approach only uses less than 200 number of I/O access, and 1 second processing time.

4 A New Dynamic Programming Approach

Dynamic programming has been widely used and studied as an effective paradigm for
query optimization [10]. In this section, we show how to use dynamic programming to
optimize and process multi R-joins queries. In brief, we use an R-join algorithm [11]
that uses a multiple interval encoding scheme [2] for processing R-joins over a DAG.
Below, first, we discuss the R-join algorithm [11], and how to extend it to process
multi R-joins. Then, we will discuss R-join size estimation, and give our optimization
approach based on dynamic programming.

4.1 An R-Join Algorithm Based on a Multiple Interval Encoding

Agrawal et al. proposed an interval-based coding for encoding DAG [2]. Unlike the
approaches that assign a single code, [s : e], for every node in a tree, Agrawal et al.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 23

assigned a set of intervals and a postorder number for each node in DAG. Let Iu =
{[s1 : e1], [s2 : e2], · · · , [sn : en]} be a set of intervals assigned to a node u, there is a path
from u to v, u � v, if the postorder number of v is contained in an interval, [s j : e j] in
Iu. The interval-based coding for the graph in Figure 1 (b) is given in Table 1. For the
same example of 17 � 21 in the DAG of Fig. 1, it can be identified by the 21’s poId,
12, and one interval associated with 17, [12 : 13], since 12 is contained in [12 : 13].

Based on [2], Wang et al. studied processing R-join over a directed graph [11]. In
brief, given a directed graph, G. First, it constructs a DAG G′ by condensing all strongly
connected component in G as a node in G′. Second, it generates encoding for G′ based
on [2]. All nodes in a strongly connected component in G share the same code assigned
to the corresponding representative node condensed in G′. Given an R-join, A↪→D, two
lists Alist and Dlist are formed respectively. Alist encodes every node v as (v,s:e) where
[s : e] ∈ Iv. A node of A has n entries in the Alist, if it has n intervals. Dlist encodes
each node v as (v, pov) where pov is the postorder number. Note: Alist is sorted on the
intervals [s : e] by the ascending order of x and then the descending order of y, and Dlist
is sorted by the postnumbers in ascending order. Wang et al. proposed to merge-join the
nodes in Alist and Dlist and to scan the two lists once.

4.2 Multi R-Joins Processing

It is important to know that some necessary extension is needed to use the R-join al-
gorithm [11] to process multi R-joins. Consider A↪→D∧D↪→E . For processing A↪→D,
Dlist needs to be sorted based on the postnumbers, because D is descendant. For
processing D↪→E , Dlist needs to be sorted based on s followed by e for all (v,s:e),
because D is a successor. Also, recall, for A � D, Alist needs to encode every node v as
(v,s:e) where [s : e] ∈ Iv, which means there is a blocking between the two consecutive
R-joins, A↪→D followed by D↪→E , and we need to generate a new Alist from the output
of the previous R-join, A↪→D, in order to carry out the next R-join, D↪→E . Thus, The
intervals and postnumbers of each node must be maintained in multi R-join processing
for regeneration of intermediate Alist or Dlist on the fly. A total three operations are
needed during such blocking that enables multi R-join query processing.

– α(A): Given a list of node vectors in the form of (v1,v2, . . . ,vl) and each vi is in the
extension associated with A, it attaches each interval [s,e] ∈ Ivi and obtain a number
of (v1,v2, . . . ,vl, [s : e]) from every vector (v1,v2, . . . ,vl) and sorts the resulting list
to obtain an Alist from these vector. For example, considering execution of two
consequent R-joins, Institute↪→researcher and researcher↪→topic, to process the
query of our running example, the first R-join Institute↪→researcher will produce
a set of temporary results A′, {(1,5),(1,6),(3,17)}. In order to make the proper
input for the second R-join researcher↪→topic. An α(A′) operation is hence applied
and we obtain {(1,5, [1 : 2]),(1,6, [3 : 4]),(3,17, [12 : 13]),(3,17, [17 : 19])}, which
becomes the input Alist for the second R-join.

– δ(D): Similarly as α, but it attaches the postnumbers for every vector (v1,v2, . . . ,vl)
and obtains the (v1,v2, . . . ,vl, [povi]), vi in the extension associated with D, to form
a sorted Dlist. For example, considering execution of two consequent R-joins,
researcher↪→topic and Institute↪→researcher, to process the query of our running
example, the first R-joinresearcher↪→topic will produce a set of temporary results

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 J. Cheng, J. Xu Yu, and B. Ding

D′, {(9,20),(10,21),(17,21)}. In order to make the proper input for the second
R-join Institute↪→researcher. An δ(D′) operation is hence applied and we obtain
{(9,20, [10]), (10,21, [15]),(17,21, [19])}, which becomes the input Dlist for the
second R-join.

– σ(A,D): Given a list of node vectors in the form of (v1,v2, . . . ,vl) and vi/v j in a
vector is in the extensions associated with A/D, it select out those vectors satisfy-
ing vi↪→v j. This is used to processing an R-join A↪→D when both A nodes and D
nodes already present in the partial solution. For example, considering the query
in Fig. 7(c) and four consequent R-joins, I↪→C, I↪→P, C↪→P and L↪→P to evaluate
that query, when the processing for I↪→C, I↪→P and C↪→P has been done, we only
further need a σ(L,P) to finish the total evaluation.

We develop the cost function involving those operations during processing for multi
R-joins after the description for R-join size estimation.

4.3 R-Join Size Estimation

We introduce a simple but effective way to estimate the answer size for a sequence of
R-joins. We need two presumption for our estimation: (1) For any pair-wise R-join,
say A↪→D, every pair of instance (a,d), where a ∈ ext(A) and d ∈ ext(D), is joinable
with the same probability. (2) Consider two R-joins, say A↪→B and B↪→C, for any three
instance (a,b,c), where a ∈ ext(A), b ∈ ext(B), and c ∈ ext(C), the two events E1 =
{a is joinable with b} and E2 = {b is joinable with c} are independent.

Suppose the answer size for R-joins (R1↪→R2 ∧ . . .∧Ri−1↪→Ri) is M and the answer
size for the pairwise R-join Rh↪→Ri+1, where 1 ≤ h ≤ i, is N, we will show the answer
size for (R1↪→R2 ∧ . . .∧Ri−1↪→Ri)∧ (Rh↪→Ri+1) can be estimated as M×N

|Rh| , where |Rh|
is the cardinality for the extension of Rh.

Suppose r j is an instance from ext(R j), and let Join(·) denote the event that instances
are joinable. Then because presumption (2), we have

Pr(Join(r1,r2..ri,ri+1)) = Pr(Join(r1..ri)∧ Join(ri,rh)) = Pr(Join(r1..ri)) ·Pr(Join(ri,rh)).

And because of presumption (1), we have

Pr(Join(r1..ri)) ≈ M
|R1|·|R2|..|Ri| Pr(Join(ri,rh)) ≈ N

|Rh|·|Ri+1| .

So the estimated answer size of (R1↪→R2 ∧ . . .∧Ri−1↪→Ri)∧ (Rh↪→Ri+1) can be

EST = |R1||R2|..|Ri||Ri+1|Pr(Join(r1,r2..ri,ri+1))

= |R1|..|Ri+1|
M

|R1||R2|..|Ri|
N

|Rh||Ri+1|
=

M ×N
|Rh|

.

So we will be able to estimate the answer size for all such R-joins by conveniently
memorizing all pairwise R-join size and all label’s extension cardinalities in the data-
base catalog.

Example 2. For our running example, the first join is Institute↪→ research, thus M = 3.
For Institute↪→ research↪→topic, since N = 3 and |ext(research)|=5, so the estimated
result set size is 3×3

|5| = 1.8. The same result can be calculated if research↪→ topic is
taken as the first join.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 25

4.4 The Enumeration Space for Multi R-Joins

We use dynamic programming style optimization to enumerate a set of equivalent plans
to evaluate a multi R-join query graph Gq against a database graph G. We briefly outline
the procedure of searching such plans and its execution to evaluate Gq.

Given a query graph Gq, only left-deep tree plans are searched as a common prac-
tice for a reasonable search space. Recall: in Gq, a node represent a label and an edge
represents ↪→. An R-join, A↪→D, is represented as an edge from A to D. Initially, sub-
graphs G2 with two nodes connected by an edge are considered. Here, V (G2) = {v,u}
and E(G2) = {(v,u)} or E(G2) = {(u,v)} depending on whether it is for v↪→u or u↪→v.
In the next step, it considers to add one more edge. That is, it considers a subgraph
G3 with three edges, such that E3 includes all the edges in E(G2) plus one edge which
connects at least one incident node in V (G2). The last step repeats until it includes all
the nodes and edges in the original query graph Gq and we can get a sequence of sub-
graphs (G2,G3, ...,Gm) and a sequence of edges being added (e2,e2, ...,em). Regarding
a subgraph in the sequence, say, Gi and the edge to be added to the subgraph, which
should be ei or more specifically, (ui,vi), there are 3 cases:

– Only ui exists in V (Gi), in this case, an α operation is needed and followed by a
join for ui↪→vi and the cost is calculated as

CI = Cα · |R (Gi)|+C↪→(ε · |R (Gi)|+ |Dlistvi |)
– Only vi exists in V (Gi), in this case, an δ operation maybe needed and followed

by a join for ui↪→vi, since the Dlist for vi maybe obtained by the output from the
preceding join. When δ operation is needed, the cost is calculated as

CII = Cδ · |R (Gi)|+C↪→(|R (Gi)|+ |Alistui |)

The first term in CII can be eliminated if no δ operation needed.
– Both ui and vi exist in V (Gi), in this case, an σ operation is needed. The cost is

calculated as CIII = Cσ · |R (Gi)|).
In these cost formulae, values for |Alistui | and |Dlistvi | are obtained from the sta-

tistics in database catalog. The intermediate result by evaluating the query graph Gi is
represented as R (Gi). We estimate the value of |R (Gi)| according to section 4.3. The
explanation for other factors are as follows,

– Cα: factor to approximate the cost of α operation by the cardinality of the node
vectors;

– Cδ: factor to approximate the cost of δ operation by the cardinality of the node
vectors;

I R TR

I TR

I TR

S2S1

0S

qG

Sf1

Fig. 5. Searching for an Optimal Plan using DP

Start End R-join Result Size Cost

s0 s1 I↪→R 3 10
s0 s2 R↪→T 3 10
s1 s f 1 R↪→T 1 21
s2 s f 1 I↪→R 1 19

Fig. 6. DP on Gq

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 J. Cheng, J. Xu Yu, and B. Ding

– Cσ: factor to approximate the cost of σ operation by the cardinality of the node
vectors;

– C↪→: factor to approximate the cost of R-join operation by the sum of two lists’
length;

– ε: factor to approximate the length of an Alist by the cardinality of the node vectors.

4.5 Our Dynamic Programming Algorithm

In our dynamic programming style optimization, two basic components in the solution
space are statuses and moves.

– A status, S, specifies a a subquery, Gs, as an intermediate stage in generating a query
plan. To be more specific, a subquery of Gq is a subgraph Gs, where V (Gs) ⊆V (Gq)
and E(Gs) ⊆ E(Gq). Note: Gs does not necessarily be a connected graph if without
the left-deep tree restriction.

– A move from one status (subquery Gsi) to another status (subquery Gs j) considers
an additional edge (R-join) in Gs j that does not appear in Gsi , toward finding the en-
tire query plan for Gq. The next status is determined based on a cost function which
results in the minimal cost, in comparison with all possible moves. The process of
moving from one status to another results in a left-deep tree which is the R-join
order selection result.

We can estimate the cost for each move by those cost formulae in Sec. 4.4. Each status
S is associated with a cost function, denoted cost(S), which is the minimal accumulated
estimated cost to move from the initial status S0 to the current status S. Such accumu-
lated cost of a sequence of moves from S0 to S is the estimated cost for evaluating the
subquery GS being considered under the current status S. Our goal for dynamic pro-
gramming is to find the sequence of moves from the initial status S0 toward the final
status S f with the minimum cost, cost(S f), among all the possible sequences of moves.
This method is quite strait forward and its search space is bounded by 2m.

Our algorithm is outlined in Algorithm 1. We simply apply Dijkstra’s algorithm for
the shortest path problem into our search space, aiming to find a ”shortest” path from
S0 to any S f , where nodes represent statues, edges represent moves, and the length of
an edge is the cost of one move. We omit further explanation about Algorithm 1.

Algorithm 1. DP Algorithm to Generate Plan
l is a priority queue of status, sorting statues in the increasing order of cost(S).
1: Initialize queue l as ∅;
2: Add S+

0 into l;
3: while l is NOT empty do
4: S = l. f irst;
5: Delete l. f irst from l;
6: if S is a Final Status then
7: Output plan P backward from l; Terminate this Algorithm;
8: for each move from S to S′ do
9: if S′ /∈ l then
10: Insert S′ into l;
11: else
12: Update cost(S′) and l;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 27

Example 3. For our running example, Figure 5 shows two alternative plans for evalu-
ating the query I↪→R↪→T , both containing two moves. The status S0 is associated with
a NULL graph, while S1 and S2 are respectively associated with two two graphs with
two connected nodes, and S3 is associated with the Gq and thus to be a final status.
Details steps in the searching for an optimal plan is showed in Figure 6, where each
row of the table lists a move in the solution space. The first column is the status where
to start the move and the second column is the status where the move reaches. The third
column is the R-join that will be processed in that move, while the number of results
generated after the R-join is the fourth column.

5 Performance Evaluation

In this section, we conducted two sets of tests to show the efficiency of our approach.
The first set of tests is designed to compare our dynamic programming approach (de-
noted DP) with algorithm [5] (denoted TSD). The second set of tests further confirms the
ability to scale of our approach. We implemented all the algorithms using C++ on top
of a Minibase-based2 variant deployed in Windows XP. We configure the buffer of the
database system to be 2MB. A PC with a 3.4GHz processor, 2GB memory, and 120G
hard disk running Windows XP is used to carry out all tests.

I D P

(a) Q1

C

I

D

P

(b) Q2

I

C

P

L

(c) Q3

I

C D

P

L

(d) Q4

Fig. 7. R-join Query Graphs

Dataset |V | |E| |I| |I|/|V |
20M 307,110 352,214 453,526 1.478
40M 610,140 700,250 901,365 1.477
60M 916,800 1,003,437 1,360,559 1.484
80M 1,225,216 1,337,378 1,816,493 1.483
100M 1,666,315 1,756,509 2,269,465 1.485

Fig. 8. Datasets Statistics

We generated 20M, 40M, 60M, 80M and 100M size XMark datasets [9] using 5
different factors, 0.2, 0.4, 0.6, 0.8, and 1.0 respectively, and named each dataset by its
size. In these XML documents, we treat parent-child edges and ID/IDREF edges with-
out difference to obtain graphs and collapse the strong connected components in graphs
to get DAGs. The details of the datasets are given in Fig. 8. In Fig. 8, the first column is
the dataset name. The second and third columns are the node number and edge number
of the resulting DAG respectively. The forth column is the multiple interval labeling
size, while the last column shows the average number of intervals per node in the DAG.
Throughout all experiments, we use the 4 multi R-join join queries listed in Fig. 7,
where the label I stands for interest, C for category, L for listitem,D for description and
P for parlist.

5.1 TwigStackD v.s. DP

We test all queries over the same dataset described in Section 3 for the purpose of
compare TwigStackD algorithm to our approach. We show two set of figures that show
the elapsed time, number of I/Os and memory used to process each query.

2 Developed at Univ. of Wisconsin-Madison.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 J. Cheng, J. Xu Yu, and B. Ding

 0.1

 1

 10

 100

 Q4Q3Q2Q1

E
la

p
se

d
 T

im
e

(s
ec

)

Queries

TSD
DP

(a) Elapsed Time (sec)

 1

 10

 100

 1000

 Q4Q3Q2Q1

#
 I

/O
s

Queries

TSD
DP

(b) Number of I/Os

120

100

80

60

40

20

 Q4Q3Q2Q1

M
em

o
ry

 (
M

B
)

Queries

TSD
DP

(c) Memory (MB)

 0.1

 1

 10

 100

 1000

 10000

 Q4Q3Q2Q1

E
la

p
se

d
 T

im
e
 (

se
c
)

Queries

TSD
DP

(d) Elapsed Time (sec)

70000

10000

1000

100

10

 Q4Q3Q2Q1

#
 I

/O
s

Queries

TSD
DP

(e) Number of I/Os

900

700

500

300

100

 Q4Q3Q2Q1

M
e
m

o
ry

 (
M

B
)

Queries

TSD
DP

(f) Memory (MB)

Fig. 9. Compare on the DAG with 10% and 50% Remaining Edge Included

The first set of figures shows the performance on the DAG with 10 percent remaining
edges added, which are listed in Fig. 9 (a)-(c), and the second set of figures show the
performance on the DAG with 50 percent remaining edges added, which are listed in
Fig. 9 (d)-(f).

As shown in Fig. 9, our approach significantly outperforms TwigStackD, in terms of
elapsed time, number of I/O accesses, and memory consumption. The sharp difference
becomes even greater for a denser DAG, due to the rapid performance degradation of
TwigStackD when the edge number in the DAG increases. For example, consider Q3,
TwigStackD used 16.7 times of elapsed time and 8.7 times of I/O accesses than those
for our approach when 10 percent remaining edges being added, but when 50 percent
remaining edges being added, the two rates become 2922.3 and 266.4 respectively.
The memory usage of TwigStackD is unstable, and can range from 60MB to 900MB
for the 4 queries, because TwigStackD needs to buffer every node that can potentially
participate in any final solution and thus largely depends on the solution size. And it
can also be observed that the larger query needs more memory for the increased needs
of buffer pools by TwigStackD generally.

5.2 Scalability Test of Our Approach

Because TwigStackD does not scale well, in this section, we report the scalability of
DP. With the size of the dataset increasing from 20M to 100M, we tested the scalability
performance for our approach and Fig. 10 shows the results.

Both the number of I/Os and memory usage increase evenly as the size of underly-
ing DAGs increases. However, for the processing time of each query when the data size
increased, its variation is not so uniformly. A main reason for this observation is the
CPU overhead caused by sorting which is required in α and δ operations, for different
distribution of the data may result different join processing order, hence different num-
ber of those operations for the same query. However, there is no abrupt change for the
processing and the overall performance is still acceptable and all queries can be done
within tens of seconds.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cost-Based Query Optimization for Multi Reachability Joins 29

25

20

15

10

5

100M80M60M40M20M

E
la

ps
ed

 T
im

e
(s

ec
)

XMark Dataset Size

Q1
Q2
Q3
Q4

(a) Elapsed Time (sec)

25K

20K

15K

10K

5K

100M80M60M40M20M

I/

O
s

XMark Dataset Size

Q1
Q2
Q3
Q4

(b) Number of I/Os

180

150

120

90

60

30

100M80M60M40M20M

M
em

or
y

(M
B

)

XMark Dataset Size

Q1
Q2
Q3
Q4

(c) Memory

Fig. 10. Scalability Test on DP

6 Conclusion

In this paper, we studied query processing of multi reachability joins (R-joins) over a
large DAG. The most up-to-date approach, TwigStackD algorithm, uses a single interval
encoding scheme. TwigStackD assigns to each node in a DAG a single interval based on
a spanning tree it obtains from the DAG, and builds a complimentary index called SSPI.
It uses a twig-join algorithm to find matches that exist in the spanning tree and buffers
all nodes that belong to any solution, in order to find all matches in the DAG, with
the help of SSPI. TwigStackD has good performance for rather sparse DAGs. But, its
performance degrades noticeably when DAG becomes dense, due to the high overhead
of accessing edge transitive closures.

We present an approach of using an exisiting multiple interval encoding scheme
that assigns to each node multiple intervals. With the multiple encoding scheme, no
additional data structure is needed. We show that optimizing R-joins (R-join order se-
lection), using dynamic programming with a primitive implementation of R-join, can
significantly improve the performance, even though such an approach may introduce
overhead for feeding the intermediate result of an R-join to another. We conducted ex-
tensive performance studies and confirmed the efficiency of our DP approach. DP sig-
nificantly outperforms TwigStackD, and is not sensitive to the density of the underneath
DAG.

Acknowledgment

This work was supported by a grant of RGC, Hong Kong SAR, China (No. 418206).

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from relations to semistructured
data and XML. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

2. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. In Proc. of SIGMOD’89, 1989.

3. D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema Specification
1.0. W3C Candidate Recommendation, 2000.

4. N. Bruno and N. K. et. al. Holistic twig joins: optimal xml pattern matching. In Proc. of
SIGMOD’02.

5. L. Chen and A. G. et. al. Stack-based algorithms for pattern matching on dags. In Proc. of
VLDB’05.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 J. Cheng, J. Xu Yu, and B. Ding

6. J. Cheng and J. X. Y. et. al. Fast reachability query processing. In Proc. of DASFAA’06.
7. S. DeRose, E. Maler, and D. Orchard. XML linking language (XLink) version 1.0. 2001.
8. S. DeRose, E. Maler, and D. Orchard. XML pointer language (XPointer) version 1.0. 2001.
9. A. Schmidt and F. W. et. al. XMark: A benchmark for XML data management. In Proc. of

VLDB’02.
10. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path

selection in a relational database management system. In Proc. SIGMOD’79, pages 23–34,
1979.

11. H. Wang, W. Wang, X. Lin, and J. Li. Labeling scheme and structural joins for graph-
structured XML data. In Proc. of The 7th Asia Pacific Web Conference, 2005.

12. H. Wang, W. Wang, X. Lin, and J. Li. Subgraph join: Efficient processing subgraph queries
on graph-structured XML document. In Proc. of WIAM’02, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural

Join with Not-Predicates

Hanyu Li, Mong Li Lee, Wynne Hsu, and Ling Li

School of Computing, National University of Singapore
{leeml,whsu,lil}@comp.nus.edu.sg

Abstract. There has been much research on XML query processing.
However, there has been little work on the evaluation of XML queries
involving not-predicates. Such queries are useful and common in many
real-life applications. In this paper, we present a model called XQuery
tree to model queries involving not-predicates and describe a path-based
method to evaluate such queries efficiently. A comprehensive set of ex-
periments is carried out to demonstrate the effectiveness and efficiency
of the proposed solution.

1 Introduction

Research on XML query processing has been focused on queries involving struc-
tural join, e.g., the query ”//dept[/name=”CS”]//professor” retrieves all the
professors in the CS department. However, many real world applications also
require complex XML queries containing not-predicates. For example, the query
”//dept[NOT(/name=”CS”)]//professor” retrieves all the professors who are
not from the CS department. We call this class of queries negation queries.

A naive method to evaluate negation queries is to decompose it into several
normal queries involving structural join operation. Each decomposed query can
be evaluated using any existing structural join method [4,6,7,8,9,12,11], followed
by a post processing step to merge the results. This simplistic approach is expen-
sive because it requires repeated data scans and overheads to merge the inter-
mediate results. The work in [10] propose a holistic path join algorithm which is
effective for path queries with not-predicates, while [14] develop a method called
TwigStackList¬ to handle a limited class of twig queries with not-predicates,
i.e., queries with answer nodes above any negative edge.

In this paper, we propose a path-based approach to handle a larger class
of negation queries efficiently, i.e., queries with answer nodes both above and
below negative edges. We introduce a model called XQuery tree to model queries
involving negated containment relationship. We utilize the path-based labeling
scheme in [11] for queries involving not-predicates. Experiment results indicate
that the path-based approach is more efficient than TwigStackList¬[14].

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 illustrates the drawback of the TwigStackList¬ method. Section 4
describes the proposed path-based approach. Section 5 gives the experimental
results and we conclude in Section 6.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 31–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 H. Li et al.

2 Related Work

The structural join has become a core operation in XML queries [4,6,7,8,9,12,11].
The earliest work [12] use a sort-merge or a nested-loop approach to process the
structural join. Index-based binary structural join solutions employ B+-tree[7],
XB-tree[6], XR-tree[8] to process queries efficiently. Subsequent works extend
binary structural join to holistic twig join. Bruno et al. [6] propose a holistic twig
join algorithm, TwigStack, which aims at reducing the size of the intermediate
result and is optimal for ancestor-descendent relationship, while [13] design an
algorithm called TwigStackList to handle parent-child relationships. The work
in [11] design a path-based labeling scheme to reduce the number of elements
accessed in a structural join operation.

Al-Khalifa et al. [5] examine how the binary structural join method can be
employed to evaluate negation in XML queries. Algorithm PathStack¬ [10] uti-
lizes a boolean stack to answer negation queries. The boolean stack contains a
boolean variable ”satisfy” which indicates whether the associated item satisfies
the sub-path rooted at this node. In this way, a negation query does not need to
be decomposed, thus improving the query evaluation process.

Algorithm TwigStackList¬ [14] extends the algorithm TwigStackList [13] to
handle holistic twig negation queries. TwigStackList¬ also avoids decomposing
holistic negation queries into several sub-queries without negations. However,
TwigStackList¬ can only process a limited class of negation queries and suffer
from high computational cost (see Section 3). In contrast, our approach utilizes
the path-based labeling scheme in [11] to filter out unnecessary element nodes
efficiently and handles a larger class of negation queries.

3 Motivating Example

TwigStackList¬ [14] defines a query node as an output node if it does not appear
below any negative edge, otherwise, it is a non-output node. Consider query
T1 in Fig. 1(b) where {B} is an output node and {D, E, F} are non-output
nodes. Suppose we issue query T1 over the XML document Doc1 in Fig. 1(a)
whose element nodes have been labeled using the region encoding scheme [4].
TwigStackList¬ associates a list LB and a stack SB for the output node B.
Element B1 in the XML document is first inserted into the list LB. Since B1

satisfies the not-predicate condition in query T1, it is also pushed into the stack
SB. Next, element B2 is inserted into LB. B2 is subsequently deleted from LB

since its descendent element D1 has child nodes E2 and F1, thus satisfying the
sub-query rooted at D in T1. The final answer for T1 is B1.

There are two main drawbacks in Algorithm TwigStackList¬. First, the class
of negation queries which can be processed is limited to output nodes occurring
above any negative edge. Hence, it cannot handle meaningful complex queries
such as T2 in Fig. 1(c) which retrieves all the matching occurrences of elements
B and C such that B is not a child of A and B has child nodes C and D while D
has a child node E but does not have a descendant node F (we call nodes B and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural Join with Not-Predicates 33

A1

B1 B2

C1 C2

D1E1

E2 F1

(1:15, 1)

(2:6, 2)

(3:5, 3)

(4:4, 4)

(7:14, 2)

(8:13, 3)

(9:12, 4)

(10:10, 5) (11:11, 5)

(a) XML document

B

D

E F

(b) Query T1

A

B

C D

E F
(c) Query T2

Fig. 1. Example XML document and queries

C projected nodes). Second, TwigStackList¬ may access elements which are
not answers to a query. For example, to answer query T1, a series of operations
is also carried out on element B2 which is not in the final answer. Our proposed
path-based approach aims to overcome these two drawbacks.

4 Path-Based Approach

The proposed approach to evaluate XML negation queries utilizes the path-based
labeling scheme proposed in [11]. We will first review the scheme and introduce
the XQuery tree model to represent negation queries. Then we describe the
algorithms PJoin¬ and NJoin¬ which removes the unnecessary elements and
carries out structural join operation respectively.

4.1 Path-Based Labeling Scheme

The path-based labeling scheme [11] identifies each element node by a pair of
(path id, node id). Each text node is identified by a node id. The node id can be
assigned using any existing node labeling scheme, e.g, interval-based [12]. A path
id is composed of a sequence of bits. We first omit the text nodes from an XML
document. Then we find distinct root-to-leaf paths in the XML document by
considering only the tag names of the elements on the paths. We use an integer
to encode each distinct root-to-leaf path in an XML document. The number of
bits in the path id is given by the number of the distinct root-to-leaf element
sequences of the tag names that occur in the XML document. Let k denote the
number of distinct root-to-leaf paths, hence the path id of an element node has
k bits. For a leaf element node, all the bits except for the ith bit, are set to 0,
where i is the encoding of the root-to-leaf path on which the leaf node occurs.
The path id of a non-leaf element node is given by a bit-or operation on the path
ids of all its child element nodes.

Fig. 2(a) shows the XML document Doc1 labeled using the path-based label-
ing scheme. The corresponding encoding table is given in Fig. 2(b).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 H. Li et al.

A1

B1 B2

C1 C2

D1E1

E2 F1

(111, 1)

(100, 2)

(100, 3)

(100, 4)

(011, 5)

(011, 6)

(011, 7)

(010, 8) (001, 9)

(a) XML document

Root-to-leaf Path Encoding
Root/A/B/C/E 1

Root/A/B/C/D/E 2
Root/A/B/C/D/F 3

(b) Encoding Table

A

B

C D

E F

B

C

(c) Query T2

Fig. 2. Example to illustrate Path Labeling Scheme and XQuery Tree

Let PidA and PidD be the path ids for elements with tags A and D respec-
tively. If (PidA & PidD) = PidD, then we say PidA contains PidD. This is
called Path ID Containment. Li et al. [11] prove that the containment of two
nodes can be deduced from the containment of their path ids.

Property I: Let PidA and PidD be the path ids for elements with tags A and
D respectively. If PidA contains PidD and PidA �= PidD, then each A with
PidA must have at least one descendant D with PidD.

Consider the element nodes B2 and E2 in Doc1. The path id 011 for B2

contains the path id 010 for E2 since the bit-and operation between 011 and 010
equals to 010 and they are not equal. Therefore, B2 must be an ancestor of E2.

If two sets of nodes have the same path ids, then we need to check their
corresponding root-to-leaf paths to determine their structural relationship. For
example, the nodes B1 and E1 in Doc1 have the same path id 100. We can
decompose the path id 100 into one root-to-leaf path with the encoding 1 since
the bit in the corresponding position is 1. By looking up the first path in the
encoding table (Fig. 2(b)), we know that B1 is an ancestor of E1.

4.2 XQuery Tree

In this section, we define a model called XQuery tree to model queries involving
not-predicates. This is accomplished by augmenting the standard XML query
pattern tree with two new features: node projection and not operator.

Definition 1 (XQuery Tree). An XQuery Tree is defined as a tree T = (V, E)
where V and E denote the set of nodes and edges respectively.

1. A single edge denotes a parent-child relationship while a double edge denotes
an ancestor-descendant relationship.

2. Nodes to be projected are circled.
3. A negated containment relationship between two nodes is specified by putting

the symbol “¬” next to the edge. We call such an edge a negated edge.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural Join with Not-Predicates 35

Fig. 2(c) shows an example negation query modeled using the XQuery tree. The
equivalent query specified using the XQuery language is as follows:

For $v In //B
Where exists($v/C) and exists($v/D/E) and

count(A/$v) = 0 and count($v/D//F) = 0
Return {$v} {$v/C}

Note that negated edges cannot occur between the projected nodes of a query
since they would result in queries that are meaningless, e.g., retrieve all the
elements A and B such that A does not contain B. Therefore, we can deduce
that given an XQuery tree T , there exists some subtree T ′ of T such that T ′

contains all the projected nodes in T and all edges in T ′ are not negated edges.

Definition 2 (Projected Tree TP). Let T = (V, E) be an XQuery tree, and
S be the set of subtrees T ′ = (V ′, E′) of T , such that

1. V ′ ⊆ V and
2. V ′ contains all the projected nodes in T , and
3. for any e ∈ E′, e is not a negated edge.

The largest T ′ in S is defined as the projected tree TP of T .

The projected tree of the XQuery tree in Fig. 2(c) is shown within the dashed
circle. Given an XQuery tree T , we define the subtree above TP as tree T a

P and
the subtree below TP as T b

P respectively.

Definition 3 (Tree T a
P). Given an XQuery tree T , let R be the root node of

TP , and e be the incoming edge of R. We define T a
P as the subtree obtained from

T - TR - e, where TR denotes the subtree rooted at R.

Definition 4 (Tree T b
P). Given an XQuery tree T , we define T b

P as the subtree
rooted at C, where C denotes a child node of the leaf nodes of TP .

In Fig. 2(c), the nodes A and F form the trees T a
P and T b

P of T respectively.
Note that an XQuery tree T has at most one T a

P and possibly multiple T b
P . A

tree T a
P or T b

P may contain negated edges. However, queries with negated edges
in T a

P or T b
P may have multiple interpretations. For example, the query “A does

not contain B, and B does not contain C, where C is the projected node” has
different semantics depending on the applications. Here, we focus on queries
whose subtrees T a

P and T b
P do not contain any negated edges.

4.3 Algorithm PJoin¬

Algorithm PJoin [11] filters out unnecessary path ids for queries involving struc-
tural join. The main operation in PJoin is the binary path join. A binary path
join takes as input two lists of path ids, one for the parent node and the other
for the child node. A nested loop is used to find the matching pairs of path ids

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 H. Li et al.

based on the path id containment property. Any path id that does not satisfy
the path id containment relationship is removed from the lists of path ids of
both the parent node and the child node. However, this algorithm does not work
well for queries involving not-predicates.

Consider query T3 in Fig. 3(a) where the lists of path ids have been associ-
ated with the corresponding nodes. We assume that the path ids with the same
subscripts satisfy the path id containment relationship, i.e., b2 contains c2, etc.

Query Tc

(a)

Query Tc after PJoin

(b)

Query Tc after PJoin

(c)

Fig. 3. Example to illustrate Algorithm PJoin¬

Algorithm PJoin will first perform a bottom-up binary path join. The path id
lists for nodes C and D are joined. Since the path id d2, d3 and d4 are contained
in the path id c2, c3 and c4 respectively, d1 is removed from the set of path ids
of D. The path id list of node C is joined with the path id list of node E. No
path id is removed since each path id of E is contained in some path id of C.
We join the path id list of node B with that of node C. The path ids c2 and c3

are contained in the path id b2 and b3 respectively. Since there is a not-predicate
condition between nodes B and C, the path id b2 and b3 need to be removed
from the set of path ids of B. Finally, a binary path join between nodes A and
B is carried out and the path id a2 is removed.

Next, Algorithm PJoin carries out a top-down binary path join on T3 starting
from the root node A. The final result is shown in Fig. 3(b). The optimal sets of
path ids for the nodes in T3 is shown in Fig. 3(c). The difference in the two sets
of path ids shown in Fig. 3(b) and Fig. 3(c) is because Algorithm PJoin does
not apply the constraint that is imposed on nodes A and B to the entire query.

The above example illustrates that the proper way to evaluate a negated
containment relationship between path ids is to only update the path ids of the
nodes in the projected tree. This leads to the design of Algorithm PJoin¬.

The basic idea behind PJoin¬ (Algorithm 1) is that given a query T , we first
apply PJoin on T a

P and T b
P . The path ids of the leaf node of T a

P and the root
node(s) of T b

P are used to filter out the path ids of the corresponding nodes in
TP . The input to Algorithm PJoin¬ is an XQuery tree T with a set of pro-
jected nodes. We first determine the projected tree TP of T . Then the PJoin
algorithm is carried out on T b

P and T a
P (if any) respectively (lines 4-5). Next, a

bottom-up binary path join and a top-down binary path join are performed on TP

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural Join with Not-Predicates 37

Algorithm 1. PJoin¬
1: Input: T - An XQuery-tree
2: Output: Path ids for the nodes in T

3: Associate every node in T with its path ids;
4: Perform a bottom-up binary path join on T b

P and T a
P ;

5: Perform a top-down binary path join on T b
P and T a

P ;
6: Perform a path anti-join between the root node(s) of T b

P and their parent node(s)
if necessary;

7: Perform a bottom-up binary path join on TP ;
8: Perform a path anti-join between the leaf node of T a

P with its child node if necessary;
9: Perform a top-down binary path join on TP ;

(lines 7, 9). Each binary path join operation is followed by a path antijoin op-
eration (lines 6, 8). A path antijoin takes as input two lists of path ids, but one
list of path ids is for reference; only path ids in the other list need to be removed
if necessary. In line 6(8), the Algorithm PJoin¬ utilizes the root(leaf) nodes of
T b

P (T a
P) to filter out the path ids of their parent(child) node(s).

Note that if the set of path ids for the root node (leaf node) of T b
P (T a

P)
contains some path id whose corresponding element node is not a result of T
(super Pid set), then the path antijoin operation in Lines 6 (8) of Algorithm 1
is skipped. This is because the super Pid set of the root node (leaf node) of T b

P

(T a
P) could erroneously remove path ids from its parent node (child node), and

we may miss some correct answers in the final query result.
Consider again query T3 in Fig. 3(a). The projected tree is the subtree rooted

at node C. A PJoin is first performed on tree T a
P which contains nodes A and

B. The set of path ids for B obtained is {b1, b2}. Next, bottom-up path join is
carried out on TP . Since T a

P is a simple path query without value predicates, the
path id set associated with B is not a super Pid set according to the discussion
in [11]. Then we can perform a path anti-join between nodes B and C. This step
eliminates c2 from the path id set of C since c2 is contained in b2. Finally, a
top-down path join is performed on TP , which eliminates d1 and d2 from the set
of path ids for D, and e2 from the set of path ids for E. The final result after
PJoin¬ is shown in Fig. 3(c).

4.4 Algorithm NJoin¬

We retrieve the elements with path ids output by Algorithm PJoin¬ and apply
Algorithm NJoin¬ on these elements to obtain the result of the negation queries.

Algorithm 2 shows the details of NJoin¬ method. If the negation query with
T a

P is null, Algorithm NJoin¬ will use the method TwigStackList¬ [14] to cal-
culate the final result. This is because TwigStackList¬ cannot handle queries
with T a

P as illustrated in Section 3. Otherwise, we will use the holistic structural
join in [6] to evaluate the trees T a

P , T b
P and TP , and then merge the results.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 H. Li et al.

Algorithm 2. NJoin¬
1: Input: T - An XQuery-tree
2: Output: All occurrences of nodes in TP

3: if T a
P is null then

4: Perform TwigStackList¬ on T;
5: else
6: Perform holistic structural join on T a

P , T b
P and TP ;

7: Merge the intermediate result;
8: end if

4.5 Optimality of Path-Based Approach

The optimality of the proposed solution is due to Algorithm PJoin¬. This step
can greatly reduce the number of elements accessed by Algorithm NJoin¬.

Consider the query T1(Fig. 1(b)) issued over the XML document Doc1 in
Fig. 2(a). The path ids of each node is shown in Fig. 4(a). When Algorithm
PJoin¬ is applied on T1, the path id {100} is removed from the path id set of
node E and {011} is removed from the path id set of node B (see Fig. 4(b)).
There is only one path id left for node B after PJoin¬, which corresponds to
element B1. Further processing of element B2 is not needed. Experimental results
in the next section indicate that the relatively inexpensive PJoin¬ can greatly
filter out the irrelevant element nodes.

The other advantage of our approach is that by decomposing negation queries
into three parts (TP , T a

P and T b
P), we can handle an additional class of queries

compared to the method TwigStackList¬.

B

D

E F

{100, 011}

{011}

{100, 010}
{001}

(a)

B

D

E F

{100}

{011}

{010}
{001}

(b)

Fig. 4. Example to illustrate optimality of path-based approach

5 Experiment Evaluation

In this section, we examine the performance of the proposed path-based solution
for negation queries. We also compare our method with TwigStackList¬[14].
Both approaches are implemented in C++. All experiments are carried out on
a Pentium IV 2.4 GHz CPU with 1 GB RAM. The operating system is Linux
2.4. The page size is set to be 4KB.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural Join with Not-Predicates 39

We use three real world datasets for our experiments. They are Shakespeare’s
Plays (SSPlays) [1], DBLP [2] and XMark benchmark [3]. Table 1 shows the
characteristics of the datasets and Table 2 gives the query workload.

Table 1. Characteristics of Datasets

Datasets Size �(Distinct Elements) �(Elements)

SSPlays 7.5 MB 21 179,690

DBLP 60.7 MB 32 1,534,453

XMark 61.4 MB 74 959,495

Table 2. Query Workload

Query Dataset Nodes in Result

Q1 //PLAY[NOT(/PROLOGUE)]/EPILOGUE//TITLE SSPlays 13

Q2 //dblp/article[NOT(//url)] DBLP 14

Q3 //person[NOT(/creditcard)] XMark 7618

Q4 //people/person[NOT(/age)]/profile/education XMark 9568

5.1 Effectiveness of PJoin¬
We first evaluate the effectiveness of PJoin¬ in filtering out irrelevant elements
for the subsequent NJoin¬ operation. The following metrics are used:

Filtering Efficiency =

�
|Np

i |
�

|Ni|

Selectivity Rate =

�
|Nn

i |
�

|Ni|

where |Np
i | denotes the number of instances for node Ni after PJoin¬ operation,

|Nn
i | denotes the number of instances for node Ni in the result set after NJoin¬

operation and |Ni| denotes the total number of instances for node Ni in the
projected tree of the query.

Fig. 5(a) shows the Filtering Efficiency with Selectivity Rate for queries Q1
to Q4. The closer the two values are, the more effective PJoin¬ is for the query.
We observe that Algorithm PJoin¬ is able to remove all the unnecessary ele-
ments for queries Q1, Q2 and Q3 and the subsequent NJoin¬ will not access
any element that does not contribute to the final result, leading to optimal query
evaluation. Query Q4 has a higher Filtering efficiency value than Query Selectiv-
ity because the query node person which is the root node of the subtree rooted
at node age is a branch node. The set of path ids for person is a super Pid set.
Nevertheless, Algorithm PJoin¬ remains effective in eliminating unnecessary
path ids even for such queries.

Fig. 5(b) and (c) show that the I/O cost and elapsed time of Algorithm
PJoin¬ are marginal compared with NJoin¬ for queries Q1 to Q4. This is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 H. Li et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4

 Filtering Efficiency
 Selectivity Rate

(a) Filtering Efficiency vs. Selectivity Rate

(b) PJoin¬ and NJoin¬ (I/O cost)

A

B

C D

E F

B

C

(c) PJoin¬ and NJoin¬ (Time)

Fig. 5. Effectiveness of PJoin¬

because the sizes of the path lists are much smaller than that of node lists. The
time cost of PJoin¬ for queries Q3 and Q4 is slightly more compared to Q1 and
Q2 due to a larger number of distinct paths, as well as longer path ids for the
XMark dataset.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path-Based Approach for Efficient Structural Join with Not-Predicates 41

TwigStackList
Path-Based

(a) Elements Accessed

TwigStackList
Path-Based

(b) I/O Cost

TwigStackList
Path-Based

(c) Elapsed Time

Fig. 6. TwigStackList¬ vs. Path-Based

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 H. Li et al.

5.2 Comparative Experiments

In this set of experiments, we compare our solution with TwigStackList¬[14].
Fig. 6 shows the results. The path-based solution outperforms TwigStackList¬
because Algorithm PJoin¬ is able to greatly reduce the actual number of el-
ements retrieved while TwigStackList¬ is designed to reduce the intermediate
result sizes and may access all the elements involved in the queries. For example,
TwigStackList¬ must read in the full sets of elements when evaluating Q1.

6 Conclusion

In this paper, we have described a path-based approach to evaluate negation
queries. We introduced a model called XQuery tree to model queries involving
negated containment relationship. The proposed approach utilizes a path-based
labeling scheme to filter out irrelevant elements. Experimental results indicate
that the path-based approach is more efficient than TwigStackList¬ and is ef-
fective for a larger class of negation queries.

References

1. http://www.ibiblio.org/xml/examples/shakespeare.
2. http://www.informatik.uni-trier.de/˜ley/db/.
3. http://monetdb.cwi.nl/.
4. A. Al-Khalifa, H. V. Jagadish, and J. M. Patel et al. Structural joins: A primitive

for efficient xml query pattern matching. IEEE ICDE, 2002.
5. S. Al-Khalifa and H. V. Jagadish. Multi-level operator combination in xml query

processing. ACM CIKM, 2002.
6. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal xml pattern

matching. ACM SIGMOD, 2002.
7. S-Y. Chien, Z. Vagena, and D. Zhang et al. Efficient structural joins on indexed

xml documents. VLDB, 2002.
8. H. Jiang, H. Lu, W. Wang, and B. C. Ooi. Xr-tree: Indexing xml data for efficient

structural joins. IEEE ICDE, 2003.
9. H. Jiang, W. Wang, and H. Lu. Holistic twig joins on indexed xml documents.

VLDB, 2003.
10. E. Jiao, T-W. Ling, C-Y. Chan, and P. S. Yu. Pathstack¬: A holistic path join

algorithm for path query with not-predicates on xml data. DASFAA, 2005.
11. H. Li, M-L. Lee, and W. Hsu. A path-based labeling scheme for efficient structural

join. International Symposium on XML Databases, 2005.
12. Q. Li and B. Moon. Indexing and querying xml data for regular path expressions.

VLDB, 2001.
13. J. Lu, T. Chen, and T-W. Ling. Efficient processing of xml twig patterns with

parent child edges: A look-ahead approach. CIKM, 2004.
14. T. Yu, T-W. Ling, and J. Lu. Twigstacklist¬: A holistic twig join algorithm for

twig query with not-predicates on xml data. DASFAA, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive

Relational Join

Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

School of Computing
National University of Singapore

{tokwh,steph,leeml}@comp.nus.edu.sg

Abstract. Progressive join algorithms are join algorithms that produce
results incrementally as input data is available. Because they are non-
blocking, they are particularly suitable for online processing of data
streams. Reference algorithms of this family are the symmetric hash join,
the X-join and more recently, the rate-based progressive join (RPJ).

While the symmetric hash join introduces the idea of a symmetric
processing of the input streams but assumes sufficient main memory, the
X-Join suggests that the processing can scale to very large amounts of
data if main memory is regularly flushed to disk, and a reactive/cleanup
phase is triggered for disk-resident data. The X-join flushing strategy
is based on a simple largest-first strategy, where the largest partition is
flushed to disk. The recently proposed RPJ predicts the main memory
tuples or partitions that should be flushed to disk in order to maximize
throughput by computing their probabilities to contribute to a result.

In this paper, we discuss the limitations of RPJ and propose a novel
extension, called Result Rate-based Progressive Join (RRPJ), which ad-
dresses these limitations. Instead of computing the probabilities from
statistics over the input data, RRPJ directly observes the output (result)
statistics. This not only yields a better performance, but also simplifies
the generalization of the algorithm to non-relational data such as multi-
dimensional data and hierarchical data. We empirically show that RRPJ
is effective and efficient and outperforms the state-of-art RPJ. We also
investigate the relevance and performance of an adaptive version of these
algorithms using amortization parameters.

Keywords: Query Processing, Join Algorithms, Data Streams.

1 Introduction

The universe of network-accessible information is expanding. It is now common
practice for applications to process streams of data incoming from remote sources
(repositories continuously publishing or sensor networks producing continuous
data). An essential operation is the equijoin of two data streams of relational
data. Designing an algorithm for such an algorithm must meet a key requirement:
the algorithm must be non-blocking (or progressive), i.e. it must be able to
produce results as soon as possible, at the least possible expense for the overall
throughput.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 43–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 W.H. Tok, S. Bressan, and M.-L. Lee

Several non-blocking algorithms for various operators in general and for the
relational equijoin in particular have been proposed [1,2,3,4,5]. These algorithms
can be categorized as heuristic or probabilistic methods. Heuristic methods rely
on pre-defined policies for the efficient usage of the available memory; whereas
probabilistic methods [6,7] attempt to model the incoming data distribution (val-
ues and arrival parameters) and use it to predict the tuples or partitions that
are kept in memory in order to produce the maximum number of result tuples.
The main thrust in all these techniques lies in the simple idea of keeping useful
tuples or partitions (i.e. tuples or partitions likely to produce more results) in
memory. Amongst the many progressive join algorithms introduced, one of the
state-of-art hash-based progressive join algorithm is the Rate-based Progressive
Join (RPJ) [6]. One of the limitations of RPJ is that it is not able to perform
well if the data within the partitions are non-uniform, and that it is not straight-
forward to generalize it for non-relational data. In this paper, we propose the
Result-Rate based Progressive join (RRPJ) which overcomes these limitations.

The rest of the paper is organized as follows: In Section 2, we discuss related
work and focus on two recent progressive join algorithms, and their strengths
and limitations. In Section 3, we present a novel method, called Result Rate-
based Progressive Join (RRPJ), which uses a model of the result distribution
to determine which tuples to be flushed. We conduct an extensive performance
study in Section 4. We conclude in Section 5.

2 Progressive Join Algorithms

In the literature, many equijoin algorithms [2,3,4,5,8,9,10,11] have been pro-
posed. Most of these algorithms considered local datasets, and do not generalize
easily to handle unpredictable data arrival common in data streams environment.
Many of these equijoin algorithms are based on the seminal work on symmetric
hash join’s (SHJ) [12]. SHJ assumes the use of in-memory hash tables; an insert-
probe paradigm is used to deliver results progressively to users. In the literature,
many subsequently proposed progressive relational join algorithms are based on
an extended SHJ model, where both in-memory and disk-resident hash parti-
tions are used to store tuples. Whenever memory becomes full, some in-memory
tuples need to be flushed to disk to make space for new-arriving tuples. XJoin
[3] uses a simple heuristics that flushes the largest partitions. Throughput can
be improved if the sacrificed tuples are those with the smallest probability of
joining with future tuples, i.e. of contributing to the production of results. This
heuristics is the basis of two recent proposals [6,7] that attempt to extrapolate
stochastic models of the data and their productivity from the observation of
incoming tuples.

2.1 Problem Definition

We consider the problem of performing a relational equijoin between two re-
lational datasets, which are transmitted from remote data sources through an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive Relational Join 45

unpredictable network. Let the two sets of relational data objects be denoted by
R = {r1, r2, . . . , rn}, and S = {s1, s2, . . . , sm}, where ri and sj denotes the i-th
and j-th data object from the remote data source respectively. When performing
a relational equijoin, with join attribute A, a result is returned when ri.A is
equal to sj .A. Formally, (ri, sj) is reported as the result if ri.A is equal to sj .A.
The goal is to deliver initial results quickly and ensure a high result-throughput.

2.2 Rate-Based Progressive Join (RPJ)

RPJ [6] is a hash-based join. It builds a stochastic model based on the tuples’
arrival pattern. Whenever memory becomes full, the model is used to determine
probabilistically which tuples are least likely to produce tuples with the other
incoming data, and hence flushed from memory to disk.

In order to compute the conditional probability that an incoming tuple t be-
longs to the j -partition, given that t belongs to relation Ri, RPJ keeps track of
the total number of tuples from relation i that have arrived and falls into parti-
tion j, denoted by ntotal

i [j] By dividing ntotal
i [j] over the total number of tuples

that have arrived in the system so far, the conditional probability P (j|Ri) can be
derived as P (j|Ri) = ntotal

i [j]
npart�

j=1
ntotal

i [j]

. To reduce the need to track conditional prob-

abilities for each values in the domain of the join attribute, RPJ assumes that
the data in each partition is uniformly distributed. (i.e. local uniformity assump-
tion). The probability P(R1) and P(R2) are estimated by maintaining counters
nrcnt

i for each relation Ri (initially set to the number of arriving Ri tuples be-
tween the initial time interval [0,1]). Subsequently, RPJ counts the number of
tuples, denoted by αi(t), between the interval [t,t+1]. To more accurately reflect
current arrivals, and to reduce the impact from historical arrivals, RPJ updates
the value of nrcnt

i to λ·nrcnt
i + (1−λ)·αi(t), where λ is a user-tunable parameter

(varies between [0,1]).
Thus, the arrival probability parr

i (v) of a tuple belonging to relation Ri and
has the value v is then computed as P arr

i [j] = ntotal
i [j]

npart�

j=1
ntotal

i [j]

· nrcnt
i

nrcnt
1 +nrcnt

2
(Refer

to [6] for the complete proof).

2.3 Locality-Aware (LA) Model

[7] observes that a data stream exhibits reference locality when tuples with spe-
cific attribute values have a higher probability of re-appearing in a future time
interval. Leveraging this observation, a Locality-Aware (LA) model was pro-
posed, where the reference locality caused by both long-term popularity and
short-term correlations are captured. This is described by the following model:

xn = xn−i (with probability ai); xn = y (with probability b, where 1 ≤ i ≤ h and

b +
h∑

i=1

ai = 1. y denotes a random variable that is independent and identically

distributed (IID) with respect to the probability distribution of the popularity, P.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 W.H. Tok, S. Bressan, and M.-L. Lee

Using this model, the probability that a tuple t will appear at the n-th position

of the stream is given by Prob(xn = t|xn−1, ..., xn−h) = bP (t) +
h∑

j=1

ajδ(xn−j , t)

(δ(xk, c) = 1 if xk = c, and it is 0 otherwise). Using the LA model, the marginal
utility of a tuple is then derived, and is then used as the basis for determining
the tuples to be flushed to disk whenever memory is full.

2.4 Limitations of RPJ and LA Model

In this section, we discuss the limitations of RPJ and the LA model. RPJ rely
on the availability of an analytical model deriving the output probabilities from
statistics on the input data. This is possible in the case of relational equijoins
but embeds some uniformity assumptions that are not necessarily true. It is not
able to efficiently handle scenarios in which the data within each partition is
non-uniform, which breaks the local uniformity assumption. Consider the two
partitions, belonging to dataset R and S respectively, presented in Figure 1. The
grayed area is used to denote ranges of data. Suppose in both Figure (a) and
(b), N tuples have arrived. In Figure 1(a), the N tuples is uniformly distributed
across the entire partitions of each dataset; whereas in Figure 1(b), the N tuples
is distributed within a specific numeric range (i.e. areas marked grey). Assume
the same number of tuples have arrived for both cases, then P (1|R) and P (1|S)
would be the same. However, it is important to note that if partition 1 is selected
to be the partition to be kept in memory, the partitions in Figure 1(a) would
produce results as predicted by RPJ; whereas the partitions in Figure 1(b) would
fail to produce any results. Though RPJ attempts to amortize the effect of
historical arrivals of each relation, it assumes that the data distribution remains
stable throughout the lifetime of the join, which makes it less useful when the
data distribution are changing (which is common in long-running data streams).

The LA model is applied to deal with the approximate sliding window join on
relational data Based on the LA model given in the earlier section, we can see
that it relies on determining whether a similar tuple appears in a future position
in the data stream. For relational data, a similar tuple could be one that has the
same value as a previous tuple. However, for non-relational data, such as spatial
data, the notion of similarity between two tuples is more complex, and hence it
is not straightforward to extend the LA model to deal with non-relational data
types.

Partition 1
from R

Partition 1
from S

Partition 1
from R

Partition 1
from S

(a) Uniform Data (b) Non-Uniform Data
within partition within partition

Fig. 1. Data in a Partition

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive Relational Join 47

3 Result-Rated Based Progressive Join (RRPJ)

In this section, we present a novel method of maintaining statistics over the result
distribution, instead of the data distribution. This is motivated by the fact that
in most progressive join scenarios, we are concerned with delivering initial results
quickly and maintaining a high overall throughput. Hence, the criteria used to
determine which tuples need to be flushed to disk whenever memory becomes
full should be ‘result-motivated’. In addition, the number of results produced by
a partition is reflective of the data distribution of the partitions.

3.1 RRPJ

We propose a novel join algorithm, call Result-Rate Based Progressive Join
(RRPJ) (Algorithm 1), which uses information on the result throughput of the
partitions to determine the tuples or partitions that are likely to produce results.
In Algorithm 1, an arriving tuple is first used to probe the hash partitions of the
corresponding data stream in order to produce result tuples. Next, it will check
whether memory is full (line 2). If memory is full, it will first compute the Thi

values (i.e value computed by Equation 3) for all the partitions. Partitions with
the lowest Thi values will then be flushed to disk, and the newly arrived tuple
inserted. The main difference between the RRPJ flushing and RPJ is that the
Thi values are reflective of the output (i.e. results) distribution over the data
partitions; whereas the RPJ values are based on input the data distribution.

To compute the Thi values (computed using Equation 3), we track the total
number of tuples, ni (for each partition), that contribute to a join result from
the probes against the partition. Intuitively, RRPJ tracks the join throughput
of each partition. Whenever memory becomes full, we flush nflush (user-defined
parameter) tuples from the partition that have the smallest Thi values, since
these partitions have produced the least result so far. If the number of tuples
in the partition is less than nflush, we move on to the partition with the next
lowest Thi values.

Given two timestamps t1 and t2 (t2 > t1)and the number of join results
produced at t1 and t2 are n1 and n2 respectively. A straightforward definition
of the throughput of a partition i, denoted by Thi, is given in Equation 1.

Thi =
n2 − n1

t2 − t1
(version 1) (1)

From Equation 1, we can observe that since (t2 − t1) is the same for all
partitions, it suffice to maintain counters on just the number of results produced
(i.e. n1 and n2). A partition with a high Thi value will be the partition which
have higher potential of producing the most results. However, it is important to
note that Equation 1 do not take into consideration the size of the partitions and
its impact on the number of results produced. Intuitively, a large partition will
produce more results. It is important to note that this might not always be true.
For example, a partition might contain few tuples, but produces a lot of results.
This partition should be favored over a relatively larger partition which is also

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 W.H. Tok, S. Bressan, and M.-L. Lee

Algorithm 1: RRPJ Join Algorithm
Data : t - Newly Arrived tuple

Result : Result Tuples

1 Use t to probe hash partitions from other data stream
2 If (Memory is full()) {
3 ComputeThValue() ;
4 FlushDataToDisk() }
5 Insert t into hash table HT ;

producing the same number of results. Besides considering the result distribution
amongst the partitions, we must also consider the following: (1) Total number
of tuples that have arrived, (2) Number of tuples in each partition, (3) Number
of result tuples produced by each partition and (4) Total results produced by
the system. Therefore, we use an improved definition for Thi, given below.

Suppose there are P partitions maintained for the relation. Let Ni denote
the number of tuples in partition i (1 ≤ i ≤ P), and Ri denote the number of
result tuples produced by partition i. Then, the Thi value for a partition i can
be computed. In Equation 2, we consider the ratio of the results produced to
the total number of results produced so far (i.e. numerator), and also the ratio
of the number of tuples in a partition to to the total number of tuples that have
arrived (i.e. denominator).

Thi = (Ri
P�

j=1
Rj

)/(Ni
P�

j=1
Nj

) =
Ri×(

P�

j=1
Nj)

(
P�

j=1
Rj)×Ni

(version 2) (2)

Since the total number of results produced and the total number of tuples
is the same for all partitions, Equation 2 can be simplified. This is given in
Equation 3.

Thi = Ri
Ni

(version 2 - after simplification) (3)

Equation 3 computes the Thi value w.r.t to the size of the partition. For
example, let us consider two cases. In case (1), suppose Ni = 1 (i.e. one tuple
in the partition) and Ri = 100. In case (2), suppose Ni = 10 and Ri = 1000.
Then, the Thi values for case (1) and (2) are the same. This prevents large
partitions from unfairly dominating the smaller partitions (due to the potential
large number of results produced by larger partitions) when a choice needs to
be made on which partitions should be flushed to disk.

3.2 Amortized RRPJ (ARRPJ)

In order to allow RRPJ to be less susceptible to varying data distributions,
we introduce Amortized RRPJ (ARRPJ). Suppose there are two partitions P1

and P2, each containing 10 tuples. If P1 produces 5 and 45 result tuples at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive Relational Join 49

timestamp 1 and 2 respectively, the Th1 value is 5. If partition P2 produces
45 and 5 result tuples at timestamp 1 and 2 respectively, the Th2 value for P2

will also be 5. From the above example, we can observe that the two scenarios
cannot be easily differentiated. However, we should favor partition P1 since it is
obviously producing more results than P2 currently. This is important because
we want to ensure that tuples that are kept in memory are able to produce more
results because of its current state, and not due to a past state.

To achieve this, let σ be a user-tunable factor that determines the impact of
historical result values. The amortized RRPJ value, denoted as At

i, for a partition
i at time t is presented in Equation 4. When σ = 1.0, then the amortized RRPJ
is exactly the same as the RRPJ. When σ = 0.0, then only the latest RRPJ
values are considered. By varying the values of σ between 0.0 to 1.0 (inclusive),
we can then control the effect of historical RRPJ on the overall flushing behavior
of the system.

At
i = σtr0

i +σt−1r1
i +σt−2r2

i +......+σ1rt−1
i +σ0rt

i

Ni
=

t�

j=0
σ(t−j)rj

i

Ni

(4)

4 Performance Study

In this section, we study the performance of the proposed RRPJ against RPJ. All
the experiments were conducted on a Pentium 4 2.4GHz CPU PC (1GB RAM).
We measure the progressiveness of the various flushing policies by measuring the
number of results produced and the response time.

Table 1. Experiment Parameters

Dataset Parameter Default Values
Number of Tuples Per Page 85

Available Memory 1000 pages

Domain of Join attribute [1, 10000]

Tuple Inter-arrival 0.001s

Dataset Size (Relation R1 + Relation R2) 2 million tuples

Percentage of tuples flushed 10%

The experimental parameters are given in Table 1. Unless otherwise stated,
the datasets used in the experiments uses the default values given in the table.

4.1 Effect of Uniform Data Within Partitions

We generated the datasets HARMONY and REVERSE based on the dataset
generation techniques described in [6]. We used the same arrival pattern HAR-
MONY and REVERSE. In this experiment, we evaluate the performance of the
RRPJ against RPJ. We measure the response time (x-axis) and the number of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 W.H. Tok, S. Bressan, and M.-L. Lee

result tuples generated (y-axis). From Figure 2, we can observe that the per-
formance of RRPJ is comparable to RPJ using the same datasets from [6], and
hence is at least as effective as RPJ for uniform data.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

RPJ

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

RPJ

(a) Harmony (b) Reverse

Fig. 2. Effect of Uniform-Data Within Partitions

4.2 Effect of Non-uniform Data Within Partitions

In this experiment, we evaluate the performance of RRPJ against RPJ for non-
uniform datasets. We used the same arrival pattern HARMONY and REVERSE.
Similar to Figure 1, we restrict the domain for the join attribute for 50% of the
tuples from one dataset (R1) to be in the range [1,5000] and the domain of the
join attribute for 50% of the other dataset (R2) to be in the range [5001,10000].
We measure the response time (x-axis) and the number of result tuples generated
(y-axis). From Figure 3(a) and 3(b), we can observe that the RRPJ outperforms
RPJ by a large margin. This is because RPJ’s local uniformity assumption breaks
when the data within each partition is non-uniform. Comparatively, since RRPJ
tracks the number of results, it is able to identify the partitions that are not
producing any results, and hence avoid keeping tuples belonging to these non-
productive partitions in memory.

4.3 Varying Data Arrival Distribution

The datasets are generated as follows: We make use of a zipfian distribution (with
tunable parameter θ) to determine the partition for assigning a newly-arrived
tuple. When θ = 0.0, the data distribution is uniform (i.e. a newly-arrived tuple
have equal probability of belonging to any of the partitions). When θ increases,
the arrival distribution becomes more skewed (i.e. a newly-arrived tuple have
higher probability to belong to specific partitions). In order to simulate a vary-
ing data arrival distribution, we re-order the partitions probabilities whenever
every α tuples have arrived. The partitions are randomly re-ordered. For exam-
ple, when θ = 2.0, Table 2 shows the arrival probabilities. During the initial
stage, the probability that a newly arrived tuple will belong to partition 1,2,3,4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive Relational Join 51

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

RPJ

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

RPJ

(a) Harmony (b) Reverse

Fig. 3. Effect of Non-Uniform-Data Within Partitions

and 5 are 0.68, 0.17, 0.08, 0.04 and 0.03 respectively. During each reorder, these
probabilities for a newly arrived tuple to belong to a specific partition change.

In this experiment, we evaluate the performance of the Amortized RRPJ
(ARRPJ) against RPJ and RRPJ, when the data arriving exhibits varying data
arrival distribution (i.e the probability that a newly arrived tuple belongs to a
partition changes). We vary the amortization factor, σ, for ARRPJ between 0.0
to 1.0. We call the corresponding algorithm ARRPJ-σ. When σ = 0.0, only the
latest RRPJ values (i.e. number of results produced and size of data partition
since the last flush) are used; whereas when σ = 1.0, ARRPJ is exactly RRPJ
(it computes the average of the statistics over time).

Table 2. Arrival Probabilities, θ = 2.0

Arrival Probabilities, P Initial 1st Reorder 2nd Reorder

Partitions Assigned

0.68 1 2 3

0.17 2 3 4

0.08 3 4 5

0.04 4 5 1

0.03 5 1 2

The results are shown in Figure 4(a)-(f). In addition, we summarize the
throughput (i.e. number of result tuples produced over time) of each algorithm
in table 3. In Table 3, we can observe that an amortization factor = 0.0 need not
necessarily be the best (highlighted in bold). There is a need to balance between
the impact of past and current results. From Figure 4(a)-(e), we can observe that
ARRPJ (with different amortization factor) performs much better than RRPJ.
Also, when the data distribution changes frequently (e.g. Figure 4(f), α = 0k),
the performance of RRPJ and ARRPJ are similar.

When α = 0k, the data arrival distribution is re-ordered aggressively (changes
each time a tuple arrives). Thus, all the methods (including RPJ and XJoin)
perform similarly. This is because none of the methods can make use of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

52 W.H. Tok, S. Bressan, and M.-L. Lee

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

(a) α = 32k (b) α = 20k

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

(c) α = 16k (d) α = 8k

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R

es
ul

ts
 T

up
le

s

Execution Time(s)

RRPJ

ARRPJ-0.0

ARRPJ-0.2

ARRPJ-0.5

ARRPJ-0.8

ARRPJ-1.0

(e) α = 4k (f) α = 0k

Fig. 4. Varying Data Distribution

Table 3. Throughput of various methods (Summary of Fig 4)

α RRPJ ARRPJ-0.0 ARRPJ-0.2 ARRPJ-0.5 ARRPJ-0.8 ARRPJ-1.0

0 4113 4128 4128 4125 4119 4113

4 6735 7719 7950 7665 7541 6735

8 9783 12266 12009 11503 10551 9783

16 11879 20133 20038 19428 17307 11879

20 10027 25140 25152 24554 20887 10027

32 12177 36388 36053 34685 27120 12177

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RRPJ: Result-Rate Based Progressive Relational Join 53

statistics gathered to do effective prediction of which tuples to keep in memory
combined with a generally smaller number of possible results. However, when
α increases from 4k to 32k, we can observe that ARRPJ (with different α)
outperforms RRPJ. This is because ARRPJ was able to better reduce the impact
of the past results by amortizing the RRPJ values. RRPJ do not perform as
well, since RRPJ does not differentiate between past and current results. From
Figure 4, we can also observe that as the data changes less frequently (i.e. when α
varies from 0K to 32K), the total number of result tuples significantly increases.
This is because when the data distribution changes less often, the statistics
computed could be used for more effective prediction of which tuples need to be
kept in memory.

In addition, we also varied ρ (percentage of pages flushed each time memory is
full, and θ (skewness of the data distribution). Similar trends are observed. When
θ is 0.0 (i.e. uniform data), all methods (i.e. RPJ, RRPJ, ARRPJ) performs
the same. The results are omitted due to space constraints. These experiments
suggest however that several factors influence the correct evaluation of the output
statistics when data distribution is changing over time. The amortization formula
must be tuned with respect to the size of the buffer, the percentage and size of
the replaced partitions as well as the frequency of the replacement. While the
purpose of this paper is to introduce the idea of amortization and illustratively
quantify its potential, such fine tuning is left to future work.

5 Conclusion

We proposed a new adaptive and progressive equijoin algorithm for relational
data streams. The algorithm is of the X- and symmetric hash join family. Its
originality is twofold.

Firstly, the algorithm implements a replacement strategy for main memory
partitions that estimates the probability of partition to produce results directly
from the observation of output statistics. Previous proposals, such as the RPJ
and LA algorithms, have attempted to analytically construct such a model from
the statistics on the input streams. We showed that our algorithm is equivalent to
RPJ in the cases for which RPJs performance was evaluated by its inventors (we
use the same data sets). We showed that our algorithm significantly outperforms
RPJ, when the uniformity hypothesis necessary to the estimation by the RPJ
algorithm does not hold. We therefore showed that our algorithm is globally
better than RPJ empirically.

Secondly, we proposed an adaptive version of our algorithm that makes use of
amortization in order to incrementally weight out the influence of past statistics.
The same principle can be incorporated in previously proposed algorithms such
as RPJ and LA. This allows the algorithm to cater for changes over time in
the input data distributions. We showed that this technique leads to significant
performance increase in some cases, thus proving the concept. However, the
results we obtained compel further studies in order to understand the impact of
the different parameters. Future and ongoing work includes the practical tuning

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 W.H. Tok, S. Bressan, and M.-L. Lee

of such parameters: amortization formula, buffer size, frequency of replacements
and percentage/size of replaced partitions.

Finally we underline that, as we had preliminarily shown in [13], as opposed
to RPJ and LA, our approach rather gracefully generalizes to non-relational
data as it does not require the complex analytical modeling of the probabilities
of partitions to produce results from a model of the input data distribution
but rather directly observes a statistical model of the output distribution. We
are currently investigating the performance of RRPJ against RPJ and LA in
non-relational domains.

Acknowledgments. We would like to thank Dr Tao Yufei and his colleagues
for providing us with the RPJ code and data generator.

References

1. Haas, P.J., Hellerstein, J.M.: Ripple join for online aggregation. In: SIGMOD.
(1999) 287–298

2. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost based query scrambling for initial
delays. In: SIGMOD. (1998) 130–141

3. Urhan, T., Franklin, M.J.: XJoin: Getting fast answers from slow and bursty net-
works. Technical Report CS-TR-3994, Computer Science Department, University
of Maryland (1999)

4. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In:
SIGMOD. (2000) 261–272

5. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive
continuous queries over streams. In: SIGMOD. (2002) 49–60

6. Tao, Y., Yiu, M.L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: Rpj: Pro-
ducing fast join results on streams through rate-based optimization. In: SIGMOD.
(2005) 371–382

7. Li, F., Chang, C., Kollios, G., Bestavros, A.: Characterizing and exploiting refer-
ence locality in data stream applications. In: ICDE. (2006) 81

8. Dittrich, J.P., Seeger, B., Taylor, D.S., Widmayer, P.: Progressive merge join: A
generic and non-blocking sort-based join algorithm. In: VLDB. (2002) 299–310

9. Dittrich, J.P., Seeger, B., Taylor, D.S., Widmayer, P.: On producing join results
early. In: PODS. (2003) 134–142

10. Mokbel, M.F., Lu, M., Aref, W.G.: Hash-merge join: A non-blocking join algorithm
for producing fast and early join results. In: ICDE. (2004) 251–263

11. Lawrence, R.: Early hash join: A configurable algorithm for the efficient and early
production of join results. In: VLDB. (2005) 841–852

12. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-
memory environment. In: PDIS. (1991) 68–77

13. Tok, W.H., Bressan, S., Lee, M.L.: Progressive spatial join. In: SSDBM. (2006)
353–358

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for Multi-Attribute Query in P2P
System with Low Maintenance Cost

Minqi Zhou, Rong Zhang, Weining Qian, and Aoying Zhou

Department of Computer Science and Engineering, Fudan University, Shanghai 200433, China
{zhouminqi,rongzh,wnqian,ayzhou}@fudan.edu.cn

Abstract. To provide complex query processing in peer-to-peer systems has at-
tracted much attention in both academic and industrial community. We present
GChord, a scalable technique for evaluating queries with multi-attributes. Both
exact match and range queries can be handled by GChord. It has advantages over
existing methods in that each tuple only needs to be indexed once, while the query
efficiency is guaranteed. Thus, index maintenance cost and search efficiency are
balanced. Additional optimization techniques further improves the performance
of GChord. Extensive experiments are conducted to validate the efficiency of the
proposed method.

1 Introduction

Peer-to-peer (P2P) systems provide a new paradigm for information sharing in large-
scale distributed environments. Though the success of file sharing applications has
proved the potential of P2P-based systems, the limited query operators supported by
existing systems prevent their usage in more advanced applications.

Much effort has been devoted to provid fully featured database query processing
in P2P systems [1,2,3,4]. There are several differences between query processing for
file sharing and database queries. Firstly, the types of data are much more complex
in databases than those in file names. Basically, numerical and categorical data types
should be supported. Secondly, files are searched via keywords. Keyword search is
often implemented by using exact match query. However, for numerical data types,
both exact match queries (or point queries) and range queries should be supported. The
last but not the least, user may issue queries with constraints on variant number of at-
tributes for database applications. This last requirement poses additional challenges for
database style query processing in P2P systems. Some existing methods, such as VBI-
Tree [2], can only support user queries with constraints on all attributes. Some other
methods, namely Mercury [3] and MAAN [4], separately index data on each attribute.
Though they can support multi-attribute queries with constraints on arbitrary number
of attributes, they are not efficient for indexing data with more than three attributes for
two reasons. The first one is that the maintenance cost increases with the number of
attributes. Another reason is that the selectivity of indexes on one attribute decreases
drastically when the number of attributes increases.

We present GChord, a Gray code based Chord, as a new index scheme supporting
multi-attribute queries (MAQ) in P2P environment. It distinguishes itself from other
methods in the following aspects:

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 55–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 M. Zhou et al.

– GChord utilizes the property of one-bit-difference of Gray code to encode numer-
ical data. This encoding scheme, together with the traditional hash-based indexing
technique for categorical data, transforms the MAQ problem to multicast problem
in a large-scale network. Fully utilizing the finger table links provided by Chord [5],
a general purpose P2P overlay network, GChord provides a solid base for index-
ing data without modification on the underlying overlay network structure. Thus, it
provides a convenient solution to work with existing efficient P2P technologies.

– In GChord, each data tuple only needs to be indexed once. Thus, performance of our
method does not directly rely on the number of attributes of data. Compared with
other Chord-based methods, it is more efficient in terms of maintenance overhead
and search performance.

– In additional to the basic indexing and query processing scheme, GChord intro-
duces optimization techniques called multicast tree clustering and index buddy.
The former provides an efficient implementation of multicast in P2P network for
the MAQ problem. The latter shows that by consuming a small portion of storage
space for caching index entries, GChord outperforms methods with index duplica-
tion in terms of storage cost and query processing.

The remainder of this paper is organized as follows. Section 2 is for related work of
GChord. After the problem statement given in Section 3, we introduce the basic GChord
in detail in Section 4. In Section 5, we present the optimization techniques of GChord.
After the experimental result shown in Section 6, Section 7 is for concluding remarks.

2 Related Works

MAQ is widely studied in centralized database systems. One solution of indexing data
for MAQ is hBΠ -tree [6], which is a combination of multi-attribute index hB-tree [7]
and abstract index Π-tree[8]. hBΠ -tree achieves low storage cost and efficient point-
and range-query processing for various data types and data distribution. However, the
different setting of large-scale distributed systems prevents the application of existing
technique in centralized systems in P2P systems.

In large-scale P2P systems, distributed hash tables (DHTs), such as Chord [5], Pas-
try [9], and CAN [10], are widely used. However, it can only support key-word-based
search lookup(key) and these hash-based methods usually cannot preserve the locality
and continuity of data.

The methods supporting MAQ in structured P2P systems can be classified into two
categories. The first one introduces traditional tree-structured index scheme into P2P
systems. BATON [1] is P2P index structure based on balanced binary tree. BATON*
[11] substitute the binary tree in BATON with an m-way tree. These two can well sup-
port single dimensional range query. VBI-tree [2] provides a framework for indexing
multi-dimensional data in P2P systems with hierarchical tree-structured index in cen-
tralized systems. However, these structures cannot support queries with constraints on
arbitrary number of attributes efficiently.

The other category of research work is based on extending DHT-based overlay net-
works. The basic idea behind these methods is to use one overlay network for each

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for MAQ in P2P System with Low Maintenance Cost 57

attribute that needs to be indexed, and to use locality-preserving hash to index numeri-
cal attributes. Mercury [3] and MAAN [4] belong to this category. Both of them index
each attribute separately on Chord ring and the index with the best selectivity power is
used to prune the search to support MAQ. Therefore, both of them have high stor-
age cost and index maintenance cost. Furthermore, the search efficiency decreases
drastically when the dimensionality of data increases.

3 Problem Statements

A tuple of data is represented by a set attribute-value pairs: t{attri, vi}, i = 1, · · · , N .
The domain Ai of attribute attri is either numerical or categorical. A numerical domain
is supposed to be continuous or sectionally continuous, and bounded. Given a data set,
the set of domains A : {Ai} for i = 1, 2, · · · , N is supposed to be known in advance.
We believe that even with this assumption, many applications can be fit into our MAQ
model.

A multi-attribute query (MAQ) is a conjunction of a set of predicates of the form
(attri, op, vi), i = 1, · · · , m, in which, attri is the attribute name, op is one of <, ≤, >,
≥, = for numerical attributes and = for categorical ones. Note that a query may have ar-
bitrary number of predicates, and the predicates may be on arbitrary attributes. Figure 1
shows a simple example of data and queries.

film name(c) price(n) duration(n) premiere(n) cinema(c)
Lord of War 50 90 05-06-1 Yongle

Garfield 60 75 06-07-12 Guang
XMan 90 100 05-11-4 Yonghua

Thinking 100 125 06-05-09 Yonghua
The Break 90 110 05-12-17 Yonghua

Silther 90 100 06-10-30 Guang
 Records
Q1: fn=”Lord of War”∧price>40∧price<80
Q2:premiere>06-05-4∧premiere<06-07-09∧cinema=”Yongle”
Q3:duration>80∧price<90∧cinema=”Guang”∧premiere>06-06-17
Q3:fn=”XMan”∧price<70∧premiere>06-03-12∧cinema=”Guang”
Q4:fn=”Thinking”∧price=50∧premiere>06-07-05

Queries

Fig. 1. Data Item and Query

000 001 011 010 110 111 101 100

011

100

101

111

110

010

001

000

Level with prefix 0 Level with prefix 1

Level with
prefix 10

Level with
prefix 11

Level with
prefix 01

Level with
prefix 00

Fig. 2. Two Attributes Domain Partition

The results to a MAQ are the set of tuples satisfying all predicates presented in the
query. Note that there is no constraints on the values of attributes missed in the query.

The problem of MAQ in a P2P environment is that a set of peers each may share
(or publish) a set of tuples. Each peer may issue a MAQ to be evaluated in a P2P
style, which means there is no centralized server, and the peers work in a collaborative
mechanism. To collaborate with others, a peer devotes some storage space for indexing
data shared by others, and supports index lookup and maintenance.

The difficulty of query processing for MAQ in P2P systems lies in the following
three aspects: 1) one query may involve attributes with different data types, and point

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 M. Zhou et al.

constraint and range constraint may appear simultaneously in one query, 2) arbitrary
number of attributes may presented in a query, and 3) index maintenance is especially
expensive in P2P systems. Since there are N ! − 1 possible combinations of attributes
in a query, any method using index structure that can only answer queries with fixed
number of attributes will fail to handle MAQ in P2P environment, for the high cost of
index maintenance in distributed environments.

In the next section, we present GChord, a Gray code based indexing scheme that
can be distributed over Chord like overlay network. By fully utilizing the network links
provided by the underlying network, it indexes each tuple only once, and can support
MAQ with arbitrary number of attributes using the sole index.

4 The Basic GChord Mechanism

4.1 Data Indexing

Each attribute is assigned a set of bits in the 128-bit bitstring to store its code. The
number of bits of a code is proportional to the size of the domain. Note that it is assumed
all domains are known in advance. Intuitively, the larger a domain is, the stronger is
the selectivity power of that attribute. Thus, more bits should be devoted to index that
attribute.Numerical and categorical attributes are encoded differently in GChord.

Numerical and categorical attributes are encoded differently in GChord.

Encoding Numerical Attributes. As the domain of each numerical attribute is pre-
defined, GChord partitions the domain equally and continuously. For those sectionally
continuous attribute domains, it concatenates all the sections together first, and then
makes equally partition among them. For example, if one attribute domain is composed
of three continuous sections, (1, 4), (5, 17), (31, 36), the four equally partitioned parts
are {(1,4),(5,7]}, {(7,12]},{(12,17)} and {(31,36)}. Obviously, each part contains a
interzone with same length.

All partitioned parts of one attribute domain are encoded by Standard Binary Re-
flected Gray Code [12](Gray code for short) continuously and sequently, as Figure 2
shows. Obviously, the two Gray codes that represent two adjacent partition parts differ
in one bit. To make Gray code be fully used, we restrict the number of partitioned parts
to be 2k, where k is the number of bits in Gray code.

It’s hard to compute the Gray Code from attribute value directly, while it is easy
to compute the sequence number of the partitioned part that attribute value fills in by
simply using equation, SN(v) = (v−vjmin)×(2m−1)�

n
i=0 (vimax−vimin) ,where v is the attribute value

and v ∈ [vjmin, vjmax], and m is the Gray Code length. The corresponding Gray Code
which is the sub index key on the attribute is converted from the sequence number using
algorithm 1.

Encoding Categorical Attributes. Since only exact match query is to be supported
for categorical attributes in MAQ, it is much easier to encode categorical attributes. A
hash-based method is used to determine the code of a categorical value,like code(v) =
hash(v) mod 2m in which m is the number of bits assigned to the categorical attribute,
and hash is a general purpose hash function such as SHA-1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for MAQ in P2P System with Low Maintenance Cost 59

Algorithm 1: SN2GC(BitString sequencenumber[n])
BitString graycode[n] //output Gray code which contains n bits1

graycode[0]← sequencenumber[0]2

for each i from 1 to n − 1 do3

if sequencenumber[i] = sequencenumber[i-1] then4

graycode[i]← 05

else6

graycode[i]← 17

return graycode8

Generating the Index Key for a Tuple. As the number of peers that participant in
the network is much less than the number of peers that network can accommodate,
one peer in the network have to manage many index keys. If the index key is simply
constructed by concatenating all N codes, the attribute encoded at the right side will
lose its distinguishability. All values of the attribute that is encoded on the right side
may be mapped to the same peer. It results in the index on that attribute useless.

GChord provides a shuffling-based method to generate the index key of a tuple. The
shuffled index key is constructed by concatenating a bit of code of one attribute by that
of another. The order of the attributes is pre-determined using the descending order of
the size of the domains.

Analysis to the Index Key Generation Method. Since two adjacent Gray codes only
differs in one bit, the adjacent relationships between two sections of numerical attributes
are preserved by any structured overlay network protocols that maintains one-bit differ-
ent links in routing tables, such as Chord and Pastry.

Property 1. Two index keys have one bit difference if the two corresponding tuples
have adjacent values on one numerical attribute and same values on other attributes.

Thus, our indexing scheme preserves locality of numerical attributes.

Property 2. The index keys stored on one peer are constituted by a set of continuous
partitions on each numerical attribute.

Property 1 means adjacent values on each attribute are linked by the links in routing
table of the overlay network like Chord and Pastry. Query message can be routed ef-
ficiently for index keys of adjacent data are one hop away. Property 2 means that part
of the queried region may addressed by accessing one peer. As the overlay is not fully
filled, routing hops may be saved if index keys are inserted into the predecessor.

As the index key is shuffled, load balancing can achieved simultaneously. Since the
distribution of real data are always skewed and the sections of attribute domain are
encoded by equally partition, the data tuple filled in one section may skewed. Some
new strategies need to adopt to keep load balancing among peers in the network.

Lemma 1. The prefixes of a set of Gray codes, which have a same bit length, construct
the Gray Code sequence either.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 M. Zhou et al.

Property 3. The index keys stored on each peer constitute a similar size portion on
each attribute.

Property 4. The process of node join is the process of the attribute domain repartition.

As known from Property 4, load balancing can be achieved by selecting some suitable
Id for node at the time of node join.

4.2 Query Processing

To evaluate a MAQ, a set of nodes with index entries satisfying the query should be
visited. Intuitively, attributes presented in the MAQ should satisfy the predicates in the
query. Therefore, their corresponding bits in the peer identifier, i.e. the codes of those
attributes, should satisfy the constraints. There are no constraints on other bits. Thus, the
query processing procedure can be transformed into a multicast problem. The targeted
peers are peers taking care of the identifiers satisfying the following constraints:

1. For each predicate attr op v on a numerical attribute attr, code(attr) op′ code(v);
2. For each predicate attr = v on a categorical attribute attr, code(attr) = code(v);
3. All other bits can be either 0 or 1.

Thus, a multicast task can be represented by a set of strings with the same length as
that of the identifier (index key). Each element in the string is either 0, 1 or x, in which
x means either 0 or 1.

Multicast trees (MCTs) are constructed to forward the query to indexing peers. A
MCT is a virtual tree whose edges are routing paths of the query. A MCT corresponding
to the multicast of 10xx1xx is shown in Fig. 3.

1000100

1000101 1000110 1001100 1010100

1000111 1001101 1001110 1010101 1010110 1011100

1001111 1010111 1011101 1011110

1011111 1000100

1000101

1000110

10001111001100

1001101
1001110

1001111

1010100

1010101

1010110

1010111

1011100

1011110
1011111

1011101

(a) (b)

Fig. 3. Multicast Tree of 10xx1xx

Multicast Tree Construction. As the links in the finger table of overlay network are di-
rected, one single MCT without irrelevant indexing nodes for MAQ may not exist. The
MCTs should be constructed on-the-fly when a query is issued. A modified Karnaugh
Map [13] construction algorithm is employed for this task.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for MAQ in P2P System with Low Maintenance Cost 61

Karnaugh Map is a graphical way of minimizing a boolean expression based on the
rule of complementation. Preventing processing a Karnaugh Map of large size, we com-
pute Multicast Tree Proportion (MTP) of two attributes at each time. We need compute
�m

2 � times to get all the MTPs. If m is odd, the last MTP is computed on single at-
tribute. Attribute that is not present in the query has a MTP in the form of “xx · · · x”
which has a same length with the code represented the attribute partition. After all MTPs
are computed, they are shuffled and put together using the method we generate the
index keys.

Supposing the number of MTPs on each attribute that contains constraints in the
MAQ is n1, n2, . . . , nm, the number of MTPs of the MAQ is n1 × n2 × . . . × nm.
The procedure to compute MTP is as follows: (1)Initialize an empty Karnaugh Map:
each side of the map has the length equal to the length of the code of the corresponding
attribute. (2)For the cells satisfying all constraints given by the predicates on attributes
presented in both sides, they are marked by “1”. All other cells are marked by “0”. Each
cell forms a rectangle of size 1. (3)Two adjacent rectangles containing cells all marked
by “1” are merged to generate a rectangle with size 2i. Note that Karnaugh Map is
a torus. Thus a leftmost cell and a rightmost cell in the same column are considered
adjacent. And likewise is to the top and bottom cells. (4)The step 3 iterates until there
is no larger rectanges can be generated.

Fig. 4 shows a Karnaugh Map with three MTPs corresponding to multicast tasks
< x0x, x0x >, < x1x, 11x >, and < x1x, 101 >.

000 001 010011 111110 101 100

000

001

010

011

111

110

101

100

1

1

1

1

1

1

0 0 0

1 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

a
b

Fig. 4. Karnaugh Map on Two Attributes

Index Buddy

1

0
10

0

1
11

1

0
01

0

1
00

10
00

01
01

10
11

01
10

Fig. 5. Index Buddy

Property 5. Supposing query region on two attributes is a A × B rectangle, where
A and B are the numbers of partition parts contained in query. Supposing the binary
forms of A and B contains m,n ”1”s respectively. The query rectangle can be divided
into m2+n2+3m+n

2 + 1(if m ≥ n) MTPs.

Proof: As the number of cells which contained in the MTP rectangle must be power
of two, the number of cells on each side of the rectangle must be power of two either.
Obviously the A cells on one attribute is divided into m parts. The B cells on the other
side of Karnaugh Map is divided into n parts. After once division, we get m + n − 1
MTPs and one (A−2a1)× (B −2b1) rectangle that haven’t been divided, where a1 and
b1 are the position of first ”1” in A’s and B’s binary form. Then we do it recursively.�

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 M. Zhou et al.

After all the MTPs having been generated, we could shuffle these MTPs on each
attribute like constructing index key to constructe the MCT.

Our Karnaugh Map based MCT construction techniques can be generalized to handle
multiple queries. Targeted index peers from different MAQs may be grouped together
into one MCT using the same technique introduced above. Thus, the queries may share
the same message to retrieve the index entries. This may further reduce the network
transmitting cost.

Query Multicasting. After all the MCTs correspoding to the query have been gener-
ated,multicasting of a query is conducted as follows: (1)Query message is sent to the
root of each MCTwhich is a peer with identifier by substituting all xs in the MCT repre-
sentationwith 0s. (2)When a query is received by a peer, it is evaluated on its localindex,
and forwarded to all peers whose identifier is substituting one of the xs in MCT repre-
sentation from 0 to 1. (3)This is conducted recursively until their is no x remains 0.

Fig. 3 (b) illustrates a multicast process.

Property 6. The query message routing hops can be bounded to O(log 2N+M), where
N is the number of nodes that overlay network can accommodate and M is the number
of xs in the MTP representation.

5 Performance Enhancement

The number of attributes which contain constraints in query could vary form 1 to N .
More MCTs will be generated, if there are more range constraints on attributes con-
tained in query. The number of MCTs is a product of the number of MTPs on each
attribute. The cost of multicasting a large number of MCTs involved in the query sepa-
rately is very high.

On the other hand, the query range will be very large if there are fewer attributes
which contain constraints in the query. A large number of peers have to be accessed
to process such MAQ. If MAQ is addressed by accessing a large number of peers, the
number of query message routing hops and query messages will be high. In the two
scenarios above, performance can be enhanced by multicast tree clustering and index
buddy respectively.

5.1 Multicast Tree Clustering

Peers scattered on the overlay network are sparse, so each peer needs to manage a set of
continuous index keys. A portion of continuous results to the query may be indexed on
the single peer, but these index keys may be accessed by different MCTs for constraints
of MCT computing strategy. In this scenario, a number of messages have to be sent to
the same peer to get result for the query. If these MCTs is clustered together, and sent
within single message, lots of network traffic will be saved.

MCT clustering strategy clusters MCTs which are close to each other together. Be-
fore doing MCT clustering, peers in the network need to know the approximately peer
density of overlay network. Avoiding network traffic, we estimate the peer density us-
ing local density which is the reciprocal of the index key range that peer maintained.
No matter how inaccurate the density estimation is, it has no impact on query results.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for MAQ in P2P System with Low Maintenance Cost 63

MCT clustering only sends multi-MCTs in single query message, but it does not affect
the query evaluation to each MCT.

The clustering procedure is as follows: (1)Query submitter clusters all the MCTs to-
gether, which contain close root keys. Namely the difference of each two root keys is
less than the index range that maintained by the peer. (2)Query message is sent accord-
ing to the root key which is thesmallest one within the MCT cluster. (3)Peer received
the MCT cluster clusters all adjacent submuliticast trees together as query submitter
does. (4)Procedure 3 is done recursively until no sub multicast trees exists.

As many MCTs and sub MCTs are sent within one message, the number of message
for one query is reduced dramatically.

5.2 Index Buddy

If MAQ contains a large query region, a large number of peers will be involved to
process the query. The response time and network bandwidth consumption will be en-
larged if more peers are involved. Avoiding to involve too many peers, we adopt index
buddy strategy. An index buddy is tow peers which store adjacent values on the same
attribute and have a same peer Id prefix.

Users may have similar interests at the same time. For example users may submit
similar queries to get match list during the time of Olympic Games. If these frequently
queried index keys are stored on a few peers, reduced number of routing hops and query
messages can be achieved.

As described in Property 2, index keys stored on peer are continuous on each at-
tribute. Adding index keys that is frequently queried to the peer maintains adjacent
values on the attribute, MAQ can be addressed by accessing fewer peers in the net-
work. Fig. 5 shows the index buddy. The frequently queried region is depicted within
the red rectangle. Peers which maintain index keys within this region will manage the
index keys of its index buddy’s either. Obviously, half of the peers can be released from
processing the MAQ. The procedure of doing index buddy is as follows:

– Partition Level Sampling. Before exchanging index keys between index buddies,
we need to know the range of index keys of each attribute stored on the buddies.
We compute the index range using IR = succ.id − id. The number of partitions
managed by the peer is 2ki on the ith attribute, where ki is the number of bits used
to represent partitions on the attribute in IR′s binary form.

– Frequent Query Region Detecting. We maintain one counter to indicate the cur-
rent query frequency for each attribute. The counter is a fade function that records
the number of messages which are relayed to get the adjacent value on the very

attribute through links in the finger table. We use Equation FQAi
new = FQAi

old

2 +
Ni

new

Ttime
to estimate the query frequency of the ith attribute, where Nnew the number

of messagesthat are sent to get the adjacent index keys on the ith attribute, Ttime

is a specified interval time. When the frequency of the ith attribute exceed the
threshold FQAi

threshold, the region of the attribute stored on the peer is regarded
as frequently queried.

– Index Buddy Establishing and Deleting. When detecting some attribute region
stored on the peer is frequently queried, the peer asks its index buddy to exchange

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 M. Zhou et al.

their index keys within the region.When detecting region becomes infrequent again,
the two peers will remove these redundant index keys out of the index buddy.

– Index Modification. When index buddy existing, new index to be inserted or ex-
isting index to be modified are need to be processed at both site of the index buddy
in order to keep index consistent.

6 Experimental Study

To evaluate the performance of GChord, we implement one simulator in Java JDK 1.42.
In our implementation, each peer is identified by its peer Id. Like physical peer, it main-
tains two limited message queues, one sending message queue and one receiving mes-
sage queue. The network layer is simulated to control the network communication,
which is the message sending from one peer to another based on peer Ids.

In our experiment, 10000 peers with randomly distributed peer Ids are involved to
construct the Chord ring. The peer Id is a 32-bit string. The data tuple contains 5 numer-
ical attributes and 1 categorical attribute. 100000 data tuples with randomly distributed
values within their attribute domains need to be indexed. Range queries which have
been set maximum query range are generated randomly within the attribute domains.
Point query is generated randomly within the attribute domains.

Impact of Attribute Number in MAQ. The first set of experiments gives the perfor-
mance curves impacted by variable number of attributes which contain constraints in
the query. The maximum query range on each attribute is set to be 10% of its domain.
As showing in Fig. 6(a), 6(b) and 6(c), the numbers of maximum routing hops, rout-
ing messages and accessed peers reduce dramatically when the number of attributes
that contain constraints in MAQ increase. The number of routing messages reduces to
about one tenth when using multicast tree clustering strategy. Multicast tree clustering
improves performance pretty well especially when query contains fewer attributes.

2 3 4 5 6

5

10

15

20

25

30

35

N
um

be
r o

f H
op

s

Number of Attributes

 Predecessor
 Cluster
 Buddy
 Both

(a) Hops Vary with Number
of attributes queried

2 3 4 5 6
0

1000

2000

3000

4000

5000

N
um

be
r o

f M
es

sa
ge

s

Number of Attributes

 Predecessor
 Cluster
 Buddy
 Both

(b) Messages Vary with Num-
ber of Attributes Queried

2 3 4 5 6

0

20

40

60

80

N
um

be
r o

f P
ee

rs
 A

cc
es

se
d

Number of Attribute

 Predecessor
 Cluster
 Buddy
 Both

(c) Accessed Peers vary with
Number of Attributes Queried

Fig. 6. Performance Comparison with Variable Attributes in Query

Impact of Query Range in MAQ. In this set of experiments, the number of attributes
that contain constraints in query is set to be 4. As showing in Fig. 7(a), 7(b), and 7(c), the
numbers of maximum routing hops, routing messages and accessed peers decrease as
except when the query range on each attribute decreases. More MCTs will be generated,
when the query range on each attribute increases. Much more routing messages are
diminished by using multicast tree cluster in this scenario.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

GChord: Indexing for MAQ in P2P System with Low Maintenance Cost 65

20% 15% 10% 5%

14

15

16

17

18

19

20

21

N
um

be
r o

f H
op

s

Range of Attribute

 Predecessor
 Cluster
 Buddy
 Both

(a) Hops Vary with Query
Range

20% 15% 10% 5%
0

500

1000

1500

2000

2500

3000

N
um

be
r o

f M
es

sa
ge

s

Range of Attribute

 Predecessor
 Cluster
 Buddy
 Both

(b) Messages Vary with
Query Range

20% 15% 10% 5%

6

7

8

9

10

11

12

13

N
um

be
r o

f P
ee

rs
 A

cc
es

se
d

Range of Attribute

 Predecessor
 Cluster
 Buddy
 Both

(c) Accessed Peers Vary with
Query Range

Fig. 7. Performance Comparison with Variable Query Range

Impact of Frequently Queried Region. In this set of experiments, the maximum query
range on each attribute is set to be 10% of its domain. As showing in Fig. 8(a), 8(b) and
8(c), index buddy has evident effort in reducing the number of peers accessed when
the percentage of frequent query increase. Index buddy has a similar impact on the
maximum number of routing hops, especially when query contains less attributes.

20% 40% 60% 80%

6

7

8

9

10

11

12

13

14

15

16

17

18

N
um

be
r o

f H
op

s

Query Frequency

 6attributes
 5Attributes
 4Attributes
 3Attributes

(a) Hops Vary with Frequent
Query

20% 40% 60% 80%
0

20

40

60

80

100

120

140

160

180

200

N
um

be
r o

f M
es

sa
ge

s

Query Frequency

 6Attributes
 5Attributes
 4Attributes
 3Attributes

(b) Messages Vary with Fre-
quent Query

20% 40% 60% 80%
0

2

4

6

8

10

12

14

N
um

be
r o

f P
ee

rs
 A

cc
es

se
d

Query Frequency

 6Attributes
 5Attributes
 4Attributes
 3Attributes

(c) Accessed Peers Vary with
Frequent Query

Fig. 8. Performance Comparison with Frequent Queries

Comparison with Mercury. As there are 10000 peers in the network, the number of
maximum hops and accessed peers in Mercury is much bigger than GChord’s. Approx-
imately 1700 peers construct a Chord ring to maintain the index keys on each attribute.
The selectivity power of the attribute is very strong, so Mercury need to accessed a large
number of peers to process MAQ. Index keys are stored continuously on peers, so ac-
cessing adjacent index key need only one more hop. That’s why the number of routing

3 4 5 6

10

20

30

40

50

60

70

80

N
um

be
r o

f H
op

s

Number of Attributes

 GChord
 Mercury

(a) Hops Comparison with
Mercury

3 4 5 6
0

20

40

60

80

100

120

140

160

N
um

be
r o

f M
es

sa
ge

s

Number of Attributes

 GChord
 Mercury

(b) Messages Comparison
with Mercury

3 4 5 6
0

10

20

30

40

50

60

N
um

be
r o

f P
ee

rs
 A

cc
es

se
d

Number of Attributes

 GChord
 Mercury

(c) Accessed Peers Compari-
son with Mercury

Fig. 9. Performance Comparison with Mercury

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 M. Zhou et al.

messages is smaller than GChord’s. As showing in Fig. 9(a) and 9(c), the performance
of the GChord exceeds Mercury much in the number of maximum routing hops and
accessed peers.

As the limitation of paper size, the comparison of index cost with Mercury is no
showing in figures. Mercury keeps one index duplication for each attribute, so the index
cost of Mercury is proportional to the number of attributes that data tuple contains. So
the index costs of GChord, including index storage and index messages, are much less
than Mercury’s.

7 Conclusion

In this paper, we present the design of GChord, a P2P-based indexing scheme for pro-
cessing multi-attribute queries. Using Gray code based indexing technique, both point-
and range-query on numerical attributes can be handled. By integrating Gray code and
hash based encoding method, each tuple only need to be indexed once in GChord.
Our index can support queries having constraints on arbitrary number of attributes.
Thus, it is more efficient than previous methods in terms of storage cost and search
performance. Enhancement techniques further improves the performance of GChord.

Our future work on GChord includes the research on supporting keyword-based
queries and aggregate queries over GChord, and the study on more intelligent query
optimization techniques.

References

1. H.Jagadish, B.Ooi, Q.Vu: Baton: A balanced tree structure for peer-to-peer networks. In:
VLDB. (2005)

2. H.Jagadish, B.Ooi, Q.Vu, R.Zhang, A.Zhou: Vbi-tree: A peer-to-peer framework for sup-
porting multi-dimensional indexing schemes. In: ICDE. (2006)

3. R.Bharambe, M.Agrawal, S.Seshan: Mercury:supporting scalble multi-attribute range
queries. In: SIGCOMM. (2004)

4. M.Cai, M.Frank, J.Chen, P.Szekely: Maan:a multi-attribute addressable network for grid
information services. In: Grid. (2003)

5. I.Stoica, R.Morris, D.Karger, F.Kaashoek, H.Blalakrishnan: Chord: A scalable peer-to-peer
lookup service for internet applications. In: ACM SIGCOMM. (2001) 149–160

6. G.Evangelidis, D.Lomet, B.Salzberg: The hbpi-tree: a multi-attribute index supporting con-
currency,recovery and node consolidation. VLDB Journal 6 (1997) 1–25

7. D.Lomet, B.Salzberg: The hb-tree: a multiattribute indexing method with good guaranteed
performance. ACM Trans Database Syst 15 (1990) 625–658

8. D.Lometand, B.Salzberg: Access method concurrency with recovery. In: SIGMOD. (1992)
9. A.Rowstron, P.Druschel: Pastry:scalable,decentraized object location and routing for large-

scale peer-to-peer systems. In: Middleware. (2001) 329–350
10. S.Francis, P.Handley, M.Karp, R.Shenker: A scalable content-addressable network. In: SIG-

COMM. (2001)
11. H.Jagadish, B.Ooi, K.LeeTan, Q.Vu, R.Zhang: Speeding up search in peertopeer networks

with a multiway tree structure. In: SIGMOD. (2006)
12. F.Gray: Pulse code communications. In: U.S. Patent 2632058. (1953)
13. M.Karnaugh: The map method for synthesis of combinational logic circuits. AIEE 72 (1953)

593–599

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 67–78, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ITREKS: Keyword Search over Relational Database by
Indexing Tuple Relationship

Jiang Zhan and Shan Wang

School of Information, Renmin University of China, Beijing, 100872, P.R. China
{zhanjiang,swang}@ruc.edu.cn

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of
China), MOE, Beijing 100872, P.R. China

Abstract. Keyword-based search is well studied in the world of text documents
and Internet search engines. While traditional database management systems
offer powerful query languages, they do not allow keyword-based search. In
this paper, we discussed ITREKS, a system that support efficient keyword-
based search over relational database by indexing tuple relationship: A basic
database tuple relationship, FDJT, is established in advance. Then a FDJT-
Tuple-Index table is created, which records relationships between each tuple
and FDJT. At query time, for each of keywords, system first finds tuples in
every relation that contain it, using full text indexes offered by database
management system. Then use FDJT-Tuple-Index table to find the joinable
tuples contain all keywords in the query.

Keywords: keyword search, relational database, full disjunction.

1 Introduction

Keyword-based search is well studied in the world of text documents and Internet
search engines, but Keyword-based search over relational databases is not well
supported. The user of a relational database needs to know the schema of the
database; Casual users must learn SQL and know the schema of the underlying data
even to pose simple searches. For example, suppose we have a DBLP database,
whose schema is shown in Figure 1. We wish to search for an author Bob’s paper
related to “relation”. To answer this query, we must know how to join the Author,
Write and Paper relations on the appropriate attributes, and we must know which
relations and attributes to contain “Bob” and “relation”. In keyword-based search, for
the above example a user should be able to enter the keywords ‘Bob relation’ and the
associated tuples which are associated with the two keywords are returned.

Enabling keyword search in databases that does not require knowledge of the
schema is a challenging task. Due to database normalization, logical units of
information may be fragmented and scattered across several physical tables. Given a
set of keywords, a matching result may need to be obtained by joining several tables
on the fly.

In this paper, we have developed a system, ITREKS (Indexing Tuple Relationship
for Efficient Keyword Search), which supports highly efficient keyword-based search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 J. Zhan and S. Wang

over relational databases by indexing tuple relationship. The key features and
advantages of our approach, and the contributions of this paper, are summarized as
follows:

 Most previous approaches perform a significant amount of database
computation at search time to find the connection of tuples which contain
keyword. We do all significant join computing work in advance by create tuple
relation index, so a great amount of computing work is saved in search time.

 We present a novel approach to index the tuple relationship. We construct
basic tuple relationship-FDJT by computing full disjunction[1] of the
interconnected relational database. We present an FDJT-Tuple-Index table to
index tuples’ relationship.

 We propose a modular architecture and have implemented ITREKS based on it.
 We present an efficient algorithm which incorporate basic tuples and FDJT-

Tuple-Index table to generate result tuples matching the query.
 We take full advantage of existing relational database functions. ITREKS has

been implemented on top of Oracle 9i. Oracle 9i Text use standard SQL to
create full text indexes on text attributes of relations. We completely avoid
reimplementing basic IR capabilities by using Oracle Text as the back end.
Furthermore, ITREKS keep both FDJT and tuple-FDJT in relation tables. Our
searching algorithm is also based on a search table.

Fig. 1. DBLP Schema

In Section 2 we provide a thorough survey of related work. The essential formal
background on full disjunction and related definition is presented in Section 3.
Section 4 is the core of the paper. It discusses the ITREKS system, including
architecture of the system, functionality, algorithms, and system implementation
details. Section 5 presents our system evaluation of ITREKS, while we give
conclusion and future works in Section 6.

2 Related Work

Oracle [3] , IBM DB2, Microsoft SQL Server, PostgreSQL, and MySQL all provide
text search engine extensions that are tightly coupled with the database engine.
However, in all cases each text index is designed over a single column. Using this
feature alone to do meaningful keyword search over an interconnected database
would require merging the results from many column text indexes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship 69

Keyword-based search over relational database gets much attention recently. Three
systems, DISCOVER[4] [5] , BANKS[6] , and DBXplorer[7] , share a similar
approach: At query time, given a set of keywords, first find tuples in each relation that
contain at least one of the keywords, usually using database system auxiliary full text
indexes. Then use graph-based approaches to find tuples among those from the
previous step that can be joined together, such that the joined tuple contains all
keywords in the query. All three systems use foreign-key relationships as edges in the
graph, and point out that their approach could be extended to more general join
conditions. A main shortage of the three systems is they spend a plenty of time to find
the candidate tuples that can be joined together.

Four systems share the concept of crawling databases to build external indexes.
Verity[8] crawls the content of relational databases and builds an external text index
for keyword searches, as well as external auxiliary indexes to enable parametric
searches. DataSpot[9] extracts database content and builds an external, graph-based
representation called a hyperbase to support keyword search. Graph nodes represent
data objects such as relations, tuples, and attribute values. Query answers are
connected subgraphs of the hyperbase whose nodes contain all of the query keywords.
DbSurfer[10] indexes the textual content of each relational tuple as a virtual web
page. Given a keyword query, the system query and navigate the virtual web pages
and find the results. EKSO[11] indexes interconnected textual content in relational
databases, and do keyword search over this content. A relational database is crawled
in advance, text-indexing virtual documents that correspond to interconnected
database content. At query time, the text index supports keyword-based searches with
interactive response, identifying database objects corresponding to the virtual
documents matching the query.

All the index-data-offline systems have two challenges, how to control the
granularity of the indexed content and how to efficiently find the exact results from
the indexed content.

While a direct empirical comparison between our system and some of the other
approaches mentioned in this section would be very interesting, the comparison is not
feasible for the follow reasons:

 The systems are not publicly available.
 The systems implemented different search semantic and different result sets.
 Any effort to implement them well enough for a fair comparison would be

prohibitive.

3 Background

3.1 Basic Tuple Relationship

In our method, we need first to find the closest and the most important connection
among tuples. In general, if we have any collection of facts that agree on common
attributes (are join-consistent) we would like them to be available in the “result” of
this collection of facts. The problem is related to that of computing the full outerjoin
of many relations in a way that preserves all possible connections among facts. Such a
computation has been termed a “full disjunction” by Galindo-Legaria[1] . A full
disjunction is a relation with nulls (represented by ⊥) such that every set of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 J. Zhan and S. Wang

join-consistent tuples in our database appears within a tuple of the full disjunction,
with either ⊥ or a concrete value in each attribute not found among our set of tuples.
Each tuple of full disjunction is corresponding to a set of connective tuples, each of
them from a database relation. Naturally, full disjunction reflects the closest and most
important relationship among the tuples that generate them. Through full disjunction,
we can build the basic relationship of the tuples that come from different database
relation.

3.2 Full Disjunction

We consider a database that has n relations R1,…, Rn. The schema graph G is an
undirected graph that captures the primary key to foreign key relationships in the
database schema. It has a node Ri for each relation Ri of the database and an edge
from Ri to Rj for each primary key to foreign key relationship. We assume that
schema graph G is connected, which is a reasonable assumption for realistic database
schema design.

Definition 1 (Tuple Subsumption). We say that tuple t subsumes tuple u if t and u
agree in every component where u is not ⊥. That is, t is obtained from u by replacing
zero or more nulls by concrete values. Note that a tuple t subsumes itself.

Definition 2 (Full Disjunction). Let Г=R1,R2,…,Rn be relations whose tuples do not
have nulls. We say R is the full disjunction for Гif the following hold:

 No redundancy: No tuple of R subsumes any other tuple of R.
 Tuples of R come from connected pieces of Г: Let t be a tuple of R. Then

there is some connected subset of the relations of Гsuch that t, restricted to its
non null components, is the join of tuples from those relations.

 All connections are represented:

 Let t1,…,tk be tuples chosen from distinct relations
kii RR ,...,

1
,

respectively, such that the schema graph of { }
kii RR ,...,

1
is

connected.
 Let the ti’s be join-consistent, in the sense that for any attribute A, all

the components among the ti’s corresponding to attribute A have the
same value.

 Let t be the tuple that agree with each of the ti’s in those attributes

appearing among any of
kii RR ,...,

1
and that has ⊥ in other attributes

found among the schemes of Г.

Than t is subsumed by some tuple of R.

Definition 3 (FDJT). Let t be a full disjunction tuple. We call such tuples t1,…,tk Full
Disjunction Join Tuples (FDJT) of t, if t can be generated by joining the set of
tuples t1,…,tk. Each full disjunction tuple is corresponding to a set of tuples like
t1,…,tk. Note that tuples in FDJT doesn’t have sequence.

Definition 4 (FDJTR). Full Disjunction Join Tuples Relation is a relation made up
with FDJTs of all tuples in full disjunction. In ITREKS, FDJTR is made up with
relation names and tupleIDs (or rowids) of tuples in FDJT. Each pairs of relation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship 71

name and tupleID represent a database tuple of a FDJT.
It was proved that full disjunction is unique [2] .It is easy to prove that FDJT is also
unique; otherwise there will be two equivalent tuples in full disjunction.

3.3 Computing Full Disjunction and FDJTR

We would like to find a simple way of computing the full disjunction of a set of
relations. The solution is to compute full disjunction by full outerjoin. The full
outerjoin is a variant of the join in which tuples of one relation that do not match any
tuple of the other relation are add to the result, padded with nulls. This operation is
part of the SQL92 standard. This problem of computing full disjunction by outerjoin
was studied by Galindo-Legaria in [1]. [1] gave a test for when some order of
outerjoins is guaranteed to produce the full disjunction by itself. This test is simple.
Create a graph whose nodes are the relations and whose edges connect relations that
are constrained by one or more comparison; if the graph is acyclic then the full
disjunction can be computed applying full outerjoins in any order. For cyclic graphs,
however, the full disjunctions don’t exist. Thus we have the Lemma 1.

Lemma 1. For a database which has an acyclic connected scheme graph, we can
compute full disjunction by applying full outerjoin of the connected relations in any
sequence.

Now for a database whose scheme graph is acyclic, we can use Lemma 1 to generate
a full outerjoin sequence producing the full disjunction. In the above full outerjoin
sequence, each relation appears exactly once. The relation tuples which are
outerjoined to generate a tuple of full disjunction is FDJT of this tuple. Algorithm 1
generates FDJTR when computing full disjunction of a database.

Algorithm 1. Computing FDJTR
Input: database relations R1,…,Rn, connected acyclic database graph G
Output: FDJTR of the database
1. Do breath-first traversal on G from one of the G’s leaf node of G, get a sequence

of the relations R1’,…,Rn’.
2. Let FDk store full disjunction of some connected relations R1’,…,Rk’(k=2 to n),

Fk store FDJTR of FDk.
3. FD1=R1’
4. Add R1 to F1
5. for i=2 to n
6. FDi←FDi-1 full ouertjoin Ri’
7. foreach tuple t in FDi, add FDJT of t to Fi
8. end for
9. return Fi

Algorithm 1 first generates the relations sequence by breath-first traversal over G,
then full outerjoins the relations in turn, computing the full disjunction and
corresponding FDJTR of the relations.

We will discuss how to compute FDJTR of database whose schema is cyclic in
Section 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 J. Zhan and S. Wang

4 The ITREKS System

The system we have developed, ITREKS, is an instantiation of the general
architecture we propose for keyword search over databases that is shown in Figure 2.
Given a set of query keywords, ITREKS returns all results (sets of joinable tuples
from relations connected by foreign-key relationship) such that each result contains
all keywords. Enabling such keyword search requires (a) a preprocessing step called
Index that enables databases for keyword search by building the table (FDJT-Tuple-
Index) which keeps tuple relationships, and (b) a Search step that gets matching
results from the published database.

Fig. 2. Architecture of ITREKS

Index step is implemented by model Indexer in Figure 2, where Search step is
implemented by model Searcher.

4.1 Overview of Index and Search Steps

Index: A database is enabled for keyword search through the following steps.

Step 1: A database D is identified, along with its schema graph G.
Step 2: If G is cyclic, turn it into an acyclic schema graph G’ with Algorithm 2, witch

will be discussed in Section 4.2.
Step 3: Given D and G’, Indexer generates FDJTR of D using Algorithm 1.
Step 4: FDJT-Tuple-Index table is created for supporting keyword searches, which

will be discussed in detail in Section 4.3.

Search: Given a query consisting of a set of keywords, it is answered as follows.

Step 1: For each keyword k, a Basic Tuple Set (BTS) is established by using database
full text search functions. Keyword k’s BTS is a relation recording all
database tuples which have scores to k.

Step 2: Based on BTSs, FDJT-Tuple-Index table and Search Table (see Section 4.4),
Searcher finds the results (joinable tuples) which include all keywords. We
discuss this step in Section 4.4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship 73

4.2 Acyclization of Database Schema Graph

Given a database schema graph, ITREKS firstly cut off the cycle if the graph is
cyclic, so we can use Algorism 1 to compute the FDJTR of the database.

Figure 3 (a) is schema graph of DBLP database, where , for simplicity, A, W, P
and C denote relations Author, Write, Paper and Cite respectively. Figure 3 (b) is a
simplest but typical cyclic schema graph. ITREKS revise the cyclic database graph by
two operations: cut-off and duplication.

Cut-off: By erasing a less important edge which belongs to the cycle, we can make
cyclic schema graph acyclic. Figure 4 shows cut-off revised schema graph in Figure 3,
where the schema graph is acyclic but we lost a relation between P and C (in
Figure 4 (a)) and relation between B and C (in Figure 4 (b)), which we think is less
important. If there isn’t a less important relation, we can remove any edge in graph cycle.

 Fig. 3. Two Schema Graph Fig. 4. Cut-off Revised Schema Graph

Fig. 5. Duplication Revised Schema Graph

Duplication: By renaming a relation that is in an edge deleted by cut-off operation, we
can keep relationship that is deleted by the operation. Figure 5 shows the duplication
revised schema graph in Figure 4, where CP is a renamed duplication of relation P
(in Figure 4 (a)) and B1 is a renamed duplication of relation B (in Figure 4 (b)).

Pure connective relation: In revised DBLP database graph (see Figure 5 (a)), there
are two special relations, W and C, whose attributes are all foreign keys. We call such

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 J. Zhan and S. Wang

relations pure connective relations, because the only function of their attributes is to
connect tuple and they don’t contain indispensable keywords for our keyword search.

In ITREKS, we discard pure connective relations in FDJTR once FDJTR is
completely constructed. For example, after computing FDJTR by Algorithm 1 over
revised DBLP schema Graph (Figure 5 (a)), the schema of FDJTR is (FDJTid, Aid,
Wid, Pid, Cid, CPid). After discard pure connective relations we get FDJTR (FDJTid,
Aid, Pid, CPid). For simplicity, we use Aid represent the tuple’s id in relation Author.
Similarly Pid and PCid are the tuple’s id in Paper.

4.3 FDJT-Tuple-Index Table

FDJT-Tuple-Index table index each database tuples with FDJTs. ITREKS builds
tuples’ relationships by establishing FDJT-Tuple-Index table.

Extended Schema Graph: To build FDJT-Tuple-Index table, ITREKS extends
FDJTR as follow:

For each relation in FDJTR, if the relation has edges with other relations in original
database schema graph, add these relations and edges to FDJTR. If new added
relation is pure connective relation, ITREKES continue add the other relations that
have edges with the pure connective relation.

For DBLP database, the extended schema graph of FDJTR is shown in Figure 6.
Extended Schema reflects the relationship between each database relations and
FDJTR. If a relationship is not so important to be indexed, we discard the relative
relations in extended schema. For example, in Figure 6, which papers are cited by
papers in PC in FDJTR need not to be indexed, ITREKS discard relative relations W
and P. Note that extend schema graph is always a tree (is acyclic).

Fig. 6. Extended Schema graph of DBLP

Locator Number: ITREKS gives each relation in extended schema a locator number
to records distance and relationship between tuple and FDJT. The number is used
when ITREKS calculate the results. ITREKS appoints locator number to relations as
follow:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship 75

• Let FDJTR has n relations, ITREKS labels each relation in FDJTR with an integer
from 1 to n in sequence.

• For other relations in extended schema graph, the locator number consists of two
parts divided by a dot. The number in left of the dot (left number) is the number of
FDJTR’s relation connected to it; The number in right of the dot (right number) is
integer 1.

FDJT-Tuple-Index Table: In ITREKS, FDJT-Tuple-Index table has 4 columns; the
first two columns are RN and Tid which identify a database tuple’s relation name and
rowid. Column FDJTid is rowid of a FDJT in FDJTR that has connection with the
tuple. Column N is the locator number representing the relationship between the tuple
and the FDJT. The locator number is come from the extended schema graph of the
FDJTR. In FDJT-Tuple-Index table, each row records a tuple- FDJT pair and their
relationship.

Algorithm 2. Computing FDJT-Tuple-Index Table
Input: database relations R1,…,Rn, FDJTR of the database
Output: FDJT-Tuple-Index table
1. Extend schema graph of FDJTR of the database to extended schema graph ESG.
2. For each record R in FDJTR of ESG
3. Insert rowid, relation name and locator number of tuples in R into FDJT-

Tuple-Index table.
4. Based on ESG, insert rowid, relation name and locator number of tuples that

have relations with R into FDJT-Tuple-Index table.
5. end for
6. return FDJT-Tuple-Index table

Given a database and its FDJTR, Algorism 2 generates FDJT-Tuple-Index table.

4.4 Searching Step

After FDJT-Tuple-Index table created, ITREKS is ready for keyword search. Given a
query consisting of a set of keywords, ITREKS establishes a BTS (Basic Tuple Set)
for each keyword k, recording all database tuples which have scores to k. Then based
on BTSs, FDJT-Tuple-Index table and Search Table, Searcher finds the results
(joinable tuples) which include all keywords.

Definition 5 (BTS). For a keyword k, the Basic Tuple Set is a relation BTSk={t |
Score (T, k)>0}, which consists of the database tuples with a non-zero score for
keyword k.

ITREKS uses Oracle Text Full Text Search Function to build BTSs for each keyword.
BTS table consists of 3 columns, RN, Tid and Score, which representing relation
name, tuple id and score respectively.

Definition 6 (ST). Search Table is a table that is dynamically generated by ITREKS
to find joinable tuples at search step. Given keywords k1,…,kn, ITREKS generates a
ST with 2+k*3 columns. In ST, a keyword ki (i=1,...,n) corresponds to 3 columns,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 J. Zhan and S. Wang

ki_RN, ki_Tid and ki_N, which represent tuples and relationship between the tuples.
The other two columns is FDJTid which comes from FDJT-Tuple-Index table and
Score of the result.

Definition 7 (Result Tree). Result Tree is a tree of joinable tuples based on
extended schema graph of FDJTR, where each leaf node of the tree contains at least
one keyword and the nodes of the tree contain all keywords. The sizeof(T) of a result
tree T is the number of edges in T.

Ranking Function: ITREKS uses simple but effective ranking function to rank the
result trees for a given query. ITREKS assigns the score of a result tree T in the
following way:

() () ()
()

∑ ∑
= =

=
Tsizeof

i

k

j
ji kwtScore

Tsizeof
QTscore

1 1

,
1

,

where Score(ti,kwj) is the score of a tuple ti towards keyword kwj. ITREKS computes
sizeof(T) as follow:

Let N be the tuple’s locator number that is defined in FDJT-Tuple-Index table.
Let max be the largest left number of N in result tree’s leaf nodes; Let min be the

smallest left number of N in result tree’s leaf nodes. Let r be the sum of the right
numbers of result tree’s nodes.

Computing the size of T as follow:
Sizeof(T)=max-min+r
Given a set of query keywords, ITREKS finds the results by algorithm 3 described

below.

Algorithm 3. Generating Results
Input: a query Q, database D, FDJT-Tuple-Index table of the database FDJTTI
Output: Result Trees
1. For each keyword ki (i=1,…,n) in Q do ｛Create BTS_ki}
2. Sort BTS_ki in ascending order by the number of the records in the BTS table.

We might as well let BTS_k1,…,BTS_kn be the ascending order list of the BTSs
of the keywords

3. Generate search table ST, initially empty
4. Let F0=FDJTTI
5. F1 =F0 natural join BTS_k1
6. Add relative information(score, FDJT_id, K1_RN, K1_Tid, K1_N) to ST
7. For i=2 to n do {
8. Fi =Fi-1 natural join BTS_ki
9. Insert relative information(Ki_RN, Ki_Tid, Ki_N) into ST and update

relative scores }
10. Remove records that contain null fields from ST
11. Sort records in ST in descending order by their scores
12. For records that have the same values on all fields Ki_RN and Ki_Tid(i=1,…,n)

in ST, only keep the record with the highest score and remove others
13. Retrieve the results from ST
14. Return result trees

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship 77

In Algorithm 3, once Fi-1 natural join BTS_ki (i=1,…,n) and put the relative
information into ST, ST records relations of joinable tuples based on FDJT and the
joined tuples contain all keywords kj (j=1,…,i).

5 System Evaluation

Our system is implemented on a PC with Pentium Ⅳ 2.8GHz processor and 4GB of
RAM, running Windows XP and Oracle 9i. ITREKS has been implemented in Java
and connects to the DBMS through JDBC.

We evaluate our tuple relationship indexing and searching system on a 102MB
DBLP[12] data set, which we decomposed into 4 relations according to the schema
shown in Figure 2. Table 1 summarizes the 4 DBLP relations. The BTSk toward
keyword k is produced by merging the tuples returned by Oracle 9i full-text index on
each relation tuple in the database.

Table 2 summarizes FDJTR and FDJT-Tuple-Index (FDJTTI) table which are
produced in preprocessing step. Because the FDJTTI table stores the relations
between all tuples and FDJTs, it is far larger that other tables. Indexing time includes
both FDJT and FDJTTI producing times and only consumes at index step.

 Table 1. DBLP dataset characteristics Table 2. FDJT and FDJTTI

Relation #Tuples Size(MB) FDJT FDJTTI

Author 294063 8.62 Tuples 1248595 39789519

Write 1000126 36 Size(MB) 42.99 2415.92

Paper 446409 51.1 Time(ms) 155094 3798591

Cite 223013 6.7

We evaluate search performance by submitting conjunctive keyword queries of
length 2, 3, 4 and 5 words. We evaluate returning full ranked result set.

0

2000

4000

6000

8000

2 3 4 5

number of keywords

t
i
m
e
(
m
s
e
c
)

Fig. 7. Query Performance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 J. Zhan and S. Wang

In each trial, we generate 50 queries by randomly choosing keywords from the
keywords set. The reported time for a trial is the average of the 50 query execution
times. Figure 7 shows query performance on the DBLP dataset. The performance of
queries returning results at less than 7 seconds and alone with the number of
keywords increase, the query times do not increase sharply.

6 Conclusion and Future Work

We presented a general architecture for supporting keyword-based search over
relational database, and implemented an instantiation of the architecture in our fully
implemented system ITREKS. ITREKS indexes tuple relationships in relational
database, providing efficient keyword search capabilities over the database. Our
system trades online search and offline indexing method to do efficient keyword
based search over relational database.

In the future, we will extend our method to semi-structured data like XML and
implement our system over more databases.

Acknowledgements

This work is supported by the National Natural Science Foundation of
China(No.60473069 and 60496325), and China Grid(No.CNGI-04-15-7A).

References

[1] Galindo-Legaria, C. Outerjoins as disjunctions. ACM SIGMOD International Conf. on
Management of Data, 1994

[2] Rajaraman, A. and J. D. Ullman. Integrating information by outerjoins and full
disjunctions.

[3] Oracle Text. http://otn.oracle.com/products/text/index.html.
[4] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases.

In Proc. of VLDB, 2002.
[5] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style Keyword Search

over Relational Databases. In Proc. Of VLDB, 2003.
[6] Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching

and browsing in databases using banks. In Proc. of ICDE, 2002.
[7] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search

over relational databases. In Proc. of ICDE, 2002.
[8] P. Raghavan. Structured and unstructured search in enterprises. IEEE Data Engineering

Bulletin, 24(4), 2001.
[9] S. Dar, G. Entin, S. Geva, , and E. Palmon. Dtl's dataspot: Database exploration using

plain languages. In Proc. Of VLDB, 1998.
[10] R. Wheeldon, M. Levene, and K. Keenoy. Search and navigation in relational databases.

http://arxiv.org/abs/cs.DB/0307073.
[11] Qi Su, Jennifer Widom. Efficient and Extensible Keyword Search over Relational

Databases. Stanford University Technical Report, 2003.
[12] DBLP bibliography. 2004. http://www.informatik.uni-trier.de/~ley/db/index.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional

MBRs in Similar Sequence Matching

Yang-Sae Moon

Department of Computer Science, Kangwon National University
192-1, Hyoja2-Dong, Chunchon, Kangwon 200-701, Korea

ysmoon@kangwon.ac.kr

Abstract. In this paper we propose a formal approach that transforms
a high-dimensional MBR itself to a low-dimensional MBR directly, and
show that the approach significantly reduces the number of lower-dimen-
sional transformations in similar sequence matching. To achieve this goal,
we first formally define a new notion of MBR-safe. We say that a trans-
form is MBR-safe if it constructs a low-dimensional MBR by containing
all the low-dimensional sequences to which an infinite number of high-
dimensional sequences in an MBR are transformed. We then propose an
MBR-safe transform based on DFT. For this, we prove the original DFT-
based lower-dimensional transformation is not MBR-safe and define a
new transform, called mbrDFT, by extending definition of DFT. We also
formally prove this mbrDFT is MBR-safe. Analytical and experimental
results show that our mbrDFT reduces the number of lower-dimensional
transformations drastically and improves performance significantly com-
pared with the traditional method.

1 Introduction

Time-series data are the sequences of real numbers representing values at spe-
cific points in time. Typical examples of time-series data include stock prices,
exchange rates, and weather data [1,3,5,8]. The time-series data stored in a
database are called data sequences, and those given by users are called query
sequences. Finding data sequences similar to the given query sequence from
the database is called similar sequence matching [3,8]. As the distance function
D(X, Y) between two sequences X = {x0, x1, ..., xn−1} and Y ={y0, y1, ..., yn−1}
of the same length n, many similar sequence matching models have used Lp-

distance (= p

√∑n−1
i=0 |xi − yi|p) including the Manhattan distance (= L1), the

Euclidean distance (= L2), and the maximum distance (= L∞) [1,2,3,4,7,8,9].
Most similar sequence matching solutions have used the lower-dimensional

transformation to store high-dimensional sequences into a multidimensional in-
dex [1,2,3,5,7,8,9]. The lower-dimensional transformation has first been intro-
duced in Agrawal et al.’s whole matching solution [1], and widely used in various
whole matching solutions [2,5] and subsequence matching solutions [3,7,8,9]. Re-
cently, it was also used in similar sequence matching on streaming time-series
for dimensionality reduction of query sequences or streaming time-series [4]. In

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 79–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 Y.-S. Moon

this paper we pay attention to the method of constructing an MBR (Minimum
Bounding Rectangle) in similar sequence matching. Previous similar sequence
matching solutions use MBRs to reduce the number of points to be stored in
a multidimensional index. That is, they do not store individual points directly
into the index, but stores only MBRs that contains hundreds or thousands of
the low-dimensional points. For example, a low-dimensional MBR in subsequence
matching is constructed as follows [3,9]: data sequences are divided into windows;
the high-dimensional windows are transformed to low-dimensional points; and
an MBR is constructed by containing multiple transformed points. In summary,
to construct an MBR to be stored in the index, the existing methods transform
tens ∼ thousands of high-dimensional sequences (or windows) to low-dimensional
sequences (or points) [3,8]. Likewise, the methods should require a huge number
of lower-dimensional transformations, and thus in this paper we tackle the prob-
lem of how to reduce the number of transformations.

To reduce the number of transformations in constructing low-dimensional
MBRs, we propose the lower-dimensional transformation method for high-
dimensional MBRs. That is, the method transforms a high-dimensional MBR
itself to a low-dimensional MBR directly, where the high-dimensional MBR con-
tains multiple high-dimensional sequences. For this, we first propose a new notion
of MBR-safe. We say that a transform T is MBR-safe if T satisfies the following
property: suppose MBR M is transformed to MT by T , and sequence X is con-
tained in M , then the transformed sequence XT by T should also be contained in
MT . If using the notion of MBR-safe, we can construct a low-dimensional MBR
by transforming a high-dimensional MBR itself rather than a large number of
individual sequences in the MBR. And accordingly, we can reduce the number
of transformations required for constructing low-dimensional MBRs.

In this paper we propose an MBR-safe transform based on DFT (Discrete
Fourier Transform) [11], which is most widely used as the lower-dimensional
transformation. For this, we first prove the original DFT-based lower-dimensional
transformation is not MBR-safe. We then define a new transform, called mbrDFT,
by extending definition of DFT. We also formally prove this mbrDFT is MBR-
safe. Through analysis and experiments, we show superiority of the proposed
MBR-safe transform. By deriving the computational complexity of constructing
a low-dimensional MBR, we analytically show superiority of our mbrDFT. We
then empirically show that mbrDFT reduces the number of lower-dimensional
transformations drastically and improves performance significantly compared
with the traditional method.

2 Related Work

Similar sequence matching can be classified into whole matching and subsequence
matching [3]. The whole matching [1,2,5] finds data sequences similar to a query
sequence, where the lengths of data sequences and the query sequence are all
identical. On the other hand, the subsequence matching[3,7,8] finds subsequences,
contained in data sequences, similar to a query sequence of arbitrary length.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional MBRs 81

Also, several transform techniques such as moving average transform, shifting
& scaling, normalization transform, and time warping have been used in similar
sequence matching to solve the problems that the Euclidean distance function
has [9]. We note that most similar sequence matching solutions have used the
lower-dimensional transformation to use a multidimensional index.

Previous similar sequence matching solutions construct MBRs to reduce the
number of points to be stored in the index or to reduce the number of range
queries. For example, solutions in [3,9] divide data sequences into windows, trans-
form the windows to low-dimensional points, and finally store MBRs containing
multiple transformed points in the index. Similarly, solutions in [7,8] divide a
query sequence into windows, transform the windows to low-dimensional points,
and finally use MBRs containing multiple transformed points in constructing
range queries. Also, recent work for continuous queries on streaming time-series
uses the method of constructing MBRs that contain multiple sequences [4]. Like-
wise, most previous solutions construct MBRs after transforming individual
high-dimensional sequences into low-dimensional sequences (points); in contrast,
our solution transforms a high-dimensional MBR itself to a low-dimensional
MBR directly. Therefore, our solution is quite different from the previous ones
in constructing MBRs.

Various transforms including DFT and Wavelet transform are used as the
lower-dimensional transformation of high-dimensional sequences. DFT is most
widely used in many similar sequence matching solutions [1,3,7,8,9]. Wavelet
transform is also used as the lower-dimensional transformation in [2,10]. Be-
sides these transforms, PAA(Piecewise Aggregate Approximation) [5] and SVD
(Singluar Value Decomposition) [6] were introduced as the lower-dimensional
transformation. All these transformations, however, focused on transforming
high-dimensional sequences to low-dimensional ones, and they cannot be directly
applied to the lower-dimensional transformation of high-dimensional MBRs.

3 Definition of MBR-Safe

We first summarize in Table 1 the notation to be used throughout the paper.
We then formally define the notion of MBR-safe as the following Definition 1.

Definition 1. For an n-dimensional sequence X and an n-dimensional MBR
[L, U], if a transform T satisfies the following Eq. (1), then we say T is MBR-safe.

X ∈ [L, U] =⇒ XT ∈ [L, U]T (1)

Figure 1 depicts the concept of MBR-safe. In Figure 1, transform T 1 is MBR-
safe, but T 2 is not. The reason why T 1 is MBR-safe is that, if an arbitrary
sequence X is contained in MBR [L, U] (i.e., X ∈ [L, U]), then the transformed
sequence XT1 is also contained in the transformed MBR [L, U]T1 (i.e., XT1 ∈
[L, U]T1 = [Λ, Υ]). Analogously, the reason why T 2 is not MBR-safe is that,
even though X is contained in [L, U] (i.e., X ∈ [L, U]), XT2 is not contained in
[L, U]T2 (i.e., XT2 /∈ [L, U]T2 = [A, B]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 Y.-S. Moon

Table 1. Summary of notation

Symbols Definitions

X A high-dimensional sequence. (= {x0, x1, ..., xn−1})
XT A (low-dimensional) sequence transformed from X by the transform T .

(= {xT
0 , xT

1 , ..., xT
m−1})

[L, U] A high-dimensional MBR whose lower-left and upper-right points are
L and U , respectively. (= [{l0, l1, ..., ln−1}, {u0, u1, ..., un−1}])

[L, U]T A (low-dimensional) MBR transfromed from [L, U] by the transform T .
= [Λ, Υ] (= [{λ0, λ1, ..., λn−1}, {υ0, υ1, ..., υn−1}])

X ∈ [L, U] The sequence X is contained in the MBR [L, U].
(i.e., for every i, li ≤ xi ≤ ui)

[,]L U

{ }()0 1,..., nX x x −=

{ }()0 1,..., nL l l −=

{ }()0 1,..., nU u u −=

1[,] [,]TL U = Λ ϒ

{ }()1 1 1
0 1,...,T T T

mX x x −=

{ }()1 ,..., mΛ = λ λ

{ }()0 1,..., m−ϒ = υ υTransform T1

Transform T1

()1For every , holds.T
i i ii xλ ≤ ≤ υ

2[,] [,]TL U = Α Β

{ }()2 2 2
0 1,...,T T T

mX x x −=

{ }()0 1,..., m−Α = α α

() ()()2 2For some , holds.T T
i i i ii x x< α ∨ > β

{ }()0 1,..., m−Β = β β

Transform T2

Transform T2

Fig. 1. An MBR-safe transform (T1) and a non-MBR-safe transform (T2)

If using an MBR-safe transform, we can drastically reduce the number of
lower-dimensional transformations. In general, previous solutions construct an
MBR after tens ∼ thousands of lower-dimensional transformations for individ-
ual sequences [3,7,9]. In contrast, if using the notion of MBR-safe, we can reduce
the number of lower-dimensional transformations since we transform the high-
dimensional MBR itself to a low-dimensional MBR directly. Figure 2 shows these
two methods of constructing a low-dimensional MBR. The upper part of the fig-
ure shows an example of using the traditional transform, and the lower part that
of using an MBR-safe transform. As shown in the figure, if using the traditional
transform, we first transform tens ∼ thousands of individual sequences to low-
dimensional sequences, and then construct a low-dimensional MBR by containing
the transformed sequences. In contrast, if using the MBR-safe transform, we can
construct a low-dimensional MBR by simply transforming a high-dimensional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional MBRs 83

• • •

•
•
•

High-dimensional sequences

Low-dimensional sequences A low-dimensional MBR

•
•
•

• • •

A high-dimensional MBR

The traditional transform

A low-dimensional MBR

MBR-safe transform

Fig. 2. Two methods of constructing a low-dimensional MBR from high-dimensional
sequences

MBR itself rather than a large number of individual sequences. It means that,
by using the MBR-safe transform, we can reduce the number of transformations
in similar sequence matching.

4 A DFT-Based MBR-Safe Transform

DFT has been most widely used as the lower-dimensional transformation in sim-
ilar sequence matching [1,3,7,8,9]. DFT transforms an n-dimensional sequence X
to a new n-dimensional sequence Y (= {y0, y1, ..., yn−1}) in a complex number
space, where each complex number yi is defined as the following Eq. (2) [1,11]:

yi =
1√
n

n−1∑
t=0

xt e−j·2πit/n, 0 ≤ i ≤ n − 1. (2)

By Euler’s formula [11] and definition of complex number, we can rewrite Eq. (2)
to Eq. (3) of the real part and imaginary part.

yi =
1√
n

n−1∑
t=0

xt cos(−2πit/n) +
1√
n

n−1∑
t=0

xt sin(−2πit/n) · j, 0 ≤ i ≤ n − 1. (3)

DFT concentrates most of the energy into the first few coefficients, and thus
only a few coefficients extracted from the transformed point Y are used for
the lower-dimensional transformation [1,3]. The following Definition 2 shows the
traditional DFT-based lower-dimensional transformation.

Definition 2. The DFT-based lower-dimensional transformation transforms an
n-dimensional sequence X to a new m(� n)-dimensional sequence XDFT of
{xDFT

0 , xDFT
1 , ..., xDFT

m−1}, where each xDFT
i is obtained by Eq. (4). Also, it trans-

forms an n-dimensional MBR [L, U] to a new m-dimensional MBR [L, U]DFT

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 Y.-S. Moon

whose lower-left and upper-right points are LDFT and UDFT , respectively, i.e.,
[L, U]DFT = [LDFT , UDFT]. In Eq. (4), θ = −2π�i/2	t/n and 0 ≤ i ≤ m − 1.

xDFT
i =

{
1√
n

∑n−1
t=0 xt cos θ, if i is even;

1√
n

∑n−1
t=0 xt sin θ, if i is odd.

(4)

In similar sequence matching, by using the DFT-based lower-dimensional trans-
formation, we transform a high-dimensional sequence with tens ∼ hundreds of
dimensions to a low-dimensional sequence with one ∼ six dimensions.

The DFT-based lower-dimensional transformation, however, is not MBR-safe.
We give in Example 1 a counterexample to show that it is not MBR-safe.

Example 1. Let X be a 4-dimensional sequence of {3.00, 2.50, 3.50, 3.00}, and
[L, U] be a 4-dimensional MBR of L = {2.00, 1.00, 3.00, 2.00} and U = {4.00,
3.00, 5.00, 4.00}. Then, for the given X and [L, U], X ∈ [L, U] holds. By using
the DFT-based lower-dimensional transformation, we now transform the given
4-dimensional sequence and MBR to the 2-dimensional sequence and MBR, re-
spectively. Then, by Definition 2, we can transform X to a new sequence XDFT of
{6.00, −0.25}1. Similarly, we can also transform [L, U] to a new MBR [L, U]DFT ,
where LDFT = {4.00, −0.50} and UDFT = {8.00, −0.50}. Here, we note that
−0.50 ≤ −0.25 � −0.50, that is, lDFT

2 ≤ xDFT
2 � uDFT

2 . Thus, for the trans-
formed XDFT and [L, U]DFT , XDFT ∈ [L, U]DFT does not hold. It means that
the DFT-based lower-dimensional transformation is not MBR-safe. �
As noted in Example 1, the DFT-based lower-dimensional transformation is not
MBR-safe, and thus we cannot use it for the lower-dimensional transformation
of MBRs. Therefore, we introduce a DFT-based MBR-safe transform, called
mbrDFT. The following Definition 3 presents a formal definition of mbrDFT.

Definition 3. For an n-dimensional MBR [L, U], mbrDFT is defined as an
operation that constructs an m(� n)-dimensional MBR [L, U]mbrDFT whose
lower-left and upper-right points are Λ and Υ , respectively, in Eq. (5). And, for
an n-dimensional sequence X , the mbrDFT -transformed sequence XmbrDFT is
identical to XDFT . In Eq. (5), θ = −2π�i/2	t/n and 0 ≤ i ≤ m − 1.

λi =

�
1√
n

�n−1
t=0 atcos θ, if i is even;

1√
n

�n−1
t=0 btsin θ, if i is odd;

, υi =

�
1√
n

�n−1
t=0 ctcos θ, if i is even;

1√
n

�n−1
t=0 dtsin θ, if i is odd;

,

where

�����
����

at = lt, ct = ut, if cos θ ≥ 0;

at = ut, ct = lt, if cos θ < 0;

bt = lt, dt = ut, if sin θ ≥ 0;

bt = ut, dt = lt, if sin θ < 0.

(5)

To guarantee MBR-safety of mbrDFT, we intentionally make Λ and Υ in Eq. (5)
contain every possible sequence that can be transformed from the original MBR
[L, U]. The following Theorem 1 shows that mbrDFT is an MBR-safe transform.
1 In DFT, the imaginary part of the first complex number (i.e., xDFT

1) is always 0.
Thus, we use {xDFT

0 , xDFT
2 } instead of {xDFT

0 , xDFT
1 } [3,8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional MBRs 85

Theorem 1. For an n-dimensional sequence X and an n-dimensional MBR
[L, U], if X ∈ [L, U] holds, then XmbrDFT ∈ [L, U]mbrDFT also holds (X ∈
[L, U] ⇒ XmbrDFT ∈ [L, U]mbrDFT). That is, mbrDFT is MBR-safe.

Proof: To show XmbrDFT ∈ [Λ, Υ](= [L, U]mbrDFT), we need to prove that
λi ≤ xmbrDFT

i ≤ υi holds for every i. We now proceed the proof by two cases: 1)
the first case where i of xmbrDFT

i is even, and 2) the second one where i is odd.

1) Assume i is even. Then, λi = 1√
n

∑n−1
t=0 atcos θ and υi = 1√

n

∑n−1
t=0 ctcos θ.

Here, we note that lt ≤ xt ≤ ut holds for every t (0 ≤ t ≤ n − 1) since X ∈
[L, U] holds by the assumption. Thus, if cos θ is positive, ltcos θ ≤ xtcos θ ≤
utcos θ holds since lt ≤ xt ≤ ut holds. Similarly, if cos θ is negative, utcos θ ≤
xtcos θ ≤ ltcos θ holds. And accordingly,

∑n−1
t=0 atcos θ, which is obtained by

adding ltcos θ if cos θ is positive and utcos θ if cos θ is negative, is less than or
equal to

∑n−1
t=0 xtcos θ. It means that 1√

n

∑n−1
t=0 atcos θ (= λi) is less than or equal

to 1√
n

∑n−1
t=0 xtcos θ (= xmbrDFT

i). Analogously,
∑n−1

t=0 ctcos θ, which is obtained
by adding utcos θ if cos θ is positive and ltcos θ if cos θ is negative, is greater
than or equal to

∑n−1
t=0 xtcos θ. Thus, 1√

n

∑n−1
t=0 ctcos θ (= υi) is greater than or

equal to 1√
n

∑n−1
t=0 xtcos θ (= xmbrDFT

i). Therefore, λi ≤ xmbrDFT
i ≤ υi holds for

every case where i of xmbrDFT
i is even.

2) Assume i is odd. We can also prove that λi ≤ xmbrDFT
i ≤ υi holds by the

similar steps described in the case 1) above.
According to the cases 1) and 2), λi ≤ xmbrDFT

i ≤ υi holds for every i. Therefore,
mbrDFT is MBR-safe by Definition 1. �

The following Example 2 shows that mbrDFT is an MBR-safe transform.

Example 2. As in Example 1, let X be a sequence of {3.00, 2.50, 3.50, 3.00}, and
[L, U] be an MBR of L = {2.00, 1.00, 3.00, 2.00} and U = {4.00, 3.00, 5.00, 4.00}.
We now want to transform X and [L, U] using mbrDFT. Then, we can transform
X to a new sequence XmbrDFT of {6.00, −0.25}. Similarly, we can also transform
[L, U] to a new MBR [Λ, Υ] (= [L, U]mbrDFT), where Λ = {4.00, −1.50} and Υ =
{8.00, 0.50}. Here, we note that both 4.00 ≤ 6.00 ≤ 8.00 (λ0 ≤ xmbrDFT

0 ≤ υ0)
and −1.50 ≤ −0.25 ≤ 0.50 (λ2 ≤ xmbrDFT

2 ≤ υ2) hold. Thus, for the mbrDFT-
transformed XmbrDFT and [L, U]mbrDFT , XmbrDFT ∈ [L, U]mbrDFT holds. It
means that mbrDFT is an MBR-safe transform. �
The proposed mbrDFT is optimal (i.e., it constructs the smallest MBR) among
the DFT-based MBR-safe transforms that convert a high-dimensional MBR itself
into a low-dimensional MBR directly. It means that there is no DFT-based MBR-
safe transform whose low-dimensional MBR is smaller than that of mbrDFT. We
omit the proof of optimality due to space limitation.

5 Computational Complexity Analysis

In this section we analyze computational complexity required to construct a
low-dimensional MBR. We analyze two DFT-based transformations: 1) the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 Y.-S. Moon

traditional method that constructs an MBR after performing the DFT-based
lower-dimensional transformation for individual sequences (we simply call this
method orgDFT and its complexity orgDFT-complexity) and 2) the proposed
mbrDFT (we call its complexity mbrDFT-complexity).

First, orgDFT-complexity depends on the length n and the number m of se-
quences contained in an MBR. That is, if the computational complexity of a DFT
unit operation for a sequence of length n is O(f(n)), we can obtain orgDFT-
complexity for m sequences as O(mf(n)). Here, we know the complexity of one
DFT operation for a sequence of length n as O(nlogn) [11]. Thus, orgDFT-
complexity for an MBR is to be O(mnlogn). Next, mbrDFT requires only
two DFT operations for two sequences, Λ and Υ , respectively. Thus,
mbrDFT-complexity for an MBR is to be O(nlogn).

In summary, we derive orgDFT-complexity as O(mnlogn) and mbrDFT-
complexity as O(nlogn), respectively. Figure 3 (a) shows a graph that presents
orgDFT-complexity and mbrDFT-complexity, where we set the length n of se-
quences to 256 and change the number m of sequences in an MBR from 128 to
1024 by multiples of two. Figure 3 (b) shows another graph, where we set m to
256 and change n from 128 to 1024. As shown in the graphs, mbrDFT-complexity
is much lower than orgDFT-complexity. Note that Y axes in the graphs have the
exponential scale. Also, as m or n increases, the complexity difference between
orgDFT and mbrDFT becomes larger. It means that our mbrDFT is very useful
and practical for the case where an MBR contains a large number of sequences
or the length of sequences is large, i.e., it is suitable for large databases.

of sequences per MBR (m)

V
al

ue
 (c

om
pl

ex
it

y)

128 256 512 1024
0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

Sequence length (n)

V
al

ue
 (c

om
pl

ex
it

y)

128 256 512 1024
0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

orgDFT
mbrDFT

orgDFT
mbrDFT

(a) Complexity comparison when varying m. (b) Complexity comparison when varying n.

Fig. 3. Comparison of orgDFT-complexity and mbrDFT-complexity

6 Performance Evaluation

6.1 Experimental Data and Environment

We have performed extensive experiments using two types of synthetic data sets.
The first data set, used in the previous similar sequence matching works [3,8,9],
contains a random walk series consisting of one million entries: the first en-
try is set to 1.5, and subsequent entries are obtained by adding a random
value in the range (-0.001,0.001) to the previous one. We call this data set

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional MBRs 87

WALK-DATA. The second data set contains a synthetic streaming time-series
consisting of one million entries: the series is generated using the function yi =
100 · [sin(0.1 · xi) + 1.0 + i/1000000] (i = 0..999999) as in [4], where we set xi to
the i-th entry of WALK-DATA. We call this data set SINE-DATA.

We generate high-dimensional MBRs by dividing the whole data set into mul-
tiple smaller sequences (i.e., sliding windows in [3,8]). In the experiments, we use
128, 256, 512, and 1024 as the length n and the number m of sequences contained
in an MBR. As in [1], we transform each high-dimensional sequence, i.e., 128– ∼
1024–dimensional sequence, to a 1– ∼ 4–dimensional sequence (point). It means
that the number of features extracted by the lower-dimensional transformation
is set to one ∼ four [1]. As the experimental methods, we compare orgDFT and
mbrDFT.

The hardware platform for the experiment is a PC equipped with an Intel
Pentium IV 2.80 GHz CPU, 512 MB RAM, and a 70.0GB hard disk. The software
platform is GNU/Linux Version 2.6.6 operating system. For the experimental
results, we measure the number of transformations and the elapsed time for
each method. We also show that, by comparing the boundary-length of the
transformed MBRs, the proposed mbrDFT is practically applicable in similar
sequence matching.

6.2 Experimental Results

We have performed three experiments. Experiment 1) measures the number of
transformations and the elapsed time by varying the number m of sequences in
an MBR for the fixed length n of sequences. Experiment 2) performs the same
experiment by varying the length n for the fixed number m. Finally, Experi-
ment 3) compares orgDFT and mbrDFT in the boundary-length of MBRs.

Experiment 1) Figure 4 shows the experimental results of orgDFT and
mbrDFT. Here, we set the length n of sequences to 256, but change the number
m of sequences in an MBR from 128 to 1024 by multiples of two. We set the
number of extracted features to two as in [1]. In the experiment, we measure
the total number of transformations and the average elapsed time for trans-
forming an MBR. Figure 4 (a) shows the numbers of transformations for both
WALK-DATA and SINE-DATA; Figures 4 (b) and 4 (c) show the elapsed times
for WALK-DATA and SINE-DATA, respectively. As shown in Figure 4 (a), our
mbrDFT drastically reduces the number of transformations over orgDFT. It is
because orgDFT has to consider all the individual sequences in an MBR; in con-
trast, mbrDFT requires only two transformations for an MBR. Figures 4 (b) and
4 (c) show that mbrDFT also reduces the elapsed time significanlty over orgDFT.
As we analyzed in Figure 3 (a) in Section 5, the more number of sequences in an
MBR causes the more performance difference between orgDFT and mbrDFT.
In summary, mbrDFT drastically reduces the number of transformations to 1

136
of that for orgDFT on the average, and also significantly improves performance
by 31 times that for orgDFT on the average.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 Y.-S. Moon

of sequences per MBR (m)

#
 o

f t
ra

ns
fo

rm
at

io
ns

128 256 512 1024
1.E+03

1.E+04

1.E+05

1.E+06

(a) Number of transformations

of sequences per MBR (m)

T
he

 e
la

p
se

d
 ti

m
e

(u
se

c)

128 256 512 1024

(b) The elapsed time (WALK-DATA)
of sequences per MBR (m)

T
he

 e
la

p
se

d
 ti

m
e

(u
se

c)

128 256 512 1024

(c) The elapsed time (SINE-DATA)

orgDFT
mbrDFT

0.0E+00

4.0E+04

8.0E+04

1.2E+05

0.0E+00

4.0E+04

8.0E+04

1.2E+05

orgDFT
mbrDFT

orgDFT
mbrDFT

Fig. 4. Experimental results when varying the number m of sequences in an MBR

Experiment 2) Figure 5 shows the results when we set the number m of se-
quences in an MBR to 256, but change the length n of sequences from 128 to
1024 by multiples of two. As in Experiment 1), we measure the total number of
transformations and the average elapsed time for transforming an MBR. From
Figure 5 (a), we note that the numbers of transformations are not changed even
as the length of sequences increases. It is because the numbers are dependent on
the number of sequences in orgDFT or the number of MBRs in mbrDFT, but
are not dependent on the length of sequences in both orgDFT and mbrDFT.
As shown in Figures 5 (b) and 5 (c), mbrDFT significantly reduces the elapsed
time over orgDFT. In particular, as we analyzed in Figure 3 (b) in Section 5,
the larger length of sequences causes the more performance difference between
orgDFT and mbrDFT.

Sequence length (n)

#
 o

f t
ra

ns
fo

rm
at

io
ns

128 256 512 1024
1.E+03

1.E+04

1.E+05

1.E+06

(a) Number of transformations

Sequence length (n)

T
he

 e
la

p
se

d
 ti

m
e

(u
se

c)

128 256 512 1024

(b) The elapsed time (WALK-DATA)

Sequence length (n)

T
he

 e
la

p
se

d
 ti

m
e

(u
se

c)

128 256 512 1024

(c) The elapsed time (SINE-DATA)

orgDFT
mbrDFT DFT

mbrDFT

0.E+00

4.E+04

8.E+04

1.E+05

0.E+00

4.E+04

8.E+04

1.E+05

orgDFT
mbrDFT

orgDFT
mbrDFT

Fig. 5. Experimental results when varying the length n of sequences

Experiment 3) In this experiment, we compare the methods in the average
boundary-length of MBRs. Here, the boundary-length of an MBR is defined as
the sum of the length of each dimension in the MBR, i.e., the boundary-length
of [L, U] is defined as

∑n−1
i=0 (ui − li). Figure 6 compares orgDFT and mbrDFT

in the average boundary-length of MBRs. Here, we set both the length n and
the number m of sequences in an MBR to 256, but increment the number of
extracted dimensions (features) from one to four. As shown in the figure, the av-
erage boundary-length in mbrDFT is longer than that in orgDFT if the number
of extracted dimensions is greater than two. It is because our mbrDFT considers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An MBR-Safe Transform for High-Dimensional MBRs 89

of dimensions (# of features)

B
ou

nd
ar

y-
le

ng
th

 o
f M

BR
s

0.0

10.0

20.0

30.0

1 2 3 4

(a) WALK-DATA (b) SINE-DATA

of dimensions (# of features)

B
ou

nd
ar

y-
le

ng
th

 o
f M

BR
s

0.E+00

1.E+03

2.E+03

3.E+03

orgDFT
mbrDFT

1 2 3 4

orgDFT
mbrDFT

Fig. 6. Comparison of orgDFT and mbrDFT in the average boundary-length of MBRs

an infinite number of every possible sequence that can be contained in a high-
dimensional MBR, while orgDFT does a finite number of real sequences in the
MBR. On the other hand, if the number of extracted dimensions is one, there
is only a little difference (0.2%∼2.6%) in the boundary-length. As experimented
in [1], DFT concentrates most of energy into the first dimension, and thus we
can say that our mbrDFT is much more useful if we extract only one or two
dimensions.

7 Conclusions

In this paper we have proposed a formal approach that transforms a high-
dimensional MBR itself to a low-dimensional MBR directly. We have noted
that most similar sequence matching solutions required a huge number of lower-
dimensional transformations to construct low-dimensional MBRs to be stored
in the index. To solve this problem, we have introduced a new notion of MBR-
safe and proposed MBR-safe transforms that can reduce the number of lower-
dimensional transformations drastically.

We can summarize our work as the following three contributions. First, we
formally defined the notion of MBR-safe. If using the notion of MBR-safe, we
can construct a low-dimensional MBR by transforming a high-dimensional MBR
itself rather than a large number of individual sequences. Second, we proposed a
DFT-based MBR-safe transform. For this, we first proved the traditional DFT-
based lower-dimensional transformation is not MBR-safe. We then introduced a
new transform, called mbrDFT, and formally proved in Theorem 1 it is MBR-
safe. Third, through analysis and experiments, we showed superiority of our
MBR-safe transform.

These results indicate that our MBR-safe transforms will provide a useful
framework for a variety of applications that require the lower-dimensional trans-
formation of high-dimensional MBRs. Therefore, as the further research, we will
try to apply the MBR-safe transform to real applications such as similarity
search, multimedia data retrieval, and GIS.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 Y.-S. Moon

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST)/
Korea Science and Engineering Foundation (KOSEF) through the Advanced In-
formation Technology Research Center (AITrc).

References

1. Agrawal, R., Faloutsos, C., and Swami, A., “Efficient Similarity Search in Sequence
Databases,” In Proc. the 4th Int’l Conf. on Foundations of Data Organization and
Algorithms, pp. 69-84, Oct. 1993.

2. Chan, K.-P., Fu, A. W.-C., and Yu, C. T., “Haar Wavelets for Efficient Similar-
ity Search of Time-Series: With and Without Time Warping,” IEEE Trans. on
Knowledge and Data Engineering, Vol. 15, No. 3, pp. 686-705, Jan./Feb. 2003.

3. Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., “Fast Subsequence Match-
ing in Time-Series Databases,” In Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pp. 419-429, May 1994.

4. Gao, L. and Wang, X. S., “Continually Evaluating Similarity-based Pattern Queries
on a Streaming Time Series,” In Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pp. 370-381, June 2002.

5. Keogh, E. J., Chakrabarti, K., Mehrotra, S., and Pazzani, M. J., “Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases,” In Proc. of
Int’l Conf. on Management of Data, ACM SIGMOD, pp. 151-162, May 2001.

6. Korn, F., Jagadish, H. V., and Faloutsos, C., “Efficiently Supporting Ad Hoc
Queries in Large Datasets of Time Sequences,” In Proc. of Int’l Conf. on Man-
agement of Data, ACM SIGMOD, pp. 289-300, June 1997.

7. Lim, S.-H., Park, H.-J., and Kim, S.-W., “Using Multiple Indexes for Efficient
Subsequence Matching in Time-Series Databases,” In Proc. of the 11th Int’l Conf.
on Database Systems for Advanced Applications (DASFAA), pp. 65-79, Apr. 2006.

8. Moon, Y.-S., Whang, K.-Y., and Han, W.-S., “General Match: A Subsequence
Matching Method in Time-Series Databases Based on Generalized Windows,” In
Proc. Int’l Conf. on Management of Data, ACM SIGMOD, pp. 382-393, June 2002.

9. Moon, Y.-S. and Kim, J., “A Single Index Approach for Time-Series Subse-
quence Matching that Supports Moving Average Transform of Arbitrary Order,”
In Proc. of the 10th Pacific-Asia Conf. on Knowledge Discovery and Data Mining
(PAKDD), pp. 739-749, Apr. 2006.

10. Natsev, A., Rastogi, R., and Shim, K., “WALRUS: A Similarity Retrieval Algo-
rithm for Image Databases,” IEEE Trans. on Knowledge and Data Engineering,
Vol. 16, No. 3, pp. 301-316 , Mar. 2004.

11. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press, 2nd
Ed., 1992.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees

in Graph Databases

Peixiang Zhao and Jeffrey Xu Yu

The Chinese University of Hong Kong, China
{pxzhao,yu}@se.cuhk.edu.hk

Abstract. Free tree, as a special graph which is connected, undirected
and acyclic, has been extensively used in bioinformatics, pattern
recognition, computer networks, XML databases, etc. Recent research
on structural pattern mining has focused on an important problem of
discovering frequent free trees in large graph databases. However, it can
be prohibitive due to the presence of an exponential number of frequent
free trees in the graph database. In this paper, we propose a computa-
tionally efficient algorithm that discovers only closed frequent free trees
in a database of labeled graphs. A free tree t is closed if there exist
no supertrees of t that has the same frequency of t. Two pruning algo-
rithms, the safe position pruning and the safe label pruning, are proposed
to efficiently detect unsatisfactory search spaces with no closed frequent
free trees generated. Based on the special characteristics of free tree, the
automorphism-based pruning and the canonical mapping-based pruning
are introduced to facilitate the mining process. Our performance study
shows that our algorithm not only reduces the number of false positives
generated but also improves the mining efficiency, especially in the pres-
ence of large frequent free tree patterns in the graph database.

1 Introduction

Recent research on frequent pattern discovery has progressed from mining item-
sets and sequences to mining structural patterns including (ordered, unordered,
free) trees, lattices, graphs and other complicated structures. Among all these
structural patterns, graph, a general data structure representing relations among
entities, has been widely used in a broad range of areas, such as bioinformatics,
chemistry, pattern recognition, computer networks, etc. In recent years, we have
witnessed a number of algorithms addressing the frequent graph mining prob-
lem [5,9,4,6]. However, discovering frequent graph patterns comes with expensive
cost. Two computationally expensive operations are unavoidable: (1) to check if
a graph contains another graph (in order to determine the frequency of a graph
pattern) is an instance of subgraph isomorphism problem, which is NP-complete
[3]; and (2) to check if two graphs are isomorphic (in order to avoid creating a
candidate graph for multiple times) is an instance of graph isomorphism prob-
lem, which is not known to be either P or NP-complete [3].

With the advent of XML and the need for mining semi-structured data, a
particularly useful family of general graph — free tree, has been studied and

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 91–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 P. Zhao and J. Xu Yu

applied extensively in various areas such as bioinformatics, chemistry, computer
vision, networks, etc. Free tree — the connected, undirected and acyclic graph, is
a generalization of linear sequential patterns, and hence reserves plenty of struc-
tural information of databases. At the same time, it is a specialization of general
graph, therefore avoids undesirable theoretical properties and algorithmic com-
plexities incurred by graph. As the middle ground between two extremes, free
tree has provided us a good compromise in data mining research [8,2].

Similar to frequent graph mining, the discovery of frequent free trees in a
graph database shares a common combinatorial explosion problem: the number
of frequent free trees grows exponentially although most free trees deliver nothing
interesting but redundant information if all of them share the same frequency.
This is the case especially when graphs of a database are strongly correlated.

Our work is inspired by mining closed frequent itemsets and sequences in [7].
According to [7,11], a frequent pattern I is closed if there exists no proper super-
pattern of I with the same frequency in the dataset. In comparison to frequent
free trees, the number of closed ones is dramatically small. At the same time,
closed frequent free trees maintain the same information (w.r.t frequency) as
that held by frequent free trees with less redundancy and better efficiency.

There are several previous studies on discovering closed frequent patterns
among large tree or graph databases. CMTreeMiner [1] discovers all closed
frequent ordered or unordered trees in a rooted-tree database by traversing an
enumeration tree, a special data structure to enumerate all frequent (ordered or
unordered) subtrees in the database. However, some elegant properties of or-
dered (unordered) trees do not hold in free trees, which makes infeasible to apply
their pruning techniques directly to mine closed frequent free trees. CloseGraph
[10] discovers all closed frequent subgraphs in a graph database by traversing
a search space representing the complete set of frequent subgraphs. The novel
concepts of equivalent occurrence and early termination help CloseGraph prune
certain branches of the search space which produce no closed frequent subgraphs.
We can directly use CloseGraph to mine closed frequent free trees because free
tree is a special case of general graph, but CloseGraph will introduce a lot of in-
efficiencies. First, all free trees are computed as general graphs while the intrinsic
characteristics of free tree are omitted; Second, the early termination may fail
and CloseGraph may miss some closed frequent patterns. Although this failure
of early termination can be detected, the detection operations should be applied
case-by-case, which introduce a lot of complexities.

In this paper, we fully study the closed frequent free tree mining problem and
develop an efficient algorithm, CFFTree which is short for Closed Frequent, Free
Tree mining, to systematically discover the complete set of closed frequent free
trees in large graph databases. The main contributions of this paper are: (1) We
first introduce the concept of closed frequent free trees and study its properties
and its relationship to frequent free trees; (2) Our algorithm CFFTree depth-
first traverses the enumeration tree to discover closed frequent free trees. Two
original pruning algorithms, the safe position pruning and the safe label prun-
ing are proposed to prune search branches of the enumeration tree in the early

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees in Graph Databases 93

stage, which is confirmed to output no desired patterns; (3) Based on the intrin-
sic characteristics of free tree, we propose the automorphism-based pruning and
the canonical mapping-based pruning to alleviate the expensive computation of
equivalent occurrence sets and candidate answer sets during the mining process.
We carried out different experiments on both synthetic data and real applica-
tion data. Our performance study shows that CFFTree outperforms up-to-date
frequent free mining algorithms by a factor of roughly 10. To the best of our
knowledge, CFFTree is the first algorithm that, instead of using post-processing
methods, directly mines closed frequent free trees from graph databases.

The rest of the paper is organized as follows. Section 2 provides necessary
background and detailed problem statement. We study the closed frequent free
tree mining problem in Section 3, and propose a basic algorithmic framework
to solve the problem. Advanced pruning algorithms are presented in Section 4.
Section 5 formulates our algorithm, CFFTree. In Section 6, we report our per-
formance study and finally, we offer conclusions in Section 7.

2 Preliminaries

A labeled graph is defined as a 4-tuple G = (V, E, Σ, λ) where V is a set of
vertices, E is a set of edges (unordered pairs of vertices), Σ is a set of labels,
and λ is a labeling function, λ : V ∪ E → Σ, that assigns labels to vertices and
edges. A free tree, denoted ftree, is a special undirected labeled graph that is
connected and acyclic. Below, we call a ftree with n vertices a n-ftree.

Let t and s be two ftrees, and g be a graph. t is a subtree of s (or s is the
supertree of t), denoted t ⊆ s, if t can be obtained from s by repeatedly removing
vertices with degree 1, a.k.a leaves of the tree. Similarly, t is a subtree of a graph
g, denoted t ⊆ g, if t can be obtained by repeatedly removing vertices and edges
from g. Ftrees t and s are isomorphic to each other if there is a one-to-one
mapping from the vertices of t to the vertices of s that preserves vertex labels,
edge labels, and adjacency. An automorphism is an isomorphism that maps from
a ftree to itself. A subtree isomorphism from t to g is an isomorphism from t to
some subtree(s) of g.

Given a graph database D = {g1, g2, . . . , gN} where gi is a graph (1 ≤ i ≤ N).
The problem of frequent ftree mining is to discover the set of all frequent ftrees,
denoted FS, where t ∈ FS iff the ratio of graphs in D that has t as its subtree
is greater than or equal to a user-given threshold φ. Formally, let t be a ftree
and gi be a graph. We define

ς(t, gi) =

{
1 if t ⊆ gi

0 otherwise
(1)

and
σ(t, D) =

∑
gi∈D

ς(t, gi) (2)

where σ(t,D) denotes the frequency or support of t in D. The frequent ftree
mining problem is to discover the ftree set FS of D which satisfies

FS = {t | σ(t,D) ≥ φN} (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 P. Zhao and J. Xu Yu

The problem of closed frequent ftree mining is to discover the set of frequent
ftrees, denoted CFS, where t ∈ CFS iff t is frequent and the support of t is
strictly larger than that of any supertree of t. Formally, the closed frequent ftree
mining problem is to discover the ftree set CFS of D which satisfies

CFS = {t | t ∈ FS ∧ ∀t′ ⊃ t, σ(t,D) > σ(t′, D)} (4)

Since CFS contains no ftree that has a supertree with the same support, we
have CFS ⊆ FS.

3 Closed Frequent Ftree Mining: Proposed Solutions

Based on the definition in Eq.(4), a naive two-step algorithm of discovering
CFS from D can be easily drafted. First, using current frequent ftree mining
algorithms to discover FS from D; Second, for each t ∈ FS, examining all t′ ∈
FS where t ⊂ t′ to tell whether t′ satisfies σ(t′,D) < σ(t,D). This algorithm is
straightforward, but far from efficient. It indirectly discovers CFS by computing
FS in the first place whose size is exponentially larger than that of CFS. The
postprocessing operation of filtering non-closed frequent ftrees from FS also
incurs unnecessary computation. We want an alternative method which directly
computes CFS instead of computing FS in advance, i.e., under the traditional
search space for mining frequent ftrees, efficient pruning algorithms should be
proposed to detect branches that do not correspond to closed frequent ftrees
as early as possible, and prune them to avoid unnecessary computation, which
finally facilitate the total mining process.

In [12], we demonstrate F3TM, a fast frequent ftree mining algorithm, which
outperforms up-to-date algorithms FreeTreeMiner[2,8] by an order of magni-
tude. In F3TM, an enumeration tree representing the search space of all frequent
ftrees is built by a pattern-growth approach. Given a frequent n-ftree t, the
potential frequent (n + 1)-ftree t′ originated from t is generated as

t′ = t ◦ef v, v ∈ Σ (5)

where ef means pattern growth can be conducted on the extension frontier of
t instead of each vertex of t, while at the same time ensuring the completeness
of frequent ftrees discovered from the graph database . Figure 1 illustrates the
extension frontier of a ftree, which is composed of vertices 3, 4, 5 and 6, and the
candidate generation of t, based on Eq. 5.

For each frequent ftree in the enumeration tree discovered by F3TM, we can
check the closeness condition in Eq. 4. Given a frequent n-ftree t, its immediate
supertree set, denoted CS(t), which contains all (n + 1)-ftrees t′ ⊃ t can be
generated as

CS(t) = {t′ | t′ = t ◦x v, v ∈ Σ} (6)

where x means v can be grown on any vertex of t, which is shown in Figure 2.
t’s immediate frequent supertree set, denoted FS(t), which contains all frequent
(n + 1)-ftrees t′ ⊃ t can be generated as

FS(t) = {t′|t′ ∈ CS(t) ∧ σ(t, D) ≥ φN} (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees in Graph Databases 95

1

2 3 4 5

6 v v v

v

Fig. 1. t′ = t ◦ef v

1

2 3 4 5

6 v v v

v

v

v

Fig. 2. t′ = t ◦x v

Given a frequent ftree t′ ∈ FS(t), we denote the vertex which is grown on t to
get t′ as (t′ − t), and the vertex of t at which (t′ − t) is grown on as p, i.e., the
parent of (t′ − t) in t′.

The basic algorithmic framework for mining closed frequent ftrees can be
formalized as follows: if for every t′ ∈ FS(t), σ(t′,D) is strictly smaller than
σ(t,D), then t is closed; Otherwise, t is non-closed, i.e., we can tell the closeness
of t by checking the support values of all its immediate frequent supertrees in
FS(t) during the traversal of the enumeration tree for mining frequent ftrees.

4 Pruning the Search Space

In the previous section, we traverse the enumeration tree to discover all frequent
ftrees in a graph database. However, the final goal of our algorithm is to find
only closed frequent ftrees. Therefore, it is not necessary to grow the complete
enumeration tree, because under certain conditions, some branches of the enu-
meration tree are guaranteed to produce no closed frequent ftrees and therefore
can be pruned efficiently. In this section, we introduce algorithms that prune
unwanted branches of the search space.

4.1 Equivalent Occurrence

Given a ftree t and a graph g ∈ D, let f(t, g) represents a subtree isomorphism
from t to g. f(t, g) is also referred to as an occurrence of t in g. Notice that t can
occurs more than once in g. Let ω(t, g) denote the number of occurrences of t in g.
The number of occurrences of t in a graph database D can be formally defined as

Definition 1. Given a ftree t and a graph database D = {g1, g2, . . . , gN}, the
number of occurrence of t in D is the sum of the number of subtree isomorphisms
of t in gi ∈ D, i.e.,

∑N
i=1 ω(t, gi), denoted by O(t, D).

Suppose a ftree t′ = t ◦x v, f is a subtree isomorphism of t in g and f ′ is a
subtree isomorphism of t′ in g. If ∃ρ, ρ is subtree isomorphism of t in t′, i.e.,
∀v, f(v) = f ′(ρ(v)), we call t and t′ simultaneously occur in graph g. Intuitively,
as we can derive t′ from t by t′ = t◦x v, we can get t′ in the same pattern-growth
way from t in g. We denote the number of such simultaneous occurrences of t′

w.r.t t in g by ω(t, t′, g). Similarly, the number of simultaneous occurrences of
t′ w.r.t t in D is defined as

Definition 2. Given a ftree t′ = t◦xv and a graph database D={g1, g2, . . . , gN},
the number of simultaneous occurrence of t′ w.r.t. t in D is the sum of the number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 P. Zhao and J. Xu Yu

of simultaneous occurrences of t′ w.r.t t in gi ∈ D, i.e.,
∑N

i=1 ω(t, t′, gi), denoted
by SO(t, t′, D).

Definition 3. Given t′ = t ◦x v and a graph database D = {g1, g2, . . . , gN}, if
O(t, D) = SO(t, t′, D), we say that t and t′ have equivalent occurrences.

Lemma 1. For a frequent ftree t in the enumeration tree, if there exists a t′ ∈
FS(t) such that (1) t and t′ have equivalent occurrences; (2) the vertex (t′ − t)
is not grown on the extension frontier of any descendants of t, including t, in
the enumeration tree, then (1) t is not a closed frequent ftree and (2) for each
child t′′ of t in the enumeration tree, there exists at least one supertree t′′′ of t′′,
such that t′′′ and t′′ have equivalent occurrences.

Proof. The first statement can be easily proved. Since t and t′ have equivalent
occurrences in D, then O(t′, D) = O(t, D). For the second statement, we notice
that (t′−t) occurs at each occurrence of t in D, so it occurs at each occurrence of
t′′ in D. In addition, the vertex (t′− t) never be grown on the extension frontier
of any descendant of t, so it will not be a vertex of t′′ (Notice t′′ is a child of t in
the enumeration tree by growing a vertex on t’s extension frontier). Therefore,
we can obtain t′′′ by adding (t′ − t) on t′′, so that t′′ and t′′′ have equivalent
occurrences.

By inductively applying Lemma 1 to t and all t’s descendants in the enumeration
tree, we can conclude that all branches originated from t in the enumeration tree
are guaranteed to produce no closed frequent ftrees. However, the conditions
mentioned in Lemma 1, especially the condition (2) is hard to be justified. Since
when mining frequent ftree t, we have no information of all t’s descendants in the
enumeration tree. The following sections will present more detailed techniques
to prune the search space.

4.2 The Safe Position Pruning

Given a ftree t and a vertex v ∈ t, the depth of v can be defined as follows

depth(v) =

{
1 if v is a leaf
minu∈t,u is child of v{depth(u) + 1} otherwise

(8)

Intuitively, the depth of a vertex v is the minimum number of vertices from v
to the nearest leaf of t. For a frequent ftree t′ ∈ FS(t) where t and t′ have
equivalent occurrences, the vertex (t′ − t) can be grown at different positions,
i.e., there are the following possibilities for the position of p in t. (1)depth(p) ≤ 2
and p is on the extension frontier of t; (2) depth(p) ≤ 2 but p is not on the
extension frontier; (3) depth(p) > 2.

If p occurs in position (1), vertex(t′ − t) is grown on the extension frontier of
t. If p occurs in position (2), there are possibilities that for some descendant t′′

of t in the enumeration tree, the vertex p can still be on the extension frontier of
t′′. A example is shown in Figure 3. In frequent ftree t, depth(p) = 2 and p is not
located on the extension frontier. After the vertex a is grown on the extension
frontier (vertex b), we get another frequent ftree t′′ in which p is now located on

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees in Graph Databases 97

a a

b

pc

v

a

t

c

a a

a

b

v

t′′

p

Fig. 3. A Special Case in Position (2)

b c d

e

p

a

v v’

t

Fig. 4. The Safe Label Pruning

the extension frontier. So the first two possible positions of p are unsafe when
growing vertex (t′ − t), which disallows the conditions mentioned in Lemma 1.

The following theorem shows that only position (3) of p is safe to grow the
vertex (t′ − t), while not violating the conditions mentioned in Lemma 1.

Theorem 1. For a frequent ftree t′ ∈ FS(t) such that t and t′ have equivalent
occurrences in D. If depth(p) > 2, then neither t nor any t’s descendants in the
enumeration tree can be closed.

Proof. Since for every vertex u on the extension frontier of a ftree, it is located
at the bottom two levels, i.e., depth(u) ≤ 2. If depth(p) > 2, the vertex p can
never appear on the extension frontier of any ftree, i.e., the vertex (t′ − t) will
not be grown on the extension frontier of any descendant of t, including t, in the
enumeration tree. According to Lemma 1, the branches originated from t can
not generate closed frequent ftrees.

The pruning algorithm mentioned in Theorem 1 is called the safe position prun-
ing, since the vertex (t′ − t) can only be grown on a safe vertex p ∈ t, where
depth(p) > 2. Given a n-ftree, the depth of every vertex of t can be computed in
O(n), so the safe position pruning is quite efficient to testify whether a certain
branch in the enumeration tree should be pruned or not.

4.3 The Safe Label Pruning

If p is on the extension frontier of t, obviously, depth(p) ≤ 2. We can not prune
t from the enumeration tree. However, depending on the vertex label of (t′ − t),
we can still possibly prune some children of t in the enumeration tree.

Theorem 2. For a frequent ftree t′ ∈ FS(t) such that t and t′ have equivalent
occurrences in D, if p is located on the extension frontier of t, we do not need
to grow t by adding to p a new vertex with label lexicographically greater than
(t′ − t).

Proof. For any t′′ ∈ FS(t) such that p is the parent of(t′′ − t) and (t′′ − t) is
lexicographically greater than (t′ − t), a ftree t′′′ = t′′ ◦p (t′ − t) have equivalent
occurrence with t′′ and t′′′ ∈ FS(t′′). Note t′′ ◦p (t′ − t) means growing vertex
(t′ − t) on p of ftree t′′. According to Lemma 1, t′′ is not closed. And for every
descendant of t′′ in the enumeration tree, (t′ − t) never be grown on its exten-
sion frontier. Because during frequent ftrees mining, we generate candidates in
a lexicographical order. Since (t′′ − t) is lexicographically greater than (t′ − t),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 P. Zhao and J. Xu Yu

the vertex (t′− t) will not be reconsidered to be grown on t′′ and all t′′’s descen-
dants in the enumeration tree. According to Lemma 1, neither t′′ nor any of its
descendants can be closed.

The pruning algorithm mentioned in Theorem 2 is called the safe label pruning.
The vertex label of (t′− t) is safe because all vertices with labels lexicographically
greater than (t′−t) can be exempted from growing on p of t, and all descendants of
corresponding ftrees in the enumeration tree are also pruned. An example is shown
in Figure 4. p is located on the extension frontier of t and v = (t′ − t). If v′’s label
is lexicographically greater than v’s label, the frequent ftree t′′ = t ◦p v′ and the
frequent ftree t′′′ = t′′ ◦p v have equivalent occurrences, so that t′′ is not closed.
Similarly, all t′′’s descendants in the enumeration tree are not closed, either.

4.4 Efficient Computation of FS(t)

Based on the above analysis, both candidate generation and closeness test of the
frequent ftree, t, need to compute FS(t). Depending on if t can be pruned from
the enumeration tree during closed frequent ftree mining, we can divide FS(t)
into the following mutually exclusive subsets:

EO(t) = {t′ ∈ FS(t) | t′ and t have equivalent occurrences}
EN(t) = {t′ ∈ FS(t) | σ(t,D) = σ(t′, D)}

F (t) = {t′ ∈ FS(t) | t′ is frequent}

Based on Theorem 1 and Theorem 2, the set EO(t) can be further divided
into the following mutually exclusive subsets:

EO1(t) = {t′ ∈ EO(t) | p ∈ t is safe}
EO2(t) = {t′ ∈ EO(t) | p is on the extension frontier of t}
EO3(t) = EO(t) − EO1(t) − EO2(t)

When computing the sets mentioned above, we map t to each occurrence in
gi ∈ D and select the possible vertex (t′ − t) to grow. However, this procedure
is far from efficient since a lot of redundant t′ are generated. Now we study how
to speed up the computation of FS(t) based on the characteristics of ftree. The
detailed analysis can be found in [12].

Automorphism-based Pruning: In the example shown in Figure 5, The left-
most ftree t is a frequent 7-ftree, where vertices are identified with a unique
number as vertex id. When growing a new vertex v on vertex 3 of t, we get a
8-ftree t′ ∈ CS(t), shown in the middle of Figure 5. However, when growing
v on vertex 5 of t, we get another 8-ftree t′′ ∈ CS(t), shown on the right of
Figure 5. Notice t′ = t′′ in the sense of ftree isomorphism, so t′′ can be pruned
when computing FS(t).

Based on the observation mentioned above, We propose an automorphism-
based pruning algorithm to efficiently avoid redundant generation of ftrees in
FS(t). Given a ftree, all vertices can be partitioned into different equivalence
classes based on ftree automorphism. Figure 6 shows how to partition vertices

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees in Graph Databases 99

a

b b

c d c d

t
0

1 2

3 4 5 6

a

b b

c d c d

V

t′

a

b b

c d c d

V

t′′

Fig. 5. t′, t′′ ∈ CS(t) and t′ = t′′

a

b b

c d c d

Fig. 6. Equivalence Class

of t in Figure 5 into four equivalence classes. When computing FS(t), only one
representative for each equivalence class of t is considered, instead of growing
vertices on every position within an equivalence class.

Canonical Mapping-based Pruning: When computing FS(t), we maintain
mappings from t to all its occurrences in gi ∈ D. However, there exist redundant
mappings because of ftree automorphism. Given a n-ftree t, and assume that
the number of equivalence classes of t is c, and the number of vertices in each
equivalence class Ci is ni, for 1 ≤ i ≤ c. The number of mappings from t to an
occurrence in gi is computed as ω(t, gi) =

∏c
i=1 (ni)!. When either the number

of equivalence classes, or the number of vertices in some equivalence class is
large, ω(t, gi) can be huge. However, among all mappings describing the same
occurrence of t ∈ gi, one out of

∏c
i=1 (ni)! mappings is selected as canonical

mapping and all computation of FS(t) is based on the canonical mapping of t in
D. While other (

∏c
i=1 (ni)!−1) mappings can be pruned so that the computation

of FS(t) can be greatly facilitated.

5 The CFFTree Algorithm

In this section, we summarize our CFFTree algorithm, which is short for Closed
Frequent Ftree Mining. Algorithm 1 illustrates the framework of CFFTree. The
algorithm simply calls CF-Mine which recursively mines closed frequent ftrees of
a graph database by a depth-first traversal on the enumeration tree.

Algorithm 2 outlines the pseudo-code of CF-Mine. For each frequent ftree t,
CFFTree check all candidate frequent ftree t′ = t ◦x v, to obtain SO(t, t′,D),
which is useful to compute EO(t) (Line 1) and EN(t) (Line 2). However, for
t′ ∈ F (t), CFFTree only grows t on its extension-frontier, i.e. t′ = t ◦ef v, which
ensures the completeness of frequent ftrees in D (Line 7-12). Automorphism-
based pruning and canonical mapping-based pruning can be applied to facilitate
the computation of the three sets EO(t), EN(t) and F (t). For the frequent ftree
t, if there exists t′ ∈ EO1(t), then neither t nor any of t’s descendants in the
enumeration tree can be closed, and hence can be efficiently pruned (Line 3-4).
If EO1(t) = ∅ but there exists t′ ∈ EO2(t), although we cannot prune t from the
enumeration tree, we can apply Theorem 2 to prune some children of t in the
enumeration tree (Line 11-12). If EO(t) = ∅, then no pruning is possible and we
have to compute EN(t) to determine the closeness of t, i.e., the naive algorithm
mentioned in Section 3 (Line 2). If EN(t) = ∅, t is not closed, otherwise, t

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 P. Zhao and J. Xu Yu

Algorithm 1. CFFTree (D, φ)
Input: A graph database D, the minimum support threshold φ
Output: The closed frequent ftrees set CF
1: CF ← ∅;
2: F ← frequent 1-ftrees;
3: for all frequent 1-ftree t ∈ F do
4: CF-Mine(t, CF , D, φ);
5: return CF

Algorithm 2. CF-Mine (t, CF , D, φ)
Input: A frequent ftree t, the set of closed frequent ftrees, CF , A graph database D

and the minimum support threshold φ
Output: The closed frequent ftrees set CF
1: Compute EO(t);
2: if EO(t) = ∅ then Compute EN(t);
3: if ∃t′ ∈ EO1(t) then
4: return; // The safe position pruning;
5: else
6: F (t) ← ∅
7: for each equivalence class eci on the extension frontier of t do
8: for each valid vertex v which can be grown on eci of t do
9: t′ ← t ◦ef v, where p, a representative of eci, is v’s parent

10: if support(t′) ≥ φ|D| then
11: if �t′′ ∈ EO2(t), where (t′′ − t) is p and the label of (t′ − t) is lexico-

graphically greater than that of (t′′ − t) then
12: F (t) ← F (t) ∪ {t′} // the safe label pruning
13: for each frequent t′ in F (t) do
14: CF-Mine(t′, CF, D, φ)
15: if EO(t) = ∅ and EN(t) = ∅ then
16: CF ← CF ∪ { t}

is closed (Line 15-16). The set F (t) is computed by extending vertices on the
extension frontier of t, which grows the enumeration tree for frequent ftree mining
(Line 8-12). This procedure proceeds recursively (Line 13-14) until we find all
closed frequent ftrees in the graph database.

6 Experiments

In this section, we report a systematic performance study that validates the
effectiveness and efficiency of our closed frequent free tree mining algorithm:
CFFTree. We use both a real dataset and a synthetic dataset in our experiments.
All experiments were done on a 3.4GHz Intel Pentium IV PC with 2GB main
memory, running MS Windows XP operating system. All algorithms are imple-
mented in C++ using the MS Visual Studio compiler. We compare CFFTree
with F3TM plus post-processing, thus, the performance curve mainly reflects the
effectiveness of pruning techniques mentioned in Section 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Closed Frequent Free Trees in Graph Databases 101

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

F

ea
tu

re
s

Size of Free Trees

F3TM
CFFTree

(a) Number of patterns

10000

100000

0.05 0.06 0.07 0.08 0.09 0.1

P

at
te

rn
s

Minimum support threshold

frequent ftrees
closed frequent ftrees

(b) Number of Patterns

100

1000

10000

0.05 0.06 0.07 0.08 0.09 0.1

R

un
ti

m
e

(s
ec

)

Minimum support threshold

F3TM
CFFTree

(c) Performance

Fig. 7. Mining patterns in real datasets

10

100

1000

10000

100000

0.05 0.06 0.07 0.08 0.09 0.1

P

at
te

rn
s

Minimum support threshold

frequent ftrees
closed frequent ftrees

(a) Number of patterns

100

1000

0.05 0.06 0.07 0.08 0.09 0.1

R

un
ti

m
e

(s
ec

)

Minimum support threshold

F3TM
CFFTree

(b) Performance

10

100

1000

10000

5 10 15 20 25 30 35 40

R

un
ti

m
e

(s
ec

)

Average size of graphs (edges)

F3TM
CFFTree

(c) Performance

Fig. 8. Mining patterns in synthetic datasets

The real dataset we tested is an AIDS antiviral screen chemical compound
database from Developmental Theroapeutics Program in NCI/NIH. The database
contains up to 43, 905 chemical compounds. There are total 63 kinds of atoms
in this database, most of which are C, H , O, S, etc. Three kinds of bonds are
popular in these compounds: single-bond, double-bond and aromatic-bond. We
take atom types as vertex labels and bond types as edge labels. On average, com-
pounds in the database has 43 vertices and 45 edges. The graph of maximum
size has 221 vertices and 234 edges.

Figure 7(a) shows the number of frequent patterns w.r.t. the size of patterns
(vertex number). We select 10000 chemical compounds from the real database
and set the minimum threshold φ to be 10%. As shown, most frequent and closed
frequent ftrees have vertices ranging from 8 to 17. While the number of small
ftrees with vertex number less than 5 and large ftrees with vertex number greater
than 20 is quite limited. Figure 7(b) shows the number of patterns of interest with
φ varying from 5% to 10% and the running time is shown in Figure 7(c) on the
same dataset. As we can see, CFFTree outperforms F3TM by a factor of 10 in aver-
age and the ratio between frequent ftrees and closed ones is close from 10 to 1.5. It
demonstrates that closed pattern ming can deliver more compact mining results.

We then tested CFFTree on a series of synthetic graph databases, which are
generated by the widely-used graph generator [5]. The synthetic dataset is char-
acterized by different parameters, which is described in detail in [5]. Figure 8(a)
shows the number of patterns of interest with φ varying from 5% to 10% and
the running time is shown in Figure 8(b) for the dataset D10000I10T 30V 50.
Compared with the real dataset, CFFTree has a similar performance gain in
this synthetic dataset. We then test the mining performance by changing the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 P. Zhao and J. Xu Yu

parameter T in the synthetic data, while other parameters keep fixed. The ex-
perimental results are shown in Figure 8(c). Again, CFFTree performs better
than F3TM.

7 Conclusion

In this paper, we investigate the problem of mining closed frequent ftrees from
large graph databases, a critical problem in structural pattern mining because
mining all frequent ftrees are inherently inefficient and redundant. Several new
pruning algorithms are introduced in this study including the safe position prun-
ing and the safe label pruning to efficiently prune branches of the search space.
The automorphism-based pruning and the canonical mapping-based pruning are
applied in the computation of candidate sets and equivalent occurrence sets,
which dramatically facilitate the total mining process. A CFFTree algorithm is
implemented and our performance study demonstrates its high efficiency over
the up-to-date frequent ftree mining algorithms. To our best knowledge, this is
the first piece of work on closed frequent ftree mining on large graph databases.

Acknowledgment. This work was supported by a grant of RGC, Hong Kong
SAR, China (No. 418206).

References

1. Yun Chi, Yi Xia, Yirong Yang, and Richard R. Muntz. Mining closed and maximal
frequent subtrees from databases of labeled rooted trees. IEEE Transactions on
Knowledge and Data Engineering, 17(2):190–202, 2005.

2. Yun Chi, Yirong Yang, and Richard R. Muntz. Indexing and mining free trees. In
Proceedings of ICDM03, 2003.

3. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. 1979.

4. Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in
the presence of isomorphism. In Proceedings of ICDM03, 2003.

5. Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Pro-
ceedings of ICDM01, 2001.

6. Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining can
make a difference. In Proceedings of KDD04, 2004.

7. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-
quent closed itemsets for association rules. In Proceeding of ICDT99, 1999.

8. Ulrich Rückert and Stefan Kramer. Frequent free tree discovery in graph data. In
Proceedings of SAC04, 2004.

9. Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
Proceedings of ICDM02, 2002.

10. Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns.
In Proceedings of KDD03, 2003.

11. Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential
patterns in large databases. In Proceedings of SDM03, 2003.

12. Peixiang Zhao and Jeffrey Xu Yu. Fast frequent free tree mining in graph databases.
In Proceedings of MCD06 - ICDM 2006 Workshop, Hong Kong, China, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from

Discrete Event Datasets�

K.K. Loo and Ben Kao

Department of Computer Science,
The University of Hong Kong, Hong Kong

{kkloo, kao}@cs.hku.hk

Abstract. We study the problem of finding time-delayed associations
among types of events from an event dataset. We present a baseline algo-
rithm for the problem. We analyse the algorithm and identify two meth-
ods for improving efficiency. First, we propose pruning strategies that can
effectively reduce the search space for frequent time-delayed associations.
Second, we propose the breadth-first* (BF*) candidate-generation order.
We show that BF*, when coupled with the least-recently-used cache re-
placement strategy, provides a significant saving in I/O cost. Experiment
results show that combining the two methods results in a very efficient
algorithm for solving the time-delayed association problem.

1 Introduction

Developments in sensor network technology have attracted vast amounts of re-
search interest in recent years [1,2,3,6,7,8,9]. One of the research topics related to
sensor networks is to find correlations among the behaviour of different sensors.

A

B

C

D

E

F

3

5 4

4

42

(a) Network topology

•
A

•
A

•
A

•
A

•
B

•
B

•
B

•
C

•
C
� time

0
|

3
|

4
|

5
|

7
|

9
|

10
|

13
|

15
|

(b) Alerts issued by a network monitoring system

Fig. 1. An example showing a network monitoring system

Consider a network monitoring system designed for collecting traffic data of
a network of switches and links as shown in Figure 1(a). In the figure, nodes
represent switches, whereas edges are links connecting switches. Under normal
conditions, the time needed to pass through a link is represented by the number
on the corresponding edge. When the traffic at Switch X exceeds certain capac-
ity, a congestion alert is raised. Figure 1(b) shows an example of alert signals.
� This research is supported by Hong Kong Research Grants Council Grant HKU

7138/04E.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 103–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 K.K. Loo and B. Kao

By analysing an alert sequence, one may discover interesting correlations
among different types of alerts. For example, one may find that a Switch-A alert
is likely followed by a Switch-B alert within a certain time period. One may also
find that if such an A-B pattern occurs, a Switch-C alert is likely to occur soon
after. Such association information would be useful, for example, in congestion
prediction, which could be applied to intelligent traffic redirection strategies.

In this paper, we model correlations of events in the form of time-delayed
associations. In our model, an event e is a pair (Ee, te) where Ee is its type and
te is the time at which e occurs. We are interested in associations among events
whose occurrences are time-constrained. A time-delayed association thus takes
the form I

[u,v]
−−−−→J , where I, J are event types and u, v are two time values such

that 0 < u ≤ v. The association captures the observation that when an event i
of type I occurs at some time ti, it is likely that an event j of type J occurs at
time tj such that ti + u ≤ tj ≤ ti + v. If such an event j exists, event i is said to
match the association and we call j a consequence of i w.r.t. the association.

Associations can be “chained” to form longer associations that involve more
than two event types. Chained associations can help detecting risk of unfavourable
conditions early. Here, we can treat an association I

[u,v]
−−−−→J as a complex event

type I. An association between a complex event type I and an event type K has
the form I

[u,v]
−−−−→K. Intuitively, such an association refers to the observation that

if an event of type I occurs and is followed by one or more event of type J within
a certain constrained time period, then at least one of the type-J consequences
is likely followed by a type-K event within a constrained time period.

In [5], Mannila et al proposed the concept of episode, which is an ordered
list of events. They proposed the use of minimal occurrences to find episode
rules in order to capture temporal relationships between different event types. A
minimal occurrence of an episode is a time interval [ts, te) such that the episode
occurs in the interval but not in any proper sub-interval of [ts, te). Let α and β
be two episodes. An episode rule has the form α[w1] ⇒ β[w2], which specifies
the following relationship: “if α has a minimal occurrence in the interval [ts, te)
such that te − ts ≤ w1, then there is a minimal occurrence of β in [ts, t′e) such
that t′e − ts ≤ w2”. The goal is to discover episodes and episode rules that occur
frequently in the data sequence.

In a sense, our problem is similar to episode discovery in that we are looking
for frequently occurring event sequences. However, we remark that the use of
minimal occurrence to define the occurrence of an episode might in some cases
fail to reflect the strength of an association. As an example, consider Figure 1(b)
again. It is possible that the three type-B events that occur at time t = 7, 9 and
10 are “triggered” respectively by the three preceding A’s that occur at t = 3, 4
and 5. Hence, the association A → B has occurred three times. However, only
one period ([5, 8)) is qualified as a minimal occurrence of the episode A → B. In
other words, out of all 4 occurrences of A in the figure, there is only 1 occurrence
of the episode A → B, even though 3 of the A’s have triggered B.

A major difference between our definition of time-delayed association and the
episode’s minimal occurrence approach is that, under our approach, every event

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from Discrete Event Datasets 105

that matches an association counts towards the association’s support. This fairly
reflects the strength of correlations among event types. Also, our definition allows
the specification of a timing constraint [u, v] between successive event types in
an association. This helps removing those associations that are not interesting.
For example, if it takes at least 2 time units for a packet to pass through a
switch, then any type-B alert that occurs 1 time unit after a type-A alert should
not count towards the association A → B (See Figure 1). We can thus use the
timing constraint to filter false matches. The minimal occurrence approach used
in episode does not offer such flexibility.

A straightforward approach to finding all frequent associations is to generate
and verify them incrementally. First, we form all possible length-2 associations
X → Y , where X and Y are any event types in the data sequence. We then
scan the data to count the associations’ supports. Those associations with high
supports are considered frequent. Next, for each frequent association X → Y , we
consider every length-3 extension, i.e., we append every event type Z to X → Y
forming (X → Y) → Z. The support of those length-3 associations are counted
and those that are frequent will be used to generate length-4 associations, and so
on. The process stops when we can no longer obtain any new frequent sequences.
In Section 3 we will show how the above conceptual procedure is implemented
in practice. In particular, we show how the computational problem is reduced
to a large number of table joins. We call this algorithm the baseline algorithm.

The baseline algorithm is not particularly efficient. We address two methods to
improve its efficiency. First, the baseline algorithm extends a frequent association
I → Y by considering all possible extensions (I → Y) → Z. Many of such
extensions could be infrequent and the effort spent on counting their supports
is wasted. A better strategy is to estimate upper bounds of the associations’
supports and discard those that cannot meet the support requirement. Second,
as we will explain later, the baseline algorithm generates (I → Y) → Z by
retrieving and joining the tables associated with two sub-associations, namely,
I → Y and Y → Z. Since the number of such associations and their associated
tables is huge, the tables will have to be disk-resident. A caching strategy that
can avoid disk accesses as much as possible would thus have a big impact on the
algorithm’s performance. In this paper we study an interesting coupling effect
of a caching strategy and an association-generation order.

The rest of the paper is structured as follows. We give a formal definition of
our problem in Section 2. In Section 3, we discuss some properties of time-delayed
associations and propose a baseline algorithm for the problem. In Section 4, we
discuss the pruning strategies and the caching strategies. We present experiment
results in Section 5 and conclude the paper in Section 6.

2 Problem Definition

In this section we define the problem of finding time-delayed associations from
event datasets. We define an event e as a 2-tuple (Ee, te) where Ee is the event
type and te is the time e occurs. Let D denote an event dataset and E denote
the set of all event types that appear in D. We define a time-delayed association

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 K.K. Loo and B. Kao

as a relation between two event types I, J ∈ E of the form I
[u,v]

−−−−→J . We call I
the triggering event type and J the consequence event type of the association.
Intuitively, I

[u,v]
−−−−→J captures the observation that if an event i such that Ei = I

occurs at time ti, then it is “likely” that there exists an event j so that Ej = J
and ti+u ≤ tj ≤ ti+v, where v ≥ u > 0. The likelihood is given by the confidence
of the association, whereas the statistical significance of an association is given
by its support. We will define support and confidence shortly.

For an association r = I
[u,v]

−−−−→J , an event i is called a match of r (or i matches r)
if Ei = I and there exists another event j such that Ej = J and ti + u ≤ tj ≤
ti + v. The event j here is called a consequence of r. We use the notations Mr to
denote the set of all matches of r, qr,i to denote the set of all consequences that
correspond to a match i of r and mr,j to denote the set of all matches of r that
correspond to a consequence j. Also, we define Qr =

⋃
qr,i ∀i ∈ Mr. That is, Qr

is the set of all events that are consequences of r. The support of an association
r is defined as the ratio of the number of matching events to the total number of
events (i.e., |Mr |

|D|). The confidence of r is defined as the fraction |Mr |
|DI | , where DI

is the set of all type-I events in D. We use the notations supp(r) and conf (r) to
represent the support and confidence of r, respectively. Finally, the length of an
association r, denoted by len(r), is the number of event types contained in r.

We can extend the definition to relate more than two event types. Consider an
association r = I

[u,v]
−−−−→J as a complex event type I, an association between I and

an ordinary event type K is of the form r′ = I
[u,v]

−−−−→K. Here, I is the triggering
event type and K is the consequence event type. Intuitively, the association says
that if an event of type I is followed by one or more event of type J within
certain time constraints u and v, then at least one of the J ’s is likely to be
followed by a type K event. A match for the association r′ is a match i for r
such that, for some j where j ∈ qr,i, there exists an event k such that Ek = K
and tj + u ≤ tk ≤ tj + v. We say that event k is a consequence of event i
w.r.t. the association r′. The support of r′ is defined as the fraction of events
in D that match r′ (i.e., |Mr′ |

|D|). The confidence of r′ is defined as the ratio of
the number of events that match r′ to the number of events that match r (i.e.,
|Mr′ |
|Mr |). Given two user-specified thresholds ρs and ρc and a timing constraint
[u, v], the problem of mining time-delayed associations is to find all associations
r such that supp(r) ≥ ρs and conf (r) ≥ ρc.

In our model, we use the same timing constraint [u, v] for all associations.
Therefore, we will use a plain arrow “→” instead of “ [u,v]

−−−−→” in the rest of the
paper when the timing constraint is clear from the context or is unimportant.

3 The Baseline Algorithm

We start this section with two properties based on which the baseline algorithm
is designed.

Property 1: If |DI |, i.e., the number of occurrences of type I events, is smaller
than ρs×|D|, then any association of the form r = I → J must be infrequent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from Discrete Event Datasets 107

algorithm BASELINE
1) L := ∅; C := ∅ n = 2;
2) F := {all frequent event types}
3) foreach I ∈ F , J ∈ E do
4) C := C ∪ {I → J}
5) end-for
6) while C �= ∅ do
7) Cn := C; C := ∅
8) foreach r ∈ Cn do
9) if r = I → J is frequent do
10) L := L ∪ {r}
11) C := C ∪ {(I → J) → K} ∀ K ∈ E
12) end-if
13) end-for
14) n := n + 1
15) end-while
16) return L

Fig. 2. Algorithm BASELINE

A
[3,5]

−−−−→B
m q
3 7
4 7
4 9
5 9
5 10

(a)

B
[3,5]

−−−−→C
m q
9 13
10 13
10 15

(b)

(A
[3,5]

−−−−→B)
[3,5]

−−−−→C
m q
4 13
5 13
5 15

(c)

Fig. 3. M -Q mappings for various
time-delayed associations

Proof: By definition, the set of matches of r must be a subset of DI . Hence,
|Mr| ≤ |DI | < ρs × |D|. �

Property 2: For any associations x and y = x → K, supp(x) ≥ supp(y).
Proof: By definition, Mx ⊇ My. Hence, supp(x) ≥ supp(y). �

From Property 2, we know that if an association y is frequent, so is x. In other
words, if an association x is not frequent, we do not need to consider any associ-
ations that are right extensions of x. The baseline algorithm (Figure 2) generates
associations based on this observation.

First, the algorithm collects into the set F all frequent event types (Line 2).
The algorithm then maintains two sets: C is a set of candidate associations which
are to be verified, and L is a set that contains all frequent associations discovered.
The set C is initialized to contain all possible length-2 associations (Lines 3-5).
The support of a candidate association r is determined. (We will discuss how
to compute the support shortly.) If r is verified to be frequent, we extend r to
r → K for each event type K ∈ E and add them to C. The algorithm terminates
when all candidates are evaluated and no new candidates can be generated.

To compute an association’s support, consider an association r = (I → J) →
K. By definition, an event i is a match of r if i is a match of r1 = I → J and
for some consequence j of i, there exists an event k such that Ek = K and
tj + u ≤ tk ≤ tj + v. In other words, j is both a consequence of r1 and a match
of r2 = J → K. The set of all such events is given by Qr1 ∩ Mr2 . We call this
the connecting set between r1 and r2. We then have the following properties.

Property 3: For any event j ∈ Qr1 ∩ Mr2, every i ∈ mr1,j is a match of r and
every k ∈ qr2,j is a consequence of event i w.r.t. r for every i ∈ mr1,j .

Proof: By definition, every i ∈ mr1,j is a match of r because there exists k such
that tj + u ≤ tk ≤ tj + v. Indeed, every k ∈ qr2,j fulfils this requirement.
Hence, every k ∈ qr2,j is a consequence of i w.r.t. r for every i ∈ mr1,j . �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 K.K. Loo and B. Kao

Property 4: For any event j
∈ Qr1 ∩ Mr2 ,
 ∃i ∈ mr1,j , k ∈ qr2,j such that i is
a match and k is a consequence of i w.r.t. r.

Proof: (i) Any event j
∈ Qr1 cannot be a consequence of any i ∈ Mr1 for the
association r1. So mr1,j = ∅. (ii) For any j ∈ Qr1 but j
∈ Mr2 , qr2,j = ∅. �

Given an association r and a match i of r, we can determine all consequences
j of i w.r.t. r. If we put all these match-consequence i-j pairs in a relation, we
obtain an M -Q mapping of the association r. Let us consider the network switch
example again (Figure 1). If r = A

[3,5]
−−−−→B, then the matching type-A event at

t = 4 leads to two consequence type-B events at t = 7 and 9. Hence the tuples
〈4, 7〉 and 〈4, 9〉 are in the M -Q mapping of the association. Figures 3(a) and 3(b)
show the M -Q mappings of the associations A

[3,5]
−−−−→B and B

[3,5]
−−−−→C, respectively.

By Property 3, given the M -Q mappings for r1 and r2, denoted respectively
by T1 and T2, we can derive the M -Q mapping of r by performing an equi-
join on T1 and T2 so that T1.q = T2.m, where the join result is projected on
T1.m and T2.q. removing the duplicate tuples in the mapping. Figure 3(c) shows
the resultant M -Q mapping of (A [3,5]

−−−−→B) [3,5]
−−−−→C. Given the M -Q mapping of an

association r, the support supp(r) can be computed by counting the number
of distinct elements in the m column. The confidence of r can then be easily
determined by the supports of its sub-associations. In this paper, we focus on
computing the supports of associations and extracting those that are frequent.

4 Improving the Baseline Algorithm

The baseline algorithm described in the previous section offers a method to
find frequent time-delayed associations. In this section, we propose methods to
improve the efficiency of the algorithm by investigating two areas, namely the
search space for frequent associations and the handling of intermediate results.

4.1 Pruning Strategy

For our problem of mining time-delayed associations, Properties 1 and 2, de-
scribed in Section 3, are the only base for trimming the search space for frequent
time-delayed associations. So, the baseline algorithm takes all possible extensions
of a frequent association as candidates. A better strategy would be to estimate
an upper-bound for the support of each candidate, without actually joining the
M -Q mappings of its sub-associations, and trim those that cannot be frequent.

Multiplicity of consequences. With respect to a time-delayed association,
an event can be a consequence of one or more matches. We define, for an associ-
ation r, the multiplicity of a consequence q as the number of matches such that
q is a consequence. Getting the multiplicity values is easy. By sorting the M -Q
mapping of an association r by the q column, rows for a particular consequence
are arranged consecutively. The multiplicity of each consequence q is thus ob-
tained by the number of consecutive rows corresponding to q. Figure 4(a) shows
an example. Based on multiplicity, we propose two methods, namely, GlobalK
and SectTop, for efficiently identifying candidates that cannot be frequent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from Discrete Event Datasets 109

m q q Multi
1 3 3 1
4 7 7 3
5 7
6 7
8 10 10 2
9 10

(a) M -Q mapping and multiplic-
ity of consequences for I → J

seg ST Vector
1 〈1〉
2 〈3, 5〉
3 〈〉

(b) SectTop vec-
tors for I → J

m q seg num matches
7 9 1 0
11 13 2 1

3 1

(c) M -Q mapping and number of
matches per segment for J → K

Fig. 4. Multiplicity of consequences and SectTop

GlobalK. The notion of multiplicity implies that, for an association r1 = I → J ,
the sum of the multiplicities of n distinct consequences gives an upper-bound on
the number of matches associated. Given that r1 is frequent. To verify whether
an association r = (I → J) → K is frequent, we consider r1 and r2 = J → K.
It is clear that the connecting set between r1 and r2 contains at most x =
min(|Qr1 |, |Mr2|) events, which in turn are associated to at most y matches of
r1 where y is the sum of the top x multiplicity values w.r.t. r1. If y is smaller
than ρs × |D|, r cannot be frequent. In general, for a time-delayed association
r1 = I → J , we call the minimum number of consequences such that the sum of
their multiplicity values is not smaller than the support threshold the GlobalK
threshold for the association. Any extension of r1 of the form (I → J) → K
cannot be frequent if |MJ→K | is smaller than the GlobalK threshold of r1.

SectTop. GlobalK is a simple method for pruning candidates that cannot be
frequent. However, the GlobalK threshold, which is derived from the highest
multiplicities for an association, can be too generous as a pruning condition as
those consequences with top multiplicities may not all enter the connecting set.

We address this issue in SectTop. In simple words, we conceptually divide
the whole length of time represented by D into a number of segments. For a
frequent association r1 = I → J , for each segment, we capture information on
the multiplicities of the consequences occurring within the segment in a SectTop
vector. Then, when checking whether an association r = (I → J) → K can be
frequent, for each segment, we get an upper-bound on the number of matches
that associate to the consequences in the segment. The sum of the upper-bounds
for each segment thus gives an overall upper-bound on the number of matches of
r. If the overall upper-bound is smaller than ρs ×|D|, then r cannot be frequent.

For an association r1, the SectTop vector for a segment is obtained as follows.
First, the multiplicities for the consequences of r1 occurring within the segment
are sorted inversely. Then, we keep the x highest multiplicity values such that x
is minimum and the sum of the x multiplicities exceeds ρs × |D|. If the sum of
all x values does not exceed ρs × |D|, we keep all multiplicities. The multiplicity
values are then transformed to a vector such that the y-th element is the sum of
the top-y multiplicities in the segment. Figure 4(b) shows the SectTop vectors
derived from the M -Q mapping in Figure 4(a) if the length of time represented
by the dataset is divided in segments of 5 time units.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 K.K. Loo and B. Kao

A → A
(A → A) → A
((A → A) → A) → A
((A → A) → A) → B
:
B → A
B → B
(B → B) → A
(B → B) → B
((B → B) → B) → A
:
B → C
(B → C) → A
((B → C) → A) → A
((B → C) → A) → B
:

(a) Depth-first can-
didate generation

A → A
A → B
:
(A → A) → A
(A → A) → B
(A → A) → C
:
((A → A) → A) → A
((A → A) → A) → B
:
((B → B) → B) → A
((B → B) → B) → B
:
((B → C) → A) → A
((B → C) → A) → B
:

(b) Breadth-first candi-
date generation

A → A
A → B
:
(A → A) → A
(A → A) → B
:
((A → A) → A) → A
((A → A) → A) → B
((A → A) → A) → C
((A → A) → A) → D
((B → C) → A) → A
((B → C) → A) → B
((B → C) → A) → C
((B → C) → A) → D
((B → B) → B) → A
:

(c) Breadth-first*
candidate generation

Fig. 5. Candidate generation schemes

To check whether an association r = (I → J) → K can be frequent, we count
the number of distinct matches for the sub-association r2 = J → K appearing in
each segment. If there are y matches for J → K in the i-th segment, then, in the
segment, at most y consequences of r1 may appear in the connecting set. Hence,
an upper-bound on the number of matches associated to the consequences is
given by the y-th element of the SectTop vector for the segment. We get the
upper-bounds for each segment and their sum gives an overall upper-bound on
the number of matches of r. As an example, the table on the left in Figure 4(c) is
the M -Q mapping of J → K, while that on the right lists the number of matches
of J → K appearing in each segment. When evaluating whether r = (I → J) →
K can be frequent, we check the number of matches of J → K in each segment
against the SectTop vectors of I → J . It turns out that the overall upper-bound
on the number of matches for r is (0 + 3 + 0) = 3. If the support threshold is
4 matches, then we know immediately that r cannot be frequent.

4.2 Cache Management

The baseline algorithm generates a lot of associations during execution. Some of
them are repeatedly used for evaluating other candidates later on. Because the
volume of data being processed is often very large, keeping all such associations
in main memory is not feasible. Maintaining a cache is thus a compromise so
that, while keeping some of the intermediate results in memory and reduce I/O
accesses, memory can be made available for other operations.

When the cache overflows, part of the cached data is replaced by data fetched
from disk. Two commonly used strategies for choosing data for replacement
are “Least recently used” (LRU), i.e., data that have not been accessed for
the longest time are replaced, and “Least frequently used” (LFU), i.e., least
frequently accessed data in the cache are replaced.

The effectiveness of cache, i.e., the likeliness that the data accessed is in the
cache, is often mentioned as the hit-rate. We argue that the hit-rate is related
to the order that candidates are evaluated and the cache replacement strategy

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from Discrete Event Datasets 111

chosen. Figure 5(a) and (b) shows two candidate generation schemes commonly
used in level-wise algorithms. Figure 5(a) illustrates a depth-first (DF) candi-
date generation, i.e., after an association r = I → J is evaluated as frequent,
the algorithm immediately generates candidates by extending r and evaluates
them. Figure 5(b) illustrates a breadth-first (BF) candidate generation that all
candidates of the same length are evaluated before longer candidates. These
candidate generation schemes would not work well with the LRU strategy. For
example, in Figure 5(a), A → B is referenced when evaluating the candidates
((A → A) → A) → B and ((B → C) → A) → B. Between the accesses,
a number of other candidates are evaluated, which means that many different
associations are brought into the memory and cache overflows are more likely.
When A → B is accessed the second time, its M -Q mapping may no longer
reside in the cache. Similar problem exists in the BF scheme (see Figure 5(b)).

It is noteworthy that, in the baseline algorithm, length-2 associations are
repeatedly referenced for candidate evaluation. In particular, when evaluating
extensions of an association I → J , each of length-2 associations of the form
J → K is referenced. By processing as a batch all associations in Li with the same
consequence event type (see Figure 5(c)), we ensure that length-2 associations of
the form J → K are accessed closely temporally, which favours the LRU strategy.
This observation can be easily fitted into the BF candidate generation scheme.
At the end of each iteration, we sort the associations in Li by their consequence
event type. Then the sorted associations are fetched sequentially for candidate
generation. We call this the breadth-first* (BF*) candidate generation scheme.

5 Experiment Results

We conducted experiments using stock price data. Due to space limitation, we
leave the discussion on how the raw data is transformed into an event dataset
in [4]. The transformed dataset consists 99 event types and around 45000 events.

5.1 Pruning Strategy

In the first set of experiments, we want to study the effectiveness of the pruning
strategy “GlobalK” and “SectTop”. The effectiveness is best reflected by the
number of candidate associations being evaluated. Figure 6 shows the number of
candidate associations evaluated when ρs is set at different values. We comment
that a candidate is regarded as “evaluated” only if the M -Q mapping of the
candidate is enumerated. The lines labelled “NoOpt”, “GlobalK” and “ST32”
represent respectively the case that no pruning strategy (i.e., the original baseline
algorithm) is used, that “GlobalK” is chosen and that “SectTop” is chosen with
the time covered by D divided into 32 segments.

Figure 6(a) shows the results when u and v are set to δ (i.e., a value just
bigger than 0) and 1 respectively. As shown in the figure, both GlobalK and
SectTop save a major fraction of candidate evaluations performed. At high sup-
port (0.6%), savings of 55% and 82% are observed respectively with GlobalK and
SectTop over the baseline algorithm while, at low support (0.3%), the savings are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 K.K. Loo and B. Kao

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0.3 0.4 0.5 0.6

N
um

be
r

of
 c

an
di

da
te

s
ev

al
ua

te
d

Support threshold

NoOpt
GlobK
ST32

 0

 100000

 200000

 300000

 400000

 0.4 0.5 0.6

(a) [u, v] = [δ, 1]

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0.7 0.75 0.8 0.85 0.9

N
um

be
r

of
 c

an
di

da
te

s
ev

al
ua

te
d

Support threshold

NoOpt
GlobK
ST32

 0

 1e+06

 2e+06

 0.8 0.85 0.9

(b) [u, v] = [δ, 2]

Fig. 6. No. of candidates evaluated at different ρs

32% and 63%. Similar trend is observed when we changed v to 2 (Figure 6(b)).
Although the savings are not as dramatic as in the case when v = 1, at low
support (0.7%), GlobalK and SectTop achieve savings of 26% and 41%, while at
high support (0.9%), the savings are around 39% and 44% respectively.

As shown by the figures, SectTop always outperforms GlobalK in terms of
number of candidates being evaluated. A reason is that, for each candidate
c, SectTop obtains an upper-bound on supp(c) by estimating the number of
matches that are associated to the consequences in each segment. A reasonably
fine segmentation of the time covered by D thus ensures that the upper-bound
obtained is relatively tight. For GlobalK, however, the GlobalK threshold for a
frequent association is calculated from the highest multiplicity values without
considering where these values actually exist in the whole period of time covered
by D. So, the pruning ability of GlobalK is not as good as that of SectTop.

5.2 Candidate Generation, Cache Replacement Strategy and I/O
Costs

In the second set of experiments, we want to study the effect of candidate gen-
eration orders on different cache replacement strategies. We plot the number of
M -Q mapping tuples read from disk, reflecting total I/O requirement, against
the size of the cache in Figures 7 and 8.

We start the analysis with the LRU strategy and ρs set to a relative low
value at 0.3%. Figure 7(a) shows the I/O performance when no pruning strategy
is applied. From the figure, we find that the I/O performance of breadth-first
and that of depth-first strategies are very close to each other. For BF* strategy,
the I/O cost begins to drop at 16000 tuples and then drops dramatically. The
improvement levels down when the cache size is increased to 24000 tuples.

The sharp improvement here is no coincidence. Recall that in BF* candidate
generation, at the end of each iteration, we sort the newly found frequent asso-
ciations by their consequence event type. Candidates are formed and evaluated
by extending each of the sorted associations sequentially. In other words, after
candidates of the form (I1 → J) → K are evaluated (for some simple or complex
event type I1), next evaluated are those of the form (I2 → J) → K, if such I2

exists. The whole set of length-2 associations with triggering event type J are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Time-Delayed Associations from Discrete Event Datasets 113

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(a) LRU, ρs = 0.3%, “NoOpt”

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LRU-BF
LRU-DF

LRU-BF*

(b) LRU, ρs = 0.3%, “ST32”

Fig. 7. I/O requirement for LRU ([u, v] = [δ, 1], ρs = 0.3%)

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(a) LFU, ρs = 0.3%, “NoOpt”

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 256 64 16 4

N
um

be
r

of
 tu

pl
es

 r
ea

d
fr

om
 d

is
k

Cache size (’000 tuples)

LFU-BF
LFU-DF

LFU-BF*

(b) LFU, ρs = 0.3%, “ST32”

Fig. 8. I/O requirement for LFU ([u, v] = [δ, 1], ρs = 0.3%)

accessed multiple times for these candidates. If the cache is big enough to hold
the M -Q mappings of all such length-2 associations, it is likely that the M -Q
mappings are in the cache after they are referenced for the first time. For the
dataset used in the experiment, we find that the maximum sum of the sizes of
all M -Q mappings of a particular triggering event type is about 22000 tuples. A
cache with 24000-tuple capacity is thus big enough to save most I/O accesses.

Figure 7(b) shows the case when “ST32” is applied. The curves are similar
in shape compared to those in the “NoOpt” case. A big drop in I/O access is
also observed with the curve of BF* and the big drop begins at the cache size of
10000 tuples. This is because SectTop avoids evaluating candidates that cannot
be frequent. So, for a frequent association I → J , it is not necessary to evaluate
every candidate of the form (I → J) → K. A smaller cache is thus enough to
hold the M -Q mappings of length-2 associations used for candidate evaluation.

Figure 8 shows the case of LFU. From the figure, all three candidate gener-
ation methods are very similar in terms of I/O requirement. Both depth-first
and breadth-first generation performed slightly better when LFU was adopted
instead of LRU. However, the “big drop” with BF* is not observed and so the
performance of BF* is much worse than the case with LRU. It is because the
LFU strategy gives preference to data that are frequently accessed when decid-
ing on what to keep in the cache. This does not match the idea of BF* candidate
generation, which works best when recently accessed data are kept in the cache.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 K.K. Loo and B. Kao

In addition, associations entered the cache early may reside in the cache for a
long time because, when they are first used for evaluating candidates, a certain
number of accesses have been accumulated. Associations newly added to the
cache must be accessed even more frequently to stay in the cache.

6 Conclusion

We propose time-delayed association as a way to capture time-delayed depen-
dencies between types of events. We illustrate how time-delayed associations can
be found from event datasets in a simple baseline algorithm.

We identify in the simple algorithm two areas for improvement. First, we can
get upper-bounds on the supports of candidate associations. Those that cannot
be frequent are discarded without finding their actual supports. We proposed
two methods, namely, GlobalK and SectTop, for getting an upper-bound on a
candidate’s support. Experiment results show that these methods reduce signif-
icantly the number of candidates being evaluated.

Second, some of the intermediate results generated are repeatedly used for
candidate evaluation. Since the volume of data being processed is likely to be
high, such intermediate results must be disk-resident and are brought into main
memory only when needed. Caching of the intermediate results is thus important
for reducing expensive I/O accesses. We find that the order that candidate as-
sociations are formed and evaluated would affect the performance of the cache.
Experiment results show that the BF* candidate generation scheme, coupled
with a reasonably-sized cache and the LRU cache replacement strategy, can
comprehensively reduce the I/O requirement of the algorithm.

References

1. Xiaonan Ji, James Bailey, and Guozhu Dong. Mining minimal distinguishing sub-
sequence patterns with gap constraints. In ICDM, pages 194–201, 2005.

2. Daesu Lee and Wonsuk Lee. Finding maximal frequent itemsets over online data
streams adaptively. In ICDM, pages 266–273, 2005.

3. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-
tics and evaluation techniques for window aggregates in data streams. In SIGMOD
Conference, pages 311–322, 2005.

4. K. K. Loo and Ben Kao. Mining time-delayed associations from discrete event
datasets. Technical Report TR-2007-01, Department of Computer Science, The
University of Hong Kong, Hong Kong, 2007.

5. Heikki Mannila and Hannu Toivonen. Discovering generalized episodes using mini-
mal occurrences. In KDD, pages 146–151, 1996.

6. Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern dis-
covery in multiple time-series. In VLDB, pages 697–708, 2005.

7. Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream min-
ing through group lag correlations. In SIGMOD Conference, pages 599–610, 2005.

8. Mohammed Javeed Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Machine Learning, 42(1/2):31–60, 2001.

9. Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava. Multiple aggre-
gations over data streams. In SIGMOD Conference, pages 299–310, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 115–126, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Comparative Study of Ontology Based Term Similarity
Measures on PubMed Document Clustering

Xiaodan Zhang1, Liping Jing2, Xiaohua Hu1, Michael Ng3, and Xiaohua Zhou1

1 College of Information Science & Technology, Drexel University, 3141 Chestnut,
Philadelphia, PA 19104, USA

2 ETI & Department of Math, The University of Hong Kong, Pokfulam Road, Hong Kong
3 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

{xzhang,thu}@ischool.drexel.edu,lpjing@eti.hku.hk,
mng@math.hkbu.edu.hk, xiaohua.zhou@drexel.edu

Abstract. Recent research shows that ontology as background knowledge can
improve document clustering quality with its concept hierarchy knowledge.
Previous studies take term semantic similarity as an important measure to
incorporate domain knowledge into clustering process such as clustering
initialization and term re-weighting. However, not many studies have been
focused on how different types of term similarity measures affect the clustering
performance for a certain domain. In this paper, we conduct a comparative
study on how different semantic similarity measures of term including path
based similarity measure, information content based similarity measure and
feature based similarity measure affect document clustering. We evaluate term
re-weighting as an important method to integrate domain ontology to clustering
process. Meanwhile, we apply k-means clustering on one real-world text
dataset, our own corpus generated from PubMed. Experiment results on 8
different semantic measures have shown that: (1) there is no a certain type of
similarity measures that significantly outperforms the others; (2) Several
similarity measures have rather more stable performance than the others; (3)
term re-weighting has positive effects on medical document clustering, but
might not be significant when documents are short of terms.

Keywords: Semantic Similarity Measure, Document Clustering, Domain
Ontology.

1 Introduction

Recent research has been focused on how to integrate domain ontology as background
knowledge to document clustering process and shows that ontology can improve
document clustering performance with its concept hierarchy knowledge [2, 3, and 16].
Hotho et al. [2] uses WordNet synsets to augment document vector and achieves
better results than that of “bag of words” model on public domain. Yoo et al. [16]
achieves promising cluttering result using MeSH domain ontology for clustering
initialization. They first cluster terms by calculating term semantic similarity using
MeSH ontology (http://www.nlm.nih.gov/mesh/) on PubMed document sets [16].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 X. Zhang et al.

Then the documents are mapped to the corresponding term cluster. Last, mutual
reinforcement strategy is applied. Varelas et al. [14] uses term re-weighting for
information retrieval application. Jing et al. [3] adopt similar technique on document
clustering. They re-weight terms and assign more weight to terms that are more
semantically similar with each other.

Although existing approaches rely on term semantic similarity measure, not many
studies have been done on evaluating the effects of different similarity measures on
document clustering for a specific domain. Yoo et al. [16] uses only one similarity
measure that calculates the number of shared ancestor concepts and the number of co-
occurred documents. Jing et al. [3] compares two ontology based term similarity
measure. Even though these approaches are heavily relied on term similarity
information and all these similarity measures are domain independent, however, to
date, relatively little work has been done on developing and evaluating measures of
term similarity for biomedical domain (where there are a growing number of
ontologies that organize medical concepts into hierarchies such as MeSH ontology)
on document clustering.

Clustering initialization and term re-weighting are two techniques adopted for
integrating domain knowledge. In this paper, term re-weighting is chosen because: (1)
a document is often full of class-independent “general” terms, how to discount the
effect of general terms is a central task. Term re-weighting may help discount the
effects of class-independent general terms and aggravate the effects of class-specific
“core” terms; (2) hierarchically clustering terms [16] for clustering initialization is
more computational expensive and more lack of scalability than that of term re-
weighting approach.

As a result, in this paper, we evaluate the effects of different term semantic
similarity measures on document clustering using term re-weighting, an important
measure for integration domain knowledge. We examine 4 path based similarity
measures, 3 information content based similarity measures, and 2 feature based
similarity measures for document clustering on PubMed document sets. The rest of
the paper is organized as follows: Section 2 describes term semantic similarity
measures; section 3 shows document representation and defines the term re-weighting
scheme. In section 4, we present and discuss experiment results. Section 5 concludes
the paper shortly.

2 Term Semantic Similarity Measure

Ontology based similarity measure has some advantages over other measures. First,
ontology is created by human being manually for a domain and thus more precise;
second, compared to other methods such as latent semantic indexing, it’s much more
computational efficient; Third, it helps integrate domain knowledge into the data
mining process. Comparing two terms in a document using ontology information
usually exploit the fact that their corresponding concepts within ontology usually have
properties in the form of attributes, level of generality or specificity, and their
relationships with other concepts [11]. It should be noted that there are many other
term semantic similarity measures such as latent semantic indexing, but it’s out of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Comparative Study of Ontology Based Term Similarity Measures 117

scope of our research, our focus here is on term semantic similarity measure using
ontology information. In the subsequent subsections, we classify the ontology based
semantic measures into the following three categories and try to pick popular
measures for each category.

2.1 Path Based Similarity Measure

Path based similarity measure usually utilizes the information of the shortest path
between two concepts, of the generality or specificity of both concepts in ontology
hierarchy, and of their relationships with other concepts.

Wu and Palmer [15] present a similarity measure finding the most specific
common concept that subsumes both of the concepts being measured. The path length
from most specific shared concept is scaled by the sum of IS-A links from it to the
compared two concepts.

()
HNN

H
CCS PW 2

2
,

21
21& ++

= (1)

In the equation (1), 1N and 2N is the number of IS-A links from 21,CC respectively to

the most specific common concept C , and H is the number of IS-A links from C to
the root of ontology. It scores between 1(for similar concepts) to 0. In practice, we set
H to 1 when the parent of the most specific common concept C is the root node.

Li et al. [8] combines the shortest path and the depth of ontology information in a
non-linear function:

()
HH

HH
L

Li
ee

ee
eCCS ββ

ββ
α

−

−
−

+

−=21, (2)

where L stands for the shortest path between two concepts, α and β are parameters

scaling the contribution of shortest path length and depth respectively. The value is
between 1(for similar concepts) and 0. In our experiment, the same as [8]’s, we set
α and β to 0.2 and 0.6 respectively.

Leacock and Chodorow [7] define a similarity measure based on the shortest path
()21,CCd between two concepts and scaling that value by twice the maximum depth

of the hierarchy, and then taking the logarithm to smooth the resulting score:

() ()()DCCdCCS CL 2/,log, 2121& −= (3)

where D is the maximum depth of the ontology and similarity value. In practice, we
add 1 to both ()21,CCd and D2 to avoid log (0) when the shortest path length is 0.

Mao et al. [10] define a similarity measure using both shortest path information
and number of descendents of compared concepts.

() ()))()(1(log,
,

21221
21

CdCdCCd
CCSMao ++

=
δ (4)

where ()21,CCd is the number of edges between 1C and 2C ,)(1Cd is the number of

1C ’s descendants, which represents the generality of the concept. Here, the constant

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 X. Zhang et al.

δ refers to a boundary case where 1C is the only direct hypernym of 2C , 2C is the
only direct hyponym of 1C and 2C has no hyponym. In this case, because the
concepts 1C and 2C are very close, δ should be chosen close to 1. In practice, we set
it to 0.9.

2.2 Information Content Based Measure

Information content based measure associates probabilities with concepts in the
ontology. The probability [11] is defined in equation (5), where freq(C) is the
frequency of concept C, and freq(Root) is the frequency of root concept of
the ontology. In this study, the frequency count assigned to a concept is the sum of the
frequency counts of all the terms that map to the concept. Additionally, the frequency
counts of every concept includes the frequency counts of subsumed concepts in an IS-
A hierarchy.

()
() ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−=

Rootfreq

Cfreq
CIC log)((5)

As there may be multiple parents for each concept, two concepts can share parents by
multiple paths. We may take the minimum)(CIC when there is more than one shared
parents, and then we call concept C the most informative subsumer— ()21,CCICmis .

In another word, ()21,CCICmis has the least probability among all shared subsumer

between two concepts.

()),(log, 2121Re CCICCCS missnik −= (6)

()),(log2)(log)(log, 212121 CCICCICCICCCS misJiang +−−= (7)

Resnik [12] presents a similarity measure. It signifies that the more information
two terms share in common, the more similar they are, and the information shared by
two terms is indicated by the information content of the term that subsume them in the
ontology. The measure reveals information about the usage within corpus of the part
of the ontology queried. Jiang [4] includes not only the shared information content
between two terms, but also the information content each term contains.

Lin [9] utilizes both the information needed to state the commonality of two
terms and the information needed to fully describe these two terms. Since

),(21 CCICmis >=)(log 1CIC ,)(log 2CIC the similarity value varies between 1(for similar

concepts) and 0.

()
)(log)(log

),(log2
,

21

21
21 CICCIC

CCIC
CCS mis

Lin +
= (8)

2.3 Feature Based Measure

Feature based measure assumes that each term is described by a set of terms
indicating its properties or features. Then, the more common characteristics two terms
have and the less non-common characteristics they have, the more similar the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Comparative Study of Ontology Based Term Similarity Measures 119

terms are [14]. As there is no describing feature set for MeSH descriptor concepts, in
our experimental study, we take all the ancestor nodes of each compared concept as
their feature sets. The following measure is defined according to [5, 9]:

()
)()(

)()(
,

21

21
21

CAnsCAns

CAnsCAns
CCS reBasicFeatu ∪

∩
= (9)

where)(1CAns and)(2CAns correspond to description sets (the ancestor nodes) of

terms 1C and c2 respectively, 21 CC ∩ is the join of two parent node sets and

21 CC ∪ is the union of two parent node sets.

Knappe [5] defines a similarity measure as below using the information of
generalization and specification of two compared concepts:

()
)(

)()(
)1(

)(

)()(
,

2

21

1

21
21 CAns

CAnsCAns
p

CAns

CAnsCAns
pCCSKnappe

∩
×−+

∩
×= (10)

where p’s range is [0, 1] that defines the relative importance of generalization vs.
specialization. This measure scores between 1 (for similar concepts) and 0. In our
experiment, p is set to 0.5.

3 Document Representation and Re-weighting Scheme

MeSH. Medical Subject Headings (MeSH) mainly consists of the controlled
vocabulary and a MeSH Tree. The controlled vocabulary contains several different
types of terms, such as Descriptor, Qualifiers, Publication Types, Geographics, and
Entry terms. Among them, Descriptors and Entry terms are used in this study since
they are terms that can be extracted from documents. Descriptor terms are main
concepts or main headings. Entry terms are the synonyms or the related terms to
descriptors. For example, “Neoplasms” as a descriptor has the following entry terms
{“Cancer”, “Cancers”, “Neoplasm”, “Tumors”, “Tumor”, “Benign Neoplasm”,
“Neoplasm, Benign”}. MeSH descriptors are organized in a MeSH Tree, which can
be seen as the MeSH Concept Hierarchy. In the MeSH Tree there are 15 categories
(e.g. category A for anatomic terms), and each category is further divided into
subcategories. For each subcategory, corresponding descriptors are hierarchically
arranged from most general to most specific. In addition to its ontology role, MeSH
descriptors have been used to index MEDLINE articles. For this purpose, about 10 to
20 MeSH terms are manually assigned to each article (after reading full papers). On
the assignment of MeSH terms to articles, about 3 to 5 MeSH terms are set as
“MajorTopics” that primarily represent an article.

With mesh descriptor and MeSH tree, the similarity score between two medical
terms can be easily calculated. Therefore, we first match the terms in each document
abstract to the Entry terms in MeSH and then maps the selected Entry terms into
MeSH Descriptors. We select those candidate terms (1- 6gram) that only match with
MeSH Entry terms. We then replace those semantically similar Entry terms with the
Descriptor term to remove synonyms. We next filter out some MeSH Descriptors that
are too general (e.g. HUMAN, WOMEN or MEN) or too common in MEDLINE
articles (e.g. ENGLISH ABSTRACT or DOUBLE-BLIND METHOD). We assume

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 X. Zhang et al.

Fig. 1. The concept mapping from MeSH entry terms to MeSH descriptors

that those terms do not have distinguishable power in clustering documents. Hence,
we have selected a set of only meaningful corpus-level concepts, in terms of MeSH
Descriptors, representing the documents. We call this set Document Concept Set
(DCS), where DCS = {C1, C2, …, Cn} and Ci is a corpus-level concept. Fig.1 shows
that MeSH Entry term sets are detected from “Doc1” and “Doc2” documents using the
MeSH ontology, and then the Entry terms are replaced with Descriptors based on the
MeSH ontology. For a more comprehensive comparative study, we represent
document in two ways: MeSH entry terms, MeSH descriptor terms. At the time of this
writing, there are about 23833 unique MeSH descriptor terms, 44978 MeSH ontology
nodes (one descriptor term might belong to more than one ontology nodes) and
593626 MeSH entry terms.

Re-weighting Scheme. A document is often full of class-independent “general”
words and short of class-specific “core” words, which leads to the difficulty of
document clustering. Steinbach et al. [13] examines on the data that each class has a
“core” vocabulary of words and remaining “general” words may have similar
distributions on different classes. To solve this problem, we should “discount” general
words and “emphasize” more importance on core words in a vector [17]. [3, 14]
define the term re-weighting scheme as below

()∑
≥

≠
= ⋅+=

m

ThresholdxxS
ii

i jijijijiji

jiji

xxxSxx

),(

1 22111

21

12

2
,~

(11)

where x stands for term weight, m stands for the number of co-occurred terms, and
()21, jiji xxS stands for the semantic similarity between two concepts. Through this re-

weighting scheme, the weights of semantically similar terms will be co-augmented.
Here the threshold stands for minimum similarity score between two compared terms.
Since we are only interested in re-weighting those terms that are more semantically
similar with each other, it’s necessary to set up a threshold value—the minimum
similarity score between compared terms. Besides, it should be noted that the term
weight can be referred as term frequency (TF), normalized term frequency (NTF) and
TF*IDF (Inverse Document Frequency).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Comparative Study of Ontology Based Term Similarity Measures 121

4 Experiment Setting and Result Analysis

4.1 Datasets and Indexing Schemes

We conduct experiments on public MEDLINE documents (abstracts). First we
collect document sets related to various diseases from MEDLINE. We use
“MajorTopic” tag along with the disease-related MeSH terms as queries to
MEDLINE. Table 1 shows the 10 document sets (24566 documents) retrieved from
MEDLINE. Then, the collected dataset is indexed using two schemes: MeSH entry
term and MeSH descriptor term. The average document length for MeSH entry term
and MeSH descriptor are 14 and 13 respectively (as shown in table 2). Compared to
the average document length—81 when using bag of words representation, the
dimension of clustering space is dramatically reduced. A general stop word list is
applied to bag of words scheme. Moreover, we collect PubMed documents from
1995-2005 to make MeSH descriptor stop term list for MeSH term and MeSH
descriptor term indexing. Since a MeSH entry term can be mapped to more than one
MeSH descriptor term in MeSH ontology, we then map it to the MeSH descriptor
term which is semantically similar with most of the other terms in the document. For
a better comparative study, we also make the following environmental settings: 1)
the number of clusters is set to 10, the same as the number of the document sets; 2)
documents with length less than 5 are removed from the clustering process; 3) when
conducting k-means clustering, we run ten times with random initialization and take
the average as the result. During the comparative experiment, each run has the same
initialization.

4.2 Evaluation Methodology

Cluster quality is evaluated by four extrinsic measures, entropy [13], F-measure [6],
purity [19], and normalized mutual information (NMI) [1]. Because of space
restrictions, we only describe in detail a recently popular measure—NMI, which is
defined as the mutual information between the cluster assignments and a pre-existing
labeling of the dataset normalized by the arithmetic mean of the maximum possible
entropies of the empirical marginal, i.e.,

2/)log(log

);(
),(

ck

YXI
YXNMI

+
= (12)

where X is a random variable for cluster assignments, Y is a random variable for the
pre-existing labels on the same data, k is the number of clusters, and c is the number
of pre-existing classes. NMI ranges from 0 to 1. The bigger the NMI is the higher
quality the clustering is. NMI is better than other common extrinsic measures such as
purity and entropy in the sense that it does not necessarily increase when the number
of clusters increases. For Purity and F-measure ranging from 0 to 1, the bigger the
value is the higher quality the clustering has. For entropy, the smaller the value is the
higher clustering quality is.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 X. Zhang et al.

Table 1. The Document Sets and Their Sizes

 Document Sets No. of Docs
1 Gout 642
2 Chickenpox 1,083
3 Raynaud Disease 1,153
4 Jaundice 1,486
5 Hepatitis B 1,815
6 Hay Fever 2,632
7 Kidney Calculi 3,071
8 Age-related Macular Degeneration 3,277
9 Migraine 4,174
10 Otitis 5,233

Table 2. Document indexing schemes

Indexing Scheme No. of term indexed Avg. doc length
MeSH entry term 14885 14
MeSH descriptor term 8829 13
Word 41208 81

4.3 Result Analysis

To compare the effects of different similarity measures on improving clustering
quality, we run k-means clustering on the collected dataset. We represent each
document as TF*IDF vector, because this scheme achieves much better performance
than NTF and TF. Cosine similarity measure is applied when calculating the distance
between one document vector and the cluster center vector. Moreover, when
representing a document using MeSH entry terms, it’s somewhat similar with
augmenting a document vector with synonym terms. As one MeSH descriptor term
can relate with many different MeSH entry terms, it is possible that two or more
MeSH entry terms with same descriptor term appear in one document. Furthermore, if
a document is represented as a document using MeSH descriptors, it can help map all
the synonyms occurred in one document to their according descriptor terms. In this
paper, we evaluate the clustering qualities of both representation schemes as well as
word representation scheme. The process of clustering is as follows: (1) index the
document sets using MeSH entry terms or MeSH descriptor terms; (2) calculate term
similarity using selected similarity measure and then build similarity matrix for
indexed terms; (3) re-weight terms in each document vector using similarity matrix
and equation (10); (4) Run k-means clustering. We use dragon toolkit [18] to
implement the whole process.

Experimental results show that of the three types of term similarity measures, there
is no a certain type of measures that significantly outperforms others. This can be
partially resulted from the fact that most of these measures consider not only the term
closeness within the ontology but also the depth of the two compared concepts within

the ontology. Apparently, the similarity score of CLS & , snikSRe and JiangS is not within

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Comparative Study of Ontology Based Term Similarity Measures 123

Table 3. Clustering results of MeSH entry terms scheme; each measure is followed by the
threshold of similarity value (in parenthesis) that helps achieve the best results

Type of Measure Similarity Measure Entropy F-Score Purity NMI
Wu & Palmer (0.8) 0.392 0.803 0.876 0.757
Li et al. (0.7) 0.353 0.830 0.871 0.771
Leacock (0.2) 0.930 0.596 0.686 0.524

Path based

Mao et al. (0.8) 0.338 0.836 0.885 0.781
Resnik (0.0) 0.353 0.821 0.877 0.774
Jiang (0.1) 0.572 0.695 0.799 0.701

Information Content

Lin (0.9) 0.360 0.825 0.880 0.771
Basic Feature (0.8) 0.389 0.795 0.874 0.759 Feature based
Knappe (0.8) 0.484 0.778 0.831 0.717

MeSH entry term None 0.363 0.800 0.870 0.774
Word None 0.245 0.755 0.908 0.820

[0, 1]. So term similarity scores using these three measures are normalized before
being applied to do term reweighting for a fair comparison reason. Interestingly,
Information content based measure with support of corpus statistics has very similar
performance with the other two types of measure. This indicates that the corpus
statistics is fit with ontology structure of MeSH and does not improve path based
measure. The measure of Mao et al. achieves the best result in both indexing schemes
as shown in table 3 & 4. The reason might be that it is the only measure that utilizes
the number of descendents information of compared terms. Judging from the overall
performance, Wu et al., Li et al., Mao et al., Resink and the two feature based
measures have a rather more stable performance than that of others. Moreover, for
almost all the cases as shown in table 3, the four evaluation metrics are consistent
with each other except that the score of F-measure and Purity of Wu et al. and Li et al
is slightly better than baseline concept without re-weighting while NMI score of them
is slightly worse.

From table 3 & 4, it’s easily seen that the overall performance of descriptor scheme
is very consistent with and slightly better than that of entry term scheme, which shows
that making a document vector more precise by mapping synonym entry terms to one
descriptor terms has positive effects on document clustering. It’s also noted that both
indexing schemes without term re-weighting have competitive performance to those
with term re-weighting. It shows that term re-weighting as a method of integrating
domain ontology to clustering might not be an effective approach, especially when the
documents are short of terms, because when all these terms are very important core
terms for the documents, ignoring the effects of some of them by re-weighting can
cause serious information loss. This is in contrast to the experiment results in general
domain where document length is relatively longer [3].

It’s obvious that word indexing scheme achieves the best clustering result although
it’s not statistically significant (The word scheme experimental result is listed in both
table 3 & 4 for convenience of reader). However, this does not mean indexing
medical documents using MeSH entry term or MeSH descriptor is a bad scheme. In
other words, it does not mean domain knowledge is not good. First, while keeping

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 X. Zhang et al.

Table 4. Clustering results of MeSH descriptor terms scheme; each measure is followed by the
threshold of similarity value (in parenthesis) that helps achieve the best results

Type of Measure Similarity Measure Entropy F-Score Purity NMI
Wu & Palmer (0.8) 0.361 0.789 0.883 0.771
Li et al. (0.7) 0.339 0.756 0.877 0.780
Leacock (0.2) 0.485 0.749 0.907 0.720

Path based

Mao et al. (0.8) 0.259 0.831 0.907 0.814
Resink (0.0) 0.346 0.815 0.890 0.777
Jiang(0.1) 0.529 0.703 0.809 0.696

Information Content

Lin (0.9) 0.683 0.582 0.775 0.631
Basic Feature (0.8) 0.385 0.778 0.873 0.760 Feature based
Knappe (0.8) 0.375 0.784 0.866 0.765

MeSH descriptor None 0.341 0.772 0.867 0.776
Word None 0.245 0.755 0.908 0.820

competitive clustering results, not only the dimension of clustering space but also the
computational cost is dramatically reduced especially when handling large datasets.
Second, existing ontologies are under growing, they are still not enough for many text
mining applications. For example, there are only 28533 unique entry terms for the
time of writing. Third, there is also limitation of term extraction. So far, existing
approaches usually use “exact match” to map abstract terms to entry terms and can
not judge by the sense the phrase. This will cause serious information loss. For
example, when representing document as entry terms, the average document length
is 14, while the length of the word representation is 81. Finally, if taking advantage of
both medical concept representation and informative word representation, the results
of text mining application can be more convincing.

5 Conclusion

In this paper, we evaluate the effects of 9 semantic similarity measures with a term re-
weighting method on document clustering of PubMed document sets. The k-means
clustering experiment shows that term re-weighting as a method of integrating domain
knowledge has some positive effects on medical document clustering, but might not
be significant. In detail, we obtain following interesting findings from the experiment
by comparing 8 semantic similarity measures three types: path based, information
content based and feature based measure with two indexing schemes—MeSH entry
term and MeSH descriptor: (1) Descriptor scheme is relatively more effective on
clustering than entry term scheme because synonym problem is well handled. (2)
There is no a certain type of measures is significantly better than others since most of
these measures consider only the path between compared concepts and their depth
information within the ontology. (3) Information content based measure using corpus
statistics, as well as ontology structure, does not necessarily improve the clustering
result when corpus statistics is very consistent with ontology structure (4) As the only
similarity measure using the number of descendents information of compared
concepts, the measure of Mao et al. has the best clustering result compared to other

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Comparative Study of Ontology Based Term Similarity Measures 125

similarity measure. (5) Similarity measure that is not scored between 1 and 0 needs to
be normalized, otherwise they will aggravate term weight much more aggressively.
(6) Over all, term re-weighting achieves similar clustering result with that without
term re-weighting. Some of them outperform the baseline, some of them don’t and
neither of them is very significant, which may indicate that term re-weighting might
not be an effective approach when documents are short of terms because when most
of these terms are distinguish core terms for a document, ignoring some of them by
re-weighting will cause serious information loss. (7) The performance of MeSH term
based schemes are slightly worse than that of word based scheme, which can be
resulted from the limitation of domain ontology and limitation of term extraction and
sense disambiguation. However, while keeping competitive results, indexing using
domain ontology dramatically reduces the dimension of clustering space and
computational complexity. Furthermore, this finding indicates that there should be an
approach taking advantage of both medical concept representation and informative
word representation.

In our future work, we may consider other biomedical ontology such as Medical
Language System (UMLS) and also expand this comparative study to some public
domain.

Acknowledgments. This work is supported in part by NSF Career grant (NSF IIS
0448023), NSF CCF 0514679, PA Dept of Health Tobacco Settlement Formula Grant
(No. 240205 and No. 240196), and PA Dept of Health Grant (No. 239667).

References

1. Banerjee, A. and Ghosh, J. Frequency sensitive competitive learning for clustering on
high-dimensional hperspheres. Proc. IEEE Int. Joint Conference on Neural Networks, pp.
1590-1595.

2. Hotho, A., Staab, S. and Stumme, G., “Wordnet improves text document clustering,” in
Proc. of the Semantic Web Workshop at 26th Annual International ACM SIGIR
Conference, Toronto, Canada, 2003.

3. Jing, J., Zhou, L., Ng, M. K. and Huang, Z., “Ontology-based distance measure for text
clustering,” in Proc. of SIAM SDM workshop on text mining, Bethesda, Maryland, USA,
2006.

4. Jiang, J.J. and Conrath, D.W., Semantic Similarity Based on Corpus Statistics and Lexical
Taxonomy. In Proceedings of the International Conference on Research in Computational
Linguistic, Taiwan, 1998.

5. Knappe, R., Bulskov, H. and Andreasen, T.: Perspectives on Ontology-based Querying,
International Journal of Intelligent Systems, 2004.

6. Larsen, B. and Aone, C. Fast and effective text mining using linear-time document
clustering, KDD-99, San Diego, California, 1999, 16-22.

7. Leacock, C. and Chodorow, M., Filling in a sparse training space for word sense
identification. ms., March 1994.

8. Li, Y., Zuhair, A.B., and McLean, D.. An Approach for Measuring Semantic Similarity
between Words Using Multiple Information Sources. IEEE Transactions on Knowledge
and Data Engineering, 15(4):871-882, July/August 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 X. Zhang et al.

9. Lin, D., Principle-Based Parsing Without Overgeneration. In Proceedings of the 31st
Annual Meeting of the Association for Computational Linguistics (ACL'93), pages
112-120, Columbus, Ohio, 1993.

10. Mao, W. and Chu, W. W., “Free text medical document retrieval via phrased-based vector
space model,” in Proc. of AMIA’02, San Antonio,TX, 2002.

11. Pedersen, T., Pakhomov,S., Patwardhan,S. and Chute, C., Measures of semantic similarity
and relatedness in the biomedical domain. Journal of Biomedical Informatics, In Press,
Corrected Proof, June 2006.

12. Resnik, O., Semantic Similarity in a Taxonomy: An Information-Based Measure and its
Application to Problems of Ambiguity and Natural Language. Journal of Artificial
Intelligence Research, 11:95-130, 1999.

13. Steinbach, M., Karypis, G., and Kumar, V. A Comparison of document clustering
techniques. Technical Report #00-034, Department of Computer Science and Engineering,
University of Minnesota, 2000.

14. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E. G., and Milios, E. E. 2005.
Semantic similarity methods in wordNet and their application to information retrieval on
the web. WIDM '05. ACM Press, New York, NY, 10-16.

15. Wu, Z. and Palmer, M.. Verb Semantics and Lexical Selection. In Proceedings of the 32nd
Annual Meeting of the Associations for Computational Linguistics (ACL'94), pp133-138,
Las Cruces, New Mexico, 1994.

16. Yoo I., Hu X., Song I-Y., Integration of Semantic-based Bipartite Graph Representation
and Mutual Refinement Strategy for Biomedical Literature Clustering, in the Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD 2006), pp 791-796

17. Zhang X., Zhou X., Hu X., Semantic Smoothing for Model-based Document Clustering,
accepted in the 2006 IEEE International Conference on Data Mining (ICDM'06).

18. Zhou, X., Zhang, X., and Hu, X., The Dragon Toolkit, Data Mining & Bioinformatics Lab,
iSchool at Drexel University, http://www.ischool.drexel.edu/dmbio/dragontool

19. Zhao, Y. and Karypis, G. Criterion functions for document clustering: experiments and
analysis, Technical Report, Department of Computer Science, University of Minnesota,
2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot

Clustering Algorithm for Sports Video

Jia Liao1, Guoren Wang1, Bo Zhang1, Xiaofang Zhou2, and Ge Yu1

1 College of Information Science & Engineering,
Northeastern University, Shenyang, China

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

liaojia email@yahoo.com.cn, wanggr@mail.neu.edu.cn

Abstract. Due to its tremendous commercial potential, sports video
has become a popular research topic nowadays. As the bridge of low-level
features and high-level semantic contents, automatic shot clustering is
an important issue in the field of sports video content analysis. In previ-
ous work, many clustering approaches need some professional knowledge
of videos, some experimental parameters, or some thresholds to obtain
good clustering results. In this article, we present a new efficient shot
clustering algorithm for sports video which is generic and does not need
any prior domain knowledge. The novel algorithm, which is called Valid
Dimension Clustering(VDC), performs in an unsupervised manner. For
the high-dimensional feature vectors of video shots, a new dimensional-
ity reduction approach is proposed first, which takes advantage of the
available dimension histogram to get ”valid dimensions” as a good ap-
proximation of the intrinsic characteristics of data. Then the clustering
algorithm performs on valid dimensions one by one to furthest utilize the
intrinsic characteristics of each valid dimension. The iterations of merg-
ing and splitting of similar shots on each valid dimension are repeated
until the novel stop criterion which is designed inheriting the theory of
Fisher Discriminant Analysis is satisfied. At last, we apply our algo-
rithm on real video data in our extensive experiments, the results show
that VDC has excellent performance and outperforms other clustering
algorithms.

1 Introduction

In the past a few years, more and more sports videos are being produced, dis-
tributed and made available all over the world, thus, as an important video
domain, sports video has been widely studied due to its tremendous commercial
potential.

Different from other categories of video such as news, movie, sitcom, etc.,
sports video has its own special characteristics [1]. A sports game usually occurs
at a specific field and always has its own well-defined content structures and
domain-specific rules. In addition, sports video is usually taken by some fixed
cameras which have some fixed motions in the play field, and that results in some

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 127–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 J. Liao et al.

recurrent distinctive scenes throughout the video. For example, in a basketball
game video, there are always four dominant scenes including play field, close-
up of players, distant-view of players and audiences. To well understand sports
video, how to take full advantage of dominant scenes is important. Video shot
which comprises a sequence of interrelated consecutive frames taken continuously
by a single camera represents a continuous action in time and space, and it is
the basic unit of video scene. Since video shots of a scene are usually similar,
merging similar shots into clusters becomes useful for the analysis of dominant
scenes and even for the high-level contents of videos.

For shot clustering, some conventional algorithms such as k -means clustering
and hierarchical clustering have been exploited recently [2] [3]. These methods,
however, all require some prior domain knowledge to obtain good clustering re-
sults. Apart from this, these existing clustering algorithms all have their intrinsic
limitations to process high-dimensional data.

In this article, we put forward a novel shot clustering algorithm for sports
video, and the main contributions of our work is listed as follows. First, a new
dimensionality reduction approach is proposed. By applying available dimension
histogram(ADH), only valid dimensions are extracted to achieve the goal of
dimensionality reduction. Second, in the subspace of valid dimensions, according
to the different essentialities of them, our clustering algorithm performs on valid
dimensions one by one to get more encouraging clustering results. Third, a novel
stop criterion for the iterative merging and splitting procedures of each valid
dimension is designed based on the theory of Fisher Discriminant Analysis.

The rest of this paper is structured as follows. Section 2 will introduce the
novel dimensionality reduction approach. The details of our shot clustering al-
gorithm will be discussed in section 3. In section 4, the performance study will
be described. Section 5 will give some related work while section 6 will conclude
the paper and suggest the future work.

2 Dimensionality Reduction

In this section, we will discuss our dimensionality reduction approach in detail.
The valid dimension is introduced first, then how to extract valid dimensions
by available dimension histogram(ADH) to achieve the goal of dimensionality
reduction is proposed.

2.1 Valid Dimension

For high-dimensional data, not all dimensions are useful for different applica-
tions. In many applications, such as clustering, indexing, information retrieval,
only some special dimensions are needed. Figure 1 shows an example of cluster-
ing. According to the distribution of the data set in (a), if we want to partition
the points into three clusters, the clustering results can be easily found out by
computing the distances among the points in the feature space of dimension d1
and d2. But in fact, we have no use to take both of the two dimensions into

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 129

0

1

2

3

4

5

0 1 2 3 4 5
d1

d2

(a)

0

1

2

3

4

5

0 1 2 3 4 5
d1

d2

(b)

Fig. 1. An example of valid dimensions for clustering

account, only dimension d1 is enough. (b) shows that the clustering results ob-
tained by only considering dimension d1 are the same as the clustering results
in (a). Therefore, dimension d1 is contributing for clustering, and it is a valid
dimension of the data set.

Valid dimensions are the dimensions which can maximally represent the in-
trinsic characteristics of data set. For the data set in Figure 1, the standard
deviations of dimension d1 and d2 are 0.95 and 0.48 respectively. The reason
why dimension d1 is valid for clustering is that its standard deviation is larger
and it can represent the distribution of the data set. Standard deviation of a data
set is a measure of how spread out it is [11]. The larger the standard deviation
is, the more spread out from the mean the data set is. The data set which is
more spread out is more sensitive in clustering, therefore, the dimension whose
standard deviation is larger is more helpful for clustering.

The dimensionality reduction approach in this paper is to extract the valid
dimensions for our clustering algorithm. In next subsection, we will discuss the
extraction rule for valid dimensions.

2.2 Extraction Rule for Valid Dimensions

Sports videos have their own intrinsic characteristics. The variety of the back-
grounds of sports video is not obvious. By carefully observing the high-
dimensional feature vectors of video shots, it can be easily found that a mass of
dimensions’ values are all zero, especially in the color features. In other words,
these dimensions are useless for computation, and the dimensions whose val-
ues are non-zero are called available dimensions in our paper. Table 1 gives an
example of the ratio of available dimensions over the total dimensions of dif-
ferent categories of sports. It illustrates that the ratios of available dimensions
are about 50%, thus, extracting the available dimensions is the first step of our
dimensionality reduction approach.

Let Dm be the subspace of data set with m available dimensions. For the values
of the jth dimension of Dm, Si[j] denotes the value of shot Si, σS[j] denotes the
standard deviation of jth available dimension of Dm, where 1 ≤ j ≤ m. Standard
deviation of each available dimension indicates its essentiality for clustering.
Larger σS[j] illustrates that the data in jth available dimension are more spread
out and more advantageous for clustering.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 J. Liao et al.

Table 1. Ratios of available dimensions of different sports videos

Video data Total dimension Available dimension Ratio
Basketball 512 314 61.3%

Table tennis 512 305 59.6%

Football 512 253 49.4%

Definition 1. valid dimensions. Given a threshold value ε, the available dimen-
sions whose standard deviations are equal to or greater than ε are called valid
dimensions.

Definition 2. available dimension histogram(ADH). The available dimension
histogram of Dm represents the distribution of m available dimensions’ standard
deviations(σS[j]), in which, the x-axis represents the rank of available dimensions
and the y-axis represents their corresponding σS[j]. ADH displays the descending
trend of σS[j] values. The following Figure 2 gives an example of ADH.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

Fig. 2. Example of available dimension histogram(ADH)

In order to extract valid dimensions which can maximally represent the dis-
tribution of data for clustering, an heuristic method on ADH is applied for
determining the value of ε. Let r [i] denote the rank of available dimensions in
Dm corresponding to ADH. Then ε = σr[k], only if σr[k] − σr[k+1] = max(σr[i] −
σr[i+1], 1 ≤ i ≤ m − 1). ε is the standard deviation of available dimension r [k]
whose difference to that of r [k+1] is largest in Dm. That means ε is the largest
plunge occurs in VDH. Referring to Figure 2, the largest drop of ADH occurs
from r [3] to r [4], i.e., ε = σr[3], and the available dimensions which correspond
to r [1], r [2], and r [3] are the valid dimensions. Intuitively, such extraction rule
guarantees the most significant available dimensions are extracted as valid di-
mensions for our clustering.

3 Unsupervised Shot Clustering Algorithm

In this section, we will provide an efficient shot clustering algorithm called valid
dimension clustering(VDC) in detail.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 131

3.1 Algorithm Description of Valid Dimension Clustering

A video shot Si can be represented as: Si={xi
1, x

i
2, . . . x

i
n}, where xi

p is the pth
dimension of the n-dimensional feature vector Si. Let Df be the subspace of
valid dimensions, where f is the number of valid dimensions which are obtained
by our dimensionality reduction approach.

Valid dimension clustering(VDC) is an unsupervised clustering algorithm
which performs on Df one by one, that’s because different valid dimensions
have their own different essentialities for clustering. After ranking the standard
deviations of valid dimensions in descending order, we first take the valid dimen-
sion whose standard deviation is the largest as the beginning of the algorithm,
then the following valid dimensions are taken into account in order.

For the first valid dimension, each shot is first initialized as one cluster, then
the iterations of merging similar shots into one cluster are repeated until the
stop criterion is satisfied. For other valid dimension di, the clustering results of
valid dimension di−1(the prior dimension of di according to the rank of valid
dimensions) should be set as the initial clustering status of di, then the same
merging procedures perform on each initial cluster of di until all initial clusters
have been processed. After finishing valid dimension di, the algorithm will turn
to di+1. The final clustering results will be returned when all f valid dimen-
sions are processed. It is obvious that for each valid dimension, only merging
procedures are performed, but for two consecutive valid dimensions di−1 and di,
the processing of di is splitting procedures for di−1. Thus, VDC comprises both
merging and splitting procedures.

(a) (b)

Fig. 3. Different clustering results for table tennis

The reason why VDC performs on valid dimensions one by one is explained
by Figure 3. (a) gives the clustering results of VDC, i.e., valid dimensions are
taken into account one by one. While (b) shows the results of the algorithm
which all valid dimensions are taken into account once. Obviously, the results
in (a) are better than (b). Originally, all the six shots are play field shots, but
(b) partitions them into two clusters as different positions of the play table. The
reason is that when we consider all valid dimensions together, all valid dimensions
are treated fairly, the different essentialities of different valid dimensions have
not been distinguished.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 J. Liao et al.

3.2 Stop Criterion of Valid Dimension Clustering

The stop criterion for the iterations is the most critical technique of unsupervised
clustering algorithm. It directly determines the results of clustering. In the paper,
we devise a novel stop criterion which uses Fisher Discriminant Analysis for
reference.

Fisher Discriminant Analysis is a widely used multivariate statistical tech-
nique [12]. The discrimination function can be used as a well-defined rule in
order to optimally assign a new observation into the labeled class. Consider k
populations G1,G2,. . . ,Gk, each with p-variate distribution which is denoted as
(x1,x2,. . . ,xp). Fisher suggested finding a linear combination of multivariate ob-
servations (x1,x2,. . . ,xp) to create univariate observation u(x) such that u(x)
can separate the different samples of different populations as much as possible.
Fisher discriminant function can be written as:

u(x) = αT x = α1x1 + α2x2 + ... + αpxp (1)

Let SSE and SSG denote the total within-class divergence and total between-
class divergence of each data sample. The α which maximize the criterion F (α)
is used in the Fisher discriminant function, the formula (1). F (α) is represented
as below:

F (α) =
SSG

SSE
=

αTBα

αTEα
(2)

For our shot clustering algorithm, we are only interested in the concepts of
within-class divergence and between-class divergence. For clustering, the intra-
distance within a cluster and the inter-distance among different clusters can
be mapped into the concepts of within-class divergence and between-class di-
vergence respectively. The clustering results in which the intra-distance of each
cluster is smallest and the inter-distances among different clusters are largest
are the encouraging results. That indicates the data set is separated optimally.

Let rl denote the ratio of the intra-distance of one cluster over the inter-
distances among clusters when the number of clusters is Nl, and the best clus-
tering result we want is the one with smallest value of rl. The value of rl can be
calculated by the formula below:

rl =

Nl∑
c=0

dc
w

dt
=

Nl∑
c=0

mc∑
i=0

|Sc
i − Sc

mean|

N∑
j=0

|Sj − Smean|
(3)

where dt is the initial distance among clusters, dc
w is the intra-cluster distance

of cluster c. N is the initial number of clusters at the beginning, while mc is the
number of shots in cluster c. |•| denotes the Manhattan distance. Sc

i and Sc
mean

represent the ith shot and the mean vector of cluster c respectively, while Sj

and Smean are used for denoting the same concept of the initial clusters.
Apart from rl, another important factor nl is considered in our algorithm too,

which is the statistic information of the number of clusters. Let nl = Nl/N be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 133

0 10 20 30 40 50 60 70 80 90 100

m

1.2

1.1

1.0

0.9

0.8

0.7

0.6

r l+
n l

stop point

Fig. 4. Relation curve of rl+nl and m

Algorithm 1. VDC()
Input: ranking array of valid dimensions r[k]; cluster structures CR
Output: clustering results

1: for dn=1 to k do
2: ptr=GetHead(CR)
3: while ptr �= NULL do
4: S=ODC(ptr, dn) // S denotes the splitting results
5: InsertFront(CR, S)
6: ptr= GetNext(ptr)
7: dn++
8: end while
9: end for

Function ODC(CR,dn)
initialize each shot Si as one cluster Ci

Let r
(1)
l = 0, n

(1)
l = 1, calculate dist(Ci, Cj)dn , 1 ≤ i, j ≤ Nl

execute MergeCluster()
WHILE r

(1)
l + n

(1)
l > r

(2)
l + n

(2)
l ∩ Nl > 1

r
(1)
l = r

(2)
l , n

(1)
l = n

(2)
l

execute MergeCluster()
ENDWHILE
add the clustering results to CR

end Function
Function MergeCluster()

merge two most similar shots into one cluster
calculate r

(2)
l , n

(2)
l and r

(2)
l + n

(2)
l

end Function

the ratio of the cluster number Nl over the initial total number of shots N. In
order to maximally approximate the real cluster number which is a small value,
the smaller the value of nl is, the better the clustering result is.

At the beginning of the clustering algorithm, each shot is initialized as one
cluster, the value of rl is 0, and the value of nl is 1. Then as the merging proceeds,
the value of rl is increasing while nl is descending. When all the shots are merged

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 J. Liao et al.

into one cluster, the value of rl reaches 1, and nl reaches its smallest value. Since
the encouraging clustering results should have both smaller rl and nl, we choose
min(rl + nl) as the stop criterion of our algorithm. When rl + nl reaches its
smallest value, the iterations of merging stop. For example, the relation curve
of the value of rl + nl and the times of iterations m for one valid dimension of
football is shown in Figure 4. The inflexion of the curve which corresponds to
the smallest value of rl + nl is the stop point of the iterations.

After presenting the stop criterion for iterations of our clustering algorithm,
the detailed algorithm description of VDC is described in Algorithm 1.

4 Performance Study

In this section, we will report our extensive performance study on large real
video data, and the comparison results with other two clustering algorithms.

4.1 Experiments Set Up

Our data set consists of about 4.5 hours’ long video data which includes three
categories of sports video captured from TV stations. The formats of them are all
Mpgs with the frame extraction rate is 25fps, and each frame is 320*240 pixels.
After shot boundaries detecting, each shot is represented by feature vectors in
four high-dimensional degrees: 288-D, 320-D, 384-D and 512-D which all compose
HSV color feature and motion feature in P -frames of it for experiments.

Table 2. Data set statistics

Video Lengh Total shots Cluster of shots(shot number)
Basketball(B) 1:07:25 390 C1:play field(145);C2:close-up of player(67)

C3:distant view of player(150);C4:audience(28)

Table tennis(T) 1:22:32 634 C1:play field(220);C2:close-up of player(335)
C3:distant view of player(47);C4:audience(32)

Football(F) 1:35:51 630 C1:play field(182);C2:close-up of player(275)
C3:distant view of player(93);C4:shooting(56)

C5:audience(24)

In order to detect the efficiency of our algorithm, we manually identify each
shot into different clusters beforehand according to video grammar. The total
number of shots in our data set is 1654, and the detailed information is listed in
Table 2. Two common used measurements which are Precision(P) and Recall(R)
are used to evaluate the performance of our algorithm. And all the experiments
were done with Intel Pentium D820 processor(2.8GHz CPU’s with 1GB RAM).

4.2 Effectiveness of Valid Dimension Clustering(VDC)

In order to show the excellent performance of our algorithm, other two clustering
algorithms are applied in our experiment as comparisons. One is called FDC

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 135

0

10000

20000

30000

40000

50000

60000

70000

288 320 384 512

Dimensionality

C
P
U
(
m
s
)

FDC

VDC

(a) CPU cost for dimensionality

0

10000

20000

30000

40000

50000

60000

70000

80000

200 400 600 800 1000 1200

Number of shots

C
P
U
(
m
s
)

FDC

VDC

(b) CPU cost for shot number

Fig. 5. Effect of dimensionality reduction

70

75

80

85

90

95

100

288 320 384 512

Dimensionality

P
r
e
c
i
s
i
o
n
(
%
)

VDC
FDC
X-means

(a) Comparison of precision

70

75

80

85

90

95

100

288 320 384 512

Dimensionality

R
e
c
a
l
l
(
%
)

VDC
FDC
X-means

(b) Comparison of recall

Fig. 6. Effect of dimensionality

which applies our stop criterion for merging iterations but performs on the whole
high-dimensional feature space without dimensionality reduction. The other is
called X -means [6] which is a reformative algorithm of k -means.

Efficiency of Dimensionality Reduction. First, we will test the efficiency
of our dimensionality reduction approach which applies the available dimension
histogram(ADH).

Figure 5 depicts the CPU time improvement achieved by VDC over FDC on
the data sets with different dimensionality and different data size.

This experiment confirms that dimensionality reduction is outstanding and
necessary for clustering. When the dimensionality and the size of data are in-
creasing, the CPU time of VDC and FDC are all increasing. But it can be
easily witnessed that the increasing rates of VDC are much slower than FDC,
especially in (a). Obviously, dimensionality reduction plays an important role.
By dimensionality reduction, only valid dimensions are considered in clustering,
thus the algorithm is sped up.

Performance Comparison. In this experiment, we compare VDC with other
two shot clustering algorithms. We test the effect of different dimensional feature
spaces and different categories of sports video.

Figure 6 shows the Precision and Recall of different clustering algorithms as
the dimensionality of Basketball video shots increases. When the dimensional-
ity is increasing, Precision and Recall of all the three algorithms are improved

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 J. Liao et al.

60

65

70

75

80

85

90

95

100

200 400 600 800 1000 1200

Number of shots

P
r
e
c
i
s
i
o
n
(
%
)

VDC
FDC
X-means

(a) Comparison of precision

60

65

70

75

80

85

90

95

100

200 400 600 800 1000 1200

Number of shots

R
e
c
a
l
l
(
%
)

VDC
FDC
X-means

(b) Comparison of recall

Fig. 7. Effect of data size

70

75

80

85

90

95

100

B T F

Data set

P
r
e
c
i
s
i
o
n
(
%
)

VDC FDC X-means

(a) Comparison of precision

70

75

80

85

90

95

100

B T F

Data set

R
e
c
a
l
l
(
%
)

VDC FDC X-means

(b) Comparison of recall

Fig. 8. Effect of different categories of sports

because more information are extracted in higher dimensional feature space.
Although the Precision of VDC is only slightly larger than that of FDC, the
Recall of FDC is much smaller. VDC performs best and outperforms X -means
by nearly 10%.

Figure 7 shows their Precision and Recall when the number of shots increases.
For VDC and FDC, following with the increasing number of shots, Precision and
Recall only change a little, and the average values of them are much larger than
those of X -means. Because of the disadvantage on deciding data centers and
number of clusters, the performance of X -means is dissatisfactory comparing
with others.

The performances of clustering algorithms varies from different categories of
sports due to some factors such as positions of cameras, motions of players,
and common screens. Figure 8 shows the distinct performances on the three
categories of sports. Obviously, for table tennis, all the three algorithms perform
best. The main reason is that the play field of table tennis is small, the number
of common screens and the motions of cameras are almost fixed for table tennis,
thus it’s easier to achieve better results for clustering algorithm.

Table 3 illustrates the detailed experimental results of our data sets. For each
cluster which we pre-divided manually, we evaluate the performances of the
algorithms by three measurements: number of clusters Cn, Precision(P), and
Recall(R). In the table, it can be easily found that Cn of VDC is smaller than
other two algorithms and is closer to the manually divided cluster number for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 137

Table 3. Data set statistics

Video Results of VDC Results of FDC Results of X -means
Cn P(%) R(%) Cn P(%) R(%) Cn P(%) R(%)

Basketball: C1 2 97.17 93.54 5 100.0 89.66 7 83.77 85.28
C2 3 97.91 98.85 4 92.62 90.84 5 84.32 87.22
C3 2 91.26 95.08 4 88.43 87.72 6 82.81 85.77
C4 1 96.82 91.14 3 89.38 95.10 3 89.13 82.78

Table tennis: C1 2 95.65 100.0 4 100.0 95.45 6 86.45 83.52
C2 2 96.33 95.38 5 87.95 84.86 8 86.74 88.93
C3 3 85.97 91.67 3 90.64 85.17 4 87.09 77.47
C4 1 91.42 90.88 2 100.0 81.25 2 81.98 84.76

Football: C1 3 91.41 90.41 5 82.93 94.44 6 75.68 85.11
C2 2 95.42 92.55 4 92.30 87.48 6 85.49 77.42
C3 2 90.63 89.15 5 90.06 90.18 4 87.53 84.26
C4 2 85.74 100.0 2 91.25 84.79 3 67.68 71.95
C5 1 91.00 88.10 1 87.37 83.66 2 81.06 79.82

different sports. That’s an important advantage of our algorithm which means
the clustering results of VDC are more credible. Set basketball video as an exam-
ple, VDC obtains 8 clusters, FDC and X -means obtain 16 and 21 respectively,
while the manual cluster number is only 4. Since VDC considers most con-
tributing characteristics of data sets which correspond to valid dimensions and
performs on them one by one, it achieves most reasonable clustering results. In
addition, the Precision and Recall of VDC are better than those of FDC and X -
means. Among the results of VDC, there are 11 clusters whose Recall are above
90%, while only 5 clusters whose Recall are above 90% in the results of FDC.
Precision and Recall of X -means are both smallest and the performance is dis-
satisfactory. And the average value of Precision and Recall of VDC are 92.82%
and 93.59% respectively. As a whole, the performance of VDC is desirable.

5 Related Work

Clustering techniques are intended to group data with similar attributes into
clusters that exhibit certain high-level semantics. In previous work, most of the
clustering algorithms which are used in the field of video data require some
parameters to obtain good results. In [4], a shot cluster is split when its variance
is above a pre-specified threshold, and two shot clusters are merged into one when
the distance between their centers is below another pre-defined threshold. In [5],
the number and initial centers of shot clusters are required by k -means clustering
algorithm. But it is well known that the estimation of correct cluster number
and the decision of good cluster centroids had been longstanding problems in
cluster analysis. [6] reported a reformative algorithm of k -means which is called
X -means, and it applied Bayesian information criterion to estimate the number
of clusters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 J. Liao et al.

For high-dimensional data, the performances of most existing clustering al-
gorithms degrade rapidly [8]. Thus, to minimize the effect of ”dimensionality
curse” before processing high-dimensional data becomes more important. The
technique which using Principle Component Analysis to reduce the dimension-
ality of data works well when the data set is global correlated [8]. [7] proposes
a new approach which dimensionality reduction procedures are dynamic and
can be adaptively adjusted and integrated with the clustering processing. Es-
pecially for video data, there are also a few works to reduce dimensionality of
video data. [9] introduces a new one dimensional transformation technique which
rotates and shifts the original axis system using PCA. To speed up the shot clus-
tering process and minimize the space requirement, [10] applies both PCA and
LDA techniques to reduce the dimension of feature vectors for the domain scenes
clustering algorithm.

6 Conclusions and Future Work

In this paper, we introduce a novel unsupervised shot clustering algorithm for
sports video called valid dimension clustering(VDC). We first apply a new dimen-
sionality reduction approach to get ”valid dimensions”. Then in the subspace of
valid dimensions, VDC performs on valid dimensions one by one. After that, the
iterations of merging and splitting repeat until the novel stop criterion which is
designed inheriting the theory of Fisher Discriminant Analysis is satisfied with-
out any parameters. At last, our extensive experiments on real sports video prove
the effectiveness and efficiency of our proposals.

For our future work, we first plan to further investigate the effectiveness and
efficiency of our algorithm on different kinds of videos. Second, cross-media in-
formation, such as audio, text information, and image will be taken into account
to improve the performance of clustering. Third, more efficient dimensionality
reduction approaches for video data will be also considered in the future.

Acknowledgments. This work is partially supported by National Natural Sci-
ence Foundation of China under grant No.60573089 and 60273079, and sup-
ported by National Basic Research Program of China(973) under Grant No.
2006CB303103.

References

1. M. Bertini, A.D. Bimbo, R. Cucchiara, and A. Prati. Semantic video adaptation
based on automatic annotation of sport videos. In Proc. of the 6th ACM SIGMM
Int. workshop on Multimedia Information Retrieval, pp.291-298, 2004.

2. A. Hanjalic and H. Zhang. An integrated scheme for automated video abstraction
based on unsupervised cluster-validity analysis. In IEEE Transactions on Circuits
and Systems for Video Technology, Vol.9(8), pp.1280-1289, 1999.

3. M. Yeung, B. L. Yeo, and B. Liu. Extracting story units from long programs for
video browsing and navigation. In Proc. IEEE Conf. on Multimedia Computing
and System, pp.296-305, 1996.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Adaptive and Efficient Unsupervised Shot Clustering Algorithm 139

4. X. Q. Zhu, J. P. Fan, AK.Elmagarmid, et al. Hierarchical video content descrip-
tion and summarization using unified semantic and visual similarity. In Journal of
Multimedia Systems, Vol.9(1), pp.1432-1882, 2003.

5. J. Pena, J. Lozano, and P. Larranaga. An empirical comparison of four initializa-
tion methods for the k-means algorithm. In Pattern Recognition Letters, Vol.20,
pp.1027-1040, 1999.

6. D. Pelleg, A. W. Moore. X-means: Extending K-means with efficient estimation
of the number of clusters. In Proc. of the 17th Int. Conf. on Machine Learning,
pp.727-734, 2000.

7. C. Ding, X.F. He, H.Y. Zha, et al. Adaptive dimension reduction for clustering
high dimensional data. In Proc. of ICDM, pp.147-155, 2002.

8. R. Agarwal, J. Gehrke, D. Gunopolos, et al. Automatic subspace clustering of
high dimensional data for data mining applications. In Proc. of Int. Conf. on
Management of Data, pp.94-105, 1998.

9. H. T. Shen, B. C. Ooi, and X. F. Zhou. Towards effective indexing for very large video
sequence database. In Proc. of Int. Conf. on Management of Data, pp.730-741, 2005.

10. H. Lu and Y. P. Tan. Unsupervised clustering of dominant scenes in sports video.
In Pattern Recognition Letters, Vol.24(15), pp.2651-2662, 2003.

11. H. Yin, N. Allinson, and R. Freeman. Intelligent data engineering and automated
learning. In IDEAL, 2002.

12. M. Sever, J. Lajovic, and B. Rajer.Robustness of the Fisher’s discriminant func-
tion to skew-curved normal distribution. In Proc. Int. Conf. of Applied Statistics,
Vol.2(2), pp.231-242, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme and an

Optimized Clustering Method for
Anomaly-Based Intrusion Detection System

Jungsuk Song1, Hiroki Takakura2, Yasuo Okabe2,
and Yongjin Kwon3

1 Graduate School of Informatics, Kyoto University
oaktree@net.ist.i.kyoto-u.ac.jp

2 Academic Center for Computing and Media Studies, Kyoto University
takakura@media.kyoto-u.ac.jp, okabe@i.kyoto-u.ac.jp

3 Information and Telecom. Eng., Hankuk Aviation University
yjkwon@tikwon.hangkong.ac.kr

Abstract. Intrusion detection system(IDS) has played a central role
as an appliance to effectively defend our crucial computer systems or
networks against attackers on the Internet. Traditional IDSs employ
signature-based methods or anomaly-based methods which rely on la-
beled training data. However, they have several problems, for example,
it consumes huge amounts of cost and time to acquire the labeled train-
ing data, and they often experienced difficulty in detecting new types
of attack. In order to cope with the problems, many researchers have
proposed various kinds of algorithms for several years. Although they do
not require labeled data for training and have the capability to detect
unforeseen attacks, they are based on the assumption that the ratio of
attack to normal is extremely small. However, the assumption may not
be satisfied in a realistic situation because some attacks, most notably
the denial-of-service attacks, consist of a large number of simultaneous
connections. Consequently if the assumption fails, the performance of the
algorithm will deteriorate. In this paper, we present a new normalization
and clustering method that can overcome a limitation on the attack ra-
tio of the training data. We evaluated our method using KDD Cup 1999
data set. Evaluation results show that performance of our approach is
constant irrespective of an increase in the attack ratio.

1 Introduction

In recent years, considerable attention has been given to intrusion detection
on the Internet. Intrusion detection is defined as the process of monitoring the
events occurring in a computer system or network and analyzing them for signs of
intrusions. IDS is one of the systems designed to perform such intrusion detection
and an integral part of any complete security package of a modern well managed
network system.

Conventional IDSs employ signature-based detection, which relies on labeled
training data. However, IDSs using these methods have several problems, for

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 140–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 141

example, they can only detect previously known intrusions and it consumes huge
amount of cost and time to acquire the labeled training data. A survey of these
methods is given in [1]. Over the past few years, several studies to solve these
problems have been made on anomaly detection using unsupervised learning
techniques, called unsupervised anomaly detection, which can detect previously
“unseen” attacks and do not require labeled data used in training stage[2,3].

There are many approaches that apply unsupervised anomaly detection for
intrusion detection such as clustering, one-class support vector machine(SVM),
etc[4,5,6]. Although they do not require labeled data for training and have capa-
bility of detecting unforeseen attacks, they make two assumptions about the data
to be trained. First, the ratio of attack to normal is extremely small[9]. Second,
the attack traffic is statistically different from normal traffic[3]. It is important to
note that these assumptions may not be satisfied in a realistic situation because
some attacks, most notably the denial-of-service(DoS) attacks, consist of a large
number of simultaneous connections, and in many cases they may be misclassified
as normal because of their enormous volume. After all, if the assumption fails, per-
formance of the algorithm will deteriorate. In this paper, we propose a new nor-
malization and clustering method for intrusion detection. This proposed method
is based on K-means clustering method[7], which is a typical clustering algorithm.

We evaluated our method over the network data from KDD Cup 1999[8],
which is a very popular and widely used intrusion attack data set. Our exper-
imental results show that performance of our approach is constant irrespective
of an increase in the attack ratio, and outperforms the K-means.

The rest of the paper is organized as follows. In section 2, we give some back-
ground information about data normalization and the K-Means algorithm. In
section 3 and 4, we present our normalization and clustering method in detail,
respectively. In section 5, we describe the details of our experiment and present
the results and their analysis. Finally, we present concluding remarks and sug-
gestions for future study.

2 Related Work

2.1 Normalization

In many approaches that employ anomaly-based intrusion detection with unla-
beled data [9,10,11,12,13], it is required to normalize the training and test data
because each feature of the data instances has a different scale. For example,
consider two 3-features vectors: {(1, 2, 100), (5, 3, 200)}. Under the Euclidean
metric, the squared distance between the feature vectors will be (1− 5)2 + (2−
3)2 + (100− 200)2 = 16 + 1 + 10, 000 = 10, 017. As you see, there is a problem
that the distance is dominated by the third feature.

2.2 K-Means Clustering Algorithm

Clustering is one of unsupervised learning techniques to group data instances into
meaningful subclasses[4,5]. K-means[7] is one of basic methods for clustering. It
partitions a set of data into k clusters through the following steps.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 J. Song et al.

– Initialization: Randomly choose k instances from data set and make them
initial cluster centers.

– Assignment: Assign each instance to the closest center.
– Updating: Replace every cluster’s center with the mean of its members.
– Iteration: Repeat Assignment and Updating until there is no change for each

cluster, or other convergence criterion is met.

The popularity of the K-means algorithm is largely due to its low time com-
plexity, simplicity and fast convergence. In particular, low time complexity is a
significant factor for intrusion detection because it is performed over large and
high-dimension network data sets. However, it has been known that the K-means
algorithm has several shortcomings as follows.

First, the K-means algorithm is sensitive to the initial centers; that is, the
clustering result of the K-means algorithm is dependent on the chosen initial
centers. Second, high dimension of each data instance causes heavily perfor-
mance deterioration of the algorithm, this is called “curse of dimensionality”.
Third, the K-means algorithm is difficult to choose the number k of clusters to
be created finally. Finally, the K-means algorithm just can find out the local op-
timum, not the global optimum. Hence, we propose a method to overcome these
shortcomings of the K-means for intrusion detection. See section 4 for detail.

3 Normalization

In this section, we present a novel normalization method for preventing an in-
crease of the anomaly ratio from decreasing the performance.

3.1 Defining of Notations

Before describing our method, it is necessary to specify about the major nota-
tions that are used in this paper:

– S = {x1,x2, . . . ,xn}: the set of data instances to be clustered
– n: the number of all data instances in the training data
– xj = (xj1, xj2, . . . , xjd): a vector in real d-dimensional space, �d

– ‖x‖: the Euclidean distance of the vector(i.e. instance) x
– C = {c1, c2, . . . , ck}: the set of k cluster centers
– cj : the mean of each cluster Cj(1 ≤ j ≤ k)
– D = {d1,d2, . . . ,dd}: the set of dimensions in the feature space

3.2 Methodology

Our method is basically based on [9]. In their normalization, they first calculate
the average and standard deviation of every feature in the feature space. By
using them, they calculate, for every feature value of each instance, how far it
is away from the average of corresponding feature, and then the result divided
by its standard deviation becomes the new value(i.e. normalized value) for that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 143

Table 1. Average and change of normalized value

Ratio of 10 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Average 1.09 1.18 1.27 1.36 1.45 1.54 1.63 1.72 1.81 1.9

Normalized value of 1 -0.1 -0.14 -0.17 -0.20 -0.22 -0.25 -0.27 -0.29 -0.31 -0.33

Normalized value of 10 9.9 6.96 5.65 4.87 4.33 3.93 3.62 3.37 3.16 2.98

feature. However, there is a problem that if the ratio of the attack data increases,
distinction between the normal instances and the attack instances becomes more
difficult. For example, consider 100 1-feature data instances where each data
instance has a value either 1(normal) or 10(attack). From Table 1, we can see
that difference between the normalized value of 1 and 10 diminishes(i.e. be more
difficult to distinguish) gradually with increment of the attack data instances(i.e.
10). This is because that the average value of instances is heavily affected by the
number of the attack instances. As a result, it leads to performance deterioration.

Therefore, we propose a method that can maintain good performance of IDS
irrespectively of normal-attack ratio. In generally, it is obvious that the number
of normal traffic is lager than that of attack traffic in a real environment. It
means that if a data instance is normal, there are a lot of data instances with
the similar attribute value to the data instance, otherwise the number of data
instances which have the similar attribute value is few. Hence, we first partition
the training data into two groups: dense group and sparse group. The dense
group consists of data instances whose attribute values are similar each other
and frequently appear in the training data, while in case of data instances in the
sparse group, similar attribute values are seldom observed in the training data.
Our normalization uses the average and standard deviation from data instances
only from the dense group.

Let us present the algorithm in more detail. For each dimension di(1 ≤ i ≤ d)
where i denotes the ith dimension, we search the minimum and maximum values
of the training data, and divide their difference into small equi-length partitions
called bin, where the number of the bins is determined by parameter β that is
supplied by user. That is,

di = di1 ∪ di2, . . . ,∪ diβ .

The algorithm repeats the dividing process for every dimension in the feature
space. After the process is finished, the algorithm reads the training data again
and counts the frequency of bins. Let nib denotes the number of data instances
fall in dib(1 ≤ b ≤ β) and n′

ib denotes its ascending order; that is,

n′
i1 ≤ n′

i2 . . . ≤ n′
iβ .

For all dimensions, the algorithm finds bin d′
il under the following conditions.

l−1∑
b=1

n′
ib ≤

n

α
<

l∑
b=1

n′
ib

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 J. Song et al.

where α is supplied by a user and d′
il denotes corresponding bin to n′

il. If α
equals 100, for example, d′

il is the first bin where summation of n′
ib exceeds 1%

of all data instances in the training data. The algorithm then obtains following
n′′

im that represents difference between neighbor bins:

n′′
im = n′

im+1 − n′
im, for (1 ≤ m ≤ l − 1),

and we regard m of maximum n′′
im as M : that is,

M = m of max{n′′
im|(1 ≤ m ≤ l − 1)}.

We then define {d′
i1, d′

i2, . . . , d′
iM} and {d′

iM+1, d′
iM+2, . . . , d′

iβ} as “sparse
region” and “dense region”, respectively. By using the sparse and dense region
of each dimension, the algorithm partitions the training data into two groups:
sparse group and dense group. If a data instance has at least one dimension
which belongs to the sparse region, it is classified to the sparse group; otherwise
it becomes a member of the dense group.

Given a set of the dense group, we calculate the average and standard de-
viation of every feature only using the data instances of the group. We then
normalize each instance as follow:

normalized instnace[j] =
original instance[j]− average[j]

standard deviation[j]
.

where [j] is the jth feature. In our normalization work, only numerical features
were converted.

4 Clustering

In this section, we present our clustering algorithm for intrusion detection. The
clustering process is basically the same as the K-means algorithm except that
“Splitting” and “Merging” processes are added just after the updating process.

4.1 Selecting Initial Cluster Centers

In this process, we create k initial cluster centers. In intrusion detection, the ideal
initial cluster centers are required to satisfy the condition where each instance
of the training data should be classified to one of them. The training data have
a lot of clusters which should be labeled either to normal or attack. Therefore,
we have to find both normal and attack clusters that really exist in the training
data, and then calculate the initial cluster centers using them.

In our approach, we utilize the dense and sparse groups to create k initial
cluster centers. First, for representing attack clusters of the training data, the
algorithm generates same groups, S1, S2, . . . , Ss from the sparse group. If each
vector’s element of both instances belongs to the same sparse region, the algo-
rithm treats them as the same group. Note that the number of same groups
cannot exceed that of data instances in the sparse group. The algorithm also
generates groups(clusters), Ss+1, . . . , Sk, from data instances in the dense group

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 145

by the following method. First, for one dimension, the algorithm treats all data
instances in each bin of the dense region as member of a cluster. Note that each
instance of the dense group is a member of only one bin in each dimension. The
algorithm then repeats the process for every dimension in the feature space. As
a result, the total number of generated clusters is equal to all number of the
bins that belong to the dense region in every dimension of the feature space.
Note that our algorithm does not require to determine k in advance. Finally, the
algorithm calculates the mean of each cluster Sh(1 ≤ h ≤ k) that becomes the
k initial cluster centers, namely ch(1 ≤ h ≤ k). We also denote these centers
as sh(1 ≤ h ≤ K) and K as the number of the initial cluster centers for the
purpose of the labeling process(Section 4.5).

It is important to consider the following case. If the data in any particular
dimension is uniformly distributed, then the dimension does not give any useful
information concerning the dense and sparse region. Hence, we need to determine
whether dimensions are worth investigating. We calculate |n′

iβ − n′
iM |(1 ≤ i ≤ d)

for each dimension to extract the uniform dimensions. For the uniform dimen-
sions, we expect them to contain data instances of almost same number with
respect to each bin. Therefore, if a dimension satisfies |n′

iβ − n′
iM | <

n

α
, we

regard the dimension as the uniform distribution, and our algorithm excludes
the uniform distribution dimensions from the clustering process hereafter.

4.2 Allocating Data Instances

In this process, the algorithm allocates data instances to the closest cluster cen-
ter. As mentioned above, we have to reduce the number of dimensions to improve
performance of the proposed algorithm because as the number of dimensions in
a dataset increases, distance measures become increasingly meaningless (i.e. the
curse of dimensionality). Subspace clustering[14] is one of methods to reduce
dimension of data instances in the clustering field. Hence, in order to reduce di-
mensions of data instances, we propose an allocating algorithm based on concept
of subspace clustering.

Subspace clustering is the method that attempts to find meaningful clusters
from different subspaces of the same dataset. In subspace clustering, the key
point is that each cluster can be easily extracted from the dataset by finding ap-
propriate subspaces (i.e., dimensions), and in such subspaces the data instances
converge on the particular attribute value. Detailed description about it is given
in [14].

Therefore, our allocating algorithm begins by searching “dense region dimen-
sions” for each cluster center. We regard the searched dimensions as appropriate
subspace for intrusion detection because many data instances converge on the
dimensions. The algorithm then calculates the distance from data instances to
each of current k cluster centers only with respect to the dense region dimen-
sions. As different from existing researches that have to acquire the distance for
all dimensions, proposed algorithm requires only dimensions which belong to the
dense region of each cluster center. The algorithm then allocates each instance
to the closest cluster center.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 J. Song et al.

After the assignment process is finished, each cluster center has new data
instances. Therefore the algorithm updates the mean of each cluster center with
its new members.

4.3 Splitting and Merging Clusters

In order to overcome the K-means’s two shortcomings, the number k and local
optimum, we apply splitting and merging processes. There are many variants of
the K-means that employ splitting and merging processes to overcome the two
shortcomings such as ISODATA [16]. Although the approaches can overcome two
shortcomings, they need many parameters: initial number of clusters, maximum
number of iterations and so on. Therefore, we propose an algorithm that can
overcome two shortcomings and does not require any additional parameters.

We first compute the values as follows:

– Δj : the average distance between data instances in cluster Cj and their
cluster center cj

– Δ: average of Δj(1 ≤ j ≤ k)
– σj : the standard deviation of the average distance between data instances in

cluster Cj and their cluster center cj

– σ: average of σj(1 ≤ j ≤ k)

Splitting. For each cluster Cj(1 ≤ j ≤ k), if Δj > Δ and σj > σ, we search an
instance that is the furthest to its center. If the distance between the instance
and the center is larger than Δj + σj , the instance should not be a member of
the cluster. Thus, we create a new cluster and treat the instance as its center.

Merging. We first calculate the values as follows:

– dij : the distance between all cluster centers
– d̄: the average distance of dij

That is,

dij ← ‖ci − cj‖, d̄←
∑

dij

k(k − 1)/2
, 1 ≤ i < j ≤ k.

Also, we search dij(1 ≤ i < j < k) whose the value is less than d̄ and thus the
algorithm merge Ci and Cj , if two clusters satisfy two conditions as follows:

1. ‖ci − cj‖ < min(σi, σj)
2. |σi − σj | <

(
σi

ni
+ σj

nj

)
, ni, nj : the number of instances in Ci, Cj

According to the conditions, if each center of clusters Ci and Cj exists in the
another cluster’s region and if difference of their deviations is quite small, they
should be treated as one cluster.

In this way, the value of k will be updated automatically by splitting and
merging clusters. Also, local optimum problem of the K-means algorithm can be
solved because if the k initial cluster centers were wrong, it can be modified by
splitting and merging clusters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 147

4.4 Convergence Criterion

In this process, the algorithm uses the sum of the squared Euclidean distance,
denoted by E(c1, . . . , ck), as the convergence criterion that is most intuitive and
frequently used function in partitional clustering techniques like the K-means.
We can calculate E(c1, . . . , ck) as follows:

E(c1, . . . , ck) =
k∑

j=1

∑
x′∈Cj

‖x′ − cj‖2

where x′ is normalized instance by the proposed method. E(c1, . . . , ck) means
that summation of the distance between each cluster center and its instances. If
the value of E(c1, . . . , ck) is larger than that of last clustering, go to the labeling
process, otherwise the algorithm go back to the assignment process.

4.5 Labeling Clusters

In the existing researches, they labeled a cluster as attack if it is relatively large
or is above a given threshold, otherwise, it is labeled as normal. However, such
method has several limitations on labeling the clusters accurately, for example,
there is not a precise criterion about relatively large or a threshold, and it can
not detect an attack that causes large data instances like DoS.

Therefore, we propose a new method that does not depend on the population
ratio of the cluster nor does not require a threshold to label the clusters. Although
the initial cluster centers of the dense group are not proper as our desired centers,
since we assume that most of those is normal, we can utilize those as a criterion
for labeling. In other words, we can say that if a cluster is normal, the distance
between the center cj(1 ≤ j ≤ k) of the cluster and sh(s + 1 ≤ h ≤ K) will
be small, otherwise that will be large. Thus, we first, for each cluster center
cj(1 ≤ j ≤ k), calculate the maximum distance to sh(s + 1 ≤ h ≤ K). We then
calculate the average of the maximum distances. If the maximum distance from
a cluster to sh(s + 1 ≤ h ≤ K) is less than the average, we label the cluster as
normal. Otherwise, label as attack.

After the labeling process is finished, we calculate the distance from a data
instance of the test data to cj(1 ≤ j ≤ k) and if the label of the closest cluster
from the data instance is an attack, then label the data instance as the attack.
Otherwise, label the data instance as normal.

5 Experimental Results and Analysis

In order to evaluate the proposed clustering method, we tested the algorithm on a
benchmark dataset, the network traffic data from KDD Cup 1999 Dataset[8]. We
are interested in two indicators: the detection rate and the false positive rate. The
detection rate is defined as the number of intrusion instances (correctly) detected
by the system divided by the total number of intrusion instances present in the
test set. The false positive rate is defined as the total number of normal instances

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 J. Song et al.

that were (incorrectly) classified as intrusions divided by the total number of
normal instances present in the test set.

5.1 Data Set Descriptions

Training Data. In KDD Cup 1999 Dataset, the training data set consists of
approximately 4.9 million data instances. Each instance consisted of 41 features
of various types, and a class label that indicate either normal or one of the attack
types.

Test Data. The test data consists of approximately 490,000 data instances. It
contains 17 types of attack that were not present in the training data and 20
types of attack that were present in the training data.

5.2 Results

We first evaluated performance of the proposed method and K-means algorithm.
For evaluation, we randomly extracted the training and test data from KDD
Cup dataset. The training and test data consist of 90,373 and 65,108 instances,
respectively. Around 1% of the training data is attack, and the test data has
4,515 attack instances that consist of 2,275 known attack instances(i.e. included
in the training data) and 2,240 new attacks. For comparison, we obtained the
false positive rate and detection rate(i.e. ROC curve[15]) of the two methods
by varying α and β, and k(in case of the K-means). Parameter k was set to
3, 5, 10, 20, 50 and 100. Note that every experimental result in this paper is
averaged over 10 runs of the algorithms. The comparison of ROC curves of the
two methods is shown in figure 1(a). As we had expected, it can be easily seen
that performance of the proposed method consistently outperforms the K-means
algorithm; especially at the lower false positive. Therefore, we conclude that
superior performance of the proposed clustering method results from overcoming
four shortcoming of the K-means algorithm.

We also evaluated stability of the proposed method with respect to different
attack ratio of the training data. As the training data for this evaluation, we
prepared three different dataset where each dataset consists of 90,373 instances,
and the attack ratio of those is 1%, 5% and 10%, respectively while not changing
the above test data. We obtained the ROC curves of each case as shown in figure
1(b), and we obviously understand that performance of the proposed method is
not influenced by the ratio of attack. It means that by applying our normalization
method the average of every feature(i.e. dimension) did not move toward the
anomalies. In other words, since normalized values of the attack instances are
still far from the normal ones, the proposed clustering method was able to detect
those excellently.

5.3 Analysis

First of all, we investigated our strategy that the proposed normalization method
does not change the average of every feature(i.e. dimension) according to an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 149

(a) Performance (b) Stability

Fig. 1. ROC curves showing performance of the algorithms over KDD data set

Table 2. Average of 17 and 22 dimensions

Proposed Method Existing Method Attack Normal

Dimension 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

17 7.15 7.97 7.90 7.66 12.13 13.49 50.86 60.37 62.99 7.62 9.27 8.01
22 0.95 0.96 0.96 0.95 0.94 0.93 0.82 0.78 0.77 0.95 0.95 0.95

increase in the attack ratio. Actually, in our experiments, there were many di-
mensions that exactly correspond with our assumption, and we take an example
for 17th and 22nd dimensions as shown in Table 2. For fair comparison, we fixed
β = 100 and changed n

α = 1%, n
α = 5%, n

α = 10% for the three training data,
its attack ratio is 1%, 5% and 10% , respectively. Our results show that by ap-
plying the proposed method, the average of each dimension(Proposed Method
in Table 2) is not only almost constant, but also almost the same as that for
only real normal data in the training data(Normal in Table 2). This invariability
of the average also means that our assumption on the dense group (i.e. most of
data instances included in the dense group is normal) is reliable. However, in
case of the existing methods(Existing Method in Table 2), fluctuation of attack
data(Attack in Table 2) induces deterioration of their average, i.e., increase of
17th dimension and decrease of 22nd one.

In additoin to superiority of the proposed method in terms of performance and
stability, the short detection time is an important factor for practical applying
as the training time. Thus, we also measured the detection time of the proposed
method. In our method, it took approximately 18 seconds to determine 65,108(
around 13% of the original test data) data instances of the test data. After all,
it will be take approximately 135 seconds to detect the whole test data of two
weeks. It means that the proposed method enables IDSs to analyze audit data
in real-time even though it requires two user defined parameters α and β.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 J. Song et al.

6 Conclusion and Future Works

In this paper, we have pointed out the limitation on data normalization of
anomaly-based IDS and the shortcomings of the K-means algorithm. First, we
proposed a novel normalization method that can maintain constant performance
of the system irrespective of the amount of attack data. Second, for improving
performance of the K-means algorithm, we have proposed a clustering algorithm
to overcome its shortcomings in intrusion detection.

We have evaluated the accuracy of the new approach by varying two parame-
ters α and β. Our results showed that it achieves a higher detection rate than the
K-means algorithm while maintaining a low false positive rate, and an increase
in the attack ratio does not influence performance of the proposed method. Fur-
thermore, linear time complexity and real-time detection ability of the proposed
method make it feasible for intrusion detection.

For future work, we need to verify performance of the proposed clustering
algorithm over real data and make a new benchmark dataset for intrusion de-
tection, because KDD Cup 1999 dataset was generated in the virtual reality
network (i.e. it can not reflect the reality) and the attacks included in it are
greatly old-fashioned.

Acknowledgement. This research is partly supported by the Grant-in-Aid for
Scientific Research on Priority Areas, The Ministry of Education, Culture, Sports,
Science and Technology, Japan.

References

1. C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system
calls: alternative data models”, In 1999 IEEE Symposium on Security and Privacy,
pp. 133-145, IEEE Computer Society, 1999.

2. D. E. Denning, “An intrusion detection model”, IEEE Transactions on Software
Engineering, SE-13:222-232, 1987.

3. H. S. Javitz and A. Valdes, “The NIDES statistical component: description and jus-
tification”, In Technical Report, Computer Science Laboratory, SRI International,
1993.

4. B. Everitt, S. Landau, and M. Leese, “Cluster Analysis”, London: Arnold, 2001.
5. A. Jain and R. Dubes, “Algorithms for Clustering Data”, Englewood Cliffs, NJ:

Prentice-Hall, 1988.
6. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., und Williamson, R., “Es-

timating the support of a high-dimensional distribution”, Neural Computation.
13(7):1443-1471, 2001.

7. MCQUEEN, J, “Some methods for classification and analysis of multivariate obser-
vations”, In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, pp. 281-297, 1967.

8. The third international knowledge discovery and data mining tools competition
dataset KDD99-Cup http://kdd.ics.uci. edu/databases/kddcup99/kddcup99.html,
1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Robust Feature Normalization Scheme 151

9. L. Portnoy, E. Eskin and S. Stolfo, “Intrusion Detection with Unlabeled Data Using
Clustering”, In Proceedings of ACM CSS Workshop on Data Mining Applied to
Security, 2001.

10. E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo, “A Geometric Framework
for Unsupervised Anomaly Detection : Intrusion Detection in Unlabeled Data”, In
Applications of Data Mining in Computer Security, 2002

11. Y. Guan, A. Ghorbani and N. Belacel, “Y-means : A Clustering Method for In-
trusion Detection”, In IEEE Canadian Conference on Electrical and Computer
Engineering, Proceedings, 2003.

12. Laskov, P., Schäfer, C., Kotenko, I., “Intrusion detection in unlabeled data with
quarter-sphere support vector machines”, In: Proc. DIMVA, pp. 71-82, 2004.

13. K. Leung, and C. Leckie, “Unsupervised Anomaly Detection in Network Intrusion
Detection Using Clusters”, In Proceedings of Twenty-Eighth Australasian Com-
puter Science Conference (ACSC2005), 2005.

14. L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data:
A review”, SIGKDD Explorations, 6(1), 2004, pp.90-105.

15. Lippmann, R.P., “Evaluating Intrusion Detection Systems: the 1998 DARPA Off-
Line Intrusion Detection Evaluation”, Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition, Vol. 2.

16. Ball, G. H. and Hall, D. J., “ISODATA, a novel method of data analysis and
classification”, Tech. Rep.. Stanford University, Stanford, CA, 1965.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Detection and Visualization of Subspace Cluster
Hierarchies

Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-Gorman,
and Arthur Zimek

Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
{achtert,boehm,kriegel,kroegerp,muellerg,zimek}@dbs.ifi.lmu.de

http://www.dbs.ifi.lmu.de

Abstract. Subspace clustering (also called projected clustering) addresses the
problem that different sets of attributes may be relevant for different clusters in
high dimensional feature spaces. In this paper, we propose the algorithm DiSH
(Detecting Subspace cluster Hierarchies) that improves in the following points
over existing approaches: First, DiSH can detect clusters in subspaces of sig-
nificantly different dimensionality. Second, DiSH uncovers complex hierarchies
of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are
embedded within higher-dimensional subspace clusters. These hierarchies do not
only consist of single inclusions, but may also exhibit multiple inclusions and
thus, can only be modeled using graphs rather than trees. Third, DiSH is able to
detect clusters of different size, shape, and density. Furthermore, we propose to
visualize the complex hierarchies by means of an appropriate visualization model,
the so-called subspace clustering graph, such that the relationships between the
subspace clusters can be explored at a glance. Several comparative experiments
show the performance and the effectivity of DiSH.

1 Introduction

The well-known curse of dimensionality usually limits the applicability of traditional
clustering algorithms to high-dimensional feature spaces because different sets of fea-
tures are relevant for different (subspace) clusters. To detect such lower-dimensional
subspace clusters, the task of subspace clustering (or projected clustering) has been de-
fined recently. Existing subspace clustering algorithms usually either allow overlapping
clusters (points may be clustered differently in varying subspaces) or non-overlapping
clusters, i.e. points are assigned uniquely to one cluster or noise. Algorithms that al-
low overlap usually produce a vast amount of clusters which is hard to interpret. Thus,
we focus on algorithms that generate non-overlapping clusters. Those algorithms in
general suffer from two common limitations. First, they usually have problems with
subspace clusters of significantly different dimensionality. Second, they often fail to
discover clusters of different shape and densities, or they assume that the tendencies of
the subspace clusters are already detectable in the entire feature space.

A third limitation derives from the fact that subspace clusters may be hierarchically
nested, e.g. a subspace cluster of low dimensionality is embedded within several larger
subspace clusters of higher dimensionality. None of the existing algorithms is able to

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 152–163, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.dbs.ifi.lmu.de

Detection and Visualization of Subspace Cluster Hierarchies 153

2D cluster A

1D cluster C
x

x
x

x

x
x

x

x
x
x

x

x

x
x

x x

x

xx

x

x

1D
cluster C

2D
cluster A

2D
cluster B

2D cluster B subspace cluster hierarchy

x

x

x

x

x

x

x
x

x

x

x
x

x

x

x

x

x
x

x

1D
cluster D

1D cluster D
level 1

level 2

Fig. 1. Hierarchies of subspace clusters with multiple inheritance

detect such important hierarchical relationships among the subspace clusters. An exam-
ple of such a hierarchy is depicted in Figure 1 (left). Two one-dimensional (1D) cluster
(C and D) are embedded within one two-dimensional (2D) cluster (B). In addition,
cluster C is embedded within both 2D clusters A and B. Detecting such relationships
of subspace clusters is obviously a hierarchical problem. The resulting hierarchy is
different from the result of a conventional hierarchical clustering algorithm (e.g. a den-
drogram). In a dendrogram, each object is placed in a singleton cluster at the leaf level,
whereas the root node represents the cluster consisting of the entire database. Any inner
node n represents the cluster consisting of the points located in the subtree of n. Den-
drograms are limited to single inclusion, i.e. a lower dimensional cluster can only be the
child cluster of one higher dimensional cluster. However, hierarchies of subspace clus-
ters may exhibit multiple inclusions, e.g. cluster C in Figure 1 is a child of cluster A and
B. The concept of multiple inclusions is similar to that of “multiple inheritance” in soft-
ware engineering. To visualize such more complex relationships among subspace clus-
ters, we need graph representations rather than tree representations. Such a graph rep-
resentation which we will call subspace clustering graph (cf. Figure 1(right)) consists
of nodes at different levels. These levels represent the dimensionality of the subspace
in which the cluster is found (e.g. the level of cluster A in the graph of Figure 1 is 2).
Each object p is assigned to a unique node in that hierarchy representing the lowest
dimensional subspace cluster in which p is placed. In addition, an edge between a k-
dimensional cluster C and an l-dimensional cluster B, where l > k, (e.g. cf. Figure 1)
indicates that all points of cluster C are also members of cluster B.

In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierar-
chies) that improves in the following aspects over the state-of-the-art subspace cluster-
ing approaches: First, DiSH uncovers complex hierarchies of nested subspace clusters
including multiple inclusions. Second, DiSH can detect clusters in subspaces of signif-
icantly different dimensionality. Third, DiSH is able to detect clusters of different size,
shape, and density. Furthermore, we propose the subspace clustering graph to visual-
ize the resulting complex hierarchies by means of an appropriate visualization model.
Using this visualization method the relationships between the subspace clusters can be
explored at a glance.

The rest of the paper is organized as follows. We discuss related work in Section 2.
Section 3 describes our new algorithm DiSH. The concepts of the clustering graph visu-
alization are outlined in Section 4. An experimental evaluation is presented in Section 5.
Section 6 concludes the paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 E. Achtert et al.

2 Related Work

Many subspace clustering algorithms, e.g. [1,2,3,4], aim at finding all clusters in all
subspaces of the feature space producing overlapping clusters, i.e. one point may belong
to different clusters in different subspaces. In general, these methods also produce some
sort of subspace hierarchy. However, those hierarchies are different from the hierarchy
addressed in this paper because points are allowed to be placed in clusters such that
there are no relationships between the subspaces of these clusters. Thus, the resulting
“hierarchy” is much more complex and usually hard to interpret.

Other subspace clustering algorithms, e.g. [5,6,7], focus on finding non-overlapping
subspace clusters. These methods assign each point to a unique subspace cluster or
noise. Usually, those methods do not produce any information on the hierarchical rela-
tionships among the detected subspaces. The only approach to find some special cases
of subspace cluster hierarchies introduced so far is HiSC [8]. However, HiSC is limited
by the following severe drawbacks. First, HiSC usually assumes that if a point p be-
longs to a projected cluster C, then C must be visible in the local neighborhood of p in
the entire feature space. Obviously, this is a quite unrealistic assumption. If p belongs
to a projected cluster and the local neighborhood of p in the entire feature space does
not exhibit this projection, HiSC will not assign p to its correct cluster. Second, the
hierarchy detected by HiSC is limited to single inclusion which can be visualized by a
tree (such as a dendrogram). As discussed above, hierarchies of subspace clusters may
also exhibit multiple inclusions. To visualize such more complex relationships among
subspace clusters, we need graph representations rather than tree representations. Third,
HiSC uses a Single-Linkage approach for clustering and, thus, is limited to clusters of
particular shapes. DiSH applies a density-based approach similar to OPTICS [9] to the
subspace clustering problem that avoids Single-Link effects and is able to find clusters
of different size, shape, and densities.

We do not focus on finding clusters of correlated objects that appear as arbitrarily
oriented hyperplanes rather than axis-parallel projections (cf. e.g. [10,11,12,13]) be-
cause obviously, these approaches are orthogonal to the subspace clustering problem
and usually demand more cost-intensive solutions.

3 Hierarchical Subspace Clustering

Let D ⊆ �d be a data set of n feature vectors and A be the set of attributes of D. For
any subspace S ⊆ A, πS(o) denotes the projection of o ∈ D into S. Furthermore, we
assume that DIST is a distance function applicable to any S ⊆ A, denoted by DISTS , e.g.

when using the Euclidean distance, DISTS(p, q) =
√∑

ai∈S

(
π{ai}(p)− π{ai}(q)

)2
.

Our key idea is to define the so-called subspace distance that assigns small values if
two points are in a common low-dimensional subspace cluster and high values if two
points are in a common high-dimensional subspace cluster or are not in a subspace
cluster at all. Subspace clusters with small subspace distances are embedded within
clusters with higher subspace distances.

For each point o ∈ D we first compute the subspace dimensionality representing the
dimensionality of that subspace cluster in which o fits best. Thereby, we assume that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Detection and Visualization of Subspace Cluster Hierarchies 155

x

y

z o

)(}{ oN x

)(}{ oN y

)(},{ oN yx

)(}{ oy

)(}{ ox

)(},{ oyx

Fig. 2. Subspace selection for a point o (see text for details)

the “best” projection for clustering o is the subspace with the highest dimensionality
(providing the most information), or in case of tie-situations, which provides the larger
subspace cluster (containing more points in the neighborhood of o w.r.t. the subspace).
The subspace dimensionality of a point o is determined by searching for dimensions of
low variance (high density) in the neighborhood of o. An attribute-wise ε-range query
(N {ai}

ε (o) = {x | DIST{ai}(o, x) ≤ ε} for each ai ∈ A) yields a simple way to assign
a predicate to an attribute for a certain object o. If only few points are found within the
ε-neighborhood in attribute ai the variance around o in attribute ai will be relatively
high. For this attribute we will assign 0 as predicate for the query point o, indicating
that this attribute does not participate in a subspace that is relevant to any cluster to
which o could possibly belong. Otherwise, if N {ai}

ε (o) contains at least μ objects, the
attribute ai will be a candidate for a subspace containing a cluster including object o.

From the variance analysis the candidate attributes that might span the best subspace
So for object o are determined. These attributes need to be combined in a suitable way.
This combination problem is equivalent to frequent itemset mining due to the mono-
tonicity S ⊆ T ⇒ |N T

ε (o)| ≤ |NS
ε (o)|. Thus, we can use any frequent itemset mining

algorithm (e.g. the Apriori-algorithm [14]) in order to determine the best subspace of
an object o.

Definition 1 (subspace preference vector/dimensionality of a point). Let So be the
best subspace determined for object o ∈ D. The subspace preference vector w(o) =
(w1, . . . , wd)T of o is defined by

wi(o) =
{

1 if ai ∈ So

0 if ai �∈ So

The subspace dimensionality λ(o) of o ∈ D is the number of zero-values in the subspace
preference vector w(o).

In the example in Figure 2 the ε-neighborhoods of the 3D point p in attributes x and
y are shown by gray-shaded areas. If we assume that both of these areas contain at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 E. Achtert et al.

least μ points whereas the ε-neighborhood of o along z (not shown) contains less than
μ points, o may participate in a subspace cluster that is projected into the subspace
{x, y}. If |N {x,y}

ε (o)| ≥ μ, then w(o) = (1, 1, 0)T and λ(o) = 1. Otherwise, none
of the 1D subspace clusters containing o can be merged to form a higher dimensional
subspace cluster, i.e. we assign o to the subspace containing more points.

Obviously, using any frequent itemset mining algorithm is rather inefficient for high-
dimensional data sets, especially when the dimensionality of the subspace clusters are
also high-dimensional. Thus, we further propose a heuristics for determining the best
subspace So for an object o which scales linearly in the number of dimensions. We
simply use a best-first search:

1. Determine the candidate attributes of o: C(o) = {ai | ai ∈ A ∧ |N ai
ε (o)| ≥ μ}.

2. Add ai = arg max
a∈C(o)

{|N a
ε (o)|} to So and delete ai from C(o).

3. Set current intersection I := N ai
ε (o).

4. Determine attribute ai = arg max
a∈C(o)

{|I ∩ N a
ε (o)|}.

(a) If |I ∩ N ai
ε (o)| ≥ μ then:

Add ai to So, delete ai from C(o), and set I := I ∩ N ai
ε (o).

(b) Else: stop.
5. If C �= ∅ continue with Step 4.

Using these heuristics to compute So for o ∈ D, we can determine w(o) as in
Definition 1. Overall, we assign a d-dimensional preference vector to each point. The
attributes having predicate “1” span the subspace where to find a cluster containing the
point, whereas the remaining attributes are irrelevant.

We define a similarity measure between points which assigns a distance of 1, if these
two points share a common 1D subspace cluster. If they share a common 2D subspace
cluster, they have a distance of 2, etc. This similarity measure is integrated into the algo-
rithm OPTICS [9]. Sharing a common k-dimensional subspace cluster may mean differ-
ent things: Both points may be associated to the same k-dimensional subspace cluster,
or both points may be associated to different (k-1)-dimensional subspace clusters that
intersect or are parallel (but not skew). Intuitively, the distance measure between two
points corresponds to the dimensionality of the data space which is spanned by the
“combined” subspace preference vector of the two points. We first give a definition of
the subspace dimensionality of a pair of points λ(p, q) which follows the intuition of
the spanned subspace and then define our subspace distance measure.

Definition 2 (subspace dimensionality of a point pair). The subspace preference vec-
tor w(p, q) of a pair of points p, q ∈ D representing the combined subspace of p and
q is computed by an attribute-wise logical AND-conjunction of w(p) and w(q), i.e.
wi(p, q) = wi(p) ∧ wi(q) (1 ≤ i ≤ d). The subspace dimensionality between two
points p, q ∈ D, denoted by λ(p, q), is the number of zero-values in w(p, q).

We cannot directly use the subspace dimensionality λ(p, q) as the subspace distance
because points from parallel subspace clusters will have the same subspace preference
vector. Thus, we check whether the preference vectors of two points p and q are equal
or one preference vector is “included” in the other one. This can be done by computing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Detection and Visualization of Subspace Cluster Hierarchies 157

the subspace preference vector w(p, q) and checking whether w(p, q) is equal to w(p)
or w(q). If so, we determine the distance between the points in the subspace spanned by
w(p, q). If this distance exceeds 2·ε, the points belong to different, parallel clusters. The
threshold ε, playing already a key role in the definition of the subspace dimensionality
(cf. Definition 1), controls the degree of jitter of the subspace clusters.

Since λ(p, q) ∈ �, we usually have many tie situations when merging points/clus-
ters during hierarchical clustering. These tie situations can be solved by considering
the distance within a subspace cluster as a second criterion. Inside a subspace cluster
the points are then clustered in the corresponding subspace using the traditional OP-
TICS algorithm and, thus, the subspace clusters can exhibit arbitrary sizes, shapes, and
densities.

Definition 3 (subspace distance). Let w be an arbitrary preference vector. Then S(w)
is the subspace defined by w and w̄ denotes the inverse of w. The subspace distance
SDIST between p and q is a pair SDIST(p, q) = (d1, d2), where d1 = λ(p, q)+Δ(p, q)
and d2 = DISTS(w̄(p,q))(p, q), and Δ(p, q) is defined as

Δ(p, q) =
{

1 if (w(p, q) = w(p) ∨ w(p, q) = w(q)) ∧ DISTS(w(p,q))(p, q) > 2ε
0 else,

We define SDIST(p, q) ≤ SDIST(r, s) ⇐⇒ SDIST(p, q).d1 < SDIST(r, s).d1 or
(SDIST(p, q).d1 = SDIST(r, s).d1 and SDIST(p, q).d2 ≤ SDIST(r, s).d2)).

As suggested in [9], we introduce a smoothing factor μ to avoid the Single-Link ef-
fect and to achieve robustness against noise points. The parameter μ represents the
minimum number of points in a cluster and is equivalent to the parameter μ used
to determine the best subspace for a point. Thus, instead of using the subspace dis-
tance SDIST(p, q) to measure the similarity of two points p and q, we use the subspace
reachability REACHDISTμ(p, q) = max(SDIST(p, r), SDIST(p, q)), where r is the μ-
nearest neighbor (w.r.t. subspace distance) of p. DiSH uses this subspace reachability
and computes a “walk” through the data set, assigning to each point o its smallest sub-
space reachability with respect to a point visited before o in the walk. The resulting
order of the points is called cluster order. In a so-called reachability diagram for each
point (sorted according to the cluster order along the x-axis) the reachability value is
plotted along the y-axis. The valleys in this diagram represent the clusters. The pseudo-
code of the DiSH algorithm can be seen in Figure 3.

4 Visualizing Subspace Cluster Hierarchies

The reachability plot is equivalent to tree-like representations and, thus, is not capable
of visualizing hierarchies with multiple inclusions. This is illustrated in Figures 4(a)
and 4(d): When exploring the reachability plots of the two different data sets A and
B, one can see that they look almost the same (cf. Figures 4(b) and 4(e)). Thus, taking
only the reachability plots into account, it is impossible to detect the obviously different
kind of hierarchy of the second data set. This phenomenon is due to the fact that in data
set B we face a subspace cluster hierarchy with multiple inclusion (the 1D cluster is
embedded within both 2D clusters).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 E. Achtert et al.

algorithm DiSH (D , μ , ε)
co ← c l u s t e r order ; / / i n i t i a l l y empty
pq ← empty p r i o r i t y queue ordered by REACHDISTμ ;
foreach p ∈ D do

compute w(p) ;
p.REACHDISTμ ← ∞ ;
i n s e r t p i n t o pq ;

while (pq �= ∅) do
o ← pq . next () ;
r ← μ−nearest neighbor o f o w. r . t . SDIST ;
foreach p ∈ pq do

new sr ← max(SDIST(o, r), SDIST(o, p)) ;
pq . update (p , new sr) ;

append o to co ;
return co ;

Fig. 3. The DiSH algorithm

This limitation of the reachability plot leads to our contribution of representing the
relationships between cluster hierarchies as a so-called subspace clustering graph such
that the relationships between the subspace clusters can be explored at a glance. The
subspace clustering graph displays a kind of hierarchy which should not be confused
with a conventional (tree-like) cluster hierarchy usually represented by dendrograms.
The subspace clustering graph consists of nodes at several levels, where each level rep-
resents a subspace dimension. The top level represents the highest subspace dimension,
which has the dimensionality of the data space. It consists of only one root node rep-
resenting all points that do not share a common subspace with any other point, i.e. the
noise points. Let us note that this is different to dendrograms where the root node rep-
resents the cluster of all objects. The nodes in the remaining levels represent clusters in
the subspaces with the corresponding dimensionalities. They are labeled with the pref-
erence vector of the cluster they represent. For emphasizing the relationships between
the clusters, every cluster is connected with its parents and its children. In contrast to
tree representations, like e.g. dendrograms, a graph representation allows multiple par-
ents for a cluster. This is necessary, since hierarchical subspace clusters can belong to
more than one parent cluster. Consider e.g. data set B, where the objects of the inter-
section line are embedded in the horizontal plane as well as in the vertical plane, i.e.
the cluster forming the intersection line belongs to two parents in the hierarchy. The
subspace clustering graphs of the two data sets A and B are depicted in Figures 4(c)
and 4(f). The line of data set A is represented by the cluster with the preference vector
[1,0,1]. This cluster is a child of cluster [1,0,0] representing the plane in data set A (cf.
Figure 4(c)). The more complex hierarchy of data set B is represented in Figure 4(f),
where the cluster [1,0,1] belongs to two parent clusters, the cluster of the horizontal
plane [0,0,1] and the cluster of the vertical plane [1,0,0].

In contrast to dendrograms, objects are not placed in singleton clusters at the leaf
level, but are assigned to the lowest-dimensional subspace cluster they fit in within

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Detection and Visualization of Subspace Cluster Hierarchies 159

(a) Data set A. (b) Reachability plot. (c) Subspace clustering graph.

(d) Data set B. (e) Reachability plot. (f) Subspace clustering graph.

Fig. 4. Different hierarchies in 3-dimensional data

method e x t r a c t C l u s t e r (ClusterOrder co)
cl ← empty l i s t ; / / c l u s t e r l i s t
foreach o ∈ co do

p ← o.predecessor ;
i f (�c ∈ cl wi th w(c) = w(o, p) ∧ distw(o,p)(o, c .center) ≤ 2 · ε) then

create a new c ;
add c to cl ;

add o to c ;
return cl ;

Fig. 5. The method to extract the clusters from the cluster order

the graph. Similar to dendrograms, an inner node n of the subspace clustering graph
represents the cluster of all points that are assigned to n and of all points assigned to its
child nodes.

To build the subspace clustering graph, we extract in a first step all clusters from the
cluster order. For each object o in the cluster order the appropriate cluster c has to be
found, where the preference vector w(c) of cluster c is equal to the preference vector
w(o, p) between o and its predecessor p. Additionally, since parallel clusters share the
same preference vector, the weighted distance between the centroid of the cluster c and
object o with w(o, p) as weighting vector has to be less or equal to 2ε. The complete
method to extract the clusters from the cluster order can be seen in Figure 5.

After the clusters have been derived from the cluster order, the second step builds the
subspace cluster hierarchy. For each cluster we have to check, if it is part of one or more
(parallel) higher-dimensional clusters, whereas each cluster is at least the child of the
noise cluster. The method to build the subspace hierarchy from the clusters is depicted
in Figure 6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 E. Achtert et al.

method bu i l dH ie ra rchy (cl)
d ← d imens iona l i t y o f ob jec ts in D ;
foreach ci ∈ cl do

foreach cj ∈ cl do
i f (λcj > λci) then

d ← distw(ci,cj)(ci .center , cj .center) ;
i f (λcj = d ∨ (d ≤ 2 · ε ∧ �c ∈ cl : c ∈ ci.parents∧λc < λcj)) then

add ci as c h i l d to cj ;

Fig. 6. The method to build the hierarchy of subspace clusters

(a) Data set. (b) Subspace clustering graph.

Fig. 7. Results on synthetic dataset DS1

Table 1. Runtime, precision and recall w.r.t. the strategy for preference vector computation

APRIORI BEST-FIRST

DS1 DS2 DS3 DS1 DS2 DS3

runtime [sec] 147 32 531 76 14 93

precision [%] 99.7 99.5 99.7 99.7 99.5 99.5

recall [%] 99.8 99.6 99.8 99.8 99.6 99.5

5 Experimental Evaluation

We first evaluated DiSH on several synthetic data sets. Exemplary, we show the results
on three data sets named “DS1”, “DS2”, and “DS3”.

We evaluated the precision, recall and the runtime of our DiSH algorithm w.r.t.
the strategies used for determination of the preference vectors. The strategy using the
Apriori-algorithm [14] is denoted with “APRIORI”, the heuristics using the best-first
search is denoted with “BEST-FIRST”. The results of the runs with both strategies on
the three data sets are summarized in Table 1. Since the heuristics using best-first search
outperforms the strategy using the Apriori-algorithm in terms of runtime and has almost
equal precision and recall values, we used in all further experiments the heuristics to
compute the preference vectors rather than the Apriori-based approach.

Data set “DS1” (cf. Figure 7(a)) contains 3D points grouped in a complex hierarchy
of 1D and 2D subspace clusters with several multiple inclusions and additional noise

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Detection and Visualization of Subspace Cluster Hierarchies 161

Fig. 8. Subspace clustering graph of the Forest data

Fig. 9. Subspace clustering graph of the Gene data

points. The results of DiSH applied to DS1 are depicted in Figure 7(b). As it can be
seen, the complete hierarchical clustering structure can be obtained from the resulting
subspace clustering graph. In particular, the complex nested clustering structure can be
seen at a glance. Data set “DS2” is a 5D data set containing ten clusters of different di-
mensionality and noise: one cluster is embedded in a 4D subspace, four clusters are 3D,
three clusters are 2D and two clusters are 1D subspace clusters. The resulting subspace
clustering graph (not shown due to space limitations) produced by DiSH exhibits all
ten subspace clusters of considerably different dimensionality correctly. Similar obser-
vations can be made when evaluating the subspace clustering graph obtained by DiSH
on data set “DS3” (not shown due to space limitations). The 16D data set DS3 contains
noise points, one 13 dimensional, one 11 dimensional, one 9 dimensional, one 7 di-
mensional cluster, and two 6 dimensional clusters. Again, DiSH found all six subspace
clusters correctly.

We also applied HiSC, PreDeCon and PROCLUS on DS1 for comparison. Neither
PreDeCon nor PROCLUS are able to detect the hierarchies in DS1 and the subspace
clusters of significantly different dimensionality. HiSC performed better in detecting
simple hierarchies of single inclusion but fails to detect multiple inclusions.

In addition, we evaluate DiSH using several real-world data sets. Applied to the
Wisconsin Breast Cancer Database (original) from the UCI ML Archive1 (d = 9, n =
569, objects labeled as “malignant” or “benign”) DiSH finds a hierarchy containing

1 http://www.ics.uci.edu/∼mlearn/MLSummary.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/~mlearn/MLSummary.html

162 E. Achtert et al.

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

10 20 30 40 50 60 70 80 90 100
size * 1,000

ru
nt

im
e

[s
ec

]

(a) Scalability w.r.t. size.

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500

5 10 15 20 25 30 35 40 45 50
dimensionality

ru
nt

im
e

[s
ec

]

(b) Scalability w.r.t. d.

Fig. 10. Scalability results

several low dimensional clusters and one 7D cluster (ε = 0.01, μ = 15). An additional
9D cluster contains the noise points. It is worth mentioning that the reported clusters
are pure. In particular, the seven low dimensional clusters only contain objects labeled
as “benign”, whereas the 7D cluster only contains objects marked as “malignant”.

We applied DiSH on the Wages data set2 (d = 4, n = 534). Since most of the
original attributes are not numeric, we used only 4 dimensions (YE=years of education,
W=wage, A=age, and YW=years of work experience) for clustering. The resulting sub-
space cluster hierarchy (using ε = 0.001, μ = 9) is visualized in Figure 8. The nine par-
allel clusters having a subspace dimensionality of λ = 3 consist of data of people having
equal years of education, e.g in cluster [1, 0, 0, 0 0] YE=17 and in cluster [1, 0, 0, 0 5]
YE=12. The two clusters labeled with [1, 1, 0, 0 0] and [1, 1, 0, 0 1] in the 2D subspace
are children of cluster [1, 0, 0, 0 5] and have (in addition to equal years of education,
YE=12) equal wages values (W=7.5 and W=5, respectively). The 1-dimensional clus-
ter [1, 0, 1, 1] is a child of [1, 1, 0, 0 0] and has the following properties: YE=12, A=26,
and YW=8.

Last but not least, we applied DiSH to the yeast gene expression data set of [15]
(d = 24, n ≈ 4, 000). The result of DiSH (using ε = 0.01, μ = 100) on the gene
expression data is shown in Figure 9. Again, DiSH found several subspace clusters of
different subspace dimensionalities with multiple inclusions.

The scalability of DiSH w.r.t. the data set size is depicted in Figure 10(a). The ex-
periment was run on a set of 5D synthetic data sets with increasing number of objects
ranging from 10,000 to 100,000. The objects are distributed over equally sized sub-
space clusters of subspace dimensionality λ = 1, . . . , 4 and noise. As parameters for
DiSH we used ε = 0.001 and μ = 20. As it can be seen, DiSH scales slightly super-
linear w.r.t. the number of tuples. A similar observation can be made when evaluating
the scalability of DiSH w.r.t. the dimensionality of the data set (cf. Figure 10(b)). The
experiments were obtained using data sets with 5,000 data points and varying dimen-
sionality of d = 5, 10, 15, . . . , 50. For each data set the objects were distributed over
d− 1 subspace clusters of subspace dimensionality λ = 1, . . . , d− 1 and noise. Again,
the result shows a slightly superlinear increase of runtime when increasing the dimen-
sionality of the data set. The parameters for DiSH were the same as in the evaluation of
the scalability of DiSH w.r.t. the data set size (ε = 0.001 and μ = 20).

2 http://lib.stat.cmu.edu/datasets/CPS 85 Wages

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://lib.stat.cmu.edu/datasets/CPS_85_Wages

Detection and Visualization of Subspace Cluster Hierarchies 163

6 Conclusions

In this paper, we presented DiSH, the first subspace clustering algorithm for detecting
complex hierarchies of subspace clusters. DiSH is superior to the state-of-the-art sub-
space clustering algorithms in several aspects: First, it can detect clusters in subspaces
of significantly different dimensionality. Second, it is able to determine hierarchies of
nested subspace clusters containing single and multiple inclusions. Third, it is able to
detect clusters of different size, shape, and density. Fourth, it does not assume that the
subspace preference of a point p is exhibited in the local neighborhood of p in the entire
data space. We have shown by performing several comparative experiments using syn-
thetic and real data sets that DiSH has a superior performance and effectivity compared
to existing methods.

References

1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of
high dimensional data for data mining applications. In: Proc. SIGMOD. (1998)

2. Cheng, C.H., Fu, A.W.C., Zhang, Y.: Entropy-based subspace clustering for mining numeri-
cal data. In: Proc. KDD. (1999) 84–93

3. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-
dimensional data. In: Proc. SDM. (2004)

4. Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.: A generic framework for efficient subspace
clustering of high-dimensional data. In: Proc. ICDM. (2005)

5. Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for pro-
jected clustering. In: Proc. SIGMOD. (1999)

6. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast
projective clustering. In: Proc. SIGMOD. (2002)

7. Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local
subspace preferences. In: Proc. ICDM. (2004)

8. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.: Finding
hierarchies of subspace clusters. In: Proc. PKDD. (2006) To appear.

9. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify
the clustering structure. In: Proc. SIGMOD. (1999)

10. Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a
large data set. In: Proc. ICDE. (2002)

11. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets.
In: Proc. SIGMOD. (2002)

12. Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected
objects. In: Proc. SIGMOD. (2004)

13. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space.
In: Proc. SIGMOD. (2000)

14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD.
(1994)

15. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O.,
Botstein, D., Futcher, B.: ”Comprehensive Identification of Cell Cycle-Regulated Genes of
the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.”. Molecular Biolology of
the Cell 9 (1998) 3273–3297

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 164–175, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Correlation-Based Detection of Attribute Outliers

Judice L.Y. Koh1,2, Mong Li Lee2, Wynne Hsu2, and Kai Tak Lam3

1 Institute for Infocomm Research, Singapore 119613
2 School of Computing, National University of Singapore

3 Institute of High Performance Computing, Singapore 117528
judice@i2r.a-star.edu.sg,{leeml,whsu)@comp.nus.edu.sg,

lamkt@ihpc.a-star.edu.sg

Abstract. An outlier is an object that does not conform to the normal behavior
of the data set. In data cleaning, outliers are identified for data noise reduction.
In applications such as fraud detection, and stock market analysis, outliers
suggest abnormal behavior requiring further investigation. Existing outlier
detection methods have focused on class outliers and research on attribute
outliers is limited, despite the equal role attribute outliers play in depreciating
data quality and reducing data mining accuracy. In this paper, we propose a
novel method to detect attribute outliers from the deviating correlation behavior
of attributes. We formulate three metrics to evaluate outlier-ness of attributes,
and introduce an adaptive factor to distinguish outliers from non-outliers.
Experiments with both synthetic and real-world data sets indicate that the
proposed method is effective in detecting attribute outliers.

Keywords: Outlier detection, Data cleaning.

1 Introduction

An outlier is an object exhibiting alternative behavior in a data set. It is a data point
that does not conform to the general patterns characterizing the data set. Detecting
outliers has important applications in data cleaning as well as in the mining of
abnormal patterns for fraud detection, stock market analysis, intrusion detection,
marketing, network sensors, email spam detection, among others.

There are two types of outliers, the class and the attribute outliers [1]. A class
outlier is a multivariate data point (tuple) which does not fit into any class by
definitions of distance, density, or nearest-neighbor. An attribute outlier, in general
sense, is an external error introduced to the attribute values. In this paper, we formally
define attribute outlier as a univariate point which exhibits deviating correlation
behavior with respect to other attributes.

Existing outlier detection methods focus primarily on class outliers, although for a
number of reasons, detecting attribute outliers is an equally important data mining
problem. First, class outliers are often the result of one or more attribute outliers.
Correcting or eliminating only the affecting attributes rather than the tuples has the
advantage of fixing the abnormal behaviors while retaining information. Second, even
when attribute outliers do not affect class memberships, they may still interfere with
the data analysis mechanisms as data noise. Third, for many real-world data sets that
do not contain class attributes, it is still meaningful to identify attribute outliers which

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 165

are sources of errors. One example is the UniProt database which contains the
functional, structural, and physico-chemical descriptions of proteins [2]. Though there
is no meaningful class attribute for proteins, maintaining correctness of every detail
provided in these records is critical, given that they are extensively referenced by the
world-wide biological researchers for analysis and experimental planning.

Since attribute outliers do not arise from the context of class outliers, they cannot
be defined from the view point of the latter. The nature of problems associated with
class and attribute outliers differ and separate detection methods are needed. We
propose a novel correlation-based approach for attribute outlier detection in data
subspaces. We call the outlier detection method ODDS to denote attribute Outlier
Detection from Data Subspaces. Specific contributions of this paper include:

1. A formal definition of attribute outliers based on the correlation behavior of
attributes in data subspaces.

2. Three new metrics O-measure, P-measure and Q-measure to quantify the deviating
correlation behavior of an attribute. O-measure is the most accurate while Q-
measure is computationally less intensive. P-measure is devised for sparse data sets
containing vast occurrences of rare attribute values which are not outliers.

3. An adaptive Rate-of-change factor for the selection of optimal thresholds that
distinguishes the outliers from non-outliers in any given data set. These automatic
and data-dictated thresholds remove dependency on user-defined parameter.

4. The ODDS algorithm which systematically detects attribute outliers in data
subspaces, and two filtering strategies to quickly identify subspaces that do not
contain attribute outliers.

The rest of this paper is organized as follows. A motivating example is given in the
next section. Related works are discussed in Section 3. Formal definitions are detailed
in Section 4. In Section 5, we present the ODDS algorithm. Experimental evaluations
are presented in Section 6, and we conclude in Section 7.

2 Motivating Example

We first illustrate the rationale of our deviation metrics for attribute outlier detection
using the example in Table 1 and Figure 1.

Table 1. World Clock data set containing 4 attribute outliers. W, Y and Z are erroneous entries,
while X is an uncommon abbreviation of ‘British Columbia’.

 Country State City Day Time† Weather
1 U.S.A California LA Tue 8:40pm Sunny
2 U.S.A California LA Tue 8:40pm Rainy
3 U.S.A California VancouverY WedZ 8:40pm Sunny
4 U.S.A California LA Tue 8:40pm Storm
5 U.S.A California LA Tue 8:40pm Snow
6 Canada British Columbia Vancouver Tue 8:40pm Storm
7 Canada British Columbia Vancouver Tue 8:40pm Sunny
8 Canada CaliforniaW Vancouver Tue 8:40pm Rainy
9 Canada B. C.X Vancouver Tue 8:40pm Rainy
10 Canada British Columbia Vancouver Tue 8:40pm Rainy
11 Micronesia Ponape Palikir Wed 2:40pm Storm

 † Class attribute W, X, Y, Z Attribute outliers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 J.L.Y. Koh et al.

Fig. 1. Selected attribute combinations of the World Clock dataset and their supports

First, we observed that tuples with one or more rare values may possibly be class
outliers, but for attribute outliers, rarity does not equate abnormality. Consider Case
C in Figure 1 – the tuple is a perfectly legitimate class outlier belonging to the rare
class of ‘2:40pm’ in Table 1. However, the attributes of ‘Micronesia’, ‘Ponape’ and
‘Palikir’, though rare in individual dimensions of Country, State and City, are
consistent in their correlation behavior and are not erroneous. In a similar example, 3
out of 208,005 tuples in the UniProt protein database (Release 7.1) contain the values
<’Parkin’,‘PKRN’,‘S-nitrosylation’> for attributes Protein name, Gene name and
Keyword respectively. Despite rarity in their dimensions, they are not attribute
outliers. In reality, few known protein sequences are associated with the Parkinson
disease, but they are consistently known as Parkin, are products of PKRN gene, and
are post-translationally modified by nitrosylation.

Rarity may be a good indicator for class outlier-ness. But for attribute outliers,
observations should be drawn from the correlation behavior of attributes. Consider
Case A – while ‘Vancouver’ and ‘Canada’ co-occur in five tuples, only one sub-tuple
of <’Canada’,‘California’> and of <‘California’,‘Vancouver’> exist. Intuitively,
greater differences in the sub-tuple supports indicate higher likelihood that
‘California’ is an outlier in combination <’Canada’,‘California’,‘Vancouver’>. This
forms the basis of our outlier metrics. The same analogy identifies X in Case B.

In certain sparse data sets such as the UniProt database, finding the vast
occurrences of rare attribute values such as ‘B.C’ in Case B is not of prime interest.
Unlike ‘California’ in Case A, ‘B.C’ is not necessarily erroneous. Therefore, the
P-measure metric is designed to disfavor rare values from attribute outlier detection.

In real-world databases, a tuple often contain multiple attribute outliers. Due to the
interferences of the correlation patterns, it is difficult to determine multiple attribute
outliers from an attribute combination. However, an attribute outlier can be isolated at
lower dimensional attribute combinations. Consider Case D – the two attribute
outliers are separated when they are projected into different 4-attribute sub-tuples.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 167

Our proposed ODDS algorithm systematically iterates through data subspaces
which are projected relations of two or more attributes. Distinguishing attribute
outliers as local deviators in data subspaces also has the benefit of eliminating
interferences of noisy and uncorrelated dimensions with the outlier detection
algorithms. For example, the Weather dimension in Table 1 does not relate to any
other attributes but contain non-deterministic/random values interfering with the
outlier detection mechanisms.

To isolate the attribute outliers from non-outliers, users typically need to define a
threshold. This is not viable in practice, given that the number of outliers in the real
world dataset varies depending on the noise level of the data set and the data
dimension under study. In the ODDS algorithm, the optimal threshold is determined
from the maximal Rate-of-change which intuitively marks the point where sorted
outlier scores drastically change. Rate-of-change is the natural boundary separating
the outliers and non-outliers, and it removes the dependency of the outlier detection
on any user-specified parameter.

3 Related Works

Among the few attribute outlier detection methods are distribution-based approaches
that eliminates attribute values that do not fit into the distribution models of the data
set [3, 4]. Accuracy of distribution-based methods largely depends on the best-fit
distribution models used, and they are limited to finding obvious off-scale values.

Data polishing approaches to attribute outlier detection problem construct for each
dimension a classifier based on the remaining dimensions and the class dimension
[1, 5]. Incorrect predictions are flagged as attribute outliers. The accuracy varies
depending on the classifier used and they mainly focused on attribute outliers
resulting in change of class membership.

Class outlier detection methods have been extensively studied. Clustering-based
algorithms generate outliers as “miniature” clusters, either though optimizing cluster
size and relative distance from neighboring clusters [6], or eliminating clusters at
longest edges of a Minimum Spanning Tree (MST) [7]. These methods generally
suffer from expediting cost as data dimensionality and size increases.

Density-based class outlier detection methods measure the number of tuples in the
surrounding neighborhoods [8]. Because of the large number of k-nearest neighbor
queries, computational cost is high but may be reduced through pruning mechanisms
[9, 10]. They are restricted to continuous data sets measurable by proximities.

Distance-based approaches define a class outlier by the β fraction of other data
points which are less than κ distance from it [11]. Native methods do not scale well
with data dimensionality and size but this can be reduced by pruning in data partitions
or p-tree data structures [12, 13]. Also, the accuracy of distance-based methods is
highly dependent on the user parameters β and κ. Too high β leads to more false
positives while low κ causes more false negatives.

Comparatively, the proposed ODDS method is applicable to categorical data, and
can be extended to continuous data by discretizing the values into bins. Further, the
ODDS method is parameter-less; the thresholds are determined using an adaptive
factor generated from the data set.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 J.L.Y. Koh et al.

4 Definitions

In this section, we formalize the notion of an attribute outlier and give definitions of
the metrics used in our algorithm.

Definition 1 (Support). Let R be a relation with m attributes A1, A2,..., Am. Let S be a
projection of degree (v-u+1) on R over attributes Au,..., Av, ()RS

vu AA ,...,π= . The

support of a tuple s in S, denoted by sup(s), is the count of the tuples in R that have
the same values for attributes Au,..., Av as tuple s.

For example, consider the World-Clock relation R(Country, State, City, Day, Time,
Weather) in Table 1, and a projected relation over three attributes,

()RS CityStateCountry ,,π= . The support of tuple <’U.S.A’, ‘California’, ‘LA’> in S is 4

since tuples 1, 2, 4 and 5 in R have the same attribute values for Country, State and
City. Similarly, sup(<’Canada’, ‘California’, ‘Vancouver’>) = 1.

Definition 2 (Neighborhood). Let tuple s=<au,…, av>. Without loss of generality, we
consider Av as the target attribute whose extent of deviation we are interested to
determine. The neighborhood of Av w.r.t s is defined as N(Av, s) = <au,…, av-1>. The
support of N(Av, s) is the count of tuples in R with the same values au,…, av-1 for
Au,…, Av-1.

Continuing from the last example, consider tuple s=<’Canada’, ‘California’,
‘Vancouver’> in the projected relation S. The neighborhood of the State attribute in
tuple s, denoted as N(State, s) is the sub-tuple <’Canada’, ‘Vancouver’>. Since the
same values of ‘Canada’ and ‘Vancouver’ for attributes Country and City respectively
are found in tuples 6, 7, 8, 9 and 10 of R, we have sup(N(State, s)) = 5.

Our objective is to determine attributes which deviate from its neighbors in the
projected relations. We formulate three metrics O-measure, P-measure and Q-measure
to quantify the extent of deviation.

Definition 3 (O-measure). The O-measure (Outlier measure) of target attribute Av
w.r.t. s is defined as

()
()()

()()sAN

sAN
sAmeasureO

v

v

ui
i

v ,sup

,sup
,

1

∑
−

==−
 (1)

The lower the O-measure score, the more likely attribute Av is an attribute
outlier in s. Let us compute the O-measure of the attribute outlier W in Table 1. Let
s=<’Canada’, ‘California’, ‘Vancouver’> be a tuple of ()RS CityStateCountry ,,π= . The

support of N(State, s) is 5 while sup(N(Country, s)) and sup(N(City, s)) are both 1.
The O-measure of the State attribute w.r.t. s is (1+1)/5=0.4.

For comparison, we also compute the O-measure of the State attribute in tuple
t=<’U.S.A’, ‘California’, ‘LA’>. We have O-measure(State, t) = (sup(N(Country, t))
+ sup(N(City, t))) / sup(N(State, t)) = (4+5)/4 = 2.25. ‘California’ is an attribute
outlier in attribute combination s but not in t, therefore O-measure(State, s) is
relatively lower than O-measure(State, t). Recall that the outlier metric should not
consider rare classes or events as attribute outliers. This is evident using O-measure
where the high O-measure(Country, <’Micronesia’, ’Ponape’, ’Palikir’>) = 2 prevents
the mis-interpretation of Micronesia as an attribute outlier.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 169

Definition 4 (P-measure). Let freq(Av) be the frequency of an attribute Av in the
original relation R. The P-measure of Av w.r.t a tuple s is defined as

()()
()() ()vv

v

ui
i

v AfreqsAN

sAN
sAmeasureP

,sup

,sup
),(

1

∑
−

==−
 (2)

P-measure takes into account the support of Av in R. A lower weightage is given to
the rare attribute values which have lower frequencies. Unlike O-measure, P-measure
favors non-rare values and is more effective in identifying attribute outliers in sparse
data set which contained vast occurrences of rare attribute values which are not
attribute outliers.

Consider the attribute outlier X in Table 1. Given the low frequency of the value
‘B.C.’ in the data set, the low O-measure score almost guarantee that the State
attribute in s= <’Canada’, ‘B.C.’, ‘Vancouver’> will be labeled as an outlier, that is,
O-measure(State, s)=(1+1)/4=0.5. In contrast, P-measure(State, s) = (1+1)/(4*0.09) =
5.6 is relatively much higher.

Definition 5 (Q-measure). The Q-measure of an attribute A w.r.t tuple s is defined as
()
()()sAN

s
sAmeasureQ

,sup

sup
),(=−

(3)

Let a be the attribute value of A. Q-measure is the conditional probability of a tuple
having the value a for attribute A, given that the tuple has the same attribute values as
the neighborhood of A. Relating this back to the attribute outlier W in Table 1, Q-
measure(State, <’Canada’, ‘California’, ‘Vancouver’>) = 1/5 = 0.2.

Computationally, it is less intensive to use Q-measure as the outlier detection
metric because less calculation of the supports of neighborhoods is required. This is
however, at the expense of accuracy performance which we will show in Section 6.

Definition 6 (CA-Outlier). Let S be relation of n tuples S={s1,…, sn}. Given a
threshold β, a Correlation-based Attribute (CA-)outlier is a paired set (A, si), 1≤ i≤ n
such that the deviation scores of A w.r.t si based on an outlier metric is less than β.
Optimal value of β can be automatically derived using Rate-of-change.

Definition 7 (Rate-of-change). Given an attribute A and the set of O-measure(A, si)

Ssi ∈∀ , 1≤ i≤ n. Let L be the list of tuples si sorted in ascending order of O-

measure(A, si). The Rate-of-change of a ranked tuple si (2≤i≤n) is defined as

() () ()
()1

1

,

,,

−

−

−
−−−

=−−
i

ii
i sAmeasureO

sAmeasureOsAmeasureO
schangeofRate

(4)

The same formula can be applied to determine the Rate-of-change based on the P-
measure and Q-measure metrics.

5 Algorithms

We regard attribute outlier as a local deviator which exhibits alternative correlation
behavior in a data subspace. Consider a relation R with m attributes and n tuples. In
the worst case, scanning all data subspaces (or projected relations) in R require
O(n×2m) searches where 2m is the total number of projected relations on R. Therefore,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 J.L.Y. Koh et al.

k = 5

k = 4

k = 3

A,b,C,d,E3

A,b,d,E3 A,C,d,E5 b,C,d,E3A,b,C,E3

Increasing
Frequency

A,b,C,d3

A,B,C,D,E20

A,B,C,E25

A,b,C3 A,b,d3 A,b,E3 A,C,d5 A,C,E30 A,d,E5 b,C,d5 b,C,E3 C,d,E5 b,d,E3

Fig. 2. Attribute combinations at projections of degree k with attribute outliers b and d. The
numerical values at the top right corner of the combinations are the corresponding supports.

computing the O-measure scores for each attribute w.r.t every projected relations
requires O(2m×n×m) time complexity. Obviously, the brute-force approach of
searching every data subspaces of a relation for CA-outliers is highly inefficient. To
overcome this limitation, we propose two filtering strategies to identify and prune
data subspaces that cannot possibly contain an attribute outlier.

Figure 2 shows the attribute combinations in a relation of 5 attributes. We assume
that all possible projections of the relation are completely enumerated. Intuitively, a
frequent tuple of any projected relation cannot be a CA-outlier. Our first strategy
filters any tuple s with sup(s) ≥ minsup, s and its sub-tuples from the calculation of
the outlier scores. Pruning of sub-tuples follows the Apriori property: supports of sub-
tuples increase across projected relations of decreasing degrees. For example,
sup(<’A’,‘b’,‘C’,‘d’,‘E’>) ≤ sup(<’A’,‘C’,‘d’,‘E’>) ≤ sup(<’A’,‘C’,‘E’>). In Figure 2,
setting minsup at 20 will prune off <’A’,‘B’,‘C’,‘D’,‘E’> with sub-tuples
<’A’,‘B’,‘C’,‘E’> and <’A’,‘C’,‘E’>.

The second filtering strategy only applies to the Q-measure metric which exhibits
the monotone property. We prove that if ‘b’ is a CA-outlier in a tuple s based on Q-
measure, it is also CA-outlier in the sub-tuples of s.

Property 1. Let s be a tuple in projected relation S. An attribute A is a CA-outlier
w.r.t s based on Q-measure implies that A is a CA-outlier w.r.t any sub-tuple of s
which also contains A.

Proof. Let b be a CA-outlier w.r.t s=<’A’,’b’,’C’,’D’> detected using the Q-measure
deviation metric. Let s' be a sub-tuple of s. Let β be the optimal threshold such that for
any CA-outlier A, Q-measure(A, s)≤ β. Based on the Apriori property, we have

β≤−=≤=−

≤

),(
)),(sup(

)sup(

))',(sup(

)sup(
)',(

))',(sup()),(sup(

sbmeasureQ
sbN

b

sbN

b
sbmeasureQ

sbNsbN

Hence, b is also a CA-outlier in s'. Sub-tuples of any CA-outlier found using Q-
measure in an attribute combination are eliminated from deviation computation. In
Figure 2, sub-tuples <‘A’,’b’,’C’>, <’A’,’b’,’E’> and <’b’,’C’,’E’> are omitted when

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 171

‘b’ is detected a CA-outlier in <’A’,’b’,’C’,’E’>. Beyond reducing the time
complexity of the outlier score calculation; this property enables reduction of the time
for enumerating the projections.

Algorithm 1 shows the details of the ODDS algorithm. A top-down iteration over
the data subspaces, starting from the original relation R to the projected relations at
level 3 is performed [line 6]. The tuples or attribute combinations are stored into a list
L. Iteration begins by eliminating tuples which have frequency or supports greater
than minsup from L [line 4-6]. The program terminates if the list L is empty [line 8].

The metrics are computed for each target attribute of each attribute combinations at
level i [line 10-20]. Note that for Q-measure, it is not necessary to iterate over
neighborhoods (unlike O-measure or P-measure) of the target attribute and is
therefore computational cheaper. Further, Property 1 provides effective pruning for
Q-measure. Tuples belonging to the (i-1) data subspaces are generated from the
existing tuples in L at the end of each iteration [line 25-26]. For each dimension,
Get_CA-outliers function accepts a list of all attributes of the same dimension and its
corresponding O-, P-, or Q-measure values. These attribute points are sorted in
ascending values of their deviation scores [line 1, Get_CA-outliers] to identify the
maximum Rate-of-change [line 5, Get_CA-outliers]. Attribute points above max
Rate-of-change are output as CA-outliers [line 6-8].

ALGORITHM 1. ODDS Attribute Outliers Detection method
INPUT: Enumerated projections of degree 1..k for relation R with m
attributes. User input minsup.
OUTPUT: CA-outliers and the corresponding tuples of projected relations
1. Initialize List L
2. Insert into L projected relations of degree m of R
3. From degree i = m to 3 do
4. For each tuple s in L
5. Remove s if sup(s) ≥ minsup
6. Endfor
7. If L is empty then
8. Terminate program //end data subspace.
9. EndIf
10. For each tuple s in L do
11. For each target attribute A in s do
12. Q-measure(A,s)=sup(s)/sup(N(A,s))
13. O-measure(A,s)=0
14. For each neighbors Ci of A do
15. O-measure(A,s)=O-measure(A,s)+sup(N(Ci,s))
16. Endfor
17. O-measure(A,s)=O-measure(A)/sup(N(A,s))
18. P-measure(A,s)=O-measure(A,s)/sup(A)
19. Endfor
20. Endfor
21. For each target A do // compute Rate-of-change
22. OUTPUT Get_CA-outliers (si)
23. Enddo
24. Remove in L sub-tuples of the detected CA-outliers // Q-measure
25. Extract all tuples s in L
26. Insert into L sub-tuples of s of degree i-1
27. Endfor
FUNCTION. Get_CA-outliers
INPUT: List of attributes Aj and subsets with O-, P- or Q-measure values
OUTPUT: CA-outliers according to adaptive Rate-of-change thresholds
1. B ← Aj sorted in ascending order of measure(Aj)
2. For each point bi, 2≤i≤|Bj| o
3. Rate-of-change(bi) = (bi - bi-1)/ bi // rate of change
4. Endfor

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 J.L.Y. Koh et al.

5. ß ← i with max Rate-of-change(bi)
6. For each bi, 1≤ j ≤ ß do
7. OUTPUT CA-outliers ← bi
8. Endfor

6 Experimental Validation

Experiments were performed on a Pentium-IV 3.2GHz computer with 2GB of main
memory, and running Windows XP.

6.1 World Clock Dataset

The synthetic data set contains 9 attributes and 50,000 tuples generated from
http://www.timeanddate.com/worldclock/. The original data set is free of any form of
data noise, thus preventing the implicit noise in the original data set from interfering
with the artificial noise introduced.

In order to evaluate the performance of ODDS at varying numbers of attribute
outliers per tuple, we introduce x artificial attributes outliers to a random tuple in the
data set. These attributes are assigned random values from their respective domains.
The four datasets containing x=1, 2, 3, and 4 outliers per tuple are denoted X1, X2,
X3 and X4 respectively. For example, X2 has 2,500 CA-outliers distributed across
1,250 tuples, each containing 2 attribute outliers. We also generate a Mix3 dataset by
randomly inserting 1 to 3 artificial attribute outliers to each randomly selected tuple.

The maximum Rate-of-change is the point where the outlier scores change
significantly. Figure 3 shows the thresholds for individual attributes derived from the X1
data set using the Rate-of-change on the O-measure scores in ODDS. These thresholds
are used as the cut-off to determine the outliers (positives) from the non-outliers
(negatives). Table 2 shows that an F-score of 100% is achieved for X1, indicating that
the O-measure is effective in quantifying the extent of deviation in attribute outliers, and
that the Rate-of-change accurately derives the optimal cut-off points. Subsequent
experiments utilize the Rate-of-change factors as default selection for thresholds.

Table 2 shows the performance of ODDS at varying number of CA-outliers per
tuple. With only 9 attributes, it is not surprising that the false-negatives escalate when
tuples contain 4 or more CA-outliers per tuple. For data sets containing between 1
to 3 attribute outliers in each tuple, the outlier detection method can achieve an F-
score of between 73% and 100%. We expect that real-world data set will contain a
mixture of different number of attribute outliers in each tuple. For this, ODDS
achieves an F-score of 88% for the Mix3 data set.

In reality, we do not know the number of attribute outliers that may be present in
each tuple of a database. The ODDS approach systematically searches for CA-
outliers, identifying tuples with only one outlier at the data subspaces of the highest
degree k (i.e. complete tuple), and others at the subsequent lower degree projections.

The Mix3 data set is used to evaluate the performance of ODDS algorithm using
O-measure, P-measure and Q-measure metrics respectively. On manual inspection,
we find that these misses are in fact rare outlier countries which have been penalized
by their low supports in the dataset (e.g. Chile, Iraq, Poland). The accuracy of ODDS
converges across the projected relations of degree k, starting from k=7, with
decreasing false negatives as the number of attribute outliers detected accumulate.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 173

Rate-of-change for determining the outlier detection thresholds for X1

Country, 311

State, 311

City, 310

Day, 83

Time, 278

Sunrise, 337

Sunset, 333
Postal Code, 300

Continent, 238

0

5

10

15

20

25

1 51 101 151 201 251 301

No. of tuples (in ascending O-measure scores)

R
a

te
-o

f-
ch

a
ng

e(
O

-m
ea

su
re

)

Fig. 3. Rate-of-change for individual attributes in X1

Table 2. Performance of ODDS at
varying number of CA-outliers per
tuple. Recall, Precision and F-score is
in percentages.

 Recall Precision F-score

X1 100 100 100
X2 90 100 95
X3 63 99 73
X4 39 92 50
Mix3 79 99 88

Figure 4 shows the F-score is between 70% to 80% with O-measure and Q-measure.
For P-measure, the number of FNs is higher.

ODDS with O-measure and Q-measure perform consistently better than classifier-
based methods using decision tree C4.5 [1, 5]. Its performance is also stable when the
percentage of outlier noise increases. As the percentage of attribute outliers in the data
set increases, the correlations between attributes decreases, thus affecting the accuracy
of the correlation-based outlier detection approach.

Accuracy of different attribute outlier metrics

0

20

40

60

80

100

9 8 7 6 5 4 3

Degree of projected relations

F
-s

co
re O-measure

Q-measure

P-measure

Fig. 4. Accuracy of ODDS metrics converges
in data subspaces of lower degrees in Mix3

Comparison of attribute outlier detection methods for
Mix3 data set

40

50

60

70

80

90

100

1% 5% 10% 15% 20%

Noise Level

F
-s

co
re

ODDS (O-
measure)

ODDS (Q-
measure)

ODDS (P-
measure)

C4.5

Fig. 5. Performance of ODDS compared with
classifier-based attribute outlier detection

6.2 UniProt Dataset

The UniProt database (release 7.1) consists of 2,826,395 protein sequence records are
collected from multiple sources of large-scale sequencing projects and is frequently
accessed by the world-wide biological researchers for analysis and data mining [2].
UniProt/TrEMBL records are computationally annotated, thus the protein functions
are predicted rather than verified experimentally, they contain a significant portion of
mis-annotations or erroneous information [14, 15]. We apply ODDS on the UniProt
database to identify discrepant annotations from 5 key attributes.

Table 3 shows that the protein name PN, gene name GN, synonym SY each
contain more than 100,000 unique values. These large numbers suggest that the
UniProt database is highly sparse. In fact, the naming of proteins and genes are often
left to the discretion of the experimentalists who submit these sequences into the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 J.L.Y. Koh et al.

Table 3. Performance of ODDS at varying number of CA-outliers per tuple

Attribute Distinct values Multiple values Description
OR 6 No Organism source of the protein
KW 898 Yes Keywords subject reference for the protein
GO 8486 Yes Gene ontology controlled vocabulary of proteins’ properties.
PN 669,151 No Proposed official name of protein
SY 126,299 Yes List of synonyms of the protein

Table 4. CA-outliers detected in UniProt. Brackets contain number of affected records

CA-outliers detected at OR PN KW GO SY

3-attribute combinations 27 (73) 45 (24) 56 (31) 17 (97) 18 (5)

4-attribute combinations 333 (553) 136 (6033) 276 (196) 378 (2196) 186 (124)
5-attribute combinations 195 (45) 40 (13) 57 (17) 308 (2365) 132 (56)
Accumulated (671) (6070) (241) (2365) (185)

Table 5. Manual verification of GO CA-outliers detected in UniProt data set

Annotation CA-outliers TP FP Indet.

CA-outliers detected at 3-attribute combinations 17 6 5 6
CA-outliers detected at 4-attribute combinations 378 65 221 92

CA-outliers detected at 5-attribute combinations 308 31 136 141

database, hence, a large percentage of these names are rare but legitimate. Since we
are not interested to detect these rare attribute values, we adopt the P-measure metric.

Table 4 shows the number of outliers detected for each attribute. We focus on the
CA-outliers found in the GO dimension. The validities of these outliers are checked
by biologists through manual verification. True positive TP indicates an uncommon
association of the target attribute with the other attributes in the projected relation.
False positive FP indicates that no peculiarity is found in the correlation behavior of
the target attribute. Indeterminable means that further investigation is required.

The manual verification step largely depends on the knowledge level of the
biologist and his decisive-ness. Table 5 shows that a large percentage (24%-46%) of
the CA-outliers require further investigation because the biologist lacks the detail
knowledge to justify if the annotation is erroneous or it is only exceptional. 27%-58%
are false positives. 10%-24% of the gene ontology attribute outliers are confirmed
result of erroneous annotations.

The experiment shows that ODDS can be used as a pre-step for cleaning protein
annotations, subjected to further verification by an annotator. Obvious cases of
erroneous annotations are found in the ODDS results. For example, 12 bacteria
proteins (Q9Z5E4, Q6J5G7, among others) are associated with viral capsids which
are protein coats for viral particles. Also, 5 eukaryote proteins (Q9BG87, Q4IJ15,
among others) are oddly related to the reproduction of viruses.

7 Conclusion

Existing outlier detection methods focus primarily on class outliers; limited research
has been conducted on attribute outliers. This paper presents a novel method called

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Correlation-Based Detection of Attribute Outliers 175

ODDS that utilizes the correlations between attributes to identify attribute outliers.
Rather than focusing on rare attribute values or rare classes, ODDS systematically
searches for attribute points that exhibit alternative correlation behavior when
compared to other attribute points in a data subspace. These local deviators which we
refer to CA-outliers are dual-Experimental evaluation shows that ODDS can achieve
F-score of up to 88% in synthetic data set and is practically applicable for detecting
erroneous annotations in a protein database.

This paper focuses on the accuracy of the outlier detection approach. Two filtering
strategies are used to improve the time efficiency of the ODDS algorithm where the
enumeration of data subspaces is a major bottleneck. For future work, we strive to
reduce the time complexity further. One strategy is to separate the data space into
partitions of correlated subspaces in order to reduce the number of projections which
are permutated.

Acknowledgments. Our thanks to the biologists - Mr. S.H. Tan, Mr. F. Clergeaud,
and Mr. A.M. Khan.

References

1. Zhu, X., Wu, X.: Class Noise vs. Attribute Noise: A Quantitative Study of their Impacts.
Artificial Intelligence Review, Vol. 22, No. 3 (2004) 177-210

2. Apweiler, R., Bairoch, A., Wu, C.H., et al.: UniProt: the Universal Protein
Knowledgebase. Nucleic Acids Res. 32 (2004) 115-119

3. Barnett, V.: Outliers in Statistical Data. John Wiley and Sons, New York (1994)
4. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. John Wiley

(1987)
5. Choh, M.T.: Polishing Blemishes: Issues in Data Correction. IEEE Intelligent Systems, 19,

issue 2 (2004) 34-39
6. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognition

Letters, vol. 24, Issue 9-10 (2003) 1641-1650
7. Jiang, M.F., Tseng, S.S., Su, C.M.: Two-phase clustering process for outliers detection.

Pattern Recognition Letters, vol.22, Issue.6-7 (2001) 691-700
8. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: Identifying Density-based Local

Outliers. ACM SIGMOD (2000) 93-104
9. Jin, W., Tung, A.K.H., Han, J.: Mining Top-n Local Outliers in Large Databases.

SIGKDD (2001) 293-298
10. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast Outlier

Detection using the Local Correlation Integral. IEEE ICDE (2003) 315-326
11. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based Outliers: Algorithms and

Applications. VLDB Journal, 8 (2000) 237-253
12. Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient Algorithm for Mining Outliers from

Large Data Sets. ACM SIGMOD (2000) 427-438
13. Ren, D., Rahal, I., Perrizo, W., Scott, K.: A vertical distance-based outlier detection

method with local pruning. ACM CIKM (2004) 279-284.
14. Gilks, W.R., Audit, B., De Angelis, D., et al.: Modeling the percolation of annotation

errors in a data-base of protein sequences. Bioinformatics 18, 12, (2002) 1641-1649
15. Wieser, D., Kretschmann, E., Apweiler, R.: Filtering erroneous protein annotation.

Bioinformatics, 20 (2004) i342-i347

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier

Detection

Matthew Gebski and Raymond K. Wong

National ICT Australia, and University of New South Wales, Australia
{francg,wong}@cse.unsw.edu.au

Abstract. An important problem in database and data mining systems
is the detection of outlying points. It is often the case that data observa-
tions exhibiting atypical properties are of more interest than those fitting
common patterns. While anomaly and outlier detection have received
considerable attention from the statistics community, these approaches
are primarily focused on analysis of data sets containing relatively few
and univariate observations. Recently, valuable approaches have been
proposed to facilitate multidimensional analysis for larger data sets. Un-
fortunately, these approaches are often expensive and require numerous
comparisons between each point and the remainder of the data.

We propose an approach using histograms for outlier detection. Sparse
regions of the data are recognised and used for identifying points that are
likely to be outliers. An extensive experimental evaluation demonstrates
the efficiency of our approach under a number of circumstances with
varying parameters on real world and synthetic data sets.

1 Introduction

With the increase in the size of databases, efficient techniques are required for
analysis and interpretation of the stored data. An important data mining prob-
lem is outlier detection, where observations that deviate from the norm are
identified. Tasks where outliers are valuable include credit card fraud analy-
sis, determining adverse reactions to cancer treatments, or determining particu-
larly profitable (or unprofitable) customers. Outlier detection involves examining
points and discriminating based on some measure of “outlierness”.

Existing outlier detection algorithms for local outliers suffer due to the very
large is the number of point-point comparisons required. Without optimisation,
distance based algorithms need to test each point against all other points result-
ing in a time complexity of O(n2). Similarly, for local outlier algorithms running
time is O(n2) as the k nearest neighbours for each point are used. The high cost
of these algorithms makes analysis of large data sets difficult.

Recently, approaches have been proposed to improve the efficiency of
distance based outlier calculations. These often involve randomisation and re-
moving points from consideration once conditions can no longer be met. Un-
fortunately, these are not easily applied for detection of local outliers as the k
nearest neighbours of each point would still be required.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 176–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 177

We propose a novel approach in which histograms are used to find adjacent
regions of consistent densities. By discarding points within these regions from
consideration, we are able to significantly reduce the number of nearest neighbour
calculations for local outliers. Two stages are used to first identify histogram
buckets that are of interest and then identify points of interest. Following this,
an optional reconsideration phase allows the removal of false positives.

2 Background

Hawkins [9] defines an outlier as “an observation that deviates so much from
other observations as to arouse suspicion that it was generated by a different
mechanism”. We emphasise that the problem of outlier detection is different
to that of detecting aberrant data. Univariate outlier anaylsis is a well studied
problem in statistics [2] with two main types of outliers. Firstly, parametric or
distribution based outliers, which are detected by examining how observations
lie in relation to a known distribution function using a discordancy test. Often,
it is difficult to ascertain the data distribution or an appropriate discordancy
test may not exist. Depth-based outliers involve classifying points based on their
‘depth’ in relation to other observations. Points with smaller depths are more
likely to be outliers over deeper points. Depth is calculated in a similar way to
the construction of convex hulls and algorithms take O(nd/2) time where d is
the number of dimensions.

The first KDD approach for outlier detection was proposed by Knorr & Ng, us-
ing the distance between each point and each other point in the database
[10,11,12,13]. It was motivated by the difficulties in the application of discordancy
tests and the cost of depth based techniques. Points are classified as distance based
outliers if they are at least distance d from p% of the database. Knorr & Ng’s algo-
rithm compares the distance from each point to the remainder of the population
for this computation — this takes O(n2) time. Ramaswamy et al also used distance
[16], ranking objects on the distance to their k nearest neighbours.

A randomised approach for computing distance based outliers was put for-
ward by Bay & Schwabacher [4]. Experimental results show that this provides
a significant speed increase. Kollios et al [14] use a density estimation stage
for improving clustering algorithms, which is also applicable for distance based
outliers and was shown to be accurate for two and three dimensions.

Distance based outliers provide no mechanism to vary the granularity of the
distance measure over the database. For instance, with two normal distributions,
a point may be 10 units and 1 standard deviation from the mean of the first
distribution, while a second point may lie 2 units and 4 standard deviations from
the other mean. It is now difficult to choose a cutoff that will result in the second
point, but not the first, being classified as an outlier.

Density based outliers are classified depending on how the points are placed
in local regions of the data. With OPTICS [5] and later LOF [6], Breunig et
al determine the ‘outlierness’ of points by examination of a point’s k nearest
neighbours (kNN). Points in neighbourhoods that are similar to nearby regions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 M. Gebski and R.K. Wong

are marked as regular, and those with neighbourhoods of varying density are
classified as outliers. This allows regions of varying density to be processed indi-
vidually, avoiding problems arising from data containing both numerous sparse
and dense regions. Other local approaches include Papadimitriou et al’s LOCI
[15] which also examines the neighbourhood around each point.

We focus on local outliers, in particular those found by the LOF algorithm
[6], due to the ability to detect types of outliers that are ungracefully handled
by other approaches. Despite finding high quality outliers, the time required for
the nearest neighbour queries may be expensive. As such, we are motivated to
propose a more efficient approach for local outliers.

3 Approach

In this section, we present our approach for local outlier detection using his-
tograms. We first identify data regions that can be discounted from containing
outlying points. Following this, we discern points that seem to have a high degree
of outlierness and consider these as candidate outliers. If we wish to completely
eliminate false positives, these candidates are reconsidered in the context of the
entire data set. Histograms (in particular, MinSkew) are chosen for their good
accuracy for selecltivity estimation. Furthermore, construction time is minimal
[1], allowing a significant increase in performance over existing techniques.

3.1 Problem Description and Notation

We begin by defining a set of instances D = {p1, p2, . . . , pn}, where each instance
pi is a point with d attributes, pi = 〈pi1, pi2, . . . , pid〉. When no ambiguity ariseis,
we will use p to refer to a arbitrary point. For the remainder of this paper, we
use the Euclidean distance metric with d(pi, pj).

The aim is to determine the set of outlying points that satisfy a condition
C relating outlying points to the remainder of the data set. More formally, we
wish to find {p′ ∈ D | C(p′)} where p′ denotes a point that is an outlier. For
instance, C may be true for points lying more than a certain distance from 90%
of the entire data set. For the local outliers, C(p) will be satisfied if a point is in
a sufficiently sparse region bordering on a dense region.

For local outliers, we adjust the definitions of Breunig et al [6] for readability.

Definition 1. k − distance(p) of a point p is the minimal distance d such that
at least k points are within distance d from p.

Definition 2. Reachability of point p with respect to point o is defined as
reachability(o,p) = max{k − distance(o), δ(o, p)}

Definition 3. Local Reachability Density of p is:
lrd(p) = k∑

o∈kNN(p) reachability(o,p) , where kNN(p) refers to the k nearest
neighbours of p.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 179

Definition 4. Local Outlier Factor of a point p is: LOF (p)= 1
k

∑
o∈kNN(p)

lrd(o)
lrd(p) .

The local outlier factor is the average ratio between the local reachability density
between each of p’s nearest neighbours and the local reachability density p. A
point in a sparse region with neighbours in comparatively dense regions will
subsequently have lower reachability densities than its neighbours. This results
in a high outlierness for p; if this is below a predetermined threshold, p will be
marked as an outlier.

3.2 Histogram Based Outliers

Typically, histogram techniques iteratively divide existing buckets into smaller
buckets to minimise a badness function [1,7,8]. Unless otherwise mentioned, we
will use the MinSkew algorithm from Acharya et al [1]. This uses the sum of
variance for each bucket as a badness function. That is,

∑n
1 |Bi|si where |Bi| is

the number of points in bucket Bi, n is the total number of buckets and si is
the statistical variance.

Proposition 1. If point p falls within bucket B with density B.dens and p is
more than 2r from any edge of B, p is not an outlier where d is the dimension-
ality of the data set (r is the radius of the hypersphere enclosing p’s k nearest
neighbours).

If the histogram estimator is accurate, the area, a, of the circle enclosing all of
p’s k nearest neighbours is k/B.dens. The distance to the furthest of these will
be δ = d

√
a/π. Denoting this neighbour as p′i, the reachability distance for p is

at most d(p, p′i) + d(p′i, p
′
j) where p′j is the furthest of p′i’s neighbours. If both p′i

and p′j are contained within B, the maximum distance that p′j can be from p′i is
δ. As such, p is not a density based outlier if d(p, eBi) > δ, where eBi ∈ {edges
of Bi}. This is illustrated in Figure 1a and Figure 1b.

Intuitively, we can consider that for selectivity estimation, we are attempting
to create regions of uniform density. Points lying towards the centre of these
regions are unlikely to be outliers. With Proposition 1, a large number of points
can be removed from consideration as outliers. For data sets with large regions
of relatively uniformly located data, this is particularly valuable (for instance
the Forest Cover data set [3]).

(a) (b) (c)

Fig. 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 M. Gebski and R.K. Wong

3.3 Histogram Refinement

Due to the MinSkew algorithm minimising variance during construction, uniform
regions of the data may be divided. By attempting to minimise

∑m
i=1 σ2

Bi
, where

m is the number of buckets in a partitioning Pm, it may be possible for a split
to occur such that the accuracy of the partitioning is only trivially improved,
A(Pi) + ε = A(Pi+1).

Consider a bivariate data set with a point at each value between 1 and 500, i.e.
(1,1), (1,2), . . ., (500, 499), (500,500). For each attribute, we have σ2 = 20833.25
and a split results in buckets with badness σ2

1 + σ2
2 = 10416.5. Despite this,

we observer only a marginal increase in accuracy due to the structure. While we
would not expect to observe this for the entire data set, it is easy to imagine local
regions exhibiting such patterns. Using bucket merges, we are able to increase
the number of points that can be discounted from being outliers.

Merging buckets is based on two factors. Firstly, the densities of the buckets so
as not to unnecessarily mark points in regions of consistent densities as outliers.
Secondly, we take into account the structure of the buckets; two adjacent buckets
may in fact have similar densities, this may be because they each contain a
cluster of points. During construction, the split was correct and it would be to
our disadvantage if we were to merge the resulting bucket.

It is possible to restrict some merges during the histogram construction phase.
Regions with uniformly placed points in this section is one such case. Other
scenarios are addressed by consideration once the partitioning is constructed.
The borders of adjacent buckets Bx and By are scanned, with regions of Bx

consistent with By may be reassigned from Bx to By (or vice-versa). In cases
where the buckets are very similar, the complete buckets will be merged.

In order to determine if two regions should be merged, we construct a sub-
histogram within the buckets from the original histogram. To avoid confusion,
we will useH to represent the initial histogram and useH′ for the sub-histogram.
Similarly, H′

Bp will be used for indicating the bucket of H′ containing point p.
The merging process involves three phases for two adjacent buckets of H,

that is,HBi andHBj . Firstly, the construction of the equi-depth/equi-width sub-
histograms,H′

i for HBi and H′
j for HBj . The second stage involves consideration

of bordering cells H′
Bx
∈ H′

i and H′
By
∈ H′

j . If the ratio of these densities are
within an acceptable range 1 ± ε then the buckets are marked for merging.
Finally, merge marked buckets and calculate densities of the resulting buckets.
When merging buckets, the lowest of density values is chosen to represent the
overall density. While this may result in some underestimation of the density
of the combined bucket, the resulting sparse regions will lead to false positives
which can be reconsidered later.

For selectivity estimation, if the relative error being used for accuracy err =
t−est

t , where t represets the true selectivity and est represents the value estimated
using the histogram, the difference between the error for the original and merged
buckets will be ±Qarea×ε

t where Qarea is the area of the query for estimation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 181

Algorithm 1. Finds outliers using the histogram based approach
Find-Outliers-Histogram (D):
1: H ← Construct-Histogram(D)
2: H′ ←Merge-Buckets(H)
3: Candidates← ∅, Outliers← ∅
4: for point p ∈ D do
5: H′

Bp ← Find-Bucket(p,H′)
6: if IsContained(p,H′

Bp) then
7: p is not an outlier
8: else
9: plrd ← 0

10: olrd ← 0
11: for each H′

Bj reachable for p do
12: Update plrd based on H′

Bj

13: Update olrd based on H′
Bj

14: if plrd

kolrd
> τ ′ then

15: Candidates ∪ p
16: for p ∈ Candidates do
17: if Is-Outlier(p, D) then
18: Outliers← Outliers ∪ {p}
19: return Outliers

3.4 Refining Candidates

We can also use the histogram structure to identify points that seem particularly
likely to be outliers or non outliers. Cells of the sub-histograms are used to
approximate the densities surrounding each point. This allows estimation of the
maximum and minimum LOF values for points and improve the identification
of candidate outliers. The bounds allow us to better discriminate with regards
to non outlying points in addition to helping us estimate LOF for outliers.

We first consider the density and size of both HBp and H′
Bp. If a point is on

the edge of the bucket of size κ > k, the local reachability density of p cannot
be greater than diag(Bp)−1, where diag(Bp) is the length of the diagonal of Bp.
In the most skewed scenario, the reachability distance for p must be less than
that of the diagonal of the bucket. When closer to the centre, this is likely to
be much smaller. For any point, the expected value for two dimensional data of

lrd(p) (only considering H′
Bp) will be (

√
kH′

Bp.density

π)−1. As the dimensionality
increases, the expression should be altered to consider the radius of the appro-
priate hypersphere. For points near the bucket edge, we also consider the density
of the relevant buckets adjacent to H′

Bp. A pessimistic approach is taken, such
that the estimated lrd will be lower than the true value. While this may increase
the number of false positives, it mitigates the number of missed outliers. Of the
buckets under consideration, we use the lowest density value.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 M. Gebski and R.K. Wong

The second stage is to estimate the range of possible LOF values for p. Ini-
tially, it is assumed that the positions of neighbouring points place p in a sparse
region of the data, allowing fr the lower LOF estimate. Following this, the highest
density regions nearby are examined and are used for the upper LOF estimate.
It is important to note that this estimate is only performed for p. Any of the
other points that lie in the regions close to p are considered independently. The
estimates can then be used for determining the densities of the point and points
in nearby regions and then the range into which the LOF score will fall. Points
which are highly unlikely to be outliers are immediately discarded. A threshold
value, T , is used for choosing points that should be removed from consideration.
This value can be modified with ease, however it is rarely useful to keep points
that will have a LOF of 1.0 or less.

Algorithm 1 shows the approach for histogram based outlier detection. τ ′ is
the threshold above which we consider a point a candidate outlier. The method
Is − Outlier in line 18 returns true if the point is an outlier in the context of
the whole data set using the LOF algorithm.

3.5 Accuracy

Consider a bucket with a heavily skewed distribution such as depicted in
Figure 1c. The estimated density of points in the upper right region will be greater
than the true density while for points in the lower left region, the estimated den-
sity will be lower. This decreases the likelihood upper right points being classified
as outliers while increasing the likelihood for those in the lower left.

To assist us in considering the error induced by the approach, we define two
terms that relate to the estimate of density surrounding a given point:

Definition 5. Relative overestimate for point p is the ratio of the densities be-
tween the region surrounding p and the regions surrounding its neighbours esti-
mated by the histogram to be higher than the true ratio. That is,
estlrd(p)/estlrd(neighbour) > truelrd(p)/truelrd(neighbour).

As histogram construction takes place with constraints on the number of buck-
ets permitted, points in sparse regions may be placed in comparatively dense
buckets. The overestimate may be due to either that the histogram is accurate
for the density surrounding a point’s neighbours, but not for the point itself
(estlrd(neighbours) = truelrd(neighbours) and estlrd(p) > truelrd(p)), or the
density is correct for p, but is underestimated for p’s neighbours (estlrd(p) =
truelrd(p) and estlrd(neighbours) < truelrd(p)).

Definition 6. Relative underestimate is the ratio of the densities between the
region surrounding p and the regions surrounding its neighbours estimated by
the histogram to be lower than the true ratio. That is,
estlrd(p)/estlrd(neighbour) < lrd(p)/lrd(neighbour).

As with the overestimation, relative underestimation is a result of the constraints
on the maximum number of buckets. However, points in sparse regions are in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 183

buckets with a higher density than the density surrounding each point. There
are two cases to consider, firstly, estlrd(neighbours) = truelrd(neighbours) and
estlrd(p) < truelrd(p). Or secondly, where estlrd(p) = truelrd(p) and then
estlrd(neighbours) > truelrd(p).

Proposition 2. A relative underestimate for a non-outlying point p may lead
to p being misidentified as an outlier if lrd(p)−estlrd(p)

k > τ − γ.

Consider a point p with a local outlier factor of γ and assume that γ < τ
where τ is the threshold above which points are considered outliers. Recall that
when densities are computed from the full data set, γ = 1

k

∑
o∈kNN(p)

lrd(p)
lrd(o) .

Now, if there is a relative underestimate for the region surrounding p with
estlrd(p) < lrd(p) and estlrd(o) = lrd(o) then

γ >
1
k

∑
o∈kNN(p)

lrd(o)
estlrd(p)

.

Now if lrd(p)−estlrd(p)
k > τ−γ, then p will be erroneously be marked as an outlier.

The opposite of the previous case is:

Proposition 3. A relative underestimate for a outlying point p may lead to p
being incorrectly identified as a non-outlier. A point will be no longer be marked
as an outlier if estlrd(p)−lrd(p)

k > γ − τ .

4 Experimental Evaluation

Two sets of experiments are run; the first set involve synthetic data used to
examine how different distributions and parameters affect the approach. Two
synthetic sets are used: data drawn from the normal and exponential distribu-
tions and is iid. We also examine the Forest Cover [3] data set; this represents

(a) Normally distributed data (b) Exponentially distributed
data

Fig. 2. Running times for Histogram & LOF algorithms for normally and exponentially
distributed data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 M. Gebski and R.K. Wong

observations of forest information taken by the United States Forest Service. The
data contains information such as elevation, aspect and slope for forest ‘cells’.
Nominal data such as soil type were excluded.

Of course, if the distribution parameters are known, we would expect no
outliers simply extreme values. In our experiments, we make no assumptions
about the distribution from which the data has been drawn and LOF and local
densities for the discrimination of outlying points.

4.1 Results

For Figure 2, two constraints are used for the buckets, the first is 1,000 (10%
for the smallest size set moving towards 1% for the largest) and the second
2,000. For 1,000 buckets, slightly more than 2 seconds are required for the 10,000
point set and marginally less than 3 (2.91 seconds) for the 100,000 point set.
Approximately 7.6 seconds are needed for 20,000 points with 2,000 buckets,

(a) Normally distributed data (b) Exponentially distributed
data

Fig. 3. Effect of varying the number of buckets on accuracy for normally and expo-
nentially distributed data

(a) Varying dimensionality. (b) Varying number of buckets.

Fig. 4. Effect of varying dimensionality and number of buckets on running time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 185

peaking at 8.3 seconds for 100,000 points with 2,000 buckets. Figure 4b shows the
impact on time when the number of buckets is varied. When keeping the number
of buckets constant, there is only a slight increase in running time compared to
the increase in population size. Allowing the number of buckets to increase along
with the number of points, there is an increase in the time taken. This is a result
of the increased number of points close to the border of a cell.

Figure 3a shows the accuracy as we vary the number of buckets. The data
set sizes are 10,000, 20,000 and 40,000. There is a sharp increase as the number
of buckets approaches 500. The accuracy then plateaus at approximately 80%
accuracy with marginal increases in accuracy resulting from the increases in the
number of buckets. Additionally, when doubling the size of the data set, there
number of buckets needed to achieve the accuracy of the smaller set is small.
This suggests that as the histogram can model the shape of the data, the number
of buckets required decreases proportionally against the size of the dat set.

The results for varying data dimensionality are shown in Figure 4a. As the
dimensionality increases that performance is slightly impacted. The accuracy
is still competitive for data of lower dimensionality. The sets used for these
experiments consist of 200,000 points and for the most part, outliers are found
in well under one minute. Even for the higher dimensional data, the performance
is still superior to that of LOF running on two dimensional data.

For exponentially distributed data our approach again outperforms LOF
(Figure 2b). Only a couple of seconds are required for 100,000 instances, which
is consistent with the normally distributed data results. The time for LOF is
very similar which is what we would expect; the number of nearest neighbour
queries required does not change with the structure of the data.

Because of the structure of the exponential data, we observe a slight decrease
in the accuracy of our approach in Figure 3b. Again, there is a dramatic increase
in the quality as the number of buckets increases from 0 until approximately 400-
500. The lower accuracy is a result of the structure of the data. The exponential
data contains a diagonal ‘cutoff’ between the regions where points lie and the
remaining empty space. As rectangular buckets are used, each bucket containing
points in this region typically contains a large empty portion. Both the perfor-
mance and accuracy are affected in a consistent manner for the exponentially
and normally distrubuted data sets.

A number of subsets were constructed from the UCI KDD Forest Cover data
set [3]. Only unique values were used (spikes in the data may result in the k
nearest neighbours of a point having the same value as the point). The first subset
contains the attribute “Horizontal Distance To Hydrology” (HDH) as well as
“Vertical Distance To Hydrology”(VDH) this consists of approximately 66,000
unique instances. The second contains “Slope”, “Aspect”, in addition to HDH
and VDH with approximately 545,000 unique instances. Due to the large size,
only our approach was run for these data sets.

Figure 5 shows the performance of our approach as the size of the data set is
increased. For the two dimensional data set, the number of buckets was set at
10% of the number of points present. For the four dimensional set, the number of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 M. Gebski and R.K. Wong

Fig. 5. Running times for the Forest Cover data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b)

Fig. 6. Outliers found by Histogram and LOF approaches

buckets was set at 2%. This also allows us to appreciate the additional increase
in set size and dimensionality. Figure 6 shows the structure of a cross section
of the data containing the attributes “Aspect” and “Slope”. The large regular
regions can easily be modelled with the histograms with only a small impact on
the quality of the outliers, leading to significant performance gain.

5 Conclusions

We have examined an approach for local outlier detection using histograms to
efficiently approximate densities rather than explicit computation using nearest
neighbours. The time taken for existing techniques is considerable; our approach
allows outliers to be found much faster with only a small decrease in accuracy.
A number of steps are used, the first of which involves refinement of the his-
togram buckets. This is followed by removal of points located in the centre of
large buckets. The third step is to examine each point and estimate the density
by examining the surrounding region in the histogram. If the maximum Local
Outlier Factor score that a point can have is below a specified threshold, we
immediately remove the point from consideration.

References

1. S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In SIGMOD, pages 13–24. ACM Press, 1999.

2. V. Barnett and T. Lewis. Outliers in statistical data. John Wiley, 1994.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Histogram Method for Outlier Detection 187

3. S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth. The UCI KDD archive of large
data sets for data mining research and experimentation. Information Processing
Society of Japan Magazine, 42(5):462–466, 2001.

4. S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear
time with randomization and a simple pruning rule. In L. Getoor, T. E. Senator,
P. Domingos, and C. Faloutsos, editors, KDD, pages 29–38. ACM, 2003.

5. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Optics-of: Identifying local
outliers. In J. M. Zytkow and J. Rauch, editors, PKDD, pages 262–270, 1999.

6. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-
based local outliers. In SIGMOD, pages 93–104. ACM, 2000.

7. A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is good: dependency-
based histogram synopses for high-dimensional data. In SIGMOD, pages 199–210.
ACM Press, 2001.

8. D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating
multi-dimensional aggregate range queries over real attributes. In SIGMOD, pages
463–474. ACM Press, 2000.

9. D. Hawkins. Identification of outliers. Chapman and Hall, London, 1980.
10. E. M. Knorr and R. T. Ng. A unified approach for mining outliers. In CASCON,

page 11. IBM, 1997.
11. E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large

datasets. In VLDB, pages 392–403. Morgan Kaufmann, 1998.
12. E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based out-

liers. In VLDB, pages 211–222. Morgan Kaufmann, 1999.
13. E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and

applications. VLDB J., 8(3-4):237–253, 2000.
14. G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold. Efficient biased sampling

for approximate clustering and outlier detection in large datasets, 2003.
15. S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier

detection using the local correlation integral. In ICDE, pages 315–326, 2003.
16. S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers

from large data sets. In SIGMOD, pages 427–438. ACM Press, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering

Techniques�

Ji-Won Byun1, Ashish Kamra2, Elisa Bertino1, and Ninghui Li1

1 CERIAS and Computer Science, Purdue University
{byunj, bertino, ninghui}@cs.purdue.edu

2 CERIAS and Electrical and Computer Engineering, Purdue University
akamra@purdue.edu

Abstract. k-anonymization techniques have been the focus of intense
research in the last few years. An important requirement for such tech-
niques is to ensure anonymization of data while at the same time min-
imizing the information loss resulting from data modifications. In this
paper we propose an approach that uses the idea of clustering to min-
imize information loss and thus ensure good data quality. The key ob-
servation here is that data records that are naturally similar to each
other should be part of the same equivalence class. We thus formulate a
specific clustering problem, referred to as k-member clustering problem.
We prove that this problem is NP-hard and present a greedy heuristic,
the complexity of which is in O(n2). As part of our approach we de-
velop a suitable metric to estimate the information loss introduced by
generalizations, which works for both numeric and categorical data.

1 Introduction

A recent approach addressing data privacy relies on the notion of k-anonymity
[11,13]. In this approach, data privacy is guaranteed by ensuring that any record
in the released data is indistinguishable from at least (k − 1) other records with
respect to a set of attributes called the quasi-identifier. Although the idea of
k-anonymity is conceptually straightforward, the computational complexity of
finding an optimal solution for the k-anonymity problem has been shown to be
NP-hard, even when one considers only cell suppression [1,9]. The k-anonymity
problem has recently drawn considerable interest from research community, and
a number of algorithms have been proposed [3,4,6,7,8,12]. Current solutions,
however, suffer from high information loss mainly due to reliance on pre-defined
generalization hierarchies [4,6,7,12] or total order [3,8] imposed on each attribute
domain. We discuss these algorithms more in detail in Section 2.

The main goal of our work is to develop a new k-anonymization approach
that addresses such limitations. The key idea underlying our approach is that
the k-anonymization problem can be viewed as a clustering problem. Intuitively,
the k-anonymity requirement can be naturally transformed into a clustering
� This material is based upon work supported by the National Science Foundation

under Grant No. 0430274 and the sponsors of CERIAS.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 188–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 189

problem where we want to find a set of clusters (i.e., equivalence classes), each
of which contains at least k records. In order to maximize data quality, we
also want the records in a cluster to be as similar to each other as possible. This
ensures that less distortion is required when the records in a cluster are modified
to have the same quasi-identifier value. We thus formulate a specific clustering
problem, which we call k-member clustering problem. We prove that this problem
is NP-hard and present a greedy algorithm which runs in time O(n2). Although
our approach does not rely on generalization hierarchies, if there exist some
natural relations among the values in a domain, our algorithm can incorporate
such information to find more desirable solutions. We note that while many
quality metrics have been proposed for the hierarchy-based generalization, a
metric that precisely measures the information loss introduced by the hierarchy-
free generalization has not yet been introduced. For this reason, we define a data
quality metric for the hierarchy-free generalization, which we call information
loss metric. We also show that with a small modification, our algorithm is able
to reduce classification errors effectively.

The remainder of this paper is organized as follows. We review the basic
concepts of the k-anonymity model and survey existing techniques in Section 2.
We formally define the problem of k-anonymization as a clustering problem and
introduce our approach in Section 3. Then we evaluate our approach based on
the experimental results in Section 4. We conclude our discussion in Section 5.

2 Preliminaries

2.1 Basic Concepts

The k-anonymity model assumes that person-specific data are stored in a table
(or a relation) of columns (or attributes) and rows (or records). The process of
anonymizing such a table starts with removing all the explicit identifiers, such as
name and SSN, from the table. However, even though a table is free of explicit
identifiers, some of the remaining attributes in combination could be specific
enough to identify individuals if the values are already known to the public. For
example, as shown by Sweeney [13], most individuals in the United States can
be uniquely identified by a set of attributes such as {ZIP, gender, date of birth}.
Thus, even if each attribute alone is not specific enough to identify individuals,
a group of certain attributes together may identify a particular individual. The
set of such attributes is called quasi-identifier.

The main objective of the k-anonymity model is thus to transform a table so
that no one can make high-probability associations between records in the table
and the corresponding entities. In order to achieve this goal, the k-anonymity
model requires that any record in a table be indistinguishable from at least
(k−1) other records with respect to the pre-determined quasi-identifier. A group
of records that are indistinguishable to each other is often referred to as an
equivalence class. By enforcing the k-anonymity requirement, it is guaranteed
that even though an adversary knows that a k-anonymous table contains the
record of a particular individual and also knows some of the quasi-identifier

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 J.-W. Byun et al.

ZIP Gender Age Diagnosis

47918 Male 35 Cancer
47906 Male 33 HIV+
47918 Male 36 Flu
47916 Female 39 Obesity
47907 Male 33 Cancer
47906 Female 33 Flu

Fig. 1. Patient Table

ZIP Gender Age Diagnosis

4791∗ Person [35-39] Cancer
4790∗ Person [30-34] HIV+
4791∗ Person [35-39] Flu
4791∗ Person [35-39] Obesity
4790∗ Person [30-34] Cancer
4790∗ Person [30-34] Flu

Fig. 2. 3-anonymous Patient table

attribute values of the individual, he/she cannot determine which record in the
table corresponds to the individual with a probability greater than 1/k. For
example, a 3-anonymous version of the table in Fig. 1 is shown in Fig. 2.

2.2 Existing Techniques

The k-anonymity requirement is typically enforced through generalization, where
real values are replaced with “less specific but semantically consistent values”
[13]. Given a domain, there are various ways to generalize the values in the
domain. Typically, numeric values are generalized into intervals (e.g., [12−19]),
and categorical values are generalized into a set of distinct values (e.g., {USA,
Canada}) or a single value that represents such a set (e.g., North-America).

Various generalization strategies have been proposed. In [7,11,12], a non-
overlapping generalization-hierarchy is first defined for each attribute of quasi-
identifier. Then an algorithm tries to find an optimal (or good) solution which
is allowed by such generalization hierarchies. Note that in these schemes, if a
lower level domain needs to be generalized to a higher level domain, all the
values in the lower domain are generalized to the higher domain. This restric-
tion could be a significant drawback in that it may lead to relatively high
data distortion due to unnecessary generalization. The algorithms in [4,6], on
the other hand, allow values from different domain levels to be combined to
represent a generalization. Although this leads to much more flexible general-
ization, possible generalizations are still limited by the imposed generalization
hierarchies.

Recently, some schemes that do not rely on generalization hierarchies [3,8]
have been proposed. For instance, LeFevre et al. [8] transform the k-anonymity
problem into a partitioning problem. Specifically, their approach consists of the
following two steps. The first step is to find a partitioning of the d-dimensional
space, where d is the number of attributes in the quasi-identifier, such that
each partition contains at least k records. Then the records in each partition
are generalized so that they all share the same quasi-identifier value. Although
shown to be efficient, these approaches also have a disadvantage that it requires
a total order for each attribute domain. This makes it impractical in most cases
involving categorical data which have no meaningful order.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 191

3 Anonymization and Clustering

The key idea underlying our approach is that the k-anonymization problem can
be viewed as a clustering problem. Clustering is the problem of partitioning a set
of objects into groups such that objects in the same group are more similar to
each other than objects in other groups with respect to some defined similarity
criteria [5]. Intuitively, an optimal solution of the k-anonymization problem is
indeed a set of equivalence classes such that records in the same equivalence
class are very similar to each other, thus requiring a minimum generalization.

3.1 k-Anonymization as a Clustering Problem

Typical clustering problems require that a specific number of clusters be found
in solutions. However, the k-anonymity problem does not have a constraint on
the number of clusters; instead, it requires that each cluster contains at least
k records. Thus, we pose the k-anonymity problem as a clustering problem,
referred to as k-member clustering problem.

Definition 1. (k-member clustering problem) The k-member clustering
problem is to find a set of clusters from a given set of n records such that
each cluster contains at least k (k ≤ n) data points and that the sum of all
intra-cluster distances is minimized. Formally, let S be a set of n records and
k the specified anonymization parameter. Then the optimal solution of the k-
clustering problem is a set of clusters E = {e1, . . . , em} such that:

1. ∀ i �= j ∈ {1, . . . , m}, ei ∩ ej = ∅,
2.

⋃
i=1,...,m ei = S,

3. ∀ ei ∈ E , |ei| ≥ k, and
4.

∑
�=1,...,m |e�| · MAXi,j = 1,...,|e�| Δ(p(�,i), p(�,j)) is minimized.

Here |e| is the size of cluster e, p(�,i) represents the i-th data point in cluster e�,
and Δ(x, y) is the distance between two data points x and y. �

Note that in Definition 1, we consider the sum of all intra-cluster distances,
where an intra-cluster distance of a cluster is defined as the maximum distance
between any two data points in the cluster (i.e., the diameter of the cluster).
As we describe in the following section, this sum captures the total information
loss, which is the amount of data distortion that generalizations introduce to the
entire table.

3.2 Distance and Cost Metrics

At the heart of every clustering problem are the distance functions that measure
the dissimilarities among data points and the cost function which the clustering
problem tries to minimize. The distance functions are usually determined by the
type of data (i.e., numeric or categorical) being clustered, while the cost function
is defined by the specific objective of the clustering problem. In this section, we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 J.-W. Byun et al.

describe our distance and cost functions which have been specifically tailored for
the k-anonymization problem.

As previously discussed, a distance function in a clustering problem measures
how dissimilar two data points are. As the data we consider in the k-anonymity
problem are person-specific records that typically consist of both numeric and
categorical attributes, we need a distance function that can handle both types
of data at the same time.

For a numeric attribute, the difference between two values (e.g., |x−y|) natu-
rally describes the dissimilarity (i.e., distance) of the values. This measure is also
suitable for the k-anonymization problem. To see this, recall that when records in
the same equivalence class are generalized, the generalized quasi-identifier must
subsume all the attribute values in the equivalence class. That is, the general-
ization of two values x and y in a numeric attribute is typically represented as
a range [x, y], provided that x < y. Thus, the difference captures the amount of
distortion caused by the generalization process to the respective attribute (i.e.,
the length of the range).

Definition 2. (Distance between two numeric values) Let D be a finite
numeric domain. Then the normalized distance between two values vi, vj ∈ D is
defined as:

δN(v1, v2) = |v1 − v2| / |D|,
where |D| is the domain size measured by the difference between the maximum
and minimum values in D. �

For categorical attributes, however, the difference is no longer applicable as most
of the categorical domains cannot be enumerated in any specific order. The
most straightforward solution is to assume that every value in such a domain is
equally different to each other; e.g., the distance of two values is 0 if they are
the same, and 1 if different. However, some domains may have some semantic
relationships among the values. In such domains, it is desirable to define the
distance functions based on the existing relationships. Such relationships can
be easily captured in a taxonomy tree 1. We assume that a taxonomy tree of
a domain is a balanced tree of which the leaf nodes represent all the distinct
values in the domain. For example, Fig. 3 illustrates a natural taxonomy tree for
the Country attribute. However, for some attributes such as Occupation, there
may not exist any semantic relationship which can help in classifying the domain
values. For such domains, all the values are classified under a common value as
in Fig. 4. We now define the distance function for categorical values as follows:

Definition 3. (Distance between two categorical values) Let D be a cat-
egorical domain and TD be a taxonomy tree defined for D. The normalized
distance between two values vi, vj ∈ D is defined as:

δC(v1, v2) = H(Λ(vi, vj)) / H(TD),

1 Taxonomy tree can be considered similar to generalization hierarchy introduced
in [7,11,12]. However, we treat taxonomy tree not as a restriction, but a user’s
preference.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 193

Country

America Asia

North West

USA Canada Iran Egypt

East

India Japan

South

Brazil Mexico

Fig. 3. Taxonomy tree of Country

Occupation

 Armed-Forces Teacher Doctor Salesman Tech-Support

Fig. 4. Taxonomy tree of Occupation

where Λ(x, y) is the subtree rooted at the lowest common ancestor of x and y,
and H(R) represents the height of tree T . �

Example 1. Consider attribute Country and its taxonomy tree in Fig. 3. The
distance between India and USA is 3/3 = 1, while the distance between India
and Iran is 2/3 = 0.66. On the other hand, for attribute Occupation and its
taxonomy tree in Fig. 4 which goes up only one level, the distance between any
two values is always 1.

Combining the distance functions for both numeric and categorical domains, we
define the distance between two records as follows:

Definition 4. (Distance between two records) Let QT = {N1, . . . , Nm,
C1, . . . , Cn} be the quasi-identifier of table T , where Ni(i = 1, . . . , m) is an
attribute with a numeric domain and Cj(j = 1, . . . , n) is an attribute with a
categorical domain. The distance of two records r1, r2 ∈ T is defined as:

Δ(r1, r2) =
∑

i=1,...,m

δN (r1[Ni], r2[Ni]) +
∑

j=1,...,n

δC(r1[Cj], r2[Cj]),

where ri[A] represents the value of attribute A in ri, and δN and δC are the dis-
tance functions defined in Definitions 2 and 3, respectively. �

Now we discuss the cost function which the k-members clustering problem
tries to minimize. As the ultimate goal of our clustering problem is the k-
anonymization of data, we formulate the cost function to represent the amount
of distortion (i.e., information loss) caused by the generalization process. Recall
that, records in each cluster are generalized to share the same quasi-identifier
value that represents every original quasi-identifier value in the cluster. We as-
sume that the numeric values are generalized into a range [min, max] [8] and
categorical values into a set that unions all distinct values in the cluster [3]. With
these assumptions, we define a metric, referred to as Information Loss metric
(IL), that measures the amount of distortion introduced by the generalization
process to a cluster.

Definition 5. (Information loss) Let e = {r1, . . . , rk} be a cluster (i.e., equiv-
alence class) where the quasi-identifier consists of numeric attributes N1, . . . , Nm

and categorical attributes C1, . . . , Cn. Let TCi be the taxonomy tree defined for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 J.-W. Byun et al.

the domain of categorical attribute Ci. Let MINNi and MAXNi be the min and
max values in e with respect to attribute Ni, and let ∪Ci be the union set of
values in e with respect to attribute Ci. Then the amount of information loss
occurred by generalizing e, denoted by IL(e), is defined as:

IL(e) = |e| · (
∑

i=1,...,m

(MAXNi − MINNi)
|Ni|

+
∑

j=1,...,n

H(Λ(∪Cj))
H(TCj)

)

where |e| is the number of records in e, |N | represents the size of numeric domain
N , Λ(∪Cj) is the subtree rooted at the lowest common ancestor of every value
in ∪Cj , and H(T) is the height of taxonomy tree T . �

Using the definition above, the total information loss of the anonymized table is
defined as follows:

Definition 6. (Total information loss) Let E be the set of all equivalence
classes in the anonymized table AT . Then the amount of total information loss
of AT is defined as:

Total-IL(AT) =
∑

e∈E IL(e). �

Recall that the cost function of the k-members problem is the sum of all intra-
cluster distances, where an intra-cluster distance of a cluster is defined as the
maximum distance between any two data points in the cluster. Now, if we con-
sider how records in each cluster are generalized, minimizing the total informa-
tion loss of the anonymized table intuitively minimizes the cost function for the
k -members clustering problem as well. Therefore, the cost function that we want
to minimize in the clustering process is Total-IL.

3.3 Anonymization Algorithm

Armed with the distance and cost functions, we are now ready to discuss the
k-member clustering algorithm. As in most clustering problems, an exhaustive
search for an optimal solution of the k-member clustering is potentially expo-
nential. In order to precisely characterize the computational complexity of the
problem, we define the k-member clustering problem as a decision problem as
follows.

Definition 7. (k-member clustering decision problem) Given n records,
is there a clustering scheme E = {e1, . . . , e�} such that

1. |ei| ≥ k, 1 < k ≤ n: the size of each cluster is greater than or equal to a
positive integer k, and

2.
∑

i=1,...,� IL(ei) < c, c > 0: the Total-IL of the clustering scheme is less than
a positive constant c. �

Theorem 1. The k-member clustering decision problem is NP-complete.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 195

Proof. That the k-member clustering decision problem is in NP follows from the
observation that if such a clustering scheme is given, verifying that it satisfies
the two conditions in Definition 7 can be done in polynomial time.

In [1], Aggarwal et al. proved that optimal k-anonymity by suppression is
NP-hard, using a reduction from the Edge Partition Into Triangles prob-
lem. In the reduction, the table to be k-anonymized consists of n records; each
record has m attributes, and each attribute takes a value from {0, 1, 2}. The
k-anonymization technique used is to suppress some cells in the table. Aggarwal
et al. showed that determining whether there exists a 3-anonymization of a table
by suppressing certain number of cells is NP-hard.

We observe that the problem in [1] is a special case of the k-member clustering
problem where each attribute is categorical and has a flat taxonomy tree. It
thus follows that the k-member clustering problem is also NP-hard. When each
attribute has a flat taxonomy tree, the only way to generalize a cell is to the root
of the flat taxonomy tree, and this is equivalent to suppressing the cell. Given
such a database, the information loss of each record in any generalization is the
same as the number of cells in the record that differ from any other record in the
equivalent class, which equals the number of cells to be suppressed. Therefore,
there exists a k-anonymization with total information loss no more than t if and
and only if there exists a k-anonymization that suppresses at most t cells. �

Faced with the hardness of the problem, we propose a simple and efficient al-
gorithm that finds a solution in a greedy manner. The idea is as follows. Given
a set of n records, we first randomly pick a record ri and make it as a cluster
e1. Then we choose a record rj that makes IL(e1 ∪ {rj}) minimal. We repeat
this until |e1| = k. When |e1| reaches k, we choose a record that is furthest from
ri and repeat the clustering process until there are less than k records left. We
then iterate over these leftover records and insert each record into a cluster with
respect to which the increment of the information loss is minimal. We provide
the core of our greedy k-member clustering algorithm, leaving out some trivial
functions, in Figure 5.

Theorem 2. Let n be the total number of input records and k be the specified
anonymity parameter. Every cluster that the greedy k-member clustering algo-
rithm finds has at least k records, but no more than 2k − 1 records.

Proof. Let S be the set of input records. As the algorithm finds a cluster with
exactly k records as long as the number of remaining records is equal to or
greater than k, every cluster contains at least k records. If there remain less
than k records, these leftover records are distributed to the clusters that are
already found. That is, in the worst case, k − 1 remaining records are added to
a single cluster which already contains k records. Therefore, the maximum size
of a cluster is 2k − 1. �

Theorem 3. Let n be the total number of input records and k be the specified
anonymity parameter. The time complexity of the greedy k-member clustering
algorithm is in O(n2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 J.-W. Byun et al.

Function greedy_k_member_clustering (S, k)
Input: a set of records S and a threshold value k.
Output: a set of clusters each of which contains at least k
records.

1. if(| S | k)
2. return S;
3. end if;
4. result = ∅; r = a randomly picked record from S;
5. while(| S | ≥ k)
6. r = the furthest record from r;
7. S = S – {r};
8. c = {r};
9. while(| c | < k)
10. r = find_best_record(S, c);
11. S = S – {r};
12. c = c ∪ {r};
13. end while;
14. result = result ∪ {c};
15. end while;
16. while(| S | ≠ 0)
17. r = a randomly picked record from S;
18. S = S – {r};
19. c = find_best_cluster(result, r);
20. c = c ∪ {r};
21. end while;
22. return result;

End;

Function find_best_record (S, c)
Input: a set of records S and a cluster c.
Output: a record r ∈ S such that IL(c ∪ {r}) is minimal.

1. n = |S|; min = ∞; best = null;
2. for(i = 1,…n)
3. r = i-th record in S;
4. diff = IL(c ∪ {r}) – IL(c);
5. if(diff < min)
6. min = diff;
7. best = r;
8. end if;
9. end for;
10. return best;

End;

Function find_best_cluster (C, r)
Input: a set of clusters C and a record r.
Output: a cluster c ∈ C such that IL(c ∪ {r}) is minimal.

1. n = |C|; min = ∞; best = null;
2. for(i = 1,…n)
3. c = i-th cluster in C;
4. diff = IL(c ∪ {r}) – IL(c);
5. if(diff < min)
6. min = diff;
7. best = c;
8. end if;
9. end for;
10. return best;

End;

Fig. 5. Greedy k-member clustering algorithm

Proof. Observe that the algorithm spends most of its time selecting records from
the input set S one at a time until it reaches |S| = k (Line 9). As the size of
the input set decreases by one at every iteration, the total execution time T is
estimated as:

T = (n − 1) + (n − 2) + . . . + k ≈
n(n − 1)

2
Therefore, T is in O(n2). �

3.4 Improvement for Classification

In most k-anonymity work, the focus is heavily placed on the quasi-identifier, and
therefore other attributes are often ignored. However, these attributes deserve
more careful consideration. In fact, we want to minimize the distortion of quasi-
identifier not only because the quasi-identifier itself is meaningful information,
but also because a more accurate quasi-identifier will lead to good predictive
models on the transformed table [6]. In fact, the correlation between the quasi-
identifier and other attributes can be significantly weakened or perturbed due
to the ambiguity introduced by the generalization of the quasi-identifier. Thus,
it is critical that the generalization process does preserve the discrimination of
classes using quasi-identifier. Considering this issue, Iyengar also proposed the
classification metric (CM) as:

CM =
∑

all rows Penalty(row r) / N ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 197

where N is the total number of records, and Penalty(row r) = 1 if r is suppressed
or the class label of r is different from the class label of the majority in the
equivalence group.

Inspired by this metric, we modify our algorithm in Figure 5 by replacing Line
4 of Function find best record with the following.

if (majority-class-label(c) == class-label(r))
diff = IL({c ∪ {r}) − IL(c);

else diff = IL({c ∪{r}) − IL(c) + classPenalty;

In essence, the algorithm is now forced to choose records with the same class
label for a cluster, and the magnitude of enforcement is controlled by the weight
of penalty. With this minor modification, our algorithm can effectively reduce
the cost of classification metric without increasing much information loss. We
show the results in Section 4.

4 Experimental Results

The main goal of the experiments was to investigate the performance of our ap-
proach in terms of data quality, efficiency, and scalability. To accurately evaluate
our approach, we also compared our implementation with another algorithm,
namely the median partitioning algorithm proposed in [8].

4.1 Experimental Setup

The experiments were performed on a 2.66 GHz Intel IV processor machine with
1 GB of RAM. The operating system on the machine was Microsoft Windows
XP Professional Edition, and the implementation was built and run in Java 2
Platform, Standard Edition 5.0.

For our experiments, we used the Adult dataset from the UC Irvine Ma-
chine Learning Repository [10], which is considered a de facto benchmark for
evaluating the performance of k-anonymity algorithms. Before the experiments,
the Adult data set was prepared as described in [3,6,8]. We removed records
with missing values and retained only nine of the original attributes. For k-
anonymization, we considered {age, work class, education, marital status, occupa-
tion, race, gender, and native country} as the quasi-identifier. Among these, age
and education were treated as numeric attributes while the other six attributes
were treated as categorical attributes. In addition to that, we also retained the
salary class attribute to evaluate the classification metric.

4.2 Data Quality and Efficiency

In this section, we report experimental results on the greedy k-members algo-
rithm for data quality and execution efficiency.

Fig. 6 reports the Total-IL costs of the three algorithms (median partitioning,
greedy k-member, and greedy k-member modified to reduce classification error)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 J.-W. Byun et al.

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

U
n

ce
rt

a
in

ty
 M

ea
su

re
 (

u
n

it
 =

 1
K

)

k-value

Clustering vs. Partitioning (n = 30,162)

Greedy k-member
Greedy k-member: CM

Median Partitioning

Fig. 6. Information Loss Metric

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500

D
is

ce
rn

a
b

il
it

y
 P

en
a
lt

y
 (

u
n

it
 =

 1
M

)

K-values

Clustering vs. Partitioning (n = 30,162)

Greedy k-member
Greedy k-member: CM

Median Partitioning

Fig. 7. Discernibility Metric

for increasing values of k. As the figure illustrates, the greedy k-members algo-
rithm results in the least cost of the Total-IL for all k values. Note also that the
Total-IL cost of the modified greedy k-member is very close to the cost of the
unmodified algorithm. The superiority of our algorithms over the median parti-
tioning algorithm results from the fact that the median partitioning algorithm
considers the proximity among the data points only with respect to a single
dimension at each partitioning.

Another metric used to measure the data quality is the Discernibility metric
(DM) [3], which measures the data quality based on the size of each equivalence
class. Intuitively data quality diminishes as more records become indistinguish-
able with respect to each other, and DM effectively captures this effect of the
k-anonymization process. Fig. 7 shows the DM costs of the three algorithms for
increasing k values. As shown, the two greedy k-member algorithms perform
better than the median partitioning algorithm. In fact, the greedy k-member al-
gorithms always produce equivalence classes with sizes very close to the specified
k, due to the way clusters are formed.

Fig. 8 shows the experimental result with respect to the CM metric described
in Section 3. As expected, the greedy k-member algorithm modified to mini-
mize classification errors (as described in Section 3) outperforms all the other
algorithms. Observe that even without the modification, the greedy k-members
algorithm still produces less classification errors than the median partitioning
for every k value. We also measured the execution time of the algorithms for
different k values. The results are shown in Fig. 9. Even though the execution
time for the greedy k-member algorithm is higher than the partitioning algo-
rithm, we believe that it is still acceptable in practice as k-anonymization is
often considered an off-line procedure.

4.3 Scalability

Fig. 10 and 11 show the Total-IL costs and execution-time behaviors of the al-
gorithms for various table cardinalities (for k = 5). For this experiment, we used
the subsets of the Adult dataset with different sizes. As shown, the Total-IL
costs increase almost linearly with the size of the dataset for both algorithms.
However, the greedy k-member algorithm introduces the least Total-IL cost for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient k-Anonymization Using Clustering Techniques 199

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350 400 450 500

C
la

ss
if

ic
a
ti

o
n

 P
en

a
lt

y
 (

u
n

it
 =

 1
K

)

K-values

Classification (n = 30,162)

Median Partitioning
Greedy K-Member

Greedy K-Member: CM

Fig. 8. Classification Metric

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500

E
x
ec

u
ti

o
n

 T
im

e
(u

n
it

 =
 s

ec
)

k-value

k-Value and Execution Time (n = 30,162)

Median Partitioning
Greedy k-member

Greedy k-member: CM

Fig. 9. Execution Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30

T
o
ta

l
In

fo
rm

a
ti

o
n

 L
o
ss

 (
u

n
it

 =
 1

K
)

Cardinality (unit = 1K)

Cardinality and Information Loss (k = 5)

Median Partitioning
Greedy k-member

Greedy k-member: CM

Fig. 10. Cardinality and Information Loss

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

E
x
ec

u
ti

o
n

 T
im

e
(u

n
it

 =
 s

ec
)

Cardinality (unit = 1K)

Cardinality and Execution Time (k = 15)

Median Partitioning
Greedy k-member

Greedy k-member: CM

Fig. 11. Cardinality and Runtime

any size of dataset. Although the greedy k-members is slower than the par-
titioning algorithm, we believe that the overhead is still acceptable in most
cases considering its better performance with respect to the Total-IL metric.

5 Conclusions

In this paper, we proposed an efficient k-anonymization algorithm by transform-
ing the k-anonymity problem to the k-member clustering problem. We also pro-
posed two important elements of clustering, that is, distance and cost functions,
which are specifically tailored for the k-anonymization problem. We emphasize
that our cost metric, IL metric, naturally captures the data distortion introduced
by the generalization process and is general enough to be used as a data quality
metric for any k-anonymized dataset.

References

1. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,
and A. Zhu. Anonymizing tables. In International Conference on Database Theory,
pages 246–258, 2005.

2. C. C. Aggrawal and P. S. Yu. A condensation approach to privacy preserving data
mining. In International Conference on Extending Database Technology, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 J.-W. Byun et al.

3. R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization.
In International Conference on Data Engineering, 2005.

4. B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information
and privacy preservation. In International Conference on Data Engineering, 2005.

5. Z. Huang. Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data Mining and Knowledge Discovery, 2(2):283–304, 1998.

6. V. S. Iyengar. Transforming data to satisfy privacy constraints. In ACM Conference
on Knowledge Discovery and Data mining, 2002.

7. K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain
k-anonymity. In ACM International Conference on Management of Data, 2005.

8. K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In International Conference on Data Engineering, 2006.

9. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In ACM
Symposium on Principles of Database Systems, 2004.

10. C. B. S. Hettich and C. Merz. UCI repository of machine learning databases, 1998.
11. P. Samarati. Protecting respondent’s privacy in microdata release. IEEE Trans-

actions on Knowledge and Data Engineering, 13, 2001.
12. L. Sweeney. Achieving k-anonymity privacy protection using generalization and

suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 2002.

13. L. Sweeney. K-anonymity: A model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential

Patterns for Network Traffic Data

Seung-Woo Kim1, Sanghyun Park1,�, Jung-Im Won2, and Sang-Wook Kim2

1 Department of Computer Science
Yonsei University, Korea

{kimsw,sanghyun}@cs.yonsei.ac.kr
2 College of Information and Communications

Hanyang University, Korea
{jiwon,wook}@hanyang.ac.kr

Abstract. As a total amount of traffic data in networks has been grow-
ing at an alarming rate, many researches to mine traffic data with the
purpose of getting useful information are currently being performed.
However, since network traffic data contain the information about In-
ternet usage patterns of users, network users’ privacy can be compro-
mised during the mining process. In this paper, we propose an efficient
and practical method for privacy preserving sequential pattern mining
on network traffic data. In order to discover frequent sequential pat-
terns without violating privacy, our method uses the N-repository server
model that operates as a single mining server and the retention replace-
ment technique that changes the answer to a query probabilistically. In
addition, our method accelerates the overall mining process by maintain-
ing the meta tables in each site. Extensive experiments with real-world
network traffic data revealed the correctness and the efficiency of the
proposed method.

Keywords: Data mining, Sequential pattern, Network traffic, Privacy.

1 Introduction

Owing to the rapid advance of network technology, the number of computers con-
nected to the Internet increases dramatically, so does the information delivered
over the vast Internet. Recently, there has appeared a new kind of data mining
researches that extract useful knowledge from network traffic data automatically
gathered by a remote server [9,7,11].

Table 1 shows an example of network traffic data gathered by Ethereal1. The
network traffic data have the following characteristics: First, there exist various
kinds of data since all the computers connected to the Internet can produce
network traffic data potentially. Second, a huge amount of network traffic data

� Corresponding Author.
1 http://www.ethereal.com/

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 201–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 S.-W. Kim et al.

Table 1. An example of network traffic data gathered by Ethereal

timestamp source address source port destination address destination port

13:37:11.950966 180.1.1.1 36872 amazon.com www

13:37:11.954474 amazon.com www 180.1.1.1 36872

13:37:22.384472 180.1.1.1 36915 192.168.1.3 telnet

13:37:22.385327 192.168.1.3 telnet 180.1.1.1 36915

are accumulated due to frequent actions for data sending/receiving by a lot of
computers. Third, network traffic data are scattered over a large number of sites.

Sequential pattern mining is the most useful for this application since the
order of events has an important meaning in network traffic data [9,7].

Network traffic data contain detailed information of Internet usage for every
user, which informs that a user accesses a site at a time specifically. Herein,
data mining on network traffic data has the problem of compromising privacy
of network users. Therefore, it requires sophisticated techniques for hiding or
reforming users’ private information during a data gathering process. Moreover,
these techniques should not sacrifice the correctness of mining results.

Privacy preserving data mining is a new kind of a research area that aims at
mining data with guaranteeing privacy of individual users [4,13,2,5,8,6,10,12,14].
Recently, there have been many research efforts performed in this area. Most
methods proposed in prior studies, however, manage data in a few sites or deal
with a small number of distinct types of data. Thus, these methods are not
appropriate for mining network traffic data since they suffer from the problems
of incorrectness and low performance.

In this paper, we discuss solutions to the problems that occur in previous
methods. We propose a novel method for sequential pattern mining on network
traffic data. The proposed method preserves privacy of sites and guarantees the
correctness of mining results. The method discovers frequently-occurring network
traffic patterns with hiding site information through two ways: (1) It employs
the N -repository server model that makes multiple servers behave as a single
mining server; (2) It uses the retention replacement technique that changes the
answer by a given probability. Also, the method maintains meta tables in each
site so as to quickly determine whether candidate patterns ever occurred in the
site, thereby making the overall mining process become highly efficient.

2 Related Work

Clifton et al. [4] firstly raised the privacy problem in data mining and motivated
subsequent studies [13,2,5,8,6,10,12,14] that aimed to solve the problem.

In the method proposed in [2], in order to preserve privacy, each site changes
the original numeric value of an individual item before sending the value to the
server by adding an arbitrary value selected from given probability distribution.
The server builds a decision tree by reconstructing actual value distribution.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential Patterns 203

Other method called the retention replacement [13,3] perturbs and recon-
structs data in gathering and mining, respectively, for privacy preservation. For
every data whose element represents 0 or 1, each site sends the original value
with probability p and the perturbed one with probability (1 − p). For gathered
data, the server counts the total numbers of 1’s and 0’s, and then estimates the
original numbers of 1’s and 0’s. This method is applicable only to boolean data.

Some later studies [5,3] tried to apply those two methods to various data
types, however, showed lower accuracy as the number of data types increases.

The method proposed by Rizvi et al. [13] uses the retention replacement for
finding frequent itemsets. This can be applied to the case where item types to
occur are pre-determined. Considering network traffic data where a large number
of item types occur, we can hardly determine all the item types in advance. Also,
this method finds frequent patterns via a whole database scan and thus is very
inefficient since network traffic data are very huge.

The method proposed in [8] collects local frequent itemsets from sites by
employing a commutative encryption and obtains global frequencies of itemsets
by employing a secure sum which uses a random number. For performing a
commutative encryption and a secure sum, this method has to serially send data
in the cycle of sites. This requires a lot of time in case of a large number of sites.
Fukasawa et al. [6] improved the efficiency and security of this method. However
the improved one still has cycling communications.

Zhan et al. proposed a method for sequential pattern mining with privacy
preservation [14]. This method mainly targets a distributed environment where
vertical partitioning without duplication is employed. In our situation, dupli-
cated data could occur in more than one site since multiple PCs can access the
same Internet site. Therefore, this method is inapplicable to network traffic data.

In the method proposed in [10], a secure protocol is used for mining a decision
tree classifier from distributed sites. Pinkas [12] showed how protocols for secure
distributed computation can be employed for privacy preservation, however he
also pointed out that the performance of protocols should be improved.

In summary, prior studies have the problems applying to a large amount of
network traffic data. First, due to a variety of data types, previous methods are
not directly applicable and cannot obtain accurate mining results. Second, since
there exist a large number of sites and data can be duplicated, previous methods
targeted for a distributed database environment have limitations on practicality.

3 Problem Definition

Network traffic data are normally gathered by a tcp/ip data capture program
such as Ethereal. In this paper, we aim at finding sequential patterns from net-
work traffic data without disclosing data in each site. First, we simplify the
network traffic data in the form of Table 1 as those in the form of Table 2. In
Table 2, “out” denotes sending and “in” does receiving.

In order to find temporal relationship among events in network traffic data, we
can apply sequential pattern mining methods [9,7]. We impose a restriction that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 S.-W. Kim et al.

Table 2. An example of network traffic data reconstructed

timestamp in/out address timestamp in/out address

13:37:11.950966 out amazon.com 13:37:22.384472 out 192.168.1.3

13:37:11.954474 in amazon.com 13:37:22.385327 in 192.168.1.3

two adjacent items in network traffic data should have a time interval smaller
than or equal to a predefined MaxGap value to be regarded as related.

We formulate the problem we are going to solve as follows: Given t sites T1,
T2, ... , Tt, the maximum time interval MaxGap, and the minimum support
MinSup, we discover all the sequential patterns, which have a support larger
than MinSup and a time interval between any pair of adjacent items equal to
or smaller than MaxGap. We assume that a site stores network traffic data as
in the form of Table 2.

A mining process should also satisfy the condition for preserving privacy in
every site. Let us denote a set of sites, where network traffic has occurred, as E
and a set of network traffic data as I. In a mining process, an element ej in E
is opened since it participates in the mining process; Also, an element ik in I is
also opened since it should be contained in a result of mining. However, a pair of
(ej , ik), which says a site ej has been connected to an IP address ik, should not
be opened in a mining process. We define this condition for preserving privacy.

4 Proposed Method

4.1 Overall Mining Process

The proposed mining process consists of four phases. Table 3 shows the definition
of symbols which are used to explain the mining process. The first phase utilizes
the N -repository server model to safely discover F1. The second phase generates
Ck+1 by self-joining Fk. k is initialized to 1 when the second phase is executed
for the first time. If Ck+1 is empty, we enter into the final phase. Otherwise, we
enter into the third phase. For each candidate in Ck+1, the third phase sends
every site the query asking whether the candidate has ever occurred in the site.
After receiving the answers from all sites, the third phase judges whether each
candidate is frequent or not, and then constructs Fk+1, with the candidates

Table 3. Definition of symbols

F1 A set of all frequent sequential patterns of length 1
(or large 1-sequences, frequent items)

Fk A set of all frequent sequential patterns of length k
(or large k-sequences)

Ck A set of all candidate patterns of length k

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential Patterns 205

judged as frequent. The third phase then increases k by 1 and calls the second
phase. The final phase prints all frequent patterns in F1, F2, ... , and Fk, and
stops the mining process.

4.2 Finding Frequent Items Using N-Repository Server Model

The proposed N -repository server model finds F1, without compromising the
condition for preserving privacy by concealing the linkage between the site iden-
tifier and the traffic data, (ej , ik). More specifically, it obscures their linkage
by encrypting the traffic data, ik, at the first step and by aggregating the site
identifiers, ej , at the second step.

The proposed N -repository server model consists of N servers, {S1, S2, ... ,
SN}, and N pairs of encryption keys and decryption keys, {(EK1, DK1), (EK2,
DK2), ... , (EKN , DKN)}. Each site has all encryption keys but server Si has
only a decryption key DKi (1 ≤ i ≤ N). To find frequent items safely, the
N -repository server model operates as follows:

1. Each site classifies the items (i.e., the traffic data) into N groups, {G1, G2,
... , GN}, using a hash function.

2. Each site encrypts the items in Gi with encryption key EKi (1 ≤ i ≤ N).
3. Each site sends the encrypted items in Gi to server Si+1 (1 ≤ i ≤ N − 1)

and the encrypted items in GN to server S1.
4. Each server performs the aggregation on the encrypted items to obtain the

number of occurrences of each encrypted item and then picks up the en-
crypted frequent items.

5. Each server Si sends encrypted frequent items to server Si−1 (2 ≤ i ≤ N)
and server S1 does to server SN .

6. Each server Si decrypts the received items with its decryption key DKi and
then reports the frequent items to public.

We assume that the servers in our model operate in a semi-trusted operation
model. In the semi-trusted operation model, servers may try to acquire private
data but do not cooperate with other servers to do that. This semi-trusted
operation model is common in real environments where one wants to get the
result of computation but is not willing to offer one’s own data to others [14].

4.3 Finding Frequent Patterns Longer Than One

After finding out F1, we have to sequentially discover frequent patterns longer
than one. At first, one of N servers is elected as a principal mining server.
To discover all frequent patterns longer than one, the principal mining server
assigns 1 to variable k and executes the following steps.

1. It produces Ck+1 by self-joining Fk in the same way as Apriori algorithm [1].
It executes step 5 if Ck+1 is empty. Otherwise, it executes step 2.

2. For each candidate pattern CP in Ck+1, the server sends every site T a query
asking whether CP has ever occurred in T or not.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 S.-W. Kim et al.

3. Each site T sequentially inspects traffic data or the meta tables, which will
be described in Section 4.4, to determine CP ’s occurrence in T . An actual
answer of the query would be 1 or 0 as CP ’s occurrence. However, to pre-
serve the privacy of the site, the actual answer is perturbed by the retention
replacement [13,3].

4. For each query, the principal mining server aggregates the counts of the sites
answered 1 and the sites answered 0. Then, using the two counts, it con-
jectures the number of sites whose actual answers were 1. It then compares
that number with MinSup and constructs Fk+1, by choosing from Ck+1. It
finally increases k by 1 and calls step 1.

5. When it reaches this step, Ck+1 is empty. Therefore, it prints all the frequent
patterns discovered and then stops the execution of the algorithm.

4.4 Meta Tables to Quickly Determine the Occurrence or
Non-occurrence of Candidate Patterns

In the Apriori algorithm, patterns of length k can be regarded as candidate pat-
terns only when all of their sub-patterns are frequent. However, in the sequential
pattern mining with time constraints, even the patterns containing infrequent
sub-patterns can be treated as candidate patterns if all of their sub-patterns
occurring contiguously in the underlying patterns are frequent. Therefore, com-
pared to the mining techniques based on the original Apriori algorithm, the
sequential pattern mining with time constraints impose less requirement for pat-
terns to be treated as candidate patterns. As a result, more candidate patterns
are generated and, to accelerate the overall mining process, it is crucial to handle
each candidate pattern efficiently.

In this paper, we employs special-purpose meta tables in each site T for
speeding-up the process to decide the occurrence or non-occurrence of CP in T .

Meta tables for storing pairs of items satisfying MaxGap
Let m denote the number of frequent items. At first, the principal mining server
sends out the list of all frequent items to each site T . Then, site T lexicographi-
cally sorts the frequent items and assigns each frequent item the corresponding
lexicographic order. Site T then stores the name and lexicographic order of
each frequent item into the meta table called FreqItems. FreqItems consists of
two columns, ItemName and Order. Given a frequent item, ItemName and Order
store its name and lexicographic order, respectively.

The second meta table is OccTs OccBits. This table consists of three columns,
Order, OccTs, and OccBits. For each frequent item FI in the traffic data of T ,
Order stores the lexicographic order of FI, and OccTs stores the timestamp at
which FI occurred, and OccBits stores a bit-vector of length m whose ith bit
indicates whether or not the frequent item of lexicographic order i has ever
occurred within MaxGap after the occurrence of FI. We denote the ith bit of
OccBits as OccBits(i). OccTs OccBits can be constructed by scanning the entire
traffic data in site T . The number of tuples in OccTs OccBits is same as the
number of occurrences of frequent items in T .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential Patterns 207

The third meta table is OccCnts. OccCnts consists of m + 1 columns, Order,
Cnt1, Cnt2, ... , Cntm. OccCnts has a tuple for each frequent item and therefore
contains m tuples. Let us consider the ith tuple of OccCnts. It has i as a value
of Order. As a value of Cntj , it has the number of occurrences of the frequent
item of order j whose timestamps are within MaxGap after the occurrences
of the frequent item of order i. The ith tuple of OccCnts can be populated by
queryingOccTs OccBits.

An example of meta tables maintained within a single site is shown in Fig. 1.

100

001

010

001

010

000

OccBits

13:38:05.44 2

13:38:15.51 1

2

1

1

1

Order

13:38:07.05

13:37:34.21

13:37:32.43

13:37:11.95

OccTs

100

001

010

001

010

000

OccBits

13:38:05.44 2

13:38:15.51 1

2

1

1

1

Order

13:38:07.05

13:37:34.21

13:37:32.43

13:37:11.95

OccTs

< OccTs_OccBits >

C

B

A

ItemName Order

2

3

1

C

B

A

ItemName Order

2

3

1

< FreqItems >

1

1

0

Cnt1

3

2

1

Order

10

11

12

Cnt2 Cnt3

1

1

0

Cnt1

3

2

1

Order

10

11

12

Cnt2 Cnt3

< OccCnts >

10013:38:14.083

00113:38:12.313

00013:38:08.543

00013:37:35.17 3

00013:38:19.12 2

01013:38:17.23 2

OccBitsOccTsOrder

10013:38:14.083

00113:38:12.313

00013:38:08.543

00013:37:35.17 3

00013:38:19.12 2

01013:38:17.23 2

OccBitsOccTsOrder

Fig. 1. An example of meta tables maintained within a single site

Determining the occurrences or non-occurrences of candidate patterns
The algorithm to determine the occurrences or non-occurrences of candidate
patterns using the meta tables has the following 4 steps.

1. Divide a candidate pattern
Let CPn = 〈I1, I2, ..., In〉 denote a candidate pattern with n items. We first
divide CPn into n − 1 sub-patterns each of which consists of two adjacent
items of CPn. The jth sub-pattern of CPn is denoted as SPj = 〈Ij , Ij+1〉
(j = 1, 2, ..., n − 1).

2. Determine the execution orders of the sub-patterns
Sub-patterns are executed on the meta tables and their results are joined
with those of other sub-patterns. If we are able to discover the optimal
execution orders which minimize the sizes of intermediate results, then we
can determine the occurrence or non-occurrence of a candidate pattern as
early as possible. The simplest way to find out the optimal execution orders
is to consider all the possible combinations of execution orders and to choose
the one which will produce the smallest intermediate results. However, there
are (n − 1)! distinct combinations for n − 1 sub-patterns and thus such a
simple approach is not scalable to large n. Therefore, we employ the following
greedy algorithm which quickly discovers near-optimal execution orders.
(a) We choose the sub-pattern which will have the smallest result set size,

and let 1 be its execution order. We then assign 1 to variable k.
(b) Let us assume that the execution order of SPj has just been decided

as k. To decide the sub-pattern of execution order k + 1, we decrease j′

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 S.-W. Kim et al.

from j − 1 to 1 until we find SPj′ whose execution order is not decided
yet. Also, we increase j′′ from j + 1 to n − 1 until we find SPj′′ whose
execution order is not decided yet.

(c) If neither SPj′ nor SPj′′ exists, we stop the execution of the greedy
algorithm. However, if SPj′′ does not exist but SPj′ exists, then we let
k + 1 be the execution order of SPj′ . On the contrary, if SPj′ does not
exist but SPj′′ exists, then we let k + 1 be the execution order of SPj′′ .
If both SPj′ and SPj′′ exist, then we choose the one which will have
a smaller result set size and let k + 1 be its execution order. If their
result set sizes will be same, then we choose the one farther from the
corresponding end. This reduces the possibility of the absence of either
SPj′ or SPj′′ in the next step and therefore enables to obtain a better
combination of execution orders.

(d) We increase k by one and return to step 2(b).
In the middle of this greedy algorithm, there is a step to calculate the result
set sizes of sub-patterns. The result set size of SPj = 〈Ij , Ij+1〉 is equal to the
number of occurrences of item Ij+1 within MaxGap after the occurrences of
item Ij . The result set size of a sub-pattern can be easily obtained by using
two meta tables, FreqItems and OccCnts, who were explained above.

3. Execute the sub-patterns and join their results
According to the execution orders obtained in step 2, we execute all sub-
patterns one by one while joining their intermediate results. That is, for
each k from 1 to n − 1, we execute the following steps.
(a) For the two items of the sub-pattern whose execution order is k, we find

their lexicographic orders using FreqItems. Let p and q be the lexico-
graphic orders of the preceding item and the succeeding item,
respectively.

(b) We execute the following SQL statement to obtain the result set RSk of
the sub-pattern of execution order k.

select p, OccTs, q // p and q are not column names but constants
into RSk

from OccTs OccBits
where Order = p and OccBits(q) = 1;

(c) We join the result set RSk with JRSk−1, the intermediate result set
obtained by sequentially joining all the result sets of sub-patterns of
execution orders from 1 to k − 1, producing a new intermediate result
set JRSk. For a simpler explanation, let us rename the tables to be
joined as follows. If the sub-pattern of execution order k is on the left
of the sub-patterns of execution orders from 1 to k − 1, then we rename
the sub-pattern of execution order k as TA and the intermediate result
set JRSk−1 as TB. Otherwise, we rename the sub-pattern of execution
order k as TB and the intermediate result set JRSk−1 as TA. Then, the
conditions for a tuple ta of TA to be joined with a tuple tb of TB are like
the following:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential Patterns 209

– Join condition 1: The last item of ta must be identical to the first
item of tb.

– Join condition 2: The gap from the timestamp of tb’s first item to
the timestamp of ta’s last item must not be larger than MaxGap.

(d) We check if the join result JRSk is empty. If so, we proceed to step 4.
Otherwise, we increase k by one and return to step 3(a).

4. Determine the occurrence or non-occurrence of a candidate pattern
We check if the final result set of step 3 is empty. If so, we conclude that the
candidate pattern being considered has never occurred in this site. Other-
wise, we judge that there is at least one occurrence of the candidate pattern.

Meta table to quickly judge the non-occurrence of a candidate pattern
Apriori algorithm joins frequent patterns of length n with themselves to generate
candidate patterns of length n + 1.

Let {CPn} denote the set of candidate patterns of length n. Also, let {CP ′
n}

denote the set of candidate patterns in {CPn} whose occurrences were detected
in the site. Now, let us consider a candidate pattern of length n+1, CPn+1, deliv-
ered to the site most recently. If we break CPn+1 into two sub-patterns of length
n, CPn+1[1..n] and CPn+1[2..n+1], then both of them are certainly elements of
{CPn}. The prerequisites for CPn+1 to occur in the site are the occurrences of
both CPn+1[1..n] and CPn+1[2..n+1]. Therefore, if either CPn+1[1..n] /∈ {CP ′

n}
or CPn+1[2..n + 1] /∈ {CP ′

n} is satisfied, then we can quickly recognize the non-
occurrence of CPn+1 without looking up the meta tables. We implement this
pruning method by maintaining a meta table named OccCandPatt in each site.
OccCandPatt stores the string representation of each candidate pattern whose
occurrence has ever detected in the underlying site.

This pruning method enables to quickly judge the non-occurrence of a can-
didate pattern but increases the size of OccCandPatt continually. However, note
that this method requires only the candidate patterns of length n in order to
determine the non-occurrence of a candidate pattern of length n + 1. Therefore,
when the site receives from the principal mining server a candidate pattern of
length n+1 for the first time, it removes the candidate patterns of length n− 1.

5 Performance Evaluation

5.1 Environment for Experiments

In experiments, we collected 5,024,295 traffic data by Ethereal during 5 days.
From them, we extracted 747,000 traffic data related to 736 IP addresses. The
average inter-arrival time is 462.38 msec.

We compared the performances of three methods: Naive, OccTs, and Oc-
cTs+OccCandPatt. In order to discover F1, Naive uses the retention replace-
ment for all traffic data. Furthermore, it scans the original traffic data to verify
whether every candidate is actually frequent. OccTs discovers F1 by using the
N -repository server model and Fk (k ≥ 2) by the retention replacement. OccTs

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 S.-W. Kim et al.

decides whether a candidate pattern is frequent by searching meta tables Oc-
cTs OccBits and OccCnts. Finally, OccTs+OccCandPatt, which is basically based
on OccTs, additionally uses meta table OccCandPatt. Furthermore, both OccTs
and OccTs+OccCandPatt employ a greedy algorithm to determine the execution
order of sub-patterns.

As a measure for evaluating accuracy, we used Recall and Precision. Recall
indicates how much fraction are mined from all the actually frequent ones. Pre-
cision indicates how much fraction of mined patterns are actually frequent. As
a performance measure, we used the average elapsed times in mining sequential
patterns of the maximum length 6.

The hardware platform is the Pentium IV 3.0GHz PC equipped with 512
Mbytes main memory and 80 Gbytes hard disk of 7200RPM. The software plat-
form is the Windows XP and the Java 2 Runtime Environment 1.4.2.

Since we got quite good performances in our parameter setting experiments,
we set MinSup,MaxGap, the number of sites, and the number of servers to 0.2,
20, 10, and 5, respectively in the following experiments.

5.2 Analysis of Accuracy

In order to evaluate accuracy of the proposed N -repository server model, we
compared Recall and Precision of OccTs and Naive. Because the accuracy of both
OccTs and OccTs+OccCandPatt is the same, we show only Naive and OccTs.

We evaluated Recall and Precision with different probability p. We set the
number of sites to 50. Fig. 2 shows the results with p of 0.51 to 1. We note that
the retention replacement is inapplicable with p of 0.5 [13].

The results show that, in Naive and OccTs, both Recall and Precision get
higher as p gets close to 1. This is due to the retention replacement used in
both methods to find frequent sequential patterns whose length is longer than 1.
OccTs performs 1.04 to 1.20 and 1.01 to 1.12 times better than Naive in Recall
and Precision, respectively.

Naive is inapplicable to analyzing real Internet traffic data because it has to
know all the items likely to occur in advance. Furthermore, in the above two
experiments, OccTs showed accuracy higher than Naive.

5.3 Analysis of Performance

In order to evaluate the performance of OccTs and OccTs+OccCandPatt, we
compared them with Naive in terms of the elapsed time for mining. We measured
the elapsed time with different numbers of traffic data in each site. We set
probability p in retention replacement to 1 in order to evaluate the average
elapsed times of all the methods fairly. Fig. 3 shows the result.

We observe that, in all three methods, as the volume of traffic data gets larger,
the elapsed time increases. This is because more frequent patterns appear with
a larger volume of traffic data. OccTs performed 1.60 to 2.38 times better than
Naive. It stores all pairs of frequent items that occur within MaxGap into a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Data Mining of Sequential Patterns 211

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

p (Site=50)

R
e
c
a
ll

Naïve

OccTs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

p (Site=50)

P
r
e
c
is
io
n

Naïve

OccTs

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

7000.000

8000.000

9000.000

10000.000

0 1000 2000 3000 4000 5000 6000

Number of traffics

T
im
e
 (
s
e
c
)
 >

Naïve

OccTs

OccTs

+

OccCandPatt

Fig. 2. Recall and Precision with different prob-
ability p

Fig. 3. The elapsed time with
different numbers of traffic data

meta table OccTs OccBits and quickly determines whether candidate patterns
occur by joining these pairs without accessing the network traffic data.

OccTs+OccCandPatt ran 1.01 to 1.10 times faster than OccTs. By referring to
OccCandPatt, it examines whether candidate patterns have ever occurred in the
site before searching OccTs OccBits. Therefore, it achieves the pruning effect in
the mining process. That is, the total elapsed time decreases because the number
of candidate patterns to be searched in OccTs OccBits gets smaller.

6 Concluding Remarks

In this paper, we have proposed a practical method for sequential pattern mining
on network traffic data. The proposed method preserves privacy of sites and
provides high accuracy of mining results. The proposed method can be used for
finding frequent sequential visiting patterns of web pages. The mining results
can be applied to prefetching of web pages and load balancing in web servers.

The contributions of the paper are summarized as follows: First, we have
proposed a privacy preserving method that mines frequent sequential patterns
from network traffic data. Our method uses the N -repository server model that
operates as a single mining server and also employs the retention replacement
technique that changes the answer by a given probability. Second, we have de-
signed meta tables maintained in each site so as to quickly determine whether
candidate patterns ever occurred in the site. Third, we have demonstrated the
correctness and the efficiency of the proposed method via extensive experimen-
tation with real-world network traffic data.

Acknowledgements

This work was supported by the Seoul R&BD Program(10561) in 2006, Korea
Research Foundation Grant funded by Korea Government (MOEHRD, Basic
Research Promotion Fund) (KRF-2005-206-D00015), and the MIC of Korea un-
der the ITRC support program supervised by the IITA (IITA-2005-C1090-0502-
0009).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

212 S.-W. Kim et al.

References

1. R. Agrawal and R. Srikant, “Mining Sequential Patterns,” In Proceedings of the
11th IEEE International Conference on Data Engineering, pp. 3–14, 1995.

2. R. Agrawal and R. Srikant, “Privacy-Preserving Data Mining,” In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, pp.
439–450, 2000.

3. R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving OLAP,” In Proceed-
ings of the 2005 ACM SIGMOD International Conference on Management of Data,
pp. 251–262, 2005.

4. C. Clifton and D. Marks, “Security and Privacy Implication of Data Mining,” In
Proceedings of the 1996 ACM Workshop on Data Mining and Knowledge Discovery,
pp. 15–19, 1996.

5. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy Preserving Mining
of Association Rules,” In Proceedings of the 2002 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 217–228, 2002.

6. T. Fukasawa, J. Wang, T. Takata, and M. Miyazaki, “An Effective Distributed
Privacy-Preserving Data Mining Algorithm,” In Proceedings of the 5th Interna-
tional Conference on Intelligent Data Engineering and Automated Learning, pp.
320–325, 2004.

7. Y. Hu and B. Panda, “A Data Mining Approach for Database Intrusion Detection,”
In Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 711–716,
2004.

8. M. Kantarcioglu and C. Clifton, “Privacy-Preserving Distributed Mining of Asso-
ciation Rules on Horizontally Partitioned Data,” In Proceedings of the 2002 ACM
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery,
pp. 24–31, 2002.

9. W. Lee, S. Stolfo, and K. Mok, “A Data Mining Framework for Building Intrusion
Detection Models,” In Proceedings of IEEE Symposium on Security and Privacy,
pp. 120–132, 1999.

10. Y. Lindell and B. Pinkas, “Privacy Preserving Data Mining,” In Proceedings of
the 20th Annual International Cryptology Conference on Advances in Cryptology,
pp. 36–54, 2000.

11. J. Luo and S. Bridges, “Mining Fuzzy Association Rules and Fuzzy Frequency
Episodes for Intrusion Detection,” International Journal of Intelligent Systems,
Vol. 15, No. 8, pp. 687–704, 2000.

12. B. Pinkas, “Cryptographic techniques for privacy-preserving data mining,” ACM
SIGKDD Explorations Newsletter, Vol. 4, No. 2, pp. 12–15, 2002.

13. S. Rizvi and J. Haritsa, “Maintaining Data Privacy in Association Rule Mining,”
In Proceedings of the 28th International Conference on Very Large Data Bases,
pp. 682–693, 2002.

14. J. Zhan, L. Chang, and S. Matwin, “Privacy-Preserving Collaborative Sequential
Pattern Mining,” In Proceedings of SIAM International Workshop on Link Anal-
ysis, Counter-terrorism, and Privacy, pp. 61–72, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party

Weijia Yang1 and Shangteng Huang2

1 Shanghai Jiao Tong University, Shanghai 200030, China
weijia.yang@yahoo.com.cn

2 Shanghai Jiao Tong University, Shanghai 200030, China
huang-st@cs.sjtu.edu.cn

Abstract. Privacy concerns on sensitive data are now becoming indis-
pensable in data mining and knowledge discovering. Data owners usually
have different concerns for different data attributes. Meanwhile the collu-
sion among malicious adversaries produces a severe threat to the security
of data.

In this paper, we present an efficient method to generate the attribute-
wised orthogonal matrix for data transformation. Moreover, we introduce
a privacy preserving method for clustering problem in multi-party con-
dition. Our method can not only protect data in the semi-honest model
but also in the malicious one. We also analyze the accuracy of the results,
the privacy levels obtained, and their relations with the parameters in
our method.

1 Introduction

Data mining is a powerful tool in discovering hidden patterns from large amount
of data. It can also be a threat when not used properly. Therefore, privacy
preserving data mining is becoming a popular research direction these years.
Starting from researches [1,2], the statistical and cryptographic theories have
been extensively applied. Consequently, quite a few data protecting methods
have been presented. Different methods correspond to different scenarios: se-
cure multi-party calculation (SMC) for distributed data mining; perturbation
techniques for data publishing.

In this paper, we mainly focus on such scenario: several parties send their data
records to the mining server in order to get an overall aggregate model, while
each party has its own privacy concerns about its data. Before transmitting, they
will disguise their data by transformation matrix. And the miner has to build
the right model based on these perturbed data. The mining task we consider in
this paper is clustering.

We consider the owners have different privacy requirements for each data
attributes, and we implement the variable-wised privacy based on the orthogo-
nality of the transforming matrix. We also analyze the impacts on privacy from
both semi-honest and malicious participants in our privacy preserving clustering
method. The randomization techniques are also applied to rebuild the privacy
level in face of complicity.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 213–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 W. Yang and S. Huang

This paper is organized as follows. In Section 2, we provide the works related
to our topics. The attribute-wised data transformation algorithm is presented in
Section 3. In addition, the privacy measurement is also given. In Section 4, we
introduce in detail our new privacy preserving method for clustering. Section 5
analyzes the accuracy impact our method brings, and the privacy levels obtained
both in semi-honest and malicious conditions are discussed in Section 6. Section 7
presents our experimental results. Finally, we summarize the conclusions of our
study in Section 8.

2 Related Works

Many works have been made on the problem of privacy preserving for different
kinds of data mining tasks. While in this paper, our scenario is similar with the
works [3,4,5,6] which are based on Randomized Response techniques [7]. In the
work of [3,6], the data owner transmits the real boolean data in a fixed probabil-
ity θ, so that the others can not directly get the original data while the server can
rebuild the statistics knowing θ. And different transmitting probabilities were
placed on different data attributes in [5].

The work in [8] proposed a rotation based way like spatial transformation.
This method transforms the data into another coordinates system, so that it
keeps the similarity between records and protects the original. The work in [9]
applied the orthogonal transformation way to classification problem, it proved
several classifiers to be rotation-invariant, and presented an algorithm to reach
higher privacy levels. The work in [10] generated its transformation matrix by
independent and identically distributed (i.i.d.) variables(i.e. each variable has the
same probability distribution as the others and all are mutually independent)
and projected the original data from high dimensions to lower ones without
losing much accuracy.

Private Clustering has also been studied by cryptographic, such as using SMC
in the work of [11].

Our work differs from the above papers in that: we put attribute-wised privacy
concerns into random transformation matrix generation; the threats to privacy
from both semi-honest and malicious parties are considered; we reinforce the
orthogonal transformation method with randomization techniques.

The privacy concerns have also been studied in other mining tasks: [12,13] for
association rule mining; [14] for Bayesian network; [1,15] for classification tree
building; . . .However, these are out of the scope of our topic.

3 Attribute-Wised Transformation Matrix

In this paper we’ll mainly focus on one of the most common mining task: cluster-
ing. All parties are assumed to have homogeneous datasets. Considering differ-
ent data attributes may have different privacy concerns, the participants should

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party 215

carry out the transforming process with their own transformation matrixes which
represent their privacy requirements respectively. Thus, there come two main
questions:

1. How to generate the transformation matrix representing the attribute-wised
privacy concerns?

2. Since subsets of data are distributed in different coordinate systems after
the transformation, how does the miner successfully clustering the records
into right groups?

3.1 Privacy Measurement

For a participant party, suppose l×m matrix X represents the original dataset
with l rows and m columns , l×m matrix Y is the transformed dataset, X ′ and
Y ′ are the unified version, H(m ×m) is the transformation matrix. As defined
in [9], we use the variance of the difference between X ′ and Y ′ to determine the
privacy level of data variables.

Privacy Level ∼ Cov(X ′−Y ′) = Cov(X ′ ·(E−H)) (E is the entity matrix) (1)

In practice, each attribute in a data set usually involves different weight of
privacy which is hard to be quantified by the owner. But through his experience,
the owner still can appropriately establish an order of priority. For example, a
commercial bank has its records of customers consisting of age, income, deposit,
credit . . . It is probable for its officer to evaluate the risk of leakage of these
attributes and sort them by privacy concerns in descending order like: deposit >
credit > income > age > . . . However, it’s still quite hard to quantify the specific
difference in between. E.g. whether the privacy level of deposit is exactly twice
or 2.5 times higher than credit? Therefore, we take the order of privacy priority
as the directive to generate the attribute-wised transformation matrix.

3.2 Attribute-Wised Transformation

The orthogonal transformation maintains the result of the dot product operation,
which is helpful to clustering, and is also employed by [8,9]. Since (1) not only
includes the column vectors of H , but also shows their positions (the order of
the column vectors in E should change with that of the column vectors in H),
we can’t simply reorder the columns of an orthogonal matrix to achieve the
attribute-wised privacy. In order to get an appropriate H for a dataset of m
columns, we list all the conditions H should satisfy to form the equation set:⎧⎪⎪⎨

⎪⎪⎩
HT

i ·Hi = 1 (Hi, Ei represent the ith column vector of H, E)
HT

i ·Hj = 0 (i �= j)
V ar(X · (E1 −H1)) > V ar(X · (E2 −H2))

> . . . > V ar(X · (Em −Hm))

(2)

It takes high time complexity to locate one of the possible solutions of (2).
We present a convenient way to achieve this. Firstly, we will generate a random

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 W. Yang and S. Huang

orthogonal matrix. The random orthogonal matrix generation can be found in
the work of [16].

Lemma 1. Let D be a l×m unified data matrix(i.e. a dataset with l rows and
m columns), Ei be ith column vector of identity matrix E, Hi be ith column
vector of an m×m orthogonal transformation matrix H. Comparing with other
attributes, the element hi,i in the transformation matrix determines the relative
order of privacy for ith attribute in D.

Proof. The privacy of ith attribute is quantified as:

V ar(D · (Ei −Hi)) = (Ei −Hi)T · Cov(D) · (Ei −Hi) . (3)

For the purpose of compare, we can omit the Cov(D) in (3). So we have:

(Ei −Hi)T · (Ei −Hi)
= ET

i ·Ei + HT
i ·Hi − ET

i ·Hi −HT
i ·Ei

= 2− ET
i ·Hi −HT

i ·Ei

= 2− 2 · hi,i . (4)

Thus, −hi,i represents the order of the privacy of each variable. ��

Moreover, the orthogonal matrix has a property that after changing the order of
its column or row vectors, it still keeps its orthogonality. Therefore, by moving
the columns and rows in the random orthogonal matrix, we sort the crucial
elements to achieve the attribute-wised privacy. We also assume the attribute
privacy levels are required to be arranged in descending order.

After getting a random orthogonal matrix H [16], our attribute-wised privacy
transformation matrix generation algorithm executes as follows:

Input: data matrix D, random orthogonal matrix H

Output: attribute-wised orthogonal matrix G

1. Randomly choose or manually specify an element for every column in H
so that there’s only one element selected in each row, the selected elements
make up vector S.

2. Sort the row vectors of H in ascending order according to their previously
selected si (si represents the ith element in vector S).

3. Sort H ’s column vectors in ascending order according to their selected si to
form G.

Suppose the party has m attributes,then the time complexity of the algo-
rithm is O(m) . In this way, we sort the diagonal elements in ascending order
without losing the orthogonal feature of the matrix. Thus, the privacy levels of
the variables are arranged in descending order. And a different order of privacy
arrangement can also be achieved in the similar way.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party 217

4 Multi-party Clustering Protocol

In our situation, like questionnaire survey, the participants may not know each
other; they just fill in papers and leave, not to be online in the same time.
Thus, it’s nearly impossible to run protocols or calculations among all of them.
However, during the survey, one interviewee is much likely to meet the next one.
Therefore, it makes sense to have the adjacent respondents share parts of their
information. Our method is also enlightened from this idea.

In our method, every party has its data matrix right multiplied by an orthog-
onal matrix in order to retain the distance between its record vectors.

Considering the two-party condition, suppose party A has data matrix XA,
party B has XB, HA, HB are the corresponding orthogonal matrixes. Then,
YA = XA ·HA, YB = XB ·HB.

Before transformation, row vectors in XA and XB can be viewed as points in
the vector space with bases {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. The
orthogonal matrixes HA, HB transform the basis of the spaces respectively into
different coordinates. In this point of view, we can’t make direct compare of row
vectors between two parties. And the dot product of perturbed rows will be:

YA · Y T
B = XA ·HA ·HT

B ·XT
B (5)

In order to get the original dot product from (5), the point is to know HA ·HT
B ,

which we don’t directly provide and the reason will be deferred to the ”Privacy
Analysis” part.

Overall, for clients, our transmitting protocol consists of the following steps:

1. Generate an orthogonal matrix H using the algorithm in Section 3.2.
2. Transform the original data X into Y = X ·H , and send Y to miner.
3. Generate two ”RD” matrix RD1, RD2 independently, whose rdi,i = 1,

rdi,j(i �= j) are realizations of i.i.d. variables, i.e. with the same normal
distribution N(μ, δ2) and mutually independent.

4. Receive the matrix from his former neighbor, right multiply it by RD1·H and
send the product as the ”perturbation matrix” to the miner. Send (RD2·H)T

to his latter neighbor.

What the miner gets includes the perturbed data matrixes from all parties and
the ”perturbation matrixes” e.g. TA,B = HT

A ·RDT
A ·RDB ·HB as the randomized

transforming matrix from coordinate system A to B. When the miner is going
to calculate the original XA · XT

B , he uses YA · TA,B · Y T
B to substitute for it.

Before clustering, the miner should integrate all parties’ data into one coordinate
system. The way he achieves it consists of the following steps:

1. Receive the perturbed data sets from all n clients.
2. Determine the target coordinate system (”TCS” for short) by randomly

designate one party’s coordinate system.
3. If a row vector is not in ”TCS”, find the shortest perturbation matrix se-

quence from both transforming directions, and transform it into ”TCS”
by multiplying Ti,i+1 · Ti+1,i+2 · . . . · TTCS−1,TCS or Ti,i−1 · . . . · T1,n · . . . ·
TTCS+1,TCS.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 W. Yang and S. Huang

Thus, the above steps of both client and miner make up of our multi-party
privacy preserving clustering protocol. Then, we will analyze the accuracy level
it reaches and the privacy it can preserve.

5 Accuracy Analysis

In the common orthogonal transformation, dot product operation is performed
without losing accuracy, but has big security problem (to be discussed in next
section). When the ”RD” matrix takes part in, XA ·XT

B changes to:

YA · (HT
A · RDT

A · RDB ·HB) · Y T
B

= (XA ·HA) · (HT
A · RDT

A · RDB ·HB) · (HT
A ·XT

B)
= XA · RDT

A · RDB ·XT
B . (6)

which brings variance to the result. Thus, the investigation of the characteristics
of ”RD” matrix products is necessary.

Lemma 2. Assume that P, Q are two independent variables, P ∼N(μp, δ
2
p), Q ∼

N(μq, δ
2
q). Then the variance of their product is the product of their variance, if

they both have their means equal to 0.

Proof. We calculate the expressions of expectation and variance as follows:

E(Pi ·Qi) = E(Pi) · E(Qi) = μp · μq (7)
D(Pi ·Qi)
= E(P 2

i ·Q2
i)− E(Pi ·Qi)2

= E(P 2
i) ·E(Q2

i)− E(Pi)2 · E(Qi)2

= (D(Pi) + E(Pi)2) · (D(Qi) + E(Qi)2)− E(Pi)2 ·E(Qi)2

= D(Pi) ·D(Qi) + E(Pi)2 ·D(Qi) + E(Qi)2 ·D(Pi) (8)

If we have P ∼ N(0, δ2
p), Q ∼ N(0, δ2

q), we will have D(Pi ·Qi) = δ2
p ·δ2

q . This
is the most extreme condition that the variance is the smallest, even smaller
than the variance of each variable if δ2

p, δ2
q < 1 . ��

Lemma 3. Assume the recursive sequence an =
k∑

i=1

pi · an−i. If its characteris-

tic equation xk =
k∑

i=1

pi · xk−i has k different nonzero real roots xi(i=1, 2, · · · , k),

then an =
k∑

i=1

qi · xn
i , (qi = f(a1, a2, · · · , ak)) .

Proof. For jth real root xj , xk
j =

k∑
i=1

pi · xk−i
j . Since xj �= 0, we have

xn
j =

k∑
i=1

pi · xn−i
j , (9)

Thus, {xn
j } meets the pattern of {an}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party 219

For ∀u, v (1 ≤ u, v ≤ k), ∀s1, s2 ∈ IR, we have:

s1 · xn
u + s2 · xn

v =
k∑

i=1

pi · (s1 · xn−i
u + s1 · xn−i

v) , (10)

also meets the pattern of {an}, thus, we can derive: an =
k∑

i=1

si · xn
i , (si ∈ IR).

To determine si, we have

⎡
⎢⎢⎣

x1 x2 · · · xk

x2
1 x2

2 · · · x2
k

.
xk

1 xk
2 · · · xk

k

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

s1

s2

· · ·
sk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1

a2

· · ·
ak

⎤
⎥⎥⎦, since xi are

different roots, the equation set has unique solution {s1, s2, · · · , sk} . ��
Lemma 4. Suppose there are n parties, and each of them has its dataset of
m columns. Let at, bt represent the variance of the diagonal elements and non-
diagonal elements in the matrix which is the result of t times multiplication of
m × m ”RD” matrixes. When these n parties use δ2 = 1

r·n·m2 , (r ∈ IR) to
generate the ”RD” matrixes, the maximum variance of the dot product between
data records varies inversely as r, and directly as the product of the average
squared value of record vector entries.

Proof. By Lemma 2 , we derive from Section 4 the variance of the entries in the
final perturbation matrix as:

at = at−1 +(m−1)bt−1 ·δ2, bt = bt−1 +(at−1 +1) ·δ2 +(m−2)bt−1 ·δ2 . (11)

Let α = (m− 1) · δ2, β = 1 + (m− 2) · δ2, Then

bt = δ2 · at−1 + β · bt−1 + δ2 (12)
at = at−1 + α · (δ2 · at−2 + β · bt−2 + δ2)

= (1 + β) · at−1 + (α · δ2 − β)at−2 + α · δ2 . (13)

From above, we can derive:

at − at−1 = (1 + β) · (at−1 − at−2) + (α · δ2 − β)(at−2 − at−3) . (14)

The corresponding characteristic equation for at − at−1 is:

x2 − (1 + β) · x− (α · δ2 − β) = 0 . (15)

Hence:

x1,2 =
1 + β ±√

(β − 1)2 + 4α · δ2

2
(m > 1, δ2 > 0, thus x1 �= x2) . (16)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 W. Yang and S. Huang

By Lemma 3, we can derive the expressions:{
at − at−1 = c1 · xt

1 + c2 · xt
2

bt = at+1−at

α = c1·xt+1
1 +c2·xt+1

2
α

(c1, c2 ∈ IR) (17)

⎧⎨
⎩ c1 = x2·α·b1−a3+a2

x2·x2
1−x3

1
= x2·α·b1−(m−1)·b2·δ2

x2·x2
1−x3

1

c2 = x1·α·b1−a3+a2
x1·x2

2−x3
2

= x1·α·b1−(m−1)·b2·δ2

x1·x2
2−x3

2

(18)

Combining (17) and (18), we have:

bt =
c1 · xt+1

1 + c2 · xt+1
2

α

=
x2 · α · b1 − (m− 1) · b2 · δ2

x2 · x2
1 − x3

1

· x
t+1
1

α
+

x1 · α · b1 − (m− 1) · b2 · δ2

x1 · x2
2 − x3

2

· x
t+1
2

α

≈ 1
m
·
∑
i≥1

Ci
n[mi − (−1)i] · δ2i

≤ e

m2r
(if δ2 = 1/rnm2) . (19)

The longest path of ”perturbation matrix” to ”TCS” is n−1 when there are n
participants. Since the miner chooses the shortest transformation sequence, and
we transform all parties to one ”TCS”, the largest number of ”RD” matrixes in
transformation path between vectors is n.

When δ2 = 1/rnm2, we have bt ≤ e
m2r . The dot product of row vectors in

data matrix xA · RDn · xT
B , comparing with the original xA · xT

B :

V ar((xA · xT
B)− (xA · RDn · xT

B))

≤ e

m2r
·

∑
1≤i,j≤m

((xA)i · (xB)j)2

=
e

r
·E((xA)2i) ·E((xB)2j) . (20)

According to (20), the choice of parameter r has to respect the maximum
variance of squared entries in row vectors, so that it will relieve the impact by
those entries having greater departure. ��

6 Privacy Analysis

6.1 Semi-honest Condition

The difficulty to infer the original attribute X through the perturbed Y is mea-
sured by V ar(Y − X), and the privacy analysis of orthogonal transformation
has been discussed in [9]. In the semi-honest conditions, assume no malicious
adversaries; we use the variable-wised privacy transformation matrix (algorithm
in Section 3.2), so that each variable can be protected according to its own
importance specified by its owner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party 221

6.2 Malicious Condition

While common orthogonal matrix without perturbation seems to work fine in
the semi-honest conditions, there will be severe problems in the malicious model.

Problems in Common Way. For example, in the two-party (A, B) situation,
when the miner receives XA ·HA, XB ·HB, HT

A ·HB, he himself can only derive
XA ·HB, XB ·HA, which do not improve his ability to probe A and B.

However, conspiring with a certain client makes orthogonal transformation
have no resistances. Suppose party A colludes with the miner, he shares his HA

with his conspirator, then the miner immediately knows HB through multiplying
HA by HT

A ·HB. Right away, B’s data will be disclosed.
Furthermore, it is not the worst situation. If the ”TCS” is set to be the same

as A’s coordinate system, with which all the other parties have to comply, the
miner gets HT

party 1 ·HA, HT
party 2 ·HA, Once A betrays, it can be a disaster.

Problems of Direct Randomization. Using randomization to stop conspir-
acy is a direct way. Moreover, we will also illustrate that the singular value
decomposition (SVD) method is a grave threat to data security in the common
randomization form.

It’s straightforward to achieve higher security level by adopting randomized
diagonal matrix (”RanDiag” for short) as perturbation matrix, in which all diag-
onal elements are i.i.d. from normal distribution. Consequently, every element is
perturbed by a diagonal element. Thus, the cumulative effects of several ”Ran-
Diag” can be obvious: the final effect is also a diagonal matrix, every original
data column is impacted by one of its element, and each element of the result
”RanDiag” randiagi,i depends on the entries of the same position in each multi-
plier. Moreover, due to the i.i.d. characteristic, the expectation and the variance
of randiagi,i can be obtained according to Lemma 2.

Generally speaking, the ”RanDiag” hides HB behind Randiag · HB in the
former example, and therefore seems protecting B from complicity, also in the
meantime keeping accuracy in some extents. However, if the miner applies
SVD on the transforming matrix HT

A · RanDiagA · RanDiagB ·HB, he will get
(RanDiagA · RanDiagB) with exact elements, but not in the correct order.
Taken in this sense, SVD can improve the probability of revealing B’s data into

1

O(number of columns) , in case A conspires with miner.

Privacy Levels of Our Method. Our method tries to avoid the above prob-
lems, we let neighbor parties send out the product with their ”RD” matrix, and
i.e. every party’s transformation matrix is randomized by a ”RD” matrix. Like
the ”RanDiag’s” process, the miner gets HT

A · RDT
A · RDB · HB, XA · HA and

XB ·HB. Comparing with the common orthogonal transformation way leaking
the original XB, the conspirators get XB ·RDB instead. Every entry in the orig-
inal vector contributes its own part to protect each of them in the perturbed
version:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 W. Yang and S. Huang

yi = xi +
∑
j �=i

rdj,i ·xj (xi, yi : the ith element in the row vectors of X, Y). (21)

Since rdj,i(j �= i) is i.i.d. and generated by N(0, δ2), then (
∑

j �=i(rdj,i · xj)) ∼
N(0, δ2 ·∑j �=i x2

j).
Thus, by Lemma 4, we have:

V ar(yi − xi) = δ2 ·
∑
j �=i

x2
j =

∑
j �=i

x2
j

r ·m2 · n ≤
E(x2

j)
r ·m · n. (22)

Therefore, in the face of complicity, our method may not maintain the variable
order of privacy levels as user specified, but we will have the interval width
6.8

√
E(x2

j)/(r ·m · n) define the amount of privacy at about 100% confidence
level [1]. It can be inferred from (19)(22) that the privacy level varies inversely
as the average length of the matrix paths, thus, choosing the shortest path to
”TCS” for every participant is necessary.

7 Experiment Result

The dataset ”Synthetic Control Chart Time Series” are obtained from the UCI
KDD Archive [17]. It has 60 columns with similar averages and 600 rows (
V ar(E(columni))/E(E(columni)) = 1.9%). The clustering result is shown in
Figure 1(a) with 6 clusters. We horizontally partition the data in order to sim-
ulate different parties. Then, for each party, we generate a random orthogonal
matrix, and a ”RD” matrix with δ2 = 1/r(60)2n. In this phase, the orthogonal-
ity of the transformation matrix is enough, so we generate random orthogonal
matrixes for every simulated party. In the experiment, we assume all parties have
the same parameter r in each turn, and we compare its effect on the accuracy.
This can tell us the lowest accuracy level under maximum δ.

In order to simulate the miner using k-means for clustering, we randomly
choose a party in every turn to be the ”TCS”, find a shortest path to it for other
parties to transform to, and link the transformation matrixes on this path by
multiplication. With respect to the clustering result of original data, we calcu-
late the error rate for clustering as number of records in wrong clusters

number of all records · 100%.
During the experiment, we iterate 10 times in every combination of parameters
to get the average error rate. For the k-means clustering algorithm, we repeat
the process 10 times to choose the result with the smallest sum of distances.

As shown in Figure 2, we test the impact on clustering result with combina-
tions of party number and r. The error rate increases slowly with the number of
parties, because the variance of calculation is closer to the maximum variance
which is determined by r and m, as n gets larger. Also, the bigger 1/r is, the
more the maximum variance. We also give a directviewing of the clustering re-
sult in Figure 1(b). Comparing with Figure 1(a), we can also find out that due
to the orthogonal transformation keeping the distances among data vectors, the
6 clusters vary little.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy Preserving Clustering for Multi-party 223

Fig. 1. (a)Cluster silhouettes for the original data. (b)Cluster silhouettes for the per-
turbed dataset where n = 10, r = 3.

Fig. 2. (a)K-Means clustering with different combinations of parameters.
(b)Comparison of clustering accuracy.

8 Conclusions

In this paper, we have introduced a multi-party clustering method using ”RD”
matrix for protecting the original records both in semi-honest and malicious
conditions. The ”RD” matrix leverages orthogonal transformation in the semi-
honest condition to avoid the compromise between privacy and accuracy, and
also protects data from malicious complicity by randomization without losing
much accuracy. As the increasing of participants, the influence to the privacy
loss is within linear level. We’ve also presented an efficient algorithm to achieve
the attribute-wised privacy concerns.

The orthogonal-like method is a promising way to protect the sensitive data
in some mining tasks. Although it has limitations, combining it with other

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 W. Yang and S. Huang

techniques may accomplish more tasks. We regard our work as an initial step.
Further research will include more work in the malicious model and extending
this idea to other data mining algorithms.

References

1. Agrawal, R., S.R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD
Conference on Management of Data. (2000)

2. Lindell, Y., P.B.: Privacy preserving data mining. In: Proc. of the 20th Annual
International Cryptology Conference on Advances in Cryptology. (2000)

3. Rizvi, S., H.J.: Maintaining data privacy in association rule mining. In: Proc. of
the 28th Conference on Very Large Data Bases. (2002)

4. Evfimievski, A., S.R.A.R.G.J.: Privacy preserving mining of association rules.
Information Systems 29(4) (2004) 343–364

5. Xia, Y., Y.Y.C.Y.: Mining association rules with non-uniform privacy concerns.
In: Proc. of the 9th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. (2004)

6. Du, W., Z.Z.: Using randomized response techniques for privacy-preserving data
mining. In: Proc. of the 9th ACM SIGKDD international conference on Knowledge
discovery and data mining. (2003)

7. Warner, S.: Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association 60 (1965) 63–69

8. Oliveira, S., Z.O.: Privacy preserving clustering by data transformation. In: Proc.
of the 18th Brazilian Symposium on Databases. (2003)

9. Chen, K., L.L.: Privacy preserving data classification with rotation perturbation.
In: Proc. of the 5th IEEE International Conference on Data Mining. (2005)

10. Liu, K., K.H.R.J.: Random projection-based multiplicative data perturbation for
privacy preserving distributed data mining. IEEE Transactions on Knowlege and
Data Engineering 18(1) (2006) 92–106

11. Vaidya, J., C.C.: Privacy-preserving k-means clustering over vertically partitioned
data. In: Proc. of the 9th ACM SIGKDD international conference on Knowledge
discovery and data mining. (2003)

12. Vaidya, J., C.C.: Privacy preserving association rule mining in vertically parti-
tioned data. In: Proc. of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. (2002)

13. Kantarcioglu, M., C.C.: Privacy-preserving distributed mining of association rules
on horizontally partitioned data. IEEE Transactions on Knowlege and Data Engi-
neering 16(9) (2004) 1026–1037

14. Wright, R., Y.Z.: Privacy-preserving bayesian network structure computation on
distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. (2004)

15. Agrawal, D., A.C.: On the design and quantification of privacy preserving data
mining algorithms. In: Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems. (2001)

16. Stewart, G.: The efficient generation of random orthogonal matrices with an appli-
cation to condition estimators. SIAM Journal on Numerical Analysis 17(3) (1980)
403–409

17. Hettich, S., B.S.: The uci kdd archive. Univeristy of California, Irvine, Department
of Information and Computer Science (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing�

Zhihui Wang1, Wei Wang1, Baile Shi1, and S.H. Boey2

1 Department of Computing and Information Technology,
Fudan University, Shanghai, 200433, China
{zhhwang, weiwang1, bshi}@fudan.edu.cn

2 Gentec Pte Ltd, 80 Genting Lane #04-07, Singapore, 349565
shboey@gintic.com

Abstract. Some of the knowledge discovered by data mining may con-
tain sensitive information, which should be hidden before sharing the
result of data mining. In this paper, we consider that the knowledge
for sharing is discovered by frequent pattern mining, and some of the
frequent patterns are private, which cannot be shared. Our problem of
privacy-preserving frequent pattern sharing is to hide these private pat-
terns before sharing the result of frequent pattern mining, and at the
same time maximize the number of non-private frequent patterns to
be shared. We show that this problem is NP-hard, and present three
item-based pattern sanitization algorithms for transforming the result of
frequent pattern mining into a privacy-free frequent pattern set.

Keywords: Frequent pattern, private pattern, privacy preservation.

1 Introduction

Data mining can help to discover useful knowledge from large amount of data.
In many applications, we need to share the discovered knowledge by data min-
ing with others. For example, two retailers A and B cooperate to discover the
purchase behaviors of their customers. Due to legal prohibitions, they cannot
share their transaction database directly. One way for solving this problem is
that each retailer can first perform frequent pattern mining on its own database.
Then, each retailer can exchange their mining results with the other. The authors
in [1,2] have shown that the expensive computational cost makes it impractica-
ble to reconstruct the original database from the set of shared frequent patterns.
Therefore, retailer A (or B) will not have the danger of disclosing its original
data when it shares its local frequent patterns with the other.

However, the knowledge discovered by data mining may also contain sensitive
information. The disclosure of sensitive information can bring threats against
personal privacy, commercial secret, and even national security [3]. Consider
retailer A in the above example. Assume that after performing frequent pattern
� This research was supported by the Shanghai Rising-Star Program (No.

05QMX1405), the National Natural Science Foundation of China (No. 60303008), the
National Grand Fundamental Research 973 Program of China (No. 2005CB321905).

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 225–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 Z. Wang et al.

mining on its own data, retailer A finds that its customers tend to purchase
merchandise x and y at the same time. Retailer A regards this knowledge as
sensitive information, and does not want to disclose it to retailer B. This is
because with this knowledge, B may launch sales promotion and offer a lower
price for customers who buy x and y together. Thus, A will face the danger of
losing its customers.

In this paper, we address the problem of privacy-preserving frequent pattern
sharing. The result of frequent pattern mining is the collection of all frequent pat-
terns with their supports. Frequent patterns are very useful in many areas, e.g.,
association rule discovery, feature extraction, classification, and clustering [4].
The scenario that we consider is as follows: given the result of frequent pat-
tern mining, some of the discovered frequent patterns are private and cannot be
shared. Our problem of privacy-preserving frequent pattern sharing is to protect
private patterns from disclosure, while maximizing the number of non-private
frequent patterns to be shared.

The main contributions in this paper are as follows. First, we present the
notation of privacy-free frequent pattern set. A privacy-free frequent pattern set
is a subset of the result of frequent pattern mining, and can be shared without
disclosing sensitive information. Besides maintaining privacy, a privacy-free fre-
quent pattern set has other advantages. It does not contain any fake frequent
pattern, which does not appear in the original database. Also, the support of
any frequent pattern in a privacy-free frequent pattern set is the same as that in
the original database. Second, we show that finding an optimal solution to our
problem of privacy-preserving frequent pattern sharing is NP-hard. Our proof
is based on a reduction from the hitting set problem [5]. Third, we present
a framework, called item-based pattern sanitization, and provide three pattern
sanitization algorithms. Each of the algorithms can guarantee transforming the
result of frequent pattern mining into a privacy-free frequent pattern set.

This paper is organized as follows. In the next section, we review the related
work in literature. In Section 3, we define our problem of privacy-preserving
frequent pattern sharing, and present the notation of privacy-free frequent pat-
tern set. We also show that finding an maximal privacy-free frequent pattern
set to our problem is NP-hard. In Section 4, we present the framework of item-
based pattern sanitization, and give three pattern sanitization algorithms. Each
of them can guarantee generating a privacy-free frequent pattern set. We eval-
uate the performance of our algorithms in Section 5. Finally, we conclude our
work in Section 6.

2 Related Work

In recent years, many efforts have been made to address the problem of privacy-
preserving data mining. The studies closely related to our work are as follows.

Oliveira et al. investigated security issues of association rule sharing in [6].
Given a set R of association rules for sharing, a subset RR of R is restricted
from disclosure. They converted association rules into the corresponding frequent

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing 227

patterns, then sanitized the set of frequent patterns by an algorithm, called
Downright Sanitizing Algorithm (DSA). However, DSA has its limitation. It
cannot always prevent privacy breach completely. An attacker can still infer
sensitive information from DSA’s sanitization result [7].

Atzori et al. [8] considered the anonymity issue raised by frequent patterns
sharing. That is, given a set F of frequent patterns for sharing, and an anonymity
threshold k(k ∈ N), if it can be inferred from F that there exists a pattern p,
and the support count of p is less than k, then sharing F may pose threat
to individual’s anonymity. The scenario we considered is completely different
from their studies. We consider that some of the discovered frequent patterns
themselves are private, and need to be hidden when sharing the result of frequent
pattern mining.

There are also another research direction related to our work. Instead of shar-
ing the knowledge discovered by data mining, it considers to share a dataset
directly. Before sharing, the original dataset is transformed so that no private
pattern or rule can be mined from the resultant dataset. This procedure is called
data sanitization. Atallah et al. [9] proved that the problem of finding an opti-
mal solution for data sanitization is NP-hard. Different heuristic approaches for
data sanitization were proposed in [9,10,11,12]. One main disadvantage of data
sanitization is that it will change the supports of non-private patterns, which
may not be tolerable in many applications.

3 Problem Statement

3.1 Basic Concepts and Notations

For facilitating our discussion, we first introduce some basic concepts and nota-
tions. Let I = {i1, i2, · · · , in} be a set of literals, called items. A transaction T
is a set of items from I, i.e., T ⊆ I, and a transaction database D is a set of
transactions.

A pattern (or itemset) p is a set of items from I, i.e., p ∈ 2I . If there are k items
in p, we say that the length of p is k, denoted by |p| = k. For brevity, sometimes
we write a pattern p = {ij, ij+1, . . . , ik} in the form of p = ijij+1 . . . ik.

Definition 1. A transaction T contains pattern p if and only if p ⊆ T . In a
transaction database D, the support of pattern p is the fraction of transactions
in D that contain p, denoted by sup(p).

Definition 2. Given transaction database D and minimum support threshold
σ(0 < σ < 1), we say that p is a σ-frequent pattern of D if sup(p) ≥ σ in D.
Particularly, if |p| = 1, we also say that p is a σ-frequent item of D.

For brevity, we sometimes call σ-frequent pattern frequent pattern if the context
is clear. Given a transaction database D, and minimum support threshold σ,
the task of frequent pattern mining (or frequent itemset mining) is to find the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 Z. Wang et al.

collection of all σ-frequent patterns with their supports in D. There are many
typical approaches for frequent pattern mining, e.g., Apriori, FP-growth [4]. We
denote the result of frequent pattern mining with F(D, σ) (or F in short if the
context is clear), where F(D, σ) = {(p, sup(p))|sup(p) ≥ σ}.

3.2 The Problem

In this paper, we consider that the data are stored in a transaction database,
and the knowledge is discovered by frequent pattern mining, and represented in
the form of a set of frequent patterns with their supports. Some of the frequent
patterns contain sensitive information, which cannot be disclosed. We called
these patterns private patterns. Generally, whether a pattern is private or not is
determined by the data owner after performing frequent pattern mining on the
original database.

Our problem of privacy-preserving frequent pattern sharing can be stated
formally as follows: given the result F of frequent pattern mining for sharing,
let Ps ⊂ F be the set of private patterns, our problem consists in transforming
F into F ′, which must satisfy the following conditions: (1) F ′ ⊆ F − Ps; (2)
∀q ∈ Ps : q �⊆ IF ′ , where IF ′ = {i|i ∈ p ∧ p ∈ F ′}; (3) ∀F ′′ satisfying (1) and
(2), |F ′′| ≤ |F ′|.

We assume |Ps|
 |F|, where |Ps| and |F| are the number of private patterns
and all σ-frequent patterns, respectively. We also assume that what an adversary
can get is only F ′, i.e., the set of shared σ-frequent patterns with their supports.
We do not consider an adversary having other background knowledge.

Given a solution F ′ to our problem of privacy-preserving frequent pattern
sharing, the above first condition requires that F ′ does not contain any private
patterns. Furthermore, it requires that F ′ is a part of the knowledge discovered
by frequent pattern mining. That is, there is no any fake σ-frequent pattern in
F ′. More importantly, for any shared pattern p ∈ F ′, sup(p) cannot be changed,
which further make sure that the accuracy of shared knowledge is maintained.

The second condition ensures that any private pattern is hidden completely
by ruling out any chance to infer the existence of private pattern from F ′. If
q ⊆ IF ′ , an adversary may guess that q appears in the original database, then the
adversary can have the chance to infer the existence of q in the original database
with some technologies of inverse mining attack. By constraining q �⊆ IF ′ , we
try to prevent an adversary from this kind of guess.

In the third condition, |F ′| and |F ′′| are the number of σ-frequent patterns
in F ′ and F ′′, respectively. This condition states that we also expect to find an
optimal solution F ′ to our problem. That is, we want to maximize the number
of non-private patterns in F ′.

Definition 3. Given a set F ′ of frequent patterns, if F ′ meets the first and the
second conditions in the problem of privacy-preserving frequent pattern sharing,
we call F ′ privacy-free frequent pattern set. If a privacy-free frequent pattern set
F ′ also meets the third condition, that is, it is maximal, we called it maximal
privacy-free frequent pattern set.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing 229

We expect to generate an maximal privacy-free frequent pattern set for our
problem of privacy-preserving frequent pattern sharing. Unfortunately, finding
an optimal solution to our problem is NP-hard.

Theorem 1. Find an optimal solution to our problem of privacy-preserving
frequent pattern sharing is NP-hard.

Proof. We prove the theorem by a reduction from the problem of hitting set [5].
Given a set C ⊆ 2S , where S is a finite set, the problem of hitting set is to find
a smallest subset S′ of S such that each c ∈ C contains at least one element in
S′. In this proof, we assume that each c ∈ C consists of exactly two elements in
S. Note that the hitting set problem remains NP-hard under this assumption.

We can create an instance of our problem of privacy-preserving frequent pat-
tern sharing in terms of the above hitting set problem in polynomial time as
follows: “Let IC = {i|i ∈ c ∧ c ∈ C}. Suppose database D = C ∪ DC , where
DC = {{i}|i ∈ IC}, and minimum support threshold σ = 1/n, where n is the
number of transactions in D, the collection of all σ-frequent patterns in D will
be F = C ∪ DC . Let Ps = C be a set of private patterns.”

Suppose F ′ is an optimal solution to the above problem of privacy-preserving
frequent pattern sharing. That is, F ′ is an maximal privacy-free frequent pattern
set. We can show that IC − IF ′ is a solution to the corresponding hitting set
problem, where IF ′ = {i|i ∈ p ∧ p ∈ F ′}. The details are as follows:

(1) Since C ⊆ 2S, we have IC ⊆ S. Therefore, IC − IF ′ is a subset of S.
(2) Since Ps = C and F ′ is an maximal privacy-free frequent pattern set, we

have ∀c ∈ C : c �⊆ IF ′ . Because also ∀c ∈ C : c ⊆ IC , we have c∩(IC −IF ′) �= ∅.
That is, each c ∈ C contains at least one element in IC − IF ′ .

(3) Suppose that S′ is any solution to the hitting set problem, then we have
S′ ⊆ IC . Next, we will show that |S′| ≥ |IC − IF ′ | by contradiction. Assume
that |S′| < |IC−IF ′|. Let IF̃ = IC−S′ and F̃ = {{i}|i ∈ IF̃}, we have F̃ ⊆ DC .
Notice that DC = F − Ps, we have F̃ ⊆ F − Ps. Because also Ps = C, we have
∀q ∈ Ps : |q| = 2. So ∀q ∈ Ps : q �⊆ IF̃ . Hence, F̃ is a privacy-free frequent
pattern set to our problem of privacy-preserving frequent pattern sharing. Ac-
cording to our assumption |S′| < |IC−IF ′ |, we have |IC−IF̃ | < |IC−IF ′ |, then
|IF̃ | > |IF ′ |. Since F = C ∪ DC and Ps = C, we know that F ′ = {{i}|i ∈ IF ′}
and thus |F ′| = |IF ′ |. Because F̃ = {{i}|i ∈ IF̃}, we have |F̃ | = |IF̃ |. Therefore,
|F̃ | > |F ′|. This conflicts with the condition that F ′ is an maximal privacy-free
frequent pattern set.

Therefore, IC − IF ′ is a solution to the hitting set problem. ��

4 Generating Privacy-Free Frequent Pattern Set

In this section, we first give a framework, called item-based pattern sanitization,
which can guarantee transforming F to a privacy-free frequent pattern set F ′.
Then, based on our framework, we present three heuristic algorithms for privacy-
preserving frequent pattern sharing.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 Z. Wang et al.

4.1 The Framework of Item-Based Pattern Sanitization

Our framework of item-based pattern sanitization can be described as follows:
“Given F as the collection of all frequent patterns discovered by frequent pattern
mining, let Ps ⊂ F be a set of private patterns, we first initialize F ′ = F . Then,
for each private pattern q ∈ Ps, we choose an item x ∈ q with some strategy,
remove all the frequent patterns containing item x from F ′, and also all the
private patterns containing item x from Ps. This procedure is iterated until
Ps = ∅.” For facility, we call item x the victim of private pattern q.

Theorem 2. Our framework of item-based pattern sanitization can generate a
privacy-free frequent pattern set.

Proof. From the procedure of our framework of item-based pattern sanitization,
we know that for any q ∈ Ps, there exists item x ∈ q such that ∀p ∈ F ′ : p �� x.
Hence, we have F ′∧Ps = ∅ and ∀q ∈ Ps : q �⊆ IF ′ , where IF ′ = {i|i ∈ p∧p ∈ F ′}.
Because F ′ is initialized as F , we also have F ′ ⊆ F . Therefore, F ′ ⊆ F − Ps.
From Definition 3, we know that F ′ is a privacy-free frequent pattern set. ��

4.2 The Sanitization Algorithms

Based on the framework proposed in Section 4.1, we give three pattern sanitiza-
tion algorithms for privacy-preserving frequent pattern sharing in this section.
They transform the result of frequent pattern mining into a privacy-free frequent
pattern set with different strategies for choosing victims of private patterns.

Algorithm: RANDIPS
Input: frequent pattern set F , private pattern set Ps(Ps ⊂ F)
Output: privacy-free frequent pattern set F ′

Method:
1: F ′ = F ;
2: while Ps �= ∅ do begin
3: Sc = ∅; //Sc: a set of candidate items
4: for each private pattern q ∈ Ps do
5: for each item i ∈ q and i �∈ Sc do Sc = Sc ∪ {i};
6: select item x ∈ Sc randomly as victim;
7: F ′ = F ′ − {p|(x ∈ p) ∧ (p ∈ F ′)};
8: Ps = Ps − {q|(x ∈ q) ∧ (q ∈ Ps)};
9: end

Fig. 1. Algorithm RANDIPS

The first sanitization algorithm, called RANDIPS (RANDom Item-based Pat-
tern Sanitization), is a näıve algorithm, just for the purpose of performance com-
parison in Section 5. The details of RANDIPS are shown in Fig. 1. Given the
collection F of all frequent patterns discovered by frequent pattern mining, and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing 231

Ps ⊂ F is a set of private patterns, RANDIPS first initializes F ′ = F . While Ps

is not empty, RANDIPS scans Ps to construct a set of candidate items Sc at line
3− 5. Then, it chooses randomly an item x as victim from Sc, and removes any
frequent patterns containing x from F ′ at line 7, any private patterns containing
x from Ps at line 8. When Ps = ∅, we know from Theorem 2 that F ′ is a privacy-
free frequent pattern set.

Our second algorithm, called MINCIPS (MINimal Counter Item-based Pat-
tern Sanitization), chooses victim with a greedy strategy during the course of
pattern sanitization. The details of MINCIPS are shown in Fig. 2. For each item
i ∈ Sc, MINCIPS maintains a counter fcnt[i], which records the number of fre-
quent patterns in F ′ containing item i. Each time MINCIPS chooses from Sc

the item x with the minimal counter fcnt[x] as victim at line 7. By choosing
such a victim, we expect to eliminate less number of frequent patterns from the
result of frequent pattern mining. Similarly, according to Theorem 2, it is easy
to show that MINCIPS generates a privacy-free frequent pattern set.

Algorithm: MINCIPS
Input: frequent pattern set F , private pattern set Ps(Ps ⊂ F)
Output: privacy-free frequent pattern set F ′

Method:
1: F ′ = F ;
2: while Ps �= ∅ do begin
3: Sc = ∅;
4: for each private pattern q ∈ Ps do
5: for each item i ∈ q and i �∈ Sc do Sc = Sc ∪ {i}; fcnt[i] = 0;
6: for each p ∈ F ′ do ∀i ∈ (p ∩ Sc), fcnt[i] = fcnt[i] + 1;
7: select item x ∈ Sc such that x = arg mini∈Sc{fcnt[i]};
8: F ′ = F ′ − {p|(x ∈ p) ∧ (p ∈ F ′)};
9: Ps = Ps − {q|(x ∈ q) ∧ (q ∈ Ps)};
10: end

Fig. 2. Algorithm MINCIPS

We notice that there are often common items among multiple private patterns.
For example, Suppose q1 = ab and q2 = ac are private patterns. If we choose item
a as victim to sanitize frequent patterns, we can prevent the disclosure of both q1

and q2 at the same time. Incorporating this idea, we give an improved algorithm,
called MAXSIPS (MAXimal Score Item-based Pattern Sanitization). The details
of MAXSIPS are shown in Fig. 3. For each item i ∈ Sc, MAXSIPS maintains
not only the counter fcnt[i] as MINCIPS does, but also another counter pcnt[i].
The counter pcnt[i] records the number of private patterns in Ps containing item
i. Furthermore, MAXSIPS calculates a score s[i] = pcnt[i]/fcnt[i] for each item
i ∈ Sc at line 9, and chooses from Sc the item x with the maximal score s[x]
as victim at line 10. By choosing such a victim, we also expect to maximize
the number of private patterns being hidden in an iteration, and thus reduce the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 Z. Wang et al.

Algorithm: MAXSIPS
Input: frequent pattern set F , private pattern set Ps(Ps ⊂ F)
Output: privacy-free frequent pattern set F ′

Method:
1: F ′ = F ;
2: while Ps �= ∅ do begin
3: Sc = ∅;
4: for each private pattern q ∈ Ps do
5: for each item i ∈ q do
6: if i �∈ Sc then Sc = Sc ∪ {i}; fcnt[i] = 0; pcnt[i] = 1;
7: else pcnt[i] = pcnt[i] + 1;
8: for each p ∈ F ′ do ∀i ∈ (p ∩ Sc), fcnt[i] = fcnt[i] + 1;
9: for each i ∈ Sc do s[i] = pcnt[i]/fcnt[i];
10: select item x ∈ Sc such that x = arg maxi∈Sc{s[i]};
11: F ′ = F ′ − {p|(x ∈ p) ∧ (p ∈ F ′)};
12: Ps = Ps − {q|(x ∈ q) ∧ (q ∈ Ps)};
13: end

Fig. 3. Algorithm MAXSIPS

number of iterations in pattern sanitization, and finally maximize the number
of non-private patterns in F ′. Similarly, according to Theorem 2, we can show
that MAXSIPS generates a privacy-free frequent pattern set.

5 Experiments

In this section, we evaluate the performance of our algorithms RANDIPS, MIN-
CIPS and MAXSIPS. All these algorithms are implemented with C++.

5.1 Experimental Settings

We use a synthetic dataset, T40I10D100K, generated by IBM data generator.
The details of the generation procedure and related parameters are described
in [13]. In our experiments, we set N = 1000, |L| = 2000, |T | = 40, |I| = 10, |D| =
100K. There are 1000 different items, and 100K transactions in our test dataset.
Each transaction contains 40 items on average.

The methodology of our experiments is as follows. Given minimum support
threshold σ, we first get the set F of all frequent patterns by mining the test
dataset with Apriori [13]. Then, we randomly choose some patterns from F as the
set Ps of private patterns such that ∀q1, q2 ∈ Ps, q1 � q2 and q2 � q1. Because if
q1 ⊆ q2, hiding q1 will also protect q2 from disclosure simultaneously. Similarly,
when q2 ⊆ q1, we only need considering to hide q2. We generate privacy-free
frequent pattern set F ′ by sanitizing F with one of the algorithms RANDIPS,
MINCIPS, and MAXSIPS. Because the content of private patterns may have
impact on the result of pattern sanitization, we plot each result in the following
figures with an average over the results of 10 trials.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing 233

All our experiments are performed on a 1.5GHz Intel Pentium IV PC with
256MB main memory, running Microsoft Window XP operating system.

5.2 Effectiveness

We compare the effectiveness of RANDIPS, MINCIPS and MAXSIPS in this
set of experiments. The effectiveness is measured with the size of the resultant
privacy-free frequent pattern set. In Fig. 4(a), we report the experimental re-
sults with respect to the number of private patterns. In our experiments, the
set F of frequent patterns is obtained by mining test dataset with minimum
support threshold σ = 1.5%. We randomly choose 10, 20, 30, 40, 50 patterns
from F to form five sets of private patterns. It can be seen that MAXSIPS is
more effective than both RANDIPS and MINCIPS, irrespective of the number
of private patterns. The reason is that MAXSIPS takes into consideration both
frequent patterns and private patterns when choosing victim for pattern saniti-
zation. However, MINCIPS only emphasizes considering frequent patterns, and
RANDIPS selects victim randomly. In Fig. 4(a), we can also see that with the
number of private patterns increasing, more frequent patterns need to be elim-
inated for preventing the disclosure of private patterns. Hence, the size of the
privacy-free frequent pattern set decreases for all algorithms.

10 20 30 40 50
0

1

2

3

4

5

6

Number of Private Patterns

S
iz

e
of

 P
riv

ac
y−

fr
ee

 F
re

qu
en

t P
at

te
rn

 S
et

 (
K

) RANDIPS
MINCIPS
MAXSIPS

(a)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

5

10

15

20

25

30

35

40

45

50

Minimum Support Threshold σ (%)

S
iz

e
of

 P
riv

at
e−

fr
ee

 F
re

qu
en

t P
at

te
rn

 S
et

 (
K

) RANDIPS
MINCIPS
MAXSIPS

(b)

Fig. 4. Effectiveness of Algorithms

We also compare the effectiveness of algorithms by varying the minimum sup-
port threshold σ for frequent pattern mining. The results are shown in Fig. 4(b).
The value of σ ranges from 1% to 1.5% in our experiments. The smaller value of
σ is, the more number of frequent patterns will be mined. Each time when we
obtain a set F of frequent patterns, we randomly choose 10 patterns from F to
form the set Ps of private patterns. It can be seen that MAXSIPS can obtain
a privacy-free frequent pattern set with larger size than both RANDIPS and
MINCIPS under all the settings of minimum support threshold σ. Especially
when given a smaller σ, the performance of MAXSIPS is much better than that
of RANDIPS and MINCIPS.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 Z. Wang et al.

5.3 Time for Pattern Sanitization

In this set of experiments, we compare the execution time of RANDIPS, MIN-
CIPS and MAXSIPS. Fig. 5(a) shows their execution time with respect to the
number of private patterns. In our experiments, the set F of frequent patterns is
obtained with minimum support threshold σ = 1.5%. We increase the number of
private patterns from 10 to 50. For each private pattern, RANDIPS only scans
the set of frequent patterns at most once for pattern sanitization, while MINCIPS
and MAXSIPS may scans twice the set of frequent patterns, one for calculat-
ing the counter fcnt, and another for pattern sanitization. Hence, RANDIPS
spends less time on pattern sanitization than both MINCIPS and MAXSIPS.
An interesting result in Fig. 5(a) is that the execution time of MAXSIPS is less
than that of MINCIPS when the number of private patterns is larger than 30.
The reason is that MAXSIPS can hide more private patterns in an iteration of
pattern sanitization than MINCIPS does. Thus, MAXSIPS will scan the set of
frequent patterns in less iterations than MINCIPS.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Number of Private Patterns

T
im

e
(m

s)

RANDIPS
MINCIPS
MAXSIPS

(a)

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

Number of Frequent Patterns (K)

T
im

e
(m

s)

RANDIPS
MINCIPS
MAXSIPS

(b)

Fig. 5. Execution Time of Algorithms

In Fig. 5(b), we compare the execution time of algorithms with respect to
the number of frequent patterns. By varying minimum support threshold σ from
1.5% to 1%, we obtain five sets of frequent patterns, where the number of fre-
quent patterns ranges from 6539 to 65236. For each set of frequent patterns,
we randomly choose 30 patterns from it as the set of private patterns. Since
MINCIPS and MAXSIPS scan more times the set of frequent patterns than
RANDIPS does, the increases in their execution time are more than that of
RANDIPS when the number of frequent patterns increases. Fig. 5(b) also shows
the interesting result similar to that in Fig. 5(a). That is, when we increase the
number of frequent patterns, MAXSIPS spends less time on pattern sanitization
than MINCIPS. The reason is that MAXSIPS maximizes the number of private
patterns being hidden in each iteration of pattern sanitization. As such, it needs
less iterations during pattern sanitization. Hence, when increasing the number
of frequent patterns, the execution time of MAXSIPS becomes less than that of
MINCIPS.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Privacy-Preserving Frequent Pattern Sharing 235

5.4 Scalability

In this set of experiments, we test on the scalability of algorithms MINCIPS and
MAXSIPS. We show the scalability of MINCIPS and MAXSIPS with respect to
the number of private patterns in Fig. 6(a) and Fig. 6(b), respectively. In our
experiment, we increase the number of private patterns from 10 to 50, and repeat
the same experiment with different settings of minimum support threshold σ. It
can be seen that the execution time of MINCIPS and MAXSIPS always increases
linearly with respect to the number of private patterns.

0 10 20 30 40 50 60
0

500

1000

1500

Number of Private Patterns

T
im

e
(m

s)

σ=1%
σ=1.1%
σ=1.2%
σ=1.3%
σ=1.4%
σ=1.5%

(a)

0 10 20 30 40 50 60
0

500

1000

1500

Number of Private Patterns

T
im

e
(m

s)

σ=1%
σ=1.1%
σ=1.2%
σ=1.3%
σ=1.4%
σ=1.5%

(b)

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Number of Frequent Patterns (K)

T
im

e
(m

s)

|P
s
|=50

|P
s
|=40

|P
s
|=30

|P
s
|=20

|P
s
|=10

(c)

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Number of Frequent Patterns (K)

T
im

e
(m

s)

|P
s
|=50

|P
s
|=40

|P
s
|=30

|P
s
|=20

|P
s
|=10

(d)

Fig. 6. Scalability

In Fig. 6(c) and Fig. 6(d), we show the scalability of MINCIPS and MAXSIPS
with respect to the number of frequent patterns, respectively. By mining test
dataset with different minimum support threshold σ, we can vary the number of
frequent patterns in F . In our experiment, we decrease σ from 1.5% to 1%, and
the number of discovered frequent patterns increases from 6539 to 65236. The
same experiment is also repeated on the set Ps with different number of private
patterns. We can see that for both MINCIPS and MAXSIPS, the execution time
also increases linearly with respect to the number of frequent patterns.

6 Conclusions

Sharing the knowledge discovered by data mining without discrimination may
cause the disclosure of sensitive information. In this paper, we have addressed the
problem of privacy-preserving frequent pattern sharing. We present the notation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

236 Z. Wang et al.

of privacy-free frequent pattern set, and show that finding an optimal solution
to the problem of privacy-preserving frequent pattern sharing is NP-hard. Then,
we propose a framework of item-based pattern sanitization, and present three
heuristic algorithms for privacy-preserving frequent pattern sharing. Our exper-
imental results show that MAXSIPS is more effective amongst them, and its
execution time is linearly scalable with respect to both the number of frequent
patterns and the number of private patterns.

For future research, we will investigate the possibility of developing more
effective and efficient algorithms for privacy-preserving frequent pattern sharing,
and we will also extend our research to other forms of knowledge representation.

References

1. Calders, T.: Computational complexity of itemset frequency satisfiability. In:
PODS, Paris, France (2004) 143–154

2. T.Mielikainen: On inverse frequent set mining. In: Workshop on Privacy Preserving
Data Mining. (2003) 18–23

3. Clifton, C., Marks, D.: Security and privacy implications of data mining. In: ACM
SIGMOD Workshop on Data Mining and Knowledge Discovery, Montreal, Canada
(1996) 15–19

4. Han, J., Kamber, M.: Data Mining: Concept and Techniques. Morgan Kaufmann
Publishers, San Francisco (2000)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

6. Oliveira, S.R.M., Zäıane, O.R., Saygin, Y.: Secure association rule sharing. In:
PAKDD, Sydney, Australia (2004) 74–85

7. Wang, Z., Wang, W., Shi, B., Boey, S.: Preserving private knowledge in frequent
pattern mining. In: IEEE ICDM Workshop on Privacy Aspects of Data Mining,
Hong Kong, China (2006) 530–534

8. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: k-anonymous patterns. In:
PKDD, Porto, Portugal (2005) 10–21

9. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules. In: IEEE Knowledge and Data Engineering Exchange
Workshop, Chicago, IL (1999) 45–52

10. Oliveira, S.R.M., Zäıane, O.R.: Algorithms for balancing privacy and knowledge
discovery in association rule mining. In: IDEAS, Hong Kong, China (2003) 54–65

11. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of
association rules. SIGMOD Record 30(4) (2001) 45–54

12. Wang, Z., Liu, B., Wang, W., Zhou, H., Shi, B.: An effective approach for hiding
sensitive knowledge in data publishing. In: WAIM, Hong Kong, China (2006)
146–157

13. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, Santiago, Chile (1994) 487–499

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation

Method for Distributed Information Systems�

Jorge-Arnulfo Quiané-Ruiz��, Philippe Lamarre, and Patrick Valduriez

INRIA and LINA
Université de Nantes

2 rue de la houssinière, 44322 Nantes Cedex 3, France
{Jorge.Quiane,Philippe.Lamarre}@univ-nantes.fr,Patrick.Valduriez@inria.fr

Abstract. In large-scale distributed information systems, providers are
typically autonomous, i.e. free to leave the system at will or to per-
form certain requests. In this context, request allocation is critical for
the efficient system’s operation. However, most methods used in dis-
tributed information systems aim at maximizing overall system perfor-
mance (throughput and response times) by allocating requests to the
most efficient providers, without considering providers’ autonomy. In
this paper, we propose a balanced request allocation method, KnBest,
which considers providers’ autonomy in addition to load balancing. Our
method is general and simple, so that it can be easily incorporated in ex-
isting distributed information systems. We describe the implementation
of KnBest in different scenarios. Finally, we give an experimental eval-
uation which shows that KnBest significantly outperforms traditional
request allocation methods.

1 Introduction

We consider distributed information systems that are dynamic and provide ac-
cess to a large number of information providers. Providers can be fairly au-
tonomous, i.e. free to leave the system at will and to express their intentions for
performing requests. Their intentions can stem from combining their preferences
with other important factors such as their strategies.

In this context, allocating requests to providers must maximize overall sys-
tem performance (throughput and response times). The traditional solution,
used in mediator systems [6,14,17], is to reduce the overloading of providers as
much as possible so that load balancing is increased. However, preserving the
providers’ intentions when performing request allocation is equally important
to keep providers happy and the system stable. With the traditional solution,
providers can become unsatisfied when their intentions are not met and sim-
ply quit, resulting in an unstable system. Therefore, request allocation should
� Work partially funded by ARA “Massive Data” of the French ministry of research

(projects MDP2P and Respire) and the European Strep Grid4All project.
�� This author is supported by the Mexican National Council for Science and Tech-

nology (CONACyT).

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 237–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

also take into account providers’ intentions. This is a timely problem with the
deployment of web services and service-oriented architectures.

Providers’ intentions are dynamic and depend on the providers’ context. For
instance, some providers may desire to perform specific requests at some time,
but not at another time. Furthermore, providers can be heterogeneous in terms
of capacity and data. Heterogeneous capacity means that some providers are
more powerful than others and can treat more requests per time unit. Data
heterogeneity means that different providers provide different data and thus
produce different results for the same request.

In this paper, we address the request allocation problem by considering
providers’ intentions in addition to load balancing. We propose a balanced re-
quest allocation method, called KnBest. It is inspired by the two random choices
paradigm which has proven useful for dynamically assigning tasks to providers
[10,20,21]. Our method is general and simple, so that it can be easily incor-
porated in existing distributed information systems. It generalizes traditional
methods and can be adapted to the application by varying several parameters.
We describe the implementation of KnBest in different scenarios. Finally, we
give an experimental evaluation which compares KnBest to traditional request
allocation methods. We show that, with autonomous information providers in
the system, our method significantly outperforms these methods.

The rest of this paper is organized as follows. In Section 2, we define the sys-
tem model and introduce some notations. In Section 3, we present the KnBest
method. In Section 4, we give the experimental evaluation of KnBest. In
Section 5, we discuss related works. Section 6 concludes.

2 Model and Notations

We consider a system consisting of a set of mediators, M , of a set of consumers,
C, and of a set of providers, P . These sets are not necessarily disjoint, i.e. we
can have M ∩ C ∩ P �= Ø. Requests are formulated in a format abstracted as
a triple q = < c, d, n > such that q.c ∈ C is the identifier of the consumer
that has issued the request, q.d is the description of the task to be done, and
q.n ∈ N

∗ is the number of providers to which the consumer wishes to allocate
its request. Consumers send their requests to a mediator m ∈M which allocates
each incoming request q to the q.n providers in Pq, where Pq denotes the set of
providers that can treat q. We use Nq for denoting ||Pq||, or simply N for the
sake of simplicity when there is no ambiguity on q. In the case where q.n > Nq,
the consumer q.c will get Nq results instead of q.n. We only consider the arrival
of feasible requests, that is, those requests for which Pq �= Ø.

Request allocation of some feasible request q among the providers which are
able to deal with q is defined as a vector All−→oc or All−→ocq when there is an
ambiguity on q (see Definition 1). The set of providers such that All−→oc [p] = 1
is noted P̂q.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation Method 239

Definition 1. Request Allocation
The allocation of request q among the providers in Pq is a vector All−→oc of length

N such that: ∀p ∈ Pq, All−→oc [p]=
1 if provider p gets the request
0 otherwise

with
∑
p∈Pq

All−→oc [p] = min(q.n, N)

Each provider p ∈ P has a finite capacity, cap(p) > 0, for performing feasible
requests. The capacity of a provider denotes the number of computational units
that it can have. Similarly, each feasible request q has a cost, costp(q) > 0, that
represents the computational units that q consumes at p. We define provider
utilization as follows.

Definition 2. Provider Utilization
Let Qp denote the set of requests that have been allocated to p but have not
already been treated at time t (i.e. the pending requests at p). The utilization of
a given provider p ∈ P at time t, Ut(p), is defined as the computational units
that Qp consumes at p

Ut(p) =

∑
q∈Qp

costp(q)

cap(p)

Providers are free to express their intentions for performing each feasible re-
quest q, denoted by the PIp(q) function whose values are between −∞ and 1, and
where p denotes a given provider. If the intention value is positive, the greater
it is, the greater the desire for performing requests. If the intention is negative,
the smaller it is, the greater the refusal for performing requests. Providers’ re-
fusal can go down to −∞ because utilization can, theoretically, grow up to +∞.
In order to guarantee system stability, the way in which such intentions are
computed is considered as private information for providers.

3 KnBest Method

In this section, we present the KnBest method for balanced request allocation.
It is meant to be run by one or several mediators which allocate the requests
they receive from the clients. We restrict ourselves to the case where requests
can be viewed as single units of work called tasks. An incoming feasible request
q can be allocated to n providers (because of data heterogeneity, more than
one provider can provide answers). We assume that there is a matchmaking
mechanism ([8] for example) to find the set Pq of providers that are able to
deal with each incoming feasible request q. Therefore, we can focus on request
allocation only. Our method is inspired by the two random choices paradigm
[10,20,21]. The principle of two random choices is to randomly select a set of
providers K among the Nq providers and then allocate the request to the least
utilized provider in K. KnBest uses a similar principle. We describe below the
principle and properties of the KnBest.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

3.1 KnBest Principle

Given an incoming feasible request q and the set Pq of providers which are able
to deal with it, we denote the providers’ intention for dealing with q by the
vector

−→
PIq. Algorithm 1 shows the main steps of KnBest for allocating q.

First (line 2 of Algorithm 1), a set K of providers are selected at random
among the set Pq, where ||K|| = k and k ∈ N

∗. Second (line 3), the kn ∈ N
∗ least

utilized providers (i.e. the Kn set) are selected among the set K of providers1.
Third (line 4), the providers’ intention vector,

−→
PIq[p], for dealing with q is

computed. Considering our system architecture [15], this operation is realized
at the mediator sites and do not impact the network traffic. Next (line 5), the
intentions ’ ranking vector

−→
R q is computed. This ranking is necessary for the

selection of providers to deal with q. Intuitively,
−→
R q[1] is the most interested

provider to deal with q,
−→
R q[2] the second, and so on until to

−→
R q[N] which is

the least interested. Finally (lines 6-8), the request q is allocated to the n best
providers. If N < n, the request is simply allocated to all N providers without
any further considerations. The second (line 3) and fourth (line 5) phases can
be solved using a sorting algorithm. So, in the worst case, their complexity is
O(k log2(k)) and O(kn log2(kn)), respectively.

Algorithm 1: KnBest Providers
Input : q, k, kn, Pq

Output: All−→ocq

begin1

K ← select, at random, k providers in the set Pq ;2

Kn ← select the kn less utilized providers in the set K ;3

foreach p ∈ Kn do fork ask for the provider’s intention
−→
PIq [p] ;4

compute the providers’ intention vector ranking
−→
R q ;5

for i = 1 to min(n, kn) do All−→ocq [
−→
R q[i]] ← 1 ;6

for j = min(n, kn) + 1 to kn do All−→ocq[
−→
R q [j]] ← 0 ;7

end8

3.2 KnBest Property and Analysis

An expected property of providers is individual rationality, whereby they behave
according to their own interests only [1]. However, this may lead providers to not
participate in a given request allocation since they are selfish and may have no
interest in processing the request. Thus, individual rationality is incompatible
with the system’s objectives to process efficiently all incoming feasible requests
and satisfy consumers. For these reasons, we are looking for a special kind of
long-term individual rationality which KnBest allows.
1 We can indifferently assume that the values of k and kn are predefined by the

administrator or defined on the fly by mediators.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation Method 241

In the case of m requests and m homogeneous providers, request allocation
methods based on the two random choices paradigm (which we call the TRCBa-
sed methods) assign to providers a maximum load of only θ(log log m) with high
probability [10,20]. Given an incoming request q, TRCBased methods randomly
select two providers (the K set) among Pq and allocate q to p ∈ K, such that

∀ p′ ∈ K\P̂q, Ut(p′) ≥ Ut(p)

Nonetheless, the TRCBased methods are only suitable for homogeneous dis-
tributed systems (i.e. providers have the same capacity for performing requests).
In the context of heterogeneous distributed systems, request allocation methods
ensure good performances in the system by considering the capacities of all the
providers in Pq [6,12,14,17,21]. These methods (the CapacityBased methods)
allocate each incoming request q to p ∈ Pq such that

�p′ ∈ Pq\P̂q : Ut(p′) < Ut(p)

A third possible way to allocate requests is by only considering the providers’
intentions, which we call the IntentionBased methods. Given the request q to
be allocated, IntentionBased methods allocate q to p ∈ Pq such that

�p′ ∈ Pq\P̂q : PIp′(q) ≥ PIp(q)

On the other hand, the kn parameter defines the general behavior of the
KnBest method. For smaller values of kn, KnBest allocates the requests by
mainly considering the providers’ utilization, and by basically considering the
providers’ intentions for greater values of kn. Thus, the value that kn may take
depends on the type of application. Therefore, we recommend smaller values of
kn if the system pays more attention to the providers’ utilization and greater
values if it pays more attention to the providers’ intention. In the following
theorem, we summarize the KnBest properties which bound its behavior.

Theorem 1. For a large number of heterogeneous providers, KnBest behavior
is bounded by the following properties.

(i) if k = 2q.n ∧ kn = q.n, KnBest is equivalent to the TRCBased methods.
(ii) if k = Nq ∧kn = q.n, KnBest is equivalent to the CapacityBased methods.
(iii) if k = Nq ∧ kn = k, KnBest is equivalent to the IntentionBased methods.

Proof. Omitted because of triviality.

A different way to proceed in KnBest is by selecting first the most interested
providers (Kn) among K to finally allocate requests to the least utilized providers
among Kn. If request allocation is done this way, intentions are given more
importance than utilization. Besides, one can replace the providers’ intentions
by the consumers’ intentions for allocating requests if the objective of the system
is, for example, to ensure interesting results for consumers. If the system’s goal
is to satisfy both providers and consumers, the consumers’ intentions can be
considered as an additional step in KnBest, or intentions of both providers and
consumers can be merged in only one step.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

4 Experimental Evaluation

In this section, we give an experimental evaluation of KnBest using simulation.
We carried out several series of tests with a main objective in mind: how well
KnBest operates in environments with heterogeneous and autonomous providers.
We assume a single mediator. In order to assess the quality of KnBest, we con-
ducted three types of evaluations: performance, request load balance, and satis-
faction balance. In the following, we introduce the baseline methods to which we
compare KnBest and our experimental setup, and then we present the experi-
mental results.

4.1 Baseline Methods

In distributed information systems, the well-known methods to allocate requests
efficiently across providers are those with the CapacityBased behaviour (i.e. the
CapacityBased methods) [6,14,17]. These methods, unlike the TRCBased ones,
operate well in heterogeneous systems which is why we use them as baseline.

Economic models have been shown to provide efficient request allocation in
heterogeneous systems [3,4,16,13]. We use, as baseline, an Economic method
whose criterion to select providers is the utilization and bid of providers. Note
that different economic methods may have other performance results than those
presented here. In our experiments, we use virtual money (token) which is just
seen as a means of regulation. In the course of time, the tokens are spent by
providers in order to acquire requests. Thus, a source of financing is necessary to
them. Otherwise, after some time, providers would not have more tokens to bid
positively. We have chosen to associate a bank with the mediator, which gives
a specific amount of tokens to providers at the registration step and equally
redistributes the tokens in the course of time.

4.2 Experiment Setup

We built a Java-based simulator that models a mono-mediator distributed sys-
tem, following the system architecture in [15]. In all experiments, the number
of consumers and providers is 200 and 400 respectively, with only one mediator
allocating all the incoming feasible requests. We assign sufficient resources to
the mediator so that it does not cause bottlenecks in the system. Each result
we present is obtained by 10 simulation series. Feasible requests arrive to the
system following the Poisson distribution, which has been found in dynamic and
heterogeneous distributed systems [5].

For our simulations, we consider that providers provide answers with similar
quality, hence assuming that consumers always ask for 1 provider to solve their
requests (i.e. q.n = 1). Since we focus on heterogeneous distributed systems, we
set k = Nq. Basing ourselves on the results of [10,20], we set kn = 2q.n (i.e.
kn = 2). In order to compare the Kn providers, we consider their intentions
for performing requests. Providers work out their intentions using the SbQLB
method [7]. To ensure high autonomy in our experiments, providers’ preferences

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation Method 243

Table 1. Simulation parameters

Parameter Definition Value
nbConsumers Number of consumers 200
nbProviders Number of providers 400
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial providers’ satisfaction 0
qClasses Supported query classes 2
nbSimulations Number of realized simulations for each experience test 10

are randomly obtained between −1 and 1. More sophisticated mechanisms for
obtaining such preferences can be applied ([2] for example).

Since our main focus in this paper is to study the way in which requests are
allocated in the system, we do not take into account the bandwidth problem. It
is because of this that simulation tests are enough for evaluating our method.
Providers are initialized with a satisfaction value of 0. We set the providers’
capacity heterogeneity in accordance to the results in [18]. Based on these results,
we generate around 10% of low-capable, 60% of medium-capable, and 30% of
highly-capable providers. The highly-capable providers are 3 times more capable
than medium-capable providers and still 6 times more capable than low-capable
ones. We generate two classes of requests that consume, respectively, 130 and
150 computational units at the high-capable providers (taking about 1.3 and 1.5
seconds, respectively).

4.3 Experimental Results

Performance. We start with an evaluation of the system’s response time gua-
ranteed by the CapacityBased, Economic, and KnBest methods. As is conven-
tional, we define the response time as the elapsed time from the time a consumer
issues the request to the time it receives the answer. As first case, we consider
that providers are captive and do not leave the system by unsatisfaction, request
starvation, nor overutilization. Figure 1(a) shows that KnBest yields the same
response times as CapacityBased, and that both of them outperform the Eco-
nomic method. This shows that KnBest is also suitable for environments where
providers do not leave the system.

As second case, in order to evaluate the impact of provider departures, we
study response time when providers may leave the system by unsatisfaction or
request starvation. To do so, we allow providers to leave the system if their satis-
faction is 0.15 under their adequation. The adequation notion (see [7] for details)
denotes the degree of satisfaction towards all the feasible requests proposed by
the system. Also, providers are allowed to leave the system if they do not per-
form at least 25% of what they should. The results are shown in Figure 1(b).
We observe that KnBest significantly outperforms the CapacityBased and Eco-
nomic methods. While KnBest degrades in average the system’s response time
by a factor of 1.5 only, the Economic and CapacityBased do it, respectively,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
es

po
ns

e
T

im
es

 (s
ec

on
ds

)

Load (% of the total system capacity)

KnBest
CapacityBased

Economic

(a) Providers do not leave the system

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
es

po
ns

e
T

im
es

 (s
ec

on
ds

)

Load (% of the total system capacity)

KnBest
CapacityBased

Economic

(b) Providers may leave the system

Fig. 1. Response Time

by a factor of 1.8 and 4! We observed that in the Economic method, providers
usually quit by request starvation, while in the CapacityBased, they do so by
unsatisfaction.

We ran other experiments where providers may also leave the system by
overutilization2, but by lack of space, we do not present the results here. We
observed that KnBest and CapacityBased do not suffer from providers’ de-
partures by overutilization, while the performance of the Economic method is
degraded by a factor of 4.5 and, worse again, at a given time the system remains
with no providers! These results demonstrate the great impact on response times
of providers departures by unsatisfaction, request starvation, and overutilization.
Therefore, in a system where providers are selfish, we must pay special attention
to their interests.

Request Load Balance. We now study the request load balance (RLB) for
various workloads. In the experiments, we measure the RLB at any time as the
ratio of the smallest and largest utilized providers. Furthermore, it is important
that the system strives to give requests to all providers in the system if possible
so they don’t leave. Thus, we also measure the average request load balance
(avgRLB) at a discrete time interval [t1, t2]. The avgRLB measure is symmetrical
to the RLB measure. The average utilization, U[t1, t2](p), is said to be the average
utilization of the provider p at the discrete time interval [t1, t2].

We know that the thresholds of request starvation and overutilization over
which providers decide to leave, are very subjective and might depend on several
external factors. Thus, to avoid any question on the choice of such thresholds,
we assume, in this study, that providers are not allowed to leave the system
whatever their degree of request starvation and overutilization are.

Contrary to the expected, on the one hand, the results show that the E-
conomic method has serious problems to ensure good RLB ratios in the sys-
tem, despite that providers take more into account their preferences than their

2 For instance, when providers want to guarantee a good quality of service.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation Method 245

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

R
L

B
 D

eg
re

e

Time (seconds)

KnBest
CapacityBased

Economic

(a) For a workload from 30 to 100%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

av
gR

L
B

 D
eg

re
e

Load (% of the total system capacity)

KnBest
CapacityBased

Economic

(b) In average for different workloads

Fig. 2. Request load balance

utilization at the time of bidding for requests. On the other hand, the results
show that CapacityBased and KnBest have problems to ensure good RLB only
for workloads under the 40% of the total system capacity. When workloads in-
crease, both algorithms improve the RLB in the system. This is because most
providers in the first case have almost no requests (i.e. have all their capacity
available), and thus, requests may be allocated to those providers that spend
more treatment units to perform them. Hence, each time that requests are al-
located to the least capable providers, the distance between the most and least
utilized providers increases significantly. For lack of space, we do not present
these results.

In order to explain the above phenomenon, we present the results of a series of
simulations where we uniformly vary the workload from 30% (at the beginning
of the simulation) to 100% (at the end of the simulation). The results show
that CapacityBased and KnBest methods effectively improve the RLB as the
workload increases, and that the Economic method cannot ensure an acceptable
RLB in the system (see Figure 2(a)). In all cases the KnBest performance is as
good as CapacityBased one, even if the former takes into account the providers’
intentions and the latter does not.

Let us analyze the avgRLB guaranteed by these three methods, that is, how
well these methods avoid request starvation. To this end, we measure the avgRLB
in a time interval of 20 seconds over a simulation of 10000 seconds for different
workloads. The results are shown in Figure 2(b). We observe that, unlike the
RLB results, for workloads over 20% of the total system capacity the Capaci-
tyBased and KnBest methods significantly outperform the Economic method.
This means that while CapacityBased and KnBest strive to allocate requests on
giving requests to all the providers in the system, the Economic method suffers
from serious request starvation problems.

Satisfaction Balance. We now study the satisfaction balance (SB) ratios guar-
anteed by the three methods for various workloads. We assume that providers
work out their satisfaction as in [7], but without loss of generality, providers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

av
gS

B
 D

eg
re

e

Load (% of the total system capacity)

KnBest
CapacityBased

Economic

(a) Average satisfaction mean

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

A
ve

ra
ge

 V
ar

ia
bi

lit
y

Load (% of the total system capacity)

KnBest
CapacityBased

Economic

(b) Average satisfaction variability

Fig. 3. Providers’ satisfaction in average

can do it differently. For lack of space, we only present the average satisfaction
balance (avgSB) measures, at a discrete time interval [t1, t2]. The avgSB is de-
fined as the ratio of the smallest and largest average satisfied providers, where
average satisfaction denotes the average of the providers’ satisfaction at the
discrete time interval [t1, t2]. Furthermore, we measure the standard deviation
of the providers’ average satisfaction (average variability), in order to evaluate
how these methods satisfy all providers. Similarly to the thresholds of request
starvation and overutilization, the unsatisfaction threshold over which providers
decide to leave, is also quite subjective and may depend on several external fac-
tors. Then, to avoid any question on the choice of such a threshold, we assume
that providers are not allowed to leave the system by unsatisfaction.

Conversely to the RLB results and as expected (because the providers’ bids
are based on the providers’ intentions), the Economic method preserves better
the providers’ intentions (see Figure 3(a)). But this occurs because Economic
does not pay much attention to the providers’ utilization. Hence, this method
is only suitable for systems where providers do not care about their utilization
nor response time is very important for consumers. In these results, we have also
observed that even if KnBest ensures the same RLB than CapacityBased, it
significantly satisfies better providers. Nevertheless, we can observe that both
methods have some difficulties to preserve the providers’ intentions for a very
low workload (20% the total system capacity). This is due to the fact that the
number of incoming feasible requests is not enough for giving requests to all
providers, and thus in both methods, requests are allocated to the least utilized
providers. Note that KnBest can be improved in two ways: 1) setting the kn

to a greater value, or 2) in selecting first the kn most interested providers and
allocating requests to the q.n least utilized ones in Kn.

Figure 3(b) shows that, for workloads under 20% of the total system capac-
ity, some providers get more satisfied than others in the CapacityBased and
KnBest methods. This is why the average variability of both methods is high.
However, for higher workloads, the three methods yield almost the same average
variability.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

KnBest - A Balanced Request Allocation Method 247

5 Related Work

In the context of large-scale distributed information systems, most of the work
on request allocation [6,14,17,20,21] has dealt with the problem of allocating re-
quests to the most capable providers. However, preserving providers’ autonomy
for performing requests has not received much attention. Economical methods
[3,4,16,13] strive to deal with such autonomy. In such models, every provider
tries to maximize its revenue by selling services to consumers. Mariposa [13]
pioneered the use of an economical method for dealing with the request alloca-
tion problem in distributed systems. In Mariposa, all the incoming requests are
processed by a broker site, which given an incoming request, requests providers
for bids. Providers bid for acquiring the request based on a local bulletin board.
Then, the broker site selects a set of bids that has an aggregate price and delay
under a bid curve provided by the consumer. Nevertheless, it is unclear if this
method ensures good response times in adequacy with the providers’ intentions.
Furthermore, some requests may not get processed although it exist providers
able to deal with it. Recently we have proposed the SbQLB approach [7] to
balance requests across providers while considering their intentions for perform-
ing requests. SbQLB strives to balance requests in the course of time thereby
reducing request starvation in the system. However, KnBest is orthogonal and
more general than all these methods. The KnBest method is actually a set of
solutions for different environments and types of applications.

6 Conclusion

In this paper, we addressed the problem of request allocation in large-scale
distributed information systems with autonomous providers. We proposed the
KnBest method which allocates requests by considering providers’ intentions for
performing requests in addition to their utilization. The principle of KnBest is
similar to the two random choices paradigm which has proven useful for dynam-
ically assigning tasks to providers. We described the implementation of KnBest
in different scenarios with the different strategies to adopt. We gave an ex-
perimental evaluation which compares KnBest to traditional request allocation
methods. We demonstrated through experimentation that CapacityBased and
Economic are not suitable for distributed information systems where providers
may leave by request starvation, overutilization, or unsatisfaction. The experi-
mental results show that, with autonomous providers in the system, our method
significantly outperforms these methods. KnBest is suitable for dynamic, very
large-scale distributed information systems with competitive or cooperative be-
haviors. Our method is general and simple, so that it can be easily incorporated
in existing distributed information systems. It generalizes traditional methods
and can be adapted to the application by varying several parameters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

References

1. O. Morgenstern and J. von Neumann: Theory of Games and Economic Behavior.
Pinceton University Press, Inc. 1980.

2. A. Sah, J. Blow, and B. Dennis: An introduction to the Rush language. In Procs.
of the TCL Workshop. 1994.

3. D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini: Economic Models for
Allocating Resources in Computer Systems. Market-based control: a paradigm for
distributed resource allocation. World Scientific Publishing Co., Inc. 1996.

4. D. Ferguson, Y. Yemini, and C. Nikolaou: Microeconomic Algorithms for Load
Balancing in Distributed Computer Systems. In Procs. of the ICDCS Conference.
1988.

5. E. P. Markatos: Tracing a Large-Scale Peer to Peer System: An Hour in the Life
of Gnutella. In CCGRID Symposium. 2002.

6. H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Ibarra, and T. Smith: Adaptive Load
Sharing for Clustered Digital Library Servers. In HPDC Symposium. 1998.

7. J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez: Satisfaction-Based Query Load
Balancing. In Procs. of the CoopIS Conference. 2006.

8. K. Sycara, M. Klusch, S. Widoff, and J. Lu: Dynamic Service Matchmaking Among
Agents in Open Information Environments. In SIGMOD Record 28(1). 1999.

9. L. Li and I. Horrocks: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Procs. of the WWW Conference. 2003.

10. M. Mitzenmacher: The Power of Two Choices in Randomized Load Balancing.
PhD. Thesis, UC Berkeley, 1996

11. M. Nodine, W. Bohrer, and A. Ngu: Semantic Brokering over Dynamic Heteroge-
neous Data Sources in InfoSleuth. In Procs. of the ICDE Conference. 1999.

12. M. Roussopoulos and M. Baker: Practical Load Balancing for Content Requests in
Peer-to-Peer Networks. Distributed Computing 18(6):421-434. 2006.

13. M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu: Mariposa: A Wide-Area Distributed Database System. In VLDB J. 5(1).
1996.

14. N. Shivaratri, P. Krueger, and M. Singhal: Load Distributing for Locally Dis-
tributed Systems. In IEEE Computer Journal 25(12). 1992

15. P. Lamarre, S. Cazalens, S. Lemp, and P. Valduriez: A Flexible Mediation Process
for Large Distributed Information Systems. In Procs. of the CoopIS Conference.
2004.

16. R. Buyya, H. Stockinger, J. Giddy, and D. Abramson: Economic Models for Man-
agement of Resources in Grid Computing. In CoRR Journal. 2001.

17. R. Mirchandaney, D. Towsley, and J. Stankovic: Adaptive Load Sharing in Het-
erogeneous Distributed Systems. In Parallel and Distributed Computing J. 9(4).
1990

18. S. Saroiu, P. Krishna Gummadi, and S. Gribble: A Measurement Study of Peer-
to-Peer File Sharing Systems. In Procs. of the MCN Conference. 2002.

19. T. Özsu and P. Valduriez: Principles of Distributed Database Systems, (2nd ed.).
Prentice-Hall, Inc. 1999.

20. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal: Balanced Allocations. In SIAM
Journal on Computing 29(1). 1999.

21. Z. Genova and K. Christensen: Challenges in URL Switching for Implementing
Globally Distributed Web Sites. In Procs. of the ICPP Workshops. 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol

Heine Kolltveit and Svein-Olaf Hvasshovd

Department of Computer and Information Science
Norwegian University of Science and Technology

Abstract. Distributed transactional systems require an atomic commitment pro-
tocol to preserve atomicity of the ACID properties. However, the industry leading
standard, 2PC, is slow and adds a significant overhead to transaction process-
ing. In this paper, a new atomic commitment protocol for main-memory primary-
backup systems, C2PC, is proposed. It exploits replication to avoid disk-logging
and performs the commit processing in a circular fashion. The analysis shows
that C2PC has the same delay as 1PC, and reduces the total overhead compared
to 2PC.

1 Introduction

Main memory prices have dropped significantly over the last years, and the state of
many applications and databases can now be fitted entirely in main memory. To make
the state both persistent and available, it can be replicated instead of written to disk.
For instance, a backup replica (backup for brevity) takes over the processing if a pri-
mary replica (primary for brevity) fails. A backup is kept up to date by receiving the
same operations as the primary (active replication [1]) or log records from the primary
(passive replication [2]). The backup can either apply the log records to its own state or
periodically receive checkpoints from the primary. Assuming that the mean time to fail,
MTTF, is orders of magnitude larger than the mean time to repair, MTTR, the system
only needs to be single fault tolerant to completely avoid the need for disk accesses.
MTTR can be made very short by employing on-line self-repair mechanisms [3]. In
addition, since disk accesses are slow compared to both RAM accesses and network
latencies, replication can result in an improvement in performance.

A transaction is a collection of operations that transfers a system reliably from one
state to another, while providing the ACID properties [4]: Atomicity, consistency, isola-
tion and durability. Commonly, transaction termination and atomicity is satisfied by an
atomic commitment protocol, ACP. The ACP has been showed to be an important fac-
tor of total transaction processing time and, in particular, the current industry leading
standard, the Two-Phase Commit protocol, 2PC [5], is slow [6,7,8]. The delay caused
by two rounds of messages and multiple log records flushed to disk cause a significant
overhead. Also, a failure of the coordinator might block the participants from complet-
ing a transaction [9,10].

ACP performance and resilience to failures is a well established research field, but
optimizations that will have significant effect is still possible under a parallel and repli-
cated paradigm. Thus, this paper presents an ACP called Circular Two-Phase Commit

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 249–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 H. Kolltveit and S.-O. Hvasshovd

protocol, C2PC. It is an optimized version of 2PC for primary-backup systems. The pro-
tocol takes advantage of replication to trade costly flushed disk writes for cheaper mes-
sage sends and RAM accesses. The idea is to send the vote and decision to the backup
instead of a disk. This provide availability for the transaction participants and coordi-
nator and renders 2PC non-blocking [9,11]. To give better performance, the vote and
decision are sent in a ring instead of back and forth between the primary and backup.
The protocol is always single fault-tolerant and these methods could be favorably ap-
plied in a shared-nothing, fault-tolerant DBMS like ClustRa [3].

The rest of the paper is organized as follows: Section 2 summarizes related work.
Section 3 presents the system model and Section 4 defines the non-blocking atomic
commitment problem. Section 5 gives an overview and a detailed description of C2PC,
proves the correctness of the protocol and outlines a one-phased version called C1PC.
Then, an evaluation of the protocols is given in Section 6. Finally, the conclusion and
further work are presented in Section 7.

2 Related Work

Several atomic commitment protocols and variations have been proposed over the years.
Many approaches have been concerned with either developing a non-blocking protocol
or the performance issues. However, only a few deal with both.

In a non-replicated environment, 2PC may block if the coordinator and a partici-
pant fail [9,10]. 3PC [12] decreases the chance of blocking failures by adding an extra
round of messages, thus favoring resilience over performance. 3PC has been extended
to partitioned environments [13], and the number of communication steps has been re-
duced to the same as 2PC by using consensus [14], causing an increase in the number
of messages or requiring broadcast capabilities.

Several 2PC-based modifications where performance issues are handled exist [15].
Presumed commit and presumed abort [16] both avoid one flushed disk write, by assum-
ing that a non-existent log record means that the transaction has committed or aborted,
respectively. Transfer-of-commit, lazy commit and read-only commit [9], sharing the
log [16,17] and group commit [18,19] are other optimizations. An optimization of the
presumed commit protocol [7] reduces the number of messages, but requires the same
number of forced disk writes.

Optimistic commit protocols are designed to give better response time during nor-
mal processing, but will need extra recovery after failures or aborts. They release locks
when the transaction is prepared, but must be able to handle cascading aborts by using
semantic knowledge [20]. PROMPT [8] uses optimistic locking in the sense that locks
can be lent to other transactions after the participant has voted yes. A transaction that
lends locks will not reply to the request until the locks are fully released by the pre-
vious transaction, and only one transaction at a time can lend a lock. This approach
avoids cascading aborts while it may yield better performance because of increased
concurrency.

One-phased commit protocols have also been proposed [17,21,22,23,24]. These are
based on the early prepare or unsolicited vote method by Stonebraker [25] where the
prepare message is piggybacked on the last operation sent to a participant. In this way,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 251

the voting phase is eliminated. However, these approaches inflicts strong assumptions
and restrictions on the transactional system [22]. For instance, it requires either the par-
ticipants to prepare the transaction for each request-reply interaction, or the coordinator
must be able to identify the last request for a transaction to be able to piggyback a
prepare-request. Otherwise, the performance of 1PC degrades.

A few approaches that render 2PC non-blocking by replication have been proposed.
The first replicates the coordinator, but not the participants [11]. In addition to sending
log records to the backup, they are forced to disk, causing a decrease in performance.
Also, the backup only finishes transactions already started. No new transactions can be
initiated by the backup. This approach has also been adapted to multiple backups [26].

The second combines optimistic commit and replication [27]. A replicated group
of commit servers is used to keep the log records not yet written to the log by the
participant available, thus ensuring resilience to failures. This approach uses multicast
and has the same latency as 2PC, but requires more messages to be sent.

A third approach [28] is the most similar to the approach adopted in this paper. The
differences are that it incurs unnecessary overhead by sending the “start of prepare” and
the commit log records to the backup, and it forces log records to the disk even if both
the primary and the backup work correctly. The performance is thus degraded.

3 System Model

The system is composed of a number of processes or nodes connected through a com-
munication network. Each process has both a functional unit (application or database
server) and a transaction manager. A process executes two kinds of actions. (1) Change
state and (2) send or receive a message. When correct, they execute at arbitrary speeds,
but eventually make progress. Processes fail by crashing, causing them to lose state.
Such events are, however, rare. A failed process is recovered and brought up-to-date by
the system.

Communication is asynchronous and reliable. Thus, there are no bounds on com-
munication delays and messages are not corrupted or lost if both the receiving and the
sending process behaves correctly, i.e. do not crash.

In an asynchronous system, a failure detector is needed to make the system reliable
[29]. An eventually strong failure detector can solve the atomic commitment problem
[30]. However, to simplify the problem descriptions and explanations a perfect fail-
ure detector that eventually suspects every faulty process and never suspects a correct
process is assumed.

For the purpose of this paper no disks are used. State is stored entirely in main-
memory. Thus, to make the state persistent and the system highly available the primary-
backup approach [2] is used. This approach assumes that MTTF is orders of magnitude
larger than MTTR, thus both the primary and backup do not fail at the same time.

Following [16], the costs of execution in this system are twofold. (1) The computa-
tion cost is the total number of messages sent, and (2) the delay is serialized messages.
The main memory operations associated with the atomic commitment protocol are only
a small fraction of the load on the system, thus their costs are assumed to be negligible.
Also, as long as the processors are not fully utilized, there are no queueing effects.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 H. Kolltveit and S.-O. Hvasshovd

4 The Non-Blocking Atomic Commitment Problem

An atomic commitment protocol ensures that the participants in a transaction agrees on
the outcome, i.e. ABORT or COMMIT. Each participant vote, YES or NO, on whether
they can guarantee the local ACID properties of the transaction. All participants has a
right to veto the transaction, thus causing it to abort. The Non-Blocking Atomic Com-
mitment problem, NB-AC, has these properties [10,30]:

NB-AC1. <uniform agreement> All processes that decide reach the same decision.
NB-AC2. <integrity> A process cannot reverse its decision after it has reached one.
NB-AC3. <uniform validity> COMMIT can only be reached if all processes voted

YES.
NB-AC4. <non-triviality> If there are no failures and no processes voted NO, then

the decision will be to COMMIT.
NB-AC5. <termination> Every correct process eventually decides.

5 The Circular Two-Phase Commit Protocol

This section presents the Circular Two-Phase Commit protocol, C2PC, for main mem-
ory primary-backup systems.

Normally, 2PC requires both forced and non-forced disk writes [16,9]. In a primary-
backup environment these disk writes can be replaced by, respectively, synchro-
nous (blocking) and asynchronous (non-blocking) logging to the backup node. Fig-
ure 1(a) illustrates this. The small arrows between each primary-backup pair is the
logging.

(a) Replicated 2PC (b) Replicated 1PC (c) C2PC

(d) C2PC with subordinate (e) Legend for Figure 1

Fig. 1. Execution of various atomic commitment protocols

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 253

2PC (Figure 1(a)) consists of two phases, a voting phase and a decision phase. In
the voting phase the votes are collected by a coordinator, and the coordinator makes
a decision depending on the votes and persistently stores the decision. In the decision
phase, the outcome is sent to the participants which send an acknowledgement back to
the coordinator. Each participant must persistently store its vote and the outcome before
replying to the coordinator in, respectively, the voting and decision phase. After the
decision has been made persistent, the coordinator can give an early answer [3] to the
client. Thus, the response time seen from the client is less than what it would be if the
second phase had to be completed before the reply.

1PC (Figure 1(b)) piggybacks the prepare-message on the last work request for the
transaction. Thus, the first phase of the voting is eliminated. However, each participant’s
vote must be persistently stored to the backups before replying to the coordinator.

The C2PC protocol is a modified version of 2PC for main memory primary-backup
systems. Similarly to 2PC, C2PC has two phases and logs the votes and decision to
the backups. However, it allows the backup to reply to the backup coordinator. This is
shown in Figure 1(c). Instead of sending votes and acknowledgments back and forth the
votes and decision are sent in a ring for each branch of the commit tree. This is a case
of the transfer-of-commit optimization [9] where the authority to commit is passed via
the participants to the backup root coordinator.

C2PC reduces both the number of messages in the critical path and the total number
of messages to commit a transaction. The critical path is the delay until the transaction
coordinator can give an early answer to the client. For instance, comparing Figure 1(a)
and 1(c), the added delay has been reduced from six to four messages and the added
number of messages from thirteen to nine. By comparison, 1PC (Figure 1(b)) has an
added delay of four, two within the transactional operations frame and two after, and a
total overhead of eleven messages.

During normal processing, the communication goes through each ring twice, one for
each phase as seen in Figure 1(c). In the first round, the primary coordinator, pc, votes
and piggybacks its own vote on the prepare message to the primary participant, pp.
Each pp vote and sends its vote along with the vote of the pc to the backup participant,
bp. Bp adds its own vote and forwards it to the backup coordinator, bc. Bc makes a
decision based on the received votes and its own. The decision is then made persistent
by sending it to the pc, which gives an early answer to the client and initiate the second
phase.

The protocol also handles subcoordinators, or subordinate processes [16]. A subor-
dinate acts as a participant to the coordinator and as a coordinator to the participants. A
subordinate can also act as a participant to another subordinate. During the first phase
a primary subordinate, ps, votes and forwards the vote to each of the subparticipants.
The backup subordinate, bs, collects the votes from all the subparticipants before it
sends its vote to the bc. During the second phase the decision is propagated in the same
fashion.

If, during the first phase, one of the participants or subordinates votes NO, the vote
is propagated back to the bc, while each subordinate along the way makes the deci-
sion to abort. The decision is then sent out to all remaining undecided participants and
subordinates.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 H. Kolltveit and S.-O. Hvasshovd

The protocol handles failures of both the primary and the backup. These failure
scenarios might occur:

• If one of the primaries fails during the first phase, the transaction is aborted as the
backup cannot be sure that it has all the log records.

• If one of the backups fails during the first phase, the preceding node in the ring
sends the vote message to the primary instead.

• If one of the participating primaries (resp. backups) fails during the second phase,
the preceding node in the ring sends the decision or acknowledgement message to
the backup (resp. primary) instead.

Rerouting the messages to the non-failed primary or backup in the last two scenarios
above works since the primary and backup is assumed never to fail at the same time.

First, a detailed explanation is given, second, the correctness of the protocol is proven
and, third, a one-phase version of C2PC, C1PC, is outlined.

5.1 Detailed Description

This section presents the C2PC protocol in detail. Listings 1.1 to 1.6 present the protocol
in failure free scenarios for all types of nodes.

Each process has a Transaction Table (TT) which holds the state (active, prepared,
committed or aborted) and known participants of each transaction. Also, it is told which
processes have failed from the local failure detector. Log records marked with a Log
Sequence Number (LSN) [10] are shipped asynchronously to the backup. The backup
checks that it has received all LSNs and acknowledges the greatest LSN received so far.
The TT of the primary holds the greatest LSN acknowledged so far by the backup, and
the backup TT is updated as log records are received and acknowledged from the pri-
mary. When voting, any unacknowledged log records are piggybacked on a VoteMsg.
The TT can also be changed by receiving a vote message, VoteMsg, from a participant.

First, the protocols for the coordinator and the participants are presented. Then, the
protocols for the subordinates are given.

Coordinator and Participants. As seen in Listing 1.1 the pc of the transaction initiates
the protocol by attaching its own vote to a VoteMsg and sending it to each of the
participants.

Some necessary information is included in all messages going down in the commit
tree: (1) The transaction identifier, (2) the address of the primary and backup of the pc
and (3) the address of the client. The first identifies the transaction to be committed,
while the second allows bp to contact bc. The third allows bc to contact the client
to complete the transaction should pc fail. Also, included in at least one of the vote
messages are (4) the unacknowledged log records of the transaction at pc and (5) a list
of the participants of the transaction. The fourth ensures that bc has all the log records
generated by pc of the transaction before committing it. Finally, the fifth guarantees that
bc waits for VoteMsgs from all the participants before making a decision and enables
it to complete a transaction in case pc fails.

Each pp (Listing 1.3) of the transaction receives a VoteMsg. If the received vote or
its own is NO, the decision is ABORT, and a new VoteMsgwith a NO-vote is sent to the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 255

1atomic commitment:
if (myVote == NO) {

decide(ABORT);
4voteMsg = new VoteMsg(txn,No);

send (voteMsg) to all participants;
} else {

7voteMsg = new VoteMsg(txn,Yes);
send (voteMsg) to all participants;
receive(DecisionMsg) from backup {

10if (decision is COMMIT) decide(COMMIT);
else decide(ABORT);
dMsg = new DecisionMsg(txn,decision);

13send reply to client;
send (dMsg) to all participants;
if (decision is COMMIT) {

16receive (AckMsg) from backup;
on timeout {resend dMsg;}

} } }

Listing 1.1. Primary coordinator

atomic commitment:
20receive (voteMsg) from all partipants;

if (receivedVotes == NO || myVote == NO) {
decide(ABORT);

23dMsg = new DecisionMsg(txn,ABORT);
} else {

decide(COMMIT);
26dMsg = new DecisionMsg(txn,COMMIT);

}
send (dMsg) to primary;

29if (decision is COMMIT) {
receive (DecisionMsg) from all;
receive ack from client;

32send (AckMsg) to primary;
}

Listing 1.2. Backup coordinator

atomic commitment:
receive(voteMsg);

35if (receivedVote == NO || myVote == NO) {
decide(ABORT);
vMsg = new VoteMsg(txn,NO);

38send (vMsg) to backup;
} else {

txnLog = getLog(txn);
41vMsg = new VoteMsg(txn,vote,info);

send (vMsg) to backup;
receive(decisionMsg) {

44decide(decisionMsg.decision);
send (decisionMsg) to backup;

} }

Listing 1.3. Primary participant

47atomic commitment:
receive (voteMsg);
if (receivedVote == NO || myVote == NO) {

50decide(ABORT);
vMsg = new VoteMsg(txn,NO);
send (vMsg) to parentBackup;

53} else {
vMsg = new VoteMsg(txn,YES);
send (vMsg) to parentBackup;

56receive (decisionMsg) {
decide(decisionMsg.decision);
send (AckMsg) to parentBackup;

59} }

Listing 1.4. Backup participant

backup. If the vote is YES, pp adds its unacknowledged log records for the transaction
to the vote message and forwards it to the backup.

When a YES-vote is received by a bp (Listing 1.4), the log records from the pp
are removed from the VoteMsg and applied to the local log. The local vote is then
collected and forwarded to the backup of the parent. If the local vote or the received
one is NO, the decision is ABORT and a VoteMsg containing a No-vote is forwarded
to bc.

Listing 1.2 shows the algorithm for bc. Upon receiving a VoteMsg, it checks if the
message contains a list of participants. If so, it checks whether or not it has received
a VoteMsg from all of them. If a list is not included, it knows that there are more
messages coming. Either way, it waits until all participants’ votes have been collected
(line 20), and then makes a decision: ABORT if any NO-votes have arrived or itself votes
NO, otherwise COMMIT. Any unacknowledged log records sent from pc are appended
to the local log and a decision message, DMsg, is then sent to pc.

When the pc receives a DMsg, it decides the same and then forwards the decision to
the client and the participants. If the decision is COMMIT it waits to receive a confirma-
tion from bc saying that all participants have committed before the transaction can be
removed from TT.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 H. Kolltveit and S.-O. Hvasshovd

59atomic commitment:
receive(voteMsg);
if (receivedVote == NO || myVote == NO){

62decide(ABORT);
vMsg = new VoteMsg(txn,NO);
send (vMsg) to participants;

65} else {
txnLog = getLog(txn);
voteMsg = new VoteMsg(txn,vote);

68send (voteMsg) to participants;
receive(decisionMsg) {

decide(decisionMsg.decision);
71send (decisionMsg) to participants;

} }

Listing 1.5. Primary subordinate

atomic commitment:
74receive (voteMsg) from all subpartipants;

if (receivedVotes == NO || myVote == NO) {
decide(ABORT);

77vMsg = new VoteMsg(txn,NO);
send (vMsg) to parentBackup;

} else {
80vMsg = new VoteMsg(txn,YES);

send (vMsg) to parentBackup;
receive (decisionMsg) {

83decide(decisionMsg.decision);
send (DecisionMsg) to parentBackup;

} }

Listing 1.6. Backup subordinate

After voting, the participants waits for a decision. When received, the decision is
made, and the message is sent from the pp to the bp to the bc. Note that since the pc and
the bc are assumed not to fail at the same time, a termination protocol is not needed for
the participants, because the coordinator ensures the liveness of the transaction.

Subordinate Processes. The previous subsection is necessary to make an atomic com-
mitment, but internal nodes in the commit tree can also exist. These nodes are called
subordinates [16] and are characterized by acting as a coordinator for some participants,
while being a participant itself for the coordinator or other subordinate.

The protocol for a primary subordinate, ps, is given in Listing 1.5. When a VoteMsg
is received, it decides ABORT if the received or its own vote is NO. Otherwise, the unac-
knowledged log records are appended to at least one of the outgoing VoteMsgs along
with a list of the participants. Either way, the address of the current ps and bs is sent to
the participants along with the vote and the information received in the VoteMsg.

A backup subordinate, bs, (Listing 1.6) waits, as the bc, until a VoteMsg is received
from all its participants and then makes a decision based on the received vote and, if
all votes are YES, the result of applying the log records received from the primary. The
information from the parent primary is added to the VoteMsg, and it is sent to the
parent backup.

In the same way as the participants, the subordinates waits for a decision after voting.
When received, the decision is made, and the message is sent from the ps to a pp or another
ps. The bs receives the decision from one or more bps or bss, and forwards it to the bc.
For the same reasons as for the participants, a termination protocol is not needed here.

5.2 Correctness

This section proves the correctness of the C2PC protocol by proving each of the prop-
erties given in Section 4 in this order: NB-AC2, NB-AC3, NB-AC4, NB-AC1 and
NB-AC5.

Lemma 1. NB-AC2: A process cannot reverse its decision after it has reached one.
Proof. The algorithms for each of the processes use if-else statements to avoid deciding
more than once per process.

Lemma 2. NB-AC3: The COMMIT decision can only be reached if all processes voted
YES.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 257

Proof. All processes can decide COMMIT during the second phase of the protocol.
However, they can only decide COMMIT if they receive a message with a COMMIT

decision. The only process that can decide COMMIT during the first phase is bc (line
25). This happens only if it has received YES-votes from all the participating processes
including itself.

Lemma 3. NB-AC4: If no process failed and no process voted NO, then the decision
will be to COMMIT.
Proof. If no process failed, and no process voted NO, then since the communication
system is reliable, bc receives YES from all participants and subordinates. Thus, COM-
MIT is reached (line 25).

Lemma 4. NB-AC1: All processes that decide reach the same decision.
Proof. A process can only decide ABORT during the second phase, if a process decided
ABORT during the first phase. Similarly, a process can only decide COMMIT during the
second phase, if bc decided COMMIT during the first phase. As proved in Lemma 2,
COMMIT can be decided (line 25) only if all processes voted YES. A process can only
decide ABORT during the first phase if it votes NO. A process cannot both vote YES

and NO, so two processes cannot decide differently.

Lemma 5. NB-AC5: Every correct process eventually decides.

Proof. To enable a process to decide in the presence of failures, all failure scenarios as
well as the scenario with no failures must be handled. These scenarios can occur:

1: Pc fails before sending the vote to all participants.
2: Pc fails after initiating the voting, but before sending the decision to all partici-

pants.
3: Pc fails after sending the decision to all participants, but before receiving an

AckMsg from bc.
4: Bc fails before sending the decision to pc.
5: Bc fails after sending the decision to pc, but before sending AckMsg to pc.
6: A ps, bs, pp or bp fails before sending the vote.
7: A ps, bs, pp or bp fails after sending the vote, but before sending the decision.
8: No node fails.

Scenario (1): None has voted, each of the participants can independently abort the
transaction after a timeout has expired without causing inconsistencies in the system.

Scenario (2): When bc does not receive a decision from any of the participants and
pc fails, bc can complete the transaction with the decided outcome.

Scenario (3): The AckMsg is sent to pc to allow it to purge the transaction entry
from its TT. However, this is not needed if pc fails, because it will have to update its TT
as part of the recovery process.

Scenarios (4) and (6): If pc does not receive a decision within a given time limit it
can send a message to bc and tell it about the timeout, then bc can decide Abort. If bc
has failed, pc can safely abort the transaction.

Scenario (5): The transaction is completed, but if the decision is COMMIT the trans-
action entry will not be deleted from the TT of pc until an AckMsg is received.However,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 H. Kolltveit and S.-O. Hvasshovd

(a) C1PC (b) C1PC with subordinate

Fig. 2. Examples of C1PC execution

pc resends the decision (line 17) with updated backup information until it receives con-
firmation that all participants have decided.

Scenario (7): When a process fails during the second phase, the decision must be
sent via the backup on its way down the commit tree or via the primary on its way up
the tree. Pc resends the decision (line 17) until it receives an acknowledgement, and the
failed processes are bypassed.

Scenario (8): This is proven similarly to Lemma 3. Since no process failed and the
communication system is reliable, bc receives votes from all participants and subordi-
nates. Thus, it decides either COMMIT in line 25 or ABORT in line 22. By the same
argument each participant and subordinate eventually decides.

All scenarios are handled, thus, all correct processes eventually decides.

Theorem 1. C2PC is a valid non-blocking atomic commitment protocol.

Proof. Since C2PC satisfies properties NB-AC1 - NB-AC5 it solves NB-AC. �

5.3 C1PC

Circular One-Phase Commit protocol, C1PC, is a circular version of 1PC and can be
designed as shown in Figure 2. The main differences between C1PC and C2PC are:
During the first phase (1) pc piggybacksVoteMsg on the last request and (2) bp replies
to ps or pc (instead of bs or bc) because there might be results that are needed. During
the second phase, (3) pc makes the decision to commit, and (4) bc replies to the client
and sends the DMsg to the participants.

6 Evaluation

This section compares the performance of non-fault tolerant, replicated 2PC, replicated
1PC, C2PC and C1PC. We assume the normal operational mode where no participat-
ing processes fails and all participants vote YES. The purpose is to evaluate the costs
associated with the various protocols.

The table in Figure 3 shows formulas for the added number of messages in the critical
path and the total overhead to complete a transaction compared to the non-fault tolerant
case. The critical path is the delay until the transaction coordinator can give an early
answer to the client. Parallel and linear execution corresponds to a commit-tree of height
1 and N − 1 respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 259

Protocol Delay Total
Non-fault tolerant 0 0

Replicated 2PC, parallel 6 8N + 5

Replicated 2PC, linear 4N + 4 8N + 5

Replicated 1PC, parallel 4 6N + 5

Replicated 1PC, linear 2N + 2 6N + 5

C2PC, parallel 4 8N + 1

C2PC, linear 2N + 1 4N + 5

C2PC, hybrid 4 6N + 1

C1PC, parallel 2 4N + 3

C1PC, linear N + 1 3N + 4

C1PC, hybrid 2 3N + 4

N1 2 3 4

de
la

y

0

5

10

15

20

25 2PC, linear
1PC, linear
C2PC, linear
C1PC, linear

N1 2 3 4

ov
er

he
ad

0

10

20

30

40 2PC
1PC
C2PC, hybrid
C1PC, hybrid

Fig. 3. Added delay until early answer to client and total overhead for various ACPs. N = #
servers invoked by transaction excluding the coordinator, N ≥ 1

The non-fault tolerant case is non-replicated and has zero delay and overhead to
complete the request. It does not tolerate any failures and there is no coordination of the
outcome.

For the transactional cases, the parallel versionsof C2PC and C1PC have the
shortest delay and the linear versions have the least overhead. This observation
leads to the hybrid versions of C2PC and C1PC, where the voting phase is executed
in parallel and the decision phase in linear. This minimize both the delay and the
overhead.

The graphs in Figure 3 depicts the delay and overhead of selected protocols. The pro-
tocols with constant delay are not shown in the delay graph and in the overhead graph
the linear and parallel circular protocols are not showed to avoid cluttering.

The delay of parallel and hybrid C2PC is equal to and two-thirds of the delay of
1PC and 2PC, respectively. C1PC halves the delay and almost halves the overhead
compared to 1PC, but also inherits its restrictions and assumptions [22]. The overhead
of the parallel and hybrid versions of C1PC is almost half of that of 1PC, and hybrid
C2PC has less overhead than 1PC.

7 Conclusion

This paper has presented an atomic commitment protocol, Circular Two-Phase Commit
(C2PC). It is an single fault-tolerant optimization of 2PC for replicated main-memory
primary-backup systems. C2PC does not require any changes to the standard 2PC in-
terface, and can be implemented in an asynchronous system with an unreliable failure
detector. The protocol is unique in the sense that it does not log to disk and ensures
liveness for both data, processing and transaction commitment.

For further work the protocol should be implemented and performance measures
should be made to verify the analysis and evaluation in Section 6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

260 H. Kolltveit and S.-O. Hvasshovd

References

1. Schneider, F.B.: Replication management using the state machine approach. In: Distributed
systems (2nd Ed.). ACM Press/Addison-Wesley Publishing Co. (1993) 169–197

2. Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: Distributed systems. In Mullender,
S., ed.: Distributed Systems. ACM Press. second edn. Addison-Wesley (1993) 199–216

3. et al., S.O.H.: The ClustRa telecom database: High availability, high throughput, and real-
time response. In: Proc. of VLDB. (1995)

4. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Comput.
Surv. 15 (1983) 287–317

5. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Advanced Course,
London, UK, Springer-Verlag (1978) 393–481

6. Spiro, P.M., Joshi, A.M., Rengarajan, T.K.: Designing an optimized transaction commit
protocol. j-DEC-TECH-J 3 (1991) 70–78

7. Lampson, B., Lomet, D.: A new presumed commit optimization for two phase commit. In:
Proc. of VLDB. (1993)

8. Haritsa, J.R., Ramamritham, K., Gupta, R.: The prompt real-time commit protocol. IEEE
Trans. Parallel Distrib. Syst. 11 (2000) 160–181

9. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
(1993)

10. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems. Addison-Wesley Longman Publ. Co., Inc. (1986)

11. Reddy, P.K., Kitsuregawa, M.: Reducing the blocking in two-phase commit protocol em-
ploying backup sites. In: Proc. of CoopIS. (1998)

12. Skeen, D.: Nonblocking commit protocols. In: Proc. of SIGMOD. (1981)
13. Rabinovich, M., Lazowska, E.D.: A fault-tolerant commit protocol for replicated databases.

In: Proc. of PODS. (1992)
14. Guerraoui, R., Larrea, M., Schiper, A.: Reducing the cost for non-blocking in atomic com-

mitment. In: (ICDCS), Hong Kong (1996) 692–697
15. Samaras, G., Britton, K., Citron, A., Mohan, C.: Two-phase commit optimizations and trade-

offs in the commercial environment. In: Proc. of ICDE. (1993)
16. Mohan, C., Lindsay, B., Obermarck, R.: Transaction management in the R* distributed

database management system. ACM Trans. Database Syst. 11 (1986) 378–396
17. Stamos, J.W., Cristian, F.: A low-cost atomic commit protocol. In: Proc. of SRDS. (1990)
18. Gawlick, D., Kinkade, D.: Varieties of concurrency control in IMS/VS Fast Path. IEEE

Database Eng. Bull. 8 (1985) 3–10
19. Park, T., Yeom, H.Y.: A consistent group commit protocol for distributed database systems.

Proc. of PDCS (1999)
20. Levy, E., Korth, H.F., Silberschatz, A.: An optimistic commit protocol for distributed trans-

action management. In: Proc. of SIGMOD. (1991)
21. Abdallah, M., Pucheral, P.: A single-phase non-blocking atomic commitment protocol. In:

Proc. of DEXA. (1998)
22. Abdallah, M., Guerraoui, R., Pucheral, P.: One-phase commit: Does it make sense? In: Proc.

of ICPADS, Washington, DC, USA (1998)
23. Lee, I., Yeom, H.Y.: A single phase distributed commit protocol for main memory database

systems (2002)
24. Stamos, J.W., Cristian, F.: Coordinator log transaction execution protocol. Distributed and

Parallel Databases 1 (1993) 383–408
25. Stonebraker, M.: Concurrency control and consistency of multiple copies of data in dis-

tributed ingres. IEEE Trans. Software Eng. 5 (1979) 188–194
26. Reddy, P.K., Kitsuregawa, M.: Blocking reduction in two-phase commit protocol with mul-

tiple backup sites. In: DNIS. (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Circular Two-Phase Commit Protocol 261

27. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G., Arévalo, S.: A low-latency non-blocking
commit service. In: Proc. of DISC. (2001)

28. Mehrotra, S., Hu, K., Kaplan, S.: Dealing with partial failures in multiple processor primary-
backup systems. In: Proc. of CIKM. (1997)

29. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J.
ACM 43 (1996) 225–267

30. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commitment and
consensus. In: WDAG. (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 262 – 274, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Timely ACID Transactions in DBMS

Marco Vieira1, António C. Costa2, and Henrique Madeira1

1 CISUC - University of Coimbra, Polo II,
3030 Coimbra, Portugal

{mvieira, henrique}@dei.uc.pt
2 FC – University of Lisbon,

Lisbon, Portugal
casim@di.fc.ul.pt

Abstract. On-time data management is becoming a key difficulty faced by the
information infrastructure of most organizations. In fact, database applications
for critical areas are increasingly giving more importance to the timely
execution of transactions. Database applications with timeliness requirements
have to deal with the possible occurrence of timing failures, when the
operations specified in the transaction do not complete within the expected
deadlines. In spite of the importance of timeliness requirements in database
applications, typical commercial DBMS do not assure any temporal properties,
not even the detection of the cases when the transaction takes longer than the
expected/desired time. This paper discusses the problem of timing failure
detection in database applications and proposes a transaction programming
approach to help developers in programming database applications with time
constraints. The paper illustrates the proposed programming model with a
practical example using the Oracle 10g DBMS running a performance
benchmark for real-time database applications.

Keywords: Databases, transaction processing, performance, timely
transactions.

1 Introduction

Developing database applications with timeliness requirements is a very difficult
problem as current database technology does not provide easy programming support
that help engineers and programmers in dealing with timing issues. This is true for all
the programming layers of a typical database application: the database management
system (DBMS), the middle layer software (e.g., web-server, application-server, etc),
and the client application. Nevertheless, real database applications very often have to
cope with the possible occurrence of timing failures, when the operations specified in
a transaction do not complete within the expected deadlines. Without adequate
support to help designers and programmers to solve timing requirements, the
development of these applications is a very complex task.

The notion of time is completely absent from the classical DBMS transactional
model, which is based on the ACID properties (Atomicity, Consistency, Isolation, and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 263

Durability) [1]. [2] proposes that research should be conducted in order to add
timeliness properties to the typical ACID properties, which would provide to the
application layer timely ACID properties or, in short, TACID. In this paper, which
represents the first step towards TACID transactions, we discuss the problem of
timing failure detection in database applications and propose a transaction
programming approach to help developers in programming database applications with
time constraints. According to the timing requirements we classify applications in
different classes, namely: traditional (no temporal requirements), fail-safe, time-
elastic, and fail-operational. To implement these classes we propose the following
types of transactions, which support different temporal requirements: transactions
with no temporal requirements (typical ACID transactions), transactions with strict
temporal requirements, and transactions with relaxed temporal requirements.

This paper proposes a new approach for transaction programming, which allows
concurrent detection of timing failures during execution, including for distributed
transactions. Timing failure detection can be performed at the database clients’
interface, in the database server, or in a distributed manner. An application
programming interface (API) that implements this new transaction programming
approach is provided. It can be used by database programmers to easily implement
applications with timeliness requirements. All source code, including an example of
utilization, is available at [http://gbd.dei.uc.pt/downloads.php] for public use.

The structure of the paper is as follows. The following section discusses the
problem of timing failure detection and proposes a classification for database
transactions and applications. Section 3 proposes a new transactions programming
approach and presents the application programming interface developed. Section 4
presents the experimental evaluation and Section 5 concludes the paper.

2 Timeliness Requirements in Database Applications

In many situations timeliness is as important as correctness and atomicity. For
instance, in a database application designed to manage information about a critical
activity, e.g., air traffic control, a transaction that reads and stores the current reading
from a positioning radar must be executed in a short time (i.e., the longer it takes to
execute the transaction the less useful the reading is). In other words, in many
applications, a transaction that does not complete before a specified deadline becomes
useless and this situation must be reported to the application/business layer in order to
be handled in an adequate manner. But worse than becoming useless, the delayed
execution of a transaction can compromise safety properties of a system. In such
cases, the detection of a violated deadline would allow the execution of fall-back or
recovery actions, isolating and avoiding the propagation of the failure to other
components and, consequently, the occurrence of more severe failures.

Real-time databases have emerged some years ago. However, these databases have
been designed and implemented for very specific applications [3], [4]. To support
real-time applications, real-time databases relax the ACID requirements to allow
better support for temporal consistency while maintaining support for data
consistency [5], [6]. Semantic information is used to determine to what degree the
ACID properties must be enforced.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 M. Vieira, A.C. Costa, and H. Madeira

In real-time DBMS the ACID properties are normally applied only to parts of the
transaction. Nevertheless, important features such as timing failure detection or, more
generically, timing fault-tolerance, have been completely neglected, which also
restricts the application areas for such DBMS. The problem is even worse if we
consider the possibility of deploying distributed DBMS over wide-area or open
environments. Such environments exhibit poor baseline synchrony and reliability
properties, thus making it more difficult to deal with timeliness requirements.
Obviously, this uncertainty and lack of timeliness will directly affect the execution of
transactions, which, as an immediate effect, will be delayed. However, more severe
effects may also be observed on the account of timing failures.

The environments we consider in this paper can be characterized, essentially, as
environments of partial synchrony. In fact, their basic synchrony properties are only
cluttered from time to time, or by specific parts of the structure. Several partial
synchrony models have been proposed, with different solutions to address application
timeliness requirements. The idea of using failure detectors that encapsulate the
synchrony properties of the system was first proposed in [7]. The work in [8]
introduces the notion of Global Stabilization Time (GST), which limits the
uncertainty of the environment. The Timed model, proposed in [9], allows the
construction of fail-aware services, which always behave timely or else provide
awareness of their failure.

Our proposal is to bring timing failure detection to the typical ACID transactions
implemented by most commercial DBMS, putting together classic database
transactions management and distributed timely computing. The goal is to extend the
typical transaction programming approach in order to support transactions with ACID
properties together with timing failure detection.

In order to add timing failure detection to the typical ACID transactions, we
propose that the basic toolset to be offered to database application programmers
should include the following classes of transactions:

– Transactions with no temporal requirements: Typical ACID transactions
implemented by classic database management systems. The database clients do not
expect any timeliness guarantees, not even the detection of timing failures.
– Transactions with strict temporal requirements: For this class, the database
clients can specify a time frame in which the transaction has to be concluded to
succeed. In this class, the system must at least provide timing failure detection, even
in distributed transactional environments. The transaction is rolled back if the last
command in the transaction is not executed before the specified deadline and the
client application is notified in order to cope with the occurrence of the timing failure.
– Transactions with relaxed temporal requirements: In this class, the transactions
are always executed independently of the specified time frame. However, if the dead-
line is reached before the transaction commits, the client application is nevertheless
informed. This allows the application to execute any task related to the occurrence of
the timing failure (e.g., notify the DBA) and continue the execution of the transaction.

Real database applications very often have to deal with different timing
requirements, whose execution must be supported by one or more of the classes of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 265

transactions proposed before. The following points present our classification for
database applications concerning timing constraints, and give some examples of
applications from real scenarios:

– Traditional applications class: Typical applications with no temporal requirements.
– Fail-safe class: Applications that can switch to a fail-safe state when there is a
timing failure. When a transaction is submitted the application waits for the
transaction response or a notification that a timing failure has occurred. The
application must be informed about a timing failure occurrence as soon as the
deadline specified for the transaction is exceeded. In this case the application executes
some conforming actions and enters a fail-safe state. These database applications can
be implemented based on transactions with strict temporal requirements. Typical
examples include manufacturing industrial processes (electronic industry, automotive
manufacturing industry, etc) where it is possible to stop the manufacturing chain in
case of delay in the database transaction execution (that fail-safe state is in general
necessary because of mechanical issues of manufacturing processes).
– Time-elastic class: Applications able to adapt timing constraints during execution.
In this case, the collection of information about timing failures and the temporal
execution of transactions can be used to feed a monitoring component or to tune
specific application parameters in order to adapt its behavior to the actual load
conditions of the system. The application may decrease the transaction submission
rate, increase the transactions deadline if possible, or postpone the execution of
transactions to a latter time. In environments with replicated databases, the application
can also perform load balancing based on timing failure detection. These applications
can be implemented based on transactions with strict temporal requirements or based
on transactions with relaxed temporal requirements. Examples of this class include
databases that control mobile communication systems, where connection
establishment can tolerate some delays (or may be refused) and billing transactions
can be postponed, or continuous manufacturing processes such as chemical processes.
– Fail-operational class: Applications that continue executing transactions without
adapting timing constraints during execution, regardless of the timing failures
detected. The client application should be notified about the occurrence of the timing
failure but the execution of the transaction does not stop. Timing failure detection is
used by the application to perform specific actions (e.g., notify the database
administrator) when the execution of transactions exceed the deadline. These
applications can be implemented based on transactions with strict temporal
requirements or transactions with relaxed temporal requirements. Examples of this
class include pay-per-view television applications and video streaming.

3 New Transactions Programming Approach

Transactions in typical database application are executed by submitting one command
at a time or using batches of commands. After submitting a command (or a batch of
commands) the client application waits for the corresponding response. The database
server can be a single machine or a distributed set of replicated servers. An important
aspect is that neither the client layer nor the database server are concerned about the
detection of timing failures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 M. Vieira, A.C. Costa, and H. Madeira

In order to provide transactions with temporal requirements we need a new
approach for transaction programming. Our proposal is to modify the typical database
environment in order to include timing failure detection capabilities. Three
possibilities can be considered: detection in the client layer, detection in the database
server, and distributed detection. To measure the duration of both local and
distributed actions we have adopted the Timely Computing Base (TCB) model [10],
which is based on an improved round-trip technique that guarantees not only
bounded, but also almost stable measurement errors. Informally speaking, the TCB
Distributed Duration Measurement service can be used for monitoring the duration of
local or distributed actions. It is the responsibility of the application to indicate the
beginning and the end of the action. Local actions are measured in the same site, and
in the case of distributed actions the measurement is made in a distributed way, using
different TCB instances.

3.1 Timing Failure Detection in the Client Database Interface Layer

In a typical database environment the client application communicates with the server
through an interface layer (e.g., Oracle Call Interface). This layer is specific for each
DBMS and is responsible for managing all the communication with the database
server. The detection of timing failures in the client requires the modification of this
layer. As changing the database interface layer itself is difficult (this is normally a
piece of proprietary software) our proposal is to add a wrapping layer through which
all the communications between the client application and the database interface layer
must go by. We call this layer Transactions Timing Failure Detection (TTFD) layer.

Figure 1 shows the architecture we propose for timing failure detection in the client
interface layer. In order to implement timing failure detection capabilities, we propose
the use of two connections between the client application and the TTFD layer: one to
submit commands and receive results and the other to control timing definitions (e.g.,
the deadline and the type of the transaction) and receive timing failure notifications.
These notifications are sent in the form of exceptions that must be handled by the
client application. Note that, the TTFD layer can be used to abstract any particular
implementation of a timing failure detection service. Therefore, it is possible to
generate timing failure notifications at this layer, independently of the specific
notification mechanism provided by the specific TTFD service implementation.

DB Server

DBMS

DB Client

Client Application

TTFD
SQL/Results

Database Interface Layer

Control/Failure

SQL

Results
Network

TCB

Fig. 1. Environment for timing failure detection in the database interface layer

When the client application begins a time critical transaction (i.e., submits the first
SQL command in the transaction) and provides the class of the transaction (strict
temporal requirements or relaxed temporal requirements) and the deadline for the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 267

execution, the TTFD layer starts counting the elapsed time. The Duration
Measurement service of the TCB is used for time measurement. The time critical
transaction ends when the application executes a commit or rollback. If the deadline is
violated before the end of the execution of the transaction an exception is generated
and thrown to the client. If the transaction has strict temporal requirements it is
automatically rolled back, otherwise, the transaction execution continues normally.

From the client point-of-view, the measured execution times includes the delays
due to client-server network communication. This means that some false positives
may occur due to the extra time that it takes for the response to travel from the server
to the client. Timing failure detection in the database interface layer should be used in
scenarios where it is important to take in consideration the time the client application
waits for the response to the last command in the transaction (e.g., when the client
application is able to perform load balancing at the network level). However, other
solution is needed in scenarios where timeliness requirements apply to timed
executions that terminate on the server side.

3.2 Timing Failure Detection in the Database Server

The second approach we propose consists on detecting timing failures at database
server side. In this case the transactions execution time is measured from the server
point-of-view. To provide the detection of timing failures in the database server we
need to modify the DBMS implementation or to use a DBMS proxy that intercepts all
the messages arriving to and leaving from the database server (see Figure 2). The
database proxy also implements timing failure detection and the TCB is used to
measure time. In the client side we also need the layer through which all the
communications between the client application and the database interface layer must
go by (TTFD layer). In this architecture this layer does not deal with timing failure
detection. It receives timing definitions from the client application and forwards them
to the database proxy. When the proxy detects a timing failure it notifies the TTFD
layer, which raises the corresponding exception to the client application.

An important aspect is that all the communication between the TTFD layer and the
DBMS proxy is performed using a communication channel different from the one
used to send the SQL commands and results. The timing definitions and timing failure
notifications are sent using this channel. Figure 2 presents the environment that we
propose for timing failure detection in the database server. As mentioned before, the
database server can be a single machine or a set of replicated servers.

DB Server

DBMS

DB Client

Client Application

TTFD
SQL/Results

Database Interface Layer

Control/Failure

SQL

Results

D
B

M
S

 P
roxy

Failures

Network

Network

Timing definitions

TCB

Fig. 2. Environment for timing failure detection in the database server

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 M. Vieira, A.C. Costa, and H. Madeira

When the client application begins a time critical transaction (i.e., submits the first
SQL command) and provides the class of the transaction and the deadline for the
execution, the DBMS proxy starts counting the elapsed time using the TCB. If the
deadline is exceeded before the end of the execution of the transaction an exception is
sent to the client application through the TTFD layer. Transactions with strict
temporal requirements are automatically rolled back. On the other hand, for
transactions with relaxed temporal requirements the execution continues normally.
Note that, rolling back the transaction is not influenced by any timing constraints as
the state of the database only changes if the transaction commits.

Timing failure detection from the server point-of-view does not consider the
amount of time that goes from the moment when the client submits the first command
and the moment the server receives that command. This means that the transaction
execution time is counted only after the first command is received by the DBMS
proxy. Thus, if the communication between the client and the server is slow, there are
some cases where a timing failure is not detected because the client/server
communication time is not considered. Timing failure detection in the database server
is useful in scenarios where the network delays should not be taken into account or
are always so small that, from the client application point-of-view, have no impact in
the transaction execution. It may also be useful if one decides to enrich the database
server with real-time modules that are autonomously and immediately executed by the
TCB upon failure detection.

3.3 Distributed Detection of Timing Failures

A transaction starts when the client application submits the first command and ends
immediately after the server finishes the execution of the last command (and not when
the client application receives the response). Thus, some database applications may
require the execution time to be counted from the moment when the client submits the
first command and the moment when the execution of last command ends at the
server side. In this case the two solutions proposed before cannot be applied. It is
necessary to use a form of timing failure detection based on distributed duration
measurements. We will simply call it distributed timing failure detection.

An obvious problem raised by this approach is the distributed measurement of
time. As it is well known, it is quite difficult to have synchronized clocks in different
machines. To solve this problem we have decided to use the Duration Measurement
service of the TCB model [10]. This service obviously requires local clocks of TCB
modules to be read, and timestamps to be used and disseminated among relevant
nodes of the system. Unlike the measurement of local actions, measuring distributed
durations is quite more difficult because simply reading the clocks to get two
timestamps is not sufficient. The distributed duration measurement service of the
TCB is based on an improved round-trip technique [10] that guarantees not only
bounded, but also almost stable measurement errors.

As shown in Figure 3, to provide distributed detection of timing failures we need to
modify the DBMS implementation or to use a DBMS proxy and to include an
additional layer in the database client that handles all the communications between
the client application and the database interface layer (TTFD layer). This layer does
not detect timing failures. It receives timing definitions from the client application and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 269

instructs the TCB to start measuring the time. Timing definitions are sent to the
DBMS proxy that detects timing failures using the distributed duration measurement
capabilities of the TCB. When a timing failure is detected the DBMS proxy notifies
the TTFD layer, which raises the corresponding exception to the client application.

As in the solutions proposed before, two connections are needed between the client
application and the TTFD layer and the communication between the TTFD layer and
the DBMS proxy also uses a communication channel different from the one used to
send the SQL commands and receive the responses.

DB Server

DBMS

DB Client

Client Application

TTFD
SQL/Results

Database Interface Layer

Dedicated Connection

Control/Failure

SQL

Results

D
B

M
S

 P
roxy

Failures

Network

Network

Timing definitions

TCBTCB

Fig. 3. Environment for distributed timing failure detection

3.4 Transactions Programming Interface

In order to allow database programmers to easily implement applications with
timeliness requirements we have developed an application programming interface
(API) that implements the new transaction programming approach proposed in this
paper. In this work we have implemented this interface for JAVA and we are now
starting to implement it for other languages (C++ and Delphi). An important aspect is
that this API is as close as possible to the ones normally used by the programmers
when implementing typical database applications. In fact, we tried to implement
classes and methods similar to the ones typically used by programmers in terms of the
names, parameters, and form of use (see example in section 4). Table 1 presents the
most important methods provided.

4 Practical Example of Implementation

The example presented in this section has resulted from the study meant to
demonstrate and evaluate the usefulness of the transactions programming approach
proposed. As we are particularly interested in the aspects related to transaction
execution time, we have decided to use a performance benchmark for real-time
database systems for telecommunications [11]. This benchmark represents a
telecommunications operator that includes several service providers, each one having
its own database in a distributed environment.

The benchmark has been implemented using both the standard Java Database
Connectivity (JDBC) API and the API proposed in this paper (considering both strict
temporal requirements and relaxed temporal requirements). The first goal is to
evaluate the effort needed to migrate from the traditional approach to the approach

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 M. Vieira, A.C. Costa, and H. Madeira

Table 1. API provided for JAVA programmers. All source code, including an example of
utilization, is available at [http://gbd.dei.uc.pt/downloads.php] for public use.

TACID Method JDBC Method Short Description
TACIDConnection
getConnection(String URL, int
approach)

Connection
getConnection(String
url)

Establishes a new TACID connection to the database. url
represents the name of the database. approach is the ti-
ming failure detection level (client, server, or distributed)

void close() throws SQLException
void close() throws
SQLException

Closes the database connection

void commit() throws SQLException,
TACIDTimeoutException

void commit() throws
SQLException

Commits the transaction. Throws an timeout exception if
a timing failure has occurred meanwhile

void rollback() throws
SQLException,
TACIDTimeoutException

void rollback() throws
SQLException

Rollbacks the transaction. Throws an timeout exception
if a timing failure has occurred meanwhile

ResultSet startTimeQuery(int type,
int timeout, String sql) throws
SQLException,
TACIDTimeoutException

ResultSet
startTimeQuery(int type,
int timeout, String sql)
throws SQLException

Starts a new time critical transaction. SQL represents the
first command (select command) in the transaction. type
is the type of the transaction (strict or relaxed requirem-
ents). timeout represents the deadline for the transaction
Returns the result of the command in a result set

int startTimeUpdate(int type, int
timeout, String sql) throws
SQLException,
TACIDTimeoutException

int executeUpdate(String
sql) throws
SQLException

Starts a new time critical transaction. SQL represents the
first command (insert, update or delete command) in the
transaction

ResultSet executeQuery(String sql)
throws SQLException,
TACIDTimeoutException

ResultSet
startTimeQuery(int type,
int timeout, String sql)
throws SQLException

Executes a query. The time critical transaction has
already been started by another command

int executeUpdate(String sql) throws
SQLException,
TACIDTimeoutException

int executeUpdate(String
sql) throws
SQLException

Executes an insert, update, or delete command. The time
critical transaction has already been started by another
command

ResultSet getResultSet() – Returns the result of the last query executed
int getResultUpdate() – Get the result of the last insert, update, or delete executed
long getExecTime() – Returns the execution time for the last transaction

proposed in this paper. Table 2 presents a simple example of the use of timing failure
detection in the benchmark.

As we can see, the TACID implementation is very similar (in both structure and
commands) to the typical implementation, which facilitates the database programmers
work. During the benchmark implementation we have observed a similar
implementation time for both approaches. In fact, an experienced programmer tokes
around two days for each implementation. Obviously this implementation time
depends strongly on the programmer’s experience.

In order to evaluate the efficiency of the time failure detection approaches, we have
performed several experiments. The basic experimental platform consists of three
machines. Two machines are used as database servers and one as database client. The
machines are connected using two dedicated fast-Ethernet networks. One is used for
the SQL/results communication and the other is used by the TCB. Six service
providers are considered, by implementing three databases in each database server.

The Oracle™ DBMS is one of the leading databases in the market and as one of
the most complete and complex database it represents very well all the sophisticated
relational DBMS available today. For that reason we have chosen Oracle 10g [12],
which has been tuned based on the results from a previous work on the evaluation of
the Oracle performance and recoverability [13].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 271

The performance benchmark used has been implemented using the traditional
approach (no timing failure detection) and considering timing failure at the three
layers (clients’ interface, database server, and distributed). Both transactions with
strict temporal requirements and transactions with relaxed temporal requirements
have been implemented. The performance benchmark was executed five times for
each configuration (a total of 35 runs) with a duration of 10 minutes for each run.

Table 2. TACID implementation vs typical implementation: excerpt from the update subscriber
transaction. The TACID implementation uses transactions with strict temporal requirements.

TACID Implementation Typical Implementation
...
// Establish the connection
Class.forName(driverName);
con = TACIDDriverManager.getConnection

(db, distributedDetection);

...
// Establish the connection
Class.forName(driverName);
con = DriverManager.getConnection (db);
Statement con = con.createStatement();

try {
// First command (timeout 100ms)
sql="select addr from profile where

sid="+sid;
rs=con.startTimeQuery(strictTempReq,100,sql);
...

try {
// First command
sql="select addr from profile where

sid="+sid;
rs=con.executeQuery(sql);
...

sql="update profile set addr=’Coimbra’
where sid="+sid;

recCount = con.executeUpdate(sql);

sql="update profile set addr=’Coimbra’
where sid="+sid;

recCount = con.executeUpdate(sql);
con.commit(); con.commit();

} }
catch(TACIDTimeoutException e) { ... }
... ...

Results have shown that timing failure detection does not introduce any overhead in
transactions execution. For example, for the baseline configuration we have observed
an average of 3769.9 transactions per minute (with a standard deviation of 23.17
transactions), while for timing failure detection at the client interface layer we have
observed an average of 3784.5 transactions per minute (with a standard deviation of
38.96 transactions). The small deviations in the measures in successive runs are
normal and just reflect the asynchronous nature of transactions. For the other layers
(server and distributed) similar results have been observed.

Concerning execution time, the average using the baseline configuration was of
46.62 milliseconds (with a standard deviation of 0.25 milliseconds), while the average
with timing failure detection at the client interface layer is around 41.58 milliseconds
(with a standard deviation of 0.35 ms). This shows that the execution time when using
time failure detection at the client interface layer is lower than the one observed for
traditional transactions. This is due to the fact that when a transaction exceeds the
deadline it is immediately rolled back and the client application continues the
execution to the next transaction. Similar results were observed for the other layers.

Figure 4 presents an example of the execution profile for one of the transactions
(roaming user) during one run of the benchmark using timing failure detection at the
client interface layer and strict temporal requirements (similar profiles were observed
for the other layers of timing failures detection). As we can see some transactions
exceed the deadline, however in all the cases the timing failure was detected and the
client application notified. These transactions are automatically rolled back. As show

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 M. Vieira, A.C. Costa, and H. Madeira

in the figure, the transactions that exceed the deadline are detected a little bit after the
deadline. This is due to the small latency of the detection mechanism (less than 20
milliseconds). Note that, database applications are characterized by long execution
times (in some cases several seconds), thus a latency of 20 ms is quite acceptable.

Another important aspect is that, by the analyses of the results shown in Figure 4
we can see that even in sophisticated DBMS like Oracle 10g it is quite difficult to
predict the execution time of the transactions. In fact, although most of the
transactions are executed before the deadline some of them exceeded that deadline.
This is due to many reasons such as the cache behavior, checkpointing, logging, etc.
This demonstrates the importance of timing failure detection in database applications.

Roaming User

0

100

200

300

400

500

600
ms

Fig. 4. Execution profile using timing failure detection. The horizontal line represents the
deadline (500 ms) and each vertical bar represents the execution time of a single transaction.
The vertical bars that cross the horizontal line represent transactions that exceeded the deadline.

To further understand the behavior of the timing failure detection mechanism we have
executed the benchmark in the presence of an additional load that stresses the network
and the server machines. This way, we have executed the real-time performance
benchmark and, in random moments, we have executed the additional workload
during a random amount of time. The additional workload has been adopted from the
TPC-C performance benchmark [14] (this workload has been chosen due to practical
reasons and any other workload could have been selected). The average number of
transactions executed per minute decreased about 40%) and the average transactions
execution time increased around 30%. The latency remained the same.

Roaming User

0

100

200

300

400

500

600
ms

Fig. 5. Execution profile using timing failure in the presence of an additional database load

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Towards Timely ACID Transactions in DBMS 273

Figure 5 presents the execution profile for the roaming user transaction during one
execution of the benchmark in the presence of the additional load. Note that, there are
now many more transactions whose execution times exceed the deadline or gets
closer to it. Nevertheless, all the timing failures were detected.

5 Conclusion

This paper discussed the problem of timing failure detection in database applications
and proposes a transaction programming approach to help developers in programming
database applications with time constraints. Three classes of transactions are
considered concerning temporal requirements: transactions with no temporal
requirements (typical ACID transactions), transactions with strict temporal
requirements, and transactions with relaxed temporal requirements. The approach
proposed implements these classes of transactions by allowing concurrent detection of
timing failures during transaction execution. Timing failure detection can be
performed at the database clients’ interface, in the database server, or in a distributed
manner. The paper illustrates the proposed programming models in a practical
example using the Oracle 10g DBMS. A performance benchmark for real-time
database applications is used to validate the approach and to show the advantage of
timing failure detection.

From the results presented in this paper it is clear that it is useful to consider a new
transaction programming approach aimed at supporting timing specifications for the
execution of transactions. On the other hand, the work done so far was instrumental to
uncover some of the problems that must be addressed to solve the temporal issues
related to timing failure detection is DBMS settings. We intend to pursue this work
and redesign or complement the mechanisms provided by the TCB for timing failure
detection, so they become better suited to support the several classes of timed
transactions that we identified as the fundamental ones.

References

1. J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”, The Morgan
Kauf-mann Series in Data Management Systems, Jim Gray, 1993.

2. M. Vieira, A. Costa, H. Madeira, "TACID Transactions", IEEE/IFIP Intl Conference on
Dependable Systems and Networks, 1st Workshop on Hot Topics in System Dependability
(HotDep-05), Yokohama, Japan, June 2005.

3. K. Ramamritham, "Real-Time Databases", Intl Journal of Distributed and Parallel DBs,
1996.

4. G. Ijzsoyoilu, R. T. Snodgrass, “Temporal and Real-Time Databases: A Survey”, IEEE
Transactions On Knowledge and Data Engineering, 1995.

5. L. DiPippo, V. Wolfe, “Real-Time Databases”, Database Systems Handbook, Multiscience
Press, 1997.

6. SIGMOD Record, Special Section on Advances in Real-Time Database Systems, Vol 25,
number 1, pp.3-40, 1996.

7. T. Chandra, S. Toueg, Unreliable Failure Detectors for Reliable Distributed Systems,
Journal of the ACM, 43(2), 225–267, 1996.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 M. Vieira, A.C. Costa, and H. Madeira

8. L. Dwork, L. Stockmeyer, “Consensus in the Presence of Partial Synchrony”, Journal of
the ACM, 1988.

9. F. Cristian, C. Fetzer, “The Timed Asynchronous Distributed System Model”, IEEE
Transactions on Parallel and Distributed Systems, 1999.

10. P. Veríssimo, A. Casimiro, “The Timely Computing Base Model and Architecture”, Trans.
on Computers - Special Issue on Asynch. Real-Time Systems, 2002.

11. J. Lindström and T. Niklander, Benchmark for Real-time Database Systems for Telecom.,
VLDB 2001 Intl Workshop on DB in Telecom. II, Rome, Italy, 2001.

12. Oracle Corporation, “Oracle® Database Concepts 10g Release 1 (10.1)”, 2003.
13. M. Vieira and H. Madeira, “Recovery and Performance Balance of a COTS DBMS in the

Presence of Operator Faults”, Intl Performance and Dependability Symposium (jointly
organized with DSN-2002), IPDS2002, Bethesda, Maryland, USA, June 2002.

14. Transaction Processing Performance Council, “TPC Benchmark C, Standard Specification,
Version 5.4”, 2005, available at: http://www.tpc.org/tpcc/.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection
Algorithm for Biological Annotations

Yang Song1, Sourav S. Bhowmick1,2, and C. Forbes Dewey Jr.3

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 Singapore-MIT Alliance, Nanyang Technological University, Singapore

3 Division of Biological Engineering, Massachusetts Institute of Technology, USA
assourav@ntu.edu.sg, cfdewey@mit.edu

Abstract. Warehousing heterogeneous, dynamic biological data is a key tech-
nique for biological data integration as it greatly improves performance. However,
it requires complex maintenance procedures to update the warehouse in light of
the changes to the sources. Consequently, a key issue to address is how to detect
changes to the underlying biological data sources. In this paper, we present an
algorithm called BIODIFF for detecting exact changes to biological annotations.
In our approach we transform heterogeneous biological data to XML format and
then detect changes between two versions of XML representation of biological
data. Our algorithm extends X-Diff, a published XML change detection algo-
rithm. X-Diff, being designed for any type of XML data, does not exploit the
semantics of biological data to reduce the data set of bipartite mapping. We have
implemented BIODIFF in Java. We have conducted an extensive performance
study using data from EMBL, GenBank, SwissProt and PDB. Our experimental
results show that BIODIFF runs 1.5 to 6 times faster than X-Diff.

1 Introduction

Technological advances in high throughput screening coupled with the genomic revo-
lution resulted in a large amount of life sciences data that are often stored in geograph-
ically distributed databases. Some of the key features of these databases are as follows
[6]. (1) Many data sources are typically centered on one primary class of objects, such
as genes, proteins, or DNA sequences. (2) The primary objects are furthered described
by a set of nested fields, called annotations. Many of the annotations are text fields, such
as description, functional annotation, source of biomaterial etc. (3) Databases heavily
cross-reference each other. (4) Databases overlap in the objects they represent, stor-
ing sometimes redundant and sometimes conflicting data. As valuable information is
scattered around over literally hundreds of these databases, a data integration system
that can handle heterogeneous, complex, and geographically dispersed biological data
sources is a key area of research in bioinformatics[8].

Biological data integration approaches can be broadly categorized into three types.
The first approach provides a uniform Web interface to various databases and analysis
tools[12]. These systems usually use CGI scripts or Java servlets to execute queries
against databases, to call analysis programs, or to search file-based data repositories.
The second approach focuses on formulating complex declarative queries that span

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 275–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 Y. Song, S.S. Bhowmick, and C.F. Dewey

(a) EMBL interface. (b) Change detection.

Fig. 1. Change detection in EMBL

multiple heterogenous databases[3]. These two approaches have several disadvantages.
First, efficiency of the application may be choked by the slowest external data source or
by communication latency in the execution of queries and programs. Second, we may
not be able to run our applications at a time we wish because a needed external source
is unavailable. Third, there is always the risk of unintended “denial of service” attacks
on the original sources. Finally, as many biological sources have large number of errors,
there is always the risk of running remote applications that are sensitive to certain errors
that cannot be detected nor corrected on-the-fly.

The third approach addresses the above limitations by taking a warehousing ap-
proach [1,3,7]. The first step in this approach is to develop a unified data model that
can accommodate all the information that is contained in the various source databases.
The next step is to develop a mechanism that will fetch the data from the source data-
bases, transform them to match the unified data model and then load them into the
warehouse. The warehouse then can be used for answering any of the questions that
the source databases can handle, as well as those that require integrated knowledge that
the individual sources do not have.

The warehouse approach greatly improves performance [3]. However, as biological
data is highly dynamic, it requires complex maintenance procedures to update the ware-
house in light of the changes to the sources. This raises a number of practical problems
[3]: (1) How can we detect that the underlying data sources have changed and what are
these changes? (2) How can we automate the refresh process? (3) How can we track the
origins or “provenance” of data? In this paper, we focus on the first issue.

An important aspect of any change detection problem is finding out exactly how the
underlying data source has changed. In the case of biological databases, this is compli-
cated by the fact that updates are typically propagated in one of the three ways [3,5]:
(1) Producing periodic new versions that can be downloaded by the user community
(2) Timestamping data entries so that users can infer what changes have occurred since

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 277

entry

db
embl

data

id
AY278488

data_class
standard

length
28920

division
VRL

molecule
RNA

accession_
number

version_
number

... ...

organism_
species

organism

SARS coronavirus BJ01

taxonomy

class

Viruses

class

ssRNA positive-strand
viruses, no DNA stage

class

Nidovirales
class

Coronaviridae

class

Coronavirus class

SARS coronavirus

references

...

features

sequence_feature

type
source

location

1..28920

qualifier

BJ01

type
isolate

...

base_count

...

sequence

ttattaggtttttaccta
cccaggaaaagcca
accaacctcgatctct
tgtagatctgtt

...

(a) Version 1

entry

db
embl

data

id
AY278488

data_class
standard

length
29725

division
VRL

molecule
RNA

accession_
number

version_
number

... ...

organism_
species

organism

SARS coronavirus BJ01

taxonomy

references

...

features

sequence_feature

type
source

location

1..28920

qualifier

BJ01

type
isolate

...

base_count

...

sequence

ccaggaaaagccaa
ccaacctcgatctctt
gtagatctgttctctaa
cgaactttaaaa

...

(b) Version 2

sequence_feature

type
CDS ...

class

Viruses

class

ssRNA positive-strand
viruses, no DNA stage

class

Nidovirales
class

Coronaviridae

class

Coronavirus class

SARS coronavirus

attr_name
attr_val

= attribute node

Fig. 2. XML representation of biological data (partial)

they last accessed the data (3) Keeping a list of additions and corrections; each element
of this list is a complete entry. The list of additions can be downloaded by the user
community. However, to the best of our knowledge, none of these methods precisely
describe the minimal changes that have been made to the data. We illustrate this with
an example.

Suppose that a warehouse stores a portion of EMBL data including data related to
SARS (Severe Acute Respiratory Syndrome) virus. The EMBL data bank timestamps
the data entries (Figure 1(a)) so that the warehouse maintainer can infer the latest ver-
sion of the entry. The web site also provides a tool to compare the differences between
two versions of SARS data by clicking the “Compare Selected” button in Figure 1(a).
The differencing tool then highlights the changes by color coding the lines that are in-
serted, deleted, or remained unchanged during the transition as shown in Figure 1(b).
The main drawback of this tool is that it does not exactly say how the entry has changed.
The actual change may be very small. For example, consider the ID attribute in EMBL
data. The general format of an ID line in EMBL is: ID entryname dataclass;
molecule; division; sequencelength BP. From Figure 1(b) it is clear that
only the sequence length is modified from “28920” to “29725”. Values of the remaining
attributes of the ID line are unchanged. However, the differencing tool in Figure 1(a)
does not try to identify the exact change in the ID line. Rather, it represents the change
as deletion and insertion of the ID line. Observe that the differencing tool represents
an update of a line as a combination of deletion of the line followed by insertion of a
new line (first two lines in Figure 1(b)). Assuming that the warehouse uses a relational
database to store data, finding the exact change is important as it reduces the number
of tables or tuples needed to be updated in the warehouse [3].

In this paper, we present an algorithm BIODIFF that can identify exact changes to
the annotations associated with primary biological objects1. In the rest of the paper,

1 A preliminary and shorter version of this paper appeared as a poster in [9].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 Y. Song, S.S. Bhowmick, and C.F. Dewey

we use the genomic and proteomic data sources as running examples to illustrate our
change detection technique. However, as we shall see later, our approach is generic
and can be applied to any biological annotations. Note that we do not discuss detect-
ing changes to primary objects (e.g., protein sequences, nucleotide sequences) as the
differences between two primary objects (say nucleotide sequences) can be computed
using a modified sequence comparison algorithm instead of the matching algorithm
used in BIODIFF for annotations. As there is a significant body of work on sequence
comparison techniques, we do not focus our discussion on detecting changes to primary
objects here.

In our approach, we first transform data (e.g., flat files) from various biological data
sources to XML format using Bio2X [10]. Then, we can address the problem of detect-
ing changes to biological data in the context of such XML documents. Consequently,
BIODIFF takes as input two versions of XML representation of biological data and com-
pute the changes. Since there are several recent efforts in the XML research community
to develop change detection algorithm for XML documents [2,11], an obvious issue is
the justification for designing a separate algorithm for detecting changes to the XML
representation of biological data. In fact according to [3,5], XML change detection al-
gorithms can be directly used to detect changes to XML representation of biological
data. We argue that although such algorithms will clearly work for annotation data,
they are not efficient as they do not exploit the semantics of biological data. For in-
stance, the min-cost max-flow algorithm for computing the bipartite mapping between
two XML trees is the most time consuming part in X-Diff [11]. Hence, it is desirable to
reduce the size of data set during mapping. However, X-Diff fails to do so for biological
data as it ignores the semantics of the XML elements. BIODIFF is developed to address
this issue by extending X-Diff[11]. As we shall see later, it exploits the semantics of
the XML elements to further reduce the data size for bipartite mapping. Consequently,
our experimental results (Section 3) show that BIODIFF runs 1.5 to 6 times faster than
X-Diff on genomic and proteomic annotations.

2 Algorithm

We have designed and implemented a wrapper called Bio2X that converts flat files into
hierarchical XML form based on extraction rules[10]. We have observed that XML
representation of data from many major biological sources can be considered as un-
ordered. For example, consider the XML tree representation of two versions of EMBL
data in Figure 2. Assume that the nodes <class>Coronavirus</class> and <class>
Nidovirales</class> swap their positions in Figure 2. However, this change is not sig-
nificant since the order does not influence the semantics of the biological data entry.
Hence, in this paper we assume that an unordered XML model is more appropriate for
representing biological data.

The pseudocode of BIODIFF algorithm is given in Figure 3(a) and can be best de-
scribed by the following five phases: the identifier checking phase, the type classifi-
cation phase, the parsing and hashing phase, the matching phase, and the edit script
generation phase. The identifier checking phase takes as input two XML documents,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 279

Input: XML documents D1 and D2, DTD K
Output: Edit script E

/* Identifier checking phase */
(1) Set id1=identifier of D1;
(2) Set id2=identifier of D2;
(3) if (id1==id2) return E=no_change;

/* Type classification phase */
(4) if (TypeContainer C is empty) C = ChooseType(K);

/* Parsing and hashing phase */
(5) parse D1 to XTree tree1;
(6) XHash(T1);
(7) parse D2 to XTree tree2;
(8) XHash(T1);

/* Matching & edit script generation phase */
(9) for each node node1 in first-level elements of tree1 {
(10) set name=tree1.GetName(node1);
(11) set node2=tree2.GetNode(name1);
(12) if (node2 == null)
(13) add Delete(node1, tree1) to E;
(14) else {
(15) if type1(node1)

E=OneToOne(node1, node2, E); /* Figure 3(c) */
(16) else if type2(node1)

E=IdenElemComp(node1, node2, E); /* Figure 4(a) */
(17) else if type3(node1)

E=IdenSignature(node1, node2, E); /* Figure 4(b) */
(18) else E=bipartite(node1, node2, E);
(19) }
(20) }
(21) for each node2 in tree2 but not in tree1
(22) add Insert(node2, tree2) to E;
(23) return E;

(a) Main algorithm.

Input: DTD K rooted at E
Output: TypeContainer C

(1) if no sub-element of E
(2) C={type_1};
(3) for each sub-elements S of E {
(4) add ChooseType(S) to C;
(5) store <name, attributes> pair of S into M;
(6) }
(7) if M is not empty {
(8) if each has distinct name
(9) add type_1 into C;
(10) else {
(11) if none has any attributes
(12) add type_2 into C;
(13) else if all has the same attributes
(14) add type_2 into C;
(15) else {
(16) if the attribute is not an id
(17) add type_3 into C;
(18) else
(19) add type_4 into C;
(20) }
(21) }
(22) }
(23) return C;

(b) Algorithm ChooseType.

Fig. 3. BIODIFF algorithm

new and old versions (denoted as D1 and D2), and determines whether they are iden-
tical. The equality of two XML representation of biological data can be concluded
without parsing the entire XML documents. For instance, for genomic data sources,
each biological data record has a version identifier. Whenever the data is changed, a
new identifier will be assigned. So the identifiers of two data files can be extracted and
compared first to determine whether the data files are identical. Similar identifiers can
be identified for most of the important biological data sources. If the identifier checking
phase detects that the two entries are not identical, then BIODIFF will parse the schema
information of the documents (DTD/XML Schema) to classify the XML elements into
four types depending on their structure. Such type classification information shall be
used in the matching phase to minimize bipartite matching of the dataset. Note that
if the DTD information is not available then it can be automatically generated from
the XML documents using XTRACT[4]. We shall elaborate on this phase further later.
Next, D1 and D2 are parsed into DOM Trees tree1 and tree2 in the parsing and hash-
ing phase. The steps are similar to X-Diff[11] except for one key difference. Unlike
X-Diff, when we parse the XML file, we encode the elements in the XML document
with appropriate type of matching techniques based on the type information generated
from the preceding phase. Note that if D1 and D2 contain primary objects (protein or
nucleotide sequence) then they are excluded from parsing into nodes in the DOM trees.
The goal of the matching phase is to compute the minimum cost matching between the
DOM trees tree1 and tree2. We elaborate on this step later. In the edit script generation
phase, we generate a minimum-cost edit script for changes to annotation data based on
the minimum cost matching found in the matching phase. This step is similar to the one
in X-Diff.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 Y. Song, S.S. Bhowmick, and C.F. Dewey

Input: XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1) if hashcode(tree1)==hashcode(tree2) return E;
(2) store the signatures of first-level elements of

 tree1 in HashMap1;
(3) store the signatures of first-level elements of

 tree2 in HashMap2;
(4) for each element in HashMap1 {
(5) if (existing mapping element in HashMap2) {
(6) if (it is an element node) {
(7) if type1(node1)

 E=OneToOne(node1, node2, E);
(8) else if type2(node1)

 E=IdenElemComp(node1, node2, E);
(9) else if type3(node1)

 E=IdenSignature(node1, node2, E);
(10) else E=bipartite(node1, node2, E);
(11) }
(12) else {
(13) compare their values;
(14) if different
(15) add Update(element1, element2) to E;
(16) }
(17) }
(18) else
(19) add Delete(element, tree1) to E;
(20) }
(21) for each element in HashMap2 {
(22) if (no mapping element in HashMap1)
(23) add Insert(element, tree2) to E;
(24) }
(25) return E;

(a) Function OneToOne.

Input: XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1) if hashcode(tree1)==hashcode(tree2) return E;
(2) store the values of sub-elements of tree1

 in Vector1;
(3) store the values of sub-elements of tree2
 in Vector2;
(4) for each element value in Vector1 {
(5) if (contained in Vector2)
(6) mark unchanged;
(7) }
(8) for each element value in Vector2 {
(9) if (changed) {
(10) choose the next changed element in Vector1;
(11) if (exist)
(12) add Update(element1, element2) to E;
(13) else
(14) add Insert(element2, tree2) E;
(15) }
(16) }
(17) for each element leaf in Vector1
(18) add Delete(element1, tree1) to E;
(19) return E;

(b) Function IdenElemComp.

Fig. 4. BIODIFF algorithm (contd.)

2.1 Type Classification Phase

The min-cost max-flow algorithm for computing the bipartite mapping between two
XML trees is the most time consuming part in X-Diff. Hence, a key goal of BIODIFF

is to minimize bipartite mapping computation by exploiting the semantic relationship
between various nodes in the XML tree. For example, the data element in Figure 2
contains only attribute values, whereas the organism species element contains a list of
subtree elements. Such differences in the structure of the subtrees are exploited in our
approach to achieve this goal.

In this phase, we classify the XML elements into four different types based on their
structures (we shall elaborate on these types later) by analyzing the DTD (or XML
schema). As we shall see in the matching phase, instead of applying expensive bipar-
tite matching for all cases, we apply four different matching techniques to the XML
elements based on the types they belong to. Three of these matching techniques run in
linear time in contrast to polynomial time complexity of bipartite matching.

The algorithm to classify the elements in the DTD to different types is shown in
Figure 3(b). It takes as input the DTD of the XML representation of biological data
and returns as output the TypeContainer C which contains information about different
XML elements and corresponding types. The ChooseType function is invoked for each
element in the DTD recursively and at each level, the names and attributes of all the
subelements are examined to choose the type of the current element. Let us illustrate
this with a simple example. Consider the subtree structure rooted at organism species
in Figure 2. ChooseType is first invoked for its subelement organism in the DTD, which
is determined to be of Type 1 since it has no subelements. ChooseType is then invoked
for taxonomy and it is classified as Type 2 since it contains a list of subelements having
identical names (class). Finally, as the organism species contains two distinct subele-
ments, Type 1 is chosen for this element.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 281

Input: XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1) set attrname=the names of key attributes;
(2) for each first-level elements in tree1 and tree2
 include values of attrname into signature;
(3) ta1=subtree containing nodes with distinct
 signatures in tree1;
(4) ta2=subtree containing nodes with distinct
 signatures in tree2;
(5) E=OneToOne(tb1, tb2, E);
(6) tb1=subtree containing nodes without attributes
 in tree1;
(7) tb2=subtree containing nodes with attributes
 in tree2;
(8) E=IdenElemComp(tb1, tb2, E);
(9) for each signature common to multiple elements {
(10) tc1=subtree containing nodes with this
 signatures in tree1;
(11) tc2=subtree containing nodes with this
 signatures in tree2;
(12) E=IdenElemComp(tc1, tc2, E);
(13) }
(14) return E;

(a) Function IdenSignature.

<?xml version=”1.0” encoding=”UTF-8”?>
........

<coordinate section>
<atom serial no=”1” name=”N” residue name=”VAL”
chain id=”A” seq num=”1” x-coord=”-38.199”
y-coord=”-40.257” z-coord=”97.510” occupancy=”1.00”
temp factor=”22.53” />
<atom serial no=”2” name=”CA” residue name=”VAL”
chain id=”A” seq num=”1” x-coord=”-38.816”
y-coord=”-41.316” z-coord=”96.669” occupancy=”1.00”
temp factor=”18.15” />

</coordinate section>
...............

(b) Element coordinate section of PDB.

Fig. 5. BIODIFF algorithm (contd.)

2.2 Matching Phase

We now discuss the matching process in BIODIFF. Unless specified otherwise, in our
following discussion we use the notion of signature as introduced by [11]. Observe
that the first level element nodes (elements for brevity) in the tree representation of
XML version of biological data have distinct structures (Figure 2). Each node has a
unique name and hierarchy. Each node in the first level appears only once and mapping
occurs only between nodes with the same signature. So the whole XML tree can be
divided into a set of smaller subtrees rooted at each first-level node. Each smaller tree
will be compared with another smaller tree from the second XML tree having the node
with same name. For example, the subtree rooted at node labeled organism species
in Figure 2(i) will be compared with the subtree in Figure 2(ii) whose root is in the
first level and has the same label. Note that this computation is independent from the
remaining subtrees.

The above step alone does not provide performance improvement compared to X-
Diff. X-Diff also achieves this with its signature definition. However, this step makes
it possible to use different types of matching for different subtrees. Hence, we cate-
gorize the matching techniques into four basic types for both minimum-cost distance
computation and minimum cost edit script generation. We discuss these techniques in
detail now. Note that each subtree is treated independently for further matching. So any
distance computation will be localized within each subtree.

Type 1: One-to-One Comparison. An element in the XML representation of biologi-
cal data can be composed of a number of attributes, subelements or textual data. Some
elements may exhibit unique signature within its subtree scope. For example, consider
the organism element in Figure 2. Only one organism element can exist in the subtree
rooted at organism species element. So there will be at most one candidate-matching
element in the newer version of the subtree. Hence, one-to-one comparison can be con-
ducted between these two elements. Lines 1-2 in Figure 3(b) identifies these types while
parsing the DTD.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 Y. Song, S.S. Bhowmick, and C.F. Dewey

Case 1: The element contains only text value: The corresponding element pair from
the older and newer versions can be matched directly using one-to-one comparison. For
example, the version number element shown in Figure 2 contains only a string value
representing the accession number and version number. So the two version number
elements in Figure 2 can be compared directly.

Case 2: The element contains distinct attributes: Each attribute should have a distinct
name (signature). Each attribute can be matched with only a single attribute of the other
XML file. The entire attribute list pair is then matched on a one-to-one basis. Take
the data element in Figure 2(i) as an example. It contains the attributes id, data class,
molecule, division, and length. After obtaining the first attribute id in Figure 2(b)(i), the
algorithm searches for attribute id in Figure 2(ii) in the element node data and compares
their content. This is repeated for each attribute of data.

Case 3: The element contains a list of subelements with distinct names: One-to-one
comparison is also sufficient to match the two lists. For example, consider the dates el-
ement in Figures 2(i) and 2(ii). Each dates element consists of two subelements: created
and updated. These two subelements will appear at most once in this subtree rooted at
dates. So given an element created in the older version of the subtree, there will be
at the most one candidate-matching element in the newer version of the subtree. After
matching the two created nodes, for example, further matching between the two sub-
trees of created is then computed recursively. The type of matching technique to be
applied on the subelements depends on the specific structure again.

The pseudocode for one-to-one comparison is shown in Figure 4(a). It can be seen
that with the utilization of a HashMap structure for storing elements, linear time com-
plexity O(|T1| + |T2|) is achieved, where |T1| and |T2| are the numbers of nodes in
the subtrees T1 and T2 respectively. Note that although X-Diff only performs min-cost
max-flow computation between the elements with the same signature, for a subtree with
all unique signature subelements, the complexity will not reduce to O(|T1| + |T2|). It
still needs to enumerate all the pairs first to select the nodes with the same signature as
it cannot know ahead of time that only one matching candidate actually exists.

Type 2: Identical Subelement Comparison. The first case discussed above is suit-
able for an element with a list of distinct subelements or attributes where each element
or attribute must have a unique name within the scope of its subtree. Conversely, an
element may contain a list of subelements having identical names. In this case, by fol-
lowing the X-Diff convention, if all the subelements have the same signature, then they
will be compared using min-cost max-flow algorithm. However, as bipartite matching
is an expensive procedure, we resolve this program by transforming a bipartite match-
ing problem into linear-time matching whenever possible. Lines 10-14 in Figure 3(b)
identifies the cases below while parsing the DTD.

Case 1: Elements without attributes: For example, the taxonomy element has a list of
subelements with the same name class. Each of the class element does not contain any
attribute. A class can be deleted, inserted, or updated. In our approach, we first find
all the unchanged class pairs and then we assign all the unmatched class elements in
the second subtree to unmatched elements in the first subtree sequentially and record

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 283

that they are changed. If a class element of the second subtree is left unpaired, then it
is considered as newly inserted. Similarly, if a class element of the first subtree is left
unpaired, then it is considered as deleted.

Case 2: Elements having identical attributes: Each element with identical name may
have identical nonempty set of attribute name-value pairs. Consequently, this becomes
identical to Case 1 where the elements are just identical by examining the titles of the
nodes. Hence the same comparison technique will be applied to them.

Case 3: Elements of cases 1 and 2 containing subtree structures: The sequential match-
ing becomes no longer valid since the matching pairs have to be computed by analyzing
the entire hierarchy of the subtrees. A min-cost max-flow bipartite matching has to be
carried out. However, such structure does not exist in our XML data formats generated
by Bio2X [10]. Any element, which is not unique within the current scope and contains
a subtree structure, will have at least one distinct attribute associated with it. Hence,
such situation can be ignored.

The algorithm is shown in Figure 4(b). The complexity of this procedure is also
linear in O(|T1| + |T2|).

Type 3: Extended Signature Comparison. We now consider the case when identical
subelements have different attributes (name or value). They can be text-value, attribute-
value elements, or contain subelements. These two cases are defined by the Lines 16-17
in Figure 3(b).

Case 1: Each identical-name element has a distinct attribute: We can differentiate
these elements by utilizing the attributes as identifiers. By incorporating the attribute
name and value into the original signature, we generate unique signatures for each el-
ement within the current subtree. Hence, the matching problem will be reduced to a
one-to-one comparison again as described earlier. For instance, the qualifier elements
(Figure 2(i)) has a signature entry/features/sequence feature/qualifier/element as de-
fined by X-Diff. Observe that three of them have an attribute labeled type. Hence
they can have the following distinguishable signatures: entry/features/sequence feature/
qualifier/ element/mol type, entry/features/sequence feature/ qualifier/element/isolate,
and entry/features/sequence feature/ qualifier/element/organism. Consequently, the
problem of matching an element in two versions of XML documents transforms into
locating an element with the same refined signature. This is basically the one-to-one
comparison algorithm described earlier. One qualifier element in Figure 2(i) has no type
attribute. It will be matched with the other qualifier element without type (Figure 2(ii)).
Multiple qualifier elements without attributes can exist in one subtree. Then they will be
extracted and matched using the Type 2 technique. Also, if multiple qualifier elements
have identical attributes, then they are also matched using Type 2 technique.

Case 2: Each identical-name element has multiple different attributes: The technique
stated above is easily extensible to an element having multiple attributes. In this case,
either any one of the attribute acts as the identifier or some of the attributes can be com-
bined to act as the identifier. The attribute names are predefined for each XML element ap-
plying this matching algorithm. For example, consider the element <database reference

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 Y. Song, S.S. Bhowmick, and C.F. Dewey

db=”EMBL” primary id=”L09112” secondary id=”AAA96323.1” />, which has three
difference attributes. The value of attribute primary id or secondary id is always unique
within a database. Hence, attribute primary id with db can be used as the identifier for this
element. We do not choose secondary id because it is an optional attribute. The choice of
the key attribute or a combination of attributes depends on the biological context of the
data, which is predefined in the biological databases.

The complete matching algorithm is outlined in Figure 5(a). After extending the
signature, the elements will be matched using either Type 1 or 2 technique. Note that
the complexity of the for loop (line (9) to (13)) is linear to number of nodes matched by
Type 2 technique, which are subsets of T1 and T2. Hence, this matching technique also
runs in linear time complexity: O(|T1| + |T2|).

Type 4: Bipartite matching. The min-cost max-flow algorithm as used in X-Diff is
used for elements that cannot be matched using the above three methods or a com-
bination of them. This may occur when the attribute(s) is only an index for num-
bering the elements and the element pair with the same index may not match at all.
For example, the coordinate section of PDB database contains a list of atom elements
(Figure 5(b)). The atom list records the names, locations and the atomic coordinates
for standard residues. Each atom is identified by a serial number, and the sequence of
atom elements is determined by the order of the corresponding residue. Suppose in the
newer version, an extra atom element is added for a newly inserted residue. The atom
may be inserted in the middle of the atom list. When we compare the old and new
version of atom list, the atom newly inserted will be matched to some atom in the old
version, which is not correct. Hence, the alignment between the atom list of the old
and new versions cannot be carried out reliably by matching the atom elements with
the same serial number (signature). Consequently, the only option left is to use min-
cost max-flow bipartite matching. Note that this procedure requires O(|T1| × |T2|×
max{deg(T1),deg(T2)}×log2(max{deg(T1), deg(T2)})) complexity[11].

2.3 Complexity Analysis

Let |T1| and |T2| be the numbers of nodes in the two XML trees T1 and T2 respectively.
Let n1 and n2 be the numbers of nodes requiring a min-cost max-flow matching al-
gorithm. In the equality checking phase, the equality of two documents is determined
by checking their identifier values. The time complexity to locate identifiers from two
documents is O(L1 + L2), where L1 and L2 are the numbers of nodes ahead of the
identifiers. In the parsing and hashing phase, the time complexity to parse two docu-
ments and construct trees is O(|T1|+ |T2|). Hashing is performed during parsing. Since
we need to sort child node XHash values before computing parent node XHash val-
ues, the upper bound of the complexity is O(|T1| × log |T1| + |T2| × log |T2|)[11].
In the matching phase different matching algorithm is applied to each subtree rooted
at first-level node according to its node type. For Type 4 matching the time com-
plexity is O(n1 × n2× max{deg(n1),deg(n2)}×log2(max{deg(n1), deg(n2)})). The
time complexity for Type 1 to 3 matching techniques is O(|T1| + |T2|). So the over-
all time complexity of the matching phase is O(|T1| − n1 + |T2| − n2 + n1 × n2×
max{deg(n1),deg(n2)}×log2(max{deg(n1), deg(n2)})). It shows that the performance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 285

0

200

400

600

800

1000

1200

1400

5 10 50 100 300 500 1000

Size (KB)

Ti
m

e
(m

s)
X-Diff
BioDiff

(a) EMBL.

0

200

400

600

800

1000

1200

1400

5 10 50 100 300 500 1000

Size (KB)

Ti
m

e
(m

s)

X-Diff (Swissprot)

BioDiff (Swissprot)

X-Diff (PDB)

BioDiff (PDB)

(b) SwissProt and PDB.

Fig. 6. Performance study using genomic and proteomic data

primarily depends on the number of nodes in the files and the percentage of nodes that
require Type 4 matching. When the changes between the two versions are not reflected
in |T2| or n2, the percentage of changes does not affect the performance as well, which
is consistent with the experiments conducted in X-Diff[11]. Finally, for the minimum
cost edit script generation phase, the minimum cost edit script is generated by traversing
all nodes in the two trees. Hence, the complexity is O(|T1| + |T2|).

Let us compare the time complexity of the matching process for nonsequence data in
BIODIFF with X-Diff. As X-Diff requires aboutO(|T1|×|T2|×max{deg(T1),deg(T2)}×
log2(max{deg(T1), deg(T2)})) to match, the improvement of nonsequence element
matching inBIODIFF over X-Diff can be estimated asO(|T1| × |T2|× max{deg(T1),
deg(T2)}×log2(max{deg(T1),deg(T2)})/(|T1|+|T2|−n1−n2+n1×n2×max{deg(n1),
deg(n2)}×log2(max{deg(n1), deg(n2)}))). Assuming n1 = n2 = n, |T1| = |T2| = t,
and max{deg(T1),deg(T2)}×log2(max{deg(T1), deg(T2)}=x, the complexity compar-
isonbecomes O(xt2/(t − n + xn2)). For certain value of t, this percentage of speed up
depends on the value of n. If n = 0 or n = 1, then the speed up is around O(xt), which is
the best-case performance. Ifn = t, then the speed up is equal to 1, which is the worst-case
performance. If n > 1 and n < t, then the speed up is between 1 and O(xt). In conclusion,
the change detection performance of BIODIFF algorithm on annotations is always faster
than X-Diff. However, the speed up depends on the percentage of elements utilizing the
linear time matching methods.

3 Performance Study

BIODIFF is implemented in Java using J2SDK 1.4.0. Particularly, we investigate the im-
pact of file size on response time of BIODIFF and X-Diff. We ran the experiments on a
Pentium III 900MHz PC with 256 MB memory under MS Windows 2000 Professional.
X-Diff is downloaded from http://www.cs.wisc.edu/�yuanwan/xdiff.html.

The testing is done for GenBank, EMBL, Swiss-Prot, and PDB data separately. The
size of the documents excluding the primary object (sequence data) ranges from 5 KB to
1 MB. As sequences occupy major chunk of space in the documents, we believe that 1
MB is large enough to represent annotations associated with primary biological objects.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 Y. Song, S.S. Bhowmick, and C.F. Dewey

Note that the execution time of X-Diff and BIODIFF algorithms only consists of the
change detection time between the two XML trees. The preprocessing time, including
the type generation and parsing of XML documents is not included in the performance
evaluation. Note that preprocessing time depends only on the document and schema size
and is not influenced by the algorithm efficiency. According to the complexity analy-
sis, the proportion of nodes requiring Type 4 matching also affects the performance of
matching phase. Hence, we choose data files with different proportion of tree structures
that need Type 4 matching technique for each file size. The performance recorded is
averaged from the testing results for each file size. For example, when testing BIODIFF

on EMBL, Genbank, and SwissProt data, we took 10 files for each sample file size, with
references elements occupying 1-10% of the entire file size. For PDB, we assumed 30-
80% elements involved in Type 4 matching. Note that percentage of elements involved
in Type 4 matching is chosen based on real life examples.

Figure 6 shows the results. We do not show the results on Genbank separately as its
performance is similar to EMBL. It can be seen that BIODIFF outperforms X-Diff for
all the four databases. As seen from the figures, X-Diff exhibits similar performance for
different databases as it is a generic algorithm for all types of XML documents. Hence,
its performance mainly depends on the number of nodes. BIODIFF, on the other hand,
has different performance for each database since each database has different tree struc-
tures. If a database has more nodes that require min-cost max-flow matching algorithm,
the improvement of BioDiff compared to X-Diff is less. For example, for Genbank,
EMBL, and SwissProt, only the references element requires bipartite matching. Con-
sequently, BIODIFF outperforms X-Diff 2 to 3 times for documents of size less than
100 KB. This increases to 6 times as the size of the documents increase to 1 MB. For
PDB, reference, coordinate section, and secondary structure elements require bipartite
matching. As number of nodes that requires min-cost max-flow matching algorithm
for change detection is larger in PDB compared to Genbank, EMBL, and SwissProt,
the execution time of BIODIFF on PDB is larger than the time taken for Genbank,
EMBL, and SwissProt. Even then BIODIFF is almost 1.5 times faster than X-Diff for
PDB dataset.

4 Conclusions

In this paper, we present an algorithm called BIODIFF for detecting exact changes to
biological annotations. In our approach we transform heterogeneous biological data to
XML format using Bio2X and then detect changes between two versions of XML rep-
resentation of biological annotations. Our algorithm extends X-Diff [11], a published
change detection algorithm for unordered XML. The min-cost max-flow algorithm for
computing the bipartite mapping between two XML trees is the most time consuming
part in X-Diff. BIODIFF addresses this limitation by exploiting the semantic relation-
ship between various nodes in a subtree, attribute usage, presence or absence of optional
elements, etc. Our experimental results show that BIODIFF runs 1.5 to 6 times faster
than X-Diff.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

BioDIFF: An Effective Fast Change Detection Algorithm 287

References

1. Bahl,A. (2002) PlasmoDB: the Plasmodium genome resource. An integrated database that
provides tools for accessing, analysing and mapping expression and sequence data (both
finished and unfinished), Nucleic Acids Res., 30, 87-90.

2. Cobena,G., Abiteboul,S., Marian,A. (2002) Detecting Changes in XML Documents, In Proc.
of ICDE, 41-52.

3. Davidson,S.,B., Crabtree,J., Brunk,B., et al. (2001) K2/Kleisli and GUS: Experiments in
integrated Access to Genomic Data Sources, IBM Systems Journal, 40(2), 512-531.

4. Garofalakis,M.,N., Gionis,A., Rastogi,R., Seshadri,S., Shim,K.(2000) XTRACT: A System
for Extracting Document Type Descriptors from XML Documents, In Proc. of SIGMOD,
165-176.

5. Hammer,J., Schneider,M. (2003) Genomics Algebra: A New, Integrating Data Model, Lan-
guage, and Tool for Processing and Querying Genomic Information, In Proc. of Conference
on Innovative Data Systems Research (CIDR).

6. Leser,U., Naumann,F. (2005) (Almost) Hands-Off Information Integration for the Life Sci-
ences, In Proc. of CIDR, 2005.

7. Ritter,O., Kocab,P., Senger,M., Wolf,D., Suhai,S. (1994) Prototype implementation of the
integrated genomic database, Comput. Biomed. Res. 27, 97115.

8. Stein,L.,D., (2003) Integrating Biological Databases, Nature Rev Genet, 4(5), 337-345.
9. Song,Y., Bhowmick,S.,S., (2004) BioDiff: An Effective Fast Change Detection Algorithm

for Genomic and Proteomic Data. In Proc. of ACM CIKM(Poster), 146-147.
10. Song,Y., Bhowmick,S.,S., (2005) Bio2X: A Rule-based Approach for Semi-automatic Trans-

formation of Semistructured Biological Data to XML, Data and Knowledge Engineering
Journal, 52(2), 249-271.

11. Wang,Y., DeWitt,D., Cai,J-Y, (2003) X-Diff: A Fast Change Detection Algorithm for XML
Documents, In Proc. of IEEE ICDE , 519-530.

12. Zdobnov,E.,M., Lopez,R., Apweiler,R., Etzold,T., (2002) The EBI SRS server-recent Devel-
opments, Bioinformatics, 18(2), 368-373.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 288 – 299, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Implementation for MOLAP Basic Data
Structure and Its Evaluation

K.M. Azharul Hasan, Tatsuo Tsuji, and Ken Higuchi

Graduate School of Engineering, University of Fukui, Fukui-shi, 910-8507, Japan
{hasan, tsuji, higuchi}@pear.fuis.fukui-u.ac.jp

Abstract. In this paper we describe an efficient implementation scheme for
MOLAP internal basic data structure based on extendible multidimensional ar-
rays. In general, MOLAP implementation scheme employs multidimensional
array as their basic data structure. But most of the cases the implemented arrays
are very sparse when employed to store front end relational tables in OLTP sys-
tems. Moreover conventional multidimensional arrays cannot be extended when
new column values needs to be added. In this paper, to solve these problems,
the concept of extendible array is used. The effectiveness of extendible array for
MOLAP implementation is shown by means of both theoretical analysis and
experimental results.

Keywords: Data warehousing, MOLAP, Multidimensional Array, Extendible
Array, OLAP Operation.

1 Introduction

Online analytical processing (OLAP) is becoming increasingly important for analyz-
ing multidimensional data. This data is generally derived from transactional data
using various levels of aggregation. This aggregation levels are maintained in data
warehousing system. Basically there are two kinds of OLAP systems employed in
data warehouses. One is for relational OLAP called ROLAP and the other is for mul-
tidimensional OLAP called MOLAP. The data cube operation proposed in [1] com-
putes the group-by aggregations over all possible subsets of the specified dimensions.
Much work has been done for computing ROLAP data cube [2]-[4] but few works on
MOLAP data cube[5][6].

The MOLAP systems use a multidimensional data structure such as an array con-
structed from the original data, which are typically stored in relational databases.
Conventional multidimensional arrays do not support dynamic extension of an array
and hence addition of a new column value is impossible if the size of the dimension
overflows. Therefore we need a method of extending multidimensional arrays in all
dimensions. Another problem with the multidimensional array structure is its sparsity,
which wastes memory because a large number of array cells are empty and thus are
rarely used during the computation. In particular, the sparsity problem becomes seri-
ous when the number of dimensions increases. This is because the number of all pos-
sible combinations of dimension values exponentially increases, whereas the number
of actual data values stored in a relational table would not increase at such a rate.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 289

In this paper, we present a method to overcome the problems introducing a new data
structure. The concept of extendible array [7] is employed in order to extend the mul-
tidimensional array dynamically. An extendible array is extendible in any direction
without any relocation of the data already stored.

In our previous work [8], the History-Offset implementation of Relational Tables
(HORT) based on the extendible array and its superiority over conventional imple-
mentation of relational tables is presented. Here in this paper we have reorganized our
HORT data structure to be implemented for MOLAP implementation and show the
effectiveness of our scheme by means of both theoretical analysis and experimental
results.

Fig. 1. Realization of 2 dimensional extendible array

2 Employing Extendible Arrays

An n dimensional extendible array A has a history counter h and three kinds of auxil-
iary table for each extendible dimension i ()ni ,,1…= . See Fig. 1. These tables are
history table iH , address table iL , and coefficient table iC . The history tables memo-

rize extension history h. If the size of A is []11 ,,, sss nn …− and the extended dimension is

i, for an extension of A along dimension i, contiguous memory area that forms an n-1
dimensional subarray S of size []12111 ,,,,,,, ssssss iinn …… −+− is dynamically allocated.

Then the current history counter value is incremented by one, and it is memorized on
the history table iH , also the first address of S is held on the address table iL . An

element 1,,, iii nn … in an n dimensional conventional fixed size array of size

[]11 ,,, sss nn …− is allocated on memory using an addressing function like this:

1211221121121),,...,,(iisisssisssiiiif nnnnnn ++++= −−−−

Here, we call 1221121 ,,, sssssss nn ……… −− as a coefficient vector. Using these three

kinds of auxiliary tables, the address of an array element can be computed as follows.
Consider the element <4,3> in Fig.1. Compare [] 741 =H and [] 632 =H . Since

[] []34 21 HH > , it can be proved that the element <4,3> is involved in the extended

0 1 3 5 7 10 12

0 1 4 80 60 34 95

0 1

2 3

4

5

6 7 8

80

81

82

56 57 58 59

60

61

62

63

45 46 47 48 49

50 51 52 53 54

34

35

36

37

38

39

87 88 89 90 91 92

95

96

97

98

99

100

101

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 0

22
4 6

6
8
9
11

56

45

50

87

1st dim.

2nd dim.

Address table
History table

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 K.M.A. Hasan, T. Tsuji, and K. Higuchi

subarray S occupying the address from 60 to 63. The first address of S is known to be
60, which is stored in []41L . Since the offset of <4,3> from the first address of S is 3,

the address of the element is determined as 63.

3 Implementing MOLAP by Extendible Array

3.1 The Data Structure

The data structure that is employed here is a two level tree structure. The first level of
the structure is a one way list containing (key, pointer) pairs where key is the first key
and pointer is the starting address of a node of the second level. The first level of the
structure serves as a gateway to the second level. Hereafter the first level will be
called as head and the second level will be called leaf nodes as shown in Fig. 2. The
leaf nodes contain at most k keys.

Fig. 2. The CDL data structure

When a key value Ki)1(ki ≤≤ is to be inserted, the largest value smaller than or
equal to Ki is determined in head and the pointer associated with the key value is
followed to determine the corresponding leaf node of the second level. The key value
Ki is inserted to the node. If the node overflows i.e. more than k keys needs to be
entered in the node, the node is split into two in the middle such that one node con-
tains ⎣ ⎦2/k keys and another node contains ⎡ ⎤2/k keys and the ascending order of the

keys is maintained. The (key, pointer) pair of the new two node is stored into the
head. The key Ki is then inserted to the appropriate leaf node. The (key, pointer) pair
in the head are stored in such a way that head is ordered in terms of key values. Fig. 2
shows the data structure after inserting the keys 10,16,28,32, 40, 24, 30, 36 in the
order for k =3.

Whenever a key value Ki is searched, the largest value smaller than or equal to Ki is
determined in the head and the pointer associated with the key value is followed to
determine the corresponding leaf node which contains the desired key value Ki. To
search a range of key values, the traversal is performed by determining the leaf node
containing the lowest value in the range then sequential search is performed on the
leaf nodes until the node containing highest value in the range is determined or
the end of the node is reached. The next pointer in the head is followed to determine
the next leaf node and searched the leaf node until the largest value in range is found.
Binary search is adopted to search the head. The head is placed on main memory and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 291

Fig. 3. Illustrative example of Compressing Extendible array

the leaf nodes are stored on secondary storage. In the following each of the key value
Ki in leaf nodes will be associated with a data value Di as shown in Fig. 3(c).

3.2 Compressing Sparse Array

It is desirable to develop data compression techniques so that the data can be accessed
in their compressed form and operations can be performed using the compressed data.
In our technique, we specify an element using the pair of history value and offset
value of the extendible array. Since a history value is unique and has one to one corre-
spondence with the corresponding subarray, the subarray including the specified ele-
ment of an extendible array can be referred to uniquely by its corresponding history
value h. Moreover the offset value (i.e., logical location) of the element in the subar-
ray is also unique in the subarray. Therefore each element of an n dimensional ex-
tendible array can be referenced by specifying the pair (history value, offset value).

Consider a simple multidimensional model, in which we have the dimensions
product, store, time, and the “measure” as shown in Fig. 3. There are three dimen-
sions in Fig. 3 for product, store and time respectively. The sales values are stored in
the corresponding cell of the extendible array as fact data. For example the sales

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

292 K.M.A. Hasan, T. Tsuji, and K. Higuchi

value 200 in the extendible array (Fig. 3(b)) indicates the fact that this is the sales
value for product P4 of Store S4 in Time T3 corresponding to the coordinate <4,4,3>.

3.3 The Implementation Model

The model that we are going to present is based on the extendible array explained in
Section 2. An example of physical implementation of the scheme is shown in Fig. 3.

Definition 1 (CVT). CVTk for the k-th column of an n column relational table is
defined as a structure of B+ tree with each distinct column value v as a key value and
its associated data value is subscript i of the k-th dimension of the logical extendible
array. Hence the entry of the sequence set of the B+ tree is the pair ()iv, . The reference
of the subscript i includes history value and co-efficient vector of a subarray and the
column value itself. The history value and coefficient vector are the auxiliary tables
explained in Section 2.

Definition 2 (CDL). The set of the pairs (history value, offset value) for all of the
effective elements in the extendible array are housed as the keys in a two level tree
structure described in Section 3.1 called CDL (Compressed Data List). The corre-
sponding fact data is inserted as its associated data value in the leaf nodes as shown in
Fig. 3(c). We assume that the key occupies the fixed size storage and the history value
is arranged in front of the offset value. Hence the keys are arranged in the order of the
history values and keys that have the same history values are arranged consecutively
in the leaf nodes of CDL.

The history value and offset value of a record is determined and stored in CDL
having the fact data as the data value. A subarray is constructed for each distinct value
of a column. The extension of an extendible array is performed logically and physi-
cally only the position information of the effective array elements is stored in CDL.
Hence we will call the extendible array as logical extendible array.

4 OLAP Operations

The OLAP operations are the basis for answering questions like: “find the sales value
of product P4” or “find the sales value of store S1 in Time T1” in relation Fig. 3(a).
The former is slice operation and the later is dice operation. The slice is a selection
along one dimension, while dice operation defines a sub cube by performing a selec-
tion on two or more dimensions. In the dice operation column values of some dimen-
sions are specified. For example, in the predicate “find the sales value of store S1 in
Time T1” the dimension Store and Time is specified having column values S1 and T1.
Let the specified column values be

kddd vvv ,...,,
21

 and their dimensions corresponds to

kddd ,..,, 21 . Let
kddd hhh ,...,,

21
 be the history values that correspond to the column

values
kddd vvv ,...,,

21
 and the maximum history value be),...,,max(

21max kddd hhhh = . The

subarray corresponding to maxh is named as the principal subarray in the following.

Only the principal subarray corresponding to maxh is the candidate subarray for

searching among the specified dimensions. The remaining candidate subarrays belong

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 293

to the unknown (i.e., column value not specified) dimensions and the history values of
these subarrays are greater than maxh .

Dice Operation
The operation starts finding the largest key value smaller than equal to the key
< maxh ,0> in the head of CDL. After that, sequential search is performed to the rest of
leaf nodes until the end of sequence set is reached; the sales values of the keys match-
ing condition are added together to find the total sales value. Note that after search-
ing the principal subarray, the key matching continues against the subarrays that have
the history values greater than .maxh But the subarrays that belong to the known
(value-specified) dimensions do not include the candidate sales; they are read through
without key matching.

The slice operation is similar to that of the dice operation because in the slice op-
eration the number of known dimension is only one where as in dice operation the
number of known dimension is more than one. Hence the slice operation can be per-
formed as described above.

5 Cost Analysis

In this section, we model the processes of retrievals and extensions for MOLAP under
two different implementation strategies namely Conventional Multidimensional Ar-
rays (CMA) and Extendible Multidimensional Arrays (EMA). The first one reorgan-
izes the array whenever there is an extension to it. That is, the whole array will be
relinearized on disk to accommodate the new data due to the addition of new column
values. The second strategy extends the initial array with subarrays containing the
new data. In this Section, we show that the EMA strategy can reduce the cost of array
extensions significantly.

For the derivation of cost functions we compressed the multidimensional sparse ar-
ray. Both CMA and EMA are assumed to be implemented as CDL, where <history
value, offset value> (<h,o>) is the key for EMA and <o> is the key for CMA.

5.1 Parameters

Length of a node for EMA, kndlklX EMA ×+=)(

Length of a node for CMA, kndlolX CMA ×+=)(

where
kl= Length of key value of EMA
dl= Length of data value or fact data
 ol= Length of key value of CMA
kn = Number of keys that can fit in a leaf node
 All the lengths are in bytes. The cost functions are represented as the number of
node access required because all the basic CPU operations can be executed in con-
stant time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 K.M.A. Hasan, T. Tsuji, and K. Higuchi

Assumptions
To simplify the cost model we make a number of assumptions.
(i) The length of dimensions extends in round robin manner for both CMA and EMA.
(ii) The length of each dimension is equal and when extension occurs each of the
dimensions are extended by equal length. We denote the length of dimension at ith
extension as Li.
(iii) The records are uniformly distributed in the corresponding CMA or EMA. We
denote the density of records by ρ both for CMA and EMA.

0 1 3 5 7 9

0

2

4

6

8

10

History value

hv

dim.1

dim.2

 (a) CMA (b) EMA

Fig. 4. The slice operation for CMA and EMA

5.2 Retrieval Cost

In CMA all offset values of the array elements are consecutive and linearized in a
single data stream using the addressing function described in Section 2. Hence the
range of candidate offset values for a query can be determined uniquely. But for
EMA, the same data stream is distributed over different subarrays as shown in
Fig. 4(b).

Cost function for EMA
For EMA, the records of all the subarrays having history value greater than hv (prin-
cipal subarray) are checked. We assume that the principal subarray hv is found in the
middle of the corresponding dimension. Hence the records to be checked at extension

i in the leaf nodes of CDL will be ρ×−))2/((n
i

n
i LL (due to the assumption 5.1

(i)). Hence the number of nodes accessed for retrieval from EMA is therefore

REMA=⎡(1-(1/2)n)×Li
nρ / kn⎤ (1)

Cost function for CMA
In an n dimensional CMA, if the selection of the slice is along dimension n (i.e. sub-
script xn is known) then all the candidate offsets are consecutive and the volume of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 295

range of the slice is 1−n
iL . This is explained with an example in the following. The

addressing function of a 5 dimensional array is as follows

 12132143215432112345),,,,(xxsxssxsssxssssxxxxxf ++++=

Let us consider sj=L for j=1,…,n (Assumption 5.1 (ii)). If L=5 and x5 is known (say,
x5 =0, and xj =0,…,L-1 for j=1,…,4) then the candidate offset values in the slice are
consecutive in the range 0 to 624 (total 625 offsets) out of 3125 offsets which is L4
(i.e. 54). If 1x is known (say, 01 =x , and xj =0,…,L-1 for j=2,…,5) then the candidate

offset values in the slice are in the range 0 to 3120 (total 3121 offsets) out of 3125
offsets. Hence the volume of the candidate offset values is determined by)1(5 −− LL .
If the subscript x2 is known then the volume of the candidate range of offsets is

)1(5 −− LLL . In general, if the subscript xk (nk ≤≤1) is known then the volume of the

corresponding range of offsets to be searched in the slice is).1(1 −− − LLL kn Hence the
number of records to be searched in the corresponding CDL of CMA at extension i is
given by ρ×−− −)}1({ 1

i
k
i

n
i LLL and number of nodes to be searched is given by

⎡{Li
n- Li

k-1 (Li-1)}×ρ / kn⎤ in the corresponding CDL of CMA.
The retrieval cost for CMA

⎡Li
n- Li

k-1 (Li-1)×ρ / kn⎤ (2)

From equation (2) it can be realized that the retrieval cost for CMA is greatly depend-
ent on the known dimension k.

5.3 Extension Cost

To extend the CMA the entire array has to be reorganized and all the offset values
will be changed. For example, Fig. 5(a) shows the offset values of a 2 dimensional
CMA. When the CMA is extended in dimension 1 (shown in Fig. 5(b)) the offset
values are changed. Since the offset values are subject to change while reorganizing
the CMA hence all the leaf nodes have to be faced to recalculate the offsets for CMA
in the corresponding CDL.

If at the ith extension, Zi is the number of leaf nodes needed for the extension then,
the cost of extension Ext

 i

EMA
xt ZE = and ii

CMA
xt ZSE += 2

 (a) (c)

Fig. 5. Extension realization of a 2 dimensional CMA

0 1 2

3 4 5
6 7 8

0 1 2 3

54 6

8

7

9 10 11
dim.2

dim.1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 K.M.A. Hasan, T. Tsuji, and K. Higuchi

where
Si= Number of leaf nodes before ith extension of the corresponding CDL; Si is deter-
mined by S=⎡(Ln

i×ρ) / kn⎤ (because of assumption 5.1 (ii)).
Zi= The number nodes for ith extension; Zi=⎡(L

n-1
i×ρ) / kn⎤ (because of assumption

5.1 (i)(ii))

(a) Retrieval cost comparison for CMA

and EMA(k=3)

(b) Retrieval cost comparison for CMA and
EMA (k=1…6)

Fig. 6. Retrieval cost comparison for CMA and EMA

For extending CMA, it requires to reorganize the array and rewrite both existing and
new data elements. The Si leaf nodes need to be faced to recalculate the new offsets
due to the extension. The factor of 2 accounts facing both the read and write opera-
tions of the existing nodes.

The size of the extended subarray for EMA can be calculated by knowing the size
of each dimension except the dimension to be extended. The difference of extension
cost between the two strategies is referred to as Extension Gain (EG)

i
EMA
xt

CMA
xt SEEEG 2=−= (3)

From equation (3) we can see that there is tremendous extension gain using EMA.

6 Experimental Results

We have constructed a prototype system having the parameter values shown in
Table1 placing the leaf nodes of CDL in secondary storage and head on main mem-
ory. The test results for slice operation are analyzed in this Section. All the tests are
run on a machine (SUN Enterprise 4500) of 1.05 GHz and 48 GB of memory having
disk page size P=8KB.

Table 1. Parameter values for the prototype system

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 297

6.1 Retrieval Cost Comparison Between CMA and EMA

Fig. 6(a) shows the retrieval cost for known dimension k=3. The known dimension k
has no effect for EMA but it has large effect in CMA. The retrieval cost for different
values of k (k=1,…,5 and 6) is shown in Fig. 6(b). The retrieval cost for CMA is supe-
rior to EMA only for k=6 and for all the other values of k (k=1,…,5) EMA is superior
to CMA for retrieval cost. This is because all the candidate offset values are consecu-

tive for k=6 and the search volume is determined by 5L and for other values of k
(k=1,…,5) the candidate records are not consecutive and hence the search volume
increases. It can be concluded that the retrieval performance for CMA is dependent on
the known dimension k and it has better performance only if k=6 on the other hand
EMA performance is independent of known dimension.

6.2 Extension Cost Comparison Between CMA and EMA

Fig. 7(a) shows the relative cost of extension for CMA and EMA for the system. The
extension gain is shown in Fig. 7(b); the extension gain increases for increasing
length of dimension. We put initial length of each dimension as 20 and then increased
it accordingly up to 50. As can be seen from Fig. 7(a) that the extension cost for CMA
is larger and it is noted from our experiment that the extension cost for CMA is on
average 2.8 times more than that of EMA. The MOLAP extension can be achieved
efficiently in this scheme. Fig. 7(b) shows the over all gain for each extension. The
extension gain increases with the length of dimension. This is because the extension
gain is 2Si and if Si increase the extension gain increases.

(a) Extension cost comparison for EMA
and CMA

(b) Extension gain of EMA over CMA

Fig. 7. Experimental result of extension cost comparison for EMA and CMA

7 Related Works

So far the authors know there is only one work [9] except our own work [8] on ex-
tendible multidimensional arrays for database applications. The extendible array is
employed in [9] to extend the array and it only treats an organization scheme of the
history tables. It does not concern with the actual data elements stored in the body of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 K.M.A. Hasan, T. Tsuji, and K. Higuchi

the extendible array. All the elements occupy the physical storage, and the sparseness
of the array elements is not considered. In MOLAP systems, the processing in the
array based algorithm is done on a chunk by chunk basis [5][10]. A chunk is a unit of
processing used in this algorithm and compressed on disk when more than a certain
number of cells are empty. Again, to compute the data cube in chunk based algorithm
it needs many chunks to be visited for multidimensional array [11] and computes
multiple views simultaneously which consumes lot of main memory. We overcome
this memory inefficiency in the array based algorithm by introducing a new method of
encoding records of the array.

[12] attempts to solve the sparsity problem using the ROLAP approach, which em-
ploys a sort-based method developed in [13], where multiple aggregations are over-
lapped in a pipeline fashion after sorting tuples. The sparsity problem is handled in
[14] by compressing the array using hashing method.

All the MOLAP [5][10][11][14] uses conventional multidimensional arrays as their
basic data structure and the extension of the array is not handled. More over the spar-
sity of the array elements are not handled there. In our scheme the sparsity is handled
effectively. Moreover it is shown that the array extension can be performed with very
small cost comparing to the conventional multidimensional arrays.

8 Conclusion

We propose and evaluate an efficient MOLAP implementation to manage array ex-
tension by keeping track of the extension subarrays as opposed to the conventional
multidimensional arrays. Our performance result shows that we can extend the
MOLAP system employing extendible array and huge savings can be achieved for
extension. The large reorganization cost that is incurred in conventional multidimen-
sional array can be reduced and extendible MOLAP system can be constructed. We
believe our scheme can also be applied to the multidimensional database implementa-
tions effectively specially for data warehousing applications for multidimensional
analysis.

References

1. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: A relational aggregation
operation generalizing group-by, cross-tabs and sub-totals”, Technical Report MSR-TR-
95-22, Microsoft Research, Advance Technology Division, , Redmond, 1995.

2. V. Harinarayan, A. Rajaraman and J. D. Ullman, “Implementing data cube efficiently”,
Proc. of ACM-SIGMOD Conf. Management of data, pp.205-216, 1996.

3. H. Gupta, V. Harinarayan, A. rajraman and J.D. Ullman, “Index selection for OLAP”,
Proc. of ICDE, pp. 208-219, 1997.

4. Y. Kotidis and N. Roussoppoulos, “An alterntive storage organization for ROLAP aggre-
gation views based on cubetrees”, Proc. ACM-SIGMOD conf. Management of data, pp.
89-99, 1998.

5. Y. Zhao, P. M. Deshpande and J. F. Naughton, “An array-based algorithm for simultane-
ous multidimensional aggregates”, In Proceedings of the ACM SIGMOD Conference on
Management of Data, pp.159-170, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Efficient Implementation for MOLAP Basic Data Structure and Its Evaluation 299

6. J. Li and J. Srivastava, “Efficient aggregation algorithms for compressed data ware-
houses”, IEEE Transaction on Knowledge and Data Engineering, 14(3), pp. 515-529,
2002.

7. Otoo E. J and T. H. Merrett, “A storage scheme for extendible arrays”, Computing, Vol.
31, pp.1-9, 1983.

8. K. M. Azharul Hasan, M. Kuroda, N. Azuma, T. Tsuji, K. Higuchi, “An extendible array
based implementation of relational tables for multidimensional databases”, Proc. of Data
warehousing and Knowledge Discovery (DaWak’05), pp.233-242, 2005.

9. D. Rotem and J. L. Zaho, “Extendible arrays for statistical databases and OLAP applica-
tions”, Proc. of SSDBM’96, pp. 108-117, 1996.

10. S. Sarawagi and M. Stonebraker, “Efficient organization of large multidimensional ar-
rays”, Proc. of ICDE, pp. 328-336, 1994.

11. A. Shukla, P. M. Deshpande and J. F. Naughton, “Materialized view selection for multi-
dimensional datasets”, In Proc. of VLDB Conf., pp.488-499, 1998.

12. K. A. Ross and D. Srivastava, “Fast computation of sparse data cubes”, In Proc. of VLDB
conf., pp. 116-125, 1997.

13. S. AgarwaI, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, and S. Sarawagi,
“On the computation of multidimensional aggregates”, Proc. of VLDB, pp. 506-521, 1996.

14. S. Muto and M. Kitsuregawa, “Improving main memory for array-based data cube compu-
tation”, Proc. of workshop on Data warehousing and OLAP, pp. 28-33, 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 300 – 312, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Monitoring Heterogeneous Nearest Neighbors for
Moving Objects Considering

Location-Independent Attributes

Yu-Chi Su1, Yi-Hung Wu2, and Arbee L.P. Chen3

1 Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C.
2 Department of Information and Computer Engineering, Chung Yuan Christian University,

Taiwan, R.O.C.
3 Department of Computer Science, National Chengchi University, Taiwan, R.O.C.

alpchen@cs.nccu.edu.tw

Abstract. In some applications, data may possess both location-dependent and
location-independent attributes. For example, in a job database, each job can be
associated with both location-dependent attributes, e.g., the location of the work
place, and location-independent ones, e.g., the salary. A person who uses this
database to find a job may prefer not only a shorter distance between his/her
house and the work place but also a higher salary. Therefore, a query with both
concepts of “shorter distance” and “higher salary” should be considered to meet
the user’s needs. We call it the heterogeneous k-nearest neighbor (HkNN) query
in distinction from the traditional k-nearest neighbor (kNN) query in the spatial
domain, which only concerns location-dependent attributes. To our knowledge,
this paper is the first work proposing a generic framework for solving the
HkNN query. We propose an efficient approach based on the bounding property
for the HkNN query evaluation. Furthermore, we provide an update mechanism
for continuously monitoring the HkNN queries in a dynamic environment. Ex-
perimental results verify that the proposed framework is both efficient and
scalable.

1 Introduction

The continuous k-nearest neighbor query processing over moving objects, which aims
at retrieving the k objects closest to a query point, has been studied for several years
[2][3][4][5][7][8][9]. However, in many applications, a moving object may also have
attributes that are irrelevant to its location. The following are two examples drawn
from different applications. Example 1 illustrates a scenario over static objects, while
Example 2 is for moving objects in high dimensions.

Example 1. A person wants to buy shoes of a special brand. He/she plans to visit the
best k shoe stores in order of the shoes’ price and the expense for traveling to the
store. Here we assume that the traveling expense for one distance unit (in kilometer)
is 100 (in dollar) and the traveling expense equals the distance unit multiplied by the
cost per distance unit. The total cost for buying new shoes at a store can be formulated

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 301

as: Total cost = Price ($) + Traveling expense ($). The person’s need is to find the k
stores with the minimal values as a function of the price and the distance from the
person to the store. Motivated by this kind of applications with queries on both loca-
tion-dependent and location-independent attributes, we propose the heterogeneous k-
nearest neighbor (HkNN) query.

Example 2. Consider another example for HkNN queries over multi-dimensional
data. In a digital library, each subscriber has a profile that records the degrees of
his/her preference in various fields. Each profile can be considered as an object in a
multidimensional space in which every dimension stands for a field. Also, each pro-
file has several location-independent attributes, like income, age, and so on. If a ser-
vice provider would like to publish a new electronic magazine focusing on young
people, an HkNN query that retrieves the best k subscribers with smaller ages and
profiles similar to the magazine content will be launched. The HkNN query here is to
find the k subscribers with the minimal values as a function of the age and the dis-
tance from the profile to the magazine content.

Previous work on monitoring continuous k-nearest neighbor queries over moving
objects can be broadly divided into two categories. In the first category, the motion
patterns of objects are assumed to be known or predictable [2][5][7]. The second cate-
gory does not assume the motion patterns of objects [3][4][8][9]. There are two reasons
that the previous approaches to the kNN problem are not suitable for the HkNN query:
(1) an intuitive way is to regard the location-independent attribute as an extra dimen-
sion in the multidimensional space constituted by the location-dependent attributes.
After that, the total cost formula is used as the distance function in order to apply the
previous approaches. Unfortunately, mixing two kinds of attributes with different do-
main sizes makes it difficult to build an index for efficient query processing. Moreover,
if the operation “–”, “*”, or “/” is adopted in the total cost formula, the distance func-
tion will not satisfy the triangle inequality and the pruning techniques will fail. More
detailed discussions in this aspect can be found in [6]. (2) The previous approaches
cannot deal with different operations with a single index. Therefore, a generic frame-
work supporting the four operations and an efficient index structure are required.

In this paper, we propose a generic framework for efficiently processing the HkNN
queries over moving objects and focus on the HkNN problem in which only one loca-
tion-independent attribute is considered. The formulas in different applications to
compute the total cost for each object can be generalized as total cost = V_COST
(from the location-independent attribute) op D_COST (from the location-dependent
attributes), where the operator op can be one of the four operations “+”, “–“, “*”, or
“/”, as user needs. Moreover, we consider the situations like Example 2, in which both
the location-dependent and location-independent attributes of objects may change
with time. In the remainder of this paper, for ease of presentation, we illustrate our
methods only for the HkNN queries with op “+“. The considerations for the other ops
(“-”, “*”, “/”) are similar and can be found in [6].

Our method of HkNN query evaluation proceeds in two steps. In the first step, arbi-
trary k objects near the query are selected into the answer set. For each of the k ob-
jects, the total cost is computed and the one with the worst total cost is called the
target object. Since these k objects may not be the correct answers, we then check if
any other object has a total cost better than that of the target object. Based on a
bounding property, the total cost of the target object is used to compute two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

bounds - value bound and distance bound, which respectively indicate the upper
bounds of the V_COST and D_COST for all the objects with better total costs. In
other words, these bounds limit the search space of the HkNN query to a safe region
for the remaining objects, in which all the objects with better total costs are located. In
the second step, only the objects inside the safe region are retrieved and checked.
Once an object with a better total cost is found, it is added into the answer set with the
target object discarded. After that, a new target object comes out and the two bounds
can be lowered to further reduce the search space. The second step is repeatedly
executed until there is no object in the safe region. In this way, a large amount of
unnecessary computation can be avoided. The proposed framework also supports
continuous HkNN queries for a dynamic environment where the objects may continu-
ously update their location-dependent or location-independent attribute values. In our
approach, while receiving an object update, only the queries that can be affected are
reevaluated and thus unnecessary computation on irrelevant queries can be avoided.

The rest of the paper is organized as follows. In Section 2, basic definitions and
data structures are described. Section 3 depicts the techniques for HkNN query proc-
essing. Section 4 illustrates how to handle the updates with our index structure in a
dynamic environment. Section 5 shows the experimental results and Section 6 con-
cludes the paper with some future works depicted.

2 Basic Definitions and Data Structures

2.1 Basic Definitions

In this paper, we address the HkNN problem involving only one location-independent
attribute. In the following, we first define several terms and the HkNN problem.
Table 1 shows the symbols and functions used in this section.

Table 1. Notation and their definitions

Notation Definitions
O The set of moving objects
o A moving object in O
q The heterogeneous k-nearest neighbor query
dist(o, q) The Euclidean distance between object o and query q
op The user-defined operator, can be +, -, *, or /

Definition 1 (Object and query representations). A moving object o is represented
as o(v, p), where v denotes the value of its location-independent attribute and p=<c1,
c2,…cn> denotes its coordinates, i.e., the location-dependent attribute of o (n is the
number of dimensions). An HkNN query q is represented as q(op, p’), where op de-
notes one of four operators and p’=<c’1, c’2, …c’n> denotes its coordinates, i.e., the
location-dependent attribute of q.

Definition 2 (D_COST). Let d-factor be the cost for one distance unit. The cost of
the location-independent attribute for an object o(v, p) with respect to query q(op, p’)
is defined as: D_COST = dist(o, q) * d-factor.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 303

Definition 3 (V_COST). The cost of the location-independent attribute for object o
(v, p) is defined as: V_COST = v.

Definition 4 (T_COST). Given object o(v, p) and HkNN query q(op, p’), we refer to
the total cost of o with respect to q as: T_COST(o, q) = V_COST op D_ COST.

Most applications in the real world demand the objects that are closest to a given
query. Therefore, our framework is designed to prefer the objects with smaller values
of D_COST no matter which operator is adopted. Applications with op “+” and “*”
also have the nature to prefer objects with smaller values of V_COST and their goal is
to find the k objects with the smallest values of T_COST. In contrast, applications
with op “-” and “/” require objects with larger values of V_COST but smaller values
of D_COST and their goal is to obtain the k objects with the largest values of
T_COST. As a result, the definition of the HkNN problem is given as below by con-
sidering the two classes of operators.

Definition 5 (HkNN). Given a set of moving objects O, (1) if op of query q is “+” or
“*”, the HkNN answers of q are defined as: HkNN(q)={o∈O|T_COST(o, q)≤
T_COST(ok, q)}, where ok is the object with the k-th smallest value of T_COST in O.
(2) If op of q is “-” or “/”, the HkNN answers of q are: HkNN(q)={o∈O|T_COST(o,
q)≥ T_COST(ok, q)}, where ok is the object with the k-th largest value of T_COST in O.

In this paper, the d-factor is set as 1 for simplicity and, from now on, we illustrate our
approach using the case that the operator of the launched query is “+”. The proposed
framework is developed for a general environment, i.e., the motion patterns of objects
and queries are unpredictable. The following illustration uses 2D data, but the pro-
posed approach can be applied to the environment with arbitrary dimensionality.

2.2 Data Structures

Before introducing our approach, we first present four data structures that will be
used.

Object Table. Each object o is associated with a set of attributes, including the object
ID ido, the location-dependent attribute po, the location-independent attribute vo, and a
set So of queries the answer sets of which contain o.

Hierarchical Aggregate Grid Index. Previous work [9] uses the hierarchical grid
structure to reduce the performance degradation caused by skewed data. Differently,
we here adopt it to speed up the HkNN query processing by enclosing location-
independent attribute information in each cell of the hierarchical grid structure. Note
that we can also embed this kind of information in each internal node of an R-tree
structure in a similar way. In this paper, we adopt the grid-based structure because of
its efficient construction and maintenance in a dynamic environment.

The hierarchical aggregate grid index has several levels of grids and consists of
two types of cells: basis cells and index cells. Index cells form a hierarchy, where
each index cell points to smaller cells it covers at the lower level (called the sub-
cells). The bottom level of the hierarchical grid structure is composed of basis cells,
the smallest unit in the index. Let Ci,j denote a cell, which can be an index cell or a
basis cell, at column i and row j of grid level C. Moreover, each basis cell Xi, j

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

(Assume the bottom level is level X) with equal length δ is associated with one bucket
that stores every object ID with coordinate (x, y), where x is in the range [iδ, (i+1)δ]
and y is in the range [jδ, (j+1)δ]. Every object or query moving from (xold, yold) to
(xnew, ynew) is deleted from the bucket of cell (⎣xold /δ⎦, ⎣yold /δ⎦) and inserted into the
bucket of cell (⎣xnew /δ⎦, ⎣ynew /δ⎦). In addition, to enclose location-independent attrib-
utes of objects in each cell, both the basis cell and the index cell are associated with
three pieces of aggregate information: min, max, and count. For a basis cell, the min
(max) indicates the minimal (maximal) value of location-independent attributes for
the objects in the cell and similarly the count represents the total number of objects
enclosed in the cell. For an index cell, min (max) is the minimum (maximum) of all
the min values attached on its sub-cells, while the count keeps the sum of all the count
values attached on the sub-cells. Figure 1 shows an object table and a 3-D illustration
of the hierarchical aggregate grid index. Both types of cells are associated with the
aggregate information (a, b, c), where a, b, and c represent min, max and count, re-
spectively. Moreover, every basis cell is associated with an object bucket storing the
IDs of the enclosed objects together with the links, pointing to the corresponding
entries in the object table.

Index
Cell

Basis
Cell(9, 78, 2)

(12, 96, 7)

(7, 34, 5)

(18, 22, 9)

(7, 96, 23)(3, 87, 14)
(5, 73, 38)(12, 69, 42)

(3, 96, 117)

Object bucket

Oi Oj

…
.

…
.

…
.

…
.

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

Object Table

Index
Cell

Basis
Cell(9, 78, 2)

(12, 96, 7)

(7, 34, 5)

(18, 22, 9)

(7, 96, 23)(3, 87, 14)
(5, 73, 38)(12, 69, 42)

(3, 96, 117)

Object bucket

Oi Oj

Object bucket

Oi Oj

…
.

…
.

…
.

…
.

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

…
.

…
.

…
.

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

…
.

…
.

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

…
.

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

qi, qk15(xj, yj)Oj

…
.

…
.

…
.

…
.

qi, qj9(xi, yi)Oi

…
.

…
.

…
.

…
.

sovopoido

Object Table

{Xi,j, mindist(Xi,j, q), (min, max, count)}

Cell queue

Entry …….………

{ido , T_COST)

Answer queue

Entry …….………

{Xi,j, mindist(Xi,j, q), (min, max, count)}

Cell queue

Entry …….………

{Xi,j, mindist(Xi,j, q), (min, max, count)}

Cell queue

Entry …….……… Entry …….………

{ido , T_COST)

Answer queue

Entry …….………

{ido , T_COST)

Answer queue

Entry …….……… Entry …….………

Fig. 1. Hierarchical aggregate grid index and object table Fig. 2. Cell queue and answer
queue

Cell Queue. Let mindist(Xi,j, q) be the minimal distance between cell Xi,j and query q,
i.e., the minimal possible distance between any objects in cell Xi,j and q. Whenever a
query q is evaluated (or reevaluated), a cell queue CQ is created. Each entry in CQ
stores a cell Xi,j (index cell or basis cell), mindist(Xi,j, q), and the aggregate informa-
tion: min, max, count of Xi,j. The entries in CQ are kept in ascending order of min-
dist(Xi,j, q).

Answer Queue. Each query q is associated with an answer queue AQ to maintain the
current set of query answers. Each entry in the answer queue keeps an object ID and
its T_COST with respect to q. The entries in AQ are kept in ascending order of
T_COST. Figure 2 shows both kinds of queues for query q.

3 Efficient Evaluation of HkNN Queries

3.1 Problem Characteristic and Approach Overview

A naive method for processing the HkNN query is to compute the total cost of each
object and then select the k objects with the smallest values as the answers. Nevertheless,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 305

it is inefficient if the number of objects is very large. Consider an alternative method
using the data structures in Section 2.2. To evaluate query q, all the cells in the hierarchi-
cal aggregate grid structure can be pushed into the cell queue CQ in ascending order of
their minimal distances from q. From CQ, the cells are explored one by one to obtain the
first k objects. The k objects are then put into the answer queue AQ in ascending order of
their total costs. We call the object with the largest total cost as the target object and its
total cost as the target cost. Given AQ and the target cost, we apply the following prop-
erty to prune the remaining objects in CQ, which cannot be the HkNN answers.

Property 1 (Bounding property). For an object o in cell Xi, j of CQ, if its total cost is
not larger than the target cost, then its D_COST is not larger than the target cost and
its V_COST is not larger than the target cost minus mindist(Xi, j, q).

Proof. Let r be the target object. Moreover, let Dz, Vz and Tz respectively denote the
D_COST, V_COST and T_COST of object z. Since Vo ≥ 0 and To=Do+Vo ≤ Tr=Dr+Vr,
we have that Do ≤ Dr+Vr − Vo ≤ Dr+Vr − 0=Tr. Similarly, because Do ≥ mindist(Xi, j,
q), we have that Vo ≤ Dr+Vr − Do ≤ Dr+Vr − mindist(Xi, j, q)=Tr-mindist(Xi, j, q).

From this property, two upper bounds, value bound and distance bound, are obtained
and used to prune the cells in CQ, in which all the objects violate either of them. The
objects in a cell are retrieved to compute their total costs if and only if the cell satisfies
both bounds. AQ and the target object are then updated. Since the new target object
results in a smaller target cost, the bounds can be tighter and tighter. Eventually, CQ
will become empty and AQ will have the k objects with the smallest total costs. The
pruning mechanism using the two bounds will be described in Section 3.3.

3.2 Step 1: Retrieving the First k Objects

Given an HkNN query q, we discuss our first step of query evaluation for q in this
section. Let CQ and AQ respectively denote the cell queue and the answer queue of q.
To begin with our approach, the cells at the highest level of the index are first visited
and then inserted into CQ in ascending order of their minimal distances from q. Next,
our approach starts to retrieve the first entry in CQ. If it is an index cell, its sub-cells

 (a) (b) (c) (d)

Fig. 3. An example of query evaluation using two-level hierarchical aggregate grid index

are inserted into CQ according to their minimal distances to q. This process is repeated
until the first entry of CQ is a basis cell. In this case, the total costs of all the objects in
this cell are computed. Their object IDs and total costs are then inserted into AQ in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

ascending order of their total costs. This step terminates while the number of objects in
AQ is not less than k. Note that if the number of objects in AQ is more than k, only the
k objects with the smallest total costs are chosen and used in the next step.

Example 3. Figure 3 shows an example of query evaluation using a two-level hierar-
chical aggregate grid index. Let A and B represent the higher level and the lower level
of grids, respectively. The bigger shaded cell (A1.1) and the smaller one (B0.0) are
shown in Figure 3 (a). In Figure 3 (b), given an H2NN query q, the search for the first
k objects is executed (let k be 2). Initially, the cells of the higher level are added into
CQ in ascending order of their minimal distances from q, i.e., Q ={A1,0, A1,1, A0,0,
A0,1}. Then, the first entry A1,0 is retrieved and its sub-cells B2,0, B2,1 , B3,0 , B3,1 are
inserted into CQ. Since all the counts in B2,0, B2,1, and B3,0 are zero, these cells are
ignored to avoid unnecessary computation. After that, CQ becomes {A1,1, B3,1, A0,0,
A0,1}. Next, A1,1 is retrieved in the same way to update CQ as {B2,2, B3,1, A0,0, A0,1}.
B2,2 is then retrieved and the total cost of o2 is computed (let its total cost be 1.6). As
a result, o2 is inserted into AQ with its total cost, i.e., AQ ={(o2,1.6)}. This step termi-
nates after the next entry B3,1 updates AQ as {(o5,0.7), (o2,1.6)}. At this time, CQ
becomes { A0,0, A0,1}.

3.3 Step 2: HkNN Search with Pruning Mechanism

The second step for query evaluation is to iteratively find the objects with smaller
total costs and replace the target object to further reduce the search space until the
safe region is empty. A naïve method is to sequentially examine all the objects located
in the circle centered at q with radius D (for short, from now on, sometimes we denote
the distance bound and value bound as D and V, respectively). Obviously, this method
can be inefficient if more basis cells than necessary are checked. Therefore, we design
a pruning mechanism to skip the objects that are unable to be the final answers. The
pruning mechanism keeps retrieving the first entry of CQ to check whether any object
in it satisfies the two bounds. The following are the two pruning techniques we adopt.

Pruning by Distance Bound. Cell Xi,j in CQ needs to be checked if and only if it
overlaps with the circle centered by q with radius D, i.e., mindist (Xi,j, q) ≤ D. In this
case, cell Xi,j may contain an object whose distance from q is less than D and therefore
should be further checked by the value bound. Otherwise, Xi,j and all the remaining
cells in CQ can be discarded because all the objects inside them cannot be the final
answers (their distances from q must be larger than D).

Pruning by Value Bound. For each cell Xi,j in CQ, the value bound is computed as V
=ct – mindist(Xi,j, q), where ct denotes the target cost. If the min value associated with
Xi,j is larger than V, Xi,j can be omitted. Otherwise, there are two cases to consider. If
Xi,j is an index cell, its sub-cells are retrieved from the hierarchical aggregate grid
structure and inserted into CQ. On the other hand, if Xi,j is a basis cell, the total costs
of all objects in it are computed and then the objects with total costs smaller than ct
are inserted into AQ. Finally, only the k objects with the smallest total costs are left in
AQ and then a new target object can be found. In this way, new and smaller distance
bound and value bound will be obtained.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 307

Example 4. Figure 3(c) and 3(d) show an example for the second step of query
evaluation. We assume that mindist(A0,0, q), mindist(B1,1, q), and dist(o6, q) are 0.8, 0.8,
and 0.9, respectively. In addition, we assume that the min value of A0,0 and B1,1 are 0.6
and 0.4, respectively and the V_COST of o6, is 0.1. In Figure 3(c), the radius of the
shaded circle centered by q is equal to D. Following Example 3, AQ is {(o5,0.7),
(o2,1.6)} and. A0,0 is first examined. The value bound for A0,0, i.e., 1.6 – mindist(A0,0,

q), is larger than the min value of A0,0, its sub-cells are inserted to CQ. Again, since
B0,1 and B1,0 are empty, CQ becomes {B1,1, A0,1, B0,0}.The value bound of B1,1 is com-
puted in the same way and equals to 0.8, which is larger than the min value of B1,1.
Therefore, the object o6 in B1,1 is retrieved to replace o2 as the new target object (o6
has a total cost smaller than that of o2), i.e., AQ ={(o5.,0.7), (o6 ,1)}. Then, the shaded
circle shrinks because D decreases. We show the new circle in Figure 3(d). Next, we
get the next entry A0,1. From Figure 3 (d), we can observe that it does not overlap with
the shaded circle. In other words, the minimal possible distance of any objects in A0,1

is larger than D and therefore the remaining cells in CQ can be skipped. The pruning
process ends and the final answers of q are {o5, o6}.

4 Continuous Update of HkNN Query Answers

Another contribution of our framework is the update mechanism for maintaining the
answers of queries in a dynamic environment, where objects and queries may update
their status continuously. For objects, both of their positions and location-independent
attribute values can be updated, while for queries, only their positions may be up-
dated. In the following, we illustrate our approach for continuously processing a sin-
gle object update.

To maintain the HkNN query answers while receiving an object update, a naïve
way is to reevaluate all the HkNN queries. However, it is impractical if there are a
large number of queries registered. Obviously, a better solution exists if we can find
out all the queries that will be influenced by the updated object. Let costk denote the
largest total cost of the object in the answer queue of q after the query evaluation.
Queries whose answers are affected by the updated object can be divided into two
classes. In the following, we discuss them respectively.

Case 1. The first class consists of the queries whose answer sets do not include the
updated object. For a query q belonging to this class, its costk will not be changed
immediately in response to the updated object. Based on the bounding property, an
object oi can be used to replace the target object of q only if both the D_COST and
V_COST of oi satisfy the distance bound and value bound of q, respectively. Moti-
vated by this, for each query, we refer to the distance influence region as a region
where all the objects satisfy the distance bound of q. Similarly, we define the value
influence region to identify all the objects satisfying the value bound of q. The total
cost of oi is compared with costk only if the two regions of query q both contain oi. If
object oi has a smaller total cost, it is a new answer of q and costk is updated. Other-
wise, the answer queue of q remains unchanged. More details of the two regions are
discussed in the following:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

Distance Influence Region. The region composed of all the basis cells that intersect
the circle centered at q with radius D is called the distance influence region. Clearly, a
basis cell may be covered by multiple distance influence regions of different queries.
To identify these queries, each basis cell of the grid is associated with a query bucket
containing the queries whose distance influence regions intersect it. Figure 4 shows
this data structure.

Value Influence Region. We adopt the B+-tree, named the value influence region
tree, to organize the value influence regions of all the queries. Figure 5 shows an
example. In this tree, the value bounds of queries are the access keys attached on the
nodes. Moreover, each internal node (or called index node) is constructed after the
split or merging of tree nodes. On the other hand, each leaf node (or called data node)
keeps a set of queries. Note that each leaf node has a pointer, pointing to the sibling
next to it. Assume that there is an object oi with V_COST = 5. To find the queries
whose value influence regions contain object oi, a range search for all the queries with
V ≥ 5 is launched on the value influence region tree. Since the amount of returned
queries may be huge, we first check the query bucket of the cell containing the up-
dated objected to find the queries whose distance influence regions contain oi. Then,
these queries are checked one by one to see whether their value influence regions
contain oi by launching exact searches on the value influence region tree.

q1 q2 q5q1 q2 q5

 q5q1qi

Index nodes

Data nodes

q5q1

…qi

1 2 9 n

Index nodes

Data nodes

 Fig. 4. Distance influence region Fig. 5. Value influence region tree

Case 2. The second class includes the queries that answer queues of which contain the
updated object. In this case, costk may be changed even when the answer queue has
the same set of objects. According to the possible changes of costk, there are three
situations to consider: The first situation is that costk remains unchanged. This may
occur due to two causes: (1) the updated object is not the target object and its new
total cost is still not larger than costk or (2) the updated object is the target object but
its new total cost is unchanged although both the V_COST and D_COST are changed.
For both causes, we only need to update the information about the updated object.
The second situation is that costk becomes smaller. This also occurs due to two
causes: (1) the updated object is the target object and its total cost decreases. or (2) the
updated object is the target object and its new total cost is smaller than the object with
k-1th smallest total cost in the answer set of q. Since both costk and the order of an-
swers may be changed, we need to update the two bounds and the two influence re-
gions by using the new target object and costk.

The third situation is that costk becomes larger. It happens in two conditions: (1)
the updated object is the target object and the changed V_COST or D_COST makes
its total cost larger or (2) the updated object is not the target object but belongs to the
answer set of q, and its updated V_COST or D_COST let its total cost larger than

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 309

costk. In both conditions, since costk becomes larger, the object with the k+1th small-
est cost may replace the updated object as a new answer of q. Therefore, we assume
the updated object, denoted as ot, to be the target object and invoke the HkNN re-
evaluation to find the object with smaller total cost than ot to replace it. Due to space
limitation, more details about the HkNN reevaluation are discussed in [6].

Example 5. We illustrate an example for processing an object update using Figure 4
and Figure 5. Suppose the server receives an update record {o1, x, y, v, x’, y’, v’}
representing o1 moves from (x, y) to (x’, y’) and its value changes from v to v’. As-
sume v’ = 3 and the updated dist(o1, q) = 15. First, o1 is deleted from the object bucket
of the basis cell Xi,j and then inserted into the basis cell Xi’,j’, where i, j, i’, and j’ are
⎣x/δ⎦,⎣y/δ⎦,⎣x’/δ⎦, and ⎣y’/δ⎦, respectively. Next, the new total cost of o1 is computed.
After that, the queries whose answer sets contains o1 are found by checking the object
table. Assume q2 is found and the total cost of the target object of q2 is 13. Since the
new total cost of o1 is 18, the costk of q2 becomes larger (from 13 to 18, the third situa-
tion of Case 2). Therefore, HkNN query reevaluation is invoked to update the answers
of q2. Next, the algorithm finds the queries whose distance and value influence region
both contain o1 but their answer sets do not include o1 (Case 1). As shown in Figure 4,
the cell enclosing o1 is covered in the distance influence regions of q1, q2, and q5.
Since query q2 has been processed, it can be ignored here. Next, we checks if the
value influence region of q2 or q5 contains o1. A range query qr, which searches the
queries with V ≥ 3 on the value influence region tree is issued. In Figure 5, because q1

is linked to the leaf node with key = 2, i.e. the value bound of q1 is 2, q1 will not be in
the returned results of qr. Thus, o1 is not in the value influence region of q1. On the
contrary, q5 with V = 9 is in the results of qr. Since o1 is contained in both the distance
influence region and value influence region of q5, o1 is probably qualified to be a new
answer of q5. Therefore, the updated total cost of o1 (cost1, for short) needs to be com-
pared with that of the target object of q5 (coste, for short). If cost1 < coste, the target
object of q5 is deleted from the answer set of q5 and o1 becomes a new answer. Then,
the bounds and influence regions for q5 are updated. Otherwise, q5 is not affected by
the update of o1.

5 Experiments

We compare the proposed method using the hierarchical aggregate grid index with a
method using a one-level grid and a brute force method. For simplicity, we call the
above three methods HAG, OLG, and BF, respectively. Similar to HAG, OLG is a
method based on the bounding property proposed in this paper. The distinction of
OLG from HAG is that it employs one-level grid structure instead of hierarchical grid
index. One-level grid structure consists of equal-sized cells and each cell is associated
with three pieces of aggregate information-min, max and count. In the first phase of
evaluating an HkNN query q, OLG adopts the method proposed in [9] to find the kNN
of q as the first k objects. Next, it pushes the cells overlapping with the circle centered
by q with radius D into the queue of q and runs the pruning algorithm in the same way

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

as our approach. The brute-force method for comparison computes the total costs for
all objects in the database and then choose the k objects with smallest total costs as
the answers.

In all the experiments, we utilize a program modified from the Network-based
Generator of Moving Objects [1] to generate a set of moving objects and queries. The
generator outputs a set of objects with their values at every timestamp. The default
mobility of objects and queries are 10% and 5%, respectively. Table 2 lists the pa-
rameters of the data sets, where the default values are bold and italic. All our experi-
ments are performed for 100 time-stamps and the CPU time (in seconds) is reported
after a work is completed. For HAG and OLG, the locations of objects (or queries)
and the aggregate information of all cells are updated after receiving all the update
records at each timestamp.

Table 2. Parameters of the data sets Table 3. Grid structures with various cell sizes

Parameter Range
Number of
Object (K)

10, 50, 100, 150, 200

Number of
Queries (K)

1, 2, 4, 6, 8, 10

OLG HAG
32×32 4×4 ,16×16,32×32
64×64 4×4, 16×16, 64×64
128×128 4×4, 32×32, 128×128
256×256 4×4, 32×32, 256×256
512×512 4×4, 64×64, 512×512
1024×1024 4×4, 64×64, 1024×1024

5.1 Experimental Results

The first experiment evaluates how the performance of OLG and HAG will be af-
fected by different grid size. Moreover, for HAG, the number of levels in the hierar-
chical grid index also has a great impact on its performance. To fairly compare the
performance of the two methods with respect to the grid size, we fix the number of
levels to 3 for HAG and vary the grid size of both methods from 32×32 to 1024×
1024. For OLG, this parameter indicates the grid size of the one-level grid index,
while for HAG it represents the grid size for the grid at basis level in the hirarchical
aggregate grid index (denoted as 2b

×2b). In addition, we fix the grid size of the top
level to 4×4 (i.e. 22

×22). The granularity of any index cell at a lower level is set to be
2l
×2l, where l =⎡(log2b+2)/2⎤. Table 3 summarizes the granularities used in our

experiments.
The experimental results are shown in Figure 6. Both methods achieve the best per-

formance when the 128×128 grid is used, while the other grid sizes cause the two
methods higher CPU costs. This is because their grid indices with fine granularities
incur frequent updates, whereas coarse granularities result in linear searches on huge
object buckets during accessing a cell. We also observe that 3-level HAG has better
performance than OLG in all cases. The reasons are as follows: (1) After the first step
of evaluation of query q, OLG puts all the cells intersecting with the circle centered at
q with radius D into the cell queue in ascending order of their minimal distances from
q. The computations of these minimal distances for all cells covered by the circle
result in expensive costs. (2) Despite HAG have the same number of cells at basis
level as that of the index in OLG, the good pruning effect of HAG helps pruning
many index cells that do not cover any answer. Thus, unnecessary computations for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Monitoring Heterogeneous Nearest Neighbors for Moving Objects 311

minimal distances for all basis cells can be avoided. (3) Moreover, although HAG
requires more updates for maintaining aggregate information due to multiple-level
grids, such updates (in both methods) can be done by batch processing at each time-
stamp. Therefore, the cost of updating hierarchical aggregate information can be lim-
ited. Based on the above observations, the remaining experiments are made using the
128×128 grid for HAG and OLG.

CPU Time (Sec)

0
100
200
300
400
500
600
700

322 642 1282 2562 5122 1024 2

Number of cells in grid indices

OLG HAG

CPU Time (Sec)

0
100
200
300
400
500
600
700

322 642 1282 2562 5122 1024 2

Number of cells in grid indices

OLG HAG

CPU Time (Sec)

0
100
200
300
400
500
600
700

322 642 1282 2562 5122 1024 2

Number of cells in grid indices

OLG HAG

CPU Time (Sec)

0
100
200
300
400
500
600
700

322 642 1282 2562 5122 1024 2

Number of cells in grid indices

OLG HAG

CPU Time(Sec)

0

1000

2000

3000

4000

5000

10 50 100 150 200

Number of Objects(K)

BF OLG HAG

CPU Time(Sec)

0

1000

2000

3000

4000

5000

10 50 100 150 200

Number of Objects(K)

BF OLG HAG

CPU Time (Sec)

0

1000

2000

3000

4000

5000

2 4 6 8 10

Numbers of Queries(K)

BF OLG HAG

CPU Time (Sec)

0

1000

2000

3000

4000

5000

2 4 6 8 10

Numbers of Queries(K)

BF OLG HAG

Fig. 6. Performance vs. Granularity Fig. 7. Performance vs. NO Fig. 8. Performance vs. NQ

In the second experiment, we compare the performance of HAG, OLG and BF by
varying the number of objects (denoted as NO) from 10K to 200K. Figure 7 depicts
that the CPU costs of all methods increase when NO increases. Moreover, BF is much
less efficient than the other two methods. The reason is that for each query, BF com-
putes the total costs, in which expensive distance computations are involved, for all
objects in the database. Furthermore, all the queries registered in the system are re-
evaluated to keep the answers correct when the update requests are received. On the
contrary, in all cases the execution times of OLG and HAG are relatively small. This
is because both methods are designed based on the bounding property proposed in this
paper, which helps greatly reducing the search space. Furthermore, they handle up-
dates only on the queries whose answers may be affected by the updated objects in-
stead of reevaluating all the registered queries. In Figure 7, we also observe that the
performance of HAG is only a little better than OLG. The reason is that a larger NO
leads to the larger probability of a query reevaluation after the given object update.
(The third situation in Case 2 for handling object updates) Similar result is shown in
Figure 8, where the number of queries (denoted as NQ) is varied. HAG has better
performance than OLG. As mentioned in the first experiment, HAG possesses several
advantages over OLG in processing a single query. Therefore, OLG is also more
sensitive than HAG when NQ increases. To sum up, in both figures, HAG is more
efficient than OLG and BF. These experimental results verify that HAG achieves
good scalability and efficiency.

6 Conclusion and Future Works

In this paper, we introduce the heterogeneous k-nearest neighbor (HkNN) query, a
new paradigm considering both location-dependent and location-independent attrib-
utes over moving objects. HkNN queries are of nature interesting in many applica-
tions. To the best of our knowledge, this is the first work addressing the HkNN
problem and providing an efficient approach for HkNN query evaluation. Based on
the bounding property, our approach employs the hierarchical aggregate grid index,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 Y.-C. Su, Y.-H. Wu, and A.L.P. Chen

which recursively aggregates the values of location-independent attribute in a hierar-
chy of cells, to quickly reduce the search space of the HkNN query. Furthermore, we
developed an efficient update mechanism for continuously monitoring the affected
HkNN queries during an object update and for maintaining the correctness of query
answers. In particular, our approach can handle different types of operators with a
single index. Our experimental results demonstrate the efficiency and scalability of
the proposed techniques.

In our work, we process every query using a cell queue that employs the minimal
distance between the query and each enclosed cell as its key. In other words, we adopt
a distance-based technique to solve the HkNN problem in this paper. In the future, we
plan to research from the aspect of location-independent attributes and then develop a
hybrid mechanism that can adaptively determine from which aspect the query proc-
essing should start with.

References

1. T. Brinkhoff. A Framework for Generating Network-Based Moving Objects. GeoInfor-
matica, 6(2): 153-180, 2002.

2. G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neighbor queries for continu-
ously moving points with updates. VLDB, 2003.

3. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing of con-
tinuous queries in spatio-temporal databases. SIGMOD, 2004.

4. K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual Partitioning: An Effi-
cient Method for Continuous Nearest Neighbor Monitoring,” SIGMOD, 2005.

5. K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos. Fast nearest-neighbor query
processing in moving –object database. GeoInformatica, 7(2):113-137, 2003.

6. Y. C. Su. Technique Report: Monitoring Heterogeneous Nearest Neighbors for Moving
Objects Considering Location-Independent Attributes. http://make.cs.nthu.edu.tw/people/
Steffi/Technique.htm, 2006.

7. Y. Tao, D. Papadias. Time-parameterized queries in spatio-temporal databases. SIGMOD
Conference, 2002.

8. X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scalable processing of continuous k-
nearest neighbor queries in spatio-temporal databases. ICDE, 2005.

9. X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving
objects. ICDE, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete

Information Formats

Shaoxu Song and Lei Chen

Department of Computer Science
Hong Kong University of Science and Technology

{sshaoxu,leichen}@cs.ust.hk

Abstract. Similarity join over text is important in text retrieval and
query. Due to the incomplete formats of information representation, such
as abbreviation and short word, similarity joins should address an asym-
metric feature that these incomplete formats may contain only partial
information of their original representation. Current approaches, includ-
ing cosine similarity with q-grams, can hardly deal with the asymmetric
feature of similarity between words and their incomplete formats. In or-
der to find this type of incomplete format information with asymmetric
features, we develop a new similarity join algorithm, namely IJoin. A
novel matching scheme is proposed to identify the overlap between two
entities with incomplete formats. Other than q-grams, we reconnect the
sequence of words in a string to reserve the abbreviated information.
Based on the asymmetric features of similar entities with incomplete
formats, we adopt a new similarity function. Furthermore, an efficient
algorithm is implemented by using the join operation in SQL, which
reduces pairs of tuples in similarity comparison. The experimental eval-
uation demonstrates the effectiveness and the efficiency of our approach.

1 Introduction

Similarity Join is an important operation in data cleaning and data integra-
tion [4]. It has been studied by various aspects and referred by a variety of
names, including record linkage [7], entity identification [9] and approximate
join [5]. The key issue is to identify whether two entities (e.g., relational tuples)
are approximately the same[7]. Owning to the poor data quality with various
errors caused by human factors and technique problems(e.g., database system
problems), it is difficult to identify the same entities exactly by traditional join
operation in SQL. For example, “International” and “Intenational” with spelling
mistakes do not match exactly. By using edit distance [10], we can deal with the
spelling mistake. Furthermore, due to various kinds of formats in representing
information, it becomes even harder to detect approximate entities, such as dif-
ferent orders (“Shaoxu song” with given name first and “‘SONG, Shaoxu” with
surname first). Cosine similarity with q-grams [6] is used in dealing with block
orders, which is also effective in spelling mistakes. In addition to effectiveness,
efficiency is another key issue. A recent work [2] applied a join operation in

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 313–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 S. Song and L. Chen

SQL to identify entities with overlaps first, which reduced the times of compar-
isons between unrelated entities greatly. They proposed an efficient similarity
join operators that can be used in many similarity functions.

However, the current existing approaches, including cosine similarity with q-
grams, can hardly deal with the similarity between words and their incomplete
formats, such as abbreviation, short word and incomplete information. For in-
stance, there are various representing formats in bibliography references, includ-
ing abbreviation (“VLDB” for “Very Large Databases”), short word (“Conf.”
for “Conference”), incomplete information (“In VLDB” for “In Proceedings of
VLDB”). Those incomplete formats have a common asymmetric feature that
incomplete formats contain only partial information of their original representa-
tion, which make it difficult to find and quantify the similarity between words
and their incomplete formats. Current q-grams approach cannot identify the ab-
breviation information, while cosine similarity is not effective in dealing with
such asymmetric features. There is a solution by Rohit [1] which tries to han-
dle the abbreviation case. However, it needs several attributes with hierarchies,
such as, County, State, City and Street. So it is NOT a common solution without
humans domain knowledge.

In this paper, we propose a novel text similarity join approach, IJoin, to ad-
dress both the effectiveness and efficiency issues of identifying the similarity be-
tween text entities with incomplete formats in similarity joins. In text matching,
we connect first letter of each word to reserve potential abbreviation information
and enhance the importance of the first few grams to find high similarity be-
tween words and their short formats. We also consider the asymmetric features
of similarity between entities with incomplete formats in similarity function. Our
contributions in this paper are summarized as follows:

(1) We propose a novel matching scheme to identify overlaps between text enti-
ties and their incomplete formats;

(2) We design a similarity function which can calculate the similarity of entities
with asymmetric features when incomplete formats exist;

(3) We present an efficient implementation of our similarity joins algorithm
which uses the join operation in SQL.

The rest of the paper is organized as follows. Section 2 summarizes text match-
ing schemes, and introduces our IJoin matching approach. Section 3 presents our
IJoin similarity function. In Section 4, we illustrate the basic and extended im-
plementations of our IJoin approach. Section 5 reports the experimental results
on the effectiveness and scalability of IJoin. Finally, we conclude in Section 6.

2 Distance Based Matching

In this section, we first summarize text matching schemes in similarity joins.
Then, we illustrate our IJoin matching scheme, considering asymmetric features
of incomplete information formats.

In similarity joins, we consider two relations (e.g. R and S) with common
attributes (e.g. R.A and S.A). The main issue is to find tuples in R and S with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete Information Formats 315

exactly same or approximate values of the common attribute A. If the similarity
between two tuples r and s from R and S respectively, satisfies the user specified
similarity threshold η, then these two tuples will be the join result. Different from
edit distance [10] based measure, we first map text strings in tuples to a set of
elements as entity features. Based on the overlap of the sets, we calculate the
similarity value by certain similarity functions (discussed in Section 3).

2.1 Existing Matching Approaches

One common text matching approach used in text retrieval, is to map a string to
a set of word tokens [3]. For example, the string “Computer Science Department”
can be mapped to a set of words, {‘Computer’, ‘Science’, ‘Department’}. The
word token based matching scheme can identify the similarity of same entities
with different representing orders, where each word is treated as a block. A
block move in the string affects the mapping set slightly. The strings “Computer
Science Department” and “Department of Computer Science” have high overlap
in their mapping sets. However, the word based approach is not effective in
dealing with spelling errors. A spelling error, such as “Conputer”, may affect
the similarity of strings significantly.

Another widely used matching method is q-grams, which cuts a string into
several substrings of length q. For the same example, “Computer Science” can
be mapped to {‘Com’, ‘omp’, ‘mpu’, ‘put’, ‘ute’, ‘ter’, ‘er ’, ‘r S’, ‘ Sc’, ‘Sci’, ‘cie’,
‘ien’, ‘enc’, ‘nce’}. The q-grams method is more robust under spelling mistakes
and keeps high similarity with different representing orders [6]. The spelling
mistake of “Conputer” only affect three grams {‘Con’, ‘onp’, ‘npu’}, which take
up small parts of the whole string.

Different tokens in the mapping sets may have different ability of discrimina-
tion. For example, the token ‘ing’, which appears frequently in words, may have
lower significance in discriminating different strings. Tokens are always associ-
ated with weights to represent their importance in a string, where text retrieval
techniques are commonly used, like Inverse Document Frequency (IDF).

The approaches mentioned above can process entities without many incom-
plete information formats, but cannot identify the similarity between words and
their abbreviation formats. For example, there is even no overlap at all between
the q-grams of “Computer Science Department” and its abbreviation “CSD”.

2.2 Matching of Incomplete Formats

We consider two kinds of incomplete information formats, the abbreviation and
short words, in our IJoin matching. For the abbreviation, we generate several
new elements by connecting the first letters of each word to reserve potential
abbreviation information. We also enhance the importance of first few letters in
each word by using a decay factor to enlarge the similarity between words and
their short formats. The matching steps are described as follows:

Step 1. In order to be robust under different representing orders, we first cut a
string into word tokens. Other than q-grams, we do not record any information of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 S. Song and L. Chen

word order, such as the connecting token ‘r S’ between two words in the 3-grams
sets of “Computer Science”.

Step 2. We cut each word into q-grams to in order to deal with spelling errors.
When we search a word in the dictionary, we can find the word with high prob-
ability by looking up the first few letters of it. Motivated by this, we associate
the first few letters with higher weight than the other ones, by setting a decay
factor γ(0 < γ ≤ 1). The weight of k-th gram gk in a word is:

w(gk) = w(gk−1) · γ (1)

All grams are ordered by the sequence of letters in the word. Note that short word
is always few several letters in its original word (e.g. “Conf.” for “Conference”).
The decay factor can increase the weight of overlap between the short word
and the original one, since we associate higher weight to first few letters (e.g.
w(′Con′) > w(′onf ′) in the word “Conference”).

Step 3. We reconnect the first letters in a string in order to identify the ab-
breviation of the string. Then, the string of first letters is mapped into q-grams.
Each gram in this step has equal importance to represent abbreviation, so we
do not take decay factor here.

Table 1 shows an example of matching scheme in our IJoin approach. The
length of abbreviation word is probably short, so the decay factor does not
affect the weight of abbreviation word significantly.

Table 1. Matching scheme in IJoin

String 1, String 2 {Computer Science Department} , {CSD}

Q-grams of first letters {CSD,

Q-grams of each word g1 Com , Sci , Dep , {CSD}
g2 omp , cie , ept ,
. , . . . , . . . ,
gk ter , nce , ent }

3 Similarity Function

In this section, we illustrate our similarity function in IJoin. After mapping
strings to sets with associated weight of elements, tuples (or entities) can be
represented by vector-space model [11]. Each tuple t is represented by a vector
of weights of p grams (or tokens):

ti = (gi1, . . . , gip) (2)

where ti is the vector of tuple i and gik is the weight of gram k in tuple i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete Information Formats 317

3.1 Cosine Similarity

The similarity between tuples can be quantified by the correlation, φij , which is
so-called the Cosine Measure:

φ(ti, tj) =
|ti

⋂
tj |

|ti
⋃

tj |
=

∑p
k=1 gikgjk√∑p

k=1 g2
ik

∑p
k=1 g2

jk

(3)

where φ(ti, tj) is the cosine similarity value between tuples ti and tj . Clearly,
a measure based on cosine similarity can be used when all terms are measured
on the same scale. However, cosine similarity is not so effective in dealing with
asymmetric features of similarity between words and their incomplete formats.
Abbreviation and short word can hardly have high similarity value with their
original representing formats.

3.2 IJoin Similarity

Asymmetric features exist in the similarity measure between words and their in-
complete formats. Considering the asymmetric features that incomplete formats
only take up slight parts of the original information, we calculate the similarity
in IJoin as follows:

ϕ(ti, tj) =
|ti

⋂
tj |

min(|ti|, |tj |)
=

∑p
k=1 gikgjk

min(
∑p

k=1 g2
ik,

∑p
k=1 g2

jk)
(4)

Other than computing the total weight of two tuples, we use only the smaller
one of them. Incomplete formats, such as abbreviation and short word, can keep
high similarity with their original formats.

Let us see the previous example in Table 1, where the overlap of two strings’
3-grams is {‘CSD’}. We assume that the weight of each gram to be 1. Ac-
cording to the formula (3), the cosine similarity between these two strings is
φ(string1, string2) = 1/

√
20 = 0.223. In fact, the cosine similarity value equals

to 0 (no overlap), if the IJoin matching is not adopted. For our IJoin similarity
function, the similarity value is ϕ(string1, string2) = 1.

4 Algorithm Implementation

In this section, we first introduce a basic implementation of our IJoin approach.
Then, we discuss a more efficient way to process similarity joins with incomplete
information.

4.1 Basic IJoin Implementation

Given two relations R and S, the similarity join operation returns all pairs of
tuples r and s from R and S respectively, which satisfy the similarity threshold
η (e.g. φ(r, s) ≥ η). During the preprocessing, we apply the decay factor γ to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 S. Song and L. Chen

each gram of words. Q-grams of the words’ first letter sequence are added to
reserve the potential information of abbreviation.

Finally, we compare each pair of tuples from two relations based on the simi-
larity function in Formula (4). The number of candidates of pairs to be compared
is large, especially when the data scale increases. An index of tuples may reduce
the accessing time, however, the number of comparisons cannot be decreased.
We will discuss a solution to reduce the number of candidates of comparing pairs
in the next section.

4.2 Extended IJoin Implementation

In order to reduce the candidates of comparisons, we need to filter those pairs of
tuples with no relevancy. A recent study [2] develops a method, namely SSJoin,
by exploiting some new attributes for each tuple, which can be used to decide
whether two tuples are relevant. The relation R(A) is extended to R(A, B), where
B is one of A’s q-grams. For example, the string “Computer Science Department”
can be extended to 20 tuples as follows:

Table 2. Tuples in SSJoin

R.A String R.B 3-grams

Computer Science Department Com
Computer Science Department omp
Computer Science Department mpu
.
Computer Science Department men
Computer Science Department ent

Then, a join operation in SQL (exactly matching) is processed on attribute R.B,
which finds pairs of tuples with common grams. Those tuples without common
grams are totally irrelevant and filtered out. Although the rest pairs of tuples
are relevant with common tuples, the number of candidate tuples is still large.
The authors use a prefix-filter to reduce duplicate pairs.

In order to improve the efficiency, we do not consider all q-grams of A in
B like the basic SSJoin. As mentioned before, we can detect a word probably
by the first few letters of it. Therefore, in order to improve the efficiency, we
consider the first q-grams of each word only in the first SQL join operation. This
predigest operation will not miss the relevancy between words and their short
word formats (e.g. “Conference” and “Conf.” have the common gram “Con”).
Furthermore, we also add q-grams of A’s first letters into B, in order to reserve
the potential relevancy between strings and their abbreviation. Table 3 shows
an example of tuples in our Extended IJoin approach.

After mapping R(A) and S(A) to R(A, B) and S(A, B) respectively, we op-
erate a SQL join on the attribute B. The result is a group of tuples (R.A, S.A)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete Information Formats 319

Table 3. Tuples in IJoin

R.A String R.B 3-grams

Computer Science Department Com
Computer Science Department Sci
Computer Science Department Dep
Computer Science Department CSD

R(A, B) S(A, B)

R(A) S(A)

R.B=S.B

Group(R.A, S.A)

Similarity(R.A, S.A)

Fig. 1. Extended IJoins steps

with common grams. Each pair(r, s) in the result can get its similarity value
ϕ(r, s) by using the similarity function (4). If the similarity value satisfies the
user specified threshold η, (r, s) will be the final join result. Fig 1 shows the
process of similarity joins by Extended IJoin.

5 Experimental Evaluation

In this section, we illustrate the results of our experiments which evaluate the ef-
fectiveness and efficiency of our IJoin approach. The experiments were performed
on a PC, with 2.0GHz CPU and 2GB memory. All programs were implemented
in C# and SQL Server.

5.1 Data Sets

We use the real bibliography records from the DBLP web site 1. The data set
consists of all records from 4 conferences, including “VLDB”, “ICDE”, “ICLP”
and “FSTTCS”. For each bibliography record, we generated several kinds of
citation formats (as shown in Table 4), which are frequently used in bibliography
references. We divide all citation records (about 10,000) into two parts, and the

1 http://www.informatik.uni-trier.de/˜ley/db/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

320 S. Song and L. Chen

Table 4. Example of different citation formats

ID Citations

1 In Proceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 - September 2, 2005, 145-156

2 In Proc. of the 31st Int. Conf. on Very Large Data Bases, Trondheim, Norway,
Aug 30 - Sep 2, 2005, 145-156

3 In the International Conference on Very Large Data Bases, 2005, 145-156
4 In the Int. Conf. on Very Large Data Bases, 2005, 145-156
5 In the VLDB, 2005, 145-156

similarity joins are performed to find all pairs of citations which represent the
same bibliography records.

5.2 Evaluation Criteria

We use the F-Measures with Precision and Recall [8] to evaluate the effectiveness
of join operations. Let Sa be actual pairs of citations which represent the same
bibliography records, andSf be pairs found by join operationswith high similarity.

Recall(Sa, Sf) =
|Sa

⋂
Sf |

Sa
(5)

Precision(Sa, Sf) =
|Sa

⋂
Sf |

Sf
(6)

F (Sa, Sf) =
2 ∗ Recall(Sa, Sf) ∗ Precision(Sa, Sf)
Recall(Sa, Sf) + Precision(Sa, Sf)

(7)

5.3 Effectiveness

In the first experiment, we evaluate the effectiveness by comparing the accuracy
of cosine similarity with q-grams, basic IJoin and Extended IJion. We divide
2,000 records of citations into two groups, and process them by different simi-
larity joins approaches. Fig. 2 shows the precision, recall and F-Measure under
different specified thresholds of minimum similarity.

Fig. 2 (a) shows that cosine similarity with q-grams has a low accuracy in
both precision and recall, which means that this approach can hardly find simi-
lar entities with incomplete information formats and the obtained results contain
many errors. In Fig. 2 (b)(c), we can find that our IJoin approach achieves higher
precision and recall. When the minimum similarity equals 0.925, it obtains the
best balance between precision and recall. We did not apply the decay factor
γ to IJoin in this experiment (e.g. γ = 1.0), which will be evaluated later.
And in Fig. 2 (d), we compare F-Measure among these three approaches which

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete Information Formats 321

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(a) Cosine similarity with q−grams

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(b) Basic IJoin

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(c) Extended IJoin

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(d) F−Measure

Minimum Similarity

A
cc

ur
ac

y

Cosine & Q−grams
Basic IJoin
Extend IJoin

Fig. 2. Accuracy of different approaches

demonstrates the superiority of IJoin in effectiveness. From the figure, we also
indicate that Extended IJoin achieves as high accuracy as the basic one, which
denotes that the filter operation in Extended IJoin does not influence the effec-
tiveness of IJoin too much. We will further discuss it in the next section.

Then, we evaluate the Extended IJoin with different decay factors to validate
that the first several letters have greater importance in a word and can help
to improve the accuracy of similarity joins. The experiment is also performed
in 2,000 records of citations. Fig. 3 shows the results. With the decrease of
decay factor γ, the first few letters (grams) get higher significance in the word
which enhances the similarity value between words and their short word formats.
As shown in figures, by enhancing the importance of first letters, the accuracy
improves when incomplete information formats exist. Note that the decay factor
decreases the whole value of all elements in the entity. It is the reason why
the best balance point between precision and recall decreases together with the
decay factor.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 S. Song and L. Chen

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(a) Decay factor = 1.0

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall
F−Measure

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(a) Decay factor = 0.9

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall
F−Measure

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(a) Decay factor = 0.8

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall
F−Measure

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1
(a) Decay factor = 0.7

Minimum Similarity

A
cc

ur
ac

y

Precision
Recall
F−Measure

Fig. 3. Decay factor in Extended IJoin

5.4 Scalability

In this experiment, we evaluate the scalability of three approaches. Different
number of citation records are performed under the best minimum similarity
threshold of each approach, e.g. cosine similarity with q-grams (short as cosine
& q-grams) achieves the best accuracy at η = 0.89, basic IJoin at η = 0.925
and Extended IJoin at η = 0.915. In order to be comparable with the cosine &
q-grams approach, no decay factor is adopted in both IJoin (e.g. γ = 1.0). Fig. 4
shows the results with different data scales. Fig. 4 (a) illustrates the efficiency
of the Extended IJoin approach. Its running time remains low even though the
number of citations is multiplied. The time performance of cosine & q-grams
and basic IJoin are quite similar and increase exponentially. We also show the
accuracy with different data scales in Fig. 4 (b). IJoin approach achieves almost
constant accuracy under the same similarity threshold in different numbers of
citations. The results confirm the scalability of our Extended IJoin approach in
both effectiveness and efficiency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Similarity Joins of Text with Incomplete Information Formats 323

1000 2000 3000 4000
0

2

4

6

8

10

12

14
x 10

9 (a) Efficiency

Number of citations

R
un

ni
ng

 ti
m

e
un

its

Cosine & Q−grams
Basic IJoin
Extended IJoin

1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
(b) Effectiveness

Number of citations

F
−

M
ea

su
re Cosine & Q−grams

Basic IJoin
Extended IJoin

Fig. 4. Different data scales of citations

Table 5. Basic and Extended IJoin

Pairs of Comparison Time Units Precision Recall

Basic IJoin 3,998,000 9,901,249 0.714 0.814
Extended IJoin 102,080 596,875 0.748 0.792

Finally, we compare the basic and Extended IJoin in our experiment. Table 5
shows the results in 4,000 records of citations. The filter operation in Extended
IJoin reduces the number pairs of comparison greatly by finding out pairs with
common elements. The total number of comparisons in basic IJoin is about 40
times greater than that of Extended IJoin. As shown in “Time Units” column,
the time performance improved greatly in Extended IJoin. For the effectiveness,
although some pairs that are actually similar may be filtered out, the number
of such false negatives is not so large and affects the result slightly as shown
in the table column “Recall”. Only about 2.2% of similar pairs are missed by
Extended IJoin in this experiment. It is interesting that Extended IJoin even
achieves higher accuracy than the basic one. This is because most of irrelevant
pairs are filtered out and the remaining pairs are probably similar.

6 Conclusions

In this paper, we proposed a novel approach, IJoin. to handle similarity joins
of text with incomplete formats, such as abbreviation and short words, are con-
sidered in our text matching scheme and similarity function. We connect the
first letter of each word to reserve potential abbreviation information and en-
hance the importance of the first few grams to find high similarity between
words and their short formats. The similarity function in IJoin is based on the
asymmetric features of similarity between entities with incomplete formats. We
also illustrated an efficient implement of our approach (Extended IJoin). Our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 S. Song and L. Chen

experiments showed the advantage of our approach in efficiency and effective-
ness when dealing with text entities with incomplete information formats.

References

1. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in
data warehouses. In VLDB, pages 586–597, 2002.

2. S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins
in data cleaning. In ICDE, page 5, 2006.

3. W. W. Cohen. Integration of heterogeneous databases without common domains
using queries based on textual similarity. In SIGMOD Conference, pages 201–212,
1998.

4. H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data
cleaning: Language, model, and algorithms. In VLDB, pages 371–380, 2001.

5. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Approximate string joins in a database (almost) for free. In VLDB,
pages 491–500, 2001.

6. L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an rdbms
for web data integration. In WWW, pages 90–101, 2003.

7. N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures
and algorithms. In SIGMOD Conference, pages 802–803, 2006.

8. B. Larsen and C. Aone. Fast and effective text mining using linear-time document
clustering. In KDD, pages 16–22, 1999.

9. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in
database integration. In ICDE, pages 294–301, 1993.

10. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

11. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference

Disambiguation�

Rabia Nuray-Turan, Dmitri V. Kalashnikov, and Sharad Mehrotra

Computer Science Department
University of California, Irvine

{rnuray,dvk,sharad}@ics.uci.edu

Abstract. Nowadays many data mining/analysis applications use the
graph analysis techniques for decision making. Many of these techniques
are based on the importance of relationships among the interacting units.
A number of models and measures that analyze the relationship impor-
tance (link structure) have been proposed (e.g., centrality, importance
and page rank) and they are generally based on intuition, where the ana-
lyst intuitively decides a reasonable model that fits the underlying data.
In this paper, we address the problem of learning such models directly
from training data. Specifically, we study a way to calibrate a connection
strength measure from training data in the context of reference disam-
biguation problem. Experimental evaluation demonstrates that the pro-
posed model surpasses the best model used for reference disambiguation
in the past, leading to better quality of reference disambiguation.

1 Introduction

Many modern data mining and data analysis applications employ decision mak-
ing capabilities that view the underlying dataset as a graph and then compute
the relationship/link importance using various link analysis measures/models
including node importance, centrality [29], and page rank [5]. Many of these
models are intuition-based and depend on the underlying dataset. In general,
since the importance measures are data-driven, a domain analyst decides which
measure fits the data best. In the absence of domain analyst, an arbitrary model
can be used; however, the results might not be optimal. But, what if there is
training data available wherein given any two nodes in the graph it is known
which node should be more central/important/etc. Can one design measures
that are not purely intuition-based but also take into account such information?

In this paper we provide an answer to that question for one of the graph
link analysis measures, called connection strength (CS). Given any two nodes
u and v in the graph G, the connection strength c(u, v) returns how strongly

� This material is based upon work supported by the National Science Foundation
under Award Numbers 0331707 and 0331690. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 325–336, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

u and v are interconnected to each other in G. We study this measure in the
context of reference disambiguation problem. In [19, 16, 17, 7, 14] a methodology
that successfully applies the CS measure to better the disambiguation quality
has been proposed.

Reference disambiguation often comes up when entities in a real world dataset
contain references to other entities. Frequently, entities are represented using
properties/descriptions that may not uniquely identify them leading to ambigu-
ity. For instance, a dataset may store information about two distinct individuals
‘John Smith’ and ‘Jane Smith’, both of whom are referred to as ‘J. Smith’ am-
biguously. References may also be uncertain due to differences in the representa-
tions of the same entity and errors in data entries (e.g., ‘John Smith’ misspelled
as ‘Jon Smith’). The goal of reference disambiguation is for each reference to
correctly identify the unique entity it refers to.

It is crucial to preprocess and clean the dataset before applying any data
mining/analysis applications; because the quality of the output depends on the
quality of the input data. Consequently, a large number of database and machine
learning approaches have been proposed for solving the reference disambigua-
tion and related disambiguation challenges, such as entity resolution and record
linkage [15, 1, 25, 20, 28, 24, 21, 18, 9, 4, 14, 17, 7, 16, 8].

Recently, some domain-independent data cleaning approaches for reference
disambiguation has been proposed [16,22], that systematically exploits features
and relationships among entities for the purpose of disambiguation. The ap-
proach in [16], which we employ to test our adaptive solution, views the dataset
as a graph of entities that are linked to each other via relationships. The model
first utilizes a feature based method to identify a set of candidate entities for
a reference. Graph theoretic techniques are then used to discover and analyze
relationships that exist between the entity containing the reference and the set
of candidates. The analysis is based on the CAP principle:

Context Attraction Principle(CAP): If reference r made in the con-
text of entity x refers to and entity yj, whereas the description provided
by r matches multiple entities y1, y2, . . . , yN , then x and yj are likely to
be more strongly connected to each other via chains of relationships than
x and y� (� = 1, 2, . . . , N ; � �= j)

To illustrate the CAP, consider a simple publication scenario, where ‘authors’
write ‘papers’, and ‘authors’ are affiliated with some ‘organizations’. For instance,
some paper P1 might mention ‘J. Smith’ as its author. The dataset might con-
tain only two people who have similar names: John and Jane Smith. Then r =
‘J. Smith’, x = P1, y1 = ‘John Smith’, and y2 = ‘Jane Smith’. To decide if the
‘J. Smith’ is Jane or John, the CAP proposes to compare two sets of paths in the
entity-relationship graph that exist between x and y1 and between x and y2.

The main contribution of this paper is a supervised learning algorithm that
learns the importance of relationships, or CS, among the classified entities and
makes the approach self-tunable to any underlying domain so that the partici-
pation of the domain analyst is minimized significantly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference Disambiguation 327

The rest of this paper is organized as follows. Section 2 covers related work.
Section 3 defines the problem of reference disambiguation and the essence of
the disambiguation approach we use. An adaptive model for CS is discussed
in Section 4. The empirical evaluation of the proposed solution is covered in
Section 5. Finally, Section 6 concludes the paper.

2 Related Work

In this section we give a brief overview of the existing connection strength models
(Section 2.1) and the reference disambiguation techniques (Section 2.2).

2.1 Connection Strength Models

The connection strength c(u, v) between two nodes u and v reflects how strongly
these nodes are related to each other via relationships in the graph. Generally,
a domain expert decides a mathematical model to compute c(u, v), which de-
scribes the underlying dataset best. Various research communities have proposed
measures that are directly related to c(u, v). Below we summarize some of the
principal models.

Diffusion kernels on graphs in kernel methodology [26] is directly related
to connection strength. Diffusion kernel methods view the underlying dataset
as a graph G = (V, E), where V is a set of entities and E is a set of edges
which define the base similarities between entities. The base similarity for entities
x, y ∈ V represents the degree of attraction between x and y. Moreover, the base
similarities are used to compute indirect similarities by combining the direct
similarities in a particular way, see [26] for details.

Another model of measuring CS is random walks in graphs. It has been exten-
sively studied, including our previous work [17, 16]. The model uses the proba-
bility of reaching node v from node u by random walks in G to compute c(u, v).
Relevant importance in graphs [30] is a generalized version of page rank algo-
rithm [5]. It studies the relevant importance of a set of nodes with respect to
a set of root nodes. The connection strength in this study is the importance of
node t given node r (i.e., I(t|r)). Electric circuit model is also a CS model which
uses the electric networks principles to find the connection subgraphs between
two nodes u and v [10]. That model views the graph as an electric circuit con-
sisting of resistors, and compute c(u, v) as the amount of electric current that
goes from u to v.

2.2 Disambiguation

Reference disambiguation problem is related to the record de-duplication, record
linkage, and object consolidation problems [7, 21] and often arises when differ-
ent information sources are merged to create a single database. The differences
between record linkage and reference disambiguation can be intuitively viewed
using the relational terminology as follows: while the record linkage problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

consists of determining when two records are the same, reference disambigua-
tion corresponds to ensuring that references in a database point to the correct
entities. In the reference disambiguation problem, for each reference, a set of
possible candidates is given and the task is to pinpoint the correct entity in
this set. On the other hand, the object consolidation problem aims to correctly
group/cluster the references that refer to the same object without knowing the
possible entities in the dataset.

The traditional approach to these problems is to analyze the textual sim-
ilarities among the object features to make a disambiguation decision. Such
approaches are called feature-based similarity (FBS) techniques [23, 11, 12]. Re-
cently, a number of techniques have been proposed that go beyond the traditional
approach [14, 1, 3, 24, 27, 21, 9, 17, 16, 7, 2, 22]. Ananthakrishna et al [1] presented
relational deduplication in data warehouses where there is dimensional hierar-
chy over the relations. Bhattacharya and Getoor introduced a method which
requires that social groups function as cliques [3]. This model expects that there
are strong correlations between pairs or sets of entities, such that they often
co-occur in information sources. Bekkerman and McCallum studied the disam-
biguation of name references in a linked environment [2]. Their model utilizes the
hyperlinks and distance between the pages where ambiguous names are found.
Minkov et al [22] introduced extended similarity metrics for documents and
other objects embedded in graphs, facilitated by a lazy graph walk. They also
introduced a learning algorithm which adjusts the ranking of possible candidates
based on the edges in the paths traversed.

In this paper, we employ the algorithm presented in [17,16] to test our adaptive
connection strength model. The algorithm uses a graphical methodology; the
disambiguation decisions are made not only based on object features like in the
traditional approach, but also based on the inter-object relationships, including
indirect ones that exist among objects. The essence of the adaptive model is
to be able to learn the importance of various connections on past data in the
context of reference disambiguation.

3 Problem Definition

We now formally define the reference disambiguation problem. Assume dataset
D contains a set of entities X . Each entity x ∈ X itself consists of one or more
attributes x.a1, x.a2, . . ., and it might also contain several references x.r1, x.r2, . . .
to other entities in X . Let R be the set of all references. Each reference r ∈ R is
essentially a description and may itself contain one or more attributes. For each
reference r ∈ R the option set Sr of that reference is known. It contains all
entities in X to which r might potentially refer: Sr = {yr1, yr2, . . . , yrnr}. For r
its Sr is initially determined either by ad hoc techniques, domain knowledge, or
by choosing all entities whose feature-based similarity exceed a certain threshold.
The true (unknown to the algorithm) entity to which r refers to is denoted as
r∗. Then the goal of reference disambiguation is to pick the right yrj (i.e., r∗)
from Sr to which r really refers to.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference Disambiguation 329

We denote the entity in the context of which reference r is made as xr. The
employed reference disambiguation approach resolves each reference r ∈ R by
analyzing direct and indirect relationships that exist between xr and each mem-
ber of Sr. For that, it views the dataset D as an undirected entity-relationship
graph G, where node represent entities and edges represent relationships. In
essence, G can be viewed as an instantiation of the E/R diagram for D. The
approach relies on the CAP principle (Section 1), which can be reformulated in
terms of connection strength as: for r its r∗ is likely to be such element yrj from
Sr that c(xr , yrj) ≥ c(xr, yr�) for all � �= j.

To make the definition clear, let us assume that we use the publication dataset
for reference disambiguation. In the publication domain ‘authors’ write ‘papers’.
We might have a paper P1 that mentions ‘J. Smith’ as its author. Dataset D
might contain two authors who match that description: John Smith and Jane
Smith, where the actual author of P1 is John. Then r = ‘J. Smith’, xr = P1,
r∗ = ‘John Smith’, and Sr = {‘John Smith’, ‘Jane Smith’}.

4 Solution

The core of the approach in [17,16] that we employ to test our adaptive solution
is a connection strength model, called WM. It is a fixed mathematical model and
based on some intuitive assumptions which are true for many datasets. In this
section we first describe how an adaptive CS model can be created (Section 4.1).
Then we give an example adaptive CS model (Section 4.2) which is used in this
paper. Finally, we discuss the self-tuning algorithm (Section 4.3).

4.1 Adaptive Connection Strength Model

Assume that we can classify each path that the disambiguation algorithm finds
in graph G into a finite set of path types ST = {T1, T2, ..., Tn}. Namely, there is
a function T (p, G) → ST such that for any given path p and graph G, maps it
to one of those path types. If any two paths p1 and p2 are of the same type Tj ,
then they are treated as identical by the algorithm. Then, for any two nodes u
and v we can characterize the connections among them with a path-type count
vector Tuv = (c1, c2, ..., cn), where each ci is the number of paths of type Ti that
exist between u and v. If we assume that there is a way to associate weight wi

with each path type Ti, then CS model computes c(u, v) as:

c(u, v) =
n∑

i=1

ciwi. (1)

The existing CS models differ in classification of path types and in the way of
assigning weights to path types. Furthermore, these are generally chosen by the
algorithm designer.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

4.2 Path Type Model

To classify the paths we use a model which we refer to as Path Type Model (PTM).
It classifies paths by looking at the types of edges the path is comprised of. Namely,
PTM views each path as a sequence of edges 〈e1, e2, . . . , ek〉, where each edge has a
type associated with it. This sequence of edge types (〈E1, E2, . . . , Ek〉) are treated
as a string and PTM assigns different weights to each string. For example, in the
publications domain authors write papers and are affiliated with organizations.
Hence there are two types of edges that correspond to the two types of relation-
ships: E1 for ‘writes’ and E2 for ‘is affiliated with’.

4.3 Learning Algorithm

The CAP principle in the reference disambiguation problem allows us to cali-
brate a CS model directly from data and apply it in the context of reference
disambiguation. The principle states that for a reference r it is likely that

c(xr, yrj) ≥ c(xr , yr�) for any r, � �= j where yrj = r∗. (2)

Because of the ‘likely’ part in the CAP, many of the inequalities in the system
(2) should hold, but some of them might not. That is, system (2) might be
overconstrained and might not have a solution. To address the ‘likely’ part, we
add a slack to the system and then require it be minimized:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Constraints:
c(xr , yrj) + ξr� ≥ c(xr , yr�) for any r, � �= j, yrj = r∗

ξr� ≥ 0

Objective:
Minimize

∑
r� ξr�.

(3)

The employed reference disambiguation approach also states that for reference
r the connection strength ‘evidence’ for the right option yrj = r∗ should visibly
outweigh that for the wrong ones yr�, � �= j. Thus, in addition to the objective
in (3), the value of [c(xr, yrj) − c(xr, yr�)] should be maximized for all r, � �= j,
which translates into maximizing

∑
r� [c(xr , yrj) − c(xr, yr�)]. After combining

the first and second objectives, we have:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Constraints:
c(xr, yrj) + ξr� ≥ c(xr, yr�) for any r, � �= j, yrj = r∗

ξr� ≥ 0

Objective:
Minimize α

∑
r� ξr� + (1 − α)

∑
r� [c(xr , yr�) − c(xr, yrj)]

(4)

Here α is a parameter that allows to vary the contribution of the two different
objectives. It is a real number between 0 and 1, whose optimal value can be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference Disambiguation 331

movies

people

studios

Spellbound

Roman Holiday

Mission Impossible

Paula Wagner

David Selznick

Alfred Hitchcock

William Wyler

Brian De Palma

Eddie Albert

Henry Czerny

Tom Cruise

Ingrid Bergman

Gregory Peck

Audrey Hepburn

movie-producingStudio movie-distributingStudio

A D P

movie-actor movie-director movie-producer

D

D

P

P

A

A

A

A

A

A

A

P

D

P

Paramount

Selznick Pictures United Artists

A

Cinecitta

Fig. 1. Movies Dataset: Sample entity-
relationship graph

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

V
al

ue

Cardinality of option sets

pmf

Fig. 2. PMF of sizes of option sets

determined by varying α on training data and observing the effect on the quality
of the disambiguation. System (4) essentially converts the learning task into
solving the corresponding linear programming problem, and linear programming,
in general, is known to have efficient solutions [13]. All c(u, v) in (4) should be
computed according to (1) and adding a normalization constraint that all weights
should be in [0, 1] domain: 0 ≤ wi ≤ 1, for all i. The task becomes to compute
the best combination of weights w1, w2, . . . , wn that minimizes the objective, e.g.
using any off-the-shelf linear programming solver.

5 Experimental Results

We experimentally study our method using real and synthetic datasets taken
from two domains: Movies (Section 5.1) and Publications (Section 5.2). We
compare the learning approach (PTM) against the best existing model used
for disambiguation so far: the random walk model (WM) [17], which we will
refer to as RandomWalk.

RandomWalk model computes c(u, v) as the probability to reach node v from
node u via random walks in graph G, such that the probability to follow an edge
is proportional to the weight of the edge. Accordingly, c(u, v) is computed as the
sum of the connection strength c(p) of each path p from PL(u, v), where c(p) is
the probability of following path p in G, i.e.

c(u, v) =
n∑

p∈PL(u,v)

c(p) (5)

We report the results in terms of accuracy1 , which is defined as the fraction of
correctly resolved references.
1 For the reference disambiguation problem we solve, the accuracy and F-measure are

known to be the same.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.25

RandomWalk
PTM

 0.88
 0.885
 0.89

 0.895
 0.9

 0.905
 0.91

 0.915
 0.92

 0.925
 0.93

 0.935

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.5

RandomWalk
PTM

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.75

RandomWalk
PTM

 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86

 0 0.2 0.4 0.6 0.8 1
A

cc
ur

ac
y

Alpha

Fraction= 1

RandomWalk
PTM

Fig. 3. Accuracy vs. Alpha: where c = 2

5.1 Experiments on the Movies Domain

We use the Stanford Movies Dataset2. A sample entity-relationship graph for
this dataset is illustrated in Figure 1. The dataset contains three different entity
types: movies (11,453 entities), studios (992 entities) and people (22,121 entities)
and there are five types of relationships: actors, directors, producers, producing
studios and distributing studios.

When studying the accuracy of disambiguation, we use a method of testing
commonly employed by many practitioners, including the recent KDD CUP. We
introduce uncertainty in the dataset manually in a controlled fashion and then
analyze the resulting accuracy of various methods. Specifically, we disambiguate
references from movies to directors, by making them uncertain. First, a fraction
f : 0 ≤ f ≤ 1 of all director references is chosen to be made uncertain, while the
rest remain certain. Each to-be-uncertain director reference r is made ambiguous
by modifying it such that it either points to two directors instead of one (i.e.,
c = |Sr| = 2) or points to c directors where c is distributed according to the
PMF in Figure 2 (i.e., c = |Sr| ∼ pmf). Here c stands for the cardinality of Sr.
Training and testing is performed for the same values of f and c, but the director
references chosen to be ambiguous are different in training and test data.

Figures 3 and 4 study the effect of the parameter α, that controls the con-
tribution of various objectives in system (4) from Section 4.3, on the accuracy
of various approaches, for different combinations of f and c. We performed the
experiments for two different cardinalities (c = 2 and c ∼ pmf) and four different
fractions of ambiguous entities (f = {0.25, 0.5, 0.75, 1}). In these experiments,
the optimal α was found to be approximately 0.10. When α is set to its best

2 http://www-db.stanford.edu/pub/movies/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference Disambiguation 333

 0.93

 0.932

 0.934

 0.936

 0.938

 0.94

 0.942

 0.944

 0.946

 0.948

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.25

RandomWalk
PTM

 0.855

 0.86

 0.865

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.5

RandomWalk
PTM

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0 0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Alpha

Fraction= 0.5

RandomWalk
PTM

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1
A

cc
ur

ac
y

Alpha

Fraction= 1

RandomWalk
PTM

Fig. 4. Accuracy vs. Alpha: where c ∼ pmf

value, PTM visibly outperforms the state-of-the-art model, RandomWalk. As
the number of ambiguous references increases, the improvement with the PTM
against the RandomWalk method becomes more significant. For example, the
improvement with PTM for f = 0.25 and c = 2 is 2.7%, whereas it is 9.18%,
when f = 1 and c = 2.

5.2 Experiments on the Publications Domain

Dataset. We now present the results on SynPub dataset, which is from [16]
and emulates CiteSeer dataset. It contains four different types of entities: author,
paper, department, and organization and three types of relationships: author-
paper, author-department, and department-organization.

We generated five different sets of datasets. Each set contains a training and
ten different testing datasets, the parameters are same for all datasets; however,
the authors to be disambiguated are different. Each dataset has different types
and levels of uncertainty (see [17]) and contains 5000 papers, 1000 authors, 25
organizations, and 125 departments. The least ambigious datasets are in set 4,
while the most ambiguous ones are either in set 5 or set 1, see Table 1.

Results. For each training dataset, we selected the optimal α value, which is
0.10 for datasets 1, 2, and 5 and 0.01 for dataset 3 and 4. Then these optimal val-
ues were used in testing. The average accuracy of different testings are reported
in Table 1. Since the results of PTM and RandomWalk are essentially identi-
cal, we performed another experiment with a different path classification model,
hybrid model. This model is the combination of PTM with RandomWalk, such
that it takes into account the node degrees in addition to the edge types in a
path. The connection strength of this model is computed as:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

c(u, v) =
n∑

p∈PL(u,v)

c(p)wTi , where Ti = T (p, G) (6)

Accuracy results with the hybrid model is the same as the other two models.
So we can conclude that RandomWalk model is a good model for this specific
setting. However, it may not work ideally for every instance of the publications
domain. To show that, we performed some additional experiments. Our intuition
in these experiments is that when creating the SynPub dataset, the analyst has
chosen to project from CiteSeer relationships of only a few carefully chosen types
that wouold work well with RandomWalk, i.e. the three types discussed above,
while purposefully pruning away relationship types that are less important for
disambiguation and would confuse RandomWalk model. In other words, the
analyst has contributed his intelligence to that unintelligent model.

We gradually added random noise to one of the datasets, namely dataset 5,
by introducing relationships of a new type – that represent random meaningless
relationships. The random relationships were added to the ‘false’ cases only.
That is, the added relationships are between the reference r and the candidates
(yrj) ∈ {Sr − r∗}. Figure 5 examines the effect of this noise on the accuracy
of RandomWalk and PTM techniques. It shows that both of the techniques
obtain very high accuracy compared to the standard approach, shown as ‘FBS’,
which does not use relationships for disambiguation. Initially, RandomWalk and

Table 1. Publications dataset results

Dataset PTM RandomWalk Hybrid FBS

1 93.2% 93.1% 93.1% 50.0%
2 94.9% 94.9% 94.9% 55.0%
3 74.6% 74.7% 74.7% 55.0%
4 98.4% 98.4% 98.4% 74.8%
5 64.9% 64.9% 64.9% 50.0%

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ac
cu

ra
cy

datasets

RandomWalk
PTM
FBS

Fig. 5. Accuracy vs. Number of random relationships(noise)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Self-tuning in Graph-Based Reference Disambiguation 335

PTM has the same accuracy. But as the level of noise increases, the accuracy
of RandomWalk drastically drops below that of PTM and FBS. PTM is an
intelligent technique that learns the importance of various relationships and can
easily handle noise – its curve stays virtually flat. Notice, since FBS does not
use any relationships, including the random noise, its curve stays flat as well.

6 Discussions and Conclusion

Our results show that adaptive connection strength model always outperforms
the state-of-the-art RandomWalk model. There are many advantages of self-
tunable CS model in the context of reference disambiguation. First of all, it
minimizes the analyst participation, which is important since nowadays var-
ious data-integration solutions are incorporated in real Database Management
Systems (DBMS), such as Microsoft SQL Server DBMS [6]. Having a less analyst-
dependent technique makes that operation of wide applicability, so that non-
expert users can apply it to their datasets. The second advantage of such a CS
model is that it expects to increase the quality of the disambiguation technique.
There are also less obvious advantages. For example, the technique is able to
detect which path types are marginal in their importance. Thus, the algorithm
that discovers paths when computing c(u, v) can be sped up, since the path
search space can be reduced by searching only for important paths. Speeding up
the algorithm that discovers paths is important since it is the bottleneck of the
overall disambiguation approach [17, 15, 16].

References

1. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in
data warehouses. In VLDB, 2002.

2. R. Bekkerman and A. McCallum. Disambiguating web appearances of people in a
social network. In WWW, 2005.

3. I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity resolu-
tion. In MRDM Workshop, 2005.

4. M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In SIGKDD, 2003.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proc of International World Wide Web Conference, 1998.

6. S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya, and T. Vassilakis.
Data cleaning in Microsoft SQL Server 2005. In SIGMOD, 2005.

7. Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting relationships for object
consolidation. In Proc. of International ACM SIGMOD Workshop on Information
Quality in Information Systems (ACM IQIS 2005), Baltimore, MD, USA, June 17
2005.

8. W. Cohen, H. Kautz, and D. McAllester. Hardening soft information sources. In
SIGKDD, 2000.

9. X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex
information spaces. In SIGMOD, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 R. Nuray-Turan, D.V. Kalashnikov, and S. Mehrotra

10. C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection sub-
graphs. In SIGKDD, 2004.

11. I. Fellegi and A. Sunter. A theory for record linkage. Journal of Amer. Statistical
Association, 64(328):1183–1210, 1969.

12. M. Hernandez and S. Stolfo. The merge/purge problem for large databases. In
SIGMOD, 1995.

13. F. Hillier and G. Lieberman. Introduction to operations research. McGraw-Hill,
2001.

14. D. V. Kalashnikov, S. Chen, R. Nuray-Turan, S. Mehrotra, and N. Ashish. Disam-
biguation algorithm for people search on the web. In Proc. of the IEEE 23rd Inter-
national Conference on Data Engineering (IEEE ICDE 2007), Istanbul, Turkey,
April 16–20 2007.

15. D. V. Kalashnikov and S. Mehrotra. RelDC project.
http://www.ics.uci.edu/~dvk/RelDC.

16. D. V. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via analy-
sis of entity-relationship graph. ACM Transactions on Database Systems (ACM
TODS), 31(2):716–767, June 2006.

17. D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-
independent data cleaning. In SIAM International Conference on Data Mining
(SIAM Data Mining 2005), Newport Beach, CA, USA, April 21–23 2005.

18. X. Li, P. Morie, and D. Roth. Identification and tracing of ambiguous names:
Discriminative and generative approaches. In AAAI, 2004.

19. B. Malin. Unsupervised name disambiguation via social network similarity. In
Workshop on Link Analysis, Counterterrorism, and Security, 2005.

20. A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional
data sets with application to reference matching. In ACM SIGKDD, 2000.

21. A. McCallum and B. Wellner. Object consolidation by graph partitioning with a
conditionally-trained distance metric. In KDD Workshop on Data Cleaning, Record
Linkage and Object Consolidation, 2003.

22. E. Minkov, W. W. Cohen, and A. Ng. Contextual search and name disambiguation
in email using graphs. In SIGIR, 2006.

23. H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage
of vital records. Science, 130:954–959, 1959.

24. H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty
and citation matching. In NIPS Conference, 2002.

25. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.
In SIGKDD, 2002.

26. J. Shawe-Taylor and N. Cristianni. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

27. P. Singla and P. Domingos. Multi-relational record linkage. In MRDM Workshop,
2004.

28. S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string
tranformation weights for high accuracy object identification. In SIGKDD, 2002.

29. S. Wasserman and K. Faust. Social Network Analysis Methods and Applications.
Cambridge University Press, 1994.

30. S. White and P. Smyth. Algorithms for estimating relative importance in networks.
In SIGKDD, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/~dvk/RelDC

Probabilistic Nearest-Neighbor Query
on Uncertain Objects

University of Munich, Germany
 {kriegel, kunath, renz}@dbs.ifi.lmu.de

Abstract. Nearest-neighbor queries are an important query type for commonly
used feature databases. In many different application areas, e.g. sensor databases,
location based services or face recognition systems, distances between objects
have to be computed based on vague and uncertain data. A successful approach
is to express the distance between two uncertain objects by probability density
functions which assign a probability value to each possible distance value. By in-
tegrating the complete probabilistic distance function as a whole directly into the
query algorithm, the full information provided by these functions is exploited.
The result of such a probabilistic query algorithm consists of tuples containing the
result object and a probability value indicating the likelihood that the object
satisfies the query predicate. In this paper we introduce an efficient strategy for

cessing probabilistic nearest-neighbor queries, as the computation of these
probability values is very expensive. In a detailed experimental evaluation, we dem-
onstrate the benefits of our probabilistic query approach. The experiments show
that we can achieve high quality query results with rather low computational cost.

1 Introduction

In many modern application ranges, e.g. spatio-temporal query processing of moving
objects [4], sensor databases [3] or personal identification systems [13], usually only un-

certain data is available. In the area of multimedia databases, e.g. image or music data-
bases, or in the area of personal identification systems based on face recognition and fin-
gerprint analysis, there often exists the problem that a feature vector cannot exactly be
determined. This “positional” uncertain data can be handled by assigning confidence in-
tervals to the feature values, by specifying probability density functions indicating the
likelihood of certain feature values, or by specifying confidence values for a set of dis-
crete feature values. The advantage of the latter form of representation of uncertain data
is that distances between the uncertain objects can be processed more easily than object
distances based on smooth probability density functions. Furthermore, positional uncer-
tainties of objects are often given in form of discrete values, in particular, if potential
object locations are derived from different observations. Even when the uncertainty of
the objects are specified by means of smooth probability density functions, we can
achieve our preferred discrete data representation by means of sampling techniques.
With this concept, we can find a good trade-off between accuracy and query perfor-
mance.

The approach proposed in [9] which uses probabilistic distance functions to measure
the similarity between uncertain objects seems very promising for probabilistic similar-
ity queries, in particular for the probabilistic distance-range join. Contrary to traditional

pro

un

Hans-Peter Kriegel, Peter Kunath, and Matthias Renz

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 337–348, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

approaches, they do not extract aggregated values from the probabilistic distance func-
tions but enhance the join algorithms so that they can exploit the full information pro-
vided by these functions. The resulting probabilistic similarity join assigns a probability
value to each object pair indicating the likelihood that the pair belongs to the result set,
i.e. these probably values reflect the trustability of the result. In this paper, we adopt the
idea to use probabilistic distance functions between positional uncertain objects in order
to assign probability values to query results reflecting the trustability of the result. In ap-
plications where wrong results have fatal consequences, e.g. medical treatment, users
might only look at very certain results, whereas in commercial advertising, for instance,
all results might be interesting. Based on this concept, we propose a solution for proba-
bilistic nearest neighbor queries which are practically very important in many applica-
tion areas.

2 Related Work

In the last decade, a lot of work has been done in the field of similarity query process-
ing with the focus on management and processing of uncertain data. Thereby, the devel-
opment of efficient and effective approaches providing probabilistic query results were
of main interest. A survey of the research area concerning uncertainty and incomplete
information in databases is given in [1] and [11]. Recently a lot of work has been pub-
lished in the area of management and query processing of uncertain data in sensor data-
bases [3] and especially in moving object environments [4, 12]. Similar to the approach
presented in this paper, the approaches in [2, 3, 4, 12] model uncertain data by means of
probabilistic density functions (pdfs). In [12], for instance, moving objects send their
new positions to the server, iff their new positions considerably vary from their last sent
positions. Thus, the server always knows that an object can only be a certain threshold
value away from the last sent position. The server, then, assigns a pdf to each object re-
flecting the likelihood of the objects possible positions. Based on this information the
server performs probabilistic range queries. Likewise, in [4] an approach is presented for
probabilistic nearest neighbor queries. Note that both approaches assume non-uncertain
query objects, and thus, they cannot be used for queries where both query and database
objects are uncertain. Queries that support uncertain database objects as well as uncertain
query objects are very important as they build a foundation for probabilistic join proce-
dures. Most recently, in [9] a probabilistic distance range join on uncertain objects was
proposed. Instead of applying their join computations directly on the pdfs describing the
uncertain objects, they used sample points as uncertain object descriptions for the com-
putation of the probabilistic join results.

Furthermore, most recently [5] an approach was proposed dealing with spatial query
processing not on positionally uncertain data but on existentially uncertain data. This
kind of data naturally occurs , if, for instance, objects are extracted from uncertain

 satellite images. The approach presented in this paper does not deal with existentially
uncertain data but with positionally uncertain data which can be modelled by probability
density functions or are already given as probabilistic set of discrete object positions
similar to the approach presented in [9].

338 H.-P. Kriegel, P. Kunath, and M. Renz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

3 Probabilistic Nearest Neighbor Query on Uncertain Data

As already mentioned, a non-probabilistic similarity query on positional uncertain
data has some limitations which are overcome by our probabilistic approach introduced
in this section. It is based on a direct integration of the probabilistic distance functions
rather than using only aggregated values. Our new query type assigns to each result ob-
ject a probability value reflecting the likelihood that the object fulfills the query
predicate.

Definition 1 (probabilistic similarity query)
Let q be an uncertain object and DB denote a database, and let θd denote any similarity
query predicate based on a given distance function d. Furthermore, let P(q θd o) denote
the probability that q θd o is true for the object pair (q, o) ∈ q × DB. Then, the probabi-
listic similarity query Q consists of result pairs (o, P(q θd o)) ∈ DB × [0,1] for which
P(q θd o) > 0 holds, i.e. Q = {(o, P(q θd o)) | P(q θd o) > 0} ⊆ DB × [0,1]

3.1 Probabilistic Nearest-Neighbor Query Based on Smooth Probabilistic
Distance Functions

In this section, we shortly show how we can theoretically compute the probability value
P(q θd

nn o) underlying the probabilistic nearest-neighbor query.

Lemma 1. For a given uncertain query object q each uncertain database object o, we can
compute P(q θd

nnο) reflecting the probability that o is the nearest neighbor of q as
follows:

Proof First, we fix a certain position v for the uncertain object representation q. Then,
we weigh the probabilistic distance function between our uncertain
object o and our “certain” position v with a probability value Pweight indicating the like-
lihood that all database objects have a distance higher than τ from v. Integrat-
ing, over all distance values τ yields the probability that o is the nearest neighbor of q
under the condition that the position of q is equal to v. Finally, integrating over all pos-
sible positions of q yields the probability that o is the nearest neighbor of q.

Note that we can extend Lemma 1 so that it can be used as foundation for the proba-
bilistic nearest-neighbor query, by substituting the probability value Pweight by the fol-
lowing expression:

3.2 Probabilistic Nearest-Neighbor Query Based on Discrete Probabilistic
Distance Representations

Although for some uncertain object representations it would be possible to compute
the probabilistic similarity queries directly on Lemma 1, we propose to compute them

θ
prob

θ
prob

P q θd
nno() q v() fd δ τ v–() o,() τ() 1 fd δ τ v–() x,() t() td

∞–

τ

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

x DB\o∈
∏⋅ τd

∞–

 ∞+

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ vd
IR

d
∫∫=

fd δ τ v–() o,() τ()

x DB\o∈

fd δ τ v–() y,() t() td
∞–

τ

∫⎝ ⎠
⎛ ⎞ 1 fd δ τ v–() x,() t() td

∞–

τ

∫–⎝ ⎠
⎛ ⎞⋅

y A∈
x DB\o()\A∈

∏
A DB\o⊆
A k 1–=

∑

.

.

 Probabilistic Nearest-Neighbor Query on Uncertain Objects 339

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

based on the generally applicable concept of monte-carlo sampling. In many applications
the uncertain objects might already be described by a discrete probability density func-
tion, i.e. we have the sample set already. If the uncertain object is described by a contin-
uos probability density function, we can easily sample according to this function and
derive a set of samples. In the following, we assume that each object o is represented by a
set of s sample points, i.e. o is represented by s different representations {o1, ..., os}. After
having described how to organize these discrete object representations within a database
(cf. Section 3.2.1), we show how to compute the probabilistic nearest-neighbor query
(cf. Section 3.2.2) based on these discrete object representations.

Definition 2 (clustered object representation)
Let {o1, ..., os } be a discrete object representation Then, we call the set {{o1 ,1, ... ,
o1,n 1

},..., {ok,1, ..., ok,nk
}} a clustered object representation where =

{o1, ..., os} and n1+...+ nk = s.
Similar to [9], we store these clustered object representations in R-tree [6] like index

structures.

Definition 3 (minimal maximum object distance)
Let q be an uncertain query object. Then the minimal maximum object distance of q
is computed by: dminmax = min {maxdist (MBR(q), MBR(o))| o ∈ DB}

Lemma 2 Let q be an uncertain query object and DB be a set of uncertain objects. Then,
the following statement holds:

∀o ∈ DB: mindist (MBR(q), MBR(o)) > dminmax ⇒ P(q θd
nn o) = 0

Proof Let o’ ∈ DB be the object in the database for which maxdist (MBR(q),
MBR(o’)) = dminmax holds. Then, for all sample points qi,j, oi,j, o’i’,j’ the following
statement holds: d(qi,j, oi,j) > d(qi,j, o’i’,j’). Therefore, the probability that o is the nearest
neighbor of q is equal to 0.

Based on the candidate sets C = {o ∈ DB | mindist (MBR(q), MBR(o)) ≤ dminmax}, we
can introduce a straightforward approach which computes the probability value pnn(q, o)
indicating the likelihood that the object o = {o1, ..., os } is the nearest neighbor of q = {q1,
..., qs}.

oi j,
i 1…k j 1…ni=,=

∪

.

.

3.2.1 Database Integration of Uncertain Data
In order to reduce the complexity of the query computation, we introduce an efficient
query algorithm which is based on groups of samples. Thereby two samples oi and oj

of the same object o are grouped together to one cluster, if they are close to each
other. We can generate such a clustering on the object samples by applying the parti-
tioning clustering algorithm k-means [10] individually to each sample set {o1, ..., os}.
Thus, an object is no longer approximated by s samples, but by k clusters containing
all the s sample points of the object.

3.2.2 Nearest-Neighbor Query Algorithm
A straightforward approach for an efficient probabilistic nearest-neighbor query is
based on the minimal maximum distance dminmax (cf. Definition 3). Based on this
distance it is possible to exclude many database objects o from the probabilistic near-
est-neighbor search of a query object q (cf.Lemma 2).

340 H.-P. Kriegel, P. Kunath, and M. Renz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lemma 3. Let {o1, ..., os } ∈ C. Then, the probability value pnn(q, o) indicating the
likelihood that o is the nearest neighbor of q can be computed by:

where pnn(qi, oj) is equal to

Proof First, we compute the probability pnn (qi, oj) that oj is the closest sample to the
sample qi, by computing for each database object p ∈ C the probability P(p, qi, oj) that
no sample of p is closer to the sample qi than the sample oj. Note that for objects p ∈
DB\C P(p, qi, oj) is 1. The combination of these independent probability
values yields the probability that the sample point oj is the nearest sample point for the
sample point qi. The average of these s2 many probability values pnn(qi, oj) is equal to
pnn(q, o).

In the following, show that the pruning distance for the uncertain query object q can
further be decreased. The basic idea is that we do not use the minimal maximum object
distance of q, i.e. dminmax, but the minimal maximum distance of each single sample point.

Definition 4 (minimal maximum sample distance)
Let DB be a set of uncertain objects and let q = {{q1,1, ..., q1,n 1

},..., {qk,1, ..., qk,nk
}} be

a clustered query object representation. Then, the minimal maximum sample distance of
each sample point qi,j and the minimal maximum cluster distance of each cluster Ci =
{qi,1, ..., qi,n i

} are computed as follows:
dminmax(qi,j) = min {maxdist (qi,j, MBR(o))| o ∈DB}
dminmax(Ci) = min {maxdist (MBR(Ci), MBR(o))| o’∈DB}

Lemma 4. Let DB be a set of uncertain objects. Then, the following statement holds for
an uncertain query object q = {{q1,1, ..., q1,n1

},..., {qk,1, ..., qk,n
k
}}:

∀i ∈ 1..k ∀j ∈ 1..ni : dminmax(qi,j) ≤ dminmax(Ci) ≤ dminmax

In our final approach, we exploit the above lemma. Basically, our probabilistic near-
est-neighbor query computes for the query object q = {{q1,1, ..., q1,n1

},..., {qk,1, ..., qk,nk
}}

the possible nearest neighbors in the set DB by carrying out the following two steps for
each o ∈ DB, an example is depicted in Figure 1:

pnn q o,()
pnn qi oj,()

i j 1…s∈,
∑

s2---,=

1
qi pl,() d qi pl,() d qi oj,() l 1…s∈∧<{ }

s
--–⎝ ⎠

⎛ ⎞
p C∈

p q≠ p o≠∧

∏

P p oi oj, ,()∏

Fig. 1. Computation of nearest-neighbor probabilities (s=2)

q

o

p’

q1

o1

pnn(q1, o1) = (1-1/2).(1-2/2) = 0/4

o2

q2

pnn(q1, o2) = (1-2/2).(1-2/2) = 0/4
pnn(q2, o1) = (1-0/2).(1-0/2) = 4/4
pnn(q2, o2) = (1-0/2).(1-1/2) = 2/4

pnn(q, o) = (4/4 + 2/4)/4 = 6/16 = 37,5 %

p

.

 Probabilistic Nearest-Neighbor Query on Uncertain Objects 341

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 • First, we compute simultaneously for each sample point qi,j the probability pnn(qi,j, o)
that an object o is the nearest neighbor of the sample point qi,j.

 • Second, we combine the s probability values pnn(qi,j, o) to an overall probability value
pnn(q, o) which indicates the likelihood that the object o is the nearest neighbor of q.

The second task can be carried out straightforward based on the following lemma,
whereas the first task is more complex and is explained in the remainder of this section.

Lemma 5. Let DB be a set of uncertain objects and let q = {{q1,1, ..., q1,n1
},..., {qk,1, ...,

qk,nk
}} be an uncertain query object. Then, the following statement holds.

∀o ∈ DB: pnn(q, o) =

ALGORITHM 1 Probabilistic-Nearest-Neighbor Query.
INPUT: q = {{q1,1, ..., q1,n 1

},...,{qk,1, ..., qk,n k
}},

R-tree containing clustered uncertain objects from DB
OUTPUT:(o,pnn(q,o)) for all objects o ∈ DB where pnn(q,o) > 0
BEGIN

1 FOR ALL i ∈ 1...k DO
2 FOR ALL j ∈ 1...ni DO
3 LIST nnlist(qi,j); // manages entries of the form (o, pnn(qi,j,o), sample_cnt_o)
4 PriorityQueue queue; // sorted in ascending order according to the mindist value of the entries
5 queue.insert (mindist(MBR(q), MBR(R-tree.root)), (q, R-tree.root));
6 WHILE NOT (queue.isempty() OR ProbDoNotChange ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni})) DO
7 Element first = queue.pop();
8 CASE type(first.db) // of what type is the R-tree element first.db?
9 DirNode, DataNode: // type of first.query is Object

10 FOR EACH element IN first.db DO {// element is a tree node
11 d = mindist (MBR(first.query), MBR(element));
12 queue.insert (d, (first.query, element)); }
13 Object: // type of first.query is also Object
14 IF SplitFurtherObject(first, queue) THEN
15 FOR EACH Ci(q) IN first.query DO
16 FOR EACH Ci’(o) IN first.db DO {
17 d = mindist (MBR(Ci(q)), MBR(Ci’(o));
18 queue.insert (d, (Ci(q), Ci’(o))); }
19 ELSE UpdateProbValues(first, {nnlist(qi,j) | i ∈ 1..k ∧ j ∈ 1..ni});
20 ObjectCluster: // type of first.query is also ObjectCluster
21 IF SplitFurtherCluster(first, queue) THEN
22 FOR EACH qi,j IN first.query DO
23 FOR EACH oi’,j’ IN first.db DO
24 queue.insert (dist(qi,j, oi’,j’), (qi,j, oi’,j’));
25 ELSE UpdateProbValues(first, {nnlist(qi,j) | Ci(q) = first.query ∧ j ∈ 1..ni});
26 ObjectSample: // type of first.query is also ObjectSample
27 UpdateProbValues(first, {nnlist(qi,j) | qi,j = first.query});
28 END;
29 END DO;
30 ReportResults ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni});
END.

1
s
--- pnn qi j, o,()

i 1…k j 1…ni=,=
∑⋅

.

342 H.-P. Kriegel, P. Kunath, and M. Renz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Thus, the remaining question is how to compute the values pnn(qi,j, o) efficiently. The
approach proposed in this paper can be regarded as an extension of the nearest-neighbor
search algorithm presented in [7]. Contrary to [7], our approach deals with complex clus-
tered uncertain object representations instead of simple feature vectors. Furthermore, we
do not compute a distance ranking for the query object q but a probability value pnn(qi,j,o)
to each sample point qi,j indicating the likelihood that object o ∈ DB is nearest neighbor
of qi,j.

Algorithm 1 depicts our proposed probabilistic nearest-neighbor query algorithm.
Like in the approach presented in [7], we use a priority queue queue as main data struc-
ture. In our case, the priority queue contains tuples entry=(d, (q, o)), where q is a part of
the query object entry.query, o is a part of a database object entry.db, and d indicates the
minimum distance between q and o. The distance values d determine the ordering of the
priority queue. We have to store pairs of objects instead of simple objects because the
query object itself consists of different parts, i.e. s sample objects qi,j and k clusters Ci
(called Ci(q) in the algorithm for clarity reasons). The priority queue is initialized with
the pair (mindist(MBR(q), MBR(Rtree.root)), (q, Rtree.root)). We always take the first
element from the priority queue and test of what type the stored elements are. Then we
decide for the first element of the priority queue whether it must be further refined or
whether we can already use this first element to change the probability values of the prob-
abilistic nearest neighbors of the query sample points qi,j. Three cases are distinguished
(cf. Figure 2):

 • Assume the elements contained in the first element first of the priority queue are com-
plete uncertain objects q and o. Then we test whether there exists an entry (d, (p, p’))
in queue for which the value d is smaller than maxdist(q, o), using the function Split-
FurtherObject(first, queue). If this is the case, we split q and o into their cluster ele-
ments Ci(q) and Ci’(o) and store the k2 many combinations of these clusters in queue.
If there does not exist such an entry (d, (p, p’)) (cf. Figure 2a), we update the lists
nnlist(qi,j) which contain all information about the up-to-now found probabilistic
nearest neighbors of the sample point qi,j. In the function UpdateProbValues (first,
{nnlist(qi,j) | i ∈ 1...k ∧ j∈ 1...ni}), the entries (o, pnn(qi,j,o), sample_cnt_o) are
updated. The values pnn(qi,j,o) indicating the likelihood that o is the nearest neighbor
of qi,j are set to (cf. Figure 2a):

Furthermore, the values sample_cnt_o are set to s.

 • Assume the elements contained in first are clusters, i.e. cluster Ci(q) corresponds to
the query object and cluster Ci’(o) corresponds to the database object. Then, in the
function SplitFurtherCluster(first, queue), we first test whether there exists an entry
(d, (p, p’)) in queue for which the value d is smaller than maxdist(Ci(q), Ci’(o)) and
for which the following two conditions hold. First, p has to be equal to q, to Ci(q), or
to an object sample qi,j. Second, p’ must not be a part of o, i.e. another cluster of o or
a sample point of o. If an entry (d, (p, p’)) exists for which these conditions hold, we
split Ci(q) and Ci’(o) in its sample points qi,j and oi’,j’ and store the |Ci(q)| .|Ci’(o)| many
combinations of the sample points in queue. If there does not exist such an entry

1 sample_cnt_x
s

-----------------------------------–⎝ ⎠
⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏

 Probabilistic Nearest-Neighbor Query on Uncertain Objects 343

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

(d, (p, p’)), we update the lists nnlist(qi, j) (cf. Figure 2b). In the function Update Prob-
Values (first, {nnlist (qi, j) | j ∈ 1...ni}), the entries (o, pnn(qi, j,o), sample_ cnt _o) are
updated. The values pnn (qi ,j,o) indicating the likelihood that o is the nearest neighbor
of qi,j are set to:

Furthermore, the values sample _cnt _o are set to sample _cnt _o + |Ci’(o)|.
 • Assume the elements in first are sample points, i.e. qi,j is the query object and oi’,j’ is

the database object. Then, we call the function UpdateProbValues (first, {nnlist(qi,j)})
which updates the entries (o, pnn(qi,j,o), sample_cnt_o). The values pnn(qi,j,o)
indicating the likelihood that o is the nearest neighbor of qi,j are modified as follows
(cf. Figure 2c):

Furthermore, the values sample_cnt_o are set to sample_cnt_o + 1.

The algorithm terminates, if either the priority queue is empty or if in all s lists
nnlist(qi,j) there exists an entry (o, pnn(qi,j,o), sample_cnt_o) for which sample_cnt_o =
s holds. If this is the case, the probability values of all elements in the database do not
change anymore. Thus, we can stop processing any further elements from queue. After
the algorithm terminates, the values pnn(qi,j, o) contained in the lists nnlist(qi,j) indicate
the probability that o is the nearest neighbor of qi,j. Finally, in accordance with Lemma
5, the probability values that o is the nearest neighbor of q are computed in the function
ReportResults ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni}).

4 Experimental Evaluation

In this section, we examine the effectiveness, i.e. the quality, and the efficiency of our
proposed probabilistic nearest-neighbor query approach. The efficiency of our approach

q

o

qi,j

x1
qi’,j’

sample_cnt_x1 = 1

sample_cnt_x2 = 2

x2
x3

sample_cnt_x3 = 1

c) case 3: update of the value pnn(qi,j,o)

q

o

x

a) case 1: object pair (q,o)

d = maxdist(q,o)

maxdist(qi,j,oi’,j’)

Fig. 2. Three cases of the probabilistic nearest-neighbor query algorithm

mindist(q,x) > d

pnn(qi,j,o) = pnn(qi,j,o) + 1/5·(4/5·3/5·4/5)

y

b) case 2: cluster pair (Ci(q),Ci’(o))
does not have be refineddoes not have to be refined

mindist(Ci(q),x) > d

d = maxdist(Ci(q),Ci’(o))

Ci(q)

Ci’(o)
o

q

x

pnn qi j, o,()
Ci ′ o()

s
----------------- 1 sample_cnt_x

s
-----------------------------------–⎝ ⎠

⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏⋅+

pnn qi j, o,() 1
s
--- 1 sample_cnt_x

s
-----------------------------------–⎝ ⎠

⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏⋅+

344 H.-P. Kriegel, P. Kunath, and M. Renz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

was measured by the average number of required distance computations per query object
which dominate the overall runtime cost.

The following experiments are based on the same datasets as used in [9]. We used
artificial datasets, each consisting of a set of 3- and 10-dimensional uncertain feature
vectors. Additionally, we also applied our approaches to two distributed real-world
datasets PLANE and PDB where the feature vectors were described by multi-dimension-
al boxes according to [8]. The following table summarizes the characteristics of the
datasets:

For the sampling of the possible object positions we assumed an equal distribution
within the corresponding uncertainty areas. All d-dimensional datasets are normalized
w.r.t. the unit space [0,1]d. As distance measure we used the L1-distance (Manhattan dis-
tance). We split all datasets into two sets containing 90% respectively 10% of all objects.
For the nearest neighbor queries, we used the objects from the smaller set as query ob-
jects and summarized the results. If not stated otherwise, the size of the sample set of
each uncertain object is initially set to 25 samples which are approximated by 7 clusters.

4.1 Experiments on the Sample Rate

First, we turned our attention to the quality of our probabilistic nn-query approach by
varying the number of used samples per object. We noticed that for sample rates higher
than 100 the resulting probability values do not change any more considerably. There-
fore, we used the probabilistic nn-query result Rexact = {(o, Pexact(q θd o))| Pexact(q θd o)
> 0} (cf. Definition 1) based on 100 samples as reference query result for measuring the
error of the probabilistic nn-query results Rapprox = {(o, Papprox(q θd o)) | Papprox(q θd ο) >
0} based on sample rates s < 100. The used error measure Errnn for the nearest-neighbor
query is defined as follows:

Figure 3a shows the error of the probabilistic nearest-neighbor query for a varying
sample rate s. It can be clearly seen that the error decreases rapidly with increasing sam-
ple rate s. At a sample rate s = 10 the error is less than half the size compared to the error
at s = 1 for some datasets. Furthermore, comparing the artificial datasets with high un-
certainties (ARTd(high)) to those with low uncertainties (ARTd(low)), we can observe
that a higher uncertainty leads to a higher error.

In the next experiment, we investigated how the sample rate influences the cost of the
query processing. Figure 3b shows the number of distance computations required to

dataset ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

dimensions d 3 3 10 10 42 120

uncertainty u 3% 5% 3% 4% 1% 4%

Table 1. Characteristics of the datasets

Errnn Rapprox Rexact,() 1
2
--- Papprox q θd

nn o() Pexact q θd
nn o()–q o,() Q DB×∈∑⋅⎝ ⎠

⎛ ⎞
q Q∈∑=

 Probabilistic Nearest-Neighbor Query on Uncertain Objects 345

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

form the nn-query for varying sample rates. We set the number k of clusters to 5 for a
sample rate s higher than 5, otherwise we set k = s. The cost increase superlinear with
increasing sample rates s. For high sample rates, the good quality (cf. Figure 3a) goes
along with high query cost (cf. Figure 3b). In particular, the query processing on datasets
with high uncertainty (ARTd(high)) does not only lead to a lower quality of the results
but is also more expensive than the processing on more accurate datasets (ARTd(low)).
In the case of very uncertain datasets the computational cost are higher because the prun-
ing distances, i.e. the minimal maximum object distances (cf. Definition 3), for very un-
certain objects are much higher than for non-uncertain objects. Altogether, we achieve
a good trade-off between the quality of the results and the required cost when using a
sample rate of s = 25.

4.2 Experiments on the Efficiency

Next, we examine the runtime performance of our probabilistic nearest-neighbor query
 approach. Figure 4 shows how the runtime performance depends on the number k of
sample clusters. On the one hand, when using only one cluster per object (k = 1), we have
only a few clusters for which we must compute the distances between them. This is due
to the fact that the cluster covers the entire uncertain object, i.e. it has a large extension.

Fig. 3. Influence of the sample rate. a) error Errnn, b) number of distance computations

Fig. 4. Runtime performance for varying number of sample clusters

 per

.

346 H.-P. Kriegel, P. Kunath, and M. Renz

p p

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDBa)

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDBb)

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

1 5 10 25 50

er
or

rr
r

E
nn

sn

oi
ta

tu
pm

oc
 e

cn
at

si
d

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

3,5E+04

50403020100
sample rate sample rate

ART3(high) ART10(low) ART10(high)ART3(low)

0

100

200

300

400

500

600

700

1 2 3 4 5

k (# sample clusters per object)

di

st
an

ce
 c

om
pu

ta
ti

on
s

s = 5 s = 10

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10
k (# sample clusters per object)

di

st
an

ce
 c

om
pu

ta
ti

on
s

s = 25

251 3 5 7 9 11 13 15 17 19 21 23
0

5000

10000

15000

20000

25000

k (# sample clusters per object)

di

st
an

ce
 c

om
pu

ta
ti

on
s

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the other hand, very small clusters (k = s) also lead to an expensive query processing,
because we have to compute a lot of distances between pairs of clusters when refining
the object pairs. The best trade-off for k can be achieved somewhere in between these
two extremes. As depicted in Figure 4, the optimal setting for k depends on the used sam-
ple rate. Generally, the higher the used sample rate s, the higher is the optimal value for
k. Note that the maxdist values of the cluster pairs are very high when using k = 1 sample
clusters. In this case, we often have to investigate the corresponding sample points of the
clusters which leads to a high number of distance computations. Table 2 shows the ratio
between the cost required for k = 7 and k = 1 for the probabilistic nearest-neighbor query
(θd

nn) (s = 25). We can conclude that the clustering of the object samples pays off when
using an adequate choice of the parameter k.

In the last experiment, we compare our efficient probabilistic nearest-neighbor query
approach (accelerated approach) as presented in Algorithm 1 to the straightforward so-
lution (simple approach) which takes for the pruning of candidate pairs solely the mini-
mal maximum object distance into account (cf. Definition 3 and Lemma 3). Figure 5
depicts the results for the query processing on different datasets and varying sample rates.
Figure 5a shows that we achieve a very significant reduction of the query cost using the
pruning techniques of our probabilistic nearest-neighbor query algorithm independent
of the used sample rate. For the ART10(high) dataset the cost were reduced to 20% and
for both real-world datasets we even achieved a reduction to 15%. Figure 5b compares
the performance of both approaches using the artificial datasets for varying uncertainties
of the objects. This experiment shows that the simple approach is not applicable for high
uncertainties due to the enormous number of required distance computations. Contrary,
our accelerated approach is not very sensitive to the uncertainty of the objects and shows
good performance even for very imprecise data.

datasets ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

θd
nn 0.46 0.43 0.61 0.60 0.64 0.71

Table 2. Cost ratio between k = 7 and k = 1 (s = 25)

(low) (high) (low) (high)(low) (high) (low) (high)

 Probabilistic Nearest-Neighbor Query on Uncertain Objects 347

Fig. 5. Runtime performance for different pruning techniques

accelerated approachsimple approacha)

0

5000

10000

15000

20000

25000

30000

35000

40000
s =25, k = 7

di

st
an

ce
 c

om
pu

ta
tio

ns

ART3

(low)

ART3

(high)

ART10

(low)

ART10

(high)

PLANE PDB

ART10 accelerated ART10 simple
ART3 accelerated ART3 simple

b)

0

20000

40000

60000

80000

120000

100000

0,01 0,03 0,05 0,07

di

st
an

ce
 c

om
pu

ta
tio

ns s =25, k = 7

di

st
an

ce
 c

om
pu

ta
tio

ns

0

1600

1400

1200

1000

800

600

400

200

s =5, k = 2

ART3

(low)

ART3

(high)

ART10

(low)

ART10

igh)(high)

PLANE PDB

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

5 Conclusions

Probabilistic query processing on uncertain data is an important emerging topic in
many modern database application areas. In this paper, we introduced an approach for
computing probabilistic nearest-neighbor queries on uncertain objects which assigns to
each object a probability value indicating the likelihood that it belongs to the result set.
We showed how this probabilistic query can effectively be carried out based on the gen-
erally applicable concept of monte-carlo sampling, i.e. each uncertain object is described
by a set of sample points. In order to improve the query performance, we determined
appropriate approximations of the object samples by means of clustering. Minimal
bounding boxes of these clusters, which can be efficiently managed by spatial index
structures, are then used to identify and skip unnecessary distance computations in a fil-
ter step. In a detailed experimental evaluation based on artificial and real-world data sets,
we showed that our technique yields a performance gain of a factor of up to 6 over a
straightforward comparison partner.

In our future work, we plan to extend our probabilistic algorithms to join processing,
which built a foundation for various data mining algorithms, e.g. clustering and classi-
fication on uncertain data.

References

[1] Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison Wesley, 1995.
[2] Böhm, C., Pryakhin A., Schubert M.: The Gaus-Tree: Efficient Object Identification of

Probabilistic Feature Vectors. ICDE’06.
[3] Cheng R., Kalashnikov D.V., Prabhakar S.: Evaluating probabilistic queries over

imprecise data. SIGMOD’03.
[4] Cheng R., Kalashnikov D. V., Prabhakar S.: Querying imprecise data in moving object

environments. IEEE Transactions on Knowledge and Data Engineering, 2004.
[5] Dai X., Yiu M., Mamoulis N., Tao Y., Vaitis M.: Probabilistic Spatial Queries on

Existentially Uncertain Data. SSTD’05.
[6] Guttman A.: R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD’84.
[7] Hjaltason G. R., Samet H.: Ranking in Spatial Databases. SSD’95.
[8] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Approximated Clustering of Distributed

High Dimensional Data. PAKDD’05.
[9] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Probabilistic Similarity Join on Uncertain

Data. DASFAA’06.
[10] McQueen J.: Some Methods for Classification and Analysis of Multivariate Observations.

In 5th Berkeley Symp. Math. Statist. Prob., volume 1, 1967.
[11] Motro A.: Management of Uncertainty in Database Systems. In Modern Database

Systems, Won Kim (Ed.), Addison Wesley, 1995.
[12] Wolfson O., Sistla A. P. , Chamberlain S., Yesha Y.: Updating and Querying Databases

that Track Mobile Units. Distributed and Parallel Databases, 7(3), 1999.
[13] Zhao W., Chellappa R., Phillips P.J., Rosenfeld A.: Face Recognition: A literature

survey. ACM Computational Survey, 35(4), 2000.

348 H.-P. Kriegel, P. Kunath, and M. Renz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups

Andreas Bühmann and Theo Härder

Department of Computer Science, University of Kaiserslautern,
P. O. Box 3049, D-67653 Kaiserslautern, Germany

{buehmann, haerder}@informatik.uni-kl.de

Abstract. Cache groups are a powerful concept for database caching, which is
used to relieve the backend database load and to keep referenced data close to
the application programs at the “edge of the Web”. Such cache groups consist of
cache tables containing a subset of the backend database’s data, guided by cache
constraints. If certain query types are anticipated in the application workload,
specifically designed cache groups can directly process parts of incoming declar-
ative queries. The main class of such queries, project-select-join queries, can be
supported by specifying a proper set of referential cache constraints.

Cache groups should be managed in the most cost-effective way. Hence, re-
dundant constraints should not be respected during cache loading and consistency
maintenance to avoid unnecessary overhead. On the other hand, because as much
queries as possible should be processable in the cache, all redundant relationships
implied by the set of specified cache constraints should be made explicit to help
the query optimizer.

1 Database Caching with Cache Groups

Often, performance of data-intensive applications over wide-area networks (e. g., of
transactional Web applications or Web information systems) is limited by the (back-
end) database (DB), especially by its processing power, its resource availability, and the
communication delays for serving user requests. A proven remedy for such situations
is the use of caching to substantially increase scalability and availability of the system
as well as to drastically reduce the user-perceived delays of information requests.

Web caching, as another kind of caching in this context, [1] typically keeps sta-
tic Web objects (XML fragments or images) in some of the caches in the user-to-server
path and only enables identifier-based requests for cached objects. In contrast, DB cach-
ing is intended to deliver correct results for declarative DB queries (e. g., in SQL) from
the current cache contents, thereby relieving the backend DB of some of its workload.
Latency of user requests is supposed to be noticeably reduced by allocating these caches
close to the application servers at the edge of the Web. This, however, only happens if
user queries can be completely evaluated in the cache to save the travel times of mes-
sages (query shipping, result transmission) to the backend DB through wide-area net-
works. Hence, analysis of workloads must help to determine the future data reference
behavior of applications and, in this way, prepare for appropriate locality of reference
for them, to enable cache-based answering of frequent queries. This task is often facil-
itated by geographic contexts, which frequently determine the workload of application

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 349–360, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 A. Bühmann and T. Härder

servers and, in turn, the data to be kept in their DB caches. Because these caches need
powerful functionality for query optimization and processing, storage management, in-
dexing, etc., they are often managed by full-fledged DBMSs and are therefore called
frontend DBs, too.

Differing from approaches that make use of (stacked) materialized views [2], our
cached data is organized in cache groups [3], which consist of a set of cache tables.
These cache tables contain a subset of the backend DB’s data, whose selection is guided
by cache constraints – the approach therefore also being called constraint-based DB
caching. It primarily rests upon referential cache constraints (RCCs), which specify
the data sets needed to run selected project-select-join (PSJ) queries in the cache. Such
specifications may be redundant or may contain RCC cycles, which imply cache groups
exhibiting non-minimal maintenance or excessive loading or unloading [4].

Our specific contribution in this paper is to introduce a set of rules for proper cache
group design and usage. In case of redundantly specified RCCs, our rules identify these
redundant constraints, which will reduce cache maintenance overhead. On the other
hand, our rules derive all redundant relationships implied by the set of specified cache
constraints and make them explicit. This facilitates the query optimizer’s task of figur-
ing out all (parts of) queries that can be evaluated in the cache – besides those ones the
cache groups are designed for.

The rest of the paper is organized as follows: In the following Sect. 2, we illustrate
how cache groups are designed, how they are loaded, and how they are probed in order
to determine whether a given query can be processed in the cache. Section 3 derives
the set of rules that govern the optimization of cache groups, whereas we apply these
rules to a sizeable example in Sect. 4 to demonstrate the course and the effects of this
optimization process. Finally in Sect. 5, we summarize our results and give an outlook
on our future work.

2 Designing Cache Groups

The key idea of constraint-based database caching is to accomplish predicate com-
pleteness for some given types of query predicates P in the cache such that all queries
matching P can be evaluated correctly. This technique does not rely on static predi-
cates: Parameterized constraints make the specification adaptive; so-called candidate
values (CVs) are used to instantiate the corresponding parameters: An “instantiated
constraint” then corresponds to a predicate and, once the constraint is satisfied (i. e.,
all related records have been loaded), it delivers correct answers to eligible queries.
Hence, the candidate values should be carefully chosen, because they determine the set
of cache-evaluable predicates. They describe the future reference locality anticipated in
the cache and, therefore, serve as a kind of “loading directives” for the cache manager.

2.1 Basics of Cache Groups

A cache contains a collection of cache tables, which represent backend tables and which
can either be isolated or related to each other in some way. For simplicity, let the table
and column names be the same in the cache and in the backend DB: Considering a
cache table S, SB designates its corresponding backend table, S.c a column c of S. All

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups 351

records (of various types) in the backend DB that are needed to evaluate predicate P are
called the predicate extension of P.

For comprehension, let us repeat some definitions from [4]: The simplest form of
predicate completeness is value completeness. A value v is said to be value complete
(or complete for short) in a column S.c if and only if all records of σc=v SB are in S.
Hence, if we know that a value v is value complete in a column S.c, we can correctly
evaluate S.c = v, because all records from table SB that carry this value are in the cache.
Furthermore, if we know that all values occurring in a column S.c are complete, we call
S.c column complete. This property allows to evaluate all simple equality predicates
S.c = x in the cache as soon as a value x is found in S.c.

To answer PSJ queries in the cache, we must be sure that their extensions are present.
Specific equi-join predicates can be evaluated only if all corresponding join partners
are in the cache, which is enforced by using referential cache constraints (RCCs) [3].
An RCC is defined between two cache columns not necessarily belonging to separate
tables. An RCC S.a → T.b from a source column S.a to a target column T.b is satisfied
if and only if all values v in S.a are value complete in T.b.

This RCC ensures that, whenever we find a record s in cache table S, all join partners
of s with respect to S.a = T.b are in T , too. Note, the RCC alone does not allow us to
perform this join in the cache correctly: Many records of SB that have join partners in
TB may be missing from S. But using an equality predicate with a complete value in col-
umn S.c as an anchor, we can restrict this join to pairs of records that are present in the
cache: The RCC S.a → T.b expands the predicate extension of S.c = x to the predicate
extension of S.c = x ∧ S.a = T.b. In this way, a complete value can serve as an entry
point into the cache for the evaluation of a query; it allows us to start reasoning about
predicates evaluable in the cache: Once the cache has been entered in this sense, reach-
able RCCs show us where joins can correctly be performed: Of course, the application
of RCCs can be chained.

A column is non-unique (NU) by default, but it can be declared unique (U) via the
SQL constraint unique in the backend DB schema. Depending on the types of source
and target columns, RCCs of types 1 : n, n : 1, and n : m may occur.

Probing is the process of finding out whether, given an equality predicate S.c = v in
a query, the value v is complete in column S.c. This knowledge is the foundation for
applying RCCs along the join directions that occur in the query. There are basically two
approaches to probing that can be combined to form probing strategies:

– If S.c is known to be column complete, it suffices to check whether v exists in S.c.
If it exists, it is complete.

– Otherwise RCCs can be exploited: If v exists in one of the source columns of RCCs
leading to S.c, the value v is complete (in S.c).

2.2 Loading the Cache

How do we fill the cache? To initiate cache loading, we have to specify some filling
columns S. f : Assume x ∈ SB. f is in the CV list and the cache manager wants to instan-
tiate a cache constraint containing S. f = x. In a first step, x is made complete, which
loads a number of records into S. Then for each RCC S.a → T.b emanating from S, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 A. Bühmann and T. Härder

C.k ww
1 2C.a

O.c 1 1 2 2 2

P.e s t

O.d - - s s t

UU

U SO

C P

a k e f

b c d down up

Fig. 1. Cache group COPS: Construction of a predicate extension for COP

newly inserted values in S.a have to be made complete in T.b. Hence, new records are
inserted into all target tables Ti reached by RCCs originating from S. In the same way,
RCCs emanating from Ti provoke loading actions in further cache tables, until all RCC
constraints are satisfied.

We can use cache tables, filling columns and RCCs to specify cache groups, which
is our unit of design to support a specific predicate type in the cache. A cache group is a
collection of cache tables linked by a set of RCCs. A distinguished cache table is called
the root table R and holds one or more filling columns. The remaining cache tables are
called member tables and must be reachable from R via RCCs.

With these definitions, we are able to introduce predicate extensions for PSJ queries.
First let us discuss the loading process in detail by an example: Cache group COPS
(Customer, Order, Product, Structure) in Fig. 1 (left), which includes two RCCs of type
1 : n and two RCCs of type n : 1 (arrows). For a moment forget table S and both RCCs
between S and P. Then assume the predicate of a PSJ query to be evaluated on COP is

Q = (C.k = w∧C.a = O.c ∧O.d = P.e) .

An example of Q’s predicate extension is sketched in Fig. 1 (right), where dots repre-
sent records, lines value-based relationships. To establish value completeness for the
value w of filling column C.k, the cache manager loads all records of σk=wCB in a first
step. For each of these records loaded, the RCC C.a → O.c must be fulfilled (primary
key/foreign key relationships, solid lines); that is, all values of source column C.a (1,2
in the example) must be made complete in the target column O.c. Finally, for all val-
ues present in O.d (s,t), the RCC O.d → P.e makes their counterparts complete in P.e
(foreign key/primary key relationships, dashed lines). Hence, we have constructed the
predicate extension needed for Q exactly.

To make cache group design more elegant, we simplify our specification concepts:
Those values of the CV list that have already initiated cache loading may be considered
as values in artificial control columns and their relationships to filling columns may
be described by RCCs. (For example, the RCC stub leading from nowhere to C.k in
Fig. 1 indicates such an RCC; we leave out the artificial columns in our figures.) With
this unification of cache group specification, cache tables are loaded only via RCCs.
Following the RCCs, the cache manager can construct predicate extensions using only
simple loading steps based on equality of values. Accordingly, it can correctly evaluate
the corresponding queries locally.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups 353

t vP.e

S.down t t u u u

x y

S.up u v x y z
v x

z

z z

u

Fig. 2. Unsafe loading of products in COPS. Dots represent records, lines value-based relation-
ships along RCCs (line patterns indicate the responsible RCC from Fig. 1).

We will show by an example that, for reasons of “safe” cache loading and mainte-
nance, not all cache groups are acceptable: Assume we continue to load COPS, where
tables P and (now) S contain the bill-of-material representation of products. As soon
as value t is made complete in P (via RCC O.d → P.e), it initiates loading in S via
P.e → S.down to make t complete in S.down. In turn, this action loads values u and v
into S.up, which enforces completeness for these value in P.e via S.up → P.e. As illus-
trated in Fig. 2, cache loading recursively iterates over the RCC cycle and causes prod-
uct t and its entire composed-of hierarchy to be loaded into the cache. Such excessive
load situations are called unsafe and are prohibited when designing cache groups [3].

An RCC cycle is classified as homogeneous or heterogeneous, if it involves only
a single column or more than one column in some participating table, respectively. If
several cycles occur in a cache group and influence each other, some records loaded via
a cycle may smuggle values into other cycles, which may keep these cycles running.
Therefore, as proven in [4], while isolated homogeneous RCC cycles are acceptable,
other cyclic RCC specifications must be prohibited to prevent unsafe cache groups:

– Isolated heterogeneous RCC cycles are not allowed.
– Heterogeneous RCC cycles with non-compensating smuggler relationships are not

allowed.

The RCC cycle in cache group COPS (Fig. 1) is heterogeneous and isolated and should
hence not be part of a cache group design.

3 Optimizing the Design

Making the most of a given cache group has two facets: First, when answering queries,
we would like the query evaluation in the cache to be as powerful and flexible as possi-
ble. Second, when maintaining the cache contents – in order to fulfill the defined cache
constraints – or when probing, we try to get by with the least possible effort.

3.1 Utilizing Redundancy

The path to both of these optimization goals lies in discovering redundancy in the cache
group: Excluding redundant paths of loading steps during maintenance avoids unneces-
sary costs; including all possible (redundant) join directions enables the query analysis

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 A. Bühmann and T. Härder

to use the cached predicate extensions for a greater variety of queries. Therefore, we
need to know where redundant RCCs are.

Additionally, knowledge about column-complete columns as well as about redundant
RCCs offers more and probably cheaper possibilities for probing [4]: Redundant RCCs
need not be used during probing, and using a column-complete column, one is able to
avoid considering RCCs altogether.

An RCC is called redundant if dropping it from the cache group does not change the
cache group’s behavior with regard to record loading: The same sets of records will be
present in the cache in any situation after any number of loaded CVs, with or without
the redundant RCC. Every RCC is either a redundant RCC (RRCC) or a non-redundant
RCC (NRCC).

3.2 Optimization Rules

In summary, given a cache group, we would like to find out

– which redundant RCCs can be added,
– which user-defined RCCs are in fact redundant and which are not,
– and which columns are complete.

Our goal is, on the one hand, to find an irreducible core of cache constraints that mini-
mizes maintenance costs. On the other hand, we try to extend this core with a maximum
of information that is useful during non-maintenance tasks.

To this end, we transform the user-specified cache group by applying a number of
rules. These rules match certain situations in a cache group and may mark a column as
column complete or introduce redundant RCCs. It is important that no rule ever changes
the behavior of the cache group.

At the beginning of this optimization, due to the lack of better knowledge, we con-
sider all user-defined RCCs non-redundant. When a newly discovered RRCC coincides
with a user-defined NRCC, it effectively degrades the NRCC to an RRCC.

Figure 3 illustrates the situations in which our rules apply. The depicted tables and
columns match the ones used in the textual descriptions of the rules below. We will
walk through them one by one.

Unique Columns. We have two rules to discover complete columns. The first one is
trivial, but it is needed nonetheless, because finding all complete columns is a prerequi-
site for successful application of some of the subsequent rules.

Rule 1. Every unique column is column complete. (Fig. 3a)

Every value in a unique column is complete as soon as it appears in the cache. Obvi-
ously, the column must always be complete then.

Induced Column Completeness. Our second rule deals with complete columns that
are induced by RCCs and the loading mechanism.

Rule 2. Let T.b be the only column of a table T that is reached by incoming NRCCs.
Then T.b is column complete. (Fig. 3b)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups 355

U

(a) Unique columns

T.b

(b) Induced column
completeness

S.a

T.b

(c) Inverse RCCs

S.a

T.b

x1

x2

(d) RCCs to siblings

Fig. 3. Rules. Changes in the cache group are highlighted with thicker lines. The prohibition sign
() marks exemplary RCCs that are not allowed for the rule to apply. (Complete columns are
gray, redundant RCCs dotted.).

U CustomerArea

id classcity person

Hamburg 78 • • 78 platinum
Berlin 78 • 47 silver
Darmstadt 47 • 30 zinc
Munich 47

Fig. 4. Induced column completeness (of column Area.person) and inverse RCC (Area.person →
Customer.id). Records marked with a dot (•) are in the cache.

Every value that is loaded into T through one of the incoming NRCCs is complete in
T.b. Since records are not loaded into T in another way (possibly existing RRCCs do
not contribute to the loading), T.b is column complete.

Let us look at a little example: Figure 4 shows a cache group comprising two cache
tables Customer and Area (with their backend and cache contents) as well as an RCC
Customer.id → Area.person. Table Customer is filled via column id. Customers 78 and
30 have been inserted, for each of which the corresponding Area records have been
loaded: two records for 78 (making 78 complete), none for 30 (assuming 30 is not in
AreaB) which is therefore complete in person nevertheless. Therefore, person is column
complete.

Column person would stay complete if another incoming RCC were added to it (and
made 47 complete, for example). But if (Munich,47) were loaded because of an RCC
to city, it could not be guaranteed that the other 47 record would get into the cache,
too. Hence, 47 would not be complete and neither would person. Note that any number
of incoming RRCCs are acceptable; RRCCs do not contribute to the loading of cache
tables and, thus, are unable to challenge column completeness.

Inverse RCCs. An RCC x → y expresses that every value in x is complete in y. We can
discover additional RCCs if we are able to control the set of values present in x (and can
then show that these values have to be complete in y). The simplest situation where it is
clear which values appear in x is when x’s table is loaded only via a single RCC s → x
pointing to x. Then the values in x depend directly on the values in s: More precisely, x

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 A. Bühmann and T. Härder

can only contain a subset of values of s. Therefore, we say that a column T.b is column
dependent on a column S.a iff the only NRCC targeting table T is S.a → T.b.

By comparing this definition with Rule 2, it is obvious that every column-dependent
column is complete, but not every complete column is column dependent.

Let us return to our example in Fig. 4: There we have two column-dependent col-
umns, person and id. We will concentrate on person: Due to the incoming RCC, it
contains a subset (78) of the values in id (30,78), which we know to be complete in id,
because id has a unique constraint. Therefore, every value in person is complete in id
and we can add an inverse RRCC person → id.

The colum person must not be reached by another NRCC (as opposed to our pre-
vious case of only column completeness), because a so-loaded 47 in person would not
necessarily become complete in id.

We wrap up the sketched situation in our next rule:

Rule 3. Let T.b be column dependent on a column S.a due to an NRCC S.a → T.b. If
S.a is column complete, then an inverse RRCC T.b → S.a holds. (Fig. 3c)

RCCs to Siblings. In special situations, two or more columns are in some sense syn-
chronized due to RCCs originating from a common column. In Fig. 3d, this common
column is S.a and we have got three RCCs leading from it to some other (child) columns
T.b, x1, and x2. (The RCC S.a → x1 is redundant, the other two are not.) This means
that all the values in S.a are complete in all of these three columns; let VS.a denote this
set of values.

As we know from the discussion of Rule 3, column dependency of a column, say
T.b, restricts the set of values in this column to a subset (of VS.a). Hence, every value
in column T.b is complete in the children of S.a, which we can express by redundant
RCCs from T.b to its siblings. (Strictly speaking, we could also add a redundant RCC
from T.b to itself. But because such an RCC can be equivalently replaced with a colum-
completeness label, we omit it: This would just be a special case of Rule 2.)

These thoughts leave us with the following rule:

Rule 4. Let T.b be column dependent on a column S.a due to an NRCC S.a → T.b.
Then for every column ci that is reached by an RCC S.a → ci from the same source
column (i. e., a sibling of T.b), an additional RRCC T.b → ci holds. (Fig. 3d)

Possible Extensions. Our rules do not find every redundant RCC possible. We will
discuss two conceivable generalizations of existing rules that would enable us to find
more redundant RCCs.

The example shown in Fig. 5a generalizes the situation that is covered by our
Rules 3 and 4: Column T.b is reached by two different homogeneous paths (where
there is no change of column in any table on the path), both emanating from S.a.

This means that T.b is not column dependent on S.a according to our simple def-
inition, but in a more general sense it is: The values in T.b are still determined only
by the values in S.a; on the paths towards S.a, more values may get lost than in our
simple single-RCC case, but we still have a subset relationship. This means that an in-
verse RCC T.b → S.a is possible as well as RCCs from T.b to the direct children of S.a
(which are no longer siblings of T.b).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups 357

S.a

T.b

c d

(a) Multiple paths from
the same column

S.a

T.b x1

R.a

(b) Multiple synchroniz-
ing columns

Fig. 5. Harder optimization RCCs

Figure 5b shows a different kind of generalization of the concept of dependency:
This time, the values in column T.b depend on both the values in S.a and the values in
R.a (i. e., at any time, T.b contains a subset of the union of those values). This setting
still permits RCCs to siblings to be added, as long as these siblings (e. g., x1) are reached
by RCCs from each of these synchronizing columns.

Rules expressing the sketched situations are not as easily checked as our chosen
ones, which can consider a column and its immediate neighborhood locally. In contrast,
here we would have to collect information about paths of any length and compare sets
of influencing columns. It is questionable whether these special situations occur often
enough to justify the added complexity of the rules for their optimization.

3.3 Applying the Rules

How do we apply our four rules to a given cache group? The basic idea is simple: Keep
applying the set of rules until no further match occurs and the cache group is in a stable
and, with regard to our rules, optimized state. Obviously, we must be sure that this will
happen eventually: Our rule application algorithm should not run into endless cycles.

Let us analyze the dependencies among our rules: Rules 3 and 4 produce RRCC,
which may override NRCCs. NRCCs eventually embody the irreducible core of the
constraints; they are not produced by any rule. Since RRCCs are not removed, their
number is only increasing, the number of NRCCs decreasing. This may at most lead
to further columns becoming column dependent, which might make Rules 3 and 4 ap-
plicable again. This process is bounded by the number of feasible RCCs.

The first two rules only produce column-complete columns: Only Rule 3 depends
on these column-complete columns. Since no rule removes the column-completeness
status of a column, no cyclic behavior is possible – as long as we are careful enough to
check whether a rule application did actually change the cache group.

Unique columns cannot be created during optimization: Therefore, Rule 1 can be
independently applied in advance, before the other rules are applied repeatedly until
there are no further changes to the cache group.

In a Java implementation [5], we have chosen to apply our rules according to a depth-
first search of the cache group, starting at the filling columns and stopping when cycles
are detected. This is sufficient, because all tables not reachable this way will not be filled
and used either. Furthermore, we are able to analyze the cycles encountered during rule

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 A. Bühmann and T. Härder

U

U

i

ii

iv

iii

(a)

U

U

1

2
3

4

(b)

U

U

5 6

(c)

U

U

7

(d)

U

U

leadercity

Leadership

Offer

Customer

Area

id class

city person seller buyers

8

(e)

Fig. 6. Optimizing a cache group. The dashed lines indicate user-defined but redundant RCCs.

application and see whether they lead to controllable loading behavior or make for
unsafe cache groups.

4 Example

Let us see our rules acting in concert to optimize a given cache group. Figure 6 depicts
our object of optimization (a) as well the optimization result (e); we will show step by
step how this result has been derived.

We start with a cache group that has been specified by someone who wants to use
our caching system for his online selling platform (Fig. 6a): We have four cache tables,
two unique columns Customer.id and Leadership.city, one filling column Customer.id
and six user-defined RCCs, which we have to consider non-redundant until further in-
vestigation. (In Fig. 6e these are the five solid RCCs and the dashed one.)

In a preparing step, we apply Rule 1 to every column in the cache group. The order
in which we visit the cache tables in this and all the following steps is given in Fig. 6a in
Roman figures: a depth-first search starting at the filling column C.i. (In the following,
we abbreviate table and column names by their first letters.) In this way, we find the
unique columns C.i and L.c and mark them as column complete.

We then begin to apply Rules 2–4 to the cache group (Fig. 6b):

1. C.i is the only column of C that is reached by NRCCs; therefore, by Rule 2, it
is column complete (which we already know, so this does not change the cache
group). C.i is column dependent as well, but because it is dependent on an artificial
column outside of our main cache group, we skip the other rules.

2. In table O no column is induced column complete or column dependent, because
there are incoming NRCCs on two columns: None of our rules matches.

3. A.p is reached by two NRCCs, but not any other column is: A.p is column complete.
Note that A.p is not column dependent, because it is influenced by both C.i and L.l.

4. L.l is induced column complete because of the only NRCC A.p → L.l, which makes
L.l column dependent, too.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Making the Most of Cache Groups 359

5. Since L.l is column dependent, we can add an inverse RRCC L.l → A.p (Rule 3).
This degrades the already existing NRCC (indicated by a dashed line in Fig. 6c),
recognizing it as redundant.

6. According to Rule 4 we can finally add redundant RCCs from L.l to each of its
siblings (with respect to the common father column A.p): Here this makes only for
one RRCC L.l → O.s.

This concludes our first run through the cache group; we have visited each table once.
Since we have made four changes (two column-complete columns and two RRCCs),
and because these might have established the preconditions for further rule applications,
we have to start a second time: In tables C and O we come across the same states as
before, but in A we find something new:

7. Column A.p has become column dependent on C.i due to the degradation of the
former NRCC L.l → A.p. This means – according to Rule 2 – that we can add an
inverse RRCC A.p → C.i (Fig. 6d). Furthermore, we could add RRCCs to children
of C.i if there were any besides A.p.

8. In table L column L.l is still column dependent on A.p – as discovered in step 4. (A
column can never lose its column dependency.) In step 6, we have already applied
Rule 4 and introduced RRCCs to all siblings of A.p – but wait, there is a new
sibling, namely C.i, due to the recently created RRCC A.p → C.i. Hence, we can
add an RRCC L.l → C.i back to the Customer table (Fig. 6e).

Our second run through the cache group is finished. We have added two RRCCs and
must therefore perform a third run to see whether these changes have opened up further
possibilities. You should be able to verify that this is not the case. Accordingly, the state
in Fig. 6e is our optimized version of the cache group the user has defined:

– We have identified three additional RCCs, which, during query analysis and eval-
uation, allow for more join directions in the cache. For example, the predicate
L.c = ‘Berlin’ ∧ L.l = C.i can be evaluated in the cache, given that L.c can be
probed successfully for ‘Berlin’.

– We have revealed that RCC L.l → A.p is actually redundant and thus need not be
checked during cache loading or probing operations. We could also warn the user
about this redundancy in his design, either when loading his complete specification
into our caching system or in advance, when the user is designing his cache group
assisted by a cache group adviser that implements our rules.

– Finally we have discovered four column-complete columns (among them admit-
tedly two trivial ones): These promise more flexibility in choosing the cheapest
probing strategy.

5 Conclusion

In this paper, we have presented four simple optimization rules that can be applied to
a cache group after it has been designed. These rules do not touch the loading behav-
ior, but make redundant information explicit that is contained in or derivable from the
given cache group design. Furthermore, during optimization, unsafe cache groups can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

360 A. Bühmann and T. Härder

be detected. This stock of information allows the cache manager to perform his tasks of
loading, unloading, probing, and query evaluation more efficiently.

Alternatively, this information could be fed back interactively to the designer of a
cache group to make him aware of the consequences of his decisions. Another type of
information that would be useful in this setting is estimates about the loading costs of
predicate extensions.

Our rules find the most useful redundant RCCs in situations that occur frequently.
We have demonstrated which constellations in cache groups lie beyond the capabilities
of our rules and how the rules could be extended to cope with those.

We have already implemented a DB-caching prototype called ACCache [6], which
relies on our constraint-based caching model. It is realized on top of an existing rela-
tional DBMS and leverages its federated query execution capabilities. Within ACCache
we can fill the cache; analyze, rewrite, and execute queries (partially) in the cache or
in the backend DB; collect statistics about the usage of specific predicate extensions;
and we can perform garbage collection based on these statistics. The making use of
redundant RCCs and column-complete columns during this tasks is still to be added.

At the moment, we are developing an automated measurement environment, which
will enable us to perform comparative benchmarks in order to assess quantitatively the
actual benefit of our cache group optimization rules presented in this paper – among
other aspects, such as the costs of loading and unloading predicate extensions or the
overhead of probing, always in comparison to the lower latencies or reduced backend
loads achievable.

References

1. Podlipinig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Com-
puting Surveys 35(4) (2003) 374–398

2. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database caching in SQL
server. In: ICDE Conference, IEEE Computer Society (2004) 177–189

3. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache
tables: Paving the way for an adaptive database cache. In: VLDB Conference. (2003) 718–729

4. Härder, T., Bühmann, A.: Value complete, column complete, predicate complete – Magic
words driving the design of cache groups. VLDB Journal (2006) Accepted for publication.

5. Scholl, W.: Cache-Group-Optimierung zur Effizienzsteigerung von Datenbank-Caches.
Project thesis, TU Kaiserslautern (2006) http://wwwdvs.informatik.uni-kl.de/pubs/DAsPAs/
Sch06.PA.pdf.

6. Bühmann, A., Härder, T., Merker, C.: A middleware-based approach to database caching. In
Manolopoulos, Y., Pokorný, J., Sellis, T., eds.: ADBIS 2006. Volume 4152 of LNCS., Thes-
saloniki (2006) 182–199

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://wwwdvs.informatik.uni-kl.de/pubs/DAsPAs/Sch06.PA.pdf
http://wwwdvs.informatik.uni-kl.de/pubs/DAsPAs/Sch06.PA.pdf

Construction of Tree-Based Indexes for

Level-Contiguous Buffering Support

Tomáš Skopal, David Hoksza, and Jaroslav Pokorný

Charles University in Prague, FMP, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague, Czech Republic

{tomas.skopal, david.hoksza, jaroslav.pokorny}@mff.cuni.cz

Abstract. In multimedia databases, the spatial index structures based
on trees (like R-tree, M-tree) have been proved to be efficient and scalable
for low-dimensional data retrieval. However, if the data dimensionality is
too high, the hierarchy of nested regions (represented by the tree nodes)
becomes spatially indistinct. Hence, the query processing deteriorates
to inefficient index traversal (in terms of random-access I/O costs) and
in such case the tree-based indexes are less efficient than the sequential
search. This is mainly due to repeated access to many nodes at the top
levels of the tree. In this paper we propose a modified storage layout of
tree-based indexes, such that nodes belonging to the same tree level are
stored together. Such a level-ordered storage allows to prefetch several
top levels of the tree into the buffer pool by only a few or even a single
contiguous I/O operation (i.e. one-seek read). The experimental results
show that our approach can speedup the tree-based search significantly.

1 Introduction

The research in database indexing remains still a hot topic – its importance
even increases with the emergence of new data types like multimedia data, time
series, DNA sequences, etc. For such data, the tree-based indexes are often em-
ployed, e.g. the R-tree, X-tree, M-tree, and others [1,5], while apart from task-
specific criteria of retrieval efficiency, the I/O costs still represent an important
efficiency component. Simultaneously, the complexity of new data types makes
them hardly indexable by tree-based structures, so the sequential search is often
referred to perform better (in terms of I/O costs) than any tree-based index [20].

Despite the recent boom of new storage media (e.g. flash or hybrid disks), the
best (and cheapest) medium for storage/indexing is still the magnetic hard disk
drive (HDD) with rotating platters and moving heads. Due to its construction,
the I/O efficiency of HDD depends on access time and transfer rate. The access
time is determined by the seek time (head moves to a track), settle time (precise
head positioning) and the latency (or rotational delay). The transfer rate is given
by MB/s of sequentially (contiguously) read/written data from/to a track.

While HDD capacity doubles every year and transfer rate increases by 40%,
the access time improves only by 8% (because of kinetic limitations of heads).
Todays HDD can be of 300GB capacity, 50MB/s transfer rate and 10ms access

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 361–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

362 T. Skopal, D. Hoksza, and J. Pokorný

time. With 8KB disk blocks (or pages) used by file systems, the fetching of a block
takes 10.16ms, so the access takes 98.5% of the total time. A contiguous fetch
of 800KB data takes only 2.5x the time needed for fetching 8KB data. However,
some two decades ago the HDDs exhibited different parameters, the access time
about 100ms and the transfer rate at about 150KB/s. Thus, a random access to
a disk block is relatively more expensive nowadays than some 20 years ago.

Sequential vs. Tree-based Indexing. The classic access methods have been
developed based on a traditional disk model that comes with simplifying as-
sumptions such as an average seek-time and a single data transfer rate. An
excellent overview of these problems can be found in [19]. The B-tree or R-tree
structures were developed in times of relatively cheap access costs (compared
to the transfer rates). The tree node size (mapped to a block) was 2 or 4KB,
while sequential reading of large data from HDD was not much cheaper than
reading the data by multiple random-access retrievals, e.g. 7s vs. 32s in case of
1MB of data and 4KB blocks. By query processing, a traversal of 1/5 (or less)
of the tree index sufficed to be faster than the simple sequential search. Today,
the tree-based querying must traverse less than 1/86 to overtake the sequential
search. Such a small proportion is achieved by B+-tree, or R-tree built on low-
dimensional data. However, complex data cannot be retrieved in such an efficient
way, because of their high dimensionality. Therefore, in modern applications the
sequential search (or sequential-based indexes like VA-file [20]) is reported as
more efficient (in terms of I/O costs) than indexing by tree-based structures.

How Large the Tree Nodes Should be? One can ask whether the access
times could be reduced by enlarging the tree nodes. Then the number of nodes
would be smaller and so the number of I/Os would decrease. Here the problem is
in the increased number of entries stored in the node (the node capacity). Unlike
B-tree, where the node split operation is of linear complexity with the number of
entries, in R-tree or M-tree the complexity of node split is super-linear because
of (sub)optimal partitioning of entries. A high node capacity also leads to worse
approximations (e.g. MBRs in case of R-tree) in the parent node.

Second, although in B-tree the search in a single large node is fast because of
use of interval halving, this is not possible in R-tree or M-tree where no universal
ordering of entries is guaranteed. This has not to be critical in case of low-
dimensional R-tree where the tuples-in-query testing is fast, however, in M-tree
the sequential search within a node implies expensive distance computations.

1.1 Paper Contributions

In this paper we use level-separated buffering scheme which leads to more effec-
tive buffer utilization. Moreover, we introduce a modified split algorithm which
keeps the tree index level-contiguous, that is, nodes belonging to a certain level
in the tree are stored together. Such a modified index file layout allows to cheaply
prefetch the top levels of the tree and thus further decrease the access costs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 363

2 Tree-Based Indexing

In this section we briefly summarize the structural properties of tree-based in-
dexes and their secondary storage, including buffering into main memory. First,
we assume ”region-based” trees, where the data objects are stored in the leaves,
while each entry in an inner node represents a (spatial) approximation of the ap-
propriate subtree, e.g. R-tree’s MBR, or M-tree’s ball. We also assume an inner
node with m entries (regions) has m children (see Figure 1a). Such assumptions
are satisfied by R-tree, M-tree, but not by the B-tree (which is not region-based).

Fig. 1. (a) Insert into leaf G0. (b) The resulting tree, split up to the root.

We subscript a node by the number of its level (level number), starting by 0
at the leaf level (see Figure 1). Since indexes grow from bottom to top, a node’s
level number does not change. Besides the level number, each node obtains an
identifier. A node is stored at address (or offset) in index file which is the identifier
× node size. The inner and leaf nodes are of single size (given in kilobytes).

Inserting and Splitting. By standard insertion, a leaf is found into which a
new object is inserted. An overflowed leaf must be split between two leaves, one
keeping the old identifier, and a brand new leaf. The two new entries describing
two subtrees are inserted into the parent node (one entry is just updated). When
the parent node overflows, the splitting is repeated (possibly up to the root level).
In Figure 1, an insertion into the leaf G0 raises a sequence of node splits.

Model Structure vs. Index File Layout. Note that the sequential ordering
of nodes in the index file (physical view in Figure 1a) does not preserve the
structure (the model view). This is because the new allocated nodes at the end
of the index file come from different tree levels after a sequence of splits. In the
optimal situation, the physical ordering exactly follows the model ordering given
by breadth-first traversal of the tree. With such an organized index file we would
be able to prefetch the neighboring nodes by a single contiguous read. Unfortu-
nately, the standard splitting strategy cannot preserve the physical ordering of
nodes in accordance with the model, because this would imply O(n) insertion
complexity (shifting many nodes), which is impracticable in most cases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

364 T. Skopal, D. Hoksza, and J. Pokorný

2.1 Standard Buffering and Prefetching

Like other database structures, also indexes use buffering [7] of blocks into mem-
ory frames. When a node is requested, its block is fetched from the disk and
stored in a frame of the buffer pool. If the same node is requested later, it could
still be in the buffer, so we avoid an I/O operation. Since the buffer is smaller
than the volume of requested nodes, a page-replacement policy must be used,
like LRU (LRU-T, LRU-P, LRU-K), MRU, FIFO, Clock, LFU, etc [15,13,14].

Because of reasons discussed in Section 1, we would like to access a large
amount of data in single contiguous I/O operation. Instead of a single node,
we could prefetch several additional nodes from the disk. Such prefetching is
actually provided by the HW cache of the HDD. Unfortunately, the ordering
of nodes in index file does not follow the tree structure. Hence, it would be
inappropriate to force the prefetched nodes to be stored in the buffer, because
such bulk-loading of nodes would lead to release of many nodes from the buffer
which are (maybe) more likely to be requested than the prefetched ones.

3 Related Work

Typically, the tree-based indexes follow linear abstraction of HDD provided by
file system. The only factor that has to be minimized is the number of random-
access I/Os [8]. Most efforts in database indexing have been spent on improving
filtering abilities with respect to the model (e.g. R-tree vs. X-tree [1] or M-tree vs.
PM-tree [18]). Although the filtering improvements have a substantial impact on
the overall efficiency (not only on the I/O costs), at some point further improving
of the model is very hard. At that moment some lower-level techniques have to
be investigated, related to HW and data storage issues.

3.1 Buffering Techniques

The I/O costs can be substantially reduced by appropriate buffering strategies.
The classic work on index buffering [12] suggests the LRU replacement policy
for B+-tree as the most effective. Also for multidimensional indexes the LRU
policy has been proved as effective [6] (R-tree). In [11] a data-driven model
has been proposed to predict the impact of buffering on R-trees. Moreover,
specific replacement policies for spatial indexing have been proposed (suitable
for R*-tree), where the nodes at the higher levels of a tree index are kept longer
in the buffer [2].

3.2 Dynamic Layout Rearrangement

A general approach to speedup data retrieval is the dynamic rearrangement
of storage layout [3,10]. The idea follows the assumption some access patterns
are more frequent than other ones, so blocks belonging to the same pattern
should be stored together to minimize movements of disk heads. The organ-pipe
arrangement [16] is an example of such a layout. The rearrangement (also called

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 365

shuffling [16]) resembles file defragmentation for a specific access pattern, where
the frequently accessed blocks are moved together during data retrieval with a
hope this pattern will occur again. Although the rearrangement is a universal
method for data management, its usage in database indexing is limited due to
the absence of strong access patterns. Even if there exists an access pattern for
a particular user, a multi-user access to the index will spoil the efforts spent by
rearrangement because of many contradictory access patterns.

In our approach we use a kind of layout rearrangement, however, this one is
performed during the construction of the index (i.e. not during query processing).

3.3 Physical Designs

Some recent works leave the linear abstraction of HDD and exploit physical
properties of modern disks. Modern HDDs are manufactured with zoned record-
ing, which groups adjacent disk cylinders into zones. Tracks are longer towards
the outer portions of a disk platter as compared to the inner portions. Hence,
more data can be recorded in the outer tracks when the maximum linear density
is applied to all tracks. The results are multiple physical zones, where seek times
and transfer rates vary significantly across the zones. In [21] the authors optimize
dynamic multidimensional access methods (R*-tree) given a zoned disk model.

Another adjacent block utilization is presented in [17], however, the authors
deal with storage of multidimensional data rather than indexing. The key idea
is that HDD is, in fact, a three-dimensional medium where the adjacent tracks
(either within a platter or within a cylinder) can be accessed efficiently.

The drawback of these methods is a requirement on specific system-level soft-
ware, that provides applications with access to adjacent portions on the disk.

4 Level-Contiguous Indexing

Unlike the proposals in Section 3.3, we use the classic linear abstraction of data
storage. Furthermore, we focus on indexes where complex queries are issued,
i.e. queries where a substantial volume of nodes at the top levels must be pro-
cessed (e.g. window or kNN query). Hence, we do not consider point or interval
queries on B+-tree, since such queries result in simple one-path traversal. In
other words, we consider an access pattern where the inner nodes are accessed
much more frequently than the leaves. Based on the assumptions, we propose
level-contiguous storage layout – an index storage partially preserving the model
ordering of nodes for only a little construction overhead.

4.1 Index Traversal Analysis

In B+-tree, the most used query types are the point and interval queries defined
for single-key domains, where the traversal is guided along a single path in the
tree (an interval query must additionally search the leaf level), see Figure 2a.

Assuming that the queries are distributed uniformly, the probability that a
node at a level of B+-tree will be accessed is inversely proportional to the number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

366 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 2. (a) Point/interval search in B+-tree (b) Range/kNN search in R-tree or M-tree

Fig. 3. Hierarchical space decomposition by (a) R-tree (b) UB-tree (c) M-tree

of nodes at the level, i.e. a leaf has the smallest probability and the root has
100%. However, some tree-based indexes are used for multidimensional or metric
data, e.g. R-tree, X-tree, M-tree, where nodes represent regions in the indexed
space. On such data there is no universal ordering defined, and also the query
types are different. In particular, the R-tree is used for range query (or window
query) and the M-tree is often used for (k-)nearest neighbor (kNN) query.

Since these structures index data which cannot be ordered, the tree traversal
goes not along a single path. More likely, to reach all relevant data in the leaves,
there must be multiple paths passed (see Figure 2b). The reason is that leaves
relevant to a query are not clustered – they are spread over the entire leaf level.

Since the nodes represent regions in the indexed space, the top-level nodes’
regions have large volume (they must cover all children regions, see Figure 3).
Then, during a query processing the nodes are checked against a query region
and those children are further processed, which overlap the query. Obviously,
the larger regions (nodes at the top levels) have greater probability to be ac-
cessed. With high-dimensional data, this means almost all top-level nodes are
accessed (due to the curse of dimensionality [1,4]). Consequently, many random
accesses are performed when querying high-dimensional data, so large portions
of top levels are searched in randomized order. This is, in turn, often worse than
contiguous sequential search of the entire index file.

4.2 Level-Contiguous Index Storage Layout

In our approach, we focus on ”derandomization” of the I/O costs so that infre-
quent large contiguous I/Os are preferred over many random block I/Os. This
can be achieved by a modification of index storage layout, in particular by ensur-
ing that nodes are physically ordered by their level numbers (the order of nodes
within a single level does not matter). In such a way, we can read all the nodes
at several top levels by a single contiguous fetch, and store them into the buffer.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 367

The idea makes use of adjusted node splitting. After an object has been inserted
such that some node splits occurred, a special algorithm (called SwapUp, see
Listing 1) is executed. The algorithm uses an array mLevelStartIndex, where its
i-th entry stores the index file position of the first node belonging to i-th tree
level. In principle, the algorithm propagates the new nodes (produced by split-
ting at the end of index file) in order to restore the ordering defined by level
numbers. This is realized by swapping the new (misplaced) nodes with some old
nodes which are located at first positions of a particular level in the index file.

Listing 1. (modified insertion algorithm, SwapUp algorithm)
method InsertObject(object o) {

// insert o into the tree (this also involves splitting of overflowed nodes)
. . .
// if some splits have occurred during the insertion, set splitCount = number of splits
if (splitCount > 1) then SwapUp(splitCount)

}
method SwapUp(integer splitCount) {

splitCount = splitCount - 1;
for (i = 0; i < splitCount; i++) {

integer swappedAtLevel = splitCount - i;
for (j = 0; j < swappedAtLevel; j++) {

SwapTwoNodesAt(mLevelStartIndex[i] + j,
mLevelStartIndex[i] + GetNodesCountAtLevel(i) + j + 1);

}
mLevelStartIndex[i] = mLevelStartIndex[i] + swappedAtLevel;

}
if (splitCount == treeHeight) then { // treeHeight is the number of levels except the root level

allocate mLevelStartIndex[splitCount];
mLevelStartIndex[splitCount] = 0;

}
}

Some notes: The SwapTwoNodesAt swaps the nodes defined by their identi-
fiers (positions in index) together with both parent nodes’ links pointing to the
swapped nodes. To quickly access the parent node, a parent identifier must be
additionally stored in each node. However, now also the parent identifiers of the
child nodes of the two nodes being swapped must be updated. The GetNode-
sCountAtLevel returns the number of nodes at a given level before the insertion.
Also note the SwapUp algorithm has not to be executed if just a leaf was split.

The algorithm running is explained in Figure 4a, which is index file layout
related to the tree in Figure 1. Before insertion, the storage layout was level-
ordered (see the white part in Figure 4a-1). After insertion, multiple splits caused
ordering violation (see the grey part). The SwapUp algorithm now propagates
the new nodes to correct positions. In Figure 4a-1, the new non-leaf nodes are
swapped with the first 3 leaf nodes stored in the index. Then, the two remaining
nodes are swapped with the first two level-1 nodes (see Figure 4a-2) and finally,
the new root node O3 is swapped with the old root K2 (Figure 4a-3). The final
index layout (let us denote it as level-ordered index) is presented in Figure 4a-4,
where the top (bottom, respectively) arrows denote which parents (children) had
to be updated with the new node’s identifier during the swapping-up.

Time Complexity. Suppose n is the number of objects in the tree (i.e. O(log n)
is the tree height). There are O(log n) seeks and contiguous data transfers (of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

368 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 4. (a) Swapping-up the new nodes after insertion (which caused multiple splits).
(b) Top-level and Bottom-level buffer pools.

O(log n) blocks) performed during the swapping, while each of the O(log n)
swapping steps spends O(log n) single-block I/Os on updating the links in par-
ent/child nodes. Thus, the total worst-case complexity is O(log2n) when mea-
sured in block I/Os as well as in seek operations.

4.3 Level-Contiguous Buffering

As we have mentioned before, the nodes at top levels are the most accessed
ones. It could appear that LRU/LFU replacement keeps the top-level nodes
in buffer for a long time, since top-level nodes are considered as the recently
(frequently) accessed ones. However, when a query is executed, the greatest
amount of node reads belongs to the leaf level and the ”valuable” top-level
nodes are replaced by the leaves, because these are temporarily the most recently
accessed ones.

Divided Buffer. Due to the obstacles caused by original LRU replacement in a
single buffer pool, we use a kind of LRU-T policy – a buffer logically divided in
two parts (see Figure 4b). The first part stores a user-defined number of top-level
nodes (the top-level buffer), while once a node is loaded into top-level buffer, it
will never be replaced. The second part behaves as an ordinary LRU-based buffer
for the rest of nodes not buffered by top-level buffer (the bottom-level buffer).

Buffering the Top Levels. The top-level buffer can be populated either incre-
mentally (by individual node requests) on an ordinary index, or by prefetching
certain volume of the level-ordered index file. The prefetching itself can be ac-
complished in two ways. We can prefetch a large portion of the index at the
beginning of index usage (bulk prefetching), so that the entire top-level buffer
is populated. Or, we can prefetch smaller (yet sufficiently large) portions at the
moment when a requested node is still not loaded in the top-level buffer (in-
cremental prefetching). While the bulk variant minimizes the query time over
many queries, the incremental one distributes the prefetch load among several
queries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 369

5 Experimental Results

To prove the benefits of level-contiguous storage layout, we have performed ex-
perimentation with the R-tree and the M-tree. In the former case, the test-
ing platform was a P4@3GHz, 1GB RAM, Maxtor OneTouch, Ultra ATA 133,
250GB@7200 rpm, 8MB cache, avg. seek<9.3ms, transfer rate 34 MB/sec. In
the latter case we used P4@3.6GHz, 1GB RAM, Seagate Barracuda, SATA,
200GB@7200 rpm, avg. seek<8ms, 8MB cache, transfer rate 65MB/s. Both plat-
forms were used with WinXP with disabled file-system cache (HDDs’ HW caches
were enabled for read), while both HDDs involved in tests were not system disks.
In addition to R-tree and M-tree, we have also performed the tests on sequential
file to set up a baseline, where for sequential query processing we have used a
buffer of equal size as in case of the competitive R/M-trees. Most of the tests
were executed for 100 different query objects and the results were averaged.

5.1 R-Tree Testbed

The first tests were aimed at indexing large synthetic multidimensional datasets
by the R-tree and its level-contiguous modification (denoted as LC index in
figures). There were 3 datasets generated, consisting of 3 · 106, 6 · 106, and 107

5-dimensional tuples. The tuples were distributed uniformly among 700, 800 and
1000 clusters, respectively. In Table 1 see the R-tree index characteristics.

Table 1. R-tree index statistics

Index size (4kB nodes): 160–511MB Data objects: 3,000,000–10,000,000
Number of tree levels: 6–10 Node capacity: 92 in inners, 169 in leaves
Total buffer memory: 16,4MB Number of nodes: 7,679–19,723 inners,

(3.2–10,3% of index size) 31,545–104,810 leaves
LC construction time: 44min notLC constr. time: 27min
(for 3,000,000 dataset) (for 3,000,000 dataset)

Sequential file size: 82–245MB Buffer for seq. file: 16,4MB (6.7–13,5%)

The number of disk accesses for window queries with increasing query selec-
tivity (number of objects in the answer) is presented in Figure 5a. The label
TopBuffer=x% denotes a bulk-prefetch index with size of top-level buffer equal
to x% of all inner nodes (i.e. TopBuffer=0% means no top-level buffering, while
TopBuffer=100% means all inner nodes can be buffered). The bottom-level buffer
is maintained in the remaining buffer memory. As we can see, the LC index with
TopBuffer=8% outperforms the classic R-tree (”notLC” indexes) as well as LC
indexes with different TopLevel values. Note that we have utilized the top-level
buffering also in the notLC indexes, however, here the top-level nodes cannot be
prefetched, they were accessed one-by-one. In Figure 5b see the realtimes for the
same situation. All the LC indexes show almost 100% speedup when compared
to notLC indexes. Surprisingly, the LC indexes outperform the notLC indexes
even in case that no top-level buffering and prefetching is employed. In Figure
5c the realtimes show behavior of LC/notLC indexes on the 10,000,000 dataset,
and in Figure 6a see the disk accesses on the 3,000,000 dataset.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

370 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 5. R-tree: Disk accesses and realtimes for increasing query selectivity

Fig. 6. R-tree: Disk accesses for increasing query selectivity and realtimes for typical
response of i-th query in a query batch

We have also tested the impact of top-level buffering/prefetching with respect
to the order of issued queries. In Figures 6b,c see the average realtime costs
for queries with selectivity = 2 (5, respectively), according to the order of the
query in a query sequence (or query batch). We can observe the benefits of LC
indexes do not decrease in time. In Figure 6b the top-level nodes of LC indexes
were prefetched incrementally, by 100 nodes, but as we can notice, there is no
significant difference between prefetching incrementally or in a bulk (Figure 6c).

5.2 M-Tree Testbed

Second, we have implemented level-contiguous M-tree [5] and performed exper-
iments with the Corel [9] feature vectors (65,615 images). The dataset consisted
of 262,460 8-dimensional vectors, constructed by merging 4 feature representa-
tions (color and layout histograms, textures, color moments). The L1 distance
was used to measure image dissimilarity. See M-tree characteristics in Table 2.

In Figure 7a see the realtimes of kNN queries, with respect to increasing k.
Although the classic notLC M-tree gets worse than the sequential file already
at k = 15 (or k = 20 in case of M-tree with top-level buffering), the LC indexes
remain efficient up to k = 50. The impact of query batch size is presented

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 371

Table 2. M-tree index statistics

Index size (2KB nodes): 29MB Data objects: 262,460 (8D vectors)
Number of tree levels: 5 (root + 4) Node capacity: 19 in inners, 29 in leaves
Total buffer memory: 2.9MB (10%) Number of nodes: 1188 inners, 13180 leaves
LC construction time: 3.5min notLC constr. time: 2.8min

Sequential file size: 9MB Buffer for seq. file: 0.9MB (10%)

Fig. 7. M-tree: Realtimes for kNN queries depending on k, size of query batch, and
proportion of TopBuffer

Fig. 8. Structure of node accesses per level for queries in R-tree and M-tree

in Figure 7b, where the LC indexes do not deteriorate when compared with
notLC indexes, they get even better. We have also examined the influence of
top-level buffer proportion in the total buffer memory, see Figure 7c. We can
observe that increasing volume of top-level buffer improves the realtimes quite
significantly.

Finally, in Figure 8 see the structure of accesses to nodes per level in the
tree-based indexes. Besides the root node, which must always be accessed, we
can see that the nodes at top levels are accessed indeed frequently, especially in
case of M-tree. Thus, the rationale for top-node buffering and level-contiguous
layout seem to be well-founded, and we can expect level-contiguous layout could
be beneficial also to other tree-based indexes, like X-tree, UB-tree and others.

In summary, the level-contiguous storage layout supports efficient utilization
of access patterns usual for tree-based indexes, so that they can exploit the
advantage of contiguous disk reading (like sequential search does it). This prop-
erty dramatically reduces the random-access I/O overhead spent at top tree
levels.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

372 T. Skopal, D. Hoksza, and J. Pokorný

6 Conclusions

We have introduced level-contiguous storage layout for tree-based indexes. The
new layout allows to prefetch the frequently accessed nodes at the top levels
of any multidimensional or metric tree based on B+-tree. Moreover, we have
used divided schema for level buffering, where the prefetched top-level nodes
are stored separately and the replacement policies are not applied to them.
The experimental results show that the prefetching together with the top-level
buffering significantly improves the performance of query processing (up to 200%
speedup) at the costs of a moderate increase of construction costs (about 30%).

Acknowledgments. This research has been supported by GAČR 201/05/P036
and GAČR 201/06/0756 grants provided by the Czech Science Foundation.

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. T. Brinkhoff. A Robust and Self-tuning Page-Replacement Strategy for Spatial
Database Systems. In EDBT, pages 533–552, London, UK, 2002. Springer-Verlag.

3. S. D. Carson. A system for adaptive disk rearrangement. Software - Practice and
Experience (SPE), 20(3):225–242, 1990.

4. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

6. A. Corral, M. Vassilakopoulos, and Y. Manolopoulos. The Impact of Buffering on
Closest Pairs Queries Using R-Trees. In ADBIS ’01: Proceedings of the 5th East
European Conference on Advances in Databases and Information Systems, pages
41–54, London, UK, 2001. Springer.

7. W. Effelsberg and T. Haerder. Principles of database buffer management. ACM
Transastions on Database Systems (TODS), 9(4):560–595, 1984.

8. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

9. S. Hettich and S. Bay. The UCI KDD archive [http://kdd.ics.uci.edu], 1999.
10. H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data replication in free disk

space for improving disk performance and energy consumption. In ACM SOSP
’05, pages 263–276, New York, NY, USA, 2005. ACM Press.

11. S. T. Leutenegger and M. A. Lopez. The Effect of Buffering on the Performance
of R-Trees. IEEE Transaction on Knowledge and Data Engineering, 12(1):33–44,
2000.

12. L. F. Mackert and G. M. Lohman. Index scans using a finite LRU buffer: a validated
I/O model. ACM Transactions on Database Systems (TODS), 14(3):401–424, 1989.

13. R. Ng, C.Faloutsos, and T. Sellis. Flexible buffer allocation based on marginal
gains. In ACM SIGMOD, pages 387–396. ACM Press, 1991.

14. E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm
for database disk buffering. In ACM SIGMOD, pages 297–306, New York, NY,
USA, 1993. ACM Press.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 373

15. R. Ramakrishnan and J. Gehrke. Database Management Systems, 3rd edition.
WCB/McGraw-Hill, 2003.

16. C. Ruemmler and J. Wilkes. Disk Shuffling, Technical Report HPL-CSP-91-30,
Hewlett-Packard Laboratories, 1991.

17. S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ailamaki,
C. Faloutsos, and G. R. Granger. On multidimensional data and modern disks. In
4th USENIX Conference on File and Storage Technologies, pages 225–238, 2005.

18. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

19. J. S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys, 33(2):209–271, 2001.

20. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In VLDB ’98,
pages 194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

21. B. Yu and S. Kim. An efficient zoning technique for multi-dimensional access
methods. In TEAA 2006, LNCS 3888, Springer, pages 129–143, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for
Mid-Tier Database Caching

Xiaodan Wang1, Tanu Malik1, Randal Burns1, Stratos Papadomanolakis2,
and Anastassia Ailamaki2

1 Johns Hopkins University, USA
{xwang, tmalik, randal}@cs.jhu.edu

2 Carnegie Mellon University, USA
{stratos, natassa}@cs.cmu.edu

Abstract. Making multi-terabyte scientific databases publicly accessible over the
Internet is increasingly important in disciplines such as Biology and Astronomy.
However, contention at a centralized, backend database is a major performance
bottleneck, limiting the scalability of Internet-based, database applications. Mid-
tier caching reduces contention at the backend database by distributing database
operations to the cache. To improve the performance of mid-tier caches, we propose
the caching of query prototypes, a workload-driven unit of cache replacement in
which the cache object is chosen from various classes of queries in the workload. In
existing mid-tier caching systems, the storage organization in the cache is statically
defined. Our approach adapts cache storage to workload changes, requires no prior
knowledge about the workload, and is transparent to the application. Experiments
over a one-month, 1.4 million query Astronomy workload demonstrate up to 70%
reduction in network traffic and reduce query response time by up to a factor of
three when compared with alternative units of cache replacement.

1 Introduction

The sciences are collecting and analyzing vast amounts of observational data. In Astron-
omy, cataloging and mapping spectral characteristics of objects in only a fraction of the
sky requires several terabytes of storage. Data are made available to remote users for
processing, for example through SkyQuery [1], a federation of Astronomy databases
and part of the World-Wide Telescope [2]. However, SkyQuery faces an impending
scalability crisis. The federation is expected to expand from roughly a dozen members
today to over a hundred in the near future [3]. Furthermore, member databases, such as
the Sloan Digital Sky Survey (SDSS) [4], are accumulating data at an astonishing rate.

Mid-tier caching is an attractive solution for increasing scalability, availability, and
performance of distributed database applications [5]. We study mid-tier caching in the
context of SkyQuery using bypass-yield caching [6]. Bypass-yield caching replicates
database objects, e.g. columns (attributes), tables, or views, at caches deployed near the
clients so that queries are served locally, reducing network bandwidth requirements.
Caches service some queries in cache and ship other queries to be evaluated at the
backend database.

Our experience with bypass-yield caching indicates that query evaluation perfor-
mance in the cache is also critical. Despite the network benefits, poor I/O

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 374–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 375

performance in caches may result in inferior overall performance. Mid-tier caches lack
the indices that are vital to I/O efficiency in databases. Maintaining indexes in a cache
is prohibitively expensive given that (1) index construction is time consuming and I/O-
intensive, (2) cache data are continuously changing, and (3) indices consume space,
polluting the cache with replicated data. In this paper, we extend previous work on
network traffic reduction with bypass-yield caching [6] by exploring ways to simulta-
neously improve query execution performance in the cache.

In existing mid-tier caching models, the storage organization employed by the cache
is either tied to the backend database or defined a priori, e.g. columns [6], tables [5],
vertical or horizontal fragments of base tables [7,8], or views [9]. Our work differs from
previous caching approaches in two ways. First, we explore dynamic cache storage or-
ganizations that take into account workload information to improve query performance.
Second, we evaluate alternative units of cache replacement in terms of their network
traffic reduction benefits.

We propose a workload-driven technique for choosing the unit of cache replacement
that is adaptive and self-organizing. Our model employs query prototypes in which each
prototype is a combination of attributes that is accessed by the same class of queries.
Prototypes serve as the logical unit of cache replacement. Query prototypes are adap-
tive in that prototypes are defined dynamically based on the access pattern of queries
that appear in the workload. This is useful for scientific databases in which an a priori
workload is not available. In particular, Astronomers are constantly finding new exper-
iments to conduct in SkyQuery, making it difficult to identify a static set of frequently
accessed database objects. Query prototypes are self-organizing in that changes to the
storage organization are part of the cache replacement decision. Each prototype is opti-
mized for a specific class of queries and, as workloads change, the storage layer changes
accordingly. This makes it unnecessary to reorganize the cache contents periodically to
improve query performance.

Our experiments show that query prototypes result in a factor of three reduction in
query response time when compared with caching of columns, tables, and vertical par-
titions of backend tables. Prototypes also exhibit low cache pollution and high network
savings. This is especially true at low cache sizes in which 40% less network traffic was
generated when compared with the next best method.

We emphasize that this paper does not introduce a new caching algorithm, but presents
a technique for specifying the unit of cache replacement that improves performance
without sacrificing the inherent merits of mid-tier database caching.

2 Caching for Scientific Databases

We briefly describe the framework used to study our approach and explain why choos-
ing the unit of cache replacement is relevant to database caching.

2.1 Cache Environment

SkyQuery [1], a federation of Astronomy databases, is a Web-based application in
which caching drastically reduces network traffic. In SkyQuery, Web mediators or por-
tals located in close proximity to the users serve as the interface between user queries

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

376 X. Wang et al.

Web Portal

DB

Wrapper WrapperWrapper

Q
ueries

Sub−Queries

SO
A

P

Cache

DB

UserUser

DB

WAN
LAN

Fig. 1. Mid-tier database caching in SkyQuery

and member databases in the federation. As shown in Figure 1, the portal communicates
with member databases via a wrapper interface. The wrapper interface allows member
databases to remain autonomous and heterogeneous entities. We are currently building
a cache prototype in SkyQuery in which the cache resides at the portal and utilizes the
wrapper interface to transfer data, process queries, and collect schema information.

The SkyQuery workload is read-only and contains a rich variety of range, aggre-
gate, identity, and spatial queries submitted through a large community of Astronomers.
User queries either execute locally in the cache or are shipped to backend databases.
However, executing queries at the backend database generates a lot of network traffic
over WAN, because query results are transferred back to the user. The goal is to cache
database objects so that most of the data transfer is from the cache to the user over LAN.

We employ bypass-yield caching (BYC) [6], which was developed for SkyQuery.
The primary goal of caching in this environment is network traffic reduction because
queries are network-bound [6]. BYC is an economic framework in which network band-
width is the currency and network traffic reduction is the goal. The decision to ship a
database object to the cache represents an investment in which the cost to load an object
is recovered through expected network savings. Queries that access objects which fail to
yield positive network savings in this economic model are bypassed, i.e. shipped to the
backend database for execution. BYC is also flexible with respect to the unit of cache
replacement; replacement can be performed on individual columns, tables, or tuples.

Query prototypes is an extension to BYC by making storage management part of the
cache replacement decision. Storage management is important because mid-tier caches
operate in index-free environments in which cache data are continuously changing and
cache space is constrained. While BYC identifies data that are beneficial to the cache, it

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 377

does not consider how data layout on disk impacts query execution performance. Query
prototypes not only capture data that are useful to cache but also how data should be
organized on disk.

2.2 Choosing the Unit of Cache Replacement

The granularity of cache replacement has a significant impact on the overall network
performance [6]. Network performance is governed by the utilization of cache space. In
general, caching objects at too fine a granularity increases maintenance overhead. For
example, if data granularity is chosen at the level of individual tuples, then significant
cache space is needed to maintain the relationships among all of the cached tuples. On
the other hand, too coarse a granularity degrades cache utilization by emptying a large
portion of the cache during object replacement [10].

Query performance is governed by the effective clustering of data in the cache. The
best clustering is obtained if groups of workload-related tuples are cached, as in seman-
tic caching. However, semantic caching requires that workloads exhibit query locality,
which is not true of Astronomy workloads [6]. Furthermore, splitting, coalescing, and
containment checking is difficult when workloads consist of complex queries, and not
just range queries [7]. Thus, from the perspective of query performance, cache replace-
ment must be performed at the granularity of tables, columns, or vertical or horizontal
fragments of the backend database. However, these database objects are defined dur-
ing the database design process, which is concerned with eliminating redundancy and
update anomalies in addition to workload access patterns. Naively choosing any of the
above as the choice of caching granularity forces columns that are logically related but
rarely accessed together to be stored together in the cache. This hurts both query and
network performance. In contrast, if the unit of cache replacement is adaptive so that
columns are grouped in a manner that reflects changing query access patterns, then
overall cache performance is improved.

3 Related Work

In this section, we summarize work on mid-tier caches that define static and dynamic
units of cache replacement. We also review several database design methods for im-
proving query performance, including vertical partitioning and materialized views.

3.1 Statically-Defined Cache Replacement

Mid-tier caching provides greater scalability and availability, increased performance,
and quality of service guarantees [5]. Several high performance mid-tier caching sys-
tems allow for flexibility in defining the unit of cache replacement [7,8,9]. Cache Tables
[7] allows for the caching of declarative cache tables, which corresponds to a table, col-
umn, or materialized view from the backend database. Similar flexibility in the unit of
cache replacement is achieved in TimesTen [9] through the definition of cache groups
and MTCache [8] through the use of select-project views. However, the unit of cache
replacement in these systems is specified a priori during initialization. Also, the unit
of cache replacement is static and does not adapt to workload changes. We found that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

378 X. Wang et al.

adapting the storage organizations of cached contents by changing the unit of cache
replacement over time significantly improves query performance.

3.2 Dynamically-Defined Cache Replacement

Predicate-based or semantic caching supports an adaptive unit of cache replacement
[11]. Caching is performed on groups of spatially related tuples, as defined by a set
of predicate conditions, which exhibit high semantic reuse. Unlike statically-defined
caching schemes, which are susceptible to poor clustering, semantic regions can grow
or shrink in size to adapt to workload changes. Judicious data placement, accomplished
by preserving spatial locality of data that are frequently accessed together, improves
query performance significantly over static schemes [10].

While semantic caching is attractive, there are some drawbacks. Maintaining a se-
mantic description of the data is feasible when workloads consist mostly of simple
select-project-join queries [7]. Also, workloads should exhibit semantic reuse in which
data items contained in the result of a query are later reused. These properties allow for
efficient checking of query containment against cached data [11]. However, Astronomy
workloads comprise of nested queries with user-defined functions and complex joins,
which are unsuitable for semantic caching. More importantly, scientific workloads ex-
hibit little semantic reuse but frequent syntactic reuse [6]; i.e. specific data items expe-
rience little to no reuse, but queries request data from the same group of columns. We
exploit syntactic reuse by caching dynamically-defined groups of columns.

3.3 Database Design Methods

Vertical partitioning identifies I/O efficient placement of columns at the storage layer to
improve query performance [12,13,14,15,16,17]. Early works introduced the notion of
affinity, the frequency in which attributes are accessed together, to evaluate the place-
ment of columns [12,13,18]. Data columns are grouped together by applying a cluster-
ing algorithm on affinity values. Recent work suggests that affinity value is decoupled
from actual I/O cost and is a poor predictor of query performance. They propose more
sophisticated cost models that estimate the I/O cost of performing database operations
[14,15]. AutoPart [15] is a workload-based, automated database design tool that im-
proves query performance through vertical and horizontal partitioning. While query
prototypes can be described as a vertical fragmentation of the database, it does not
partition the database algorithmically. Also, prototypes are not disjoint in that multiple
prototypes may replicate the same data column.

Materialized views allow for arbitrary vertical and/or horizontal fragmentations of
base tables. Materialized views are concrete tables derived from underlying base rela-
tions to enable I/O efficient accesses. In ViewCache, a framework for managing mate-
rialized views is provided that balances storage overhead with performance [19]. Views
are made compact by storing pointers to records in the base relation and are materialized
on demand. However, ViewCache does not specify the appropriate views to create.

Multi-query optimization, a technique used in data warehouse systems, provides one
solution to view selection [20]. The goal is to exploit shared data between a set of
queries or views and identify additional views for transient or permanent materializa-
tion that are used to share intermediate results and improve performance. Multi-query

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 379

optimization has been successfully applied in view maintenance [21] and in the op-
timization of inter-query execution [22]. However, evaluating shared sub-expressions
increases the complexity of query optimization. Query prototype caching does not in-
crease optimization cost because each query is evaluated against a single prototype.
Moreover, multi-query optimization is applied to known workloads that are fairly static
and that have high overlap across queries. Neither are assumptions for query prototypes.

4 Query Prototype Caching

This section provides a formal description of query prototypes. The method for speci-
fying query prototypes takes as input a set of queries Q and outputs a set of prototypes
P, which serve as the unit of cache replacement. Each query is matched against exactly
one prototype, whereas each prototype is derived from a set of related queries.

4.1 Definition

Let R = R1, ..., Rn be the set of all tables at the backend database. Each table consists
of a set of attributes. Let A = A11, ..., A1m, A21, ..., Anp as the set of all attributes at
the backend database in which Aij is the j th attribute in relation Ri.

Let Q be the set all queries in the workload in which qi∈Q is the ith query in the
workload. AutoPart [15] introduced the concept of a Query Access Set (QAS), which
is the subset of attributes from a single relation in R that are referenced by a query in
Q. For query prototypes, we redefine Query Access Set to be the set of attributes from
every relations in R that are referenced by a query in Q.

Let QAS(qi, A) be defined as the set of attributes from A that are referenced by query
qi. For query prototype caching, we consider queries qi and qj to be equivalent if and
only if QAS(qi, A) = QAS(qj , A) – that is, they access the same set of attributes. A set
of queries, in which the QAS of these queries are identical, make up an equivalence
class in the workload. Each prototype in P represents a unique equivalence class in the
workload. Thus, to cache a prototype Pk, the set of attributes referenced by queries in
Pk are loaded into the cache as one unit.

We demonstrate the concept of query prototypes using three queries derived from an
Astronomy workload [4]:

q1: SELECT objID FROM Galaxy, SpecObj
WHERE objID = bestobjID and specclass = 2 and z between 0.121 and 0.127

q2: SELECT objID, ra, dec FROM PhotoPrimary WHERE dec between 2.25 and 2.75
q3: SELECT top 1 ra, dec FROM PhotoPrimary WHERE objID = 5877311875315

The example shows two unique query prototypes in which the Query Access Set for
q2 and q3 are identical:

QAS(q1, A) = {Galaxy:objID, SpecObj:bestobjID, SpecObj:specclass, SpecObj:z}
QAS(q2, A)=QAS(q3, A)={PhotoPrimary:objID,PhotoPrimary:ra,PhotoPrimary:dec}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

380 X. Wang et al.

4.2 Discussion

To materialize a prototype in the cache, the group of attributes belonging to the pro-
totype is allocated a unique set of relation files in the storage layer. Spatial locality
among attributes belonging to each prototype is preserved because storage is not shared
between prototypes with overlapping attributes. Queries serviced from the cache are
matched against a prototype and are rewritten to address relations in the cache. Further-
more, loading or evicting a prototype simply requires that the corresponding relations
be added or dropped from the database.

Two properties are worth noting for query prototypes. Prototypes are rarely disjoint;
attributes appear in multiple prototypes. This introduces attribute replication because
prototypes that overlap do not share storage. A prototype can also contain attributes
from multiple tables. One option for storing attributes from multiple tables computes
the cross product and stores the result in a single table. However, this utilizes cache
storage unwisely, because the storage required scales exponentially with the number
of joins [23]. Instead, we store attributes belonging to different backend relations in
separate tables and compute the join during query execution.

Theoretically, the number of query prototypes can be very large, equal to min(# of
queries, 2n where n is the number of attributes referenced by the workload). In practice,
query prototypes provide a compact summary of the workload, even those with millions
of queries. We found that much of the science is conducted through prepared SQL
queries via form-based applications or custom scripts that iterate over the database by
accessing the same combination of attributes. This observation was exploited in a work
on active, form-based proxy caching for backend databases [24]. Luo and Naughton
acknowledged that while caching for queries with arbitrary SQL syntax is difficult,
queries submitted through HTML forms exhibit only a handful of distinct types. The
semantic information from these queries is captured through a compact set of templates,
which are parameterized query specification in which parameter values are provided
at runtime. Our approach applies to general queries and does not distinguish between
form-based and arbitrary user queries.

4.3 Performance Implications

Query prototypes improve query performance at the cache by reducing the amount of
data read from disk. Since prototypes contain only the attributes referenced by a query,
accessing them is much faster than accessing the entire base table. Query prototypes
reduce scan costs by ensuring that only data from columns requested by a query are
read from disk. Also, each query is executed against a single prototype in which the
number of join operations is never more than the number of backend tables a query
accesses.

Besides improving performance for the queries executed in the cache, query proto-
types perform well in terms of network bandwidth. Contrary to using entire tables as
the cache replacement unit, query prototypes avoid unnecessary transfers of attributes
that are not referenced by the workload. Although single-column partitions also have
this property [6], they suffer from the file-bundling effect [25] in which evicting a single
column from a group of columns that are accessed together renders the cache ineffective
for the entire group.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 381

Cache pollution is the loading of redundant or unused database objects that ad-
versely impact performance by evicting useful objects. Pollution limits the applicability
of query prototypes to general workloads. Since prototypes are not disjoint, the cache
allocates storage for duplicate columns. If the number of prototypes is too high, then
no single prototype serves enough queries to provide positive network savings. If the
overlap between prototypes is high, then attribute replication quickly pollutes the cache.

5 Experiments

Our experiments use a one-month query trace from the Sloan Digital Sky Survey (SDSS),
a major site in SkyQuery [4]. The trace consists of 1.4 million read-only, SQL queries
generating nearly 360GB of network traffic against Data Release 4 (DR4), which is a
two-terabyte database. To finish I/O experiments in a reasonable time, we take a ten
percent sample of the DR4 database, roughly 200GB in size.

We evaluate query prototypes against three units of cache replacement: columns,
tables, and logical groupings of columns as determined through vertical partitioning.
For column caching, we store related columns in the same table rather than storing each
column in a separate table. Query performance in the latter approach is disastrous using
row-oriented, relational databases.

We adapt existing vertical partitioning algorithms to caching. Traditionally, parti-
tioning takes as input a representative set of queries and outputs an alternative, I/O
efficient database schema. Thus, partitioning algorithms are designed for a different set
of goals than caching – that is, improving query performance rather than network usage.
Nonetheless, we expect that the same technique for improving spatial locality among
columns that are accessed together will group columns that are relevant to the cache.
We choose AutoPart [15], a high-performance vertical partitioning algorithm, for our
experiments. To ensure that the unit of cache replacement is adaptive, we periodically
update the column groupings by rerunning the algorithm with new queries. We also
restrict input to the algorithm to queries with results sizes greater than one megabyte
because it is not economical to cache for queries with small result sizes.

All experiments use the DR4 database running on Microsoft’s SQL Server 2000. Our
main workstation is a 3GHz Pentium IV machine with 1GB of main memory and two
SATA disks. SQL Server uses one disk for logging and stores the database on a second,
500GB disk.

5.1 Query Workload

Upon analyzing the DR4 trace, we discover that query prototypes provide a compact
representation of the workload. The entire 1.4 million trace consists of only 1176 proto-
types, owing to schema reuse in which a limited combination of columns are repeatedly
accessed. Moreover, a handful of prototypes capture most of the workload. 11 unique
prototypes describe 91% of the entire workload while 6 unique prototypes generate
89% of the network traffic. Query prototypes that occur frequently do not correspond
to those that generate most of the network traffic. The latter dictate cache replacement
decisions whereas the former do not.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

382 X. Wang et al.

5.2 Query Performance

We measure query performance by deploying the cache for the sampled database and
using the entire 1.4 million query workload as input to the cache. The cache size
is set at 1% of the sampled database. Using a small relative cache size is appropri-
ate, because caches are likely to have only a fraction of the several terabytes of stor-
age available to backend databases. Figure 2 shows the performance of queries exe-
cuted at the cache. Caching query prototypes results in the best performance with an
average query response time of 474ms, which is up to three times faster than other
strategies.

Total Queries Result Size
Response

Time
l1 r1 Pages Read

Table 177228 6.96 1656 0 0 11214
Column 177932 21.11 1057 0 0 6290

Vertical Partition 177907 15.93 1054 0 0 6133
Query Prototype 3762 20.85 474 2962

Unit of Cache
Replacement

Average Response Time

0

200

400

600

800

1000

1200

1400

1600

1800

Table Column Vertical

Partition

Query

Prototype

Unit of Cache Replacement

Q
ry

 R
es

p
o

n
se

 T
im

e
(m

s)

Average Pages Read

0

2000

4000

6000

8000

10000

12000

Table Column Vertical

Partition

Query

Prototype

Unit of Cache Replacement

L
o

g
ic

al
 P

ag
es

 R
ea

d
/Q

ry
(#

 o
f

8K
B

 P
ag

es
)

Fig. 2. Query performance by unit of cache replacement

The lack of prior knowledge about the workload limits the effectiveness of vertical
partitioning. The partitioning algorithm takes all high-yield queries from the workload
as input, but only a fraction of those queries are executed in the cache. This results in
a mismatch between the workload executed in the cache and the workload provided as
input to the partitioning algorithm.

We also measure logical database pages read to compare sequential access perfor-
mance. Unlike physical reads, buffering and fragmentation on disk do not affect logical
reads. The trend is consistent with query response times; query prototypes employ the
most I/O-efficient layout of data and incur the fewest page reads.

5.3 Network Savings

In Figure 3, we compare network performance on the un-sampled database for different
caching strategies at various increments of cache size. Query prototypes outperform col-
umn caching at cache sizes lower than 2% of the database, while table caching lags far
behind. The enormous size of each table means that for cache sizes less than 0.5%, only
a handful of objects fits in cache when table caching is used. As cache size increase,
column caching exhibits a slight advantage over query prototypes. With the cache

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 383

Fig. 3. Network traffic by unit of cache replacement. Network cost without caching is 357GB

at 3% of the database, query prototype caching generates 104GB of network traffic
versus 102GB for column caching. Vertical partition caching also performs well and do
a good job of grouping columns that provide positive network savings.

A conspicuous feature at cache sizes lower than 2% is that query prototype out-
performs column caching by a large margin, generating up to 40% less traffic. This
is explained by the file-bundling effect [25]. Specifically, column caching makes poor
replacement decisions at low cache sizes when cache resident times are shorter and ob-
ject evictions are more frequent. The resulting mix of columns in the cache have a lower
probability of satisfying incoming queries.

5.4 Cache Pollution

In query prototypes, pollution arises from attribute replication. For table and vertical
partition caching, columns that do not provide any network savings pollute the cache
because they are grouped with columns that yield positive network savings.

Figure 4 shows cache pollution on the un-sampled database for different caching
strategies. Attribute replication for query prototypes remains at 5% or lower for the
most part. There is a sharp rise at 0.6% cache size, which does not significantly impact
network savings because cache space is not fully utilized. Immediately after is a sharp
drop because prototypes that were previously too large to fit into the cache are loaded.
This displaces several smaller prototypes, resulting in fewer, large prototypes. Pollution
remains fairly stable afterwards as the number of cached prototypes increases. Caching
vertical partitions exhibit significantly more pollution than query prototypes. This is
because partitioning algorithms are not designed for caching and do not always separate
attributes that provide network savings from those that do not.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

384 X. Wang et al.

Fig. 4. Cache pollution, as a percent of cache space utilized, by unit of cache replacement

6 Conclusions and Future Work

We present a workload-driven approach to specifying the unit of cache replacement
for scientific workloads that is adaptive and self-organizing. Our experiments illustrate
that query prototypes achieve superior query and network performance with little cache
pollution. However, prototypes are susceptible to cache pollution for workloads with
high attribute overlap. To address this, we are considering merging prototypes with
shared attributes in order to strike a balance between query performance and cache pol-
lution. Vertical partition caching is promising because unlike query prototypes, it is not
susceptible to a high degree of attribute replication. However, directly adapting exist-
ing partitioning algorithms to caching is unsuitable because these algorithms optimize
query execution cost but do not consider network costs. We will extend partitioning
algorithms to optimize for multiple costs in the future. Finally we plan to extend query
prototypes to support updates.

References

1. Malik, T., Szalay, A.S., Budavri, A.S., Thakar, A.R.: SkyQuery: A Web Service Approach
to Federate Databases. In: CIDR. (2003)

2. Gray, J., Szalay, A.: Online Science: The World-Wide Telescope as a Prototype for the New
Computational Science. Presentation at the Supercomputing Conference (2003)

3. Szalay, A., Gray, J., Thakar, A., Kuntz, P., Malik, T., Raddick, J., Stoughton, C., Vandenberg,
J.: The SDSS SkyServer - Public Access to the Sloan Digital Sky Server Data. In: SIGMOD.
(2002)

4. The Sloan Digital Sky Survey. http://www.sdss.org
5. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton,

J.F.: Middle-tier Database Caching for E-Business. In: SIGMOD. (2002)
6. Malik, T., Burns, R., Chaudhary, A.: Bypass Caching: Making Scientific Databases Good

Network Citizens. In: ICDE. (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Workload-Driven Unit of Cache Replacement for Mid-Tier Database Caching 385

7. Altinel, M., Bornhvd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache
Tables: Paving the Way for An Adaptive Database Cache. In: VLDB. (2003)

8. Larson, P., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-Tier Database Caching for SQL
Server. In: ICDE. (2004)

9. The TimesTen Team: Mid-tier Caching: The TimesTen Approach. In: SIGMOD. (2002)
10. Dar, S., Franklin, M.J., Jonsson, B.T., Srivastava, D., Tan, M.: Semantic Data Caching and

Replacement. In: VLDB. (1996)
11. Keller, A.M., Basu, J.: A Predicate-based Caching Scheme for Client-Server Database Ar-

chitectures. VLDB (1996)
12. Hammer, M., Niamir, B.: A Heuristic Approach to Attribute Partitioning. In: SIGMOD.

(1979)
13. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical Partitioning Algorithms for Database

Design. ACM Trans. Database Syst. 9(4) (1984) 680–710
14. Chu, W.W., Ieong, I.T.: A Transaction-Based Approach to Vertical Partitioning for Relational

Database Systems. IEEE Trans. Softw. Eng. 19(8) (1993) 804–812
15. Papadomanolakis, S., Ailamaki, A.: AutoPart: Automating Schema Design for Large Scien-

tific Databases Using Data Partitioning. In: SSDBM. (2004)
16. Cornell, D.W., Yu, P.S.: An Effective Approach to Vertical Partitioning for Physical Design

of Relational Databases. IEEE Trans. Softw. Eng. 16(2) (1990) 248–258
17. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating Vertical and Horizontal Partitioning Into

Automated Physical Database Design. In: SIGMOD. (2004)
18. Navathe, S.B., Ra, M.: Vertical Partitioning for Database Design: A Graphical Algorithm.

In: SIGMOD. (1989)
19. Roussopoulos, N.: An Incremental Access Method for ViewCache: Concept, Algorithms,

and Cost Analysis. ACM Trans. Database Syst. 16(3) (1991) 535–563
20. Sellis, T.K.: Multiple-Query Optimization. ACM Trans. Database Syst. 13(1) (1988) 23–52
21. Mistry, H., Roy, P., Sudarshan, S., Ramamritham, K.: Materialized View Selection and Main-

tenance Using Multi-Query Optimization. In: SIGMOD. (2001)
22. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and Extensible Algorithms for Multi

Query Optimization. In: SIGMOD. (2000)
23. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join Results.

In: SIGMOD. (1991)
24. Luo, Q., Naughton, J.F.: Form-Based Proxy Caching for Database-Backed Web Sites. In:

VLDB. (2001)
25. Otoo, E., Rotem, D., Romosan, A.: Optimal File-Bundle Caching Algorithms for Data-Grids.

In: ACM/IEEE Supercomputing (SC). (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main

Memory�

Hua Luan1,2, Xiaoyong Du1,2, Shan Wang1,2, Yongzhi Ni1,2, and Qiming Chen3

1 School of Information, Renmin University of China, Beijing, China
2 Key Laboratory of Data Engineering and Knowledge Engineering, Renmin

University of China, MOE, Beijing, China
3 HP Labs China, Beijing, China

{luanhua,duyong,swang,ni}@ruc.edu.cn, qiming.chen@hp.com

Abstract. As the memory capacity increases and the hardware becomes
cheaper, main memory databases (MMDB) have come true and been
used in more and more applications, because they can provide better re-
sponse time and throughputs. The advent of MMDB requires a reconsid-
eration of data structures and algorithms of traditional DBMS. The index
structure is one of the most important aspects that need be redesigned
since it can affect the overall system performance heavily. Even though
the T-tree index, which was proposed for main memory databases, has
been widely accepted as a promising index structure. B+-tree and its
variants still have their advantages in memory and are also regarded as
the potential main memory database index structures. In this paper, we
propose a new indexing technique called J+-tree for MMDB, inspired
by the Judy structure which is an associative array data structure. Our
J+-tree index not only holds the advantages of Judy (such as good single
value search characteristic) but also outperforms it in many ways. For
example, J+-tree can obtain better performance for range queries that
are very slow in Judy structure. We compare the J+-tree index with
Judy, T-tree and B+-tree on time and space aspects, and the experimen-
tal results show that J+-tree can provide better overall performance in
main memory.

1 Introduction

Nowadays, computers with main memory size in the order of magnitude of giga-
bytes are available. With the advent of larger and cheaper memory, main memory
databases (MMDB) where the whole database or large portions of it can fit in
memory have gained more attention of database researchers and the industry.
It is believed that MMDB can provide better performance as compared to tra-
ditional disk resident databases [4] [7]. There have existed many main memory
database systems, from prototype implementations - Starburst system from IBM
� This work is partly supported by a grant from HP Lab China, NSFC China

No.60573092, NSFC China No.60496325, China Grid No.CNGI-04-15-7A and NSFC
China No.60503038.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 386–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 387

Almaden Research Center [7] and Dali system from the AT&T Bell Laboratories
[10] to commercial systems - TimesTen system purchased by Oracle Corporation
in 2005 [11] and Altibase system of Altibase Corporation in Korea [5].

In main memory databases, indexes are still needed to access data fast and
are useful for single value queries, range queries and indexed nested looping
joins. The index structure is one of the primary factors that affect the over-
all system performance heavily, and has become an important research issue
in MMDB. T-tree [6], proposed by Lehman et al, has been widely used as
a major MMDB index structure - it is adopted by all the database systems
mentioned above. However, some researchers argue that B+-tree and its vari-
ants such as CSB+-tree can provide better CPU cache behavior than T-tree
[8] [9], so they can also be regarded as main memory index structures, al-
though B+-tree is originally designed for conventional disk resident database
systems.

The T-tree and B+-tree indexes have the same feature - the depth of the
trees increases as the number of keys gets larger. The search cost, which is
also part of update cost, is in proportion to the depth of the tree. So when a
large number of keys need be stored in T-tree or B+-tree, which is common
in main memory databases, their search cost is much expensive. In this paper,
we propose a new index structure called J+-tree, inspired by a smart digital
tree named Judy [1]. A Judy tree with 32-bit keys has a maximum of four
levels and eight levels for 64-bit keys. Our J+-tree retains this good structure
characteristic and has a low search cost - in spite of the number of keys, there
are at most five levels in J+-tree when keys are 32-bit and nine levels for 64-bit
keys.

Unlike Judy which keeps the whole keys in a Judy tree, J+-tree stores all the
keys in the leaf nodes and keeps only the reference values of the leaf nodes in a
Judy structure. Thus, J+-tree outperforms Judy in range queries and sequential
scans for indexed nested looping joins. Our experimental study confirms this
point and in the meantime shows that J+-tree has better performance than
Judy in insertion operation. We also compare J+-tree with T-tree and B+-tree.
The results demonstrate that J+-tree outperforms T-tree and B+-tree in terms
of search and update time.

The rest of this paper is organized as follows. Section 2 is the related work. We
present our J+-tree index in Section 3. The theoretical analysis of various index
structures is in Section 4. Section 5 shows our detailed experimental comparisons.
Finally, we conclude this paper and give the future work.

2 Related Work

In this section, we review several data structures: B+-tree, T-tree and Judy. All
these structures belong to the same type - the order-preserving class. In fact,
Hash is also considered as an index structure. But for the reason that it is not
order-preserving, we exclude it in this paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

388 H. Luan et al.

2.1 B+-Tree

B+-tree [2] is a variant of B-tree and a popular index structure in traditional
DBMS. In MMDB, B+-tree also gets much attention of many researchers. Some
variants of B+-tree have been proposed, such as CSB+-tree [9] and pB+-tree
[3] which optimize B+-tree in CPU cache behavior. But in general these new
types are similar to B+-tree in the aspect that the tree depth increases with the
number of keys.

2.2 T-Tree

T-tree [6], proposed by Lehman and Carey, is a type of binary tree with many
elements in a node. The “T” in T-tree refers to the shape of the node data
structure. Because T-tree is rooted by the AVL tree and the B-tree, it has the
characteristics of these two structures. Firstly, it retains the binary search nature
of the AVL tree, and its height is usually larger than that of B+-tree. Secondly,
it keeps the storage feature of B-tree, so that range queries need tree traversals
which are slower than scanning linked leaf nodes.

2.3 Judy

The Judy array [1] was proposed by Doug Baskins, which is a fast associative
array that can store and search values using integer or string keys. It is built
using digital trees with flexible adaptable nodes and various compression tricks.
The size of Judy is not pre-allocated and is adjusted dynamically according
to the number of keys, and compared with pure digital trees, Judy consumes
much less memory by choosing data structures of every node appropriate for
the population below the node. Judy takes the good usage of CPU cache into
account and needs no external tuning parameters.

Judy has three kinds of branch nodes - linear branch, bitmap branch and
uncompressed branch, and two kinds of leaf nodes - linear leaf and bitmap leaf.
The choice of the node data structure depends on the population of the keys
under the node - when a linear branch overflows it may become a bitmap branch.
There are four types of Judy arrays in Judy family: Judy1, JudyL, JudySL and
JudyHS. JudyL is the most important type which maps a long word to a one-
word value and is the workhorse of JudySL and JudyHS.

Logically, Judy is a 256-way digital tree, and keys are decoded into bytes.
Each level stores at least one byte of the key and portions of the key are kept
in different nodes throughout the tree. Although Judy is not a height-balanced
tree, the maximum height is predictable. It has at most four levels for 32-bit
keys and eight levels for 64-bit keys. Thus, in contrary to B+-tree and T-tree,
search time in Judy does not depend on the number of keys stored in the tree,
which makes the search operation very fast. Update can also benefit from this
advantage because search cost is part of update cost. It is this good characteris-
tic that encourages us to consider Judy as the base structure of our new index in
main memory databases. Judy has some drawbacks, which make it not sufficient

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 389

for a database index - firstly range queries are more difficult to implement and
slower than in B+-tree, and secondly, Judy does not support duplicate keys and
only one share of keys can be stored in the tree. Our J+-tree index can eliminate
these limitations.

3 J+-Tree

In J+-tree, all the keys are placed in the double linked leaf nodes. A Judy
structure, the upper part of J+-tree, is used to store the minimum key of each
leaf node as the reference value towards the leaf node. This design makes J+-tree
have the good structure advantage of Judy, and more suitable to be an index for
main memory databases.

3.1 Definition

The definition of J+-tree index is as follows:

(1) J+-tree is comprised of a Judy structure and double linked leaf nodes.
(2) All the keys are stored in the leaf nodes in order. The copy of the minimum

key of each leaf node is stored in the Judy structure as a reference value to
the leaf node.

(3) Judy structure consists of pairs of a reference value and a pointer. The
pointer points to the leaf node whose keys are equal to or larger than the
corresponding reference value.

(4) A leaf node contains at most m entries and no fewer than �m/2� entries. Each
entry has a key value and a pointer to the location of the record matching
the key.

(5) Each leaf node has two extra pointers pointing to the previous leaf node and
the next leaf node.

10 15 85 91 9763 7251 5921 37 44

10 21 51 63 85 Judy

Fig. 1. J+-tree

10 15 85 91 9763 7251 5921 37 44

 21 51 85

85

Fig. 2. B+-tree

From the definition we can see that J+-tree is somewhat like B+-tree in the
aspect of leaf nodes. But the part above leaf nodes is totally different. First, the
storage structure is not the same. J+-tree uses a Judy tree to store the reference
values while B+-tree uses an n-way tree. Second, the number of reference values
is different. In J+-tree, the number of values in Judy is the same as the number
of leaf nodes since only the minimum key of each leaf node is stored in Judy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

390 H. Luan et al.

While in B+-tree, besides the minimum keys of leaf nodes, the minimum keys of
nodes in lower levels are also kept in the nodes of higher levels. A simple example
is shown in Figure 1 and Figure 2. Figure 1 is J+-tree (m = 3), and Figure 2 is
the B+-tree.

3.2 Operations for J+-Tree

Search Algorithm. Searching a key in J+-tree is as follows:

(1) First, look for the reference value in Judy according to the search key. If
found, arrive at the leaf node via the corresponding pointer, otherwise, arrive
at the first leaf node. This leaf node is called the bounding node that bounds
the search key.

(2) In the leaf node, examine whether the search key is present by a binary
search. If the key is found, the search succeeds, otherwise, fails.

In step (1), how to look for the reference value in Judy is important. The
algorithm works as follows:

a) Look for the search key in Judy. The process of searching a key in Judy
is somewhat like searching a digital tree. Each level in Judy stores at least
one byte of the key. Decode the key into several bytes, and search the Judy
tree according to the corresponding bytes. If the key is found, the algorithm
succeeds and stops; otherwise, it proceeds to step b).

b) Step a) stops at a certain Judy node. Start with the current node to look
for the value less than the search key by backtracking through the nodes
that were just traversed. If a value less than the search key is found, the
algorithm succeeds; otherwise it fails.

Besides single value selection, there is another typical query operation in
database applications - range query. For range query:

(1) Use the minimum value of the range query as the search key and find the
bounding node.

(2) Begin from the bounding node to find all the keys within the range of query
along the double linked leaf nodes.

Insertion Algorithm. Before the insertion of a key, search the J+-tree to find
the bounding node. The new key is inserted into the bounding node. If the node
overflows, split the leaf node into two nodes. The details are as follows:

(1) Search the J+-tree for the bounding leaf node.
(2) If the leaf node is not full, just insert the new key into it. If the new key

is the minimum value of this node and the bounding node is the first leaf
node, delete the reference value of this leaf node from Judy and insert the
new reference value into Judy.

(3) If the leaf node is full (contains m entries), split the leaf node into two leaf
nodes (the original leaf node is the first node, and add a new leaf node to be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 391

the second node). Insert the new key into the appropriate node. Each node
has no fewer than �m/2� entries. Insert the minimum key of the second leaf
node into Judy as its reference value. For the first leaf node, if necessary (as
described in step (2)), update its reference value in Judy.

Deletion Algorithm. The search operation is the first step in the deletion
operation. The algorithm is as follows:

(1) Search for the bounding leaf node and examine whether the key to be deleted
exists. If not, return failure.

(2) If the bounding node contains more than �m/2� entries, just delete the key.
Even if the deletion key is the minimum in the leaf node, the reference value
in Judy need not be updated for the efficiency reason.

(3) If the bounding node contains �m/2� entries, delete the key, and
a) If the previous node of the bounding node exists and contains more than
�m/2� entries, move its maximum into the bounding node as the new
minimum. Update the reference value of the bounding node in Judy. Else

b) If the next node of the bounding node exists and contains more than
�m/2� entries, move its minimum into the bounding node to become the
new maximum. Update the reference value of the next node in Judy.
Else

c) If the previous node exists, merge the bounding node with its previous
node. Delete the reference value of the bounding node from Judy and
discard the bounding node. Else

d) If the next node exists, merge the bounding node with its next node.
Delete the reference value of the next node from Judy and discard the
next node.

3.3 Additional Illustration About J+-Tree

The leaf nodes of J+-tree are double linked so that the previous node which
is needed in deletion operation can be quickly found. Duplicate keys can be
supported easily in J+-tree - the duplicates can be stored in leaf nodes and
the upper Judy structure still keeps only the distinct values. This causes some
slight changes for the definition and operations of J+-tree. Due to limited space
no more details are provided in this paper. If the keys are 4-byte long such
as typical integers, J+-tree utilizes JudyL to store the reference values (64-bit
systems are not considered in this paper). If the keys have a larger size, which
is the same problem as [9] has encountered, our method is like that in [9] - put
the keys in a domain and store the corresponding IDs in J+-tree.

4 Time and Space Analysis

In this section, we analyze the theoretical time and space performance of B+-
tree, T-tree, Judy and J+-tree. To simplify the presentation, we assume that a
key and a pointer take the same space K which is four bytes. We let n denote the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

392 H. Luan et al.

number of keys, m denote the maximum number of keys per node (“node” does
not include the node in Judy and the internal node in J+-tree), and c denote the
node size. For B+-tree, c is (2K ∗m + 2K) where the second “2K”, which also
exists in the nodes of T-tree and the leaf nodes of J+-tree, is used by the pointer
to the next node in leaf nodes or the pointer to the first child node in internal
nodes or/and some extra information. In T-tree c is equal to (2K ∗m+2K+4K),
where “4K” refers to the space occupied by a parent pointer, a left pointer, a
right pointer and a balance factor. For the leaf nodes in J+-tree, c is calculated
using (2K ∗m + 2K + K) where the last item “K” is the space taken by the
pointer to the previous node. Some extra explanation about T-tree is needed:
we store the copies of keys and the pointers to the records in its nodes, not just
the pointers, because if so search is much slower due to indirection [8].

Table 1. Time Analysis

O(log 2
m)O(1)O(log 2

m)5256J+-tree

O(1)O(1)O(1)4256Judy

O(log 2
m)O(log 2

m)O(log 2
n)O(log 2

n/m)2T-tree

O(log 2
m)O(log 2

m)O(log 2
n)O(log m /2

n)m+1B +-tree

Comparisons of
per leaf node

Comparisons of
per internal node

Total
comparisons

Number of
levels

Branching
factor

Method

O(log 2
m)O(1)O(log 2

m)5256J+-tree

O(1)O(1)O(1)4256Judy

O(log 2
m)O(log 2

m)O(log 2
n)O(log 2

n/m)2T-tree

O(log 2
m)O(log 2

m)O(log 2
n)O(log m /2

n)m+1B +-tree

Comparisons of
per leaf node

Comparisons of
per internal node

Total
comparisons

Number of
levels

Branching
factor

Method

Table 1 shows the branching factor, number of levels and number of key
comparisons in search operation. B+-tree has a branching factor related to the
parameter m, while the other three structures have relatively stable branching
factors. The depth of Judy and J+-tree is fixed, and the maximum is four levels
for Judy and five levels for J+-tree. But the number of levels in B+-tree and
T-tree depends on the number of keys and the number of keys in one node. If
the parameter m is fixed, the depth of B+-tree and T-tree will become larger
with the increase of the number of keys. Because T-tree is a binary tree, it is
usually deeper than B+-tree. In the total comparisons, B+-tree and T-tree have
much more comparison times than Judy and J+-tree since m is much less than
n. The comparison operation of Judy has a constant order, which is true of the
comparison of internal nodes in J+-tree. Due to the comparisons of leaf nodes,
J+-tree has an order of logm

2 time complexity. As a whole, the tree depth and
total comparisons of Judy and J+-tree have nothing to do with the parameter
n, so the search cost is low and relatively constant. Search cost is an important
part of update cost and [9] has claimed that the total insertion cost of B+-tree
depends on the size of the tree, thus the update cost of J+-tree can also benefit
from the low search cost.

Table 2 is the space consumed by various data structures in general. We
assume all the nodes in B+-tree and the leaf nodes in J+-tree are 70% full, the
internal space of B+-tree is acquired by multiplying (1/m) by the leaf space
[9] and the space per key in Judy is 8 bytes [12]. For T-tree, we assume that in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 393

Table 2. Space Analysis

(n/(0.7m)) * c + 8*(n/(0.7m)) = (n/(0.7m)) * (2K*m + 2K + K) +
8*(n/(0.7m))

J+-tree

8nJudy

(n/(2(m-1)) + n/m) * c = (n/(2(m-1)) + n/m) * (2K*m + 2K + 4K)T-tree

(n/(0.7m)) * c * (1 + 1/m) = (n/(0.7m)) * (2K*m + 2K) * (1 + 1/m)B+-tree

SpaceMethod

(n/(0.7m)) * c + 8*(n/(0.7m)) = (n/(0.7m)) * (2K*m + 2K + K) +
8*(n/(0.7m))

J+-tree

8nJudy

(n/(2(m-1)) + n/m) * c = (n/(2(m-1)) + n/m) * (2K*m + 2K + 4K)T-tree

(n/(0.7m)) * c * (1 + 1/m) = (n/(0.7m)) * (2K*m + 2K) * (1 + 1/m)B+-tree

SpaceMethod

general the number of keys in one node is the minimum plus half of the difference
between the maximum and the minimum.

5 Experimental Results

In this section we show the experimental comparisons of B+-tree, T-tree, Judy
and J+-tree in time and space aspects in detail.

5.1 Experimental Setup

Our experiments were performed on a personal computer with 512M memory
and 2.4GHz Intel Pentium 4 CPU, running Windows XP operating system. Our
code was implemented in C language and was compiled by gcc in Cygwin
environment.

We chose keys to be four-byte integers and tested various operations by us-
ing two kinds of keys, one is sequential and the other is random. These two
types of keys are generated in advance and stored in arrays. Our test includes
several parts listed below. In each part the number of keys that every in-
dex structure contains ranges from 500,000 to 11,477,960. When the tree is
constructed with sequential keys, the keys used by other operations such as
search, insertion and deletion are also sequential. This is also true of random
keys.

Build - We inserted keys into an empty data structure. The inserts were each
separate and only distinct values were allowed. Here we measured the build time
(in fact the insertion cost) and memory space.

Search - To measure the search cost, we tested three operations for each
index, single value selections for 1 million keys when the keys were in the tree,
single value selections for 1 million keys when the keys were not present in the
tree and 10,000 times of range queries where the difference between the lower
and upper bounds was 3,000.

Insert - We inserted 0.5 million keys into each existing tree to measure the
insertion cost. The inserted keys were picked from the data arrays prepared in
advance.

Delete - To get the deletion cost we deleted 0.5 million keys from each existing
tree. The deleted keys were those that had been stored in the indexes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

394 H. Luan et al.

5.2 Implementation Details

We set the maximum number of keys in one node of B+-tree, T-tree and in each
leaf node of J+-tree to 15. The key size and the pointer size are both 4 bytes.
Thus the node size of B+-tree is 128 bytes, and that of T-tree is 144 bytes. The
size of leaf node in J+-tree is 132 bytes. For T-tree, we set the minimum internal
node size at two less than the maximum node size as in the original paper. For
B+-tree, T-tree and the leaf nodes of J+-tree, a large memory pool is allocated
in advance, so in the runtime, their memory space needed is acquired from the
pool and the unused space is not freed directly but linked back to the pool. For
Judy, we implemented its range query using the function of acquiring next key.
In the implementation of our J+-tree, we used the value areas of Judy to store
the pointers to the leaf nodes.

5.3 Results

We tested the build, search, insertion and deletion operations for sequential keys
and random keys, respectively. In the figures, “seq” represents that keys are
sequential and “rand” means keys are random.

 0

 100

 200

 300

 400

 500

 600

 700

 800

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 3. Hit Search Time

 0

 200

 400

 600

 800

 1000

 1200

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 4. Miss Search Time

Figure 3 shows the time of searching 1M keys when all the selected keys are
present in the trees. For both sequential keys and random keys, J+-tree and Judy
perform much better than B+-tree and T-tree, and their performance doesn’t
show obvious degrade as the tree sizes get larger, especially for sequential keys.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 395

It is because, when the number of keys becomes larger, the depth of B+-tree and
T-tree increases. When the keys are sequential all the indexes spend less time
than that of random keys. Figure 4 shows the search time when the selected keys
are not in the indexes. Again, for random keys the J+-tree and Judy indexes are
better than the other two indexes. But for sequential keys J+-tree is similar to
T-tree. This is because of the particularity of the search keys - all the keys we
chose are larger than the maximum key in the indexes, so the search of tree can
easily get to the next level via a few comparisons in T-tree.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 0

 10

 20

 30

 40

 50

 60

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 5. Range Query Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 6. Build Time

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 7. Insert Time

Figure 5 is the result of range queries. We can see that the behavior of Judy is
the worst and J+-tree is the best. For sequential keys, B+-tree performs as well
as J+-tree and T-tree performs worse than them. When the keys are random,
there are only a few keys in the range of query and just one or two leaf nodes of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

396 H. Luan et al.

B+-tree are scanned, thus the advantage of B+-tree is not exerted fully, which
makes B+-tree slightly worse than T-tree.

The time to build each tree is shown in Figure 6. Figure 7 is the time of
inserting 0.5M keys when the tree size is varied from 500,000 keys to 11,477,960
keys. In fact, they both show the insertion cost of various indexes, so the relative
performance is the same. J+-tree is better than all the other indexes no matter
what type the keys belong to. There are several reasons. First, J+-tree spends
less time to find the right location to insert the key. Second, the Judy structure in
J+-tree contains fewer keys than the Judy index so that there are fewer internal
node transformations caused by insertions. Third, there are no cascade splits in
J+-tree and if one leaf node is full, it is split into two leaf nodes, but this does
not result in the split of the parent node as is in B+-tree.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

2.0 4.0 6.0 8.0 10.0

tim
e

(m
s)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 8. Delete Time

0

50

100

150

200

250

2.0 4.0 6.0 8.0 10.0

m
em

or
y

sp
ac

e(
M

B)

number of keys (×106)

B+-tree (seq)
T-tree (seq)
Judy (seq)

J+-tree (seq)

0

20

40

60

80

100

120

140

160

2.0 4.0 6.0 8.0 10.0

m
em

or
y

sp
ac

e(
M

B)

number of keys (×106)

B+-tree (rand)
T-tree (rand)
Judy (rand)

J+-tree (rand)

Fig. 9. Memory Space

Figure 8 shows the deletion time. For random keys, J+-tree is worse than
Judy but still better than B+-tree and T-tree. Compared with Judy, J+-tree
needs the node merge and key shift operations that consume much time. For
sequential keys, J+-tree does not perform as well as T-tree. This is also due to
the particularity of the deleted keys. Firstly, the key to be deleted each time is
the minimum key in the trees, so T-tree can find the key quickly. Secondly, the
deleted key is always in the leaf node, thus no too much extra work such as key
shift is needed.

The space cost of various indexes is shown in Figure 9. Judy is indeed a
memory efficient data structure. No matter what type the keys are it needs the
lowest space. When the keys are sequential, the T-tree occupies less space than

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J+-Tree: A New Index Structure in Main Memory 397

J+-tree and B+-tree. It is because, for sequential keys the fill factor of the nodes
in B+-tree and the leaf nodes of J+-tree is low - a little more than 50%, which
results in much wasted space. When the keys are random the fill factor becomes
larger, so for random keys, there is no distinct difference among J+-tree, B+-tree
and T-tree.

6 Conclusions and Future Work

In this paper, we proposed a new index structure called J+-tree. It outperforms
Judy in range queries, sequential scans and insertion operations, and is more
suitable to be an index for main memory databases. Compared with B+-tree
and T-tree, our analytical and experimental results show that J+-tree provides
better performance in many aspects, due to an important reason from the good
structure characteristic of J+-tree - the tree depth is fixed. In the future work,
we will study the CPU cache behavior of J+-tree, and optimize our index by
minimizing cache misses.

References

1. Baskins D.: Judy functions - C libraries for creating and accessing dynamic arrays.
http://judy.sourceforge.net

2. Comer D.: The Ubiquitous B-Tree. ACM Computing Surveys. 11(2),(1979)
3. Chen S., Gibbons P. B., Mowry T. C.: Improving Index Performance through

Prefetching. In Proceedings of the SIGMOD 2001 Conference. (2001)235-246
4. Garcia-Molina H., Salem K.: Main Memory Database Systems: An Overview. IEEE

Transactions on Knowledge and Data Engineering. 4(6),(1992)
5. Jung K., Lee K.: Design and Implementation of Storage Manager in Main Memory

Database System ALTIBASE
6. Lehman T. J., Carey M. J.: A Study of Index Structures for Main Memory Database

Management Systems. In Proceedings of the 12th VLDB Conference. (1986)
294-303

7. Lehman T. J., Shekita E. J., Cabrera L.: An Evaluation of Starburst’s Memory
Resident Storage Component. IEEE Transactions on Knowledge and Data Engi-
neering. 4(6), (1992)555-566

8. Rao J., Ross K. A.: Cache Conscious Indexing for Decision-Support in Main Mem-
ory. In Proceedings of the 25th VLDB Conference. (1999)

9. Rao J., Ross K. A.: Making B+-Trees Cache Conscious in Main Memory. In Pro-
ceedings of ACM SIGMOD Conference. (2000)

10. Rastogi R., Seshadri S., Bohannon P., Leinbaugh D., Silberschatz A., Sudarshan
S.: Logical and Physical Versioning in Main Memory Databases. In Proceedings of
the 23rd VLDB Conference. (1997)86-95

11. The TimesTen Team: High Performance and Scalability through Application-Tier,
In-Memory Data Management. In Proceedings of the 26th VLDB Conference.
(2000)

12. Programming with Judy: C Language Judy Version 4.0. http://docs.hp.com/en/
B6841-90001/index.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 398 – 409, 2007.
© Springer-Verlag Berlin Heidelberg 2007

CST-Trees: Cache Sensitive T-Trees

Ig-hoon Lee1, Junho Shim2, Sang-goo Lee3, and Jonghoon Chun4

1 Prompt Corp., Seoul, Korea
ihlee@prompt.co.kr

2 Department of Computer Science, Sookmyung Women’s University, Korea
jshim@sookmyung.ac.kr

3 School of Computer Science & Engineering, Seoul National University, Korea
sglee@europa.snu.ac.kr

4 Department of Computer Engineering, Myongji University, Korea
jchun@mju.ac.kr

Abstract. Researchers have modified existing index structures into ones opti-
mized for CPU cache performance in main memory database environments. A
Cache Sensitive B+-Tree is one of them. It is designed to minimize the impact
of cache misses for B+-Trees and it has been known to be more effective than
other types of main memory index structure including T-Trees. In this paper,
we introduce a Cache Sensitive T-Tree (CST-Tree) and show how T-Trees can
also be redesigned to be cache sensitive. We present an experimental perform-
ance study which shows that our Cache Sensitive T-Trees can outperform the
original T-Trees and Cache Sensitive B+-Trees on average 65 percent and 17
percent, respectively.

1 Introduction

As random access memory becomes more condensed and cheaper, it becomes feasible
to store and manage database within large main memories. Researchers have paid at-
tention to various aspects of main memory databases. The index structure for main
memory is one area in which T-Trees were proposed as a prominent index structure
for main memory [6].
Recently, [8] and [9] claimed that B-Trees may outperform T-Trees owing to the cur-
rent speed gap between cache access and main memory access. CPU clock speeds
have been increasing at a much faster rate than memory speeds [1, 3, 7]. The overall
computation time becomes more dependent on first level instruction cache misses
(L1) and second level data cache misses (L2) than on disk buffer misses. The total
number of memory accesses for T-Trees is higher than the one for B+-Trees, in that
T-Trees are designed considering on random access and pointer operations [9]. In the
past we considered the effect of buffer cache misses to develop an efficient disk-based
index structure. The same applies to the effect of cache misses.

Albeit cache optimization in main memory systems in principle is similar to main
memory optimization in a disk-based system, a significant difference is that the man-
agement of the cache is done by the hardware and the database system does not have
a direct control to improve the cache hit, memory references satisfied by the cache.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 399

This is why the database system needs a built-in cache optimized index structure. A
careful design considering the characteristics of cache behavior and cache replace-
ment policy may lead to improvement of cache hits. A most well-known cache opti-
mized index structure for main memory database systems is CSB+-Trees (Cache
Sensitive B+-Trees) that is a variant of B+-Trees [9].

In this paper, we study how to design the existing T-Trees index structure to better
utilize the cache and introduce a new index structure CST-Trees (Cache Sensitive
T-Trees). We analyze the complexity of CST-Trees, and conduct the experiment to
check its performance. The experimental result show that our new cache sensitive
T-Trees may outperform the original T-Trees and other existing index structures:
CSB+-Trees and B+-Trees.

The rest of this paper is structured as follows. Section 2 presents the related work.
The original T-Trees and our analysis with regard to its cache consciousness are pro-
vided. In Section 3 we introduce our modified cache-conscious Trees and provide the
basic algorithms. In Section 4 we present the experimental performance study. And
finally, conclusions are drawn in Section 5.

2 Related Work

Most widely used tree-based index structures may include AVL-Trees, B+-Trees, and
T-Trees [6]. The AVL-Tree is a most classical index structure that was designed for
main memory [5]. It is a binary search tree in which each node consists of one key
field, two (left and right) pointers, and one control field to hold the balance of its sub-
tree (Figure 1-(a)). The left or right pointer points the left or right sub-trees of which
nodes contain data smaller or larger than its parent node, respectively. The difference
in height between the left and right sub-trees should be maintained smaller or equal to
one. If an update affects a leaf node and leaves the tree unbalanced, i.e., a control field
is larger than |1|, a rotation operation is performed. There are four different rotation
operations; LL (Figure 1-(b)), LR (Figure 1-(c)), RR, and RL. The RR and RL opera-
tions are symmetric to LL and LR, respectively.

Fig. 1. AVL Trees and T-Trees

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

400 I.-h. Lee et al.

The major disadvantage of an AVL-Tree is its poor storage utilization. Each tree
node holds only one key item, and therefore rotation operations are frequently per-
formed to balance the tree. T-Trees address this problem [6]. In a T-Tree, a node may
contain n keys (Figure 1-(d)). Key values of a node are maintained in order. Similar to
an AVL-Tree, any key stored within a left and right sub-tree should be smaller or lar-
ger than the least and largest data of a node, respectively. The tree is kept balanced by
the same rotation operations as for the AVL-Tree.

B-Trees [5] are designed for disk-based database systems and need few node ac-
cesses to search for a data since trees are broad and not deep, i.e., multiple keys are
used to search within a node and a small number of nodes are searched. Most data-
base systems employ B+-Trees, a variant of the B-Tree. In [8] and [9], authors
showed that B+-Trees have a better cache behavior than T-Trees, and suggested to fit
a node size in a cache line, so that a cache load satisfy multiple comparisons. They
introduced a cache sensitive search tree [8], which avoids storing pointers by em-
ploying the directory in an array. Although the proposed tree shows less cache miss
ratio, it has a limitation of allowing only batch updates and rebuilding the entire tree
once in a while. They then introduced an index structure called CSB+-Tree (Cache-
Sensitive B+-Tree) that support incremental updates and retain the good cache
behavior of their previous tree index structure [9]. Similar to their previous tree
structure, a CSB+-Tree employs an array to store the child nodes. However, it now
has one pointer for the first child node and the location of other child nodes is calcu-
lated by an offset to the pointer value. We used a similar approach to reduce the
pointers within a node.

3 Cache Sensitive T-Trees

3.1 Cache Insensitiveness of T-Trees

The reasons that T-Trees are not quite effective to utilize the cache compared to other
index structures such as B+-Trees are as follows. First, cache misses are rather fre-
quent in T-Trees. The height of a T-Tree is much higher than the one of a B+-Tree.
That is, the total number of memory accesses from the root to the leaf node is higher
in T-Trees. Another reason that a T-Tree has higher cache misses is due that it does
not align the node size with the cache line size. As shown in [2, 4, 8, 9], setting the
node size with the cache line size is indeed desirable to decrease the cache miss of an
index structure.

Secondly, in T-Trees, much portion of data brought to the cache is not actually
used. Whenever the processor wishes to access a memory location for a node and the
location is not found in a cache, i.e., cache miss, a copy of data for the location is
transferred from memory into cache. This transfer incurs a delay since main memory
is much slower than cache. Within the copied data in cache T-Trees use only two keys
(maximum and minimum keys) for comparison and access another memory location
for another node. In contrast, B+-Trees use |log2n| keys that are brought to the cache
for binary search comparison. Additionally, T-Trees use a record pointer for each key
within a node, which leads the half of the node space is not utilized but wasted in the
cache.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 401

3.2 Cache Sensitive T-Trees

In this section we present the Cache Sensitive T-Trees and describe how we make the
original T-Trees more cache-conscious by resolving cache-insensitiveness.

Higher usage of cached data: For T-Trees, the only data used for comparison within
a node are its maximum and minimum keys. In a modified T-Tree [6], only maximum
key is used for comparison. We construct a binary search tree which consists of only
the maximum keys of each node (Figure 2-(b)). We use the binary search tree as a di-
rectory structure to locate a node that contains an actual key that we are looking for.
The size of the binary search tree is not big and great portion of it may be cached.
More importantly, the cached data will be hit high since every searching explores the
tree first.

Removal of pointers: First, if a binary tree is represented as an array, there is no need
to store explicit pointers to the child or parent nodes. If a node is stored at index i in
an array and the root is at 1, then its parent, left and right child nodes may be found at
i/2, i*2, and i*2 + 1, respectively. Secondly, when the child node groups of any given
node group are stored contiguously, we need only one child pointer to indicate a first
child node group explicitly (Figure 2-(c)).

Alignment of node size with cache line size: We make a binary search tree as full as
possible given an array which size is the same to the cache line. We call each binary
search tree in an array a node group. For example, given that keys are 4 bytes inte-
gers, if a cache line size is 32 bytes, then a binary search tree in a node group may
contain upto 7 keys and its height is 3 (Figure 2-(c)). We always align the size of each
node group with cache line size, so that there will be no cache miss when accessing
data within a node group i.e., a child node to access is indexed i*2 or i*2 + 1 <
(cache line size/pointer size). We use pointers to access from a node group to other
node groups. Obviously, cache misses are unavoidable when accessing across the
node groups.

Now we introduce our modified T-Tree, called Cache Sensitive T-Tree, as follows.

CST Trees: The CST-Tree is a k-way search tree which consists of node groups and
data nodes (assume that a node group can have k-1 keys).

(P1) Data node contains keys and node group consists of maximal keys of each
data nodes.

(P2) Each node group is a binary search tree represented in an array.

(P3) The tree is balanced, i.e., difference in height between the left and right sub-
tree is less than 2, and a binary search tree of any node group is also balanced.

(P4) Sub-trees are also CST-Trees.

3.3 Operations on a CST-Tree

In this section, we consider search, insert, delete and balance operations on CST-
Trees.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

402 I.-h. Lee et al.

(a)

(b)

(c)

Fig. 2. (a) A T-Tree. (b) The Corresponding binary search tree with (a). (c) The corresponding
CST-Tree with the (a).

3.3.1 Search Operation
Search algorithm of CST-Trees is different from T-Trees, since CST-Trees consist of
node groups and data nodes. An illustrative example of a CST-Tree is shown in
Figure 3.

First, accessing the root node group incurs 1 cache miss. Since the given key ‘287’
is bigger than the key ‘160’, ‘240’, and ‘280’, we access the second node group and it
incurs second cache miss. In the second node group, since ‘287’ is smaller than ‘300’,
we mark the current comparing position. ‘287’ is also smaller than ‘290’, therefore we
move the mark to the current comparing position. In the leaf node group, after the last

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 403

CST_Search(key, tree)
//key: a key to find, tree: a CST-tree
//RID: a record ID to be found
compareKey = get the first key to compare in the

root node group of tree;
// 1st step: traverse node groups
while (compareKey != NULL) {

if (key <= compareKey) {
 lastMarkedNode = data node corresponding to

current key;
 compareKey = get the key of left sub-tree;
 }
else

 compareKey = get the key of right sub-tree;
}
// 2nd step: binary search in a data node
if (lastMarkedNode != NULL) {

dataNode = get the data node from
 lastMarkedNode;

 RID = binary search in the dataNode;
return RID;

}
else return NOTFOUND;

End

key comparison, we do a binary search on the data node which corresponds to the last
mark, and it incurs third cache miss. If there exists a given key at the data node, we
have succeeded to find the search key. Otherwise we have failed.

During a search operation on CST-Trees from the root to the leaf node group, only
accessing a sub-tree (child node group) and a data node incur cache misses. Doing a
binary search in a node group does not incur a cache miss, because the size of a node
group is the same as one of a cache line. Therefore the number of cache misses of a
CST-Tree search operation is “CST-Tree height + 1” (3 cache misses in Figure 3). We
present the evaluation results for the number of cache misses on a search operation in
section 4.2 and describe the time complexity in section 3.4.

Fig. 3. An illustration of search operation in CST-Trees

3.3.2 Insert / Delete Operation
Insertion and deletion algorithms of CST-Trees are similar to T-Trees with an excep-
tion of a tree balancing algorithm (section 3.3.3).

An insertion operation is as follows. First, we find the data node to insert the given
key and then insert the key to the corresponding data node. If the data node is not full,
we simply insert the key to the data node. When the given key becomes a maximal
key within the data node, we replace the key of the corresponding node group with
the given key. If the data node is full, we delete the minimal key and insert the given
key to the data node. Then we insert the deleted key into the left sub-tree as a maxi-
mal key. When there is no left sub-tree of the data node, we add a new data node (if
we needs to add a new node group, we have to add a new node group first) and insert
the deleted key there.

As the balance check and rotation within the node group after the addition of a new
data node is needed, balance check and rotation between node groups after the addition
of a new node group is also needed. We present the rotation operation at section 3.3.3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

404 I.-h. Lee et al.

Figure 4 is an example of insertion operation of inserting the key ‘288’ into a CST-
Tree. In Figure 4, the position to insert the new key is at the data node ‘A’ whose
maximal key is ‘290’. Because the data node ‘A’ is full, we delete ‘286’ and insert the
given key ‘288’ into ‘A’. When we insert the deleted key ‘286’ to the data node ‘B’,
we delete ‘281’ again and insert ‘286’ into ‘B’. Since there is no left sub-tree, we add
a new node group (because there is no room in the leaf node group, we need to add a
new node group), add new data node, and insert ‘281’ into the new data node.

Fig. 4. An illustration of insertion operation in CST-Trees

We note here that deletion operation in CST-Trees is similar to the one in T-Trees
except for a tree balance algorithm. Since it has analogy to opposite of insertion op-
eration which is explained at the previous phrase, we do not describe the detail on de-
letion operation in CST-Trees.

3.3.3 Balance Operation
A CST-Tree is at whole a k-way search tree in which each node group contains binary
search trees. For balancing the binary search trees we may apply a balancing algo-
rithm similar to those of AVL Trees and T-Trees. A performance factor that we pri-
oritize is the cache miss. Note that balancing a binary search tree does not cause a
cache miss in that we align the node group size with the cache line size. However,
every access to a non-cached node group causes a cache miss. Therefore we should
pay more attention to balancing a CST-Tree across the node groups so as to minimize
the average number of accesses to node groups.

Tree Balancing across Node groups
In this subsection, we explain how to balance a CST-Tree when a difference in height
of its sub-trees goes beyond one. Albeit we present a detailed algorithm later, let us
first see its basic operation, I-to-J rotation operation.

An I-to-J(P, i, j) rotation is an operation to move the ith child node group of P to
the jth child node group. For example, Figure 5 shows how a CST-Tree structure

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 405

changes after an I-to-J rotation operation on P when i and j are 3 and 2, respectively.
The other case that i is less than j is symmetrical to this case, so it is not shown.

In Figure 5, Q is the 3rd child node group of P, b is the 2nd child node group of P.
separator (‘2’) is the middle key of P between ith and jth child node group. We copy
b to tempPrevJthChild, move separator ‘2’ to Q` (modified b) as the minimal key,
and move all other keys of Q except for the maximal key to Q`. Then we move ‘5’ of
the maximal key of Q to the position of the previous separator, move tempPrevJth-
Child (b) to the 1st child node group of Q`, and move the 1st (x), 2nd (y), 3rd (z) child
node group of Q to Q` as 2nd, 3rd, 4th child respectively. Finally, we move w to P as
the 3rd (ith) child node group.

Fig. 5. A basic I-to-J rotation operation

CST_BalancingTree(P: CST-Tree)
 // P is a CST-Tree

if (P is a unbalanced CST-Tree) // maxH(P) - minH(P) >= 2) {
 if (maxI(P) > minI(P)) { // rotation to left
 Q = maxI(P);
 if (maxI(P) - minI(P) != 1) { // minI(P) is not next to maxI(P)
 to = maxI(P) -1 ;

 from = minI(P) ;
 for (i = from ; i < to; i++) {
 i_to_j_Rotation(P , i , i+1);
 }
 }

if (maxI(Q) is not the rightmost of Q) {
 for (i = maxI(Q) ; i < maximal # of child node groups; i++) {
 i_to_j_Rotation (Q, i , i+1) ;
 }
 }

i_to_j_Rotation(P , maxI(P) , minI(P)) ;
 }

else { // rotation to right. omit because it is similar to the rotation to left
 ...
}

}
if (P->parent is not NULL) {

 CST_BalancingTree(P->parent);
}

End

Fig. 6. The CST-Trees balancing algorithm for node groups

A detailed node group balancing algorithm using the basic I-to-J rotation operation is
illustrated in Figure 6. In the algorithm, minH(p) and maxH(p) mean the minimum

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

406 I.-h. Lee et al.

and maximum value among the heights of the sub-trees that are children of a given
node group P. minI(p) and maxI(p) are the array index values for the sub-trees that re-
sult in minH(p) and maxH(p).

3.4 Time Complexity

In this section, we discuss the time complexities of search, insert, delete, and balance
operations of CST-Trees. Let us say that n is the number of keys, s is the number of
keys that a T-Tree contains within a node, and m is the number of keys that a node
group of a CST-Tree contains or that a node of a B+-Tree contains.

If we store s keys into a data node, then the height of a m-way search tree to con-
tain n keys should be at least logm(n/s). Each node group contains a binary search tree
of which height is log2 m. Search operation requires navigating a CST-Tree from the
root node group to a leaf node group, and then again searches for a key within a data
node. Then search operation requires logm(n/s)×log2(m) to locate a target data node,
log2s to find a key in a data node. Therefore, the time complexity of the search opera-
tion becomes O(log2n).

Our insert operation of CST-Trees needs to locate a target data node to which a key
is inserted. If the target data node is already full, then the minimum key should be re-
moved from the tree and inserted back into the left subtree of the target data node. In
the worst case, an insert operation requires O(log2 n) to locate a target data node,
O(log2s) to delete a key from the binary search tree, and O(log2 n) to insert the key
into the left subtree. Therefore, the time complexity of a insert operation becomes
O(log2 n) + O(log2s) + O(log2 n) = O(log2 n).

Our delete operation also needs to locate a target data node where the key to be de-
leted is stored, and then it can delete the key from the target data node. Similar to the
insert operation, it needs additional operations to avoid the underflow of the tree.
Therefore, the time complexity of a delete operation becomes O(log2 n).

Finally let us analyze the time overhead that a rotation operation requires for bal-
ancing a CST-Tree after performing a insert or delete operation. In CST-Trees, a
binary search tree within a node group is an array structure. Therefore a rotation
operation requires the memory copies of node groups that need to be relocated. A
basic I-to-J rotation needs to move “child node groups + 2” number of node groups;
i.e., a source node group (I) to be rotated, the child node groups of the source node
group, and the target node group (J). For example, in Figure 5, Q is a source node
group to be rotated. Then its child node groups (x, y, z, w) need to be moved by
memory copies. In addition, b (target node group) also needs to be moved. Assum-
ing that a node group is 16 bytes and the array size is 3, we need to copy 6*16 = 96
bytes of data. Furthermore, if a cache line size is 64 bytes, then the array size of a
node group becomes 15. And we need to copy 17*64 = 1152 bytes of data. Com-
pared to this, in the same environment, a node split operation of CSB+-Trees needs
to copy on average 8 * 64 = 512 bytes of data [9]. In short, the overhead for a
CSB+-Tree node split operation is about the half of the one for a CST-Tree rotation
operation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 407

4 Performance Evaluation

4.1 Experimental Environment

We performed an experimental comparison of the proposed CST-Tree. We imple-
mented CST-Trees in C and the program was compiled and built by the Sun One Stu-
dio 8 Forte Developer 7. We ran our experiments on an Ultra Sparc III machine
(1.2GHz, 4GB RAM) running SunOS 5.9. The Ultra machine has a <8M, 64B>
(<cache size, cache block (line) size>) L2 level cache. We used the Performance
Analysis Tool [10], a tool provided by Sun Microsystems, to measure the number of
cache misses. We only considered the L2 level cache misses as they did in [9].

For the performance comparison, we implemented all the methods including
T-Trees, B+-Trees, and CSB+-Trees. For the implementation of CSB+-Trees and
T-Trees, we referred to the original sources [6, 9] that are proposed by the original au-
thors. All the methods are implemented to support search, insertion, and deletion. We
implemented “lazy” deletion since it’s the one used by CSB+-Tress and is more prac-
tically used.

We assumed that keys are 4 bytes integers and each pointer takes 4 bytes. All keys
are chosen randomly within the range from 1 to 10 million. The keys are generated in
advance to prevent the key generating time from affecting the measurements. The
node sizes of all the methods are chosen to 64 bytes, same to the cache block size of
the Ultra Sparc machine, since choosing the cache block size to be the node size was
shown close to optimal [8, 9]. We repeated each test three times and report the aver-
age measurements. Note that this set up environment is equal to the one in [9] to con-
duct fair experiments.

4.2 Results

Searching
In the first experiment, we compared the search performance of the methods. We var-
ied the number of keys in the leaf nodes, and then measured the time and the number
of cache miss that were taken by 200,000 searches. Each search key value was ran-
domly chosen from the generated keys. Figure 7 shows the result. In Figure 7-(a),
CST-Trees show the best in speed, and CSB+-Trees, B+-Trees, and T-Trees follow
the next. On average, CST-Trees are 17%, 38%, and 65% faster than CSB+-Trees,
B+-Trees, and T-Trees. In Figure 7-(b), CST-Trees show the least number of cache
misses among the methods, while CSB+-Trees, B+-Trees, and T-Trees follow the
next. The larger the number of searches, the wider the gap between CST-Trees and
others.

Insertion and Deletion
In the next experiment, we tested the performance of insertion and deletion. Before
testing, we first stabilized the index structure by bulkloading 1 million keys, as they
did in [9]. Then we performed up to 20K operations of insertion and deletion and
measure the performance. In Figure 8-(a), full CSB+-Tress [9] show the best in inser-
tion, while B+-Trees, CST+-Trees and T-Tress show comparable performance in their
insertions. Original CSB+-Trees show the worst.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

408 I.-h. Lee et al.

(a) CPU elapsed time (b) Cache misses

Fig. 7. 200K Searches after Bulkload

0.00

0.05

0.10

0.15

0.20

0.25

0.30

20K 50K 100K 150K 200K

of operation

e
la
p
s
e
d
 t
im
e
(
s
e
c
.
)

T

B+

CSB+(ori)

CSB+(full)

CST

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

20K 50K 100K 150K 200K

of operation

e
la
p
s
e
d
 t
im
e
(s
e
c
.)

T

B+

CSB+

CST

(a) Insertion (b) Deletion

Fig. 8. CPU elapsed time for Insertion and Deletion operations

The delete performance shown in Figure 8-(b) follows a similar pattern to that of
search. As mentioned earlier, we used “lazy” strategy for deletion. Most of the time
on a deletion is spent on pinpointing the correct entry in the leaf node. Note that the
actual elapsed time of each method for deletion takes a bit more time than for
search in that we may need to go through several leaf nodes to locate the entry to be
deleted.

5 Conclusion

In this paper, we proposed a new index structure called CST-Tree. CST-Trees are ob-
tained by applying cache consciousness to T-Trees. Our analytical and experimental
results show that CST-Trees provide much better performance than other existing
main memory index structures owing to the better cache behavior. CST-Trees im-
prove the search performance on average 17 %, 38%, 65% better than CSB+,
B+-Trees, and T-Trees. CST-Trees also show comparable performance on insertion
operations and better performance on deletion operations, although the performance
benefits are less than in searching. As the gap between CPU and memory speed be-
comes widening, CST-Trees should be considered as a replacement of T-Trees in
future.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CST-Trees: Cache Sensitive T-Trees 409

Acknowledgements

We thank Mr. JaeYung Hur to his contribution at the initiation of this work. He
worked with the authors to bring the idea of cache sensitiveness to T-Trees and
helped much to implement the Trees. Without his contribution, this work would never
been fully fledged. This work was supported in part by the Ministry of Information &
Communications, Korea, under the Information Technology Research Center (ITRC)
Support Program.

References

1. A. Ailamaki, et al., “DBMSs On A Modern Processor: Where Does Time Go?,” in Proc. of
the 25th Int’l Conf. on Very Large Database Systems, pp.266-277, 1999.

2. P. Bohannon, et al., “Main-Memory Index Structures with Fixed-Size Partial Keys,” in
Proc. of the 2001 ACM SIGMOD Int’l Conf. on Management of Data, pp.163-174, 2001.

3. P. Boncz, et al., “Database Architecture Optimized for the new Bottleneck: Memory
Access,” in Proc. of the 19th Int’l Conf. on Very Large Database Systems, pp.54-65, 1999.

4. T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-Conscious Structure Definition,” in
Proc. of the ACM SIGPLAN 1999 conference on Programming language design and
implementation, pp.13-24, 1999.

5. T. H. Cormen, et al., Introduction to Algorithms, The MIT Press, 1990.
6. T. J. Lehman, “A Study of Index Structures for Main Memory Database Management Sys-

tem,” in Proc. of the 12th Int’l Conf. on Very Large Database Systems, pp.294-303, 1986.
7. S. Manegold, P. A. Boncz and M. L. Kersten, “Optimizing database architecture for the

new bottleneck: memory access,” VLDB Journal, Vol.9, No.3, pp231-246, 2000.
8. J. Rao, et al., “Cache Conscious Indexing for Decision-Support in Main Memory,” in Proc.

of the 19th Int’l Conf. on Very Large Database Systems, pp.78-89, 1999.
9. J. Rao, et al., “Making B+ Trees Cache Conscious in Main Memory,” in Proc. of the 2000

ACM SIGMOD Int’l Conf. on Management of Data, pp.475-486, 2000.
10. Sun Microsystems, Inc., Sun ONE Studio 8: Program Performance Analysis Tools, avail-

able via “http://docs.sun.com/app/docs/doc/817-0922”, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams

Barbara Carminati1, Elena Ferrari1, and Kian Lee Tan2

1 DICOM, University of Insubria, Varese, Italy
{barbara.carminati,elena.ferrari}@uninsubria.it
2 School of Computing, National University of Singapore, Singapore

tankl@comp.nus.edu.sg

Abstract. Many data stream processing systems are increasingly being used to
support applications that handle sensitive information, such as credit card num-
bers and locations of soldiers in battleground [1,2,3,6]. These data have to be
protected from unauthorized accesses. However, existing access control models
and mechanisms cannot be adequately adopted on data streams. In this paper, we
propose a novel access control model for data streams based on the Aurora data
model [2]. Our access control model is role-based and has the following compo-
nents. Objects to be protected are essentially views (or rather queries) over data
streams. We also define two types of privileges - Read privilege for operations
such as Filter, Map, BSort, and a set of aggregate privileges for operations such
as Min, Max, Count, Avg and Sum. The model also allows the specification of
temporal constraints either to limit access to data during a given time bound or to
constraint aggregate operations over the data within a specified time window. In
the paper, we present the access control model and its formal semantics.

1 Introduction

In many applications, data arrive in the form of high speed data streams. Examples of
such applications include telecommunication, battle field monitoring, network moni-
toring, financial monitoring, sensor networks, and so on. These data typically contain
information that is sensitive and thus unauthorized accesses should be avoided. As an
example, consider battle field monitoring, where the positions of soldiers are protected
information that should only be accessible to the battleground commanders.

Clearly, there is a need to integrate access control mechanisms into data stream
processing systems to achieve a controlled and selective access to data streams. How-
ever, to our knowledge, there has been no reported work that offers access control over
data streams. From the data stream community, many data stream processing systems
have been developed both academically (e.g., Aurora [2], Borealis [1], STREAM [3],
TelegraphCQ [6]) and commercially (e.g., StreamBase [10]), but the focus in these sys-
tems has been on performance issues.

On the other hand, though the data security community has a very rich history in
developing access control models [5,7], these models are largely tailored to traditional
DBMSs. Thus, they cannot be readily adapted to data stream applications, mainly be-
cause: (a) traditional databases are static and bounded while data streams are unbounded
and infinite; (b) queries in traditional DBMSs are one time and ad-hoc but queries over

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 410–421, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 411

data streams are typically continuous and long running; (c) in traditional DBMSs ac-
cess control is enforced when users access the data; in data stream applications, access
control enforcement is data-driven (i.e., whenever data arrive); (d) because of (c), ac-
cess control is more computational intensive in data stream applications and specific
techniques to handle it efficiently should be devised; (e) as data are streaming, tempo-
ral constraints (e.g., sliding windows) become more critical in data stream applications
than in traditional DBMSs.

To cope with all these new requirements, in this paper, we propose a novel access
control model for data stream applications based on the Aurora model [2]. We have
decided to cast our research into the Aurora framework because (a) while there is still
no consensus on a standard data model and query language for stream data, Aurora has
emerged as one of the most relevant and mature proposals in the field, and (b) a full
implementation of its processing engine is publicly available [1].

Our access control model is role-based and has the following components. Objects to
be protected are essentially views (or rather queries) over data streams. As such, access
can be granted only on selected tuples and/or attributes of a data stream, as well as only
on selected attributes/tuples of joined streams. We also define two types of privileges
- Read privilege for operations such as Filter, Map, BSort, and aggregate privileges
for operations such as Min, Max, Count, Avg, and Sum. In addition, to deal with the
intrinsic temporal dimension of data streams we introduce two temporal constraints -
general constraints, that allow access to data during a given time bound, and window
constraints, that support aggregate operations over the data within a specified time win-
dow. This last feature is very relevant for data streams since we can customize aggregate
operations according to data sensitivity, by regulating the size of the window over which
the aggregate function can be computed.

In this paper, we present the access control model by illustrating its syntax and formal
semantics. We believe that the definition of an access control model on a formal basis
is a key step to devise efficient methods for access control policy enforcement and to
guarantee their correctness. To the best of our knowledge, this is the first reported work
that proposes an access control model for data streams.

The remainder of this paper is organized as follows. In the next section, we provide
some background to this work and the motivating scenario we will use throughout the
paper. In Section 3, we present the proposed access control model, whereas Section 4
presents its formal semantics. Finally, we conclude this paper with directions for future
work in Section 5.

2 Background

In this section, we first discuss a data stream scenario by highlighting its access con-
trol requirements. Then, we present a brief overview of the Aurora stream-processing
engine.

2.1 A Motivating Scenario

In this section, we introduce an illustrative scenario that highlights some essential re-
quirements of an access control model for stream data, in terms of policies it should be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

412 B. Carminati, E. Ferrari, and K.L. Tan

able to express. Before doing that we briefly introduce how data streams are modeled
throughout the paper. A stream consists of an append-only sequence of tuples with the
same schema. In addition to standard attributes A1,. . ., An the stream schema contains a
further attribute, denoted as TS. TS stores the time of origin of the corresponding tuple,
thus it can be exploited to monitor attributes values over time.

As a scenario, we consider the military domain presented in [2], where stream data
are used to monitor positions and health conditions (e.g., heart beats, blood pressure)
of platoon’s soldiers. Positions and health conditions are modeled by means of two
distinct streams, namely, Position and Health, with the following schemas:
Position(TS,SID,Pos,Platoon)and Health(TS,SID,Platoon,Heart,
BPressure), where the SID and Platoon attributes store soldier’s and platoon’s
identifiers, respectively, both in the Position and Health streams, the Pos attribute
contains the soldier position, the Heart attribute stores the heart beats, whereas the
BPressure attribute contains the soldier’s blood pressure value. We assume that users
posing queries are identified by their roles, e.g., captains, soldiers, doctors, etc.

Let us now discuss some access control requirements that can arise in this scenario.
Consider, for instance, the Position stream. Since the Pos attribute, modeling the
position of a soldier, conveys sensitive information, it should be accessible only to se-
lected users, such as for instance the captain of the soldier’s platoon. In order to specify
this requirement, the access control model should support policies specified at the at-
tribute level, in addition to the whole stream.

Another important requirement is to be able to specify policies that apply only on
selected tuples within a data stream, identified on the basis of their content. Consider,
for instance, the case where we would like to grant captains access to the positions of
soldiers not belonging to their platoons, only if they cross some specified borders. This
requirement can be modeled as a policy granting the access to the Pos attribute only
if the corresponding tuple satisfies two conditions, i.e., the condition stating that the
corresponding soldier does not belong to the captain’s platoon and the condition stating
that the soldier has crossed a given border.

A further requirement is related to the temporal dimension of both data streams and
some Aurora operators. For instance, sometimes it can be useful to constraint access to
a data stream to selected temporal intervals. This is a relevant requirement, since a data
stream contains an intrinsic notion of time that should be exploited in the specification
of temporal constraints. For instance one can state that only during the action time
doctors are authorized to monitor the heart beats of the soldiers.

Other examples of access control requirements related to temporal constraints are
those authorizing window-based operators only on selected time windows. For instance,
a doctor can be authorized to monitor the average of soldier’s heart beats with arbitrary
window size, if soldier belongs to the same platoon of the doctor, otherwise with a win-
dow with a maximum size of 1 hour. This limitation prevents doctors to infer whether
and when there have been some critical situations (i.e., those characterized by heart
beats with high frequency for a time longer than one hour). Thus, an access control
model for data streams should be able to support limitations on the windows over which
window-based privileges can be exercised.

In Section 3, we present an access control model to cope with all such requirements.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 413

2.2 Aurora

In recent years much effort has been spent on the area of stream-processing engines
[1,2,3,6]. Among these engines, one of the most relevant and mature proposals is Aurora
[2]. Aurora has been recently transferred to the commercial domain (i.e., the Stream-
Base engine [10]), and redesigned with distributed functionalities (i.e., Borealis [1]).
However, due to the scope of the paper in what follows we focus on Aurora stream-
processing engine, by briefly introducing the underlying query model and algebra, and
referring the interested readers to [2] for a detailed discussion of the core Aurora engine.

Aurora query model. In order to cope with the latency requirements implied by streams,
Aurora exploits an ‘inbound processing’ instead of the traditional ‘outbound proces-
sing’, typical of conventional DBMSs, where data are stored and indexed before being
queried. This means that query processing is performed directly on incoming streams.
Aurora query processing exploits a dataflow paradigm, by modeling queries as a loop-
free direct graph of operations (called boxes in Aurora), where tuples flow through all
processing operations defined in the graph (called network in Aurora).

Filter

Map

Join
Filter(‘Heart >100’)(Health)

Map(Pos,SID)(Position)

Join(Health.SID=Position.SID)(Health, Position)

Health

Position

Filter

Map

Join
Filter(‘Heart >100’)(Health)

Map(Pos,SID)(Position)

Join(Health.SID=Position.SID)(Health, Position)

Health

Position

Fig. 1. An example of query in Aurora

An example of Aurora network is given in Figure 1, where two input streams, namely
Health and Position, go through two different boxes (i.e., Filter and Map)
before being joined together.

Aurora algebra. We provide now a brief overview of Aurora operators. In this paper,
we focus more on the operators’ semantics rather than on details regarding their imple-
mentation. For this reason, for some of the Aurora operators described in [2] we provide
a simplified syntax.

The first operator is the Filter box, which acts like a relational selection but hav-
ing the capability to apply several distinct selections on a stream at the same time,
and to route output tuples on the basis of satisfied predicates. The Filter syntax
is Filter(P1, . . . , Pn)(S), where P1, . . . , Pn are predicates over stream S. The re-
sult of the Filter operator consists of n + 1 different streams S1, . . . , Sn, such that
each stream Sj , contains those tuples of S satisfying predicate Pj , j ∈ {1, . . . , n}.
Moreover, tuples that do not satisfy any predicate among P1, . . . , Pn are returned in
an additional stream Sn+1. Note that in the paper we do not consider the (n + 1)th
stream, i.e., the stream containing tuples not satisfying any predicate, by simply as-
suming that these tuples are not given output. Moreover, we assume that no Filter
operation is performed if the set of predicates is empty. Let us consider the Position

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

414 B. Carminati, E. Ferrari, and K.L. Tan

stream of our motivating scenario, if we are interested in selecting only those soldiers
whose position crossed a given border k, we can specify the following expression:
Filter(Pos>k)(Position).

Another relevant operator of Aurora algebra is the Map box, which can be considered
as a generalized projection operator. The syntax of Map is the following: Map(Ai=Fi,
. . .,Aj=Fj)(S), where {Ai, . . . , Aj} is a subset of the attributes of S’ schema, and Fi,
...,Fj are arbitrary functions over the input stream. Thus, instead of projecting the
value of an attribute Ai, the Map operator projects the result of an arbitrary functions
applied on it. In the paper, for simplicity, we consider a Map operator projecting only
attributes’ values. This can be obtained by applying only the identity function rather
than arbitrary function, which is omitted in the following examples. Let us consider for
instance the Health stream. Map(SID,Heart)(Health) projects attributes SID
and Heart. Moreover, if the set of attributes specified in the Map operator is empty,
we assume that the operation returns the input stream.

In the Aurora algebra there is a further operator, Bsort, which sorts the tuples of a
stream applying a bound pass bubble sort. The simplified syntax of this operator is the
following: Bsort(S). For instance, Bsort(Position) performs the bubble sort on
the Position stream.1

The Aurora algebra provides also an aggregate operator, i.e., Aggregate box, by
which it is possible to apply both SQL-style aggregate operations and Postgres-style
user-defined functions over data streams. Aggregate operators are evaluated accord-
ing to a sliding window-based approach. This implies that the Aggregate operator
receives as input both the size of the window and an integer specifying how to ad-
vance the window when it slides. The simplified syntax used throughout the paper is the
following: Aggregate(F, Size s, Advance i)(S), where F can be either an
SQL-style aggregate operation or a Postgres-style user-defined function. As an exam-
ple, Aggregate(Avg(Heart),2,1)(Health) returns the average of the soldier
heart beats computed over windows with size 2 hours and advance step of 1.

The Aurora algebra also provides the Join operator. The join operator is a binary
operator where the join predicate is specified as input. Throughout the paper, we adopt
a variation that allows an arbitrary number of operators (not necessarily two). More pre-
cisely, we use the following syntax: Join(P)(S1,. . ., Sn).2 Let us consider once again,
the Position and Health streams. Join(Position.SID=Health.SID)
(Position, Health) performs the natural join of Position and Health
streams. Moreover, if no predicate is specified in the join operator, the result is the
Cartesian product of the input streams.

A further operator is the Resample box, which can be helpful to align pairs of
streams. The simplified syntax used in the paper is the following: Resample(F)
(S1,. . ., Sn), where F is the interpolator function used in the semijoin-like synchro-
nization. Finally, a further relevant operator is the Union box, which is used to merge
a set of streams, having a common schema, into a unique output stream.

1 According to the algebra in [2], it is possible to specify as input the assumed ordering over
output streams.

2 Note that the syntax proposed in [2], allows one to specify as input also the assumed ordering
over input streams S1, S2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 415

3 An Access Control Model for Data Streams

Generally, an access control policy states which subjects can access which (portions
of) objects and under which conditions. Thus in designing an access control model for
data streams we first need to specify the basic components of an access control policy,
that is, the subject, protection object and privilege specification. Then, we will formally
introduce access control policies for data streams, whereas their formal semantics is
presented in Section 4.

Subject specification. We specify subjects according to a role-based approach [8].
Thus, access control policies associate permissions with roles, instead of with subjects,
and subjects acquire permissions through their membership to roles. Examples of roles
for our reference scenario are soldier, doctor, and captain.

Protection object specification. As pointed out in Section 2.1, an access control model
for data streams should allow attribute-level and tuple-level access control. Thus, there
is the need of an object specification flexible enough to represent, for instance, a whole
stream, only selected stream’s attributes, as well as only tuples satisfying certain con-
ditions. To model such a variety of granularity levels, we borrow some ideas from how
access control is enforced in traditional RDBMSs, where different granularity levels are
supported through views. The idea is quite simple: define a view satisfying the access
control restrictions and grant the access on views instead of on base relations. A view
is defined by means of a CREATE VIEW statement, where the SELECT clause of the
query defining the view specifies the authorized attributes, the FROM clause specifies
a list of relation(s)/views, and the WHERE clause states conditions on attributes’ va-
lues. We adopt the same idea to specify protection objects to which an access control
policy applies. However, since a standard query language for data streams has not yet
emerged,3 we give a language independent representation of protection objects. Basi-
cally, we model a protection object by means of three components, which correspond
to the SELECT, FROM and WHERE clauses of an SQL statement. Before presenting
the formal definition of protection object specification we need to introduce some nota-
tions. In what follows, we denote with Source the set of all the streams to be protected,
whereas given a stream S we denote with S.schema the set of attributes in S’s schema.

Definition 1. (Protection Object Specification). A protection object specification
p obj is a triple (STRs, ATTs, EXPs), where:

- STRs is a set of streams {S1, . . . , Sn}, belonging to Source;
- ATTs denotes a set of attributes A1, . . . , Al, where Aj , j ∈ {1, . . . , l}, belongs to

the schema of the stream resulting from the Cartesian product {S1 × . . . × Sn} of the
streams in STRs. If ATTs is equal to symbol ‘*’, it denotes all the attributes belonging
to the schema of the stream resulting from the Cartesian product {S1 × . . . × Sn}.

- EXPs is a boolean formula, built over predicates of the form: Ai ⊕ value or Ai ⊕
Aj , where Ai, Aj are attributes belonging to the schema of the Cartesian product {S1 ×
. . . × Sn}, ⊕ is an operator of the Aurora algebra, and value is a value compatible

3 However, several research groups are doing a lot of work in this direction (see, for instance,
[4,9]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

416 B. Carminati, E. Ferrari, and K.L. Tan

Table 1. Examples of protection object specifications

Streams Attributes Expressions
Position * -
Position * Position.Platoon=X123
Health, Position Health.Heart, Health.SID Position.SID= Health.SID AND Position.Platoon=X123

with the domain of Ai. If EXPs is omitted, it denotes all the tuples in the Cartesian
product {S1 × . . . × Sn}.

Given a protection object specification p obj, we use the dot notation to refer to its
components. According to Definition 1, a protection object specification p obj iden-
tifies a view over the Cartesian product {S1 × . . . × Sn}, where Sj ∈ p obj.STRs,
j ∈ {1, . . . n}. The view is obtained by selecting from the Cartesian product all at-
tributes specified in p obj.ATTs, and by considering only those tuples satisfying
conditions expressed in p obj.EXPs.

Example 1. Table 1 presents three examples of protection object specifications defined
according to Definition 1. The first protection object specification identifies the whole
Position stream. By contrast, in the second protection object specification a con-
dition on its content (i.e., Position.Platoon=X123) is specified, thus identify-
ing only those tuples of the Position stream having the Platoon attribute equal
to X123. Finally, the third specification defines a protection object generated over the
Cartesian product of Position and Health, where only Heart and SID attributes
are projected. The condition expressed by the EXPs component ensures that only tuples
having Position.SID= Health.SID (i.e., join predicate) and referring to soldiers
belonging to platoon X123 are considered.

Privileges. Privileges supported by the proposed access control model authorize all op-
erations provided by Aurora (see Section 2.2), namely,Filter, Map, BSort, Union,
Aggregate, Join and Resample. Instead of defining a different privilege for each
operation, we assume that there exists a Read privilege which authorizes a subject to
exercise the Filter, Map and BSort operations on a protection object, that is, all
operations that require to read tuples from the data stream. Note that, if the Security
Administrator (SA) wants to limit the right to read a stream only to selected attributes
and/or tuples, the SA can grant the Read privilege directly on a protection object mod-
eling the corresponding view. The same happens if the Read privilege has to be granted
on the result of a join operation (or on a subset of its tuples). In contrast, our policy for-
mat does allow the SA to specify the Read privilege for a view consisting of the union
of more data streams because we assume that the Union operation is authorized if the
requesting user has the Read privilege on the two operand streams. The other class
of privileges supported by our model, called Aggregate privileges, corresponds to
aggregate functions allowed by Aurora. As introduced in Section 2.2, Aurora supports
both SQL-style aggregate operations and Postgres-style user-defined functions. Here,
to be as system independent as possible, we consider as aggregate functions only the
standard SQL-style functions. Thus, the aggregate privileges are: Min, Max, Count,
Avg, and Sum.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 417

Temporal constraint specification. As discussed in Section 2.1, an access control
model for data streams should be able to handle two different kinds of temporal con-
straints, that we call general and window-based constraints. Constraints of the
first kind state limitations on the time during which subjects can exercise privileges on
protection objects. They can be expressed in the form: [begin,end], where begin
and end are the lower and upper bounds, begin ≤ end, and end can assume the
infinite value.4 The begin and end values can be explicitly specified by the SA or can
be returned by a predefined set of system functions SF . For instance, we can assume
a function TAction start(a), which returns the time TS when a given action a
starts, and a function TAction end(a) that returns the time TE when an action a
ends. It is important to note that by definition a stream always contains a temporal in-
formation, i.e., the timestamp TS. Therefore a general time constraint GTC identifies
all and only those tuples satisfying the predicate: TS ≥ begin ∧ TS≤ end.

For the second type of constraints, that is, those related to window-based operators,
according to the Aurora algebra, a window is specified by two information: the win-
dow’s size and the advance step. A window time constraint can therefore be defined
by a pair: [size,step], denoting the maximum size and advance step allowed in
a window-based operation. Thus, by specifying a window time constraint in an access
control policy granting an aggregate privilege p on a protection object o, the SA is able
to limit the window size and step according to which the aggregate operation can be
executed. For instance, if the SA wants to limit a doctor to compute the average of heart
beats of soldiers not belonging to his/her platoon only on a window with size 5 hours
and a step of 2, he/she can state an access control policy granting the Avg privilege on
the corresponding protection object by specifying [5h,2] as window time constraint.

We are now ready to formally define access control policies for data streams.

Definition 2. (Access control policy for data streams). An access control policy for
data streams is a tuple: (sbj, obj, priv, GTC, WTC), where: sbj is a role; obj is a
protection object specification defined according to Definition 1; priv∈{Read, Min,
Max, Count, Avg, Sum}; GTC is a general time constraint; and WTC is a window time
constraint.

Given an access control policy acp we denote with acp.sbj, acp.obj, acp.
priv, acp.GTC and acp.WTC the sbj, obj, priv, GTC, and WTC components,
respectively. We assume that all the specified access control policies are stored into a
unique authorization catalog, called SysAuth. More precisely, SysAuth contains a diffe-
rent tuple for each access control policy, whose attributes store the access control policy
components, as illustrated by the following example.

Example 2. Table 2 presents an example of SysAuth catalog, containing a set of access
control policies for the Position and Health streams. The first policy authorizes
captains and doctors to exercise the Read privilege (i.e., Filter, Map and Bsort
operations) on the position and id of all and only soldiers belonging to their platoons,
where this condition is modeled as a predicate (i.e., Position.Platoon=self.

4 We assume that begin and end value are specified by means of an SQL-like syntax.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

418 B. Carminati, E. Ferrari, and K.L. Tan

Table 2. Examples of access control policies for data streams

Subject Protection Object Privilege GTC WTC
Streams Attributes Expressions Size step

Captain, Position Pos, SID Position.Platoon=self.Platoon Read - - -
Doctor
Captain Position Pos, SID Pos≥k Avg [TAction start(a), TAction end(a)] 1 1
Doctor Health Heart, SID Health.Platoon=self.Platoon Read - - -
Doctor Health Heart, SID Health.Platoon�=self.Platoon Avg - 1 1
Doctor Health, Heart, SID Position.SID= Health.SID AND Read [TAction start(a), TAction end(a)] - -

Position Pos≤k2

Platoon).5 The second policy authorizes captains to access the average position of
soldiers that are across some border k (here modeled as Pos≥k), as well as their ids,
but only during action a. Moreover, this policy states that the average can be computed
only on windows of 1 hour with 1 as step. The third policy allows a doctor to monitor
the heart beats only of those soldiers belonging to his/her platoon. In contrast, by means
of the fourth policy a doctor is able to monitor the average of heart beats of soldiers
not belonging to his/her platoon, but only with a window of size and step equal to 1.
Finally, the fifth policy states that during action a doctors are authorized to monitor the
heart beats of all the soldiers that do not cross some border k2, independent from their
platoons.

4 Access Control Policies Semantics

In this section, we introduce the semantics of the access control policies presented in
Section 3. In particular, given an access control policy acp in order to define its se-
mantics we need to define the semantics of the subject, protection object, and privilege
component, as well as the semantics of window time constraints. We do not provide
an explicit semantics for general time constraints since we include it in the protection
object specification semantics.

Definition 3. (Subject specification semantics). Let Roles be the set of all possi-
ble roles, and Sbj be the set of all possible subjects. We denote with λ(r) the set of
subjects authorized to play role r∈ Roles, and returned by the assignment function
λ : Roles −→ Sbj. Given an access control policy acp, the semantics of the subject
specification of acp, is given by the α function, defined as follows:

– α(acp)= λ(acp.sbj)

Definition 4. (Protection object specification semantics). Given an access control
policy acp, the protection object specification semantics of acp is the set of tuples
denoted by the protection object specification and the general time constraint stated in
acp. On the basis of the semantics of Aurora operators, the protection object specifi-
cation semantics is given by the β function defined as follows:

5 We assume that each subject has an associated profile, i.e., a set of attributes modeling the
subject’s characteristics, like for instance the platoon one belongs to.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 419

– if |acp.obj.STRs|=1, then β(acp)= Map(A1, . . . , An) (Filter(acp.obj.
EXPs∧ TS ≥ acp.GTC.begin ∧ TS≤ acp.GTC.end)(acp.obj.STRs)),
otherwise

– β(acp)= Map(A1, . . . , An) (Filter(acp.obj.EXPs∧ TS ≥ acp.GTC.
begin ∧ TS≤ acp.GTC.end)(Join({S1, . . . , Sn}))), Sj ∈acp.obj.STRs
∀j ∈ {1, . . . n};

where {A1, . . . , An} belongs to acp.obj.ATTs. If acp.obj.ATTs =*, then
{A1, . . . , An} are all the attributes of streams belonging to acp.obj.STRs.

Table 3. Protection object specification semantics for the access control policies in Table 2

Acp Protection object semantics
acp1 Map(Pos, SID)(Filter(Position.Platoon=self.Platoon)(Position))
acp2 Map(Pos, SID)(Filter(TS ≥ TAction start(a) AND TS≤ TAction end(a) AND Pos≥k) (Position))
acp3 Map(Heart, SID)(Filter(Health.Platoon=self.Platoon)(Health))
acp4 Map(Heart, SID)(Filter(Health.Platoon�=self.Platoon)(Health))
acp4 Map(Heart, SID)(Filter(TS ≥ TAction start(a) AND TS≤ TAction end(a) AND

Position.SID= Health.SID AND Pos≤k) (Join(Health, Position)))

Example 3. Table 3 presents the protection object specification semantics for the access
control policies presented in Table 2. The first row refers to the first access control policy
in Table 2, where no general time constraints are specified and the protection object is
defined over a single stream, i.e., Position, by projecting the Pos and SID attributes
and applying the condition Position.Platoon=self.Platoon. The semantics
of the corresponding protection object is the set of tuples resulting from a Filter
operation applied to the Position stream, with expression Position.Platoon=
self.Platoon. Then, to obtain the final set of tuples representing the semantics, a
Map operator is applied to the resulting stream projecting the Pos and SID attributes.

By contrast, a general time constraint is specified in the second access control
policy in Table 2. In such a case, in addition to the predicate specified in the protection
object (i.e., Pos ≥ k), the Filter operator also contains the conditions related to the
general time constraint (i.e.,TS≥TAction start(a)∧TS≤TAction end(a)).

The semantics of the protection object specification of the third and fourth policies
are similar to the first one, since similar to the first access control policy, the third and
fourth access control policies do not have any general time constraint, and the protection
objects are defined in terms of a single stream. By contrast the protection object speci-
fication of the last policy denotes a view generated on two streams (i.e., Health and
Position streams). In such a case, the tuples denoting the protection object specifi-
cation semantics are the result of a join operator applied on Health and Position
streams, where no join predicate is specified, thus to obtain the Cartesian product. To
the resulting stream a Filter operator is applied with the expressions contained in the
protection object specification, that is, the join predicate Position.SID=Health.
SID and the predicate Pos≤k2. Then, the predicate modeling the general time con-
straint (i.e., TS ≥ TAction start(a) ∧ TS≤ TAction end(a)) is added to the
expression. Finally, the Map operation projects the Heart and SID attributes.

The semantics of privilege specification is given by the following definition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

420 B. Carminati, E. Ferrari, and K.L. Tan

Definition 5. (Privilege semantics). Given an access control policy acp, the privilege
semantics of acp is given by the χ function defined as follows:

– if acp.priv=Read, then χ(acp) = {Filter,Bsort,Map,Union,Join,
Min,Max,Count,Avg,Sum}

– χ(acp)= acp.priv, otherwise.

Finally, we need to state the semantics of window time constraints.

Definition 6. (Window Time constraint semantics). Given an access control policy
acp, the window time constraint semantics of acp is given by the δ function defined as
follows:

– ifacp.priv∈{Min,Max,Count,Avg,Sum}, then δ(acp)=[acp.WTC.size,
acp.WTC.step];

– δ(acp)= null, otherwise.

We are now ready to define the semantics of an access control policy.

Definition 7. Access control policy semantics. Given an access control policy acp,
the semantics of acp is defined as follows:

– φ(acp)= {(S,T,p,WTC) | S=α(acp), T=β(acp), p=χ(acp), WTC=δ(acp)}

According to Definition 7, given an access control policy acp we define its semantics
as a set of authorizations defined as tuples: (S,T,p,WTC), where S is a subject or a
set of subjects identified by the subject specification semantics of acp, T is a set of
tuples identified by the protection object specification semantics of acp, and p is a set
of privileges. If p is an aggregate privilege (i.e., Min, Max, Count, Avg, and Sum) the
last component of the policy semantics, i.e., WTC, contains the window time constraint,
if any, specified in acp. An authorization (S,T,p,WTC) states that subjects belonging
to S are authorized to exercise privileges p on all and only the tuples belonging to set T,
constrained by the window time constraint WTC, if any.

Example 4. Let us consider the second access control policy in Table 2, assuming that
in the system the only users to which role Doctor is associated are Alice and Bob.
According to Definition 7, the semantics of this access control policy is the set of autho-
rizations (S,T,p,WTC), where S denotes Alice and Bob, T is a set of all tuples iden-
tified by expression Map(Pos, SID)(Filter(TS ≥ TAction start(a) AND
TS≤ TAction end(a) AND Pos≥k)(Position)), p is the Avg privilege, and
WTC denotes the window time constraint, i.e., size and step equal to 1.

5 Conclusion

In this paper, we have presented an access control model and its formal semantics
specifically tailored to stream data. The model is role-based and allows the specification
of policies at different granularity levels. It supports a set of privileges corresponding
to the operations that can be executed over stream data. Moreover, it allows the SA

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Specifying Access Control Policies on Data Streams 421

to specify temporal constraints. This is particularly relevant for aggregate operations
where one can constrain the aggregate operation only to specific time intervals.

The work reported in this paper is the first step of a wider project, aiming at de-
veloping a complete and fully implemented access control mechanism for stream data.
Future work include definition of efficient enforcement strategies for policies specified
according to our access control model and the implementation on top of the Borealis
data stream engine. Additionally, we plan to extend the presented model to deal with
data updates and multiple queries.

References

1. D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S.B. Zdonik. The design of the
borealis stream processing engine. In Proceedings of Conference of Innovative Data System
Research (CIDR’05), pages 277–289, Asilomar, USA, 2005.

2. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N.
Tatbul, and S.B. Zdonik. Aurora: a new model and architecture for data stream management.
In VLDB Journal, 12(2):120–139, 2003.

3. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
Stream: The Stanford stream data manager. In Proceedings of ACM SIGMOD’03, page 665,
San Diego, USA, 2003.

4. B.Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In Proceedings of ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS ’02), pages 1–16, New York, USA, 2002.

5. S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison-Wesley,
1995.

6. S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong, S.
Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M.A. Shah. TelegraphCQ: continuous
dataflow processing for an uncertain world. In Proceedings of Conference of Innovative Data
System Research (CIDR’03), Asilomar, USA, 2003.

7. E. Ferrari and B. Thuraisingham. Secure Database Systems. In O. Diaz and M. Piattini edi-
tors, Advanced Databases: Technology and Design, Artech House, London, 2000.

8. D.F. Ferraiolo, R. Sandhu, S.Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed nist stan-
dard for role-based access control. In ACM Transaction on Information System Security,
4(3):224–274, 2001.

9. L. Golab and M.T. Ozsu. Issues in data stream management. In SIGMOD Record, 32(2):
5–14, 2003.

10. StreamBase Home Page. http://www.streambase.com//.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against

Inference Attacks in Data Publishing

Chen Li1, Houtan Shirani-Mehr1, and Xiaochun Yang2,�

1 Department of Computer Science, University of California at Irvine, CA, USA
{chenli,hshirani}@ics.uci.edu

2 School of Information Science and Engineering, Northeastern University, China
yangxc@mail.neu.edu.cn

Abstract. In many data-publishing applications, the data owner needs
to protect sensitive information pertaining to individuals. Meanwhile,
certain information is required to be published. The sensitive informa-
tion could be considered as leaked, if an adversary can infer the real
value of a sensitive entry with a high confidence. In this paper we study
how to protect sensitive data when an adversary can do inference attacks
using association rules derived from the data. We formulate the inference
attack model, and develop complexity results on computing a safe par-
tial table. We classify the general problem into subcases based on the
requirements of publishing information, and propose the corresponding
algorithms for finding a safe partial table to publish. We have conducted
an empirical study to evaluate these algorithms on real data.

1 Introduction

As many database applications need to publish information on the Web or share
information among different organizations, there is an increasing need for these
applications to meet their security requirements. Often the data owner needs to
protect sensitive information about individuals, such as the disease of a patient,
the salary of an employee, or the ethnicity of a customer. On the other hand,
given published data, an adversary could use the available information to infer
the sensitive information. For example, common knowledge [1], regression mod-
els could be used to infer information. From the data owner’s perspective, the
method he uses to protect the sensitive information depends on what inference
technique he believes an adversary could use to do the inference [2].

In this paper we study the problem of protecting sensitive information about
individuals when an adversary does inference attacks using data distributions
derived from published information. However, there are various ways the ad-
versary can launch the attack. We study how to protect sensitive information
about individuals against inference attacks. We focus on inference attacks using
association rules. Several important factors need to be considered when deciding
what additional information needs to be hidden. First, the hidden information
� Supported by the Natural Science Foundation of China under Grant No.60503036,

the Fok Ying Tong Education Foundation of China under Grant No. 104027.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 422–433, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 423

depends on the data owner’s tolerance on the confidence the adversary can get
about the real value of a sensitive entry. Secondly, the owner has to consider
the fact that the adversary can do similar inferences by using other properties
of this individual as well as a combination of his properties. Being conservative,
a data publisher wants to make sure that the adversary does not obtain the
real value with a high probability by using any combination of these proper-
ties. Thirdly, often there are application-specific requirements when publishing
or sharing information. The application could require certain information be re-
leased. Furthermore, the application often requires the owner to release as much
information as possible.

These challenges motivate our study, in which we make the following contri-
butions: (i) We formulate a data-privacy framework in which a data owner needs
to protect sensitive information against inference attacks using association rules;
(ii) We study complexity issues of the problem; (iii) We classify the problem into
subcases based on the requirements of publishing information, and develop al-
gorithms for these cases; and (v) We conducted an empirical study to evaluate
our algorithms on real data sets.

Due to space limitation, we include more results in the full version [13] of this
paper.

1.1 Related Work

There have been many studies on data security and privacy. We briefly summa-
rize some related topics in the context of data publishing and sharing.

k-anonymity [3]: The problem is to hide the quasi-identifiers of sensitive enti-
ties. Our goal is to hide the real values of individuals, not their identifiers.

Privacy-preserving data mining [4]: The problem is to hide distribution prop-
erties of a data set without revealing the information about each individual
entity. The most commonly used approach is to perturb the data, say, using
randomizing functions. In the applications we are considering, data can only
be hidden, but cannot be modified. Evfimievski et al. [5] developed a privacy-
preserving framework based on the notion of amplification.

A closely related topic is association-rule hiding (ARH for short) [6,7], in
which the goal is to prevent sensitive association rules from being disclosed. For
instance, Atallah et al. [6] proved that it is NP-hard to hide a set of association
rules while minimizing the effect on other association rules. This effect is mea-
sured as the number of rules lost and the number of rules newly introduced in the
hiding process. In [6,7] several heuristics were proposed to hide association rules.
Although our approach is also based on hiding sensitive association rules, there
are several differences. (1) Our goal is to hide sensitive entries (the same with
[8]), and we use hiding association rules as an intermediate step, while ARH’s
goal is to hide rules. (2) Most ARH works are dealing with transactional data
with values of 1 and 0, while we are dealing with more general data, mostly cate-
gorical data. (3) Most ARH works try to minimize the side effect of information
hiding on other rules, while we focus on minimizing information loss in terms of
the number of hidden entries. (4) We consider application-specific requirements

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

424 C. Li, H. Shirani-Mehr, and X. Yang

about what information needs to be published, which are not considered either
in ARH works nor [8]. In order to experimentally show the difference between
our algorithms and those ARH algorithms, we also implemented one of their
approaches to compare the results.

Other related works include the following. [9] developed data-dependent ap-
proaches to data privacy. [10] developed an encryption-based approach to access
control on publishing XML documents. There are also studies on inference con-
trol in relational databases [11], and studies on XML security control (e.g., [12]).

2 Data-Privacy Framework

We consider applications in which a data owner has data stored in a relational
table R(A1, . . . , Ak), which has the following three types of entries.

• A positive entry is an entry the data owner has to release, and it is marked
with a positive sign (“+”) in the table.
• A negative entry, also called a sensitive entry, is an entry the owner wants

to hide, and it is marked with a negative sign (“−”). The owner hides the
value of each negative entry by replacing it with a NULL. A record with a
sensitive entry is called a sensitive record. In this study we focus on the case
where all the negative entries are from the same attribute, called the sensitive
attribute, denoted by S. Our results can be extended to the case of multiple
sensitive attributes.
• An unmarked entry is an entry without a sign. It means that the owner

can publish its original value, or hide it, in order to protect other sensitive
entries against inference attacks.

2.1 Association Rules

A partial table is a table in which some entries have been hidden by the data
owner. Given a partial table, there are various ways the adversary could do infer-
ence. In this work, we focus on the case where the adversary utilizes the derived
association rules [6,7] from the partial table to do inference. A pattern for the
relation R is a set of attribute-value pairs: {(D1, v1), (D2, v2), . . . , (Dk, vk)}, in
which each Di is an attribute in the relation (possibly the sensitive attribute),
and each vi is a value for the attribute Di. The support of this pattern p, de-
noted by supp(p), is the number of records in the table that satisfy the following
condition: for each i = 1, . . . , k, the value of the record on attribute Di is vi.
We say such records have the pattern p. An association rule is in the format of
r : p→ s, in which p is a pattern that does not use the sensitive attribute, and s
is a value for the sensitive attribute S. We call p the condition pattern of the rule
r. The support of r, denoted by supp(r), is the support of the pattern p∪{(S, s)}
(or “p ∪ {s}” for short). The confidence of r is

conf(r) =
supp

(
p ∪ {(S, s)})
supp(p)

.

Each record with the pattern p ∪ {(S, s)} is called relevant to the rule r.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 425

2.2 Inference Attacks Using Association Rules

Let t be a sensitive record. Its sensitive entry, e, for the sensitive attribute S, is
hidden by the data owner. The adversary uses a set of condition attributes to infer
the original value of the sensitive entry e. Based on the assumption that a set
of condition attributes are given, our techniques can provide the corresponding
privacy guarantees.

Let {D1, . . . , Dm} be a nonempty subset of the condition attributes of the
sensitive record t. Consider the corresponding association rule r: {(D1, t[D1]),
. . ., (Dm, t[Dm])} → t[S]. Here “t[Di]” denotes the value of attribute Di in
record t. The adversary could use r to infer the sensitive value t[S] of record t.
We assume that the data owner provides a minimum support minsupp and a
minimum confidence minconf to specify his tolerance of information leakage. We
say that the association rule r leaks the sensitive information in record t if (i)
the support of r is greater than minsupp, and (ii) the confidence of r is greater
than minconf. In this case, we call rule r an unsafe association rule. So a rule is
safe if its support is within minsupp, or its confidence is within minconf.

For the sensitive record t, there are different subsets of its condition attributes.
A sensitive entry is leaked if one of these association rules is unsafe. Otherwise,
the sensitive entry is safe. The data owner, being conservative, wants to make
sure that the sensitive entry of this record is not leaked, i.e., none of its associ-
ation rules is unsafe. A partial table is called safe if each of its sensitive entries
is safe, i.e., it does not have an unsafe association rule.

In order to make sure that each sensitive entry is safe in a partial table, the
data owner needs to decide which of other (unmarked) entries need to be hidden,
so that each association rule for the sensitive entries is safe. While there are many
such safe partial tables, we are interested in finding one that has the “maximum”
amount of information. In this study we consider information amount measured
by the number of entries that are not hidden. Intuitively, the more entries that
are hidden, the less information is published. A safe partial table Tp is called
optimal if there is no other partial table whose information amount is greater
than that of Tp. In the following sections we study how to compute a safe partial
table while releasing as much information as possible. For limited space, we
focus on the case where the minimum support is 0. We discuss how to extend
the results to the case where minsupp > 0 in [13].

3 Complexity Results

In this section we study complexity issues related to the problem of computing
a safe partial table. All the proofs are in [13].

Theorem 1. The problem of deciding whether there exists a safe partial table
is NP-hard.

Theorem 2. The problem of computing an optimal safe partial table is
NP-hard.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

426 C. Li, H. Shirani-Mehr, and X. Yang

+ O

+

O +
+

+ +
O

O +
O

+ O

O

O O

O

O O

+
+ +
+

(a) (b) (c) (d) (e) (f) (g) (h)

Marked positive: +
Marked negative:
Unmarked: O

Fig. 1. Subcases (the shaded region represents sensitive records)

The complexity results above are developed for the general cases, where the
positive entries can appear in any attribute. Often the application requires the
positive entries be for certain attributes. Based on where the positive entries are
allowed in the table, we study various subcases. A table can be divided into four
regions: Condition entries of the nonsensitive records, sensitive entries (those
entries of the sensitive attribute) of the nonsensitive records, condition entries
of the sensitive records, and sensitive entries of the sensitive records which are
always marked negative. Based on whether the application allows each region
to be hidden, there are eight subcases as shown in Fig. 1. Besides the negative
mark, only entries marked with © in Fig. 1 can be hidden.

We study the complexity issues in these subcases. We have proved that the
problem of computing an optimal safe partial table is NP-hard for each of the
subcases (a)-(g) in Fig. 1. For each subcase, there is always a safe partial table,
since there is one unmarked region, and hiding all the entries in this region
can make the table become safe. For subcase (h), the problem of computing an
optimal solution is not defined since no entry can be hidden.

4 Computing a Safe Partial Table Efficiently

In this section, we study how to compute a safe partial table efficiently. We
first analyze the subcases in Fig. 1, and identify two cases, cases (a) and (b),
on which our algorithms for other remaining cases are based. We develop an
algorithm for finding a solution for case (a). In the next section, we will study
case (b). Algorithms for finding solutions of remaining cases are developed in [13].

Lemma 1 tells us that, in cases (f) and (g), we do not need to hide the condition
entries of those nonsensitive records to find a solution. As a consequence, an
algorithm for case (a) is applicable for case (g), and an algorithm for case (e) is
applicable for case (f) as well.

Lemma 1. In cases (f) and (g), for each safe partial table T that has hidden
condition entries of the nonsensitive records, there is another safe partial table
T ′ that does not hide more entries than T , and none of the condition entries of
the nonsensitive records is hidden in T ′.

4.1 Algorithm for Case (a)

The main idea of the algorithm is to reduce the problem of finding an optimal
safe partial table to the Set Multi-Cover problem [14].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 427

Definition 1. (Set Multi-Cover) Given a universal set U = {e1, e2, . . . , en} and
a set L of some subsets of U , L = {Si|Si ⊆ U}, our goal is to find a smallest
sub-collection C ⊆ L that covers each element e ∈ U at least re times.

Consider a sensitive record with a sensitive value s. It has an unsafe rule r :
p → s, whose confidence is greater than the confidence threshold minconf. In
case (a), to reduce this confidence, we can only hide the sensitive entries of those
nonsensitive records. In particular, we need to consider those records relevant
to the rule (i.e., they have the pattern p ∪ {s}), and choose some to hide their
sensitive entries. The minimum number βp of such entries that require to be
hidden should satisfy the following inequality:

supp(p ∪ {s})− βp

supp(p)
≤ minconf.

For each nonsensitive record t with an s value and with at least one of these
patterns, let St be the set of the patterns that the record t has. St is called the
pattern set of t. Now we convert our problem of finding an optimal partial table
to an instance of the set multi-cover problem. Let the universal set U consist of
the condition patterns in the unsafe association rules of the record. Let the set
L consist of the pattern sets of the records with an s value. Our goal is to find a
cover for these sets that covers each condition pattern p at least rp = βp times.

Our algorithm works as follows. In each iteration, we select a set St with the
largest number of unsafe patterns, and add it to the cover. Correspondingly, we
hide the sensitive entry of the record t. Thus we decrease the rp value of each
pattern in the set St by one.

The performance ratio of the algorithm is known to be Hk, in which k is the
size of largest set, and Hk is the harmonic number of order k [14]. k is at most
2(n−1), where n is the number of condition attributes. If C is the cover obtained
by our algorithm, and C∗ is the optimal cover, then

|C|
|C∗| ≤ H2(n−1) < (n− 1) ln 2 + 1.

The upper bound for performance ratio is computed using the upper bound for
Hk in [15].

Multiple Sensitive Values: For case (a), there could be more than one sen-
sitive value. Notice that since we only hide entries of the sensitive attribute,
hiding the entries with one sensitive value does not affect the rules of a sensitive
record with a different sensitive value. To see the reason, consider the confidence
formula for an association rule p→ s, conf(p→ s) = supp(p∪{s})

supp(p) . Hiding a sensi-
tive value s will only reduce supp(p∪{s}), and has no effect on other association
rules p→ t, where t �= s. Therefore we can group the sensitive records according
to their sensitive values, and run the algorithm above for each group of records
to find a safe partial table.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

428 C. Li, H. Shirani-Mehr, and X. Yang

5 Algorithm for Case (b)

In this section we study how to compute a safe partial table for case (b) in Fig. 1,
in which we can only hide the condition entries of those nonsensitive records.
Similarly to the way we deal with case (a), we first develop an algorithm for the
case where the sensitive records have the same sensitive value. We can extend it
([13]) to the case where the sensitive records can have different sensitive values.

5.1 R-Graph

Consider the case where we have a set H = {t1, . . . , tm} of sensitive records with
the same sensitive value s with k condition attributes. Some of these records
are not safe in the original table, i.e., they have unsafe association rules. Our
algorithm for finding a safe partial table is based on a directed graph called
R-Graph. It defines a partial order among the condition patterns of these sen-
sitive records. It is constructed as follows. For each sensitive record ti, consider
its 2k − 1 association rules corresponding to the nonempty subsets of the k con-
dition values of ti. For each rule r, let p(r) be its condition pattern. There is a
node, denoted by v(r), in the R-graph, which corresponds to rule r. For exam-
ple, for a record 〈a, b, s〉 with the sensitive value s, the graph has three nodes
corresponding to the rules {a} → s , {b} → s, and {a, b} → s, respectively.

The graph has a directed edge from a vertex v(r) to v(r′) if the pattern
p(r) ⊃ p(r′), and |p(r)| = |p(r′)| + 1. That is, the pattern p(r) is obtained by
adding one more value to pattern p(r′). We call v(r) a parent of v(r′). Intuitively,
hiding an entry of a record relevant to the pattern of the child node will also
reduce the confidence of the rule of the pattern of the parent node.

Each node v(r) in the R-graph is associated with two numbers. The first
number, called the MinHide of the rule r, represents the minimum number of
records relevant to the rule r that need to be hidden in order to make rule r safe.
By “hidden” we mean each such record should have at least one of its condition
values hidden. That is, MinHide is the minimum integer x that satisfies:

supp(p(r) ∪ {s})− x

supp(p(r)) − x
≤ minconf.

Given a partial table, a node is safe iff its MinHide value is 0. The second number,
called the ExactMatch number of the rule, is the number of records relevant to
the rule, but not relevant to the rule of any ancestor of this node.

For instance, let minconf = 0.55. Then the constructed R-graph for the table
in Fig. 2(a) is shown in Fig. 2(b). There are two sensitive records 〈a, b, c, s〉 and
〈a, b, d, s〉. The graph has 11 nodes corresponding to the 11 different condition
patterns of the records, such as {a, b, c, s}, {a, b, s}, {b, c, s}, etc. There is an
edge from the node {a, b, c, s} to the node {a, b, s}, since the former can be
obtained by adding a value c to the latter. Consider the rule r : {b, d} → s and
the corresponding pattern p(r) : {b, d}. The node p(r) is associated with two
values. The MinHide value of the rule is 1, meaning that we need to hide at least
one record relevant to this rule, in order to make the rule safe (in the current

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 429

ID A1 A2 A3 A4

t1 a+ b+ c+ s−

t2 a+ b+ c+ s
t3 a+ b+ c+ s
t4 a+ b+ *+ s
t5 a+ b+ d+ s−

t6 a+ *+ d+ s Each ∗ represents
t7 *+ b+ d+ s distinct value that
t8 *+ b+ d+ s is different from
t9 *+ *+ d+ * the other values.

(a)

<a, b, c, s>, 1, 2 <a, b, d, s>, 0, 0

<a, c, s>, 1, 0 <b, c, s>, 1, 0 <a, b, s>, 1, 1 <a, d, s>, 0, 1 <b, d, s>, 1, 2

<c, s>, 1, 0 <a, s>, 2, 0 <b, s>, 3, 0 <d, s>, 1, 0

<a, b, c, s>, 1, 2 <a, b, d, s>, 0, 0

<a, c, s>, 1, 0 <b, c, s>, 1, 0 <a, b, s>, 1, 1 <a, d, s>, 0, 1 <b, d, s>, 1, 2

<c, s>, 1, 0 <a, s>, 2, 0 <b, s>, 3, 0 <d, s>, 1, 0

(b)

Fig. 2. An example of a table with two sensitive records and its R-Graph. Each shaded
node represents an unsafe rule, i.e., its MinHide value is greater than zero.

partial table). The ExactMatch value of this node is 2, since there are two records
relevant to this rule, and not relevant to the rule of any of its ancestors. Notice
that as we run the algorithm to hide more entries, these values of the nodes in
the graph can change, since we are hiding more entries.

5.2 Algorithm

Our approximation algorithm works iteratively. In each step, it identifies the
records of a pattern, then decides their entries to hide. The algorithm modifies
the R-graph after each iteration. It repeats until all the nodes in the R-graph
are safe.

Choosing Records to Hide. If the ExactMatch number of a node is not zero,
we call this node an active node. We could choose such a node to hide its relevant
records in order to reduce the confidences of its unsafe descendant nodes. The
algorithm chooses one of the “top-level” active nodes, i.e., those that do not have
active ancestors. For instance, in Fig. 2(b), node {a, b, c, s} is a top-level active
node. By hiding a condition value of a record relevant to this rule, we can reduce
the confidence of the rule, and possibly the confidences of its unsafe descendant
nodes. In the case where we have more than one top-level active node, we can
use one of the following methods to choose one to hide its entries.
• RANDOM: We randomly select one of them.
• RANDOM-MAX: Among those active top-level nodes with the maximum

number of attributes, we randomly select one.
• MAX-DESCENDANT: We choose the node with the largest number of unsafe

descendant nodes. Intuitively, hiding a condition value of a record relevant
to such a pattern can help reduce the confidence of many unsafe nodes.

Hiding a Condition Entry in Selected Records. When choosing an entry
for a record relevant to a node to hide, we want to use this value to reduce
the confidence of as many unsafe descendant nodes as possible. Based on this
observation, we choose an entry that, among all the entries of this node, appears
in the most unsafe descendant nodes of the node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

430 C. Li, H. Shirani-Mehr, and X. Yang

Deciding the Number of Records to Hide. After selecting a top-level active
node v(r) and its entry e, we need to decide the number m of records relevant to
this rule whose e value we want to hide. One naive way is to use the ExactMatch
value of this rule. This method does not consider the MinHide values of the
descendants of this node that share this e value, thus may hide too many records.
(Notice that an active node could have a MinHide value of 0.) To solve this
problem, we decide value m as follows. We consider all the unsafe descendant
nodes of this node v(r) that share this e value, and let α to be the minimum
value of these MinHide values. Then we choose m to be the minimum of α and
the ExactMatch number of this rule r.

6 Experiments

We have conducted experiments to evaluate our proposed algorithms. Based
on the analysis in Section 4, we compare cases (a) and (b) in this paper and
cases (c) to (g) in [13]. For case (h), no entries can be hidden, except those
sensitive entries. We used two real relational data sets. The first one is the
“adult” database from the UC Irvine machine learning repository.1 The data set
has 32, 561 records in its training set, and we randomly chose 30, 000 of them in
our experiments. We used the 7 categorical attributes as the condition attributes,
including gender, marital status, level of employment, highest education degree,
number of education degrees, and salary (low or high). We used its occupation
attribute as the sensitive attribute. The second data set contains information
about customers of a bank company. It has 30, 000 records. We used 7 categorical
attributes: background (award or bad records), loan type (such as house purchase
or education), amount of savings (low, medium, or high), occupation, marital
status, number of apartments/houses, and resident type. We used the credit
rating attribute as the sensitive attribute.

In the experiments, we evaluated how the following factors affect the num-
ber of entries hidden by the algorithms and their efficiency. (1) The number
of condition attributes; (2) the number of sensitive records; (3) the number of
records; (4) the value of the minimum confidence minconf; (5) the value of min-
imum support minsupp, and (6) the number of unsafe rules. We also compared
our algorithms with one of the association-rule-hiding algorithms called the CR
algorithm [7]. All the algorithms were implemented in C++, and run on an In-
tel Pentium IV 2.4GHz PC with 512MB RAM. For each setting, we tested an
algorithm by running it 10 times to compute the average values.

6.1 Algorithm Implementation for Case (a)

We randomly selected a certain number of records from each data set as sensitive
records, and let this number vary between 2 and 35. We set the owner’s minimum
confidence minconf = 0.6, and minimum support minsupp = 60, which is 0.2%
of the table size.
1 Downloaded from http://www.ics.uci.edu/∼mlearn/MLSummary.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 431

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

R
em

ov
al

 r
at

e
(%

)

of sensitive records
 (a) minimal confidence = 65%

dataset1
dataset2

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
em

ov
al

 r
at

e
(%

)

minimal confidence
 (b) # of sensitive records = 25

dataset1
dataset2

 0
 1
 2
 3
 4
 5
 6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
em

ov
al

 r
at

e
(%

)

minimal confidence
 (d)

CR
SMC

0.5

0.4

0.3

0.2

0.1

0
 0 5 10 15 20 25 30 35

R
em

ov
al

 r
at

e
(%

)

of sensitive records
 (c)

CR
SMC

 0

 0.5

 1

 1.5

 2

6543

R
em

ov
al

 r
at

e
(%

)

of condition attributes
 (f)

CR
MAX-DESCENDANT

 0

 0.5

 1

 1.5

 2

30K25K20K15K10K5K0

R
em

ov
al

 r
at

e
(%

)

of records (table size)
 (e) # of condition attributes = 5

CR
MAX-DESCENDANT

Fig. 3. Test results

It is computationally prohibitive to implement the exhaustive search algo-
rithm. We implemented the algorithm based on Set Multi Cover, called the SMC
algorithm, as described in Section 4. Fig. 3(a) shows how the number of sensitive
records affects the number of entries hidden by this algorithm. The y-axis, called
“Removal rate,” is the percentage of the total number of entries in the table that
are hidden. It shows that as the number of sensitive records increased, the num-
ber of removals in the sensitive attribute increased, since more records could
have unsafe association rules, resulting in hiding more entries. For dataset 1,
when there were 4 sensitive entries, the algorithm decided to hide about 0.006%
of all the entries. When there were 35 sensitive entries, the algorithm decided
to hide about 0.45% of all the entries. Next, we selected 20 different sensitive
records, and let the minimum confidence minconf vary from 0 to 1.0. Fig. 3(b)
shows that as the minimum confidence increases, there are fewer unsafe rules,
resulting in hiding fewer entries.

Comparison with ARH algorithms. We experimentally compared our algo-
rithms with those association-rule-hiding (ARH) algorithms [6,7]. We chose the
CR algorithm [7] as a representative. As explained in Section 1, our problem
is different from the problem of hiding association rules in various aspects. The
goal of this comparison is to show how many entries we need to remove if we were
to use one of these ARH algorithms to solve our problem. When adopting the
CR algorithm to our setting, we used it to hide those unsafe rules introduced by
the sensitive records. We followed the algorithm’s way of deciding the sequence
of hiding the association rules, and the way of choosing records to hide. Since in
case (a), we can only remove values of the sensitive attribute, we ignored the last
step in the CR algorithm that chooses an entry of a record to hide. Figs. 3(c)
and (d) show the results of our SMC algorithm and the CR algorithm for case
(a), using the same setting as described above. Fig. 3(c) shows that our SMC

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

432 C. Li, H. Shirani-Mehr, and X. Yang

algorithm hides much fewer additional entries than the CR algorithm. Fig. 3(d)
shows that the number of removals decreased for both algorithms, as the min-
imum confidence minconf decreased. Again, our SMC algorithm outperformed
the CR algorithm.

6.2 Algorithm Implementation for Case (b)

We also implemented the algorithm described in Section 5 for case (b), in which
we can only hide the condition entries of those nonsensitive records. We used
data set 1. The minimum confidence minconf = 0.60 and the minimal support
minsupp = 60, which is about 0.2% of the table size. We randomly chose some
number of records (table size) and categorical attributes. We increased the num-
ber of records and condition attributes. We randomly chose 10 entries (with the
same value) as sensitive entries. Three heuristics were implemented to choose
a top-level node in the R-Graph, namely, RANDOM, RANDOM-MAX, and
MAX-DESCENDANT, as described in Section 5.2. Their results were very sim-
ilar, so we mainly reported the results of the MAX-DESCENDANT heuristic.
In addition, we modified the last step of the CR algorithm slightly so that it
can choose a condition entry of a record to hide. Figs. 3 (e) and (f) show how
the removal rate changed as the number of records in the table increased up
to 30, 000. As the table size becomes larger, the support of the association rule
of the sensitive records also increased, which resulted in more values hidden in
order to obtain a safe partial table. Our algorithm (“MAX-DESCENDANT”)
removes fewer entries than the CR algorithm.

We next evaluated how the number of condition attributes affects the removal
rate. We randomly chose 30, 000 records in dataset 1. We set minsupp = 60,
which is 0.2% of the table size. We let the number of condition attributes vary
from 3 to 6. Fig. 3(f) shows that when we increased the number of condition
attributes, more values need to be hidden since more condition values can be
used to do inference. There are two reasons that our algorithm outperforms
the CR algorithm. First, our algorithm chooses a top-level node that can affect
more unsafe rules, while CR chooses a record that covers fewer rules, trying to
minimize the “side effect” on other rules (e.g., making a safe rule unsafe). Second,
our algorithm chooses hiding an entry that occurs in more unsafe descendant
patterns of the selected record pattern in the R-graph (i.e., it affects more unsafe
rules), whereas CR chooses hiding an entry whose support is maximum in the
table. Our experiments [13] show the results when there are multiple sensitive
values. We set minsupp = 60 and minconf = 0.7 for data set 1. We chose 20
sensitive records, and tested the effect of different numbers of sensitive values. We
increased the number of different sensitive values from 1 to 9. The results show
that when the number of sensitive values increased, we need more removals to
get a safe partial table. The reason is that removing conditions of one unsafe rule
may increase the confidence of another unsafe rule, which needs more removals
to make it safe.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Protecting Individual Information Against Inference Attacks 433

7 Conclusions

In this paper, we studied an important privacy problem in data-publishing or
sharing environments: how to protect sensitive information about individuals
against inference attacks using association rules? In deciding what data should
be released, we need to consider application-specific requirements, e.g., some
information has to be released. We formulated the problem, and developed com-
plexity results of the problem. We classified the different cases of the problem,
based on what information has to be released. We developed efficient algorithms
for computing a safe partial table. We have conducted an empirical study on
real data sets to evaluate our techniques.

References

1. Yang, X., Li, C.: Secure XML publishing without information leakage in the pres-
ence of data inference. In VLDB, 2004.

2. Verykios, V.S., Bertino, E., Fovino, I.N., et al.: State-of-the-art in privacy preserv-
ing data mining. SIGMOD Record, 33(1):50–57, 2004.

3. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In SIGMOD Conference,
pages 439–450, 2000.

5. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In KDD, pages 217–228, 2002.

6. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules, 1999.

7. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of
association rules. SIGMOD Record, 30(4):45–54, 2001.

8. Aggarwal, C., Pei, J., Zhang, B.: On Privacy Preservation against Adversarial
Data Mining. In Proceedings of ACM SIGKDD 2006, 2006.

9. Damiani, E., Vimercati, S.D.C.D., Paraboschi, S., Samarati, P.: A Fine-Grained
Access Control System for XML Documents. ACM Transaction on Information
and System Security, 5(2):169–202, 2001.

10. Miklau, G., Suciu, D.: Controlling Access to Published Data using Cryptography.
In VLDB, 2003.

11. Brodskyand, A., Farkas, C., Jajodia, S.: Secure Databases: Constraints, Inference
Channels, and Monitoring Disclosures. TKDE, 12(6):900–919, 2000.

12. Bertino, E., Carminati, B., Ferrari, E.: A Secure Publishing Service for Digital
Libraries of XML Documents. In ISC, pages 347–362, 2001.

13. Li, C., Shirani-Mehr, H., Yang, X.: Protecting Individual Information Against
Inference Attacks in Data Publishing. UCI Technical Report, 2006.

14. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM Journal on Computing, 28(2):
525–540, 1999.

15. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics: a foundation
for computer science. Addison-Wesley Longman Publishing Co., USA, 1989.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for

Location-Based Services

Zhen Xiao1,2, Xiaofeng Meng1,2, and Jianliang Xu3

1 School of Information, Renmin University of China
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE

{xiaozhen, xfmeng}@ruc.edu.cn
3 Department of Computer Science, Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

Abstract. Protection of users’ privacy has been a central issue for
location-based services (LBSs). In this paper, we classify two kinds of pri-
vacy protection requirements in LBS: location anonymity and identifier
anonymity. While the location cloaking technique under the k-anonymity
model can provide a good protection of users’ privacy, it reduces the res-
olution of location information and, hence, may degrade the quality of
service (QoS). To strike a balance between the location privacy and QoS,
we present a quality-aware anonymity model for protecting location pri-
vacy while meeting user specified QoS requirements. In the model, a
mobile user can specify the minimum anonymity level requirement upon
location privacy as well as the maximum cloaking latency and the maxi-
mum cloaking region size requirements upon QoS. In accordance with the
model, we develop an efficient directed-graph based cloaking algorithm to
achieve both high-quality location anonymity and identifier anonymity.
The performance objective is to maximize the cloaking success rate un-
der the privacy and QoS constraints. Furthermore, we introduce an op-
tion of using dummy locations to achieve a 100% cloaking success rate
at the cost of communication overhead. Experimental results show the
effectiveness of our cloaking algorithm under various privacy and QoS
requirements.

Keywords: Privacy, Location-based Services, QoS.

1 Introduction

With the advances in wireless communication and mobile positioning technolo-
gies, location-based services (LBSs) have become increasingly popular for mo-
bile users. In these applications, mobile users1 send their location information
to service providers and enjoy various types of location-based services, such as
mobile yellow page (e.g.,“Where is my nearest restaurant”), mobile buddy list
(e.g.,“Where is my nearest friend”), traffic navigation (e.g.,“What is my shortest
path to the Summer Palace”), and emergency support services (e.g.,“I need help
and send me the nearest police”) [1,2].
1 In this paper, we use “mobile user”, “mobile client”, and “user” interchangeably.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 434–446, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 435

While people get much benefit from the useful and convenient information
provided by LBSs, the privacy threat of revealing a mobile user’s personal infor-
mation (including the identifier and location) has become a severe issue [3,4]. A
traditional solution to protecting privacy is the use of pseudonymity [5]. That
is, for any LBS request, a trusted middleware is employed to replace the real
identifier of the user with a pseudonym before forwarding the request to a ser-
vice provider [10,11]. However, the location information enclosed in the request
may lead to personal re-identification. An attacker can link the location to some
particular individual based on external knowledge. For example, if we know the
location exclusively belongs to some owner, the corresponding request can thus
be linked to the location owner [8,9].

In general, there are two kinds of privacy protection requirements in LBS:

– Location anonymity. This is to protect a user’s location from being dis-
closed when the location information is sensitive (e.g., in a clinic or pub).
A common technique is to cloak the user’s location by an extended region.
Under the k-anonymity model [6], the region is large enough such that it
contains at least k − 1 other users.

– Identifier anonymity. This is to hide a user’s identifier when the message
content is sensitive (e.g., political or financial data). Again location cloak-
ing can be applied to provide identifier anonymity. Under the k-anonymity
model [6], user locations are cloaked such that a location is covered by at
least k − 1 other requests. In this way, a request is not identifiable from the
other k − 1 requests.

While the k-anonymity model can provide a good protection of users’ privacy,
it reduces the resolution of the location information and, hence, may degrade the
quality of service (QoS). It is often desirable to strike a balance between the lo-
cation privacy and QoS requirements. In this paper, we present a quality-aware
anonymity model for protecting location privacy while meeting user specified
QoS requirements. In our model, a mobile user can specify the following re-
quirements in each LBS request: 1) the minimum anonymity level k, indicating
the location cloaking should satisfy both k-location-anonymity and k-identifier-
anonymity; 2) the maximum cloaking latency Δt, representing the maximum
cloaking delay that the user can tolerate; 3) the maximum cloaking region size
δ, indicating the maximum tolerable error in location data. While k reflects the
user’s requirement upon location privacy, Δt and δ represent the user’s QoS
requirements. Since the privacy/QoS tradeoff for a user may change over time
under different circumstances, we allow these requirements to vary from one
request to another even for the same user.

In accordance with the quality-aware anonymity model, we develop an efficient
directed-graph based cloaking algorithm to perform anonymization over LBS
requests. The performance objective is to maximize the cloaking success rate with
privacy protected and QoS guaranteed. Furthermore, we introduce an option of
using dummy locations to achieve a 100% cloaking success rate at the cost of
communication overhead. Under this scenario, we would like to make use of as
few dummies as possible to minimize the communication overhead. We conduct

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

436 Z. Xiao, X. Meng, and J. Xu

a series of experiments to evaluate the effectiveness of the proposed algorithms.
The results show that our algorithms are superior under various privacy and
QoS requirements.

The rest of this paper is organized as follows. We first review some related
work on protecting location privacy in Section 2. In Section 3, we describe our
quality-aware anonymity model. An efficient cloaking algorithm is proposed in
Section 4. Some discussions and improvements are presented in Section 5. Sec-
tion 6 presents the implementation and experimental results of our proposed
algorithms. Finally, Section 7 concludes the paper.

2 Related Work

Several different models have been used for protecting location privacy.
Kido et al. [12] proposed a dummy-based approach, in which a user sends the
actual location with several fake locations (“dummies”) to a service provider.
The service provider processes and returns an answer for each received location.
The user finally refines the result based on the actual location.

The k-anonymity model was originally introduced for privacy protection in
conventional database applications [7]. As defined in [6], a release of data provides
k-anonymity protection if the information for each individual contained in the
release cannot be distinguished from at least k−1 individuals whose information
also appear in the release. In the context of LBS, Gruteser and Grunwald [10]
first adopted the k-anonymity model and proposed a quad-tree based cloaking
algorithm. They assume a static anonymity requirement kmin for all users. To
achieve k-anonymity, the algorithm recursively subdivides the area around a
user’s location into four quadrants until the number of users in the area falls
below kmin, and then returns the previous quadrant as the cloaking region.
This technique does not differentiate the privacy requirements of different users.
Moreover, no restriction is imposed on the cloaking region size. Thus, a cloaking
region can be very large, which may lead to an inaccurate query result and a
poor service quality.

Gedik and Liu [11] recently proposed the technique of supporting personal-
ized privacy requirements, capturing the privacy and QoS requirements on a
per-user basis. A location cloaking algorithm called CliqueCloak was developed.
CliqueCloak constructs an undirected graph for all the requests that have not
been anonymized yet. Each time the server receives a new request, it attempts
to identify a clique involving the new request and some existing requests, and
cloak them together with the same region. However, this method has several
drawbacks. First, the effectiveness of this method is limited to users with small
k values (i.e., 2-5). As shown in [11], we can hardly find the anonymity set for
requests with larger k values. Second, the cost of searching a clique in a graph is
costly. Third, some requests that cannot be anonymized will be dropped when
their lifetimes expire. This will affect the user experience towards the service.
Different from [11], our proposed cloaking algorithm considers the tradeoff be-
tween privacy and QoS requirements to achieve a higher cloaking success rate.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 437

A different framework named Casper was proposed in [13]. Casper employed a
grid-based pyramid structure to index all user locations. Besides the anonymity
level k, a user can specify Amin, indicating that the user wants to hide the
location information within an area of at least Amin. This model has the following
concerns. First, k and Amin have a similar functionality. In fact, the higher is
the value of k, the larger is the cloaking area. Second, the cloaking region may
expand arbitrarily large if k is set to a large value and few users present nearby.
To address this problem, Casper uses a privacy-aware query processor to return
a list of candidate query results to the anonymizing proxy, who has to locally
refine the actual result from the candidate list. This approach incurs a high
query processing cost, a high communication cost, and a high local computation
cost. In contrast, to reduce such costs, we enforce some temporal and spatial
QoS requirements when performing location cloaking.

3 System Model

We consider a LBS system consisting of mobile clients, a trusted anonymizing
proxy, and LBS providers [10,11]. Upon a user query, the mobile client first
sends the LBS request to the anonymizing proxy through an authenticated and
encrypted connection. The request consists of the user’s identifier id, current
location l = (l.x, l.y), current time t, as well as the service related content such
as the query (denoted by data). Additionally, the mobile client can specify in the
request its privacy and QoS requirements, which include the desired anonymity
level k, the tolerable maximum cloaking delay Δt, and the acceptable maximum
cloaking region size (denoted by a radius of δ). Thus, a request from user i is
defined as: ri = (id, l, k, Δt, δ, data, t).

Based on the request’s privacy and QoS requirements, the anonymizing proxy
expands the location l into a cloaking region L (to be detailed later in this
section). Moreover, the identifier id is replaced with a pseudonym id′ (e.g., a
secure hash number). The original request is transformed into a new anonymized
request, r′i = (id′, L, data), and is forwarded to the LBS provider. Finally, the
anonymized request is processed by LBS provider. The query result is sent back
to the anonymizing proxy, which, after refining the result, returns the final result
to the mobile client.

We adopt the k-anonymity model [6] for protecting location privacy. Given a
set of user requests {r1, r2, · · · , rn} and their anonymized requests {r′1,r

′
2,· · · , r′n},

the location k-anonymity model is defined as follows:

Definition 1. For any request ri, the location k-anonymity is satisfied if and
only if 1) ri’s cloaking region r′i.L covers the locations of at least k − 1 other
requests (i.e., |{j | rj .l ∈ r′i.L, 1 ≤ j ≤ n, j �= i}| ≥ k−1) and, 2) ri’s location ri.l
is covered by the cloaking regions of at least k −1 other requests (i.e., |{j | ri.l ∈
r′j .L, 1 ≤ j ≤ n, j �= i}| ≥ k − 1).

By this definition, a LBS provider cannot distinguish a user’s location ri.l from
k − 1 other users’ locations since they all present in the cloaking region r′i.L.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

438 Z. Xiao, X. Meng, and J. Xu

Moreover, even knowing the location of a user, a LBS provider cannot tell which
request is made by this user since there are k requests all covering this user’s lo-
cation. As such, both location anonymity and identifier anonymity are achieved.
We refer to the set of users achieving location anonymity as location anonymity
set and the set of users achieving identifier anonymity as identifier anonymity
set. For example, Figure 1 shows four LBS requests from different users as well
as their cloaking regions. Since r1’s cloaking region covers r1, r2, and r3, the
location anonymity set of r1 is {r1, r2, r3}. On the other hand, r1 is covered by
the cloaking regions of r1 through r4. Thus, the identifier anonymity set of r1 is
{r1, r2, r3, r4}.

In summary, for any request r and its anonymized request r′, we specify the
privacy and QoS requirements from the following three aspects:
1. Location Privacy. This requires to expand the user location l into a cloak-

ing region L such that the k-anonymity model (Definition 1) is satisfied.
2. Temporal QoS. This states that the request must be anonymized before

the predefined maximum cloaking delay (i.e., t + Δt).
3. Spatial QoS. This specifies that the cloaking region size should not exceed

a threshold, i.e., the cloaking region must be inside a circle Ω centered at l
and with a radius of δ (i.e., L ⊆ Ω(l, δ)).

In general, a larger Δt (or δ) provides more flexibility in location anonymization
but results in an extended query delay (or a less accurate query result).

r
1

3

4

r

r

r 2

cloaking region of r1

cloaking region of r2

cloaking region of r3

cloaking region of r4

location point of ri, i=1,2,3,4

Fig. 1. Illustration of Location Anonymity Set and Identifier Anonymity Set

4 Basic Anonymization Algorithm

The anonymization algorithm turns the user location into a cloaking region based
on the privacy and QoS constraints. In this section, we discuss the following
problems faced by the anonymization algorithm: 1) when to anonymize which
request? and 2) given a request under the cloaking region size constraint, how
to find other requests (i.e., the location anonymity set and identifier anonymity
set) to satisfy the location k-anonymity model?

Bearing in mind that our objective is to maximize the cloaking success rate, we
shall delay the anonymization process of a request until right before its deadline
(i.e., t+Δt− ε), where ε is a small time offset set to be the worst cloaking time.
In this way, not only can more potential requests join a request’s anonymity
set, but also other requests have a higher chance to include this request in their
anonymity sets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 439

To tackle the second problem, the CliqueCloak algorithm proposed in [11]
constructs an undirected graph to represent the correlations of all requests. The
graph is defined as: Gu = (V, Eu), where V is the set of the nodes, each repre-
senting a request r received at the anonymizing proxy, and Eu is the set of edges,
each representing the neighborship between the corresponding nodes (requests).
For any pair of nodes ri, rj ∈ V , there exists an edge eij = (ri, rj) ∈ Eu if and
only if the distance between the two requests |rirj | is not more than both ri.δ
and rj .δ (|rirj | ≤ ri.δ and |rirj | ≤ rj .δ), which indicates the locations of ri and
rj are within each other’s predefined maximum cloaking region size. For any
request ri, its location anonymity set and identifier anonymity set are the same
ri.U that includes all its neighbors except those have k larger than ri.k and those
have less than k−1 neighbors in ri.U . A clique of at least k requests is identified
if they share the same anonymity set. These requests are then anonymized with
the same cloaking region (the minimum bounding rectangle (MBR) of their lo-
cation points) at the same time. This approach incurs a huge searching cost for
identifying cliques with the worst time complexity of O(N2N), where N is the
number of nodes in the subgraph of ri.U . Moreover, with a restricted definition
of the anonymity set, the cloaking success rate is low.

Recall that under our location k-anonymity model, each request can have
a different anonymity set and hence a different cloaking region. Thus, in con-
trast to [11], we build a directed graph rather than an undirected graph. In
the directed graph Gd = (V, Ed), for any pair of nodes ri, rj ∈ V , there exists
an edge eij = (ri, rj) ∈ Ed from ri to rj , if and only if the distance between
the two requests is not more than ri.δ (|rirj | ≤ ri.δ), which indicates rj ’s lo-
cation is within ri’s predefined maximum cloaking region size. Similarly, there
exists an edge eji = (rj , ri) ∈ Ed from rj to ri, if and only if ri’s location is
within rj ’s predefined maximum cloaking region size. The location anonymity
set of a request ri, is formed by all its outgoing neighbors ri.Uout, i.e., ri.Uout =
{ri} ∪ {rj | (ri, rj) ∈ Gd(V, Ed)}, and the identifier anonymity set, is formed by
all its incoming neighbors ri.Uin, i.e., ri.Uin = {ri} ∪ {rj | (rj , ri) ∈ Gd(V, Ed)}.
For each request ri, we maintain a flag to identify its status, i.e., flag =
unanonymized means ri has not been anonymized, and flag = forwarded
means ri has been anonymized successfully and forwarded to the service provider
but not yet deleted in the graph. A request ri can be anonymized immediately
if there are at least k − 1 other anonymized requests in ri.Uout (i.e., |{j | rj ∈
ri.Uout, rj .f lag = forwarded, j �= i}| ≥ k − 1) and k − 1 other anonymized
requests in ri.Uin(i.e., |{j | rj ∈ ri.Uin, rj .f lag = forwarded, j �= i}| ≥ k − 1).2

The cloaking region of ri is then represented by the MBR of the location points
of the requests in the location anonymity set (denoted by MBR(ri.Uout)).

We use an example to illustrate the differences between CliqueCloak
(Figure 2(a)) and our proposed cloaking algorithm (Figure 2(b)). The same
set of user requests with corresponding k values are shown in the figure, where

2 Initially, no requests are flagged as “forwarded”. We employ CliqueCloak to
anonymize requests in the warm-up period; our proposed cloaking algorithm fol-
lows after the warm-up period.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

440 Z. Xiao, X. Meng, and J. Xu

r1

3

45

2

0r

r

r r
r

k=2

k=2

k=2

k=2

k=3

k=2

(a) CliqueCloak

r1

3

45

2

0r

r

r r
r

k=2

k=2

k=2

k=2

k=3

k=2

(b) Our Cloaking

Fig. 2. An Example: the differences between CliqueCloak and our proposed cloaking

they are numbered in the ascending order of their deadlines. We assume r0

has been anonymized successfully (r0.f lag = forwarded in our cloaking). With
CliqueCloak, r1, r2, and r3 form a clique and are cloaked with the same region
(their MBR, represented by the shaded area in Figure 2(a)). Then they will be
deleted from the graph. Next, r4 and r5 will be dropped because they cannot
find enough neighbors. With our proposed cloaking algorithm, the neighborships
between the requests are different and some new edges are added in the directed
graph. First, r1 is processed with Uout = Uin = {r0, r1, r2, r3}. Because r0.f lag =
forwarded, satisfying r1.k = 2, we can anonymize r1 with cloaking region
MBR(r0, r1, r2, r3). Then, r2 is processed with Uout = {r0, r1, r2, r3} and Uin =
{r1, r2, r3, r5}. Because r0 and r1 have been anonymized successfully, satisfying
r2.k = 2, we can also cloak it with MBR(r0, r1, r2, r3). Similarly, all the other
requests will be successfully anonymized with r′3.L = MBR(r1, r2, r3, r4, r5),
r′4.L = MBR(r3, r4), r′5.L = MBR(r2, r3, r4, r5). Obviously, by allowing dif-
ferent cloaking regions for different requests, our proposed cloaking algorithm
gets a higher success rate than CliqueCloak. Moreover, as shown in Figure 2(b),
the cloaking regions of r1, r2, and r3 cover some more requests in addition to
r1, r2, and r3, thereby providing a higher privacy level than CliqueCloak. In the
following, we describe the detailed data structures and related algorithms for
anonymizing user requests.

4.1 Data Structures

As mentioned, we employ a dynamic in-memory directed graph for all user re-
quests. To facilitate the construction and maintenance of the graph, we build a
spatial index (i.e., R-tree) over the location points (ri.l’s) of all requests. Thus,
we can use a window query to quickly find the neighbors of a request. Addition-
ally, we maintain a min-heap to order the requests according to their cloaking
deadlines (i.e., the key is ri.t + ri.Δt).

4.2 Algorithms

Maintenance: Algorithm 1 details the maintenance of the data structures.
Given a new incoming request ri, we first update the spatial index and the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 441

heap. Next we update the graph. We start by searching the spatial index using a
range query with ri.l as the central point and δmax as the radius, where δmax is
the maximum cloaking region size requirement of all the requests. The requests
in the search result C are the candidates for being ri’s neighbors in the graph.
Each rj in C is filtered based on whether the distance between rj and ri is
within ri.δ or rj .δ. In the former case, we construct an edge from ri to rj . In the
latter case, we construct an edge from rj to ri. In both cases, they are added to
each other’s outgoing neighbor set Uout and incoming neighbor set Uin. In the
algorithm, ri.n is used to represent the cardinality of Uin

⋃
Uout.

Algorithm 1: Maintenance (ri = {id, x, y, t, Δt, k, δ, data})

insert ri into the spatial index and the heap;1

create a new node for ri in the graph;2

ri.n ← 0; ri.Uin ← {ri}; ri.Uout ← {ri};3

C ← a range query Q on the spatial index,4

Q = ((x − δmax, y − δmax), (x + δmax, y + δmax));
forall rj ∈ C, rj �= ri do5

if |rirj | ≤ ri.δ or |rirj | ≤ rj .δ then6

if |rirj | ≤ ri.δ then7

create an edge (ri, rj) in the graph;8

ri.Uout ← ri.Uout

�
{rj}; rj .Uin ← rj .Uin

�
{ri};9

if |rirj | ≤ rj .δ then10

create an edge (rj , ri) in the graph;11

ri.Uin ← ri.Uin

�
{rj}; rj .Uout ← rj .Uout

�
{ri};12

ri.n ← ri.n + 1; rj .n ← rj .n + 1;13

end14

end15

Cloaking Algorithm: Algorithm 2 describes the cloaking algorithm. The input
request r is the first request approaching its deadline. We first compare r’s
cloaking time constraint r.t+r.Δt with current time tnow. If r.t+r.Δt−tnow ≤ ε,
where ε is a small time offset set to be the worst cloaking time, we cloak r
immediately. Otherwise, we delay the anonymization of r to the time r.t+r.Δt−ε.
In the cloaking algorithm, we compute the number of r’s neighbors that have
been anonymized successfully in the outgoing neighbor set and the incoming
neighbor set, denoted by ko and ki respectively. If both ko and ki satisfy r’s
minimum anonymity level (ko ≥ r.k − 1 and ki ≥ r.k − 1), r can be cloaked as
r′ = (pid, MBR(r.Uout), r.data) and its flag is set as “forwarded”, where pid is
the pseudonym that replaces r.id. Otherwise, the cloaking fails and the request
is deleted from the graph. This algorithm has a time complexity O(n), where n
is the number of r’s neighbors.

After r is successfully cloaked, we delay the removal of r in the graph until
all its neighbors have been processed. This is because otherwise the neighbor-
ships between r and its neighbors will disappear. And when we anonymize r’s
neighbors later, they cannot include r in their anonymity sets and, hence, reduce

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

442 Z. Xiao, X. Meng, and J. Xu

the privacy level and the cloaking success rate. Thus, we then decrease the un-
processed neighbors (n) of each r’s neighbor rj in r.Uout

⋃
r.Uin. If rj has been

anonymized already before r and r is the last neighbor of rj to be processed, we
can remove rj from the graph. If all neighbors of r have been anonymized before
it, we can remove r from the graph. No matter whether the cloaking succeeds or
fails, finally the request r should be removed from the spatial index and the heap.

Algorithm 2: Cloaking

get the top request r in the heap;1

if t + Δt − tnow < ε then2

forall r′ ∈ r.Uout do if r′.flag = forwarded then ko + +;3

forall r′ ∈ r.Uin do if r′.flag = forwarded then ki + +;4

if ko ≥ k − 1 and ki ≥ k − 1 then5

send out R = (pid,MBR(r.Uout), r.data) for r;6

r.flag = forwarded;7

forall r′ ∈ r.Uout

�
r.Uin, r′ �= r do8

r′.n ← r′.n − 1;9

if r′.n = 0 and r′.flag = forwarded then delete r′ from the graph;10

end11

if r.n = 0 then delete r from the graph;12

else13

delete r from the graph;14

delete r from the spatial index and the heap;15

end16

5 Improvement with Dummy Requests

This section discusses an improvement by using dummy requests in case of a
cloaking failure. With dummies introduced, we can guarantee a successful cloak-
ing for every request and a 100% success rate. Therefore, we only need to main-
tain for each node r the number of incoming neighbors r.ki and the number of
outgoing neighbors r.ko (r.f lag is no longer maintained). If both r.ki and r.ko

satisfy the required privacy level r.k, the cloaking can proceed with success. Oth-
erwise, we use Algorithm 3 to generate enough dummies such that the dummies
and the real neighbors together form r’s anonymity set. The time complexity of
this cloaking algorithm is O(1).

We generate dummies for a request r based on the following requirements.
First, dummies should be within both the location anonymity set and the iden-
tifier anonymity set such that the privacy level will be higher. Second, dummies
must be indistinguishable from actual requests. Third, dummies should satisfy
the spatial QoS requirement of r. Thus, to avoid expanding the existing cloaking
region, the location of each dummy distributes randomly within MBR(r.Uout).
The cloaking region of each dummy request, d, which also cover the location
point of r, is a random spatial region between MBR({r, d}) and MBR(r.Uout).
As such, the dummies and r become both incoming neighbors and outgoing
neighbors, and the service provider will have difficulty in identifying dummies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 443

Algorithm 3: Dummy (x, y, kd, M)

compute the MBR of M , L = ((xmin, ymin), (xmax, ymax));1

for i = 1 to kd do2

x ← random(xmin, x); x′ ← random(x, xmax);3

y ← random(ymin, y); y′ ← random(y, ymax);4

Li ← ((x, y), (x′, y′));5

send out the ith cloaked dummy request, Ri ← (pid, Li, data);6

end7

Algorithm 3 shows the detailed dummy generation process. The inputs of
the procedure are: location (l.x, l.y) of request r to be cloaked, the number of
dummies to be generated, and r’s outgoing neighbor set as M . The pseudonym
and service related content are also randomly generated. Finally, we send the
cloaked dummy requests out to the service provider.

6 Experiments

In this section, we experimentally compare the effectiveness of our cloaking algo-
rithm against CliqueCloak [11] under various location privacy and QoS settings.
In all the experiments, we use Thomas Brinkhoff Network-based Generator of
Moving Objects [14] to generate a set of moving objects. The input to the gen-
erator is the road map of Oldenburg County (with an area of about 200km2).
We simulate 20,000 moving objects that are uniformly distributed in the spatial
space at the initial time and afterwards continuously move on the road network.
These moving objects issue LBS requests with their current locations at a query
interval of 20,000 s. In each request, Δt, k, and δ are assigned uniformly between
the range [.05− .15]% of the update interval (i.e., 1,000-3,000), [2−5] users, and
[.01-0.05]% of the space (i.e., 2-10), respectively. We set the worst cloaking time
offset ε as 10 s.

Recall that the goal of our cloaking algorithm is to maximize the number
of requests anonymized successfully in accordance with their privacy and QoS
requirements. We first evaluate the cloaking success rate with various privacy and
QoS requirements. Figures 3(a), 3(b), and 3(c) show the effect of varying k, δ,
and Δt on the success rate, respectively. In all cases tested, our method without
using dummies always outperforms CliqueCloak, by 5-25% in terms of cloaking
success rate. By using dummy requests, we can even achieve a 100% success rate.
In Figures 3(a), both CliqueCloak and our method show that the requests with
larger k values are more difficult to anonymize, thus getting a lower success rate.
However, the performance degradation of our method is less significant than
that of CliqueCloak. This indicates that our method is more robust for larger k
values. Figures 3(b) and 3(c) show that a larger δ or Δt improves the flexibility
in location anonymization and thus getting a higher success rate.

We then measure the efficiency of our location-anonymity model in terms of
users’ privacy requirements. The relative location anonymity level is measured

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

444 Z. Xiao, X. Meng, and J. Xu

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 4 3 2 overall

su
cc

es
s

ra
te

k value

Proposed(No Dummy)
CliqueCloak

(a) varying k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.045-0.05% 0.035-0.04% 0.025-0.03% 0.015-0.02%

su
cc

es
s

ra
te

maximum cloaking region size

Proposed(No Dummy)
CliqueCloak

(b) varying δ

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05-0.25%0.05-0.20%0.05-0.15%0.05-0.1%

su
cc

es
s

ra
te

maximum cloaking latency

Proposed(No Dummy)
CliqueCloak

(c) varying Δt

Fig. 3. Performance of Cloaking Success Rate under Different Settings

by k′/k, where k′ is the number of users actually included in the cloaking re-
gion while k is the user required number. In Figure 4, we compare the relative
anonymity level of our method against CliqueCloak under different k values.
In our method, by using dummies, the relative anonymity level can be up to 9
for k = 2, meaning that the requests are actually anonymized with k ≈ 18 on
average. Without using dummies, the relative anonymity level is from 5.2 for
k = 2 to 2.5 for k = 5, meaning that the requests are actually anonymized with
k ≈ 10 on average. CliqueCloak provides a lower level from 1.2 for k = 2 to 1.0
for k = 5. This result also demonstrates that even without dummies our method
can support larger k values up to 10 while CliqueCloak is limited to smaller k
values. In Figure 5, we measure the portion of dummy requests generated in
the total requests under varying k values. Requests with larger k require more

 0

 2

 4

 6

 8

 10

543 2

av
er

ag
e

re
la

tiv
e

an
on

ym
ity

 le
ve

l

k value

Proposed(Dummy)
Proposed(No Dummy)

CliqueCloak

Fig. 4. Relative Anonymity Level

100%

80%

60%

40%

20%

 5 4 3 2 overall

po
rt

io
n

k value

Dummies

Fig. 5. Portion of Dummy Requests

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Quality Aware Privacy Protection for Location-Based Services 445

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

543 2
av

er
ag

e
cl

oa
ki

ng
 ti

m
e(

m
ill

is
ec

)
k value

Proposed(Dummy)
Proposed(No Dummy)

CliqueCloak

Fig. 6. Cloaking Efficiency

neighbors and hence a higher percent of dummies. On average, we can achieve
a 100% success rate with about 10% dummies (and thus 10% of communication
overhead), which we think is acceptable.

Finally, Figure 6 shows the effect of k on the cloaking efficiency. In all cases
tested, our method shows a much shorter cloaking time than CliqueCloak. When
k increases, (more neighbors are formed), the average cloaking time lengths as a
result of increasing cost of searching anonymity sets. However, the performance
degradation of our method is much less smaller than that of CliqueCloak.

7 Conclusion

In this paper, we have discussed the problem of quality-aware privacy protection
in location-based services. We classified the privacy requirements into location
anonymity and identifier anonymity. To protect both of these two anonymities,
we have presented a quality-aware k-anonymity model that allows a mobile user
to specify in each LBS request the location privacy requirement as well as the
temporal and spatial QoS requirements. We have developed an efficient directed-
graph based cloaking algorithm to achieve a high cloaking success rate while
satisfying the privacy and QoS requirements. Moreover, we have introduced the
use of dummy requests to achieve a 100% cloaking success rate at the cost of
communication overhead. Experimental evaluation have verified the effectiveness
of our model and the proposed cloaking algorithms under various privacy and
QoS requirements.

Acknowledgments

This research was partially supported by the grants from the Natural Science
Foundation of China under grant number 60573091, 60273018; Program for New
Century Excellent Talents in University(NCET). Jianliang Xu’s work was sup-
ported by grants from the Research Grants Council, Hong Kong SAR, China
(Project Nos. HKBU 2115/05E and HKBU 2112/06E).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

446 Z. Xiao, X. Meng, and J. Xu

References

1. R. José, N. Davies. Scalable and Flexible Location-Based Services for Ubiquitous
Information Access. In Proceedings of First International Symposium on Handheld
and Ubiquitous Computing, 1999.

2. J. Schiller and A. Voisard, editors. Location-Based Services. Morgan Kaufmann
Publishers, 2004.

3. L. Barkhuus and A. K. Dey. Location-Based Services for Mobile Telephony: a Study
of Users’ Privacy Concerns. In INTERACT, 2003.

4. A. R. Beresford and F. Stajano. Location Privacy in Pervasive Computing. IEEE
Pervasive Computing, 2(1):46-55, 2003.

5. A. Pfitzmann and M. Hansen. Anonymity, Unlinkability, Unobservability,
Pseudonymity, and Identity management - A Consolidated Proposal for Termi-
nology, 2005.

6. L. Sweeney. K-anonymity: A model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557C570, 2002.

7. P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
Report SRI-CSL- 98-04, SRI International, 1998.

8. M. Gruteser and B. Hoh. On the Anonymity of Periodic Location Samples. In SPC,
2005.

9. A. Machanavajjhala, J. Gehrke, and D. Kifer. l-Diversity: Privacy Beyond k-
Anonymity. In ICDE, 2006.

10. M. Gruteser and D. Grunwald. Anonymous usage of location based services through
spatial and temporal cloaking. In ACM/USENIX MobiSys, 2003.

11. B. Gedik and L. Liu. Location Privacy in Mobile Systems: A Personalized
Anonymization Model. In ICDCS, 2005.

12. H. Kido, Y. Yanagisawa, and T. Satoh. Protection of Location Privacy using Dum-
mies for Location-based Services. In ICPS, 2005.

13. M. F. Mokbel, C. Chow and W. G. Aref. The New Casper: Query Processing for
Location Services without Compromising Privacy. In VLDB, 2006.

14. T. Brinkhoff. A Framework for Generating Network-Based Moving Objects. GeoIn-
formatica, 6(2):153C180, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and

Performance Evaluation�

Hyun-Ho Kang, Jae-Myung Kim, Gap-Joo Na, and Sang-Won Lee

Sungkyunkwan University, Suwon, Korea
{hanpaldduk,jam02,factory,swlee}@skku.edu

Abstract. In the era of the Internet, more and more privacy-sensitive
data is published online. Even though this kind of data are published with
sensitive attributes such as name and social security number removed,
the privacy can be revealed by joining those data with some other exter-
nal data. This technique is called joining attack. Among many techniques
developed against the joining attack, the k-anonymization generalizes
and/or suppresses some portions of the released microdata so that no
individual can be uniquely distinguished from a group of size k. Incog-
nito is one of the most efficient k-anonymization algorithms. However,
Incognito requires many repeating sorts against large volume data. In
this paper, we propose a bitmap based Incognito algorithm. Using the
bitmap technique, we can completely eliminate the expensive sort op-
erations, and can even prune some steps in the traditional Incognito
algorithm. Therefore, our new algorithm can improve the performance
by an order of magnitude. From the perspective of implementation, the
key issue in bitmap based Incognito is the speed of bitwise AND/OR and
bit-count operations. For this, we designed and implemented a bitmap
package which exploits the Single Instruction Multiple Data technique.
Our experimental result shows that bitmap-based Incognito outperforms
the traditional Incognito by an order of magnitude.

1 Introduction

In the era of the Internet, more and more privacy-sensitive data is published
online. In general, this kind of data is provided without attributes such as name
and social security number, for privacy. In some cases, however, the privacy
can be revealed by joining those data with some other external data, and this
technique is called joining attack [2]. Among many techniques against the joining
attack, the k-anonymization generalizes and/or suppresses some portions of the
released microdata so that no individual can be uniquely distinguished from a
group of size k [3]. For example, see below table 1 and 2. If we join table 1 with
table 2 using the columns of Birthdate, Sex and Zipcode, we can easily know
that Andre has a disease ‘Flu’. On the other hand, if we join table 1 with the
table 3, we know that ‘Andre’ has either ‘Flu’ or ‘Broken Arm’, but we could not
� This research was supported in part by MIC, Korea under ITRC IITA-2006-(C1090-

0603-0046), in part by MIC & IITA through IT Leading R&D Support Project.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 447–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

448 H.-H. Kang et al.

know the exact disease of ‘Andre’. In summary, k-anonymity guarantees that k
data items are returned so that join attackers are not able to know the exact
individual value of privacy sensitive data item.

Table 1. Voter Registration Data

Name Birthdate Sex Zip

Andre 1/21/76 M 53715

Beth 1/10/81 F 55410

Carol 10/1/44 F 90210

Dan 2/21/84 M 02174

Carol 4/19/72 F 02237

Table 2. Hospital Patient Data

Birthdate Sex Zip Diseases

1/21/76 M 53715 Flu

4/16/86 F 53715 Hepatitis

2/28/76 M 53703 Brochiis

1/21/76 M 53703 Broken Arm

4/13/86 F 53706 Sprained Ankle

2/28/76 F 53706 Hang Nail

Table 3. Generalized Hospital Patient Data

Birthdate Sex Zip Diseases

1/21/76 M 537** Flu

4/16/86 F 537** Hepatitis

2/28/76 M 537** Brochiis

1/21/76 M 537** Broken Arm

4/13/86 F 537** Sprained Ankle

2/28/76 F 537** Hang Nail

In general, the cost of a k-anonymity algorithm determines by lattice con-
struction cost and k-anonymity check cost for each node in lattice. Binary search
algorithm [7] was proposed for the lattice construction for k-anonymity. This is
a traditional algorithm for k-anonymization before introducing Incognito. The
algorithm uses the observation that if no generalization of height h satisfies k-
anonymity, then no generalization of height h′ < h will satisfy k-anonymity. If
the maximum height in the generalization lattice is h, it begins by checking each
generalization at height �h/2�. If a generalization exists at this height that sat-
isfies k-anonymity, the search proceeds to look at the generalizations of height
�h/4�. Otherwise, it searches the generalizations of height �3h/4�, and so forth.
This algorithm is proven to find a single minimal full-domain k-anonymization
according to this definition. However, it has at least two limitations. First, binary
search needs fully sized lattice for k-anonymity. However, in order to construct
the lattice for calculating k-anonymity, it should scan the whole base data re-
peatedly. A large number of the expensive join operations are required to build
the lattice, and to be worse, for each subset, the number of joins increases ac-
cording to the number of elements in the subset. Another problem is that it
supports only a fixed subset. It could not support k-anonymity for join attacks
involving dynamic subsets. In summary, binary search approach is not a viable
option for k-anonymity, especially when the data size is large.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and Performance Evaluation 449

Incognito algorithm resolves these problems. While constructing a lattice,
Incognito only considers the nodes which have survived from the previous
(n-1 step) subsets, and thus, compared to binary search approach, Incognito
can dramatically reduce the cost of lattice construction. In this respect, the con-
tribution of Incognito is comparable to the Apriori data mining algorithm [6]
which drastically reduces the number of candidate sets to be considered when
mining frequent item sets. Lattice construction cost influence performance be-
cause Incognito and binary search have same k-anonymity check cost per node.
However, Incognito itself is still inefficient in checking whether each node in the
lattice satisfies the k-anonymity because it requires expensive sort operations
against large volume data.

In this paper, we propose a bitmap based Incognito algorithm. Bitmap based
Incognito can completely eliminate expensive sort operations, and can even
prune some steps in the traditional Incognito algorithm. Therefore, our new
algorithm can improve the performance by an order of magnitude. From the
perspective of implementation, the key issue in bitmap based Incognito is the
speed of bitwise AND/OR and bit-count operations. For this, we designed and
implemented a bitmap package which exploits the Single Instruction Multiple
Data (SIMD) technique [4].

The contributions of this work can be stated as follow. First, even though we
use the same framework of Incognito in building the lattice, we further improve
its performance by adopting a bitmap-based technique for checking whether a
node satisfies the k-anonymity and thus eliminating the expensive sort opera-
tions. Second, we can achieve further performance optimization by pruning some
steps in the Incognito, and this optimization is possible because our algorithm is
based on bitmap. Finally, we design and implement a bitmap package which fully
exploits the SIMD technique in order to accelerate the core bitmap operations.

2 Basic Deifinitions and Incognito

In this section, we provide basic terminologies necessary to understand the re-
mainder of this paper, and also introduce the idea, basic algorithmic framework
of Incognito and its problems.

2.1 Basic Definition

The following definitions are not developed by the authors, but they are cited
from the original Incognito paper [1]:

– Quasi-Identifier(QI) Attribute Set: A quasi-identifier attribute set Q is
a minimal set of attributes in table T that can be joined with external data
to re-identify each individual record [2].

– Frequency Set: Consider relation T and a QI attribute set Q with n at-
tributes. The frequency set of T with respect to Q is a mapping from each
unique combination of values 〈q0, q1, ., qn〉 of Q in T (a value group) to the
total number of tuples in T with these values of Q (its count).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

450 H.-H. Kang et al.

– K-Anonymity Property: Relation T is said to satisfy the k-anonymity
property (or k-anonymous) with respect to attribute set Q if every count in
the frequency set of T with respect to Q is greater than or equal to k.

– Generalization [5]: Generalization is a high dimension value of current
dimensions. For example, 5370* is a generalization of 53703 and 53706 in
table 2. A <D B denotes A is a generalization of B. Another example is
537** is generalization of both 5370* and 5371*. There are two types of gen-
eralization. One type is direct generalization. The relationship between 5370*
and 53703 is a direct generalization. The other type is indirect generaliza-
tion. The relationship between 537** and 53703 is a indirect generalization.
Figure 1 shows a generalization lattice for Zipcode [1].

Fig. 1. Single(1-subset) Generalization

Fig. 2. Generalization lattice for the 2-subset

Before closing this section, we would like to mention two related issues. The
first issue is how to represent a relational database for k-anonymity problem [1].
There are two types of relational representation. First, all generalization value
is in a row. This representation has a space problem In figure 3, first and second
row have a same generalization data (*, *, 5371*, 537**). This representation
reduces number of join because table has all data. But it has a space overhead
which is a duplicate data. Second representation is a star schema in figure 4.
We apply 3-Normalization into a first one. As a result of, it needs fewer spaces
than first representation. Second representation consists of one fact table and
several dimension tables. In this paper, we assume the normalized relational
representation.

The second issue is how to compute the frequency set in SQL. Using the
standard SQL, the frequency set can be obtained from T with respect to a
set of attributes Q by issuing a COUNT(*) query, with Q as the attribute list in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and Performance Evaluation 451

Fig. 3. Relational table representation Fig. 4. Star schema representation

the GROUP BY clause. For example, in order to check whether the Patients tale
in Table 2 is 2-anonymous with respect to 〈Sex, Zipcode〉, we issue a query
SELECT COUNT(*) FROM Patients GROUP BY Sex, Zipcode. Since the result
includes groups with count fewer than 2, Patients is not 2-anonymous with re-
spect to 〈Sex, Zipcode〉.

2.2 Incognito

Assume that you want to get k-anonymity of 1-subset (e.g. 〈Birth〉, 〈Sex〉,
〈Zipcode〉), 2-subset (〈Birth, Sex〉, 〈Birth, Zipcode〉, 〈Sex, Zipcode〉) and 3-
subset (〈Birth, Zipcode, Sex〉). When using binary search, you need to build all
full sized lattice. If the number of quasi-identifier attributes is large, the lattice
building cost will be overhead. If each column of QI has l, m, n generalization,
there are 12 nodes in a 3-subset lattice (figure 12-b). However, Incognito can
drastically reduce the cost of lattice building because it, instead of generating
all the candidate nodes of n-subset from the scratch, generate the candidate
nodes of n-subset from the nodes in (n-1)-subset which satisfy the k-anonymity.
Therefore, Incognito need not consider a large number of nodes which is safely
considered not to be k-anonymous (figure 7-a). For this, Incognito exploits the
following properties, and this intuition is the main contribution of the Incognito
paper [1].

– Generalization Property: Let T be a relation, and let P and Q be sets
of attributes in T such that DP <D DQ. If T is k-anonymous with respect
to P , then T is also k-anonymous with respect to Q.

– Rollup Property: If attribute set P is a generalization of Q, counts grouped
by P can be computed directly from the counts grouped by Q.

– Subset Property: Let T be a relation, and let Q be a set of attributes in T .
if T is k-anonymous with respect to Q, then T is k-anonymous with respect
to any set of attributes P such that ⊆ Q.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

452 H.-H. Kang et al.

Fig. 5. Check k-anonymity on the 1-subset

Fig. 6. Check k-anonymity on the 2-subset

Fig. 7. The 3-subset lattice. (a) The 3-attribute graph generated from 2-attribute
results. (b) The 3-attribute lattice that would have been explored without a priori
pruning. (e.g. binary search).

1. Assume that k=2. First, obtain the frequency sets on each QI and then
check whether each frequency set is greater than value k (figure 5). If every
frequency set is greater than k, then nodes which were can be used in 2-subset
lattices (figure 6).

2. Node 〈S0, Z0〉 is removed from a lattice because its frequency set is smaller
than k. Node 〈S1, Z0〉 is checked which is a direct generalization of 〈S0, Z0〉
(figure 6-a, 6-b).

3. The check for both 〈S1, Z1〉 and 〈S1, Z2〉 can be skipped because the node
〈S1, Z0〉 satisfies the k-anonymity. This is due to generalization property.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and Performance Evaluation 453

4. Check whether the nodes 〈S0, Z1〉 and 〈S0, Z2〉 satisfy the k-anonymity, and
we can 〈S0, Z1〉 from the lattice because it is not k-anonymous. Thus, we
can obtain the intermediate lattice as in figure 6-d.

5. Repeat the same test against the 〈B, Z〉 and 〈B, S〉 lattice respectively.
6. Finally, by combining the all remainders in 2-subset lattices, we can obtain

a 3-subset lattice as in figure 7-a.

We can publish at passed generalization level after testing all lattices. These
results guarantee k-anonymity.

When compared to binary search algorithm, Incognito has at least two ad-
vantages. First, as we noted before, while binary search algorithm needs fully
sized lattice to test on each subset, Incognito has a less build cost because it
only uses nodes which were passed from previous subset. Second, it supports all
k-anonymity from 1-subset to n-subset which can be attacked.

Nevertheless, Incognito itself has still a performance problem because it is
mainly based on sorting when checking k-anonymity of nodes in lattice. In or-
der to check whether a node satisfy the k-anonymity, it uses a SQL query in
the form of SELECT COUNT(*) FROM(temp) table GROUP BY column. In gen-
eral, many relational database systems implement group-by and count opera-
tion using the internal sorting [8]. If Incognito can reduce or avoid the sorting
operations, then it will be much faster than now. In particular, the size of data
used in k-anonymization is too large to fit in main memory, and thus the sort
operation will invoke external sort algorithm.

Someone has a question that all data can be loaded into memory, and then
sort it. Sometimes this question can be true. However, generally all data could
not be loaded into main memory at once. In addition to, we need a different
sorting level. Therefore, almost all of test needs a sort. However some nodes can
avoid sorts because of rollup property.

3 Bitmap-Based Incognito

In this section, we propose generalization and node generation using bitmap
and novel algorithm called bitmap-based; and then, we explain advantage of
bitmap-based Icognito algorithm.

3.1 Generalization and Node Generation Using Bitmap

Generalization is upper category of current value. Therefore, it contains at least
one sub-category. Assume that, there are some bitmaps and then do bitwise OR
operation on them. This result includes them. This is same as generalization. In
other words, bitwise OR operation is same as generalization. See table 2. Zipcode
of row 3, 4 and 5, 6 are 53703, 53706 respectively. Therefore bitmaps for row 3, 4
and 5, 6 are 001100 and 000011. Generalization of 53703 and 53706 is a 5370*.
Its bitmap is a 001111. Bitmap of 5370* can be obtained by using bitwise OR
into bitmap for 53703 and 53706. (001100 ‖ 000011 = 001111).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

454 H.-H. Kang et al.

Fig. 8. Generalization and making root nodes of lattices

In mathematic, intersection means that a value is included both A and B.
Similarly, generation of node also can be obtained by using bitwise AND op-
eration. See table 2. Person who is a male and 53715 (Zipcode) is in a row 1.
Bitmap for male is 101100 and 53715 is 110000. Do bitwise AND into bitmap
for male and 53715. Its result is same the bitmap for male and 53715 (〈S0, Z0〉).
That is, we can build n-subset node by bitwise-ANDing two (n-1)-subset.

3.2 Bitmap-Based Incognito Algorithm

We can get a new Incognito algorithm by applying theory described in section 3.1.
Bitmap-based Incognito algorihtm (figure 9) and example are like below.

1) Generate bitmaps on quasi-identifier attribute sets;
2) Check k-anonymity on the 1-subset;
3) LOOP UNTIL current subset <= subset user want DO
4) Create bitmap of root nodes;
5) LOOP UNTIL there is a test node in the lattice DO
6) Perform a test;

IF frequency set is larger than k THEN
7) Assign skip marks to direct/indirect generalization nodes;
8) Decide a test node;

ELSE
9) Decide a test node which is a direct generalization;

Fig. 9. Bitmap-based Incognito algorithm

1. Check k-anonymity on 1-subset by using bit-count. (figure 10) Every fre-
quency set is greater than k therefore they can be used making 2-subset
lattices. Make 2-subset lattices by using bitwise AND. (figure 11)

2. Check frequency set of 〈S0, Z0〉 by using bit-count. This node is removed
from a lattice because its frequency set is smaller than k. Next test node
〈S1, Z0〉 is generated by using bitwise OR.

3. 〈S1, Z1〉 and 〈S1, Z2〉 are can be skipped because 〈S1, Z0〉 satisfies the k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and Performance Evaluation 455

4. Does a test on 〈S0, Z1〉 and 〈S0, Z2〉. As a result of, 〈S0, Z1〉 is removed
from a lattice. 〈S0, Z1〉 and 〈S0, Z2〉 were generated by using bitwise OR
into bitmap of 〈S0, Z0〉 and 〈S0, Z1〉 respectively. We can obtain the lattice
like a figure 6-d.

5. Does a test on lattice 〈B, Z〉 and 〈B, S〉.
6. Make a 3-subset lattice by bitwise AND then test on it. (figure 7-a)

Fig. 10. Check a 1-subset by bit-count Fig. 11. Generation of a root node in a
lattice by using bitwise AND

3.3 Advantage of Bitmap Incognito

With the traditional Incognito, the k-anonymity test of each node requires a
sort operation over a large data set, although you may use a temp table for
exploiting the Rollup property. However, if we employ the bitmap representation
for the base data set, there are no or less physical reads because it is a small
size and can be compressed compactly. Another advantage is followings. We can
get generalization, generation of root nodes and confirmation of frequency can
be obtained by bitwise OR/AND and bit-count respectively. Therefore, it does
not need access to tables.

4 Optimization Techniques

In this section, we popose threee optimazation techniques in bitmap-based Incog-
nito algorithm. These are 1-level, reusing, and prunning optimization.

4.1 1-Level Optimization

One disadvantage of bitmap based Incognito is a space overhead. If you have
many QI, then you need more space for bitmaps. However, this overhead can be
solved by reusing 1-level (1-subset) bitmaps. While generating nodes, we can get
them by using bitwise ANDs into 1-level bitmaps. In figure 12, we only bitwise
AND into a2, g2 and, e1 to get 〈a2, g2, e1〉. However this optimization has a
problem which is a increment of number of bitwise AND.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

456 H.-H. Kang et al.

Fig. 12. 1-level optimization Fig. 13. Pruning optimization

4.2 Reusing Optimization

The 1-level optimization is good at space requirement, but it increases the num-
ber of the bitwise AND operations, resulting in performance degradation. We can
solve this problem by reusing child bitmaps which are temporarily stored in the
previous step. For example, assume that you want to get a bitmap of 〈a2, g2, e1〉.
If you use the 1-level optimization, you must perform two bitwise AND op-
erations for 〈a2 ∧ g2 ∧ e1〉 However, if you temporarily store child bitmaps of
〈a2, g2〉 and 〈g2, e1〉, you can obtain the bitmap of 〈a2, g2, e1〉 by just doing
〈a2, e1〉 ∧ 〈g2, e1〉 (one bitwise AND). Also, this optimization can be used for
generalization. In following case, this optimization is good for performance than
1-Level optimization. There are many columns in QI attribute sets or value k is
very small. In this situation, it needs more tests. That is, it uses more bitwise
operations.

4.3 Pruning Optimization

If we use the traditional Incognito, it is impossible to decide whether the fre-
quency set is greater than k when the sort operation completes. With the bitmap
based Incognito, however, we know the exact value of a frequency set after bitwise
AND/OR operation. After bitwise AND/OR, if the element value of frequency
set is less than value k, we know that this node is not to be k-anonymous, and
thus we can skip the next steps. For example, we want to get 〈S0, Z0〉. Do bitwise
AND between male and 53703 and also do it between male and 53706 respec-
tively. We can know that 〈male, 53703〉 is greater than k but 〈male, 53706〉 is not.
As a result of, we know that this node 〈S0, Z0〉 does not support k-anonymity.
That is, following bitwise ANDs(〈male, 53715〉, 〈female, 53703〉, ... etc) are can
be skipped (dotted arrows) (figure 13).

5 Performance Evaluation

Our experiment data sets are small and big census.dat [9]. The size of small and
big data sets are about 5MB and 60MB. Small and big experiment data set have
QI attribute set which are consist of four columns. These columns are generalized

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation of Bitmap Based Incognito and Performance Evaluation 457

into 3, 3, 2 and 4 levels respectively. In addition, we build composite index on
these columns in the fact table because sorts can be avoided by using index data
which is in leaf blocks. These index size are about 2 and 16MB. Ratios are about
40% and 27% compare to their base tables. Our implementation environments
are Pentium 4 2.0GHz, 1GB memory, 120GB(7200 rpm), Oracle 10g Release 1
and Intel C++ Compiler 9.0.

Fig. 14. Performance Evaluation (x and y axis mean value k and time(sec) respectively)

See above results. bitmap based Incognito much faster than traditional one
although it includes bitmap creation time. There are many reasons. First bitmaps
are much smaller than fact(real) table or index. The size of bitmaps are about
200KB and 2MB respectively. It is much smaller than fact(real data) table or
index. Therefore, all operations(generalization and generation of nodes) can be
done in main memory. Also, all operations do not need any access into tables.
In addition, bitwise operations are very fast than other operations.

Almost all of sort need full table scan although there is B*tree index which
is Oracle served. Because each node need different sorts(GROUP BY). If index
includes many columns, it can be bigger than base table.

See above results. If k is a low value, time is increased because there are lots
of nodes to be tested which are greater than k. For this reason,lattices have
more nodes than lattices with high k. It means lattices with low k need more
time to finish test. We proposed three types of optimizations. Normally, reusing
optimization outperforms among of them because it reduce number of bitwise
operations. If user use 1-Level optimization in 4-subset, there are three numbers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

458 H.-H. Kang et al.

bitwise operations at each test phase. When user use the reusing optimization,
there is just one number bitwise operation. However, n-1 optimization needs
more spaces to maintain bitmaps than others.

6 Conclusion

When compared to traditional k-anonymity algorithms, including binary search,
Incognito is very innovative in that it reduces the number of nodes to be
considered in building a lattice for the k-anonymity check. However, it is still
inefficient in checking the k-anonymity for each node because it is based on ex-
pensive sort operations over a large volume of data. In this paper, we proposed
the bitmap based Incognito, which is based on bitwise AND/OR and count op-
erations, rather than expensive sorts. In addition, our bitmap-based Incognito
comes with some optimizations techniques for pruning some nodes for the k-
anonymity check. We show that our approach can improve the performance of
the traditional Incognito by an order of magnitude.

References

1. K. LeFevre, D. J. DeWitt and R. Ramakrishnan: “Incognito: efficient full-domain
k-anonymity” In Proceedings of the ACM SIGMOD international conference on
Management of data, Baltimore, Maryland (2005) 49–60

2. L. Sweeney: “K-anonymity: A model for protecting privacy”, International Journal
on Uncertainty, Fuzziness, and Knowledge-based Systems; 10(5) (2002) 557–570

3. P. Samarati and L. Sweeney: “Proecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression”, Technical
Report SRI-CSL-98-04, SRI Computer Science Laboratory (1998)

4. J. Zhou and K. A. Ross: “Implementing database operations using SIMD instruc-
tions”, In Proceedings of the ACM SIGMOD international conference on Manage-
ment of data, Madison, Wisconsin (2002) 145–156

5. P. Samarati: “Protecting respondants’ identities in microdata release”, IEEE Trans-
actions on Knowledge and Data Engineering 13(6) (2001) 1010–1027

6. R. Agrawal and R. Srikant: “Fast Algorithms for Mining Association Rules in Large
Databases”, In Proceedings of Proceedings of the 32nd International Conference on
Very Large Data Bases, Santiago de Chile, Chile (1994) 487–499

7. Roberto J. Bayardo , Rakesh Agrawal, “Data Privacy through Optimal k-
Anonymization”, Proceedings of the 21st International Conference on Data En-
gineering (2005) 217–228

8. Jonathan Lewis, Cost-Based Oracle Fundamentals, Apress (2005)
9. Test Data from http://vldb.skku.ac.kr/mbar/files/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints

for Database Maintenance

Luciano Caroprese, Sergio Greco, and Cristian Molinaro

DEIS, Univ. della Calabria, 87030 Rende, Italy
{lcaroprese, greco, cmolinaro}@deis.unical.it

Abstract. The paper presents a logic framework wherein constraints
and preferences are used for database maintenance and querying. Our
proposal is based on the use of a special type of integrity constraints
(called Prioritized Active Integrity Constraints (PAICs)), whose body
defines a constraint on data, whereas the head contains a set of partially
ordered actions, which should be performed, if the body constraint is
not satisfied, to make consistent the database. Therefore, a preference
relation among repairs is introduced on the base of the (partially ordered)
actions specified in the head of PAICs. On the base of the preference
relation a set of preferred repairs is identified and preferred answers are
derived from the database instances which have been made consistent
by means of preferred repairs. The paper shows that databases with
universal prioritized constraints admit (preferred) repairs and consistent
answers if the set of constraints is satisfiable. The paper also shows how
PAICs can be rewritten into disjunctive Datalog programs so that repairs
can be obtained from the computation of stable models.

1 Introduction

Integrity constraints are generally used to define semantic constraints on data
(functional dependencies, inclusion dependencies, exclusion dependencies, etc.)
and their enforcement ensures a semantically correct state of a database [1]. In
many situations the presence of inconsistent data cannot be avoided. A typical
situation arise when two or more consistent data sources are integrated into a
single database [18].

The presence of inconsistent data can be managed by repairing the database,
i.e. by providing consistent databases, obtained by applying a minimal set of up-
date operations, or by consistently answering queries posed over an inconsistent
database.

The following example shows a situation where inconsistencies occur.

Example 1. Consider the database schema consisting of the relation schemas
emp(Name, Dept) and dept(Name) with a referential integrity constraint stat-
ing that a department appearing in the relation emp must occur in the relation
dept too. This constraint can be defined through the first order formula:

∀(E, D) [emp(E, D) ⊃ dept(D)]

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 459–471, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

460 L. Caroprese, S. Greco, and C. Molinaro

Consider now the inconsistent instance DB = { emp(john,cs), emp(john,
deis), dept(deis) }. A consistent (repaired) database can be obtained by applying
a minimal set of update operations (insertions or deletions); specifically, there
exists two possible repairs: R1 obtained by inserting the tuple dept(cs) and R2

obtained by deleting the tuple emp(john,cs). The answer to the query looking
for the name of departments consists of two sets containing the certain answer
deis and the uncertain answer cs. �

The motivation of this work stems from the observation that as an inconsistent
database can be repaired in different ways, it is natural to express preferences
among the possible actions which make the database consistent.

Example 2. Consider the database of Example 1. It can be repaired either by
inserting the missing department tuple dept(cs) or by deleting the employee
tuple emp(john, cs). In this scenario, suppose that the insertion of a missing
department is preferable to the deletion of an existing employee. This preference
can be expressed by means of the following prioritized active integrity constraint:

∀(E, D) [emp(E, D), not dept(D) ⊃ +dept(D) � −emp(E, D)]

As R1 repairs the database by inserting the tuple dept(cs) whereas R2 deletes
the tuple emp(john,cs), R1 is preferable to R2. Therefore we have a unique
preferred repair and the certain answer to the query of Example 1 contains both
department deis and cs. �

The novelty of the presented approach consists in the formalization of Prioritized
Active Integrity Constraints (PAICs), a flexible and easy mechanism for spec-
ifying the “preferred” updates, i.e. the actions that should be performed if an
integrity constraint is not satisfied. More specifically, prioritized active integrity
constraints are constraints which allow us to define the actions to be performed if
a constraint is violated and also to introduce a partial order on the actions. The
paper shows that databases with universally quantified prioritized constraints
admit preferred repairs and (preferred) consistent answers if the set of constraints
is satisfiable. The paper also presents how the computation of repairs and con-
sistent answers can be done by rewriting constraints into a disjunctive Datalog
program and computing the stable models of the target program; every repair
can be obtained from a stable model of the Datalog program and vice versa.

Related work. In the last few years, there have been several proposals consid-
ering the computation of repairs and queries over inconsistent databases [2,3,16,
17, 22]. Logic-programming-based approaches have been proposed in [16, 17, 4].

The increased interest in preferences in logic programs is reflected by an ex-
tensive number of proposals and systems for preference handling. Most of the ap-
proaches propose an extension of Gelfond and Lifschitz’s extended logic program-
ming by adding preference information [10, 12, 20, 23]. The literature distinguish
static and dynamic preferences. Static preferences are fixed at the time a theory is
specified, i.e. they are “external” to the logic program [20], whereas dynamic pref-
erences appear within the logic program and are determined “on the fly” [5, 10].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 461

The most common form of preference consists in specifying a strict partial order
on rules [10,12,20,23], whereas more sophisticated forms of preferences also allow
us to specify priorities between conjunctive (disjunctive) knowledge with precon-
ditions [5, 20]. In [9] the framework of consistent query answer [2] is extended by
allowing preferences among tuples to be expressed. Several families of preferred
repairs (i.e. subsets of repairs selected with priorities) have been also investigated.

Organization. The paper is organized as follows: Section 2 gives basic defini-
tions on logic languages; Section 3 presents integrity constraints and recalls the
formal definition of repair and consistent answer; Section 4 presents prioritized
active integrity constraints; finally, in Section 5 conclusions are drawn.

2 Background

Familiarity with disjunctive logic programs and disjunctive deductive databases
is assumed [11, 14]. A term is either a constant or a variable. An atom is of
the form p(t1, . . . , th), where p is a predicate symbol of arity h and t1, . . . , th
are terms. A literal is either an atom A or its negation not A. A (disjunctive
Datalog) rule r is a clause of the form1:

p∨
i=1

Ai ←
m∧

j=1

Bj ,
n∧

j=m+1

not Bj , ϕ p + n > 0

where A1, . . . , Ap, B1, . . . , Bn are atoms, while ϕ is a conjunction of built-in
atoms of the form u θ v where u and v are terms and θ is a comparison predi-
cate. The disjunction

∨p
i=1 Ai is the head of r (denoted by Head(r)), while the

conjunction
∧m

j=1 Bj ,
∧n

j=m+1 not Bj , ϕ is the body of r (denoted by Body(r)).
It is assumed that each rule is safe, i.e. a variable appearing in the head or
in a negative literal also appears in a positive body literal. The expression
H ← B1∨ . . .∨Bn can be used as shorthand for the rules H ← B1, . . . , H ← Bn.

A (disjunctive Datalog) program is a finite set of rules. A not -free (resp. ∨-
free) program is called positive (resp. normal). The Herbrand Universe UP of
a program P is the set of all constants appearing in P , and its Herbrand Base
BP is the set of all ground atoms constructed from the predicates appearing
in P and the constants from UP . A term (resp. an atom, a literal, a rule or a
program) is ground if no variable occur in it. A rule r′ is a ground instance of a
rule r if r′ is obtained from r by replacing every variable in r with some constant
in UP ; ground(P) denotes the set of all ground instances of the rules in P . An
interpretation M for a disjunctive program P is any subset of BP ; M is a model
of P if it satisfies all rules in ground(P). The (model-theoretic) semantics for
positive P assigns to P the set of its minimal modelsMM(P), where a model M
for P is minimal if no proper subset of M is a model for P . For any interpretation
1 The order of literals in a conjunction or in a disjunction is immaterial. A literal

can appear in a conjunction or in a disjunction at most once. The meaning of the
symbols ‘∧’ and ‘,’ is the same.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

462 L. Caroprese, S. Greco, and C. Molinaro

I, PI is the ground positive program derived from ground(P) by 1) removing
all rules that contain a negative literal not a in the body and a ∈ I, and 2)
removing all negative literals from the remaining rules. An interpretation M is
a (disjunctive) stable model of P if and only if M ∈ MM(PM). For general P ,
the stable model semantics assigns to P the set SM(P) of its stable models. It
is well known that stable models are minimal models (i.e. SM(P) ⊆ MM(P))
and that for negation free programs minimal and stable model semantics coincide
(i.e. SM(P) =MM(P)).

2.1 Queries

Predicate symbols are partitioned into two distinct sets: base predicates and
derived predicates. Base predicates correspond to database relations defined over
a given domain and they do not appear in the head of any rule whereas derived
predicates are defined by means of rules. Given a set of ground atoms DB, a
predicate symbol r and a program P , DB[r] denotes the set of r-tuples in DB.
The semantics of P ∪DB is given by the set of its stable models by considering
either their union (possible semantics or brave reasoning) or their intersection
(certain semantics or cautious reasoning). A query Q is a pair (g,P) where g
is a predicate symbol, called the query goal, and P is a program. The answer
to a query Q = (g,P) over a database DB, under the possible (resp. certain)
semantics is given by DB′[g] where DB′ =

⋃
M∈SM(P∪DB)M (resp. DB′ =⋂

M∈SM(P∪DB)M).
A (relational) query can be expressed by means of ‘safe’ non recursive Datalog,

even though alternative equivalent languages such as relational algebra could be
used as well [1, 21]. In the following queries are assumed to be expressed by
means of stratified Datalog.

3 Databases and Integrity Constraints

Database schemata contain knowledge on the structure of data, i.e. they give
constraints on the form the data must have. The relationships among data are
usually defined by constraints such as functional dependencies, inclusion depen-
dencies and others. Integrity constraints, which express information that is not
directly derivable from the database, are introduced to prevent the insertion or
deletion of data which could produce incorrect states. They are used to restrict
the state a database can take and provide information on the relationships among
data. Generally, a database DB has an associated schema 〈DS, IC〉 defining the
intentional properties of DB: DS denotes the structure of the relations, while IC
denotes the set of integrity constraints expressing semantic information over data.

3.1 Integrity Constraints

Definition 1. An integrity constraint is a formula of the first order predicate
calculus of the form:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

(∃Zj)bj(Xj , Zj)]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 463

where ϕ(X0) denotes a conjunction of built-in atoms, X =
⋃m

j=1 Xj, Xi ⊆ X
for i ∈ [0 . . n] and all existentially quantified variables appear once. �

Constraints will often be written in a different format by moving literals from the
head to the body and vice versa. For instance, by rewriting the above constraint
as denial the following one is obtained:

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

(∃Zj)bj(Xj , Zj), ϕ(X0) ⊃].

Constraints without existential variables are called full or universally quantified.
The reason for considering constraints of the above form is that we want to
consider range restricted formulae, i.e. constraints whose variables either take
values from finite domains only or the exact knowledge of their values is not
relevant [21]. In the following the set of integrity constraints IC is assumed to be
satisfiable, that is there exists a database instanceDB satisfying IC. For instance,
by considering constraints of the above form with m > 0, the constraints are
satisfied by the empty database.

3.2 Repairing and Querying Inconsistent Databases

An update atom is of the form +a(X) or −a(X), where a(X) is a standard
atom. A ground atom +a(t) states that a(t) will be inserted into the database,
whereas a ground atom −a(t) states that a(t) will be deleted from the database.
Given an update atom +a(X) (resp. −a(X)), Comp(+a(X)) = not a(X) (resp.
Comp(−a(X) = a(X)) denotes the complementary literal of the update atom
+a(X) (resp. −a(X)). Given a set U of ground update atoms, the following
sets are defined: U+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U} and
Comp(U) = {Comp(±a(t)) | ± a(t) ∈ U}. U is said to be consistent if it does
not contain two update atom +a(t) and −a(t) (i.e. if U+ ∩ U− = ∅). Given
a database DB and a consistent set of update atoms U , U(DB) denotes the
updated database DB ∪ U+ − U−.

Definition 2. Given a databaseDB and a set of integrity constraints IC, a repair
for 〈DB, IC〉 is a consistent set of update atomsR such that 1)R(DB) |= IC and
2) there is no consistent set of update atoms U ⊂ R such that U(DB) |= IC. �

Repaired databases are consistent databases, derived from the source database
by means of a minimal set of update operations. Given a database DB and a set
of integrity constraints IC, the set of all possible repairs for 〈DB, IC〉 is denoted
as R(DB, IC).
Definition 3. Given a database DB and a set of integrity constraints IC, an
atom A is true (resp. false) with respect to IC if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined. �

Thus, true atoms appear in all repaired databases, whereas undefined atoms
appear in a non empty proper subset of repaired databases. Given a database

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

464 L. Caroprese, S. Greco, and C. Molinaro

DB and a set of integrity constraints IC, the application of IC to DB, denoted
by IC(DB), defines three distinct sets of atoms: the set of true atoms IC(DB)+,
the set of undefined atoms IC(DB)u and the set of false atoms IC(DB)−.

Definition 4. Given a databaseDB, a set of integrity constraints IC and a query
Q = (g,P), the consistent answer of the query Q on the database DB, de-
noted as Q(DB, IC), gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)− and
Q(DB, IC)u. These contain, respectively, the sets of g-tuples which are true (i.e.
belonging to

⋂
R∈R(DB,IC) Q(R(DB))), false (i.e. not belonging to

⋃
R∈R(DB,IC)

Q(R(DB))) and undefined (i.e. set of tuples which are neither true nor false). �

Next it is shown that repairs can be produced by logic programs derived from
rules defining integrity constraints. Anyhow, as the presence of existentially
quantified variables could produce a possibly infinite number of repairs, only
restricted constraints from which we derive safe logic programs are allowed [21].
In more details it is allowed to express only constraints producing domain inde-
pendent repairs, i.e. repairs whose atoms are constructed by only using database
values [21].

4 Prioritized Active Integrity Constraints

In this section an extension of integrity constraints, which allows us to specify for
each constraint the actions to be performed to satisfy it and preferences between
them, is presented. The actions are defined by means of insertions and deletions.

Definition 5. A (universally quantified) Active Integrity Constraint (AIC) is
of the form:

(∀X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p∨

i=1

±ai(Yi)] (1)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and Yi ⊆ X for i ∈ [1 . . p]. �

In the above definition the conditions X =
⋃m

j=1 Xj, Xi ⊆ X for i ∈ [0 . . n] and
Yi ⊆ X for i ∈ [1 . . p] guarantee that variables are range restricted.

Active integrity constraints contain in the head the actions to be performed
if the constraint defined in the body is not satisfied.

Given an AIC r of the form (1) St(r) denotes the standard constraint:

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj (Xj), ϕ(X0) ⊃]

derived from r by removing the head update atoms. Moreover, for a set of ac-
tive integrity constraints IC, St(IC) denotes the corresponding set of standard
integrity constraints, i.e. St(IC) = {St(r) | r ∈ IC}.
Definition 6. A (universally quantified) Prioritized Active Integrity Constraint
(PAIC) is of the form:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 465

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) ⊃
p1∨

i=1

±a1
i (Y

1
i) � · · · �

pk∨
i=1

±ak
i (Y k

i)] (2)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0 . . n] and Y j
i ⊆ X for j ∈ [1 . .k] and

i ∈ [1 . . pj]. �

Prioritized active integrity constraints contain in the head the actions to be
performed if the constraint defined in the body is not satisfied and express
preferences among them.

Intuitively, the meaning of
∨p1

i=1±a1
i (Y

1
i) � ∨p2

i=1±a2
i (Y

2
i) is that the actions

±a1
1(Y

1
1), · · · ,±a1

p1
(Y 1

p1
) are preferable to the actions ±a2

1(Y
2
1), · · · ,±a2

p2
(Y 2

p2
).

Given a (P)AIC r = (∀X)[Φ ⊃ Ψ], Φ is called body of r (denoted by Body(r)),
whereas Ψ is called head of r (denoted by Head(r)).

Definition 7. A (prioritized) active integrity constraint is said to be in canon-
ical form if for each update literal ±a(X) appearing in the head, a literal
Comp(±a(X)) also appears in the body. A set of (prioritized) active integrity
constraints is said to be canonical if all constraints are in canonical form. �

In the rest of the paper, (universally quantified) prioritized active integrity
constraints in canonical form are considered. The motivation for restricting
our attention to canonical AICs is due to the fact that in [6] it has been
shown that for every ground AIC r, every head update atom ±A such that
Comp(±A) ∈ Body(r) is useless and can be deleted.

Semantics

In the following firstly the definition concerning the truth value of ground atoms
and ground update atoms with respect to a database DB and a consistent set
of update atoms U is given, then the formal definition of founded and preferred
repair is provided.

Definition 8. Given a database DB and a consistent set of update atoms U ,
the truth value of
– a positive ground literal a(t) is true w.r.t. (DB,U) if a(t) ∈ U(DB),
– a negative ground literal not a(t) is true w.r.t. (DB,U) if a(t) ∈ U(DB),
– a ground update atom ±a(t) is true w.r.t. (DB,U) if ±a(t) ∈ U ,
– built-in atoms, conjunctions and disjunctions of literals is given in the stan-

dard way,
– a ground AIC φ ⊃ ψ is true w.r.t. (DB,U) if φ is false w.r.t. (DB,U). �

Definition 9. Let DB be a database, IC a set of AICs and R a repair for
〈DB,IC〉.
– A ground update atom ±a(t) ∈ R is founded if there exists r ∈ ground(IC)

s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB,R−{±a(t)}).
We say that ±a(t) is supported by r w.r.t. R.

– A ground rule r ∈ ground(IC) is applied w.r.t. (DB,R) if there exists
±a(t) ∈ R s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (DB,R−
{±a(t)}), We say that r supports ±a(t) w.r.t. R.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

466 L. Caroprese, S. Greco, and C. Molinaro

– R is founded if all its atoms are founded.
– R is unfounded if it is not founded. �

The set of founded update atoms in R with respect to 〈DB, IC〉 is denoted as
Founded(R,DB, IC), whereas Unfounded(R,DB, IC) = R− Founded(R,DB,
IC). Thus, update atoms of founded repairs are inferable by means of AICs. Given
a database DB and a set of AICs IC, FR(DB, IC) (resp. R(DB, IC)) denotes
the set of founded repairs (resp. all the repairs) for 〈DB, IC〉. Clearly, the set of
founded repairs is contained in the set of repairs (FR(DB, IC) ⊆ R(DB, St(IC))).
Example 3. Consider the following set of AICs IC:
∀(E, P, D)[mgr(E,P), prj(P, D), not emp(E,D) ⊃ +emp(E,D)]

∀(E, D1, D2)[emp(E,D1), emp(E,D2), D1 �= D2 ⊃ −emp(E,D1) ∨ −emp(E,D2)]

The first constraint states that every manager E of a project P carried out by a
department D must be an employee of D, whereas the second one says that every
employee must be in only one department. Consider now the database DB =
{ mgr(e1, p1), prj(p1, d1), emp(e1, d2)}. There are three repairs for DB: R1 =
{−mgr(e1, p1)},R2 = {−prj(p1, d1)} and R3 = {+emp(e1, d1), −emp(e1, d2)}.
R3 is the only founded repair as only the update atoms +emp(e1, d1) and
−emp(e1, d2) are derivable from IC. �

Definition 10. Let c be a PAIC and IC a set of PAICs, then
– AC(c) denotes the active constraint derived from c by replacing symbol �

with ∨. Moreover, AC(IC) = {AC(c) | c ∈ IC}.
– SC(c) denotes the standard constraint derived from c by deleting the update

atoms appearing in the head. Moreover, SC(IC) = {SC(c) | c ∈ IC} (i.e.
SC(IC) = St(AC(IC))).

– CC(c) denotes the active constraint derived from SC(c) by inserting an up-
date atom ±a(X) in the head if Comp(±a(X)) appears in the body of c.
Moreover, CC(IC) = {CC(c) | c ∈ IC}. �

Example 4. Consider the following set of prioritized active integrity constraints
IC:

c, not a, not b ⊃ +a � +b � −c
c, not d ⊃ −c

The following constraints can be derived:

– AC(IC) consists of the active constraints
c, not a, not b ⊃ +a ∨+b ∨ −c
c, not d ⊃ −c

– SC(IC) consists of the standard constraints
c, not a, not b ⊃
c, not d ⊃

– CC(IC) consists of the active constraints
c, not a, not b ⊃ +a ∨+b ∨−c
c, not d ⊃ −c ∨+d �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 467

Given a database DB and a set of PAICs IC, the set of repairs (resp. founded
repairs) for 〈DB, IC〉 is denoted by R(DB, IC) (resp. FR(DB, IC)).
Fact 1. Given a database DB and a a set of PAICs IC
– R(DB, IC) = R(DB,AC(IC)) = R(DB,SC(IC))
– FR(DB, IC) = FR(DB,AC(IC)) �

The above fact states that the repairs for a database DB and a set of PAICs IC
can be derived by considering the corresponding active (resp. standard) integrity
constraints AC(IC) (resp. SC(IC)), whereas founded repairs can be derived by
considering active constraints AC(IC), obtained by replacing symbol � with ∨
in the head of prioritized active integrity constraints.

Definition 11 (Preferences between repairs). Let DB be a database and
IC a set of PAICs. For any repairs R1, R2 and R3 in R(DB, IC), we say that:

– R1 � R1.
– R1 � R2 if:

1. R1 ∈ FR(DB, IC) and R2 ∈ FR(DB, IC), or
2. (a) R1, R2 ∈ FR(DB, IC) or R1,R2 ∈ FR(DB, IC) and

(b) there are two update atoms ±a(t) ∈ R1 and ±b(u) ∈ R2 and a
(ground) prioritized active integrity constraint c such that
(i) head(c) = ... ± a(t) ... � ... ± b(u) ... and
(ii) c supports ±a(t) w.r.t. R1 and ±b(u) w.r.t. R2.

– If R1 � R2 and R2 � R3, then R1 � R3.

If R1 � R2, then R1 is preferable to R2. Moreover, if R1 � R2 and R2 � R1,
then R1 � R2. A repair R is a preferred repair if there is no repair R′ such that
R′ � R. �

The set of preferred repairs for a database DB and a set of prioritized active
integrity constraints IC is denoted by PR(DB, IC).
Example 5. Consider the database DB = {c} and the set of PAICs IC of Exam-
ple 4. R1 = {−c}, R2 = {+a, +d} and R3 = {+b, +d} are the three repairs for
〈DB, IC〉; their relation is: R1 � R2 � R3 and the preferred repair is R1. �

The next theorem states the relation between preferred, founded and general
repairs.

Theorem 2. Let DB be a database and IC a set of PAICs, then

PR(DB, IC)
{⊆ FR(DB, IC) if FR(DB, IC) = ∅
⊆ R(DB, IC) if FR(DB, IC) = ∅ �

Given a database DB, a set of prioritized integrity constraints IC and a query
Q = (g,P), the preferred consistent answer of the query Q on the database DB,
denoted as Q(DB, IC), gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)−
and Q(DB, IC)u. These contain, respectively, the sets of g-tuples which are true
(i.e. belonging to

⋂
R∈PR(DB,IC) Q(R(DB))), false (i.e. not belonging to⋃

R∈PR(DB,IC) Q(R(DB))) and undefined (i.e. set of tuples which are neither
true nor false). It is worth noting that the preferred consistent answer of a query
considers only the preferred repairs rather than all the repairs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

468 L. Caroprese, S. Greco, and C. Molinaro

Desirable properties. We now introduce desirable properties on the set of
preferred repairs. Properties which should be satisfied by families of preferred
repairs have been introduced in [9]. Here we adapt properties defined in [9],
where preferences are static, to our framework.

Given a database DB and a set of PAICs IC, then the following properties
can be identified:

– Non-emptiness: 〈DB, IC〉 always admits some preferred repairs.
– Monotonicity: adding preference information can only narrow the set of

preferred repairs.
– Non-discrimination: if no preference information is expressed, any repair

is a preferred repair.

Given two sets of PAICs IC1 and IC2, we say that IC1 � IC2 if IC1 is derived
from IC2 by replacing one or more � symbols with the ∨ symbol.

Definition 12. Given a set of PAICs IC and two relation symbols a and b, we
say that ±a (inserting into or deleting from a) is preferable to ±b (inserting into
or deleting from b) w.r.t. IC and we write ±a�IC ±b, if:

1. there is a PAIC c ∈ IC such that Head(c) = ... ± a(X) ... � ... ± b(Y) ..., or
2. there exists ±c such that ±a�IC ±c and ±c�IC ±b. �

Observe that the above condition could be relaxed by considering ground atoms
instead of predicate symbols.

The following theorem shows some properties of PAICs.

Theorem 3. Let DB be a database and IC a set of PAICs.

1. Non-emptiness: PR(DB, IC) = ∅ if IC is satisfiable.
2. Monotonicity: IC′ � IC ⇒ PR(DB, IC) ⊆ PR(DB, IC′) if�IC is acyclic,

i.e. there does not exist an update atom ±a such that ±a�IC ±a. 2

3. Non-discrimination: if IC = CC(IC) then PR(DB, IC) = R(DB, IC). �

4.1 Computing Repairs Through Datalog Programs

A general approach for the computation of repairs and consistent answers in
the presence of databases with universal integrity constraints has been pro-
posed in [16]. The technique is based on the generation of a disjunctive pro-
gram DP(IC) derived from the set of integrity constraints IC. The repairs for a
database DB can be generated from the stable models of DP(IC)∪DB. We now
present an extension of this technique for prioritized active integrity constraints
in canonical form.

Definition 13. Given a set of prioritized active integrity constraints IC, then
DP(IC) is the disjunctive datalog program derived from IC (or equivalently
from SC(IC)) by replacing a PAIC of the form (2) with a disjunctive rule of the
form:
2 Note that also the approach proposed in [9] satisfies monotonicity property under

the assumption that the priority relation is acyclic.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 469

m∨
j=1

−bj(Xj)∨
n∨

j=m+1

+bj(Xj) ←
m∧

j=1

(bj(Xj) ∨ +bj(Xj)),

n∧
j=m+1

(not bj(Xj) ∨ −bj(Xj)), ϕ(X0)

and by adding a constraint
← −b(X), +b(X)

for each predicate symbol b. �

Example 6. Consider the set of integrity constraints IC of Example 4. The fol-
lowing set of rules DP(IC) can be derived:

+a ∨+b ∨ −c← (c ∨+c), (not a ∨ −a), (not b ∨ −b)
−c ∨+d ← (c ∨+c), (not d ∨ −d)

← +a,−a
← +b,−b
← +c,−c
← +d,−d �

It is worth noting that, in considering atoms of the form +a(t), −a(t) and a(t),
the symbols +a, −a and a are assumed to be different predicate symbols.

Definition 14. Given an interpretation M , we denote as UpdateAtoms(M)
the set of update atoms in M . Given a set S of interpretations, we define
UpdateAtoms(S) = {UpdateAtoms(M)|M ∈ S}. �

Theorem 4. Given a database DB and a set of canonical prioritized active
integrity constraints IC, then:

– (Soundness) for every stable model M of DP(IC) ∪ DB, UpdateAtoms(M)
is a repair for 〈DB, IC〉;

– (Completeness) for every database repair S for 〈DB, IC〉 there exists a stable
model M of DP(IC) ∪ DB such that S = UpdateAtoms(M). �

Example 7. Consider the database DB = {c} and the set of PAICs IC of Exam-
ple 4. The stable models of DP(IC) ∪ DB are M1 = {c,−c}, M2 = {c, +a, +d}
and M3 = {c, +b, +d}. Each stable model corresponds to a repair for 〈DB, IC〉
and vice versa. �

Definition 15. Given a set of prioritized active integrity constraint IC, then
FP(IC) is the datalog program obtained as follows:

– for each update atom ±a(X) defined in DP(IC), the following rule is
introduced:

← ±a(X), not founded±a(X)
– if ±a(X) appears in the head of a constraint c ∈ AC(IC), that is c is of the

form:

(∀X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), Comp(±a(X)), ϕ(X0) ⊃
p∨

i=1

±ai(Yi) ∨ ±a(X)]

then the following rule is introduced:

founded±a(X)←Comp(±a(X)),
∧m

j=1((bj(Xj) ∧ not− bj(Xj)) ∨+bj(Xj)),∧n
j=m+1(not bj(Xj) ∧ not + bj(Xj)) ∨ −bj(Xj)), ϕ(X0)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

470 L. Caroprese, S. Greco, and C. Molinaro

Given a set of prioritized active integrity constraint IC, then FDP(IC) =
DP(IC) ∪ FP(IC). �

Example 8. Consider the set of integrity constraints IC of Example 4. The
following set of rules FP(IC) can be derived:

← +a, not founded+a
← +b, not founded+b
← −c, not founded−c
← +d, not founded+d

founded+a← not a, ((c ∧ not − c) ∨+c), ((not b ∧ not + b) ∨ −b)
founded+b ← not b, ((c ∧ not − c) ∨+c), ((not a ∧ not + a) ∨−a)
founded−c ← c, ((not b ∧ not + b) ∨ −b), ((not a ∧ not + a) ∨ −a)
founded−c ← c, ((not d ∧ not + d) ∨ −d) �

Theorem 5. Given a database DB and a set of canonical prioritized active
integrity constraints IC, then:
– (Soundness) for every stable model M of FDP(IC)∪DB, UpdateAtoms(M)

is a founded repair for 〈DB, IC〉;
– (Completeness) for every founded repair S for 〈DB, IC〉 there exists a stable

model M of FDP(IC) ∪ DB such that S = UpdateAtoms(M). �

Example 9. Consider the database DB = {c} and the set of PAICs IC of Exam-
ple 4. The unique stable model of FDP(IC) ∪ DB is M = {c,−c} whose update
atoms correspond to the unique founded repair for 〈DB, IC〉. �

Observe that given a set of PAICs IC and a database DB, then DP(IC) ∪ DB
gives all the possible repairs for 〈DB, IC〉, whereas DP(IC) ∪ FP(IC) ∪ DB
gives only the founded repairs as the constraints in FP(IC) discard every stable
model of DP(IC) ∪ DB which does not correspond to a founded repair.

Theorem 6. Let DB be a database and IC a set of prioritized active integrity
constraints, then

PR(DB,IC)

{
⊆UpdateAtoms(SM(FDP(IC) ∪ DB)) if SM(FDP(IC) ∪ DB) �=∅

⊆UpdateAtoms(SM(DP(IC) ∪ DB)) if SM(FDP(IC) ∪ DB)=∅ �

5 Conclusions

This paper has introduced prioritized active integrity constraints, a simple and
powerful form of active rules with declarative semantics, well suited for com-
puting (preferred) database repairs and consistent answers. A prioritized active
integrity constraint defines an integrity constraint, the actions which should be
performed if the constraint is not satisfied and preferences among these actions.
These preferences determine a partial order among feasible repairs, so that pre-
ferred repairs can be selected among all the possible repairs. It has been shown
that prioritized active integrity constraints can be rewritten into disjunctive Dat-
alog programs and that repairs can be computed through the computation of
stable models.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Prioritized Active Integrity Constraints for Database Maintenance 471

References

1. Abiteboul S., Hull R., Vianu V. Foundations of Databases. Addison-Wesley, 1994.
2. Arenas, M., Bertossi, L., Chomicki, J., Consistent query Answers in inconsistent

databases. PODS, pp. 68–79, 1999.
3. Arenas, M., Bertossi, L., Chomicki, J., Specifying and Querying Database repairs

using Logic Programs with Exceptions. FQAS, pp. 27-41, 2000.
4. Arenas, M., Bertossi, L., Chomicki, J., Answer sets for consistent query answering

in inconsistent databases. TPLP 3(4-5), 393-424, 2003.
5. Brewka, G., Niemela, I., Truszczynski, M., Answer Set Optimization. IJCAI,

867-872, 2003.
6. Caroprese, L., Greco, S., Sirangelo, C., and Zumpano, E., Declarative Semantics

of Production Rules for Integrity Maintenance. ICLP, 26-40, 2006
7. Chomicki, J., Preference Formulas in Relational Queries. ACM TODS, 28(4),

1-40, 2003.
8. Chomicki, J., Lobo, J., Naqvi, S. A., Conflict Resolution Using Logic Programming.

IEEE Trans. Knowl. Data Eng. 15(1), pp. 244-249, 2003.
9. Chomicki, J., Staworko, S., and Marcinkowski, J., Preference-Driven Querying of

Inconsistent Relational Databases. Proc. International Workshop on Inconsistency
and Incompleteness in Databases, 2006.

10. Delgrande, J., P., Schaub, T., Tompits, H., A Framework for Compiling Preferences
in Logic Programs. TPLP, 3(2), 129-187, 2003.

11. Eiter, T., Gottlob, G., Mannila, H., Disjunctive Datalog. TODS, 22(3), 364–418,
1997.

12. Gelfond, M., Son, T.C., Reasoning with prioritized defaults. LPKR, 164-223, 1997.
13. Gelfond, M., Lifschitz, V. The Stable Model Semantics for Logic Programming,

ICLP, 1988.
14. Gelfond, M., Lifschitz, V., Classical Negation in Logic Programs and Disjunctive

Databases, NGC, No. 9, 365–385, 1991.
15. Grant, J., Subrahmanian, V. S., Reasoning in Inconsistent Knowledge Bases,

TKDE,7(1), 177-189, 1995.
16. Greco S., and Zumpano E., Querying Inconsistent Databases. LPAR, 308–325,

2000.
17. Greco G., Greco S., and Zumpano E., A Logical Framework for Querying and

Repairing Inconsistent Databases. IEEE TKDE, 15(6), 1389-1408, 2003.
18. Lin J., Mendelzon A. O., Merging Databases Under Constraints. Int. J. Cooperative

Inf. Syst., 7(1), 55-76, 1998.
19. Marek, V. W., Truszczynski, M., Revision Programming. Theoretical Computer

Science 190(2), pp. 241-277, 1998.
20. Sakama, C., Inoue, K., Priorized logic programming and its application to com-

monsense reasoning. Artificial Intelligence, 123, 185-222, 2000.
21. Ullman, J. K., Principles of Database and Knowledge-Base Systems, Vol. 1, Com-

puter Science Press, 1988.
22. Wijsen, J., Condensed representation of database repairs for consistent query an-

swering, ICDT, 378-393, 2003.
23. Zhang, Y., Foo, N., Answer sets for prioritized logic programs. ILPS, 69-83, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate

Image Detection

Jun Jie Foo and Ranjan Sinha

School of Computer Science & IT
RMIT University, Melbourne, Australia, 3001

{jufoo,rsinha}@cs.rmit.edu.au

Abstract. Images are amongst the most widely proliferated form of
digital information due to affordable imaging technologies and the Web.
In such an environment, the use of digital watermarking for image copy-
right infringement detection is a challenge. For such tasks, near-duplicate
image detection is increasingly attractive due to its ability of auto-
mated content analysis; moreover, the application domain also extends to
data management. The application of PCA-SIFT features and Locality-
Sensitive Hashing (LSH) — for indexing and retrieval — has been shown
to be highly effective for this task. In this work, we prune the number
of PCA-SIFT features and introduce a modified Redundant Bit Vec-
tor (RBV) index. This is the first application of the RBV index that
shows near-perfect effectiveness. Using the best parameters of our RBV
approach, we observe an average recall and precision of 91% and 98%,
respectively, with query response time of under 10 seconds on a collection
of 20, 000 images. Compared to the baseline (the LSH index), the query
response times and index size of the RBV index is 12 times faster and 126
times smaller, respectively. As compared to brute-force sequential scan,
the RBV index rapidly reduces the search space to 1/80.

Keywords: Near-duplicate Image Detection, Redundant Bit-Vectors,
RBV.

1 Introduction

Many digital images available on the Web are copies or variants of each other;
these include the scaled-down thumbnails kept by web search engines and differ-
ing versions of a single image made available by different news portals. Online
images can be appropriated without the acknowledgment of source and, acciden-
tally or otherwise, disguised through simple processing. Common modifications
include conversion to greyscale, change in color balance, rescaling, rotating, crop-
ping, and filtering operations. For reasons such as copyright infringement detec-
tion [14] and collection management [5], it is attractive to identify such variants
(near-duplicates) with a reasonable degree of reliability.

In recent work, Qamra et al. [14] propose the Perceptual Distance Functions
(PDF) for near-duplicate detection using color and texture image features. How-
ever, only mediocre effectiveness is observed when these functions are used with
approximate indexing structures such as the Locality-Sensitive Hashing (LSH)

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 472–484, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 473

index [6]. To our knowledge, the highest reported accuracy of a near-duplicate
image detection system is that of Ke et al. [11] — henceforth referred to as the
KSH system — that uses the PCA-SIFT descriptors [10] (an extension of the
SIFT interest points [12]) and the LSH index. Near-perfect precision is reported
for retrieval of various altered images — cropped, scaled, rotated, and various
affine transformation. While high precision has been reported, scalability has not
been explored and the reported interactive query response times are observed
on a tiny image collection. In this work, we use the KSH system as the baseline.

In this paper, we propose pruning strategies on the SIFT interest points (char-
acterized by the PCA-SIFT local descriptors) along with the use of modified Re-
dundant Bit Vectors (RBV) [8] for this application domain. While RBV has been
reported to be efficient for negative queries on audio fingerprint detection, it has
yet to be demonstrated to work for positive queries. Here, we propose a novel
scheme that extends the RBV index for positive queries. Using our proposed sch-
eme on pruned PCA-SIFT descriptors, we report an almost lossless level of effec-
tiveness for this particular application. We also demonstrate that this index can
be highly compact as compared to the LSH index (as used in the KSH system).

2 Distinctive Interest Points

Given an image, the idea of local descriptors is to detect image regions (centered
around interest points) that possess properties invariant to geometric variation
and photometric changes, so that distinctive local descriptors can be computed
for each region [9,13].

In this work, we use the popular SIFT (scale invariant feature transform)
detector [12] that has been demonstrated to outperform existing detectors [13].
We apply the PCA-SIFT descriptors on the SIFT interest points instead of the
original SIFT descriptors, as they are shown to be both highly distinctive [10]
and highly effective for near-duplicate image detection [11]. In this work, for
convenience, the SIFT keypoint detector and the PCA-SIFT local descriptor are
referred to as a PCA-SIFT feature.

There are four major stages of computation in the SIFT detector for extract-
ing a set of image features, namely the scale-space extrema detection, keypoint
localization, orientation assignment, and generation of keypoint local descriptor.

In the first phase of the SIFT keypoint detector, the difference-of-Gaussian
(DoG) function is used to identify candidate points in various locations and scales
using a Gaussian pyramid. This is achieved by finding local peaks (keypoints) in
a series of DoG images. In the second phase, poorly localized and unstable key-
points — below a threshold level — are rejected. After all stable keypoints are
identified, each keypoint is assigned a dominant orientation for rotation invari-
ance in the third phase. Additional keypoints are generated if there are multiple
orientations within 80% threshold of the dominant orientation; thus, there can
be multiple keypoints with identical scale, location, but different orientation.

The PCA-SIFT descriptors are computed using the same information as the
original SIFT descriptor, that is, location, scale, and dominant orientations.
PCA-SIFT concatenates the horizontal and vertical gradient maps for the 41×41

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

474 J.J. Foo and R. Sinha

region — centered around the keypoint, rotated to align its orientation to a
canonical direction — to produce a 2 × 39 × 39 = 3042 element local descriptor
(feature vector).

In cases where there are multiple dominant orientations, a separate vector
is calculated for each. Each vector is then projected — using principal compo-
nent analysis, a common technique for dimensionality reduction — to a low-
dimensional feature space using a pre-computed eigenspace1. Ke et al. [11] have
empirically determined that n = 36 feature spaces for the local descriptor per-
forms well for near-duplicate image retrieval; wherein any two PCA-SIFT local
descriptors are deemed similar (a match) within an Euclidean distance (L2-norm)
of 3000. In this work, we use the same settings.

The problem of applying PCA-SIFT features is that each image consists of
hundreds to thousands of high-dimensional local descriptors, and a reliable match
between two images requires at least 3 to 5 descriptor matches [12]. The KSH
index uses Locality Sensitive Hashing (LSH) [6] for indexing these PCA-SIFT
features. We refer interested readers to the work of Ke et al. [11] for further
discussion.

3 Keypoint Reduction

Querying in high-dimensional space is a challenging problem due to the curse
of dimensionality [1]; indeed, this is further amplified as the evaluation of a
query image using PCA-SIFT features requires multiple point matches in high-
dimensional space — simulating multiple point queries.

We observe an average of 1, 400 keypoints per image for our image collection,
similar to the reported average of 1, 100 in the work of Ke et al. [11]. In practice,
using PCA-SIFT features, each image can generate from a few hundred up to
a few thousand local descriptors of 36 dimensions each depending on the com-
plexity of an image. Hence, the reduction of keypoints that SIFT generates per
image is key to a scalable system. Given that the SIFT interest point detector
was originally proposed as a distinctive feature for matching objects or image
scenes with high variance [12], it is apparent that all keypoints are required for
robust matching. We hypothesize that near-duplicate image detection requires
only a subset of the keypoints as we only consider images that are derived from
the same source, where the level of variance is limited.

In the second stage of the SIFT keypoint detector algorithm, Lowe [12] has
empirically observed that a contrast threshold value of 0.03 — used to eliminate
keypoints with low contrast — yields good results. This is an important pa-
rameter as a higher threshold will result in fewer keypoints being generated. To
exploit this observation for our application, we select only the top N most signif-
icant keypoints by their contrast. By setting an upper bound on the number of
keypoints that are selected in this phase, we immediately prune more than 80%
(on average) of the keypoints required for each image. Images that do not have
N detected keypoints are not pruned. Since some keypoints may share sub-pixel
1 The eigenspace used in this work is provided by Ke et al. [10].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 475

location and scale information with multiple orientation, we expect approxi-
mately 15% additional keypoints to be generated in the subsequent phase [12].

This approach has been demonstrated to achieve comparable effectiveness to
using all keypoints for this application, while simultaneously reducing response
times considerably during query evaluation [4].

4 Redundant Bit Vectors

Goldstein et al. [8] propose Redundant Bit Vectors (RBV) for high-dimensionality
search for multimedia data. The algorithm consists of three key ideas: 1) ap-
proximate high-dimensional spherical regions by tightened hyper-rectangles, 2)
partition the query space to promote redundancy in the index, and 3) represent
each partition with an efficient bit vector.

The conventional nearest-neighbor matching problem is usually formulated as
a point query over spheres of fixed or variable radius. The ε-range search can be
applied to return all objects with distances within an ε threshold [1] if more than
one object is required. The distances between two objects are commonly measured
in some Lp metric. Goldstein et al. [7] formulate this as a rectangle search problem,
where each point p in a d-dimensional space is replaced by the smallest hypercube
c enclosing the hyper-sphere with center point p. With this approach, the data
space is searched using approximated rectangular regions instead of spheres.

To create an RBV index, all data points are mapped onto data (hyper) rectan-
gles, where each dimension of these rectangles are partitioned into m bins. The
choice of m is determined by the number of disjoint intervals between the data
rectangles [7]. Every dimension of the rectangle is projected onto its respective
axis, where each partition is a bit vector that reflects the overlap test between the
interval boundaries. Each bit in a spatial bit vector corresponds to a data rectan-
gle within the collection. Each adjacent bit vector (within the same dimension)
may have identical bits set to 1 if the data rectangle overlaps the interval bound-
aries, hence giving rise to redundant bit vectors. To search for approximated
neighbors for a given point, a spatial bit vector for a given dimension is selected
if the partition includes the query point — has its corresponding bit set to 1.
The resultant spatial bit vector after bitwise ANDing all selected vectors from
every dimension will return the data rectangles that contains the query point.

Goldstein et al. demonstrate that the RBV index excel at applications where
there is a large fraction of negative queries. For such applications, they report
significant gains in efficiency, and a reduction of memory requirement in com-
parison to LSH [8]. However, their approach is unsuitable for applications with
a large fraction of positive queries given that accuracy is sacrificed considerably
for efficiency gains; we propose a novel scheme that extends the current RBV
index to cater for such applications.

5 Extending the RBV Index

Using a similar scheme as Ke et al. [11], all indexed images are stored in a file
table (FT), and each PCA-SIFT feature is mapped using a keypoint table (KT)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

476 J.J. Foo and R. Sinha

where each entry is 92 bytes and contains the location, scale, orientation, and
local descriptor of a keypoint. For every keypoint in a query image — or query
keypoint — we approximate the potential matching keypoints using an index and
verify the short-listed matched pairs using geometric verification (RANSAC) [3].
The key differences are the employed indexing technique and the amount of
features used. All query keypoints are read into memory during query evaluation,
whereas every matched keypoint is fetched from disk. All disk reads are linearized
for efficiency.

Given a collection of images, we index only the 36 dimensional local descriptors
(keypoints). Each keypoint can be represented by ki(x1...xd), i = 1...N , where
N is the total number of keypoints in the collection, and xd is the coordinate
of dimension d. During RBV index construction, each point ki is mapped to
a data rectangle using the smallest hypercube c that encloses the hyper-sphere
centered on ki with radius of ε — for ε-range search. For two PCA-SIFT keypoint
descriptors to be deemed a match, an L2 norm ranging from 2, 200 to 3, 000
(ε) yields high effectiveness [10,11]. Hence, each keypoint is converted into a
hypercube, with a hypercube half-sidelength (HCS) of ε where c = 2ε.

We use mi = (xirange)/ε partitions to create the desired number of disjoint
intervals that cover the entire axis of a single dimension, where xirange = ximax −
ximin for dimension i. Thus, the choice of HCS is critical given that it determines
the granularity of the partitioning scheme. To create the partitions, we first
sort the boundaries of all data hypercube in a given dimension along its axis.
Each partition is represented using a bit vector where each bit reflects the index
position in KT. Following [8], we then select mi − 1 dividers from the sorted
hypercube boundary values and partition the dimension using the overlap test
for each interval, where each bit in a bit vector reflects the predicate (1 or 0).

The collection of data hypercube (keypoints) can be represented efficiently,
as each integer can store up to 32 or 64 keypoint IDs, depending on the system
architecture (machine word size). Each bit vector is represented using an array
of integers, where the bit vectors are constructed in memory and written to disk,
one dimension at a time. Each bit vector is stored using an array of N/32 (4-
byte) integers, where N is the total number of keypoints in our collection. We also
store mi−1 (4-byte) dividers for the axes of each dimension for query evaluation.
Thus, the size of the index for the entire image collection is approximately

D∑
i=1

mi(4 × N

32
+ 4 × (mi − 1)) bytes

where D is the number of dimensions; in our application D is 36.
In the original RBV indexing scheme, for efficiency gains, Goldstein et al. [8]

sort the data points in ascending order of the most selective dimension (smallest
amount of overlap) prior to constructing the bit vectors. This is done to organize
the RBV index such that the first dimension will have data hypercubes closely
located along the axis of its dimension, resulting in tightly packed bits of 1’s
between the low and high range. Since the number of bitwise AND operations
can be reduced to the number of integers between this range, the most selective
dimension is used as the first queried dimension. The ordering of dimensions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 477

in which to query is important since the first dimension always dictates the
resultant list of matching keypoints — using the bitwise AND operation. Query-
ing the most selective dimension first will short-list the number of potential
matching keypoints rapidly. However, given that each dimension is a very coarse
approximation of the distance in the hypercube space, retrieval accuracy suffers.

As our aim is to maximize the number of positive matches, the index is mod-
ified to be less restrictive for this application. In our proposed scheme, the most
selective dimension is not pre-determined, and requires no prior sorting of the
data points; consequently, we do not utilize the low and high range for bit vector
processing.

A summary of the process for constructing the modified RBV index is as
follows:

Require: Database of N D-dimensional local descriptors x in KT, ε = HCS.
for i = 1 to D do

for k = 1 to N do
Calculate hypercube boundaries xki ± ε.

end for
Sort boundaries on i-axis; calculate mi = (imax − imin)/ε.
Select mi − 1 dividers from sorted boundaries.

end for
for i = 1 to D do

for k = 1 to N do
Create overlap tests to create mi partitions (bit-vectors).

end for
Store mi − 1 dividers and mi bit-vectors to disk.

end for

Querying the modified RBV index. Instead of querying with the most
selective dimension during index construction, we determine the order of di-
mensions dynamically during query evaluation, thereby eliminating the need
for pre-processing the data points. For each xi, i = 1...d of a query keypoint,
we determine the normalized distance to mean using |xμ − xi|/xμ. We sort the
distances in ascending order, and use the sorted order of dimensions for query
evaluation. Thus, the dimensions are dynamically selected to maximize the po-
tential keypoint matches to the query coordinates. In this approach, the search
space is not immediately pruned with the first queried dimension but is instead
narrowed progressively by processing each subsequent dimension.

During query evaluation, the required partition for each dimension can be
calculated in memory by using the m−1 dividers of each dimension to determine
which partitions to retrieve from disk. Given that each bit vector is bitwise
ANDed one dimension at a time, and that the ordering of dimensions can be
pre-processed, we can bulk-process the query keypoints simultaneously. This is
achieved by using a temporary resultant bit vector in memory for each query
keypoint. Hence the order in which the required partitions are read can also be
sorted to allow sequential access to disk. Bulk-processing of keypoints in memory
is enabled by keypoint reduction since the feature space of the query images are
pruned, without which the memory requirement would be high.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

478 J.J. Foo and R. Sinha

Compared to the original RBV indexing scheme [8], we tradeoff speed to maxi-
mize the potential matches (candidate pool) and perform bitwise AND operation
on the entire bit vector. This results in a larger number of false positives in the
pool of candidate keypoint matches and consequently results in more computa-
tion. To reduce the cost of CPU computation (bitwise operation), we prune the
number of processed dimensions during query evaluation to narrow the search
space gradually while minimizing the number of false negatives. The number of
dimensions to prune depends on the partition granularity (HCS) since these two
parameters are coupled, that is, a change in one parameter will inevitably affect
the other. We empirically evaluate the effects of varying HCS and the number
of dimensions pruned on retrieval speed and accuracy in Section 7.

A summary of the process for querying the modified RBV index (henceforth
referred as just RBV index) is as follows:

Require: Database of N items, Q local descriptors q of query, D dimensions i of
mi −1 dividers and mi bit-vectors, temporary resultant bit vectors RQ (one for each
q), temporary container T [D].
for j = 1 to Q do

for k = 1 to D do
T [k] = |qjμ − qjk |/qjμ

end for
Sort T in ascending order.
for k = 1 to T (or < T if pruned) do

Get partition p using mk − 1 dividers; calculate Rj = Rj&mp.
end for
Perform L2 verification on matches (ON bits) in resultant bit vector.

end for

6 Evaluation Methodology

We demonstrate the effectiveness of our approach using a series of experiments.
First, we evaluate the effectiveness of keypoint reduction on matching near-
duplicate images, by varying the number of detected keypoints between 1, 400
(original number of keypoints), and using a subset of 500 and 100 most signifi-
cant keypoints. We report the percentage of keypoint matches — relative to the
keypoints in the query image — between a query image and each of its image
alterations. For accurate evaluation, we use the sequential scan for the nearest-
neighbor search on the collection of keypoints as both LSH and RBV indexes are
approximate nearest-neighbor algorithms. For this experiment, due to exhaustive
computation involved with using several keypoint thresholds, we use only 100
random queries on 10, 000 images (Image Collection B as described below).

Second, we compare our approach — keypoint reduction with the modified
RBV index — against the KSH system2. We evaluate both efficiency and effec-
tiveness of these approaches on a much larger collection of 20, 000 images (Image

2 The authors have provided their source code, allowing us to perform a direct com-
parison to their approach.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 479

Collection A as described below). We use an identical framework as Ke et al. [11],
the only differences being the index structure and the amount of PCA-SIFT fea-
tures used. The original dataset3 is not used as it was not available, however,
we generate a dataset using the same set of alterations as used in their work. A
small number of images are selected at random from the collection as queries;
the relevant answers are generated by transforming each query image using the
set of alterations. Only altered versions of their respective original images are
considered relevant answers; everything else in the collection is treated as noise.
We evaluate our approach using the standard recall and precision metrics. All
experiments are run on a two-processor Xeon 3 GHz machine with 3.8 GB of
main memory running Linux 2.4.

Image Dataset. To generate our dataset, we select 250 images at random from
Volume Twelve of the Corel Photo CD collection [2]; each image is altered us-
ing 40 alterations, creating a total of 10, 000 images. We also include 10, 000
images from the TRECVID 2005 collection, which consists of keyframes from
various news broadcast. We scale all images to 512 pixels in the longer edge.
Together with 10, 000 altered images, we create a test collection of 20, 000 im-
ages forming Image Collection A. Image Collection B is created using half of
Image Collection A; consequently, we use 125 queries for this collection. As the
PCA-SIFT algorithm does not use color information, all images are converted to
greyscale after the altered image set is created. As in the work of Ke et al. [11]
and Qamra et al. [14], the list of alterations are as follows : colorize (3), con-
trast (2), severe contrast (2), crop (3), frame (4), scale up (3), scale down (3),
despeckle (1), saturation (4), intensity (6), shear (3), resize (3), and rotate (3).
Note that the number in the parentheses indicate the alteration variants.

7 Results and Analysis

In Table 1, the effects of keypoint reduction at every keypoint threshold value
on 40 unique alterations are shown; the percentages are an average over 100
queries. Columns 1, 5, and 9 indicate the different types of alteration. The rest
of the columns show the percentage of matching nearest-neighbors within the L2

norm of 3, 000 between the original image and its corresponding near-duplicate
image. The average number of keypoints per image is close to 1, 400. We experi-
ment with a threshold of 500 and 100, reducing the average keypoints per image
to 550 and 128, respectively. The last columns of each alteration (4, 9,and 12)
show the percentage of matches using the same criterion with approximately 10%
of the keypoints. The variation in percentages between image alterations in
Table 1 is expected given that some alterations severely affect the properties of
the local descriptors. The reason for the slight increase observed with threshold
values of 500 and 100 — as compared to the original number of keypoints — is
that the percentage of keypoint matches is relative to number of detected key-
points in the image (that is 550 and 128) indicating that most of the matching
3 http://clweb02.pittsburgh.intel-research.net/yke/retrieval/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://clweb02.pittsburgh.intel-research.net/yke/retrieval/

480 J.J. Foo and R. Sinha

Table 1. Percentage of keypoint matches within L2 norm threshold at every level of
reduction. Columns 1, 5, 9 indicate the different alterations (Alt). Keypoint thresholds
of 500, and 100 are used. Default indicates the original number of keypoints (average
of 1, 400).

Alt Default 500 100 Alt Default 500 100 Alt Default 500 100 Alt Default 500 100
1 92.4 94.1 95.0 11 76.5 82.0 85.3 21 7.3 5.2 5.9 31 86.7 87.5 89.5
2 88.8 89.8 91.2 12 57.1 54.7 57.3 22 80.0 79.7 79.1 32 83.1 88.0 89.2
3 90.5 92.0 92.5 13 49.7 48.3 49.7 23 80.3 79.5 78.3 33 74.5 82.9 81.4
4 76.9 80.3 80.4 14 48.4 46.4 45.4 24 79.7 79.0 78.2 34 39.8 42.8 43.4
5 77.6 76.3 76.5 15 54.0 52.7 55.8 25 89.6 91.5 92.3 35 34.3 27.9 28.2
6 58.6 63.3 64.1 16 56.9 60.9 62.0 26 90.9 93.0 93.8 36 24.2 13.1 9.0
7 53.7 58.3 58.8 17 55.7 58.5 57.3 27 92.5 94.2 95.1 37 73.4 71.9 74.9
8 47.6 52.3 53.2 18 57.6 60.1 61.8 28 92.1 94.0 95.1 38 55.4 60.1 50.7
9 42.9 47.8 49.1 19 47.1 37.9 42.1 29 90.7 92.5 93.3 39 48.1 50.1 48.4

10 71.5 71.1 75.8 20 19.4 15.8 18.0 30 83.4 84.0 87.0 40 43.4 35.7 29.4

0 10 20 30 40

Number of dimensions

0

20

40

60

80

100

A
ve

ra
ge

 R
ec

al
l (

%
)

(a)

HCS=1,000

HCS=1,500

HCS=2,000

HCS=2500

LSH

0 10 20 30 40

Number of dimensions

0

20

40

60

80

100

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

(b)

HCS=1,000

HCS=1,500

HCS=2,000

HCS=2500

LSH

Fig. 1. Average (a) Recall and (b) Precision (over 250 queries) of the modified RBV
index for variations of HCS and number of dimensions. LSH is the baseline.

keypoints within the L2-norm of the set of alterations share similar contrast val-
ues. This is an important finding as it is the criterion by which both the LSH and
RBV indexes approximate matching keypoints. The relatively similar percent-
ages of matching keypoints for different levels of reduction across all alterations,
leads us to believe that even a small subset of keypoints is sufficient for this
application. Subsequent experiments on the RBV index incorporate keypoint
reduction with a threshold of 100 on the number of indexed features. In Fig-
ures 1a and 1b, the effectiveness of the RBV index is measured using recall and
precision, averaged over 250 queries. We experiment with varying the HCS pa-
rameter and the number of pruned dimensions; each increment of four dimensions
is shown. LSH is used as a baseline with recall and precision of 99% and 98%, re-
spectively. The highest observed recall and precision with RBV is 97% and 99%
respectively, with an HCS of 1, 500 when only one dimension is processed. We
observe that even after processing 16 dimensions, recall remains at 91% and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 481

0 10 20 30 40

Number of dimensions

0

50

100

150

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(i

n
se

cs
)

(a)

HCS=1,000

HCS=1,500

HCS=2,000

HCS=2500

LSH

0 10 20 30 40

Number of dimensions

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 k
ey

po
in

t p
ai

rs
 e

xa
m

in
ed

 (
ba

se
 1

0)

(b)

HCS=1,000

HCS=1,500

HCS=2,000

HCS=2500

SScan

Fig. 2. (a) Average running time (over 250 queries) of the RBV index for variations of
HCS and number of dimensions. LSH is the baseline. (b) Effectiveness (250 queries) of
search space reduction of the RBV index. Sequential scan is the baseline.

precision at 98%. We do not experiment with smaller number of dimensions for
HCS of 2, 000, and 2, 500 as we achieve near-perfect recall and precision after
processing 24 dimensions. HCS of 2, 500 achieves recall and precision of 88%
and 99% respectively, even after processing all 36 dimensions. As expected, us-
ing HCS of 1, 000, we observe a dramatic drop in recall and precision if more
than 4 dimensions are processed, which implies that the boundaries in hypercube
space is too “tight” resulting in high partition granularity. Hence, the choice of
HCS is critical for the RBV index. We observe that given a large enough HCS,
the drop in recall and precision is less abrupt, since the majority of the answers
are still within the hypercube boundary of a single dimension resulting in fewer
eliminated matches. We have thus shown that our modified RBV index is highly
effective given a suitable HCS value.

Retrieval Efficiency. The timing results for query evaluation using the mod-
ified RBV index is presented in Figure 2a. The total running (elapsed) time
for evaluating a single query is measured; all timings are averaged over the 250
queries. They are compared against the KSH baseline, which is observed to have
an average running time of approximately 124 seconds. Since the KSH imple-
mentation of LSH, and our RBV implementation can be further optimized —
in terms of in-memory data structures — we do not emphasize on the factors
of improvement from the baseline. With our RBV index, the fastest recorded
running time is approximately 9 seconds with an HCS of 1, 500, and 16 dimen-
sions; this was also observed to have high effectiveness. As expected, the running
time reduces as more dimensions are processed; the pool of candidate matches
becomes smaller, requiring fewer keypoints to be retrieved from disk. This is ev-
ident from the much higher running time of 136 seconds with HCS of 1, 500 and
processing only one dimension; this effectively reduces to an on-disk sequential
scan. Using HCS of 1, 000, we observe that there is a slight increase in running
time from 5 to 8 seconds when the number of dimensions is more than 12. We

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

482 J.J. Foo and R. Sinha

0 1000 2000 3000

HCS Length

1

10

100

1000

10000
In

de
x

Si
ze

 (
M

B
)

(a)

LSH Index (Baseline)

RBV Index

0 10 20 30 40

Number of dimensions

1.0

1.2

1.4

1.6

1.8

2.0

2.2
2.4

G
ro

w
th

 f
ac

to
r

(b)

candidate pool size
query response time

Fig. 3. (a) Effects of HCS on the RBV index size. LSH is the baseline. (b) Growth
factors of candidate pool size and query run-time between image collections B and A
(observed using HCS of 1,500).

believe this is due to the increased cost of processing (CPU operations required
for bitwise ANDing and fetching bit vectors from disk) more dimensions without
a corresponding decrease in the number of keypoint pairs. Finally, for HCS of
3, 000 the running time for processing all 36 dimensions is comparable to that
of the HCS of 1, 500 while still showing high effectiveness.

Further Studies. It is instructive to examine the effectiveness of the RBV index
in reducing the search space. Figure 2b shows the total number of keypoints being
processed by the RBV index. This is an independent study on the RBV index
on the same collection; no comparisons are made against the LSH index since
we do not experiment with keypoint reduction on the KSH system. Instead, we
compare it to sequential scan to illustrate the reductions in search space using
the RBV index. All numbers are reported as an average over 250 queries.

The sequential scan always requires the worst-case number of keypoints, as it
performs a brute-force search to find k-nearest-neighbors within the L2 thresh-
old. Using HCS of 1, 500, the candidate pool is quickly reduced from approxi-
mately 260 million to 120 million keypoints after processing only 4 dimensions.
For 16 dimensions only 4 million keypoints remain in the candidate pool. Natu-
rally, a smaller number of candidate matches translates to higher efficiency, since
fewer keypoints need to be fetched and examined. Indeed, this result shows that
the RBV index is effective at reducing the search space using only a few dimen-
sions, while minimizing the number of false negatives. As in Figure 3a, we show
the effects on index size using different HCS values; these sizes are observed for
an index of 20, 000 images. This clearly shows that HCS dictates the number of
partitions, which determines the number of bit vectors that are stored on disk.
It is also interesting to note that using the baseline method without keypoint
reduction as described in the work of Ke et al. [11], the size of the index is con-
siderably larger than that of RBV. Finally, as shown in Figure 3b, we observe
that the candidate pool size increase by only a factor of 1.4 (using 16 dimensions),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Redundant Bit Vectors for Near-Duplicate Image Detection 483

even though the collection size increases by a factor of 2 (Image Collections B to
A); the slight growth of the query response time is attributed to the increase in
in-memory bitwise processing.

8 Conclusion

We have presented an approach to near-duplicate image detection with pruned
SIFT keypoints (using PCA-SIFT local descriptors) using our proposed modi-
fied RBV indexing scheme. An almost lossless retrieval performance is observed
using only 10% of the original keypoint features, thereby reducing index size and
improving scalability.

We show that, unlike the original approach that was initially designed for
negative queries, near-perfect effectiveness can be achieved using our modified
approach for positive queries as well. We demonstrate that this indexing scheme
performs as well as the KSH system in terms of effectiveness and runs in a little
under ten seconds on average for a single query, on a collection of 20, 000 images.
Importantly, the RBV index is — highly compact — over 100 times smaller than
that of the original LSH index as used in the KSH system.

As observed in our experiments, our approach has shown the highest efficiency
— a factor-of-12 speed-up over the KSH system — thus far, in this domain.
Hence, this approach offers a promising and viable alternative indexing strategy
to the predominant LSH approach. We intend to explore the limitations and
scalability of these schemes in future work.

Acknowledgments

This project was supported by Australian Research Council. We thank Justin
Zobel for his suggestions.

References

1. C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. Corel Corporation. Corel professional photos CD-ROMs, 1994.
3. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395, 1981.

4. J. J. Foo and R. Sinha. Pruning sift for scalable near-duplicate image matching.
In Proc. ADC Australian Database Conference, January 2007.

5. J. J. Foo, R. Sinha, and J. Zobel. Discovery of image versions in large collections.
In Proc. MMM Int. Conf. on Multimedia Modelling. Springer, Januuary 2007.

6. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proc. VLDB Int. Conf. on Very Large Data Bases, pages 518–529,
Edinburgh, Scotland, UK, September 1999. Morgan Kaufmann.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

484 J.J. Foo and R. Sinha

7. J. Goldstein, J. C. Platt, and C. J. C. Burges. Indexing high dimensional rectangles
for fast multimedia identification. Technical report, Microsoft Research, Redmond,
WA, USA, 2003.

8. J. Goldstein, J. C. Platt, and C. J. C. Burges. Redundant bit vectors for quickly
searching high-dimensional regions. In Deterministic and Statistical Methods in
Machine Learning, First International Workshop, Sheffield, UK, September 7-10,
2004, Revised Lectures, pages 137–158. Springer, 2004.

9. K. Grauman and T. Darrell. Efficient image matching with distributions of local
invariant features. In Proc. CVPR Int. Conf. on Computer Vision and Pattern
Recognition, pages 627–634, June 2005.

10. Y. Ke and R. Sukthankar. PCA-sift: A more distinctive representation for local
image descriptors. In Proc. CVPR Int. Conf. on Computer Vision and Pattern
Recognition, pages 506–513, Washington, DC, USA, June–July 2004. IEEE Com-
puter Society.

11. Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-duplicate and
sub-image retrieval system. In Proc. MM Int. Conf. on Multimedia, pages 869–876,
New York, NY, USA, October 2004. ACM Press.

12. D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. Journal
of Computer Vision, 60(2):91–110, 2004.

13. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
In Proc. CVPR Int. Conf. on Computer Vision and Pattern Recognition, pages
257–263, June 2003.

14. A. Qamra, Y. Meng, and E. Y. Chang. Enhanced perceptual distance functions
and indexing for image replica recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence, 27(3):379–391, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 485–496, 2007.
© Springer-Verlag Berlin Heidelberg 2007

OLYBIA: Ontology-Based Automatic Image
Annotation System Using Semantic Inference Rules*

Kyung-Wook Park, Jin-Woo Jeong, and Dong-Ho Lee**

Department of Computer Science and Engineering, Hanyang University
Ansan-si, Gyeongki-do 426-791, South Korea

{kwpark, jwjeong, dhlee72}@cse.hanyang.ac.kr

Abstract. One of the big issues facing current content-based image retrieval is
how to automatically extract the high-level concepts from images. In this paper,
we present an efficient system that automatically extracts the high-level
concepts from images by using ontologies and semantic inference rules. In our
method, MPEG-7 visual descriptors are used to extract the visual features of
image, and the visual features are mapped to semi-concepts via the mapping
algorithm. We also build the visual and animal ontologies to bridge the
semantic gap. The visual ontology allows the definition of relationships among
the classes describing the visual features and has the values of semi-concepts as
the property values. The animal ontology can be exploited to identify the high-
level concept in an image. Also, the semantic inference rules are applied to the
ontologies to extract the high-level concept. Finally, we evaluate the proposed
system using the image data set including various animal objects and discuss
the limitations of our system.

Keywords: high-level concepts, ontologies, semantic inference rules, MPEG-7
visual descriptors, semantic gap.

1 Introduction

In the past decade, due to the rapid growth of the Internet and mobile device, the
amount of available multimedia contents has explosively increased both in numbers
and in size. A number of users and applications are available over the Internet for
browsing and searching the collections of multimedia contents.

Most users often tend to use the abstract notion involved in an image when
searching for an image. However, traditional image retrieval approaches have a lot of
problems that make it difficult to search for images using high-level concepts.
Therefore, there are needs for the development of tools that support the semantic
retrieval for a large image database.

Current image retrieval techniques can be classified into two main categories:
keyword-based and content-based image retrieval. In the former approach, image

* This work was supported by Korea Research Foundation Grant funded by the Korea

Government(MOEHRD) (KRF-2006-521-D00457).
** Corresponding author.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

486 K.-W. Park, J.-W. Jeong, and D.-H. Lee

contents have to be manually annotated by domain experts using a restricted
vocabulary [1,2]. Although this approach is able to provide the functionality of the
semantic retrieval, this suffers from several limitations in a large multimedia database.
Since images have to be manually annotated by annotators, this method needs a large
amount of manual effort required in generating annotations for large image
collections. Consequently, it is likely that an image is annotated with only one or a
small subset of possible semantic interpretations.

Content-based image retrieval (CBIR) systems retrieve images based on the visual
similarity of the visual features (i.e., color, texture, and shape etc.) that are semi-
automatically extracted and stored [3,4]. Although this method is less time-consuming
and provides more user-friendly access on images than keyword-based approach, the
problem is that the visual similarity does not necessarily mean the semantic similarity.
For example, if a user requests an image with a ‘red rose’ to a CBIR system, it is
likely to answer images with a ‘red ball’ because it returns the result based on the
visual similarity. That is, there may be a gap between the visual features and the high-
level concepts of an image. This problem is called ‘Semantic Gap’ by researchers of
this field.

To overcome such drawbacks, a few researches have been done on using
ontologies for the retrieval of visual resources such as image and video [5-7].
Ontology is a type of background knowledge that defines all of the important
categories of concepts that exist in a specific domain, and the relationships between
them. In early researches on the image retrieval using ontology, ontologies are just
used for assisting manual annotation [5,6]. These ontologies are unsuitable for
automatic annotation since they contain little visual information about the concepts
they describe. Therefore, a few researches have been investigating how to
automatically annotate the high-level concepts in the image by using ontologies [7].
They employed ontologies to annotate the high-level concepts automatically from the
visual features which are extracted by various image processing techniques. However,
since they employed too simple ontologies, their works still have several problems.

In this paper, we propose a new image annotation system (so-called OLYBIA:
OntoLogY-Based Image Annotation system) where the visual features are mapped
into the semi-concepts and the high-level concepts are automatically extracted by
applying the inference rules to the visual and animal ontologies. In our work, the
high-level concept implies the object name in an image (e.g., tiger, eagle, etc.) and the
values of semi-concepts that are simple texts assigned according to the quantity of the
visual features, such as ‘high’ or ‘low’, are used to abstract the values of the visual
features. The visual ontology focuses on describing the visual features of an image. In
particular, since it is based on the characteristic that the visual features are not
restricted to a specific domain, it is possible to apply for various domains such as
medical images, artwork images, and etc. We also construct the animal ontology
representing animal taxonomy. The reason that we concentrate on animal taxonomy
in building the animal ontology is that most users are interested in the kind of animal
when searching for animal images. Finally, in order to identify the high-level
concepts, the semantic inference rules are applied to the visual and animal ontologies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 OLYBIA: Ontology-Based Automatic Image Annotation System 487

The rest of this paper is organized as follows: In Section 2, we briefly review
related work. Section 3 describes the architecture of OLYBIA and the methods that
extract the high-level concept from an image. Section 4 introduces the design and
implementation of OLYBIA, and Section 5 shows the experiment results. Finally, we
conclude our work and discuss our future plans in Section 6.

2 Related Work

In recent years, a few researches have been done on using ontologies for the retrieval
of visual resources such as image and video [5-7].

As an early research on image annotation and retrieval using ontologies, A. T.
Schreiber et al. [5] have been studied the use of background knowledge contained in
ontologies to index and search the collections of images. In particular, to describe the
semantic information called subject matter description, they constructed a domain-
specific ontology for the animal domain that provides the vocabulary and background
knowledge describing features of the photo’s subject matter. However, although their
work shown the benefits of image annotation obtained by using ontologies, they did
not reduce the burden of annotators because ontologies are just used for assisting
manual annotation.

In [6], the authors proposed a hierarchical video content description and
summarization strategy supported by a novel joint semantic and visual similarity. In
order to describe the video content accurately, they used the low-level visual features
that are extracted by various video processing techniques, and the semantic features
that are manually annotated using a video content description ontology. Based on the
similarity of these visual and semantic features, they constructed a hierarchical video
content structure by merging and grouping a small video unit into a bigger video unit.
Although they proposed a method using an ontology to describe the video content
semantically, this work is also performed by manual annotation.

Vasileios Mezaris et al. [7] proposed the method which uses an object ontology
and intermediate-level descriptor values to describe semantic information. First, an
image is segmented to a number of regions by using an image segmentation
algorithm, and then the visual features of each region are automatically extracted. The
extracted visual features are mapped to human-readable intermediate-descriptor
values. Finally, the object of an image is identified by using the object ontology
which has the name of each object as its top-level class and the intermediate-level
descriptor values as its property values. Here, the object ontology is a specification for
a specific object. For example, ‘tiger’ object is defined as Luminance = {high,
medium}, green-red = {red low, red medium}, blue-yellow = {yellow medium,
yellow high} and size = {small, medium}, where the intermediate-level descriptor
values such as ‘high’ and ‘red low’ are defined based on the visual features. However,
this method has several limitations as follows: First, the object ontology only takes
into account the subsumption relationship between the object and the visual feature
classes. However, to describe the image content efficiently and accurately, it is
necessary to define the relationship among the objects, and the relationship among the
visual feature classes as well as the relationship between the object and its visual
features. Second, since the object ontology has to be built for each object individually,
it must be reorganized every time a new object comes from domain experts. That is,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

488 K.-W. Park, J.-W. Jeong, and D.-H. Lee

since their approach did not employ any inference rule for extracting the high-level
concept, the object ontology must be reorganized as a new object is added. In general,
semantic inference rules can be used to derive the new knowledge from existing
knowledge in a domain.

In order to address these problems, we will infer the high-level concepts by
applying the semantic inference rules to the visual and animal ontologies. In
particular, since such rules can be shared and collaboratively modified as the domain
understanding changes, it is not necessary that the domain ontology is rebuilt when a
new object comes from domain experts or existing knowledge is modified. That is, we
have only to redefine the semantic inference rules.

3 The Architecture of OLYBIA

In this section, we first introduce the architecture of OLYBIA and explain the
methods for mapping the visual features to the semi-concepts in detail. And then, we
describe the method for detecting the semantic inference rules automatically via the
training data set including animal objects of the same kind.

Ontology Library

Visual
Ontology

Animal
Ontology

User

User Interface

Image Segmentation
Module

MPEG-7
Visual Descriptors

Semi-concept
Mapping Module

Inference
Engine

Image Description
Generation Module

Storage Systems

Region
Visual

Features

Semi-concept values

Instance

Image Description

Meta-data

Visual Features

Semi-concept values

Image Description

Image
Description
Database

Image Database

High-level

Concept

Image

Image description generation session
Information in Image description

Legends :

Fig. 1. The architecture of OLYBIA

The overall architecture of OLYBIA is shown in Figure 1. The operation of
OLYBIA is executed in the order as follows: First, in image segmentation module,
the region of interest (ROI) is segmented from an image using the algorithm proposed
in [8]. Then, the MPEG-7 visual descriptors extract the visual features from ROI. For
this, we use the edge histogram descriptor (EHD) for the texture feature, the contour-
based shape descriptor (Contour-SD) for the shape feature, and the color structure
descriptor (CSD) for the color feature. The extracted visual features are mapped to the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 OLYBIA: Ontology-Based Automatic Image Annotation System 489

semi-concepts via the semi-concept mapping module that will be explained in
Section 3.1. These semi-concepts are stored as the property values of an instance of
the visual ontology. Finally, the inference engine extracts the high-level concepts by
applying the semantic inference rules to the visual and animal ontologies. By using
these high-level concepts, the image description generation module generates the final
image description together with the additional information, and then stored them into
an image description database for the efficient image management and retrieval.

3.1 Semi-concept Value Mapping

MPEG-7 is a standard for describing multimedia content published by the Moving
Picture Experts Group (MPEG) [9] and broadly offers a number of tools which
describe the multimedia contents in various aspects. According to Spyrou E. et al.
[10], it is better to exploit several visual features than only one visual feature.
Therefore, we use the EHD, CSD, and Contour-SD to extract representative visual
features that are mapped to the semi-concept. As mentioned in Section 1, the values
of semi-concepts are simple keywords which are automatically assigned by matching
the quantity of visual features into keywords according to a specific range.

For the color feature, we use the CSD that represents an image by both the color
distribution of an image (similar to a color histogram) and the local spatial structure
of the color [11]. The color histogram is used for calculating the dominant colors
DC0~1 and the colorfulness diff0~1 for DC0~1, and then these are mapped into the semi-
concepts S_DC0~1 and S_Diff0~1, respectively as follows:

Algorithm 1. Semi-concept value mapping algorithm

INPUT: an input image I.
OUTPUT: a set of semi-concept values that represent the color feature of I.

1. A 256-bin color histogram is extracted from the input image I, and then bins are
unified to a 128-bin color histogram for more efficient computation.

2. The 128-bin color histogram h is defined via five subspaces, i.e., Sm, m=0,…,4, in
the HMMD color space. S0~2 represent the color by dividing hue into 8 uniform
intervals and sum into 4 uniform intervals, giving 8x4 cells in subspaces,
respectively. On the other hand, we do not consider S3 because it represents the
color information differently from S0~2. S4 represents the gray scale by dividing hue
into 1 uniform intervals and sum into 16 uniform intervals. The semi-concepts
S_DC0 and S_DC1 for DC0 and DC1 are defined by

2

{0,...,7}
0

0 1 0 0 7

0

{0,1}
6

7

,

(), (), where = { ,.., }

Red-Orange

... ...
_

Pink

Red

j ij
i

k

k
k

k

C S

DC Max tot DC Max tot DC tot C C

if DC C

S DC
if DC C

if DC C

∈
=

∈

=

= = −
==⎧

⎪
⎪= ⎨ ==⎪
⎪ ==⎩

∑

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

490 K.-W. Park, J.-W. Jeong, and D.-H. Lee

where sub-colors Cj denote the sum of the values of all the bins belonging to the jth
cell Sij in the subspaces Si.

3. The semi-concepts S_diffk for diff0, diff1 are calculated as follows:

2

0

0

1

2

for each , (), where

high,

_ medium,

low,

ij ijS S

k j k j j ij
i

k j

k k j

k j

DC C diff Max C C S

if diff S

S diff if diff S

if diff S

=
= = =

⎧ ==
⎪= ==⎨
⎪ ==⎩

∪

4. The semi-concept S_DG for gray scale can be also calculated in a similar manner.

The semi-concept values for the other visual features, EHD and Contour-SD, can
be also extracted automatically using the algorithms similar to Algorithm 1.

EHD represents the local edge distribution in an image. Thus, it is useful for
retrieving natural images with non-uniform textures [11,12]. For the images
containing homogeneous object, we found the fact that two edge types having the
maximum bin size in the global-edge histogram are almost similar. Therefore, we
only consider the global-edge histogram g_EH. The semi-concepts S_EH0~1 for two
representative edges are as follows:

() ()

3 3

0 1 2 3 4 {0,1,2,3,4}
0 0

0 1 0

0

{0,1}

_ { , , , , }, where edge types

_ , _

Vertical,

Horizontal,

_

ijh

k k
i j

I I I

I
k

l

g EH E E E E E E e

E Max g EH E Max g EH E

if E E

S EH

∈
= =

∈

= =

= = −

==

=

∑∑

1

2

3

4

 45diagonal,

135diagonal,

Nondirectional,

I
k
I
k
I
k
I
k

if E E

if E E

if E E

if E E

⎧
⎪ ==⎪⎪ ==⎨
⎪ ==⎪
⎪ ==⎩

where the local-edge histogram, 0 1 2 3 4{ , , , , }ij ij ij ij ijh h h h h

ijh e e e e e= , is a local edge distribution

corresponding to row i x column j subimage in an image I.
The semi-concept S_Contour0~3 for Contour-SD can be also calculated in a similar

manner to the above. Due to the lack of space, we omit explaining the mapping
procedure of Contour-SD to its corresponding semi-concepts S_Contour0~3.

As a result, these semi-concepts extracted by Algorithm 1 are stored as the
property values of an instance of the visual ontology that will be explained in next
section.

3.2 Visual and Animal Ontologies

The W3C has established the OWL web ontology language on the basis of RDF. We
make use of OWL that offers the vocabulary for describing properties and classes in
order to describe the visual and animal ontologies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 OLYBIA: Ontology-Based Automatic Image Annotation System 491

Object

Component
VD

Contour_SD_ComponentEHD_ComponentCSD_ComponentContour_SDEHDCSD

hasCSD_Component hasEHD_Component hasContour_SD_Component

hasVD

Relationship
subClassOf

Global Prototype

Fig. 2. Class hierarchy and relationships of the classes in the visual ontology

Table 1. The definition of the classes in the visual ontology

Class Property Definition

Object hasVD VD
Describing the object in an
image

Component None
The component of MPEG-7
visual descriptors

VD None
Describing the MPEG-7 visual
descriptors

CSD
∃ hasCSD_Component

CSD_Component
Describing the CSD of the
MPEG-7 visual descriptors

EHD_Component S_EH0_Value, S_EH1_Value
The semi-concept values of the
EHD

Figure 2 shows the part of the visual ontology. As shown in Figure 2, it is made up
of various classes and relationships among them. Table 1 shows the definition of
some classes in the visual ontology. For example, as depicted in Table 1, Object class,
the top-level class, describes the object in an image and is concerned with visual
descriptor (VD) class by hasVD relationship. In the case of the classes that are not
defined in Table 1 (e.g., the CSD_Component class), they are also similar to the
definition of the sibling classes.

1 <Object rdf:ID = “Object_1”>
2 <hasVD rdf:resource = “#EHD_1”/>
3 <hasVD rdf:resource = “#CSD_1”/>
4 <hasVD rdf:resource = “#Contour_SD_1”/>
5 </Object>
6 <EHD rdf:ID = “EHD_1”>
7 <hasEHD_Component>
8 <EHD_Component rdf:ID = “EHD_Component_1”>
9 <S_EH0_Value rdf:datatype = http://www.w3.org/...#String> Horizontal </…>
10 <S_EH1_Value rdf:datatype = http://www.w3.org/...#String> 45diagonal </…>
11 </EHD_Component>
12 </hasEHD_Component>
13 </EHD>
14 <CSD rdf:ID = “CSD_1”>
15 <hasCSD_Component>
16 <CSD_Component rdf:ID = “CSD_Component_1”>

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

492 K.-W. Park, J.-W. Jeong, and D.-H. Lee

17 <S_DC0_Value rdf:datatype =http://www.w3.org/…#String>Yellow-Green </..>
18 <S_DC1_Value rdf:datatype =http://www.w3.org/…#String>Sky-Blue </..>
19

The above OWL document denotes the part of the visual ontology for the instance
Object_1. In line 1~5, Object_1 is concerned with the instances EHD_1, CSD_1, and
Contour_SD_1 by hasVD relationship. In line 6~13, EHD_1 has the string values
‘Horizontal’, ‘45diagonal’ for the semi-concepts S_EH0 and S_EH1, respectively.
Also, in line 14~19, CSD_1 has the string values ‘Yellow-Green’, ‘Sky-Blue’ for the
semi-concepts S_DC0 and S_DC1, respectively.

Fig. 3. The class hierarchy of the animal ontology

We also constructed the animal ontology representing animal taxonomy since the
evaluation domain is animal images. Figure 3 depicts the class hierarchy of the animal
ontology that is used to infer the high-level concepts in animal images. Note that the
goal of animal ontology is only to provide the type of an object. Therefore, the
relationships among the classes are not defined. In fact, we do not describe all kinds
of animal terms because it is very difficult to construct the animal ontology consisting
of all kinds of animal terms.

3.3 Semantic Inference Rules

The aim of inference is to derive the new knowledge by applying the inference rules
to existing knowledge in a specific domain. Currently, various rule engines for OWL
reasoning have been proposed [13,14]. We use ‘Bossam’ rule engine [15] which
provides a rule language called ‘Buchingae’ for OWL reasoning.

The key idea for automatic detection of the semantic inference rules is based on the
observation that the visual features of the same objects are very similar to each other.
Based on this characteristic, the most common values of the semi-concepts for an
object are defined as a rule’s terms.

In our work, we used eleven categories of distinct semi-concepts for each visual
feature. That is, there are five categories for the color feature, {S_DC0, S_DC1,
S_diff0, S_diff1, S_DG}, two categories for the texture feature, {S_EH0, S_EH1}, and

four categories for the shape features, {S_Contour0, S_Contour1, S_Contour2,
S_Contour3}. Consequently, the algorithm for detecting the semantic inference rules
is to find the most frequently appeared terms for each semi-concept category on the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 OLYBIA: Ontology-Based Automatic Image Annotation System 493

training image data set, I = {I0,…,In}, with the same object. The algorithm for
detecting the inference rule is as follows:

Algorithm 2. Automatic detection of the semantic inference rules

INPUT: a set of the semi-concept values from all images in the training data set I.
OUTPUT: a set of terms that will be used in the inference rules.

1. We extract the semi-concepts from all images in I and count the number of images
with the same semi-concept values. That is, we calculate the distribution of semi-
concept values, SH = {sh0,…,sh10}, for each semi-concept category. As mentioned
above, there are eleven categories for distinct semi-concepts. Thus, the total
number of the elements of SH is 11.

2. The standard deviations {0,...,10}xσ ∈ for each {0,...,10}xsh ∈ are calculated. In case of that

the value of xσ < τ, the procedure is terminated because this means that the images

have too various semi-concept values to discover the most frequently appeared
terms for a specific rule.

3. In case of that the value of xσ ≥ τ, the most common values among the values of

shx become the element of the rule set CRx.

In Algorithm 2, if the standard deviations xσ for shx is less than a threshold (τ), it
means that the training images with the same object have too various semi-concept
values to discover the most common semi-concept values that are used in the
inference rules. Actually, though the experiments, we found that OLYBIA shows a
good performance when τ is about 0.4.

By Algorithm 2, we can decide the terms that are used in the semantic inference
rule. For example, let us assume that the most common semi-concept values for each
semi-concept category on the images containing the ‘tiger’ object are as follows:

sh0 (=S_DC0)= ‘Red-Orange’, sh2 (=S_diff0) = ‘Medium’, … , sh4 (=S_EH0) =
‘Nondirectional’, …

Then, the rule for identifying the ‘tiger’ object is as follows.

0 1

 : x

 : (x y) : _ (y z)

 : _ _ (z "Nondirectional") : _ _ (z "45diagonal")

If vdo object(?)

vdo hasVD ? , ? vdo hasEHD Component ? , ?

vdo S EH Value ? , vdo S EH Value ? ,

∧
∧ ∧

∧ ∧

0 0

 : (x) : _ ()

 : _ _ ("Red-Orange") : _ _ ("Medium")

 : x

vdo hasCSD ? , ?a vdo hasCSD Component ?a, ?b

vdo S DC Value ?b, vdo S diff Value ?b,

ani Tiger(?)

∧ ∧
∧

⇒

We used a training data set consisting of about 1,300 images to find out the
inference rules identifying 12 kinds of animal objects (i.e., tiger, cheetah, eagle,
penguin, etc.). However, we could not discover the rules for the ‘penguin’ and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

494 K.-W. Park, J.-W. Jeong, and D.-H. Lee

‘avocet’ objects. It is possible to extract different visual features for the same object
because the visual features are sensitive to the physical environment (e.g., camera
angle, light, etc.).

4 Design and Implementation

We have designed the user interface to allow the users to browse all of the image
information more intuitively. Although we mainly focused on the automatic
extraction of high-level concepts from an image, we have built the system generating
the image description which includes visual features and additional information as
well as high-level concepts to satisfy various requirements of the users on the image
management and retrieval.

Figure 4 depicts the snapshot of OLYBIA interface. The interface of OLYBIA can
be functionally divided into 4 main parts: 1) Meta-data description panel represents
the metadata information such as a creation time, user comment, and etc. 2) Visual
information panel describes the visual features (i.e., CSD, EHD, and Contour-SD) of
the corresponding image that are extracted by the MPEG-7 visual descriptors. 3)
Physical information panel represents the physical information of the corresponding
image, such as the type and size of an image. 4) Semantic information panel shows
the semi-concept values and the high-level concept that are automatically extracted by
Algorithm 1 and 2. The image description including all information of the
corresponding image is generated as an OWL document and stored into an image
description database.

1

2

3

4

Fig. 4. The snapshot of OLYBIA interface

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 OLYBIA: Ontology-Based Automatic Image Annotation System 495

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eagle Bear Tiger Bighorn C heetah Kangaroo Elephant Lion Blackbird Horse

Precision R ecall

Fig. 5. The accuracy of image annotations by the semantic inference rules

5 Experimental Evaluation

Our system is evaluated on Corel image database which consists of about 2,500 color
images with 12 semantic categories. These categories are Polar bear, Cheetah, Eagle,
Elephant, Bighorn, Lion, and etc. For the performance evaluation, we measured the
accuracy of the image annotation using precision and recall parameters which are
calculated by equation (1).

AnnoRel Anno AnnoRel Relp = Num /Num , r = Num /Num (1)

where NumAnnoRel means the number of relevant images annotated, NumAnno is the total
number of images annotated, and NumRel is the number of relevant images in the
image data set.

Figure 5 shows the results of our experiments. Through the experiments, we can
deduce a few facts. First, we could know that average precision is higher than average
recall. Since the goal of the image annotation is how to more accurately describe the
image content in an image database, this result is desirable in aspect of the image
annotation. Second, we could discover that, if an object has distinct visual features
among objects, its corresponding images are likely to be annotated more accurately.
As depicted in Figure 5, the precision of ‘Eagle’ object is relatively high as compared
with those of the other objects because it has very different visual features from the
other objects. On the other hand, the error may arise for objects, such as ‘Tiger’ and
‘Cheetah’ objects, that have similar visual features.

6 Conclusion

In this paper, we proposed a new image annotation system called OLYBIA where the
visual features are mapped into semi-concepts and the high-level concepts are
automatically extracted by applying the inference rules to the visual and animal
ontologies. In particular, since the visual ontology is based on the characteristic that
the visual features are not restricted to a specific domain, it is possible to apply for
various domains such as medical image, artwork image, and so on.

As compared with other image annotation systems, OLYBIA has advantages as
follows: First, since the entire progress is automatically accomplished, we can quickly

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

496 K.-W. Park, J.-W. Jeong, and D.-H. Lee

describe a variety of information including high-level concept. Second, although
OLYBIA is designed for the animal domain, it is possible to apply various domains
without serious modification because the visual ontology and the semantic inference
rules can be reused.

However, OLYBIA has also several limitations. First, an image may contain more
than two objects. Therefore, we need to describe more than one object and the
relationship among them. For example, in the case of the semantic query such as
‘Crocodile bird on the crocodile’, we have to define the spatial relationship between
the ‘crocodile’ and ‘crocodile bird’ objects. We are now studying how to define the
relationships among various objects to extract rich semantic information from an
image. Second, in order to obtain sophisticated inference rules, the algorithm for
detecting the inference rules have to be more elaborated upon. Our future work will
focus on addressing these problems.

References

1. W. E. Mackay: EVA: An experimental video annotator for symbolic analysis of video
data. SIGCHI Bulletin, Vol. 21 (1989) 68-71

2. Eitetsu Oomoto and Katsumi Tanaka: OVID: Design and Implementation of a Video-
Object Database System. IEEE Trans. On Knowledge and Data Engineering, Vol. 5 (1993)
629-643

3. John R. Smith and Shih-Fu Chang: VisualSEEK: a fully automated content-based image
query system. ACM Multimedia 96 (1996)

4. Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein and Jitendra Malik:
Blobworld: A System for Region-Based Image Indexing and Retrieval. Third International
Conference on Visual Information Systems (1999)

5. A. T. Schreiber, B. Dubbeldam, J. Wielemaker, and B. J. Wielinga, “Ontology-based photo
annotation”, IEEE Intelligent Systems (2001) 66-74.

6. Xingquan Zhu, Jianping Fan, Ahmed K. Elmagarmid, Xindong Wu, “Hierarchical video
content description and summarization using unified semantic and visual similarity”,
Multimedia Syst. 9(1) (2003) 31-53

7. Vasileios Mezaris, Ioannis Kompatsiaris, and Michael G. Strintz, "Region-based Image
Retrieval using an Object Ontology and Relevance Feedback", EURASIP JASP, 2004

8. M. Jacob, T. Blu and M. Unser: Efficient energies and algorithms for parametric snakes.
IEEE Transactions on Image Processing, Vol. 13 (2004) 1231-1244

9. ISO/IEC 15938-5 FDIS Information Technology: MPEG-7 Multimedia Content
Description Interface - Part 5: Multimedia Descriptin Schemes. (2001)

10. Spyrou E., Le Borgne H., mailis T., Cooke E., Avrithis Y. and O'Connor N: Fusing
MPEG-7 visual descriptors for image classification. ICANN 2005 (2005) 11-15

11. BS Manjunath, Philippe Salembier and Thomas Sikora: Introduction to MPEG-7. (2002)
12. D.K. Park, Y.S. Jeon, C.S. Won and S. -J. Park: Efficient use of local edge histogram

descriptor. ACM International Workshop on Standards, Interoperability and Practices,
Marina del Rey, California, USA (2000) 52-54

13. Hewlett-Packard: Jena Semantic Web Framework. http://jena.sourceforge.net/ (2003)
14. UMBC: F-OWL: An OWL Inference Engine in Flora-2. http://fowl.sourceforge.net
15. Minsu Jang and Joo-Chan Sohn: Bossam: An Extended Rule Engine for OWL Inferencing.

RuleML 2004 (2003) 128-138.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data

Intensive Applications

Hondjack Dehainsala, Guy Pierra, and Ladjel Bellatreche

LISI/ENSMA, Téléport 2, 1, ave. Clément Ader 86960 Futuroscope - France
{dehainsala,pierra,bellatreche}@ensma.fr

Abstract. Recently, several approaches and systems were proposed to
store in the same database data and the ontologies describing their
meanings. We call these databases, ontology-based databases (OBDBs).
Ontology-based data denotes those data that represent ontology indi-
viduals (i.e., instance of ontology classes). To speed up query execution
on the top of these OBDBs, efficient representations of ontology-based
data become a new challenge. Two main representation schemes have
been proposed for ontology-based data: vertical and binary representa-
tions with a variant called hybrid. In these schemes, each instance is split
into a number of tuples. In this paper, we propose a new representation
of ontology-based data, called table per class. It consists in associating
a table to each ontology class, where all property values of a class in-
stance are represented in a same row. Columns of this table represent
those properties of the ontology class that are associated with a value
for at least one instance of this class. We present the architecture of
our ontology-based databases and a comparison of the effectiveness of
our representation scheme with the existing ones used in Semantic Web
applications. Our benchmark involves three categories of queries: (1) tar-
geted class queries, where users know the classes they are querying, (2)
no targeted class queries, where users do not know the class(es) they are
querying, and (3) update queries.

1 Introduction

Nowadays, ontologies are largely used in several research and application do-
mains, such as, Semantic Web, information integration, e-commerce, etc. Ac-
tually, several tools for managing (building, inferring, querying, etc.) ontology
data and ontology-based data (also called ontology individuals or ontology class
instances) are available (e.g., Protégé 2000). Usually, ontology-based data ma-
nipulated by these tools are stored in the main memory. Thus, for applications
manipulating a large amount of ontology-based data, query performance be-
comes a new issue. Over the last five years, several approaches have been pro-
posed for storing both ontologies and ontology-based data in a database in order
to get benefit of the functionalities offered by DBMSs (query performance, data
storage, transaction management, etc.) [2,3,4,8,10,11] (see [15] for an extensive
comparison). We call this kind of databases, ontology-based databases (OBDBs).

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 497–508, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

498 H. Dehainsala, G. Pierra, and L. Bellatreche

Two main OBDB structures for storing ontology and ontology-based data
were proposed: single table approach and dual schemes approach. In the single
table approach [1,3,8,10], the description of classes, properties and their instances
are stored in a single table called vertical table [1]. The schema of this table has
three columns: subject, predicate, object, representing instance identifier, prop-
erty of an instance and value of an instance, respectively. This approach is simple
to implement and its structure may be used both for the ontology and for in-
stance data. Therefore, tools (inference engine, APIs, etc.) developed for storing
ontologies can also be used for processing instances data. To ensure a high per-
formance of queries, each column shall be indexed and the predicate column shall
be clustered [1]. Materialized views can also be used [11]. Its main drawbacks
are: (1) an extra storage cost (for storing indexes), (2) a maintenance overhead,
and (3) its inefficiency for processing large join queries [2].

Fig. 1. The vertical table approach

To overcome the drawbacks of the first approach, a dual scheme approach
has been proposed. It consists in storing separately ontologies and instance data
in two different structures, called ontology and data, respectively [2,4,11]. The
ontology structure depends upon the ontology model (e.g., RDF Schema, OWL).
Figure 2a shows an example of ontology structure for RDF schema. Instances
and their properties values are also stored separately. Three different schemes
have been proposed to record class belonging [15]. In the two first approaches,
each class is mapped onto a table. The third one, called, hybrid [2] maps all
classes on the same binary table. These schemes are summarized as follows:
(1) One table per class with only one column storing all IDs of class instances
[2,14] (see NOISA on figure 2b). (2) One table per class with table inheritance
using SQL99 capabilities [2,4] (see ISA on figure 2b). (3) A single table with
two columns: ID and Class, representing the identifier of an instance, and its
ontology class [2], respectively. The ID column may be either the URI or integer
identifiers mapped on URI in a particular binary table (called ”instances”).

Three representation of property values are possible: (1) binary tables, (2)
vertical table of triples and (3) hybrid approach consisting of a set of triple

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data Intensive Applications 499

Fig. 2. (a) Ontology Schema in the dual scheme approach. (b) Instance scheme alter-
native representations. (c) Property value scheme alternative representations.

tables (one per a range data type) (see Figure 2c). It is worth noticing that
both the vertical table approach, and the dual scheme approach with hybrid
representation of instances and properties involve a small number of large tables
when other dual scheme approaches involve a large number of smaller tables.

A number of benchmarks were already proposed to compare the existing ap-
proaches [1,2,10,11,15]. The main findings may be summarized as follows:

– The vertical table approach may only provide similar query results with the
dual schema when the vertical table is clustered [1], and/or when materi-
alized views represent the dual scheme content [15]. Even in this case the
vertical table approach provides worst results for taxonomic queries, i.e.,
those queries require subsumption inference [15].

– The dual scheme approach with hybrid representation of instance belonging
and property values also requires clustering operations of these tables [15],
else this approach is outperformed by dual scheme with unary instance tables
and binary property tables.

– The clustering operation is time consuming. An experiment was done on
a small database1 and we got about 3 mins and 30 seconds, which is very
significant. This is because a clustering operation has to be performed each

1 DB 10P 1K: database which has 10 valued properties and 1K instances per class
(see section 4.1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

500 H. Dehainsala, G. Pierra, and L. Bellatreche

time for each update query. Thus the cost of updating the database schema
when unary and binary representations are used is to be compared with the
cost of clustering data in vertical table and hybrid approaches.

– Most popular OBDB management systems (e.g., Sesame [4], RDFSuite [2]
and DLDB [11]) use the binary representation to store ontologies instances.

Thus, from the previous experiments, we may conclude that the dual scheme
approach with unary instance and binary property representations appears as
a suitable approach for those databases that are both rather large and often
updated. Nevertheless, when the number of properties associated with each in-
stance grows, browsing or querying instances becomes more and more difficult
since it requires a large number of joins.

The paper is organized as follows: Section 2 presents the context of our
ontology-based database architecture, called OntoDB and the PLIB ontology
model. Section 3 presents the architecture of OntoDB and our proposed rep-
resentation, called, table per class, for storing ontology-based data. Section 4
presents our experimental results. Section 5 concludes the paper and presents
some perspectives.

2 Context of Our Study

In the 90s, to allow the exchange of electronic catalogues of industrial com-
ponents, an ontology model for technical domain was developed and published
as an international standard known as PLIB (ISO 13584-42: 98). A model to
exchange objects described using ontologies was developed [13] and also stan-
dardized (ISO 13584-25:2003). In the beginning of 2001, a new project called
OntoDB was launched. It aimed to store, exchange, integrate and process in-
dustrial catalogues modeled as ontology-based data associated with a formal
ontology. PLIB-based ontologies were first targeted. We outline below both the
PLIB ontology model and the model for PLIB-based instance data.

2.1 PLIB Ontology Model

The PLIB ontology model is technical domain-oriented as it supports four main
capabilities broadly used in engineering: (1) a property value may depend upon
its evaluation context (e.g., the length of an axis depends upon its temperature),
thus a property may be a function, (2) the property value may be associated
with a measure unit (e.g., a temperature may be expressed in degree Celsius),
(3) an object must be characterized by one single ” characterization class” (as-
sociated with properties), but it may also be associated with any number of
discipline-specific ontology class, the point of view itself being represented by
an ontology class [12], and (4) an object may be classified in any number of
”classification class” (not associated with properties). It is worth noticing that
this particular taxonomy of meta classes allows PLIB ontology to represent a
number of Semantic Web applications such as Web Portal catalogs [2].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data Intensive Applications 501

PLIB ontologies are domain ontologies: they describe by means of classes
and properties all the consensual entities of the target domain. Each property
is defined in the context of a class, that constitutes its domain, and it has a
meaning only for this class and its possible subclass(es). To avoid the contextual
character of a classification, in a PLIB ontology, a class is created only if it is
necessary to define the domain of a property that would not be understood in
the context of its super-class. Inversely, a property can be defined in the context
of a class even if it does not apply to all its instances or subclasses. The single
condition is that it is defined in an unambiguous way.

Thus, class hierarchies of PLIB ontology are extremely ”flat”. They do not
define all the possible classes existing in a given domain, but they define only
a canonical minimal vocabulary that consists only of primitive concepts. This
vocabulary shall only make it possible to describe, in a single way by a class
belonging and a set of properties value pairs, all instances which are subject of a
common understanding by domain experts. Any entity existing in a domain can
thus be described, either directly in terms of the shared ontology or by adding
additional classes that refine shared concepts and/or that add properties to the
shared ontology.

2.2 PLIB Instance Data Model

Contrary to individuals of description logic-based ontologies that may belong
to any number of non connected ontology classes, the PLIB instance model is
strongly typed. This means that (1) each instance belongs to exactly one minimal
characterization class (called its basis class which is the minimum for subsump-
tion order of all the characterization classes to which the instance belongs), (2)
each property is defined in the context of a characterization class that defines
its domain of application, and is associated with a range and (3) only properties
that are applicable in the context a characterization class may be used for de-
scribing its instance. This assumption, rather similar to the OEM model in the
TSIMMIS project [5] ensures that there exists an envelop modem that fits with
any instance of a class: namely the set of all its applicable properties. But, unlike
strongly typed conceptual models, an instance is not required to be associated
with values for all the applicable properties of its basis class.

3 OntoDB Model Architecture

We describe below the OBDD architecture we have proposed for storing ontolo-
gies and PLIB-instance data. The main objectives of our architecture model are:
(1) to support automatic integration and management of heterogeneous popula-
tions whose data, schema and ontologies are loaded dynamically, (2) to support
evolutions of the used ontologies and of ontology scheme, and (3) to offer data
access, at the ontology level, whatever is the type of the used DBMS. Our archi-
tecture is composed of four parts. Parts 1 and 2 are traditional parts available
in all DBMSs, namely the data part that contains instance data and meta-base

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

502 H. Dehainsala, G. Pierra, and L. Bellatreche

part that contains the system catalog. Parts 3 (ontology) and 4 (meta-schema)
are specific to our OntoDB (Figure 3). Ontology part allows to represent on-
tologies in the database. Note that each ontology that can be represented and
exchanged as models (following Bernstein’s terminology) can be supported by
our OntoDB model. We can cite for instance, OWL [6], and in particular PLIB.
When the target DBMS is relational, the ontology part schema is defined us-
ing an object/relational mapping. The meta-schema part records the ontology
model into a reflexive meta model. For the ontology part, the meta schema part
plays the same role as the one played by the meta-base in traditional DBs. In-
deed, this part may allow: (1) a generic access to the ontology part, (2) a support
of evolution of the used ontology model, and (3) a storage of different ontology
models (OWL, PLIB, etc.).

Fig. 3. Our OntoDB Architecture

By means of naming convention, the meta-base part also represents the logical
model of the content, and its link with the ontology, thus representing implicitly
the conceptual model of data in database relations. Therefore, our OBDB model,
called OntoDB represents explicitly: (1) ontologies, (2) data scheme, (3) data,
(4) the links between the data and their schema and (5) the link between the
data and the ontology.

Representation of ontology-based data
Ontologies describes semantic of objects of a given domain. This is done by
assigning objects to ontological classes and describing them with ontological
properties. According to the used ontology model, various constraints govern
such descriptions. For instance, in RDF Schema, an object may belong to any
number of classes and can be described by any set of properties. Therefore each
domain object has its own structure. Oppositely, a database schema describes
”similar” objects by an identical logical structure, in order to speed up queries
using indexing schemes. Without any particular assumption, the only possible
common structure consists in associating each object with any subset of classes
and any subset of properties. All OBDB schemes discussed in section 1 support
this capability.

This approach is not efficient in application domains (like engineering), where
each instance is characterized by a significant number of properties (e.g., 50),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data Intensive Applications 503

and this number is considered smaller than the total number of properties of
various class instances (e.g., 1000). Agrawal et al. [1] evaluated this approach
and showed its inefficiency.

Fig. 4. Table per class representation approach

Thanks to the strong typing assumptions presented in section 2.2, we define
a relevant schema for any ontology class. It consists of all the class applicable
properties used at least by one instance of the class. This schema might contain
in some case a number of null values. This scenario is less frequent, since in indus-
trial component catalogues ([2]) same properties are used by various instances
of the same class. Thus our approach supports efficient query processing. Note
that this schema definition implies a major difference between object-oriented
databases (OODB) and our OBDB. In an OODB, subsumption means inheri-
tance of properties/attributes. All the properties defined in some class do exist
in all its subclass(es). The only mechanism for property sharing between two
subclasses of a class is to factorize this property at the level of the mother class.
But then the property shall appear in all sibling classes. In OBDBs, inheritance
is intentional: it concerns only the ontology level. Represented properties may
be any subset of applicable properties.

To summarize our ontology-based data representation, we create a table for
each class in the database. Its columns consists of a subset of applicable prop-
erties those that are used by some of its instances. Figure 4 shows an example
of our representation structure with ontology data of Figure 1. In the following
section, we call table per class our approach of representation of ontology-based
data. Note that our OntoDB model records explicitly the structure of each class
table and that taxonomies queries (i.e., queries that require subsumption infer-
ence) are first evaluated intentionally (to know which classes use each particular
property) before querying the data part.

4 Evaluating Instance Representation Schemes

In order to study the effectiveness of our representation of ontology-based in-
stance data, we carried out a series of experiments to compare two representation
scheme: unary instance and binary property representations (binary for short)
vs table per class. Our initial intent was to compare also with the vertical rep-
resentation. Finally, we restricted to binary representation. As an experimental
platform, we use the ORDBMS PostgreSQL-7.4 (emulated on cygwin) installed
on a Pentium 3.7 GHz CPU, 6 GO of RAM, 200 GO of Hard Disk. In all our
experiments, a cache memory of 50 MO has been used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

504 H. Dehainsala, G. Pierra, and L. Bellatreche

Fig. 5. The used databases

4.1 Databases

To perform our experiments, we use a real and representative ontology of our
application domain. It describes the various kinds of electronic components to-
gether with their characteristic properties. This ontology is published as an In-
ternational Standard in 1998, IEC 61360 [9] and has 190 classes: 134 leaf classes
and 56 no leaf classes. These classes have a total of 1026 properties. The aver-
age deep of the IEC ontology hierarchy is 5. To facilitate the computation of
the sizes of the used databases, all ranges of properties were changed to have a
string (255) as their range. A generator of each class population is developed.
Various populations were generated, by varying the number of instances and
the number of valued properties used by each class. We denote by TP and TC,
the binary table per property and table per class approach, respectively. Let
DB aP iK be a database with ”a” properties and ”iK” instances per class. For
example, BD 50P 2K is a database with 50 valued properties and 2K instances
for each class in the database.

To conduct our experiments, six databases are created (Figure 5). These
databases are classified into two series: databases in the first series (Serie1) have
the same number of instances per class and a different number of properties:
BD 10P 1K, BD 25P 1K and BD 50P 1K. This series allows us to evaluate the
effect of database size on query performance. Databases in the second category
(Serie2) have the same size (InstancesNumber × PropertiesNumber), but differ-
ent number of instances and of properties per class: BD 10P 10K, BD 25P 4K
and BD 50P 2K. This classification allows us to study the effect on query per-
formance of the number of properties and of instances per class. Note the series 2
databases contain 13.5 millions of RDF triples.

4.2 Query Taxonomy

Three classes of queries are considered: targeted class queries, no targeted class
queries and update queries. In a targeted query, a user knows the classes that
she wants to query. In a non targeted class of queries, a user does not know the
classes that she is looking for. In this study, we consider PSJ queries (projection,
selection and join) executed on leaf and non-leaf classes. Note that each query
is performed once to warm up the database buffer and then performed at least
three times in order to get a mean running time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data Intensive Applications 505

Fig. 6. (a) Projection for various number of properties and various size of databases,
(b) Selection with various number of properties (DB 50P 2K)(c) Join within a leaf
class for various size of databases

4.3 Performance Results for Targeted Class Queries

We conduct three series of experiments: (1) projection queries, (2) selection
queries, and (3) join queries. Figure 6 below shows, for each database, the query
execution time as a function of a particular criteria. Table containing a ratio
(when present), gives how many times the classical TP representation is slower
than our TC representation. Due to space limitations, we are not showing the
complete experimented results that are described in [7].

Projection within a leaf class. We performed four queries with 1, 3, 5 and 10
projected properties, respectively. Figure 6a summarizes the execution time. The
response time for TC is relatively constant, when the number of projected prop-
erties increases, while for TP approach, the variation of the number of projected
properties means the augmentation of join operations.Therefore the cost increases
dramatically, when all the relevant binary tables cannot be simultaneously fetched
in the main memory. For the biggest database of our benchmark (1,7 to 3,4 GO),
projection on 10 properties is about 10 to 15 times faster with TC than TP.

Selection within a leaf class. Figure 6b shows performance of selection queries
on one of the biggest database, namely, DB 50P 2K. We varied the number of
properties in the selection predicate from 1 to 10. Once again, the worst per-
formance is justified by the number of join operations and the sizes of property
tables that may cause an important IO overhead. Changing the selectivity factor
of the predicate that contains only one attribute does not change significantly
the behavior of both representations. Globally, TC representation outperforms
TP by a factor between 17 and 85.

Join Operations within a leaf class. Figure 6c shows the performance of join
queries performed on databases of Series1. The queries return 1 property value
per class. The join selectivity is fixed to 0.25%. TC approach has better perfor-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

506 H. Dehainsala, G. Pierra, and L. Bellatreche

mance than TP. Variation of databases size increases the ratio between TP and
TC. The reason of worst performance of TP is justified by the size of the binary
property tables and the fact that a preliminary join is needed between the class
table and the property binary tables. In our domain of study, TC outperforms
TP between 4 and 8.

Projection and selection within non-leave classes. We have also evaluated
projection and selection within a non-leaf class with seven subclasses. Query re-
sponse time in a non-leaf class is the sum of queries response time performed in
each subclass of the non-leaf class. So, the shape of the curves of performances
are identical in queries on leaves and non-leaves classes. In these experiments,
the ratio TP/TC is between 11 and 35.

4.4 No Targeted Class Queries

When the class to be queried is unknown, the advantages of the table per class
approach may disappear. Such queries may be formulated as follows: ”find all
instances in the database that have value val1 for a property P1 AND/OR val2
for a property P2”, etc. Execution of this kind of queries in TC approach is
performed in two steps (1) find all classes in the database using properties (P1,
P2) perform selection queries on all found classes. In TP approach, execution of
non-targeted queries are performed directly by joining tables of the properties
present in the query predicates. We note that this kind of query is hardly used
in our application domain: we never request ”an object with the weight equals
1 kilogram”. Moreover, if one does not know the class of an object, we need, at
least, several properties for characterizing this object. Therefore, such queries
request projection on several properties.

We ran these queries against databases of growing sizes (Series 1). We varied
the number of projected properties to 1, 3, 5 and 10 to represent realistic queries.
TP approach is more efficient than TC approach as long as queries return less
than 5 properties. Beyond this number of properties, TC approach becomes more
efficient. The worst performance of TC is identified when a small number of
properties is requested (this is due to access time to the ontology part). Notice
that the time find all classes (step 1) is relatively constant, when we vary the
number of properties in the queries, contrary to TP approach where every new
property causes one more join. So, when the number of requested properties
increases, to compute classes in the first step in TC, becomes smaller than the
time of joins in the TP approach.

4.5 Update Queries

Figures 7 shows performance results of insertion and update queries. Queries
are ran on databases with different sizes. Both figures show that TC is more
efficient than TP. The worst performance of TP for insertion scenario results
from the fact that all tables of the valued properties need to be loaded in the
main memory, while TC loads only one table. For update queries (concerning

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: An Ontology-Based Database for Data Intensive Applications 507

Fig. 7. Insert and Update Queries

only one property value), the worst performance of TP is due to the size of the
property table that needs to be loaded. The cost ratio between TP and TC ranges
from 2 to 56 for insertion and is about 2 from each update for a singe property.

5 Conclusion

A number of ontology-based database structures have been proposed during
the last five years. Most of them are targeted to support real scale Semantic
Web applications. Several benchmarks were proposed to compare their perfor-
mance. These benchmarks focus mainly on the class structure and taxonomy
queries (i.e., retrieving proper or transitive instances of a particular class or
property). Other applications of ontology-based database exist and focus mainly
on property-value pairs (case of engineering databases and a number of B2B
applications), where an instance data consists of a class belonging and a num-
ber of property-value pairs. In this paper, we firstly present an ontology model,
secondly an OBDB architecture, and finally, a structure to store instance data,
called table per class. Our proposed benchmark for comparing this approach
with the binary table approach, uses a real standardized ontology with real size
databases containing up to 15 millions of RDF triples. Our benchmark is based
on three kinds of queries: (1) targeted class queries, (2) non targeted class queries,
and (3) insertion and update queries. For queries (1) and (3), the table per class
approach outperforms the classical binary table approach with ratio often bigger
than 10. The only case, where the binary approach is better is for no targeted
class queries, when a user only requests a very small number of property values.
Note that this kind of queries nearly never happens in our application domain.

Our OntoDB prototype is already supporting more than millions of instances
with dozen of properties, but it mainly uses PLIB ontologies. We are currently
working to make its ontology model more flexible to integrate other kind of
ontologies. We are also improving the ontology implementation to speed up the
ontology browsing process. Finally, we are developing a SQL oriented OBDB
query language that integrates most of RQL and of SQL99 capabilities.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

508 H. Dehainsala, G. Pierra, and L. Bellatreche

References

1. R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce data. In
Proc. VLDB’01, pages 149–158, 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. On
storing voluminous rdf descriptions: The case of web portal catalogs. In Proc.
ofWebDB’01 (co-located with ACM SIGMOD’01), 2001.

3. B.McBride. Jena: Implementing the rdf model and syntax specification. In Proc.
of the 2nd Intern. Workshop on the Semantic Web, 2001.

4. J. Broekstra, A. Kampman, and F.V. Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Proc. of the First Inter. Semantic
Web Conf., pages 54–68, 2002.

5. S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. D. Ullman, and J. Widom. The tsimmis project: Integration of heterogeneous
information sources. Proceedings of the 10th Meeting of the Information Processing
Society of Japan, pages 7–18, Marsh 1994.

6. M. Dean and Schreiber. Wl web ontology language reference. W3C Recommenda-
tion (2004), February 2004.

7. H. Dehainsala, G. Pierra, and L. Bellatreche. Managing instance data in ontology-
based databases. Technical report, LISI-ENSMA,http://www.lisi.ensma.fr/ftp/
pub/documents/reports/2006/2006-LISI-003-DEHAINSALA.pdf, 2006.

8. S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In Proc. of the 1st
Intern. Workshop on Practical and Scalable Semantic Systems (PSSS’03), 2003.

9. IEC. Iec 61360 - component data dictionary. International Electrotechnical Com-
mission. Available at http://dom2.iec.ch/iec61360?OpenFrameset, 2001.

10. L.Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an rdf storage and query system
for enterprise resource management. thirteenth ACM international conference on
Information and knowledge management, 2004:484 – 491.

11. Z. Pan and J. Heflin. Dldb: Extending relational databases to support semantic
web queries. ISWC’2003, 2003.

12. G. Pierra. A multiple perspective object oriented model for engineering design.
in New Advances in Computer Aided Design & Comp. Graphics, pages 368–373,
1993.

13. G. Pierra. Context-explication in conceptual ontologies: Plib ontologies and their
use for industrial data. to appear in Journal of Advanced Manufacturing Sys-
tems, World Scientific Publishing Company, available at http://www.lisi.ensma.fr/
ftp/pub/documents/papers/2006/2006-JAMS-Pierra.pdf 2006.

14. K. Stoffel, M.G. Taylor, and J.A. Hendler. Efficient management of very large
ontologies. In Proc. of American Association for Artificial Intelligence Conference
(AAAI’97), 1997.

15. V. Christophides Y. Theoharis and G. Karvounarakis. Benchmarking database
representations of rdf/s stores. In Fourth International Semantic Web Conference
(ISWC’05), November 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window

Skylines in a Sensor Network

Junchang Xin1, Guoren Wang1, Lei Chen2, Xiaoyi Zhang1, and Zhenhua Wang1

1 Institute of Computer System, Northeastern University, Shenyang, China
wanggr@mail.neu.edu.cn

2 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong, China

leichen@cs.ust.hk

Abstract. Currently, wireless sensor network has been widely used in
environment monitoring. The skyline query, as an important operator for
multiple criteria decision making and data mining, plays an important
role in many sensing applications. Though skyline queries have been
well-studied in traditional database system, the existing solutions de-
signed for data stored in a centralized site are not directly applicable to
sensor environment due to the unique characteristics of wireless sensor
network. In this paper, we propose an energy-efficient algorithm, called
Sliding Window Skyline Monitoring Algorithm (SWSMA), to continu-
ously maintain sliding window skylines over a wireless sensor network.
Specifically, SWSMA employs two types of filters within each sensor to
reduce the amount of data transferred and save the energy consump-
tion as a consequence. In addition to SWSMA, a set of optimization
mechanisms are also discussed to improve the performance of SWSMA.
Our extensive simulation studies show that SWSMA together with the
optimization techniques performs effectively on reducing communication
cost and saving the energy on monitoring sliding window skylines.

1 Introduction

In recent years, wireless sensor networks (WSN) have been widely used in en-
vironmental monitoring [16, 24], such as earthquake monitoring, habitat moni-
toring, agriculture monitoring, coal mine environment monitoring, etc. Current
sensors are generally cheap, resource-constraint and battery powered, it is not
possible or at least very difficult to change batteries. Therefore, applications
over sensor networks need a scalable, energy-efficient and fault-tolerant method
to monitor the tremendous data generated by sensors. Among all the queries,
the skyline query, as an important operator for multiple criteria decision making
and data mining, plays an important role in many sensing applications.

A skyline query is defined as following:

Definition 1. Assume that we have a relational database, given a set of tuples
T , a skyline query retrieves tuples in T that are not dominated by any other
tuple. For two tuples ti and tj in T , tuple ti dominates tuple tj if it is no worse
than tj in all dimensions and better than tj in at least one.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 509–521, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

510 J. Xin et al.

Within a sensor network environment, data are collected by each sensor node
periodically. It is impossible or meaningless to conduct skyline queries over the
infinite data streams collected by sensors. Thus, sliding window skylines, which
seek the skylines over the latest data that are constrained by a sliding window,
are very useful for some data monitoring applications. For example, an ornitholo-
gist who has been studying birds in the forest may want to know when and where
certain kinds of birds are more likely to be discovered. Existing solutions for sky-
lines can not be applied to the sensor environment directly due to distributed
nature of the sensory data. In addition to that, as we mentioned, energy is the
precious resource in the sensor network and wireless communication is the main
consumer, therefore, the sliding window skylines over a wireless sensor network
raise up a new challenge on how to minimize the communication cost, which is
not addressed by the centralized skyline solutions.

In this paper, we propose an energy-efficient algorithm, called Sliding Win-
dow Skyline Monitoring Algorithm (SWSMA), to continuously maintain sliding
window skylines over a wireless sensor network. SWSMA employs two types of
filters within each sensor to reduce the amount of data transferred and save the
energy consumption as a consequence. The contributions of this paper are:

1. We prove theoretically that skyline queries are decomposable, which indicate
that in-network computation can be applied to skylines;

2. We propose an energy efficient Sliding Window Skyline Monitoring Algo-
rithm (SWSMA) to continuously maintain sliding window skylines by em-
ploying two types of filters to avoid transmission unqualified tuples;

3. In addition to SWSMA, a set of optimization mechanisms are also discussed
to improve the performance of SWSMA.

2 Related Work

There are various query process models having been proposed for sensor net-
works, in which TinyDB [13, 14, 15] and COUGAR [25] are the two typical
systems. Both of them provide a SQL-Like interface to implement aggregation
operators, such as MAX, MIN, AVERAGE, SUM, and COUNT. The skyline
query was first investigated in [3], where several methods were presented, in-
cluding SQL implementaton, divide-and-conquer (DC) and block-nested-loop
(BNL). Chomicki et al. [5] present a pre-sort method, which sorts the dataset
according to a monotone preference function and then computes the skyline in
another pass over the sorted list. Two progressive methods, Bitmap and Index,
are presented in [22]. Since the nearest neighbor (NN) is sure to belong to the
last skyline, Kossmann et al. [10] present a progressive on-line method based
on NN, which allows user to interact with the process. Papadias et al. [19] use
R-tree to further improve the performance of algorithm presented in [10].

The methods above are all based on centralized scenarios. So far, we do not
find any approach having been proposed to address skyline queries over a sen-
sor network. The most related works to ours are some studies about skylines
in a distributed scenario. Balke et al. [4] extend the skyline problem to the
world wide web in which the attributes of an object are distributed in different

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 511

web-accessible servers and presented a basic distributed skyline algorithm (BDS)
and an improved distributed skyline algorithm (IDS) that compute the skyline
in such a distributed environment. BDS uses a simple method to identify a
subset of the objects that includes the skyline, and then filters away all the
non-skyline objects in that subset. IDS finds the subset more quickly than BDS
with a heuristic approach. Later, Lo et al. [11] propose a progressive distributed
skyline algorithm (PDS), based on progressiveness and rank estimation, to im-
prove the performance of BDS and PDS. Huang et al. [9] propose a filtration
policy to reduce communication cost among mobile devices and a hybrid storage
model to reduce the execution time on each single mobile device, which is similar
to our proposal. However, their approach mainly focuses on answering skyline
queries on one timestamp, i.e. snapshot skylines, ours focuses on continuously
monitoring sliding window skyline queries.

There are some works having been proposed to answer sliding window skyline
queries with the focus on handling the characteristics of stream data. Tao et
al. [23] propose a framework to continuously monitor skyline over stream data.
Lin et al. [12] explore the problem of n-of -N skyline queries computing skyline
against any most recent n elements in the set of the most recent N elements
and present a pruning technique to reduce data capacity, an encoding scheme to
reduce memory space, and a new trigger based technique to continuously process
an n-of -N skyline query.

3 Preliminaries

In this section, sensor stream is first introduced, followed by sliding window
skylines, and finally, some related properties which are the foundation of our
filtering algorithms are presented.

3.1 Sliding Window Skyline

In a sensor network, data are periodically collected by sensor nodes, therefore,
strictly speaking, sensory data collected by a sensor network cannot be simply
considered as a traditional database. It is more like a distributed, multiple data
stream system in which all sensor streams are append-only.

Since the data stream is infinite, and the volume of a complete stream is
theoretically boundless, it is impossible to carry out skyline operation after all
data have been collected. In this paper, sliding window skyline is considered.
Sliding window skyline only considers the latest set of data. Each tuple in data
stream has a timestamp t.arr indicating its arrival time. If the size of sliding
window is set to W , and lifespan of the tuple is [t.arr, t.exp], we have t.exp =
t.arr + W . All the valid data in the interval [t.curr − W, t.curr] of the sliding
window will be used to compute skylines when the current time is t.curr.

3.2 Properties

We denote the whole tuple set in a sensor network as T , the tuple set for each
node as T i. Furthermore, we assume that the dimension set of the tuple set is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

512 J. Xin et al.

D, dimensionality of tuple set is |D|, and n is the number of sensor nodes. We
use SKY to stand for skyline operator, � for the dominance relationship, and
t.xd for the dth attribute of tuple t.

Based on the definition of skylines in Section 1, we have the following Lemma.

Lemma 1. Let ti, tj and tk be three tuples in T. If ti � tj and tj � tk, then
ti � tk.

Proof: According to the definition of dominance relationship,

∵ ∀d ∈ D, ti.xd ≥ tj .xd ∧ tj .xd ≥ tk.xd (1)

∃d ∈ D, ti.xd > tk.xd (2)

∴ (∀d ∈ D, ti.xd ≥ tk.xd) ∧ (∃d ∈ D, ti.xd > tj .xd) (3)

So we can conclude ti � tk. �	

If an operation is decomposable, it can be computed in-network [14], which
means the computation can be carried on within each sensor and the intermedin
results will be transmitted during the query data collection phrase. Thus, many
redundant transmissions can be saved. Fortunately, skyline in sensor network
has this attractive property.

Theorem 1. The skyline query in sensor network is decomposable.

Proof: According to Lemma 1 and the definition of skyline query,

SKY (T) ⊆
n⋃

i=1

SKY (Ti) (4)

SKY (T) ⊆ SKY (
n⋃

i=1

SKY (Ti)) ⊆ T (5)

SKY (T) = SKY (
n⋃

i=1

SKY (Ti)) (6)

It satisfies the formula f(v1, v2, . . . , vn) = g(f(v1, v2, . . . , vk), f(vk+1, . . . , vn))
given in [6]. So skyline query in sensor network is decomposable. �	

Theorem 1 indicates that in-network computation can be applied to skylines. In
order to further reduce the tuples transmitted among the sensors, setting a filter
within each sensor becomes essential. The following Theorem implies the effect
of using a tuple as a filter.

Theorem 2. If tuple t, whether exists or not, is dominated by a valid tuple, all
tuples dominated by t will not belong to skyline. Here valid tuple means the tuple
that does exist and is unexpired.

Proof: Immediate deduct from lemma 1. �	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 513

4 Sliding Window Skyline Monitoring Algorithm

In this section, we present the Sliding Window Skyline Monitoring Algorithm
(SWSMA), specifically, the computation and maintenance modules are discussed
in Section 4.1 and 4.2, respectively.

4.1 The Computation Module

In this paper, we design our skyline algorithms based on the popular data routing
structure, tree-based routing structure, which is described in TAG [14, 13] and
Cougar [25]. In tree-based routing structure, a spanning tree is created with the
base station as the root. To compute a skyline, the naive approach is a centralized
one, i.e., collecting all the data through the tree-based routing structure to the
base station and compute the slide window skylines at the base station. This will
cause a large amount of communication cost and network congestion. Therefore,
this method is unpractical for wireless sensor network. The possible improvement
methods are listed as following.

Merge Approach. From Theorem 1, we learn that skyline operation is decom-
posable, thus, one feasible method is to use in-network computation. That is to
compute skyline in-network whenever possible, the intermediate node merges its
own skyline and the skyline results sent by its children, then sends the merged
result to its parent. Most of the tuples that belong to local skyline and not global
skyline are filtered out on the intermediate nodes. However, there are still many
tuples that do not belong to the final skyline having be transmitted.

Tuple Filter Approach. If a tuple belongs to local skyline, not to global
skyline, there must exist a global skyline tuple dominating it. The tuple does
not need to be transmitted, if it is known in advance that there is a global skyline
tuple dominating it. The transmitted data size will be greatly reduced when the
tuple which dominates the most tuples is found and informed to other nodes.

To be general, suppose tuple set T is in |D|-dimensional space, and the ith

dimension range is [0, Ui]. X and Y denote tuples in T . (x1, x2, . . . , x|D|) and
(y1, y2, . . . , y|D|) are the corresponding coordinates of X and Y . If the probability
density function of the tuple in T is p(X) = p(x1, x2, . . . , x|D|). The total amount
of tuples that tuple Y (y1, y2, . . . , y|D|) can dominate is

c(Y) = |T | ×
∫

R

p(x1, x2, . . . , x|D|)dx1dx2 . . . dx|D| (7)

where R = {X |x1 ≥ y1, x2 ≥ y2, . . . , x|D| ≥ y|D|}.
The tuple that can dominate the most tuples is the one which has the biggest

value according to equation 7. Although p(X) is unknown in most cases, the
approximate distribution of p(X) can be easily obtained by random sampling or
collecting histograms [7,21]. To reduce the cost of integration, we use a polyno-
mial function to present p(x). After the integration is finished at the base station,
we only send a few coefficients of p(x), which enable each node to reconstruct
the expression approximately.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

514 J. Xin et al.

Equation 7 is then used in finding the “powerful” filter tuple. After obtaining
p(X), steps of computing skyline are as follows.
1. Calculate the value c(according to equation 7) of the stored tuples locally.
2. Find the tuple with the maximum value c using the method of in-network

aggregate, and set it as the tuple filter.
3. Broadcast tuple filter to the entire network.
4. Filter out tuples that are dominated by the filter in sensor nodes.
5. Use merge approach to carry out skyline computation.

Grid Filter Approach. Intuitively, for some distribution, tuple filter will dom-
inate most non-skyline tuples with an obvious filtration effect; for other distri-
butions, it will only dominate a part of non-skyline tuple with inferior effect. In
order to solve this problem, grid filter approach is introduced.

In grid filter approach, a regular grid is used to partition the data space. Each
dimension is divided into s segments, and the extent of each segment is Ui/s.
Totally there are sd cells. A cell.sta is used to record the state. If any tuple falls
in the cell, cell.sta is set to 1, otherwise 0. Another option to fill the cell is to pre-
process the grid, in which cell.stas of the dominated cells are set to 0, meaning
that the tuples in the cell are not belong to skyline; cell.stas of all the other cells
are set to 1, meaning the tuples in the cell may belong to skyline. We call the
former one original grid and the latter one pre-processed grid for distinction. To
determinate whether a tuple is dominated by a grid, the former needs examine
all its bottom left cells’ cell.stas, while the later just needs to examine its own
cell.sta. Furthermore, to deal with the merge of grids on intermediate nodes, we
operate the “or” on the original grid, while operate “and” on the pre-processed
grid. The original grid costs more during the determination and their cost of
merge are the same. We conclude that the pre-process grid performs better
totally. So we are apt to using the pre-process grid, and the grid mentioned in
the following discussion is the pre-processed grid.

Adaptive Filter Approach. Since tuple filter and grid filter have their own
pros and cons, tuple filter is more effective on independent and correlated dis-
tributions whereas grid filter performs better on anti-correlated ones, a feasible
method is to use a selection mechanism to choose the “right” filter to avoid
their disadvantages and fully utilize the advantages, and we call this approach
adaptive filter approach.

First of all, samples or histograms [7,21] are used to gain the rough distribu-
tion of data, and then the adaptive filter approach determines the filter strategy
according to specific distribution. If data is approximate independent or corre-
lated distribution, tuple filter will be used in filtration; if data is approximate
anti-correlated distribution, grid filter is used in filtration. In this way, merits of
both filter strategies can be fully unutilized to optimize the system performance.
To adapt to the variation of data distribution, base station needs to select a new
filter that is suitable for the new data distribution according to current results
of skylines, and determines whether or not to broadcast to the whole network
based on the computation result of cost-benefit model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 515

4.2 The Maintenance Module

After computing the initial skyline, new tuple is generated by sensor node, while
the old one will be moved out of the window and become expired. A simple
and direct way is to use the method presented in Section 4.1 to recompute the
skyline periodically, so as to maintain the coherence of global skyline. Obvi-
ously this kind of method is unpractical, because there is a great intersection
between the old window and the new one. If the overlapped information can
be used, data transmission cost in the maintenance phase will be reduced. An
effective way should be “update-only”, which means only those new local skyline
tuples are transmitted, and those that have been transmitted do not need to be
retransmitted. Thus, the communication cost is reduced.

For Merge Approach, there is no extra process needed, while for the two filter-
based approaches, how to maintain filters incrementally during global skyline
maintenance becomes a critical problem.

Maintenance of Tuple Filter. It is known from theorem 2 that even if the
filter tuple is expired, it is not necessary to replace it, for the reason that if there
is a tuple in skyline that can dominate it, the filtered tuples will definitely not
belong to skyline. There will be no false negative. However, once a tuple f with
small c(f) (according to equation 7) is chosen as a filter, the probability that it
is dominated by the skyline tuple is high. Thus, it may not be replaced for a long
time. The inferior filtration ability will cause a lot of false alarms and a great
waste of energy. The replacement of filter can improve the filtration ability, but
will cost certain communication cost to replace the old one. There is a tradeoff
between benefit and cost, thus, we introduce a benefit-cost model.

benefit(f) = (c(f) − c(fold)) × n × t̄f (8)

where t̄f is the average lifetime of filter tuple, and benefit is the increased number
of tuples that will be dominated by f compared with fold.

cost(f) = broadcast(f) (9)

The detailed replacement policy of the filter is described as follows:

1. Filter is expired and there is no tuple in skyline that can dominate it.
2. There is a new tuple whose benefit exceeds the cost.

If one of the above is satisfied, the replacement of filter is carried out, and a new
tuple will be chosen as the new filter and broadcasted to the network.

Maintenance of Grid Filter. Before discussing the replacement policy of grid
filter, the definition of dominate relationship between grid is brought forward.

Definition 2. For two grids g1 and g2, the set of cells whose cell.stas are 0 in
g1 denotes s1, and the set of cells whose cell.stas are 0 in g2 denotes s2, if s1 is
the subset of s2, we say grid g2 dominates g1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

516 J. Xin et al.

Theorem 3. If certain grid g is dominated by a valid grid, whether g expires or
not, all tuples dominated by g will not belong to skyline, where valid grid is the
one that is gained by unexpired skyline tuples.

Proof: Immediate deduct from Definition 2. �	

In the same way, an expired grid does not necessarily need to be replaced. When
a better grid appears, a selection should be made on whether replacing or re-
maining the old one. The standard to evaluate the filtration ability of grid is
different from equation 7. The precondition is same as that of tuple filter, then
the filtration ability equation of grid is

c(Grid) = |T | ×
∫

G

p(x1, x2, . . . , xn)dx1dx2 . . . dxn (10)

where G = {X |X ∈ cell ∧ cell.sta = 0}.
The benefit-cost model of tuple filter can also be applied to grid filter. The

replacement policy of grid filter is similar to that of tuple filter.

5 Optimizations

In this section, several optimization approaches are discussed to further improve
the performance of SWSMA. The snooping method is applicable to all filter
strategies, while the shearing and compressing methods work on the grid filter.

5.1 Snooping

The snooping method aims to use the information of non-child nodes to reduce
the communication cost. In snooping mode, the intermediate node not only
keeps data sent by its child node, but also snoops messages sent by other nodes.
The snooped data is used when computing skyline just as the tuple filter. The
data only participates in filtration, and does not enter the final skyline. Some
skyline tuples that were meant to be transmitted do not necessarily need to be
transmitted to the parent node, since they are dominated by the snooped tuple,
which will further reduce data transmission capacity in sensor network.

5.2 Shearing

The shearing method aims to transmit only the part of useful information during
the transmission of grid, while the part to be deduced will not be transmitted.

Take skyline operation using min for example. Since the top right edge of grid
does not dominate any cell when merging grid, it does not necessarily need to
be transmitted. When grid is broadcast as filter, there is no need to transmit its
bottom left edge, because cell.sta of each cell of the bottom left edge is always 1.
Therefore, the edge of grid can be cut according to different situations, so as to
reduce communication cost.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 517

5.3 Compressing

The compressing method aims to reduce the communication cost. For binary
string, special compression mechanism can be utilized.

Since the probability of cell.sta of each cell being 0 is computable, it is more
likely to have successive 1s or 0s in the sequence if cells in grid are sorted by
probability. Thus, better compression effectiveness is gained. Encoded mode in
[18] is used to compress data to 30% of the original size.

6 Simulation Evaluation

In this section, we mainly compare the performances of merge approach (MA),
tuple filter approach (TF), grid filter approach (GF) and adaptive filter ap-
proach(AF) based on tree-based structure under the two data distributions,
independent and anti-correlated, which are common benchmarks for skyline
query [3, 23]. The experimental data distribute evenly on 600-1000 nodes with
the communication radius of of 2

√
2 times the area side length occupied by the

node itself. The dimension of sensory data ranges from 2 to 4 and the size of
sliding window varies from 100 to 500. For each timestamp, each node generates
a new tuple, thus there will be n new tuples generated in the whole network. All
simulations are completed on pentium 2.8 GHz CPU with 512MByte memory.

In the simulation, the default values number of nodes n=1000, cardinality
C=300 and dimension d=3. Since under independent distribution, TF algorithm
is adopted by AF, performances of MA, GF and AF will be compared; while
under anti-correlated distribution, GF algorithm is adopted, performances of
MA, TF and AF will be compared.

115

120

125

130

135

140

145

150

155

160

03 13 23 33 43 53 63 73 83 93 103

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

3)

Grid Size

(a) Independent

300

350

400

450

500

550

600

103 113 123 133 143 153 163 173 183 193 203

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

3)

Grid Size

(b) Anti-correlated

Fig. 1. Effect of GF granularity in computation module

Before performances of each algorithm in computation module are compared,
we study effect by grid granularity first. Figure 1 shows the total communication
cost(number of bytes of the messages transmitted) under different grid granular-
ity. The lowest grid granularity for independent distribution is 0, and the best
grid granularity for anti-correlated distribution is 13. This is because grid will
filter out some of the data, at the same time, its computation and broadcasting
are not free. For independent data, the broadcast cost acceleration of grid ex-
ceeds the effect resulted from filtration with the increase of granularity. While for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

518 J. Xin et al.

0

50

100

150

200

600 700 800 900 1000

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

3)

Number of Nodes

AF
MA

(a)

0

50

100

150

200

100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

3)

Cardinality

AF
MA

(b)

0

50

100

150

200

250

300

350

400

450

2 3 4

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

3)

Dimension

AF
MA

(c)

Fig. 2. Performance with independent data

anti-correlated data, cost and benefit balance well. Therefore, in the experiment
of computation module, the grid granularity for independent data is 0, which
degenerates into MA; while the grid granularity for anti-correlated data is 13.

Figure 2 and 3 present the influence on performance by dimension, cardinality
and the number of nodes under independent and anti-correlated data distribu-
tion, respectively. It shows that AF is the best under all circumstances. This is
because TF can filter a great amount of tuples with far less transmission cost
than GF under independent distribution; while GF can filter out several times of
data than TF which far exceeds its own transmission cost under anti-correlated
distribution. Since AF always chooses the best strategy, its performance turns
out to be the best. Meanwhile, cost increases with the increase of dimensions,
since the skyline result will increase with a high dimension which leads to the
increment of communication cost. Change of cardinality will not directly affect
the cost, because there is no obvious functional relationship between the size of
the result set and cardinality. For the same reason as the former, change in the
number of nodes does not directly affect the cost.

20

30

40

50

60

70

80

90

100

600 700 800 900 1000

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

4)

Number of Nodes

TF
MA
AF

(a)

20

40

60

80

100

120

100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

4)

Cardinality

TF
MA
AF

(b)

0

50

100

150

200

250

300

350

400

2 3 4

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

4)

Dimension

TF
MA
AF

(c)

Fig. 3. Performance with anti-correlated data

Figure 4 reports the influence on algorithm performance brought by optimiza-
tion strategies for independent and anti-correlated distributions, respectively. It
shows that snooping (SNP) remarkably improves the efficiency of the algorithm
under all circumstances. Because the shearing and compressing methods only
apply to grid filter, they just appear in anti-correlated distributions. Figure 4(b)
shows that both shearing (SHE) and compressing (CPS) are effective for anti-
correlated distributions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 519

0

5

10

15

20

25

30

35

T
o
t
a
l

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t
(
¡
`
1
0

3
)

AF AF+SNP

(a) Independent

0

5

10

15

20

25

30

35

40

45

T
o
t
a
l

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t
(
¡
`
1
0

4
)

AF AF+SNP AF+SHR+CPS AF+SNP+SHR+CPS

(b) Anti-correlated

Fig. 4. Optimizations in computation module

Next, we study the performances of algorithms in skyline maintenance module.
Figure 5 gives the influence on GF performance by grid granularity. Since grid
has a long aging in the process of maintenance and computation and broadcast
cost will be shared by each time segment, the optimum grid granularity changes.
For two different routing structures, the best grid granularity for independent
distribution is 25, and it is 15 for anti-correlated distribution.

110

115

120

125

130

135

140

203 213 223 233 243 253 263 273 283 293 303

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Grid Size

(a) Independent

50

55

60

65

70

75

103 113 123 133 143 153 163 173 183 193 203

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Grid Size

(b) Anti-correlated

Fig. 5. Effect of GF granularity in maintenance module

Figure 6 presents the time-varying regularity of communication cost in mainte-
nance for each algorithm. We can observe that the communication cost increases
smoothly with time. Similar to the computation module, AF is the best under
independent and anti-correlated distribution. It basically shares the same reason
with computation module.

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Timestamp

GF
MA
AF

(a) Independent

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Timestamp

TF
MA
AF

(b) Anti-correlated

Fig. 6. Communication cost varying time

Finally, we study the influence on algorithm performance brought by opti-
mization strategies in maintenance module. Figure 7(a) shows that SNP further

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

520 J. Xin et al.

0

5

10

15

20

25

30

0 100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Timestamp

AF+Tree
AF+Tree+SNP

(a) Independent

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

T
ot

al
 C

om
m

un
ic

at
io

n
C

os
t(

×
10

5)

Timestamp

A
AF+SNP

AF+SNP+SHR+CPS

(b) Anti-correlated

Fig. 7. Optimizations in maintenance module

improves performance and reduces communication cost for independent distri-
butions. Figure 7(b) shows that all optimizations work well for anti-correlated
distributions.

7 Conclusions

In most sensor network, energy is a critical resource, and is mainly consumed
by communication. How to minimize the communication cost for applications
in sensor network becomes an essential problem. In this paper, we introduce an
energy-efficient algorithm called SWSMA to maintain the sliding window sky-
line of sensor network. First, merge, tuple filter, grid filter and adaptive filter
are proposed to calculate the initial skyline in sensor network, then methods
for maintaining filter in continuous query are discussed. Furthermore, some op-
timizations to improve SWSMA capacity are also presented. The experiment
result proves that SWSMA is an efficient method for calculating and maintain-
ing skyline in sensor networks.

Acknowledgement. This work is partially supported by National Natural Sci-
ence Foundation of China under grant No. 60573089 and 60473074 and supported
by Natural Science Foundation of Liaoning Province under grant no. 20052031.

References

1. D. J. Abadi, S.l Madden, and W. Lindner: REED: Robust, Efficient Filtering and
Event Detection in Sensor Networks. In Proc. of VLDB, 2005.

2. Boris Jan Bonfils and Philippe Bonnet: Adaptive and Decentralized Operator
Placement for In-Network Query Processing. In Proc. of IPSN, 2003.

3. S. Borzonyi, D. Kossmann, and K. Stocker: The skyline operator. In Proc. of ICDE,
2001.

4. W.-T. Balke, U. Guntzer, J. X. Zheng: Efficient distributed skylining for web in-
formation systems. In Proc. of EDBT, 2004.

5. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang: Skyline with presorting. In Proc.
of ICDE, 2003.

6. J. Considine, F. Li, G. Kollios, and J. Byers: Approximate aggregation techniques
for sensor databases. In Proc. of ICDE, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Continuously Maintaining Sliding Window Skylines in a Sensor Network 521

7. Surajit Chaudhuri, Nilesh N. Dalvi, Raghav Kaushik: Robust Cardinality and Cost
Estimation for Skyline Operator. In Proc. of ICDE, 2006.

8. Vishal Chowdhary, Himanshu Gupta: Communication-Efficient Implementation of
Join in Sensor Networks. In Proc. of DASFAA, 2005.

9. Zhiyong Huang, Christian S. Jensen, Hua Lu, Beng Chin Ooi1: Skyline Queries
Against Mobile Lightweight Devices in MANETs. In Proc. of ICDE, 2006.

10. D. Kossmann, F. Ramsak, S. Rost: Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In Proc. of VLDB, 2002.

11. Eric Lo, Kevin Ip, King-Ip Lin, David Cheung: Progressive Skylining over Web-
Accessible Database. DKE, 57(2): 122-147, 2006.

12. Xuemin Lin, Yidong Yuan, Wei Wang, Hongjun Lu: Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows. In Proc. of ICDE, 2005.

13. S. Madden, M. Franklin, J. Hellerstein, and W. Hong: The design of an acquisitional
query processor for sensor networks. In Proc. of SIGMOD, 2003.

14. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGgre-
gation Service for Ad-Hoc Sensor Networks. In Proc. of OSDI, 2002.

15. S. Madden et al.: Supporting aggregate queries over ad-hoc wireless sensor net-
works. In Proc. of WMCSA, 2002.

16. R. Oliver, K. Smettem, M. Kranz, K. Mayer: A Reactive Soil Moisture Sensor
Network: Design and Field Evaluation. JDSN, 1: 149-162, 2005.

17. Aditi Pandit, Himanshu Gupta: Communication-Efficient Implementation of
Range-Joins in Sensor Networks. In Proc. of DASFAA, 2006.

18. C. Palmer, P. Gibbons, and C. Faloutsos: ANF: A Fast and Scalable Tool for Data
Mining in Massive Graphs. In Proc. of SIGKDD,2002.

19. D. Papadias, Y. Tao, G. Fu, et.al.: An Optimal and Progressive Algorithm for
Skyline Querie. In Proc. of SIGMOD,2003.

20. G. Pottie and W. Kaiser: Wireless integrated sensor networks. Communications of
the ACM, 2000.

21. Bernard W Silverman: Density Estimation for Statistics and Data Analysis. CRC
Press, 1986.

22. K.-L. Tan, P.-K. Eng, and B. C. Ooi: Efficient progressive skyline computation. In
Proc. Of VLDB,2001.

23. Yufei Tao, Dimitris Papadias: Maintaining Sliding Window Skylines on Data
Streams. TKDE, 18(3): 377-391, 2006.

24. W. Xue, Q. Luo, L. Chen, and Y. Liu: Contour Map Matching For Event Detection
in Sensor Networks. In Proc. of SIGMOD, 2006.

25. Y. Yao and Johannes Gehrke: The cougar approach to in-network query processing
in sensor networks. SIGMOD Record, 31(3), 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries
and Diagnosis

Ankur Jain1, Edward Y. Chang2, and Yuan-Fang Wang3

1 Computer Science UC Santa Barbara, CA 93106
ankurj@cs.ucsb.edu

2 Electrical and Computer Engg. UC Santa Barbara, CA 93106
echang@ece.uscb.edu

3 Computer Science, UC Santa Barbara, CA 93106
yfwang.cs.ucsb.edu

Abstract. As large-scale sensor networks are being deployed with the objec-
tive of collecting quality data to support user queries and decision-making, the
role of a scalable query model becomes increasingly critical. An effective query
model should scale well with large network deployments and address user queries
at specified confidence while maximizing sensor resource conservation. In this
paper, we propose a group-query processing scheme using Bayesian Networks
(BNs). When multiple sensors are queried, the queries can be processed col-
lectively as a single group-query that exploits inter-attribute dependencies for
deriving cost-effective query plans. We show that by taking advantage of the
Markov-blanket property of BNs, we can generate resource-conserving group-
query plans, and also address a new class of diagnostic queries. Through empiri-
cal studies on synthetic and real-world datasets, we show the effectiveness of our
scheme over existing correlation-based models.

1 Introduction

Sensor network research is strategically positioned at the exciting confluence of sens-
ing, computation, and communication. A sensor network can employ numerous small,
inexpensive sensors of the same or different modalities (e.g., biological, chemical, me-
chanical, and electrical) to perform many useful tasks such as collecting seismic data,
monitoring environment, measuring traffic flows, and safeguarding security, to name
just a few. These sensors must be carefully managed to achieve two performance goals:
1) conserving power for prolonging useful life, and 2) collecting reliable data for sup-
porting user queries, despite transient noise, sensor failures, and malicious attacks.

A query engine for a typical sensor network supports multiple users, where each
user may query for probabilistic estimates of one or more sensor attribute values with
some specified confidence level. Recent research efforts have shown that correlations
are prevalent between sensor attributes, and queries on costly sensors can be answered
efficiently by acquiring data from cheap sensors [9,8]. In this paper, we advance the
traditional correlation model in two directions. First, we employ Bayesian Networks
(BNs) for characterizing sensor networks. BNs provide a compact representation of de-
pendencies and offer effective inferencing methodologies. Such a model captures both

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 522–538, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 523

Wave Period (WP)

Air Pressure (AP)

Wave Height (WH)

Wind Speed (SP)

Wind Direction (DR)

Air Temperature (AT)

Water Temperature (WT)

Fig. 1. Correlation model for NDBC data

Wave Period (WP)

Air Temperature (AT)

Wind Direction (DR)

Wave Height (WH)

Water Temperature (WT)

Wind Speed (SP)Air Pressure (AP)

(a) NDBC data

Temperature (T)

Light (L)

Humidity (H)

Voltage (V)

(b) Intel Lab. data

Fig. 2. Compact representation using BN

the stochastic characteristics of, and the statistical relations between, sensor attributes.
The use of BNs can provide efficient query-plan generation for traditional aggregate
queries, as well as for diagnostic queries. Second, we consider the problem of group-
query processing. When multiple queries are issued, instead of processing each query
individually, we exploit inter-query relations to further reduce the overall resource usage.

To illustrate the advantages of using the BN over the traditional correlation model
[9,8], we present two simple examples generated using data from the National Data
Buoy Center (NDBC) [25] and the Intel Lab [3], respectively. Figure 1 shows that a cor-
relation model must maintain all pairwise correlations. In contrast, Figure 2(a) shows
that the BN provides a much more compact representation of essential relations between
sensor nodes. In general, for n attributes, with an average in-degree of d, the number of
probability values required to represent the joint probability for a BN is O(nd), in con-
trast to O(n2) required by the correlation model. Since d � n for typical real-world sen-
sor networks, the BN provides a much more succinct representation of a sensor network.

The work of [9,8] successfully points out that a query on an expensive sensor can be
answered using other inexpensive and statistically correlated sensors. When n is large,
however, generating a good plan using such a correlation model can be time-consuming.
The BN model can reduce the search space of a node (representing a sensor query) from
O(n) to the nodes in its Markov blanket [24], which consists only of the node’s imme-
diate parents, its immediate children, and other parents of its children. Let us revisit
the example in Figure 2(a). Suppose a user queries “water temperature.” Its Markov

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

524 A. Jain, E.Y. Chang, and Y.-F. Wang

blanket tells us that an alternate plan should consider only “air temperature” or “wind
speed,” as they have the most direct and significant influence on “water temperature,”
instead of all attributes as shown in Figure 1. Moreover, a correlation model [9,8] could
make suboptimal choices in the plan. For example, in Figure 2(b) even though “volt-
age” is highly correlated with “temperature,” “voltage” is conditionally independent of
“temperature” given “humidity.” Hence, given the value of “humidity”, “temperature”
has no effect on “voltage.” More importantly, “humidity” could be a cheaper source to
query than “temperature.” The model of [9,8] would miss this better choice in its query-
plan generation. Thanks to the Markov blanket property of the BN, our model can not
only efficiently reduce the search space for generating a query plan, but also generate a
more effective plan. We can take further advantage of the Markov-blanket property to
conduct group-query processing for making even more effective query plans. When the
Markov blankets of multiple queries overlap, we are provided with more inter-query re-
lations to further reduce the overall resource usage. For instance, Figure 2(a) shows that
when two queries arrive over “water temperature” and “air temperature,” respectively,
the BN can tell us that we can treat these two queries as one group query because of
their overlapping Markov blankets. The BN model thus can offer scalable performance
to a large number of queries, as well as a large number of sensors.

In addition to supporting traditional aggregate queries in a more efficient and ef-
fective way, the employment of BN enjoys two additional benefits. First, a new class
of diagnostic queries can be supported. A BN can readily use the sensor dependencies
to determine the cause of abnormality in sensor data. This is because from the sensor-
attribute relationships, we know the dependencies between different attributes, which
can be used to detect an exception and then determine its type. Let us revisit Figure 2(a).
The attribute “air temperature” is dependent on “water temperature.” When readings of
the “air temperature” sensor are out of its normal range, the BN tells us that we can
query the values of “water temperature” (i.e., the only node in its Markov Blanket)
to determine whether the “air temperature” is truly abnormal, or the air-temperature-
sensor has malfunctioned. If the readings of “water temperature” are also “abnormal,”
but air- and water-temperature readings exhibit high conditional probability, then we
can say that the air-temperature-sensor is normal and that the air temperature is abnor-
mal. A traditional correlation-based scheme must verify the correlations with all sen-
sors, and thus does not scale well. Second, the intuitive BN representation can be used
to identify “hot spots” and replicate inexpensive and highly acquired sensors to improve
both query efficiency and network reliability. For example, a sensor attribute with a high
node degree (say “wind speed” in Figure 2(a)) in the BN and with low acquisition cost
is likely to be acquired more often as it provides information about many other nodes
at a reduced cost. Since such a hot node is likely to experience heavy network traffic, it
should be replicated in the network.

In summary, this paper makes the following three important contributions:

1. We propose a compact and accurate abstraction of sensor networks based on the BN
model. The employment of BN also permits us to tap into the work of sequential
BN update, which can adapt BN structure and parameters to newly arrived data.

2. We devise a query plan generation algorithm that can save precious communication
and computation resources in answering group queries with desired accuracy. Our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 525

experimental results show that our proposed scheme outperforms the correlation-
based model for exploiting sensor dependencies (thanks to the Markov-blanket
property) to conserve resources.

3. In addition to traditional aggregate queries, our model can answer a new class of
diagnostic queries for fault detection and data inference, and can also assist sensor
deployment and configuration.

The rest of the paper is organized as follows. We discuss related work in Section 2.
In Section 3, we describe our sensor network architecture showing how a sensor net-
work in its most general form can be represented as a BN and can be used to address
queries. Section 3.2 presents the details of our query-plan-generationalgorithm using the
Markov-blanket property. We describe adaptations of Bayesian inference mechanisms
to address general user queries as well as diagnostic queries. The experimental testbed
and validations are described in Section 4. Section 5 presents concluding remarks.

2 Related Work

Our work is most related to the research work proposed in [9,10]. The authors propose
to learn a probabilistic model that captures the correlations that might exist between dif-
ferent sensor attributes. The learned model then aids in generating plans for answering
queries at a lower cost. Such a correlation model builds one joint distribution table over
all the sensor attributes and infers the probabilistic value of an attribute by conditioning
all the other attributes on it. This approach does not scale well, as we have pointed out
in Section 1. Our BN offers a compact representation, which not only makes query-plan
generation efficient and scalable, but also allows query grouping to conserve even more
resources.

Approximate query answering methods such as approximate caching [23] or DKF
[17] can also be used to predict the value of a queried variable within bounded thresh-
olds using the temporal dependencies. However, such schemes continuously monitor
the streaming variable (to check if it is within the bounds) making them less effective
in terms of energy conservation.

The probabilistic approach of query answering has also been studied in the recent
past for moving object databases in [4]. While these efforts can produce effective solu-
tions for providing probabilistic query results (typically object location) over imprecise
data, their solutions are not directly applicable to sensor networks that operate in a
resource-constrained environment. Furthermore, these solutions are limited to query in-
ference, whereas we also present algorithms to generate query plans using a confidence-
driven principle.

Recent works in [20,26] propose sensor-database query models for the declarative,
SQL-like query paradigm. The focus of these efforts is also to maximize in-network
query processing to reduce sensor resource usage while still meeting the query precision
specifications. These query models do not exploit sensor-attribute dependencies and
hence cannot handle group-query-plan generation or diagnostic queries efficiently.

BNs have been used in traditional database systems mainly for attribute-selectivity
estimation [13] and data-mining purposes. For sensor networks, BNs have primarily
been used for sensor fusion and estimation [21]. Recent work in [2] employs BNs for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

526 A. Jain, E.Y. Chang, and Y.-F. Wang

probabilistic inference in sensor networks to determine if a sensor is surrounded by
enemy agents. Our work, to the best of our knowledge, is the first that employs BNs for
sensor-query processing.

BNs have found applications in diverse fields like biology, computer vision, com-
puter software and decision support systems to name a few [22]. Since it interests a lot of
different communities, BN research has been looked into from the perspectives of struc-
ture learning [11,16], parameter estimation [12], efficient inference schemes [15,19,24],
batch-mode and online updating of structure and parameters [1,11]. Due to space limi-
tations we cannot have a detailed discussion of all of them however we provide pointers
to interested readers.

0.1 0.0 0.00.20.10.1

0.1 0.2 0.30.30.10.0
0.2 0.2 0.10.10.30.1

0.2 0.1 0.30.00.40.0
0.1
0.3

0.1

0.2

Query Engine

0.1 0.20.10.00.00.3

Storage

c2

c3

c1

cn

Updates

Abnormality
Base Station

Updates
Query Result

X3 θ3 = P(X3|X1)

X5

X4

X1

X2

(C,G, Θ)

Acquisition Values

θ1 = P(X1)

θ4 = P(X4|X2, X3)

{(Wind Speed, 85%)}

{(Air Temperature, 80%)}

{(Wind Speed, 95%), (Wave Height, 70%)}

Sensor Network

{(Air Temprature, 90%), (Wave Period, 75%)}

(Q)Group Query
Bayesian Inference

Group-Query Plan Generation

Acquisition Plan

Fig. 3. Sensor Network Architecture

3 Architecture and Model

Figure 3 presents a typical sensor-network architecture, which consists of sensors (on
the right-hand side), a query engine (in the middle), and queries issued by multiple
users (on the left-hand side). The queries are formulated into a group-query Q, which
we define as follows:

Definition 1. Group Query. A group query Q, in a sensor network of n attributes can
be represented as:

Q = {(Xi, δi)|(Xi ∈ X) ∧ (0 ≤ δi ≤ 1) ∧ (1 ≤ i ≤ n)} s.t., δi < maxlP(Xi = xil) (1)

where X = {X1, X2, X3, · · · , Xn} is the set of sensor attributes, δi is the confidence re-
quirement for reporting the value of Xi and, P(Xi = xil) is the probability with which Xi

assumes a value of xil. (A variable Xi in the BN is discretized into ki bins. The subscript
variable l takes values such that 1 ≤ l ≤ ki.)

For group-query Q, the query engine generates a query plan, and then acquires data
from the sensors. To generate a query plan for Q, the query engine consults the BN,
which models the sensor network as a graph G = (V,E). The vertex set V is a set of
random variables {Xi} (one for each sensor), and the directional edge set E captures the
statistical relations between sensors. E is a subset of eXi ,X j , where eXi ,X j = {(Xi, X j), 1 ≤
i, j ≤ n, i � j}, represents the influence relation between (Xi, X j). The cost set C =

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 527

{c1, c2, c3, · · · , cn} holds the acquisition cost associated with each node. The values in
the cost set are functions of the routing and sensing costs. Changes to the BN and
the cost sets (though rare) are updated when necessary. Based on the BN and data-
acquisition costs, the query engine generates a query plan for group query Q such that
the confidence requirement (δi) in reporting the values of queried attributes (Xi) can be
met while consuming minimum sensor resources.

In the remainder of this section, we first briefly present the BN construction details.
We then present our approach to generate efficient query plans for addressing group-
queries. Finally, we present how BN can be used to answer traditional aggregate and
diagnostic queries. Due to space constraints, we present only the critical steps of our
methods. Detailed descriptions can be found in [18].

3.1 Bayesian Network Construction

A BN in its most general form consists of two parts: model structure and model parame-
ters. The model structure is a directed graph in which the vertices are random variables
and the directed edges represent the causal relationships between variables. To reduce
the learning and inference complexity on BNs [11], we restrict the graph structure to be
a polytree, which is a Directed Acyclic Graph (DAG) where an internal node can have
any number of parents and children as long as there is no cycle in the corresponding
undirected graph. The model parameters are mainly the Conditional Probability Tables
(CPTs), where each CPT summarizes the conditional probability distribution of a nodal
variable given its parents. The CPT of a node without any parent is its prior.

Bayesian inference uses a likelihood definition which states that a good model is one
that is likely and can explain data well. Whether a model fits data well can usually be
validated objectively based on a cost function. In information theory [6], causality is
measured by the reduction in the uncertainty or entropy of a random variable, given
others. Hence, a reasonable definition of a good fit (a reasonable cost function) for a
Bayesian network is the total entropy reduction (or the amount of entropy left) given
the set of chosen edges. For any variable Xi, the entropy H(Xi) is defined as follows:

H(Xi) = −
ki∑

l=1

P(Xi = xil) ∗ log(P(Xi = xil)). (2)

Structure learning is mathematically a constrained optimization problem: maximizing
entropy reduction subject to the desire of using a simple network. We therefore con-
struct our Bayesian tree minimizing the total entropy in the network (

∑n
i=1 H

(Xi|Parents(Xi))), where H(Xi|Parents(Xi)) measures the entropy of Xi given its par-
ents. We first construct a completely connected digraph such that wXi ,X j = H(Xi|X j)
where wXi ,X j is the weight of the edge eXi,X j and then build a directed minimum span-
ning tree in O(n2log(n)) time using the algorithm described in [5].

After the network structure has been learned, the remaining uncertainty lies only
in specifying the CPTs (parameter learning). We model conditional distributions in a
CPT using probabilistic distributions in the exponential family (e.g., binomial, multino-
mial, and beta distributions for discrete random variables, or Gaussian and multivariate-
Gaussian distributions for continuous variables) [16]. The advantage of using distrib-
utions in the exponential family is that a closed-form solution to parameter learning
problem can be obtained using either maximum-likelihood or Bayesian learning.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

528 A. Jain, E.Y. Chang, and Y.-F. Wang

There have been many independent research efforts on algorithm development for
learning a BN model (e.g., [11]), and for conducting Bayesian inference (e.g., [7,16,24]).
Since the focus of this work is to use the BN to conduct sensor queries, but not to devise
new BN-related algorithms, we employ representative algorithms for BN generation [5]
and inference.1

3.2 Query Plan Generation

We now present our approach for generating group-query plans, and our techniques for
addressing diagnostic queries. One of the most important properties of the BN that forms
the theoretical foundation of our proposed algorithms is the conditional independence
on the Markov blanket [24] (also called Markov Condition), which is defined as follows:

Definition 2. Markov Blanket. Given a BN G, the Markov blanket MB(X j) of a node
X j in G is the set of nodes that are made up of X′j s parents, its children and other parents
of its children.

Given MB(X j), X j is conditionally independent of all other variables in G. This can be
mathematically represented as shown in Equation 3:

P(X j|G) = P(X j|MB(X j)) =
P(X j,MB(X j))

P(MB(X j))
. (3)

A straight result from Definition 2 is that variables outside the Markov blanket of a
variable are not directly relevant for inferring its state once the values of all the Market-
blanket variables are known. However, the influence of one node on any other node in
a BN monotonically decreases (entropy monotonically increases) as the node distance
between them increases. This observation is formally stated in the following lemma:

Lemma 1. Given a node Xi and a set of arbitrary nodes Y in a BN s.t. MB(Xi) � {Y∪Xi},
the conditional entropy of Xi given Y is at least as high as that given its Markov blanket
or H(Xi|Y) ≥ H(Xi|MB(Xi)).

Proof: We exploit the property of conditional entropy which states that any additional
information about a variable cannot cause an increase in its entropy [14], i.e.
H(Xi|X j, Xk) ≤ H(Xi|X j) or H(Xi|Xk). Further, separating MB(Xi) into two parts: MB1 =

MB(Xi) ∩ Y and MB2 = MB(Xi) −MB1, and denoting Z= Y − MB(Xi), we have:

H(Xi|Y) = H(Xi|Z,MB1) ∵ Y = Z ∪MB1

≥ H(Xi|Z,MB1,MB2) ∵ Additional information cannot increase entropy
= H(Xi|Z,MB(Xi)) ∵ MB(Xi) =MB1 ∪MB2

= H(Xi|MB(Xi)). ∵ Markov-blanket definition

Equipped with lemma 1 and the conditional independence property of the Markov
blanket shown in Equation 3, we can now present our group-query plan generation
algorithm. A group-query plan replaces the original queries with queries on alternate
sensors that can meet the specified query confidence-levels at a reduced cost. Which
sensors to query should depend on at least two factors: how expensive it is to query
a particular sensor, and how much information the new sensor data can provide about

1 We employ Pearl’s message passing [24] algorithm for Bayesian inference.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 529

the queried attributes. While the answer to the first question is readily available from
the cost set C, the answer to the second question derives from Lemma 1: For a query
attribute Xi in G, its state is influenced directly by every variable in its Markov blanket.
Thus, to improve the confidence level of Xi, we analyze attributes from its Markov
blanket. Since variables in the Markov blanket can in turn be affected by variables in
their Markov blankets we might need to analyze Markov blankets recursively. However,
since the confidence level typically dies out quickly beyond the immediate Markov
blanket of the query object, recursive attribute-analysis rarely takes place in practice.

We consider a confidence-driven query paradigm where a group-query Q may query
several attributes, each with some minimum confidence requirement. The amount of
information that sensor Xi (in the Markov Blanket of a queried sensor) can provide
about another sensor X j ∈ Q, is quantitatively available as the conditional entropy
reduction i.e. H(X j) − H(X j|Xi). Thus, we decide upon which sensors to query, by
selecting them in a greedy fashion so to maximize the overall entropy reduction at least
possible acquisition cost, such that the confidence requirement of all queried attributes
are met. The details of this sensor selection algorithm can be found in [18]. Once the
states of the variables (or sensor attributes) to be acquired are available, we can use
that information to answer a wide variety of queries. The ability to answer a variety of
queries will hinge upon one critical element: the ability to determine the likely state of
a BN. As the BN description is essentially a probabilistic one, the state descriptions will
also be expressed in terms of a likelihood function conditioned upon prior, current state,
and sensor data.

We partition the set of nodes in a BN into three classes: the set of queried attributes
(denoted as Xq), the set of attributes whose values are known (denoted as Xe), and the
rest of the attributes (denoted as Xh). Both Xe and Xh can be empty. In the case that Xe

is empty, we do not have any sensor data, so the inference will rely completely on the
prior (or historical data and trend). In the case that Xh is empty, all sensors are to be
queried, and we obtain very detailed knowledge of the network to make inferences. In
other cases (which are the typical cases), Xq is obtained from user query Q, and Xe is
obtained fromΥ. The probability of a queried variable Xi ∈ Xq can then be obtained as:

P(Xi|Xe,G) =
P(Xe|Xi,G)P(Xi|G)

P(Xe|G)
, (4)

where P(Xi|G) is the prior probability of the queried variable, P(Xe|G) is the marginal
probability of the evidence, and P(Xe|Xi,G) is likelihood.2

The pdfs of the queried attributes obtained in Equation 4 (as a result of Bayesian
inference) can then be used to answer a variety value and aggregate queries (refer [8]
for details). For example, a range query to compute the probability of Xi lying in range
[li, ui] can be computed as: P(Xi ∈ [li, ui]) =

∫ ui

li
p(xi)dxi.

3.3 Answering Diagnostic Queries

We perceive data abnormality as an event whose likelihood is suspiciously small, given
the historical trends and current network state. For example, in the NDBC datasets,

2 A variety of real-time Bayesian inference algorithms are available [15], and the choice of a
particular inference algorithm is beyond the scope of this paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

530 A. Jain, E.Y. Chang, and Y.-F. Wang

if the historical trends suggest that “sea temperature” is always 5 − 10% lower than
the “air temperature,” then situations would be abnormal when the temperature differ-
ence between the two sensors exceeds the threshold. The two main reasons for such
abnormality are:

• Failures: A fault in the sensor or communication mechanism causes arbitrary values
to be reported at the server, or
• Emergence or dissolution of statistical relations: New attribute dependencies may

have evolved affecting the historical likelihood of events.

Suppose the BN topology and the CPTs do not change. A naive method for de-
tecting abnormality is to bound the expected sensor values or attribute correlations, and
reporting abnormalities if the observed measures fall out of bounds. This approach does
not work well for at least three reasons. First, this method is not scalable in large net-
works where an attribute is dependent on many other attributes. Second, historical data
can reveal that high temperature differences might occur. Third, an abnormal reading
on one sensor in an extreme weather condition can be an accurate reading, not necessar-
ily resulting from the sensor’s failure or a communication fault. Therefore, abnormality
depends on the joint likelihood of several events under a given BN state.

We propose a trigger & verify approach to detect abnormalities in our sensor network
architecture. Each time a value from a sensor is received at the query evaluator, it checks
to see whether such a value is likely to be seen under the current BN state. This likeli-
hood measure is available at no extra cost from the Bayesian inference engine (shown in
Equation 4). If the likelihood measure for any attribute Xi is suspiciously small, the query
evaluator triggers a request for abnormality diagnosis at each of the nodes in MB(Xi).
All nodes receiving a request for abnormality diagnosis capture a continuous sequence
of data values and compute the likelihood of observing such a sequence as follows:

Suppose sensor X j, discretized into bins {b j1, b j1, b j3, · · · , b jk j}, is serving an abnor-
mality diagnosis request. It first captures a sequence S j of continuous observation3 and
then obtains the event counts, i.e., the number of times X j falls in bin b j1 and so on.
Let the counts be denoted by {α j1, α j2, α j3, · · · , α jk j }, then the likelihood of observing
sequence S j given G is

L(S j|G) = (
k j∑

i=1

α ji)!
k j∏

i=1

(p ji)α ji

α ji!
, (5)

where, p ji = P(x j = b ji) and
∑k j

i=1 αi j = |S j|. If L(S j|G) is small enough then the event is
verified as abnormal and is reported back to the server. A direct consequence of such a
trigger & verify approach is that 1) a trigger generated due to transient communication
breakdown will not be verified as an abnormality, 2) broken sensors (those with a faulty
sensing device) will verify abnormalities, and 3) sensors in the Markov blanket of the
broken sensor will not verify the abnormality.

If an abnormality is detected in some sensor readings, the next logical questions to
ask are “What caused the abnormality?” and “How will the abnormality affect other

3 Here, we make two simplified assumptions on S j. First, S j is a sequence of independent,
identically distributed random variables forming a multinomial distribution. Second, the state
of the network shows little or no variation for the duration of collecting S j.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 531

Table 1. Relative Costs of Sensors for Real Datasets

NDBC Data
Attribute WP AP SP WT AT WH DR
Rel. Cost (C) 0.14 0.08 0.22 0.27 0.09 0.10 0.10

Intel Data
Attribute T H L V
Rel. Cost (C) 0.328 0.328 0.344 0.001

sensor readings?” While we already addressed the first question, the second question
can be addressed using the model structure on the BN. When an X j sensor is detected
as broken, we infer its value from its Markov blanket in the BN graph. Furthermore, X j

is no longer used to infer values of variables that contain X j in their Markov blankets.

4 Experimental Validation

We evaluated the performance of our query engine using BN on three datasets (de-
picted in Section 4.1). In this paper, our experimental analysis is organized into four
parts, we have a more detailed analysis available in [18]. The first experiment examined
the effect of group query size and confidence requirements respectively, on resource
conservation (Section 4.2). We also compared the resource savings against those ob-
tained using correlation model under varying query-confidence levels (Section 4.2). In
the second experiment we analyzed the query answer quality achieved using our pro-
posed approach (Section 4.3). The third experiment analyzed the abnormality detection
ability of our proposed model (Section 4.4). The last experiment studied selectivity of
attributes under different query conditions (Section 4.5).

4.1 Experiment Setup

We used two real datasets and one synthetically generated, as described below:

• NDBC Dataset – This real-world dataset was obtained from the National Data Buoy
Center (NDBC) [25]. The sensor network consists of numerous ocean buoys stream-
ing data of different modalities every hour to a base station. The data have seven at-
tributes: “average wave period” (WP), “air pressure at sea level” (AP), “wind speed”
(SP) , “water temperature” (WT), “air temperature” (AT), “wave height” (WH) and
“wind direction” (DR) with relative costs shown in Table 1. We used data from three
buoys in the San Francisco area (Station IDs 46012, 46013, 46026) in all our exper-
iments. Historical data dating from year 1981 to 2003 were used for learning (with
discretization into 4 bins), and segments of year 2004 data were used for testing.
• Intel Data – This real dataset (also used in [9][8]) was obtained from the Intel Re-

search, Berkeley Lab [3]. The data were collected using 54 sensors providing “tem-
perature” (T), “humidity” (H), “light” (L) and “voltage” (V) measurements (relative
costs are shown in Table 1). We used 50% of the data for testing after discretizing
each attribute into 8 bins.
• Synthetic Data – The synthetic datasets were constructed for the purposes of rigor-

ous testing and for evaluating the performance under ideal conditions. We tested the
system on several such datasets; but due to space constraints we report results on one
which had the following properties: The BN was generated with 50 nodes having a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

532 A. Jain, E.Y. Chang, and Y.-F. Wang

maximum node degree of eight. Each node was discretized into five bins, and the
CPTs were generated according to the Dirichlet distribution 4 with λ = 0.01.

Cost functions associated with different attributes were available for the real-world
datasets. For synthetic data we tested the performance for randomly generated cost
functions.

Our testbed consisted of 1, 500 group queries for NDBC data, 5, 000 group queries
for Intel data, and 2, 500 for synthetic data; all were selected randomly from the testing
data such that no two successive queries were separated by more than 10 units of time.
The random selection ensures that the results are not biased toward particular temporal
query patterns. Once a sensor value is available at the central server, we let its uncer-
tainty value grow exponentially with time, which is taken into account using Bayesian
inference.

We first define a few parameters that were used in the experimental setup to evaluate
the performance of the system:

• Group-query size (|Q|) – The number of sensor attributes whose values are required
by one or more users at a time. The maximum value of |Q| is the number of nodes in
the BN (e.g. max(|Q|) = 7 for NDBC data).
• Confidence requirement – (δmin) – The confidence required in reporting the values of

the attributes in |Q|5.

4.2 Resource Conservation

We define resource conservation as the percentage of the total resources saved in the
sensor network to address all queries over the resource consumption if all the queried
attributes in Q were to be acquired directly.

Effect of Grouping Queries. In Figure 4, we compare the resource conservation
achieved in addressing group queries using our group-query plan algorithm (the up-
per plane with solid lines) as opposed to processing them individually (the lower plane
with dotted lines). We show the results for both real datasets as we vary both |Q| (from
1 to max(|Q|) and δmin (from 0.80 to 0.98). In the figure, the vertical axis shows the
resource conservation; the lighter the shaded color on the plane, the higher the resource
conservation achieved. Note that even when issuing queries individually (group-query
size |Q| = 1, along the left-edge of the figure), using BN inferencing can already save

4 If pi is the probability of choosing a collection of items of size i from an item-set of size n, then
{p1, p2, · · · , pn} are the parameters of the multinomial distribution. The Dirichlet distribution
with parameter λ is the conjugate prior on the parameters of the multinomial distribution.
λ � 1 encourages “deterministic” CPTs (one entry near 1, the rest near 0), λ = 1 causes
entries to be drawn from U[0, 1] and λ � 1 causes all entries to near 1/k where k, is the
discretization size [12].

5 To maintain uniformity we always choose to query |Q| costliest attributes when the group-
query size is less than its maximum value. We query all attributes in Q with the same value of
δmin. For example, for |Q| = 2 in NDBC data, we always choose WT and SP and query both of
them with 90% confidence for δmin = 0.90.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 533

(a) Intel Data (b) NDBC Data

Fig. 4. Resource conservation as a function of δmin and |Q|

0

10

20

30

40

50

60

70

80

0.8 0.84 0.88 0.92 0.96 1

R
es

ou
rc

e
C

on
se

rv
at

io
n

(%
)

Confidence Requirement (δmin)

No grouping (|Q| = 3)
With grouping (|Q| = 3)

No grouping (|Q| = 4)
With grouping (|Q| = 4)

(a) Intel Data

0

10

20

30

40

50

60

70

80

90

0.8 0.84 0.88 0.92 0.96 1

R
es

ou
rc

e
C

on
se

rv
at

io
n

(%
)

Confidence Requirement (δmin)

No grouping (|Q| = 4)
With grouping (|Q| = 4)

No grouping (|Q| = 7)
With grouping (|Q| = 7)

(b) NDBC Data

Fig. 5. Resource conservation as a function of δmin

significant resources. (We will present 2D figures shortly to highlight some results.)
When queries were grouped using our group-query algorithm, the resource conserva-
tion was more significant.

To facilitate a better view, Figure 5 provides a 2D view on the resource conservation
with different group sizes. Figure 5(a) shows that when |Q| = 4 for the Intel dataset,
the savings at various confidence levels are consistently achieve above 30%. This is
because a larger group size provides the algorithm with more room to use the inter-
attribute dependencies more effectively. On the NDBC data, Figure 5(b) shows that the
savings can be above 50% when |Q| = 7 and δmin ≤ 0.96.

BN vs. Correlation Model. An important question to answer is “how does resource
conservation of using BN compare with not using BN (or using the traditional correla-
tion model)?” It is evident that using the correlation model incurs higher computational
cost due to the model’s larger search space for alternate sources. We were curious to
find out whether the employment of BN could improve resource conservation; and if
so, what factors contributed to the improvement.

We compared the resource conservation obtained for group-queries using our pro-
posed approach against the one that uses a joint probability distribution over all the
variables. This is similar to one proposed in [8] (which is equivalent to having com-
pletely connected graph structures as shown in Figure 1). Figure 6 shows the percent-
age of resource conservation on the two reallife datasets for δmin = 0.90. For Intel data,
at |Q| = 1 (i.e. when there is no possibility of grouping queries), using BN conserves
about 3% more resources than the correlation model. When we increase the group size,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

534 A. Jain, E.Y. Chang, and Y.-F. Wang

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

R
es

ou
rc

e
C

on
se

rv
at

io
n

(%
)

Query Size (|Q|)

Using Markov-blanket prop. (Intel data)
Without Markov-blanket prop. (Intel data)
Using Markov-blanket prop. (NDBC data)

Without Markov-blanket prop. (NDBC data)

Fig. 6. Resource conservation with δmin = 0.90

the conservation increases (at |Q| = 4, using BN achieves 12 additional percentile of
conservation). A similar pattern is obtained from the NDBC dataset. The additional
conservation achieved by BN is due to the fact that two correlated attributes might
be conditionally independent on a cheaper attribute, a property that the Markov blan-
ket decodes successfully, but the correlation-based model fails to decode. (Setting δmin

at different levels achieves the same result: BN outperforms the correlation model in
resource conservation.)

4.3 Query Answer Quality-Loss

Our BN framework provides query answers based on probabilistic estimates. Therefore,
as with the correlation model proposed in [8], 100% query precision cannot be attained.
An effective query plan is one that conserves resources and meets the confidence values
of the queries most of the time. We define loss as an event when the confidence of a
queried attribute has not met the requirement after the execution of the query plan. For
a particular Q, we calculated the quality-loss as the per-attribute mean loss percentage
(or the percentage of the total losses over all attributes to the total number of times
they were queried). Quality-loss depends on how tightly the data distribution fits the
one used in the BN. If the data dependencies are modeled accurately in the CPTs, the
quality-loss should not be affected adversely by |Q| and δmin.

We show the quality-loss observed for different datasets in Figure 7 for δmin = .90.
All other testing parameters were the same as described for the earlier experiments.
Since real-data distribution can be modeled only to a certain degree of accuracy, we
observe slight variations in quality-loss as we increase |Q|. However, as seen in Fig-
ure 7(a), the loss always stays well under 7% in all cases. For the synthetic dataset
(Figure 7(b)) we observe much less variation (always less than 1%), because the data
distribution was modeled accurately. As discussed earlier, large |Q| allows our group-
query algorithm to exploit sensor dependencies more effectively for producing stronger
probabilistic estimates, and hence achieving lower quality-loss.

There is a trade-off between the quality-loss and the confidence requirement. High-
confidence queries would cause the quality-loss to rise, though graceful degradation is
desired. In another experiment, we studied the effect on quality-loss of increasing δmin.
The results obtained for all three datasets as we increased the confidence requirement
from 0.80 to 0.98 are shown in Figure 7(c). The slow degradation shows the effective-
ness of our approach, with a loss of less than 8% even at 98% confidence requirement
for real datasets. The quality-loss for synthetic data always remains under 1%.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 535

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

Q
ua

lit
y

L
os

s
(%

)

Query Size (|Q|)

Intel Data
NDBC Data

(a) Real data δmin = 0.90

0

1

2

3

4

5

5 10 15 20 25 30 35 40

Q
ua

lit
y

L
os

s
(%

)

Query Size (|Q|)

Synthetic Data

(b) Synthetic data δmin = 0.90

0

2

4

6

8

10

0.8 0.84 0.88 0.92 0.96 1

Q
ua

lit
y

L
os

s
(%

)

Confidence Requirement (δmin)

Intel Data (|Q| = 3)
NDBC Data (|Q|=4)

Synth. Data (|Q|=25)

(c) Effect of δmin on quality-loss

Fig. 7. Quality loss

4.4 Abnormality

We tested the abnormality-detection ability of our model as proposed in Section 3.3.
This abnormality experiment required domain knowledge on the data. We tested our
proposed approach on the NDBC real-world dataset as follows: The NDBC facilitates
the search for extreme weather conditions over its entire historical database. Since these
extreme weather conditions are so classified by domain experts, we can safely tag them
as “abnormal events.” We searched for extreme “high wind” conditions over the entire
historical dataset in San Francisco County and corrupted a normal testing dataset (used
in the experiments described earlier) with 12 extreme conditions at randomly selected
locations. We then modified the query-plan generation algorithm such that the “wind
speed” attribute was always selected to be acquired by the query plan. We validated our
approach by observing if (1) our algorithm could detect all the abnormal events, and
(2) if it would correctly detect the time at which the abnormality occurred. Figure 8(a)
shows the abnormality detection behavior of our algorithm with |S j| = 10. The hori-
zontal line shows the threshold for the discretization used for “wind speed” such that
all values above it would fall in the same discretization bin. As seen in the figure, our
model catches all the abnormal events except for one (the sixth from left) and reports
one normal event (the second from left) as an abnormality.

Though there are many locations in the graph where the wind speed exceeds the
threshold, our algorithm detects only those that were corrupted manually. Thus, our
model is quite effective in detecting abnormalities and in reducing false positives.
Abnormality-detection results for the synthetic dataset are shown in Figure 8. We gen-
erated a BN similar to the one used in testing but with a different Dirichlet distribution
(λ = 1) for the CPTs. We corrupted the normal testing data with data sampled from the
new BN for a randomly selected attribute at 15 different locations. Verification sequence
was set to |S j| = 10. As seen in the figure, our algorithm captures all the abnormalities
except for one (the last one).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

536 A. Jain, E.Y. Chang, and Y.-F. Wang

0 1000 2000 3000 4000 5000
Time (Hours)

High Wind Speed Marker
Wind Speed (m/s)

Location corruped with abnormal data
Location at which abnormality detected

(a) NDBC data

0 1000 2000 3000 4000 5000 6000
Time

Location corrupted with abnormal data
Location at which abnormality detectd

(b) Synthetic data

Fig. 8. Abnormality Detection

(a) NDBC data (b) Intel data

Fig. 9. Selectivity with δmin = 0.90

4.5 Selectivity

The selectivity of an attribute is the ratio of the number of times it is acquired to the to-
tal number of times it appeared in some query. The selectivity pattern can be extremely
useful in improving network reliability and identifying “hot-spots” as discussed in Sec-
tion 1. Sensors with high selectivity attributes should be replicated more in the network,
and the communication overlay network could be adjusted so that energy consumption
is reduced. A cheap attribute, with a high node degree in the BN graph is likely to show
high selectivity since it lies in the Markov blanket of many other nodes and thus pro-
vides information about other nodes at a low cost. On the other hand, a costly attribute
(with a high node degree) is likely to show low selectivity if there are other less inex-
pensive nodes lying in its Markov blanket. We show the selectivity behavior of the two
real-world datasets in Figure 9. The experiment parameters were the same as those used
in the resource conservation experiments. We expect to reduce the selectivity as we in-
crease |Q|, since as it allows scope for better optimization. As seen in Figure 9(b) the
selectivity of “temperature” and “humidity”(having node degree 2) drop significantly as
compared to “voltage”. This is due to the fact the relative acquisition cost of “voltage”
was very low, making its acquisition more frequent than costly attributes. Selectivity
for “light” does not drop because it does not have any low cost attribute in its Markov
blanket. Figure 9(a) shows the selectivity graph for the NDBC dataset. We observe that
the selectivity of “speed” and “wave period” (costly attributes) drops significantly with
the increase in |Q|, as they have high node degrees. The node degree of “speed”, being
the highest (Figure 2(a)), shows the sharpest fall.

5 Conclusions and Future Work

In this paper, we have proposed using BNs for characterizing sensor networks for prob-
abilistic query answering and sensor diagnosis. We proposed a greedy algorithm for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Bayesian Reasoning for Sensor Group-Queries and Diagnosis 537

saving sensor resources by grouping individual queries into one group-query. Our ap-
proach uses a Bayesian inferencing scheme which, in addition to providing probabilistic
estimates of the queried variables, also provides effective methods for the sensor net-
work diagnosis. The pdf ’s of the queried variable can be used to address a wide range of
value and aggregate queries. The BN structure also helps in improving the sensor net-
work infrastructure by providing an intuitive model of the inter-attribute dependencies.
Through examples and experiments on both real and synthetic datasets, we demon-
strated that the BN is more effective in saving sensor resources than the previously
proposed simplistic probabilistic models using correlations. Our model provides signif-
icant improvement in resource conservation of 15 − 20% over traditional models. We
also showed the effectiveness of our model in capturing abnormalities and predicting
attribute selectivity.

We plan to extend our work to address what-if queries. Bayesian inference allows
us to reason about hypothetical scenarios given some counterfactual evidence. Such
queries are called what-if queries. Such queries can be extremely useful predicting state
of the network in hypothetical conditions to trigger alarms and issue warnings.

References

1. E. Bauer, D. Koller, and Y. Singer. Update rules for parameter estimation in Bayesian net-
works. In UAI’97: Proc. of the Thirteenth Conf. on Uncertainty in Artificial Intelligence,
pages 3–13, August 1997.

2. R. Biswas, S. Thrun, and L. J. Guibas. A probabilistic approach to inference with limited
information in sensor networks. In IPSN’04: Proc. of the 3rd Intl. Symposium on Information
Processing in Sensor Networks.

3. P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux. Intel lab data,
http://db.lcs.mit.edu/labdata/labdata.html.

4. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over impre-
cise data. In SIGMOD’03: Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of
data.

5. C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

6. T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons, Inc., 1996.
7. P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks

is NP-Hard. Artificial Intelligence, 60(1):141–153, 1993.
8. A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data management

in acquisitional environments. In CIDR’05: Proc. of 2nd Biennial Conf. on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7 2005.

9. A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In VLDB’04: Proc. of 30th Intl. Conf. on Very Large Data
Bases, Toronto, Canada, September 2004.

10. A. Deshpande, C. Guestrin, S. Madden, and W. Hong. Exploiting correlated attributes in
acqusitional query processing. In ICDE’05: Proc of 21st Intl. Conf. on Data Engineering,
Tokyo, Japan, April 5-8 2005.

11. N. Friedman and D. Koller. Tutorial: Learning Bayesian networks from data. NIPS’01:
Neural Information Processing Systems, Vancouver, British Columbia, Canada, December
2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

538 A. Jain, E.Y. Chang, and Y.-F. Wang

12. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis. Chapman &
Hall CRC, 1995.

13. L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In
SIGMOD’01: Proc. of the 2001 ACM SIGMOD Intl. Conf. on Management of data, pages
461–472, New York, NY, USA, 2001.

14. R. M. Gray. Entropy and Information Theory. Springer-Verlag, New York, 1990.
15. H. Guo and W. H. Hsu. A survey of algorithms for real-time Bayesian network inference. In

AAAI/KDD/UAI’02: Joint Workshop on Real-Time Decision Support and Diagnosis Systems,
Edmonton,Alberta, Canada, July 29 2002.

16. D. Heckerman. Tutorial on learning with Bayesian networks. Technical report, Microsoft
Research, March 1995.

17. A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream resource management using Kalman
filters. In SIGMOD’04: Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of data,
pages 11–22, New York, NY, USA, 2004.

18. A. Jain, E. Y. Chang, and Y.-F. Wang. Efficient group and diagnostic queries on sensor net-
works (http://www.cs.ucsb.edu/ ankurj/bayesTR.pdf). Technical report, Computer Science,
UC Santa Barbara, August 2006.

19. M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, 1999.

20. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisi-
tional query processing system for sensor networks. ACM Transactions Database Systems,
30(1):122–173, 2005.

21. J. Moura, L. Jin, and M. Kleiner. Intelligent sensor fusion: A graphical model approach. In
ICASSP’03: Intl. Conf. on Acoustics, Speech, and Signal Processing, volume 6, pages 6–10,
Hong Kong, April 2003.

22. K. P. Murphy. Dynamic Bayesian Networks: Representation, inference and learning. PhD
thesis, University of California, Berkeley, Fall 2002.

23. C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed
data streams. In Proc. of ACM SIGMOD Intl. Conf. on Management of Data, San Diego,
California, USA, June 2003.

24. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

25. N. W. Service. National Data Buoy Center, http://www.ndbc.noaa.gov/.
26. Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR’03: First Biennial

Conf. on Innovative Data Systems Research, Asilomar, CA, January 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines

Jongwuk Lee, Gae-won You, and Seung-won Hwang

POSTECH, Pohang, Korea
{julee, gwyou, swhwang}@postech.ac.kr

Abstract. As data of an unprecedented scale are becoming accessible,
skyline queries have been actively studied lately, to retrieve “interest-
ing” data objects that are not dominated by any other objects, i.e.,
skyline objects. When the dataset is high-dimensional, however, such
skyline objects are often too numerous to identify truly interesting ob-
jects. This paper studies the “curse of dimensionality” problem in skyline
queries. That is, our work complements existing research efforts to ad-
dress this “curse of dimensionality”, by ranking skyline objects based on
user-specific qualitative preference. In particular, Algorithm Telescope
abstracts skyline ranking as a dynamic search over skyline subspaces
guided by user-specific preference with correctness and optimality guar-
antees. Our extensive evaluation results validate the effectiveness and
efficiency of Algorithm Telescope on both real-life and synthetic data.

1 Introduction

As data of an unprecedented scale are becoming accessible, skyline queries have
been actively studied lately, to retrieve “interesting” data objects that are not
“dominated” by any other objects, i.e., skyline objects. To illustrate, Example 1
shows how skyline queries can be used to identify interesting objects.

Example 1 (Skylines). Consider a basketball coach trying to recruit ideal play-
ers excelling in six dimensions d1, . . . d6, such as the number of games played,
rebounds, assists, blocks, steals, and points as illustrated in a toy dataset Ta-
ble 1. Intuitively, player A is a better choice than B, if A is superior to B in
all dimensions, i.e., A dominates B. This coach will thus be recruiting players
that are not dominated by any other player, or, skyline objects. In Table 1, all
data objects e.g., {t1, t2, t3, t4, t5} tie as skyline objects, while such objects have
different trade-offs. For instance, t3 is superior to t1 in 5 dimensions except one,
i.e., d6. In other words, skyline queries generate numerous ties as they do not
judge trade-offs among skyline objects.

As Example 1 illustrates, skyline queries do not require users to specify how
to judge trade-offs across dimensions. While such property makes it simpler
for users to formulate a query, at the same time, by not differentiating skyline
objects with varying trade-offs, i.e., treating all as ties, the number of skylines
is often too numerous to identify truly promising objects with respect to user
preference, especially, when the number of dimensions is large, i.e., “curse of

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 539–550, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

540 J. Lee, G.-w. You, and S.-w. Hwang

Table 1. Toy dataset for Example 1

d1 d2 d3 d4 d5 d6

t1 5 2 1 1 2 5

t2 3 1 2 2 5 4

t3 7 3 5 3 4 1

t4 1 4 4 4 1 3

t5 2 5 3 6 3 2

dimensionality”. It is thus non-trivial to identify truly interesting objects from
many skylines.

Recently, there have been research efforts to address this “curse of dimen-
sionality” problem, focusing on a specific subset of the skylines, in the following
two directions: First, references [1,2] propose to find more interesting skylines by
identifying skylines for a subspace of total dimensions. For instance, in Table 1,
if we compute the skylines of some subspace, say, {d1, d2, d3}, some tuples are no
longer skylines, e.g., t2 is dominated by t3. Based on this observation to identify
interesting subsets of skylines, references [1,2] study computation of skylines in
varying subspaces– More specifically, reference [1] studies how to amortize the
cost of computing skylines over all possible subspaces, while reference [2] stud-
ies how to identify decisive subspaces for each skyline object. However, these
works do not study how to use subspace for generating a result with desirable
size. References [3,4] thus study how to rank skyline objects using various rank-
ing criteria based on subspace skylines. However, the proposed ranking criteria
cannot adapt to user-specific information needs, i.e., user-oblivious.

This paper combines the advantages of the two approaches. First, our frame-
work alleviates users from identifying an appropriate subspace, which we auto-
matically identify for user-specified preference and retrieval size. Second, unlike
user-oblivious ranking approach, we adapt to user-specific information needs.
Further, the information we obtain from users is highly intuitive, i.e., a qualita-
tive partial ranking over data dimensions. For instance, in Example 1, a coach
trying to recruit defense players can simply specify he takes rebounds more seri-
ously than game points, i.e., rebound > game points. Summing up, our work com-
plements existing skyline works by ranking skylines based on user-specific crite-
ria and retrieval size. In a clear contrast, our work distinguishes itself from rank
query processing [5,6,7,8,9] as well, which requires users to specify a complete
and quantitative ranking function for all tuples, which is often much harder to
formulate than qualitative partial preference used in our framework, as pointed
out in [10]. In particular, our proposed Algorithm Telescope abstracts skyline
ranking problem as a dynamic search problem over skyline subspaces, guided by
user-specified qualitative preference. In summary, we believe this paper has the
following contributions:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines 541

– We propose the framework to rank skyline objects based on user-specific
qualitative preference over dimensions to effectively identify truly interesting
points.

– We abstract skyline ranking as a dynamic search over skyline subspaces and
develop a dynamic search algorithm guided by user-specified preference and
retrieval size. Algorithm Telescope is provably correct and optimal.

– We implement Algorithm Telescope and extensively evaluate the effective-
ness and efficiency over both a real-life dataset and synthetic datasets.

This paper is organized as follows. Section 2 briefly reviews existing efforts
related to our work. Section 3 discusses preliminaries on ranking skyline objects
based on qualitative user preference over dimensions. In particular, Section 4
proposes Algorithm Telescope for ranking skyline. Finally, Section 5 validates
the effectiveness and efficiency of Algorithm Telescope.

2 Related Work

In many applications, skyline queries have been actively studied to efficiently
identify promising objects over the dataset having multiple dimensions. Ref-
erence [11] was a pioneering work, which devised block nested loop (BNL),
divide-and-conquer (D&C) and B-tree-based algorithms for identifying skyline
objects.

Later, reference [12] followed to improve D&C algorithm by pruning domi-
nated objects by partitioning the data space using the nearest neighbor object.
Similarly, reference [13] developed sort-filter-skyline (SFS) algorithm using pre-
sorting lists, which improves existing BNL algorithm. However, these algorithms
focused on efficient computation of skyline objects and did not study the curse
of dimensionality problem.

Recently, there have been research efforts to identify interesting subsets of
skylines to address this curse of dimensionality problem, in the following direc-
tions: First, reference [1] proposes skycube structure, adopting the cube structure
of OLAP environments, which amortizes the cost of computing skylines over all
possible subspaces. Meanwhile, reference [2] studies how to identify decisive sub-
space for each tuple. However, these works do not study how to identify a result
with desirable size. Second, references [3,4] study ranking skyline objects by
adopting varying interesting metrics. More specifically, reference [3] uses skyline
frequency metrics that counts the number of subspaces where each tuple belongs
to skylines. Further, reference [4] uses k-dominate skyline metrics which consid-
ers skylines in k-dimensional subspace as well. While these rankings help users to
identify more interesting skylines by focusing on the top results in the ranking,
the ranking criteria are user-oblivious, which can fail to adapt to user-specific
needs.

In summary, this paper complements existing works by identifying more inter-
esting subset of skyline objects with user-specified preference and retrieval size.
In particular, Algorithm Telescope abstracts the problem as a dynamic search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

542 J. Lee, G.-w. You, and S.-w. Hwang

guided by user-specified preference over numerous skylines, which finds truly
interesting skylines with correctness and optimality guarantees.

3 Preliminaries

As illustrated in Example 1, a downside of skyline queries is that the size of
skyline objects can be large when dataset is high dimensional. While this “curse
of dimensionality” problem has been actively studied lately, existing works do
not address the challenge of adapting to user preference in identifying truly
interesting objects among the skyline objects. To address this challenge, we define
the notion of user preference, and its properties.

Table 2. Notations used

Notation Definition

S The dataset

D The dimension set

ti A tuple in S
n The number of dimensions in S
di A data dimension (1 ≤ i ≤ n)

W User’s preference dimensions (W ⊆ D)

V a subset of preference dimensions W (V ⊆ W)

m The number of user preference dimensions in S
wi A user preference dimension (1 ≤ i ≤ m)

ti(dj) The value of a tuple ti on dj

SKY (D) Skyline on the dimension space D

We first formally define dominate and skyline in Definition 1 and Defini-
tion 2, respectively, by using notations introduced in Table 2. These defini-
tions are consistent with the definition of skyline queries used in existing works
[1,2,3,4,11,12,13].

Definition 1 (Dominate). A tuple ti dominates another tuple tj on D if and
only if ∀ dk ∈ D, ti(dk) ≥ tj(dk) and ∃ ds ∈ D, ti(ds) > tj(ds) 1.

Definition 2 (Skyline). A tuple ti is a skyline object on D if and only if any
other tuples ∀tj(�= ti) ∈ S do not dominate ti on D. SKY (D) denotes the set of
skyline objects on D in S.
1 Note that this definition is based on max skyline operator [11], while it can be

straightforwardly extended to another operator as well, i.e., min, where ti dominates
tj on D and only if ∀ dk ∈ D, ti(dk) ≤ tj(dk) and ∃ ds ∈ D, ti(ds) < tj(ds).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines 543

We then define user preference to be specified by each user. We view user pref-
erence as a qualitative ranking of some data dimensions, i.e., strict partial order
on D. More formally, we define user preference W as the ordered set of some
data dimensions, i.e., W = {w1, w2, . . . , wm} such that w1 > w2 > . . . > wm

when wi is some dj ∈ D. We define its semantics as follow: (1) For dimension di

included in W , di is preferred over any other dimensions not included in W. (2)
Among the dimensions included in W , preference follows the order of W . That
is, over subspaces having dimensions of same size, the preference is determined
lexicographically, e.g., {w1, w2} > {w1, w3}.

Example 2 illustrates this notion intuitively, followed by formal definition
of subset precedence in Definition 3. Further, based on this subset precedence
definition, we rank skyline objects by the precedence of subspace as Theorem 1.

Example 2 (User Preference). Continuing from Example 1, to recruit good guard
candidates, the coach considers assists, steals, and game points dimensions are
more importantly than the rest of dimensions. Especially, when the coach has
preference of assists > steals > points, players with strength in assists and steals
will be preferred over those with strength in steals and game points.

Definition 3 (Subset Precedence). For any subset V = {v1, v2, ..., vm′} of
W, i.e., V ⊆ W, we define a subspace V i = V − {vm′−i} of size m′ − 1 has
higher precedence over any other subspaces Vj = V − {vm′−j} of the same size,
if and only if i < j, i.e., vm′−i < vm′−j.

Theorem 1 (Skyline Preference). For user preference V ⊆ W, skyline pref-
erence follows the order of subset precedence, i.e., SKY (V0) > SKY (V1) >

. . . > SKY (Vm′−1) where V i = V − {vm′−i}. Skyline preference implies (a) al-
ready seen skylines outrank the rest to be accessed among unseen skylines, (b)
when already seen skylines show again, the rank of skylines follows the subset
precedence initially accessed.

With the notion of preference defined, we make observations on key properties of
skyline subspaces. These properties observed play essential roles in showing the
correctness and optimality of our framework which essentially implies a dynamic
search over the lattice structure of subspaces of W as illustrated in Fig. 1(left).
For simplicity, we first assume that every tuple has a different value for each
dimension just for now, which are formally defined as distinct value assumption.
(We will later relax this assumption.)

Definition 4 (Distinct Value Assumption). Any two data ti, tj in S are
∀dk ∈ D, ti(dk) �= tj(dk).

With distinct value assumption, previous works have observed that skylines on D
subsume the skylines of its subspace, i.e., skyline monotonicity holds, as formally
described below.

Theorem 2 (Skyline Monotonicity with Distinct Value Assumption).
Given dataset with distinct value assumption, a tuple ti ∈ SKY (V ′) is included
in SKY (V) where V ′ ⊆ V ⊆ D.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

544 J. Lee, G.-w. You, and S.-w. Hwang

Proof. See [1].

This monotonicity will be later used to ensure that our framework of exploring
skylines subspace lattice (as illustrated in Fig. 1) is correct, i.e., does not return
a non-skyline object. However, observe that this monotonicity is conditional to
the distinct value assumption, as the example below illustrates.

Example 3 (Example without distinct value assumption). Consider a dataset of 5
objects over 2-dimensions (X, Y), i.e., S = {a(1, 6), b(3, 6), c(4, 5), d(6, 4), e(6, 2)},
which does not satisfy the distinct value assumption. Observe that, while overall
skylines on two dimensions {X, Y } are {b, c, d}, skyline on its subspace {X} and
{Y } is {d, e} and {a, b}, respectively. The monotonicity no longer holds as the sky-
lines for {X} and {Y } are not subsumed by those of {X, Y }.

While this may seem to compromise the correctness of our framework, we can
easily extend the correctness guarantee for any dataset with and without distinct
value assumption by replacing the skyline of any subspace Vi in lattice of Fig.
1 as the intersection with its parent in the lattice, i.e., SKY (V i)

⋂
SKY (V) for

its parent V , as we further discuss in the next section. With this extension, the
monotonicity is preserved, as (SKY (V i)

⋂
SKY (V)) ⊆ SKY (V) trivially holds.

4 Algorithm Telescope

In this section, we propose our algorithm that identifies truly interesting skyline
objects by adapting to user-specific preference and retrieval size. We name our
algorithm Telescope, for a telescope helping each user to effectively and efficiently
focus on interesting skylines depending on user-specific preference. Toward this
goal, Algorithm Telescope leverages the preliminaries as discussed in Section 3,
to rank skyline objects, which is essentially a dynamic search of 2m−1 subspaces
considering m preference dimensions among n dimensions.

To illustrate Algorithm Telescope, we use the scenario in Example 2. Suppose
that a user specifies his/her preference as W = {w1 = d3, w2 = d5, w3 = d6}
and retrieval size k = 3 for our toy dataset Table 1. As discussed in Section
3, all subspaces of W can be represented as the lattice graph in Fig. 1(left).
We illustrate how Algorithm Telescope works in Fig. 1(left): First, we compare
the number of skylines of W , i.e., |SKY (W)|, with retrieval size k. Second, we
consider the subspace having the highest precedence, i.e., V0 = {w1, w2} and
insert its skylines, i.e., SKY (V0) = {t2, t3}, into desirable results, and move
on to its right sibling, i.e., subspace V1 = {w1, w3}, by the order of subset
precedence. Third, the number of skylines in V0 and V1 exceeds the retrieval
size k i.e., |SKY (V0)

⋃
SKY (V1)| > k. Fourth, we zoom into the subspaces of

V1, or {w1} and {w3}, to identify more desirable k results among them , e.g.,
{t1, t2, t3} by adding {t1} in {w3}.

Further, we can transform this lattice graph into a left-skewed graph by pruning
multiple links to common descendants, as we will formally state in Definition 5.
To illustrate, consider adjacent subspaces, e.g., {w1, w2} and {w1, w3}, sharing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines 545

{w1,w2,w3}

{t1, t2, t3, t4, t5}

{w1,w2}

{t2, t3}

{w1,w3}

{t1, t2, t3, t4}

{w2,w3}

{t1, t2}

{w1}

{t3}

{w2}

{t2}

{w3}

{t1}

{w1,w2,w3}

{t1, t2, t3, t4, t5}

{w1,w2}

{t2, t3}

{w1,w3}

{t1, t2, t3, t4}

{w2,w3}

{t1, t2}

{w1}

{t3}

{w2}

{t2}

{w3}

{t1}

�

�

�

�

�

�

�

Fig. 1. The lattice graph and left-skewed graph

a common descendant, e.g., {w1} ⊆ {w1, w2}
⋂

{w1, w3}. As there are multiple
links to {w1} from both {w1, w2} and {w1, w3}, we keep only the link from
the ancestor of higher precedence, i.e., {w1, w2}. With such transformations for
every adjacent nodes, we can eliminate multiple links to common descendants
by keeping only the link from the highest precedence parent, as Fig. 1(right)
illustrates. With this graph transformation, Algorithm Telescope guarantees to
visit nodes in the descending order of precedence (which will be later used for
correctness proof), and at the same time, guarantees not to visit any node twice
in traversal (which will be later used for optimality proof).

Definition 5 (Graph transformation). The lattice graph can be transformed
into a left-skewed graph, by eliminating a link from adjacent nodes Vi and Vj to
its common descendant Vk by keeping only a single link to the common descen-
dant, in particular, the one from the node with the highest precedence.

By leveraging the left-skewed graph, Fig. 2 shows the pseudo-code of Algorithm
Telescope. We describe how Algorithm Telescope works for the user-specified
preference W and retrieval size k as followed:

1. Compare the number of skylines for the root node, i.e., |SKY (W)|, with the
retrieval size k.

2. When |SKY (W)| > k, push all subspaces V of W with m − 1 dimensions
in W into the stack (except for already seen common descendants). The
precedence of subspaces will be preserved if pushed from right to left in
Fig. 1(right), i.e., low precedence to high, as pushing and popping from the
stack will reverse the order.

3. Pop a subspace V from the stack, and decide whether to insert its skylines
SKY (V) into the results Z as follow:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

546 J. Lee, G.-w. You, and S.-w. Hwang

– If |Z
⋃

SKY (V)| > k, go to step 2 to insert its subspaces to the stack,
i.e., move on the leftmost child of current node.

– If |Z
⋃

SKY (V)| ≤ k, insert new skyline points SKY (V) into Z. If
|Z| < k still holds, go to step 3, i.e., move on the right sibling of current
node. Otherwise terminate.

Note that, for all child nodes, the monotonicity of skyline (Theorem 2) assures
that every data object in the lattice is a part of skylines of W . Further, when
accessing siblings in the order of subset precedence, skyline preference theorem
(Theorem 1) ensures the already seen objects outrank the rest to be accessed
among unseen objects, i.e., the rank of skylines is decided by the subset prece-
dence initially accessed. Putting together, any search over lattice with two modes
of access– (a) to child node with the highest precedence, i.e., leftmost child node,
and (b) to sibling node in the decreasing order of precedence, is correct, as we
formally state below.

Algorithm Telescope(S, W, k)
Input

• S : dataset
• W : {w1, w2, ..., wm}
• k : retrieval size

Output
• Z : skylines with respect to k

Procedure
• T , U , V // Stack, superset of current set, and current set
• T ← {}, Z ← {} // Initialize the stack and results.
• if |SKY (W)| > k then

- T .push(W) // Push W into the stack.
• while (T is not empty and |Z| < k)

- V ← T .pop()
// Traverse subsets of V if exceed the retrieval size k.
- if |Z ∪ SKY (V)| > k then

- U ← V // Keep track of the superset of the current set.
// Insert subsets into the stack except for shared subsets.
- for i := 0 to m′ − 1:

- T .push(V i) // Push subsets V i except the common descendants.
- else // Insert skylines into Z, and move on next precedence subset.

- Z.insert(SKY (V))
// Move on superset U of the last subset V having no child.
- if V is the last subset having no child of U then

- Call some deterministic tie breaker e.g., object ID.
• else if |SKY (W)| < k then

- Z .insert(SKY(W))
- Telescope(S − Z, W , k − |Z|)

• else
- Terminate.

Fig. 2. Algorithm Telescope

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines 547

Theorem 3 (Correctness of Algorithm Telescope). For user preference W
and retrieval size k, Algorithm Telescope returns correct k results such that, each
object in the output queue is (a) a part of skylines and (b) outranks the objects
yet to be retrieved, at any point during execution.

Proof. Immediate from Theorems 1 and 2, every node in the lattice contains
only the skyline objects. Further, after the graph transformation in Definition 5,
Algorithm Telescope ensures no unseen object, yet to be accessed, outranks the
skyline objects found in prior by design (as discussed before).

Theorem 4 (Optimality of Algorithm Telescope). After the transformation
in Definition 5, Algorithm Telescope only visits the node that is absolutely nec-
essary to identify the top-k skyline objects, for user-specified preference W and
retrieval size k. The worst number visited of Algorithm Telescope is O(m) which
is minimal traversal to obtain the top-k skylines.

Due to the space limitation, we leave the proof to our extended report [14] and
only report the proof sketch for this theorem. As discussed for the correctness
proof, Algorithm Telescope ensures that no unseen skyline outranks the ones
accessed in prior. Further, using proof by contradiction, we can claim Algorithm
Telescope terminates after visiting only the absolutely necessary nodes for cor-
rectness, and nothing else. Summing up, Algorithm Telescope is provably correct
and optimal for the user-specified preference W and retrieval size k.

5 Experiments

This section reports our experimental results to validate the effectiveness and
efficiency over our Algorithm Telescope. First, to validate effectiveness using real-
life data, Section 5.1 reports our evaluations over real-life NBA player statistics.
Second, to validate efficiency in extensive problem settings, Section 5.2 reports
our evaluations over synthetic data of varying problem settings. Our experiments
was carried out on a Intel(R) Xeon(TM) machine with 3.20 GHz dual processors
and 1GB RAM running LINUX. Algorithm Telescope was implemented in C++
language.

5.1 Real-Life Data Set

In this section, we validate the effectiveness of Algorithm Telescope by the qual-
ity of the skyline objects retrieved from the real-life data. In particular, we use
NBA dataset (available from www.nba.com), resulting in 19112 players with 16
numeric attributes including game points, number of rebounds, assists, steals, and
blocks. We evaluate with a scenario of identifying k = 10 skyline objects over user-
specified preferences on three dimensions, which is a useful query for a basketball
coach in our illustrative example in Example 2– For instance, when the coach needs
to recruit a guard, he may need to focus more on the number of assists or steals,
than the number of rebounds or blocks. Similarly, when the coach recruits a center,
he may focus on the skylines over the number of rebounds or blocks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

548 J. Lee, G.-w. You, and S.-w. Hwang

Table 3. Skylines for guard and center positions

Preference: Preference:
Assists > Steals > Points Rebounds > Blocks > Points

Position Player Position Player

C Wilt Chamberlain 1961 C Wilt Chamberlain 1960
C Wilt Chamberlain 1962 C Wilt Chamberlain 1961
C Wilt Chamberlain 1963 C Artis Gilmore 1971
G Nate Archibald 1972 C Artis Gilmore 1973
G Don Buse 1975 C Bob Mcadoo 1974
G Michealray Richardson 1979 C Kareem Abdul-jabbar 1975
G John Stockton 1987 C Mark Eaton 1984
G John Stockton 1988 G Michael Jordan 1986
G John Stockton 1990 G Michael Jordan 1987
G John Stockton 1991 C Patrick Ewing 1989

We implement the above two scenarios of recruiting good guard candidates
(with qualitative preference of assists > steals > points) and good center candi-
dates (with qualitative preference of rebounds > blocks > points) and report the
results in Table 3. In contrast to existing skyline ranking, which is user-oblivious,
our skyline results effectively adapt to the user-specific needs and identify ideal
candidates. Observe from Table 3 that our top-10 results correctly identify leg-
endary NBA guards and centers respectively, except all-round players such as
Wilt Chamberlain or Michael Jordan who happen to play the roles of both a
guard and a center.

5.2 Synthetic Data Set

With the effectiveness of our Algorithm Telescope illustrated in Section 5.1, this
section discusses the efficiency of our Algorithm Telescope over synthetic data
of varying problem settings, such as the user preference dimensionality m, data
size |S|, and retrieval size k.

More specifically, we randomly generate synthetic data with and without cor-
relations, which is a deciding factor for the number of skylines. Intuitively, if data
dimensions are anti-correlated, the number of skylines explodes, as even a tuple
dominated in some dimension A is likely to be superior in another dimension
B, anti-correlated to A. We thus generate synthetic data using uniform random
generator for all dimensions (for Independent dataset). In addition, for corre-
lated data, we synthetically introduce correlation by randomly generating ti(d1)
and generating the rest, i.e., ti(dj) for j > 1 within the range of ti(dj−1) ± α
(for Correlated dataset) and −ti(dj−1) ± α (for Anti-correlated dataset). In
Fig. 3(a), (b), and (c) report the response time of Algorithm Telescope for the
above three datasets, over varying dimensionality m, data size |S|, and retrieval
size k respectively. Besides, Fig. 3(d) reports the number of the visited nodes in
the lattice graph and the left-skewed graph with the datasets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Telescope: Zooming to Interesting Skylines 549

4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

m (k = 10, |S| = 1000)

R
es

po
ns

e
tim

e
(m

s)

Correlated
Independent
Anti−correlated

2000 4000 6000 8000 10000 12000
0

1000

2000

3000

4000

5000

6000

|S| (k = 10, m = 5)

R
es

po
ns

e
tim

e
(m

s)

Correlated
Independent
Anti−correlated

(a) over m (b) over |S|

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

k (m = 5, |S| = 5000)

R
es

po
ns

e
tim

e
(m

s)

Correlated
Independent
Anti−correlated

Correlated Anti−correlated Independent
0

200

400

600

800

1000

1200

(m = 10, k = 10, |S| = 1000)

no

de
s

vi
si

te
d

nodes
lattice
left−skewed

7.64 6.40 11.0 11.0 11.44 10.41

1023

(c) over k (d) over # nodes visited

Fig. 3. Response time / The number of nodes visited

Fig. 3(a) reports performance results over varying dimensionality m. Observe
that, Algorithm Telescope by only visiting the provably minimal number of
nodes in the left-skewed graph, scales gracefully over m in all datasets, while
the number of nodes to visit explodes exponentially over m, i.e., O(2m). The
performance degradation of anti-correlated dataset can be best explained by the
explosion of the number of skylines.

We similarly report our scalability results over cardinality and retrieval size in
Fig. 3(b) and (c) respectively. Observe that, in all settings, Algorithm Telescope
ensures high scalability and low response time e.g., less than 0.6 × 10−2 second
in all evaluations. In addition, Fig. 3(d) reports the efficiency of pruning in
Algorithm Telescope. Observe that Algorithm Telescope, by using the lattice
graph in Fig. 1(left), only visits approximately 1 % of all nodes. Further, by
transforming the lattice graph into the left-skewed graph in Fig. 1(right), we
can further reduce the number of nodes visited by 17 %.

6 Conclusion

This paper studies how to alleviate the curse of dimensionality problem in sky-
line queries. More specifically, Algorithm Telescope zooms into truly interesting

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

550 J. Lee, G.-w. You, and S.-w. Hwang

skyline objects, guided by user-specified qualitative preference and retrieval size,
which complements existing works that either require users to formulate a rather
cumbersome query or do not adapt to user-specific information needs. In par-
ticular, Algorithm Telescope abstracts skyline ranking as a dynamic search over
skyline subspaces to efficiently and effectively identify truly interesting objects
for a specific user. Our extensive performance study validates both the effective-
ness and efficiency of Algorithm Telescope on real-life and synthetic data.

References

1. Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffery Xu Yu, and Qing Zhang.
Efficient computation of the skyline cube. In VLDB 2005, 2005.

2. Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the best views of skyline:
A semantic approach based on decisive subspaces. In VLDB 2005, 2005.

3. Chee-Yong Chan, H.V. Jagadish, Anthony K.H. Tung Kian-Lee Tan, and Zhenjie
Zhang. On high dimensional skylines. In EDBT 2006, 2006.

4. Chee-Yong Chan, H.V. Jagadish, Kian-Lee Tan, Authony K.H. Tung, and Zhenjie
Zhang. Finding k-dominant skyline in high dimensional space. In SIGMOD 2006,
2006.

5. Ronald Fagin. Combining fuzzy information from multiple systems. In PODS
1996, pages 216–226, 1996.

6. Ronald Fagin, Amnon Lote, and Moni Naor. Optimal aggregation algorithms for
middleware. In PODS 2001, 2001.

7. Nicolas Bruno, Luis Gravano, and Amelie Marian. Evaluating top-k queries over
web-accessible databases. In ICDE 2002, 2002.

8. Kevin C. Chang and Seung-won Hwang. Minimal probing: Supporting expensive
predicates for top-k queries. In SIGMOD 2002, pages 346–357, 2002.

9. Seung-won Hwang and Kevin C. Chang. Optimizing access cost for top-k queries
over web sources. In ICDE 2005, 2005.

10. Hwanjo Yu, Seung won Hwang, and Kevin Chen-Chuan Chang. RankFP: A frame-
work for supporting rank formulation and processing. In ICDE 2005, 2005.

11. Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.
In ICDE 2001, 2001.

12. Donald Kossmann. Shooting stars in the sky: An online algorithm for skyline
queries. In VLDB 2002, 2002.

13. Jan Chomicki, Parke Godfery, Jarek Gryz, and Dongming Liang. Skyline with
presorting. In ICDE 2003, 2003.

14. Jongwuk Lee, Gae-won You, and Seung-won Hwang. Telescope: Zooming to inter-
esting skylines. In POSTECH Technical Report, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 551–562, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Eliciting Matters – Controlling Skyline Sizes by
Incremental Integration of User Preferences

Wolf-Tilo Balke1, Ulrich Güntzer2, and Christoph Lofi1

1 L3S Research Center, Leibniz University Hannover
Appelstr 4, 30167 Hannover, Germany

{balke, lofi}@l3s.de
2 Institute of Computer Science, University of Tübingen

Sand 13, 72076 Tübingen, Germany
ulrich.güntzer@informatik.uni-tübingen.de

Abstract. Today, result sets of skyline queries are unmanageable due to their
exponential growth with the number of query predicates. In this paper we dis-
cuss the incremental re-computation of skylines based on additional information
elicited from the user. Extending the traditional case of totally ordered domains,
we consider preferences in their most general form as strict partial orders of at-
tribute values. After getting an initial skyline set our basic approach aims at
interactively increasing the system’s information about the user’s wishes explic-
itly including indifferences. The additional knowledge then is incorporated into
the preference information and constantly reduces skyline sizes. In fact, our ap-
proach even allows users to specify trade-offs between different query predi-
cates, thus effectively decreasing the query dimensionality. We give theoretical
proof for the soundness and consistence of the extended preference information
and an extensive experimental evaluation of the efficiency of our approach. On
average, skyline sizes can be considerably decreased in each elicitation step.

Keywords: skyline queries, partial order preferences, personalization.

1 Introduction

The problem that users cannot sensibly specify weightings or optimization functions
for utility assessment of retrieval results has been considered for quite some time in
the area of top-k queries and cooperative retrieval. Recently, the novel paradigm of
skyline queries [6, 16, 15] has been proposed as a possible (if somewhat incomplete)
answer. Skyline queries offer user-centered querying as the user just has to specify
the basic predicates to be queried and in return retrieves the Pareto-optimal result set.
In this set all possible best objects (where ‘best’ refers to being optimal with respect
to any monotonic optimization function) are returned. Hence, a user cannot miss any
important answer. However, this advantage of intuitive query formulation comes at a
price: on one hand skylines are rather expensive to compute, on the other hand sky-
lines are known to grow exponentially in size with an increasing number of predicate
values [5].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

552 W.-T. Balke, U. Güntzer, and C. Lofi

In fact, experiments in [3] show that with as little as 5-6 independent query predi-
cates usually already about 50 % of all database objects have to be returned as the
skyline; clearly a prohibitive characteristic for practical uses. The problem even be-
comes harder if instead of totally ordered domains, partial order preferences on
categorical domains are considered. In database retrieval, preferences are usually
understood as partial orders [9, 13, 1] of domain values that allow for incomparability
between attributes. This incomparability is reflected in the respective skyline sizes
that are generally much bigger than in the totally ordered case. On the other hand such
attribute-based domains like colors, book titles, or document formats play an impor-
tant role in practical applications, e.g., digital libraries or e-commerce applications.
As a general rule of thumb it can be stated that the more preference information (in-
cluding its transitive implications) is given by the user with respect to each predicate,
the smaller the average skyline set can be expected to be.

Building on our work in [2] in this paper we will discuss the incremental change of
skyline sizes based on the newly elicited user preferences. Seeing preferences in their
most general form as partial orders between domain values, this explicitly includes
the case of totally ordered domains. After getting an (usually too big) initial skyline
set our basic approach aims at interactively increasing the system’s information about
the user’s wishes. The additional knowledge then is incorporated into the preference
information and helps to reduce skyline sets. Our contribution thus is threefold:

- Users are enabled to specify additional preference information (in the sense of
domination), as well as equivalences (in the sense of indifference) between at-
tributes leading to an incremental reduction of the skyline. Here our system
will efficiently support the user by automatically taking care that newly speci-
fied preferences and equivalences will never violate the consistency of the
previously stated preferences (i.e. users will not encounter conflicts).

- Our skyline evaluation algorithm will allow specifying such additional infor-
mation within a certain predicate. That means that more preference informa-
tion about a predicate is elicited from the user. Thus the respective preference
will be more complete and skylines will usually become smaller. This can re-
duce skylines to the (on average considerably smaller) sizes of total order sky-
line sizes by canceling out incomparability between attribute values.

- In addition, our evaluation algorithm will also allow specifying additional rela-
tions between preferences on different predicates. This feature allows defining
the qualitative importance or equivalence of attributes in different domains and
thus forms a good tool to compare the respective utility or desirability of cer-
tain attribute values. The user can thus express trade-offs or compromises
he/she is willing to take and also can adjust imbalances between fine-grained
and coarse preference specifications.

Especially the last contribution is of utmost importance and has not been consid-

ered in skyline query processing so far. It is the only way – short of dropping entire
query predicates – to reduce the dimensionality of the skyline computation and thus
severely reduce skyline sizes. Nevertheless the user stays in full control of the infor-
mation specified and all information is only added in a qualitative way, and not by
unintuitive weightings. We will prove in our experiments that using elicited prefer-
ence information does indeed lead to the expected positive effect on skyline sizes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Eliciting Matters – Controlling Skyline Sizes by Incremental Integration 553

2 A Skyline Query Use-Case and Related Work

To introduce the basic concepts of incremental preference enhancement, first we will
present a short use case that will serve as a running example throughout the paper.

2.1 Basic Concepts of Partial Order Skyline Processing

Example. Consider a user deciding to buy a car. Usually he/she has preferences on at
least some typical attributes like the car type, the color, the price, etc. Figure 1 shows
three such preferences in the form of strict partial orders. These preferences can
either be explicitly provided by the user together with the query or – what is more
often the case – are provided as part of a user profile e.g., from typical usage patterns
or previous user interactions. Sometimes they are also application/domain inherent
like for example the preference on a lowest possible price for articles with the same
characteristics in other respects. The skyline is then computed as the Pareto-optimal
set over these preferences, e.g. a cheap red roadster dominates all expensive red, yel-
low or green car types, but for instance does not dominate any black car.

Fig. 1. Three typical user preferences (left) and an enhanced preference (right)

Unlike for example the price preference that adheres to a naturally induced total
order, preferences on categorical attributes will usually form only partial orders, ex-
pressing a user’s indifference or indecisiveness. However, especially these attributes
will increase skyline sizes, since the attribute’s incomparability demands that they
may all be part of the skyline. In fact tests in [2] show that partial order skylines sizes
on a set of attribute values are on average about two orders of magnitude bigger than
skylines where some total order has been declared on the same set of attributes. For
instance a skyline over the preferences in figure 1 would contain all best red cars, as
well as the best black cars. If a result size is too large to be manageable by the user,
more specific information is required and has to be elicited.

Example (cont.). To reduce skyline sizes indifference can be reduced within each
query predicate. A user can explicitly decide to add a preference to the current prefer-
ence relation of a query predicate. For instance a user might state that he/she would
rather have a black car than a red car and thus preference P2 in figure 1 would be
transformed into a total order by incrementing the object relationships in the already

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

554 W.-T. Balke, U. Güntzer, and C. Lofi

known preference relation by the relationships stating that black cars are generally
preferred over all red cars with in all other respects equal or worse attribute values.

On the other hand a user might rather want to state equivalences between attribute
values. Considering preference P1 the user might express the equivalence between the
sports car and the coupé like shown in preference P1’. Implicitly this equivalence
means that both car types are equally desirable and this also has consequences for the
induced preference relation. For instance, the preference for convertible car types over
coupés now also should imply a preference of convertible car types over sports cars.
Stating the equivalence thus allows the user to express that sports cars and coupés are
understood as indifferent choices, whereas the choice for a car type with removable
top (such as a roadster or convertible) takes precedence for this user.

Fig. 2. Original and induced domination relationships on object level

However, a user may not only have a feeling for relationships within a predicate,
but also a feeling for the trade-offs he/she is willing to consider. The Pareto order
describes the order of all possible ‘packages’ of predicate, i.e. induces an order be-
tween value tuples that are represented by at least one database object. Equivalences
can be stated with respect to individual pairs of preferences, thus amalgamating pref-
erences and effectively reducing the dimensionality of the skyline query.
Example (cont.). Declaring equivalences between different preferences is especially
useful for stating differences in the amount of relaxation between preferences. Figure 2
shows the basic concept for our example, where every database object is a 3-tuple of
car type, color and price. For example a user might find a relaxation of his/her color
preferences less severe than a relaxation of the respective car’s type. Consider for in-
stance the roasters and convertibles. He/she could consider a green roadster (worst
color) as equivalent to a red convertible (best color). The right hand side of Figure 2
shows the old and new domination relationships of different roasters to some converti-
bles. Note that after introducing the new equivalence all roadsters are considered better
than convertibles (given that also the price is better or at least the same). We see the
original domination relationships as defined by the Pareto order (black arrows) and
those that were newly induced by the stated equivalence (dotted arrows). For example
(given a better price) a previously incomparable black roadster now can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Eliciting Matters – Controlling Skyline Sizes by Incremental Integration 555

be considered better than a red convertible, because it is better than a yellow roadster,
which in turn is better than a green roadster that is considered equivalent to the red
convertible.

Please note that such equivalences do not always have to lead to a ‘lexicographical’
ordering between preferences, but can also express more fine-grained relations be-
tween individual preferences, e.g. a certain amount in price is deemed to make up for
one relaxation step in color. In any case, by eliciting new preferences or equivalences,
the skyline size can never be increased. If any of the preference relations is enhanced
by consistently adding more preference information, more domination relationships
are possible in the Pareto order that is used for skyline evaluation. Hence the skyline
size is bound to decrease monotonically.

2.2 Related Work

The problematic practical applicability of the skyline query paradigm in the face of
exponentially growing result set sizes has been identified soon after its conception
[1, 11]. To deal with this serious shortcoming several approaches have proposed the
exploration of skylines in the form of user interaction. Since deriving a representative
sample was proven NP-hard [14], this is done either by precomputing a ‘skycube’ that
allows for OLAP-style interaction, or by exploiting user feedback on skyline samples
to restrict the space of possible optimization functions. The latter approach [4, 3] aims
at calculating a representative, yet manageable sample of the skyline to derive suitable
utility functions for the user. Using these utility functions a top-k based approach can
be performed that retrieves a manageable set of best objects, however, restricted to
objects similar to those in the sample. In contrast, the skycube (or skyline cube) ap-
proach [20, 17] precomputes the skyline sets for various combinations of predicates
such that a user can explore the skyline on-line e.g. by adding, dropping or aggregat-
ing predicates and consider the changes in the skyline. The major problem of this
approach is the vast amount of expensive precomputations, which have to be repeated
in the face of update operation to the data, see e.g. [19] for a discussion.

In human-computer interaction and AI, the importance of preference elicitation for
a cooperative system behavior has already since long been recognized. Current ap-
proaches can be divided into those focusing on structural assumptions and those using
feedback of users [21]. The first group features methods like value function elicitation
[12] or the analytic hierarchy process [18]. Generally speaking they aim at composing
utility value functions to rank a set of alternative choices. Assuming additive inde-
pendence of predicates each individual predicate’s utility is handled and then com-
posed into a multi-dimensional utility function. A more flexible approach are
CP-Networks [7] where the additive independence is replaced by conditional prefer-
ential independence allowing to use a set of totally ordered preference relations de-
pending on the objects predicate values. Moreover, statistical approaches for eliciting
preferences have been considered [8] where the elicitation process is modeled using a
Markov-decision process over possible utility functions. In comparison, the approach
in this paper is more general as it does not compose utility functions, but uses partial-
ordered preferences that might even include several individual predicates.

Closest to our approach is the work in [10] examining theoretical properties of
general incremental elicitation of partial and total order preferences. However, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

556 W.-T. Balke, U. Güntzer, and C. Lofi

work only examines possible preference collisions when combining (incrementally)
or revising preferences in query modification and query evaluation.

3 Formalization of the Incremental Skyline Computation

To facilitate the incremental computation of skylines we need to formalize the prefer-
ence and equivalence information that is exploited to calculate the respective skylines.
Given a set of database objects O the preference relation stating the basic set of domi-
nation relationships (or for short: preferences) between individual database objects
will be denoted as P ⊆ O2. We will assume P to be free of cycles (i.e. consistent) and
to induce a partial order between database objects: ∀ x, y ∈ O the expression (x, y) ∈
P (or alternatively x <P y) will denote that object y dominates object x with respect to
all query predicates in the sense of Pareto optimality.

Similarly we will define Q ⊆ O2 as an equivalence relation, i.e. a set of equiva-
lences between database objects such that

a) Q is an equivalence relation (especially: is symmetric)
b) Q ∩ P = ∅ (i.e. no equivalence in Q contradicts any strict preference in P)
c) P ○ Q = Q ○ P = P (i.e. the domination relationships expressed transitively

using P and Q should always already be contained in P)

We will call conditions a) to c) the compatibility of equivalence relation Q with
preference relation P and use this characteristic to avoid inconsistencies between P
and Q. Whereas it obviously does not make sense to specify equivalences that do not
define an equivalence relation or directly contradict previously specified preference
information, condition c) will have to be actively upheld by our incremental skyline
computation algorithm. The idea of c) is that we start with only exact value equalities
as equivalences (thus c) is trivially true) and then change Q and P accordingly for any
equivalences that have been additionally specified.

Definition 1. (Expanded Preference and Equivalence Set)
Let O be a set of database objects, P ⊆ O2 be a strict preference relation, Pconv ⊆ O2 be
the set of converse preferences with respect to P, and Q ⊆ O2 be an equivalence rela-
tion that is compatible with P. Let further S ⊆ O2 be a set of object pairs (called in-
cremental preferences) such that

 ∀ x, y ∈ O: (x,y) ∈ S ⇒ (y,x) ∉ S and S ∩ (P ∪ Pconv ∪ Q) = ∅
and let E ⊆ O2 be a set of object pairs (called incremental equivalences) such that
 ∀ (x,y) ∈ O: (x,y) ∈ E ⇒ (y,x) ∈ E and E ∩ (P ∪ Pconv ∪ Q ∪ S) = ∅.
Then we will define T as the transitive closure T := (P ∪ Q ∪ S ∪ E)+ and the ex-

panded preference relation P* and the expanded equivalence relation Q* as
 P* := { (x,y) ∈ T | (y,x) ∉ T} and
 Q* := { (x,y) ∈ T | (y,x) ∈ T}

The basic intuition is that S and E contain the new preferences and equivalences
that have been elicited from the user additionally to those given in P and Q. The only
conditions on S and E are that they can neither directly contradict each other, nor are
they allowed to contradict already known information. The sets P* and Q* then are
the new preference/equivalence sets that incorporate all the information from S and E

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Eliciting Matters – Controlling Skyline Sizes by Incremental Integration 557

and that will be used to calculate the reduced skyline set. Definition 1 indeed results
in the desired incremental skyline set as we will prove in theorem 1:

Theorem 1. (Correct Incremental Skyline Evaluation with P* and Q*)
Let P* and Q* be defined like in definition 1. Then the following statements hold:
1) P* defines a strict partial order (specifically: P* does not contain cycles)
2) Q* is a compatible equivalence relation with preference relation P*
3) Q ∪ E ⊆ Q*
4) The following statements are equivalent
 a) P ∪ S ⊆ P*
 b) P* ∩ (P ∪ S)conv = ∅ and Q* ∩ (P ∪ S)conv = ∅
 c) No cycle in (P ∪ Q ∪ S ∪ E) contains an element from (P ∪ S)
 and from either one of these statements follows: Q* = (Q ∪ E)+

Proof:
Let us first show two short lemmas:

Lemma 1: T ○ P* ⊆ P*
Proof: Due to T’s transitivity T ○ P* ⊆ T ○ T ⊆ T holds. If there would exist objects
x, y, z ∈ O with (x, y) ∈ T, (y, z) ∈ P*, but (x, z) ∉ P*, then follows (x, z) ∈ Q* be-
cause T is transitive and the disjoint union of P* and Q*. Due to Q*’s symmetry we
also get (z, x) ∈ Q* and thus (z, y) = (z, x) ○ (x, y) ∈ T ○ T ⊆ T. Hence we have (y, z),
(z, y) ∈ T ⇒ (y, z) ∈ Q* in contradiction to (y, z) ∈ P*. ■

Lemma 2: P* ○ T ⊆ P*
Proof: analogous to lemma 1 ■

ad 1) From lemma 1 directly follows P* ○ P* ⊆ P* and thus P* is transitive.

Since by definition 1 P* is also anti-symmetric and irreflexive, P* defines a strict
partial order. ■

ad 2) We have to show the three conditions for compatibility:
a) Q* is an equivalence relation. This can be shown as follows: Q* is symmetric

by definition, is transitive because T is transitive, and is reflexive because Q ⊆ T and
trivially all pairs (q,q) ∈ Q.

b) Q* ∩ P* = ∅ is true by definition 1
c) From lemma 1 we get Q* ○ P* ⊆ P* and due to Q* being reflexive also P* ⊆

Q* ○ P*. Thus P* = Q* ○ P*. Analogously we get P* ○ Q* = P* from lemma 2.
Since a), b) and c) hold, equivalence relation Q* is compatible to P*. ■

ad 3) Since Q ⊆ T and Q is symmetric, Q ⊆ Q*. Analogously E ⊆ T and E is

symmetric, E ⊆ Q*. Thus, Q ∪ E ⊆ Q*. ■

ad 4) We have to show three implications for the equivalence of a), b) and c):
a) ⇒ c): Assume there would exist a cycle (x0, x1) ○ … ○ (xn-1, xn) with x0 = xn and

edges from (P ∪ Q ∪ S ∪ E) where at least one edge is from P ∪ S, further assume

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

558 W.-T. Balke, U. Güntzer, and C. Lofi

without loss of generality (x0, x1) ∈ P ∪ S. We know (x2, xn) ∈ T and (x1, x0) ∈ T,
therefore (x0, x1) ∈ Q* and (x0, x1) ∉ P*. Thus, the statement P ∪ S ⊆ P* cannot hold
in contradiction to a).

c) ⇒ b): We have to show T ∩ (P ∪ S)conv = ∅. Assume there would exist (x0, x1)
○ … ○ (xn-1, xn) ∈ (P ∪ S)conv with (xi-1, xi) ∈ (P ∪ Q ∪ S ∪ E) for 1 ≤ i ≤ n. Because
of (x0, xn) ∈ (P ∪ S)conv follows (xn, x0) ∈ P ∪ S and thus (x0, x1) ○ … ○ (xn-1, xn)
would have been a cycle in (P ∪ Q ∪ S ∪ E) with at least one edge from P or S,
which is a contradiction to c).

b) ⇒ a): If the statement P ∪ S ⊆ P* would not hold, there would be x and y with
(x, y) ∈ P ∪ S, but (x, y) ∉ P*. Since (x, y) ∈ T, it would follow (x, y) ∈ Q*. But then
also (y, x) ∈ Q* ∩ (P ∪ S)conv would hold, which is a contradiction to b).

This completes the equivalence of the three conditions now we have to show that
from any of we can deduce Q* = (Q ∪ E)+. Let us assume condition c) holds.

First we show Q* ⊆ (Q ∪ E)+. Let (x, y) ∈ Q*, then also (y, x) ∈ Q*. Thus we have
two representations (x, y) = (x0, x1) ○ … ○ (xn-1, xn) and (y, x) = (y0, y1) ○ … ○ (ym-1,
ym), where all edge are in (P ∪ Q ∪ S ∪ E) and xn = y = y0 and x0 = x = ym. If both
representations are concatenated, a cycle is formed with edges from (P ∪ Q ∪ S ∪ E).
Using condition c) we know that none of these edges can be in P ∪ S. Thus, (x, y) ∈
(Q ∪ E)+.

The inclusion Q* ⊇ (Q ∪ E)+ holds trivially due to (Q ∪ E)+ ⊆ T and (Q ∪ E)+ is
symmetric, since both Q and E are symmetric. ■

The evaluation of skylines thus comes down to calculating P* and Q* as given by

definition 1 after we have checked their consistency as described in theorem 1, i.e.
verified that no inconsistent information has been added. It is a nice advantage of our
system that at any point we can incrementally check the applicability and then accept
or reject a statement elicited from the user or a different source like e.g. profile infor-
mation. Therefore, skyline computation and preference elicitation are interleaved in a
transparent process.

For the actual skyline computation we rely on the algorithm given in [2] for cus-
tomized Pareto aggregation. The customized Pareto operator already uses both prefer-
ence and equivalence information for each predicate. The preference and equivalence
information in our case is given by P* and Q* respectively.

Only for the predicates spanning across predicates we have to slightly adapt the
customized Pareto aggregation. In case of a preference/equivalence connecting two
preferences Pi and Pj and/or their respective equivalence sets Qi and Qj, we first amal-
gamate the two individual predicates by customized Pareto aggregation to a new pref-
erence P and equivalence set Q as follows (in the notation of [2]): P := Pareto(O, Pi,
Pj, Qi, Qj) and Q := {((x1, x2),(y1, y2)) | (x1, y1) ∈ Qi and (x2, y2) ∈ Qj}

After we have amalgamated the preferences as shown, we can easily insert all pref-
erence and equivalence information spanning both predicates and run the normal cus-
tomized Pareto aggregation for skyline evaluation, however, with the advantage of
reduced dimensionality. Moreover, since the new skylines will only get smaller we can
restrict all incremental skyline computations to the already retrieved set in the previous
step. Thus, the skyline is only once computed expensively over the full database and
all subsequent steps are then only calculated over increasingly smaller data sets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Eliciting Matters – Controlling Skyline Sizes by Incremental Integration 559

4 Experimental Section

In this section we evaluate the effects and implications of our approach. For a fair
comparison several synthetic datasets and preference relations are generated randomly
for each measurement series and the averages are reported. Throughout the tests ran-
dom preferences mimicking realistic preference graphs are successively extended by
pieces of equivalence information (thus introducing some new preference relations in
P* and its transitive closure). We evaluate multiple scenarios with changing parame-
ters to study general characteristics of our approach. The base parameters of each
scenario, unless stated differently can be found in Table 1. (cf. experiments in [2]):

Table 1. Base parameters for the evaluation scenarios

Parameter Value
Database Size 100,000
Distribution uniform
Number of Query Predicates 6
Predicates’ Domain Size (# distinct attribute values) 30
Preference Depth (longest path within graph) 8
Edge Degree (ration between graph nodes and edges) 1.2
Unconnected Degree (ratio between isolated and
connected nodes in graph)

0.05

4.1 Influence of Incrementally Adding Equivalence Edges on the Result Size

In this scenario, we examine the average reduction of skyline size during the incre-
mental addition of edges. Our claim is that adding more and more edges will decrease
the size of the resulting skyline set significantly. This is especially true for adding
equivalences between different predicates, i.e. amalgamating preferences. For per-
forming this evaluation we considered uniform, normal and Zipf distributions of data.
During the course of each run, up to ten valid edges (according to definition 1) are
randomly inserted into or between preference relations (each case separately). After
incrementally adding an edge, the resulting skyline size is measured. The resulting
average sizes are shown for uniform distribution in Figure 3: the average skyline size
was reduced in only ten steps to 73 % of its original size in the case of adding only
edges within preference graphs and to 34 % using edges between different prefer-
ences. Our experiments for data sets following a Gaussian and Zipf distribution
provide similar results and thus confirm them. In the Zipf case (at a skew of 0.7),
however the initial skyline was already considerably smaller (about 49.000 compared
to 62.000 objects) and hence also the decrease in skyline sizes were less pronounced.

4.2 Examination of the Normalized Result Size Reductions

To quantify the respective decline in skyline sizes we examined the behavior after
adding each edge. Obviously, different edges can have a vastly different influence on
the size reductions. There are some edges (e.g. between leave nodes) that will not
contribute much, whereas other edges (e.g. connecting disjoint parts of a graph near

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

560 W.-T. Balke, U. Güntzer, and C. Lofi

the root) will be highly beneficial. Hence, this effect has to be studied under some
suitable normalization. An obvious normalization that can be easily calculated is the
number of edges that an incrementally added edge in a base preference actually
causes to be inserted in the transitive closure of P* and Q* (which in turn form the
base for the new skyline calculation). We thus calculated the decrease in skyline size
as percentage of a single edge in the transitive closure. The observed mean value of
0.16 shows that per edge in the transitive close the skyline can be expected to de-
crease by about 0.16%. With a measured standard deviation of 0.13, however, this
value is no adequate tool for predicting skyline reductions and a more sophisticated
approach, involving more complex statistical characteristics of the data set (cf. e.g.
[11]), will be necessary for accurately predicting result skyline reductions.

Therefore, we also checked the impact of new preference information for diverse
preferences over the same set of data (i.e. how the actual shape of the preference var-
ies the impact of new information). We measured the average absolute benefit of a
single random additional equivalence and considered its distribution. The left hand
side of Figure 4 shows our results. The impact of new information shows a mean of
about 11247 objects and a standard deviation of 5473. Although it seems to resemble
a Gaussian distribution, a Shapiro-Wilk test with a confidence of 95% fails.

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7 8 9 10

same predicate
different predicates

0.1
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

20

40

60

80

100

Mean 0.16

Fr
eq

ue
nc

y

Fig. 3. Result set sizes for incrementally added edges (left) and the frequency histogram of the
distribution of the observed normalized size reductions δ (right)

4.3 Influence of Preference Depth on Skyline Result Set Sizes

Finally, we varied the number of additional edges over different preference depths
(i.e. approaching a total order). The right hand side of figure 4 reports our results.
Plotted are the average respective skyline sizes for 0, 3, 6 and 9 incrementally added
edges between preference graphs over a dataset of 100,000 objects. With increasing
preference depth, the result set sizes also decrease significantly due to the reduction of
incomparable predicate values within the preferences. As the preferences more and
more resemble a total order (which is reached at a depth of 30) the initial skyline
becomes increasingly lean and the respective reductions by adding more information
decrease. Adding more information thus is more important for ‘bushy’ preferences as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Eliciting Matters – Controlling Skyline Sizes by Incremental Integration 561

opposed to total orders. In any case, also this experiment confirms that eliciting more
information from the user leads to significantly diminished skyline sizes.

Fig. 4. Absolute impact of new preference information (left) and skyline sizes for varying
numbers of additional edges and preference depths

5 Summary and Outlook

In this paper we have shown that unpractical skyline sizes can be controlled by elicit-
ing more information from the user and incrementally recomputing the respective
skylines. In our framework users are not only enabled to specify additional preference
information (in the sense of domination), but also equivalences (in the sense of indif-
ference) between attributes. Moreover, our skyline evaluation allows for specifying
such additional information within a certain predicate and even between preferences
on different predicates. In any case users are supported by automatically taking care
that newly specified preferences and equivalences will never violate the consistency
of any previously stated preferences and their implications. This feature allows defin-
ing the qualitative importance or equivalence of attributes in different domains and
thus forms a good tool to compare the respective utility or desirability of attribute
values: users can express compromises they are willing to take, and adjust imbalances
between fine-grained and coarser preference specifications. Our experiments confirm
that this indeed can reduce the skylines to the total order skyline sizes by canceling
out incomparability and that usually only a few new relations are needed.

Our future work will especially focus on reducing the necessary recomputation
steps for deriving the incremental skyline. Since all new information added is only of
a local nature, also the new skyline can be expected only to change with respect to
several attributes that were affected by the changes. This may lead to considerably
reduced computation times for the incremental skyline.

Acknowledgments. Part of this work was supported by a grant of the German Re-
search Foundation (DFG) within the Emmy Noether Program of Excellence.

0

20000

40000

60000

80000

100000

120000

2 5 8 11 14 17 20

0

3

6

9

0

50

100

150

200

250

300

350

400

F
re

q
u

en
cy

0 80004000 10000 12000 14000 16000

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

562 W.-T. Balke, U. Güntzer, and C. Lofi

References

1. W.-T. Balke, U. Güntzer. Multi-objective Query Processing for Database Systems. Int.
Conf. on Very Large Data Bases (VLDB), Toronto, Canada, 2004.

2. W.-T. Balke, U. Güntzer, W. Siberski. Exploiting Indifference for Customization of Partial
Order Skylines. Int. Database Engineering and Applications Symp. (IDEAS), Delhi, India,
2006.

3. W.-T. Balke, J. Zheng, U. Güntzer. Efficient Distributed Skylining for Web Information
Systems. Int. Conf. on Extending Database Technology (EDBT), Heraklion, Greece, 2004.

4. W.-T. Balke, J. Zheng, U. Güntzer. Approaching the Efficient Frontier: Cooperative Data-
base Retrieval Using High-Dimensional Skylines. Int. Conf. on Database Systems for Ad-
vanced Applications (DASFAA), Beijing, China, 2005.

5. J. Bentley, H. Kung, M. Schkolnick, C. Thompson. On the Average Number of Maxima in
a Set of Vectors and Applications. Journal of the ACM (JACM), vol. 25(4) ACM, 1978.

6. S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline Operator. Int. Conf. on Data Engi-
neering (ICDE), Heidelberg, Germany, 2001.

7. C. Boutilier, R. Brafman, C. Geib, D. Poole. A Constraint-Based Approach to Preference
Elicitation and Decision Making. AAAI Spring Symposium on Qualitative Decision The-
ory, Stanford, USA, 1997.

8. C. Boutilier. A POMDP Formulation of Preference Elicitation Problems. National Confer-
ence on Artificial Intelligence (AAAI), Edmonton, USA, 2002

9. J. Chomicki. Preference Formulas in Relational Queries. ACM Transactions on Database
Systems (TODS), Vol. 28(4), 2003.

10. J. Chomicki. Iterative Modification and Incremental Evaluation of Preference Queries. Int.
Symp. on Found. of Inf. and Knowledge Systems (FoIKS), Budapest, Hungary, 2006.

11. P. Godfrey. Skyline Cardinality for Relational Processing. Int Symp. on Foundations of In-
formation and Knowledge Systems (FoIKS), Wilhelminenburg Castle, Austria, 2004.

12. R. Keeney, H. Raiffa. Decisions with Multiple Objectives: Preferences and value trade-
offs. Cambridge University Press, 1976.

13. W. Kießling. Foundations of Preferences in Database Systems. Int. Conf. on Very Large
Databases (VLDB), Hong Kong, China, 2002.

14. V. Koltun, C. Papadimitriou. Approximately Dominating Representatives. Int. Conf. on
Database Theory (ICDT), Edinburgh, UK, 2005.

15. D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. Int. Conf. on Very Large Data Bases (VLDB), Hong Kong, China, 2002.

16. D. Papadias, Y. Tao, G. Fu, B. Seeger. An Optimal and Progressive Algorithm for Skyline
Queries. Int. Conf. on Management of Data (SIGMOD), San Diego, USA, 2003.

17. J. Pei, W. Jin, M. Ester, Y. Tao. Catching the Best Views of Skyline: A Semantic Ap-
proach Based on Decisive Subspaces. Int. Conf. on Very Large Databases (VLDB),
Trondheim, Norway, 2005.

18. T. Satty. A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathe-
matical Psychology, 1977.

19. T. Xia, D. Zhang. Refreshing the sky: the compressed skycube with efficient support for
frequent updates. Int. Conf. on Management of Data (SIGMOD), Chicago, USA, 2006.

20. Y. Yuan, X. Lin, Q. Liu, W. Wang, J. Yu, Q. Zhang. Efficient Computation of the Skyline
Cube. Int. Conf. on Very Large Databases (VLDB), Trondheim, Norway, 2005.

21. L. Chen, P. Pu. Survey of Preference Elicitation Methods. EPFL Technical Report
IC/2004/67, Lausanne, Swiss, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data
Streams

Dan Lin1, Bin Cui2,�, and Dongqing Yang2

1 National University of Singapore
lindan@comp.nus.edu.sg

2 Peking University, China
{bin.cui,dqyang}@pku.edu.cn

Abstract. With the increasing in demand on location-based aware services and
RFIDs, efficient processing of continuous queries over moving object streams be-
comes important. In this paper, we propose an efficient in-memory processing of
continuous queries on the moving object streams. We model moving objects using
function of time and use it in the prediction of usefulness of objects with respect
to the continuous queries. To effectively utilize the limited memory, we derive
several replacement policies to discard objects that are of no potential interest to
the queries and design efficient algorithms with light data structures. Experimen-
tal studies are conducted and the results show that our proposed method is both
memory and query efficient.

1 Introduction

With rapid advances in electronic miniaturization, wireless communication and posi-
tion technologies, moving objects that acquire and transmit data are increasing rapidly.
This fuels the demand for the location-based services and also deployment of Radio Fre-
quency Identification (RFID) in tracking and inventory management applications. In in-
ventory tracking like applications, disclosure of object positions forms spatio-temporal
data streams with high arrival rate, and queries act upon them tend to be continuous and
moving. Consequently, queries must be continuously updated and any delay of query
response may result in an obsolete answer [7]. Moving object data stream manage-
ment systems [3,8] have been designed to handle massive numbers of location-aware
moving objects. Such systems receive their input as streams of location updates from
the moving objects. These streams are characterized by their high input rate, and they
cannot be stored and need to be processed on the fly to answer queries. Clearly, the
disk-based structures are not able to support the fast updates and provide quick re-
sponse time. The PLACE [8] extended data streaming management systems to support
location-aware environments. However, the PLACE can only manage the snapshots of
objects and queries at each timestamp, which inevitably increases the amount of data
information. Additionally, it stores the entire dataset in the server for query process-
ing, which may not be applicable for data stream management system. On the other
hand, studies of real positional information obtained from GPS receivers installed in

� Contact author. This work is supported by the NSFC under grant No. 60603045.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 563–575, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

564 D. Lin, B. Cui, and D. Yang

cars show that representing positions as linear functions of time reduces the numbers
of updates needed to maintain a reasonable precision by as much as a factor of three in
comparison to using constant functions [2]. Linear functions are thus much better than
constant functions in the data streaming environment.

As with other data streams, processing of continuous spatio-temporal queries over
the moving object stream requires the support of in-memory processing. Existing disk-
based algorithms cannot be easily turned into in-memory methods, because the under-
lying structures tend to be bulky and index all data points due to the availability of
cheap storage space. Existing tree-based indexing structures [4,10,11,14] for moving
objects focus on reducing disk accesses since the execution time is dominated by the
I/O operations. In fact, for some indexes, fast retrieval is achieved by preprocessing and
optimization before insertion into the index [14]. In this paper, we propose an efficient
approach which is able to handle moving objects and queries represented by functions.
Due to the limited amount of memory, we design light data structures, based on hash
tables and bitmaps. To manage the limited amount of buffer space, we design several
replacement policies to discard objects that are of no potential interest to the queries.
Experimental results demonstrate that our algorithms can achieve fast response time
and high accuracy with a small memory requirement.

The rest of the papers is organized as follows. Section 2 defines the problem and re-
views the related work. Section 3 introduces the overall mechanism. Section 4 presents
the algorithms of continuous range queries. In section 5, we report the experimental
results. Finally, Section 6 concludes with the paper.

2 Problem Statement and Related Work

2.1 Problem Statement

The moving object data stream is made up of a sequence of update information of
moving objects. We assume that moving objects are capable of repeatedly transmitting
their positions and velocities to a central server. Then, each tuple in the stream includes
〈OID, Op, Ov, Ot〉, where OID is the object ID, Ot is the update time, Op and Ov
are the position and velocity at time Ot respectively. The incoming tuple is the update
information of the existing tuple with the same OID. To reduce the update frequency,
a linear function is used to model the trajectory of a moving object. A moving object
is required to transmit a new location to the server when the deviation between its real
location and its server-side location exceeds a threshold, dictated by the services to be
supported. In keeping with this, we define the maximum update time (U) as a problem
parameter. This quantity denotes the maximum time duration in-between two updates
of the position of any moving object.

The query data stream is comprised of a sequence of two types of queries: continuous
static range query and continuous moving range query. They are defined as follows:

– Continuous static range query: Given a static range R at time Qt, the query needs
continuously reporting all the moving objects within the range R from time Qt.

– Continuous moving range queries: Given a range R moving at the velocity Qv, and
a time Qt, the query needs continuously reporting all the moving objects inside
R(t) from time Qt, where R(t) denotes the range at time t after Qt.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 565

In fact, the static query can be treated as the special case of the moving query where
the velocity is equal to zero. Therefore, each tuple in the query data stream can be
represented using the same format 〈QID, R, Qv, Qt〉. Similar to the moving object
data stream, the newly incoming query will replace the tuples with the same QID in
the memory. Without loss of generalization, we consider the square range throughout
the paper.

2.2 Related Work

There are numerous work in the area of spatio-temporal query processing on moving
objects (e.g.,[1,4,6,12,10,11,14,16]). However, these disk-based approaches may not be
suitable for scalable, real-time location based queries because of high I/O costs, even
when sophisticate buffer management is employed. Although it is possible to tailor
these methods and put the entire data and indexes into the main memory to speed up,
this may consume too much memory. In this paper, we have proposed a main memory
based index approach. Our approach does not intend to store the data of all moving
objects, because only some objects will be included in the queries answers.

In [5,15], continuous range queries are made over moving objects. The queries being
considered are however static. In [7,8,9], the problem of moving queries over moving
objects are discussed. However, their approaches are to store snapshots of queries and
objects at each timestamp making it necessary to store and process these snapshots on
the disk. To ensure efficient processing, our work here try to address the same problem
using only in-memory processing.

3 Continuous Query Processing on Moving Object Streams

3.1 System Architecture

In this section, we introduce the QMOS (Query Moving Object Stream) system.
Figure 1 gives an overview of the QMOS system. There are four in-memory stor-
ages (shaded boxes): object pool, query pool, event queue and query filter; and two
processors (white boxes): query processor and discarding processor.

Processor
Query

Processor

Discarding

Time

Buffer

Filter

Answers

Event

Stream

Data

Stream

Query
Query

Object

Queue

Query

Fig. 1. An Overview of the System Architecture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

566 D. Lin, B. Cui, and D. Yang

An incoming object is first put into the object pool, and then will be sent to the query
processor together with selected queries from the query filter. The query processor
will generate three kinds of results: current answer, potential answer, and none answer.
Current answer means that the incoming object is one of the answers of the query at
the current time, which will be directly reported to the user. Potential answer means
that the incoming object will be one of the answers of the query at some future time
(within the maximum update time interval U). None answer means that the incoming
object is neither a current answer nor a potential answer. Both of them will be further
sent to the discarding processor. Since the memory is limited, potential answers and
none answers need to be judged whether they are valuable to be stored. The discarding
processors will provide a feedback to the object pool if the incoming object can be
discarded. Valuable potential answers will then be stored as events in the event queue.
As time passes, potential answers may turn into current answers and be reported to the
users. In addition, the event queue also handles objects which leave the query answer
sets. It is worth noting that the query answer set is maintained incrementally. There is
an output only when the query result has been changed, due to adding or deleting an
object from the answer set.

The processing of an incoming query is relatively simple. If the memory is enough,
we store it in the query pool, and register its summary information in the query filter.
Otherwise, the Discarding processor is triggered to find out whether there is some space
can be used for the new query.

3.2 Storage Components

The object pool stores the information of the moving objects. Each tuple in the object
pool is in the form of 〈OID, Op, Ov, Ot, PA, Ca, Evt〉, where OID, Op, Ov, Ot
are used to represent the object, PA is the number of queries of which the object is a
potential answer, Ca is a bit-map storing the entries to the queries of which the object
is a current answer, and Evt is also a bit-map used to locate the related events of this
object.

The query pool stores the information of the queries. Each tuple in the query pool
consists of 〈QID, R, Qt, Qa, Evt〉, where QID is the query ID, R is the query range,
Qt is the query starting time, Qa is a pointer to the query results, and Evt is used to
locate the related events of the query (the same as the corresponding part in the object
pool). Further, R is represented by (Qp, Qv, L), where Qp stores the left bottom corner
of the query window, Qv is the moving velocity of the query window, and L is the
length of the query window.

The event queue stores future events when an object will join or leave current query
answer set. Each tuple consists of four components: t, pO, pQ, and M . t is the time that
the event may happen. pO is a pointer to the object stored in the object pool, and pQ
refers to the query that this object may affect. M is a one-bit mark: if in the event the
object will become one of the query answers, M is set to 1; if the object will no longer
be the answer, M is set to 0.

Object pool, query pool and event queue are all organized as hash tables where the
keys are OID, QID and t respectively. The lengths of the hash tables are determined
by the memory size. The hash structure is preferred over other kinds of data structures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 567

since (i) these data are usually retrieved by their key values and hashing techniques
provide fast and direct access; (ii) the memory is limited and hash structures have less
storage overhead.

The query filter is designed to accelerate the query processing. It is a grid structure
which captures the current and future positions of moving queries. Basically, we par-
tition the space into a regular grid where each cell is a bucket. Each bucket contains
pointers to the queries passing this bucket.

3.3 Data Processing

We proceed to present how the system manages the two kinds of incoming data (moving
objects and queries) and the internal data – events. During all processes, whenever there
is not enough memory, discarding policies are applied to remove useless data to collect
memory. We defer the discussion of the discarding policies to the next subsection.

• Moving Object Data Streams
An incoming object O is processed as follows. First, we check whether the object ID has
already existed in the object pool. If yes, we modify the corresponding tuple by using
the new information including position Op, velocities Ov, update time Ot. Information
with regards to this object O in the query results and the event queue is removed, since
they become obsolete now. Then object O will be computed with queries selected by
the query filter. We need to decide whether we store this object in the memory. We
will store it only if it proves to be useful. In particular, the coming object is useful if
it is a current/ potential answer of a query, and there is enough memory after applying
discarding policies. After the object O is successfully stored in the memory, the pointer
to the object will be inserted to the query answer set where it is a current answer, and
the leaving events and potential answers will be added into the event queue.

The details of query and discarding processes will be addressed later. The deletion
and insertion of the object in the object pool is done fast by hashing the OID, similarly
to the insertion of the related events and query answers. While the deletion of related
events and query answers is a little more complex. The straightforward way is to scan
the whole event queue (query pool) to find the events (queries) related to the object,
which is obviously inefficient and may result in an unbearable delay when the memory
size is large. To avoid such a brute force method, we propose the following techniques.

1 0 1 0

3

...
3

31
2
3

Evt

OID = 3 U = 16 time

14
15

13

Event Queue

12

0

0 0 0 1 0 0 0 00 0 0 0

04812

(a) Evt Attribute

..

...

QID

QID
...

...

...

...

Hq(QID) = QID mod Nq

Query Pool

...

...

Ca

Hca(Hq(QID))
= QID mod Nq mod Nca

.

0..

...

Nca bits

Nca−1

Nq−1

0

.

(b) Ca Attribute

Fig. 2. Examples of Evt and Ca Attributes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

568 D. Lin, B. Cui, and D. Yang

The search of the related events is managed with the aid of the Evt attribute of the
object. Specifically, one bit in the Evt is related with one timestamp in the event queue,
and the bit will be set to 1 if there is an event with respect to the object happening at the
corresponding timestamp. For example (see Figure 2(a)), assuming that OID = 3 and
U = 16, the object has related events at time 1, 3 and 12. Then the 1st, 3rd and 12th
bits in the Evt are set to 1, others are 0. By checking the Evt, we can easily find the
entries to the related events of the object and avoid scanning the entire event queue.

The search of the related queries is accelerated by the Ca attribute of the object.
Different from the Evt, the one-one map (i.e. one bit to one entry in the hash table of
the query pool) may lead to a long Ca, because the number of queries in memory could
be large when the memory scales up (i.e. the length of the hash table of the query pool
may grow up). Therefore, we employ a second level hashing over the query IDs, where
each bit of Ca corresponds to a series of entries in the hash table of the query pool. As
shown in Figure 2, suppose that the length of the hash table of the query pool is Nq,
and the number of the bits in Ca is Nca. Queries are first hashed to the hash table of the
query pool by the function Hq(QID) = QID mod Nq. Then the mapping function for
the Ca is Hca(QID) = Hca(Hq(QID)) = (QID mod Nq) mod Nca.

• Queries
For an incoming query Q, we insert 〈QID, Qp, Qv, L, Qt, NULL〉 into the query table
to represent the new query. The trajectory of the new query will be registered in the
query filter. The new query only considers the objects coming after it, which means it
needs some time to “warm up”. The “warming-up” time could be short since objects
are updated frequently. If the query expires, we remove the entry from the query pool,
and the events related to the old query (the procedure is similar to that in the previous
section). Note that objects become none answers after the deletion of the query are
automatically discarded from the memory.

• Events
As time passes, the event queue is checked to update current answers of queries. All
events whose start time is less than or equal to current time are evaluated. Recall that,
the events are stored in a hash table with the length equal to the maximum update
interval U . By hashing the current timestamp t, we can find its entry in the hash table.

There are two kinds of events: objects leaving or entering the query range. According
to the type of an event, different actions are performed. Given an event 〈t, pO, pQ, M〉,
if the mark M equals to 1, the object pO pointing to should be inserted into the answer
list of the corresponding query that pQ points to. If M equals to 0, which means the
object O is no longer an answer of the query Q, then O is removed from the answer list
of Q. In both situations, the Ca and Evt attributes of O should be adjusted. Finally, we
delete the event itself.

3.4 Discarding Policy

Continuous queries over infinite streams may require infinite working memory. Thus,
an essential solution to answer such queries in bounded memory is to discard some
unimportant data when the memory is full. Our proposed discarding policies comply
with the basic rule that discarding data of lowest priority first. In our scenario, we define

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 569

the priorities of the data as that: the query data is most important, followed by the current
answer and the potential answer.

Each time the memory is full, we first attempt to discard objects which are neither
current answers nor potential answers. If this operation fails, we further apply any of
the following three policies.

1. Discard the oldest object according to its insertion time. The idea behind the Policy
1 is that the oldest object has the highest probability to be updated first, and thus
the influence of discarding this object may be ended within the shortest time.

2. Discard the object whose first appearance in the event queue is latest than that of
any other object and it is an entering event. The motivation of Policy 2 is to keep the
query answers unaffected as long as possible. Therefore, it picks the object which
is the last one to become a potential answer. Combined with the idea of Policy 1,
we may have a variation of Policy 2: discard the object which has the longest time
interval between its insertion time and the time it becomes an answer.

3. Discard the object that affects fewest queries. Different from the first two policies
that both take into account the time effect, Policy 3 aims to minimize the number
of queries that the object affects.

All the policies share the same purpose that minimizes the error rate of the query an-
swers after the discarding. Note that the query data will be discarded only when the
memory is fully occupied with queries.

Next, we introduce the discarding process. Any policy is realized by scanning the
object pool once. Policy 1 compares the insertion time Ot of each object and discards
the one with smallest Ot. Policy 2 is done by examining the attribute Evt of an object,
where the lowest none-zero bit refers to the first event of the object. We then need to
check whether the event is an entering event or a leaving event. For the Policy 3, the
number of related queries can be approximated by the sum of none-zero bits in Ca and
Evt. If the exact number is required, we can further access corresponding tuples in the
event queue and query pool according to Ca and Evt.

4 Algorithms of Continuous Range Queries

4.1 Processing a Single Query

In the two-dimensional space, given a continuous range query 〈QID, Qp, Qv, L, Qt〉,
the query range at time t (Qt ≤ t) can be represented by the left-bottom and right-
top corner, [(Qpx + Qvx(t − Qt), Qpy + Qvy(t − Qt)), (Qpx + Qvx(t − Qt) +
L, Qpy + Qvy(tQt) + L)]. For an incoming object 〈OID, Op, Ov, Ot〉, we need to
identify whether it is a current answer or a potential answer.

An object is a current answer to the range query if its position at current time tc is
inside the query range at time tc. We first compute the query range at tc by its moving
function, and then compare the position of the object with the left-bottom and right-top
corner of the query range directly.{

Qpx + Qvx(tc −Qt) ≤ Opx ≤ Qpx + Qvx(tc −Qt) + L
Qpy + Qvy(tc −Qt) ≤ Opy ≤ Qpy + Qvy(tc −Qt) + L

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

570 D. Lin, B. Cui, and D. Yang

If the above conditions are satisfied, the object is a current answer to the range query
and will be added into the answer list. The remaining task is to compute the time it
leaves the query range, and insert the leaving event to the event queue. As the object is
already inside the query range, its future trajectory will have only one intersection point
with the query range, and the intersection time is the leaving time. The details of the
computation will be explained shortly.

An object is a potential answer to the range query if its position at future time tf (not
later than the maximum update interval) is inside the query range at time tf . Then we
need to compute the time when the object enters the query range, and insert this future
event to the event queue. As the object is currently outside the query range, its future
trajectory may have at most two intersection points with the query range. The earlier
intersection time is the entering time and the other one is the leaving time.

We proceed to present how to compute the intersection time. Figure 3 shows a con-
tinuous range query and an incoming moving object, where the solid rectangle presents
the query range at the current time, the rectangles with broken line denotes the query
ranges at near future, the black point is the moving object, and the connecting line
with arrow shows the object’s future trajectory. To check whether the object’s future
trajectory intersects with the query range, let us consider the four borders of the query
range, AB,BC,CD,DA, one by one. The border AB moves at the speed of Qvx, and
thus the line at time t (denoted as Lab) it resides in can be described by the equa-
tion: x = Qpx + Qvx(t − Qt). If the object’s trajectory intersects with AB, it must
also intersects with Lab. In other words, the object’s x coordinate should be on Lab at
the intersection time. Assuming that the intersection time is tab, we have the equation:
Opx + Ovx(tab − Ot) = Qpx + Qvx(tab − Qt). By solving the equation, we obtain
the following results:

tab =

{
(Qpx−Ox)−(Qvx·Qt−Ovx·Ot)

Ovx−Qvx
, Ovx �= Qvx;

+∞, Ovx = Qvx.

Note that, when Ovx = Qvx, i.e. the object and the border AB move at the same speed
and same direction, they will never meet each other. Therefore, the tab is set to be the
infinite large +∞ in this case.

The resultant tab value is invalid if it does not satisfy the constraints: (i) tab > Ot,
i.e. the intersection time should be later than the object insertion time; (ii) tab > Qt,

Qx

t

B C

A D

y

O
Qy

x

Fig. 3. An Example of a Continuous Range Query

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 571

i.e., the intersection time should be later than the query starting time; (iii) tab < Ot+U ,
i.e., the intersection time should not exceed the validity period of the object. Invalid tab

will also be reset to the infinite large +∞.
So far the tab we computed is only the intersection time of the object’s trajectory and

the line that the AB belongs to. We need to further check whether the intersection point
lies in the line segment AB. Suppose that the tab is valid, we can use it to compute the
intersection point P (Px, Py), where Px = Opx + Ovx(tab − Ot), and Py = Opy +
Ovy(tab − Ot). Then we compare the y coordinate of P and points A, B. If Ay ≤
Py ≤ By, the intersection point is in the segment AB, which means we obtain one
useful intersection time. Otherwise, we again set the tab to be +∞.

The similar computation is carried out for the other three borders BC, CD and DA.
The entering time te is the minimum value of the four intersection times, and the leaving
time tl is the finite maximum value of the four intersection times. Note that we may not
need to compute the four intersection times. If we have obtained two intersection times
which are not +∞, we do not need to process the remaining borders.

4.2 Processing Multiple Queries

An incoming object could be a current or potential answer of multiple queries in the
memory. Comparing it with all the queries one by one may result in high query cost.
Therefore, we propose a query filter to prune the searching space.

The query filter is a regular grid structure which partition the space into equal cells.
Each cell stores pointers to queries which pass by the cell during the maximum update
interval U . The pointer to one query may be stored several times in the grid due to
the movement of the query. To reduce the number of duplications, we need to decide
a reasonable grid cell size. For example, we can set the extent of cell to be slightly
larger than vmax · U , where the vmax is the maximum speed of a query. For a query
with a long lifetime, we will update its information in the grid every U time interval.
Moreover, in order to speed up the mapping process, we do not compute the exact cells
that the queries intersects with. Instead, we map the minimum bounding rectangle of
the query sweeping region (during U) to the grid as shown in Figure 4(a).

We are now ready to look at how the query filter works. For example, in Figure 4(b),
given an incoming object O at time Ot, we will map it to the grid in the similar way as
we have done to the query. First we compute its position at time Ot + U . The search

q q

q

q

q

q q

q

(a) MBR of Query Sweeping Region

q2

o

q2q2 q2

q3

q1−q3q3

q1−q3
q3

q1

(b) Query Filter

Fig. 4. Query Filter Construction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

572 D. Lin, B. Cui, and D. Yang

space (the dashed rectangle in the figure) is the rectangle determined by the two posi-
tions at Ot and Ot + U respectively. Then only queries registered inside this rectangle
need to be computed.

5 Performance Study

All the experiments are conducted on a 2.6G Hz P4 machine with 1Gbyte of main mem-
ory. The memory for our application is limited from 100K to 2M. Moving objects are
represented as points in the space domain of 1000 × 1000. The datasets were gener-
ated by a typical data generator [11]. The maximum interval between two successive
updates of an object is equal to 30 time units. Queries follow the same distribution of
the moving objects. The moving speed of the queries is half of the speed of objects. The
query window size is 0.01% of the space. The number of queries existing at the same
time varies from 100 to 500. Unless noted otherwise, we use 300K memory for 100K
moving objects when there are 100 queries at each timestamp.

We evaluate the memory requirement, the accuracy and the response time of the
proposed three policies. The memory requirement is compared with the Bx-tree. The
accuracy function is Accuracy = Number of answers produced by the algorithm

Number of correct answers . The re-
sponse time is defined as the time interval between the input of a data and the output of
the result regarding to this data.

• Effect of Memory Size. The first round of experiments evaluate efficiency of the
three discarding policies when varying the total available memory size from 100K bytes
to 500K bytes. The number of moving objects are 100K, and the data streams of their
update information is of size 217K tuples during 30 timestamps.

Figure 5(a) shows the results of the accuracy at timestamp 30. As shown, the perfor-
mances of all the policies improve with the increasingly large memory size. The reason
is straight forward: larger memory can hold more answers. When the memory size
reaches beyond a certain point (> 300K), the accuracy of all the policies approaches
100%. Note that 300K is about only 13% of the space used to store all the objects. This
is because our algorithm only catches query answers and the result demonstrates its
space efficiency. We can also observe that Policy 2 always yields higher accuracy than
the other two policies. The reason could be that Policy 2 maximizes the valid period of
query results.

Figure 5(b) shows the average response time of the three policies during one maxi-
mum update interval. We can see that as the memory size increases, the response time
of three policies first increases slightly and then almost keep constant. For an object,
the response time is the sum of query processing time and the discarding processing
time. The query processing time will not be affected by the memory size when the
query number is fixed, and thus the variation of the response time is mainly due to the
variation of the discarding processing time. As the memory increases, the time to find
a replacement slows down, whereas the need to execute a discarding policy is reduced.
When these two factors reach a balancing station, the performance becomes stable. In
addition, the resultant three curves are close to one another possibly because that the
discarding process is only different in the selection metric, and hence the processing
time is similar.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 573

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500

Memory Size (Kbytes)

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(a) Memory Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

100 150 200 250 300 350 400 450 500

Memory Size (Kbytes)

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(b) Memory Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Unit

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(c) Effect of Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5 10 15 20 25 30 35 40 45 50 55 60

Time Unit

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(d) Effect of Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500

Number of Queries per Time Unit

A
cc

ur
ac

y

Policy 1

Policy 2

Policy 3

(e) Query Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500

Number of Queries Per Time Unit

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(f) Query Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

100K 200K 300K 400K 500K

Number of Moving Objects

R
es

po
ns

e
T

im
e

(m
s)

Policy 1

Policy 2

Policy 3

(g) Response Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 200 300 400 500

Number of Queries per Time Unit

M
in

im
al

 M
em

or
y

R
eq

ui
re

m
en

t
(M

by
te

s) Bx-tree

Policy 1

Policy 2

Policy 3

(h) Minimum Memory

0

2

4

6

8

10

12

14

16

100K 200K 300K 400K 500K

Number of Moving Objects

M
in

im
al

 M
em

or
y

R
eq

ui
re

m
en

t
(M

by
te

s)

Bx-tree

Policy 1

Policy 2

Policy 3

(i) Minimum Memory

Fig. 5. Experimental Results

• Effect of Time. Next, we investigate performance degradation across time. The
100K moving objects are kept updated during 60 timestamps (two times of maximum
update interval). As shown in Figure 5(c) and (d), the performance of all the policies
decreases a little as time passes, which is due to the execution of the discarding policies,
and the larger query range.

• Effect of Number of Queries Per Time Unit. In this set of experiments, we vary the
number of queries at the same timestamp. We fix the memory size to 300K and test the
accuracy and response time. From Figure 5(e) and (f), we observe that the performance
degenerates with growing number of queries at the same time. The decrease of the
accuracy is mainly caused by the increase of the result dataset. Due to the memory
limitation, even potential answers at near future time may be discarded, which affects
the accuracy and also increases the processing time.

• Effect of Data Size. To study the scalability of our algorithms, we examine the
method with varying the number moving objects from 100K to 500K. For the response
time (see Figure 5(i)), Policy 2 is the best since it requires the smallest memory so that
the discarding process can be executed fastest.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

574 D. Lin, B. Cui, and D. Yang

• Comparison with the Bx-tree. To show the effectiveness of the proposed method,
we compare it with the Bx-tree [4] which has much smaller space requirement com-
pared with other existing index structures, e.g. the TPR∗-tree [14]. We first explore the
minimum memory required for each policy to achieve high accuracy (above 99%) by
varying the numbers of queries per time unit. Not that, the Bx-tree stores all the objects
for queries. Figure 5(h) shows the results. Not surprisingly, the minimum memory re-
quired for all policies increases with the number of queries. However, our algorithms
can save up to 90% space compared with the Bx-tree. Among three policies, Policy 2
has the smallest space requirement, followed by Policy 3 and 1. This is consistent with
the previous results in Figure 5(a). Those policies perform better when using the same
size of memory, will need less space to reach high accuracy.

Figure 5(i) shows that our algorithms scale very well compared with the Bx-tree for
large data sizes. By using our algorithm, less than 2M bytes memory is required for the
500K data, whereas the Bx-tree needs about 15M bytes space.

6 Conclusion

In this paper, we proposed a novel scheme which can handle infinite data streams in
memory, and provide prompt response, by compromising with small errors. Our ap-
proach supports continuously moving queries over moving objects, both of which are
represented by linear functions. Due to the constraints of the memory size and response
time, we propose light data structures, and employ hashing techniques. Also, we derive
several replacement policies to discard objects that are of no potential interest to the
queries. Experimental studies were conducted and the results show that our proposed
method is both memory and query efficient.

References

1. Y. Chen, F. Rao, X. Yu, D. Liu, and L. Zhang. Managing Location Stream Using Moving
Object Database. Proc. DEXA, pp. 916–920, 2003.

2. A. Čivilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Efficient Tracking of Moving Objects
with Precision Guarantees. Proc. Mobiquitous, pp. 164–173, 2004.

3. H. G. Elmongui, M. Ouzzani and W. G. aref. Challenges in Spatio-temporal Stream Query
Optimization. Proc. MobiDE, pp. 27–34, 2006.

4. C. S. Jensen, D. Lin and B. C. Ooi. Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. Proc. VLDB, pp. 768–779, 2004.

5. D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch. Efficient Evaluation of
Continuous Range Queries on Moving Objects. Proc. DEXA, pp. 731–740, 2002.

6. Y. Li, J. Yang, and J. Han. Continuous K-Nearest Neighbor Search for Moving Objects.
Proc. SSDBM, pp. 123–126, 2004.

7. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Con-
tinuous Queries in Spatio-temporal Databases. Proc. SIGMOD, pp. 623–634, 2004.

8. M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous Query Processing of
Spatio-temporall Data Streams in PLACE. Proc. STDBM, pp. 57–64, 2004.

9. R. V. Nehme, and E. A. Rundensteiner. SCUBA: Scalable Cluster-Based Algorithm for
Evaluating Continuous Spatio-temporal Queries on Moving Objects. Proc. EDBT, pp.
1001–1019, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Moving Queries over Moving Object Data Streams 575

10. J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Efficient Index for Predicted Trajecto-
ries. Proc. SIGMOD, pp. 637–646, 2004.

11. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of
Continuously Moving Objects. In Proc. SIGMOD, pp. 331–342, 2000.

12. D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main Memory Evaluation of
Monitoring Queries Over Moving Objects. Distributed and Parallel Databases,pp. 117–135,
2004.

13. Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. Proc.
VLDB,pp. 287–298, 2002.

14. Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In Proc. VLDB, pp. 790–801, 2003.

15. K. L. Wu, S. K. Chen, and P. S. Yu. Indexing continual Range Queries with Covering Tiles
for Fast Locating of Moving Objects. Proc. ICDCSW,pp. 470–475, 2004.

16. M. Yiu, Y. Tao, and N. Mamoulis. The Bdual-Tree: Indexing Moving Objects by Space-
Filling Curves in the Dual Space. To appear in VLDB Journal, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 576–585, 2007.
© Springer-Verlag Berlin Heidelberg 2007

MIME: A Dynamic Index Scheme for Multi-dimensional
Query in Mobile P2P Networks

Ping Wang, Lidan Shou, Gang Chen, and Jinxiang Dong

College of Computer Science, Zhejiang University, China
wangping_zju@163.com, {should, cg, djx}@cs.zju.edu.cn

Abstract. Nowadays, as the mobile services become widely used, there is a
strong demand for mobile support in P2P search techniques. In this paper, we
introduce a new cost model for searching multi-dimensional data in mobile P2P
environment and propose a novel multi-dimensional MP2P search scheme
MIME. MIME models the physical node layout in a two-dimensional plane and
keeps records of the locations of the nodes to construct a proximity-aware P2P
overlay. MIME also incorporates two adaptive features: an update algorithm that
makes dynamic updates to the overlay, and a cache mechanism that reduces the
load of data migration during the updates. Experiment results show that MIME
achieves significant performance improvements in point/range queries compared
to the conventional system.

1 Introduction

Multi-dimensional search in P2P networks has attracted upon intensive research in the
past years, due to the booming of P2P applications. Nowadays, as the mobile services
become more widely used, there is a strong demand for mobile support in P2P search
techniques. Compared to the conventional P2P network, the Mobile P2P (MP2P)
network provides a more constrained communication environment, which is charac-
terized by much more limited bandwidth, higher rate of transmission errors, and the
probability that established routes become broken due to mobility. Thus, a physically
long route path, which is regarded as inefficient in a conventional P2P network, might
be unacceptable in a MP2P case. Based on this observation, we believe that the cost
model of the conventional P2P search systems cannot adequately represent search cost
in the mobile environment. Therefore, for the MP2P network we advocate a new
communication cost model in which the cost of a query resolution is measured in terms
of the physical length of its network layer path.

Based on the adoption of the new cost model, we see two technical problems that
existing P2P search systems cannot properly address. First, the conventional P2P
search algorithms do not take the physical topology of the network into account, re-
sulting in their data allocation and overlay organization schemes not optimized re-
garding to the network structure. Though the conventional P2P search systems adopt
classic spatial database approaches as data allocation scheme to pursue data partition
locality, the unawareness of the nodes' physical layout might end up in a situation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 MIME: A Dynamic Index Scheme for Multi-dimensional Query 577

where the closely-overlaid nodes are physically far separated and the resolution of a
complex query still requires a long physical route. Furthermore, we believe that the
efficiency of the conventional P2P overlays needs to be re-examined, as an overlay hop
can be implemented with length variable physical paths. Second, in the mobile envi-
ronment, the performance of a static P2P search system degrades even it is initially
efficient, as the motion of the nodes would cause the data allocation and the overlay
organization schemes to mismatch the physical network to a greater extent.

To efficiently support multi-dimensional queries in MP2P networks, we propose a
novel scheme called Multi-dimensional Index in Mobile Environment (MIME) that
addresses the above two problems. MIME captures the physical network layout in a
two-dimensional plane and keeps records of the physical locations of the nodes to
construct a proximity-aware P2P overlay. MIME also incorporates two adaptive fea-
tures: an update algorithm that makes dynamic updates to the overlay, and a cache
mechanism that reduces the load of data migration during the updates.

The remainder of the paper is organized as follows. Section 2 discusses related work.
In Section 3, we present the new query cost model and the novel index technique in
MIME. In Section 4, we propose an update algorithm and a cache mechanism. Section 5
presents and analyzes the experimental results. Finally, Section 6 concludes the paper
and describes possible future work.

2 Related Work`

Data Allocation Scheme: The data allocation schemes of existing P2P systems can be
categorized into two types, namely DHT-based schemes and locality-preserving
schemes. DHT-based schemes [8, 12] differ from locality-preserving schemes in the
way data are distributed to nodes and in the search functionalities they provide. The
DHT-based schemes use consistent hashing to implement uniform data allocation and
only allow data lookup using unique data identifiers. The locality-preserving schemes
are adapted from spatial index techniques (e.g. kd-tree [2], Hilbert-curve [6], Z-curve
[7]) and often deployed in multi-dimensional P2P search systems (MURK [5],
SCRAPE [5], Squid [10], SkipIndex [16]) for supporting complex queries.

Communication Cost Model: Recently, the P2P research community has seen a few
works focusing on reducing the discrepancy between the virtual overlay and the un-
derlying physical network. The resulting overlay structures, which are aware of the
physical network topology, are usually referred to as proximity-aware or topol-
ogy-aware routing facilities. For example, Ratnasamy et al. [9] propose a node binning
strategy to construct a topology-aware CAN overlay; in [4], Castro et al. compare three
existing topology-aware routing approaches, namely proximity routing, topol-
ogy-based nodeID assignment and proximity neighbor selection; Zahn et al. [14, 15]
take a further step to propose an architecture that creates proximity-aware overlays in
the mobile environment based on the Random Land Marking (RLM) method. These
works also introduce alternative cost metrics such as network latency and the number
of network layer hops to replace the number of overlay hops.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

578 P. Wang et al.

Overlay Structure: A number of P2P overlay structures have been deployed to sup-
port distributed multi-dimensional search, for example, CAN [8], Chord [12], and Skip
Graphs [1]. Shu [11] compares the route performances and maintenance costs of these
structures through intensive simulation. In her results, Skip Graph achieves more effi-
cient routing than other overlay structures given the same maintenance cost. However,
as CAN has already adopted the notion of a d-dimensional Cartesian coordinate space,
it is less demanding to introduce a physical space into CAN.

3 Proximity-Aware Search Method of MIME

3.1 Query Cost Model

In our new cost model, the query resolve cost is given by

∑
∈

=
)(_

),(
queryrouteoverlayAB

BA nnCQ .
(1)

where overlay_route(query) indicates the set of all overlay hops in the resolution route
of the query. The communication cost of an overlay hop is given by

∑
∈

=
),(

))((),(
BAi nnpathhop

iiBA hoplengthfnnC . (2)

where function fi(x) is usually a linear function representing the cost of the ith network
layer hop of the overlay hop. We can design different fi (x) to obtain communication
cost models for different communication environments. In our preliminary experiment,
we use the simplified function fi (x)=x, i.e. C (nA, nB) is calculated by summing up
length(hopi). As we replace the simple counting of overlay hops with a more accurate
function, the new cost model is able to capture the more complicated communication
condition for the mobile environment.

3.2 Proximity-Aware Index Scheme

Similar to existing multi-dimensional P2P search systems, MIME builds a distributed
index for multi-dimensional search based on two components. One is a data allocation
method that partitions the multi-dimensional data space into so-called “zones” and
maps the zones to the computer nodes; the other is an overlay organization scheme that
interconnects the computer nodes for forwarding query messages to relevant nodes.
What MIME differs from the conventional P2P search systems is that it introduces the
conception of a physical space. That is, MIME models the physical network layout in a
two-dimensional physical space and assumes that each node knows its physi-
cal/geographic location. Then MIME constructs the proximity-aware index during the
partition process of its two spaces (a data space and a physical space), which is trig-
gered by the arrival of a new node as following. First, the new node informs its physical

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 MIME: A Dynamic Index Scheme for Multi-dimensional Query 579

location to a bootstrap node, which then issues a query to find the new node’s carrier
node. By carrier node, we mean the node currently maintains the physical zone where
the new node resides. Second, the carrier node splits its physical zone into two parts and
hands over to the new node the child physical zone in which the new node resides. The
dimensions of the physical space are used cyclically for splitting, and the split position
is the middle point of the physical locations of the two nodes along the split dimension.
Each physical zone is assigned a bit string as its address. The initial zone, i.e. the entire
physical space, has an address of null. The addresses of other physical zones are gen-
erated by extending those of their parents, i.e. the address of a left/right child zone
(which resides lower/upper in the splitting dimension) is generated by appending 0/1 to
that of its parent. Third, the carrier node conducts the data space split that is similar to
the above physical space split. Note that in MIME the physical locations of the two
nodes also determines which data zone is assigned to which nodes. If the new node lies
in a position lower than the carrier node along the splitting dimension, it obtains the left
physical zone and the left data zone; otherwise, the new node gets the right physical and
data zone. Under this assignment policy, the physical zone and the data zone of a node
always have the same address.

01 10 11

000 001
A

BC D

E
(c) the entire data

space partition tree
(d) the local view of the data

 space partition tree in Node A

A

BC

D
E

(a) the physical space (b) the data space

0

0

0

0

1

11

1

1

01

000 001
A E

0

0

0

1

1

1
A

BC

D
E

Fig. 1. A dual-space partition and the resulting kd-tree structures

Dual-Space Organization: The physical zones resulting from the physical space split
are connected into a CAN overlay, i.e. each node maintains links to its neighbor nodes,
i.e. those nodes whose physical zones adjoin its own physical zone. In order to support
multi-dimensional queries, these overlay links contain the current ranges of the data
zones of the neighbor nodes.

The resulting data zones are organized according to a distributed kd-tree structure, in
which each leaf represents a data zone being maintained by a node and each node keeps
a partial view of the entire kd-tree. The partial view of the kd-tree in each node is
maintained in a data structure similar to the split history proposed in [16], which stores
the path from the root of the kd-tree to the respective leaf. Specifically, it consists of a
list of tuples in the form of <split dimension, split position> with each entry recording
along which dimension and at which position the split occurs. Fig. 1 gives an example
dual-space, including the current partition of the physical/data space and the resulting
kd-tree structures.

Discussion: The advantage of the above dual-space partition algorithm is that it gen-
erates an overlay that is consistent with the physical node layout, i.e. a proximity-aware
overlay. We illustrate how a proximity-aware overlay achieves lower communication

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

580 P. Wang et al.

cost than a proximity-unaware one with the example in Fig. 2. The proximity-unaware
CAN overlay in Fig. 2.a is resulted from the conventional space partition algorithm, the
proximity-aware CAN overlay in Fig. 2.c is generated by MIME’s partition algorithm,
and the plane in Fig. 2.b is the common physical space of the overlays. In Fig. 2.a there
are two nodes whose overlay locations are inappropriate, namely B and E. Such kind of
mismatches between the overlay locations and the physical locations of the nodes
would possibly cause unnecessary communication overhead, e.g. an overlay route from
A to E would have to detour to B (route 1). In contrast, in the proximity-aware overlay
this overlay route is implemented with a direct network hop from A to E (route 2).

A

E
C

D
B A

BC

D
E

(a) the proximity-unaware
 overlay

(b) the physical space

A

B
C

D
E

route 1

route 2

(c) the proximity-aware
overlay

Fig. 2. Proximity-Unaware Overlay vs. Proximity-Aware Overlay

3.3 Point/Range Query Algorithms

MIME resolves a point query in a greedy forwarding manner: each time a node receives
a point query message, it examines the data zone ranges of its neighbor nodes and
chooses the neighbor node whose data zone is closest to the point being queried as the
next hop. This forwarding process repeats until the destination node is reached.

Upon receiving a range query, a MIME node first check if its data zone intersects the
range being queried (noted as QRange). If the check returns false, it forwards the range
query to the neighbor node whose data zone is closest to Qrange; if the check returns
true, it performs a local search and then traverses its local view of the kd-tree to find
other zones that intersect QRange, which are referred to as remote zones. Since a node's
local view of the kd-tree is stored in its split history, the kd-tree traverse is implemented
by comparing QRange with the split records of the split history. When processing a
splitting record, there are three possible cases: (1) If QRange lies in the same halve as
the node's data zone, with regard to the split position along the split dimension, we
continue to process the next split record to get a longer zone address. (2) When QRange
lies in a different halve from the node's data zone, which means that the split history
contains no more information about QRange as it branches out of the node's splitting
path, a target zone is identified. (3) QRange crosses the split position and covers both of
the halves, we obtain a target zone meanwhile we also continue to process the next split
record. For example, in Fig. 1 Node A decomposes the range query represented by the
rectangle into Z1, Z01, and Z001.

There are two different types of remote zones for a node: the definite zones which
are managed by the node's neighbors and the obscured zones, which the node does not
have enough knowledge about whether they have been further partitioned. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 MIME: A Dynamic Index Scheme for Multi-dimensional Query 581

existence of obscured zones is due to the distributed nature of the kd-tree: each node
only has a partial view of the kd-tree rather than the entire one. However, the uncer-
tainty of the type of a remote zone will not affect the routing of a range query. For each
identified remote zone, denoted as Z, we always choose the neighbor node whose data
zone is closest to Z’s centroid as the next hop, no matter whether Z is a definite zone or
an obscured one. The next hop node, Nnext, upon receiving the query, will decompose Z
and deliver the range query to the newly generated remote zones if its own local view of
the kd-tree contains more information about the partitioning of Z. The pseudo code of
this step-by-step refined range query algorithm can be found in the extended version of
this paper [13].

4 Providing Mobile Support in MIME

4.1 Update Algorithm of MIME

The update algorithm of MIME runs periodically to check the physical distances that
the nodes have moved during the last session and force the excessively moved nodes to
rejoin the system using its latest locations. The update algorithm uses a threshold to
decide whether a node has moved too far away.

The rejoin process consists of two steps: the leave step and the join step. Before a
node leaves MIME, it needs to find a node to take charge of its physical and data zone.
If the leaving node can find its sibling, the other child generated by the splitting of its
parent node, the two nodes are merged to reform the parent node; otherwise, the leaving
node picks the physically closest neighbor to temporarily charge its physical and data
zone. This temporary charging will be released once a new node, located in the leaving
node's physical zone, joins the system. The join process is the same as the one we
discussed in section 3.2, except that the physical location of the node is obtained at the
latest moment.

4.2 Cache Mechanism of MIME

To reduce the load of data migration during the updates to the overlay, MIME incor-
porates a cache mechanism. A MIME node caches data on two occasions. First, when a
node leaves its previous location, it stores the data points of its own data zone into its
cache. Thus, when a node moves to a location that it has visited before, it can get the
data points from its cache if they have not been replaced. Second, during the joining of
a new node, the splitting node will break its data zone into two parts and store the child
zone belonging to the new node into its cache. Therefore, if the new node leaves
shortly, there is no need to transfer these data back to the splitting node, which has kept
them in its cache. The cache mechanism of MIME differs from other caches in two
points: First, it requires nodes to cache data in the unit of a data zone. Second, the main
purpose of deploying a cache in MIME is to reduce the bandwidth cost in the network,
rather than to cut down latency and to increase data accessibility.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

582 P. Wang et al.

5 Experimental Results

5.1 Experiment Environment

To evaluate and analyze the performance of MIME, we develop a simulator for MIME.
We use synthetic datasets for the experiments: the data space is a 1000*1000 two di-
mensional plane, where up to 100000 data points are uniformly distributed; the physical
space is a square region of 1000m*1000m where up to 1000 nodes located. Our sampling
interval is 120 seconds. For each experiment, we collect the samples in a whole period of
one hour, which contains 30 samples. At the beginning of the sampling, the nodes are
uniformly located in the physical space. During the sampling, the nodes move according
to either of the following two moving patterns: (1), all nodes move around following the
Random Waypoint Model (RWP) [3], with a constant speed ranging from 0.5m/s to
10m/s, and a pause duration of 20 seconds; (2), from 5%-25% of the nodes moves along
its own cyclical route, which is on the boundary of a 200m *200m square. We refer to the
first moving pattern as RWP and the second moving pattern as CYC.

Each time we randomly select 10 nodes with each node issues 100 random
point/range queries. The range queries use squares of 100*100 in the data space. The
metrics used for evaluating the performance of the search algorithms are: the average
point query cost and the average range query cost. In the following experiments, we
compare the search performance of a dynamic (i.e. update-on) MIME, a static (i.e.
update-off) MIME and a conventional proximity-unaware system (referred to as
CONV). CONV uses the kd-tree as the data allocation scheme and CAN as the overlay
structure. Our default parameter setting is: 200 nodes moving under RWP with the
speed set to 0.5m/s.

5.2 Performance Improvements of MIME

Fig. 3 compares the point/range query cost of Dynamic MIME, Static MIME, and
CONV under the default parameter setting. As showed in this figure, CONV appears to
be the upper bound and Static MIME is gradually approaching CONV as time goes on.
In contrast, the update algorithm enables Dynamic MIME to remain at a considerably
lower point/range query cost, which is about half of CONV's query cost.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35

Time

P
oi

nt
 Q

ue
ry

 C
os

t

Conv

Static

Dynamic

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30 35

Time

R
an

ge
 Q

ue
ry

 C
os

t

Conv

Static

Dynamic

(a) Point Query Performance Comparison (b) Range Query Performance Comparison

Fig. 3. Effect of the Update Algorithm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 MIME: A Dynamic Index Scheme for Multi-dimensional Query 583

5.3 Tuning the MIME Simulator

(1) Speed of the nodes. Table 1 presents the results of tuning the speed of the nodes. In
the table, column “PQ IMP” and “RQ IMP” stand for the average point/range query
cost improvement for each update (in percentage); “RJ Nodes” shows the average
percentage of the rejoined nodes; “DMNC”/ “DMC” shows the average percentage of
the migrated data with the cache turned off/on.

From the first four rows in the table, we can see that RJ Nodes and DMNC/DMC in-
crease as the speed increases, while the query improvements contributed by each update
remain almost constant, about 11%. The last two rows indicate a tradeoff between query
cost improvement and data migration: if we keep RJ Nodes less than 10% and data mi-
gration less than 15%, the query improvements decrease significantly. The last two
columns compare the amount of data migration when the cache is turned off and on. The
cache size is 2 zones and the average number of data points per cached zone is 22. We can
see that under RWP the cache only reduces the amount of data migration marginally. This
is expected, as in the RWP model, the possibility that a node revisits a location is small.

Table 1. The Query Improvements and the Amount of Data Migration after Each Update

Speed PQ IMP RQ IMP RJ Nodes DMNC DMC

0.5 0.1175 0.1460 0.0552 0.0963 0.0758

1 0.1101 0.1124 0.0790 0.1261 0.1023

5 0.1037 0.1033 0.1622 0.1634 0.1371

10 0.1117 0.1119 0.1755 0.1953 0.1658

5’ 0.0395 0.0367 0.0872 0.1172 0.1020

10’ 0.0486 0.0433 0.0981 0.1278 0.1074

(2) Effect of the cache. Fig. 4 presents the average percentage of the migrated data
when the nodes are moving under CYC. It appears that when the cache is on, even when
a large percentage of the nodes move (25%), the migrated data is still limited. Hence,
the cache mechanism is especially effective in saving data migration in the occasions
that nodes tend to visit a location repetitively. The cache capacity here is 4 zones for
each node, and the average number of data points per cached zone is 11.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
at

a
M

ig
ra

tio
n

(%
)

5% 10% 15% 20% 25%

Percentage of Moving Nodes

Cache Off Cache On

0

100

200

300

400

500

600

A
vg

. P
hy

si
ca

l L
en

gt
of

 N
B

 L
in

ks

100 200 400 800 1000

Network Size

Conv Static Dynamic

 Fig. 4. Data Migration Under CYC Fig. 5. Average Physical Length of NB Links

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

584 P. Wang et al.

(3) Node number of MIME. Fig. 5 plots the average physical length of the neighbor
links in Dynamic MIME, Static MIME and CONV at various network sizes (number of
nodes). The figure indicates that the average physical length of the neighbor links in
Dynamic MIME is about half of that in CONV. These shorter neighbor links enable
Dynamic MIME to resolve queries more efficiently than other systems.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200
Network Size

C
os

t o
f P

oi
nt

 Q
ue

ry

Conv Static Dynamic

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200
Network Size

C
os

t o
f

R
an

ge
 Q

ue
ry

Conv Static Dynamic

(a) Point Query Performance Comparison (b) Range Query Performance Comparison

Fig. 6. Query Performance Comparison at Different Network Sizes

Fig. 6 depicts the query performances of Dynamic MIME, Static MIME and CONV
at difference network sizes. As Fig. 6 shows, the point/rang query cost of Dynamic
MIME is significantly lower than that of the other two systems. Fig. 6 also reveals that
Dynamic MIME has better scalability than Static MIME and CONV.

6 Conclusions and Future Work

In this paper, we introduced a new cost model for searching multi-dimensional data in
MP2P networks. Based on this cost model, we proposed a novel proximity-aware index
scheme MIME, which incorporates two adaptive features: an update algorithm that
makes dynamic updates to the overlay, and a cache mechanism that reduces the load of
data migration during the updates. Simulation results suggested that MIME achieves
significant performance improvements compared to the conventional system.

Our future work includes further implementation and evaluation of the search sys-
tem with more realistic moving patterns and data sets. We also plan to investigate the
problem of load balancing under skewed/dynamic data sets.

Acknowledgements. The project was supported in part by the National Science
Foundation of China (NSFC, No. 60603044).

References

[1] J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.
[2] J. L. Bentley. Multidimensional binary search trees used for associative searching. In

CACM, 1975.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 MIME: A Dynamic Index Scheme for Multi-dimensional Query 585

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network re-
search. In WCMC, 2002.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. I. T. Rowstron. Topology-aware routing in
structured peer-to-peer overlay networks. In FuDiCo, 2003.,

[5] P. Ganesan, B. Yang, and H. G. Molina. One torus to rule them all: Multidimensional
queries in p2p systems. In WebDB, 2004.

[6] H. Jagadish. Linear clustering of objects with multiple attributes. In SIGMOD, 1990.
[7] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In

PODS, 1984.
[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable con-

tent-addressable network. In SIGCOMM, 2001.
[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware overlay con-

struction and server selection. In INFOCOM, 2002.
[10] C. Schmidt and M. Parashar. Flexible information discovery in decentralized distributed

systems. In HPDC, 2003.
[11] Y. F. Shu. Supporting complex queries in P2P networks. PhD thesis, National University of

Singapore, 2005.
[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In SIGCOMM, 2001.
[13] P. Wang, L.D. Shou, G. Chen, J.X. Dong. MIME: A dynamic index scheme for

multi-dimensional query in mobile P2P networks (extended version)
http://db.zju.edu.cn/wiki/index.php/Image:MIME.pdf.

[14] R. Winter, T. Zahn, J. Schiller. Random landmarking in mobile, topology-aware
peer-to-peer networks. In FTDCS 2004.

[15] T. Zahn, R. Winter, J. Schiller. Simple, efficient peer-to-peer overlay clustering in mobile,
ad hoc networks. In ICON, 2004.

[16] C. Zhang, A. Krishnamurthy, and R. Y. Wang. Skipindex: Towards a scalable peer-to-peer
index service for high dimensional data. In Technical Report, TR-703-04, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time

Series Databases

Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath,
Alexey Pryakhin, and Matthias Renz

Institute for Computer Science, Ludwig-Maximilians Universität München
Oettingenstr. 67, 80538 Munich, Germany

{assfalg,kriegel,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de
http://www.dbs.ifi.lmu.de/

Abstract. Similarity search in time series databases usually deals with
comparing entire time series objects or subsequence search. In this paper,
we formalize the notion of interval-focused similarity queries which take
a set of intervals specifying relevant time frames as additional parameter
and compare the time series objects only within this user-defined time
focus. We propose an original method to efficiently support interval-
focused distance range and k-nearest neighbor queries implementing a
filter/refinement architecture. In our broad experimental evaluation we
show the superiority of our novel approach compared to existing ap-
proaches on several real-world data sets.

1 Introduction

Similarity search in time series databases has attracted a lot of research work
recently. Existing work usually focus either on a full comparison, i.e. the en-
tire time series are compared by using an appropriate distance function, or on
subsequence matching, i.e. all time series objects that “match” a subsequence
are retrieved. However, in many applications, only predefined parts of the time
series are relevant for a similarity query rather than the entire time series data.
The time intervals of these predefined parts are fixed for all time series. Usually,
these parts are specified by the user depending on the analysis focus and change
from query to query. We call such type of queries where only a small part of
the entire time series is relevant interval-focused similarity queries. Obviously,
interval-focused similarity is a generalization of a full comparison of the time
series. On the other hand, the subsequence matching approach is orthogonal to
interval-focused similarity. In interval-focused similarity search, the interval rel-
evant to the query is fixed for all time series objects. In subsequence matching,
the matching sequences usually do not correspond to a common time frame.

The notion of interval-focused similarity queries is an important concept in
many applications. In stock marketing analysis, the behavior of the courses of
different securities is examined w.r.t. a given set of events such as political crises
or seasonal phenomena. The time courses need to be compared using interval-
focused similarity queries that take only some relevant time periods into account

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 586–597, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.dbs.ifi.lmu.de/

Interval-Focused Similarity Search in Time Series Databases 587

query

DB

complete matching subsequence matching interval-focused

Fig. 1. Different approaches for time series analysis

(e.g. a certain time period after the events). The analysis of the annual balances
of a company is usually also focused on specific time intervals (e.g. months), i.e.
the balances of specific months are compared using interval-focused similarity
queries. In environmental research, the analysis of environmental parameters
such as the temperature or the ozon concentration measured over long time
periods at various locations usually focus on a given period during the year, e.g.
compare the temperatures occurring only in the first week of July each year.
Last but not least, in behavior research, brain waves of animals are recorded
throughout a given time period, e.g. a day. Researchers often want to compare
the brain waves of different individuals during a significant time interval, e.g.
during feeding. Obviously, in all these applications, the focus of the analysis
task frequently changes from time to time and is not known in advance.

In this paper, we formalize the novel notion of interval-focused similarity queries
which is an important generalization of comparing entire time series. In addition,
we propose an original method to efficiently support interval-focused distance
range and k-nearest neighbor queries that implements a filter/refinement archi-
tecture. Furthermore, we discuss how the interval representation approximating
the time series can be efficiently accessed using an index structure. The remain-
der is organized as follows. We discuss related work in Section 2. The novel notion
of interval-focused similarity search is formalized in Section 3. In Section 4, we
introduce the concept of interval-based representation of the time series. We fur-
ther show how these representations can be managed efficiently in order to upper
and lower bound the distance between time series objects. Based on these bounds
we present a filter-refinement architecture to support interval-focused similarity
queries efficiently. We discuss two methods for generation interval representations
of time series in Section 5. Section 6 provides an experimental evaluation of our
proposed methods. Section 7 concludes the paper.

2 Related Work

The (dis)similarity between two time series is usually measured by an appro-
priate distance function, e.g. the Euclidean distance, Dynamic Time Warping
(DTW), Pearson’s correlation coefficient, or angular separation, also known as
cosine distance. Recent approaches focus either on an entire matching of the
query time series with the database objects, or on subsequence matching.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

588 J. Aßfalg et al.

Entire matching approaches consider the complete time course using any of
the above mentioned distance measures (cf. Figure 1 (left)). Since the length
of a time series is usually very large, the analysis of time series data is lim-
ited by the well-known curse of dimensionality. The GEMINI method [5] can
exploit any dimensionality reduction for time series as long as the distance
on the reduced data representation is always a lower bound of the distance
on the original data (lower bounding property). In [10], the GEMINI frame-
work is adapted for k-nearest neighbor search. Several dimensionality reduc-
tion techniques have been successfully applied to similarity search in time series
databases, e.g. [1,11,4,12,7,2,6,3,12]. In [9] the authors use a clipped time series
representation rather than applying a dimensionality reduction technique. Each
time series is represented by a bit string indicating the intervals where the value
of the time series is above the mean value of all values of the time series. A dis-
tance function that lower bounds the Euclidean distance and DTW is proposed.
Obviously, entire matching is a special case of interval-focused similarity. Since
all mentioned approximation techniques employing dimensionality reduction or
clipping are not designed for interval-focused similarity queries they cannot op-
timally support this novel query type, especially if the intervals relevant for the
query are changing over time and are not known beforehand. In that case, the
proposed methods need to approximate the entire time series objects. To answer
interval-focused queries these methods need to access the entire approximations
rather than only the relevant parts. Subsequence matching approaches usually
try to match a query subsequence to subsequences of the database objects (cf.
Figure 1 (middle)). The similarity is not affected by the time slot at which o
best matches the subsequence q. Usually, a subsequence matching problem is
transferred into an entire matching problem by moving a sliding window over
each time series object in the database and materializing the corresponding sub-
sequence. If the length of the query subsequence changes, a new sliding window
has to be moved over each database time series again. Obviously, subsequence
matching is orthogonal to interval-focused similarity. In interval-focused similar-
ity, the time slot relevant for matching is fixed. Two time series are not considered
similar even if they have a similar subsequence but at different time intervals.
In addition, the concept of interval-focused similarity allows to specify multiple
relevant time intervals of different length.

3 Problem Statement and Contributions

Let D denote a database of n time series. A time series X = [x1, . . . , xN] of length
N is a sequence of N values, where xi denotes the value corresponding to the time
slot i ∈ T = {t1, . . . , tN} and T is the domain of time. We assume that all time
series are normalized within the interval [MAX, MIN], i.e. maxxi∈X xi = MAX
and minxi∈X xi = MIN for all time series objects X ∈ D.

A (time) interval I = (lTI , uTI) ∈ T × T is a pair of time slots where lTI

denotes the start slot and uTI denotes the end slot. Given a time series X ∈ D
and an interval I, the interval sequence of X corresponding to I is a time series

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time Series Databases 589

of length (uTI − lTI)+1 consisting of the values of X between the start and the
end time slot of I, i.e. XI = [xlTI , . . . , xuTI]. A set of k intervals is denoted by
I = {I1, . . . Ik}.

Due to space limitations, we focus on the Lp-norms which are classical distance
measures for time series, especially the Euclidean distance (p = 2). The proposed
concepts can easily be adapted to DTW. The Lp-norm between two time series
X and Y is defined as

Lp(X, Y) = p

√√√√ N∑
i=1

(xi − yi)p.

As discussed above, interval-focused similarity specifies a given part of the
time series (i.e. an interval) as relevant, whereas the remaining part of the time
series is irrelevant. The relevant part may change from query to query. Let I =
(lTI , uTI) be a relevant interval. The Lp-norm between X and Y w.r.t. I is
defined by

LI
p(X, Y) = p

√√√√ uTI∑
i=lTI

(xi − yi)p.

We want to define interval-focused similarity such that we are not limited to
one relevant interval. Rather, we want to be flexible to specify a set of relevant
intervals I that is again specified at query time. Thus, the Lp-norm between X
and Y w.r.t. I is defined by

LI
p (X, Y) = p

√∑
I∈I

LI
p(X, Y)p.

Note that the intervals I ∈ I can be of varying length and, thus, the influence
of each interval on the complete sum may be different. In some applications, it
may be interesting to weight the intervals, such that the contribution to the over-
all distance of each interval is similar. This can be easily achieved by multiplying
a weighting factor wI to each summand. In order to achieve similar influence of
each interval I regardless of its length |I|, we can set wI = 1/|I|.
Interval-focused distance range query: Given a query time series Q, a dis-
tance ε ∈ �, and a relevant set of intervals I, an interval-focused distance range
query retrieves the set DRQ(Q, ε, I) = {X ∈ D | LI

p (Q, X) ≤ ε}.

Interval-focused k-nearest neighbor query: Given a query time series Q,
a number k ∈ �, and a relevant set of intervals I, an interval-focused k-nearest
neighbor query (kNN query) retrieves the set NNQ(Q, k, I) ⊆ D containing at
least k time series such that
∀X ∈ NNQ(Q, k, I), X̂ ∈ D − NNQ(Q, k, I) : LI

p (Q, X) ≤ LI
p (Q, X̂).

In this paper, we claim the following contributions: After we have formalized
the notion of interval-focused similarity queries, we describe a new efficient rep-
resentation of time series based on interval boxes in the following. In addition,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

590 J. Aßfalg et al.

timeuTrlTr

time seriesX

lVr

uVr

interval-box r

Fig. 2. Illustration of the interval box approximation of a given time series X

we show how this representation can be used to efficiently support interval-
focused similarity search using an existing index structure. The key benefit of
our novel representation is that we only need to access those parts of the time
series objects that are relevant for a given query. Furthermore, we define a lower
and upper bound on the interval box representation for any Lp-norm, and de-
scribe an efficient multi-step filter/refinement architecture for interval-focused
similarity queries.

4 Distance Approximation of Time Series Objects

The basic idea of our approach is to represent each time series object of the
database by sequences of intervals. These intervals can be efficiently managed
by an index such as the RI-tree [8]. In addition, if we store the maximum and
minimum amplitude of the time series within the intervals, these intervals can be
used to compute upper and lower bounds of the true distance between different
time series. If an interval-focused similarity query is launched specifying a set of
relevant time frames I, only the intervals of the database objects that intersect
any I ∈ I need to be accessed in order to estimate the lower and upper bounding
distance approximations.

4.1 Representing Time Series Objects by Interval Boxes

We approximate each time series X ∈ D by a set of intervals. For each inter-
val, we further store the maximum and minimum amplitude of X within the
interval. This results in a minimum-bounding box around X within the spec-
ified interval (cf. Figure 2) called interval box. Formally, an interval box r is
given by r = (lTr, uTr, lVr, uVr), where (lTr, uTr) specifies the time interval,
lVr = minlTr≤i≤uTr xi, and uVr = maxlTr≤i≤uTr xi.

The set of interval boxes approximating X is denoted by rep(X). We discuss
methods for generating interval boxes for a given time series later in Section 5.
So far, we claim no further constraints for the interval boxes r ∈ rep(X) as far
as ∀i : lTr ≤ i ≤ uTr : lVr ≤ xi ≤ uVr.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time Series Databases 591

4.2 Distance Estimation Using Interval Boxes

In the following, we will discuss how we can estimate the true distance between
a query object Q and any X ∈ D by means of an upper and a lower bound using
the information of rep(X) rather than using the complete representation of X .

At each relevant time slot i, we can lower bound the i-th summand of the Lp-
norm by the well-known MINDIST between qi and any interval box r ∈ rep(X)
that overlaps i, i.e. lTr ≤ i ≤ uTr. The MINDIST between qi and any interval
box r with lTr ≤ i ≤ uTr is defined as

MINDIST (qi, r) =

⎧⎨
⎩

lVr − qi if qi ≤ lVr

qi − uVr if qi ≥ uVr

0 else.

If we do not have any interval box r ∈ rep(X) that overlaps time slot i, we can
only lower bound the true distance between qi and xi by 0. If there are several
interval boxes r ∈ rep(X) with lTr ≤ i ≤ uTr, we aggregate the maximum over
all the corresponding MINDIST values. Formally, at each time slot i, a lower
bound of the i-th summand of the Lp-norm between Q and X is given by

LBi(Q, X) = max{0, max
{r | r∈rep(X),lTr≤i≤uTr}

MINDIST (qi, r)}.

Obviously, LBi(Q, X) ≤ |qi−xi|. We can now extend the lower bound at each
time slot i to intervals I = (lTI , uTI) as follows:

LBI(Q, X) = p

√√√√ uTI∑
i=lTI

(LBi(Q, X))p.

Still, the lower-bounding property LBI(Q, X) ≤ LI
p(Q, X) is preserved. A

lower bound for a set of intervals I = {I | i ∈ �+} is then defined by

LBI(Q, X) = p

√∑
I∈I

(LBI(Q, X))p.

Again, we have the lower-bounding propertyLBI(Q, X) ≤ LI
p (Q, X).

Analogously, an upper bounding distance estimation can be determined. At
each relevant time slot i, we now need to use the MAXDIST between qi and
any interval box r ∈ rep(X) that overlaps i, i.e. lTr ≤ i ≤ uTr, to define an
upper bound of the i-th summand of Lp(Q, X). The MAXDIST between qi

and any interval box r with lTr ≤ i ≤ uTr is defined as MAXDIST (qi, r) =
max{|qi − lVr|, |qi − uVr|}.

If we do not have any interval box r ∈ rep(X) that overlaps time slot i, we
can upper bound the true distance between qi and xi by max{|qi − MAX |, |qi −
MIN |}. If there are several interval boxes r ∈ rep(X) with lTr ≤ i ≤ uTr, we
aggregate the minimum over all the MAXDIST values. Formally, at each time
slot i, an upper bound of the i-th summand of the Lp-norm between Q and X
is given by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

592 J. Aßfalg et al.

time

X

Q

t
i
t
i+1

t
i+2 t

i+3
t
i+4

t
i+5

t
i+6

t
i+7

t
i+8

t
i+9

X

Q

MIN

MAX

LBi(Q,X)

UBi(Q,X)

Fig. 3. Lower and upper bounding the Lp-distance within the interval (ti, ti+9)

UBi(Q, X) =

min{max{|qi − MAX |, |qi − MIN |}, min
r∈rep(X),lTr≤i≤uTr

MAXDIST (qi, r)}.

Analogously, we define

UBI(qi, xi) = p

√√√√ uTI∑
i=lTI

(UBi(Q, X))p

for time intervals I, and

UBI(Q, X) = p

√∑
I∈I

(UBI(Q, X))p.

for sets of time intervals I. It is easy to prove that UBI(Q, X) ≥ LI
p (Q, X).

An example for the upper and lower bounding distance estimation is de-
picted in Figure 3. At time slot ti+6 we do not have any interval box repre-
sentations of X . Thus, the bounds are estimated by LBti+6(Q, X) = 0 and
UBti+6(Q, X) = max{|qti+6 − MAX |, |qti+6 − MIN |}. On the other hand, at
time slot ti+1 the interval box r = (ti, ti+3, lVr, uVr) ∈ rep(X) is the only in-
terval box that overlaps. We estimate LBti+1(Q, X) = MINDIST (qti+1, r) = 0
and UBti+1(Q, X) = MAXDIST (qti+1, r) = |qti+1 − lVr|.

4.3 Query Processing

In order to compute the upper and lower bounding distance approximations
between a query object Q and a database object X ∈ D efficiently, we need
to determine those interval boxes that intersect the relevant intervals I ∈ I.
For the efficient support of intersection queries, we organize the intervals of the
interval boxes in an adoption of the relational interval tree (RI-tree) [8]. An
interval intersection query takes a query interval I ∈ I and retrieves all intervals
in the RI-tree that intersect with I. Details on the processing of intersection

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time Series Databases 593

queries using RI-Trees can be found in [8]. In order to determine all interval
boxes that intersect with the query intervals we need such an intersection query
for all I ∈ I. This way, we determine for each database object X ∈ D those
interval boxes r ∈ rep(X) that intersect with any of the query intervals I ∈ I in
order to compute LBI(Q, X) and UBI(Q, X).

Based on our distance approximations LB and UB introduced above, we can
apply the paradigm of filter/refinement query processing to efficiently answer
interval-focused distance range and kNN queries. In case of an interval-focused
distance range query, we can use both, the upper and the lower bound in the
filter step. Each object X ∈ D with LBI(Q, X) > ε can be identified as true
drop because LI

p (Q, X) ≥ LBI(Q, X) > ε, i.e. X �∈ DRQ(Q, ε, I). On the other
hand, each object X ∈ D with UBI(Q, X) ≤ ε can be identified as true hit
since LI

p (Q, X) ≤ UBI(Q, X) ≤ ε, i.e. X ∈ DRQ(Q, ε, I). In case of an interval-
focused kNN query, we can only use the lower bound for the filter step. We apply
the approach presented in [10] which is optimal w.r.t. the number of candidates
that need to be refined.

5 Generating Approximations

In this section, we will show how to generate adequate interval boxes for a
time series. When building the interval boxes we need to take two contradicting
considerations into account. On one hand, the number of boxes covering the
time series should be low in order to avoid a dramatically increased overhead
of the filter step. The performance of the filter step is mainly influenced by the
number of interval box approximations to be considered at query time. More
boxes lead to higher join cost of the query process. This suggests to construct
wide boxes with long intervals. On the other hand, wide boxes will usually worsen
the approximation quality since the boxes conservatively approximate the time
series. As a consequence, the performance may decrease due to a reduced pruning
power of the filter step. This suggests to construct boxes with low approximation
error in order to achieve higher values for the lower bounding filter distance
LBI and lower values for the upper bounding filter distance UBI . Following
these considerations, the parts of the time series having a flat curvature can be
better approximated by interval boxes than parts featuring a high ascending or
descending curve (cf. Figure 4 (upper part)). The basic idea of our approach is to
optimize the box covering locally. We first identify those parts of the time series
which can be well approximated, i.e. subsequences covering the local maximums
or minimums of a time series. Then, we try to generate interval boxes that
optimally cover the local minimums and maximums of a time series according
to a quality criterion given below. Afterwards, we approximate each remaining
part of the time series which are not covered yet by one single box.

A high approximation quality of the interval box approximations of a time
series is responsible for a good pruning power of our filter step. A high lower
bounding distance estimation allows to prune a lot of true drops without the need
to refine them. A low upper bounding distance estimation enable to identify some

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

594 J. Aßfalg et al.

X

good

approximations

bad

approximation

Fig. 4. Interval box approximations

time
t
i
t
i+1

t
i+2 t

i+3
t
i+4

t
i+5

t
i+6

t
i+7

t
i+8

t
i+9

X

MIN

MAX

r1r2r3r5

r4

Fig. 5. Generation of covering boxes

of the true hits without any refinement. For this reason we propose to evaluate
the approximation quality of an interval box by considering the expectation
of the lower and upper bounding distance between any query object and the
approximated part of the database object. For the sake of clarity and due to space
limitations, we will focus on the expectation of the lower bound distance w.r.t.
an interval box approximation. The expectation of the upper bound distance
can be integrated analogously.

Given an interval box r = (lTr, uTr, lVr, uVr), the expected lower bounding
distance LB(lTr,uTr) between r and any query time series Q = [q1, .., qN] which
values qi are assumed to be statistically independent can be computed as follows:

E(LB(lTr ,uTr)(Q, X)) = p
√

uTr − lTr · E(LBi(Q, X)),

where

E(LBi(Q, X))=
∫ MAX

MIN

MINDIST (qi, r)fi(qi)=
(MAX−uVr)2+(lVr−MIN)2

2 · (MAX−MIN)

is the expected lower bounding distance according to any time slot lTr ≤ ti ≤ uTr

and fi(qi) is the probability density function of the event time series value qi ∈
[MIN, MAX]. Thereby, we assume that the values of Q are equally distributed
between MIN and MAX , i.e.

fi(qi) =
1

MAX − MIN
, ∀i ∈ [MIN, MAX].

Now, we can use the expectation of the distance estimations in order to decide
for an interval box whether the box setting is more promising than alternative
box settings. The higher the expected lower bounding distance w.r.t. an interval
box approximation, the higher is its approximation quality.

Next, we will show how interval boxes covering the local extreme values of a
time series can be generated nearly optimal according to our quality score. As
already mentioned, flat parts, like the local maximums or minimums, of a time
series are very adequate for our interval box approximation. We start with the
approximation of the local maximums of a time series by searching for each local
maximum iteratively in top-down direction. For each local maximum we take all

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time Series Databases 595

0

0,1

0,2

0,3

0,4

0,5

0,6

OPTIMAL RANDOM EQUAL

p
ru

n
in

g
 p

o
w

e
r

[%
]

0

200

400

600

800

1000

1200

1400

1600

1800

OPTIMAL RANDOM EQUAL

I/
O

-c
o

s
ts

 [
m

s
]

Fig. 6. Evaluation of different interval box generation methods

reasonable conservative coverings into account as shown in the example depicted
in Figure 5, and try to pick out the best one. Those interval box candidates
which cover or are covered by another interval box candidate are evaluated
against each other according to our quality score. The candidate with the highest
score is chosen for the approximation, the other candidates will be discarded.
This procedure will be applied to all local maximums, so that, finally all local
maximums are covered by any interval box. Redundant coverings are removed
according to our quality score.

The coverings of the local minimums are generated in the same way. Contrary,
this time we start at the local minimums and search the corresponding interval
box candidates upwards. After generating all local maximum and minimum cov-
erings, we remove those box candidates which are completely covered by another
interval box candidate in order to reduce redundant approximations.

Finally in a post-processing step, the remaining gaps between two adjacent
but disjunctive interval boxes, i.e. the parts of the time series which are not
covered so far by any interval box, are simply approximated by an additional
minimal bounding box. The overall covering of a time series can be performed
in O(N) time where N denotes the length of the time series.

6 Evaluation

All experiments were performed on a workstation featuring a 1.8 GHz Opteron
CPU and 8GB RAM. We used a disk with a transfer rate of 60 MB/s, a seek
time of 3 ms, a latency delay of 2 ms, and a cache allocating 80 KByte. The node
capacity of the RI-tree was set to 8 KByte. For each experiment, we launched
100 sample queries and averaged the performance. In each query, we choose the
relevant intervals randomly such that the sum of the length of each relevant
interval equals the desired query focus size.

We first evaluate our method for generating interval box representations in
comparison to two naive solutions on a synthetic data set featuring 400 time
series of length 6,000. The first competitor (“RANDOM”) determines a fixed
number of intervals randomly and generates a minimum bounding box for each
of these intervals. The second competitor (“EQUAL”) works analogously but
generates a fixed number of intervals with equal length. The results are shown

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

596 J. Aßfalg et al.

0

5000

10000

15000

20000

0 5 10 15 20 25 30 35 40

epsilon range [%]

I/
O

 c
o

s
t

[m
s

]

OPTIMAL

BIT LEVEL

SEQ. SCAN

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40

epsilon range [%]

I/
O

 c
o

s
t

[m
s

]

OPTIMAL

BIT LEVEL

SEQ. SCAN

Fig. 7. Performance w.r.t. the selectivity of the query. DS1(left) and DS2 (right).

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10

focus size [%]

I/
O

 c
o

s
t

[m
s
]

OPTIMAL

BIT LEVEL

SEQ. SCAN

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10

focus size [%]

I/
O

 c
o

s
t

[m
s
]

OPTIMAL

BIT LEVEL

SEQ. SCAN

Fig. 8. Performance w.r.t. the size of the query focus. DS1(left) and DS2 (right).

in Figure 6. As it can be seen, our method (“OPTIMAL”) outperforms both
competitors in terms of pruning power and I/O cost. This empirically shows
that our interval box generation is superior to the two other naive solutions.

Secondly, we evaluate our proposed filter/refinement architecture (OPTIMAL)
for answering interval-focused similarity queries compared to the sequential scan
(SEQ. SCAN) and the approach proposed in [9] (BIT LEVEL). We choose the
second competitor since it is the only approach that does not need to scan the
entire time series information for answering interval-focused queries but also pro-
poses a filter/refinement architecture based on a compressed data representation.
We used two real-world data sets, “DS1” and ”DS2” each featuring 4,800 song-
feature time series of length 10,000. The performance of the competitors w.r.t.
the selectivity of the query is visualized in Figure 7. The focus size was set to 1%
of the time series length. Our approach clearly outperforms both competitors for
all settings of the query selectivity. Furthermore, in contrast to ”BIT LEVEL”
our approach scales well even for large query result sets. The performance of the
competitors w.r.t. the size of the query focus is depicted in Figure 8. In this exper-
iment we performed queries featuring a query selectivity of 2% of the dataset. For
small focus sizes (< 6% of the time series length) our approach achieved smaller
I/O cost than the competing techniques. However, in many applications using

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Interval-Focused Similarity Search in Time Series Databases 597

interval focused similarity search a focus size smaller than 5% is reasonable. One
can imagine a query on one year records focusing only one certain weak which
would correspond to a focus size of about 2%.

7 Conclusions

In this paper, we introduce and formalize the novel concept of interval-focused
similarity queries in time series databases which is an important generalization
of comparing entire time series. We describe a new efficient representation of
time series based on intervals and show how this representation can be used
to efficiently support these new query type implementing a filter/refinement
approach. Furthermore, we present a method for the generation of the interval-
based representation. In our experimental evaluation we show the superiority of
our proposed method for answering interval-focused similarity queries in com-
parison to existing approaches.

References

1. R. Agrawal, C. Faloutsos, and A. Swami. ”Efficient Similarity Search in Sequence
Databases”. In Proc. 4th Conf. on Foundations of Data Organization and Algo-
rithms, 1993.

2. O. Alter, P. Brown, and D. Botstein. ”Generalized Singular Value Decomposition
for Comparative Analysis of Genome-Scale Expression Data Sets of two Different
Organisms”. Proc. Natl. Aca. Sci. USA, 100:3351–3356, 2003.

3. Y. Cai and R. Ng. ”Index Spatio-Temporal Trajectories with Chebyshev Polyno-
mials”. In Proc. ACM SIGMOD, 2004.

4. K. Chan and W. Fu. ”Efficient Time Series Matching by Wavelets”. In Proc. IEEE
ICDE, 1999.

5. C. Faloutsos, M. Ranganathan, and Y. Maolopoulos. ”Fast Subsequence Matching
in Time-series Databases”. In Proc. ACM SIGMOD, 1994.

6. E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani. ”Locally Adaptive Di-
mensionality Reduction for Indexing Large Time Series Databases”. In Proc. ACM
SIGMOD, 2001.

7. F. Korn, H. Jagadish, and C. Faloutsos. ”Efficiently Supporting Ad Hoc Queries
in Large Datasets of Time Sequences”. In Proc. ACM SIGMOD, 1997.

8. H.-P. Kriegel, M. Pötke, and T. Seidl. ”Interval Sequences: An Object-Relational
Approach to Manage Spatial Data”. In Proc. SSTD, 2001.

9. C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. ”A Novel Bit
Level Time Series Representation with Implication for Similarity Search and Clus-
tering”. In Proc. PAKDD, 2005.

10. T. Seidl and Kriegel H.-P. ”Optimal Multi-Step k-Nearest Neighbor Search”. In
Proc. ACM SIGMOD, 1998.

11. S. Wichert, K. Fokianos, and K. Strimmer. ”Identifying Periodically Expressed
Transcripts in Microarray Time Series Data”. Bioinformatics, 20(1):5–20, 2004.

12. B. K. Yi and C. Faloutsos. ”Fast Time Sequence Indexing for Arbitrary Lp Norms”.
In Proc. VLDB, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series

Databases

Van M. Chhieng and Raymond K. Wong

National ICT Australia & University of New South Wales, 2052 Sydney, Australia
{vmc,wong}@cse.unsw.edu.au

Abstract. Efficient retrieval of time series data has gained recent at-
tention from the research community. In particular, finding meaningful
distance measurements for various applications is one of the most impor-
tant issues in the field, since no single distance measurement works for all
applications. In this paper, we propose a different distance measurement
for time series applications based on Constraint Continuous Editing Dis-
tance (CCED) that adjusts the potential energy of each sequence for
optimal similarity. Furthermore, we also propose a lower bounding dis-
tance for CCED for efficient indexing and fast retrieval, even though
CCED does not satisfy triangle inequality.

1 Introduction

In recent years, there are many new meaningful distance measurements
[1,7,8,10,12,16,18,20,24] that have been proposed to measure similarity between
sequences. In particular, a predominant framework called GEMINI [7] has been
adopted by many researchers. GEMINI consists of three phases: insertion, re-
trieval and filtering. During the insertion phase, high dimensional data is reduced
to a lower dimension using Discrete Fourier Transform (DFT), which can then
be easily indexed by spatial indexing method such as R∗-Tree [2]. During the
retrieval phase, a query is also reduced to a lower dimension using DFT. Then
the dimension-reduced query is used to retrieve a temporary result from the
database using the R∗-Tree. Finally, during the filtering phase, true distances
are computed between the query and data sequences in the temporary result. Se-
quences whose true distances to the query are more than the specified tolerance
are discarded.

Although frameworks such as GEMINI provide a complete setup for querying
time series data, the usefulness of such systems rely on the distance measure-
ments employed on the underlying datasets. In particular, previously
proposed distance measurements are known to be subjective and their effec-
tiveness are dependent on the properties of the datasets, i.e., noisy/smooth,
symmetric/asymmetric, cyclical/non-cyclical and cyclical/non-cyclical. For ex-
ample, different distance measurements can give different outcomes (i.e., pro-
duce different dendrograms) on the same dataset, as shown in the dendrogram
diagram [12].

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 598–610, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 599

Different from the previously proposed measurements such as Euclidean Dis-
tance (Lp-2) [1,7], Dynamic Time Warping (DTW) [8,10,24], Longest Common
Subsequence (LCSS) [20] and its variances (e.g., [14], [19]) that simply processing
all the data one by one according to the time axis, this paper presents a distance
measurement called Constraint Continuous Editing Distance (CCED) that al-
lows removing, inserting and changing the data values that are abnormal. This
difference makes our distance measurement more suitable for applications such
as stock data than previous distance measurements such as [8,10,24] since they
stretch the time axis for optimal similarity which is semantically incorrect. In
addition, CCED constrains the editing path in the cost matrix [17] using global
constraints such as Itakura Parallelogram Band [9] and Sakoe-Chiba Band [15]
so that the editing path remains close to the main diagonal which gives an intu-
itive similarity measurement [17]. Furthermore, even if the CCED initially does
not satisfy triangle inequality [4], we are able to derive bounds that allow us to
index time series data with variances of matrix trees such as M-tree, B-tree or
R-tree. Finally, unlike the proposed framework of Chen et al [4], our proposed
framework has a tuning parameter that allow us to tune for optimal time and
space requirements in an adaptive manner. Extensive experiments show that we
are able to tune the database for optimal configuration using our approach.

This paper is organized as follows. Section 2 describes the related works.
Section 3 discusses Constraint Continuous Editing Distance (CCED). Section 4
presents indexing and retrieval techniques that guarantee no-false dismissal. Sec-
tion 5 shows the experimental results. Finally, Section 6 concludes the paper.

2 Background

This section consists of two parts. The first part gives an overview of the String
Editing Distance (SED) algorithm that is used as a basis for the Constraint Con-
tinuous Editing Distance (CCED) algorithm. The second part presents bounding
distance to speed up the filtering phase. Table 1 defines conventional notations
for the rest of this paper.

Table 1. Conventional Notation

Q query sequence
〈〉 empty sequence

|T | length of T
Ti the i-th element T

First(T) the first element of T
p Lp − norm

Rest(T) all data in T excluding First(T)
DSED string editing distance
DCED continuous editing distance

DCCED constraint continuous editing distance
Dlb CCED lower bounding distance of DCCED

β half global constraint band

2.1 String Editing Distance

String Editing Distance (SED) algorithm was introduced by Levenshtein
et al [11]. The editing operations permitted by the SED algorithm includes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

600 V.M. Chhieng and R.K. Wong

insert, delete and change operations. The general structure of SED algorithm
for converting sequence Q to T is as follows:

DSED(〈〉, 〈〉) = 0

DSED(T, 〈〉) = |T | // insert cost

DSED(〈〉, Q) = |Q| // delete cost

DSED(T, Q) = min

��
�

DSED(T, Rest(Q)) + 1, // cost of delete First(Q)
DSED(Rest(T),Q) + 1, // cost of insert First(Q)
DSED(Rest(T),Rest(Q)) + 1,

// cost of change First(Q) to First(T)

Given two sequences of discrete values T and Q as shown in Figure 1, a trace
sequence [13] describes a sequence of editing operations that transform sequence
Q to T . i.e. A line from Qi to Tj indicates that Qi is changed to Tj, if Qi �= Tj .
This line is also shown from Qi to Tj, if Qi = Tj. Ti that is not touched by any
line corresponds to an insert operation on sequence Q. Qj that is not touched
by any line corresponding to a delete operation on sequence Q.

1 1 5 4 6 1 7 3 2 1 2 3 3 4 5 6 7 8 T:

2 5 4 6 7 3 2 1 2 1 4 3 5 3 4 5 6 7 Q:

Fig. 1. A trace of operations on a time series sequence of discrete values

The cost of converting a sequence Q to T , or DSED(T, Q), is the sum of
change, insert, and delete operations used as shown in Figure 1. In this particular
example, the total cost is 7 since there are seven editing operations. They are as
follows: {change(1,2),insert(1),insert(1),delete(1),delete(4),delete(5),insert(8)}.

2.2 Bounding Distances

The time complexity taken to compute DSED(T, Q) is O(|T | ∗ |Q|). This makes
it impractical for applications involving long sequences. In order to reduce the
time to compute DSED(T, Q), bounding distances are normally used.

Property 1. Lower Bounding Distance — Dlb SED(T, Q)

- Dlb SED(T, Q) = ||T | − |Q|| ≤ DSED(T, Q) or
- Dlb SED(T, Q) is the number of distinct characters found in Q but not in T .

Property 2. Upper Bounding Distance — Dub SED(T, Q)

- DSED(T, Q) ≤ Dub SED(T, Q) = max(|T |, |Q|) or
- Dub SED(T, Q) is at most the Hamming distance between T and Q, given

|T | = |Q|.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 601

These bounds, Dlb SED(T, Q) and Dub SED(T, Q), are useful because they can
determine either a sequence T from the temporary result is in the final result
or not in constant time, i.e., O(1). That is, if Dlb SED(T, Q) > ε, then there is
no need to compute DSED(T, Q) because it is always larger than ε. Likewise, if
Dub SED(T, Q) < ε, than there is also no need to compute DSED(T, Q) because
it is always smaller than ε. Hence during the filtering phase of the GEMINI
framework, it is possible to avoid computing DSED(T, Q) that has a quadratic
time complexity [17], by first computing the upper and lower bounding distances
that have constant time complexity.

3 Distance Measurement

In the previous section, we have shown how String Editing Distance (SED)
can be used to compare similarity between two sequences of discrete values.
The new distance formula for measuring similarity between two sequences of
continuous values T and Q has the same structure as String Editing Distance,
DSED(T, Q). However, in order to capture the granularity of the continuous
values, we need to make some changes to the general formula of DSED(T, Q).
One can visualize the modifications by imagining that T and Q are sequences
of potential energies. Converting a sequence of energies Q to T is the same as
inserting, deleting, and changing energies on sequence Q. The following algorithm
outlines the formal definition of Continuous Editing Distance, DCED(T, Q).

DCED(〈〉, 〈〉) = 0

DCED(T, 〈〉) =

|T |�
i=0

costp(insert(Ti))

DCED(〈〉,Q) =

|Q|�
i=0

costp(delete(Qi))

DCED(T, Q) = min

��
�

DCED(T, Rest(Q)) + costp(delete(First(Q))),
DCED(Rest(T),Q) + costp(insert(First(Q))),
DCED(Rest(T),Rest(Q)) + costp(change(First(T),F irst(Q)))

where costp(·) is Lp-norm and change(First(T), F irst(Q)) is |First(T)−First(Q)|.
Given two sequences of continuous values T and Q, Figure 2 shows a trace

sequence of editing operations that converts Q into T .
So far, we have described a technique that converts Q to T without constrain-

ing the editing path in the cost matrix [17]. This however, does not provide a

1 1 5 4 6 1 7 3 2 1 2 3 3 4 5 6 7 8 T:

2 5 4 6 7 3 2 1 2 1 4 3 5 3 4 5 6 7 Q:

Fig. 2. A trace of operations on a time series sequence of continuous values

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

602 V.M. Chhieng and R.K. Wong

meaningful similarity distance as the editing path in the cost matrix can deviate
from the main diagonal [3] significantly. In order to constrain the editing path,
we use two global constraint techniques: Itakura Parallelogram [9] and Sakoe-
Chiba Band [15]. We call CED with global constraints as Constraint Continuous
Editing Distance (CCED). In the next three sections, we will discuss the use-
fulness of CCED, the weakness of previous techniques and the lower bounding
distance of CCED.

3.1 Usefulness of CCED

In this paper, it is not our intention to show that our proposed distance mea-
surement is more superior than other knowns distance measurements. Rather,
we would like to show the significant differences between our proposed distance
measurement compared to others.

The Euclidean distance [1,7] provides meaningful semantics for distance be-
tween points in high dimensions. However, it is also known to be quite brittle
when used in similarity search [10]. Dynamic Time Warping (DTW) [8,10,24] is
designed for similarity detection in time series data such that values in the data
stream are allowed to stretch in the time axis to maximize similarity between
sequences. This means that DTW can not be used to measure similarity be-
tween time-sensitive data sequence because stretching data points in time axis is
semantically incorrect. On the other hand, CCED is different from previous dis-
tance measurements. It permits local editing operations such as insert, remove
and change within a constraint limit as shown previously.

3.2 Lower Bound of CCED

Using the lower bounding distance property of String Editing Distance (SED)
in Section 2.2, the lower bounding distance between two sequences is the dif-
ference between the length of the sequence. This is because SED takes into the
consideration only discrete values. This lower bounding distance property can be
translated into lower bounding distance of Continuous Editing Distance (CED)
by replacing length of a sequence by the sum of the potential energies of that
sequence. The following formulae illustrates the transition.

Dlb SED(T, Q) =
∣∣∣|T | − |Q|

∣∣∣ ≤ DSED(T, Q) (1)

Dlb CED(T, Q) =

∣∣∣∣∣∣
|T |∑
1

Ti −
|Q|∑
1

Qi

∣∣∣∣∣∣ ≤ DCED(T, Q) (2)

Since the available editing path area in the cost matrix [17] of CCED is less
than that in the cost matrix of CED, the distance between two sequences using
CCED is always higher than CED. Therefore,

Dlb CED(T, Q) ≤ DCED(T, Q) ≤ DCCED(T, Q) (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 603

Up to this point, reguardless of the value of β (half global constraint band [4,10]),
it is possible to use Dlb CED(T, Q) as the lower bounding distance for CCED.
Hence, it is possible to use various indexing techniques such as B+-tree to index
the time series sequence for fast retrieval as has been shown by Chen et al [4,5].
However, there are two problems hidden within this approach. First, B+-tree has
only one dimension. This implies that all time series data must be reduced to
1 -dimension by summing all potential energies in the sequence. For applications
involving long data sequences, such brutal dimensionality reduction technique
will over simplify important features of the time series data. Hence, the uses of
B+-tree does not have strong discriminating power for similarity search. Second,
the lower bounding distance of ERP is not sufficiently tight. As a result this
framework has high false positives during the retrieval phase; see Yi et al [23] for
further detail. In the next section, we introduce a new lower bounding distance
that address both issues.

3.3 Tightening Lower Bound for CCED in New Feature Space

Constraint Continuous Editing Distance (CCED) can be viewed as constraining
the editing warp path such that the warp path is at most β away from the main
diagonal of the cost matrix where β is the constraint function of Sakoe-Chiba or
Itakura Parallelogram band. Given this constraint, an envelope of a sequence Q
proposed by Keogh et al [10] is defined as upper and lower sequences as follows:

QL
i = min(Qi−β . . . Qi+β) QU

i = max(Qi−β . . . Qi+β)

Using Dlb CED(T, Q) shown by Eqn.2 and the envelope of sequence Q, the lower
bounding distance of Constraint Continuous Editing Distance, Dlb CCED(T, Q),
is defined as follows:

Dlb CCED(T, Q)=

⎧⎨
⎩

∑|T |
i=1

(
Ti

)p −
∑|Q|

i=1

(
QL

i

)p if
∑|T |

i=1

(
Ti

)p
<

∑|Q|
i=1

(
QL

i

)p

∑|T |
i=1

(
Ti

)p −
∑|Q|

i=1

(
QU

i

)p if
∑|T |

i=1

(
Ti

)p
>

∑|Q|
i=1

(
QU

i

)p

Lemma 1. By Yi et al [22]: Let λ1, λ2, . . . , λ� be non-negative real values such
that

∑�
i=1 λi = 1. If f(·) is convex function and x ∈ R, then f(λ1x1 + λ2x2 +

. . . + λ�x�) ≤ λ1f(x1) + λ2f(x2) + . . . + λ�f(x�).

If Q∗
i denotes the envelope of Q, region enclosed by QL

i and QU
i , and ε is the

specified tolerance distance (the similarity distance between Q and P), then we
have:∣∣∣∑ (Ti)

p −
∑

(Q∗
i)

p
∣∣∣ ≤ εp Using the above Dlb CCED(T, Q)∑

|(Ti − Q∗
i)|

p ≤ εp Simple reduction

Lp(T − Q∗) ≤ ε Using Lp’s definition

�
1
p

s∑
i

Lp(
−→
F T

i − −→
F Q∗

i) ≤ ε Using Lemma 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

604 V.M. Chhieng and R.K. Wong

s is the number of segments and
� is the number of points per segment, [22]

s∑
i

Lp(
−→
F T

i − −→
F Q∗

i) ≤ ε

�
1
p

�

Furthermore, we have

Dlb CCED(T, Q) =
s∑
i

Lp(
−→
F T

i − −→
F Q∗

i)

This result indicates that if Dlb CCED(T, Q) is larger than ε
�1/p , then DCCED

(T, Q) is also larger than ε. This property is useful because it can be used during
the filtering phase to efficiently discard false positives since the time complexity
of Dlb CCED(T, Q) is O(s) which is much smaller than the time complexity of
DCCED(T, Q) which is O(n2).

4 Indexing

In order to increase the discriminating power of spatial indexing method, a time
series data is first transformed into another vector feature space using segmented
means proposed by Yi et al [22]. Using their proposal, time series data of length
n is reduced to s segments of equal length �. This allows s to be used as a tuning
parameter that affects time and space requirement of the framework.

Given a sequence of values denoted as T , −→
F T

s denotes the feature vector of T .
Once the time series data has been indexed using R-tree, similarity search can
be done using MBR penetration test as shown by Chu et al [6]. MBR is a hyper-
volume in s dimensions whose hyper-area is defined using container-invariant
proposed by Zhu et al [24] as follows:

Li =

�
�1

�

s.i�
s(i−1)+1

Min(Qi, β)

�
� − ε

�
1
p

, Ui =

�
�1

�

s.i�
s(i−1)+1

Max(Qi, β)

�
�+

ε

�
1
p

Min(Qi, β) = min(Qi−β . . . Qi+β) , Max(Qi, β) = max(Qi−β . . . Qi+β)

V Q
s = MBR(Q) = As

1(Q), As
2(Q) , . . . , As

s(Q) =

	 U1

L1

,

	 U2

L2

, . . . ,

	 Us

Ls

It is not difficult to see that the penetration test does not produce false dismissal
since −→

F Q∗

i is Li + ε/�
1
p and Ui − ε/�

1
p — the shaded region shown in Figure 3.

The formal proof of no false dismissal is omitted since similar proofs have been
provided independently by other researchers [4,10,24].

Using MBR Penetration test, we can select sequences that are within ε dis-
tance from the query sequence Q using spatial index method such as R-tree. That
is, if −→

F T
s does not penetrates all s segments of −→

F Q∗

s , then DCCED(T, Q) > ε.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 605

 0 32 64 96 128

avg. envelope

min

Q

max

T

found-index

Fig. 3. Decomposition of Hyper-volume of query sequence Q to Hyper-area

After the CCED, the lower bound of CCED and the indexing technique have
been described, we are ready to define our approach is as follows:

1. Compute a feature vector space of dimension s for every sequence T .
2. Compute −→

F Q∗

s of query Q using the specified properties—β, s, and ε.
3. Retrieve sequences that can be within ε distance from the query Q.
4. Compute Dlb CCED(T, Q) to remove false positive from the temporary

result.
5. Compute DCCED(T, Q) for every T in the temporary result for final

result.

5 Experiments

In order to verify the effectiveness of our proposed technique, we perform many
experiments using time series sequences from real applications. In particular, we
study the effectiveness of our technique using random walk data such as stock
data since it has been widely used by many researchers [1,7,21,22,23]. Through-
out this section, we undertake extensive experiments that cover every phases of
GEMINI framework. Due to the differences in experimental settings, the moti-
vations in the experiments and the lack of common framework, it is not possible
to compare our work to Agrawal et al [1] since they used Fourier coefficient
and R*-tree, Fu et al [8,10] since both main authors focused on Pruning Power
for their new findings, and Zhu et al [24] since they focused on improving the
Pruning Power of Keogh et al [10].

Our experimental settings are as follows: CPU=Pentium M 1.80GHz, MEM=
512, OS= Ubuntu.dapper, KERNEL= 2.6.16, SOURCE= Java.tiger, SPATIAL-
INDEX-METHOD= R-Tree, SPATIAL-INDEX-DIMENSION= s, WINDOW=
128 points. This section is divided into three parts. Each part describes the
performance of each phase of the GEMINI [7] framework: insertion, retrieval
and filtering. This enables us to tune the database parameters to achieve the
optimal configuration.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

606 V.M. Chhieng and R.K. Wong

5.1 Insertion Phase

During the insertion phase, there are two important aspects we need to consider:
the time taken to index time series sequences; and the size of the index. We
use two control variables, the number of data sequences and the spatial index
dimension, to access the scalability of both aspects. The results are shown in
Figure 4.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

spatial index dimension

100000
75000
50000
25000

(a) Indexing time.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16

in
de

x
si

ze
 (

M
B

)

spatial index dimension

100000
75000
50000
25000

(b) Index size.

Fig. 4. Insertion Phase

The results shown in Figure 4(a) and 4(b) are as expected, i.e., both time and
space taken to index time series data are proportional to both the number of
data sequences and the spatial index dimension. This shows that our proposed
insertion technique is indeed scalable.

5.2 Retrieval Phase

During the retrieval phase, we perform two experiments regarding the time taken
and the number of nodes accessed for retrieving data from the database such that
their distances to the query can be within the tolerance distance, ε. The time
taken and the number of nodes accessed for retrieving data from the database are
not influenced by the length of the data sequence, since dimensionality reduction
technique is used on the original data. As a result, they can only be influenced by
the number of sequences in the database and spatial index dimension. Therefore,
we perform experiments based on these two influential variables. The results
depicted in Figure 5 show that the choice of spatial index dimension becomes
important as the size of the database increases.

In addition to the previous experiments, we perform two more experiments
using different variables. The first experiment is based on different max-load per
node, whereas in the second experiment, we use query volume as variable. Both
experiments show that there is a correlation between the total number of nodes
accessed and the number of spatial index dimension as depicted in Figure 6. The
results show that the choice of spatial index dimension is important. From our
experiment we find that the optimal spatial index dimension is 4 for our dataset.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 607

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

tim
e

(m
se

c)

spatial index dimension

100000
75000
50000
25000

(a) Time taken to retrieve data sequences.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

no
de

s
ac

ce
ss

ed

spatial index dimension

100000
75000
50000
25000

(b) Total number of nodes accessed.

Fig. 5. Retrieval Phase

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

no
de

s
ac

ce
ss

ed

spatial index dimension

max-load 5
max-load 10
max-load 15
max-load 20
max-load 25

(a) max-load per node= {5,10,. . . ,25}.

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

no
de

s
ac

ce
ss

ed

spatial index dimension

error=0.5
error=0.4
error=0.3
error=0.2
error=0.1

(b) ε = {0.1,0.2,. . . ,0.5}.

Fig. 6. Retrieval Phase

In order to show that our approach has no false dismissal, we also compare
the sequences in the final result produced by spatial index method against those
produced by the linear scan approach. The result shows that there is no difference
between these two approaches. This is expected as shown in Section 4 that MBR
penetration test does not have any false dismissal.

5.3 Filtering Phase

From the results shown in Sections 5.1 and 5.2, high spatial dimension does not
always improve the retrieval time. In fact high spatial dimension can degrade
the performance of the retrieval phase. This is because the strong discriminating
power of high spatial dimension leads to a large number of overlapping hyper-
rectangles in similarity search. In order to further study the the overall effect of
high spatial dimension on the entire framework, we perform two more experi-
ments. In the first experiment, we study the performance of filtering phase using
different spatial dimensions, whereas in the second experiment, we study the
performance of both retrieval and filtering phases using different spatial index
dimensions. The results are shown in Figures 7(a) and 7(b) respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

608 V.M. Chhieng and R.K. Wong

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

spatial index dimension

100000
75000
50000
25000

(a) Total filtering time (filtering).

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

spatial index dimension

100000
75000
50000
25000

(b) Total query time (retrieval+filtering).

Fig. 7. Filtering Phase

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

spatial index dimension

10000
7000
4000

(a) Total query time (linear, lb).

 0
 10
 20
 30
 40
 50

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

spatial index dimension

linear, lb
index, lb

 870
 920

linear, no lb

(b) Total query time (10,000 sequences).

Fig. 8. Filtering Phase

As observed from Figure 7, it is clear that the retrieval phase does not influ-
ence the total query time since the total query time is dominated by the filtering
phase. However the authors would like to point out that the retrieval phase is
indeed useful and effective because it produces small temporary result. To illus-
trate this further, we perform an experiment that compares the different between
linear scan without lower bound, linear scan with lower bound, and index with
lower bound. Figure 8(a) shows the performance of the linear scan with lower
bounding distance as the size of the database increases. Most importantly, when
we compare the performance between all three approaches, our approach (index
with lower bound) outperforms all other approaches since our approach produces
small temporary result before filtering. The result is shown in Figure 8(b).

6 Conclusion

In order to provide an adaptive distance measurement for various applications
that might have different requirement and semantic, this paper has proposed
a new distance measurement called CCED that adjusts the potential energy

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distance Measurement for Time Series Databases 609

of each sequence for optimal similarity. In addition, we have developed a lower
bounding distance for CCED such that it is possible to efficiently index and query
sequences even though CCED does not satisfy triangle inequality. Furthermore,
we have proposed a query framework for CCED that consists of two phases:
retrieval and filtering. Compared to other work such as Chen et al [4,5], our
retrieval method can be set to an optimal configuration (such as optimal spatial
index dimension) for any given application. During filtering, CCED computes
the similarity between two time series sequences by constraining the editing
path in the cost matrix [17] that can lead to more meaningful measurement
for different applications. Finally, extensive experiments have shown that our
proposed framework is scalable.

References

1. Rakesh Agrawal, Christos Faloutsos, and Arun Narasimha Swami. Efficient sim-
ilarity search in sequence databases. In FODO ’93: Proceedings of the 4th Inter-
national Conference on Foundations of Data Organization and Algorithms, pages
69–84, London, UK, 1993. Springer-Verlag.

2. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: an efficient and robust access method for points and rectangles. In SIG-
MOD ’90: Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, pages 322–331. ACM Press, 1990.

3. Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. AAAI-94 Workshop on Knowledge Discovery in Databases, 1994.

4. Lei Chen and Raymond T. Ng. On the marriage of lp-norms and edit distance.
In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller,
José A. Blakeley, and K. Bernhard Schiefer, editors, VLDB, pages 792–803. Morgan
Kaufmann, 2004.

5. Lei Chen, M. Tamer Ozsu, and Vincent Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 491–502, New
York, NY, USA, 2005. ACM Press.

6. Kelvin Kam Wing Chu and Man Hon Wong. Fast time-series searching with scaling
and shifting. In PODS ’99: Proceedings of the eighteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 237–248, New York,
NY, USA, 1999. ACM Press.

7. Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence
matching in time-series databases. In SIGMOD ’94: Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, pages 419–429, New
York, NY, USA, 1994. ACM Press.

8. Ada Wai-chee Fu, Eamonn Keogh, Leo Yung Hang Lau, and Chotirat Ann
Ratanamahatana. Scaling and time warping in time series querying. In VLDB ’05:
Proceedings of the 31st international conference on Very large data bases, pages
649–660. VLDB Endowment, 2005.

9. Fumitada Itakura. Minimum prediction residual principle applied to speech recog-
nition. pages 154–158, 1990.

10. Eamonn Keogh. Exact indexing of dynamic time warping. In VLDB ’02: Pro-
ceedings of the 28th International Conference on Very Large Data Bases, pages
406–417, Hong Kong, China, 2002. Morgan Kaufmann.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

610 V.M. Chhieng and R.K. Wong

11. Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics - Doklady, 10:707–710, 1966.

12. Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic represen-
tation of time series, with implications for streaming algorithms. In DMKD ’03:
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery, pages 2–11, New York, NY, USA, 2003. ACM Press.

13. Roy Lowrance and Robert A. Wagner. An extension of the string-to-string correc-
tion problem. Journal of the Association for Computing Machinery, 22(2):177–183,
1975.

14. Saul Needleman and Christian Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal Molecular
Biology, 48:444–453, 1970.

15. Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for
spoken word recognition. pages 159–165, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc.

16. Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. Ftw: fast similarity
search under the time warping distance. In Chen Li, editor, PODS, pages 326–337.
ACM, 2005.

17. Stan Salvador and Philip Chan. Fastdtw: Toward accurate dynamic time warping
in linear time and space. In KDD Workshop on Mining Temporal and Sequential
Data, 2004.

18. Yutao Shou, Nikos Mamoulis, and David W. Cheung. Fast and exact warping of
time series using adaptive segmental approximations. Mach. Learn., 58(2-3):231–
267, 2005.

19. Temple F. Smith and Michael S. Waterman. Identification of common molecular
subsequences. Journal Molecular Biology, 147:195–197, 1981.

20. Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering similar
multidimensional trajectories. In ICDE, pages 673–684. IEEE Computer Society,
2002.

21. Huanmei Wu, Betty Salzberg, and Donghui Zhang. Online event-driven subse-
quence matching over financial data streams. In SIGMOD ’04: Proceedings of
the 2004 ACM SIGMOD international conference on Management of data, pages
23–34, New York, NY, USA, 2004. ACM Press.

22. Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexing for arbitrary
lp norms. In VLDB ’00: Proceedings of the 26th International Conference on Very
Large Data Bases, pages 385–394, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

23. Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. Efficient retrieval of simi-
lar time sequences under time warping. In ICDE ’98: Proceedings of the Fourteenth
International Conference on Data Engineering, pages 201–208, Washington, DC,
USA, 1998. IEEE Computer Society.

24. Yunyue Zhu and Dennis Shasha. Warping indexes with envelope transforms for
query by humming. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
SIGMOD Conference, pages 181–192. ACM, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks

Jidong Chen1,2, Caifeng Lai1,2, Xiaofeng Meng1,2,
Jianliang Xu3, and Haibo Hu3

1 School of Information, Renmin University of China
2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE

{chenjd, laicf, xfmeng}@ruc.edu.cn
3 Department of Computer Science, Hong Kong Baptist University

{xujl, haibo}@comp.hkbu.edu.hk

Abstract. Advances in wireless networks and positioning technologies
(e.g., GPS) have enabled new data management applications that mon-
itor moving objects. In such new applications, realtime data analysis
such as clustering analysis is becoming one of the most important re-
quirements. In this paper, we present the problem of clustering moving
objects in spatial networks and propose a unified framework to address
this problem. Due to the innate feature of continuously changing posi-
tions of moving objects, the clustering results dynamically change. By
exploiting the unique features of road networks, our framework first in-
troduces a notion of cluster block (CB) as the underlying clustering unit.
We then divide the clustering process into the continuous maintenance of
CBs and periodical construction of clusters with different criteria based
on CBs. The algorithms for efficiently maintaining and organizing the
CBs to construct clusters are proposed. Extensive experimental results
show that our clustering framework achieves high efficiency for clustering
moving objects in real road networks.

Keywords: Spatial-Temporal Databases, Moving Objects, Clustering,
Spatial Networks.

1 Introduction

Clustering is one of the most important analysis techniques. It groups similar
data to provide a summary of data distribution patterns in a dataset. Early
research mainly focused on clustering a static dataset [8,11,18,3,13,6,10,4]. In
recent years, clustering moving objects has been attracting increasing atten-
tion [9,17,7], which has various applications in the domains of weather forecast,
traffic jam prediction, animal migration analysis, to name but a few. However,
most existing work on clustering moving objects assumed a free movement space
and defined the similarity between objects by their Euclidean distance.

In the real world, objects move within spatially constrained networks, e.g.,
vehicles move on road networks and trains on railway networks. Thus, it is more
practical to define the similarity between objects by their network distance –
the shortest path distance over the network. However, clustering moving objects

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 611–623, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

612 J. Chen et al.

in such networks is more complex than in free movement space. The increasing
complexity first comes from the network distance metric. The distance between
two arbitrary objects cannot be obtained in constant time, but requires an ex-
pensive shortest path computation. Moreover, the clustering results are related
to the segments of the network and their changes will be affected by the network
constraint. For example, a cluster is likely to move along the road segments and
change (i.e., split and merge) at the road junctions due to the objects’ diver-
sified spatio-temporal properties (e.g., moving in different directions). It is not
efficient to predict their changes only by measuring their compactness. Thus,
the existing clustering methods for free movement space cannot be applied to
spatial networks efficiently.

On the other hand, the existing clustering algorithms based on the
network distance [16] mainly focus on the static objects that lie on spatial
networks. To extend to moving objects, we can apply them over the current
positions of the objects in the network periodically. However, this approach is
prohibitively costly since each time the expensive clustering evaluation starts
from scratch. In addition, the clustering algorithms for different clustering cri-
teria (e.g., K-partitioning, distance, and density-based) are totally different in
their implementation. This is inefficient for many applications that require to
execute multiple clustering algorithms at the same time. For example, in a traf-
fic management application, it is important to monitor those densely populated
areas (by density-based clusters) so that traffic control can be applied; but at
the same time, there may be a requirement for assigning K police officers to each
of the congested areas. In this case, it is favorable to partition the objects into
K clusters and keep track of the K-partitioned clusters. Separate evaluation of
different types of clusters may incur computational redundancy.

In this paper, we propose a unified framework for “Clustering Moving Ob-
jects in spatial Networks” (CMON for short). The goals are to optimize the cost
of clustering moving objects and support multiple types of clusters in a single
application. The CMON framework divides the clustering process into the con-
tinuous maintenance of cluster blocks (CBs) and the periodical construction of
clusters with different criteria based on CBs. A CB groups a set of objects on a
road segment in close proximity to each other at present and in the near future.
In general, a CB satisfies two basic requirements: 1) it is inexpensive to maintain
in a spatial network setting; 2) it is able to serve as a building block of different
types of application-level clusters. Our contributions are summarized as follows:

– We propose a unified framework for clustering moving objects in spatial
networks to efficiently support different clustering criteria at the same time.

– We develop incremental CB maintenance (including split and merge) algo-
rithms by analyzing the object movement features on a spatial network.

– We present efficient algorithms to periodically construct three kinds of clus-
ters based on CBs. The network features are exploited to reduce the search
space and avoid unnecessary computation of network distance.

– We show, through extensive experiments, that our clustering algorithms
achieve high efficiency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 613

The rest of the paper is organized as follows. Section 2 surveys the related
work. Section 3 describes the proposed framework. Section 4 details the initia-
tion and maintenance of CBs. The algorithms for constructing the clusters with
different clustering criteria based on CBs are proposed in Section 5. Section 6
shows experimental evaluations. We conclude this paper in Section 7.

2 Related Work

A lot of clustering techniques have been proposed for static datasets in a Eu-
clidean space.They can be classified into the partitioning [8,11], hierarchical
[18,3,13], density-based [10], grid-based [15,1], and model-based [2] clustering
methods. There are also a few studies [4,6,16] on clustering nodes or objects in
a spatial network. Yiu and Mamoulis [16] defined the problem of clustering ob-
jects based on the network distance, which is mostly related to our work. They
proposed algorithms for three different clustering paradigms, i.e., k-medoids for
K-partitioning, ε-link for density-based, and single-link for hierarchial cluster-
ing. These algorithms avoid computing distances between every pair of network
nodes by exploiting the properties of the network. However, all these solutions
assumed a static dataset. As discussed in the Introduction, a straightforward
extension of these algorithms to moving objects by periodical re-evaluation is
inefficient. Besides, Jin et al. [5] studied the problem of mining distance-based
outliers in spatial networks, but it is only a byproduct of clustering.

Clustering analysis on moving objects has recently drawn increasing atten-
tions. Li et al. [9] first addressed this problem by proposing a concept of micro
moving cluster (MMC), which denotes a group of similar objects both at cur-
rent time and at near future time. Each MMC maintains a bounding box for
the moving objects contained, whose size grows over time. Even the CB in our
framework is some kind of micro-cluster, it has much differences from MMC.
First MMC is based on the Euclidean distance metric while CB is formed by
the network distance. Second, MMC does not consider the network constraint
where micro-clusters usually move along the road segment with the objects and
change at the road junctions immediately. The prediction of the MMC’s split
and merge in a spatial network is therefore not accurate. The bounding boxes of
MMCs are likely to be exceeded frequently and numbers of maintenance events
dominate the overall running time of the algorithms. Finally, as the detailed
object information in a MMC is not maintained, it can only support very lim-
ited clustering paradigms. While CB uses the distance of neighboring objects to
measure the compactness instead of the boundary objects of micro-cluster, it is
therefore capable to construct global clusters with different criteria. Afterwards,
Zhang and Lin [17] proposed a histogram construction technique based on a
clustering paradigm. In [7], Kalnis proposed three algorithms to discover mov-
ing clusters from historical trajectories of objects. Nehme and Rundensteiner [12]
applied the idea of clustering moving objects to optimize the continuous spatio-
temporal query execution. The moving cluster is represented by a circle in
their algorithms. However, most above works only considered moving objects in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

614 J. Chen et al.

unconstrained environments and defined the similarity between objects by their
Euclidean distance. To the best of our knowledge, this is the first work which
specifies on the problem of clustering network-constrained moving objects whose
similarity is defined by network distance.

3 The System Model and CMON Framework

In this section, we describe the system model and present a unified CMON
framework for clustering moving objects in a spatial network. It aims to optimize
the cost of clustering evaluation and support clusters with different criteria.

We model a spatial network as a graph where objects are moving on the
edges [16] (we use the segments interchangeably in this paper). The distance be-
tween any two objects, called network distance, is measured by the length of the
shortest path connecting them in the network. We employ a similar motion model
as in [9], where moving objects are assumed to move in a piecewise linear manner
(i.e., each object moves at a stable velocity at each edge). We assume that an
object location update has the following form (oid, na, nb, pos, speed, next node),
where oid is the id of the moving object, (na, nb) represents the edge on which
the object moves (from na towards nb), pos is the relative location to na, and
speed is the moving speed. We also assume that the next edge to move along,
(nb, next node), is known in advance. The requirement is to continuously moni-
tor the moving clusters with various criteria at some predefined period.

As shown in Figure 1, the proposed CMON framework is composed of two
components: the incremental maintenance of cluster blocks (CBs) and the pe-
riodical construction of different types of application-level clusters. A CB is a
group of moving objects close to each other at present and near future time.
For easy maintenance, we constrain the objects in a CB moving in the same
direction and on the same edge segment. Additionally, a CB imposes a strict
clustering criterion so as to support different types of application-level clusters.
Specifically, the network distance between each pair of neighboring objects in a
CB does not exceed a preset threshold ε. Formally, a CB is defined as follows:

Definition 1. Cluster Block. A cluster block is represented by CB = (O, na, nb,
head, tail, ObjNum), where O is a list of objects {o1, o2, · · · , oi, · · · , on}, oi =
(oidi, na, nb, posi, speedi, next nodei). Without loss of generality, assuming pos1

≤ pos2 ≤ · · · ≤ posn, it must satisfy |posi+1−posi| ≤ ε (1 ≤ i ≤ n−1). Since all
objects are on the same edge (na, nb), the position of the cluster is determined
by an interval (head, tail) in terms of the network distance from na. Thus, the
length of the CB is |tail− head|. ObjNum is the number of objects in the CB.

Note that the edge, position, length, and object number of a CB appear as
its summary information. We incrementally maintain each CB by taking into
account the objects’ anticipated movements. We capture the predicted update
events (including split and merge events) of each CB during the continuous
movement and process these events accordingly (see Section 4 for details). At
any time, clusters of different criteria can be constructed from the CBs, instead

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 615

P e r i o d i c a l c o n s t r u c t i o n o f C M O N

C o n t i n u o u s m a i n t e n a n c e o f C B

C o n s t r u c t
i o n o f C B

M i n i m u m
D i s t a n c e
C M O N

D e n s i t y
b a s e d

C M O N

C l u s t e r i n g r e s u l t s o f M O o n r o a d n e t w o r k

C o m b i n a t i o n o f C B s

K - p a r t i t i o
n i n g

C M O N

C M O N F r a m e w o r k

P r e d i c t s p l i t
a n d m e r g e

e v e n t

P r o c e s s
t h e e v e n t s

Fig. 1. CMON Framework

t

l
o1o2

o3

o4

te

le

o2
o1

o5

t1 t2 t3

o3
o4
o5

t4 t5

8

ts

Fig. 2. Prediction of Splitting CB

of the entire set of moving objects, which makes the construction processing cost
efficient. Moreover, to reduce unnecessary computation of the network distance
between the CBs, we adapt the network expansion method to combine CBs to
construct the application-level clusters (see Section 5 for details).

4 Maintenance of CBs

Initially, based on the CB definition,a set of CBs are created by traversing all edge
segments in the network and their associated objects. The CBs are incrementally
maintained after their creation. As time elapses, the distance between adjacent
objects in a CB may exceed ε and, hence, we need to split the CB. A CB may
also merge with adjacent CBs when they are within the distance of ε. Thus, for
each CB, we predict the time when they may split or merge. The predicted split
and merge events are then inserted into an event queue. Afterwards, when the
first event in the queue takes place, we process it and update (compute) the split
and merge events for affected CBs (new CBs if any). This process is continuously
repeated. The key problems are: 1) how to predict split/merge time of a CB,
and 2) how to process a split/merge event of a CB.

The split of a CB may occur in two cases. The first is when CB arriving at
the end of the segment (i.e., an intersection node of the spatial network). When
the moving objects in a CB reach an intersection node, the CB has to be split
since they may head in different directions. Obviously, a split time is the time
when the first object in the CB arrives at the node. In the second case, the
split of a CB is when the distance between some neighboring objects moving on
the segment exceeds ε. However, it is not easy to predict the split time since
the neighborhood of objects changes over time. And therefore the main task
is to dynamically maintain the order of objects on the segment. We compute
the earliest time instance when two adjacent objects in the CB meet as tm. We
then compare the maximum distance between each pair of adjacent objects with
ε until tm. If this distance exceeds ε at some time, the process stops and the
earliest time exceeding ε is recorded as the split time of the CB. Otherwise, we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

616 J. Chen et al.

update the order of objects starting from tm and repeat the same process until
some distance exceeds ε or one of the objects arrives at the end of the segment.
When the velocity of an object changes over the segment, we need to re-predict
the split and merge time of the CB.

Figure 2 shows an example. Given ε = 7, we compute the split time as follows.
At the initial time t0, the CB is formed with a list of objects < o1, o2, o3, o4, o5 >.
We first compute the time te when the first object (i.e., o2) arrives at the end of
the segment (i.e., le). For adjacent objects, we find that the earliest meeting time
is t1 at which o2 and o3 first meet. We then compare the maximum distance for
each pair of adjacent objects during [t0, t1] and no pair whose distance exceeds
7. At t1, the object list is updated into < o1, o3, o2, o4, o5 >. In the same way,
the next meeting time is at t2 for o2 and o4. There is also no neighboring objects
whose distance exceeds 7 during [t1, t2]. As the algorithm continues, at t4, the
object list becomes < o3, o1, o4, o5, o2 > and t5 is the next time for o1 and o4

to meet. When comparing neighboring objects during [t4, t5], we find the o4 and
o5 whose distance is longer than 7 at time ts. Since ts < te, we obtain ts as the
split time of the CB.

We now discuss how to handle a split event. If the split event happens on
the segment, we can simply split the CB into two ones and predict the split
and merge events for each of them. If the split event occurs at the end of the
segment, the processing would be more complex. One straightforward method is
to handle the departure of the objects individually each time an object reaches
the end of the segment. Obviously, the cost of this method is high. To reduce
the processing cost, we propose a group split scheme. When the first object
leaves the segment, we split the original CB into several new CBs according
to objects’ directions (which can be implied from next node). On one hand,
we compute a to-be-expired time (i.e., the time until the departure from the
segment) for each object in the original CB and retain the CB until the last
object leaves the segment. On the other hand, we attach a to-be-valid time (with
the same value as to-be-expired time) for each object in the new CBs. Only
valid objects will be counted in constructing application-level clusters. Figure 3
illustrates this split example. When CB1 reaches J1, objects p1 and p3 will
move to the segment < J1, J2 > while p2 and p4 will follow < J1, J6 >. Thus,
CB1 is split into two such that p2 and p4 join CB3, and p1 and p3 form a new
cluster CB4. We still keep CB1 until p4 leaves < J4, J1 >. As can be seen, the
group split scheme reduces the number of split events and hence the cost of CB
maintenance.

The merge of CBs may occur when adjacent CBs in a segment are moving
together (i.e. their network distance ≤ ε). To predict the initial merge time
of CBs, we dynamically maintain the boundary objects of each CB and their
validity time (the period when they are treated as boundary of the CB), and
compare the minimum distances between the boundary objects of two CBs with
the threshold ε at their validity time. The boundary objects of CBs can be
obtained by maintaining the order of objects during computing the split time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 617

For the example in Figure 2, the boundary objects of the CB are represented by
(o1, o5) for validity time [t0, t3], (o3, o5) for [t3, t4], and (o3, o2) for [t4, te]. The
processing of the merge event is similar to the split event on the segment. We
get the merge event and time from the event queue to merge the CBs into one
CB and compute the split time and merge time of the merged CB. Finally, the
corresponding affected CBs in the event queue are updated.

J1

J2

p1

p2
p4

p3

p5

CB3

CB1

CB2

J6

J5

J3

J4

p6

p7

p8 p9

J1

J2
p1

p2p4
p3
p5CB4

CB3

CB2

J6

J5

J3

J4

p6

p7

p8

p9

(a) When first object leaves (b) When last object leaves

Fig. 3. Group Split at an Edge Intersection

Besides the split and merge of a CB, new objects may come into the network
or existing objects may leave. For a new object, we locate all CBs of the same
segment that the object enters and see if the new object can join any CB ac-
cording to the CB definition. If the object can join some CB, the CB’s split and
merge events are updated. If no such CBs are found, a new CB for the object
is created and the merge event is computed. For a leaving object, we update its
original CB’s split and merge events if necessary.

5 CMON Construction with Different Criteria

This section discusses how to construct application-level clusters of different
criteria from CBs. We focus our discussions on three common clustering criteria,
i.e., distance-based, density-based, and K-partitioning.

5.1 Distance-Based CMON

A common clustering criterion is based on the minimum distance metric. The
Minimum Distance CMON is defined as follows:

Definition 2. Minimum Distance CMON (MD-CMON). For each object in an
MD-CMON, the minimum network distance with other objects in the cluster is
not longer than a user specified threshold δ (δ ≥ ε).

The requirement of ε ≤ δ is necessary because it guarantees that a CB does not
cross two clusters in the MD-CMON. The MD-CMON can be constructed by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

618 J. Chen et al.

combining the CBs. Generally, for two CBs, we need to compute their network
distance (i.e., the minimum network distance of their boundary objects) to de-
termine whether to combine them. This simple method has a time complexity
of O(N2), where N is the number of CBs. In order to reduce the computation
cost, we adapt the incremental network expansion method to combine the CBs.
The detailed algorithm can be found in Algorithm 1.

The algorithm starts with a CB and adds its adjacent nodes that are within δ
to a queue Q using Dijkstra’s algorithm. Take Figure 4 as an example. Suppose
δ = 10 and the algorithm starts with CB1. Thus, initially CB1 is marked “vis-
ited” and J1 is added to Q. The algorithm proceeds to dequeue the first node in
Q (i.e., J1). All adjacent edges of J1 (except the checked edge < J6, J1 >) are ex-
amined. For each edge < J1, Ji >, assuming dist(J1, Ji) to be the edge length, if
Ji satisfies dist(CB1, J1)+dist(J1, Ji) ≤ δ, Ji is added to Q and dist(CB1, Ji) =
dist(CB1, J1) + dist(J1, Ji). Moreover, all unvisited CBs on each adjacent edge
are checked. For a CBi on < J1, Ji >, if dist(CB1, J1) + dist(J1, CBi) ≤ δ, CBi

is merged into CB1’s MD-CMON cluster. If dist(CBi, Ji) ≤ δ and Ji has not
been added to Q, it it is added to Q. The algorithm continues with the same
process until Q becomes empty and the CBs around CB1 are combined into a
cluster C1. Afterwards, the algorithm picks up another unvisited CB and repeats
the same process until all CBs are visited.

5.2 Density-Based CMON

The second clustering criterion is density-based, which is good at filtering out
noise data.

Definition 3. Density-based CMON (DB-CMON). For each cluster in the DB-
CMON, the average density should be higher than a given threshold ρ. Moreover,
there should not be any empty segment (without any objects lying on) whose
length is longer than E.

Suppose there are m(m > 1) objects in a CB, we have the density of the CB
as m

ε(m−1) > 1
ε . The second condition is necessary to avoid very skewed clusters.

J1

J2

J3J8

p1

p2

p10

p6

5

3
21

2

4

12

11

p3

p9

CB4

CB1

CB3

CB2

p7
2CB5

CB6

J4

J5

J7

J6

p13
p14

12

C1

Fig. 4. The Combination of CBs

J1

J2

p1

p2

p4
5

1

3

1

p3

p5

CB4

CB1

CB3

CB2

J4

J5 J3

CB5

4 3

Fig. 5. The Cross-CB

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 619

Algorithm 1. MD CMON()

foreach CBi do1

if CBi.visited == false then2

Q = new priority queue;3

find edge nx, ny where CBi lies;4

CB = CBi; C = CB;5

nextCB = Next CB on nx, ny from CBi to ny;6

while (nextCB �= null) and Dist(CB.head,nextCB.tail) ≤ δ do7

Merge Expand(CB,nextCB,C,nx,ny);
if (nextCB == null) and Dist(CB.head,ny)≤ δ then8

B.node = ny ; B.dist = Dist(CB.head,ny);9

Enqueue(Q,B);10

while notempty(Q) do11

B = Dequeue(Q);12

foreach node nz adjacent to B.node do13

nextCB = Next CB from B.node to nz;14

if (nextCB �= null) and Dist(B.node,nextCB.tail)+B.dist ≤ δ15

then
newdnz = Dist(nextCB.head,nz);16

Merge Expand(CB,nextCB,C,B.node,nz);17

while (nextCB �= null) and18

Dist(CB.head,nextCB.tail) ≤ δ do
newdnz = Dist(nextCB.head,nz);19

Merge Expand(CB,nextCB,C,B.node,nz);20

if (no CBs on edge (B.node,nz)) then21

newdnz = B.dist+Dist(B.node,nz);22

if (nextCB == null) and (newdnz ≤ δ) then23

Bnew .node = nz; Bnew .dist = newdnz ;24

Enqueue(Q,Bnew);25

Procedure. Merge Expand(CB1,CB2,C,node1,node2)

if CB2.visited == false then1

C=MergeClst(C,CB2);2

CB1 = CB2; CB1.visited = true;3

CB2 = Next CB from node1 to node2;4

else5

C1=FindCluster(CB2);6

C=MergeClst(C,C1);7

It is equivalent to the condition that for any object in the cluster, the nearest
object is within a distance of E. Thus, to construct the DB-CMON clusters from
CBs, we require ε ≤ max{E, 1

ρ}.
The cluster formation algorithm is the same as the one described in Algo-

rithm 1 except that the minimum-distance constraint (transformed from the
density constraint) is dynamic. Suppose the density of the current cluster with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

620 J. Chen et al.

k objects is ρ′ and a CB has m objects with a length of L. If a CB can be
merged into the cluster, their minimum distance D must satisfy k+m

k/ρ′+L+D ≥ ρ,

i.e., D ≤ k+m+ρ(k/ρ′+L)
ρ .

5.3 K-Partitioning CMON

K-Partitioning CMON is similar to the K-Partitioning clustering method [8,11].
It can be defined as follows:

Definition 4. K-Partitioning CMON (KP-CMON). Given a set of objects, group
them into K clusters such that the sum of distances between all adjacent objects
in each cluster is minimized.

According to the definition of CBs, the sum of distances between all adjacent
objects in each CB is minimized. Therefore, it is intuitive to construct the KP-
CMON clusters from the CBs. An exhaustive method is to iteratively combine
the closest pairs of CBs until K clusters are obtained. This method requires
to compute the distances between all pairs of CBs, which is costly. Hereby, we
propose a low-complexity heuristic similar to the K-means algorithm [8,11]. We
initially select K CBs as the seeds for K clusters. For the remaining CBs, we as-
sign them to their nearest clusters to make the sum of distances between adjacent
objects to be minimum. Note that this heuristic may not lead to the optimal solu-
tion. Suppose that in Figure 5, the distances between CBs are: dist(CB2, CB3) <
dist(CB2, CB5) < dist(CB3, CB1) < dist(CB2, CB1) < dist(CB3, CB5), and
that the initial seed CBs are CB1 and CB5 for K = 2. When CB3 is checked,
it will be assigned to the cluster of {CB1}. Then CB2 will be assigned to the
cluster of {CB5}, which is different from the optimal solution where CB2 and
CB3 should be grouped together since dist(CB2, CB3) < dist(CB2, CB5). To
compensate for such mistakes, we introduce the concept of Cross-CB. For adja-
cent CBs lie around the same node, if their minimum distance is less than ε, we
group them into a Cross-CB. Then, the clustering algorithm is applied over the
CBs and Cross-CBs.

6 Performance Analysis

In this section, we evaluate the performance of our proposed techniques by com-
paring with the periodical clustering. We implement the CMON algorithms in
C++ and carry out experiments on a Pentium 4, 2.4 GHz PC with 512MB
RAM running Windows XP. Our performance study uses synthetic datasets.
For monitoring the effective clusters in the road network, we design a moving
object generator. The generator takes a map of a road network as input, and
our experiment is based on the map of Beijing city. We set K hot spots in the
map. Initially, the generator places eighty percent objects around the hot spots
and twenty percent objects at random positions, and updates their locations at
each time unit. Each object around the hot spot moves along its shortest path
from its initial hot spot to another one. We compare the MD-CMON algorithm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 621

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 ti

m
e

(m
s)

Number of moving objects (k)

cmon
static eps-link

Fig. 6. Total time varies in data size

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of moving objects (k)

cmon
static eps-link

Fig. 7. Response time varies in data size

against the ε-link algorithm proposed in [16]. We monitor the clustering results
by running the ε-link algorithm periodically and by maintaining the CBs created
at the initial time and combining them to construct the MD-CMON.

First, we compare our method with the static ε-link by measuring both average
clustering response time and total workload time when varying the number of mov-
ing objects from 100K to 1M. We set the clustering frequency at 1 per time unit
and execute the CBs maintenance and combination in comparison with the static
ε-link on all objects. For total workload time (shown in Figure 6), we measure the
total CPU time including maintaining CB and combining CBs to clusters up to 20
time units. Figure 7 also shows the average clustering response time for periodic
clustering requests. In essence, CBs are like B+-tree or R-tree index for periodical
queries and they share the same property, i.e., amortizing the query (clustering)
cost to maintain the data structure (CBs) for speeding up the query (clustering)
processing. Therefore, our method is substantially better than the static one in
terms of average response time, yet is still better in terms of total workload time.

 0

 50000

 100000

 150000

 200000

 250000

11/21/31/41/5

T
ot

al
 ti

m
e

(m
s)

Clustering frequency

cmon
static eps-link

Fig. 8. Clustering frequency effect

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 4 6 8 10 12 14 16 18 20

R
ep

on
se

 ti
m

e
(m

s)

Monitoring time

cmon
static eps-link

Fig. 9. Monitoring time effect

Then, we change the clustering frequency with 1/5, 1/4, ..., 1 to examine
how the total time is affected. The experiment is executed on 100K moving ob-
jects during 20 time units. Figure 8 shows the results of the two methods under
different clustering frequencies. We can see that the higher the clustering fre-
quency, the more efficient our CMON method. In addition, we fix the clustering
frequency at 1 and measure the clustering response time at different clustering
monitoring instances. As time elapses, the objects change their locations con-
tinuously, which may affect the clustering efficiency. As shown in Figure 9, our

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

622 J. Chen et al.

CMON method consistently keeps a lower cost than the static ε-link method
over different time instances.

Finally, we study the effect of parameters (ε and δ) of our methods on the
clustering efficiency. As the number of CBs depends on the system parameter
ε, we change the value of ε from 0.5 to 3 to measure the maintenance cost of
CBs. Then when fixing the ε value at 2.5, we varying δ to study its effect on the
CB combination to clusters. Figure 10 and Figure 11 show the effect of the two
parameters. We observe that when ε and δ are set to 2.5 and 4.5, the method
achieves the highest efficiency in our experimental setting.

 90000

 95000

 100000

 105000

 110000

 0.5 1 1.5 2 2.5 3

M
ai

nt
ai

ni
ng

 ti
m

e
(m

s)

Epsilon

cmon

Fig. 10. CMON performance with ε

 0

 1000

 2000

 3000

 4000

 5000

 2.5 3 3.5 4 4.5

R
es

po
ns

e
tim

e
(m

s)

Delta

cmon

Fig. 11. CMON performance with δ

7 Conclusion

In this paper, we studied the problem of clustering moving objects in a spatial
road network and proposed a framework to address this problem. By introduc-
ing a notion of cluster block, this framework, on one hand, amortizes the cost of
clustering into CB maintenance and combination based on the object movement
feature in the road network; and on the other hand, it efficiently supports differ-
ent clustering criteria. We exploited the features of the road network to predict
the split and merge of CBs accurately and efficiently. Three different cluster-
ing criteria have been defined and the cluster construction algorithms based
on CBs were proposed. The experimental results showed the efficiency of our
method.

Acknowledgments

This research was partially supported by the grants from the Natural Science
Foundation of China under grant number 60573091, 60273018; Program for New
Century Excellent Talents in University (NCET); Program for Creative PhD
Thesis in University. Jianliang Xu’s work was supported by the grants from
the Research Grants Council, Hong Kong SAR, China (Project Nos. HKBU
2115/05E and HKBU 2112/06E).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Moving Objects in Spatial Networks 623

References

1. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan: Automatic subspace clus-
tering of high dimensional data for data mining applications. SIGMOD 1998: 94-105.

2. D. Fisher: Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 1987, 2:139-172.

3. S. Guha, R. Rastogi, and K. Shim: CURE: An effcient clustering algorithm for
large databases. SIGMOD 1998: 73-84.

4. A. K. Jain and R. C. Dubes: Algorithms for Clustering Data. Prentice Hall, 1988.
5. W. Jin, Y. Jiang, W. Qian, A. K. H. Tung: Mining Outliers in Spatial Networks.

DASFAA 2006: 156-170.
6. G. Karypis, E. H. Han, and V. Kumar: Chameleon: Hierarchical clustering using

dynamic modeling. IEEE Computer, 1999, 32(8):68-75.
7. P. Kalnis, N. Mamoulis, S. Bakiras: On Discovering Moving Clusters in Spatio-

temporal Data. SSTD 2005: 364-381.
8. L. Kaufman and P. J. Rousseeuw: Finding Groups in Data: An Introduction to

Cluster Analysis. John Wiley and Sons, Inc, 1990.
9. Y.F. Li, J.W. Han, J. Yang: Clustering Moving Objects. KDD 2004: 617-622.

10. E. Martin, H. P. Kriegel, J. Sander, and X. Xu: A density-based algorithm for
discovering clusters in large spatial databases with noise. SIGKDD 1996: 226-231.

11. R. T. Ng and J. Han: Effcient and effective clustering methods for spatial data
mining. VLDB 1994: 144-155.

12. R. V. Nehme, E. A. Rundensteiner: SCUBA: Scalable Cluster-Based Algorithm for
Evaluating Continuous Spatio-temporal Queries on Moving Objects. EDBT 2006:
1001-1019.

13. A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos: C2P: Clustering based on
closest pairs. VLDB 2001: 331-340.

14. D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query Processing in Spatial Network
Databases. VLDB 2003: 790-801.

15. W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to
Spatial Data Mining. VLDB 1997: 186-195.

16. M. L. Yiu, N. Mamoulis: Clustering Objects on a Spatial Network. SIGMOD 2004:
443-454.

17. Q. Zhang, X. Lin: Clustering Moving Objects for Spatio-temporal Selectivity Es-
timation. ADC 2004: 123-130.

18. T. Zhang, R. Ramakrishnan, and M. Livny: BIRCH:An effcient data clustering
method for very large databases. SIGMOD 1996: 103-114.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 624 – 636, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Tornado Model:
Uncertainty Model for Continuously Changing Data

Byunggu Yu1, Seon Ho Kim2, Shayma Alkobaisi2,
Wan D. Bae2, and Thomas Bailey3

1 Computer Science Department, National University
La Jolla, CA 92037, USA

byu@nu.edu
2 Computer Science Department, University of Denver

Denver, CO 80208, USA
{seonkim,salkobai,wbae}@cs.du.edu

3 Computer Science Department, University of Wyoming
Laramie, WY 82071, USA
tbailey@uwyo.edu

Abstract. To support emerging database applications that deal with
continuously changing (or moving) data objects (CCDOs), such as vehicles,
RFIDs, and multi-stimuli sensors, one requires an efficient data management
system that can store, update, and retrieve large sets of CCDOs. Although
actual CCDOs can continuously change over time, computer systems cannot
deal with continuously occurring infinitesimal changes. Thus, in the data
management system, each object’s spatiotemporal values are associated with a
certain degree of uncertainty at virtually every point in time, and the queries are
mostly processed over estimates characterizing the uncertainty. The smaller the
uncertainty is, the better the query performance becomes. The paper proposes a
sophisticated asymmetric uncertainty model, called the Tornado Model, which
can effectively represent, process, and minimize the data uncertainty for a wide
variety of CCDO database applications.

Keywords: spatiotemporal database, trajectory, uncertainty.

1 Introduction

An increasing number of emerging applications deal with a large number of
continuously changing (or moving) data objects (CCDOs), such as vehicles, sensors,
and mobile computers. For example, in earth science applications, temperature, wind
speed and direction, radio or microwave image, and various other measures (e.g.,
CO2) associated with a certain geographic region can change continuously.
Accordingly, new services and applications dealing with large sets of CCDOs are
appearing. In the future, more complex and larger applications that deal with higher
dimensional CCDOs (e.g., a moving sensor platform capturing multiple stimuli) will
become commonplace – increasingly complex sensor devices will continue to
proliferate alongside their potential applications. Efficient support for these CCDO
applications will offer significant benefit in many broader challenging areas including

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 625

mobile databases, satellite image analysis, sensor networks, homeland security,
internet security, environmental control, and disease surveillance.

To support large-scale CCDO applications, one requires a data management system
that can store, update, and retrieve CCDOs. Each CCDO has both multidimensional-
temporal (i.e., 2 or 3D geographic space or other information dimensions that vary with
time) properties representing its continuous trajectory in an information space-time
continuum as well as non-temporal properties such as identification, associated phone
number, and address. Importantly, although CCDOs can continuously move or change
(thus drawing continuous trajectories in a space-time), computer systems cannot deal
with continuously occurring infinitesimal changes – this would effectively require
infinite computational speed and sensor resolution. Thus, each object’s continuously
changing attribute values (e.g., location, velocity, and acceleration) can only be
discretely updated. Hence, they are always associated with a degree of uncertainty,
especially when there is a considerable time gap between two updated points.

Over the past years, database research communities have mainly focused on
representing the uncertainty of spatiotemporal CCDO locations (i.e., the position
property of estimated CCDO states). In contrast, sensor technology has evolved to
detect or approximate higher order derivatives (e.g., velocity and acceleration). For
example, most GPS loggers in the market are now capable of recording highly
accurate velocity (and even acceleration) values. Virtually any intelligent sensory
device that can rapidly detect its stimuli can be used to produce the higher order
derivatives at the sensor level. By properly utilizing these additional sensory inputs,
we can possibly support CCDO queries referring to the higher order derivatives of the
trajectories (e.g., report every CCDO that possibly had an acceleration within the
given acceleration range at the given point in time). Importantly, these additional
inputs can be utilized to minimize the uncertainty of a database trajectory.

The paper presents our research initiated on the following goals: first, provide a
basis for developing an uncertainty model that can represent not only the position
uncertainty but also the derivative uncertainties; second, investigate the problem of
minimizing the uncertainty using the sensor-level derivatives.

The rest of this paper is organized as follows: Section 2 summarizes related
techniques and models. Section 3 characterizes CCDOs. Sections 4 and 5 propose and
verify our novel trajectory uncertainty model that fulfils the above goals. Section 6
concludes the paper and proposes some future work.

2 Related Work

Several application-specific models of uncertainty have been proposed. One popular
uncertainty model is that, at any point in time, the location of an object is within a
certain distance d, of its last reported location. If the object moves further than d, it
reports its new location and possibly changes the distance threshold d for future
updates [12]. Given a point in time, the uncertainty is a circle with a radius d,
bounding all possible locations of the object.

Another model assumes that an object always moves along straight lines (linear
routes). The location of the object at any point in time is within a certain interval,
centered at its last reported location, along the line of movement [12]. Different
CCDO trajectory models that have no uncertainty consideration are found in the
literature [7]. These models make sure that the exact velocity is always known by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

626 B. Yu et al.

requiring reports whenever the object’s speed or direction changes. Other models
assume that an object travels with a known velocity along a straight line, but can
deviate from this path by a certain distance [10, 11].

An important study on the issues of uncertainty in the recorded past trajectories
(history) of CCDOs is found in [6]. Assuming that the maximum velocity of an object is
known, they prove that all possible locations of the object during the time interval
between two consecutive observations (reported states) lie on an error ellipse. A
complete trajectory of any object is obtained by using linear interpolation between two
adjacent states. That is, a trajectory is approximated by a sequence of connected straight
lines, each of which connects two consecutively reported CCDO observations. By using
the error ellipse, the authors demonstrate how to process uncertainty range queries for
trajectories. The error ellipse defined and proved in [6] is the projection of a three-
dimensional spatiotemporal uncertainty region onto the two-dimensional data space.
Similarly, [4] represents the set of all possible locations based on the intersection of two
half cones that constraint the maximum deviation from two known locations. It also
introduces multiple granularities to provide multiple views of a moving object.

Our approach, a mechanism that explicitly leverages an understanding and
characterization of uncertainty for a generalized case of the CCDO, offers an
alterative construct that is suitable for higher dimensional data and that can produce
minimally bounding spatiotemporal uncertainty regions for both past and future
trajectories of CCDOs by taking into account the temporally-varying higher order
derivatives, such as velocity and acceleration. We call this uncertainty model the
Tornado Uncertainty Model (TUM) because, for each reported CCDO state, the
model produces a tornado-shaped uncertainty region in the space-time.

3 Explication of CCDO

Before presenting our uncertainty model, we define “Continuously Changing Data
Object” (CCDO) through a series of ontological abstractions. Table 1 represents our
explication of CCDO.

Table 1. Multi-level abstraction of CCDO

Abstraction Definition
CCDO A CCDO is a data object consisting of one or more trajectories and zero,

one, or more non-temporal properties.
trajectory A trajectory consists of dynamics and f:time snapshot, where time is a

past, current, or future point in time.
snapshot A snapshot is a probability distribution that represents the probability of

every possible state at a specific point in time. Depending on the
dynamics and update policies, the probability distribution may or may not
be bounded.

state A state is a point in a multidimensional information space-time of which
time is one dimension. Each state associated with zero or more of the
following optional properties: velocity (i.e., direction and speed of
changes, the 1st derivative), acceleration (the 2nd derivative), and higher
order derivatives.

dynamics The dynamics of a state is a set of domains each of which represents all
possible values corresponding to a certain property of the state.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 627

Considering an observer who reports the state of a CCDO as often as possible, the
trajectory drawn by the object is viewed as a sequence of connected segments in space-
time, and each segment connects two consecutively reported states of the object.
Examining of Table 1, one may observe the following: only a subset of states can be
stored in the database, due to the fact that no database can be continuously updated. We
call these stored states reported states. Each pair of consecutive reported states of a
CCDO represent a single trajectory segment. The reported states are the factual known
states of the CCDOs, and only these known states can be committed to the database. All
possible in-between states and future states of the CCDOs are then interpolated and
extrapolated on the fly when it is necessary (e.g., query processing, data visualization,
index maintenance, and data management). Given the theoretical possibility of an infinite
number of states between two factual states, a mathematical model and computational
approach is required to efficiently manage the ‘in-between’ and ‘future’ states.

4 The Tornado Model

As discussed in Section 3, a CCDO consists of a set of conventional non-temporal
attributes and one or more temporal attributes (i.e., a location anchor or boundary points)
each of which can draw a trajectory over time in a multidimensional attribute space
(e.g., geographic space and sensor stimuli space). Among the trajectory components
defined in Table 1, only a subset of states, called reported states (RS), and a subset
of dynamics, which we call known dynamics (KD) in this paper, can be stored in a
database. Then the trajectory snapshots, which represent the uncertainty of the discretely
recorded trajectory, are calculated when necessary. Therefore, in order to formally
present our trajectory model, we first explicate a database trajectory (a discretely
recorded CCDO trajectory stored in a database). As given in Definition 1, a database
trajectory consists of a sequence of reported states and some known dynamics.

Definition 1. Database Trajectory
A database trajectory DBTRAJ in a (d+1)-dimensional space-time with d data (or
spatial) dimensions and one time dimension consists of a sorted set RS of n reported
states and a sorted set KD of m known dynamics, where

• For all i=0,..,n-1, RSi is a tuple <P(0), P(1), … P(k-1), T, IME(0), IME(1), … IME(k-1)>,
where
o For all l=0,..,k-1, P(l) is a d-dimensional vector representing the lth derivative

of the trajectory at T (e.g., P(0), P(1), and P(2) are, respectively, a d-dimensional
location, velocity, and acceleration at T);

o T is a specific time point at which the above state was observed (or sensed);
o For all l=0,..,k-1, IME(l) is the domain of possible instrument-and-

measurement errors (deviations from the real) associated with P(l).
• For all j=0,..,m-1, KDj is a tuple <D(0), D(1), … D(k), T>, where
o For all l=0,..,k, D(l) is the domain of the lth derivative of the trajectory at T;
o T is a specific time point at which the above domains are valid.

• For all i=0,..,n-2, RSi.T ≤RSi+1.T.
• For all j=0,..,m-2, KDj.T ≤KDj+1.T.

Considering the location P(0) to be the 0th derivative, the value of k represents the
number of derivatives reported to the database system. For example, for an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

628 B. Yu et al.

application wherein sensors can detect and report only the 3-dimensional geographic
location of the object each time, d is set to 3 and k is set to 1. If the sensors can report
not only locations but also velocities (i.e., P(1)), k is set to 2.

Based on this database trajectory model (i.e., Definition 1), we define our
uncertainty model (i.e., snapshot defined in Table 1) as given in Definition 2 to
calculate the snapshots (uncertainty) of the trajectory given a time point t.

Definition 2. Snapshot (Uncertainty Region)
),()(tDBTRAJSNAPSHOT i can be defined as follows:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

<

≤≤∃∩

−−

−−

state) reported no (i.e., otherwise

. if),(

. if),(

)..(if),(),(

00
)(

11
)(

1
)(

1
)(

φ
tTRStRSE

tTRStRSE

TRStTRStRSEtRSE

i

nn
i

llll
i

l
i

, (1)

where RS0 and RSn-1 are, respectively, the first and last reported states of trajectory
DBTRAJ; E(i)() is a function that takes a reported state rs and a time point t as input
and produces a set of all possible ith derivatives of the trajectory at t. The calculation
of the snapshot falls in one of four cases: (1) t is between the times of two consecutive
reported states (i.e.,)..(1 TRStTRS lll ≤≤∃ −); (2) t is greater (later) than the last

reported state (i.e., tTRSn <− .1
); (3) t is smaller (earlier) than the first reported state

(i.e., tTRS >.0
); (4) DBTRAJ has no reported state.

As shown in Definition 2, one must define the estimation function series E in order to
fully define this trajectory uncertainty (snapshots) model.

D(1): a region (set)
of all possible
actual velocities

Mvel

circular
approximation

D(2): a region (set)
of all possible actual
accelerations

circular
approximation

velocity
vector

positive
accelerations

negative
accelerations

Macc

 a. Circular approximation of velocity b. Circular approximation of acceleration

Fig. 1. Examples of the circular approximation

4.1 E of Degree 1: Revised Ellipse Model

Definitions 1 and 2 are generalized to accommodate any arbitrary set of instrument-
and-measurement errors (IME) and dynamics (D) each of which can possibly be a
highly complicated multidimensional shape. In addition, the model supports any level
k of derivatives. In practical applications, the parameter k should be set to a specific
value, and, for efficient calculation of trajectory snapshots, some form of
approximation is necessary for both IME and D components. Let us first consider the
following approximation: For every DBTRAJ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 629

(1) k=1;
(2) ,1,..,0 −=∀ ni RSi.IME(0) is a d-dimensional hyper-circle with a constant radius Merr;

(3) ,1,..,0 −=∀ mi KDi.D
(0) is a d-dimensional constant hyper-square SPACE;

(4) ,1,..,0 −=∀ mi KDi.D
(1) is a d-dimensional hyper-circle with a constant radius Mvel.

Note that approximations (2) and (4) represent a circular approximation. Fig. 1a
shows an example of the circular approximation of velocity. Mvel is the norm of the
maximum possible actual velocity. Because of this approximation, possible velocities
are independent of the location. Then, E(0) and E(1) can be defined as follows:

}|{),()1(
velMpptrsE ≤= (2)

 }

'

.'0

.

|{),(

)0(

',,

)0(

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅+=

∧−≤≤

∧≤

∧∈∧≤−

∃

∧∈=

tivelilocp

Trstt

Mivel

SPACEilocMPrsiloc

SPACEpptrsE

vel

err

tiveliloc

 (3)

E(1) represents the hyper-circle of all possible velocities and E(0) represents all possible
locations that the object, which starts with an initial location iloc and any valid
constant velocity ivel, can reach within the given time interval |t-rs.T|. As an example
of this model, consider an object moving through one dimension of space over time.
Fig. 2a shows an example of a trajectory segment connecting two reported states of
the object. Let RS0 = <A, ti, Merr>, RS1=<B, tj, Merr> and let Mvel be the maximum
change rate (i.e., the norm of the maximum possible velocity) of the CCDO. Then all
possible states of the CCDO between ti and tj are bounded by the lines where | cot θ |
= Mvel. The shaded region covers all possible locations of the object between ti and tj.
The snapshot of the CCDO at any time point t that is between ti and tj is the cross
section of this uncertainty region, produced by the cutting line at time = t. In this d=1

example,)1(SNAPSHOT is],[velvel MM +− and)0(SNAPSHOT is

],[ivelerrivelerr ttMMAttMMA −⋅++−⋅−− ∩

],[jvelerrjvelerr ttMMBttMMB −⋅++−⋅−− .

Similarly, when a CCDO continuously changes in a two-dimensional space, the
snapshots between two consecutive reported states collectively represent the
overlapping region of the two funnels (see Fig. 2b). It is important to note that, as
shown in Fig. 2b, the projection of the snapshots onto the 2-dimensional data space is,
in fact, the uncertainty ellipse that can be defined by the ellipse model [6] with a
modification taking into account the instrument and measurement errors.

4.2 E of Degree 2: Tornado Uncertainty Model

As discussed in Section 3, in many applications, an accurate sensor-level
approximation of trajectory derivatives is possible. For example, most GPS loggers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

630 B. Yu et al.

can record not only geographic positions but also corresponding velocity vectors.
Hence, k=2 holds in the related CCDO applications. This section presents a
specialization of the proposed uncertainty model with the following approximations
in order to better support k=2 applications: For every DBTRAJ,

(1) k=2;
(2) ,1,..,0 −=∀ ni RSi.IME(0) is a d-dimensional hyper-circle with a constant radius Merr

(0);

(3) ,1,..,0 −=∀ ni RSi.IME(1) is a d-dimensional hyper-circle with a constant radius Merr
(1);

(4) ,1,..,0 −=∀ mi KDi.D
(0) is a d-dimensional constant hyper-square SPACE;

(5) ,1,..,0 −=∀ mi KDi.D
(1) is a d-dimensional hyper-circle with a constant radius Mvel;

(6) ,1,..,0 −=∀ mi KDi.D
(2) is a d-dimensional hyper-circle with a constant radius Macc.

ti

tj

space P(0)

ti
m

e
T

A

errMerrM

errMerrM

B

t

)0(SNAPSHOT

θθ

θθ

ti

tj

time

Data Space

A

B

a. In a 2-dimensional space-time b. In a 3-dimensional space-time

Fig. 2. Spatiotemporal uncertainty representing a trajectory segment

Note that this approximation includes a circular approximation of accelerations as
shown in Fig. 1b. Macc represents the norm of the maximum possible actual
acceleration. Because we use this circular approximation, possible accelerations are
independent of the corresponding velocity vector. That is, E(2) is defined as Eq. 4.
Then, the estimation functions E(1) and E(0) can be defined as Eqs. 5 and 6:

E(2) represents the constant hyper-circle of all possible accelerations and E(1)
represents all possible velocities that the object, which starts with the initial velocity
ivel and a valid acceleration iacc, can reach within the given time interval |t-rs.T|.
Then, E(0) defines all possible locations the object can reach.

In the last condition of Eq. 6, iloc, ivel, and iacc represent a possible initial
location, velocity, and acceleration at rs.T. The integral term represents a cumulative
location displacement while the object is constantly accelerating at the rate of iacc,
and the last term represents the location displacement that can be produced by a fixed
velocity ivel+iacc·t’ during |t-rs.T|- t’. Note that, unlike the symmetric estimation E(1),
E(0) needs to compare t and rs.T. When E(0) estimates a future snapshot (i.e., t ≥ rs.T),
possible displacements are added to the initial location iloc (i.e., adding future
possible displacements); for past estimations, possible displacements are subtracted
from iloc (i.e., canceling out past possible displacements). Note that Eqs. 3 and 5 do
not need this differentiation because, given a single reported state rs, their snapshots

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 631

are symmetric to the d-dimensional hyper-plane that is perpendicular to the time axis
at rs.T (i.e., the future snapshots are the past snapshots). The maximum directional
displacement in location (i.e., the maximum distance the object can travel in a certain
direction during |t-rs.T|) is obtained when iacc is a boundary point of the acceleration
circle E(2)(rs,t) and ivel+iacc·t’ is a boundary of the velocity circle E(1)(rs,t’).

Because the symmetric circular approximation of acceleration (resp., velocity)
fully encloses all possible actual accelerations (resp., velocities), no real object can go
beyond the boundary of E(2), E(1), or E(0).

}|{),()2(
accMpptrsE ≤= (4)

}

'

.'0

.

|{),(

)1()1(

',,
)1(

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅+=

∧−≤≤

∧≤

≤∧≤−

∃∧≤=

tiaccivelp

Trstt

Miacc

MivelMPrsivel

MpptrsE acc

velerr

tiaccivelvel
 (5)

}

otherwise

)'.()'()(

. if

)'.()'()(

)',('

.'0

.

.

|{

),(

'

0

'

0

)1(

)1()1(

)0()0(

',,,

)0(

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−⋅⋅+−⋅+−
≥

−−⋅⋅++⋅++

=

∧∈⋅+

∧−≤≤

∧≤

∧≤∧≤−

∧∈∧≤−

∃∧∈

=

∫

∫

tTrsttiacciveldTTiacciveliloc

Trst

tTrsttiacciveldTTiacciveliloc

p

trsEtiaccivel

Trstt

Miacc

MivelMPrsivel

SPACEilocMPrsiloc

SPACEpp

trsE

t

t

acc

velerr

err

tiacciveliloc

(6)

For an example, let us assume that a CCDO (a car) moves in two dimensional
space from RS0 (located at x=0.0 and y=0.0 at time 0) to RS1 (located at x=-1.5 and
y=655.80 at time 20) with an initial velocity ivel (0.083 meters per second along x
axis and 32.34 m/s along y axis). The maximum velocity and acceleration of the car
are Mvel (50 meters per second) and Macc (2.78 m/s per second), respectively.

Step 1: From RS0, calculate the maximum possible displacements E(0)(RS0, t) of the
CCDO in all directions over time 0 ≤ t ≤ 20. First, we calculate all possible
accelerations E(2) using the circular approximation. To discretely represent the
boundary of the hyper-circle of E(2), one can choose a certain number of discrete
points1 along the boundary of the hyper-circle with a fixed interval. Then, these points
represent the set of all possible maximum accelerations. Then E(1) and E(2) can be
calculated by Eq. 5 and Eq. 6, respectively. Fig. 3 example shows the calculated
results for E(i)(RS0, 6). The same process is applied to calculate E(0)(RS1, t) from RS1.

1 The more points we use to create the polygons the more accurate the estimation of the

uncertainty region is. However, it is not practical to use too many points at each time step
since it takes a lot of computing time. For our experiments in Sec. 5, we used 100 points.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

632 B. Yu et al.

Step 2: Two polygons can be created by connecting adjacent points in E(0)(RS0, t) and
E(0)(RS1, t), respectively. We use the Graham’s algorithm [5], which finds the convex
hull of a given set of points. The two polygons in Fig. 3b represent the maximum
displacements (boundaries) from the two locations, one from RS0 and the other from
RS1 at any time t between 0 and 20.

Step 3: Quantify the overlapping area of the two intersecting polygons at time t.
First, we used the ray drawing and crossing number algorithm [5] for each boundary
point of one polygon against the other polygon to see if the point is common. Second,
the set of points that are common (i.e., overlapping points) were used to create
another convex polygon using the Graham’s algorithm, which represents the
overlapping area of E(0)(RS0, t) and E(0)(RS1, t) (shaded area in Fig.3b). Finally,
we use the following formula to calculate the area of the uncertainty region:

2/)()(1
0 11∑ −

= ++ −= n
i iiii xyyxpolA , where A(pol) is the area of the polygon pol, and xi,

yi are the coordinates of a point in pol.

Step 4: We repeated Steps 1-3 as a function of time, for example every second, to
quantify the overlapping area of the two intersecting polygons at a certain time. The
summation of all the areas over the whole interval, from time 0 to 20, is the
uncertainty volume.

Similarly, the uncertainty volume of the revised ellipse model can be quantified
using Eqs. 2 and 3.

E(2) E(1) E(0)

x y x y x y
1.8 1.3 12.7 41.5 32.0 217.3
0.7 2.1 4.90 44.4 12.5 232.4
-0.7 2.1 -4.7 44.4 -11.5 232.4
-1.8 1.3 -12.5 41.5 -31.0 217.3
-2.2 -0.0 -15.5 32.3 -38.5 194.4
-1.8 -1.3 -12.5 23.2 -31.0 171.5
-0.7 -2.1 -4.7 17.6 -11.5 157.3
0.7 -2.1 4.9 17.6 12.5 157.3
1.8 -1.3 12.7 23.2 32.0 171.5
2.2 0.0 15.6 32.3 39.5 194.4

time

x

yRS0

RS1
20

0

t
E (RS0,t)

E (RS1,t)
(0)

(0)

 a. Calculation of E(i)(RS0 , 6) b. Illustration

Fig. 3. Overlapping region at time t

5 Experiments

Using a portable GPS device (Trimgle Navigation’s ProXRS Receiver with GPS
logger), which can record a pair <location-time, velocity> every second, we collected
real GPS data. Every report was 3-dimensional (i.e., longitude, latitude, and time). We
placed the GPS device in a car and drove from a location in the north of Denver,
Colorado, to Loveland, Colorado along the interstate highway 25. Every second, we
logged spatiotemporal data from the GPS device. Our collected data include both
relatively straight movement on a highway and some winding movement in a city

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 633

area, which is useful for a better comparison. For the comparison between the two
models, we created trajectories based on the logged records. A time interval Tint
defines the elapsed real time between two selected adjacent records. First we selected
the logged records with a fixed 20-second time interval (i.e., Tint=20) and we also
randomly selected the records with a sampling ratio of about 5%.

In all experiments, the maximum velocity, Mvel, was set to 180km/hour
(50meters/sec). The maximum acceleration, Macc, was set to 10km/hour per second
(2.78 meters/sec per second). The maximum report (instrument and measurement)
errors Merr

(1) and Merr
(0) were set to 0 and 2 meters, respectively. For the circular

approximation discussed in Sec. 4.2, we selected 100 points along the boundary of the
acceleration hyper-circle with a fixed interval.

First, using the real GPS data selected with a fixed time interval (Tint = 20 seconds),
we constructed 33 reported states (RS) and quantified the uncertainty region volume
between each two adjacent states following the steps in Sec. 4.2. Fig. 4a shows the
quantified uncertainty volumes of the two models. Fig. 4b shows the percentage
reduction in uncertainty volume between the tornado uncertainty model (TUM) and
the revised ellipse model (REM). On the average, TUM produced 94% of reduction
compared to REM. The first 20 reported states were collected while driving on a

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Reported Points

U
n

ce
rt

ai
n

ty
 V

o
lu

m
e

(1
00

0
cu

b
ic

 m
et

er
)

revised ellipse model

tornado model

88

90

92

94

96

98

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Reported Points

P
er

ce
nt

ag
e

R
ed

uc
tio

n

 a. Quantified uncertainty volumes b. Percentage reduction

Fig. 4. Comparison of two models, with 20 sec fixed interval

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Reported Points

U
n

ce
rt

ai
n

ty
 V

o
lu

m
e

(1
00

0
cu

b
ic

 m
et

er
)

revised ellipse model

tornado model

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Reported Points

P
er

ce
nt

ag
e

R
ed

uc
tio

n

 a. Quantified uncertainty volumes b. Percentage reduction

Fig. 5. Comparison of two models, with random interval

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

634 B. Yu et al.

straight highway with a high velocity and the last 13 reported states were collected
while driving in a city area with a low velocity. The results show that the volume
difference between TUM and REM becomes greater when the object moves slowly.

Next, we repeated the same experiment with randomly selected records by
generating arbitrary intervals between 5 and 35 seconds (5 ≤ Tint ≤ 35). Figs. 5a and
5b show the quantified uncertainty volumes of TUM and REM and the percentage
difference in uncertainty volume between the two models, respectively. TUM
produced a 95% reduction compared to REM on the average.

All results show that the uncertainty volumes produced by TUM are significantly
smaller than their counterparts produced by REM. To investigate how efficient TUM
is over REM, we performed the following experiments by varying a couple of factors.
First, assuming identical initial velocity ivel, maximum velocity Mvel, and maximum
acceleration Macc, we quantified the uncertainty volumes with varying Tint between
reported states. Table 2a shows that TUM becomes more efficient compared to REM
as Tint gets smaller. Second, assuming identical ivel, Mvel, and Tint, we quantified the
uncertainty volumes with varying Macc. Table 2b shows that TUM becomes more
efficient compared to REM as Macc gets smaller.

As shown in Eqs. 3 and 6, E(0) is a function of ivel, Mvel, Macc, and the elapsed time
t from a reported state. E(0) gets more dispersed as the velocity of the object
approaches Mvel. Eq. 3 (i.e., REM) produces more dispersion of E(0) than Eq. 6 (i.e.,
TUM) because REM assumes that Mvel is possible during the whole interval |t-rs.T|
(i.e., t’=|t-rs.T|). However, by considering possible accelerations and the reported
velocity, TUM gradually increases the velocity from ivel to Mvel over time (i.e., the
integral term of Eq. 6), which also gradually increases the dispersion of E(0). Thus, the
slower the velocity reaches the maximum (i.e, as the maximum possible t’ increases),
the smaller the dispersion of E(0) becomes. The difference of uncertainty volumes
between REM and TUM becomes accordingly wider. This is the reason why TUM
becomes more efficient as Macc and/or ivel decreases. Similarly, TUM becomes more
efficient when the time interval is shorter. The velocity may not even reach to the
maximum when the time interval is short.

Table 2. The average percentage reduction of uncertainty volume

Tint Range in
Seconds

Average
% Reduction

5-10 99.25
11-15 98.41
16-20 96.40
21-25 93.94
26-30 88.22
30-35 87.71

Max. Acceleration
(Macc)

Average
% Reduction

10 94.30
20 81.79
30 69.26
40 58.90
50 51.66
60 46.30

a. Varying time interval (Macc=10) b. Varying Macc (Tint= 20 seconds)

6 Conclusion

In this paper, we proposed a novel and practical framework for managing
multidimensional CCDOs (i.e., spatiotemporal trajectory representation and
processing). The Tornado model can more efficiently support both conventional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Tornado Model: Uncertainty Model for Continuously Changing Data 635

CCDOs that move in a 2- or 3-dimensional geographic space and emerging high-
dimensional CCDOs, such as combined sensor streams and satellite data. Based on
the framework, one might be able to devise an uncertainty model that employs a more
precise approximation of the actual derivatives.

Processing a query with uncertainty means that each result data item is associated
with the probability (or likelihood) that the item really satisfies the query predicates
[3]. To support probabilistic query processing, one needs to calculate the probability
density of each snapshot: An appropriate application-specific distribution (e.g.,
skewed-normal random distribution) can be used to estimate the probability density
[1,2,9]. [13] provides some non-linear methods that can significantly reduce the errors
associated with the peak point of the probability density. If the snapshots can be
further minimized, the spatiotemporal regions requiring indexing can also be
commensurately limited and the query results will be associated with more probable
likelihoods. By taking into account how the environment may be variably
constraining movement and thus variably affecting the set of possible states of the
CCDO, one can further reduce the snapshots through a separate processing steps of
contextualizing (modifying) the probability distributions [8].

In the two-phase (filtering-refinement) query processing, the smaller the
uncertainty regions are, the lower the rate of false-drops (i.e., the objects that are
selected in the filtering-phase but discarded in the refinement-phase) becomes. On the
other hand, the computation cost of the uncertainty model affects the cost of the
refinement step of the query processing. These two phases are not independent, since
the false-drop rate of the first phase determines the number of objects to be tested in
the refinement step. We have also considered the average cost of testing a candidate
in the refinement step as follows: In our discrete implementation of the uncertainty
models and experiments using a Linux machine equipped with an Intel Pentium III
800MHz and 256MB main memory space, the degree-1 Tornado model (REM) took
about 0.7-0.8 microseconds of CPU time to interpolate each boundary point of the
uncertainty region, and the degree-2 Tornado model (TUM) required about 5
microseconds. On the other hand, compared to REM, TUM reduced the uncertainty
volumes by more than an order of magnitude on average. Understanding the
implication of these in actual query performance requires the hardware platform,
adopted cache-buffering method, the trajectory data, and the access method.

References

1. Azzalini A., Capitanio, A. Statistical applications of the multivariate skew-normal
distribution. Journal of the Royal Statistical Society, Series B(61), 1999, 579-602.

2. Azzalini A., Valle, A. D. The multivariate skew-normal distribution. Biometrika, 83, 1996,
715-726.

3. Cheng, R., Kalashnikov, D., Prabhakar, S. Evaluating Probabilistic Queries over Imprecise
Data. IEEE Transactions on Knowledge and Data Engineering, 16(9), 2004, 1112-1127.

4. Hornsby, K., Egenhofer, M. J. Modeling Moving Objects over Multiple Granularities,
Annals of Mathematics and Artificial Intelligence, 36(1-2), 2002, 177-194.

5. O’Rourke, J. Computational Geometry in C, 2nd ed., Cambridge University Press, 1998.
6. Pfoser, D., Jensen, C. S. Capturing the Uncertainty of Moving-Objects Representations. In

Proc Int. Conf. on Scientific and Statistical Database Management, 1999, 123-132.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

636 B. Yu et al.

7. Pfoser, D., Jensen, C. S. Querying the Trajectories of On-Line Mobile Objects. In Proc.
ACM MobiDE International Workshop on Data Engineering for Wireless and Mobile
Access, 2001, 66-73.

8. Prager, S. D.: Environmental Contextualization of Uncertainty for Moving Objects. In:
Proc. GeoComputation. Ann Arbor, Michigan, 2005.

9. R Development Core Team, R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2004.

10. Sistla, P. A., Wolfson, O., Chamberlain, S., Dao, S. Querying the Uncertain Position of
Moving Objects. Temporal Databases: Research and Practice, 1997, 310-337.

11. Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S. The Geometry of Uncertainty in
Moving Object Databases. In Proc. Int’l Conf. on Extending Database Technology, 2002,
233-250.

12. Wolfson, O., Sistla, P. A., Chamberlain, S., Yesha, Y. Updating and Querying Databases
that Track Mobile Units. Distributed and Parallel Databases, 7(3), 1999, 257-387.

13. Yu, B., Kim, S. H., Bailey, T., Gamboa, R. Curve-Based Representation of Moving Object
Trajectories. IEEE International Database Engineering and Applications Symposium,
2004, 419-425.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving

Clusters over Spatio-temporal Data Streams

Rimma V. Nehme1 and Elke A. Rundensteiner2

1 Purdue University, West Lafayette, IN 47907 USA
2 Worcester Polytechnic Institute, Worcester, MA 01608 USA

rnehme@cs.purdue.edu, rundenst@cs.wpi.edu

Abstract. Moving object environments are characterized by large num-
bers of objects continuously sending location updates. At times, data
arrival rates may spike up, causing the load on the system to exceed its
capacity. This may result in increased output latencies, potentially lead-
ing to invalid or obsolete answers. Dropping data randomly, the most fre-
quently used approach in the literature for load shedding, may adversely
affect the accuracy of the results. We thus propose a load shedding tech-
nique customized for spatio-temporal stream data. In our model, spatio-
temporal properties, such as location, time, direction and speed over
time, serve as critical factors in the load shedding decision. The main
idea is to abstract similarly moving objects into moving clusters which
serve as summaries of their members’ movement. Based on resource re-
strictions, members within clusters may be selectively discarded, while
their locations are being approximated by their respective moving clus-
ters. Our experimental study illustrates the performance gains achieved
by our load-shedding framework and the tradeoff between the amount of
data shed and the result accuracy.

1 Introduction

Applications dealing with extremely large numbers of moving objects are be-
coming increasingly common. These include fleet monitoring [31], location-based
services [18] and scientific applications [25]. In such applications, queries are typ-
ically continuously evaluated over data streams composed of location updates.
At times such data streams may become bursty and thus exceed system capacity.

However, existing load smoothing techniques [16,24,30] that store the tuples
that cannot be processed into archives (spill them to disk) are not viable options
for streaming spatio-temporal data. This is because spatio-temporal applications
typically have real-time response requirements [18,21]. Any delay in the answer
to a query would give obsolete results, and with objects continuously changing
their locations, make them invalid or useless.

In order to deal with resource limitations in a graceful way, returning ap-
proximate query answers instead of exact answers has emerged as a promising
approach [3,8,9]. Load shedding is a popular method to approximate query an-
swers for stream processing while reducing the consumption of resources. The

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 637–651, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

638 R.V. Nehme and E.A. Rundensteiner

goal is to minimize inaccuracy in query answers while keeping up with the incom-
ing data load. The current state-of-the-art in load shedding [1,2,9,22,26,28,29]
can be categorized into two main approaches. The first relies on syntactic (ran-
dom) load shedding, where tuples are discarded randomly based on expected
system performance metrics such as output rate [9,27]. The second approach,
also known as semantic load shedding, assigns priorities to tuples based on their
utility (semantics) to the application and then sheds those with low priority
first [6,27]. However, both of these approaches may suffer from high inaccuracy
if applied to spatio-temporal data streams. The reason is two-fold: (1) they do
not consider the spatio-temporal properties of the moving objects when deciding
which data to load shed, and (2) they do not consider that both queries as well
as objects have the ability to change their locations. Hence the results to queries
depend on both the positions of the moving objects and of the moving queries
at the time of querying.

To motivate the solution presented in this paper, we consider a scenario from
the supply-chain management application – fleet monitoring. We assume that
vehicles are equipped with positioning devices (e.g., GPS) and are travelling
in convoys, i.e., in close proximity from each other. Using random load shed-
ding, all vehicles’ location updates are treated equally. Thus any tuple is equally
likely to be discarded and the whereabouts of the vehicle may be unknown for
some duration of time. Using semantic load shedding, a user may specify ve-
hicles with the most valuable (e.g., expensive or perishable) cargo having the
highest utility. The locations of the vehicles with lower utility may be discarded
first, and thus temporarily loosing the location information of those moving
objects.

The scenario above illustrates that using current load shedding techniques,
the spatio-temporal properties of the moving objects are not taken into account
when deciding which data to discard. However, if the workload must be reduced
by dropping some data, taking into account such spatio-temporal properties as
location, speed, direction, much higher accuracy can be achieved. Another point
the scenario above illustrates is the spatio-temporal relationship of several differ-
ent objects relative to each other, more specifically the similarity of movement.
Thus intuitively if we can approximate similarly moving objects into clusters,
and keep track of spatio-temporal properties of the cluster as a whole, then we
could load shed the objects close to the center of the cluster without losing much
in the results accuracy. So the decision to discard certain data is not related to
only one object, but rather to dynamically formed sets of objects. To the best
of our knowledge, no prior work has addressed this thus far.

1.1 Spatio-temporal Similarity

We observe that large numbers of moving objects often share some spatio-
temporal properties, in fact, they often naturally move in clusters for some
periods of time [7,14]. For example, migrating animals, city pedestrians, or a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 639

- moving cluster

Fig. 1. Conceptual View of Moving
Clusters

objects stream

Clustering
Phase

queries stream

Load Shedding
Phase

yes

no

Split
(+/-)

(+/-)

(+/-)

...

... ...

q1
q2 qn

Moving
clusters

done

Cluster-Based Join Phase
Join-Within

Clusters
Join-Between

Clusters

new location
update arrives

expires
or utilization

exceeds the norm

Trigger
(system unstable)

Fig. 2. ClusterSheddy Architecture

convoy of cars that follow the same route in a city naturally form moving clusters
(Fig. 1). Such moving clusters do not always retain the same set of objects for
their lifetime, rather some objects may enter or leave over time. For example,
new animals may enter the migrating group, and others may leave the group
(e.g., animals attacked by predators). While belonging to a particular cluster,
the object shares similar properties with the other objects that belong to the
same cluster. In this case, the spatio-temporal properties of the cluster such as
speed, direction1, and relative proximity of other moving objects summarize how
these objects are moving and where they currently are.

A cluster can in some sense serve as a “common-feature-abstraction” of a
group of moving objects sharing spatio-temporal properties. We now postulate
that this abstraction can be exploited for efficient load shedding.

1.2 Our Contributions: ClusterSheddy Framework

In this paper, we present the ClusterSheddy framework for processing spatio-
temporal queries on moving objects. ClusterSheddy is equipped with novel meth-
ods for spatio-temporal load shedding based on motion semantics. Moving
clusters, abstracting similarly moving objects and queries, serve as summaries
of their members and preserve their location, even if approximate, when their
individual positions are load shed. The novelty of our method is that it uses
dynamic clusters, together with the knowledge of the current system resources
to determine when, how much and which data to load shed. Inside each moving
cluster, a nested data structure, termed nucleus, abstracts the positions of the
cluster members whose positions are load shed. In other words, the load shed-
ding in ClusterSheddy takes a “from-inside-out” approach, where objects/queries
closest to the center of the cluster are load shed first. The motivation is that
1 We measure direction using a counterclockwise angle of rotation with due East.

Using this convention, a vector with a direction of 30 degrees is a vector which has
been rotated 30 degrees in a counterclockwise direction relative to due east.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

640 R.V. Nehme and E.A. Rundensteiner

the closer cluster members are to the centroid, the more accurately the cluster
approximates their individual locations. The sizes of the moving clusters’ nuclei
are resource-sensitive, meaning that the nucleus size of a moving cluster changes
depending on the current resource availability. We measure the quality of a load
shedding policy in terms of the deviation of the estimated answers produced by
the system from the actual answers. Experimental results illustrate that Clus-
terSheddy is very effective in quickly reducing the load while maintaining good
accuracy of the results.

Roadmap: Section 2 provides an overview of the ClusterSheddy framework and
the moving cluster abstractions over spatio-temporal streams. Section 3 describes
the load shedding technique based on moving clusters and the different policies
for shedding clusters. Section 4 presents our experimental results. Section 5 dis-
cusses related work, and Section 6 concludes the paper.

2 ClusterSheddy Framework

2.1 Query Evaluation in ClusterSheddy

ClusterSheddy is encapsulated into a physical non-blocking pipelined query op-
erator that can be combined with traditional operators in a query network plan.
The input to ClusterSheddy consists of moving objects and spatio-temporal query
streams. Moving objects’ location updates arrive in the form (oid, Loc, t), where
oid is an object id, and Loc is its location at time t. Continuous queries arrive
in the form (qid, Loc, t, qType, qAttrs), where qid is a query id, and Loc is its
location at time t, qType is a query type (e.g., knn, range), and qAttrs represents
query attributes (e.g., a value of k for a knn query).

The ClusterSheddy execution process consists of three phases: (1) clustering,
(2) cluster-based join, and (3) load shedding (Fig. 2). When new location data
for an object/query arrives, the object/query joins either an existing cluster or
forms its own cluster (clustering phase). Similar to our prior work, SCUBA [20],
spatio-temporal queries on moving objects are evaluated by first performing a
spatial join between moving clusters pruning true negatives. If two clusters do
not intersect with one other, the objects and queries belonging to these clusters
are guaranteed to not join either. Thereafter, in the join-within step, individual
objects and queries inside the clusters are joined with each other. This two-step
filter-and-join process helps reduce the number of unnecessary spatial joins.

Unlike SCUBA, ClusterSheddy implements incremental query evaluation and
unlike SINA [19] and SEA-CNN [32], it is done at the coarser level of moving
clusters rather than of individual objects and queries. Such incremental approach
helps to avoid continuous re-evaluation of spatio-temporal queries. Moreover,
ClusterSheddy effectively employs load shedding based on moving clusters, a task
not addressed in these prior works.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 641

Centroid

Actual
Cluster Size

D

Max Cluster Size

Direction Vector

Cluster members:
moving objects

Nucleus

Cluster members:
moving queries

R

T

S

Speed:

Fig. 3. A Moving Cluster Representation

Notation

m.Cid

m.oCount

m.qCount

m.Loc

m.R

m.AveSpeed

m.AveDir

m.UpdTime

m.MaxSize

m.Size

m.Ans

Property

Cluster ID

Object Members

Query Members

Centroid Location

Radius

Average Speed

Direction

Update Time

Max Size

Actual Size

Results

Description

Numeric cluster identifier

Number of moving objects

Number of moving queries

Location of the centroid of the cluster

Radius of the cluster

Average of the speeds of all cluster members

Movement Direction

Last update/check time

Maximum area that the cluster can increase up to

Current area of the cluster, m.Size = *m.R2

Query results associated with the queries in the cluster

Fig. 4. Moving Cluster Properties

2.2 Moving Cluster Abstraction

Given the intuition highlighted in Section 1.1 that the moving objects often travel
closely together in space for some period of time, we group moving entities2

into moving clusters based on their shared spatio-temporal properties (Fig. 3).
Moving entities that don’t satisfy conditions of any existing clusters form their
own clusters. When moving entities change their spatio-temporal properties, they
may enter or leave a moving cluster, and the properties of that cluster (depicted
in Fig. 4) are then adjusted accordingly.

Four similarity thresholds play a key role in determining the moving clusters3.
Using these thresholds, we define the similarity among moving entities.

Definition 1. (Similarity Condition) Let ΘS be the maximum speed difference
threshold, ΘD the maximum spatial distance threshold, ΘR the maximum direc-
tion difference threshold, and ΘT the maximum time difference threshold. Let tk
and tl be the times when moving entities ei and ej (i �= j) last
updated their spatio-temporal properties. Then if |ei.Speed − ej.Speed| ≤ ΘS,

2 By moving entities we mean both moving objects and spatio-temporal queries.
3 Deriving threshold values that give you near-optimal clustering is a research area

of its own. In our work, we approximated the threshold values that would cluster
on average a certain number of objects per cluster based on the properties of the
data [12].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

642 R.V. Nehme and E.A. Rundensteiner

PROCEDURE ClusterMovingObject (MovingCluster M)
1. new object o arrives
2. if distance between o and M.Loc < distance threshold
3. and speed difference between o and M < speed threshold
4. and direction difference between o and M < direction threshold
5. and time difference between o location update and M update < time threshold
6. add object o to the moving cluster M, updating cluster properties:
 a) member object count (M.oCount) and total member count (M.Count)
 b) average speed (M.AveSpeed)
 c) average direction (M.Dir)
 d) location of the cluster centroid (M.Loc)
 e) cluster radius (M.R)
 f) record the time of the cluster update (M.UpdTime)
7. else create new cluster based on the properties of object o

Fig. 5. Pseudo Code for Clustering Moving Objects

and |ei.Loc − ej.Loc|4 ≤ ΘD, and |ei.Dir − ej.Dir| ≤ ΘR, and |tk − tl| ≤ ΘT ,
the entities are said to be similar, ei

s= ej.

Definition 2. (Moving Cluster) Let E={e1,e2...ei} be a set of moving entities.
A moving cluster m is a non-empty subset of E (m ⊆ E), with spatio-temporal
properties mspt = (AveSpeed, AveDir, Loc, R, t . . .) which represents the average
of the spatio-temporal properties of all entities ei ∈ m, and where each ei satisfies
the similarity condition with respect to mspt.

Using Definition 1 above, a moving entity ei that is found to be in close proximity
of a cluster centroid (m.Loc) and has similar properties with the cluster, is
added to that respected moving cluster. Our clustering method is based on the
classic leader-follower (LF) algorithm5 [10,11]. The LF algorithm can handle
incrementally streaming data, producing adequate quality moving clusters in
linear time. Fig. 5 gives the pseudo-code for clustering moving objects. Similar
processing is done for clustering moving queries. Due to space constraints, we
omit the description of the clustering procedure. For more details, we refer the
reader to [20].

2.3 Incremental Query Evaluation Using Moving Clusters

ClusterSheddy uses an incremental strategy in evaluating joins between moving
clusters, and then within the overlapping clusters that we describe next.

Incremental Join-Between: Consider two moving clusters m1 and m2 (Fig.6).
When performing a join between moving clusters, ClusterSheddy distinguishes
between four cases as illustrated in Table 16. Column “Clusters at time t0” in-
dicates if m1 and m2 intersected at an old time t0, column “Clusters at time t1”

4 The difference is measured by a distance function (e.g., euclidean distance).
5 However, any alternative clustering algorithm can also be plugged-in, as long as it

is efficient.
6 By ∩, we denote intersection.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 643

Table 1. Cases for Incremental Evaluation: Join-Between Moving Clusters

Case Clusters at time t0 Clusters at time t1 Join-Within
Needed

Result Updates Illustration

1. m1 ∩ m2 = ∅ m1 ∩ m2 = ∅ - - Fig. 6a
2. m1 ∩ m2 = ∅ m1 ∩ m2 �= ∅ � positive Fig. 6b
3. m1 ∩ m2 �= ∅ m1 ∩ m2 = ∅ - negative Fig. 6c
4. m1 ∩ m2 �= ∅ m1 ∩ m2 �= ∅ � positive/negative Fig. 6d

Table 2. Cases for Incremental Evaluation: Join-Within Moving Clusters

Case Clustering at time t1 m.Ans at time t0 o,q at t1 Update Answer Set Result
Updates

Illustration

1. o ∈ m and q ∈ m (q, o, m.Cid) ∈ m.Ans o ∈ q - - Fig. 7b
2. o ∈ m and q ∈ m (q, o, m.Cid) ∈ m.Ans o /∈ q (q, o, m.Cid) /∈ m.Ans (q,-o) Fig. 7c
3. o ∈ m′ and q ∈ m (q, o, m.Cid) ∈ m.Ans o ∈ q (q, o, m′.Cid) ∈ m.Ans - Fig. 7d
4. o ∈ m′ and q ∈ m (q, o, m.Cid) ∈ m.Ans o /∈ q (q, o, m.Cid) /∈ m.Ans (q,-o) Fig. 7e
5. o ∈ m′ and q ∈ m (q, o, m.Cid) /∈ m.Ans o ∈ q (q, o, m′.Cid) ∈ m.Ans (q,+o) Fig. 7f
6. o ∈ m′ and q ∈ m (q, o, m.Cid) /∈ m.Ans o /∈ q - - -

describes if they are currently intersecting (at time t1). “Join-Within Needed”
column specifies if join-within needs to be performed after this current join-
between, while the “Results Updates” column describes the types of result up-
dates that would be sent to the output stream. Column “Illustration” names the
figure that graphically illustrates this case. For example, consider Case 1. If at
time t0 and at time t1 two clusters m1 and m2 are not overlapping, no further
processing is needed and no result updates are sent7.

Incremental Join-Within: To illustrate incremental join-within moving clus-
ters, consider a query q which belongs to a cluster m and a moving object
o which at time t0 was in the same cluster m as q, but at time t1 may be-
long to either the same cluster (m) or to any moving cluster currently in-
tersecting with m (e.g., m′) (Fig. 7). ClusterSheddy, at time t1, distinguishes
among six cases (Table 2)8. Column “Clustering at time t1” describes which
moving clusters the object o and query q belong to at time t1. “m.Ans at
time t0” column describes the result set associated with cluster m for query
q. Whether o still satisfies q at time t1 is depicted in column “o, q at t1”. Col-
umn “Update Answer Set” describes which cluster result set has to be updated
at time t1. Finally, “Result Updates” depicts the types of result updates that
would be sent, and “Illustration” names the figure for that case. For exam-
ple, in Case 1, o and q are in the same cluster m at both time t0 and t1. At
time t1 o still satisfies q. Since only the updates of the previously reported re-
sults are processed, o is neither processed nor is any result sent to the output
stream9.

7 For brevity of discussion, we skip the detailed discussion of each case.
8 We did not include the figure for case 6 as it is trivial.
9 We omit the detailed discussion of each case, as Table 2 illustrates the main ideas

of each case.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

644 R.V. Nehme and E.A. Rundensteiner

m1
m2

m1

m2

(a) Case1: No processing is
needed

At time t0 At time t1

m1

m2 m2

(b) Case 2: Join-Within is performed
and positive result updates may be sent

At time t0 At time t1

m1

m1

m2

(c) Case 3: Negative result
updates may be sent

At time t0 At time t1

m2

(d) Case 4: Join-Within is performed
and both +/- results may be sent

At time t0

m1

m2m1 m2
m1

At time t1

Fig. 6. Join-Between Clusters

o

q

m

output: (q, +o)

(a) At time t0

o

q

m

Case 1:
output: nothing

(b) At time t1

o

q

m

Case 2:
output: (q, - o)

(c) At time t1

o

q

m

Case 3:
output: nothing

(d) At time t1

m`

o

q

m

(e) At time t1

m`

o

q

m

(f) At time t1

m`

Case 4:
output: (q, - o)

Case 5:
output: (q, +o)

Fig. 7. Join-Within Clusters

(a) No load shedding (b) Partial load
shedding

(c) Full load shedding

- load shed, - preserved,

Fig. 8. Effect of Nucleus Size on Load
Shedding

(a) (b) (c) (d)

- moving cluster - cluster nucleus

Fig. 9. Affect of Nucleus Size on Join Exe-
cution

3 Cluster-Based Load Shedding

Load shedding of moving clusters is an optimization problem composed of three
sub-problems: (1) how to effectively estimate the current system load. This im-
plicitly determines when we have to load shed to avoid system overload; (2) how
to determine which clusters to load shed. Is it better to shed all moving clusters
equally or to target a subset of moving clusters to more effectively reduce the
load, while minimizing the overall inaccuracy; (3) how much to shed per cluster,
so that the introduced relative error in the final query results is minimized. We
address these three questions next.

3.1 Load Shedding Via Cluster Nucleus

A nucleus of a cluster is a circular region that approximates the positions of
the members near the centroid of the cluster. Individual positions of objects and
queries inside the nucleus are load shed10. The imprecision is directly propor-
tional to the size of the nucleus. The larger the nucleus, the more imprecise the
query results may become.

10 To load shed a query, the nucleus must fully overlap with the query region.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 645

Definition 3. (Cluster Nucleus) Given the nucleus threshold ΘN where 0 ≤ ΘN

≤ ΘD, let m be a moving cluster. Then the cluster nucleus m.Nucl is the subset
of m (m.Nucl ⊆ m), where ∀ objects oi ∈ m.Nucl, |oi.Loc − m.Loc| ≤ ΘN and
∀ queries qj ∈ m.Nucl, |qj .Loc − m.Loc| ≤ ΘN .

Fig. 8 depicts the effect of increasing a cluster nucleus on the amount of ob-
jects/queries preserved. In Fig. 8a, no load shedding is performed (ΘN = 0).
In Fig. 8b, ΘN is increased, and seven objects and one query are load shed.
Fig. 8c illustrates the extreme case, when ΘN = ΘD (maximum possible size
of the cluster), where all cluster members are discarded. Even if a new member
were to arrive to the cluster, it would not be preserved, but automatically dis-
carded. Nucleus threshold ΘN may be set either globally for all moving clusters,
or individually for each moving cluster, if a finer granularity shedding is needed.

Query Processing With Shedded Clusters: By discarding moving enti-
ties from the nuclei and not knowing their precise locations, we make several
assumptions when executing a cluster-based join. Objects that fall into the in-
tersection region with a nucleus are assumed to satisfy all the queries from the
nucleus. Similar reasoning is applied to queries. Fig. 9 depicts the cases with the
intersecting clusters and their nuclei.

3.2 Estimating When to Load Shed

Fig. 10 depicts the main steps of load shedding execution. Load shedding is ini-
tiated when ClusterSheddy utilization becomes greater than or equal to the ρshed

threshold. First, we determine which moving clusters are to be shed (termed
shedding clusters). We then determine how much per each shedding cluster to
load shed. This is repeated until the current utilization ρcurrent becomes less
than or equal to ρshed stop. We use queuing theory [4] and Little’s Law [13] to
predict system overflow11. Queueing theory has been widely used to model and
analyze the performance of complex systems involving service. For details of
queueing theory see [4,13].

3.3 Estimating Which Clusters to Load Shed

We divide the approaches for picking which moving clusters to load shed into
two broad categories: uniform and selective.

Uniform Load Shedding Policies: With uniform load shedding, we load shed
across all moving clusters in the system. Each moving cluster gets affected by
the load shedding procedure, and some or all data within the cluster is dis-
carded. Uniform load shedding policy does not mean that all cluster nuclei will
increase by equal amount. It merely means that all clusters will participate in
load shedding and will shed something.

Selective Load Shedding Policies: Alternatively, in selective load shedding,
some clusters are chosen for load shedding to minimize the overall inaccuracy
11 However, other models for predicting system overload could be similarly be used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

646 R.V. Nehme and E.A. Rundensteiner

no

yes

is pcurrent pshed_stop?

yes no

Stable Load
Timeout

N 0 For each load
shedding cluster m

 N D?is m.

 pcurrent pshed

Normal Execution
Select which

clusters to load shed
Select how much per
cluster to load shed

Increase cluster
nuclei

Load Shedding
is Done

Decrease nuclei for
clusters with

Fig. 10. Load Shedding Execution

Cluster Score:
3 * 100pts +
2 * 50pts +
5 * 10pts =
= 450 pts

100pts
50pts
10pts

Fig. 11. Score-Based Policy : calculating a score for a moving cluster

of the answers. The different selective policies may include: (1) Random Policy
– selecting clusters at random; (2) Count-Based Policy – selecting clusters with
the highest number of members; (3) Size-Based Policy – selecting clusters with
the smallest size to minimize the overall inaccuracy; (4) Score-Based Policy –
selecting clusters with the highest scores (see Fig. 11), thus favoring clusters
where members are distributed near the centroid regardless of the cluster size;
and (5) Volatility Policy – selecting clusters with the lowest volatility (i.e., clus-
ters undergoing fewer changes to their properties). The motivation is that stable
clusters, once load shed, can accurately approximate their members for longer
time intervals, thus amortizing the load shedding overhead in the long term.

3.4 Estimating How Much Per Cluster to Shed

Once clusters have been selected for load shedding, the next question that needs
to be addressed is how much per cluster to discard, which is determined by the
increase in ΘN . Clusters may either discard all (total drop) or only a subset
(partial drop) of their members.

Total drop policy causes ΘN to expand to its maximum (ΘD), and all members
inside the clusters are discarded. Total drop is a simple way to quickly reduce
the load. However it may significantly impact the accuracy of the results, as we
may be discarding data unnecessarily. Partial drop policy is a more prudent way
of discarding data. It allows to drop just enough to alleviate the burden on the
system without shedding more than necessary.

In the face of detected overload, ClusterSheddy increases cluster nuclei in the
shedding clusters. The algorithm begins in the exponential growth phase, and in-
creases the nucleus size exponentially12. Once ClusterSheddy perceives that there
is no longer an overload, it starts to decrease the nuclei. The rationale for this
is that the utilization is below the load shedding threshold, and ClusterSheddy
12 This is a similar approach as in TCP congestion control mechanisms [15].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 647

could be storing precise locations and producing more accurate query results. It
does this by decreasing nuclei a little each time after a periodic timeout, termed
stable load timeout. For simplicity of presentation, we assume that nuclei radii
are decremented by some constant spatial unit amount k each time. Thus Clus-
terSheddy multiplicatively increases cluster nuclei when it detects that utilization
is aproaching the overload threshold, and additively decreases the cluster nuclei
when the utilization is low.

4 Experimental Study

Our experiments are based on a real implementation of ClusterSheddy in the
Java-based CAPE continuous query engine [23] running on Intel Pentium IV
CPU 2.4GHz with 1GB RAM on Windows XP and 1.5.0.06 Java SDK. We use
the Moving Objects Generator [5] to generate continuously moving objects in
the city of Worcester, MA, USA in the form of data streams. We begin with
20K of moving objects and each time unit 1K of new moving objects enter the
system. Without loss of generality, all presented experiments are conducted using
spatio-temporal range queries. We control skewness of the data and set the skew
factor to 100. Hence, on average 100 objects are in a cluster. The values of
the threshold parameters were set as follows: speed threshold ΘS = 10 spatial
units/time units, distance threshold ΘD = 100 spatial units, direction threshold
ΘR = 10 degrees, and time threshold ΘT = 1 time unit. All experimental runs
begin with the nucleus threshold set to zero (ΘN = 0), i.e., no load shedding.

4.1 Incremental vs. Non-incremental Query Evaluation

In this experiment, we compared SCUBA and ClusterSheddy (without load shed-
ding). We wanted to see how the performance and memory consumption are
affected when executing spatio-temporal queries using incremental versus non-
incremental cluster-based technique (Fig. 12a). We observe that in the long term,
ClusterSheddy incremental strategy gives a better performance and requires less
memory. The advantage that ClusterSheddy has over SCUBA is that if dense clus-
ters overlap for long durations of time and objects and queries don’t change their
relative positions within the clusters, the re-evaluation of the contained queries in
those clusters is not needed. This translates into significant savings in processing
time. Memory-wise, ClusterSheddy also has an advantage over SCUBA, because
fewer computations are made and no redundant answers are produced.

4.2 Load Shedding Policies Comparison

We compared different cluster-based load shedding policies13 to no load shedding
and traditional random load shedding. Figures 12b and 12c respectively represent
the join processing times and the accuracy measurements.
13 For all full shedding strategies, cluster nucleus is increased to the maximum ΘD. For

all partial shedding strategies, cluster nucleus is increased by 50% each time with
respect to the current (at the time of shedding) size of the cluster.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

648 R.V. Nehme and E.A. Rundensteiner

0

200

400

600

800

1000

1200

1 9 17 25 33 41 49 57 65

SCUBA ClusterSheddy
T

im
e

(in
 s

ec
)

Sampling Step (in minutes)
Processing Time

0
50

100
150
200
250
300
350
400

1 9 17 25 33 41 49 57 65

SCUBA ClusterSheddy

M
em

or
y

(in
 M

B
)

Sampling Step (in minutes)
Memory Usage

0
50

100
150
200
250
300
350
400

1 5 9 13 17 21 25 29 33 37 41

No Load Shedding
Traditional Random Shedding
Selective: Random, Partial Shedding: 50%
Selective: Random, Full Shedding
Uniform: Partial Shedding: 50%
Selective: Size-Based, Partial Shedding: 50%
Selective: Membership Volatility, Partial Shedding: 50%

T
im

e
(in

 s
ec

on
ds

)

100

62

76

57

71
79

63

0

10

20
30

40

50

60
70

80

90

100

No Load Shedding

Traditional Random Shedding

Selective: Random, Partial Shedding: 50%

Selective: Random, Full Shedding

Uniform: Partial Shedding: 50%

Selective: Size-Based, Partial Shedding: 50%

Selective: Membership Volatility, Partial Shedding: 50%

A
cc

ur
ac

y
(in

 %
)

Load Shedding Policies

 Sample Step in minutes

(a) Incremental vs. Non-Incremental Query Evaluation

(c) Average Accuracy with Different Load Shedding Policies

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 4 7 10 13 16 19 22 25

Traditional Random Shedding

Selective: Membership Volatility,
Partial Shedding: 50%
Selective: Random, Full Shedding

Uniform: Partial Shedding: 50%

Selective: Size-Based, Partial
Shedding: 50%
Selective: Random, Partial
Shedding: 50%

T
im

e
(in

 s
ec

on
ds

)

Sample Step (in minutes)

(b) Processing Time with Different Load Shedding Policies

(d) Average Overhead with Different Load Shedding Policies

Fig. 12. Experiemental Evaluations

Best Performance: We observe that selective random policy with full load
shedding gives the best performance but the lowest average accuracy (≈ 57%).
With this policy, clusters are randomly selected and all their cluster members
are discarded. The processing overhead is small since clusters are chosen ran-
domly, but the accuracy suffers. Any new objects joining the shedded clusters
are assumed to satisfy all queries in the cluster. For any new queries joining
these clusters, all cluster objects are returned as satisfying these queries.

Best Accuracy: The best accuracy (≈ 79%) was achieved with the selective
size-based partial load shedding policy. Here the smallest clusters were selected
first and their nuclei were increased by 50%.

Worst Performance: The worst performance was seen when using selective
membership volatility policy with partial shedding. With this policy we picked
the clusters that were more stable. However, picking stable clusters did not give
much advantage. Very dense clusters may be very dynamic, thus we may not
be able to reduce load fast. The membership volatility doesn’t account for the
count and the distribution of the members within the clusters, hence accuracy
may suffer as well.

Overall, if both performance and high accuracy are desired, selective random
policy with partial shedding or uniform policy with partial shedding may be used.
The former gives a better accuracy (≈ 76%), but has slightly worse performance
than the latter policy which has a lower average accuracy (≈ 71%).

4.3 Load Shedding Cost

We compared the load shedding overhead for different policies (Fig. 12d). Load
shedding overhead cost includes the time to pre-process the clusters before the
shedding is initiated. This may include finding the clusters based on the policy
selection criteria (e.g., largest, smallest, most dense, etc.), determining and in-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 649

creasing the nucleus size, associating the ids of the shedded objects and queries
with the nucleus, etc. Fig. 12d shows that selective size-based policy has the
highest overhead compared to other policies. This is due to the fact that we
classify clusters into smaller and larger clusters based on the distribution of
their members and also determine if a larger cluster may be an outlier cluster14.
Processing the cluster members to see if any latest update caused the cluster to
become an “outlier” cluster may require some additional CPU and memory.

5 Related Work

The current state-of-the-art in load shedding includes [1,2,9,22,26,27,28,29]. Load
shedding on streaming data has first been presented by Aurora [26,27]. Aurora
shedder relies on a quality of service function that specifies the utility of a tu-
ple. This is best suited for applications where the probability of receiving each
individual tuple in a query result is independent of the other tuples’ values, an
assumption that does not hold for spatio-temporal queries.

Load shedding for aggregation queries was addressed in [2]. Babcock et al. de-
scribe a load shedding technique based on random sampling. Although sampling
works well for aggregation on a traditional data, sampling on location updates
without considering their actual values – such as their location – may omit some
of the moving entities (when selecting a sample), leading to higher inaccuracy.

The probably most closely related work to ours is the Scalable On-Line Exe-
cution (SOLE) algorithm [17] performing load shedding on spatio-temporal data
streams in PLACE server. In SOLE, specific objects marked as significant are
kept, and the other objects are discarded. However, SOLE is not designed to
deal accordingly with dense and highly overlapping spatio-temporal data, as
objects satisfying many queries are termed as significant and thus are not load
shed. ClusterSheddy addresses these shortcomings. In fact, it exploits such spatial
closeness to approximate the locations when load shedding is performed.

ClusterSheddy extends our earlier work – SCUBA algorithm [20], which intro-
duced the concept of moving clusters as abstractions on moving objects. While
SCUBA only provides full result recomputation, ClusterSheddy now also sup-
port incremental query evaluation. Most importantly, ClusterSheddy focuses on
load shedding – a topic not addressed by SCUBA.

6 Conclusions

This paper addresses an important problem faced in continuous querying of
spatio-temporal data streams: system capacity overload. We proposed moving
cluster-based load shedding, called ClusterSheddy which uses common spatio-
temporal properties to determine which objects’ updates would be least sen-
sitive to load shedding and have minimum adverse impact on the accuracy of
14 We term a cluster an outlier cluster, if the majority of its members are distributed

near the centroid with an exception of a single member that is at a far distance, thus
causing the size of the cluster to increase.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

650 R.V. Nehme and E.A. Rundensteiner

query answers. The proposed technique is general, because moving objects in
practice tend to share spatio-temporal properties with other objects for some
time intervals. Our experimental results show that ClusterSheddy compared to
traditional non-spatio-temporal load shedding is efficient in reducing the load
while maintaining good accuracy of results.

References

1. B. Babcock, M. Datar, and R. Motwani. Load shedding techniques for data stream
systems. In MPDS: Workshop on Management and Processing of Data Streams,
2003.

2. B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries
over data streams. In ICDE, pages 350–361, 2004.

3. D. Barbará, W. DuMouchel, and et. al. The new jersey data reduction report.
IEEE Data Eng. Bull., 20(4), 1997.

4. G. Bolch and et. al. Queueing Networks and Markov Chains : Modeling and Per-
formance Evaluation With Computer Science Applications. John Wiley and Sons,
Inc., 1998.

5. T. Brinkhoff. A framework for generating network-based moving objects. GeoIn-
formatica, 6(2):153–180, 2002.

6. D. Carney, U. Çetintemel, and et. al. Monitoring streams - a new class of data
management applications. In VLDB, pages 215–226, 2002.

7. S. Chu. The influence of urban elements on time-pattern of pedestrian movement.
In The 6th Int. Conf. on Walking in the 21st Cent., 2005.

8. A. Das, J. Gehrke, and et. al. Semantic approximation of data stream joins. IEEE
Trans. Knowl. Data Eng., 17(1):44–59, 2005.

9. A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over data
streams. In SIGMOD, pages 40–51, 2003.

10. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience
Publication, 2000.

11. J. A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.
12. A. K. Jain, M. N. Murthy, and P. J. Flynn. Data clustering: A review. Tech-

nical Report MSU-CSE-00-16, Department of Computer Science, Michigan State
University, East Lansing, Michigan, August 2000.

13. R. K. Jain. The Art of Computer Systems Performance Analysis : Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley and
Sons, Inc., 1991.

14. P. Kalnis, N. Mamoulis, and et. al. On discovering moving clusters in spatio-
temporal data. In SSTD, pages 364–381, 2005.

15. J. F. Kurose and K. Ross. Computer Networking: A Top-Down Approach Featuring
the Internet. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

16. B. Liu, Y. Zhu, and E. Rundensteiner. Run-time operator state spilling for memory
intensive continuous queries. In SIGMOD Conference, pages 347–358, 2006.

17. M. F. Mokbel and W. G. Aref. Sole: Scalable online execution of continuous
queries on spatio-temporal data streams. tr csd-05-016. Technical report, Purdue
University, 2005.

18. M. F. Mokbel, W. G. Aref, and et. al. Towards scalable location-aware services:
requirements and research issues. In GIS, pages 110–117, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ClusterSheddy : Load Shedding Using Moving Clusters 651

19. M. F. Mokbel, X. Xiong, and et. al. Sina: Scalable incremental processing of
continuous queries in spatio-temporal databases. In SIGMOD, pages 623–634,
2004.

20. R. V. Nehme and E. A. Rundensteiner. Scuba: Scalable cluster-based algorithm
for evaluating continuous spatio-temporal queries on moving objects. In EDBT,
pages 1001–1019, 2006.

21. S. Prabhakar and et. al. Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects. IEEE Trans. Computers,
51(10), 2002.

22. F. Reiss and J. M. Hellerstein. Data triage: An adaptive architecture for load
shedding in telegraphcq. In ICDE, pages 155–156, 2005.

23. E. A. Rundensteiner, L. Ding, and et. al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, pages 1353–1356, 2004.

24. M. Shah, J. Hellerstein, and et. al. Flux: An adaptive partitioning operator for
continuous query systems. cs-02-1205. Technical report, U.C. Berkeley, 2002.

25. A. P. Sistla, O. Wolfson, and et. al. Modeling and querying moving objects. In
ICDE, pages 422–432, 1997.

26. N. Tatbul. Qos-driven load shedding on data streams. In XMLDM, pages 566–576,
2002.

27. N. Tatbul, U. Çetintemel, and et. al. Load shedding in a data stream manager. In
VLDB, pages 309–320, 2003.

28. N. Tatbul and S. B. Zdonik. Window-aware load shedding for aggregation queries
over data streams. In VLDB, pages 799–810, 2006.

29. Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases:
A control-based approach. In VLDB, pages 787–798, 2006.

30. T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined join operator.
IEEE Data Eng. Bull., 23(2), 2000.

31. O. Wolfson, H. Cao, and et. al. Management of dynamic location information in
domino. In EDBT, pages 769–771, 2002.

32. X. Xiong, M. F. Mokbel, and et. al. Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In ICDE, pages 643–654,
2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows

with Various Size Using the Exemplary Sketch�

Jiakui Zhao, Dongqing Yang, Bin Cui, Lijun Chen, and Jun Gao

School of EECS, Peking University, Beijing 100871, China
{jkzhao,dqyang,bin.cui,ljchen,gaojun}@pku.edu.cn

Abstract. MAX and MIN are two important aggregates offered by the
original SQL specification. In the paper, we propose a novel mechanism,
i.e. the exemplary sketch, to evaluate MAX and MIN over sliding windows
with various size in the data stream environment. Performance analysis
shows that evaluating MAX or MIN over w sliding windows with various
size using the exemplary sketch takes O(ln n) expected amortized space
and O(w) expected amortized evaluation time, where n is the number of
the tuples fall into the maximal size sliding window. Moreover, the sliding-
window semantics can also be integrated into the exemplary sketch, which
means that we no longer need to buffer all the tuples fall into current slid-
ing windows separately for implementing the sliding-window semantics all
alone. Experimental results show that the sketch scheme yields very good
performance on both space and time cost.

1 Introduction

Recent years, much attention has been focused on online monitoring applications
in which continuous queries [1] operate in near real-time over data streams [2]
such as web usage logs, network packet traces, etc. Aggregates over sliding win-
dows are an important class of continuous queries for online monitoring over
streams and evaluating this class of queries is non-trivial. The potential for high
data arrival rates, data bursts, and huge data volumes, along with near real-time
requirements of stream applications make space and execution-time performance
of stream query evaluation critical. MAX and MIN are two important aggregates
offered by the original SQL specification, and are widely used by applications; for
example, “report the highest and the lowest IBM stock price of the most recent
one hour, two hours, and four hours in real time”. In the paper, we introduce
how to evaluate MAX and MIN over sliding windows with various size using
the exemplary sketch which takes O(ln n) expected amortized space and O(w)
expected amortized evaluation time, where n is the number of the tuples fall into
the maximal size sliding window and w is the number of the sliding windows.
Moreover, sliding-window semantics can also be integrated into the exemplary
sketch, which means that we no longer need to buffer all the tuples fall into
current windows separately for implementing the sliding-window semantics.
� Supported by State Key Laboratory of Networking and Switching Technology, NSFC

Grant 60473051 and 60503037, and NSFBC Grant 4062018.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 652–663, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 653

1.1 Previous Works

Sliding-window aggregates over streams are an important class of continuous
queries, and are the subject of numerous previous works [3], [4], [5]. Recent
works about sliding-window aggregates over streams include Jin Li et al. [6], [7].
In [6], the window specification offers two numerical parameters RANGE and
SLIDE which specify the window size and how the window slides respectively.
Overlapping windows are divided into disjoint “panes”, evaluates sub-aggregates
over each pane and “roll up” the pane-aggregates to evaluate window aggregates.
In [7], the window specification is the same as that in [6]. In order to process
each tuple only once, the algorithm maintains aggregate values of each active
snapshot window simultaneously and updates aggregate values of each active
snapshot window for each incoming tuple. The reason why the algorithms can
reduce space and time complexity is that they only maintains “snapshots” of
query results for each interval of SLIDE long. In the paper, we introduce how
to evaluate MAX and MIN over real-time sliding windows with various size by
the the exemplary sketch, which has very low space and time complexity and
aggregate values are kept up-to-date almost all the time. [9] introduced a similar
method, but there is no detailed performance analysis, and the method is “pull-
based” which means users can only get aggregate values by querying the sketch.

1.2 Paper Outline

The rest of the paper is structured as follows. In Section 2, we introduce the
preliminary knowledge of sliding-window aggregates. In Section 3, we introduce
how to use the exemplary sketch to evaluate MAX over various sliding windows.
Section 4 presents performance analysis of the exemplary sketch. Experimental
results are presented in Section 5, followed by our final conclusions in Section 6.

2 Preliminary Knowledge

Tuple-based sliding windows and time-based sliding windows are two important
kinds of sliding windows over streams. Suppose κτ1κτ2 . . . κτm are the sequence
of tuples of a stream, where τi is the timestamp of κτi , τ1 < τ2 < · · · < τm

and κτm is the most recent tuple; if current timestamp is τc, semantics of the
real-time sliding windows can be characterized as: for a n-tuple sliding window,
tuples in {κτi | m ≥ i ≥ max(m − n + 1, 1)} fall into current window; for a
s-time sliding window, tuples in {κτi | (m ≥ i) ∧ (τi ≥ τc − s)} fall into current
window. Sliding-window aggregate queries evaluate aggregates over all the tu-
ples fall into current window, aggregate values change over time as the window
slides. For evaluate sliding-window queries, we need to consider how to process
arriving tuples and expired tuples as the window slides. Algorithm 1 and Algo-
rithm 3 in Section 3 present how to update the aggregate sketch and evaluate
new aggregate values in the case of new tuples arrive at current window and old
tuples in current window expire as the window slides. In addition, if the window

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

654 J. Zhao et al.

Table 1. Taxonomy of aggregates

COUNT SUM AVG MAX MIN

combinative • • • • •
subtractable • • •
exemplary • •

is a near real-time window, the algorithms for processing arriving tuples and
expired tuples must have low time complexity; otherwise, aggregate values can
not be kept up-to-date all the time. As shown in Section 4, our algorithms for
processing arriving tuples and expired tuples have very low time complexity, so
the aggregate values can be kept up-to-date almost all the time even with large
numbers of windows. In the rest of the section, we consider why the exemplary
sketch should be used to evaluate MAX and MIN over sliding windows; for ease
of presentation, we first introduce three dimensions for taxonomy of aggregates.

Combinative. Suppose that an aggregate f over a dataset ξ can be evaluated
from a sub-aggregate g over two disjoint datasets ξ1 and ξ2 where ξ1 ∪ ξ2 = ξ
and a super-aggregate t, f(ξ) = t(g(ξ1), g(ξ2)). As defined by Gray et al. [8], if
g = f , f is distributive; if f is non-distributive, but there is a constant bound on
the size of the storage needed to store the result of g, f is algebraic. Aggregates
that are distributive or algebraic are called combinative aggregates in the paper.

Subtractable. Suppose there exist two datasets ξ◦ and ξ, ξ◦ ⊆ ξ. As defined
in [9], if there exist two functions g and t satisfying that f(ξ−ξ◦) can be evaluated
from g(ξ) and g(ξ◦), f(ξ − ξ◦) = t(g(ξ), g(ξ◦)), and there is a constant bound
on the size of the storage needed to store the result of g, f is subtractable.

Exemplary/Summary. As defined in [10], if an aggregate returns one or more
representative elements, it is an exemplary aggregate; otherwise, it is a summary
aggregate, for it needs to evaluate some summary properties over all elements.

As shown in Table 1, the five aggregates COUNT, SUM, AVG, MAX, and
MIN offered by the original SQL specification are all combinative, and COUNT,
SUM, and AVG are subtractable. We can use constant size aggregate sketches
to evaluate aggregates that are both combinative and subtractable over sliding
windows. For example, an aggregate sketch which records COUNT and SUM
can be used to evaluate AVG over sliding windows; when an element arrives
at current window, COUNT is increased by 1, and the value of the arriving
element is added to SUM; when an element expires, COUNT is decreased by 1,
and the value of the expired element is subtracted from SUM. Unfortunately,
MAX and MIN are non-subtractable; but they are exemplary aggregates, we may
significantly reduce the aggregate sketch size by dropping elements that will not
be representative according to aggregate semantics. Accordingly, the aggregate
sketch that is used to evaluate MAX and MIN is called the exemplary sketch.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 655

Fig. 1. Future-max elements and non-future-max elements

3 The Exemplary Sketch

In the section, we introduce how to evaluate MAX over real-time sliding windows
with various size using the exemplary sketch, the algorithm for evaluating MIN
is symmetric. As shown in Section 2, for exemplary aggregates, we may drop
elements that will not be representative according to aggregate semantics. An
element may be the maximum only if all succeeding elements that have arrived
so far are all smaller than it, we call such elements future-max elements. Non-
future-max elements may be dropped. Fig. 1 shows the sequence of elements of
a 50-second sliding window at time 100. Elements are shown using vertical lines
with the height indicating the value of the element; future-max elements are
shown using solid lines, non-future-max elements are shown using dotted lines.

Theorem 1. Future-max elements that ascending ordered by timestamp are
descending ordered by value.

Proof. An element can be the future-max only if all succeeding elements that
have arrived so far are all smaller than it. For any two future-max elements e1

and e2, if e2 is an succeeding element of e1 (the timestamp of e2 is larger than the
timestamp of e1), the value of e1 is larger than the value of e2. So, future-max
elements that ascending ordered by timestamp are descending ordered by value.

We may only save future-max elements in the exemplary sketch. If future-max
elements in the exemplary sketch are ordered by timestamp, sliding-window
semantics can also be integrated into the exemplary sketch, which means that
we no longer need to buffer all the tuples fall into current windows separately for
implementing the sliding-window semantics. An exemplary sketch can be seen
as a queue, an arriving element will be entered into the right hand (each arriving
element must first be a future-max element, for there are no succeeding elements
that have arrived so far), and future-max elements in the left hand will expire
orderly. According to Theorem 1, the left most element in the exemplary sketch

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

656 J. Zhao et al.

Table 2. Parameters of tuples and sliding windows

Parameter Definition

value aggregate attribute value

Tuples position position in the exemplary sketch

timestamp timestamp

tupleNo tuple sequence number

maxV alue maximal value

Sliding Windows maxV aluePosition position of the maximal value tuple

minT imestamp timestamp of the maximal value tuple

minTupleNo tupleNo of the maximal value tuple

future-max elements in the exemplary sketch

w
1

w
2

w
3

w
4

wn-3 wn-2 wn-1 wn

tuple-based sliding windows

w
1

w
2

w
3

w
4

time-based sliding windows

wm-3 wm-2 wm-1 wm

Fig. 2. Evaluating MAX over sliding windows with various size

has the maximal value. An exemplary sketch with the maximal window size can
be used to evaluate MAX over sliding windows with various size. Fig. 2 shows
the case of evaluating MAX over time-based sliding windows w1w2 . . . wm and
tuple-based sliding windows w1w2 . . . wn. w1w2 . . . wm and w1w2 . . . wn are all
descending ordered by window size. Each window points to a future-max element
in the exemplary sketch, which has the maximal value in the window, and also
has the minimal timestamp and minimal tuple sequence number in the window.

Algorithm 1 and Algorithm 2 present how to update the exemplary sketch
and evaluate new aggregate values over sliding windows with various sizes in the
case of new tuples arrive at current windows and old tuples in current windows
expire respectively. Table 2 shows the definitions of the parameters of tuples and
sliding windows used by Algorithm 1 and Algorithm 2. The current future-max
element will be removed when a new element which is equal or greater than it
arrives; so, in Algorithm 1, an arriving tuple will delete elements that are not
eligible as a future-max record from the exemplary sketch. Then, the arriving
element is entered into the right hand of the exemplary sketch, and revise the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 657

Algorithm 1. Processing an arriving tuple
Input : 1: the arriving tuple γ

2: the exemplary sketch �

3: a sequence of tuple-based sliding windows w1w2 . . . wn

4: a sequence of time-based sliding windows w1w2 . . . wm

w1w2 . . . wn and w1w2 . . . wm are descending ordered by window size
Output: 1: the updated exemplary sketch �

2: the sequence of updated tuple-based sliding windows w1w2 . . . wn

3: the sequence of updated time-based sliding windows w1w2 . . . wm

begin1

while � is not empty do2

ε ← the right most tuple of �;3

if ε.value ≤ γ.value then4

delete ε from �;5

else6

break;7

end8

end9

if � is empty then10

maxT imestamp ← −∞;11

maxTupleNo ← −∞;12

else13

ε ← the right most tuple of �;14

maxT imestamp ← ε.timestamp;15

maxTupleNo ← ε.tupleNo;16

end17

enter γ into the right most hand of �;18

i = n;19

while γ.tupleNo − maxTupleNo ≥ wi.size and i > 0 do20

wi.maxV alue ← γ.value;21

wi.minTupleNo ← γ.tupleNo;22

wi.maxV aluePosition ← γ.position;23

i ← i − 1;24

end25

i = m;26

while γ.timestamp − maxT imestamp ≥ wi.size and i > 0 do27

wi.maxV alue ← γ.value;28

wi.minT imestamp ← γ.timestamp;29

wi.maxV aluePosition ← γ.position;30

i ← i − 1;31

end32

end33

parameters of the sliding windows. Algorithm 2 checks whether the future-max
element which has the maximal value has expired for each sliding window; if
expired, revise the parameters of the sliding window. After that, if the left most
element in the exemplary sketch is not pointed by any sliding window, delete it

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

658 J. Zhao et al.

Algorithm 2: Processing expired future-max tuples

Input : 1: the exemplary sketch �

2: a sequence of tuple-based sliding windows w1w2 . . . wn

3: a sequence of time-based sliding windows w1w2 . . . wm

w1w2 . . . wn and w1w2 . . . wm are descending ordered by window size
Output: 1: the updated exemplary sketch �

2: the sequence of updated tuple-based sliding windows w1w2 . . . wn

3: the sequence of updated time-based sliding windows w1w2 . . . wm

begin1

if � is empty then return;2

ε ← the right most tuple of �;3

for i=1 to n do4

if wi.maxV aluePosition is not null and5

ε.tupleNo − wi.minTupleNo ≥ wi.size then
ξ ← the future-max tuple at position wi.maxV aluePosition;6

if ξ is the right most tuple of � then7

wi.maxV alue ← null;8

wi.minTupleNo ← null;9

wi.maxV aluePosition ← null;10

else11

γ ← the right next future-max tuple of ξ;12

wi.maxV alue ← γ.value;13

wi.minTupleNo ← γ.tupleNo;14

wi.maxV aluePosition ← γ.position;15

end16

end17

end18

for i=1 to m do19

if wi.maxV aluePosition is not null and20

currentT imestamp − wi.minT imestamp ≥ wi.size then
ξ ← the future-max tuple at position wi.maxV aluePosition;21

if ξ is the right most tuple of � then22

wi.maxV alue ← null;23

wi.minT imestamp ← null;24

wi.maxV aluePosition ← null;25

else26

γ ← the right next future-max tuple of ξ;27

wi.maxV alue ← γ.value;28

wi.minT imestamp ← γ.timestamp;29

wi.maxV aluePosition ← γ.position;30

end31

end32

end33

ε ← the left most tuple of �;34

if ε.position �= w1.maxV aluePosition and35

ε.position �= w1.maxV aluePosition then
delete ε from �36

end37

end38

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 659

from the sketch. In order to keep aggregate values up-to-date all the time, the two
algorithms must have very low time complexity. As shown in Section 4, the two
algorithms are very time efficient with only a linear expected time complexity.

4 Performance Analysis

In the section, we present our theoretical cost analysis to evaluate the perfor-
mance of proposed scheme on both space and time. According to the following
analysis, we can see that the exemplary sketch only takes O(ln n) expected amor-
tized space and O(w) expected amortized evaluation time for MIN and MAX
aggregate operation, which will be further proved in experimental study.

Theorem 2. Suppose x1x2 . . . xn are n independent continuous random variables
with density function f(x) and distribution function F (x). For each random
variable xi (1 ≤ i ≤ n), if there exists a random variable xi◦ , i < i◦ ≤ n and
xi ≤ xi◦ , delete xi from x1x2 . . . xn. The expected value of the number of the
remaining variables, E{NRE} can be characterized by Equation 1.

E{NRE} ≤ 1 + lnn (1)

Proof. For ease of presentation, we define the zero-one function Φ(i) as

Φ(i) =

{
1 ∀t (n≥t>i) (xi > xt)
0 otherwise

1 ≤ i ≤ n.

So, iff Φ(i) = 1, xi is saved. P{Φ(i) = 1} can be characterized as

P
{
Φ(i) = 1

}
= P

{
(xi+1 < xi) ∧ (xi+2 < xi) ∧ · · · ∧ (xn < xi)

}
.

According to probability theory, P{Φ(i) = 1} can be further characterized as

P
{
Φ(i) = 1

}
=

+∞∫
−∞

xi∫
−∞

. . .

xi∫
−∞

f(xi)f(xi+1) . . . f(xn)dxidxi+1 . . . dxn.

According to integral theory, P{Φ(i) = 1} can be further characterized as

P
{
Φ(i) = 1

}
=

+∞∫
−∞

f(xi)Fn−i(xi)dxi =

+∞∫
−∞

Fn−i(x)d
(
F (x)

)
.

Replacing F (x) by y, P{Φ(i) = 1} can be further characterized as

P
{
Φ(i) = 1

}
=

+∞∫
−∞

Fn−i(x)d
(
F (x)

)
=

1∫
0

yn−idy =
1

n − i + 1
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

660 J. Zhao et al.

F1 F2 Fk-1 Fk 1

1

x

y

p2

pk

y = xt

F0= 0

Fig. 3. y = xt

The number of the remaining elements NRE = Φ(1) + Φ(2) + · · · + Φ(n), so

E{NRE} =
n∑

i=1

P
{
Φ(i) = 1

}
=

n∑
i=1

1
n − i + 1

=
n∑

i=1

1
i
.

Since ln(n + 1) <
∑n

i=1
1
i ≤ ln(n) + 1, E{NRE} can be characterized as

E{NRE} =
n∑

i=1

1
i

≤ 1 + lnn.

Theorem 3. Suppose x1x2 . . . xn are n independent discrete random variables
and ∀x∈x1x2...xn(P{x = vk} = pk, k = 1, 2, . . .). For each random variable
xi (1 ≤ i ≤ n), if there exists a random variable xi◦ , i < i◦ ≤ n and xi ≤ xi◦ ,
delete xi from x1x2 . . . xn. The expected value of the number of the remaining
variables can also be characterized by Equation 1.

Proof. Φ(i) is the same as defined above, P{Φ(i) = 1} can be characterized as

P
{
Φ(i) = 1

}
=

∞∑
k=1

(
P
{
xi = vk

}
· P

{
Φ(i) = 1 | xi = vk

})
.

According to probability theory, P{Φ(i) = 1} can be further characterized as

P
{
Φ(i) = 1

}
=

∞∑
k=1

(
pk ·

(k−1∑
j=1

pj

)n−i
)

=
∞∑

k=1

(
pk · Fn−i

k−1

)
, Fk =

k∑
j=1

pj.

As shown in Fig. 3, the value of
∑∞

k=1

(
pk · F t

k−1

)
can be characterized as

∞∑
k=1

(
pk · F t

k−1

)
≤

1∫
0

xtdx =
1

t + 1
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 661

P{Φ(i) = 1} can be further characterized as follows, so E{NRE} ≤ 1 + lnn.

P
{
Φ(i) = 1

}
=

∞∑
k=1

(
pk · Fn−i

k−1

)
≤ 1

n − i + 1
.

Theorem 4. Algorithm 1 and Algorithm 3 each takes O(w) expected amortized
time, where w is the number of the sliding windows.

Proof. In Algorithm 1, for each arriving element, we need to delete the elements
that are not greater than the arriving element from the exemplary sketch. Each
arriving element will be entered into the exemplary sketch, and will be deleted
from the exemplary sketch in the future by Algorithm 1 if it is not greater than a
later arriving element or by Algorithm 3 for expiration. On average, Algorithm 1
only needs to delete not greater than one element and takes O(w) expected
amortized time. Similarly, Algorithm 3 also takes O(w) expected amortized time.

5 Experimental Results

We have tested the performance of the exemplary sketch over three sets of data
generated by the GNU Scientific Library on a 1.4 GHz Pentium IV CPU with
2G of memory running RedHat Enterprise Linux Advanced Server. The first
set of data is uniformly distributed on [1, 1000], the second and the third set
of data are normally distributed with σ=1 (very skewed data) and σ=2 (little
skewed data) respectively. For each set of data, we change the sliding-window
size from 2000 tuples to 20000 tuples stepped by 2000; in each step, we test the
space and the time performance of the exemplary sketch during the processing
of 20000 arriving tuples. The space performance is measured by the maximal,
the average, and the minimal number of the stored future-max elements. For the
time performance, Algorithm 3 has already shown that it only checks each sliding
window once and has a linear time complexity. On the other hand, Theorem 4
has shown that Algorithm 1 deletes no more than one future-max element on
average and has a linear expected time complexity, but the algorithm may delete
large numbers of future-max elements and leads to the aggregate values not up-
to-date in some rare cases, so we test the maximal and the average number of
the future-max elements deleted by each arriving tuple. We have not compared
our work with the most recent works [6], [7], for the works have linear space and
time complexity for evaluating MAX over only one real-time sliding window.

Fig. 4.1, Fig. 5.1, and Fig. 5.3 characterize the space performance of the
exemplary sketch. The average number of the stored future-max elements has
a logarithmic growth with the increase of the window size (ln 2000 ≈ 7.5 and
ln 20000 ≈ 10). The maximal number of the stored future-max elements is about
double of the average number of the stored future-max elements, and the distrib-
ution of the data has very small influence to the number of the stored future-max
elements. Fig. 4.2, Fig. 5.2, and Fig. 5.4 characterize the time performance of
the exemplary sketch. The average number of the future-max elements deleted

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

662 J. Zhao et al.

Fig. 4. Performance of the exemplary sketch over elements uniformly distributed on
[1, 20000]. The data is tested during the processing of 20000 arriving tuples. (1) The
number of the future-max elements stored by the exemplary sketch. (2) The number
of the future-max elements deleted by each arriving tuple.

Fig. 5. Performance of the exemplary sketch over normally distributed elements with
σ=1 and σ=2 resp. The data is tested during the processing of 20000 arriving tuples.
(1) The number of the future-max elements stored by the exemplary sketch with σ=1.
(2) The number of the future-max elements deleted by each arriving tuple with σ=1.
(3) The number of the future-max elements stored by the exemplary sketch with σ=2.
(4) The number of the future-max elements deleted by each arriving tuple with σ=2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluating MAX and MIN over Sliding Windows with Various Size 663

by each arriving tuple is no more than 1. The maximal number of the tuples
deleted by each arriving tuple is a little larger than the average number of the
stored future-max elements which is very small, so our algorithms can process
arriving tuples and expired tuples quickly and keep aggregate values up-to-date
almost all the time as long as the number of the sliding-widows is not very large.

6 Conclusions

In the paper, we introduced how to evaluate MAX and MIN over real-time
sliding windows with various size using the exemplary sketch which takes O(ln n)
expected amortized space and O(w) expected amortized execution time, where n
is the number of the tuples fall into the maximal size sliding window and w is the
number of the sliding windows. Moreover, sliding-window semantics can also be
integrated into the sketch. So, the exemplary sketch is an extremely good choice
for evaluating MAX and MIN over sliding windows in the stream environment.

References

1. Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams. SIG-
MOD Record. 2001, 30(3), 109-120.

2. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and Issues in Data Stream Systems. Proceedings of PODS 2002,
1-16.

3. Arvind Arasu and Gurmeet Singh Manku. Approximate Counts and Quantiles over
Sliding Windows. Proceedings of PODS 2004, 286-296.

4. Sirish Chandrasekaran and Michael J. Franklin. Streaming Queries over Streaming
Data. Proceedings of VLDB 2002, 203-214.

5. Phillip B. Gibbons and Srikanta Tirthapura. Distributed Streams Algorithms for
Sliding Windows. Proceedings of SPAA 2002, 63-72.

6. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.
No Pane, No Gain: Efficient Evaluation of Sliding-Window Aggregates over Data
Streams. SIGMOD Record. 2005, 34(1), 39-44.

7. Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Se-
mantics and Evaluation Techniques for Window Aggregates in Data Streams. Pro-
ceedings of SIGMOD 2005, 311-322.

8. Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data
Mining and Knowledge Discovery. 1997, 1(1), 29-53.

9. Arvind Arasu and Jennifer Widom. Resource Sharing in Continuous Sliding-
Window Aggregates. Proceedings of VLDB 2004, 336-347.

10. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a
Tiny AGgregation Service For Ad-Hoc Sensor Networks. ACM SIGOPS Operating
Systems Review. 2002, 36(SI), 131-146.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent
Closed Itemsets Mining over Stream Data�

Guojie Song1,4, Dongqing Yang1, Bin Cui1, Baihua Zheng2, Yunfeng Liu3,
and Kunqing Xie4

1 School of Electronic Engineering and Computer Science, Peking University, Beijing, China
gjsong@pku.edu.cn,cuibin@pku.edu.cn,dqyang@pku.edu.cn
2 School of Information System, Singapore Management University, Singapore

bhzheng@smu.edu.sg
3 Computer Center of Peking University, Beijing

4 National Laboratory on Machine Perception, Peking University, Beijing
kunqing@cis.pku.edu.cn

Abstract. Recently, frequent itemsets mining over data streams attracted much
attention. However, mining closed itemsets from data stream has not been well
addressed. The main difficulty lies in its high complexity of maintenance aroused
by the exact model definition of closed itemsets and the dynamic changing of
data streams. In data stream scenario, it is sufficient to mining only approximated
frequent closed itemsets instead of in full precision. Such a compact but close-
enough frequent itemset is called a relaxed frequent closed itemsets.

In this paper, we first introduce the concept of RC (Relaxed frequent Closed
Itemsets), which is the generalized form of approximation. We also propose a
novel mechanism CLAIM, which stands for CLosed Approximated I temset
M ining, to support efficiently mining of RC. The CLAIM adopts bipartite graph
model to store frequent closed itemsets, use Bloom filter based hash function to
speed up the update of drifted itemsets, and build a compact HR-tree structure to
efficiently maintain the RCs and support mining process. An experimental study
is conducted, and the results demonstrate the effectiveness and efficiency of our
approach at handling frequent closed itemsets mining for data stream.

1 Introduction

Recently, data streams emerged as a new data type that attracted great attention from
both researchers and practitioners [1]. As a fundamental and essential problem, frequent
itemsets mining on data streams has been studied extensively and a large amount of
research works have been reported [1,3,4,5,7,8]. Based on our observations, algorithms
for mining single item on data stream is efficient enough. However, frequent itemsets
mining in such scenario is still confronted with the bottleneck of time and space usage
and is still a challenge problem.

The concepts of closed frequent itemsets [11,12] usually can help in accelerating the
mining process and compressing the memory usage. However, they can only partly al-
leviate the problem in data stream, because existing definition of closed itemset require
� This work is supported by the National Natural Science Foundation of China under Grant No.

60473051 and No.60642004 and HP and IBM Joint Research Project.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 664–675, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 665

that the support of closed itemset exact equals to the absorbed itemsets, and the slightly
support difference aroused by dynamic changing of data stream can lead to the high cost
of maintenance. The MOMENT [12] is the first algorithm proposed to mining closed
itemsets in data stream scenario, unfortunately it can’t solve above problem efficiently
since it still follows the traditional definition of closed itemset. In fact, it is unreasonable
to have so strict constraints of support exactly equal, because one of the characteristics
of data steam mining is a little error tolerant with an approximated mining results.

As introduced in [2], “most applications will not need precise support information of
frequent patterns, a good approximation on support count could be more than adequate.
For example, for a frequent itemset {diaper, beer}, instead of giving the exact support
count (e.g., 10000), a range, e.g., 10000±1%, may be good enough; the range is a user-
specified error bound.” A condensed FP-base algorithm was also proposed for mining
these approximate itemsets, unfortunately it was designed for static data environment,
and without giving enough considerations for mining on data stream scenario.

In this paper we propose an approximated frequent closed itemsets model, which
we call relaxed frequent closed itemsets (RC). An efficient algorithm, named Closed
Approximate frequent Itemset Mining (CLAIM), is developed by taking advantage of
a few interesting techniques, including 1) All frequent relaxed closed itemsets with the
same approximated support can be arranged by one bipartite graph model, which can
accelerate the drifted itemset update process, 2) To help the drifted itemsets match in
bipartite graph, Bloom filter based hash method has been introduced, and 3) A compact
tree structure, HR-tree, has been constructed, which combines the above two mecha-
nisms and support the mining process efficiently. We have done extensive experimental
study to evaluate the proposed novel algorithm. Experimental results show that CLAIM
has significant performance advantage over a representative algorithm for the state-of-
the-art approaches.

The remaining of the paper is organized as follows. Section 2 gives the problem state-
ment. In Section 3, we presents the data structure and related techniques of CLAIM, and
then introduce the mining algorithm for frequent relaxed closed itemsets based on HR-
tree. A performance study of the algorithm is demonstrated in Section 4, and Section 5
discusses the related work. Finally we conclude this paper in Section 6.

2 Problem Definition

Let I = {x1, x2, ..., xn} be a set of items. An itemset is a subset of items I . A data
stream, DS , is a sequence of incoming stream element, (s1, s2, ..., sN), where a stream
element si is an itemset and N is the specified size of the sliding window. The number
of stream elements in DS that contain X is called the support of X , denoted as sup(X).
For two itemset X and Y such that X ⊆ Y , Y is called a superset of X , and X is a
subset of Y . An itemset X is frequent itemset, if and only if sup(X) ≥ s ∗ N , where
s = sup(X)/N is a threshold called minimum support such that s ∈ (0, 1).

Generally, it is expensive to find the complete set of frequent itemsets, since it is
unlikely to own the same support for two itemsets. Moreover, the maintenance cost of
closed itemsets will be much higher in data streams because any little concept drift
happenings can lead to the changing of closed itemsets. In this paper, to deal with the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

666 G. Song et al.

approximate frequent closed itemset mining in data stream, we propose the definitions
of relaxed closed itemsets, denoted as RC.

Definition 1. Relaxed Interval: The support space of all itemsets can be divided into
n(= �1/ε�) intervals, where ε is user-specified relaxed factor, and each interval can be
denoted by Ii=[li, ui), where li = (n − i) ∗ ε ≥ 0, ui = (n − i + 1) ∗ ε ≤ 1 and i ≤ n.

Definition 2. Relaxed Closed Itemset: An itemset X is called a relaxed closed itemset
if and only if there exists no proper superset X ′ of X such that they belong to the same
interval Ii.

For a relaxed closed itemset X with sup(X) ∈ Ii(=[li, ui)), if li ≥ s, then X is
frequent with frequent interval Ii, otherwise X is infrequent with infrequent interval.
For an interval Ii with li < s ≤ ui, named critical interval, it will be divided into two
intervals, frequent interval [li, s) and infrequent interval [s, ui).

Example 1. Table 1 shows a sample stream data DS , where ε is 20%, s is 45% and the
sliding window size N is 6, from tid=1 to tid=6.

Table 1. An example of stream dataset

Transaction Id Stream Elements
1 a, b, c, d, e
2 c, d, e
3 a, b, c, e
4 a, c, d, e
5 a, b, c, d, e
6 b, c, d
7 b, c, e
8 ...

With the support of definition 1 and 2, relaxed itemsets can be generated based on
dataset table 1, as shown in Table 2.

Table 2. Relaxed closed itemsets

Ii Itemsets RCIi

I1=(0.8,1] c,d,e,cd,ce cd,ce
I2=(0.6,0.8] a,b,ac,ae,bc,de,ace,cde bc,ace,cde
Ic=[0.45,0.6] ab,ad,be,abc,abe,acd,ade,bce,abce,acde abce,acde
In=[0,0.45) abd,bde,abcd,abde,bcde abcde

Above relaxed closed itemset model has absorbed more frequent itemsets than tra-
ditional one under the constraint of relaxed factor, achieved a good compression effect.
Interestingly, traditional closed itemset mining can be achieved with the setting of ε =
1/N , while the maximal frequent itemsets mining has the same effect with our method
if we set ε to 1. Thus, our model is a generalized formal of above two extreme cases.

Our task is to mine frequent relaxed closed itemsets with relaxed factor ε on N -size
stream sliding window.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 667

3 CLAIM: Mining Relaxed Frequent Itemsets on Data Streams

In this section, we perform step-by-step analysis to develop an efficient scheme,
CLAIM, for relaxed frequent closed itemsets mining.

3.1 Bipartite Graph Model

Dynamic changing of data distribution is an intrinsic characteristic of data steam, which
can lead to the adjustment of RC frequently. In such case, only maintaining this upper
bound can not track the bound drift efficiently. Similar with upper bound definition,
lower bound can be defined for each interval.

Example 2. Based on table 2, the double bound of relaxed closed itemsets can be illus-
trated as Table 3.

Table 3. An example of double bound

Ii Lower bound Upper bound
I1=(0.8,1] c,d,e cd,ce
I2=(0.6,0.8] a,b,de bc,ace,cde
Ic=[0.45,0.6] ab,ad,be abce,acde
In=[0,0.45) abd,bde abcde

At present, all itemsets within double bound are disordered, which is unfavorable for
efficient update of RC. For example, if itemset x in lower bound has been deleted from
current interval, its supper pattern x′ should be generated as the substituted itemset in
lower bound by scanning each itemset y in upper bound satisfying x′ ⊆ y. However, the
cost of such itemset maintenance operation with the support of such disordered double
bound is O(n), where n is the number of itemsets in upper bound. Thus, to reduce the
cost of update, a data structure, bipartite graph has been introduced here.

Definition 3. Bipartite Graph: A bipartite graph BG = (U, L, E) has two distinct
vertex sets U and L with U ∩ L = ∅, and edge set E = {(u, l)|u ∈ U ∧ l ∈ L}.

In our case, for an interval Ii, Ui (Li) is a subset of upper bound (lower bound). The
edge e(u, l) ∈ E (u ∈ Ui, l ∈ Li) means that there exists including relationship
between itemset u and v, u ⊃ v. We also know that all absorbed itemsets can be deduced
in each bipartite graph.

Lemma 1. Bipartite Graph Decomposition: A bipartite graph BG = (U, L, E) can
be decomposed into n independent bipartite graph BG1,...,BGn, if and only if Ui ∩
Uj = ∅, Li ∩ Lj = ∅ and Ei ∩ Ej = ∅ for any i, j ∈ [1, n].

Example 3. Continuing with example 1, all these itemsets in double bound can be de-
composed into a set of bipartite graphs, as shown in Figure 1. For example, bipartite
graph BG = ({abde, acde}, {ab, ad, be}, {e(abde, ab), e(abde, be), e(acde, ad)}) in
interval 3 can be decomposed into two sub-bipartite graphs BG1 = ({abde}, {ab, be},
{e(abde, ab), e(abde, be)}) and BG2 = ({acde}, {ad}, {e(acde, ad)}).

By using bipartite graph model, the cost of itemset update can be reduced to O(m),
where m is the number of itemset in upper(lower) bound of bipartite with m n.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

668 G. Song et al.

cd

dc

Critical
interval

Interval 2

Interval 1

abce

ab

acde

ace

a

ce

e

b de

bc cde

be ad

Negative
interval

abcde

abd bde

u_1=1

u_2

u_c

u_n = s

l_n=0

Fig. 1. Bipartite graph model

3.2 Bloom Filter Based Hash Function

As concept drift happening in data stream, the RCs within double bound must be main-
tained. For each drifted itemset X (if sup(X) < li or sup(X) ≥ ui in interval Ii), it
should be deleted from original bipartite graph and inserted into target bipartite graph in
its adjacent interval Ii+1 (or Ii−1). The core problem is how to find such target bipartite
graph(s) from a large mount of candidates, named drifted itemset location.

To complete such location process, a straightforward method is needed to match all
itemsets in all bipartite graphs within interval Ii+1 (or Ii−1) to check which bipartite
graph it belongs to. However, such process is very time-consuming. An ideal method is
to find the destination bipartite graphs directly without checking irrelevant itemsets. To
achieve this, we adopt Bloom filters [13] based hash method to help find its target.

Suppose all items in itemsets of bipartite graphs are sorted according to specified
sequence, such as natural order, I = {a, b, ..., y, z} in our example. we have following
hash function definition.

Definition 4. Hash function: For any item x ∈ I and itemset X , if x ∈ X , then the
position of x located in I is set to 1 else 0. In such case, each itemset will be correspond
to one bit sequence composed of 0 and 1, which also can be expressed in one integer
number, denoted as

F(X, I) =
∑
x∈X

2(pos(x)−1) (1)

where pos(x) refers to the position of item x in I in right-first order. Thus our hash
function can be defined as follow:

H(X) = {hi(X)|hi(X) = mod(F(X, I)i, m)} (2)

where 0 < i ≤ K .

However, above hash function can not be used directly in our case. The reason is that
Bloom Filter based hash method only supports membership query, that is, only tell
us whether an itemset X belongs to hash set BF or not. Unfortunately, drifted itemset

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 669

match needs the support of include or contain relationship operation between itemsets.
To apply this technique, we define two sets, BFu and BFl, for each bipartite graph BG.

Definition 5. BFu: For any bipartite graph BG = (U, L, E), its BFu is composed of
itemset X, X /∈ BG, which is contained by at least one itemset Y in U, but not exist any
X ′ /∈ BG with X ′ ⊂ Y s.t. X ′ ⊃ X .

The generated process of BFu can described as follows: for each itemset X of length
k in U , all its subsets with length (k-1), denoted as Sk−1, can be enumerated. For each
X ′ ∈ Sk−1, it will be filtered out if it contains an itemset in L or it is contained by
an itemset in BFu. Otherwise, it can be inserted in BFu. For each filtered itemset,
continuing such process until all itemsets in BFu have been generated.

With the guidance of above method, for bipartite graph BG(= {{abce}, {ab, be},
{e(abce, ab), e(abce,be)}}) in Figure 1, its BFu can be deduced with {ace, bc}.

Lemma 2. An upper bound drifted itemset X is contained by BG, if and only if we have
X ∈ BFu.

Proof. Assume there exists an upper bound drifted itemset X , if it is contained by an
itemset in U of BG, but with X /∈ BG, then we must have X ∈ BFu, otherwise there
should be itemset X ′ ∈ BFu, X ′ ⊃ X , which means X ′ is also an upper bound drifted
itemsets, which is contrary with the definition of drifted itemset. If X ∈ BFu, then X
must be absorbed by one itemset in U of BG. Thus we have lemma.

Definition 6. BFl: For any bipartite graph BG = (U, L, E), its BFl is composed
of itemset X, X /∈ BG, which contains at least one itemset Y in L, but not exist any
X ′ /∈ BG with X ′ ⊃ Y s.t. X ′ ⊂ X .

The generation of BFl can be simulated with that of BFu. In Figure 1, the BFl of
bipartite graph BG(= {{ace}, {a}, {e(ace, a)}}) can be deduced with {ab, ad}.

Lemma 3. A lower bound drifted itemset X is contained by BG, if and only if we have
X ∈ BFl.

Proof. Similar with lemma 2, omitted here.

Thus, each bipartite graph corresponds to two hash set BFu and BFl. Drifted itemset
locating can be finished in O(1) time by using the Hash function in equation (2).

3.3 Structure of HR-Tree

With the consideration of time and space limitation under data stream scenario, all bi-
partite graphs in our model have been arranged into one compact prefix tree structure,
named HR-tree (Hash based Relaxed Closed Itemset tree), which not only can saving
storage space and reducing the cost of itemset counting with the update of sliding win-
dow, new stream element insertion and old one deletion, but also combine the Bloom
filter based hash technique introduced in section 3.2.

As illustrated in Figure 2, HR-tree is composed of two parts: hash table and pre-
fix tree. In hash table, each interval corresponds to a set of bipartite graphs and each
bipartite graph has its two hash function entries: Hi(BFu, X) for upper bound and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

670 G. Song et al.

a:4 b:4 c:6 d:5 e:5

b:3 d:3 e:4c:4 d:5 e:5

ce:3 cde:3

ce:4

Interval 1
(0.8,1]

Interval 2
(0.6,0.8]

Critical
Interval

(0.45,0.6]

root

Hash Table

e:3

Interval Hash Function Ptr

H(BFl,X)

e:4

H(BFu,X)
H(BFl,X)
H(BFu,X)
H(BFl,X)
H(BFu,X)
H(BFl,X)
H(BFu,X)
H(BFl,X)
H(BFu,X)
H(BFl,X)
H(BFu,X)
H(BFl,X)Negative

interval
abd:2 bde:2

Fig. 2. HR-tree

Hi(BFl, X) for lower bound. Pointer ptr points to the itemset list in upper bound or
lower bound of BG, ending with tag null. All itemsets in double bounds of bipartite
graphs will be arranged by prefix order. Each node corresponds to one itemset with its
support sup. We will not present the detail construction algorithm as the basic structure
is same as the well known Prefix-tree [9].

For any given drifted itemset X , the decision whether it belongs to bipartite graph
BG or not can be answered directly with the answering of hash function entry
Hi(BFu, X) or Hi(BFl, X), no need to access all related itemsets in prefix tree.

3.4 The CLAIM Algorithm for RC Mining

For the maintenance of a bipartite graph, only its upper bound drift is cared as the inser-
tion of stream element, and only its lower bound drift is cared as the deletion of stream
element. These two operations correspond to the similar maintenance techniques, thus
only the pseudo algorithm of insertion operation is presented in Figure 3.

Initially, HR-tree is null and relaxed interval is divided firstly according to defini-
tion 2.1. There are no RCs generated at the beginning, thus they should be initialized
by the insertion of stream element continiously until sliding window is full(in line 1).

For each incoming stream element, support counting is executed by scanning HR-
tree starting from root in prefix-order, and then drifted itemsets can be collected directly.
However, the drifted itemsets contained by bipartite graph but not emerged in double
bound, named internal drifted itemsets, can not be found immediately, since no support
information has been recorded. Thus, for each drifted itemset X , the contained internal
drifted itemsets must be counted firstly by scanning all stream elements within sliding
window, and are checked whether they also belong to drifted itemsets (in line 3-9).

Thereafter, all (internal) drifted itemsets will be deleted firstly from original bipartite
graph, and it can be decomposed into several independent bipartite graphs possibly. By
using drifted itemset location operation with the help of hash function, bipartite graphs
containing drifted itemset should be combined simultaneously. The decomposition and
combination of bipartite graph can be maintained easily by adjusting side-link pointed
by pointer ptr(in line 10-16).

Time Complexity includes: 1) Support counting based on HR-tree is efficient because
it can be finished in prefix order and no need scan all itemsets;2) Drifted itemsets location

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 671

Input: DS: data stream in sliding window, ε: relaxed threhold;
s: the minimum support threshold;

1. HR-tree = null, I =
⋃�1/ε�−1

0 Ii, RC = initialize(DS);
2. for each incoming stream element e ∈ DS do
3. drifted-itemset=scan(HR-tree,e);
4. for X ∈ drifted-itemset belonging to interval i do

/* find all internal drifted itemsets contained by X in BG */
5. BoundSet = X;
6. for each sub-itemsets x ⊂ X in BG do
7. sup(x) = explore(x, DS);
8. if (sup(x) ≡ sup(X)) and (∃p ∈ BoundSet st. x ∈ p) then
9. BoundSet = (BoundSet - p), BoundSet = BoundSet ∪x;

/* bipartite graph decomposition */
10. BG = Removed drifted itemsets in BG;
11. if (BGi

1∩...∩BGi
m ≡ null) then */

12. BG is decomposed into BGi
1,...,BGi

m with HR-tree adjustment;
/* bipartite graph combination */

13. for each x′ ∈ BoundSet do
14. {BGi−1

1 ,...,BGi−1
n } = Hi−1(BFl, x

′); /* drifted itemset locating */
15. if (n > 1) then
16. BGnew = combination(BGi−1

1 ,...,BGi−1
n ,x′) with HR-tree adjustment;

17. for each leaving stream element e ∈ DS do {...} // We omit the details here.

Fig. 3. Algorithm CLAIM(DS,ε,s)

can be finished in O(1) with the help of hash function; 3) The cost of Internal drifted
itemset counting is O(α*N), where α is the number of internal drifted itemsets, and N
is sliding window size. Although such cost is a little higher, α is always small especially
when dynamic changing of data distribution is not so big. Moreover, some optimization
techniques based on apriori property has been developed to reduce the number of α,
omitted here for space constraint.

Space Complexity includes two aspects: HR-tree and Hash space. 1) The former is
a compact prefix structure, which can save the memory usage as little as possible. In
the worst case(ε = 1/N), memory usage is identical with MOMENT (U=L); 2) Since
Bloom filter based hash space is composed of δ bit, thus the memory usage is O(δ ∗n),
where n is the number of bipartite graph. Moreover, the support accuracy of mining
results can be controlled by adjusting our relaxed threshold ε according to the memory
constraints, because there is a tradeoff between accuracy and memory usage.

4 Experimental Evaluation

To evaluate the effectiveness and efficiency of our algorithm CLAIM, we conduct a
comprehensive set of experiments. We implement MOMENT [12] as the baseline al-
gorithm to generate closed frequent itemsets. All the experiments are run on the PC
with Intel Pentium R CPU 1.5 GHz, 1G MB memory, and OS Microsoft XP. All the
programs are written in Microsoft/Visual C++6.0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

672 G. Song et al.

We generate transactional data stream using IBM data generator described by
Agrawal et al, which mimics the data stream of retailing. We generate one type of
data streams, T10I4D100K, where 10 and 4 are the average size of a transaction and a
maximal frequent itemsets of the two streams, respectively, and the default size of the
sliding window N is 80,000. We generate 81,000 transactions and we report the aver-
age performance over 1000 consecutive sliding windows (each with size 80,000). Four
tuning parameters have been studied in our experiments: relaxed interval ε, minimum
support threshold s, sliding window size N , and data arrival order.

4.1 Effect of Minimum Support

The influence of minimum support threshold s for running time and memory usage has
been evaluated in this section. Figure 4 shows the running time and memory usage of
the two algorithms with ε = 0.1%, N = 8 ∗ 104 ,and s ranging from 0.01% to 1%.
Figure 4(a) show that CLAIM can achieve better running time than MOMENT. For
example, when minimum support s is set to 0.4%, the running time of MOMENT is
4.9 while that of CLAIM is 1.9. The reason is that there are less drifted itemsets with
less support counting for CLAIM than MOMENT. Figure 4(b)shows the similar case
for memory usage. However, when s start to less than 0.2%, the memory usage begin
to improved more quickly for MOMENT than CLAIM, which shows that our relaxed
interval can condense frequent itemsets efficiently.

1.0 0.8 0.6 0.4 0.2 0.0
1

10

R
u

n
n

in
g

 t
im

e(
se

c)

The minimum support(%)

 MOMENT
 CLAIM

(a) CPU time

1.0 0.8 0.6 0.4 0.2
0

50

100

150

200

250

300

M
em

o
ry

 u
sa

g
e(

M
B

)

The minimum support

 MOMENT
 CLAIM

(b) Memory usage

Fig. 4. Varying s (ε = 0.1%, N = 8 ∗ 104)

4.2 Effect of Relaxation Interval

Figure 5 shows the running time and memory usage of our algorithm with varying the
relaxation interval ε. We set s = 0.4% and N = 8 ∗ 104. For CPU time, with the in-
creasing of relaxed interval threshold, the running time decreases obviously, because
only itemsets in double bound need to be checked and maintained, and the concept drift
of internal patterns contained have been omitted. Especially, when ε becomes 1/N , the
functions of these two algorithms are identical, and the mining results are also the same.
At this time, CPU time(4 sec) of MOMENT is slightly higher than that of CLAIM(4.5
sec), which should due to our hash method. The larger ε is, the less the cost of maintain-
ing process. For memory usage, it shares the similar results as CPU time. The different
case is that when ε becomes 1/N , the memory usage of MOMENT(50MB) is less than
CLAIM(60MB), which should be invoked by our hash table.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 673

0.0 2.0x10 -4 4.0x10 -4 6.0x10 -4 8.0x10 -4 1.0x10 -3

1

2

3

4

5

MOMENT CPU time

R
u

n
n

in
g

 t
im

e(
se

c)

Relaxed interval

 MOMENT
 CLAIM

(a) CPU time

0.0 2.0x10 -4 4.0x10 -4 6.0x10 -4 8.0x10 -4 1.0x10 -3
0

10

20

30

40

50

60

MOMENT meory usage

M
em

o
ry

 u
sa

g
e(

M
B

)

Relaxed interval(MB)

 MOMENT
 CLAIM

(b) Memory usage

Fig. 5. Varying ε (s = 0.4%, N = 8 ∗ 104)

4.3 Effect of Sliding Window Size

We test the impact of the sliding window size N on CPU time and memory usage
of two algorithms. We fix ε = 0.1%(for CLAIM only) ,s=0.4%, and vary the sliding
window size N from 6 ∗ 104 to 1 ∗ 105. The CPU time and memory usage are shown
in Figure 6. CLAIM significantly outperform MOMENT. When dealing with a 8 ∗ 104

data stream, MOMENT requires 4.8 seconds to process it, while as CLAIM need only
about its 46%, 2.2 seconds. Also, MOMENT consume 53MB memory, while CLAIM
only needs 22MB.

6x104 7x104 8x104 9x104 1x105

2

3

4

5

6

R
u

n
n

in
g

 t
im

e(
se

c)

Sliding window size

 MOMENT
 CLAIM

(a) CPU time

6x104 7x104 8x104 9x104 1x105
20

25

30

35

40

45

50

55

M
em

o
ry

 u
sa

g
e(

M
B

)

Sliding window size

 MOMENT
 CLAIM

(b) Memory usage

Fig. 6. Varying N (ε = 0.1%, s = 0.4%)

4.4 Effect of Data Arriving Order

Similar as method adopted in [1], we test data arrival orders, in order to ensure whether
our approach is order sensitive. Let s=0.4%, ε = 0.1%, and N = 8 ∗ 104. Several
data arriving orders are tested: OO(Original Order), rO(Reverse Order), RO(Random
Order), SO(segment-based random order1), FF (Frequent First), FM (Frequent Mid-
dle) and FL(Frequent Last). As shown in Figure 7, MOMENT is more sensitive to
data arriving orders regarding to frequent closed itemsets mining than CLAIM, espe-
cially when arriving order SO is has been chosen. For insertion, CLAIM outperforms
MOMENT in terms of CPU time and memory consumption.

1 We randomly reordered data in a unit of segment(1000 items) from data set T10I4D100K and
T20I6D100K.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

674 G. Song et al.

OO rO RO SO FF FM FL
0

2

4

6

8

 MOMENT

R
u

n
n

in
g

 t
im

e(
se

c)

Data arrival order

 CLAIM

(a) CPU time

OO rO RO SO FF FM FL
0

10

20

30

40

50

 MOMENT

M
em

o
ry

 u
sa

g
e(

M
B

)

Data arrival order

 CLAIM

(b) Memory usage

Fig. 7. Varying N (ε = 0.1%, s = 0.4%)

5 Related Works

Recently discovering frequent itemsets has been successfully extended to data stream
mining, which is more challenging than mining in transaction databases. Manku et al [5]
gave an algorithm called LOSSY COUNTING for mining all frequent itemsets over the
entire history of the streaming data. Giannella et al [6] proposed an approximate algo-
rithm for mining frequent itemsets in data streams during arbitrary time intervals. An
in-memory data structure, FP-stream, is used to store and update historic information
about frequent itemsets and their frequency over time and an aging function is used
to update the entries so that more recent entries are weighted more. Jeffrey et al [1]
proposed one method for false-negative oriented frequent itemsets mining, where the
number of false-negative itemsets can be controlled by a predefined parameter so that
desired recall rate of frequent itemsets can be guaranteed. Chang et al [3] developed
an algorithm for maintaining frequent itemsets in streaming data assuming each trans-
action has a weight that is related with its age. Besides, Charikar et al [4], Cormode
et al [7] and Richard et al [8] also proposed algorithms for efficient single item mining.

In all above studies, frequent itemsets mining algorithms are based on the Apriori
property, which try to use filter and fast counting technique to support approximate
frequent itemsets mining. In spite of this, they can not overcome the efficiency prob-
lem once the scale of frequent itemsets is very large. The large number of frequent
itemsets makes it impractical to maintain information about all frequent itemsets us-
ing in-memory data structures. Chi et al [12] proposed an algorithm called MOMENT
to mining all closed itemsets exactly from data streams with the support of traditional
closed frequent itemset definition. In contrast, our algorithm is a flexible one because
we relaxed the definition of closed itemset that allow a gap (not exact the same) between
closed itemset and absorbed itemsets. In this way, the mining of the closed itemset will
be much flexible which can be controlled by users with different accuracy requirements.

6 Conclusion

We have studied a practically interesting problem, mining relaxed frequent closed item-
sets, a general form of traditional closed itemsets mining, and proposed an efficient

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CLAIM: An Efficient Method for Relaxed Frequent Closed Itemsets Mining 675

algorithm, CLAIM, with following contributions: (1) giving out a more general defi-
nition of approximate closed itemsets mining, (2) introducing bipartite graph model to
alleviate itemsets update cost, (3) using a Bloom filter based hash function to quicken
drifted itemsets search, and (4) proposing a compact structure–HR-tree to help main-
tain relaxed frequent closed itemsets efficiently. To the best of our knowledge, this is
the first research result for mining approximate frequent itemset in data steam scenario.

Based on this study, we conclude that mining relaxed frequent closed patterns on data
stream environments with adjustable relaxed factor ε should be more preferable than
the traditional exact-support-equal based mining for frequent closed itemsets. More
detailed study along this direction is needed, including dealing with a stream segment
each time not only one element, as well as mining relaxed frequent closed sequential
patterns.

References

1. Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou. False Positive or False Negative:
Mining Frequent Itemsets from High Speed Transactional Data Streams. In Proc. of the 28th
Intl. Conf. on Very Large Data Bases, pages 204-215, 2004.

2. Jian Pei, Guozhu Dong, Wei Zou, Jiawei Han. On Computing Condensed Frequent Pattern
Bases. In Proc. of IEEE Intl. Conf. on Data Mining, pages 378-385, 2002.

3. J. H. Chang and W. S. Lee. Finding recent frequent itemsets adaptively over online data
streams. In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, pages 487-492, 2003.

4. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
Proc. of the 29th Intl Colloquium on Automata, Languages and Programming, 2002.

5. G. Manku and R. Motwani. Approximate frequency counts over data streams. In Proc. of the
28th Intl. Conf. on Very Large Data Bases, pages 346-357, 2002.

6. C. Giannella, J. Han, E. Robertson, and C. Liu. Mining frequent itemsets over arbitrary time
intervals in data streams. Technical Report tr587, Indiana University, 2003.

7. G. Cormode, S. Muthukrishnan, What’s Hot and What’s Not: Tracking Most Frequent Items
Dynamically, In the ACM Symposium on Principles of Database Systems, pages 296-306,
2003.

8. Richard M. Karp, Scott Shenker, A Simple Algorithm for Finding Frequent Elements in
Streams and Bags, In the ACM Transactions on Database Systems, 28(1):51-55, 2003.

9. J. Han, J. Pei, and Y. Yin. Mining frequent itemsets without candidate generation. In Proc. of
the ACM SIGMOD Intl. Conf. on Management of Database, pages 1-12, 2000.

10. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In Proc. of the 2001
IEEE Intl. Conf. on Data Mining, pages 163-170, 2001.

11. J. Wang, J. Han, and J. Pei. Closet+: searching for the best strategies for mining frequent
closed itemsets. In Proc. of the Intl. Conf. Knowledge Discovery and Data Mining, pages
236-245, 2003.

12. Y. Chi, H. Wang, P. Yu, and R. Muntz, MOMENT: Maintaining closed frequent itemsets
over a stream sliding window. In Proc. Of 4th IEEE Intl. Conf. on Data Mining, pages 59-66,
2004.

13. B. Bloom. Space/time tradeoffs in in hash coding with allowable errors. Communications of
the ACM, 13(7):422-426, 1970.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity

with Privacy Inference Logic

Xiaojun Ye1, Zude Li2, and Yongnian Li1

1 School of Software, Tsinghua University, Beijing 100084, China
yexj@tsinghua.edu.cn, liyongnian04@mails.tsinghua.edu.cn

2 Computer Science Department, University of Western Ontario, Canada
zli263@uwo.ca

Abstract. General k-anonymity models cannot fully prevent individ-
ual re-identification on released microdata since intruders can capture
various prior information to recognized individual identities with enough
precision, ultimately, to precisely associate these identities with some sen-
sitive attribute values. We propose the privacy inference logic to specify
the k-anonymity method and emphasize the nature of privacy inference
attacks on k-anonymized microdata in a more rigorous way (than the pre-
vious work, including �-diversity), which can be used as a guideline and a
predictor for efficient privacy disclosure control during k-anonymization
process on a pre-published microdata set. Based on this theory, we un-
cover and define several main inference attacks classes in aspect of the
various “knowledge” used by intruders. In experiments, we successfully
implement the probabilistic inference risks evaluation as factors consid-
ered in an anonymization cost metric as a more effective anti-inference
k-anonymity solution.

1 Introduction

An anonymized individual represented as a record in the released database
might be recognized by an intruder through the data with external identifi-
cation database or with individuals from his circle of acquaintances. To re-
duce the risk of this attack type, k-anonymity is proposed as a mechanism for
privacy protection against individual re-identification in microdata publishing
[14,17]. Many instances illustrating such attacks are listed in literature such as
[7,8,12,17,18,20,21], as the motivations for most k-anonymity models introduced
in the past several years. In general, k-anonymity means that one can only be cer-
tain that a value is associated with one of at least k values, or in a k -anonymized
dataset, each record is indistinguishable from at least k-1 other records with
respect to (w.r.t.) certain identifying attributes [17]. A privacy inference attack
is roughly defined as to find some private information existed in the original
microdata that is concealed literally in the k-anonymized microdata, such as
re-identification disclosure or prediction (attribute) disclosure discussed in[7].

Current k-anonymity models are not robust enough to handle many kinds of
privacy inference attacks. But the most unfortunate is that such attacks have
not been fully cognized or have been ignored when building and using these

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 676–687, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 677

models. The objective for most k-anonymity models is to disseminate statistical
microdata in such a way that individual privacy is sufficiently protected against
recognition of the subjects to which it refers, which at the same time providing
society with as much as possible under this k-anonymity dataset.

For example, Table 1 shows a set of history medical records from a fictitious
hospital. We firstly remove the Name (direct identifier) attribute column and
then use a 2-anonymity model on the table with data generalization approach
[16] and get the 2-anonymized table (Table 2). Here we take ∗ to denote a
generalization value and <ν to indicate a value generalization relation on an
attribute. For instance, BirthDate <ν 11-<ν-39 holds iff the BirthDate value is
in [11-01-39, 11- 30-39]. We show some potential inference attacks within the
following query-answer form:

• Q1 : π{Disease}σ{BirthDate<ν11−∗−39∧Zipcode=13068}
• A1 : < Flu > (Inferred exactly)
• Q2 : π{Sex}σ{BirthDate<ν08−∗−57∧Disease=B.Cancer}
• A2 : < F > (Inferred with about 100%)

Table 1. A table of health data Table 2. A 2 -anonymized table

Name BirthDate Sex Zipcode Disease
1 Lucy 11-12-39 F 13068 Flu
2 Lily 11-02-39 F 13068 Flu
3 Alice 08-24-57 F 14092 B.Cancer
4 Bob 08-02-57 M 13053 Stoke
5 Frank 08-02-42 M 13053 Stoke
6 Jack 11-22-42 M 13053 No
7 Michael 07-25-42 M 13053 AIDS

BirthDate Sex Zipcode Disease
1 11-∗-39 F 13068 Flu
2 11-∗-39 F 13068 Flu
3 08-∗-57 F 1∗∗∗∗ B.Cancer
4 08-∗-57 M 1∗∗∗∗ Stoke
5 ∗-∗-42 M 13053 Stoke
6 ∗-∗-42 M 13053 No
7 ∗-∗-42 M 13053 AIDS

As [12] noted, classical k-anonymity models do not guarantee the sufficient
diversity on sensitive attributes, which results in the success of query Q1. An-
other, since it is a common sense that male has much less probability to get
B.Cancer (Breast Cancer) than female, query Q2 can succeed too. Further, if
intruders master some useful information such as the value domains and some
anonymization rules on BirthDate, Sex, or Zipcode in Table 1, more attacks can
succeed on Table 2.

In this paper, we try to analyze the potential privacy inference attacks on k-
anonymized microdata, most of which have not been considered or handled well
by current k-anonymity models. We first define the privacy inference logic as
a theoretical base, which can be effectively used for capturing various inference
attacks and preventing them before microdata publication. It is also our premier
contribution in this paper. Beside, we propose a solution to effectively decrease
such inference risks which are illustrated by some experiments.

The remainder of the paper is arranged as follows: Section 2 defines the privacy
inference logic. Section 3 discusses the k-anonymity model with our proposed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

678 X. Ye, Z. Li, and Y. Li

logic. Section 4 analyzes several kinds of knowledge-based inference attacks. Sec-
tion 5 offers the experiments study to explicitly illustrate these inference attacks
and proves the effectivity of our solution. Section 6 discusses some related work
on microdata publication and k-anonymity technologies. Finally, Section 7 gives
a short conclusion and reveals our future work.

2 Privacy Inference Logic

The basic objects of privacy inference logic are attribute values in a large popula-
tion. The objective of this logic is to find and formalize the association relations
potentially existed between two values or even attributes, including their asso-
ciation strengths, features, and influences on others, etc. So, Privacy inference
logic which we try to define it in the following paragraphs is an information
inference theory evolved from set and probability theories.

Suppose attribute set A = {A1, A2, · · · , Am} (|A| = m ≥ 1) of a microdata,
Each attribute Ai (i = 1, · · · , m) has a value domain DAi consisting of all pos-
sible values that can be appeared on Ai. Any value, value array, or value vector
can be seen as an element in the large population Ω. So

⋃m
i=1 DAi ⊆ Ω. An

instance of attribute set A, denoted as a = {a1, a2, · · · , am}, is to replace each
attribute Ai with value ai in DAi . The value domain on A is DA = {a|a is an
instance of A}.

Value ṽ is called as an anonymization form of value v if it contains less specific
information than v (v, ṽ ∈ Ω) on an attribute. Consequently, v is also called the
original form of ṽ, if nonexist any value in Ω taking v as an anonymization form.
We say there is an anonymization relation between v and ṽ, denoted as v <ν ṽ.
A value may have several anonymization forms containing different degrees of
information.

The anonymization relation is transitive. If v <ν ṽ, ṽ <ν
˜̃v, then v <+

ν
˜̃v

holds, where <+
ν indicates that there exists a “middle” anonymized value list

{ṽ1 <ν · · · <ν ṽn} (n ≥ i) satisfying v <ν ṽ1 <ν · · · <ν ṽn <ν
˜̃v.

For convenience, we define v <∗
ν ṽ = v <ν ṽ ∪ v <+

ν ṽ, and say v satisfies ṽ or
ṽ is satisfied by v, denoted as v st. ṽ, iff v <∗

ν ṽ holds.
We define the super value domain on Ai (i = 1, · · · , m) as D∗

Ai
= DAi ∪

{ṽi|∃vi ∈DAi , vi <∗
ν ṽi}. A super instance of A is defined as sa={a1, a2, · · · , am},

where ai ∈ D∗
Ai

. And the super value domain on A is D∗
A = {sa| sa is a super

instance of A}. sa is called an anonymization instance (or form) of A if ∃ai ∈ sa
(1 ≤ i ≤ m), ∃a0

i ∈ DAi , a
0
i <+

ν ai.
As an extension, an anonymization form of value set V = {v1, v2, · · · , vl}

(l ≥ 1) is a set consisting of at least one anonymization form of a value in V ,
denoted as Ṽ = {ṽ1, ṽ2, · · · , ṽl}, satisfying ∃i, vi <+

ν ṽi(1 ≤ i ≤ l)∧∀vj <∗
ν ṽj(j =

1, · · · , l).
Suppose D∗

A = {sa1, sa2, · · · , san}, (n ≥ 1), ai ∈ sak, aj ∈ sak (1 ≤ i, j ≤
m, 1 ≤ k ≤ n), we say there is an inference relation from ai to aj , if aj can
be ascertained w.r.t. ai in some sense. The certainty degree is represented by
what is called inference probability in the range between 0 and 1. Specifically, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 679

inference probability from ṽ to v (on v <� ṽ) in scope Ω denoted as P (ṽ ↪→ v|Ω),
indicates the likelihood of correctly guessing v when knowing ṽ in Ω as: P (ṽ ↪→
v|Ω) = 1

VΩ
, where VΩ = {v′|v′ ∈ Ω, v′ <∗

ν ṽ}. Similarly, we define it in scope
Dv (v ∈ Dv ⊆ Ω) as: P (ṽ ↪→ v|Dv) = 1

VDv
. where Dv = {v′|v′ ∈ Dv, v

′ <∗
ν ṽ}.

Obviously, the following formula holds.

P (ṽ ↪→ v|Ω) ≤ P (ṽ ↪→ v|Dv) (1)

The above scopes can be replaced by others, such as the super value domain
D∗

v, etc. Beside, we can also easily extend the two notions on value vectors.
Suppose a partition on A, A′ and A′′ satisfy A′∪A′′ = A, A′∩A′′ = ∅. We say

there is an attribute matching relation between A′ and A′′ in scope DA (similar
to that in scope D∗

A), denoted as A′ − A′′, iff ∀a′ ∈ DA′ (or a′′ ∈ DA′′), {a′, a′′}
∈ DA. a′ and a′′ is a value matching.

On an inference relation from ṽ to v, we define the inference attack on it as
the behavior to infer v w.r.t. ṽ with a certain success probability. To precisely
measure it, we define a threshold δ (0 ≤ δ ≤ 1) as the lower bound of the
inference probability for a successful inference attack.

Since an attribute or its value is often in some associations with others. On
an inference relation, an intruder may infer the objects (identifier or sensitive
attribute values) by virtue of these associations known. In this logic, we define
knowledge as a generic concept to cover all useful information (i.e. inference as-
sociations existed except the inference relation) that may be used by intruders
to successfully infer the desired objects. If an inference attack cannot be success-
ful in normal situation but can be successful under some prior infomation(i.e.
when intruders master some knowledge and use them during the inference attack
behavior), it is called a (successful) knowledge-based inference attack.

For instance, suppose there are three inference relations from vi to vk, from
vi to vj , from vj to vk, respectively. If an intruder wants to infer vk on the first
inference relation with enough high precision, the other two inference relations
may be seen as useful knowledge in the intruder’s view, since they may increase
the inference probability as to make the intruder know that P (vi ↪→ vk) ≥
P (vi ↪→ vj) × P (vj ↪→ vk). Such a transitive inference probability calculation
can be extended to a set of “middle” value lists beginning from vi and ending with
vk with a sequence of inference relations available for calculating P (vi ↪→ vk).

If the ratio of the inference probability on an inference attack under knowledge
c to the probability under no knowledge is larger than threshold ω (ω ≥ 1), we
call the inference a relative (successful) inference attack under c. For instance, if
P (ṽ↪→v|Dv)
P (ṽ↪→v|Ω) ≥ ω, it is a relative inference attack to infer the exact value v w.r.t.

ṽ under knowledge Dv.
One special and complicated knowledge-based inference attack is what is

called conditional inference attack. Suppose attribute set A = A′ ∪ A′′, a′
i, a

′
j ∈

DA′ , a′′
i , a′′

j ∈ DA′′ , {a′
i, a

′′
i }, {a′

j, a
′′
j } ∈ DA. P (a′

i ↪→ a′′
i |a′

j ↪→ a′′
j) refers to the

inference probability from a′
i to a′′

i under knowledge of P (a′
j ↪→ a′′

j |DA). We say
it is a successful conditional inference attack, if one of the two conditions holds:
(1) P (a′

i ↪→ a′′
i |a′

j ↪→ a′′
j) ≥ Max(P (a′

i ↪→ a′′
i |DA), δ); (2) P (a′

i↪→a′′
i |a′

j ↪→a′′
j)

P (a′
i↪→a′′

i |DA
) ≥ ω.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

680 X. Ye, Z. Li, and Y. Li

We take an example to illustrate such notion. Suppose two sets X={x1, x2, x3}
and Y = {y1, y2, y3}. If we just have the knowledge that there is an one-to-one
mapping relation between X and Y , we can infer P (x1|2|3 ↪→ y1|2|3) = 1

3 (1|2|3
indicates any one of three). But if we have another knowledge that P (x2 ↪→
y2) = 2

3 , we can infer P (x1|3 ↪→ y2|x2 ↪→ y2) = P (x2 ↪→ y1|3|x2 ↪→ y2) = 1
6 ,

P (x1|3 ↪→ y1|3|x2 ↪→ y2) = 5
12 .

3 Formulation of K-Anonymity Model

In this section, we discuss k-anonymity with the privacy inference logic. Suppose
individual data which are recorded in a microdata set include unique identity
attributes (UI), quasi-identifier attributes (QI), and sensitive attributes (SI)[17].
For example, in Table 1, Name is an UI attribute, {BirthDate, Sex, Zipcode}
are the QI attributes, and Disease is a SI attribute. As discussed in Section 1, k-
anonymity model is to derive an anonymized microdata from the original one, in
which each record is indistinguishable from at least k-1 other records with respect
to the QI attributes. This requirement is satisfied by Table 2 when k = 2, which
may be published in general k-anonymity applications, even if we have discovered
some successful inference attacks on it as above illustrated.

For convenience, we use T and T ′ represent the original and anonymized mi-
crodata (with n records and m attributes excluding UI attributes), respectively.
|QI| = q, |SI| = s, q + s = m. And QCluster and SCluster denote the QI tuple
cluster mapping to a SI tuple and the SI tuple cluster mapping to a QI tuple in
T ′. They are denoted as QClusteri and SClusteri on the ith record respectively.
For example, in Table 2, SCluster1 = {Flu, Flu}, QCluster1 = {< 11-∗-39, F,
13068>, <11-∗-39, F, 13068>}. Through the k-anonymization process on T , we
can get an k-anonymized table T ′, in which any tuple on QI attributes is the
anonymization form Q̃I of the original form in T , i.e. ∀i, 1 ≤ i ≤ n; qii <∗

ν q̃ii,
where qii and q̃ii are the ith tuple on QI in T and T ′, respectively, or more
essentially, qii is the original form of q̃ii. In the privacy inference logic, T is a
set of original instances of attribute set QI ∪ SI with DQI∪SI , while T ′ is a set
of the corresponding super instances with D∗

QI∪SI .
The primary goal for k-anonymization is to prevent individual re-identification,

and ultimately, to prevent the successful inference attacks on UI−SI matching
in T when T ′ is published. Within the privacy inference logic framework, it can
be described as follows:

UI PT (QI↪→UI)←− QI︸ ︷︷ ︸
In T

PT (Q̃I↪→QI)←−︸ ︷︷ ︸
Anonymization

Q̃I PT ′(Q̃I↪→SI)−→ SI︸ ︷︷ ︸
In T ′

(2)

PT &T ′ (UI↔SI) = PT (QI↪→UI)×PT (Q̃I↪→QI)×PT ′ (Q̃I↪→SI)
(3)

PΩ(QI ↪→ UI|Ω) is calculated within Ω. For instances, in Cambridge, Mas-
sachusetts in 1997, the following hold (Ω may be the whole Cambridge city, UI =
{Name, Address}, QI = {BirthDate, Sex, Zipcode}): PΩ({BirthDate, Sex,
Zipcode} ↪→ {Name, Address}) ≥ 0.97 [15]. To make it more significant and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 681

operable in practice, we define Ω = T . Within the ith record of T , PT (qii ↪→ uii)
can be calculated as follows (qii and uii are the ith tuples of QI and UI in T).

PT (qii ↪→ uii|T) =
1

|T st. qii

qi |
(4)

Where T st. qii

qi is the cluster of qi value tuples in T satisfying (i.e. equal to in
T) qii. For instances, in Table 1, P ({Sex = F} ↪→ {Name = Lucy}) = 1

3 ,
P ({Zipcode = 13053} ↪→ {Name = Frank}) = 1

4 , P (Sex ↪→ Name) = 2
7 .

We define: PT (QI ↪→ UI|T) = 1
n ·

∑n
i=1 PT (qii ↪→ uii). As on Table 2,

P({Sex, Zipcode} ↪→Name)= 7
12 , P({BirthDate, Sex, Zipcode} ↪→Name)= 1,

etc.
Since the ith QI tuple q̃ii in T ′ is the anonymization form of qii in T . On

qii <∗
ν q̃ii, the inference probability P (q̃ii ↪→ qii|T) can be calculated as:

P(q̃ii ↪→ qii) =
1

|T st. q̃ii

qi |
(5)

Where T st. q̃ii
qi is the cluster of qi value tuple in T satisfying q̃ii in T ′ (i.e.

qi <∗
ν q̃ii). PT (Q̃I ↪→ QI) is the mean of PT (q̃ii ↪→ qii) on the whole T

scope. It can be noted that the above formula is to calculate the real inference
probability when users capture knowledge QI value domains in T . For instances,
P (BirthDate = 11-∗-39 ↪→ BirthDate = 11-12-39) = 1

2 �= 1
30 , P ({Sex =

∗, Zipcode = 1 ∗ ∗∗∗} ↪→ {Sex = F, Zipcode = 14092}) = 1
7 .

As each q̃ii in T ′ (1 ≤ i ≤ n) has at least k-1 duplicated tuples. The inference
probability from q̃ii to sii, denoted as P (q̃ii ↪→ sii|T ′), can be calculated w.r.t.
the SClusteri size. P (Q̃I ↪→ SI|T ′) is its mean value.

P (q̃ii) ↪→ sii|T ′) =
|si|si ∈ SClusteri, si <∗

ν sii|
|SClusteri|

=
T ′st. q̃ii

q̃i
∩ T ′st. sii

si

T ′st. q̃ii

q̃i

(6)

As in Table 2, P({BirthDate = 08-∗-57, Sex = ∗, Zipcode = 1 ∗ ∗∗∗} ↪→
Disease = Stoke) = 1

2 , P({BirthDate = ∗-∗-42, Sex=M, Zipcode = 13053} ↪→
Disease = Stoke) = 1

3 .
The purpose for k-anonymity is to make P(uii ↔ sii|T &T ′) less than a prede-

fined threshold δ on the ith (1 ≤ i ≤ n) record of T ′. Based on the above analysis,
the way to reach it is to keep each “middle” inference probability between uii
and sii under a threshold, including P (q̃ii ↪→ qii), and P(q̃ii ↪→ sii|T ′).

4 Privacy Inference Attacks

As the above analyzed, general k-anonymity models can make inference risks
under a controllable scope. But when considering some knowledge, inference
risks may be increased greatly from the perspective of intruders.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

682 X. Ye, Z. Li, and Y. Li

4.1 Simple Privacy Inference Attacks

Simple privacy inference attack is to recognize individual identity on anonymized
QCluster tuples, or to infer some QCluster-SCluster associations with enough
precision when no knowledge considered. In other words, it is to discover some in-
formation that should be concealed by the anonymization w.r.t just T ′. Although
it is caused by indeliberately ignoring some special situations on the anonymized
microdata when anonymizing the original one (such as a SCluster contains just
one element), this type attacks can be discovered and prevented when adjusting
the anonymization algorithm to consider these special requirements.

For instance, in Table 2, it is easily discovered that the exact Disease value
on the 1st record mapping to <11-∗-39, F, 13068> is Flu because of the mapped
SCluster just contains this single element, which is likely to increase P (q̃i1 ↪→
si1) to 1. The main reason is the diversity degree of SCluster in T ′ which is not
enough to prevent inferring an exact value in it. To avoid this attack, we can
define a threshold �, and take Diversity(SCluster) ≥ � as an anonymization rule
effectively embedded into the anonymization process, where Diversity(SCluster)
refers to the diversity of a SCluster w.r.t. a measurement [12].

4.2 Knowledge-Based Privacy Inference Attacks

In practice, an anonymized microdata is published into some public databases
for statistical, general analysis. One big problem for microdata publishing while
preventing personal privacy disclosure is: it is hard to ascertain or suppose what
knowledge the intruder may hold. There are three main reasons: (1)Relative
knowledge available for attacks cannot be tractable; (2)Intruder group in reality
is too large and diverse to be computable; (3) To prevent inference attacks is
not always consistent with the anonymization rules.

We conclude these features of knowledge as its global intractability. But when
focusing on an anonymized microdata, we can capture the most of knowledge
(main knowledge) used for knowledge-based inference attacks. Such a feature of
knowledge is called local computability.

We divide knowledge-based privacy inference attacks into three classes: (1)
Value inference attack under value domains known, which is to infer the exact
value on an attribute when knowing QI value domains; (2) Conditional inference
attack under value associations known, which is to infer the more precise value
associations when knowing some value associations; (3) QI tuple inference attack
under anonymization rules and relations known, which is to infer the original or
more specific QI tuples when knowing some anonymization rules and relations.

For the first class of knowledge-based inference attacks, it is obvious that the
probability of inferring value v in value domain Dv is much larger than that in
the population Ω as there are many instances above proving it. As the Formula
(1), the intruder can get a higher probability from ṽ to v in Dv than in Ω. The
essential reason for this attack is Dv ⊆ Ω and Dv is tractable in most situations.
For example, suppose the intruder has known: DBirthDate = {11-12-39, 11-02-39,
08-24-57, 08-02-57, 08-02-42, 11-22-42, 07-25-42} in T . The following inference
probabilities (on BirthDate column in T ′) hold to the intruder:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 683

• P (11-∗-39 ↪→ 11-12-39|11-02-39) = 1
2 �= 1

30
• P (∗-∗-42 ↪→ 08-02-42|11-02-42|07-25-42) = 1

3 �= 1
12×30

In short, to know the real value domain on an attribute is helpful to narrow
the scope used to infer the exact value. It should not be ignored for microdata
publication since in some situations the intruder can hold these prior information.

For the second class of knowledge-based inference attacks, to capture all value
associations among two or several attributes is difficult. Same to destroy a value
association contained in QCluster-SCluster in T ′, as it needs the anonymization
process to find all value associations and to avoid the successful inference attacks
in the QCluster-SCluster. For example, it is hard to discover the value association
Disease=B.Cancer → Sex=M [0%] in {08-∗-57, ∗, 1∗∗∗∗} − {B.Cancer, Stoke}
when anonymizing T . Even if it is discovered before anonymization, it is indis-
pensable for the anonymization process to guarantee the inference probabilities
in the matching smaller than the threshold.

For the third class of knowledge-based inference attacks, since anonymization
rules and relations for general k-anonymity models are always static and sim-
ple, they are easily captured by intruders. For example, it is easy to know the
k value, the generalization hierarchy or some suppression techniques on some
attributes used for the anonymization process through observing and analyzing
the published microdata.

If intruders know several kinds of integrated knowledge, for inference, in-
cluding some value domains on some attributes, some value associations, and
anonymization rules used for anonymization, the inference attack may be more
complicated to be prevented.

For instance, if DZipcode and its anonymization rules are known, it can be
inferred the original values from 1∗∗∗∗ are in {14092, 13053}, but not 13068,
since there are just two 13068 in the value domain, and they have been ap-
peared in T ′, i.e. P (1∗∗∗∗ ↪→ 14092|13053) = 1

2 . So if the intruder can know
Disease=B.Cancer → Sex=M [0%] and P (Zipcode=14092 ↪→ Name=Alice) = 1,
P (Disease=B.Cancer ↪→ Name=Alice) = 1

2 can hold. With similar knowledge,
the intruder can infer: P (Name=Lucy|Lily ↔ Disease=Flu) = 1

2 .

5 Experiment Study

Same to [9,12], the initial microdata set in the experiment is the Adult database
supported by UCI [19]. We adopt the training dataset containing 4 QI attributes
(Age, Sex, Education, and Country) and 2 SI attributes (Salary and Occupation).

As the above discussed, the main knowledge available for privacy inference
attacks on k-anonymized microdata include value domains, value associations,
and anonymization rules and relations. We suppose the population is the Adult
Database (T). Beside, we take an Apriori1 algorithm to create a set of value
inference relations in T with high inference probability (≥ 90%). Under the

1 Apriori is a classic data mining algorithm to find association rules in a database with
enough confidence and supportance [5].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

684 X. Ye, Z. Li, and Y. Li

knowledge of QI value domains, the inference probability on q̃ii ↪→ qii can
be calculated as: P (q̃ii ↪→ qii) = Max(P0(q̃ii ↪→ qii), P1(qii ↪→ q̃ii)), where
P0(q̃ii ↪→ qii) is the inference probability under empty knowledge on q̃ii ↪→ qii,
P1(qii ↪→ q̃ii) = 1

|T ′st. q̃ii
qii

|
.

Table 3. Some information derived when k = 2

(k, βus) (2, 0.1) (2, 0.2) (2, 0.3) (2, 0.4)
p0

u−s0
0.185(238) 0.284(74) 0.406(16) 0.5(7)

p0
u−s1

0.186(339) 0.282(114) 0.433(20) 0.5(12)
p0

u−s2
0.234(1292) 0.285(863) 0.476(135) 0.5(112)

p0
u−s3

0.241(1461) 0.298(940) 0.489(194) 0.51(168)
p1

u−s0
0(0) 0(0) 0(0) 0(0)

p1
u−s1

0(0) 0(0) 0(0) 0(0)
p1

u−s2
0.207(82) 0.261(47) 0.5(2) 0.5(2)

p1
u−s3

0.206(83) 0.261(47) 0.5(2) 0.5(2)

In Table 3, p0
u−s0

, p0
u−s1

, p0
u−s2

and p0
u−s3

stand for P (UI ↪→ SI) under no
knowledge, knowledge of value domains, value domains and anonymization rules
and relations, and value domains and anonymization rules and relations and
value associations, respectively, when k = 2. Similarly, p1

u−s0
, p1

u−s1
, p1

u−s2

and p1
u−s3

are the couterpart values derived from the k-anonymization process
with our solution: a new anonymization cost metric considering inference risk
(probability) under kinds of knowledge − greatly increasing the metric value when
the risk is enough high, while keeping it uninfluenced when the risk is tolerable.

It is obvious that the amount of successful inference attacks under main knowl-
edge is decreased. With this metric, the inference attacks under empty knowledge
are prevented fully, as there are 238 records satisfying P (ui ↔ si) ≥ δ = 0.1 but
0 record by the metric.

Fig.1 describes the inference probability under SI value domains on the first 500
records in a 2-anonymized microdata, which illustrates that the SI value domains

Fig. 1. (Left): P (Q̃I ↪→ QI) and

P (QI ↪→ Q̃I) of first 500 2-anonymized
records

Fig. 2. (Right): P (UI ↔ SI) in gen-
eral k-anonymity model and under main
knowledge

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 685

Fig. 3. (Left): The relative increasing ra-
tio of P (UI ↔ SI) under knowledge with
the anonymization cost metric on gener-
alization height

Fig. 4. (Right): The relative increasing
ratio of P (UI ↔ SI) under knowledge
with the anonymization cost metric con-
sidering inference risk

knowledge is much helpful for increasing inference probabilities on most records.
Fig.2 illustrates that the UI-SI matching probability P (UI ↔ SI) is increased
under all main knowledge on many records. When k increases, the average rela-
tive increasing ratio of inference probabilities under different knowledge (i.e. value
domain, anonymization rules and relations, etc.) to that under empty knowledge,
P (UI↔SI|c)−P (UI↔SI)

P (UI↔SI) (c is a kind of knowledge), is illustrated in Fig.3. And Fig.4
illustrates the relative increasing ratio of inference probabilities under knowledge
with the new metric, comparing to that in Fig.3, which is obviously decreased.

6 Related Work

K-anonymity is concerned for identifier disclosure with the modification of mi-
crodata containing confidential information about individuals. Information loss
is the quantity of information that existed in the initial microdata but does not
occur in anonymized microdata because of disclosure control methods [14,17].
There are many information loss metrics proposed in literature, such as the five
kinds of information loss metrics summarized in [18]. In [4,18], the record-level
disclosure risk is analyzed through computing the probability of matching an
exact individual to any record in the initial microdata under many assumptions.

K-anonymity focuses on how to prevent individual re-identification on anony-
mized microdata and at the same time keep the integrity of the data in the
modified microdata by generation/suppresion techniques. It is proven that the
k-anonymity problem is NP-hard even when the attribute values are ternary
[1,13]. An algorithm with O(k)-approximation is proposed for this problem [1].
Violation of k-anonymity occurs when a particular attribute value of an entity
can be determined to be among less than k possibilities by using the views
together with the schema information of the private table [21]. It is proved
that whether a set of views occur privacy disclosure for k-anonymity is also a
computationally hard problem [21].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

686 X. Ye, Z. Li, and Y. Li

[12] proposed �-diversity mechanism to improve the anonymity effect of mid-
ified microdata. It is to set and increase the diversity value (i.e. the information
entropy value evaluation of a cluster of sensitive values) on each sensitive value
cluster, ensuring it satisfy a threshold. Comparing to �-diversity, our approach
for privacy inference control is more extended and strict. As the inference logic
gives a probabilistic way to evaluate not only the re-idendification disclosure
risks,but also the predictive disclosure risks based on the information contain-
ing in original and published microdata sets, and especially, which can be more
predicted before publication.

Privacy violated on the relations among data is deeply discussed in [7], in
which the disclosure risk is determined directly by the re-identification probabil-
ity between a record and its respondent. The idea is extended in this paper. We
evaluate the re-identification value (when the identity and the sensitive values
coexist) as well as the inference probability between re-identifying and sensi-
tive values. Especially, the approach in the paper allows individuals to set their
privacy preference to some extend, i.e. the threshold of privacy protection (or
inference), which can be implemented as the experiments illustrated above.

Anonymization cost metric mechanisms in most k-anonymity models can be
classified into four types w.r.t. the detail computing base [10]: (a) on generaliza-
tion hierarchy (and generalization height), as Sweeney’s Prec calculation [17] and
Aggarwal’s Cost computation [1]; (b) on the amount of suppressed cells (such as
distance among tuples), as Aggarwal’s Hamming distance computation [1] and
Meyerson’s Diameter calculation [13]; (c) on partition, as Lyengar’s CM formula
[11], Bayardo’s DM, CM formulas [2], and Lefevre’s CAV G formula [8]; and (d)
on entropy, as Machanavajjhala’s Entropy calculation [12] and Fung’s Entropy
formula [3]. In k-anonymity models, anonymization loss metrics should measure
the real information loss under some knowledge, which should be directly relative
with the strength of preventing inference attacks.

7 Conclusion

In conclusion, we analyzed some privacy inference attacks that may be poten-
tially existed in anonymized dataset based on the inference theory on attributes
and its values. To solve these kinds of inference attacks should depend on a more
reasonable anonymization cost metric for k-anonymity, which should reflect the
true information loss on the anonymized microdata under some complicated as-
sumptions. Our future work on this topic is to define a well-designed k-anonymity
model that can prevent the above discovered information attacks with more pre-
cise quantitative information probability calculations.

Acknowledgements

This work was partial supported by the National Natural Science Foundation of
China under Grant No.60673140.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Capture Inference Attacks for K-Anonymity with Privacy Inference Logic 687

References

1. Gagan Aggarwal and Tomas Feder and etc. Approximation Algorithms for K-
Anonymity, Journal of Privacy Technology, Paper number: 20051120001, Nov.
2005.

2. R. J.Bayardo and R. Agrawal: Data Privacy through Optimal K-Anonymization,
Proc. of ICDE 2005, 217-228, Tokyo, Japan.

3. Benjamin C.M. Fung, Ke Wang and Philip S.Yu: Top-Down Specialization for
Information and Privacy Protection, Proc. of ICDE 2005,205-216, Tokyo, Japan.

4. William E.Winkler: Re-Identification Methods for Masked Microdata, Privacy in
Statistical Databases 2004, 216-230,Barcelona, Spain.

5. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques, Magan
Kanfmann Publishers, August 2000.

6. Daniel Kifer and Johannes Gehrke: Injecting Utility into Anonymized Datasets,
Proc. of SIGMOD 2006, 217-229, Chicago, USA.

7. Diane Lambert: Measures of Disclosure Risk and Harm, http://cm.bell-labs.
com/cm/ms/departments/sia/doc/93.17.ps.

8. Kristen LeFevre, David J.DeWitt and Raghu Ramakrishnan: Multidimensional K-
Anonymity, Technical Report, http://www.cs.wisc.edu/techreports/2005/

9. Kristen Lefevre, David J.DeWitt and Raghu Ramakrishnan: Incognito: Efficient
Full-Domain K-Anonymity, Proc. of SIGMOD 2005,49-60,Baltimore, USA.

10. Zude Li, Guoqiang Zhan and Xiaojun Ye: Towards a More Reasonable Generaliza-
tion Cost Metric For K-Anonymization, Proc. of BNCOD 2006, 258-261, Belfast,
UK.

11. Vijay S. Lyengar: Transforming Data to Satisfy Privacy Constraints, Proc. of
SIGKDD 2002, 279-288,Edmonton, Canada.

12. Ashwin Machanavajjhala, Johannes Gehrke and Daniel Kifer: �-Diversity: Privacy
Beyond K-Anonymity, Proc. of ICDE 2006,Atlanta, USA.

13. Adam Meyerson and Ryan Williams: On the Complexity of Optimal K-Anonymity,
Proc. of PODS 2004, 223-228, Paris,France.

14. Pierangela Samarati and Latanya Sweeney: Protecting Privacy when Dis-
closing Information: K-Anonymity and Its Enforcement Through Generaliza-
tion and Suppression, Technical Report, SRI Computer Science Lab., 1998,
http://privacy.cs.cmu.edu/people/sweeney/publications.html.

15. Latanya Sweeney: Guaranteeing Anonymity when Sharing Medical Data, the
Datafly System, Journal of the American Medical Informatics Association, 1997,
http://adams.mgh.harvard.edu/PDF Repository/D004462.PDF.

16. Latanya Sweeney: Achieving K-Anonymity Privacy Protection Using Generaliza-
tion and Suppression, Intl. Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10(5),571-588, 2002.

17. Latanya Sweeney: K-Anonymity: A Model For Protecting Privacy, Intl. Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5),557-570, 2002.

18. Traian Marius Truta, Farshad Fotouhi and Daniel Barth-Jones: Disclosure Risk
Measures for Microdata, Proc. of the 15th Intl. Conf. on Scientific and Statistical
Database Management, 2003,15-22,Cambridge, USA.

19. UCI. U.c. irvine machine learning repository. http:// www.ics.uci.edu/mlearn.
20. Willemborg and L. Waal, Elements of Statistical Disclosure Control. Springer

Verlag, 2001.
21. Chao Yao, X. Sean Wang and Sushil Jajodia: Checking for K-Anonymity Violation

by Views, Proc. of VLDB 2005, 910-921, Trondheim,Norway.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on

Classification and Probing

Guoliang Li1,�, Beng Chin Ooi2, Bei Yu2, and Lizhu Zhou1

1 Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China
{liguoliang,dcszlz}@tsinghua.edu.cn

2 School of Computing,
National University of Singapore, Singapore

{ooibc,yubei}@comp.nus.edu.sg

Abstract. In this paper, we address the problems of adaptive schema
mappings between different peers in peer-to-peer networks and searching
for interesting data residing at different peers based on such mappings.
We begin by classifying the shared schema of each peer into a taxon-
omy of relation categories and attribute categories. We then propose our
adaptive schema mapping by selectively probing the shared schema with
query probes, which are generated by the classification rules. To improve
the accuracy of schema mapping, we introduce the notion of confusion
matrix and prior-knowledge. Finally, we present the query reformulation
strategy for retrieving and integrating data from all relevant peers. We
have implemented our proposed schema mapping and query processing
methods in real settings with real datasets. The experimental results
show that our method can be adopted effectively in practice.

1 Introduction

Sharing data among multiple sources is crucial in a wide range of applications,
including enterprise data management, large-scale scientific projects, government
agencies and the World-Wide Web in general. Data integration approaches offer
an architecture for data sharing in which data is queried through a mediated
schema, but physically stored at the source locations based on their own schemas.
Recent data integration systems have been successful at enabling data sharing,
but on a relatively small scale, due to the expensive cost of constructing the
mediated schema.

Recently, peer data management systems (PDMS) have been proposed as an
architecture for decentralized data sharing [1,2,9,19,20,23]. A PDMS consists of
a set of (physical) peers, and each peer has an associated schema, denoted as
peer schema, that represents its domain of interest. Some peers store actual data
with mappings between their physical schemas to their relevant peer schemas.
However, a peer may not have complete data instances for its peer schema, since
individual peers typically do not contain complete information about a domain.
� The work was done when the author was on internship attachment at the National

University of Singapore.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 688–702, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 689

This calls for schema mappings in order to tap on relevant peers for more com-
plete answers. Mapping all data sources to a single global schema (or mediator)
in a PDMS is not feasible due to the decentralization and scalability requirements
of P2P systems. Therefore, in a PDMS, mappings between disparate schemas
are built directly and stored locally, such that when a query is posed at a peer,
the answers are obtained by integrating retrieved results of reformulated queries
from relevant peers, which are generated by exploring the mappings.

Schema mapping of most existing proposals for PDMS such as Hyperion [2,15],
Piazza [9,23], and PeerDB [19,20] all require human intervention, which is in-
efficient and ineffective for large networks and dynamic sources. Therefore, an
adaptive way for generating schema mapping is highly desirable. In this paper, we
propose such a schema mapping method based on classification. We classify the
shared schemas (relational tables and attributes) of individual peers into a tax-
onomy of relation categories and associated attribute categories, which essentially
represent various conceptual domains. For all peers that have relations belonging
to the same category, schema mappings are generated for them. When a new
peer joins, classification of its shared schema is performed by probing its relations
with query probes generated from classification rules, and consequently, it will be
assigned to one or more relation categories to which the probing results have best
matches. Subsequently, its schema is mapped to peers in the same categories.

The advantage of our classification-based schema mapping is that its simplic-
ity and modeling uniformity allow integrating the contents of several sources
without having to tackle complex structural differences. Another advantage is
that query evaluation in classification-based sources can be done efficiently.

Our system is based on a super-peer P2P network in which super peers them-
selves are organized in a structured overlay, such as BATON [12], and normal
peers within the cluster managed by a super peer are unstructured. The cat-
egories are distributed among super peers, through which normal peers build
schema mappings. Our categories structure is distinct from a global schema (or
mediator), since it is distributed among all the super peers, and it is used for
peers to generate schema mappings, not for users to pose queries.

In this paper, we make the following contributions. First, we propose a method
for schema mapping based on classification and probing in PDMS. Second, we
adopt the notion of confusion matrix [16] and apply prior-knowledge to improve
the accuracy of schema mapping whenever there are overlapping instances among
the shared schemas. Third, we present query formulation strategies for reformu-
lating local queries among relevant peers to achieve efficient query answering.

The paper is organized as follows. We discuss the related work in Section 2.
Section 3 presents how to create the schema mapping, and Section 4 describes the
query reformulation and evaluation strategies. In Section 5, we provide extensive
experimental evaluations of our method and we conclude the paper in Section 6.

2 Related Work

There is no doubt a long stream of research on schema mapping, and we shall
briefly review recent and relevant proposals. Kang et al. [14] investigated schema

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

690 G. Li et al.

matching techniques that worked in the presence of opaque column names and
data values. Yu et al. [27] proposed a method about constraint-based XML
data integration. Dhamankar et al. [4] described the iMAP system which semi-
automatically discovered both 1-1 and complex matches. These three methods
are only efficient for centralized environment.

More recently, the database community has begun to exploit P2P technolo-
gies for database applications [2,6,8,9,13,15,22,23,26]. In [8], the problem of data
placement for P2P system was addressed and how data management could be
applied to P2P was presented. In [26], the class of “hybrid” P2P systems, where
some functionality is still centralized, was studied. In [13], caching of OLAP
queries was addressed in the context of a P2P network. Ng et al. [18,19] and Ooi
et al. [20] introduced an IR technique into schema mapping in PDMS. Halevy
et al. addressed the issue of schema mediation and proposed a language for me-
diating between peer schemas in [9]. Hyperion project was proposed in [2,15,22],
which created schema mapping via mapping tables and required human input.
The coDB P2P DB prototype system that measures the performance of various
networks arranged in different topologies was proposed in [6].

Schema mapping of existing studies mostly requires human input or inter-
vention. For example, in PeerDB [19], users are expected to provide additional
descriptions for the relation and attribute names. In this paper, we would like
to take schema mapping one step further by not relying on the additional input
imposed on the users. Accordingly, we propose a practical and adaptive solution
based on classification and probing.

3 Classification-Based Schema Mapping

In this section, we first give an overview on how to construct a classification
scheme for various peer schemas in Section 3.1. Then we describe the
classification-based schema mapping in detail in Section 3.2 and Section 3.3.

3.1 Classification Overview

Figure 1 shows the overall architecture of our classification-based schema map-
ping method. Similar to a conceptual taxonomy, all the shared schemas in
our system (relations and their attributes) are classified into certain categories

Re lation
M apping

Classi fier

 Sam ple
Schem as

 Class ification
 & Rules

Attribute
M apping

query
probes

 query probes
&prior-knowledge

 Schem a
 Mapping

 Query

standardiz
a tion

 mapping
 da ta

Localiza tion

 st
andard

 fo
rm

quer
y

standard form query

 Peer P1

 Peer P2

 Peer Pn

...

...

...

Localiza tion

Localiza tion

...

...

...

Integration

User
Interface

resultresult

re
su

lt

 fina l result to user

 standard form
query

 Schema

 Schem a Mapping

 Query Reform ulation

Fig. 1. Architecture of schema mapping based on classification and probing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 691

and each category may contain some subcategories. A hierarchical classification
scheme is introduced as follows.

Hierarchical Classification Scheme: A hierarchical classification scheme is
a rooted directed tree whose nodes correspond to categories. Category includes
relation category and attribute category, and each relation category has some
attribute subcategories. An edge from relation category u to another relation cat-
egory v denotes specialization; while an edge from relation category v to its at-
tribute category vi denotes the relation w.r.t. v has an attribute w.r.t. vi.

programme

root

protein

SeqID Length Sequence C/C++ Java Delphi

PID C

a 0.96

b 0.98

c 0.92

PID C

d 0.98

e 0.96

f 0.95

PID C

a 1

b 1

c 1

PID C

a 0.9

b 0.7

c 0.9

PID C

a 0.8

b 0.8

c 0.9

PID C

d 0.84

e 0.06

f 0.02
PID C

d 0.10

e 0.88

f 0.03

PID C

d 0.04

e 0.02

f 0.90

(conf idence)

AuthorName YearComp AuthorName Year AuthorName Comp

Author

Name

Year

Comp

Fig. 2. A classification structure

Figure 2 illustrates a hierarchical classification scheme of our running example,
where ellipse denotes relation category and rounded rectangle denotes attribute
category. A relation category has several attribute subcategories, which corre-
spond to its attributes. In Figure 2, the root node has two relation categories
Protein and Programme, while Programme has three relation subcategories -
Java,C/C++,Delphi and four attribute subcategories -Name,Author,Comp,Year.

We have mentioned that the classification structure is maintained by super
peers that can be organized with existing overlays, e.g. BATON [12]. Each super
peer maintains a subset of categories, where each category is associated with
its own classification rules (including prior-knowledge for attribute categories,
which will be introduced in Section 3.3), and the physical addresses of the peers
that have classified some relations into it. The categories on super peers are
indexed with BATON’s distributed index facility, so that we can go through the
classification hierarchy from any of the super peers.

The local schema mappings are not maintained by super peers but by normal
peers. Each peer maintains its local schema mapping with its matched categories,
and the identifiers of the relevant peers that have classified schemas into the same
categories. With our running example, category protein has three peers a, b, and
c that have classified their schemas into it. Correspondingly, each of peers a, b
and c maintains its local schema mappings with protein as shown in Figure 3.

Initially, the hierarchical classification scheme can be extracted from exist-
ing classifications using special-purpose languages and tools, or it can also be
constructed from scratch. If there are certain sample schemas in PDMS, we can
use many existing methods such as naive Bayes classifier [5], C4.5 [21], RIPPER
[3], and Support Vector Machine [24], to classify them. On the other hand, if
there are no sample schemas, we can construct the classification from scratch:
for a new schema, once it matches certain categories in the existing hierarchical

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

692 G. Li et al.

PeerID Relevant peers Local Schema Mapped Category
Peer a Peer b,c Kinases Protein

ID SeqID
len Length
seq Sequence

Peer b Peer a,c annexin Protein
identifier SeqID
length Length
seqs Sequence

Peer c Peer a,b protein Protein
number SeqID
seqlength Length
sequence Protein
number SeqID

seq Sequence

Fig. 3. Local schema mapping

classification schema, it will be classified into these categories; otherwise, it will
be inserted into the hierarchical classification scheme as a new category (which
may be constructed as a parent category of some existing categories).

Generally, schema mapping based on classification, in our approach, operates
in two phases: 1) Relation mapping (Section 3.2); and 2) Attribute mapping
(Section 3.3), which are presented in the following subsections respectively.

3.2 Relation Mapping

We create relation mapping between relevant peers by classifying their rela-
tions into the most relevant categories through query probing. The probe-based
method has been used for mining hidden-web data in [7,11,25], which is orthogo-
nal to the schema mapping of our work. Since the classification rules can capture
the characteristics of various categories, we generate query probes according to
these classification rules, which are used to differentiate various relations. Basi-
cally, if a query probe returns expected results from a relation, this relation is
related with the category w.r.t. the query probe, and subsequently it is classified
into the category.

Now we describe the class of rule-based classifiers and show how we can use a
rule-based classifier to generate a set of query probes that will help us estimate the
number of results for each category of interest in a relation. In a rule-based clas-
sifier, the classification decisions are based on a set of logical classification rules,
κi→Ci, where the antecedents of the rules are conjunctions of words and the conse-
quents are the category assignments. For example, the following classification rules
are part of a classifier for the categories “Java book” and “protein”, respectively.

Java AND book → “Java book”; %a%c%g%t% → “protein”

Such rules can be used to classify previously unseen relations. For example, the
first rule will classify the relation containing the keywords “Java” and “book”
into the category Java book. The second will classify the relation containing
the keywords “%a%c%g%t%” into the category protein. We can simulate the
behavior of a rule-based classifier over all categories of the classification scheme

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 693

by mapping each rule κi→Ci of the classifier into a boolean query qi that is the
conjunction of all keywords appeared in κi. Thus, if we send the query probe qi

to a new relation R, the query will match exactly f(qi) results in R that would
have been classified by the associated rule into category Ci. Actually, instead
of retrieving the concrete results, we only need keep the number of matches
reported for each query probe, and use this number as the measure of whether
the probed relation satisfies the corresponding classification rule.

Having the result for each query probe, we can construct a good approximation
of the Weight and Confidence vectors for a relation R. We approximate the
number of results of R in category Ci as the total number of matches from all
query probes derived from rules with category Ci. Using this information we
generate the approximated weight and confidence vectors for R, with which we
decide how to classify R into one or more categories in the classification scheme.

Weight vector: Consider a relation R and a hierarchical classification scheme
C={C1, C2, ..., Cn}, where each category Ci∈C is associated with a classification
rule κi→Ci. f(R, κi) represents the number of results when using κi to probe R.
The weight of relation R for Ci, W(R; Ci)=f(R, κi), is the number of answers
in R on category Ci.

Confidence vector: In the same setting as weight vector, the estimated confi-
dence of R for Ci, S(R;Ci), is:

S(R; Ci) =
S(R; Parent(Ci)) ∗ W(R; Ci)∑

Cj is a child of Parent(Ci)
W(R; Cj)

.

As a special case, S(R;“root”)=1.
W(R;Ci) defines the absolute amount of the results that relation R contains

about category Ci, while S(R;Ci) defines the relative amount of the results that
relation R contain about Ci.

As described above, a weight-based classification would classify a relation
into a category when the relation has a substantial number of results in the
given category. Alternatively, a confidence-based classification would classify a
relation into a category when a significant fraction of the results it contains are
of this specific category. In general, however, we are interested in balancing both
weight and confidence with two associated thresholds, τs and τc, respectively, as
captured in the following. Formally, to classify R into certain categories, we use
classification criterion described in the following.

Classification Criterion: Consider a classification scheme C with categories
{C1; C2; ...; Cn} and a relation R. R is classified into category Ci if it satisfies
all the following conditions:

– W(R;Ci)≥τw, S(R;Ci)≥ τc.
– W(R;Cj)≥τw, S(R;Cj)≥τc for any ancestor Cj of Ci.
– W(R;Ck)<τw or S(R;Ck)<τc for any child Ck of Ci.

where 0 ≤ τc < 1 and τw ≥ 1 are the given thresholds.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

694 G. Li et al.

With our hierarchical classification scheme, we classify the relations in a top-
down way. A new relation is first classified by the root-level classifier and then
recursively “pushed down” to the lower level classifiers. A relation R is pushed
down to the category Cj when W(R;Cj) and S(R;Cj) are no less than thresholds
τw (for weight) and τc (for confidence), respectively. If a category Ck can not
match with R, we can prune the whole subtree rooted at Ck. The final set of
categories, into which we classify R, is the approximate categories of R in C.

The probe-based method relies on category classifiers to define query probes
and obtain category match information for a relation. Unfortunately, classifiers
are not always perfect — sometimes they can wrongly classify relations into
incorrect categories and leave some relations that do not match any rules un-
classified. Here, we present a novel method to adjust the initial probing results
in order to avoid such potential errors. It is a common practice in the machine
learning community to report classification using a confusion matrix [16]. We
adapt this notion for use in our probing scenario.

Confusion Matrix: Consider a classification scheme with categories {C1;C2; ...;
Cn}, for each category Ci, there is a relevant relation Ri mapped with it. Con-
fusion Matrix M=(mij) is an n*n matrix, where mij is the number of matches
generated from Rj for query probe w.r.t. category Ci, divided by the number of
results in Rj.

In a perfect setting, the probes for Ci match only results in Ri and each result
in Ri matches exactly one probe for Ci. In this case the confusion matrix is the
identity matrix. The process to create confusion matrix is:
i) Generate the query probes from classification rules of the categories and

probe the relations w.r.t. the categories in the classification scheme.
ii) Create an auxiliary confusion matrix X=(xij) and set xij equal to the num-

ber of matches from Rj for query probe w.r.t. category Ci.
iii) Normalize the columns of X by dividing column j with the number of results

in Rj . The result is confusion matrix M.

Example 1. Suppose that we have a classifier for three categories C1=“C/C++”,
C2=“JAVA”, C3=“Delphi”, and there are three relations R1, R2, R3 with 2000,
1500, 1000 records for “C/C++”, “JAVA”, “Delphi”, respectively. After probing
these three relations with the three query probes generated from the classification
rules, we construct the following confusion matrix. Element m13= 100

2000 means
that it misclassifies 100 records of R1 into R3.

M =

⎧⎪⎪⎨
⎪⎪⎩

1600
2000

150
1500

80
1000

200
2000

1200
1500

20
1000

100
2000

60
1500

840
1000

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎨
⎩

0.8 0.1 0.08
0.1 0.8 0.02
0.05 0.04 0.84

⎫⎬
⎭

Interestingly, multiplying the confusion matrix with the weight vector that rep-
resents the exact correct number of results for each category, yields, the weight
vector with the number of results in each category as matched by the query
probes. For instance, in Example 1, there are exactly 2000 results for C1, 1500
results for C2 and 1000 results for C3, and the number of probe results are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 695

respectively 1830, 1420, 1000. We can infer the exact weight vector, EW , form
probe result and matrix M, where EW(C)=M−1 ∗W(C). Hence, when classify-
ing a relation, we will multiply M−1 with W(C) to obtain a better approximation
of the weight vector.

3.3 Attribute Mapping

After classifying a relation into certain relation categories, we have to classify
its attributes into the associated attribute categories, which can be performed
similarly with relation mapping described in Section 3.2. In addition, since at-
tributes have their own characteristics, we introduce some techniques to improve
the accuracy of attribute mapping in this section.

Each attribute of a relation is associated with a particular type, such as string,
number, date, etc., and different types capture different characteristics. More-
over, an attribute may be restricted with certain domain, such as attribute Age
(age of human beings), is any number between 0 and 150, since there is no
person whose age is larger than 150 or less than 0. Therefore, we introduce
prior-knowledge for attribute mapping.

Prior-knowledge: Consider relation category C with attribute categories {L1;
L2; ...Lp}. Each attribute category Li must satisfy the prior-knowledge χi, rep-
resented as: Li|=χi.

χi can be generated manually or automatically, and we generate it automat-
ically based on machine learning technique. Any attribute that does not satisfy
χi, cannot be mapped with Li. Therefore, we can generate a query probe, which
does not satisfy χi, to probe an unknown attribute Aj . If there are some results
returned for this query probe, it is obvious that the attribute category Li can-
not map to Aj ; otherwise, we probe Aj with the query probe that is generated
by the classification rules w.r.t Li, and approximate the count of the probing
results to represent the correlation of the two attributes. Accordingly, we can
more accurately create attribute mapping with the help of the prior-knowledge.

Example 2. Consider category Person(ID,Name,Age,Sex) with prior-knowledge:
1) ID|=Number(0,10000);2)Name|= String;3)Age|=Number[0, 150];4)Sex|={alter-
native of two values(e.g.male;female)}. A relation People has been mapped to
the relation category Person. Now we consider how to create attribute mapping
between them. Since there are only two values of Sex, we probe each attribute
of People through the query probe generated according to the prior-knowledge
of Sex: Select count(distinct probe-attribute) from People. If the result of this
query probe is larger than two, we can make sure this probe-attribute cannot be
mapped to Sex. Also, we probe each attribute of People through the query probe
generated according to the prior-knowledge of Age: Select probe-attribute from
People where probe-attribute>150 or probe-attribute<0. If the probe query does
not return empty, we make sure that probe-attribute cannot match with Age.

Formally, we introduce correlative matrix to create attribute mapping.

Correlative Matrix: Consider category C with attribute subcategories {L1;L2;
...Lp}, and each Li is associated with a prior-knowledge χi. Relation R with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

696 G. Li et al.

attributes {A1; A2; ...Aq} is relation mapping with C. The correlative matrix
Corr(C,R)={mij} is a p*q matrix. mij=0, if Aj does not satisfy χi; otherwise
mij is the number of results using the query probe generated by the classification
rule of Li, to probe Aj .

Relative Correlative Matrix: In the same setting as correlative matrix, the
relative correlative matrix RCorr(C,R)={rij} is a p*q matrix, and rij=

mij�p
k=1 mkj

.

Attribute Mapping Criterion: Consider category C with attribute subcate-
gories {L1;L2;...Lp} and relation R with attributes {A1; A2; ...Aq}. Li maps to
Aj if Corr(C,R)={mij} and RCorr(C,R)={rij} satisfy: rij≥τc and mij≥τw,
where τw, τc are thresholds of weight and confidence respectively.

Example 3. Consider category C=Person with attribute subcategories:ID,Name,
Age,Sex; Relation R=people (p id, p name, p age, gender). R is relation mapped
to C, and we demonstrate how to create attribute mapping between C and R . We
probe each attribute of R using the prior-knowledge of attribute subcategories in
C (the prior-knowledge in example 2) and get the correlative and relative correl-
ative matrixes. We can see each attribute of R exactly maps the corresponding
attribute of C with the help of prior-knowledge.

Corr(C,R) =

⎧⎪⎨
⎪⎩

p id p name p age gender
ID 1 0 0 0

Name 0 20 0 0
Age 0 0 2000 0
Sex 0 0 0 2

⎫⎪⎬
⎪⎭

RCorr(C,R) =

⎧⎪⎨
⎪⎩

p id p name p age gender
ID 1 0 0 0

Name 0 1 0 0
Age 0 0 1 0
Sex 0 0 0 1

⎫⎪⎬
⎪⎭

4 Reformulation

With the created schema mapping, we can reformulate the query issued to a
peer over its peer schema to the queries over the peer schemas of its relevant
peers, such that they can understand and answer it. We first define the standard
form query and local form query in our system.

Standard form query: A standard form query is the query composed of re-
lations and attributes of the relational categories and attribute categories in the
hierarchical classification scheme.

Local form query: A local form query of peer P is the query composed of the
relations and attributes of P ’s local peer schema.

Query reformulation with our method operates in three phases, which are
described in the following subsections separately.

4.1 Standardization

In the standardization phase, the peer needs to transform the received query
into the standard form query, which is represented by certain relation categories
and their corresponding attribute categories.

Consider the issued query is represented as a triple Q= <R, A, C>, where R
is a relation name, A is the attribute set composed of {A1; A2; ...; Ap}, C is the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 697

condition set (If the query contains more than one relation, we can decompose
it into multiple queries with single relation and then integrate them.).

We first find all the categories, {�1; �2; ...�n}, where each �i is mapped
to R, through the local schema mapping. Then we look at the attribute sub-
categories of �i, Ni={Ni1 ; Ni2 ; ...; Nip}, where Nik

is mapped with Ak. Let
relevantPeers(�i) and relevantPeers(Nik

) denote the sets of peers that have
classified some relations andattributes in �i andNik

, respectively. If Pi=relevant-
Peers(�i)

⋂
(
⋂p

k=1 relevantPeers(Nik
))�=Φ, �i has a schema mapping with R,

and we can reformulate Q to Qi by replacing R with �i and Ak with Nik
, and

send the standard form query Qi to the peers in Pi. In addition, we can get the
set of all the peers, P=

⋃n
i=1 Pi, which have relations mapped to R.

4.2 Localization

When the relevant peers receive the standard form query from the query initiator,
they need to reformulate it into their local form query over their own peer
schemas in order to execute it.

The reformulation process for transforming a standard form query into a local
form query is similar to the way described in Section 4.1. We also consider the
standard form query as a triple Q=<R, A, C>. We first find the set, S, composed
of local relations Si that map to R. If Si contains all the attributes in A, we
rewrite Q by replacing R with Si, and A with corresponding attributes in Si. In
some cases, the local peer cannot reformulate the standard form query Q into a
local form query with one relation, because it needs to join several relations to
answer Q. For example, if ∃Si∈S and there is an attribute Ak∈A, which is not
an attribute of Si, in this way, there must ∃Sj∈S that has an attribute Ak. If
A ⊆ Si

⋃
Sj , we can answer Q through joining Si and Sj ; otherwise we need to

further find more relation(s) to join with Si and Sj in order to answer Q.
After a relevant peer answers the reformulated local form query, it returns

the results that are encapsulated by the attributes in A, such that the query
initiator can recognize them.

4.3 Integration

When receiving the answers from relevant peers, the query initiator transforms
those answers from various peers represented by attributes of the standard form
query into the answers represented with its local attributes, and integrates these
results to return to the user.

Consider the issued query is in a triple Q=<R, A, C>, and its corresponding
reformulated standard form queries are represented as Q1<R1, A1, C1>;Q2<R2,
A2, C2>;...; Qn<Rn, An, Cn>. The mapping from the issued query to the stan-
dard form queries is one-to-many, but the mapping in reverse is one-to-one.
Therefore, the transformation of the attributes in answers is much easier than
query reformulation. Suppose a relevant peer returns its results of Qi <Ri, Ai,
Ci>, and since the querying peer has known the mapping from Q to Qi in
standardization phase, it can simply transform the attributes in the answers by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

698 G. Li et al.

Table 1. Data sources in our experiments

Dataset Schema # Relations # Attributes

Amalgam S1 15 99
Amalgam S2 27 53
Amalgam S3 5 27
Amalgam S4 9 40
THALIA S5 35 242

replacing the attributes in Ai with the corresponding attributes in A. Finally, it
integrates the results from all relevant peers and returns them to the user.

5 Experimental Study

In this section, we report performance study for evaluating our schema mapping
method. The proposed method was implemented in Java. We used the Amalgam
schema and data integration test suite [17] and THALIA benchmark [10] as our
experimental data sources. Table 1 shows the statistics of the datasets1. We eval-
uate our method from two aspects. First, we study the effectiveness of our schema
mapping strategy for matching two schemas. Second, we look at the performance
of schema mapping and query processing in a real P2P network setting.

5.1 Mapping Between Two Schemas

We first evaluate the quality of mappings obtained with our method between two
schemas in this section. Given two schemas, we first classify the relations and
attributes of either one schema and get the corresponding classification rules,
then we create schema mapping between them by classifying the relations and
attributes of the other schema with our probing strategy. We use precision and
recall to evaluate the quality of the obtained mappings. Precision is the fraction
of the number of correct relation mappings (Correct relation mapping means
both relations and their attributes are mapped correctly) and the number of
total obtained relation mapping. Recall is the fraction of the number of correct
relation mappings obtained and the number of total correct relation mappings.

Consider two schemas S and T , we denote the precision of probing T with S
as P−→

ST
, that is, S is the schema classified firstly. Similarly, P−→

TS
is the precision

of probing S with T. In addition, we define FST =FTS=
2∗P−→

ST
∗P−→

TS
P−→
ST

+P−→
TS

. These three

metrics are used to evaluate the precision of schema mappings between S and T.
In the same way, we define corresponding metrics for recall as R−→

ST
, R−→

TS
and

F ′
ST =F ′

TS=
2∗R−→

ST
∗R−→

TS
R−→

ST
+R−→

TS
.

Our method is evaluated in two cases. First, we create schema mappings with-
out prior-knowledge. Second, we create schema mappings with prior-knowledge.
1 There are 28 databases and 35 tables in THALIA. We transform THALIA data into

35 relation tables, denoted as S5, and we also create schema mapping between them.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 699

 40

 50

 60

 70

 80

 90

 100

S3S4S2S4S2S3S1S4S1S3S1S2

M
at

ch
in

g
Pr

ec
is

io
n(

%
)

Precision without prior-knowledge

P
P’
F

 60

 70

 80

 90

 100

S3S4S2S4S2S3S1S4S1S3S1S2

M
at

ch
in

g
R

ec
al

l(
%

)

Recall without prior-knowledge

R
R’
F’

 40

 50

 60

 70

 80

 90

 100

S3S4S2S4S2S3S1S4S1S3S1S2

M
at

ch
in

g
Pr

ec
is

io
n(

%
)

Precision with prior-knowledge

P
P’
F

 60

 70

 80

 90

 100

S3S4S2S4S2S3S1S4S1S3S1S2
M

at
ch

in
g

R
ec

al
l(

%
)

Recall with prior-knowledge

R
R’
F’

Fig. 4. Mapping between two schemas

Figure 4 describes the experimental results of matching 6 pairs of schemas from
S1 to S4, where P , P ′, R, R′, F and F ′ denote P−→

ST
, P−→

TS
, R−→

ST
, R−→

TS
, FST and

F ′
ST respectively.
The experiment results show that our method achieves high precision and

recall. When there is no prior-knowledge, the precision is about 55-75%, and
the recall is about 60-80%. Given some prior-knowledge, the accuracy of schema
mapping improves dramatically. The precision reaches 75-90%, and the recall
increases to 85-100%. Also, we can see that P−→

ST
and P−→

TS
do not make consid-

erable difference, which shows the stability of our method.

5.2 Mapping in PDMS

In this section, we evaluate our method in PDMS and compare its performance
with PeerDB [19]. The experimental environment consists of 32 PCs (thereinto,
8 PCs are super peers) with Intel Pentium 2.4MHz processor and 512M of RAM.
All the PCs are running on Windows XP operating system.

We classify some sample schemas using Bayes classifiers [5] into categories,
and the eight super peers maintain these categories. Each normal peer shares its
peer schema and joins one randomly chosen super peer by classifying its relations
into certain categories.

In this experiment, we first evaluate the quality of schema mappings generated
with the two approaches, then we compare the effectiveness of query processing
in PDMS with the two methods.

Quality of schema mapping: Similar to Section 5.1, we use precision and
recall to evaluate the quality of schema mappings for each of the schema from S1

to S5. Figure 5 shows the experimental results of our method (with and without
prior-knowledge) compared with that of peerDB (with 2 keywords annotated for
each relation and with 5 keywords annotated for each relation). Not surprisingly,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

700 G. Li et al.

 50

 60

 70

 80

 90

 100

S5S4S3S2S1

M
at

ch
in

g
Pr

ec
is

io
n(

%
)

Schemas

PeerDB(# of keywords=2)
PeerDB(# of keywords=5)

No prior-knowledge
With prior-knowledge

 50

 60

 70

 80

 90

 100

S5S4S3S2S1

M
at

ch
in

g
R

ec
al

l(
%

)

Schemas

PeerDB(# of keywords=2)
PeerDB(# of keywords=5)

No prior-knowledge
With prior-knowledge

Fig. 5. Schema mapping in PDMS

we can see that in PDMS our schema mapping method with prior-knowledge is
more effective than that without prior-knowledge. The precision and recall with
prior-knowledge are larger than 80% for most schemas. It can be observed that
our method is superior to the PeerDB approach for most schemas (except S3).
Generally, the precision and recall of our method beats that of PeerDB by 10%
to 20%. Moreover, PeerDB depends on the keywords annotated to a schema,
which must be generated manually. Annotating more keywords to a schema could
improve the recall, but degrades the precision. The experiment result shows that
our method has good schema mapping performance in PDMS whenever there
are overlap instances of the schemas.

Effectiveness of query processing: With the created schema mappings, we
evaluate the effectiveness of query processing of the two approaches. We also use
the notions of precision and recall for our evaluation. Here precision is defined
as the fraction of the number of correct returned answers to the total number
of returned answers, and recall is the fraction of the number of correct returned
answers to the total number of correct answers.

We generate six queries to evaluate the two methods, in which four queries
are based on Amalgam schemas and two are based THALIA schemas. There are
two queries that contain join operations. Figure 6 shows the experiment results.
Again, we can see that our method is more effective than the PeerDB approach.

100

90

80

70

60

50
Q6Q5Q4Q3Q2Q1

Q
ue

ry
 P

ro
ce

ss
in

g
Pr

ec
is

io
n(

%
)

Queries

PeerDB(# of keywords=2)
PeerDB(# of keywords=5)

No prior-knowledge
With prior-knowledge

100

90

80

70

60

50
Q6Q5Q4Q3Q2Q1

Q
ue

ry
 P

ro
ce

ss
in

g
R

ec
al

l(
%

)

Queries

PeerDB(# of keywords=2)
PeerDB(# of keywords=5)

No prior-knowledge
With prior-knowledge

Fig. 6. Query processing in PDMS

6 Conclusion

In this paper, we propose a method for effective schema mapping based on
classification and probing in a PDMS. We classify each peer schema into

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Schema Mapping in P2P Networks Based on Classification and Probing 701

certain categories through probing, and the relations in the same category can
be mapped to each other. We enhance the classification-based mapping by the
application of confusion matrix and prior-knowledge. We also present strategy
for reformulating query over a local peer schema to queries on various relevant
peer schemas for effective query answering. Our experimented results show that
our method achieves high accuracy for schema mapping on real datasets.

Acknowledgement

The work of Guoliang Li and Lizhu Zhou is in part supported by the National
Natural Science Foundation of China under Grant No.60573094, the National
Grand Fundamental Research 973 Program of China under Grant
No.2006CB303103, the National High Technology Development 863 Program
of China under Grant No.2006AA01A101, Tsinghua Basic Research Foundation
under Grant No. JCqn2005022, and Zhejiang Natural Science Foundation under
Grant No. Y105230.

References

1. K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. A framework for semantic
gossiping. SIGMOD Record, 31(4):505–516, 2002.

2. M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-
lopoulos. The hyperion project:from data integration to data coordination. SIG-
MOD Record, 32(3):53–58, 2003.

3. W. W. Cohen. Learning trees and rules with set-valued features. In AAAI, pages
709–716, 1996.

4. R. Dhamankar, Y. Lee, A. Doan, and et al. imap: Discovering complex semantic
matches between database schemas. In SIGMOD, 2004.

5. R. O. Duda and P. E. Hart. Pattern classication and scene analysis. In Wiley,
1973.

6. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and updates in
the coDB peer to peer database. In VLDB, 2004.

7. L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A system for automatic
classication of hidden-web databases. 21(1):1–41, 2003.

8. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do
for peer-to-peer. In WebDB, 2001.

9. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In ICDE, pages 505–516, 2003.

10. J. Hammer, M. Stonebraker, and O. Topsakal. THALIA: Test harness for the
assessment of legacy information integration approaches. In ICDE, 2005.

11. P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and classify: Catego-
rizing hidden-web databases. pages 61–78, 2001.

12. H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A balanced tree structure for
peer-to-peer networks. In VLDB, pages 661–672, 2005.

13. P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K. L. Tan. An adaptive peer-to-
peer network for distributed caching of olap results. In SIGMOD, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

702 G. Li et al.

14. J. Kang and J. Naughton. On schema matching with opaque column names and
data values. In SIGMOD, 2003.

15. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer to peer
systems: Semantics and algorithmic issues. In SIGMOD, 2003.

16. R. Kohavi and F. Provost. Glossary of terms. 30(2/3):271–274, 1998.
17. R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and V. Lee. Amalgam schema

and data integration test suite. www.cs.toronto.edu/∼miller/amalgam, 2001.
18. W. S. Ng, B. C. Ooi, and K. L. Tan. Bestpeer: A self-configurable peer-to-peer

system. In ICDE, 2002.
19. W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB:A p2p-based system for

distributed data sharing. In ICDE, 2003.
20. B. C. Ooi, Y. Shu, and K.-L. Tan. Relational data sharing in peer-based data

management systems. SIGMOD Record, 32(3):59–64, 2003.
21. J. R. Quinlan. C4.5: Programs for machine learning. In Morgan Kauf-mann Pub-

lishers, Inc., 1992.
22. P. Rodriguez-Gianolli, M. Garzetti, L. Jiang, and et al. Data sharing in the hype-

rion peer database system. In VLDB, 2005.
23. I. Tatatinov, Z. Ives, J. Madhavan, and A. H. et al. The piazza peer data manage-

ment project. SIGMOD Record, 32(3):47–52, 2003.
24. V. N. Vapnik. Statistical learning theory. In Wiley-Interscience, 1996.
25. J. Wang, J.-R. Wen, F. H. Lochovsky, and W.-Y. Ma. Instance-based schema

matching for web databases by domain-specific query probing. In VLDB, 2004.
26. B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In VLDB,

2001.
27. C. Yu and L. Popa. Constraint-based XML query rewriting for data integration.

In SIGMOD, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for
Enticing Non-cooperative Peers in Mobile-P2P Networks

Anirban Mondal1, Sanjay Kumar Madria2, and Masaru Kitsuregawa1

1 Institute of Industrial Science
University of Tokyo, Japan

{anirban,kitsure}@tkl.iis.u-tokyo.ac.jp
2 Department of Computer Science
University of Missouri-Rolla, USA

madrias@umr.edu

Abstract. We propose ABIDE, a novel bid-based economic incentive model for
enticing non-cooperative mobile peers to provide service in M-P2P networks. The
main contributions of ABIDE are three-fold. First, it encourages relay peers to act
as brokers for performing value-added routing (i.e., pro-actively search for query
results) due to bid-based incentives. Second, it integrates newly joined peers in
the system seamlessly by sharing the loads with the neighbouring brokers. This
helps the new peers to earn revenues in order to be able to obtain services. Third,
it considers effective data sharing among the peers. ABIDE also considers quality
of service, load, energy and network topology. Our performance study indicates
that ABIDE is indeed effective in increasing the number of service-providers in
M-P2P networks, thereby improving query response times and data availability.

1 Introduction

In a Mobile Ad-hoc Peer-to-Peer (M-P2P) network, mobile peers (MPs) interact with
each other in a peer-to-peer (P2P) fashion. Proliferation of mobile devices (e.g., laptops,
PDAs, mobile phones) coupled with the ever-increasing popularity of the P2P paradigm
[11] strongly motivate M-P2P network applications. M-P2P application scenarios in-
clude a pedestrian issuing a request for an available taxi or a car driver searching for a
restaurant nearby his current location. Such P2P interactions among mobile users are
generally not freely supported by existing wireless communication infrastructures.

The inherently ephemeral nature of M-P2P environments suggests that timeliness of
data delivery is of paramount importance in these applications. For example, if a pedes-
trian looking for an available taxi receives an answer after 20 minutes have already
elapsed since he issued the query, he may no longer find the answer to be useful. Fur-
thermore, data quality is also a major concern e.g., a mobile user requesting an image
could be interested in a high-resolution image.

Incidentally, existing incentive schemes [17,18] for M-P2P networks do not address
the issue of creating pro-active mobile peers to provide value-added routing service.
Moreover, they do not entice the non-cooperative peers in providing service (e.g., pro-
viding data to other MPs) to the network by allowing load-sharing so that peers can
generate revenues, thereby encouraging seamless participation of peers in the system.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 703–714, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

704 A. Mondal, S.K. Madria, and M. Kitsuregawa

Moreover, the existing schemes in [17,18] deal with data dissemination, while we con-
sider on-demand services. Notably, most peers in P2P systems do not provide any data
[5,8,10]. (Nearly 90% of the peers in Gnutella were free-riders [1].) Increased MP par-
ticipation in providing service to the network would lead to better data availability,
likely better data quality, higher available bandwidth and multiple paths to answer a
given query. Furthermore, existing schemes do not consider the issue of data quality,
which is of considerable importance for M-P2P users.

Given the requirement of timeliness in answering queries, relay MPs should pro-
actively perform value-added routing by trying to identify the paths in which the query
result could be found quickly and maintain the freshness of the paths. Hence, we pro-
pose ABIDE (A BID-based Economic model), which is a novel bid-based incentive
model for enticing non-cooperative relay peers to participate in providing service in M-
P2P networks. We designate our proposed model as ‘ABIDE’ because as we shall see
later, every MP benefits in terms of obtaining better service, if it abides by the model.

In ABIDE, an MP may provide ‘service’ by providing data to other MPs and per-
forming value-added routing by pro-actively searching for targetted peers for query
results. Each service in ABIDE is associated with a price (in terms of a virtual cur-
rency). ABIDE requires a data-requesting MP to pay the price of the data item to the
data-providing MP, thereby encouraging MPs to become data-providers. Data item price
depends upon several factors such as access frequency, data quality and estimated re-
sponse time for accessing the data item. Relay MPs earn a small constant amount of
currency for their services.

In our bid-based model, brokers collect bids from data/service providers and then
create a summary of recommendation based on the query preferences specified by the
users. Based on the bids and the application, users selects a single bid, depending upon
the price that a user wants to pay. After a bid is accepted, the requesting peer directly
requests the data from the data-providing peer. After the query results have reached the
requesting peer, it pays the commission to the broker MP. If a malicious peer avoids
paying the commission to the broker MP, the broker MP blacklists it and informs its
neighbours regarding the peer’s malicious behaviour as a deterrent measure.

In ABIDE, the relay MPs maintain indexes of the services available at other MPs
such as data stored at those MPs. The index at different MPs could be different. Using its
index, a relay MP can act as a broker to pro-actively search for targetted peers for query
results. The service-requesting MP needs to pay a broker’s commission (based on bid-
ding) to the relay MPs, which act as brokers, thereby encouraging them to pro-actively
search for query results.(If the relay MP’s index does not contain any information con-
cerning the queried service, it selectively forwards the query to its neighbours to earn a
relay commission.) Moreover, brokers could cache the paths of frequently queried ser-
vices, thereby reducing the communication traffic for querying. In the absence of such
brokerage, queries would always need to be broadcast (which would flood the network)
because there would be little incentive for any MP to cache the paths associated with
frequently queried services. Furthermore, a broker MP may also replicate data items
that are frequently queried in order to reduce the traffic.

ABIDE also facilitates load-sharing among the MPs as follows. When a broker MP
M becomes overloaded with too many requests, it transmits its index to relay MPs, who

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for Enticing Non-cooperative Peers 705

are willing to store its index. We shall designate such relay MPs as sub-brokers. M
identifies the sub-brokers by sending a message to its neighbours. Observe that newly
joined peers (which are likely to have zero revenue) and existing relay peers would be
willing to store the replica of M ’s index because it would provide them an opportunity
to earn some revenue by performing broker-related functions using M ’s index repli-
cated at themselves. Thus, they would be able to actively participate in the network
and obtain better service from the network. In essence, the system dynamically creates
brokers and sub-brokers based on load and network performance to effectively convert
non-cooperative relay MPs into broker MPs.

We define the revenue of an MP as the difference between the amount of virtual cur-
rency that it earns (by providing services) and the amount that it spends (by requesting
services). ABIDE provides an incentive for MPs to provide service to the network so
that they can earn more in order to be able to issue their own requests for services. The
main contributions of ABIDE are three-fold:

1. It encourages relay peers to act as brokers and sub-brokers for performing value-
added routing (i.e., pro-actively search for query results) due to bid-based
incentives.

2. It integrates newly joined peers in the system seamlessly by sharing the loads with
the neighbouring brokers. This helps the new peers to earn revenues in order to be
able to obtain services.

3. It considers effective data sharing among the peers.

ABIDE also considers quality of service, load, energy and network topology. Our per-
formance study indicates that ABIDE indeed increases the number of service-providers
in M-P2P networks, thereby improving query response times and data availability.

2 Related Work

Economic models have been discussed in [4,7,12] primarily for resource allocation in
distributed systems. A competitive micro-economic auction-based bidding model with
support for load-balancing has been proposed in [4]. The proposal in [7] uses game-
theoritic and trust-based ideas. The work in [12] examines economy-based optimal file
allocation. Incidentally, none of these works address the unique issues associated with
the M-P2P environment such as frequent network partitioning and mobile resource con-
straints. Moreover, they do not address free-riding and incentives for peer participation.

Works concerning free-riding include [5,6,8,10,13,14]. P2P-related free-riding has
been discussed in [5]. The works in [6,10,14] propose incentive schemes to combat
free-riding. The works in [8] discuss utility functions to capture user contributions,
while trust issues are examined in [13]. However, these works do not consider economic
models and brokerage to combat free-riding.

Incentive mechanisms for static peer-to-peer networks have been discussed in [15].
However, pre-defined data access structures (e.g., distributed hash tables and searching
routing tables), which are used for static P2P networks, are too static in nature to be
practically viable for mobile ad-hoc networks. As a single instance, distributed hash
tables [16] are not adequate for M-P2P networks because they assume the peers’ avail-
ability and fixed topology since they are designed for static P2P systems. In essence,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

706 A. Mondal, S.K. Madria, and M. Kitsuregawa

these data access structures have not been designed to handle mobility of peers and
frequent network partitioning, which are characteristic of mobile ad-hoc networks. In-
centive mechanisms have also been investigated for mobile ad-hoc networks [3,19], the
main objective being to encourage a mobile peer in forwarding information to other
mobile peers. However, the works in [3,19] do not consider brokerage model, bids and
M-P2P architecture. Data replication has been discussed for mobile ad-hoc networks
[9], but without considering incentives and prices of data items.

Economic ideas in the context of M-P2P networks have been discussed in [18,17].
While the proposal in [18] addresses issues concerning spatio-temporal data in M-P2P
networks, the work in [17] proposes opportunistic dissemination of data in M-P2P
networks, the aim being to ensure that the data reaches more people. In contrast, we
disseminate data on-demand because transmitting data to MPs, who may not actually
require the data, significantly taxes the generally limited energy resources of the MPs.
Furthermore, the proposals in [18,17] do not consider brokerage and bidding issues.

3 Data Sharing in ABIDE

Each MP maintains recent read-write logs (including timestamps) of its own data items
and the read-logs of the replicas stored at itself. As we shall see shortly, each MP uses
this information for computing the prices of the data items and replicas stored at it-
self. In ABIDE, each data item d is owned by only one MP, which can update d au-
tonomously anytime; other MPs cannot update d. Memory space of MPs, bandwidth
and data item sizes may vary. Load Li,j of an MP Mi at time tj equals (Ji,tj /Bi),
where Ji,tj represents the job queue length of Mi at time tj . Since job queue length
is a function of time, load is also a function of time. Bi is the normalized value of the
available bandwidth of Mi. Bi = (BMi / Bmin), where BMi represents the available
bandwidth of Mi and Bmin is a low bandwidth e.g., we have used Bmin = 56 Kbps.

Each query in ABIDE is a request for a data item. Queries are of the form (Qid, τS ,
τH , ε), where Qid is the unique identifier of the query, while τS and τH are the user-
specified soft and hard deadlines for answering the query. The significance of ε is that
the query issuing MP stops accepting bids after ε time units have elapsed since the time
of query issue (see Section 4). Given that a query Q for a request S is issued at time t0,
if Q is answered within time (t0 + τS) (i.e., within the soft deadline), the query issuing
MP MI pays the price μ of S to the query serving MP MS. However, if Q is answered
within the time interval [t0 + τS , t0 + tauS + tauH], MI pays a reduced price for S to
MS , thereby penalizing MS for delayed service. As we shall see later, the value of the
reduced price depends upon the time delay after the soft deadline τS i.e., more delay
implies more reduction in price. Finally, if Q is answered after the hard deadline τH ,
MI does not pay any currency to MS . Notably, such deadlines for answering queries
are necessary due to the inherently ephemeral nature of the M-P2P environment because
queries, which are answered after a certain threshold of time has already elapsed, are
generally not useful to the user.

In ABIDE, each data item d has a price μ (in terms of a virtual currency) that quan-
titatively reflects its relative importance to the M-P2P network. We assume that there
could be one original version of d and multiple replicas of d stored at different MPs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for Enticing Non-cooperative Peers 707

When an MP issues a query for a data item d, it pays the price of d to the MP serving
its request. The price μ of d depends upon d’s (recent) access frequency, average query
response times (w.r.t. deadlines) for queries on d and data quality of d. An MP MS

computes the price of a data item (or replica) d stored at itself in two steps: (a) MS

first computes the price μrec of d based on accesses to d during the most recent time
period. (We divide time into equal intervals called periods, the size of a period being
application-dependent.) (b) MS computes the moving average price μ of d based on
the previous N time periods. The moving average price is necessary to take spurious
spikes in accesses to d into consideration to ensure that d’s price actually reflects d’s
importance. MS computes μrec of d as follows:

μrec =
∫ t2

t1

∫ δ

0

(η dt × (1/δ2) dδ × τ × DQ × BAMS × PAMS) / JMS ,tj (1)

where [t2 − t1] represents a given time period and δ is the distance between the query
issuing MP MI and the query serving MP MS (i.e., the MP which stores d and serves
the query on d). Given that the positions of MI and MS during the time of query issue1

are (xI , yI) and (xS , yS) respectively, δ =
√

((xS−xI)2+(yS−yI)2) i.e., δ is Euclidean
distance. Observe how μrec decreases as δ increases. This is because when the distance
between MI and MS increases, the response time for queries on d also increases, hence
d’s price should decrease. In Equation 1, η is the access frequency of the given data
item d during the most recent time period. τ reflects the price reduction (i.e., penalty)
due to delayed service. Given that t0 is the time of query issue, and tq is the time when
the query results reached the query issuing MP, τ is computed as follows.

τ = μ if t0 ≥ tq ≥ (t0 + τS)

= μ × e−(tq−τS) if (t0 + τS) ≥ tq ≥ (t0 + τS + τH)
= 0 otherwise (2)

where τS and τH are the soft and hard deadlines of a given query respectively. DQ re-
flects the quality of data provided by MS for queries on d. DQ is essentially application-
dependent. For example, for applications in which image sharing is involved, image
resolution would determine data quality. Similarly, for applications in which (replica)
consistency is of considerable importance, data quality should be based on data con-
sistency. In general, each MP maintains a copy of the table Tε,DQ, which contains the
following entries: (x%, high), (y%, medium), (z%, low), where x, y, z are error-bounds,
whose values are application-dependent and pre-specified by the system at design time.
Essentially, we consider three discrete levels of DQ i.e., high, medium and low, and
their values are 1, 0.5 and 0.25 respectively.

In Equation 1, BAMS is the bandwidth allocated by MS for d’s download. BAMS

equals (
∑

Bi)/nd, where Bi is the bandwidth that MS allocated for the ith download
of d from itself during the most recent time period, while nd is the number of downloads
of d from MS. As BAMS increases, μrec increases because higher bandwidth implies
reduced response times for queries on d. PAMS is the probability of availability of MS .

1 We assume that the positions of MI and MS do not change significantly between the time of
query issue and the time of query retrieval.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

708 A. Mondal, S.K. Madria, and M. Kitsuregawa

When PAMS is high, the implication is that other MPs can rely more on MS to provide
d, hence μrec increases with increase in PAMS . JMS ,tj is the job queue length at MS

during time tj . μrec decreases with increase in the job queue of MS because when MS

is overloaded with too many requests, MS’s response time in answering queries on d
can be expected to increase.

After computing μrec, MS computes the moving average price μ of d. Notably, we
use the Exponential Moving Average (EMA), which is capable of reacting quickly to
changing access patterns of data items since it gives higher weights to recent access pat-
terns relative to older access patterns. This is consonance with the dynamically changing
access patterns that are characteristic of M-P2P networks. MS computes the price μ of
d as follows:

μ = (μrec − EMAprev) × 2/(N + 1)) + EMAprev (3)

where EMAprev represents the EMA that was computed for the previous time period,
and N represents the number of time periods over which the moving average is com-
puted. Our preliminary experiments suggest that N = 5 is a reasonably good value for
our application scenarios.

An MP MS earns virtual currency from accesses to its own data items and replicas
of others that are stored at itself, and MS spends currency when it queries for data
stored at other MPs. The revenue of an MP M is simply the difference between the
amount of virtual currency that M earns and M spends. When an MP joins the M-P2P
network for the first time, it has zero currency, hence it first needs to serve other MPs’
requests or share some load with neighbouring MPs and in lieu, earn some revenues
before it can start issuing its own queries, thereby preventing free-riding. Observe how
ABIDE’s economy-based paradigm of load-sharing, and replication of data and indexes
encourages MPs to increase their revenues, thereby ensuring that they obtain better
service from the M-P2P network.

4 Value-Added Routing by Relay MPs in ABIDE

This section discusses value-added routing by relay MPs in ABIDE. Let us henceforth
refer to a query issuing MP and a service-providing MP as MI and MS respectively.

Basic model of ABIDE: ABIDE provides an incentive to the relay MPs to pro-actively
search for the query results as opposed to just forwarding queries. Each MP maintains
an index of the services (i.e., data items stored at other MPs.) This index is built by
each MP on-the-fly in response to queries that are issued to it. Hence, different MPs
have different indexes. An MP MI issues a query Q using a broadcast mechanism.
When any given MP receives the broadcast query, it checks its index. If its index does
not contain the identifier of at least one MP that is associated with the query result, it
just forwards the query to earn the relay commission. Otherwise, it acts as a broker by
issuing a new query for finding the route to locate MPs that can answer the query.

Incidentally, the broker MP’s commission is significantly higher than that of the
relay MP’s commission, which encourages a larger number of non-cooperative relay
MPs to index more services, thereby providing them with a higher likelihood of being

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for Enticing Non-cooperative Peers 709

able to act as brokers. Broker MPs also cache paths for frequently requested services.
Hence, after the system has run for a certain period of time, the need for broadcasting
queries can be expected to be significantly reduced. A broker MP may also replicate
data items that are frequently queried in order to reduce the querying traffic. A given
service-providing MP MS may also allow a broker MP to store a replica of some of its
‘hot’ data items. In this manner, even if MS is disconnected, it can still earn revenues.
Notably, this also leads to better data availability.

ABIDE also facilitates load-sharing among broker MPs and relay MPs as follows.
When a broker MP M becomes overloaded2 with too many requests, it sends a message
to its neighbours to enquire which of its neighbouring relay MPs would be willing to
store a replica of its index. M ’s neighbouring relay MPs, which are willing to store a
replica of M ’s index, become the sub-brokers of M . The incentive for these sub-brokers
to store a replica of M ’s index is that they would be able to earn revenue by performing
broker-related functions using M ’s index replicated at themselves. This would facilitate
newly joined MPs and existing relay MPs to seamlessly integrate themselves in the sys-
tem by actively participating in the network. This effectively converts non-cooperative
relay MPs into broker MPs.

Once a given broker MP obtains the route to one or more MPs that can serve the
query, it acquires information about the price of the service at each of these MPs. Thus,
the broker MP stores information of the form (S, MPid, μ, Path), where S is the
service being requested, MPid is the unique identifier of the MP that can serve the
query, and μ is the price of S. Path is simply a linked list data structure containing the
list of MPs, which fall in the path between the broker MP and the service-providing MP.
In case of multiple paths between the broker MP and the service-providing MP, Path
could be a pointer to a set of linked lists (or a two-dimensional array).

Observations concerning the network topology in ABIDE: Suppose a data item d,
which exists at multiple MPs albeit possibly with varying quality of data, is being re-
quested as service. Observe that the number of relay nodes between a query issuing
MP MI and a broker MP can vary. Moreover, the number of relay MPs between broker
MPs and a given data providing MP MS can also vary. Thus, the number of hops in the
path from MI to a given service-providing MP MS can differ. Furthermore, there can
be multiple paths from MI to the same MS and these paths may pass through multiple
brokers. To avoid conflicts among brokers, the broker that occurs first in the traversal
starting from MI would make the bid, while the other brokers in the path would only
act as relay MPs.

Interestingly, it is possible for a given MS Ma to be a one-hop neighbour of MI .
However, some other MS Mb may be able to provide better data quality and/or lower
response time than Ma (e.g., due to low bandwidth between Mb and MI). Hence, the
role of the broker MPs would still be relevant in such cases. In essence, the broker MPs
provide MI with different paths for accessing MI ’s requested data item d or its replica.
This allows MI to choose the copy of d, which best suits MI ’s requirements in terms
of response time and data quality.

2 A broker MP considers itself to be overloaded when its capacity utilization is 60% of its
maximum capacity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

710 A. Mondal, S.K. Madria, and M. Kitsuregawa

Algorithm ABIDE Query Issuing MPs
Inputs: (a) Q: Query (b) d: Queried data item
(1) Broadcast its query Q for a data item d
(2) Receive all the bids that arrive at itself within ε time units of issuing the query
(3) Evaluate the score γ for each bid
(4) Select the bid for which the value of γ is highest and select the corresponding broker MP Sel

(5) Send message to selected broker MP Sel

(6) Receive the route to the selected MS from the broker MP
(7) Obtain data item from the selected MS

(8) Send the broker commission to the selected broker MP Sel

end

Fig. 1. ABIDE algorithm for Query Issuing MP MI

Algorithms in ABIDE: Figure 1 depicts the algorithm executed by a query issuing
MP, while Figure 2 indicates the algorithm executed by the other MPs, which can either
be broker MPs or relay MPs. As Lines 1-2 of Figure 1 indicate, the query issuing MP
MI broadcasts3 its query and waits until ε time units have elapsed (since the time of
query issuing) to collect the bids from all the brokers. Then MI determines which bid
to accept by computing a score γ, based on the estimated query response time and the
data quality (see Line 3). MI computes γ, where γ equals (a × RT + b × DQ). Here,
RT and DQ represent the estimated query response time and data quality respectively.
The values of RT and DQ are provided to MI by the broker MP. a and b are weight
coefficients which determine the relative weights of RT and DQ, such that 0 ≤ a, b ≤
1 and a + b = 1. The values of a and b must be specified by the user because different
users have different preferences concerning the relative importance of query response
time and data quality essentially due to varying user requirements. DQ is computed in
the same manner as discussed for Equation 1. RT equals the data item size divided by
the sum of the bandwidths at the intermediate hops between MS and MI .

MI selects the bid with highest value of γ, and selects the broker MP Sel who made
that bid (see Line 4). As Lines 5-7 indicate, MI initiates conversation with selected
broker to obtain the query results, which are transmitted from the query serving MP to
the query issuing MP via the route suggested by the broker MP.

The algorithm in Figure 2 is executed by MPs, which are either broker MPs or relay
MPs. As indicated by Lines 3-14, if the index of a given MP contains the identifier of
the queried data item, it acts as a broker, otherwise it just forwards the query. In Line 14,
observe that different brokers may bid different amounts of currency for the same data
item (or its replica). The amount β of currency that a broker MP bids depends upon the
quality of the data item that it is able to provide and the estimated response time for the
query issuing MP MI to receive the data item. Given a data item d of price μ, a given
broker MP computes β as (μ × α), where α is a percentage of the data item price,
hence 0 ≤ α ≤ 1. α depends upon the urgency of MI . Thus, we compute α as e−τS ,

3 After a period of time, if MI knows a broker MP that can serve the query, broadcast would not
be necessary.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for Enticing Non-cooperative Peers 711

Algorithm ABIDE Brokers and Relay MPs
Inputs: (a) Q: Query (b) d: Queried data item
(1) Receive the broadcast query Q for data item d from query issuing MP MI

(2) Check own index to list the identifier of all the MPs that store d into a set SetMS

(3) if SetMS is empty
(4) Forward Q to its one-hop neighbours
(5) else
(6) for each MS M in SetMS

(7) Issue a query to find the route(s) to M

(8) List all the routes from itself to M into a set SetRoute

(9) if SetRoute is empty
(10) Forward Q to the one-hop neighbours
(11) else
(12) Select the shortest route R from itself to M based on bandwidths at the intermediate

hops
(13) Obtain price and data quality information from M

(14) Collate all the price, MS , response time and data quality information with the value of its
bid β, and send to MI

(15) Wait for MI ’s reply
(16) if MI accepts bid
(17) Obtain identifier of selected MS from MI

(18) Send a message to selected MS to send the data item to MI

(19) Receive broker commission from MI

end

Fig. 2. ABIDE algorithm for broker MPs and relay MPs

where τS is the soft deadline of the query. Observe that increase in τS implies decrease
in β due to less urgency.

5 Performance Evaluation

This section discusses our performance evaluation. In our experiments, MPs move
according to the Random Waypoint Model [2] within a region of area 1000 metres
×1000 metres. The Random Waypoint Model is appropriate for our application scenar-
ios, which involve random movement of users. A total of 200 data items are uniformly
distributed among 50 MPs i.e., each MP owns 4 data items. Each query is a request
for a data item. In all our experiments, 20 queries/second are issued in the network,
the number of queries directed to each MP being determined by the Zipf distribution.
Communication range of all MPs is a circle of 100 metre radius. Table 1 summarizes
our performance study parameters.

Our performance metrics are average response time (ART) of a query, data avail-
ability (DA) and average querying traffic. ART equals ((1/NQ)

∑NQ

i=1(Tf − Ti)),
where Ti is the time of query issuing, Tf is time of the query result reaching the query is-
suing MP, and NQ is the total number of queries. DA is computed as ((NS/NQ)×100),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

712 A. Mondal, S.K. Madria, and M. Kitsuregawa

Table 1. Performance Study Parameters

Parameter Default value Variations

No. of MPs (NMP) 50

Zipf factor (ZF) 0.9

Queries/second 20

Bandwidth between MPs 28 Kbps to 100 Kbps

Probability of MP availability 50% to 85%

Size of a data item 50 Kb to 350 Kb

Memory space of each MP 1 MB to 1.5 MB

Speed of an MP 1 metre/s to 10 metres/s

Size of message headers 220 bytes

where NS is the number of queries that were answered successfully and NQ is the total
number of queries. In ABIDE, queries can fail because MPs, which store queried data
items, may be unavailable due to being switched ‘off’ or owing to network partitioning.
Average querying traffic is the average number of hops required for query processing in
ABIDE. Incidentally, none of the existing proposals for M-P2P networks address eco-
nomic auction-based revenue models. Hence, as reference, we adapt a non-economic
model NE, in which querying occurs by means of the broadcast mechanism. NE does
not provide any incentive for the MPs to contribute to the M-P2P network. NE does not
perform replication and it does not cache query paths.

 0

 50

 100

 150

302010

A
R

T
 (

s
)

THR

ABIDE
NE

(a) ART

100

60

20

302010

D
A

THR

ABIDE
NE

(b) DA

10

5

302010

A
v

e
r
a
g

e
 Q

u
e
r
y

 h
o

p
-
c
o

u
n

t

THR

ABIDE
NE

(c) Query Hop-Count

Fig. 3. Effect of revenue threshold

Effect of variations in the number of MPs above threshold revenue: Threshold rev-
enue THR is defined as the ratio of the total revenue of the system to the total number
of MPs. In other words, THR is the average revenue in the system. Figure 3 depicts
the results concerning the effect of variations in the number of MPs above THR. The
results indicate that when the revenue of more MPs exceed THR, ART decreases and
data availability increases. This is due to more MPs participating in providing service

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ABIDE: A Bid-Based Economic Incentive Model for Enticing Non-cooperative Peers 713

as their revenues increase, thereby implying more memory space for holding data items
and replicas and more available bandwidth. Moreover, increase in the number of MPs
acting as brokers and sub-brokers provide multiple paths for locating a given queried
data item. Thus, ABIDE outperforms NE essentially due to the economic incentive na-
ture of ABIDE (which encourages higher MP participation) and load-sharing among
brokers and sub-brokers. NE shows relatively constant ART and DA since NE is inde-
pendent of revenue. The presence of brokers and sub-brokers also reduces the number
of hops required for accessing data items because they maintain index of data items
and they cache the paths of frequently queried data items, which explains the results in
Figure 3c.

150

100

50

20161284

A
R

T
 (

s
)

No. of queries (103)

ABIDE
NE

(a) ART

100

60

20

20161284

D
A

No. of queries (103)

ABIDE
NE

(b) DA

 0

 5

 10

20161284
A

v
e
r
a
g

e
 Q

u
e
r
y

 H
o

p
-
c
o

u
n

t

No. of queries (103)

ABIDE
NE

(c) Query Hop-Count

Fig. 4. Performance of ABIDE

Performance of ABIDE: We conducted an experiment using default values of the pa-
rameters in Table 1. Figure 4a indicates that the ART of both ABIDE and NE increases
with time due to the skewed workload (ZF = 0.9), which overloads some of the MPs
that store ‘hot’ data items, thereby forcing queries to incur high waiting times and con-
sequently high ART. However, over time, more MPs start participating as brokers and
sub-brokers in case of ABIDE, thereby providing more memory space and more band-
width for replication of ‘hot’ data items, which facilitates load-balancing. This explains
the increasing performance gap between ABIDE and NE in terms of ART and DA. In
Figure 4b, DA eventually plateaus due to reasons such as network partitioning and un-
availability of some of the MPs. Furthermore, unlike ABIDE, NE does not maintain the
cached routes to the ‘hot’ data items and it does not perform replication, hence ABIDE
outperforms NE in terms of query hop-counts. Query hop-counts decrease over time for
ABIDE due to replication at the brokers and sub-brokers, and path caching.

6 Conclusion

We have proposed ABIDE, a novel economic bid-based incentive model for enticing
non-cooperative mobile peers to provide service in M-P2P networks. ABIDE encour-
ages relay peers to act as brokers for performing value-added routing due to bid-based

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

714 A. Mondal, S.K. Madria, and M. Kitsuregawa

incentives, integrates newly joined peers in the system seamlessly by sharing the loads
with the neighbouring brokers and considers effective data sharing among the peers.

References

1. E. Adar and B. A. Huberman. Free riding on Gnutella. Proc. First Monday, 5(10), 2000.
2. J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A performance comparison of

multi-hop wireless ad hoc network routing protocol. Proc. MOBICOM, 1998.
3. L. Buttyan and J.P. Hubaux. Stimulating cooperation in self-organizing mobile ad hoc net-

works. Proc. ACM/Kluwer Mobile Networks and Applications, 8(5), 2003.
4. D.F. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms for load balancing

in distributed computer systems. Proc. ICDCS, pages 491–499, 1988.
5. M. Fischmann and O. Gunther. Free riders: Fact or fiction? Sep 2003.
6. P. Golle, K.L. Brown, and I. Mironov. Incentives for sharing in peer-to-peer networks. Proc.

Electronic Commerce, 2001.
7. C. Grothoff. An excess-based economic model for resource allocation in peer-to-peer net-

works. Proc. Wirtschaftsinformatik, 2003.
8. M. Ham and G. Agha. ARA: A robust audit to prevent free-riding in P2P networks. Proc.

P2P, pages 125–132, 2005.
9. T. Hara and S.K. Madria. Data replication for improving data accessibility in ad hoc net-

works. To appear in IEEE Transactions on Mobile Computing, 2006.
10. S. Kamvar, M. Schlosser, and H. Garcia-Molina. Incentives for combatting free-riding on

P2P networks. Proc. Euro-Par, 2003.
11. Kazaa. http://www.kazaa.com/.
12. J. F. Kurose and R. Simha. A microeconomic approach to optimal resource allocation in

distributed computer systems. Proc. IEEE Trans. Computers, 38(5):705–717, 1989.
13. S. Lee., R. Sherwood, and B. Bhattacharjee. Cooperative peer groups in NICE. Proc. INFO-

COM, 2003.
14. N. Liebau, V. Darlagiannis, O. Heckmann, and R. Steinmetz. Asymmetric incentives in peer-

to-peer systems. Proc. AMCIS, 2005.
15. First Workshop on the Economics of P2P Systems.

http://www.sims.berkeley.edu/research/conferences/p2pecon. 2003.
16. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. Proc. ACM SIGCOMM, 2001.
17. O. Wolfson, B. Xu, and A.P. Sistla. An economic model for resource exchange in mobile

Peer-to-Peer networks. Proc. SSDBM, 2004.
18. B. Xu, O. Wolfson, and N. Rishe. Benefit and pricing of spatio-temporal information in

Mobile Peer-to-Peer networks. Proc. HICSS, 2006.
19. S. Zhong, J. Chen, and Y.R. Yang. Sprite: A simple, cheat-proof, credit-based system for

mobile ad-hoc networks. Proc. IEEE INFOCOM, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling

for Dynamic XML Data

Jun-Ki Min1, Jihyun Lee2, and Chin-Wan Chung2

1 Korea University of Education and Technology, Korea
jkmin@kut.ac.kr

2 Korea Advanced Institute of Science and Technoloy, Korea
{hyunlee,chungcw}@islab.kaist.ac.kr

Abstract. In order to efficiently determine structural relationships
among XML elements and to avoid re-labeling for updates, much re-
search about labeling schemes has been conducted, recently. However,
a harmonic support of efficient query processing and updating has not
been achieved. In this paper, we propose an efficient XML encoding and
labeling scheme, called EXEL, which is a variant of the region num-
bering scheme using bit strings. In order to generate the ordinal and
insert-friendly bit strings in EXEL, a novel binary encoding method is
devised. Also, we devise a labeling scheme for a newly inserted node
which incurs no re-labeling of pre-existing labels. These encoding and
inserting methods are the bases of efficient query processing and the com-
plete avoidance of re-labeling for updates. Moreover, EXEL supports all
structural relationships in XPath and the relationships can be checked
by SQL statements supported by an RDBMS. Finally, the experimen-
tal results show that EXEL provides fairly reasonable query processing
performance while completely avoiding re-labeling for updates.

Keywords: Dynamic XML, Labeling and Update.

1 Introduction

Due to its flexibility and a self-describing nature, XML [2] is considered as the
de facto standard for data representation and exchange in the Internet. In order
to search the irregularly structured XML data, path expressions are commonly
used in XML query languages, such as XPath [4] and XQuery [14].

Basically, XML data comprises hierarchically nested collections of elements,
where each element is bounded by a start tag and an end tag that describe
the semantics of the element. Generally, an XML data is represented as a tree
such as DOM [12]. The tree of XML data is implicitly ordered according to the
visiting sequence of the depth first traversal of the element nodes. This order is
called the document order.

Given a tree of XML data, the path information and the structural relation-
ships of nodes should be efficiently evaluated. Diverse approaches such as path
index approaches [7,3] and the reverse arithmetic encoding [10] provide help for
obtaining the list of nodes which are reached by a certain path.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 715–726, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

716 J.-K. Min, J. Lee, and C.-W. Chung

In order to facilitate the determination of structural relationships of nodes
(e.g., the ancestor-descendent relationship), various labeling methods such as
region numbering scheme [17,9] and prefix based scheme [15] have been proposed.
In addition, structural modifications to the XML data can occur. For example,
insertions of nodes change the structure of a tree of XML data, and the assigned
labels may need to be changed. Thus, many researches [1,5,16,11,8] have been
conducted in order to provide an efficient way to handle labels for updating XML
data. However, they still cannot entirely remove re-labeling for insertions.

Our Contribution. In this paper, we devise a novel XML encoding and labeling
scheme, called EXEL (Efficient XML Encoding and Labeling). EXEL is effective
to compute the structural relationships as well as to support the incremental
update. The contributions of the paper are as follows:

– Devise a novel binary encoding: we devise a novel binary encoding
method to generate bit strings which are ordinal and insert-friendly. We
extend the region numbering scheme using the bit strings instead of decimal
values. The efficient query processing and complete avoidance of re-labeling
are based on our binary encoding method.

– Completely remove re-labeling for updates: we devise a labeling
scheme for a newly inserted node. In our scheme, re-labeling of pre-existing
labels for insertion can be completely avoided.

– Support full axes: EXEL supports all structural relationships in XPath
and the relationships 1 can be checked by SQL statements supported by an
RDBMS.

The remainder of the paper is organized as follows. In Section 2, we review
various XML labeling schemes. We describe the details of EXEL in Section 3
and present an update method of EXEL in Section 4. Section 5 contains the
results of our experiments. Finally, in Section 6, we summarize our work.

2 Related Work

In the region numbering scheme [17,9], each node in a tree of XML data is
assigned a region consisting of a pair of start and end values which are determined
by the positions of the start tag and the end tag of the node, respectively.
Even though all structural relationships represented in XPath can be determined
efficiently using <start, end, level>, an insertion of a node incurs re-labeling of its
following and ancestor nodes. [9,1] have tried to solve the re-labeling problem by
extending a region and using float-point values. However, the re-labeling problem
can not be avoided for frequent insertions after all.

In the prefix labeling scheme [15,5,11], each node in a tree of the XML data
has a string label which is the concatenation of the parent’s label and its own
identifier. The structural relationships among nodes can be determined by a
1 In XPath, there are 13 axes. In this paper, we do not consider namespace, and

attribute axes since they are not structural relationships.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling for Dynamic XML Data 717

string function to extract a prefix of a string and string comparison operations.
These function and operators degrades a query performance. Dewey labeling
scheme [15] and Binary labeling scheme [5] do not require re-labeling for ap-
pending leaf nodes. However, they cannot avoid the re-labeling for insertions
between two sibling nodes and an insertion of a node between parent and child
nodes. Recently proposed ORDPATH [11] is tolerant for insertions. ORDPATH
follows a labeling principle similar to the Dewey labeling scheme. In order to
avoid re-labeling, it uses only odd numbers for initial labels. When an insertion
occurs, it uses an even number between two odd numbers and concatenates an
odd number. Although ORDPATH is more bearable for insertions than other
approaches, they cannot also avoid re-labeling for an insertion between parent
and child nodes.

The prime number labeling scheme [16] uses an inherent feature of the prime
number which has only one and itself as its common divisors. The label of a
node is a product of its parent node’s label and its self-label (i.e., a unique
prime number). For the order sensitive query, the prime number labeling scheme
uses the simultaneous congruence (SC) values. Even though re-labeling for nodes
can be avoided for insertions, the SC values should be re-calculated, and the re-
calculation consumes much time. Also, an insertion between parent and child
nodes incurs the re-labeling.

In addition, a dynamic quaternary encoding, QED [8], that can be applied to
different labeling schemes, has been proposed. In QED, the label size increases
by two bits for inserting a node. In contrast, the label size increases by one bit
for the insertion in our scheme.

3 Efficient XML Encoding and Labeling (EXEL)

In this section, we present a novel binary encoding method for labeling XML
data and an enhanced encoding method to reduce label length. We use the bit
strings in the region numbering scheme instead of decimal values for the efficient
query processing and the complete elimination of re-labeling for updates.

3.1 Binary Encoding in EXEL

The original region numbering scheme uses decimal values for labels which are
sensitive of updates. Therefore, we propose a novel efficient XML encoding and
labeling method, called EXEL. It uses bit strings which are ordinal as well as
insert-friendly. The bit strings for labeling are generated by the following binary
encoding method:

(1) The first bit string b(1) = 1.
(2) Given the ith bit string b(i), if b(i) contains 0 bit then b(i+1) = b(i)+10.

Otherwise, b(i + 1) = b(i)0k1, where k is the length of b(i).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

718 J.-K. Min, J. Lee, and C.-W. Chung

Definition 1. Lexicographical order (<)
(i) 0 is lexicographically smaller than 1 (0 < 1).
(ii) if two bit strings a and b are the same(=), a is lexicographically equal to b.
(iii) Given bit strings a, b, a′ and b′, ab < a′b′, if only if a < a′ or a = a′ and
b < b′ or a = a′ and b is null, where length(a) = length(a′).

Bit strings generated by the above binary encoding method have the lexico-
graphical orders presented in Definition 1. For example, 1<101<111<1110001.
Also, according to the above generating rule, the bit string always ends with 1.
Thus, our encoding scheme satisfies the following property.

Property 1. Given bit strings s11 and s21 generated by the above binary encod-
ing method, if s11 < s21, then s1 < s2 in the lexicographical order.

Theorem 1 presents the space requirement of our binary encoding scheme.

Theorem 1. In order to encode N ordinal values, the binary encoding of EXEL
needs 2�log2log2N+1� − 1 bits, which is about 2log2N − 1 bits.

Proof. (i) 1-bit string (i.e., 1) can represent only 1 value. (ii) 3-bit string
(i.e., 101, 111) can represent 2 values. (iii) 7-bit string (i.e., 1110001,...,1111111)
can represent 23 values. (iv) consequently, by the mathematical induction on k,
(2k − 1)-bit string can represent 22k−1−1 values.

Let N = 20 + 21 + ... + 22k−1−1 =
∑k

i=1 22i−1−1.
By the mathematical induction, N =

�k
i=1 22i−1−1 < 2 ∗ 22k−1−1 = 22k−1

.

Therefore k=�log2log2N+1�. Consequently, 2k−1=2�log2log2N+1� − 1 ≈ 2log2N − 1.

3.2 Enhancement of Binary Encoding

In the binary encoding method of EXEL, k-bit string has superfluous (k −
1)/2 bits consisting of only 1 in order to guarantee the lexicographical order
among variable length bit strings. For example, the 7-bit strings from 1110001
to 1111111 can represent only 23 = 8 ordinal values since the first three bits
are 111 and the last bit is 1. In order to remove the superfluous part, we de-
vise another binary encoding method with a predefined length of a bit string.
The predefined length is obtained from the total number of ordinal values which
would be encoded. For labeling a tree of XML data, it is determined by the total
number of nodes. The bit string with a predefined length is generated by the
following rule:

Let N be the total number of values.
(1) The first bit string b(1) = 0log2N1.
(2) Given ith bit string b(i), b(i + 1) = b(i) + 10.

According to the above rule, a bit string ends with 1 like the original binary
encoding method, and it satisfies Property 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling for Dynamic XML Data 719

r

d e f g

m n v

s t u

{000001,101011}

{000011,
000101}

{000111,
001001}

{001011,
100101}

{100111,
101001}

{001101,
001111} {010001,

010011}

{010111,
011001}

{011011,
011101}

{011111,
100001}

{010101,100011}

a b

c

Fig. 1. An example of a tree labeled by EXEL

3.3 Region Labeling in EXEL

In EXEL, we extend the region numbering scheme using ordinal bit strings rather
than decimal values. The start and end values are ordinal bit strings generated
by the binary encoding of EXEL. Fig 1 shows an example of a tree labeled by
EXEL using the binary encoding with a predefined length.

EXEL uses the parent information to determine the parent and child relation-
ships in order to support efficient updates although the original region numbering
scheme uses the level information. The use of the parent information also results
in an improvement of the query performance. For the simplicity, the parent in-
formation (i.e., the start value of the parent’s label) is not presented in Fig 1.

The following theorem presents the space requirement of EXEL using the
binary encoding with a predefined length.

Theorem 2. Given the total number of nodes N , the binary encoding using
a predefined length in EXEL needs log22N + 1 bits for each bit string. Also,
the region labeling in EXEL requires 3(log22N + 1) for start, end, and parent
information.

3.4 Query Processing

EXEL supports all XPath axes (i.e., ancestor, descendent, parent, child, follow-
ing, preceding, following-sibling, and preceding-sibling) as the same way in the
region numbering scheme because EXEL is based on the original region num-
bering scheme. For example, in Fig 1, f is an ancestor of t since sf (= 001011) <
st(= 011011) and et(= 011101) < ef (= 100101), where (sx,ex) is the region of a
node x.

For many years, intensive research on storing and managing XML data as
the relational data have been conducted. By using an RDBMS, we can utilize
the stable repository as well as the efficient query optimizer and the executor.
Therefore, we store XML data into relational tables. For a node x in a tree of
XML data, the relational table stores its region (sx, ex) and its parent’s infor-
mation psx. All above conditions for the corresponding axes in the XPath can
be expressed by simple SQL statements supported by an RDBMS. For example,
the SQL statement to find all descendents of a node f in Fig 1 is SELECT *
FROM NODE WHERE 001011 < start AND end < 100101.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

720 J.-K. Min, J. Lee, and C.-W. Chung

4 Update

In this section, we present the update behaviors of EXEL. Since the deletion does
not incur the re-labeling of nodes, we present the algorithm for the insertion.

4.1 Labeling for Update

The algorithm MakeNewBitString makes a new bit string between two pre-
existing bit strings. This algorithm can be applied to the original binary encoding
and the binary encoding with a predefined length.

⊕
denotes the concatenation

of two bit strings.

Algorithm MakeNewBitString(leftB, rightB)
begin
1. if length(leftB) > length(rightB) then newB := leftB

�
1;

2. else newB := (rightB with the last bit changed to 0)
�

1;
3. newB := newB

�
1;

4. return newB;
end

For example, when we insert two bit strings successively between 101 and 111,
the first one is 1101 (101<1101<111) and second one is 11011 (1101<11011<111).
For bit strings generated by our binary encoding method, the lexicographical
order has a property as follows.

Property 2. Given bit strings s11 and s21 generated by the binary encoding
method of EXEL, if s11 < s21, then s11 < s201 and s111 < s21.

For example, let s11 = 000011 and s21 = 000101, then 000011 < 0001001 and
0000111 < 000101. Through the above property, we can explain that a new bit
string generated by the algorithm MakeNewBitString preserves the lexicograph-
ical order among pre-existing bit strings.

Theorem 3. The bit string generated by the algorithm MakeNewBitString pre-
serves the lexicographical order.

Proof. If length(leftB) > length(rightB), then leftB < newB(=leftB
�

1) (by De-

finition 1) and newB < rightB (by Property2). Otherwise, given leftB = s11 and

rightB = s21, newB(=s20
�

1) < rightB(=s21) (by Definition 1), and leftB(=s11)

< newB(=s201) (by Property 2)

4.2 Update Processing

There are three kinds of insertions in XML data according to the positions in
which nodes are inserted; inserting a child of a leaf node, inserting a sibling and
inserting a parent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling for Dynamic XML Data 721

Algorithm InsertChildOf(cur)
begin
1. snew := MakeNewBitString(scur, ecur);
2. enew := MakeNewBitString(snew, ecur);
3. psnew := scur;
4. Insert new node with snew, enew, and psnew;
end

The algorithm InsertChildOf inserts a node as a child of a leaf node cur. In
EXEL, a region of a child node is contained in that of its parent node. Thus, a
region of a inserted node new, (snew, enew) should satisfy scur < snew < enew <
ecur. The algorithm MakeNewBitString is used to make the start and end values
of a node new. Additionally, the parent information of new, psnew will be the
start value of cur (i.e., scur). For example, in Fig 1, a node a is inserted into a
child of a leaf node m. The region of a, (sa, ea) should satisfy sm < sa < ea < em.
Thus, sa=0011101, ea=00111011, and psa=001101. Algorithms of inserting a
sibling and a parent (e.g., in Fig 1, inserting b and c, respectively) are similar to
that of inserting a child. We omit them for want of space.

The insertion of a parent incurs the increase of levels of its all descendants
in the original region numbering. However, EXEL keeps the parent information
instead of the level. Even if a node is inserted as an ancestor, the parents of
the descendent are still unchanged except the child of the inserted node. Con-
sequently, EXEL guarantees the complete avoidance of re-labeling for insertions
in any positions even between parent and child nodes.

Even in case of a subtree insertion, the labeling can be efficiently handled. We
first apply our labeling method to the subtree. Second, we generate a new bit-string
x according to the inserting point (p, q) using the algorithm MakeNewBitString,
then truncate the last bit (i.e., ‘1’) of x. Let the truncated bit-string be x′. We
complete labeling for the subtree by attaching x′ as a prefix into the labels of the
subtree’s nodes. Since the prefixes of subtree’s nodes are equal, lexicographical or-
ders among labels of subtree’s nodes are preserved. Note that, in the lexicograph-
ical order, p � x′ < q. Thus, by Definition 1-(iii), labels of subtree’s nodes (whose
prefixes are x′) are greater than p and smaller than q. Therefore, the generated
labels still keep the lexicographical order among the pre-existing labels.

5 Experiments

We empirically compared the performance of EXEL with the those of region
numbering scheme, the prefix labeling schemes (i.e., ORDPATH and QED-
PREFIX), and the prime numbering scheme using synthetic data as well as
real-life XML data sets.

5.1 Experimental Environment

The experiments were performed on an Intel Pentium 3GHz with 1GB mem-
ory, running Window XP. The XML data sets were stored on an RDBMS,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

722 J.-K. Min, J. Lee, and C.-W. Chung

Table 1. XML Data Set

Data Name Size(MB) # of nodes
XM1 1 33152

XMark XM50 50 1390697
XM115 115 3231322

Shakespeare S7 7.7 328778

Table 2. Database size

Labeling Scheme DB Size(MB)
EXEL2 (EXEL1) 147(163)
Region Numbering 119

QRDPATH 140
QED-PREFIX 161

Prime 146

Table 3. Query Set

Name Query Definition Name Query Definition
XQ1 //bidder/ancestor::open auction SQ1 //SPEAKER/ancestor::ACT
XQ2 //parent//city SQ2 //ACT//LINE
XQ3 //name/parent::person SQ3 //SCENE/parent::ACT
XQ4 //person/name SQ4 //ACT/TITLE
XQ5 //category/following::person SQ5 //ACT[3]/following::SPEECH
XQ6 //buyer/preceding::category SQ6 //TITLE/preceding::ACT
XQ7 //person[2]/following-sibling::person SQ7 //ACT[6]/following-sibling::ACT
XQ8 //item[46]/preceding-sibling::item SQ8 //SPEECH[40]/preceding-sibling::SPEECH

PostgreSQL 8.1. We have implemented two versions of EXEL; EXEL1 and
EXEL2 using the original binary encoding and the binary encoding with a pre-
defined length, respectively. The storage spaces according to the encoding meth-
ods have been observed. In order to show the efficiency of EXEL for the query
processing and the update processing, we compared EXEL with other representa-
tive labeling methods; the region numbering scheme, ORDPATH, QED-PREFIX
and the prime numbering scheme. In our experiments, QED was applied to pre-
fix labeling scheme, and we call it QED-PREFIX. In database, we store each
element name, its label, and its parent’s label according to the labeling schemes.
We evaluated EXEL using XMark data [13] and Shakespeare data [6]. The char-
acteristics of the data sets are summarized in Table 1.

The queries used in our experiments are described in Table 3. The first char-
acter in a query name indicates the data set on which the query is executed:
‘X’ denotes XMark, and ‘S’ is for Shakespeare. We evaluated the query perfor-
mance for all axes in XPath. The number in a query name denotes the type
of a query according to the axis contained in the query (i.e., 1 for ancestor, 2
for descendent, 3 for parent, 4 for child, 5 for following, 6 for preceding, 7 for
following-sibling, and 8 for preceding-sibling). All experiments were repeated 10
times and we used the average of the processing times except the minimum and
maximum values.

5.2 Experimental Results

Query Performance. In our experiments, a given XPath query was trans-
formed to the corresponding SQL statement according to labeling schemes, and
the SQL statements were executed on a database. A query parsing time and a
query translation time are similar and very small for all labeling schemes. There-
fore, in this paper, we present only SQL execution time. The query execution
time over various sized data sets are shown in Fig 2. The notation NT means
NOT MEASURED due to excessive processing time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling for Dynamic XML Data 723

(a) XM1 (b) XM50

(c) XM115 (d) S7

Fig. 2. Query execution time

First of all, ORDPATH and QED-PREFIX should additionally use a string
function to extract prefix of a string to compute structural relationships. The use
of the string function degrades their performance. In Fig 2(b), the performance of
EXEL is about 1.5 times better than that of ORDPATH and 2 times than QED-
PREFIX for the query XQ1. As the data size increases, differences of processing
time increases.

For queries with ancestor (i.e.,XQ1), descendent (i.e.,XQ2), following(i.e.,X5)
and preceding (i.e.,XQ6) relationships, the region numbering scheme is better
than EXEL since the label size of the region numbering scheme is smaller than
that of EXEL. However, the performance of EXEL is close to that of the region
numbering scheme compared with other labeling schemes.

Additionally, for finding a parent (i.e., XQ3), children (i.e., XQ4) and siblings
(i.e., XQ7 and XQ8), the difference of the query performance among the labeling
schemes is not considerable due to the use of the parent information. However,
EXEL is still better than ORDPATH and QED-PREFIX.

The prime numbering scheme shows bad performance for ancestor and de-
scendent relationships since it uses the mod operation which is more expensive

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

724 J.-K. Min, J. Lee, and C.-W. Chung

Table 4. The performance of inserting

Inserting a child
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 31 0 16 0
ORDPATH XM1 31 0 XM50 32 0

QED-PREFIX 31 0 5 0
Region numbering 156 11205 15203 468736

EXEL 15 0 15 0
ORDPATH XM11 5 0 XM115 15 0

QED-PREFIX 16 0 16 0
Region numbering 3485 109368 27203 1089457

Inserting a sibling
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 47 0 688 0
ORDPATH XM1 47 0 XM50 922 0

QED-PREFIX 63 0 906 0
Region numbering 235 17039 21890 717133

EXEL 187 0 1469 0
ORDPATH XM11 282 0 XM115 3359 0

QED-PREFIX 234 0 4922 0
Region numbering 5484 167772 38750 1666222

Inserting a parent
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 31 1 1656 1
ORDPATH XM1 63 3344 XM50 5734 141572

QED-PREFIX 63 3344 6350 141572
Region numbering 125 11429 19141 469031

EXEL 453 1 3703 1
ORDPATH XM11 609 32667 XM115 10266 330135

QED-PREFIX 834 32667 13016 330135
Region numbering 3938 109612 31187 1089687

than the comparison operations for integers and bit strings. For order sensitive
queries (i.e., query type 5, 6, 7 and 8), the performance is poorer than those of
other labeling schemes since SC-values should be used to compute the document
order of a node. Moreover, it takes very long time to compute SC values by an
algorithm in [16] even for small data. Thus, we could not measure the query time
for the order sensitive queries for over 1MB data.

Consequently, EXEL is superior to the prefix labeling scheme and the prime
numbering scheme over all cases. Also, EXEL is comparable with the region
numbering scheme than others. This is achieved by the binary encoding scheme
generating the ordinal bit strings which can be effectively adopted to the region
numbering scheme.

Upate Performance. We evaluated the performance of three kinds of inser-
tions; inserting a child node of a leaf node, inserting a next sibling node of a
node, and inserting a parent node. In our experiments, we excluded the prime
numbering scheme since it requires very expensive re-calculations of SC values
even for small data. The influence of inserting a subtree on pre-existing labels
is the same as that of inserting a node. Therefore, we omitted the experiment
of inserting a subtree. In order to evaluate update performance, we randomly
selected a node (a leaf node for inserting a child) for each kind of insertion and
inserted a node as its child, next sibling, or parent. For fair comparisons, we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Encoding and Labeling for Dynamic XML Data 725

used the same node for all labeling schemes. Table 4 shows the performance of
inserting a node.

In the region numbering scheme, the re-labeling was inevitable for all kinds
of insertions. For inserting a child to a leaf node, other labeling schemes did
not require re-labeling after the insertion. For inserting a next sibling node, in
EXEL and ORDPATH, re-labeling of nodes is not incurred. However, in order
to generate a label for a newly inserted node, they need to know the label of
the next sibling. The performance of EXEL to find the following-sibling of a
node is better than those of other labeling schemes, so the time spent to insert
a sibling node in EXEL is smaller than those in others. For inserting a node
between parent and child nodes, ORDPATH should re-assign labels for the child
and its all descendents. EXEL keeps the parent information which is invariant
for insertions of ancestors except a parent. Therefore, in EXEL, only one update
was incurred. EXEL needs the labels of the previous and next sibling nodes to
generate a new label for an inserted node. However, the time to find labels of
siblings is much smaller than the time for re-labeling.

In summary, EXEL achieves the complete removal of re-labeling for insertions.
Therefore, EXEL can save much time for updates. Since the time measure smaller
than 100ms is unstable and less significant, the comparison of execution time over
100ms shows that the update performance of EXEL is 2.3 times on the average
and up to 3.8 times better than those of ORDPATH, with the performance gap
increasing as the size of XML data gets larger.

Storage Space. Table 2 shows the size of the databases where XM50 is stored
using each labeling scheme. EXEL2 reduces the space requirement effectively.
EXEL2 requires an additional scan of data to count the number of nodes before
labeling. However, the time for the preprocessing is much smaller than the total
storing time. Although EXEL2 uses three binary coding values (i.e., start, end,
and parent’s start), the space requirement is only slightly larger than ORDPATH
and Prime numbering scheme. However, the query performance of EXEL is bet-
ter than them as shown through the experiment results. Moreover, the database
size of QED-PREFIX is bigger than EXEL2. EXEL needs a larger space than
the region numbering scheme due to the use of the insert-friendly bit string.
However, the significant improvement of the update performance according to
the use of the bit strings compensates for the space overhead.

6 Conclusion

We propose EXEL, an efficient XML encoding and labeling method which sup-
ports efficient query processing and updates. A novel binary encoding method
used in EXEL generates ordinal and insert-friendly bit strings. EXEL is a variant
of the region numbering scheme using bit strings generated by the novel binary
encoding method. EXEL supports all axes in XPath, and the conditions to com-
pute the structural relationships can be simply expressed by SQL statements
of an RDBMS. Furthermore, we proposed a labeling method for a newly
inserted node, so EXEL removes the re-labeling overhead entirely unlike other

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

726 J.-K. Min, J. Lee, and C.-W. Chung

existing labeling schemes. The experimental results show that EXEL provides
fairly reasonable query performance. Also, the update performance of EXEL is
better than those of existing labeling schemes, with performance gap increasing
as the size of XML data gets larger.

Acknowledgements. This research was supported by the Ministry of Infor-
mation and Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-0603-0031.

References

1. T. Amagasa and M. Yoshikawa. QRS: A Robust Numbering Scheme for XML
documents. In Proc. of ICDE 2003, pages 705–707, 2003.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation,
http://www.w3.org/TR/REC-xml, 2004.

3. C.-W. Chung, J.-K. Min, and K.-S. Shim. APEX: An Adaptive Path Index for
XML Data. In Proc. of ACM SIGMOD 2002, pages 121–132, 2002.

4. J. Clark and S. DeRose. XML Path Language(XPath) Version 1.0. W3C Recom-
mendation, http://www.w3.org/TR/xpath, 1999.

5. E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. of
PODS 2002, pages 271–281, 2002.

6. R. Cover. The XML Cover Pages. http://www.oasis-open.org/cover/xml.html,
2001.

7. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proc. of VLDB 1997, pages 436–445, 1997.

8. C. Li and T. W. Ling. QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In Proc. of ACM CIKM 2005, pages 501–508, 2005.

9. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Expressions.
In Proc. of VLDB 2001, pages 367–370, 2001.

10. J.-K. Min, M.-J. Park, and C.-W. Chung. XPRESS: A Queriable Compression for
XML Data. In Proc. of ACM SIGMOD 2003, pages 122–133, 2003.

11. P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In Proc. of ACM SIGMOD 2004, pages 903–
4908, 2004.

12. R. W. Philippe Le Hegaret and L. Wood. XML Path Language(XPath) Version
1.0. http://www.w3.org/DOM, 2005.

13. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:
A Benchmark for XML Data Management. In Proc. of VLDB, pages 974–985, 2002.

14. D. C. Scott Boag, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C Recommendation,
http://www.w3.org/TR/xquery/, 2005.

15. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and Querying Ordered XML Using a Relational Database Sys-
tem. In Proc. of ACM SIGMOD 2002, pages 204–215, 2002.

16. X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In Proc. of ICDE 2004, pages 66–78, 2004.

17. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proc. of
ACM SIGMOD 2001, pages 425–436, 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML
Using Structural Patterns

Dimitri Theodoratos and Xiaoying Wu

Department of Computer Science,
New Jersey Institute of Technology, USA

{dth,xw43}@njit.edu

Abstract. XML is by now the de facto standard for exporting and exchanging
data on the web. The need for querying XML data sources whose structure is
not fully known to the user and the need to integrate multiple data sources with
different tree structures have motivated recently the suggestion of keyword-based
techniques for querying XML documents. The semantics adopted by these ap-
proaches aims at restricting the answers to meaningful ones. However, these ap-
proaches suffer from low precision, while recent ones with improved precision
suffer from low recall.

In this paper, we introduce an original approach for assigning semantics to
keyword queries for XML documents. We exploit index graphs (a structural sum-
mary of data) to extract tree patterns that return meaningful answers. In contrast
to previous approaches that operate locally on the data to compute meaningful
answers (usually by computing lowest common ancestors), our approach oper-
ates globally on index graphs to detect and exploit meaningful tree patterns. We
implemented and experimentally evaluated our approach on DBLP-based data
sets with irregularities. Its comparison to previous ones shows that it succeeds in
finding all the meaningful answers when the others fail (perfect recall). Further,
it outperforms approaches with similar recall in excluding meaningless answers
(better precision). Since our approach is based on tree-pattern query evaluation,
it can be easily implemented on top of an XQuery engine.

1 Introduction

XML is by now the de facto standard for exporting and exchanging data on the web. XML
data are represented in a tree structured form.1 Structured query languages for XML are
based on the specification of tree patterns to be matched against the data tree.

The semistructured nature of XML poses problems when it comes to query data on
the web using query languages based on tree patterns. First, XML data does not have to
comply with a schema and writing a Tree Pattern Query (TPQ) in this context becomes
intricate. Second, even if the data complies with some schema, the syntax of a structured
language like XQuery is much more complex than a keyword query and therefore, not
appropriate for the naive user. Third, a user might not have full knowledge of the schema
of the document. Then, formulating a TPQ that retrieves the desired results without

1 ID/IDREF links would require the modeling of XML documents as graphs but we ignore these
features here for simplicity.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 727–739, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

728 D. Theodoratos and X. Wu

being too general can be extremely cumbersome. Finally, data sources usually export
data on the web under different structures even if they export the same information.
Since elements may be ordered differently in these structures, a single TPQ is not able
to retrieve the desired information from all of them.

These issues have been identified early on and attempts have been made to exploit
keyword-based techniques used by current search engines on the web for HTML doc-
uments. Two main modifications have to be made to these techniques so that they are
applicable to XML documents. First, they have to be able to distinguish between val-
ues/text (data) and tags/elements (metadata). Second, they have to be able to return
fragments of the documents that contain the keywords, as this is appropriate for XML,
instead of links to documents. Several approaches suggest keyword-based queries as
standalone languages [16,10,5]. Others, extend structured query languages for XML
(e.g. XQuery) with keyword search capabilities [6,14].

The problem. Keyword queries usually return to the user a large percentage of XML
document fragments that are meaningless (that is, the keywords are matched to unre-
lated parts of the document). To cope with this problem most approaches assign se-
mantics to queries using some variation of the concept of Lowest Common Ancestor
(LCA) of a set of nodes in a tree [16,10,5,19]. However, in most practical cases, the
information in the XML tree is incomplete (e.g. optional elements/values in the schema
of the document are missing), or irregular (e.g. different structural patterns coexist in
the same document). For instance, examining the DBLP data set (data collected in May
2006) we found that almost 10% of the ‘book’ entries and over 1% of ‘article’ entries do
not have an author while almost all ‘proceedings’ entries do not have authors (this latter
one is reasonable and expected). In such cases, these approaches, even if they succeed
to retrieve all the meaningful answers, they comprise only a tiny percentage of mean-
ingful answers in their answer set. Most of the answers are meaningless. In other words,
these approaches have low precision. Our experiments in Section 6 with DBLP-based
data sets show that in some cases their precision falls below 1% for some approaches.
Clearly, such a low precision is a serious drawback for those approaches.

A recent approach [14] introduces the concept of Meaningful Lowest Common An-
cestor Structure (MLCAS) for assigning semantics to keyword queries. It also adds new
functionality to XQuery to allow users to specify optional structural restrictions on the
data selected by the keyword search. The goal is to improve the precision of previous
approaches. However, the percentage of meaningful answers returned by this approach
(i.e. the recall) is low when the data is incomplete. In our experiments in Section 6, the
recall of the MLCAS approach falls below 60% for several cases of incomplete XML
data. Clearly, the poor recall cannot be improved by further imposing structural restric-
tions. This performance is not satisfactory for data integration environments for which
this approach is intended.

Our approach. In this paper we suggest an original approach for assigning seman-
tics to keyword queries for XML documents. The originality of our approach relies on
the use of structural summaries of the XML document for identifying structural pat-
terns (in the form of TPQs) for a given query. Using a transformation for TPQs we
identify those of them (called meaningful TPQs) that return meaningful answers. Previ-
ous approaches identify meaningful answers by operating locally on the data (usually

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 729

computing lowest common ancestors of nodes in the XML tree). In contrast, our ap-
proach operates globally on structural summaries of data to compute meaningful TPQs.
This overview of data gives an advantage to our approach compared to previous ones.

Contribution. Our main contributions are the following:

• We introduce a simple keyword query language for XML that allows the speci-
fication of elements and values of elements (atomic predicates) (Section 3). This
language allows the user to specify queries without knowledge of the structure of
the XML tree, and without knowledge of a complex TPQ language like XQuery.

• We define structural summaries of data called index graphs. We show how index
graphs can be used to compute a set of TPQs for a keyword query that together
compute the answer of that query (Section 4).

• Based on a transformation for the TPQs of a query we determine those of them
that are meaningful. The meaningful TPQs are used to assign semantics to keyword
queries (Section 5).

• Since the meaningful TPQs are tree pattern queries they can be evaluated using any
XQuery engine. Therefore, their execution can profit from optimization techniques
developed up to now for XQuery (e.g [11,1,4]).

• We compare our approach with other prominent keyword-based approaches and
also with the MLCAS approach. We analyse cases where our approach succeeds in
returning meaningful answers that escape other approaches. We also analyse cases
where our approach succeeds in excluding meaningless answers that are returned by
other approaches.

• We have implemented and experimentally evaluated our approach both on complete
and incomplete real XML data. Our approach shows better recall compared to previ-
ous ones. In addition, it allows for a better precision among approaches with similar
recall (Section 6).

2 Related Work

A number of papers deal with the assignment of meaningful semantics to keyword-
based query languages for XML [16,10,5,14,19]. All of them are based on some vari-
ation of the concept of Lowest Common Ancestor (LCA). The query language in [5]
allows also some primitive structural restrictions to be expressed. The approach ML-
CAS [14] provides an extension of XQuery to allow users to query an XML document
without full knowledge of the structure. We experimentally compare our approach with
the three approaches in [16,5,14] in Section 6. In [19] the concept of Smallest Lowest
Common Ancestor (SLCA) is used to assign semantics to keyword queries. SLCAs are
defined to be LCAs that do not contain other LCAs. This semantics is similar to that of
the MLCAS approach.

In order to cope with low precision some approaches extend the database techniques
with information retrieval techniques. In this direction, they rank the answers of key-
word search queries on XML documents according to their estimated relevance [5,8].
Information retrieval systems using ranking functions may trade recall for precision.
We view our keyword query language as database query language. Therefore, we do

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

730 D. Theodoratos and X. Wu

not employ any ranking functions. Our goal is to not miss any meaningful answer and
to exclude as many meaningless answers as possible.

Some languages employ approximation techniques to search for answers when the
initial query is too restricted to return any. They either relax the structure of the queries
or the matchings of the queries to the data [12,2]. In contrast to our language, these
languages return approximate (not exact) answers.

Several papers focus on providing efficient algorithms for evaluating LCAs for key-
word queries [16,10,5,14,19,9]. Our approach is different and does not have to explicitly
compute LCAs of nodes in the XML tree. In contrast, it computes a number of meaning-
ful TPQs for keyword queries from a structural summary of the data tree (index graph).
TPQs can be evaluated directly using an XQuery engine.

3 Data Model and Keyword Queries

We present in this section the data model and our simple keyword-based query
language.

3.1 Data Model

Let E be an infinite set of elements that includes a distinguished element r, and V be an
infinite set of values. Symbols e, and v (possibly with indices) refer systematically to
an element, and a value respectively.

As is usual, we model XML documents as trees. Nodes in an XML tree are labeled by
elements or values. In particular, the root node of an XML tree is the only node labeled
by element r. Values can label only leaf nodes. For simplicity we assume that the same
element does not label two nodes on the same path. Further, attributes of elements in an
XML document are modeled as (sub)elements.

Figure 1 shows three XML trees T1, T2, and T3 from different data sources that
record bibliographic information in different formats (a slight extension of an example
introduced in [14]). T1 and T3 categorize the data based on the publication year, while
T2 categorizes the data based on the type of publication (article or book). Still, in T1

the year of the publications is specified as a child element of a ‘bib’ node, while in T3

there is no ‘bib’ node, and the ‘book’ and ‘article’ nodes are children of a ‘year’ node
that indicates their year of publication.

We are interested in retrieving information by issuing the same keyword query
against all these data sources, even though information is structured differently in each
one of them. Therefore, we view all these XML trees as one tree T rooted at r.

3.2 Keyword Query Language

Our query language allows the specification of element keywords and value keywords
associated with elements (atomic predicates on elements).

Definition 1. A keyword query is a set of constructs each of them being an expression
of the form: (a) an element e, or (b) a predicate e = V , where V , the annotation of e, is
a set of values {v1, . . . , vk}, k ≥ 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 731

Suppose that we want to find the title and year of publications authored by “Mary”
[14]. We formulate this request as the keyword query Q1 = [year, author = {Mary},
title]. We use Q1 as a running example on this paper.

The answer of a keyword query is based on the concept of query embedding.

Definition 2. An embedding of a keyword query Q to an XML tree T is a mapping M
of the elements of Q to nodes in T such that: (a) An element e of Q is mapped by M
to a node in T labeled by e, and (b) If an element e has an annotation V (that is, a
predicate e = V is specified in Q), then the image of e under M has a child value node
labeled by a value in V .

We initially define keyword query answers as follows:

the roots of
resulting by merging
Tree T is the tree

Tree T3

title author
author

author
title

author
author “XQuery”

“John”

book

year

“2000”
“C++”

author

“Mary”

bib bib

article

author“1999”

article article

r

year

title title
title

year

“1999”

“XML” “Bob”
“Mary”

author

“Joe”

“Mary”

bib

book

title

article

bib

year

“XML”
“XQuery”

“2000”

“John”
“C++”

author

author
“Bob”

article

author author

“Mary”

year

“1999”

r

titletitle

article

author

“Joe”

Tree T1
Tree T2

year

article
“1999”

“Mary”

book

title

“XML” “Bob” “John”

author

“XQuery”

year
“2000”

“C++”

article article

author
“Mary”

“Joe”

r

T1, T2 and T3.

Fig. 1. An XML Tree T

Definition 3. Let Q be a keyword query and T be an XML tree. An answer of Q on T
is a subtree Ta of T rooted at r such that: (a) there is an embedding M of Q to Ta, and
(b) the leaf nodes of Ta are images under M of an element of Q or the child nodes of
the image of an element node in Q (if it has one). The set of all the answers of Q on T
is called answer set of Q on T .

Figure 2 shows four of the answers of the keyword query Q1 on the XML tree T of
Figure 1. More specifically, these answers correspond to embeddings of Q1 to the XML
tree T1. The keyword query is able to retrieve with one query the title and year of the
publications of Mary from different parts of the XML tree, even though these parts
structure the data in different ways.

The previous definition of the answer set of a keyword query accepts any possible
embedding of Q to T . This generality allows embeddings that do not relate elements
and values in the way the user was expecting when formulating the query. We call
the answers corresponding to these embeddings meaningless answers. For instance, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

732 D. Theodoratos and X. Wu

(b)(a) (d)

articleyear

r

“XML” “Mary” “XQuery”“Mary”“Mary”“C++”“C++”“Mary”

“1999”

article

title

bib

r

year

bib

book

author

year

“1999” “1999”“2000” author title

bookyear article

bib

r

book

title author

r

bib

article

authortitle

bib

(c)

Fig. 2. Four answers of Q1 on T

answer of Q1 in Figure 2(a) correctly corresponds to a publication (a book in this case)
authored by “Mary”. However, this is not the case with the answers of Q1 shown in
Figures 2(b), (c) and (d). In each one of them, year and/or title values do not correspond
to a publication authored by “Mary” even though these values appear in an answer
with “Mary”. In Section 5, we will present a technique that excludes these subtrees and
returns answers to the user that are meaningful.

4 Evaluating Keyword Queries Using TPQs

We show now how keyword queries can be evaluated using TPQs. We first discuss
index graphs for XML trees. Then, we use index graphs to construct a set of TPQs
whose answers together form the answer set of a given keyword query. The TPQs of a
keyword query provide the basis for defining meaningful semantics for such queries in
the next section.

4.1 Index Graphs

Given a partitioning of the nodes of an XML tree T , an index graph for T is a graph G
such that: (a) every node in G is associated with a distinct equivalence class of element
nodes in T , and (b) there is an edge in G from the node associated with the equivalence
class a to the node associated with the equivalence class b, iff there is an edge in T from
a node in a to a node in b. Index graphs have been referred to with different names in
the literature including “path summaries”, “path indexes” and “structural summaries”.
They differ in the equivalence relations they employ to partition the nodes of the XML
tree which includes simulation and bisimulation [15,13] or even semantic equivalence
relations [17]. Index graphs have been extensively studied in recent years in both the
“exact” [7,15,3] and the “approximate” flavor [13]. A common characteristic of these
approaches is that the index graph is used as a back end for evaluating a class of path
expressions without accessing the XML tree. To this end, the equivalence classes of the
XML tree nodes are attached to the corresponding index graph nodes. Here we define
index graphs where the equivalence classes are formed by all the nodes labeled by the
same element in the XML tree. Figure 3 shows the index graph G of the XML tree T
of Figure 1.

In contrast to other approaches, the equivalence classes of the XML tree nodes are not
kept with the index graph. Therefore, keyword queries are ultimately evaluated on the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 733

authortitle

bib

year

r

book article

Fig. 3. Index graph G

author=
{Mary}{Mary}

author=

book

bib

r

(a)

year

bib

r

article

(b)

title

year

title

book

Fig. 4. Two TPQs of Q1 on G: (a) U1, (b) U3

XML tree. We use index graphs to support the evaluation of a keyword query through
the generation of an equivalent set of TPQs.

4.2 TPQs for a Keyword Query

If G is the index graph of an XML tree T , we say that T underlies G. Given a keyword
Q and an index graph G, Q can be evaluated by computing a set of TPQs whose answers
taken together are equal to the answer of Q on any XML tree underlying G. Intuitively,
a TPQ satisfies both: the keyword query requirements and the structural constraints of
the index graph.

Definition 4. Let Q be a keyword query and G be an index graph. A TPQ of Q on
G is a TPQ U without descendant precedence relationships which is rooted at a node
labeled by r and satisfies the following conditions:
(a) There is a mapping M from the elements of Q to the nodes of U such that element

e is mapped by M to a node labeled by e. If V1, . . . , Vk are the annotations of all
the elements in Q that are mapped to the same node n in U , n is annotated by
V1 ∩ . . . ∩ Vk . Two nodes in a path in U are not labeled by the same element, and
every leaf node of U is the image of an element of Q under M .

(b) There is a mapping M ′ from the nodes of U to the nodes of G that respects labeling
elements and child precedence relationships. �

Figure 4 shows two of the TPQs of the keyword query Q1 on the index graph G of
Figure 3.

We define an answer of a TPQ Q on an XML tree T to be a subtree of T which
matches Q. The child value nodes of the matching element nodes of T are also included
in an answer. The answer set of a TPQ on T is the set of all the answers of Q on T . The
following proposition shows that the answers of a keyword query Q on an XML tree
T can be computed by determining all the TPQs of Q on the index graph of T and by
computing their answers on T .

Proposition 1. Let Q be a keyword query, G be an index graph, and U1, . . . , Uk, k ≥
1, be all the TPQs of Q on G. Let also A, A1, . . . , Ak be the answer sets of
Q, U1, . . . , Uk, respectively, on an XML tree underlying G. Then A = ∪i∈[1,k]Ai. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

734 D. Theodoratos and X. Wu

Consider the XML tree T (Figure 1) and its index graph G (Figure 3). Consider also our
keyword query Q1 and two of its TPQs on G, U1 and U3, shown in Figure 4. One can
see that the answer of Q1 on T shown in Figure 2(a) is also an answer of U1. Similarly,
the answer of Q1 on T shown in Figure 2(d) is also an answer of U3.

5 Using TPQs to Define Meaningful Answers

In this section, we assign semantics to our keyword query language that returns mean-
ingful answers. In contrast to previous approaches which exclude embeddings of the
query to the XML tree [16,5,14,19], our approach excludes TPQs of the query on the
index graph of the XML tree. In this sense, our approach relies both on data and on
structural patterns of data, instead of relying exclusively on data.

Based on the results of the previous section, we consider that, given an XML tree T
(and its index graph G), the answer of a keyword query on T is the union of the answers
of its TPQs on G. However, some of these TPQs may return meaningless answers.
Consider, for instance, our query Q1 and the XML tree of Figure 1 along with its index
graph G of Figure 3. The TPQ U3 of Q1 on G shown in Figure 4(b) returns (among
others) the answer shown in Figure 2(d). This answer is meaningless. Therefore, TPQ
U3 should not be used for computing the answers of Q1 on T . Analogously to query
answers, we characterize a TPQ of a query Q on G as meaningful with respect to T
if it returns a meaningful answer on T . Otherwise, it is characterized as meaningless
with respect to T . In order to formally define meaningful TPQs we need to introduce a
transformation for TPQs.

5.1 A Transformation for TPQs

Let Q be a keyword query, T be an XML tree and G be its index graph. Figure 5 shows
two TPQs, U and U ′, of Q on G. TPQ U comprises three subtrees Ta, Tb and Tc rooted
at the nodes labeled by a , b , and c respectively. Tb is the subtree of Tc. Subtrees Ta

and Tb can be empty (that is, trivially contain only their root node a and b respectively).
The c-node can coincide with the root of U . However, the a-node cannot coincide with
the c-node, and the b-node cannot coincide with the c-node (that is, the c-node is an

a

r

c

Ta
Tc

Tb

a b

r

T ′
b

c

Ta

TR

TPQ U ′TPQ U

Fig. 5. Transformation TR

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 735

book

bib

title

year

Ta T ′
b

r

U1

author=
{Mary}{Mary}

author=

bib

title

year

book

Ta Tb

r

U3

article

Tc

TR

{Mary}
author=

TR
bib

title

year

book

book

Ta Tb

r

U2

Tc

Fig. 6. Two applications of transformation TR to TPQs of Q1 on G. U2 and U3 are meaningless.

{Mary}
author=

{Mary}
author=

TRTR

author=
{Mary}

{Mary}
author=

r

year

bookbook

title year

article

bib

Tb

year

Ta Tc

U4
r

bib

article

year

book

year

T ′
b

title
Ta

U5

year

book

title

r

Ta

T ′
b

U6
r

year

book

title

article

year

bib

Ta Tb

Tc

U5

Fig. 7. Two applications of TR to TPQs of Q1 on G, in sequence. U4 and U5 are meaningless.

ancestor of the a-node and b-node). Labels a and b can be equal. Subtree T ′
b in U ′ is

a tree identical to Tb except that its root is labeled by a instead of b. TPQ U ′ can be
obtained from U by removing the subtree Tc below the c-node, and by making T ′

b a
subtree of the a-node. The transformation TR on TPQs is a transformation that takes a
TPQ of the form of U and returns a TPQ of the form of U ′.

Consider, for instance, the keyword query Q1 and the index graph G (Figure 3).
Figure 6 shows three TPQs U1, U2 and U3 of Q1 on G, and two applications of trans-
formation TR. Dotted lines denote the subtrees Ta, Tb, and Tc of transformation TR
as they are graphically shown in Figure 5. Notice that in U2, the roots of Ta and Tb are
labeled by the same element ‘book’, while in U3 they are labeled by different elements
‘book’ and ‘article’. Figure 7 shows two applications of TR in sequence. Notice that
Tb of U5 (and consequently T ′

b of U6) are empty. TPQ U5 has also an extra branch from
the root with respect to U6.

5.2 Determining Meaningful TPQs

We first provide some intuition on transformation TR. Consider a TPQ U ′ resulting by
applying TR to a TPQ U . To understand the idea, observe that there is a 1-1 mapping f
from the nodes of U ′ to the nodes of U that respects node labels and child precedence
relationships (with the exception of the child precedence relationships from the node
labeled by a in T ′

b). The following proposition holds:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

736 D. Theodoratos and X. Wu

Proposition 2. Assume that TPQ U ′ results by applying transformation TR to a TPQ
U . If n′ is the lowest common ancestor (LCA) of the nodes n′

1, . . . n
′
k in U ′, and n is the

LCA of the nodes f(n′
1), . . . , f(n′

k) in U then n is not a descendant of f(n′) in U . �

Since, there is an answer of Q on T that closely relates the nodes as determined by
U ′, any answer of Q on T that relates the nodes in the looser way determined by U is
not meaningful, Therefore, if U ′ returns an answer on T , U should be characterized as
meaningless and should be excluded from generating an answer for Q on T .

Definition 5. A TPQ U of Q on G is called meaningless with respect to T if there is
another TPQ U ′ of Q on G such that (a) U ′ can can obtained from U by a sequence
of applications of transformation TR, and (b) U ′ has an answer on T . Otherwise, it is
called meaningful with respect to T . �

Consider the TPQs U1, U2 and U3 of Q in G shown in Figure 6. One can see that U1

has an answer on T . Therefore, U2 and U3 are meaningless w.r.t. T . Consider also the
TPQs U4, U5 and U6 of Q on G shown in Figure 7. One can see that U5 and U6 have
an answer on T . Therefore, U4 and subsequently U5 are meaningless w.r.t. T .

We can now update the definition of the answer set of a keyword query given in Sec-
tion 3.2 so that an answer set comprises only meaningful answers. The new definition
is based on Proposition 1 and Definition 5.

Definition 6. Let Q be a keyword query, T be an XML tree and G be an its index graph.
Let also U1, . . . , Uk, k ≥ 1, be the meaningful TPQs of Q on G with respect to T .
If A, A1, . . . , Ak are the answer sets of Q, U1, . . . , Uk, respectively, on T , then
A = ∪i∈[1,k]Ai. �

Consider the TPQ U3 of Q1 on G shown in Figure 4(b). As mentioned in Section 4.2,
U3 evaluated on the XML tree T of Figure 1 returns the meaningless answer of Figure
2(d). TPQ U3 is also shown in Figure 6 and it is meaningless according to Definition
5. Therefore, it will not be used to generate answers for query Q1 on T . In contrast,
TPQ U1 of Figure 4(a) returns only the meaningful answer of Figure 2(a). TPQ U1 is
also shown in Figure 6. One can see that TR cannot be applied to U1. Therefore, it
is correctly characterized by Definition 5 as meaningful, and will be used to generate
answers for Q1 on T .

Since the meaningful TPQs are TPQs, their evaluation can be implemented on top
of an XQuery engine and benefit from the extensive optimization techniques that have
been developed up to now for XQuery [11,1,4].

6 Experimental Evaluation

We implemented our approach (Meaningful Tree Pattern - MTP) and the three other
approaches Meet [16], XSEarch [5], and MLCAS [14]. We ran detailed experiments
to compare their Recall (defined as the proportion of relevant materials retrieved) and
Precison (defined as the proportion of retrieved materials that are relevant).

We used real-world DBLP data collected in May 2006. To reduce the size of the doc-
ument for the experiments, we retained only three publication types: ‘book’, ‘article’,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 737

 0.4

 0.6

 0.8

 0.2

 0
0 10 20 30 40 50

 1
2 keywords (year, author).Type 1 document

%Incomplete Publications

R
ec

al
l

10 20 30 40 50

2 keywords (year, author).Type 2 document

%Incomplete Publications
0 10 20 30 40 50

2 keywords (year, author).Type 3 document

%Incomplete Publications
0

 1

 0.8

 0.6

 0.4

 0.2

 0
0 10 20 40 5030

2 keywords (year, author).Type 1 document

%Incomplete Publications

P
re

ci
si

o
n

10 20 30 40 50

2 keywords (year, author).Type 2 document

%Incomplete Publications
0 10 20 30 40 50

2 keywords (year, author).Type 3 document

%Incomplete Publications
0

Fig. 8. Recall and Precision for the two-keyword query {author, year}

XSEarch MLCAS MTPMeet

 1

 0.8

 0.6

 0.4

 0.2

 0
0 10 20 30 40 50

R
ec

al
l

3 keywords (year, title, author).Type 1 document

%Incomplete Publications
10 20 30 40 50

3 keywords (year, title, author).Type 2 document

%Incomplete Publications
0 0 10 20 30 40 50

3 keywords (year, title, author).Type 3 document

%Incomplete Publications

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40 50
%Incomplete Publications

P
re

ci
si

o
n

3 keywords (year, title, author).Type 1 document

10 20 30 40 50

3 keywords (year, title, author).Type 2 document

%Incomplete Publications
0 0 10 20 30 40 50

3 keywords (year, title, author).Type 3 document

%Incomplete Publications

Fig. 9. Recall and Precision for the three-keyword query {title, author, year}

and ‘inproceedings’. For each publication type, we retained only the properties ‘title’,
‘authors’, and ’year’. As the original DBLP data is flat, we restructured it into three
types of data sets. Publications in schema type 1 do not have references. Publications
in schemas type 2 and 3 may have references. One difference between schemas type 2
and type 3 is that publications in schema type 3 are categorized by year.

Besides the structure of the document, the “incompletness” of the data also affects
the effectiveness of the keyword based searches. We define a publication in the data set
as complete if it has all the subelements ‘title’, ‘year’, and ‘author’. Otherwise it is in-
complete. For each query and each data set type, we ran the four approaches on six XML

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

738 D. Theodoratos and X. Wu

documents with increasing percentage of incomplete publications in the range from 0%
(all the publications are complete) to 50% (half the publications are incomplete).

We ran the experiments on a Pentium 2.40GHz computer with 512MB of RAM
running Windows XP Professional. We implemented all keyword search techniques in
Java and used the SAX API of the Xerces Java Parser for the parsing of XML files.
Berkeley DB XML 2.2.13 was used to store XML files and run XQuery.

Figure 8 shows precision and recall of the two-keyword query {author, year} for
the three types of documents varying the percentage of incomplete publications in the
documents. Figure 9 reports on the same measurements for the three-keyword query
{title, author, year}. The trends are similar with a slight degradation of the recall of
the Meet approach, and an average degradation of the precision of XSEarch and
Meet.

In summary, Meet and XSEarch show very poor precision on the average. MLCAS
improves significantly on precision but scores low on recall both for the two- and the
three-keyword query. This performance is not satisfactory for a database query lan-
guage. Employing a structured TPQ language (e.g. XQuery) to further filter a query an-
swer set using structural restrictions does not recover the missed meaningful answers.
In contrast, MTP shows perfect recall. It also shows better precision compared to ap-
proaches with similar recall. Precision can be further improved by imposing structural
restrictions on the answer set or by integrating our semantics for keyword queries with
a structured TPQ query language.

7 Conclusion

Issues related to applications exporting and exchanging XML data on the web have
motivated recently the extension of keyword-based techniques for querying XML doc-
uments. Although these keyword-based approaches provide independence from the
structure of the XML documents, they fail to retrieve all and only meaningful answers
especially when the XML data are incomplete.

We have introduced a simple keyword query language for querying XML documents
and we suggested a novel semantics for it. In contrast to previous approaches that oper-
ate locally on data to extract lowest common ancestors (LCAs), our approach operates
on structural summaries of data to extract meaningful tree pattern. This global view
of data provides an advantage to our approach compared with previous ones. Our ap-
proach generates tree pattern queries TPQs. Therefore, it can be easily implemented on
top of an XQuery engine and benefit form well known query optimization techniques.
We experimentally compared our approach to previous ones. Our experimental eval-
uation shows that it has a perfect recall both for XML documents with complete and
incomplete data. It also has a better precision compared to approaches with similar re-
call. Its precision can be further improved by further specifying structural restrictions
on the answers returned by a keyword query.

We are currently working on applying the semantics suggested in this paper for key-
word search to recently suggested query languages for tree structured data [17,18] that
flexibly allow not only keywords but also partial specification of a tree pattern.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Original Semantics to Keyword Queries for XML Using Structural Patterns 739

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava. Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In Proc. of the Intl. Conf. on
Data Engineering, pages 141–, 2002.

2. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree Pattern Relaxation. In Proc. of the 8th Intl.
Conf. on Extending Database Technology, Prague, Czech Republic, 2002.

3. A. Barta, M. P. Consens, and A. O. Mendelzon. Benefits of Path Summaries in an XML
Query Optimizer Supporting Multiple Access Methods. In Proc. of the 31st Intl. Conf. on
Very Large Data Bases, pages 133–144, 2005.

4. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 310–321, 2002.

5. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSearch: A Semantic Search Engine for XML.
In Proc. of the 29th Intl. Conf. on Very Large Data Bases, 2003.

6. D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into xml query
processing. Computer Networks, 33(1-6):119–135, 2000.

7. R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimization in
semistructured databases. In Proc. of the 23rd Intl. Conf. on Very large Databases, pages
436–445, 1997.

8. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword Search
over XML Documents. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,
pages 16–27, 2003.

9. V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword Proximity Search
in XML Trees. IEEE Trans. Knowl. Data Eng., 18(4):525–539, 2006.

10. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search on XML
Graphs. In Proc. of the 19th Intl. Conf. on Data Engineering, pages 367–378, 2003.

11. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman, S. Paparizos,
J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A native XML
database. VLDB Journal, 11(4):274–291, 2002.

12. Y. Kanza and Y. Sagiv. Flexible Queries Over Semistructured Data. In Proc. of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 2001.

13. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering Indexes for Branching
Path Queries. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, 2002.

14. Y. Li, C. Yu, and H. V. Jagadish. Schema-Free Xquery. In Proc. of the 30th Intl. Conf. on
Very Large Data Bases, pages 72–83, 2004.

15. T. Milo and D. Suciu. Index structures for Path Expressions. In Proc. of the 9th Intl. Conf.
on Database Theory, pages 277–295, 1999.

16. A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying XML Documents Made Easy:
Nearest Concept Queries. In Proc. of the 17th Intl. Conf. on Data Engineering, 2001.

17. D. Theodoratos, T. Dalamagas, A. Koufopoulos, and N. Gehani. Semantic Querying of Tree-
Structured Data Sources Using Partially Specified Tree-Patterns. In Proc. of the 14th ACM
Intl. Conf. on Information and Knowledge Management, pages 712–719, 2005.

18. D. Theodoratos, S. Souldatos, T. Dalamagas, P. Placek, and T. Sellis. Heuristic Containment
Check of Partial Tree-Pattern Queries in the Presence of Index Graphs. In Proc. of the 15th
ACM Intl. Conf. on Information and Knowledge Management, 2006.

19. Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in XML Data-
bases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven

Modeling

Hung-chih Yang1 and D. Stott Parker2

1 Yahoo!, Sunnyvale, CA 94089, USA
hcyang@cs.ucla.edu

2 UCLA, Los Angeles CA 90024, USA
stott@cs.ucla.edu

Abstract. Data mining models are often implemented as program code
and stored in an ad hoc fashion. In this paper we describe a methodol-
ogy for developing model bases that can be implemented with only an
extended relational database. This method stores models as what we call
lightweight functions, which are straightforward textual representations
of function values.

Many applications use models that admit this approach. Business ap-
plications in particular, which can have a very large number of special-
case rules or business logic, are suitable for development with lightweight
functions. Financial and forecasting applications give another example.
We argue that the Lightweight Model Base offers some advantages for
these applications.

Introduction of lightweight stored functions in relational databases
is a way to integrate the software-engineering methodology of table-
driven programming. This methodology advocates storing functions and
data in tables. The computing process is just a mechanical evaluation
of “joining” data and function relations. It would make stored business
logic transparent for understanding and maintenance as relational data.
Table-driven programming has much in common with statistics and data
mining, and is a natural framework for combining data mining with
databases.

1 Introduction

One of the authors had once participated in a decision-support project that in-
volved with thousands of forecasting models. These models were straightforward
mathematical formulas generated by a statistical software package and stored in
a relational database. They were routinely joined with a collection of data re-
lations, then evaluated to produce important business forecasts. The formulas
were originally created in text files, and first a parser was used to separate co-
efficients, variables, and function calls from the formula structures. Later the
separated formula components were stored in several normalized relations in the
forms of numbers, strings, and IDs. Formula structures were stored in a relation
as BLOBs. An external forecasting process routinely joined several data relations

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 740–752, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 741

with the formula relations and rebuilt forecasting formulas with plugged-in vari-
able values. Forecast values were then computed in the external process and
stored back in a relation. In order to reduce network communication, function
relations and data relations were queried separately and a C++-implemented
forecasting process had to simulate an in-memory sort-merge join in order to
put data and reconstructed functions together. This experience has made us
wonder: why can’t a relational database stores the formulas in a relation di-
rectly and have the formula tuples joined with data tuples inside the database
server to generate results?

1.1 Lightweight Models

The formulas below are models for forecasting future demand. They were gener-
ated by a time-series package in the aforementioned decision-support project. In
these models, DMD FCST F represents the demand that we would like to get a
forecast on. At the right-hand-side of these formulas, var rh, var rh(KEY (′11′)),
var ih, var vilav, and var high, etc. are some current and past time-series
variables.

DMD FCST F = −2.9131 + (0.8268 ∗ var rh) + (2.4243 ∗ var ih)+

(−0.5168 ∗ (var rh − var rh(KEY (′11′)))) + (0.0437 ∗ var vilav)+

(−17.1098 ∗ var cl) + (6.4059 ∗ var high)

DMD FCST F = 6.3184 + (2.8979 ∗ var rh) + (0.0362 ∗ var vilav)

+ (−16.7509 ∗ var cl) + (−12.2987 ∗ var low)

DMD FCST F = −4.5242 + (2.4416 ∗ var rh) + (0.8179 ∗ (var rh − var rh(KEY (′9′))))+

(0.0447 ∗ var vilav) + (8.9951 ∗ var high)

Fig. 1. Examples of forecast formulas

In a broader perspective, models usually consist of rules, conditions, associ-
ations, processes, formulas, constraints, and regulations. Modern databases can
easily store models like these formulas, but as a data management problem, mod-
eling is heavy-duty, in that it is usually handled in a relational database by a
conjoined form of external processes, stored procedures, user-defined functions,
middleware components, object types and methods, constraints, and triggers,
etc. Thus, stored models are generally unique in structure, dependent on one
another, and complex but limited in scope.

On the other hand, modern decision-support and data mining systems can
automatically generate models, association rules, and classification rules in huge
volume. This resulting model instances usually have similar but not identical
structure. Thus, we cannot simply use one function to represent them all, and
rely on input arguments for diversity. These models are lightweight, in that it
is simpler in nature, and using the aforementioned database objects to handle
them would be overkill: because of the huge volume and lightweight nature of
business logic, applying heavy-duty object types or stored functions to represent
them can create overhead and make it difficult to access these database objects

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

742 H.-c. Yang and D.S. Parker

in a relational manner. Thus, in this paper we will discuss the problem of how
to properly store and utilize many lightweight models in a relational way.

1.2 The Table-Driven Modeling Concept

In fact, the functionality we expected to see from a RDBMS is table-driven
programming [4]. It is a software methodology popular in script programming
and in tools such as parsers. Its basic principles are (a) data and instructions
are stored and managed indistinguishably (except perhaps for their types) in
tables, and (b) programming logic is controlled by using conditions (or states)
that select data and instructions from the tables for execution. The mechanism of
selecting data and instructions is generally a straightforward mechanical process.
This process can be implemented in a declarative relational query and realized
in a RDBMS execution plan. Individual aspects of programming logic can be
implemented with relational select, join, filter, or set operations, etc. A limited
form of using data only to direct the program logic can be summarized by the
data-driven [8] methodology.

Even though modern databases can already store programming logic as stored
procedures or object methods, these database objects are undeniably ‘heavy’ for
dealing with simple rules, particularly when there are a large number of them.
Stored procedures and methods are created to be part of system catalog, and
are managed with imperative DDL statements that require special privileges.
In our opinion, straightforward data mining rules ought to be managed like
data — using DML (user-oriented data manipulation language) instead of DDL
(administrator-oriented data definition language).

A similar concern was also expressed in the Lowell Report [3] that “code is
not data.” In modern databases, there are already many constructs that store
programming logic: stored functions, triggers, user-defined functions, and object
types, etc. However, they have all been introduced as a new database object —
in the same class as tables that is part of a schema, instead of as data in tuples.
This database-object-centric design reserves them for database administrators
and developers and limits managing them from database users. In ordinary situ-
ations, database users cannot create new database objects (e.g., object types) on
their own. Even though database designers can still implement these database
objects for storing data-mining rules, they hardly can be relationally integrated
with data.

In a pure relational environment, data as well as functions are associated re-
lationally, i.e., functions are data. We call this kind of function-value-as-data
lightweight function. Lightweight functions can be a primitive datatype. Func-
tion values can be inserted into a table using DML statements, and can be easily
replaced with an update statement. This approach differs significantly from cre-
ating a new object type where method definitions are created as part of the
type creation DDL, and cannot be easier modified using DML. ORDBMS stored
functions and object methods may be stored as data in system catalog, but from
a database user’s perspective, they are no difference from built-in functions. On
the other hand, using the table-driven methodology and lightweight functions,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 743

data mining rules or business logic can be managed and evaluated within a
relational database server.

1.3 Lightweight Model Bases

Data mining models are usually maintained within data-mining applications, but
we believe it can be better managed in a database management system along
with the data for mining. Some reasons for this include:

• Data mining applications can create many rules in the form of simple ex-
pressions. Managing large numbers of these rules can become a problem
for data mining applications, while databases provide a relatively unlimited
repository for storing, managing, and evaluating these rules.
• Rules stored in a propriety format can be non-portable among data-mining

systems, while using database utilities, it is relatively easy to transform and
transport rules stored in databases.
• Inspecting, managing, and querying data-mining rules can be difficult from

one proprietary to another data mining environment, while relational
databases provide a standard, uniform, and straightforward data model and
query language (e.g., SQL).
• If data mining rules are extensively used in an enterprise system, then

databases can extend all the features already built-in for data management
to metadata and model management. These features include transaction
management, backup/restore services, concurrent accesses, scalable storage,
and indexing, etc.

In essence, we advocate using relational databases as model bases that can store,
manage, and evaluate lightweight data mining models.

The rest of this paper is organized as follows. Section 2 gives a detailed intro-
duction to the algorithms and techniques needed for table-driven modeling. A so-
phisticated example is then implemented with recursive SQL in section 3, showing
how to implement a loan application system using decision trees. Section 4 de-
scribes how to emulate lightweight functions using heavy-duty ORDBMS objects.
Conclusions are in section 5.

2 Table-Driven Modeling

Table-driven is a methodology that advocates storing pieces of programming
logic in tables and querying them for execution based on selection conditions.
This section describes using RDBMS relations as the “tables” to store a large
amount of auto-generated business rules and models implemented in lightweight
functions. A SQL query can then join model and data relations and run these
models to produce results.

2.1 Table-Driven Programming in SQL

One great benefit brought by relational databases is the clear representation
of data and their relationships, but this benefit does not extend to traditional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

744 H.-c. Yang and D.S. Parker

stored procedures and functions. Unlike relational tables, the imperative na-
ture of stored procedures is navigational. Convoluted subroutine calls make a
program hard to understand and maintain, and program logic can be hidden be-
yond recognition. Object-Oriented (or Object-Relational) programming can in-
troduce meandering navigational behavior into communications among objects.
In order to make program logic more transparent, we advocate the introduction
of table-driven programming in relational databases. The goal is to transform
the communications among functional modules from explicit navigation in stored
procedures to joins of small pieces of programming logic in a declarative rela-
tional manner.

The design process of a table-driven system contains two stages: factor and
assemble (or join). Since this two-stage process is to apply the relational model
on programming code, we call it relational programming as well.

• Factor — This stage is to split a monolithic system of business logic or
data-mining knowledge into simple rules and formulas that can be stored in
attributes of normalized relations.
• Assemble (or Join) — In the second stage, users can write declarative

queries to join tables of rules, formulas, and data together to find results.

Notice that in both stages, we utilize only SQL constructs: functions of SQL
expressions in the factor stage for storing granular program logic, and SQL
queries in the assemble stage for running a table-driven computing process. An
assemble query have traits of meta and functional programming.

A developer may start a software project following a traditional database de-
sign and analysis process, such as the ER-diagram [1]. In a schema, some of
the relations may contain function attributes. Using this schema, program logic
is built within queries and views that join data and functions together, rather
than coding complicated imperative stored or external procedures. Individual
rules and formulas can be easily replaced and redefined dynamically, while the
overall picture of the program logic stays within easy-to-understand queries or
views. Individual pieces of program logic can be separately maintained indepen-
dent from the queries. In a traditional database design, the whole program logic
and subroutines may need rewriting if there is any specification change (even a
minor one), and only data can be dynamically changed (because data is defined
relationally, but not code). The ultimate goal of relational programming is to
transform programming from an obscure, imperative, and arbitrary form to a
transparent process of relational operations. This might not be as powerful and
versatile as the traditional programming process, but when we are dealing with
a vast amount of simple program logic, it’s a process worth considering.

Data models and database paradigms have often flirted with religion in the
exploration of methodologies. The approach proposed in this paper is very prac-
tical, and even ecumenical in scope (in the sense that it can be applied within
any religion). It is also theoretically straightforward, so its exposition does not
really benefit from formalism. So, in this paper we have decided to ground the
concepts in examples, so that their practicality and usefulness is as apparent as
possible, to as wide an audience as possible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 745

2.2 Lightweight Functions

Table-driven programming can be implemented using existing ORDBMS poly-
morphic object methods. Pieces of programming code are embedded in objects
and they can be selected and executed dynamically in queries. However this
approach have some shortcomings:

• Object types are quite heavy. Object types are created and maintained in
data definition language (DDL) and stored in system catalog. A table-driven
application may possess thousands or even millions of items of program logic,
therefore creating millions of object types to wrap these pieces of logic can
cause great burden on the database system catalog.
• Code wrapped in objects is still not data. Because code wrapped in

methods are attached to objects, they are not data [3] in the sense that they
cannot be accessed or manipulated like ordinary data.
• Dynamic dispatch is complex. Fromthemanuals ofORACLE [6] andDB2

[5], looking for the rightmethod implementation ina typehierarchy canbedone
in two fashions: top-down or bottom-up respectively for ORACLE and DB2.
Either way is quite complex and could be time consuming (see section 4.1).

Based on these issues, we believe RDBMS needs an alternative called
lightweight functions in order to support table-driven modeling efficiently. Briefly,
this idea is to store function expressions as values in attributes of a relation and
extend the type system of a relational database to include function datatypes —
aggregation of function arguments and a return type. These function attributes
can then be joined and applied with data attributes in a query. During a join
operation, function attributes are evaluated like any expressions allowed in the
select-list (or where-clause) of an SQL query. There are two designs for defining a
function datatype as a table attribute:

• weak-typed
In a weak-typed design, a FUNCTION type is added to the RDBMS prim-
itive datatype collection. The signature of a function attribute is not overt
to the database system. Only at the run time (in a query), the database
execution engine can match the input arguments and parameters of stored
lightweight functions together for evaluation.
• strong-typed

For a strong-typed design, a function type is expressed as a collection of pa-
rameter datatypes and a return datatype. A SQL parser can do type checking
during inserting tuples with function attributes. Below is an example of a
strong-typed function datatype:

VARCHAR×NUMBER×VARCHAR→ CHAR(3)

The weak-typed design is flexible for accommodating a diversity of lightweight
functions whose signatures may not be known during schema design. The trade-
offs for both designs have been discussed thoroughly in programming language
circle and sometimes it becomes almost a religious issue and we won’t go any

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

746 H.-c. Yang and D.S. Parker

further in this paper. In the rest of this paper we use the strong-typed design in
examples and figures.

Definition of a function does not need to be small, but ought to constitute
atomic functionality. There are several candidates that we can use to specify the
syntax and functionality for the lightweight functions. These candidates are from
the ample programming constructs already incorporated in a modern RDBMS.
They include a) SQL expressions, b) stored functions, and c) user-defined func-
tions. They have varying degrees of programming capability and expressiveness.
For most lightweight program logic, the SQL expressions would suffice.

3 Example: A Loan-Application System

In this section, we present a sophisticated example of using table-driven stored
functions in a recursive query. Deciding whether to approve a loan application
can be implemented using a decision tree classifier [7]. Fig. 2 shows such an
example decision tree. Given the background information of a loan applicant,
the system starts from the root of a selected decision tree and follows a path
of boolean expressions toward a final decision. A decision tree is obviously an
important set of business logic for a financial institution. Even though most data
of the loan-application system are probably stored in a relational database, the
model of the decision tree itself is usually a monolithic process implemented in-
ternally or externally. This process may contain an aggregation of simple decision
expressions, thus it’s an ideal candidate for the software process of table-driven
programming. In doing so, we can store decision tree branches in an attribute
of tuples. These tuples are then linked with each others forming a hierarchical
structure of a decision tree. A loan-application process is just a recursive join of
the decision-tree tables and applicant information tables.

0. rule 0: not working

CreditRating Income

Income CreditRating

WorkingStatus

NO

YESNO NO NO

NO

YES

YES

11. rule 5: Income >= 30000

10. rule 4: Income < 30000

3. rule 3: Income >= 50000

2. rule 2: Income < 50000

9. rule 6: CreditRating = excellent

8. rule 7: CreditRating = fair

7. rule 8: CreditRating = poor

6. rule 6: CreditRating = excellent

5. rule 7: CreditRating = fair

4. rule 8: CreditRating = poor

1. rule 1: working

Fig. 2. An example of loan-application decision tree used in section 3.1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 747

3.1 Schema Design

Three tables are defined for this system. The first table, Customer, stores loan
applicants’ background information including working status, income, and credit
rating. This information would be used as arguments by the branch boolean
expressions of a decision tree. The second table, ClassificationRule, has a function
attribute Rule with the datatype of (VARCHAR, NUMBER, VARCHAR) →
CHAR. It is a function attribute that its instances take three parameters of two
VARCHARs and one NUMBER. The actual arguments will be assigned during a
query. In this demonstration the arguments are the three background attributes
from the Customer table. The third table, DecisionTree, is a relationship table
between the Customer and ClassificationRule tables. The DecisionTree table also
stores the hierarchical structure of decision trees. SQL’s recursive query [2] is just
the tool to traverse a decision tree stored in DecisionTree. Sample data of these
tables are listed respectively in Table 1 for Customer, 2 for ClassificationRule,
and 3 for DecisionTree.

Fig. 3 is the DDL for creating the Customer table. Name is the primary
key and the other attributes store the background information of loan-applying
customers.

CREATE TABLE Customer(
Name VARCHAR(16) NOT NULL, WorkingStatus VARCHAR(32) NOT NULL,
Income NUMBER NOT NULL, CreditRating VARCHAR(32) NOT NULL,
CONSTRAINT Customer_PK PRIMARY KEY (Name));

Fig. 3. DDL for creating the Customer table

To create the ClassificationRule table, a plausible DDL is listed in Fig. 4.
The second attribute, Rule, stores the logic of individual decision branch. Rule
is implemented as a table-driven lightweight function with three parameters.
Even though the actual arguments are determined during a query, we stipulate
that they are the three attributes of background information provided by the
Customer table.

CREATE TABLE ClassificationRule(
RuleID INTEGER NOT NULL,
Rule (VARCHAR,NUMBER,VARCHAR) -> CHAR NOT NULL,
Description VARCHAR(48),
CONSTRAINT ClassificatRule_PK PRIMARY KEY (RuleID));

Fig. 4. DDL for creating the ClassificationRule table

The DDL for creating the DecisionTree is showing in Fig. 5. In this table,
ParentBranchID is the attribute that defines a self-referencing relationship for
tuples. The root-node branches of decision trees are the ones who do not have a
parent (ParentBranchID is NULL). Each branch of a decision tree has a primary
key, BranchID. The attribute, Decision, is used for final classification when there

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

748 H.-c. Yang and D.S. Parker

CREATE TABLE DecisionTree(
BranchID INTEGER NOT NULL, ParentBranchID INTEGER,
RuleID INTEGER NOT NULL, Decision VARCHAR(4),
Description VARCHAR(128),
CONSTRAINT DecisionTree_PK PRIMARY KEY (BranchID),
CONSTRAINT ParentBranchID_FK FOREIGN KEY (ParentBranchID) REFERENCES DecisionTree(BranchID),
CONSTRAINT RuleID_FK FOREIGN KEY (RuleID) REFERENCES ClassificationRule(RuleID));

Fig. 5. DDL for creating the DecisionTree table

is no subtree to go further. In our example, the class designation is either “yes”
or “no” for granting or denying a loan application. In our simplified example,
we assume that all customers can be found a way down to a leaf node in the
decision tree, thus internal tree nodes do not need a class designation. Also the
RuleID attribute references ClassificationRule’s primary key. Using it, the actual
boolean expression can be retrieved and used as a branch in a decision tree.

3.2 Querying and Decision Making

As indicated, a recursive query (see Fig. 6) can be used to traverse the Decision-
Tree table in order to determine whether to accept or deny a loan application.
In this query, the customer information was first fetched in an initial query and
passed down the hierarchy of a decision tree during each recursive join. In each
join, the ClassificationRule.Rule function is applied on customer attributes to
determine the next branch of a traversal decision path. Since no lightweight
function type is implemented in any real-world RDBMS, the ClassificationRule
table can be emulated using ORDBMS object types and its Rule attribute is
emulated by a polymorphic object method. Based on this ORDBMS emulation
and the sample data listed in Table 1, 2, and 3, the result of the recursive query
is shown in Table 4.

WITH RECURSIVE
AncestorDT(BranchID,Decision,Name,WorkingStatus,Income,CreditRating) AS
((SELECT DecisionTree.BranchID,DecisionTree.Decision,Customer.Name,

Customer.WorkingStatus,Customer.Income,Customer.CreditRating
FROM Customer,ClassificationRule,DecisionTree
WHERE DecisionTree.ParentBranchID IS NULL

AND DecisionTree.RuleID = ClassificationRule.RuleID
AND ClassificationRule.Rule(Customer.WorkingStatus,Customer.Income,

Customer.CreditRating)=’T’)
UNION ALL
(SELECT DecisionTree.BranchID,DecisionTree.Decision,AncestorDT.Name,

AncestorDT.WorkingStatus,AncestorDT.Income,AncestorDT.CreditRating
FROM ClassificationRule,DecisionTree,AncestorDT
WHERE AncestorDT.BranchID = DecisionTree.ParentBranchID

AND DecisionTree.SubRuleID = ClassificationRule.RuleID
AND ClassificationRule.Rule(AncestorDT.WorkingStatus,AncestorDT.Income,

AncestorDT.CreditRating)=’T’))
SELECT DISTINCT Name,Decision
FROM AncestorDT
WHERE Decision IS NOT NULL;

Fig. 6. A recursive query for deciding loan applications

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 749

Table 1. Sample data for the Customer table

Name WorkingStatus Income CreditRating

John working 35000 fair
Tom not working 60000 fair

Table 2. Sample data for the ClassificationRule table

Rule ID Rule ((VARCHAR,NUMBER,VARCHAR) −→ CHAR) Description

0 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
WorkingStatus = ’not working’ THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer
does not have a job.

1 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
WorkingStatus = ’working’ THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer
has a job.

2 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
Income < 50000 THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
income is < 50000.

3 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
Income ≥ 50000 THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
income is ≥ 50000.

4 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
Income < 30000 THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
income is < 30000.

5 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
Income ≥ 30000 THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
income is ≥ 30000.

6 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
CreditRating = ’excellent’ THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
credit rating is excellent.

7 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
CreditRating = ’fair’ THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
credit rating is fair.

8 (WorkingStatus,Income,CreditRating) −→ (CASE WHEN
CreditRating = ’poor’ THEN ’T’ ELSE ’F’ END)

Return ’T’ if the customer’s
credit rating is poor.

Table 3. Sample data for the DecisionTree table

Branch
ID

Parent
Branch ID

Rule
ID

Decision Description

0 NULL 0 NULL (not working) ⇒ Need a further decision.
1 NULL 1 NULL (working) ⇒ Need a further decision.
2 0 2 no (not working AND income < $50000) ⇒ DO NOT grant a loan.
3 0 3 NULL (not working AND income ≥ $50000) ⇒ Need a further decision.
4 1 8 no (working AND credit rating = poor) ⇒ DO NOT grant a loan.
5 1 7 NULL (working AND credit rating = fair) ⇒ Need a further decision.
6 1 6 yes (working AND credit rating = excellent) ⇒ Grant a loan.
7 3 8 no (not working AND income ≥ $50000 AND credit rating = poor)

⇒ DO NOT grant a loan.
8 3 7 no (not working AND income ≥ $50000 AND credit rating = fair) ⇒

DO NOT grant a loan.
9 3 6 yes (not working AND income ≥ $50000 AND credit rating = excellent)

⇒ Grant a loan.
10 5 4 no (working AND credit rating = fair AND income < $30000) ⇒ DO

NOT grant a loan.
11 5 5 yes (working AND credit rating = fair AND income ≥ $30000) ⇒

Grant a loan.

Table 4. Results from the load-decision query

Name Loan-Application Decision

John yes
Tom no

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

750 H.-c. Yang and D.S. Parker

4 Implementing and Emulating Lightweight Functions in
ORDBMS

Lightweight function datatypes do not exist in any major relational database,
but we can use polymorphic objects in ORDBMS to emulate their behavior. To
our best knowledge, ORACLE 10g [6] and DB2 V8 [5] are the only two relational
databases supporting dynamic method dispatch (i.e. polymorphism).

4.1 Execution Models of Dynamic Method Dispatch in ORDBMS

Because of inheritance and polymorphism, ORDBMS object types in a hierar-
chy can have multiple method implementations over the same signature. These
method implementations belong to related object types in the hierarchy and their
definitions are stored in system catalog. A child method implementation over-
rides ancestors’. When an object method is invoked at run time, the database
execution engine must traverse the hierarchy in order to determine the most
pertinent implementation for execution. After reviewing the ORACLE 10g and
DB2 V8 manuals, we found that these two systems follow completely opposite
approaches in determining which method implementation to invoke.

In ORACLE 10g [6], when an object method is invoked, the execution engine
will first determine the type (called current type) of the callee object instance. If
no method implementation is found in the current type, then the engine searches
up the type hierarchy to locate an inherited method. By contrast, DB2 takes a
top-down approach: its execution engine starts with the root method and moves
down the type hierarchy to locate the so-called most specific dispatchable method.

ORACLE’s bottom-up design reduces the overhead of searching for the most
pertinent method implementation if most method invocations are on methods
defined closer to the actual object type in the type hierarchy, while DB2’s top-
down approach favors the opposite pattern of method invocations. For table-
driven programming, most method invocations happen in overriding methods
of child object types, therefore, theoretically a bottom-up approach should take
less time in locating the most pertinent method implementation.

4.2 Issues of Table-Driven Programming in ORDBMS

Using ORDBMS’s dynamic method dispatch is a natural approach to implement
table-driven programming in SQL. However, as indicated in section 2.2, this
object-relational approach has some shortcomings that can limit its application
in a table-driven architecture. These shortcomings can be summarized as issues
of: catalog scalability, code data integration, and meta data/object management.

Most DBMS systems are sure making data scalability as one of the most im-
portant features, but this might not extend to database objects stored in the
system catalog. Even if catalog tables are scalable as data tables, their schema
design is fixed and might not be as efficient as a user-defined one for a specific ap-
plication. Code and data in ORDBMS are managed using different mechanisms
(DDL vs. DML), even though the Object-Oriented idea is to encapsulate code

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lightweight Model Bases and Table-Driven Modeling 751

and data in one entity. On the other hand, a pure relational approach treats code
as data and they are matched together using relational operators. Essentially,
ORDBMS objects are metadata stored in the system catalog. Oracle and DB2
implement recursive dispatch procedures in order to query a hierarchy of objects
and methods for late-binding invocations. This approach may be sufficient for
a small set of hand-crafted objects. However, following the true relational spirit
and storing functions in data tables can make managing metadata and code just
like managing data.

4.3 User-Defined Lightweight Function Processors

Besides using ORDBMS polymorphic methods, a user-defined external processor
can evaluate lightweight functions written in any language. Lightweight functions
are stored as VARCHAR in tables. In a query, a processor calls an external eval-
uator to run these functions on the fly. These external processors can implement
many scripts or programs written in, for example, R, SAS, Perl, or Python, etc.
They can even process SQL using a DBMS dynamic SQL API.

5 Conclusions

In this paper, we have described a Lightweight Model Base: a table-driven method-
ology for storing, managing, and evaluating data mining or business models. It
can be implemented with only an extended relational database, storing models as
what we call lightweight functions, which are novel SQL function datatypes. They
can be straightforward textual representations of function values.

We have also discussed table-driven modeling. In this idea, the introduction of
lightweight models in relational databases is a way to integrate the software-
engineering methodology of table-driven programming. This methodology
advocates storing functions in tables. The model evaluation process is just a me-
chanical evaluation of “joined” data and functions. It would make stored business
logic transparent for understanding and maintenance as relational data. As exam-
ples, we gave detailed accounts of how this methodology can be applied on models
involving decision trees.

In fact, many applications use models that admit this approach. Business ap-
plications in particular, which can have a very large number of special-case rules
or business logic, are suitable for development with lightweight functions. Ex-
amples discussed in this paper include forecasting and loan-application systems.
This approach can be extended for other data mining algorithms, and ultimately
should be useful in development of model base management systems.

References

1. P. P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. In
D. S. Kerr, editor, VLDB 1975, page 173. ACM, 1975.

2. A. Eisenberg and J. Melton. SQL: 1999, Formerly Known as SQL 3. SIGMOD
Record, 28(1):131–138, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

752 H.-c. Yang and D.S. Parker

3. J. Gray et al. The Lowell Report. In SIGMOD 2003, page 680. ACM, 2003.
4. Hung-chih Yang and Douglas Stott Parker Jr. Table-Driven Programming in SQL

for Enterprise Information Systems. In ICEIS, pages 424–427, 2005.
5. IBM et al. IBM DB2 Universal Database SQL Reference Volume 1 Version 8. IBM,

2002.
6. ORACLE et al. Oracle Database Application Developer’s Guide - Object-Relational

Features 10g Release 1 (10.1). Oracle, 2003.
7. J. R. Quilan. Induction of Decision Trees. Machine Learning, 1(1):81–106, 1986.
8. S. E. Smylie et al. Introducing Data Administration into a Business Organization.

In S. T. March, editor, ER 1987, pages 47–51. North-Holland, 1987.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query

Evaluation

Wilfred Ng and James Cheng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology, Hong Kong

{wilfred, csjames}@cse.ust.hk

Abstract. We have defined an XML structural index called the Struc-
ture Index Tree (SIT), which eliminates duplicate structures arising from
the equivalent subtrees in an XML document by merging them into a
concise structure. In this paper, we impose a lattice structure on the SIT
and call the structure a SIT-lattice in order to enhance the applicability
of the index. A SIT-Lattice Element (SLE) is an index of an arbitrary
subset of paths in the document. Since paths represent the structure of
the XML data and each text node is associated with a unique path, we
can define an SLE to filter out both irrelevant structures and text nodes.
We demonstrate that SLEs are able to support effective querying over
very large XML documents in memory-limited hand-held devices.

1 Introduction

It is well recognized that establishing an efficient index to aid in processing
queries on XML data is important, for example, Dataguides [4], 1-index [11],
A(k)-indexes [7], D(k)-indexes [2], M(k)-indexes [5], and F&B-index [6]. How-
ever, the use of a structural index to process value-based query conditions and
structural path expressions is mainly hindered by two factors that are related
to the size of the index: (1) huge structure size and (2) huge extent size. By
structure size, we refer to the total number of nodes in the index. By extent size,
we refer to, depending on whether we are addressing a node in the index or the
index itself, either the number of equivalent nodes represented by the extent of
the index node or the sum of the extent sizes of all the nodes in the index.

In this paper, we study the problems arising from these two factors and pro-
pose a solution by utilizing a lattice structure defined on an XML structural
index, called the Structure Index Tree (or the SIT in short) [3]. The SIT has
been introduced in our preliminary work [3] to aid in efficient evaluation of
XPath queries on compressed XML data. The SIT is constructed based on the
partitioning of paths in an XML document, while an element in the lattice is
the index of an arbitrary subset of paths in the document. We call the lattice
the SIT-lattice and its element a SIT-lattice element, or an SLE for short.

How do we address the structure size problem? We consider different combi-
nations of the root-to-leaf paths in the SIT. In total, there are 2n combinations,
where n is the number of leaf nodes in the SIT, and each combination constitutes

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 753–767, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

754 W. Ng and J. Cheng

fddghdfe

cccd

bb
2

a1

/0

ed

c
3

dd

cc

bb

a

/

(a) An Index, I (b) A Lattice Element of I

4 5 7 8 11

6

12 14 15 17 18

9

10 13 16

0

1

2

3

4

9

13

15
fd

c
17 18

16

Fig. 1. A Full XML Index and a Lattice Element

i

f

c

h g

e

i

f

c

b

a

/

{8,11}

{3}

{12}

{7,10}

{6,9}

{18,31}

{14,27}

{17,30}

{1}

{0}

{13}

{2}

Fig. 2. A Sample SLE

an SLE. Therefore, the structure size of an SLE ranges from as small as the size
of a single path to that of the full index, i.e., the SIT, which is the top of the
index lattice. Compared with Kaushik et al.’s index [6] definition scheme and
other indexing techniques [7], our proposal of using SLEs is much more flexible
and effective, since we select the index of an arbitrary combination of paths that
are relevant for query evaluation.

Example 1. Consider a full index, I, of an XML document, as shown in
Figure 1(a). Suppose that we are only interested in the information of the el-
ements “d” and “f” that are the children of “c” but not the siblings of “h”.
To evaluate a query of this information, our method uses the XPath 2.0 union
expression, “//c[not h]/(d | f)”, to specify an SLE and extract it from I, as
depicted in Figure 1(b). With Kaushik et al.’s method, the minimal coverage is
to select only the elements “c”, “d”, “f” and “h” and then check a “c” element
by examining if it has a child, “h”. However, this is bound to be less efficient,
since not only extra processing of the predicate is needed, but the resulting in-
dex also includes nodes such as “c10” (node c with identity = 10), “d6”, “d11”,
“f8” and “h12” which are irrelevant in the evaluation of a query of the required
information.

How do we address the huge extent size problem? Consider an XML document
that has 10,000 “a” elements and an A(kL)-index that condenses the 10,000
nodes into 10 nodes, each having an extent size of 1,000. If an A(ks)-Index, for
some ks < kL, further condenses the 10 nodes into a single node, then the extent
size of this single node will be increased to 10,000. Although the reduction in the
structure size (from 10 nodes to 1 node) accelerates the evaluation of structural
queries, such as “//a”, for a value-based query condition, such as “//x[a =
‘‘some value’’]”, we have to match ‘‘some value’’ with the data value of
each of the 10,000 “a” elements, even though there are few matches.

Our SIT-lattice is a well-defined structure that allows us to select only the
relevant subset of nodes from the extent of an index node, since the SLE can
select an arbitrary subset of paths from an XML document. We illustrate this
idea of using the SLEs to accelerate query evaluation by the following example.

Example 2. Consider an XML document tree in Figure 3, where the attached
integer of each node is its node id. Suppose we are only interested in the in-
formation related to the elements, “g”, “h” and “i”, that are descendants of a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 755

d
29

@id
28

i

f
30

31

c27

hg

e
36 37

35
d

34
@id

33

i

f
38

39

c32

hg

e
23 24

22
d

21
@id

20

i

f
25

26

c
19

d
16

@id
15

i

f
17

18

c14

hg

e
10 11

9d5
@id

4

i

f12

13

c
3

hg

e
7 8

6

b
2

a1

/0

"i1" "i2" "i3" "i4" "i5"

"A" "A" "B" "A" "B""d0"

"g0" "h0" "g1" "h1"

"d1" "d2"

"g2" "h2"

"d3" "d4

"g3" "h3"

Fig. 3. An XML Document Tree

“c” element that has an “id” attribute of type “A”. To evaluate queries that
retrieve data of these elements, such as “//c[@id = ‘‘A’’]//h”, we need only
to access the shaded nodes in Figure 3. As mentioned before, we select a (any)
combination of paths in an XML document and the resultant SLE is a very small
index for the selected path. The SLE selected for our example is shown in Figure
2, which is an index of the shaded nodes in Figure 3. The SLE also pre-computes
the common predicate “[@id = ‘‘A’’]” of the query workload.

In Figure 2, we can further combine the two equivalent paths, 〈c, f, i〉, into one;
however, the collapsed index does not cover branching path expressions. For ex-
ample, consider the query “//c[e]/f”. The “f” elements are not distinguishable
with the two paths combined, but are distinguishable with the SLE in Figure 2. In
fact, we find that the main factor that accelerates query evaluation is the reduc-
tion in the extent size, rather than further reduction in the structure size obtained
by the coalescence of the two paths.

A practical problem arising from huge extent size is that in most cases the
extents are too large to be loaded in the main memory of a machine. If we store
the extents in a relational database then it incurs substantial disk I/O, resulting
in degraded query performance. Our method partitions the full index into a set
of SLEs, each of which can fit into the main memory. This approach is feasible
in practice, since we usually access only a portion of the full index at any time.
We make two main advancements on the SIT [3] in this paper.

First, we propose a novel lattice structure on the SIT. The lattice elements
can effectively filter out irrelevant elements to accelerate query evaluation. Our
method is efficient to tackle the problem of both the structure size and the
extent size of an index on XML data. Second, we evaluate the SLEs on several
benchmark datasets and a comprehensive set of queries. The results show that
significant performance improvement is obtained and that using SLEs, we can
efficiently query large XML datasets in a pocket-PC. Compared with Kaushik
et al.’s index definition scheme [6], the SLEs are much easier and less costly to
construct and more effective in controlling both the structure size and the extent
size of an XML index.

In the rest of the section, we discuss the related work. We define the SIT-
lattice and its related operations in Section 2. We evaluate the performance of
the SLEs in Section 3. Finally, we give our concluding remarks in Section 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

756 W. Ng and J. Cheng

1.1 Related Work

A considerable amount of research has been conducted on indexing XML or
semi-structured data [4,11,7,6,2,5]. However, none of the work has attempted
to speed up the evaluation of value-based query conditions, which is crucial in
querying XML data. We have discussed the A(k)-indexes [7], D(k)-indexes [2],
M(k)-indexes [5], and the index definition scheme [6] to reduce the structure
size of an index in Section 1. However, a new index of smaller structure size
must be constructed from the base data, while the SLEs can be very efficiently
constructed from existing SLEs by a set of lattice operations.

Marian et al. [8] constructs a projected document from a set of paths extracted
from a given XQuery to reduce memory requirement for query processing. Their
method works on the original XML document instead of an index. As the pro-
jected document in [8] is constructed from simple XPath expressions without
predicates, the irrelevant nodes of value-based conditions are not filtered out.
Buneman et al. [1] also proposes a lattice structure, which is defined on a class
of equivalent tree instances based on bisimulation. However, they do not focus
on constructing a lattice element of smaller size from existing lattice elements
to accelerate query evaluation.

2 An Index Lattice

2.1 The XML Structure Index Tree (SIT)

The SIT is an index defined on the structure of XML data. We model an XML
document as a tree, called the structure tree, T = (VT , ET , rootT), where VT

and ET are the sets of tree nodes and edges in T , respectively, and rootT is the
unique root of T . Each edge in ET specifies the parent-child relationship of two
nodes. Each tree node, v ∈ VT , is defined as v = (lid, nid, ext), where v.lid is
the unique identifier of the element/attribute label generated by a hash function;
v.nid is the unique node identifer assigned to v according to the document order;
and ext denotes the extent associated with v, which contains the nids of the set
of equivalent nodes that are coalesced into v. We set v.ext = {v.nid} (i.e. v.ext
is a singleton), which is later to be combined with the exts of other equivalent
nodes to obtain the SIT.

Each v is identified by the (v.lid, v.nid) pair and the identity of rootT is
uniquely assigned to be (0, 0). In addition, if v has n children (β1, . . . , βn), their
order is specified as: (1) β1.lid ≤ β2.lid ≤ · · · ≤ βn.lid; and (2) if βi.lid =
βi+1.lid, then βi.nid < βi+1.nid. This node ordering accelerates node selection
in T by an approximate factor of 2, since we match the nodes by their lids and,
on average, we only need to search half of the children of a node in T . As an
example, Figure 4 shows the structure tree of the XML document in Figure 3.

Each text node in an XML document is attached to a unique path, p, in the
structure tree, which is given by p = v0v1 · · · vn, where vn is a leaf node. We
take into account the numerical order of lid and nid and define a path ordering
as follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 757

33,57,97,6 81,2533,217,223,203,4

17,3 17,19

217,1

111,2

0,0

89,109,1189,79,8 70,13 70,2689,239,24

81,12 81,1733,16

17,14

70,18

3,15 81,3833,347,353,33

17,32

70,3989,369,37

81,3033,29

17,27

70,31

3,28

 / 0 a 217 b 111 c 17

@id 3 d 33 e 7 f 81

 g 89 h 9 i 70

lid (Assigned by a Hash Function)

lid, nid

A Tree Node

Fig. 4. The Structure Tree of the XML document presented in Figure 3

Definition 1. (Path Ordering) Given two paths, p1 = u0 . . . um and p2 =
v0 . . . vn, p1 � p2 if one of the following two conditions holds:

1. p1 ≺ p2: there exists some i, where 0 ≤ i < min(m, n), such that ui.nid =
vi.nid and ui+1.nid �= vi+1.nid, and
1.1 ui+1.lid < vi+1.lid; or
1.2 ui+1.lid = vi+1.lid and ui+1.nid < vi+1.nid.

2. p1 = p2: ui.nid = vi.nid, for 0 ≤ i ≤ m and m = n.

With the path ordering, we can specify a structure tree (or a structure subtree),
T , as the set of all its paths ordered as follows: T = p0 � · · · � pn (or simply
T = p0 ≺ · · · ≺ pn as the paths are distinct in T). To eliminate duplicate
structures in a structure tree, we introduce the notion of SIT-equivalence, which
is employed to merge duplicate paths and subtrees to obtain the SIT.

Definition 2. (SIT-equivalence) Two paths, p1 =u0 . . . um and p2 =v0 . . . vn,
are SIT-equivalent, if ui.lid = vi.lid for 0 ≤ i ≤ m and m = n. Two subtrees,
T1 = p10 � · · · � p1m′ and T2 = p20 � · · · � p2n′ , are SIT-equivalent, if (1)
the roots of T1 and T2 are siblings and (2) p1i and p2i are SIT-equivalent for
0 ≤ i ≤ m′ and m′ = n′.

The following example helps illustrate the concepts of branch ordering and SIT-
equivalence.

Example 3. Given p1 = “(0, 0) . . . (3, 4)”, p2 = “(0, 0) . . . (9, 8)” and p3 =
“(0, 0) . . . (3, 15)” in Figure 4, and p4 = “(0, 0) . . . (3, 15)” in Figure 5, we have
p1 ≺ p2 ≺ p3 and p3 = p4. The subtrees rooted at the nodes (17,14) and (17,27)
in Figure 4 are SIT-equivalent, since every pair of corresponding paths in these
two subtrees are SIT-equivalent. The subtrees rooted at the nodes (17,19) and
(17,32) are also SIT-equivalent.

Since the structures of SIT-equivalent subtrees are duplicate, we define a tree-
merge operation (cf. [3]) to eliminate the redundant tree structures by merging
the SIT-equivalent subtrees, T1 and T2. We skip the details of the algorithm but
only give an example of the operation here: if we apply the merge operation to
the SIT-equivalent subtrees rooted at the nodes (17,14) and (17,27) in Figure 4,
the resultant merged subtree is the subtree rooted at (17,14) in Figure 5.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

758 W. Ng and J. Cheng

81,1233,57,63,4

17,3

217,1

111,2

0,0

70,1389,79,8

{3,19,32}

{5,21,34}

{13,26,39}

{4,20,33}

{12,25,38}

{8,11,24,37} {7,10,23,36}

{6,9,22,35}
81,1733,163,15

17,14

70,18

{18,31}

{15,28} {16,29}

{14,27}
{17,30}

{2}

{1}

{0}

v.ext = { nid
0

, ... ,nid
n
 }

lid, nid

An Index Node, v

Fig. 5. The SIT of the XML Document in
Figure 3

217,1

111,2

0,0

{1}

{0}

{2}

17,3

7,6

89,79,8

{6,22}

{8,24} {7,23}

{3,19}

{5,21}

33,5

217,1

111,2

0,0

{1}

{0}

{2}

17,3 {3,19}

217,1

111,2

0,0

{1}

{0}

{2}

17,3 {3,19}

217,1

111,2

0,0

{1}

{0}

{2}

17,3 {3,19}

7,6

89,79,8

{6,22}

{8,24} {7,23}

7,6 {6,22} 33,5

{5,21}

Path: p
0

Path: p
1

Path: p
2

Partial Tree

L = join(join(p
0
, p

1
), p

2
)

Fig. 6. A Partial SIT Constructed by Join-
ing Three Paths, p0, p1 and p2

2.2 The SIT-Lattice

Given a set of paths, P = {p0, . . . , pk}, in the SIT, we define the path-join
operation, join, as shown in Procedure 1, which joins the paths in P one by one
to obtain a partial tree.

Procedure 1. join(L, p)
/∗ L=p0� · · · �pk−1 and pk−1�pk, where pk−1=u0 . . . um and pk=v0 . . . vn ∗/

begin
1. for each 0 ≤ i ≤ m do
2. if (ui.nid = vi.nid) then
3. ui.ext := ui.ext ∪ vi.ext;
4. Delete vi and its outgoing edge, if any;
5. else
6. Connect vi . . . vn to T such that vi is the last child of ui−1;
7. return L;
8. return L;
end

We can apply join on a set of selected paths to obtain a tree, which we call a
partial SIT, as defined in Definition 3.

Definition 3. (Partial SIT) Let P = {p0, p1, . . . , pk} be a set of paths in the
SIT. Without loss of generality, we assume that p0 � p1 � · · · � pk. A Partial
SIT, L, over P , is a tree constructed as follows: L = join(· · · join(L′, p1),. . ., pk),
where L′ is the initial tree that consists of only one path, p0.

Example 4. If we apply the join operation to the three paths, p0, p1 and p2, in
Figure 6, we obtain the partial SIT, L = join(join(p0 , p1), p2). Note that the
paths are joined together by the SIT-equivalent portions of the paths.

Each path in the SIT is the concise representation of a set of SIT-equivalent
paths, PT , in the structure tree, T . However, in most cases, only a subset of PT

is useful for the evaluation of a given query workload. We define an index path
that concisely represents any subset of PT .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 759

Definition 4. (Index Path) Let PT be the set of all paths in a structure tree
represented by a path in its SIT and p ∈ PT , p = u0 . . . un. An index path, pI

= v0 . . . vn, is a path in a partial SIT such that vi.nid = ui.nid, vi.lid = ui.lid,
and vi.ext =

⋃
∃p∈PT

{ui.nid}, for 0 ≤ i ≤ n.

Example 5. The three paths in Figure 6 are index paths of some partial SIT. For
example, p0 represents the two paths, “(0, 0) . . . (9, 8)” and “(0, 0) . . . (9, 24)”, in
Figure 4 and its corresponding index path in the SIT is the path “(0, 0) . . . (9, 8)”
shown in Figure 5.

Theorem 1. The set of all partial SITs defined over a SIT is a lattice. �

We call this lattice defined over the SIT the SIT-lattice and an element in the
SIT-lattice, i.e., a partial SIT, a SIT-lattice element or simply an SLE. Therefore,
the maximum SLE is the SIT and the minimum SLE is an empty tree. The least
upper bound and the greatest lower bound of two SLEs, Lx and Ly, i.e. (Lx ∨
Ly) and (Lx ∧ Ly), are also referred to as the union and the intersection of Lx

and Ly, respectively. To allow more flexible construction of useful SLEs to aid
query evaluation, we introduce two more SIT-lattice operations, subtraction and
extraction. The subtraction of two SLEs, (Lx − Ly), is the index of the set of
paths P = (Px − Py), where Px and Py are the set of paths indexed by Lx and
Ly respectively. We say Lx is an extraction of Ly if Lx ≤ Ly.

Example 6. Figure 7 shows two SLEs, Lx and Ly, and their union (Lx ∨ Ly),
intersection (Lx ∧ Ly) and subtraction (Lx − Ly). All the five SLEs are extrac-
tions of the SIT in Figure 5, while (Lx − Ly) is an extraction of Lx and (Lx ∧
Ly) is an extraction of Lx (or Ly), which in turn is an extraction of (Lx ∨ Ly).

217,1

111,2

0,0

{1}

{0}

{2}

17,3

7,6

89,79,8

{6,22}

{8,24} {7,23}

{9,22}
{4,20}

{3,19}

217,1

111,2

0,0

{1}

{0}

{2}

3,4

17,3

7,6

{3,19}
17,14

3,15

{15}

{14}

(a) SIT-Lattice Element, L
x

(c) L
x
 V L

y

(b) SIT-Lattice Element, L
y

{5,21}

33,5

89,79,8

{11,24} {10,23}

217,1

111,2

0,0

{1}

{0}

{2}

17,3

7,6

89,79,8

{22}

{24} {23}

{19}

{5,21}

33,5
{6,9,22}

{4,20}

217,1

111,2

0,0

{1}

{0}

{2}

3,4

17,3

7,6

{3,19}
17,14

3,15

{15}

{14}

89,79,8

{8,11,24} {7,10,23}

(d) L
x
 /\ L

y
(e) L

x
L

y

217,1

111,2

0,0

{1}

{0}

{2}

17,3

7,6

89,79,8

{6}

{8} {7}

{3,19}

{5,21}

33,5

Fig. 7. SIT-lattice Elements and Operations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

760 W. Ng and J. Cheng

2.3 Heuristic Selection Rules

The problem of specifying an SLE, L, to cover a given set of queries, Q, is
equivalent to checking whether the set of nodes selected by L is a superset of
the union of the set of nodes selected by q ∈ Q. We call this problem the SLE
containment problem.

The containment problem for XPath fragments (c.f. A survey on XPath query
containment [13]), that consist of the “child” axis and any two of the following
three constructs, (1) “descendant” axis, (2) predicates, and (3) wildcards, is
shown to be in PTIME in [11]. However, the containment problem for the XPath
fragment that consists of all three constructs is shown to be co-NP complete [9],
while adding the union expression “|” to the fragment makes the containment
problem to be in EXPTIME [12].

The SLE containment problem is even harder, since we allow a richer set of
XPath features such as aggregation-based and value-based predicates. Therefore,
we employ a set of heuristic rules to aid the specification of an efficient SLE. For
example, given the three queries, “//a/b/c”, “//a/b/d//e” and “//a/b/d//f”,
we can specify an SLE to cover the queries as L = “//a/b/(c | d//(e | f))”,
or simply some less-efficient upper bounds of L, such as “//a/b/(c | d)” and
“//a/b”. We skip the details of our rules due to space limitation.

The indexes of real XML datasets [10] are often too large to be loaded into the
main memory of a machine, especially hand-held devices such as pocket-PCs.
Apart from extracting an SLE from a large index to reduce the index size, we
can also partition a large index into smaller partitions in order to load them into
the main memory. For example, “//c[.//d >= 10]/(e | f)” partitions the
SIT in Figure 5 into two SLEs, as shown in Figure 8.

81,1233,57,63,4

17,3

217,1

111,2

0,0

70,1389,79,8

{3,19,32}

{5,21,34}

{26,39}

{4,20,33}

{24,37} {23,36}

{22,35} 33,163,15

17,14

{15,28} {16,29}

{14,27}

{2}

{1}

{0}

{25,38}

{8,11}

81,127,6

17,3

217,1

111,2

0,0

70,1389,79,8

{3}

{13}

{12}

{7,10}

{6,9}
81,17

17,14

70,18

{18,31}

{14,27}

{17,30}

{2}

{1}

{0}

SLE2SLE1

Fig. 8. Horizontal Partition of the SIT in Figure 5

3 Experimental Evaluation

We carried out two sets of experiments. The first is on a Windows XP machine
with a P4, 2.53 GHz processor and 512 MB of RAM. The second is to use
a Toshiba Pocket-PC with a 400 MHz Intel PXA250 processor and 64 MB of
SDRAM; we loaded the SLEs in the Pocket-PC’s main memory and retrieved the
data contents of the result nodes from the PC via a wireless LAN with a transfer
rate of 11 Mbps. We used the following three datasets [10] XMark, SwissProt

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 761

L1

SITDBLP

L4 L5

Q3Q2 Q4 Q5Q1

L2 L3 L6

L7

L3

SITSwissProt

L1

L5

L2

L4

Q5Q3 Q4 Q2Q1

L6 L7

L1

SITXMark

L2L3 L4 L7

L5 L6

Q2Q1 Q4 Q5Q3

(b) SwissProt (c) DBLP(a) XMark

Fig. 9. SIT-Lattice Elements and Queries

and DBLP. We list the queries (Q1 to Q5) and the SLEs (L1 to L7) in Appendix
[14], while we depict an overview of the relationships between the SLEs and the
queries for each dataset in Figure 9. In the figure, a (dotted) path from an SLE,
Li, to a query, Qj, means that Li covers Qj , while a (solid) path from an SLE,
Li, to another SLE, Lj , indicates that Lj ≤ Li. For simplicity, we use Li,...,j to
denote Li, . . . , Lj in subsequent discussions.

3.1 Effectiveness of Using SLEs

Performance on SLE Construction. We investigate (1) the effectiveness of
the SLEs in controlling the structure size and the extent size of the index and
(2) the efficiency in constructing the SLEs. In Table 1, we show the Structure
Ratio and Extent Ratio of the SLEs of the three XML datasets, L1 to L7, which
represent the ratio of the structure size and the extent size of the respective
SLEs to those of their corresponding SIT, respectively.

The results show that the structure size and the extent size of the SLEs can
essentially vary from as small as 0% to as large as 100% of the SIT, and many
points in between. This implies that we have great flexibility in choosing an SLE
to aid in query evaluation.

We also record the time (Build Time) taken to construct the SLEs in Table 1.
The Build Time includes the time taken to load the SLE into the main memory,
though the loading time is usually negligible compared to the construction time.
When the SLEs (such as L1,2,3,4 of XMark, L1,2,5,6,7 of SwissProt and L1,2,3,4,5,6

Table 1. SLE Construction Results

L 1 L 2 L 3 L 4 L 5 L 6 L 7

Structure Ratio (%) 11.98 0.84 4.95 7.91 0.31 0.40 0.58
Extent Ratio (%) 34.18 0.59 6.04 16.42 0.41 0.43 0.69
Build Time (sec) 0.233 1.231 1.032 1.520 0.001 0.001 0.011
Structure Ratio (%) 81.11 57.80 88.43 42.95 35.67 22.56 31.81
Extent Ratio (%) 79.48 59.33 90.60 45.28 37.20 23.79 33.12
Build Time (sec) 5.123 7.020 0.078 0.021 0.230 0.167 0.188
Structure Ratio (%) 22.96 10.34 11.72 9.16 7.25 8.58 0.64
Extent Ratio (%) 54.23 2.32 13.39 2.54 1.13 0.16 0.001
Build Time (sec) 0.560 1.709 1.121 1.530 1.002 1.402 0.044

SIT-Lattice Elements

XMark

SwissProt

DBLP

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

762 W. Ng and J. Cheng

of DBLP) are extracted from their upper bounds, it is usually more costly if
value-based predicates are imposed, since we need to access the disk to retrieve
the data contents of the nodes for the evaluation of the predicates. However,
when the SLEs (such as L5,6,7 of XMark, L3,4 of SwissProt and L7 of DBLP)
are constructed as the union or the intersection of some existing SLEs, the
construction time is only on average tens of milliseconds.

Query Evaluation Speedup. We study the query evaluation speedup ob-
tained by using the SLEs instead of the SITs. Our goal is to investigate the
effect of a reduction in the structure size and/or the extent size on the query
performance. We measure the response time of each query that is evaluated us-
ing the SLEs and the SIT. Then, we compute the speedup as the ratio of the
response time of a query evaluated using an SLE to that using the SIT. We
show the speedup ratio (milliseconds per second) in Table 2. For example, for
XMark, the speedup ratio of L4 against Q1 is 80, which means that it takes 80
milliseconds to evaluate Q1 using L4, while it takes 1 second to evaluate Q1 using
the SIT. Thus, a lower speedup ratio indicates a higher speedup. In Table 2, a
slash “/” indicates that the SLE does not cover the query. We record impressive
speedup for all the three datasets and thus no speedup ratio is presented here.

Based on the experimental results, we derive a guideline to achieve better
query performance using SLEs: more emphasis should be put on reducing the
extent size (by imposing value-based predicates) than on reducing the structure
size (by imposing structural predicates). However, we note that for less regular
data sources, such as SwissProt, reducing the structure size and reducing the
extent size are equally important, because it is likely that every index node is
associated with only a few elements. For such datasets, it is more effective to
reduce the structure size, since a reduction in the structure size also effectively
brings down the extent size of the index, as shown by SwissProt.

Finally, we remark that in this experiment, we evaluated all the predicates
imposed on the queries, even though part of them are already pre-computed by
the SLEs. The reason for the re-computation is to give an accurate account of

Table 2. Query Evaluation Speedup Ratio (msec/sec)

L 1 L 2 L 3 L 4 L 5 L 6 L 7

Q 1 933 103 147 80 10 7 21

Q 2 912 138 212 96 17 9 27

Q 3 986 33 46 / 9 / 24

Q 4 877 35 / 41 / 18 25

Q 5 987 93 / / / / 19

Q 1 356 171 836 41 / / /

Q 2 334 194 719 71 33 / /

Q 3 455 310 987 112 133 87 /

Q 4 519 441 1031 106 118 / 81

Q 5 414 426 761 209 126 108 106

Q 1 904 92 537 123 45 19 1

Q 2 810 64 424 60 26 10 1

Q 3 940 159 577 219 83 52 1

Q 4 1034 88 243 107 37 35 1

Q 5 911 146 751 128 69 27 1

SIT-Lattice Elements

XMark

SwissProt

DBLP

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 763

the effects of the reduction in the structure size and the extent size on query
performance. However, it is interesting to see that when we made use of predicate
pre-computation, significantly greater speedup was measured for almost all of
the SLEs. In real-world database applications, a user can take advantage of this
feature of the SLE to obtain efficient query performance gain.

Query Performance Gain. We now measure the gain in query performance
obtained by using the SLEs instead of the SIT and then illustrate the applica-
bility of the SLEs by an example. We measure the performance gain as (1 −
(SLE Construction Cost + Query Evaluation Cost using the SLE)/Query Eval-
uation Cost using the SIT), i.e., G = {1−(cl+

∑n
i=1c

′
i)/

∑n
i=1ci} × 100%, where

ci and c′i are the costs of evaluating the ith query in the workload using the SIT
and the SLE, respectively, and cl is the cost of building the SLE. We present
in Table 3 the percentage gains for two scenarios: G+ reports the gain of using
an SLE assuming that the SLE was constructed from some existing SLEs other
than the SIT, while G− reports the gain of an SLE that was constructed (all the
way) from the SIT. For example, the construction cost of L7 of XMark is 0.011
second, as reported in Table 1, for the G+ scenario. However, the cost is 4.029
secs, which is the sum of the construction time of all the seven SLEs, for the G−
scenario, since all other SLEs must be constructed before L7 can be constructed.

Table 3. Query Performance Gain

L 1 L 2 L 3 L 4 L 5 L 6 L 7

G+ (%) 4.06 86.43 76.89 79.99 98.74 98.94 97.76
G- (%) 4.06 85.53 74.95 78.08 77.93 74.46 82.10
G+ (%) 55.43 63.70 12.66 87.73 89.06 90.02 90.43
G- (%) 55.43 63.70 8.26 83.34 84.07 80.87 81.63
G+ (%) 7.60 89.33 53.31 88.11 95.00 96.73 99.98
G- (%) 7.60 89.04 53.03 87.82 94.71 96.45 96.26

SIT-Lattice Elements

DBLP

SwissProt

XMark

On average, using the SLEs instead of the SIT achieves significant improve-
ment in query evaluation in both scenarios. The percentage gain is over 70% for
most of SLEs, in both G+ and G− scenarios. The small difference between G+
and G− also implies the great efficiency in constructing the SLEs. Those less
obvious performance gains shown in Table 3 can be explained by the small query
evaluation speedup measured for these SLEs. This is also because we only used
5 queries for each SLE in this experiment. In practice, more queries are generally
posed at a given time and the performance gain can still be further increased.

3.2 Use of SLEs in Memory-Limited Devices

The goal of this experiment is to show that the SLEs allow efficient querying of
large XML data in memory-limited devices. We partition XMark and construct an
SLE for each child of the root of its SIT. We horizontally partition SwissProt into
12 SLEs of roughly the same size by specifying each SLE as “//Entry[@seqlen

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

764 W. Ng and J. Cheng

[. <= range lower and . >= range upper]”. For DBLP, we first apply Ver-
tical Partition by constructing an SLE for each child of the root of the SIT of
DBLP and then horizontally partition the over-sized child “inproceedings” as
“// incproceedings[@key starts-with ‘‘conf/somevalue/’’]”. Using the parti-
tion strategies, the indexes of all the three datasets are able to be loaded into the
main memory of the pocket-PC. Note that the SLEs are constructed from their
corresponding SITs in the PC machine, since the SITs are too large to be loaded
into the main memory of the pocket-PC.

To assess the query performance, we construct, in the pocket-PC, L2,3,4,5,6,7

(c.f. Appendix [14]) from L1 for XMark and DBLP. However, L1 of DBLP is too
large to be loaded into the main memory of the pocket-PC. We thus horizontally
partition L1 of DBLP into four SLEs: L11, L12, L13 and L14. Then, we extract
L2j,3j,4j,5j,6j from L1j and construct L7j as the intersection of L2j,3j,4j,5j,6j ,
where j is 1, 2, 3 and 4, respectively. Finally, Li of DBLP is constructed as the
union of Li1,i2,i3,i4 for 2 ≤ i ≤ 7 and then loaded into the pocket-PC. Then,
we evaluate the same set of queries (c.f. Appendix [14]) by using the SLEs. We
measure the speedup ratio as the ratio of the response time of evaluating a query
using an SLE to that using L1. The query performance gains that we obtain for
each of the SLEs are on average slightly better than but roughly of the same
pattern as those obtained on the PC machine as shown in Sections 3.1 (detailed
experimental results thus omitted).

4 Conclusions

We have presented the SIT-lattice defined on the SIT. With the SIT-lattice,
we are able to select any subset of relevant paths from an XML document. A
SIT-lattice element (SLE) is specified by an XPath expression.

We carried out empirical studies of SLEs as follows. First, we showed with
experimental evidence that the SLEs can be constructed very efficiently and
that using the SLEs, instead of the full index, can tremendously improve query
performance. Second, we demonstrated that SLEs can be used to query large
XML data with impressive query performance in Pocket-PCs.

We remark that, in general, it is difficult to check whether an SLE fully
covers a given query workload, as studied in the containment problem of XPath
fragments in [11,9,12]. However, in a distributed environment, such as using
hand-held devices in a P2P network, it is important for users to obtain a fast
response of query results, despite the fact that the results may not be complete.
In such environments, SLEs can not only be used as efficient query accelerators,
but can also be used to partition the indexes to allow them to fit into the main
memory of the memory-limited devices.

References

1. P. Buneman, et al. Path Queries on Compressed XML. In Proc. of VLDB, 2003.
2. Q. Chen, A. Lim, and K. W. Ong. D(K)-Index: An Adaptive Structural Summary

for Graph-Structured Data. In Proceedings of SIGMOD, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 765

3. J. Cheng and W. Ng. XQzip: Querying Compressed XML Using Structural Index-
ing. In Proceedings of EDBT, 2004.

4. R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and
Opeimization in Semistructured Databases. In Proceedings of VLDB, 1997.

5. H. He and J. Yang. Multiresolution Indexing of XML for Frequent Queries. In
Proceedings of ICDE, 2004.

6. R. Kaushik, P. Bohannon, J. F. Naughton and H. F. Korth. Covering Indexes for
Branching Path Queries. In Proceedings of SIGMOD, 2002.

7. R. Kaushik, P. Shenoy, P.Bohannon, and E. Gudes. Exploiting Local Similarity
for Efficient Indexing of Paths in Graph Structured Data. In Proceedings of ICDE,
2002.

8. A. Marian and J. Simeon. Projecting XML Documents. In Proc. of VLDB, 2003.
9. G. Miklau and D. Suciu. Containment and Equivalence for a Fragment of XPath.

In Journal of the ACM, Vol. 51, No. 1, pp.2-45, January 2004.
10. G. Miklau and D. Suciu. XML Data Repository, which can be found at the URL:

http://www.cs.washington.edu/research/xmldatasets.
11. T. Milo and D. Suciu. Index Structures for Path Expressions. In Proceedings of

ICDT, 1999.
12. F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction,

DTDs, and Variables. In Proceedings of ICDT, 2003.
13. T. Schwentick. XPath Query Containment. In SIGMOD Record, 33(1), 2004.
14. Appendix http://www.cse.ust.hk/∼wilfred/SLE/appendix.pdf.

Appendix
(This appendix [14] is included for reading convenience only).

This appendix lists, in abbreviated XPath syntax, the queries and the specifica-
tion of the SLEs used in the performance evaluation. We use fully parenthesized
expressions for the predicates as to avoid ambiguity.

We use three benchmark XML datasets: XMark, which is an XML benchmark
project modelling a deeply nested auction database; SwissProt, which describes
DNA sequences; and DBLP, which is a popular bibliography database. Table 4
shows some brief descriptions of the three XML datasets such as the size, the
number of distinct tags/attributes, and the maximum depth of each dataset.
|VT | is the number of nodes in the structure tree, which is the extent size of
the SIT, and |VI | is the number of nodes in the SIT, which is the structure
size of the SIT. The ratio of |VI | to |VT | shown in the last column of Table 4
indicates the degree of its redundancy (a higher ratio indicates less redundancy)
and regularity (a lower ratio indicates greater regularity) of the dataset. Thus,
the |VI |/|VT | ratios show that DBLP is relatively regular and SwissProt has the
lowest level of redundancy.

Table 4. Dataset Descriptions

Datasets Size Tags/Attrs Depth | VT | | VI | |VI| / |VT|

XMark 111 MB 86 11 1837608 30071 1.64%
SwissProt 109 MB 100 5 5166890 1466332 28.38%
DBLP 127 MB 38 5 3733320 1874 0.05%

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

766 W. Ng and J. Cheng

XMark

Common predicates used in the queries and the SLE specification:
Px1 = [[[initial >= 100] and [current <= 200]] and [not [reserve]]]
Px2 = [interval[[start >= 01/01/2000] and [end < 01/01/2001]]]
Px3 = [[count(bidder) >= 10] and [avg(bidder/increase) < 5]]
Queries:
Q1: /site/open auctions/open auction[Px1 and [Px2 and Px3]]/@id
Q2: /site/open auctions/open auction[[Px1 and [Px2 and Px3]] and [not
[bidder]]]/(@id | */description)
Q3: //open auction[[Px1 and Px2] and [type = ‘‘featured’’]]/@id
Q4: /site/open auctions/open auction[[Px1 and Px3] and
[max(bidder/increase) >= 10]]/annotation/description
Q5: //open auction[[Px1 and [Px2 or Px3]] and [not [contains(type,
‘‘Dutch’’)]]] /(@id | bidder[increase >= 10]/date)
SIT-lattice elements:
L1: //open auctions
L2: //open auction[Px1]/(@id | ∗/description | type | bidder/(date |
increase) | interval)
L3: //open auction[Px2]
L4: //open auction[Px3]
L5 = L2 ∩ L3: //open auction[Px1 and Px2]/(@id | ∗/description | type |
bidder/(date | increase) | interval)
L6 = L2 ∩ L4: //open auction[Px1 and Px3]/(@id | ∗/description | type |
bidder/(date | increase) | interval)
L7 = L5 ∪ L6: //open auction[Px1 and [Px2 or Px3]]/(@id | ∗/description |
type | bidder/(date | increase) | interval)

SwissProt:

Common predicates used in the queries and the SLE specification:
Px1 = [@seqlen[[. >= 100] and [. < 1000]]]
Px2 = [Mod[[@type = ‘‘Created’’] and [@date[[. >= ‘‘01-JAN-1993’’] and
[. < ‘‘1-JAN-2000’’]]]]]
Px3 = [Px1 and Px2]
Px4 = [Px3 and [count(Ref) = 1]]
Px5 = [Px4 and [contains(Species, ‘‘Homo’’)]]
Queries:
Q1: //Entry[Px3]/(@id | Gene)
Q2: //Entry[Px4]/(@id | Gene)
Q3: //Entry[Px5 and [count(Keyword) >= 5]]/(@id | Gene)
Q4: //Entry[Px5 and [count(Org) >= 5]]/(@id | Gene)
Q5: //Entry[Px5 and [[count(Keyword) >= 5] and [count(Org) >= 5]]]/(@id
| Gene)
SIT-lattice elements:
L1: //Entry[Px1]
L2: //Entry[Px2]
L3 = L1 ∪ L2: //Entry[Px1 or Px2]
L4 = L1 ∩ L2: //Entry[Px3]
L5: //Entry[Px4]
L6: //Entry[Px4 and [count(Keyword) >= 5]]
L7: //Entry[Px4 and [count(Org) >= 5]]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Index Lattice for XML Query Evaluation 767

DBLP

Common predicates used in the queries and the SLE specification:
P = [[[[[contains(author, ‘‘David’’)] and [year >= 2000]] and
[crossref[[contains(., ‘‘sigmod’’)] or [contains(., ‘‘vldb’’)]]]] and
[contains(booktitle, ‘‘SIGMOD’’)]] and [contains(title, ‘‘Data Mining’’)]]
Queries:
Q1: //∗/@key[ancestor-or-self::inproceedings[P]]
Q2: (//title[parent::inproceedings[P]] |
//author[parent::inproceedings[P]])
Q3: //*/inproceedings[P]/(booktitle | year | page | title)
Q4: //cite[@label[. = ‘‘IBM99’’ and ./ancestor::inproceedings[P]]]
Q5: count(//inproceedings[P]/author)
SIT-lattice elements:
L1: //inproceedings
L2: //inproceedings[contains(author, ‘‘David’’)]
L3: //inproceedings[year >= 2000]
L4: //inproceedings[crossref[[contains(. ‘‘sigmod’’)] or [contains(.,
‘‘vldb’’)]]]
L5: //inproceedings[contains(booktitle, ‘‘SIGMOD’’)]
L6: //inproceedings[contains(title, ‘‘Data Mining’’)]
L7 = L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6: //inproceedings[P]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to

Support Querying Streaming XML

James Cheng and Wilfred Ng

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong

{csjames, wilfred}@cse.ust.hk

Abstract. The rapid growth in the amount of XML data and the devel-
opment of publish-subscribe systems have led to great interest in process-
ing streaming XML data. We propose the QstreamX system for querying
streaming XML data using a novel structure, called Hash-Lookup Query
Trees, which consists of a Filtering HashTable (FHT), a Static Query
Tree (SQT) and a Dynamic Query Tree (DQT). The FHT is used to
filter out irrelevant elements and provide direct access to relevant nodes
in the SQT. The SQT is a tree model of the input query. Based on the
SQT, the DQT is built dynamically at runtime to evaluate queries. We
show, with experimental evidence, that QstreamX achieves throughput
five times higher than the two most recently proposed stream querying
systems, XSQ and XAOS, at much lower memory consumption.

1 Introduction

With the rapid growth in the amount of XML data, processing streaming XML
data has gained increasing attention in recent years. Two main and closely
related stream processing problems in XML are filtering [1,6,5,2,7,8,13] and
querying [3,10,11,14]. The problem of filtering is to match a set of boolean path
expressions (usually in XPath syntax) with a stream of XML documents and to
return the identifiers of the matching documents or queries. In querying stream-
ing XML data, however, we need to output all the elements in the stream that
match the input query. Apart from natural streaming data used in publish-
subscribe systems such as stock quotes and breaking news, it is sometimes more
feasible to query large XML datasets in a streaming form, since we need to
parse the document only once and keep only data that are relevant to the query
evaluation in the memory.

In this paper, we focus on processing XPath queries with streaming XML data.
Unlike filtering, querying outputs an element if it matches the input query. The
difficulty is that in the streaming environment, we sometimes cannot determine
whether an element is in the query result with the data received so far. However,
we cannot simply discard the element as its inclusion in the query result may be
verified with some element arriving in the future. Therefore, we need to buffer
the potential query results. Proper buffer handling for querying XML streams,
however, is rather complex, as illustrated by the following example.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 768–780, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 769

c5 d6 e9 c10 d11 f12 c13 c16 z19

b4c3 b8 y18d15

a7 x17b14a2

a1 20
~

...
/

0

C1

C2 D1 E1 C3 D2 xml-db C4 C5 Z1

Fig. 1. A Sample XML Document Tree

Example 1. Consider evaluating the query Q = “//a[.//f]//b/c” on the XML
document tree in Figure 1, assuming its elements come as a stream in ascending
order of their (numerical) ids marked near the circle.

When the element c5 (i.e. the node with label “c” and id = 5 on the left
side of the tree) arrives, we have two node sequences, q1 = 〈a1, b4, c5〉 and
q2 = 〈a2, b4, c5〉, matching the main path of Q, i.e. “//a//b/c”. However, we
cannot output c5 at this stage, since the predicate, “[.//f]”, of both a1 and a2
have not been satisfied. As this predicate may be satisfied with an f element
that comes later, we must buffer c5 for both q1 and q2; but only one copy of c5
should be kept in memory as to avoid duplicate buffering.

When the end-tag of the element a2 arrives, a2 expires and so does the node
sequence q2. Since a2’s predicate is not satisfied, we need to remove the element
c5 buffered for q2. But c5 should not be deleted, since it is still being buffered
for q1, which may satisfy Q if there is an f element, descendant of a1, coming
in the stream. Similarly, we buffer c10 for the node sequences, q3 = 〈a1, b8, c10〉
and q4 = 〈a7, b8, c10〉. Then when the start-tag of the element f12 arrives, q1, q3

and q4 satisfy Q. Hence, we need to immediately flush the element c5 buffered
for q1 and the c10 buffered for q3 and q4. However, we should flush c10 only once,
though it is buffered for both q3 and q4.

When c13 arrives, we should not buffer but output c13 immediately, since this
time the node sequences, 〈a1, b8, c13〉 and 〈a7, b8, c13〉, instantly satisfy Q. Again,
we should output c13 only once for the two sequences.

Example 1 suggests some important issues in the query processing: (1) buffer-
ing of potential query results or outputting determined query results; (2) the
decision of flushing or removing buffered data; and (3) duplicate avoidance in
buffering, outputting, flushing and removing. Let us call all these issues collec-
tively as buffer handling in our subsequent discussion.

Buffering comes only with the presence of predicates. The query in Example 1
contains only a single atomic predicate but the problem is already very complex.
Another important issue is that a substantial amount of elements in a stream
are usually irrelevant, however, no existing querying systems have considered
filtering out these elements.

We propose the QstreamX system, which attempt to address the above-
mentioned challenges with the use of a novel data structure, called Hash-Lookup

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

770 J. Cheng and W. Ng

Query Trees (HLQT). HLQT consists of the following three components: a Fil-
tering HashTable (FHT), a Static Query Tree (SQT) and Dynamic Query Tree
(DQT). The FHT filters out irrelevant streaming elements and provides direct
access to nodes in the SQT that are relevant for the processing of relevant ele-
ments. The SQT is a tree model of the input query, based on which the DQT is
constructed dynamically at runtime to evaluate queries.

QstreamX has the following desirable features:

Language Expressiveness. QstreamX supports all XPath axes except the
sideways axes (i.e. preceding-sibling and following-sibling). It also sup-
ports multiple and nested predicates with and and or operators, a common set
of aggregations, and multiple queries and outputs.
Processing Efficiency. Our algorithm is able to achieve O(|D|) time complex-
ity and O(|Q|) space complexity, where |D| is the size of the streaming data and
|Q| is the size of the input query.
Buffering Effectiveness. QstreamX (1) buffers only those data that must be
buffered for the correct evaluation of the query; (2) flushes or removes buffered
data with no delay; and (3) avoids buffering and outputting any duplicate data.
Effective Design. HLQT makes the implementation of QstreamX straightfor-
ward. The FHT is realized as a simple array that stores distinct query elements
and pointers to the SQT nodes. The SQT is translated directly from the input
query by four simple transformation rules, while the DQT is constructed with
correspondence to the structure of the SQT.

In the rest of the section, we discuss related work on stream processing. In
Section 2, we present the XPath queries supported by QstreamX. We define
Hash-Lookup Query Trees and present query evaluation in Sections 3. We eval-
uate QstreamX in Section 5 and conclude the paper in Section 6.

1.1 Related Work

A number of filtering systems [1,6,5,2,7,13,8] have been proposed to process XPath
filters on streaming XML documents. XFilter [1] converts queries into separate
Deterministic Finite Automata (DFAs), while YFilter [6] eliminates redundant
processing on common prefixes in the queries by a single Non-Deterministic Fi-
nite Automaton (NFA). XTries [5] also supports shared processing of common
subexpressions of the queries by a trie. The throughput of these systems
decreases linearly with the number of queries. LazyDFA [2,7] ensures a constant
high throughput by lazily constructing a DFA for the entire workload of queries.
However, LazyDFA may require excessive memory for XML data with complex
structures. This problem is addressed in [13], which clusters the queries into n
DFAs to reduce the number of DFA states and introduces a shared NFA state ta-
ble to reduce the size of the NFA state table stored in each DFA state. The XPush
machine [8] eliminates common predicates by translating the query workload into
a deterministic pushdown automaton. Among these systems, only [13] and [8] sup-
port almost the same set of queries (except aggregations) as QstreamX. Although

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 771

we consider the same query language, filtering only outputs the identifier of match-
ing documents or queries and does not require buffering of potential query result.

A closer match to QstreamX is the XAOS algorithm [3], which translates an
XPath query into a tree and uses an extra graph to support the parent and
ancestor axes by converting them into forward axes. The graph determines
which set of elements (and with what depth) to look for in the incoming stream.
The tree is used to maintain a structure to keep track of the matched elements.
However, the query results are only determined at the ROOT of the structure, i.e.,
at the end of the stream, while HLQT outputs an element no later than when its
inclusion in the query result is decided. Keeping the matched data until the end
of a stream also does not scale, especially because streaming data is unbounded.
Moreover, features such as aggregations, or-expressions and multiple queries are
infeasible in XAOS’s approach.

The filtering systems [2,7,13,8] guarantee a constant high throughput using
a hash algorithm to access directly relevant states for processing each element.
However, direct access to relevant states or nodes using hash-lookup is con-
siderably complicated by buffer handling in the querying problem. In fact, all
existing querying systems need to search for matching transitions or relevant
nodes for each (including irrelevant) streaming element. Our proposed HLQT
adopts a hash-lookup strategy, which is natural to filter out irrelevant elements
and provide direct access to nodes relevant for processing relevant elements.

2 QstreamX Query Expressions

We support a practical subset of XPath 2.0 queries with extended aggregations,
whose Extended Backus-Naur Form (EBNF) is shown in Figure 2.

Q ::= /LP (/OE)?
LP ::= LS | LS/LP
LS ::= AX::(tag | ∗) P? | (@attribute | @∗) CP?
AX ::= self | child | descendant | descendant-or-self | parent |

ancestor | ancestor-or-self
P ::= [P (and | or) P] | [LP CP?]
CP ::= OP literal | [[. OP literal] (and | or) [. OP literal]]
OP ::= > | < | >= | <= | = | != | contains | starts-with
OE ::= text() | count() | sum() | avg() | max() | min()

Fig. 2. EBNF Grammar of QstreamX Queries

3 Hash-Lookup Query Trees

We now define the three components of Hash-Lookup Query Trees (HLQT): the
Static Query Tree, the Dynamic Query Tree and the Filtering HashTable.

The Static Query Tree. The Static Query Tree (SQT) is a tree model of the
input query constructed by four transformation rules, as depicted in Figure 3,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

772 J. Cheng and W. Ng

where elements in dotted line are optional components. The transformation rules
are derived directly from the EBNF of the language presented in Figure 2.

We now explain the four transformations that are used to construct the SQT.
(a) LocationStep Transformation. A location step is transformed into an
SQT node, or a snode for short, which is a triplet, (axis, predicate, dlist), where
axis is the axis of the location step; predicate, if any, is handled by Predicate
Transformation; and dlist is a list of DQT node pointers that provide direct
access to the DQT nodes. A dlist is initially empty, since node pointers are
added to the dlist at runtime during query evaluation.
(b) LocationPath Transformation. A location path is a sequence of one or
more location steps. Therefore, LocationPath Transformation is just a sequence
of one or more LocationStep Transformations, where a snode is connected to its
parent by its axis.

/

LS0:

.

.

.

OutputExpr

Predicate

(a) LocationStep
Transformation

A | O

literal

Predicate

P

LS0

LSn

.

.

.

LS0.axis

P
OP

A | O
OP OP

LS0

LSn

.

.

.

LS0.axis
ROOT Predicate

(b) LocationPath
Transformation

(d) ROOT/OE
Transformation

(c) Predicate Transformation

Predicate

(c1) (c2) (c3)

Predicate

LS1:

LSn:

.

.

.

LocationPath

axis

LSn.axis

literal literal

P

LS0

LSn

.

.

.

LS0.axis

LocationPath

LS1.axis

LS0.axis

Predicate

Predicate

Fig. 3. SQT Transformation Rules

c

PP

O

b
// /

c
/

P
//

A

O

A

P

d

/

xml

starts
-with contains

c

/s0

a
//

b
//

/

/
text()

 Query: //a[[[.//c] or [b[e]/c]] and [.//f[[[. starts-with "xml"]
 and [. contains "db"]] or [. = "cs"]]]]//b[d]/c/ text()

Static Query Tree

f

PP

e
/

s1

=
db cs

s7

s9
s8 s2 s3

s5 s4

s6

Fig. 4. The SQT of an Example Query

(c) Predicate Transformation. To facilitate efficient predicate processing,
we require predicates be fully parenthesized when they are joined by the logical
operators. We then model the predicates as a binary tree, called a Predicate
Binary Tree (PBT). A node in the PBT is called an SQT predicate node, or a
spnode, which is one of the following three types: O (for or-expression), A (for
and-expression) and P (an encapsulation of other predicate). Value comparison,
if any, is also modelled by a P-spnode, by an A-spnode or by an O-spnode for
multiple value matches.

We classify predicate transformation into the following three categories: (1)
an atomic predicate is transformed by applying LocationPath Transformation
on the location path in the predicate, as shown in Figure 3(c1) and 3(c2); (2)
a nested predicate is transformed by applying Predicate Transformation recur-
sively; and (3) an and/or expression is transformed by applying Predicate Trans-
formation on both sides of the logical operator, as shown in Figure 3(c3).
(d) ROOT/OE Transformation. This transformation is carried out in two
steps. The first step is at the beginning of the SQT construction, we create the
root of the SQT. The second step is at the completion of the SQT construction,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 773

we create a node, called the output node, in order to model the output expression
of the query.

Let s be a snode. If s has an ancestor that is a spnode, then we say s is under
a PBT. Note that s is not part of the PBT, since a PBT consists of only spnodes.
If the root of a PBT is connected to s, then the PBT is the PBT of s. We say
that s is the parent of another snode, s′, if s and s′ are connected by the axis of
s′, and that s is the indirect-parent of s′, if s and s′ are connected by a path of
spnodes in the PBT of s.

The primary path of the SQT is the path that still remains when all PBTs and
all snodes under the PBTs are removed. For example, in Figure 4, the nodes s1,
s3, s6 and s7 have a PBT, while the nodes s2, s3, s4, s5, s6 and s8 are under a
PBT; s1 is the parent of s7 but the indirect-parent of s2, s3 and s6; 〈s0, s1, s7, s9〉
is the primary path. Moreover, if a snode is not on the primary path, then it is
under a PBT. Note that there may be more than one primary path in the DQT,
if the streaming data is recursive with respect to an axis on the primary path of
the SQT. The dot notation a.b means that b is the component of a. For example,
s.dlist refers to the dlist of s.

The Dynamic Query Tree. The Dynamic Query Tree (DQT) is constructed
dynamically at runtime to simulate the execution of query evaluation. We use
the SQT to guide the construction of the DQT and to provide direct access
(using the dlists) to nodes in the DQT that are relevant for the processing of a
streaming element. We now detail the structure of the DQT, with reference to
the SQT.

Like the SQT, there are two types of nodes in the DQT: DQT node (dnode)
and DQT predicate node (dpnode). Each dnode (dpnode) corresponds to a unique
snode (spnode) and the relationship between the dnodes (dpnodes) is the same
as that between the corresponding snodes (spnodes).

A dnode, d, is a triplet, (depth, blist, flag), where depth is the depth of the
corresponding XML element in the streaming document, and the blist and the
flag are used to aid buffer handling and predicate evaluation. The content of
d.blist is described as follows:

– If d is on the primary path, then d.blist is either ∅ or a list of pointers to
where query results are buffered.

– If d is under a PBT, then d is used to evaluate a predicate and hence no
data need be buffered for d. However, we assign a special value, ρ, to d.blist
so that we can immediately identify whether a dnode is under a PBT or on
the primary path during query processing.

The flag is either T or F, which has different meanings:

– If d is on the primary path (i.e. d.blist �= ρ), :
Case of d.flag = T. The predicates of all d’s ancestors and d are satisfied.
Case of d.flag = F. The predicate of some of d’s ancestors has not been
satisfied.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

774 J. Cheng and W. Ng

– If d is under a PBT (i.e. d.blist = ρ):
Case of d.flag = T. All d’s descendants are satisfied.
Case of d.flag = F. d has some descendant not satisfied.

When we say that a dnode, d, is satisfied, we mean that the predicates of
all d’s descendants and d are satisfied. When we say that d’s predicate is satis-
fied, we mean that d’s PBT is evaluated to be true (and deleted), but it does
not imply that the predicates of d’s descendants are all satisfied. A dpnode
is one of the following types: P, A (i.e. and), O (i.e. or), L (i.e. left) and R
(i.e. right), where L (or R) indicates that the left (or right) side of the and-
predicate has been satisfied and only the right (or left) side needs to be pro-
cessed.

The Filtering Hashtable. The Filtering HashTable (FHT) filters out all
streaming elements that do not match any element in the query. A hash value
is generated for each distinct element or attribute label in the query. The labels
are then stored in the corresponding hash slot. Collision is handled by chaining.
In practice, collisions are very rare in QstreamX, since we use a hashtable of
default size 1024 (only a few KB memory size), while most XML datasets have
less than 200 distinct elements.

To provide direct access to snodes that match a streaming element, a list,
called the slist, is kept in each hash slot. An element of the slist is a triplet,
(sparent, schild, dp), where sparent and schild are two snode pointers, and sparent
is either the parent or indirect-parent of schild; and dp is a list of L or R symbols
to represent the left or right direction, respectively, from sparent to schild, if
sparent is the indirect parent of schild and sparent’s PBT has more than one
spnodes; dp is denoted by ∅ otherwise.

Figure 5 shows the slist of the six elements, a, b, c, d, e and f, of the query in
Figure 4. For example, b’s slist has two elements since there are two bs in the
query. In both slist-elements, the schilds, s7 and s3, model b; while the sparent,
s1, is the parent of s7 but the indirect-parent of s3. The first dp is ∅ since we
can reach s7 from s1 directly, while the second dp, LR, shows that from the root
of s1’s PBT, we reach s3’s parent by going left and then right.

a:{(s0,s1,∅)}; d:{(s7,s8,∅)}; e:{(s3,s4,∅)}; f:{(s1,s6,R)};
b:{(s1,s7,∅),(s1,s3,LR)}; c:{(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}.

Fig. 5. The slist of the Query in Figure 4

4 QstreamX Query Processing

Consider the query shown in Figure 4 on the XML document presented in Figure 1.
For brevity, we use li.S to denote the S event (same for A, T and E) of the element,
whose label is l and id is i, in Figure 1. For example, a1.S refers to the S event of
a1. Throughout, we use si to denote a snode in the SQT (see Figure 4) and di to
denote a dnode in the DQTs (see Figures 6(a)-6(f)).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 775

(a) Basic DQT Construction. We first create the root of the DQT, d0

= (0,∅,T), and add d0’s pointer to the dlist of the corresponding snode, s0.
On the arrival of a1.S, we apply hashing on the label, a, and access a’s slist
(c.f. Figure 5), {(s0,s1,∅)}, that is stored in a’s hash slot. We use s0’s pointer in
a’s slist to access s0 and then use d0’s pointer in s0.dlist to access d0. From d0

we create its child, d1 = (1,∅,F), to correspond to s0’s child, s1. We set d1.blist to
∅, since s1 is on the primary path, and d1.flag to F, since s1 has a PBT. We then
construct the PBT for d1 according to the PBT of s1 and insert the pointer to
d1 into s1.dlist. In the same way, for the next (recursive) event a2.S, we create
another child, d2, for d0. In the following discussion, when we create a dnode,
we also construct its PBT, if any; and after the dnode is created, its pointer is
inserted into the dlist of its corresponding snode to provide direct access. We
show the DQT constructed so far in Figure 6(a), in which we also show all the
non-empty dlists of the snodes.

(a) After a2.S

d2 A

O P

P P

d1 A

O P

P P

d0

dlists
(0, ,T)

(b) After c5.T

d2 L

P

d0

d3

d6

P

d1 L

Pd4

d5

P

s0:{d0}
s1:{d2,d1}
s7:{d4,d3}
s9:{d6,d5}

dlists

b1:(''C2'',2)
Buffers

s0:{d0}
s1:{d2,d1}

(c) After b4.E

d2 L

P

d1 L

P

d0 dlists
s0:{d0}
s1:{d2,d1}

(4,{b1},F)

s0:{d0}
s1:{d7,d1}
s6:{d12,d11}
s7:{d9,d8}

dlists

(2, ,F) (1, ,F) (2, ,F)

(3, ,F)

(4,{b1},F)

(3, ,F)

(1, ,F) (2,{b1},F) (1,{b1},F)

(0, ,T)

b1:(''C2'',2)
Buffers

(e) After f12.S (f) After c13.S

(2, ,F)
d8

s0:{d0}
s1:{d7,d1}
s3:{d10}
s7:{d9,d8}

dlists

(d) After b8.S

d7 A
O P

P P

d0(0, ,T)

(2, ,F)

d8 P
(3, ,F)

d10 P(3,P,F)

d1 L

P

(1,{b1},F)

d9 P
(3, ,F)

d7 L
P

d1

d0
(1,{b1},F)

(0, ,T)

(3,{b2},F) d11 O
A P

d9
(3,{b2},F)

L
P

d12 O
A P(4,P,T) (4,P,T)b1:(''C2'',1)

Buffers b1:(''C2'',1)
b2:(''C3'',2)

Buffers

d7

d0

d8

d14

d1

d9

d13

s0:{d0}
s1:{d7,d1}
s7:{d9,d8}
s9:{d14,d13}

dlists

(2, ,T)

(3, ,T)

(0, ,T)

(0, ,T)

(4, ,T)

(1, ,T)

(3, ,T)

(4, ,T)

Fig. 6. The DQTs for Processing the Query in Figure 4 on the XML Doc in Figure 1

(b) Predicate Processing (Bubble-Up). The next streaming event is c3.S
and we have three elements in c’s slist: {(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}. However,
the dlists of the parent snodes, s7 and s3, are empty, which implies that s7 and
s3 have not been matched. Hence, we only process (s1,s2,LL) and access d2 and
d1 via their pointers in s1.dlist. We then use dp, i.e. LL, to start from the root
of d2’s PBT, pr, to reach the leftmost leaf dpnode, pl. Since s2 has no PBT and
child, c3.S satisfies s2. Thus, no dnode is created but we bubble the satisfaction
from pl up the PBT. The bubble-up immediately satisfies pl’s parent since it
models an or-predicate. Hence, we continue bubbling up to pr, which is an and-
predicate. We change pr.type to L to indicate that the left child of pr is evaluated
to be true. In the same way, we evaluate d1’s PBT with c3.S. We update the
DQT in Figure 6(b). (We ignore d3-d6 for the time being.)
(c) Elimination of Redundant Processing. We do not process c3.T and
c3.E, since the dlists of s9, s5 and s2 are empty, implying that no dnode exists

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

776 J. Cheng and W. Ng

to process c3.T and c3.E. Note that c3.T and c3.E are indeed redundant for
processing the query .

Then it comes b4.S. Using (s1,s7,∅) in b’s slist we access s1 and then d2 and
d1. From d2 and d1 we create their respective child, d3 and d4, corresponding
to s1’s child s7. However, for the other element, (s1,s3,LR), in b’s slist, when we
use dp to process s3, we find that s3 belongs to the satisfied part of a PBT,
since the first component of dp, i.e. L, matches the type of the root of both d2’s
PBT and d1’s PBT. This is also a part of QstreamX’s mechanism to eliminate
redundant processing. In the same way, we also skip the processing of last two
slist-elements in c’s slist for the next streaming element, c5.
(d) Buffering. We only need to process the slist-element, (s7,s9,∅), for c5. For
c5.S, we access d4 and d3 via s7.dlist, and create their respective child, d5 and
d6, corresponding to s9. For c5.T , we apply hashing on the label, c, obtained
from the stack top. We then access d6 and d5 via s9.dlist. Since s9’s child is
the output node and both d6 and d5 have no PBT, c5.T is a potential query
result. We create Buffer b1 to buffer c5.T , i.e. “C2”. Then we insert the pointer
to b1 into both d6.blist and d5.blist, and increment b1.counter twice. We show
the updated DQT and the Buffer in Figure 6(b).
(e) Uploading. To process c5.E, we use (s7,s9,∅) to access s9 and then access
d6 and d5, via s9.dlist. We upload d6.blist and d5.blist to their parents d3 and d4

respectively. Then, we delete d6 and d5, and remove their pointers from s9.dlist.
With d6.S and d’s slist, {(s7,s8,∅)}, we then further delete the PBT of d4

and d3, since d6.S satisfies s8. Again, s8’s empty dlist avoids the redundant
processing of d6.T and d6.E.

To process b4.E, we upload d4.blist and d3.blist to their parents d1 and d2

respectively. We then delete d4 and d3, and remove their pointers from s7.dlist.
We update the DQT and the dlists in Figure 6(c). Note that both d1.blist and
d2.blist now contain the pointer to Buffer b1.
(f) Buffer Removing. Then for a2.E, we access d2 and d1 via s1.dlist. We do
not upload d2.blist since d2 has a PBT, i.e. the predicate is not satisfied, and
hence the data buffered is not a query result with respect to d2. We access Buffer
b1 via b1’s pointer in d2.blist to decrement b1.counter. Then we delete d2 and its
PBT. We do not process d1, since d1.depth does not match the depth of a2.E.

We then create another child, d7, for d0 with a7.S. Then corresponding to s7,
b8.S creates d8 and d9 as child of d7 and d1 respectively. Although b8.S is not
processed for d1’s PBT, we create d10 to evaluate s3, as shown in Figure 6(d).

Then e9.S satisfies s4 and we delete d10’s PBT, while s4’s empty dlist avoids
e9.T and e9.E being redundantly processed. Next c10.S creates a child for d9

and d8 respectively, corresponding to s9. This c10.S also satisfies s5, and the
satisfaction triggers d10’s satisfaction, which is bubbled up until it updates the
type of the root of d7’s PBT to L. The last element in c’s slist is thus not
processed, since s2 belongs to a satisfied part of the PBT.

For c10.T , i.e. “C3”, we buffer “C3” in Buffer b2. On the arrival of c10.E, the
blists are uploaded to d9 and d8. Then d11.S satisfies s8 and we delete the PBT

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 777

of both d9 and d8. Next, f12.S creates d11 and d12 to evaluate s6, as shown in
the updated DQT in Figure 6(e).
(g) Predicate Processing (Trickle-Down) and Flushing. Then f12.T , i.e.
“xml-db”, matches the and-predicate in d12’s and d11’s PBT. We bubble up the
satisfaction to the or-predicate, i.e. the root of d12’s and d11’s PBT. Thus, both
d12 and d11 are satisfied; and the satisfaction is bubbled up and triggers the
satisfaction of both d1’s PBT and d7’s PBT. Since d1 and d7 are on the primary
path, we trickle down the satisfaction of their PBT to their descendants.

The trickle-down starts at d1, since d12, which is under d1’s PBT, is processed
before d11. We first update d1.flag to T and access b1 via d1.blist to flush b1. We
then decrement b1.counter to zero and hence we delete b1. We also set d1.blist
to ∅. Then we trickle down to d1’s child d9, we set d9.flag to T and access b2 via
d9.blist to flush b2. We then set b2.store to “flushed” and decrement b2.counter.
Then we set d9.blist to ∅. When the trickle-down reaches d8, we access b2 again
via d8.blist. Since b2.store is “flushed”, we only decrement b2.counter. We delete
b2 since b2.counter now becomes zero.
(h) Outputting. Then for c13.S we create d13 and d14 as child of d9 and d8

respectively, as updated in Figure 6(f). Since d9.flag and d8.flag are T, d13.flag
and d14.flag are also set to T. Therefore, when we process c13.T for d14, we
immediately output c13.T as a query result. We also set a flag to indicate that
c13.T is outputted, so that we do not output it again when we process d13 next.
The flag is then unset.

Then for c13.E, we delete d14 and d13; for b8.E, we delete d9 and d8; for a7.E,
we delete d7.
(i) Depth Mismatch and Hash-Lookup Filtering. Although s7 is satisfied
again with b14 and d15, c16 does not match the depth of the child of s7 and is
hence filtered out. The elements, x17, y18 and z19, have no corresponding hash
slots and are hence filtered out. Finally, we delete d1 when a1.E comes, while
we delete d0, i.e. the root of the DQT, to terminate the query processing at the
end of the stream.

5 Experimental Evaluation

We evaluate QstreamX on two important metrics for XML stream processing:
the throughput and the memory consumption. We compare its performance with
two most recently proposed querying systems, the XSQ system V1.0 [14] and the
XAOS system[3]. We use the following four real datasets [12]: the Shakespeare
play collection (Shake), NASA ADC XML repository (NASA), DBLP, and the
Protein Sequence Database (PSD). We ran all the experiments on a Windows
XP machine with a Pentium 4, 2.53 GHz processor and 1 GB main memory.

Throughput. Throughput measures the amount of data processed per second
when running a query on a dataset. For each of the four real datasets, we use 10
queries, which have a roughly equal distribution of the four types: Q1 consists of
only child axis, Q2 consists of only descendant-or-self; Q3 and Q4 mix the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

778 J. Cheng and W. Ng

two axes, but Q3 consists of a single atomic predicate, while Q4 allows multiple
(atomic) predicates. An example of each type is shown below:

(Q1): “/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()”
(Q2): “//dataset//author//lastname/text()”
(Q3): “//inproceedings[year > 2000]/title/text()”
(Q4): “//ProteinEntry[summary]/reference[accinfo]

/refinfo[@refid =“A70500”]//author/text()”

The throughput1 of each system on processing a single query is measured as the
average of the throughput of processing each of the 10 queries for each dataset. We
also measure the throughput of processing multiple queries (5 and 10 queries) by
QstreamX, where the input queries are simply each half of the 10 queries and the
10 queries as a whole respectively. However, the Xerces 1.0 Java parser used in
XSQ is on average two times slower than the C++ parser used in QstreamX and
XAOS. Therefore, we use the relative throughput [14], which is calculated as the
ratio of the throughput of each system to that of the corresponding SAX parser,
to give a comparison only on the efficiency of the underlying querying algorithm.

As shown in Figure 7, QstreamX achieves very impressive throughput, which is
about 80% of that of the SAX parser (the throughput for Shake is 78% when the
dataset is scaled up by three time); in another word, 80% of the upper bound. Com-
pared with XSQ and XAOS, QstreamX on average achieves relative throughput of
2.7 and 4.5 times higher, respectively. The tremendous improvement made by our
algorithm over the XSQ and XAOS algorithms is mainly due to the effective filter-
ing of irrelevant elements by hash-lookup and the direct access to relevant nodes
through slist and dlist. Finally, we remark that the raw throughput of QstreamX
is on average 5.4 and 9 times higher than that of XSQ and XAOS, respectively.

0

0.2

0.4

0.6

0.8

1

Shake NASA DBLP PSD
Datasets

R
el

at
iv

e
Th

ro
ug

hp
ut

QstreamX XSQ XAOS QstreamX QstreamX 5 10

Fig. 7. Relative Throughput

The average relative throughputs of QstreamX on processing 5 queries and
10 queries are 43% and 19%, as denoted by QstreamX5 and QstreamX10 respec-
tively in Figure 7. The great drop in the throughput is mainly because 5 and
1 Since outputting the query results to the screen dominates the processing time, we

write the results to a disk file for all systems.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Development of Hash-Lookup Trees to Support Querying Streaming XML 779

10 times more potential query results need to be processed and duplicate avoid-
ance has to be performed for 5 and 10 more times. However, this overhead is
inevitable for processing multiple queries on XML streams, since we must buffer
the potential query results at any given time. Despite of this, we remark that
the throughput of QstreamX on 5 queries is still 1.5 times higher than that of
XSQ (i.e. a raw throughput of 3 times higher), while that on 10 queries is only
slightly lower (but a slightly higher raw throughput).
Memory Consumption. We measured roughly constant memory consumption
of no more than 1 MB for QstreamX on all datasets and queries (including the
two cases of multiple query processing). In fact, a large portion of the memory is
used in buffering and in the input buffer of the parser, while the memory used for
building the trees is almost negligible. The constant memory consumption proves
the effectiveness of buffer handling, while the lower memory consumption verifies
that the size of the DQT is extremely small. The memory consumption of XSQ is
also constant (as a result of its effective buffering) but several times higher than
that of QstreamX (as a result of a less efficient data structure). The memory con-
sumption of the XAOS system increases linearly, since the algorithm stores both
the data and the structure of all matched elements and outputs the results at the
end of a stream.

6 Conclusions

We have presented the main ideas in QstreamX, an efficient system for processing
XPath queries of streaming XML data, by utilizing a novel data structure, Hash-
Lookup Query Trees (HLQTs), which consists of a simple hash table (the FHT)
and two elegant tree structures of the SQT and the DQT. We have devised a
set of well-defined transformation rules to transform a query into its SQT and
discussed in detail how the dynamic construction of the DQT evaluates queries.
A unique feature of QstreamX is that it processes only relevant XML elements in
the stream by hash-lookup and accesses directly nodes that are relevant for their
processing. We have demonstrated that QstreamX achieves significantly higher
throughput and consumes substantially lower memory than the state-of-the art
systems, XSQ and XAOS.

References

1. M. Altinel and M. Franklin. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of VLDB, 2000.

2. I. Avila-Campillo and et al. XMLTK: An XML Toolkit for Scalable XML Stream
Processing. In Proc. of PLANX, 2002.

3. C. Barton and et al. Streaming XPath Processing with Forward and Backward
Axes. In Proceedings of ICDE, 2003.

4. Z. Bar-Yossef, M. F. Fontoura, and V. Josifovski. On the Memory Requirements
of XPath Evaluation over XML Streams. In Proceedings of PODS, 2004.

5. C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML
Documents with XPath Expressions. In Proceedings of ICDE, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

780 J. Cheng and W. Ng

6. Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and Scalable Filtering
of XML Documents. In ICDE, 2002.

7. T. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams with
Deterministic Automata. In Proceedings of ICDT, 2003.

8. A. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates. In
Proceedings of SIGMOD, 2003.

9. V. Josifovski, M. F. Fontoura, and A. Barta. Querying XML Steams. In VLDB
Journal, 2004.

10. M. L. Lee, B. C. Chua, W. Hsu, and K. L. Tan. Efficient Evaluation of Multiple
Queries on Streaming XML Data. In Proceedings of CIKM, 2002.

11. B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou. A Transducer-Based
XML Query Processor. In Proceedings of VLDB, 2002.

12. G. Miklau and D. Suciu. XML Data Repository. http://www.cs.washington.edu/
research/xmldatasets.

13. M. Onizuka. Light-weight XPath Processing of XML Stream with Deterministic
Automata. In Proceedings of CIKM, 2003.

14. F. Peng and S. Chawathe. XPath Queries on Streaming Data. In Proceedings of
SIGMOD, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML

Taro L. Saito and Shinichi Morishita

University of Tokyo, Japan
{leo, moris}@cb.k.u-tokyo.ac.jp

Abstract. Several indexing methods have been proposed to encode tree struc-
tures and path structures of XML, which are generally called structure indexes.
To efficiently evaluate XML queries, it is indispensable to integrate tree structure
and path structure indexes as a multidimensional index. Previous work of XML
indexing have often developed specialized data structures tailored to some query
patterns to handle this multidimensionality, however, their availability to the other
types of queries has been obscure. Our method is based on the multidimensional
index implemented on top of the B+-tree, and also it is general and applicable to
the various choice of XML labeling methods. Our extensive experimental results
confirm great advantages of our method.

1 Introduction

XML databases require the capability to retrieve nodes by using a variety of structural
properties of XML, which are basically derived from tree structures of XML such as
document order of nodes, subtree, sibling, ancestor, descendant nodes, etc. The other
properties are path structures of XML, that consist of sequences of tag and attribute
names, e.g //news/Japan. These various aspects of XML make its query processing dif-
ficult, and index structures for this purpose, which are generally called the structure
indexes [1], have attracted research attention. Most of the proposed structure indexes
aim to efficiently process XPath [2] queries, which is the de facto standard for navigat-
ing XML. XPath contains a mixture of tree and path traversal with several axis steps,
e.g. the child-axis (/), the descendant-axis (//), ancestor-axis, sibling-axis, etc.

Since 1996, as XML gradually has established its position as a data representation
format, tremendous number of structure indexes have been proposed, which are opti-
mized for specific query patterns, including structural joins [3,4], twig queries [5], suffix
paths [6], ancestor queries [7], etc. They are proved to be fast for their targeted queries,
however, most of them introduce special purpose data structures implemented on disks,
and ends up losing flexibility of choices of node labels. For example, XR-tree [7], which
is optimized for retrieving ancestor nodes that have specific tag names, cannot incorpo-
rate other efficient path labels such as p-labels [6], which is the fastest for suffix-path
queries. That means XR-tree achieves fast ancestor query performance in exchange for
the performance of suffix path queries.

Care should be taken to devise a specialized data structure on a disk, since an in-
dustrial strength DBMS has to support transaction management, but its implementation
cannot be dependent from several essential components of the DBMS; page buffer, lock
manager, database logging for recovery, and also access methods, such as B+-trees or

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 781–792, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

782 T.L. Saito and S. Morishita

R-trees [8]. These modules seem to be able to implement independently, however, all
of them have a lot of interdependencies. Index structures of DBMS usually include in-
tricate protocols for latching, locking, and logging. The B+-trees in serious DBMSs are
riddled with calls to the concurrency and recovery code, and this logic is not generic
to all access methods [9]. That is a reason why the transaction management of R-tree,
which is famous as a multidimensional index structure, is not seriously supported in
most of the DBMS products, including both of commercial and open-source programs.

A natural question that follows is whether we can utilize a B+-tree, which is a well-
established disk-based data structure, to achieve good performance for various types of
XML queries. Our answer to this question is affirmative. In this paper, we show XPath
queries can be performed with combinations of only two types of indexes; tree-structure
and path-strucure indexes. A challenging problem is that these scans must be performed
in a combined way, for example, we have to query ancestor nodes that belong to some
suffix path.

Our approach to this problem is to integrate tree-structure and path-structure indexes
into a multidimensional index implemented on a B+-tree. It accelerates query process-
ing for complex combinations of structural properties. And also, it is possible to in-
corporate various types of labeling methods. As an integration approach, constructing
multiple secondary B+-tree indexes does not help multidimensional query processing,
since they work for only a single dimension, not the combinations of multiple dimen-
sions. Moreover, the existence of multiple secondary indexes not only enlarges the data-
base size, but also deteriorates the update performance. We overcome these obstacles
by using space-filling curve technique [10,11,12] to align XML nodes in a multidimen-
sional space into one-dimensional space so that these nodes can be stored in a single
B+-tree. We show this approach is beneficial in both of the query performance and
database size.

There are hundreds of combinations of labeling strategies for XML and some of them
demand special purpose data structures implemented on disks. What we would like to
reveal in this paper is how the integration of tree and path structure indexes works for
various types of queries consisting of combinations of structural properties.

Our major contributions in this paper are as follows:

– We introduce an efficient multidimensional index structure, which is a combination
of existing node labeling strategies in literature. While some XML indexes facilitate
a few set of query patterns, our index is adaptive for various types of queries.

– We show an implementation of the proposed multidimensional index on top of the
B+-tree, utilizing the space-filling curve technique.

– We show the multidimensional range query algorithm that can be performed with-
out changing the B+-tree implementation.

Based on the above techniques, we have implemented an XML database system
called Xerial (pronounced as [eksiri@l]) 1. Our experiments in Section 4 demonstrate
Xerial’s all-around performance for various types of queries. In spite of this faculty, its
index size remains compact.

Organization of the rest of the paper is as follows: in Section 2, we explain tree-
structure and path-structure indexes of XML, and show examples that motivate the

1 Our system will be available at http://www.xerial.org/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML 783

news

Japan

headline sports

item item editorial

USA

NY CA

item item

item headline

item item

headlinetraffic

info

editorial

item

jam

1 44

2

3

4 5 6 7 8

9 10 11 12

14 15 18

16 17

19 20

21 34

22 27 28

23 24 25 26 29

30 31

32

33

35

36 37 38

39 40

41

42

43

13

ancestors of /news/USA/NY/headline

/news/Japan//item

 (descendants)
/news/USA/*/*/* (sibling level=5)

Fig. 1. Interval labels of XML

need of multidimensional index for XML In Section 3, we introduces its design and
implementation. In Section 4, we provide results of experimental evaluation. Finally,
we report related work in Section 5 and conclude in Section 6.

2 Backgrounds

Tree-Structure Indexes. XML has a tree structure, however, ancestor and descendant
axes cannot be efficiently evaluated with standard tree navigations such as depth-first
or breadth-first traversals. To make faster the process of ancestor-descendant queries,
two types of node labeling methods have been developed; the interval label [3] and
the prefix label [13]. The interval label (see also Fig. 1) utilizes containment of in-
tervals to represent ancestor-descendant relationships of XML nodes. For example,
if an interval label of a node p contains another interval of a node q, p is an an-
cestor of q. The prefix label assigns node id paths from the root node to each node
so that if the label of a node p is a prefix of the label of a node q, p is an ances-
tor of q. Both of the node labeling strategies are fundamentally same in that they
are designed to instantly detect ancestor-descendant relationships of two XML nodes.
This operation is called structural joins [14]. Fig. 1 shows an example of the interval
label. The interval assigned to each node subsumes intervals of its child and descen-
dant nodes. These node labels are favorable in that they can be aligned in the docu-
ment order of nodes by seeing start values of these intervals. Therefore, these labels
can also be used to traverse the tree structures of XML in both of the depth-first and
breadth-first manner. We call this type of indexes for tree navigation, tree-structure
indexes.

Path-Structure Indexes. To efficiently evaluate path expression queries, in addition
to the tree-structure indexes, we also need the path-structure indexes, which reduce the
overhead of tree navigation by clustering nodes that belong to the same tag or attribute
name paths. There are many proposals how to encode path structures of XML, varying
from simply assigning an integer id to each independent path in the XML document [1]
to creating a summary graph of path structures [15,16].

When a query contains the descendant-axis (//), we can localize the search spaces
for the descendant nodes. For example, an XPath query //Japan//item can be decom-
posed into two paths; //Japan and //item, and the search space for //item will be localized

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

784 T.L. Saito and S. Morishita

0

10

20

30

40

10 20 30 40

/news/Japan//item

/news/USA/*/*/*
 (level = 5)

Descendant

 Region

Ancestor

 Region

start

e
n

d /news/*
(level = 2)

NY
path ID inverted path path ID inverted path

1 news\ 11 editorial\Japan\news\

2 Japan\news\ 12 editorial\CA\USA\news\

3 headline\Japan\news\ 13 sports\Japan\news\

4 headline\NY\USA\news\ 14 USA\news\

5 headline\CA\USA\news\ 15 NY\USA\news\

6 item\headline\Japan\news\ 16 traffic\NY\USA\news\

7 item\headline\NY\USA\news\ 17 info\traffic\NY\USA\news\

8 item\editorial\Japan\news\ 18 jam\info\traffic\NY\USA\news\

9 item\editorial\CA\USA\news\ 19 CA\USA\news\

10 item\sports\Japan\news\

Fig. 2. Projection of the interval labels on a 2D-plain (left). Inverted path labels (right).

according to the results of //Japan (Fig. 1 and Fig. 2). Therefore, the tree-structure and
path-structure indexes should be integrated to evaluate these types of queries.

In addition, we usually have to query not only with tag names of XML nodes but
also with suffix paths. For example, an XPath //Japan//headline/item contains a suffix
path //headline/item. Rather than querying headline and item nodes individually, it is far
more efficient to scan nodes that have suffix paths //headline/item directly, since there
are many item nodes whose parents are not the headline nodes. To improve accessibility
to suffix paths, the p-label has been proposed [6]. The essence of its technique is to
invert the sequences of paths occurring in the XML document, which we call inverted
paths, and align these inverted paths in the lexicographical order considering each tag
or attribute name in the paths as a comparison unit. Fig. 2 shows an example of inverted
paths, where each inverted path is labeled with an integer id. To evaluate an XPath
query //item, we have to collect nodes whose inverted path ids are contained in the range
[6, 11). When a more detailed path is specified, for example, //headline/item, the query
range narrows to [6, 8). With the inverted path ids, we can perform a suffix path query
with a range search.

Multidimensional Aspects of XML. Here, we show why the integration of tree-
structure and path-structure indexes is so important. Fig. 2 shows the mapping of the
intervals (start, end) in Fig. 1 into a two-dimensional plane. A benefit of the interval
labeling is that we can enclose all ancestor (descendant) nodes of some nodes within
its upper left (lower right) rectangular region. For example, all ancestor nodes of the
NY node (21, 34) is enclosed in its upper left rectangle. The process of a query, say
/news/Japan//item, has to accurately extract item nodes within the subtree rooted by
Japan (a shaded region in the figures). Since some item nodes exist out of this region, the
index structure for XML demands the capability to capture nodes by the combination
of start, end, and a path.

Although the 2D plane is useful to track ancestor and descendant nodes, we also need
the information of the node depth (level) to process wild-cards in path expressions. For
example, XPath expressions /news/* and /news/US/*/*/*, which are useful to investigate
the structure of XML database, require the level information to efficiently collect the
answer nodes, since without indexes for the level values, its process has to traverse the
tree-structure in depth-first or breadth-first manner; it is inefficient when the depth is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML 785

deep. Our experimental results confirm the inefficiency of these tree traversal methods
for wild-card queries, i.e. the sibling-axis steps.

XPath [2] has 11 types of axis steps fo tree navigations, that are ancestor, descen-
dant, parent, child, attribute, preceding-sibling, following-sibling, ancestor-or-self,
descendant-or-self, preceding, and following2. Among them, the six types of axis steps,
ancestor(-or-self), descendant(-or-self), preceding and following, can be processed
with the two-dimensional indexes for the interval labels (start, end). The parent, child,
preceding-sibling and following-sibling axis-steps require all of start, end, level values,
since start and end values are not sufficient to detect parent-child relationships of nodes.
If attribute nodes of XML are modeled as child nodes of tags, the attribute-axis can be
seen the same with the child-axis. Therefore, all of 11 axis-steps can be processed with
the combination of (start, end, level) indexes, i.e. tree-structure indexes.

In addition to the tree-structure indexes, if we have the path-structure indexes, we
can efficiently answer XPath queries, even if these answers are contained in meander-
ing regions as illustrated in the query region for /news/Japan//item in Fig. 2. Therefore,
multidimensionally indexing tree-structures and path-structures of XML is a key to ac-
celerate XML query processing.

3 Multidimensional XML Index

In order to construct XML databases, we utilize a combination of tree-structure indexes,
and path-structure indexes. Although, there are many proposals for labeling each type
of index, we adopted labels that can be easily represented with integers.

We encode every XML node with a label:

(start, end, level, path, text),

where start and end represent interval labels of XML, and level is the node depth. The
path is the inverted path id described in Section 2. The text is a text content enclosed in
the tag or attribute. Every attribute element in XML is assigned the same interval and
level value with its belonging tag, so as to learn the subtree range of the tag from the
index of the attribute node.

Although we utilized the interval labels for tree structures, other labeling schemes,
such as prefix labels, can substitute them; the XML label will be (prefix-label, level, path,
text). Each prefix label contains all prefix labels of its ancestor nodes, so there is no need
to have end values for ancestor queries. The path labels also can be replaced simply with
tag IDs or other labels.

The above labeling scheme is used to create multidimensional indexes. To index mul-
tidimensional data, it is general to use R-tree, which groups together nodes that are in
close spatial proximity. However, implementations of the R-tree are not yet as matured
as the B+-tree, which is broadly employed in the industrial strength DBMSs, while the
R-tree is not. Although the B+-tree is a one-dimensional index structure, we can store
the multidimensional data into a B+-tree by using a space-filling curve [12], such as

2 The other two axis steps defined in XPath [2] are the namespace and self axis, which do not
require any tree traversal.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

786 T.L. Saito and S. Morishita

0

0 10 1 1 1 0 0 0 1 0

0 1 0 0 1 0 1 1 1 0 0

step 0 step 1 step 2

start end level path

z-order

0

0 1

0

1

00

01

10

11

00

step 0

01 10 11

step 0-1

00

01

10

11

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Fig. 3. Interleave function generates a z-order from an index (start, end, level, path), that speci-
fies a position on the z-curve

Hilbert curve, Peano curve etc. The space-filling curve traces the entire multidimen-
sional space with a single stroke, and it can be used to align multidimensional points in
one dimensional space.

However, what kind of space-filling curve is suited for XML indexing? To answer
this question, let us confirm our objective to construct a multidimensional index; that
is to make clusters of nodes that have same attribute values as possible, for example,
same level values and same suffix paths, so that we can efficiently query nodes with
combinations of these attribute values, i.e. start, end, level and path.

To meet this demand, we chose a straightforward approach; bit-interleaving of co-
ordinate values. It gives a position on the z-curve [10,12], which is also a space-filling
curve. The interleave function illustrated in Fig. 3 receives coordinate values of a point
as input, and from their bit-string representations, it retrieves single bits from heads
of coordinate values in a round-robin manner, then computes the z-order, which is an
absolute position on the z-curve (Fig. 3). This linear ordering of XML nodes enables
us to implement the multidimensional index on top of the B+-tree. In addition, each
step in the z-order in Fig. 3 has a role to split each dimension. The first step splits each
dimension into two, and the second step split each slice into 2, resulting in 22 = 4
slices, and so on. If two nodes are close in the multidimensional space, their z-orders
also likely to be close in the some steps. It means these nodes will be probably placed
in the same leaf page or its proximate pages in the B+-tree; this property is the nature
of bit-interleaving.

Normalizing Index Resolution. The interleave function extracts bits beginning from
the MSB (most significant bit). When value domains of the interleaved indexes are
far different, for example, the domain of start values is 0 ≤ start < 210, and that of
level values is 0 ≤ level < 23, the change of a value in a smaller domain has as equal
significance to the z-order as that of the larger domains. In general, the depth of XML
documents is not greater than 100, while the interval label for XML requires as large a
value as the number of nodes, which can be more than 100,000. Thus, if we use the same
bit-length number to represent each index value, the level values are less important in
the z-order, and we fail to separate XML nodes level by level, deteriorating the sibling
query performance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML 787

To avoid this problem, we adjust the resolution of each index which is the max-
imum bit length that is enough to represent all values in the index domain. We de-
note the resolution of an index as r. For example, when a domain of some index
is a range [0, vmax), its resolution r is �log2 vmax�. The normalizem(v) function con-
verts an integer value v, whose resolution is r, into an m-bit integer value. We define
normalizem(v) = �v/2r−m�, ignoring the fraction. For example, when m = 8 and the
resolution of each index of (start, end, level, path) is 10, 10, 3 and 4, respectively, an
XML index (100, 105, 3, 2) is normalized to the 8-bit values (25, 26, 96, 32). By using
normalized index values to compute z-orders, we can adjust the resolution so that level
or path values, whose domains are usually small, affect much more to the z-order than
start or end values. We simply denote this normalization process for some node p as
normalize(p).

Range Query Algorithm. The idea that utilizing z-curve for multidimensional indexes
is first mentioned in the zkd-BTree [10] and is improved in the UB-tree [17]. Although
both of them extended the standard B+-tree structure to make it efficient for multidi-
mensional queries, we introduce a multidimensional range query processing algorithm
without modifying existing B+-tree structures. In our algorithm, we need only two stan-
dard functions for the B+-tree; find and next. The f ind(k) receives an key value k and
finds the smallest entry whose key value is greater than or equal to k. The next(e) returns
the next entry of an entry e in the B+-tree.

We denote the z-order of a node p = (start, end, level, path) as zorder(p), and coor-
dinates specified by the z-order z as coord(z). Then, coord(zorder(p)) = p. Each entry
in the B+-tree has the structure: zorder(normalize(p)) ⇒ p, where the left-hand side
is a key to be used to sort XML nodes in the z-order. To perform a multidimensional
query for a hyper-rectangle region Q(ps, pe), where ps and pe are the multidimensional
points specifying the beginning and end points of the query range, we can utilize a prop-
erty of z-orders; all points p in the query range Q satisfies zorder(ps) ≤ zorder(p) ≤
zorder(pe) [17].

Algorithm 1. shows the range queryalgorithm, and Fig. 4 illustrates its behavior. Since all
nodes are aligned in the z-order in the B+-tree, we have to scan the key range of z-order
from zorder(normalize(ps)) to zorder(normalizeceil(pe)), where normalizeceil is calcu-
lated from �v/2r−m� of each coordinate value v. That z-orders computed from normal-
ized coordinate values may have round errors, so there is a case that coord(normalize
(p)) is contained in the normalized query range NQ(normalize(ps), normalizeceil(pe)),
but p is not in Q, since if we de-normalize NQ, illustrated in Fig. 4 as pseudo-query
range, it is always equal to or larger than Q. Even though, the containment test for NQ
(Step 10) is useful to detect whether the current z-order is completely out of range of Q.
In this case, we can compute the nextZorder that re-enters into the query box NQ (Step
17). It skips some nodes in the outside of the query box and saves disk I/O costs. An
efficient algorithm to compute next z-orders is described in [18]; this algorithm locates
the most-significant bit-position, say j, in the z-order that can be safely set to one with-
out jumping out of the query range, then adjusts other bit values which are lower than
j so that the z-order becomes the smallest one contained in the query range but larger
than the original z-order.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

788 T.L. Saito and S. Morishita

Algorithm 1. Range query algorithm
Input: Q(ps , pe) : query range
Output: A node set within the query range
1: NQ = (normalize(ps), normalizeceil(pe)) // normalized query range of Q
2: zs = zorder(ps), ze = zorder(pe)
3: z = zs // set the initial z-order to the beginning of the query range
4: // find an entry e in the B+-tree that has the smallest z-order larger than z.
5: e = f ind(z)
6: while e is not nil do
7: z = e.z // e.z is the z-order (key value) of the entry e
8: if z > ze then
9: return // end of the query
10: if coord(z) is contained in NQ then
11: while e is not nil and e.z == z do
12: // retrieve nodes whose z-order is z in the B+-tree
13: if the entry e is contained in Q then
14: output e
15: e = next(e) // move to the next entry of e in the B+-tree
16: else
17: nextZorder = the smallest z-order larger than z and contained in NQ.
18: e = f ind(nextZorder)

4 Experimental Evaluation

We evaluated the query performance of Xerial for several kinds of queries, e.g. ancestor,
descendant, sibling, and path-suffix queries, which are the basic components to process
more complicated queries such as structural joins, twig-queries, etc.

To clarify the benefit of our method, we prepared two competitors for Xerial; start
index and path-start index. The start index simply sorts XML nodes in the order of start
values. It has the data structure (start ⇒ end, level, path, text) in B+-tree. The path-start
index, ((path, start) ⇒ end, level, text), sorts nodes first by path, then by start orders.
These structure can localize search space of path queries within some subtree range,
and similar structure is utilized in [4]. However, the following experiments reveal that
such simple integration of indexes has several weak points.

Implementation. All of the indexes are implemented in C++. Xerial’s index structure
is z-order⇒ (start, end, level, path, text). Every z-order is represented with 64-bit integer,
and it is a sort key in the B+-tree. And also,all indexes hold start, end, level and path
values as 32-bit integers. To construct B+-trees, we used the BerkeleyDB library [19],
and their page sizes are set to 1K.

Machine Environment. As a test vehicle, we used an Windows XP, Pentium M 2GHz
notebook with 1GB main memory and 5,400 rpm HDD (100GB).

Database Size. We compared database sizes of start index and Xerial. Fig. 4 shows
their actual database sizes and construction times for various scaling factors (1 to 10)
of the XMark’s benchmark XML documents [20]. The secondary index in Fig. 4 shows
the database size if we constructs three B+-tree indexes for end, level, path values to
complement the functionality of the start index. Even though Xerial has additional z-
orders, its database size is almost the same with the start index, and also it is much more
compact than creating multiple secondary indexes. It is mainly because the B+-tree of
Xerial has many duplicate entries having same z-orders, and it makes lower the depth
of the B+-tree.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML 789

search begin

search end
skip

skip

answer node pseudo query range

actual query range

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

c
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
e
c
.)

D
B

 s
iz

e
 (

M
B

)

XML File Size (MB)

Xerial(time)

start index (time)

secondary indexes (time)

Xerial (size)

start index (size)

secondary indexes (size)

Fig. 4. Range query algorithm (left). DB construction time and DB size (right)

The following experiments are conducted on a XMark document (113MB, scaling
factor = 1.0), and we measured the average times for individual query operations, ig-
noring the output costs of reporting the query results.

Suffix Path Query. First, we compared performance of suffix path queries. Fig. 5 shows
how fast each index can collect nodes that have the same path suffixes. The path-start
index, which has clusters of suffix paths is the fastest, and Xerial performs as fast as
the path-start index, because the interleave function of Xerial also plays a role to group
together nodes which have the same suffix path. The start index is weak in processing
this kind of query since it has to scan the whole index, since information of path is
hidden in its data pages.

In order to show that the importance of having flexibility for the choice of node
labels, we also compared the performance of suffix path queries when inverted path
cannot be used. The tag-start index uses tag IDs instead of inverted path IDs, so it
must perform several nested structural joins [14] to achieve the answer, and shows poor
performance other than the Q3, that is the tag-only query.

Subtree Retrieval. The start index is the most suitable data structure for subtree re-
trievals because nodes in a subtree are sequentially ordered. It shows the fastest result
(Fig. 5). Nevertheless, both of Xerial and path-start index show almost identical perfor-
mance to the start index.

Ancestor Retrieval. Ancestor query is useful to retrieve parent or ancestor information
from some node directly accessed from additional secondary index structures such as
the one for traversing IDREF edges, or inverted indexes for text contents. This query
needs to find nodes which satisfy start < s ∧ e < end, where (s, e) are start and end
position of the base node of the query. Fig. 6 shows the performance of the ancestor
queries for various positions of base nodes, whose level is 12. The start index processes
this query from the root node, and it skips subtrees which are not the ancestor of the
base node. The performance of Xerial is stable, because it can eliminate the search space
by using a combination of start and end axes. On the other hand, the path-start index
breaks the start order down into multiple clusters grouped by path IDs. Consequently,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

790 T.L. Saito and S. Morishita

0.031 0.042

0.141

0.047
0.026

0.151

0.520

0.270

0.135

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q1 Q2 Q3

T
im

e
 (

s
e
c
.)

path-start

Xerial

tag-start

820 nodes

21750 nodes

21750 nodes

Q1: //category/description/parlist/listitem Q3: //item

Q2: /site/regions/asia/item/description

 0

 1

 2

 3

 4

 5

 6

 0 100000 200000 300000 400000 500000 600000 700000 800000

e
la

p
s
e

d
 t

im
e

 (
s
e

c
.)

of nodes in subtree

path-start index

Xerial

start index

Fig. 5. Suffix-path (left) and subtree (right) query performance

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

e
la

p
s
e

d
 t

im
e

 (
s
e

c
.)

lo

g
 s

c
a

le

relative position of base node(%)

path-start index

start index

Xerial

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

e
la

p
s
e
d
 t
im

e
 (

s
e
c
.)

#
 o

f
s
ib

li
n
g
 n

o
d
e
s

depth of sibling nodes

Xerial

start index

full scan

path-start index

of sibling nodes

Fig. 6. Ancestor (left) and sibling (right) query performance

it cannot utilize the tree structure of XML. In addition, it cannot eliminate the search
space by using the end values, therefore it is inefficient when the base node of the query
has a lot of preceding nodes in the document order. The start index has the same deficit.
This result indicates that the ancestor query performance of start and path-start indexes
depends on the database size.

Sibling Retrieval. Notable usage of sibling node retrievals is to find blank spaces for
node insertions, to compute parent-child joins and wild-card(*) queries. Xerial remark-
ably outperforms the other indexes (Fig. 6). This is because these indexes except Xerial
have difficulty to find nodes in the target level. The start index must repeat searching the
tree for a node in the target level with a depth-first traversal, while skipping unrelated
descendant nodes occasionally. The path-start index performs this process in every clus-
ter of paths. This descendant skip works well when the target depth of sibling is low;
however, as the level becomes deeper, it cannot skip so many descendants and the cost
of the B+-tree searches increases. To see this inefficiency, we also provided the result
using sequential scan of the entire index, and it shows similar performance to the start
index and path-start index for deep levels.

In summary, to efficiently process queries of suffix paths, siblings, subtrees and an-
cestors, the start-index and the path-start index require additional secondary indexes. For

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Integration of Structure Indexes of XML 791

example, start index should have indexes for level and path, and path-start index needs at
least three indexes for end, level, and suffix path. Xerial has the ability to process all
of these queries, and the fact it does not use any secondary index is beneficial to the
database size and also to the costs of index maintenance due to updates.

5 Discussions and Related Works

Although the above experiments show advantages of our methods, we would like to
mention some tips that finally lead us to this performance. At first, we used 32-bit in-
tegers to represent z-orders, but this implementations performs poorly for every types
of queries in the experiments. This is because the 32-bit z-order splits each dimen-
sion only to 28 grids. It is too coarse and results in that too many nodes are assigned
the same z-orders; there are many overflowed B+-tree pages and it slows down every
search operations. On the other hand, the resolution becomes the finest when every point
in the multidimensional space has a unique z-order. However, its bit length might be too
long, and such key values will soon fill internal pages of the B+-tree, ending up lower-
ing the B+-tree’s branching factors. The optimal resolution is to make each disk page
have a unique z-order. To achieve this, the UB-tree [17] has to extend the B+-tree
implementation.

The use of the UB-tree [17] to index XML documents is proposed in [21]. Its coor-
dinates are combinations of text values, document IDs, and paths and their appearance
orders generated from DTDs. Although this method cannot handle suffix path queries
etc., the integration of text values is an interesting approach that we do not have men-
tioned in this paper. Note that, however, if we integrate text values to the index structure,
every update to the text values invokes subsequent maintenance of the indexes. Kaushik
et. al. proposed efficient algorithms to process queries containing predicates for text
values [1]. Their approach assumes text value indexes are maintained separately from
structure indexes, so it is more promising in that it can leverage traditional IR technolo-
gies to index text contents of XML.

We have not mentioned the updatability of the XML indexes. In fact, integer intervals
are weak for updates, since blank space for future node insertions will be exhausted.
There are some proposals to make these labels tolerant for node insertions, including
ORDPATH [13] etc. As long as we can define the total order on node labels, it is possible
to incorporate these labeling strategies to our method.

6 Conclusions and Future Work

In this paper, we proposed an efficient method to integrate tree-structure and path-
structure indexes for XML. The proposed indexing method provides efficient processing
of ancestor, descendant, sibling, suffix path queries etc. In addition, our index structure
and multidimensional range query algorithm can be implemented on top of the stan-
dard B+-tree. Our experimental results show advantages and disadvantages of query
processing due to the indexing methods. Other queries not targeted in this paper are
references by using IDREF edges or inverted indexes for the text contents. It is worth
investigating to incorporate such additional index structures into Xerial.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

792 T.L. Saito and S. Morishita

References

1. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the integration of
structure indexes and inverted lists. In: ICDE. (2004) 829

2. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (1999) available at
http://www.w3.org/TR/xpath.

3. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: proc.
of VLDB. (2001)

4. Chien, S.Y., Vagena, Z., Zhang, D., Tsotras, V.J., Zaniolo, C.: Efficient structural joins on
indexed XML documents. In: proc. of VLDB. (2002)

5. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed xml documents. In:
proc. of VLDB. (2003)

6. Yi Chen, S.B.D., Zheng, Y.: BLAS: An efficient XPath processing system. In: proc. of
SIGMOD. (2004)

7. Jiang, H., Lu, H., Wang, W., , Ooi, B.C.: XR-Tree: Indexing xml data for efficient structural
joins. In: proc. of ICDE. (2002)

8. Gray, J., Reuter, A.: Transaction Processing - Concepts and Techniques. Morgan Kaufmann
(1993)

9. Hellerstein, J.M., Stonebraker, M.: Readings in Database Systems. Forth Edition. MIT Press
(2005)

10. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: proc.
of PODS. (1984)

11. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the Hilbert space-
filling curve. SIGMOD Record 30(1) (2001)

12. Sagan, H.: Space-Filling Curves. Springer-Verlag New York, Inc (1994)
13. O’Neil, P., O’Neil, E., pal, S., Cseri, I., Schaller, C.: Ordpaths: Insert-friendly xml node

labels. In: proc. of SIGMOD. (2004)
14. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.: Structural joins: A primitive for

efficient XML query pattern matching. In: proc. of ICDE. (2002)
15. Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in semi-

structured databases. In: proc. of VLDB. (1997)
16. Milo, T., Suciu, D.: Index structures for path expressions. In: Database Theory - ICDT 99.

Volume 1540 of Lecture Notes in Computer Science. (1999)
17. Bayer, R., Markl, V.: The UB-tree: Performance of multidimensional range queries. Techni-

cal report (1998)
18. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.: Integrating the UB-tree

into a database system kernel. In: proc. of VLDB. (2000)
19. Sleepycat Software: (BerkeleyDB) available at http://www.sleepycat.com/.
20. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., manolesch, I., Busse, R.: XMark: A bench-

mark for XML data management. In: proc. of VLDB. (2002)
21. Bauer, M.G., Ramsak, F., Bayer, R.: Indexing XML as a multidimensional problem. Tech-

nical report (2002) TUM-I0203.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing in
Tree-Unaware Commercial Relational Databases

Boon-Siew Seah1,2, Klarinda G. Widjanarko1,2, Sourav S. Bhowmick1,2,
Byron Choi1, and Erwin Leonardi1,2

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 Singapore-MIT Alliance, Nanyang Technological University, Singapore

{821123145823,klarinda,assourav,kkchoi,lerwin}@ntu.edu.sg

Abstract. In this paper, we present a novel ordered XPATH evaluation in tree-
unaware RDBMS. The novelties of our approach lies in the followings. (a) We
propose a novel XML storage scheme which comprises only leaf nodes, their cor-
responding data values, order encodings and their root-to-leaf paths. (b) We pro-
pose an algorithm for mapping ordered XPATH queries into SQL queries over
the storage scheme. (c) We propose an optimization technique that enforces all
mapped SQL queries to be evaluated in a “left-to-right” join order. By employ-
ing these techniques, we show, through a comprehensive experiment, that our
approach not only scales well but also performs better than some representative
tree-unaware approaches on more than 65% of our benchmark queries with the
highest observed gain factor being 1939. In addition, our approach reduces sig-
nificantly the performance gap between tree-aware and tree-unaware approaches
and even outperforms a state-of-the-art tree-aware approach for certain bench-
mark queries.

1 Introduction

Current approaches for evaluating XPATH expressions in relational databases can be
arguably categorized into two representative types. They either resort to encoding XML

data as tables and translating XML queries into relational queries [1,2,3,4,6,8,11] or
store XML data as a rich data type and process XML queries by enhancing the relational
infrastructure [5]. The former approach can further be classified into two representative
types. Firstly, a host of work on processing XPATH queries on tree-unaware relational
databases has been reported [3,6,8] – these approaches do not modify the database
kernels. Secondly, there have been several efforts on enabling relational databases to
be tree-aware by invading the database kernel to implement XML support [1,2,4,11]. It
has been shown that the latter approaches appear scalable and, in particular, perform
orders of magnitude faster than some tree-unaware approaches [1,4].

In this paper, we focus on supporting ordered XPATH evaluation in a tree-unaware
relational environment. There is a considerable benefit in such an approach with respect
to portability and ease of implementation on top of an off-the-shelf RDBMS. Although
a diverse set of strategies for evaluating XML queries in tree-unaware relational envi-
ronment have been recently proposed, few have undertaken a comprehensive study on
evaluating ordered XPATH queries. Tatarinov et al. [9] is the first to show that it is in-
deed possible to support ordered XPATH queries in relational databases. However, this

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 793–806, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

794 B.-S. Seah et al.

approach does not scale well with large XML documents. In fact, as we shall show in
Section 7, the GLOBAL-ORDER approach in [9] failed to return results for 20% of our
benchmark queries on 1GB dataset in 60 minutes. Furthermore, this approach resorts to
manual tuning of the relational optimizer when it failed to produce good query plans.
Although such a manual tuning approach works, it is a cumbersome solution.

In this paper, we address the above limitations by proposing a novel scheme for or-
dered XPATH query processing. Our storage strategy is built on top of SUCXENT++ [6],
by extending it to support efficient processing of ordered axes and predicates. SUCX-
ENT++ is designed primarily for query-mostly workloads. We exploit SUCXENT++’s
strategy to store leaf nodes, their corresponding data values, auxiliary encodings and
root-to-leaf paths. In contrast, some approaches, e.g., [4,11], explicitly store information
for all nodes of an XML document. Specifically, the followings remark the novelties of
our storage scheme. (1) For each level of an XML document, we store an attribute called
RValue which is an enhancement of the original RValue, proposed in [6], for process-
ing recursive XPATH queries. (2) For each leaf node we store three additional attributes
namely BranchOrder, DeweyOrderSum and SiblingSum. These attributes are the founda-
tion for our ordered XPATH processing. The key features of these attributes are that they
enable us (a) to compare the order between non-leaf nodes by comparing the order be-
tween their first descendant leaf nodes only; and (b) to determine the nearest common
ancestor of two leaf nodes efficiently. As a result, it is not necessary to store the order
information of non-leaf nodes. Furthermore, given any pair of nodes, these attributes
enable us to evaluate position-based predicates efficiently.

As highlighted in [9], relational optimizers may sometimes produce poor query plans
for processing XPATH queries. In this paper, we undertake a novel strategy to address
this issue. As opposed to manual tuning efforts, we propose an automatic approach to
enforce the optimizer to replace previously generated poor plans with probably bet-
ter query plans, as verified by our experiments. Unlike tree-aware schemes, our tech-
nique is non-invasive in nature. That is, it can easily be incorporated without modifying
the internals of relational optimizers. Specifically, we enforce a relational optimizer
to follow a “left-to-right” join order and enforce the relational engine to evaluate the
mapped SQL queries according to the XPATH steps specified in the query. The good
news is that this technique can select better plans for the majority of our benchmark
queries across all benchmark datasets. As we shall see in Section 7, the performance
of previously-inefficient queries in SUCXENT++ is significantly improved. The high-
est observed gain factor is 59. Furthermore, queries that failed to finish in 60 minutes
were able to do so now, in the presence of such a join-order enforcement. This is indeed
stimulating as it shows that some sophisticated internals of relational optimizers not
only are irrelevant to XPATH processing but also often confuse XPATH query optimiza-
tion in relational databases. Overall a “join-order conscious” SUCXENT++ significantly
outperforms both GLOBAL-ORDER and SHARED-INLINING[8] in at least 65% of the
benchmark queries with the highest observed gain factors being 1939 and 880, respec-
tively. To the best of our knowledge, this is the first effort on exploiting a non-invasive
automatic technique to improve query performance in the context of XPATH evaluation
in relational environment.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 795

Recently, [1] showed that MONETDB is among the most efficient and scalable tree-
aware relational-based XQuery processor and outperforms the current generation of
XQuery systems significantly. Consequently, we investigated how our proposed tech-
nique compared to MONETDB. Our study revealed some interesting results. First, al-
though MONETDB is 11-164 and 3-74 times faster than GLOBAL-ORDER and SHARED-
INLINING, respectively, for the majority of the benchmark queries, this performance
gap is significantly reduced when MONETDB is compared to SUCXENT++. Our re-
sults show that not only MONETDB is now 1.3-16 times faster than SUCXENT++ with
join-order enforcement but surprisingly our approach is faster than MONETDB for 33%
of benchmark queries! Additionally, MONETDB (Win32 builds) failed to shred 1GB
dataset as it is vulnerable to the virtual memory fragmentation in Windows environ-
ment. This is in contrary to the results in [1] where MONETDB was built on top of Linux
2.6.11 operating system (8GB RAM), using a 64-bit address space, and was able to
efficiently shred 11GB dataset.

2 Related Work

Most of the previous tree-unaware approaches, except [9], focused on proposing efficient
evaluation forchildren anddescendant-or-self axes and positional predicates
in XPATH queries. In this paper, the main focus is on the evaluation for following,
preceding, following-sibling, and preceding-sibling axes as well as
position-based and range predicates. All previous approaches, reported query perfor-
mance on small/medium XML documents – smaller than 500 MB. We investigate query
performance on large synthetic and real datasets. This gives insights on the scalability of
the state-of-the-art tree-unaware approaches for ordered XML processing.

Compared to the tree-aware schemes [1,2,4,11], our technique is tree-unaware in
the sense that it can be built on top of any commercial RDBMS without modifying the
database kernel. The approaches in [2,11] do not provide a systematic and compre-
hensive effort for processing ordered XPATH queries. Although the scheme presented
in [1,2,4] can support ordered axes, no comprehensive performance study has demon-
strated with a variety of ordered XPATH queries. Furthermore, these approaches did not
exploit the “left-to-right” join order technique to improve query plan selection.

In [9], Tatarinov et al. proposed the first solution for supporting ordered XML query
processing in a relational database. A modified EDGE table [3] was the underlying stor-
age scheme. They described three order encoding methods: global, local, and dewey en-
codings. The best query performance was achieved with the global encoding for query-
mostly workloads and with dewey encoding for a mix of queries and updates. Our focus
differs from the above approach in the following ways. First, we focus on query-mostly
workloads. Second, we consider a novel order-conscious storage scheme that is more
space- and query-efficient and scalable when compared to the global encoding.

3 Background on SUCXENT++

Our approach for ordered XPATH processing relies on the SUCXENT++ approach [6].
We begin our discussion by briefly reviewing the storage scheme of SUCXENT++.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

796 B.-S. Seah et al.

(a) Original Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, PathId, LeafOrder,

 BranchOrder, BranchOrderSum,

 LeafValue)

DocumentRValue (DocId, Level, RValue)

(b) Modified Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, DeweyOrderSum,

 PathId, BranchOrder, LeafOrder,

 SiblingSum, LeafValue)

Attribute (DocId, LeafOrder, PathId,

 LeafValue)

DocumentRValue (DocId, Level, RValue)

Catalog

Book

Title Chapter

Para Para

Chapter

Book

Chapter

Para

Chapter

Book

1

1

1 2 3

1 2

2

1 2

1

3*

D1 = 0

D2 = 3 D3 = 4

D4 = 6

D5 = 19

D6 = 22

D7 = 38

* - number representing local order of the node
Di = DeweyOrderSum

(c) XML Data

descendant-or-selfpreceding following

A The context node A The leaf node that represents the context node

@id @id @id

Level M RVal Mod
RVal

 1 6 10 19

 2 3 2 3

 3 1 1 1

 4 0 0 0

Fig. 1. Example of XML data and SUCXENT++ schema

Foremost, in the rest of the paper, we always assume document order in our discussions.
The SUCXENT++ schema is shown in Figure 1(a). Document stores the document iden-
tifier DocId and the name Name of a given input XML document T . We associate each
distinct (root-to-leaf) path appearing in T , namely PathExp, with an identifier PathId and
store this information in Path table. For each leaf node n in T , we shall create a tuple
in the PathValue table. We now elaborate the meaning of the attributes of this relation.

Given two leaf nodes n1 and n2, n1.LeafOrder < n2.LeafOrder iff n1 precedes n2.
LeafOrder of the first leaf node in T is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a
leaf node immediately preceding n2. Given two leaf nodes n1 and n2 where
n1.LeafOrder+1 = n2.LeafOrder, n2.BranchOrder is the level of the nearest common an-
cestor of n1 and n2. That is, n1 and n2 intersect at the BranchOrder level. The data value
of n is stored in n.LeafValue.

To discuss BranchOrderSum and RValue, we introduce some auxiliary definitions.
Consider a sequence of leaf nodes C: 〈n1, n2, n3, . . . , nr〉 in T . Then, C is a k-con-
secutive leaf nodes of T iff (a) ni.BranchOrder ≥ k for all i ∈ [1,r]; (b) If n1.LeafOrder
> 1, then n0.BranchOrder < k where n0.LeafOrder+1 = n1.LeafOrder; and (c) If nr

is not the last leaf node in T , then nr+1.BranchOrder < k where nr.LeafOrder+1 =
nr+1.LeafOrder. A sequence C is called a maximal k-consecutive leaf nodes of T , de-
noted as Mk, if there does not exist a k-consecutive leaf nodes C′ and |C|<|C′|.

Let Lmax be the largest level of T . Then, RValue of level �, denoted as R�, is 1 if
� = Lmax. Otherwise, R� = R�+1 × |M�+1| + 1. Now we are ready to define the
BranchOrderSum attribute. Let N to be the set of leaf nodes preceding a leaf node n.
n.BranchOrderSum is 0 if n.LeafOrder = 1 and

∑
m∈N Rm.BranchOrder otherwise.

Based on the definitions above, Prakash et al. [6] defined Property 1 (below) which
is essential to determine ancestor-descendant relationships efficiently.

Property 1. Given two leaf nodesn1 and n2, |n1.BranchOrderSum - n2.BranchOrderSum|
< R� implies the nearest common ancestor of n1 and n2 is at a level greater than �. �

4 Extensions of SUCXENT++

To support ordered XML queries, the order information of nodes must be captured in the
XML storage scheme. Unfortunately the LeafOrder and BranchOrderSum attributes only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 797

encode the global order of all leaf nodes. Since (order) information of non-leaf nodes
is not explicitly stored, it must be derived from the attributes of leaf nodes. We now
present how the original SUCXENT++ schema is extended to process ordered XPath
queries efficiently. The modified schema is shown in Figure 1(b).

4.1 Attribute Table

The PathValue table originally stored information related to both element and attribute
nodes. However, to avoid mixing the order of element and attribute nodes, we separate
the attribute nodes into Attribute table. The Attribute table consists of the following
columns: DocId, LeafOrder, PathId, LeafValue. As we shall see later, a non-leaf node
can be represented by the first descendant leaf nodes. Therefore, an attribute node is
identified by DocId and LeafOrder of its parent node and its PathId.

4.2 Modified RValue Attribute

Conceptually, RValue is used to encode the level of the nearest common ancestor of
any pairs of leaf nodes. To ensure a property like Property 1 holds after modifications,
intuitively, we “magnify” the gap between RValues, as shown in Definition 1. Relative
order information is then captured in these gaps.

Definition 1 [ModifiedRValue]. Let Lmax be the largest level of an XML tree T . Mod-
ifiedRValue of level �, denoted as R′

�, is defined as follows: (i) If � = Lmax − 1 then
R′

� = 1 and |M�| = 1; (ii) If 0 < � < Lmax − 1 then R′
� = 2R′

�+1 × |M�+1|+ 1. �

To ensure the evaluation of queries other than ordered XPATH queries is not affected

by the above modifications, the RValue attribute in DocumentRValue stores R′
�−1
2 + 1

instead of R′
�.

4.3 DeweyOrderSum and SiblingSum Attributes

Next, we define the first attribute related to ordered XPATH processing. Consider the
path query /catalog/book[1]/chapter[1] and Figure 1(c). Since only leaf
nodes are stored in the PathValue table, the new attribute DeweyOrderSum of leaf nodes
captures order information of the non-leaf nodes. At first glance, a simple representa-
tion of the order information could be a Dewey path. For instance, the Dewey path
of the first chapter node of the first book node is “1.1.2”. However, using such
Dewey paths has two major drawbacks. Firstly, string matching of Dewey paths can
be computationally expensive. Secondly, simple lexicographical comparisons of two
Dewey paths may not always be accurate [9]. Hence, we define DeweyOrderSum for this
purpose:

Definition 2 [DeweyOrderSum]. Consider an XML document T and a leaf node n
at level � in T . Ord(n, k) = i iff a is either an ancestor of n or n itself; k is the level
of a; and a is the i-th child of its parent. DeweyOrderSum of n, n.DeweyOrderSum, is
defined as

∑�
j=2 Φ(j) where Φ(j)=[Ord(n, j)-1]×R′

j−1. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

798 B.-S. Seah et al.

For example, consider the rightmost chapter node in Figure 1(c) which has a Dewey
path “1.2.2”. DeweyOrderSum of this node is: n.DeweyOrderSum = (Ord(n, 2) −
1)× R′

1 + (Ord(n, 3) − 1) × R′
2 = 1 × 19 + 1 × 3 = 22. Note that DeweyOrderSum

is not sufficient to compute position-based predicates with QName name tests, e.g.,
chapter[2]. Hence, the SiblingSum attribute is introduced to the PathValue table.

Definition 3 [SiblingSum]. Consider an XML document T and a leaf node n at level
� in T . Sibling(n, k) = i iff a is either an ancestor of n or n itself; k is the level of a; and
the i-th τ -child of its parent (τ is the tag name of a). SiblingSum of n, n.SiblingSum, is∑�

j=2 Ψ(j) where Ψ(j) = [Sibling(n, j)-1]×Rj−1. �

SiblingSum encodes the local order of nodes which are with the same tag name of n,
namely same-tag-sibling order. For example, consider the children of the first book
element in Figure 1(c). The local orders of title and the first and second chapter
nodes are 1, 2 and 3, respectively. On the other hand, the same-tag-sibling order of these
nodes are 1, 1 and 2, respectively.

4.4 Preservation of SUCXENT++’s Features

The above modifications do not adversely affect the document reconstruction process
and efficient evaluation of non-ordered XPATH queries, as discussed in [6]. Recall that
given a pair of leaf nodes, Property 1 was used in [6] to efficiently determine the nearest
common ancestor of the nodes. Since we have modified the definition of RValue and
replaced the BranchOrderSum attribute with the DeweyOrderSum attribute, this property
is not applicable to the extended SUCXENT++ scheme. It is necessary to ensure that a
corresponding property holds in the extended system.

Theorem 1. Let n1 and n2 be two leaf nodes in an XML document. If
R′

�+1−1

2 + 1 < |n1.DeweyOrderSum - n2.DeweyOrderSum| < R′
�−1
2 + 1 then the level

of the nearest common ancestor of n1 and n2 is � + 1. �

Due to space constraints, the proofs and examples of the theorems and propositions
discussed in this paper are given in [7].

5 Ordered XPath Processing

Our strategy for comparing the order of non-leaf nodes is based on the following ob-
servation. If node n0 precedes (resp. follows) another node n1, then descendants of n0

must also precede (resp. follow) the descendants of n1. Therefore, instead of comparing
the order between non-leaf nodes, we compare the order between their descendant leaf
nodes. For this reason, we define the representative leaf node of a non-leaf node n to
be its first descendant leaf node. Note that the BranchOrder attribute records the level
of the nearest common ancestor of two consecutive leaf nodes. Let C be the sequence
of descendant leaf nodes of n and n1 be the first node in C. We know that the nearest
common ancestor of any two consecutive nodes in C is also a descendant of node n.
This implies (1) except n1, BranchOrder of a node in C is at least the level of node n

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 799

Di

DeweyOrderSum

Di+R’L-1
Di - ((R’L-2 - 1) / 2 + 1) Di + ((R’L-2 - 1) / 2 + 1)

preceding-sibling following-sibling

followingpreceding

descendant-or-selfDi : DeweyOrderSum of the context node

L : level of the context node

Fig. 2. Relationship between DeweyOrderSum and RValue

and (2) the nearest common ancestor of n1 and its immediately preceding leaf node is
not a descendant of node n. Therefore, BranchOrder of n1 is always smaller than the
level of n. We summarize this property in Property 2.

Property 2. Let n be a non-leaf node at level � and C = 〈n1, n2, n3, . . . , nr〉 be the
sequence of descendant leaf nodes of n in document order. Then, n1.BranchOrder < �
and ni.BranchOrder ≥ �, where i ∈ (1,r]. �

Definition 4 [DeweyOrderSum of non-leaf nodes]. Let S = 〈i1, i2, i3, . . . , ir1〉 be a
sequence of non-leaf sibling nodes of a non-leaf node i0 in document order. Let C =
〈n1, n2, . . . , nr2〉 be the sequence of leaf nodes of S and nj2 is denoted as the first
descendant leaf node of ij1 . Then, ij1 .DeweyOrderSum = nj2 .DeweyOrderSum. �

In the above definition, DeweyOrderSum of a leaf node is conceptually propagated to its
ancestor nodes. Consequently, the following proposition holds.

Proposition 1. Let C = 〈n1, n2, n3, . . . , nr〉 be a sequence of sibling nodes. Consider
ni where 1 < i ≤ r and the level of ni is �, where � > 1. Let m be ni or a descendant
of ni. Then, n1.DeweyOrderSum+ [Ord(ni) - Ord(n1)] ×R′

�−1 ≤m.DeweyOrderSum <
n1.DeweyOrderSum+ [(Ord(ni) - Ord(n1))+1] ×R′

�−1 where Ord(ni) and Ord(n1) are
the local order of ni and n1, respectively. �

By using the above proposition, we can compare the order of two non-leaf nodes with-
out evaluating every sibling nodes in the sequence. Similar propositions for SiblingSum
can be established in a straightforward manner.

5.1 Support for Ordered XPath Queries

We now present how various types of ordered XPATH queries are supported by the mod-
ified SUCXENT++. Due to space constraints, we only focus on how DeweyOrderSum
and ModifiedRValue are used for query processing. Similar technique can be applied to
evaluations with SiblingSum.

Position predicates. Position-based predicates, i.e., predicates of the form position()=i,
select the node at the i-th position of the sequence of inner focus context nodes. We
propose to compute the i-th node without evaluating every node in the sequence by ap-
plying Proposition 1. For example, suppose n1 be the first book node of the sequence
of book nodes (the context nodes) in Figure 1(c). Observe that n1.DeweyOrderSum
= 0 as its representative leaf node is the first leaf node of the XML tree. We now em-
ploy the inequality in Proposition 1 to select a sibling node, e.g., the second book

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

800 B.-S. Seah et al.

node n2. Here, Ord(n2) = 2, � = 2, R′
1 = 19, and n1.DeweyOrderSum = 0. Then,

0 + 1 × 19 ≤ n2.DeweyOrderSum < 0 + 2 × 19⇒ 19 ≤ ni.DeweyOrderSum < 38.
The nodes in this range are the descendant leaf nodes of n2. Such simple arithmetic
calculations can be efficiently implemented in a relational database.

The range operator, e.g., [position()=2 TO 10], can be easily handled in a
similar fashion. fn : last() can be computed by first determining all sibling nodes that
satisfy the specific path and then finding the node with the largest DeweyOrderSum.

Following and preceding axes. following axis selects all nodes which follow the
context node excluding the descendants of the context node. preceding axis, on
the other hand, selects all nodes which precede the context node excluding the an-
cestors of the context node. Similar to position predicates, we summarize a property
of DeweyOrderSum to facilitate efficient processing of these axes. Proofs and additional
examples are given in [7].

Proposition 2. Let na and nb be two nodes in the XML tree T and nb is a context node
at level �b where �b > 1. Then, the following statements hold:

1. na.DeweyOrderSum ≥ nb.DeweyOrderSum+R′
�b−1

if and only if na follows nb and
is not a descendant of nb;

2. Similarly, na.DeweyOrderSum < nb.DeweyOrderSum if and only if na precedes nb

and na is neither a descendant nor an ancestor of nb.
�

Following-sibling and preceding-sibling axes. following-sibling axis selects
the children of the context node’s parent that occur after the context node in doc-
ument order whereas preceding-sibling axis selects the children of the con-
text node’s parent that occur before the context node in document order. Support for
following-sibling (resp. preceding-sibling) axis can be achieved with
an additional constraint on the following (resp. preceding) axis – the selected
nodes must be siblings of the context node.

Proposition 3. Let na and nb be two nodes in the XML tree T and nb is the context
node at level �b where �b > 2. Then, the following statements hold:

1. nb.DeweyOrderSum +R′
�b−1 ≤ na.DeweyOrderSum < nb.DeweyOrderSum +

(R′
�b−2 − 1)/2 + 1 and if and only if na is a sibling of nb and na follows nb.

2. nb.DeweyOrderSum−(R′
�b−2−1)/2−1<na.DeweyOrderSum < nb.DeweyOrderSum

if and only if na is a sibling of nb and na precedes nb.
�

The above proposition can be illustrated with the following example. Suppose we eval-
uate the following-sibling axis on the first title node nt in Figure 1(c).
Here nt.DeweyOrderSum = 0, � = 3, R′

1 = 19, and R′
2 = 3. Denote N to be

the nodes reachable via the following-sibling axis from nt. Using Proposi-
tion 3, 0 + 3 ≤ nk.DeweyOrderSum < 0 + (19 − 1)/2 + 1 where nk ∈ N . That is,
3 ≤ nk.DeweyOrderSum < 10. Hence, the second (DeweyOrderSum = 3) and the third
(DeweyOrderSum = 6) chapters are in this range.

We illustrate Proposition 2 and Proposition 3 with Figure 2. An example can be
found in Figure 1(c).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 801

processPathExpr (XPath)

01 for every step in the XPath {
02 if (step.getAxis() == CHILD and
 step.hasPredicate() == FALSE)
03 currentPath.add(nametest, step.getAxis())
04 else {
05 from_sql.add("PathValue as Vi")
06 if(currentPath.level() > 1) {
07 where_sql.add("Vi.pathid in currentPath.getPathId()")
08 where_sql.add("Vi.branchOrder < currentPath.level()")
09 }
10 processAxis(step, currentPath)
11 processPredicate(step, currentPath)
12 }
13 if (step.isLast() and currentPath.needUpdate()) {
14 from_sql.add("PathValue as Vi")
15 where_sql.add("Vi.pathid in currentPath.getPathId()")
16 }
17 }
18 select_sql.add("Vi.leafValue, Vi.leafOrder, ... ")
19 return select_sql + from_sql + where_sql +
 where_sql.unionWithAttribute()

processAxis (step, currentPath)

01 switch (step.getAxis()){
02 child:
03 where_sql.add("Vi.DeweyOrderSum BETWEEN
 Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
 Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
04 following:
05 where_sql.add("Vi.DeweyOrderSum >=
 Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 ")
06 preceding:
07 where_sql.add("Vi.DeweyOrderSum < Vi-1.DeweyOrderSum ")
08 following-sibling:
09 where_sql.add("Vi.DeweyOrderSum BETWEEN
 Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 AND
 Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
10 preceding-sibling:
11 where_sql.add("Vi.DeweyOrderSum BETWEEN
 Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
 Vi-1.DeweyOrderSum - 1 ")
12 }
13 currentPath.add(nametest, step.getAxis())

(b)The processAxis Algorithm(a)The processPathExpr Algorithm

Fig. 3. Procedure processPathExpr and Procedure processAxis

processPredicate (step, currentPath)

01 switch (step.getAxis()) {
02 CHILD:
03 n_from = step.getPredicateFrom() - 1
04 n_to = step.getPredicateTo()
05 FOLLOWING-SIBLING:
06 n_from = step.getPredicateFrom()
07 n_to = step.getPredicateTo() + 1
08 PRECEDING-SIBLING:
09 n_from = - step.getPredicateFrom()
10 n_to = - step.getPredicateTo() + 1
11 }
12 switch (step.getPredicateType()){
13 position based predicate without name test:
14 where_sql.add("Vi.DeweyOrderSum BETWEEN
 Vi-1.DeweyOrderSum + n_from *
 (2 * RValue(currentPath.level()) - 1) AND
 Vi-1.DeweyOrderSum + n_to *
 (2 * RValue(currentPath.level()) - 1) - 1 ")
15 position based predicate with name test:
16 where_sql.add("Vi.SiblingSum BETWEEN
 Vi-1.SiblingSum + n_from *
 (2 * RValue(currentPath.level()) - 1) AND
 Vi-1.SiblingSum + n_to *
 (2 * RValue(currentPath.level()) - 1) - 1 ")
17 }

01 WITH V (leafValue, pathID, branchOrder, DeweyOrderSum,
 DocId, LeafOrder) AS (
02 SELECT DISTINCT V2.leafValue, V2.pathID, V2.branchOrder,
 V2.DeweyOrderSum, V2.DocId, V2.LeafOrder
03 FROM PathValue V1, PathValue V2
04 WHERE V1.docId = 1
05 AND V1.pathid in (5,4,3,2)
06 AND V1.SiblingSum BETWEEN
 0 + 1 * (2 * 10 - 1) AND

0 + 2 * (2 * 10 - 1) - 1
07 AND V1.branchOrder < 2
08 AND V2.docId = V1.docId
09 AND V2.pathid in (5,4,3,2)
10 AND V2.DeweyOrderSum >= V1.DeweyOrderSum + 2 * 10 - 1
11 AND V2.DeweyOrderSum BETWEEN
 V1.DeweyOrderSum + 1 * (2 * 10 - 1) AND
 V1.DeweyOrderSum + 2 * (2 * 10 - 1) - 1
12)
13 SELECT V.*, 1 AS Attr
14 FROM V
15 UNION ALL
16 SELECT A.leafValue, A.pathID, V.branchOrder, V.DeweyOrderSum,
 A.DocId, A.LeafOrder, 0 AS Attr
17 FROM Attribute A, V
18 WHERE A.DocId = V.DocId AND A.LeafOrder = V.LeafOrder
19 AND A.PathId in (1)
20 ORDER BY DocId, DeweyOrderSum, Attr

(b) SQL Example(a)The processPredicate Algorithm

Fig. 4. Procedure processPredicate and SQL example

5.2 Ordered XPath Query Translation Algorithm

Based on the properties defined in the previous subsection, we present an algorithm,
shown in Figures 3 and 4, for generating SQL from ordered XPATH queries. Our al-
gorithm assumes an XPATH expression is represented as a sequence of steps where
a step may be associated with predicates. A SQL statement consists of three clauses:
select sql, from sql and where sql. We assume that a clause has an add() method
which encapsulates some simple string manipulations and simple SUCXENT++ joins
for constructing valid SQL statements. In addition to preprocessing PathId as mentioned
in [6], for a single XML document, we also preprocess RValue to reduce the number of
joins. The translation consists of three main procedures.
processPathExpr (Figure 3(a)): It analyzes the steps of an input XPATH ex-

pression (Line 01) and outputs a SQL statement. If the step consists of a child axis
only (Lines 02-03), then we simply maintain a global variable currentPath which
records the simple downward path from the root to the context nodes.1 Otherwise,
when the step involves ordered predicates/other axes, we add predicates which select
a superset of the next context nodes (Lines 05-09) and then call processAxis and
processPredicate (Lines 10-11) with currentPath to obtain the next context

1 The details for maintaining currentPath is simple but lengthy. For simplicity, we omitted
such discussions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

802 B.-S. Seah et al.

nodes. We add predicates in Lines 08 to determine the representative nodes of the con-
text nodes. Finally, we collect the final results (Line 19).
processAxis (Figure 3(b)): This procedure translates a step, together with

currentPath, based on the step type (Line 01). Lines 02-03, 04-07 and 08-11 encode
Theorem 1, Proposition 2 and Proposition 3, respectively.
processPredicate (Figure 4(a)): This procedure mainly translates position

predicates. Lines 01-11 determine the range of position specified by the predicate.
Given these, Lines 12-17 implement Proposition 1.

We now illustrate the details of the translation algorithms with an example related to
the translation of position-based predicates. Please refer to [7] for more examples. Con-
sider the path expression /catalog/book[2]/following-sibling::*[1].
The translated SQL is shown in Figure 4(b). /catalog/book[2] is translated into
Lines 05-07. /following-sibling::* is translated into Lines 08-10, and *[1]
is translated into Line 11. Lines 13-14 and 16-19 are used to retrieve the resulting el-
ement nodes and their attribute nodes, respectively. The last line is to sort the result
nodes in document order.

6 Join Order Enforcement

Due to the tree-unaware nature of the underlying relational storage scheme as well as the
lack of appropriate XML statistics, relational optimizers may generate inefficient query
plans. In order to address this problem, some approaches have resorted to manual tuning
of query plans [9] while others invade the database kernel to make it tree-aware [1,2].
The former approach has not been scalable as it requires significant human intervention
whereas the later approach may require non-trivial modifications of the internals of a
RDBMS. In this section, we propose a simple yet effective technique to generate better
query plans automatically without invading the database kernel.

As discussed in Section 5.2, in order to evaluate an (ordered) XPATH query in
SUCXENT++, each XPATH axis is translated into a join between the PathValue table and
intermediate results (i.e., the context nodes). For example, in Figure 4(b), PathValue V1
returns the representative nodes of the context nodes to calculate PathValue V2. Due to
the lack of tree awareness, the relational optimizer is not capable of transforming the or-
der of joins intelligently. Consequently, it may generate poor join order that typically re-
quires caching large intermediate results in the database bufferpool. This is particularly
important to NL joins, where large and deep loops are prohibitive. For example, the first
few joins of a “right-to-left” join order may easily yield a large number of context nodes.
To respond to this, we propose to enforce a “left-to-right” join order on the translated
SQL query. Also, this evaluation order “naturally corresponds” to the order of XPATH

steps specified in the XPATH expression. By employing this technique, the relational op-
timizer does not explore the large number of permutations of join order. We apply join
order if the translated SQL query involves more than one PathValue relation. In addition,
if the PathValue table appears in the SQL query only once, we let the relational opti-
mizer to decide the plan for the join between the PathValue table and the Attribute table.

The above enforcement can easily be implemented by query hints in commercial
databases. Regarding our implementation, we use OPTION(FORCE ORDER) to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 803

ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Q1 66 119 74

Q2 66 119 74

Q3 104,272 626,812 627,200

Q4 65,161 392,930 393,350

Q5 30 34 34

Q6 7 7 7

Q7 21 37 54

Q8 19 35 52

Q9 250 2,500 25,000

Q10 249 2,499 24,499

Query

/catalog/item[1000]

/catalog/*[1000]

/catalog/item[position()=1000 to 10000]/
*[position()=2 to 7]

/catalog/item[position()=1000 to 10000]/authors/
author

/catalog/*[1500]/publisher/following-sibling::*

/catalog/*[1500]/publisher/following-sibling::*[5]

/catalog/*[1500]/publisher/preceding-sibling::*

/catalog/*[1500]/publisher/preceding-sibling::*[2]

/catalog/*[X]/following::title

/catalog/*[Y]/preceding::title

ID
Node Total

DC10 225,234 240,234

DC100 2,242,200 2,392,200

DC1000 22,442,612 23,942,612

DBLP 8,222,945 9,888,875

Size
(MB)

10.3

103.3

1033.3

335

Max
Depth

8

8

8

6

ID
Res.
Card.

D1 2

D2 190,838

D3 6

D4 5

Query

/dblp/*[100000]/author

/dblp/article/author[2]

/dblp/*[600000]/pages/preceding-sibling::*

/dblp/*[600000]/pages/following-sibling::*

(a) Features of Dataset (c) Benchmark queries for DBLP

ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Query

(b) Benchmark queries for DC10, DC100, and DC1000

Attribute

15,000

150,000

1,500,000

1,665,930

Total Number

X = 2250, 22500, 225000 for DC10, DC100, DC1000 respectively; Y = 250, 2500, 25000 for DC10, DC100, DC1000 respectively

Fig. 5. Dataset and Benchmark Queries

implement the above technique in SUCXENT++. The strength of this approach lies in
its simplicity in implementing on any commercial RDBMS that supports query hints.

7 Performance Study

In this section, we present the results of our performance evaluation on our proposed
approach, a tree-unaware schema-oblivious approach (GLOBAL-ORDER [9]), a tree-
unaware schema-conscious approach (SHARED-INLINING [8]), and a tree-aware ap-
proach (MonetDB [1]). Prototypes for modified SUCXENT++ (denoted as SX), SUCX-
ENT++ with join order enforcement (denoted as SX-JO), GLOBAL-ORDER (denoted as
GO) and SHARED-INLINING (denoted as SI) were implemented with JDK 1.5. We used
the Windows version of MONETDB/XQuery 0.12.0 (denoted as MXQ) downloaded from
http://monetdb.cwi.nl/XQuery/Download/index.html. The experiments were conducted
on an Intel Xeon 2GHz machine running on Windows XP with 1GB of RAM. The
RDBMS used was Microsoft SQL Server 2005 Developer Edition. Note that we did not
study the performance of XML support of SQL Server 2005 as it can only evaluate the
first two ordered queries in Figure 5(b).

Data and query sets. In our experiments, XBENCH [10] dataset was used for synthetic
data. Data-centric (DC) documents were considered with data sizes ranging from 10MB
to 1GB. In addition, we used a real dataset, namely DBLP XML [12]. Figure 5 (a) shows
the characteristics of the datasets used. Two sets of queries were designed to cover
different types of ordered XPATH queries. In additional, the cardinality of the results
was varied. Figures 5 (b) and 5 (c) show the benchmark queries on XBENCH and DBLP,
respectively. XPATH queries with descendant axes were not included as they had been
studied in [6].

Test methodology. The XPATH queries were executed in the reconstruct mode where
not only the non-leaf nodes, but also all their descendants, were selected. Appropriate
indexes were constructed for all approaches (except for MONETDB) through a careful
analysis on the benchmark queries. Prior to our experiments, we ensured that statistics
on relations were collected. The bufferpool of the RDBMS was cleared before each run.
Each query was executed 6 times and the results from the first run were always discarded.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

804 B.-S. Seah et al.

843.17

862.33

7,163.00

4,517.33

1,359.67

1,233.67

1,594.00

1,556.33

3,244.50

5,007.17

44.17

36.17

492.33

226.50

41.83

41.50

36.33

39.00

36.00

39.00

58.33

27.67

75,236.00

2,726.00

13.00

63.67

63.67

125.67

132.67

153.17

DC10

13,177.17

7,653.67

43,517.67

30,352.50

7,176.50

7,121.67

7,161.33

7,301.83

8,809.00

8,129.83

39,152.67

39,152.67

64,976.50

44,738.67

7,563.33

1,951.00

30,292.83

6,702.00

6,264.50

1,720.33

85,223.50

86,271.17

134,293.83

286,369.00

1,026.17

889.83

908.17

868.67

DNF

DNF

DC100 DC1000

80.50

114.67

3,023.67

1,364.33

85.83

88.67

81.17

85.83

174.67

177.17

ID

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1,042.33

1,041.17

4,935.33

3,138.83

385.33

41.17

708.67

688.17

91.00

72.50

5,967.00

5,967.00

31,229.50

17,574.33

1,740.67

437.67

4,223.33

3,522.17

804.83

511.00

58.33

27.67

5,885.00

2,726.00

28.17

72.83

78.50

35.67

137.83

137.50

47.67

60.33

47,664.17

14,266.33

209.00

248.50

208.20

222.83

668.67

702.33

47.67

60.33

DNF

14,266.33

5,133.67

339.00

5,236.20

365.83

650.83

680.17

61.67

44.50

368,666.00

56,665.17

1,036.67

925.67

1,000.50

1,144.17

7,992.17

8,456.50

61.67

44.50

DNF

56,665.17

49,795.33

54,927.67

50,419.83

54,610.83

42,872.00

42,925.17

6,264.17

12,596.67

82,539.00

81,575.00

1,927.80

2,803.00

2,143.60

2,859.20

55.00

DNF

46,827.50

46,820.50

D1

D2

D3

D4

24,975.17

39,912.00

32,829.17

32,795.00

55.00

32,605.83

2,008.83

1,886.83

(a) For DC10, DC100, and DC1000 (in msec)

(b) For DBLP (in msec)

GOMXQ SXID SI SX-JO GOMXQ SXID SI SX-JO

GOMXQ SX GO SI GOMXQSI SISX-JO SX-JOSX SX-JOSX

Fig. 6. Query Performance (in msec)

7.1 Query Evaluation Times

Figures 6(a) (resp. 6(b)) presents the query evaluation times for the approaches on DC
(resp. DBLP) dataset. Queries that Did Not Finish within 60 minutes were denoted as DNF.

Enforcement of Join Order. The SX and SX-JO columns in Figure 6 describes the
effect of enforcing join order in SUCXENT++. Note that we did not enforce the join
order for queries Q1, Q2, Q4, and D1 when the PathValue table appears in the translated
SQL queries only once.

We made three main observations from our results as follows. First, in almost all
cases the query performance improved significantly when join order is enabled. For in-
stance, for DBLP the performance of queries D3 and D4 were improved by factors of
23 and 25, respectively. In fact, 18 out of 24 queries in Figure 6 benefited from join
order enforcement. Second, the benefit of this technique increases as the dataset size
increases. For instance, for the 1GB dataset the performances of Q5 to Q8 improved by
47 to 59 times. Furthermore, queries that failed to return results previously in 60 min-
utes (Q3, D2) were now able to return results across all benchmark datasets. Without
being privy to optimizer internals, we observed from the query plans of Q3 and Q5-Q8
that the query plan trees consisted of essentially two subtrees. One depicted the plan for
computing the V table (lines 03-11 in Figure 4(b)) followed by joining it to the Attribute
table (Lines 16-19). The other subtree computed the V table and then returned all the
attributes of V (Lines 13-14 in Figure 4(b)). Interestingly, when join order was enforced,
the number of joins in the former subtree was reduced and the size of intermediate re-
sults were reduced in the later subtree. Consequently, this resulted in a better query plan.
For further details on the query plans please refer to [7]. Third, the penalty of join order
for most of the benchmark queries, if any, was low on all benchmark datasets. In fact,
the largest penalty on the query performance due to join order enforcement was 22ms.

Comparison with GLOBAL-ORDER and SHARED-INLINING. Overall SX-JO out-
performed both SI and GO in at least 65% of the benchmark queries with the highest
observed gain factors being 880 and 1939, respectively. GO showed non-monotonic be-
havior for Q5-Q8 and as a result the performance of SX-JO was comparable to GO for
these queries on DC1000. However, SX-JO significantly outperformed SI for Q5-Q8

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Support for Ordered XPath Processing 805

(up to 30 times). Note that for DC1000, GO failed to return results for queries Q9 and
Q10. Finally, for the DBLP dataset, SX-JO significantly outperformed GO and SI for
D1, D3, and D4, with the highest observed gain factor 454 and 114, respectively.

Comparison with MONETDB. Our study in the context of MONETDB revealed some
interesting results. First, MXQ was 11-164 and 3-74 times faster than GO and SI,
respectively, for the majority of the benchmark queries. However, this performance gap
was significantly reduced when it was compared against SX-JO. Our results showed
that MXQ was 1.3-16 times faster than SX-JO. Surprisingly our approach was faster
than MONETDB for 33% of benchmark queries! Specifically, SX-JO was faster than
MXQ for Q2, Q5, and Q8 on DC10 and Q1 and Q2 on DC100. Also, for the real dataset
(DBLP) SX-JO was faster than MXQ for D1, D3, and D4 with the highest observed fac-
tor being 35. Unfortunately, we could not report the results of MXQ for DC1000 be-
cause it failed to shred the document. The reason of this problem is that MXQ (Win32
builds) is currently vulnerable to the virtual memory fragmentation in Windows en-
vironment. MXQ also does not evaluate predicates applied after reverse axis in re-
verse document order, but in document order. Therefore, in Q8, it evaluated the second
preceding-sibling element in document order, not in reverse document order
(not in accordance to W3C XPath recommendation [13]).

8 Conclusions and Future Work

In this paper, we presented a scalable storage scheme for ordered XPATH evaluation
in relational environment. The mapped SQL queries were forced to execute a “left-
to-right” join order. We showed that this technique could improve query performance
notably. In addition, our results showed that our proposed approach outperforms other
representative tree-unaware approaches for the majority of the benchmark queries. Al-
though tree-aware approaches were often the best in terms of query performance [1],
the “join-order conscious” SUCXENT++ reduced the performance gap between tree-
aware and tree-unaware approaches significantly and could outperform a state-of-the-
art tree-aware approach (MONETDB) for certain benchmark queries. Importantly, unlike
tree-aware approaches, our approach did not require any invasion of the database ker-
nels to improve query performance and could easily be built on top of any off-the-shelf
commercial RDBMS. As part of our future work, we are studying the “join order” phe-
nomena encountered during our investigation. We are also exploring other non-invasive
mechanisms for improving XPATH query performance on a relational backend.

References

1. P. BONCZ, T. GRUST, M. VAN KEULEN, S. MANEGOLD, J. RITTINGER, J. TEUB-
NER. MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine.
In SIGMOD ,2006.

2. D. DEHAAN, D. TOMAN, M. P. CONSENS, M. T. OZSU. A Comprehensive XQuery to
SQL Translation Using Dynamic Interval Coding. In SIGMOD, 2003.

3. D. FLORESCU, D. KOSSMAN. Storing and Querying XML Data using an RDBMS. IEEE
Data Engg. Bulletin. 22(3), 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

806 B.-S. Seah et al.

4. T. GRUST, J. TEUBNER, M. V. KEULEN. Accelerating XPath Evaluation in Any RDBMS.
In ACM TODS, 2004.

5. S. PAL, I. CSERI, O. SEELIGER ET AL. XQuery Implementation in a Relational Database
System. In VLDB, 2005.

6. S. PRAKASH, S. S. BHOWMICK, S. K. MADRIA. Efficient Recursive XML Query Process-
ing Using Relational Databases. In DKE), 58(3), 2006.

7. B.-S SEAH, K. G. WIDJANARKO, S. S. BHOWMICK, B. CHOI, E. LEONARDI.
Efficient Support of Ordered XPath Processing in Relational Databases. Techni-
cal Report, CAIS-05-2006, 2006. Available at http://www.cais.ntu.edu.sg/
∼sourav/papers/OrderedXPath-TR.pdf

8. J. SHANMUGASUNDARAM, K. TUFTE ET AL. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In VLDB, 1999.

9. I. TATARINOV, S. VIGLAS, K. BEYER, ET AL. Storing and Querying Ordered XML Using
a Relational Database System. In SIGMOD, 2002.

10. B. YAO, M. TAMER ÖZSU, N. KHANDELWAL. XBench: Benchmark and Performance Test-
ing of XML DBMSs. In ICDE, Boston, 2004.

11. C. ZHANG, J. NAUGHTON, D. DEWITT, Q. LUO AND G. LOHMANN. On Supporting Con-
tainment Queries in Relational Database Systems. In SIGMOD, 2001.

12. DBLP XML Record. http://dblp.uni-trier.de/xml/.
13. XML Path Language (XPath) 2.0: W3C Proposed Recommendation 21 November 2006.

http://www.w3.org/TR/xpath20/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic

Twig Join

Bo Chen1, Tok Wang Ling1, M. Tamer Özsu2, and Zhenzhou Zhu1

1 School of Computing, National University of Singapore
{chenbo, lingtw, zhuzhenz}@comp.nus.edu.sg

2 David R. Cheriton School of Computer Science, University of Waterloo
tozsu@uwaterloo.ca

Abstract. Label stream partition is a useful technique to reduce the
input I/O cost of holistic twig join by pruning useless streams before-
hand. The Prefix Path Stream (PPS) partition scheme is effective for
non-recursive XML documents, but inefficient for deep recursive XML
documents due to the high CPU cost of pruning and merging too many
streams for some twig pattern queries involving recursive tags. In this pa-
per, we propose a general stream partition scheme called Recursive Path
Stream (RPS), to control the total number of streams while providing
pruning power. In particular, each recursive path in RPS represents a
set of prefix paths which can be recursively expanded from the recursive
path. We present the algorithms to build RPS scheme and prune RPS
streams for queries. We also discuss the adaptability of RPS and provide
a framework for performance tuning with general RPS based on different
application requirements.

1 Introduction

An XML document contains hierarchically nested elements, which can be nat-
urally modeled as a labeled ordered tree. Standard query languages for XML
usually specify a twig pattern query and retrieve a subset of XML elements in
the document. A twig pattern can be represented as a node-labeled tree whose
edges are either Parent-Child (P-C) or Ancestor-Descendant (A-D) relationships.

Extensive research efforts have been put into efficient twig pattern query
processing with label-based structural joins. Following the early binary struc-
tural join algorithms [1,12], Bruno et al. [2] proposed holistic TwigStack join
algorithm to solve the problem of useless intermediate result in binary structural
joins. It produces no useless intermediate result for twig patterns with only A-D
relationships, which is defined as optimality. However, TwigStack is not optimal
for twig query with P-C relationship. Several following works [3,5,6,8,10,9] sug-
gest different ways of optimizing TwigStack, such as indexing [6], partitioning [3]
label streams, exploring Extended Dewey Label scheme [9], etc.

Most TwigStack optimization techniques focus on reducing intermediate
results and input I/O cost. [3] further defines the optimality of twig pattern
matching as minimal possible I/O cost in reading label streams and maintaining

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 807–818, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

808 B. Chen et al.

intermediate results. Though I/O is an important metric in traditional database
management, it alone does not well represent the performance in twig pattern
query processing, especially with stream partition approach. For example, in [3],
the prefix path stream (PPS) partition scheme performs very well in terms of
I/O cost. However, its response time is the worst for deep recursive data as a
result of high CPU cost of pruning and merging too many streams.

In this paper, in view of the success and limitation of label stream partition
in [3], we study the I/O and CPU tradeoffs for stream partition of holistic twig
joins and focus on optimizing response time rather than optimizing pure I/O
cost addressed previously. In particular,

1. We propose a novel stream partition technique called recursive path stream
(RPS) partition, which can effectively achieve the I/O benefit of PPS parti-
tion [3] while solving PPS’s problem of high CPU cost.

2. We also introduce a framework of adaptability of different streaming schemes
and further partition of recursive path streams to flexibly fit different appli-
cation requirements.

3. Our experiment results show that RPS is superior to other partition schemes
for deep recursive data, while for non-recursive data, RPS is better than
original TwigStack and as good as PPS.

Though our discussion in this paper focuses on label stream partition, our tech-
nique can be easily combined with other previous works, such as label indexing
[6] and Extended Dewey Labeling scheme [9], to utilize their benefits.

The rest of the paper is organized as follows: we present related work in
Section 2. In Section 3, we discuss the motivation and our Recursive Path Stream
scheme (RPS) in detail. Experiment results are shown in Section 4. Finally, we
conclude the paper and discuss possible future research in Section 5.

2 Related Work

Twig join processing is central to XML query evaluation. Extensive research
efforts have been put into efficient twig pattern query processing with label-
based structural joins. Zhang et al. [12] first proposed multi-predicate merge join
(MPMGJN) based on containment (DocId, Start, End, Level) labeling of XML
document. The later work by Al-Khalifa et al. [1] proposed an improved stack-
based structural join algorithm, called Stack-Tree-Desc/Anc. Both of these are
binary structural joins and may produce large amount of useless intermediate
results. Bruno et al. [2] then proposed a holistic twig join algorithm, called
TwigStack, to address and solve the problem of useless intermediate results.
However, TwigStack is only optimal in terms of intermediate results for twig
query with only A-D relationship. It has been proven [4] that optimal evaluation
of twig patterns with arbitrarily mixed A-D and P-C relationships is not feasible.

There are many subsequent works that optimize TwigStack in terms of I/O,
or extend TwigStack for different problems. In particular, a List structure is
introduced in TwigStackList [8] for wider range of optimality. TSGeneric [6] is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic Twig Join 809

based on indexing each stream and skipping labels within one stream. Chen et
al. [3] divides one stream (originally associated with each tag) into several sub-
streams associated to each prefix path or each tag+level pair and prunes some
sub-streams before evaluating the twig pattern. We call this approach as stream
partition. Lu et al. [9] uses Extended Dewey labeling scheme and scans only the
labels of leaf nodes in a twig query. Further techniques of processing twig queries
with OR-predicate [5], NOT-predicate [11] and ordered twig queries [10] have
also been proposed.

Our proposal is also based on label stream partition like [3]. However, we
extend the solution into general optimization of both I/O and CPU cost to reduce
response time. It is worth noting that our technique can be easily combined with
other works discussed above to achieve their benefits.

3 Recursive Path Stream

3.1 Motivation and Terminology

We model XML documents as labeled ordered trees. Each element, attribute and
text value in the tree is associated with a label according to some labeling scheme,
e.g. containment or prefix labeling schemes. One XML label uniquely identifies one
element in thedocument.XMLqueries use twigpatterns tomatch relevantportions
of data in an XML document. Twig pattern edges can be parent-child (P-C) or
ancestor-descendant (A-D) relationships. XML documents usually have DTD or
schema information to specify their structure and to guide users writing queries.

Fig. 1(b) shows a sample DTD. Fig. 1(c) is a twig pattern query with respect
to the DTD in (b). Double lines indicates A-D relationship among query nodes
while single line indicating P-C relationship is not shown in the example. A
sample XML tree conforming to the DTD is given in Fig. 1(a). Elements are
associated with containment labels. For illustration purpose, we also show the
document order of each element as subscripts n, and we use n to refer to the nth

element as well as its label.
To process the query of Fig. 1(c) over XML tree in Fig. 1(a), originalTwigStack

algorithm [2] scans all the labels of tags A, B and C. The set of labels of a tag
is usually referred to as a tag stream, and the process of scanning the tag stream
is called tag streaming. (We restrict our discussions from stream indexes, though
our approach can be easily extended with stream indexes [6].) The tag streams
that TwigStack algorithm needs to scan for this query are shown in Fig. 1(d).

Observe that elements A1 to A5 do not contribute to the final results of query
Q in 1(c). Therefore, Chen et al. [3] propose to partition each tag stream into
prefix path streams (PPS) and prune prefix path streams that definitely do not
contribute to final results before twig join, thus saving input I/Os. There are 21
prefix paths for sample data in Fig. 1(a). Fig. 1(e) shows all the streams of paths
ending with tag A. The five prefix path streams of tag A on the left column can
be pruned before processing Q ([3]) as there are no B in the prefix path.

Prefix path stream scheme saves input I/Os. However, it needs to check all the
paths to prune the useless ones. Moreover, holistic twig join algorithms require

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

810 B. Chen et al.

(b) DTD

A (A*,B*)
B (A*,B*,C*)
C (B*)

(c) Twig query

A: {1,2,3,4,5,7,9,13,16}
B: {6,8,10,11,12,14,15,18,20}
C: {17,19,21}

(d) Tag streams

(f) All Recursive
Prefix Path Streams

for sample data

/A+

(/A/B+)+/A
/A(/B/C)+

/A(/B/C)+/B
(/A/B+)+

{1,2,3,4,5}
{7,9,13,16}
{17,19,21}
{18,20}
{6,8,10,11,12,14,15}

32,7

A2

A7

A5

A4

A3 C17

A13

A16

B12

B11

B6

B10

A9

B8

C19

B18

C21

B14

B15

B20

(a) Sample
data

2:8,2

3:7,3

5,5

4:6,4

A1
1:38,1

9:37,2

10:16,3

11:15,4

12:14,5

13,6

17:27,3

18:26,4

19:25,5

20:24,6

21:23,7

22,8

28:36,3

29:35,4

30:34,5

31:33,6

C

B

A

(e) Prefix path streams ending with A

/A/B/A
/A/B/A/B/A
/A/B/B/B/A
/A/B/B/B/A/B/B/A

{7}
{9}
{13}
{16}

/A
/A/A
/A/A/A
/A/A/A/A
/A/A/A/A/A

{1}
{2}
{3}
{4}
{5}

I:
II:
III:
IV:
V:

Fig. 1. Example XML document and Query

scanning labels in document order. Therefore, PPS scheme has to merge-sort all
the prefix path streams for each tag during run time. The pruning and merge-
sorting can be CPU expensive for deep recursive data with many prefix paths
for each tag. In Fig. 1(e), we first need to prune 5 streams, then merge-sort 4
streams on the right column during holistic twig join.

We observe that prefix paths for A in Fig. 1(e) can be grouped and represented
as the first two special paths in Fig. 1(f), where the ‘+’ sign in /A+ indicates there
may be one or more consecutive /A’s in a prefix path. We term the special path
as Recursive Path. The following introduces the terminology used in the paper.

Recursive Path (RP) is a special representation of a set of prefix paths that
are recursively built on some tags. One or a sequence of tags in RP enclosed
within ‘+’ can be recursively expanded to represent prefix paths of different
lengths. We call tags enclosed within a ‘+’ as a Recursive Component (RC).
RC’s can be recursive, e.g. (/A/B+)+/A. Only P-C relationship is allowed be-
tween consecutive tags in RP. Each RP has a set of RC’s. We can also view one
prefix path as an RP with empty RC set, representing a singular path set of
itself. If two RP’s has the same tag sequence, but different RC sets, they can be
combined into a general form such that the RC set of the general form is the
union of RC sets of the two RP’s. Each RP is associated with a label stream,
called Recursive Path Stream (RPS). This stream contains the labels of
elements of all the prefix paths represented by the RP in document order.

In Fig. 1(f), we have only five recursive paths for 21 prefix paths. For query
node A in Fig. 1(c), we can prune RP I and only scan the stream of II since there
is no B in I. In this way, we save both I/O and CPU cost. We call RP II and
its stream as the Potential Solution Path (PSP) and Potential Solution
Stream for the query node A.

3.2 Building RPS Scheme from XML Data

We present the algorithm to extract RPS from XML data in Fig. 2. The algo-
rithm, BuildRPS, uses SAX event parser and extracts recursive paths and their

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic Twig Join 811

Algorithm 1. BuildRPS

Input: Events e from SAX parser;
Output: RPS; /* RPS maps RP to stream */

1. initialize Stack ST ; /* ST is the stack for start tags */
2. initialize empty Hashtable RPS;
3. while there are more events e
4. if e is start tag then
5. push tag t of e onto ST ;
7. scan from the bottom to top of ST to get path p for the element;
8. let len = the number of tags in p;
9. for (n = 1, n ≤ �len/2�, n++);
10. while (there are consecutive occurrences of a same sequence of

tags of length n in p)
/* checking from root to leaf to ensure same PP gives same RP */

11. change p by replacing all occurrences of the same sequence
by one recursive component in p;

12. let len = new number of tags in p; /* len should be decreased */
13. end while
14. end for
15. if (there is a path p′ in RPS with the same tag sequence of p) then
16. generate the general form p′′ of p′ and p;

/* the recursive component set of p′′ is the union of p′ and p’s RC set */
17. associate p′′ with the stream of p′ and remove p′ in RPS;
18. else put p into RPS;
19. generate and append the start and level values of current element’s

label to corresponding recursive path;
20. else if e is end tag then
21. pop ST;
22. complete the label of e in RPS by generating and adding the end value;
23. end while

Fig. 2. Algorithm for building Recursive Path Stream (RPS) scheme

label streams with one pass of the data. This version of BuildRPS only handles
XML elements, but can be easily extended for attributes.

BuildRPS works in three steps for each element in the XML document.
Step 1 (lines 4–14) computes the element’s path p and compacts it into recursive
path (RP). It searches for consecutive occurrences of the same tag sequences of
length n (where n ranges from 1 to half of the length of p since the length of
the tag sequence can be at most the half of p in order to have two consecutive
occurrences of the same tag sequences) from root to leaf of p. If there are such
consecutive occurrences, lines 11 & 12 compact p by replacing the multiple same
sequences by one sequence as the recursive component (RC) and set length len to
the new length of p. Step 2 (line 15–20) combines RPs of the same tag sequence
into their general form and appends the partial label of start and level values
to the corresponding stream. This is to ensure that two different RPs produced
by the algorithm represents two disjoint set of prefix paths. Step 3 (lines 21–23)
completes the label of the ending element by adding the end value.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

812 B. Chen et al.

Example 1. Consider how BuildRPS algorithm extracts the RP (/A/B+)+/A
and its label stream in Fig. 1(f) for data of Fig. 1(a). When the scan reaches start
tag of A7, steps 1 first computes its path p1, /A/B/A. Since p1 is uncompactable,
and this is the first path with tag sequence (A, B, A), step 2 associates p1 with
the partial label of A7 without end value. Then after start tag of A9 is reached,
the algorithm gets the path p2, /A/B/A/B/A, compacts it into recursive path
rp1, (/A/B)+/A, with {(/A/B)+} as the RC set. Now, since p1 and rp1 have
the same tag sequence and their general form is identical to rp1 with a singular
RC set, step 2 replaces p1 by rp1 and appends the partial label of A9 to the
label stream. Then after scanning the end tags of A9 and A7, step 3 completes
their labels with end values. When the scan reaches the start tag of A13, step 1
computes rp2, (/A/B+)/A, then step 2 combines it with rp1 to get the general
form (/A/B+)+/A to replace rp1 and appends the stream. Similar actions are
taken when the start and end tags of A16 and end tag of A13 are reached.

Note that step 2 does not produce /A(/B/A)+ for p2, /A/B/A/B/A, since
it searches from the root to leaf. The algorithm first finds the consecutive oc-
currences of /A/B and immediately changes p2 into rp1 which does not contain
consecutive occurrences of /B/A any more.

The time complexity of BuildRPS is O(D ∗ L3), where D and L are the size
and maximum depth of the document. The followings are two properties of RPS
scheme computed by BuildRPS. The proofs are omitted due to lack of space.

Property 1: Same prefix paths are always compacted to the same recursive
path with shortest possible tag sequence.

Property 2: Two different recursive paths represent two disjoint prefix path
sets as well as disjoint label streams.

3.3 Identifying Potential Solution Paths

We now discuss the process of identifying potential solution (and pruning useless)
paths for a twig pattern query. The algorithm is based on the following two
properties of a recursive path.

Property 3: For any two tags T1 and T2 in a recursive path P , T1 is an an-
cestor tag of T2 if T1 appears before T2 in P or there exists some recursive
component in P containing both T1 and T2

Property 4: For any two tags T1 and T2 in a recursive path P , T1 is a parent
tag of T2 if T1 appears before T2 consecutively in P or there exists some
recursive component RC in P such that T2 is the first tag and T1 is the last
tag of RC.

Example 2. Consider the recursive path /A(/B/C/D)+. A, C and D are all an-
cestor tags of B since 1) A appears before B and 2) there is one recursive
component containing all B, C and D. C and D will appear before B if we ex-
pand (/B/C/D)+ once to get /A/B/C/D/B/C/D. However, only A and D are
the parent tags of B as they appear before B consecutively after the expansion.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic Twig Join 813

Algorithm 2. IdentifyPSP

Input: Twig query Q and RPS partition scheme P
Output: Potential Solution Path sets Psets for all query node N in Q

1. initialize Pset of each query node as empty set.
2. depth first search query twig Q, upon returning from current query node N ;
3. let Cset of N be an empty set /* Cset is “Candidate PSP set” */
4. get query path qp from query root to N
5. if N is leaf query node then
6. let Cset be all recursive paths ending with tag N in P ;
7. else if N is non-branching internal query node then
8. let Cset = getCset(N , PSet of child of N);
9. else if N is branching query node then
10. for Pset of each child Ci of N’s children
11. let Cseti = getCset(N , Pset);
12. end for
13. let Cset be the intersection of all Cseti’s;
14. for each rp in Cset
15. if checkPSP (rp, qp) == true then put rp in Pset of N ;
16. end for
17. end depth first search
18. for each query node N
19. for each rp in Pset of N
20. if ¬∃ rp′ in Pset of root s.t. tag sequence of rp′ is a prefix of rp then
21. remove rp from Pset of N ;
22. end for
23. end for

Function getCset(N , childPset) /* get Cset of N based on Pset of N ’s child */
1. let Cset be empty set;
2. for each rp in childPset
3. put each RP whose tag sequence is a prefix of rp and ends with N into Cset;
4. for each recursive component rc containing but not ending with N in rp
5. get tag sequence ts by repeating tags up to N in rc once;
6. put into Cset the RP of tag sequence from the root to repeated N in ts;
7. end for
8. end for
9. return Cset;

Function checkPSP (rp, qp) /* check if rp is potential solution path of qp */
1. let tag set s1 be N where N is the leaf node of rp;

/*elements in tag set are of the same name, differentiated by the positions in rp*/
2. for each qp tag T from leaf to root /* T ’s parent is dummy if T is root */
3. let PT be parent tag of T in qp and E be the edge between PT and T ;
4. if T is the root then return BOOLEAN(E is A-D OR s1 contains root of rp);
5. let tag set s2 be {e2 | e2 and pt have identical tag ∧

∃e1 ∈ s1 s.t. e2 is the parent (or ancestor based on E) tag of e1 in rp};
6. if s2 is empty then return false;
7. else let s1 be s2;
8. end for

Fig. 3. Algorithm for Identifying Potential Solution Paths in RPS scheme

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

814 B. Chen et al.

We show algorithm IdentifyPSP in Fig. 3. It identifies the Potential Solution
Path (PSP) set (Pset) for each query node in a given twig query, with two
phases: bottom-up pruning from query leaves and top-down pruning from query
root. The bottom-up phase first propagates branching information for pruning
from branches to the branching nodes; whereas top-down phase then propagates
the combined branching information to each individual branch.

In the bottom-up pruning phase (lines 2-17 of Main), it visits each query node
N in depth first order. Upon returning from N , it first computes N ’s Candidate
Potential Solution Path set (Cset) (lines 3-13), then checks each recursive path
rp in Cset if it is a PSP to be put into Pset (lines 14-16). Note that for branching
node, the Cset is the intersection of the Csets computed based on the Psets of
each child query node. We will shortly discuss how to compute Cset of a query
node based on its child’s Pset. In the top-down pruning phase (lines 18-23), for
Pset of each non-root query node, it removes all the recursive paths (RP) for
which there exists no RP as its prefix in the Pset of the query root.

There are two auxiliary functions for the algorithm: getCset and checkPSP.
Function getCset finds the Cset of query node N based on the Pset of N ’s child.
It puts into Cset all recursive path rp such that rp ends with N and is a prefix
of either 1) any rp′ in Pset of N ’s child or 2) tag sequence expanded from rp′ by
repeating any single recursive component once. Function checkPSP checks if the
given recursive path rp is the PSP for query path qp. It recursively scans query
tag T from the leaf to the root of qp. For each T and T ’s parent query node PT ,
it computes the T ’s ancestor (or parent depending on the query edge between T
and PT) tags that are same to tag name PT . When none can be found or T is
the root query node, checkPSP returns.

The time complexity of IdentifyPSP is O(|Q| ∗ |rp| ∗ (FQ ∗ |rc| + Dq ∗ Drp)),
where |Q|, |rp|, FQ, |rc|, Dq and Drp are number of query nodes, number of RPs
(for each tag if we have a mapping from tags to their RPs), maximum query
fan-out, maximum number of RCs in one RP, query depth and maximum depth
of RP respectively. Since most of the above values are usually small, saving in
IO is usually worth the efforts in pruning. The following theorem shows the
correctness of IdentifyPSP. However, due to lack of space, we cannot provide
the proofs for the time complexity and the theorem.

Theorem 1. Given query Q and RPS scheme, labels of streams pruned by Iden-
tifyPSP algorithm do not contribute to final answer of Q.

Example 3. Let us trace algorithm IdentifyPSP on the query and RPS scheme
in Fig. 1(c) and (f). In bottom-up phase, depth first search first returns from
query node A. Within the two candidate RPs {I, II} of A, only RP II in Fig.
1(f) is identified as PSP since query root B appears as an ancestor tag of A
in II, but not in I. So, the current PSP set of A is {II}. Similarly, {III} is the
PSP set for C. Now, according to function getCset, the candidate PSP sets for
B are {V} based on A’s PSP set and {IV, V} based on C’s PSP set (IV is in
the candidate PSP set of B since it is a prefix of the expansion of RC in III).
So the intersection is {V}, which is then identified as the PSP set of B. The
top-down pruning does not take effects in this case. Thus the final PSP set of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic Twig Join 815

A, B and C are {II}, {V} and {III} respectively. However, suppose we modified
the sample data to have one more RP as /A/D+/B/A, it would be PSP for A
after bottom-up phase but pruned after top-down phase since V is not its prefix.

3.4 Adaptability of Different Stream Partition Schemes

As mentioned in Sec. 3.1, uncompactable prefix path is a special case of recursive
path. The RPS scheme is a generalization of PPS. Applying RPS to non-recursive
data generates the same stream partition as PPS. Therefore, it is safe to replace
PPS with RPS in non-recursive data. Besides, we can further partition streams
in RPS according to different application requirements. For example, when there
are many A’s at depths more than three, but most queries are only interested in
A’s at depth less than or equal to two, we can partition the stream associated
with /A+ into streams /A1:2 and /A3+, meaning RC /A can be repeated at most
twice and at least three times respectively.

However, for irregular data, even RPS may generate too many streams and
result in long query response time. For example, if we change the DTD in
Fig. 1(a) as “every element of (A, B, C) can have any element of the three
as their children”, we may have the following deep uncompactable data path

/A/B/C/B/A/B/C/A/C/B/A/B/C/

In such case, it is better to use non-partitioned Tag Streaming to avoid merge-
sorting overwhelming number of streams during holistic twig joins.

4 Experimental Evaluation

We experimentally compare the performance of RPS with non-partitioned tag
stream scheme and existing partition schemes: PPS and Tag+level. Results show
that, RPS and PPS are comparable and better than Tag or Tag+level in non-
recursive or light recursive data (e.g. XMark). In deep recursive data (e.g. Tree-
Bank), RPS significantly out-performs others for total query response time.

4.1 Experimental Settings

Implementation and Hardware. We implemented all algorithms in Java.
Different stream partition schemes were compared based on TwigStack holistic
join [2]. The experiments were performed on a normal PC with 2.6GHz Pentium
4 processor and 1GB RAM running Windows XP.

XML Data Sets. We use two well-known data sets (XMark and TreeBank)
for our experiments. The characteristics and the number of streams for each
partition technique of these two data sets are shown in Table 1. We choose these
two data sets because XMark is light recursive with non-recursive tags, while
TreeBank is deep recursive. In this way, we can study the performance of various
stream partition methods with different levels of recursion in XML data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

816 B. Chen et al.

Table 1. XML Data Sets Table 2. Tested Queries

XMark Treebank

Size 113MB 82MB

Nodes 2.0 million 2.4 million

Max Depth 12 36

Ave Depth 5 8

Tags 75 251

Tag+Level# 119 2237

PPSs # 514 338724

RPSs # 415 119748

XM1 //site/people/person/name

XM2 //site//people/person[/name]//age

XM3 //text[//bold]//emph//keyword

XM4 //text[/emph/keyword]/bold

XM5 //listitem[//bold]/text[//emph]//keyword

TB1 //S[//ADJ]//MD

TB2 //VP[/DT]//PRP DOLLAR

TB3 //PP[/NP/VBN]/IN

TB4 /S/VP//PP[//NP/VBN]/IN

TB5 //S//NP[//PP/TO][//VP/ NONE]/JJ

Queries. We select a wide range of representative queries (shown in Table 2)
for each data set (XM for XMark and TB for TreeBank). In particular, XM1
and XM2 contain non-recursive tags, while the rest all contain recursive tags.
XM1 is a path query. XM2–4, TB1–4 are simple twig queries with only one
branching node of fan-out two. Except incoming root query edge, XM3 and TB1
have only A-D edges; XM4 and TB3 have only P-C edges; while XM2, TB2 and
TB4 have a mixture of A-D and P-C edges. For complex twig queries, XM5 has
two branching nodes whereas TB5 has one branching node of fan-out three. The
number of various label streams for all the tags of each query before and after
pruning is shown in Table 3. We can see the number of RPSs is much smaller
(up to 67% less) than PPSs.
Performance Measures. We compare RPS with non-partitioned Tag streams
and existing PPS and tag+level partition schemes. The presented performance
measures include pruning time, IO time of reading labels, CPU time of structural
join (including merge-sorting streams) and total response time of each query. The
IO time and CPU time of joins are estimated by reading all labels into memory
(IO time) before in-memory structural join (CPU time). Although the number
of labels (or bytes) scanned for each query is also an important measure for the

Table 3. Number of Streams before and After Pruning for various Partition Schemes

Tag + Level PPS RPS

before after before after before after

XM1 7 4 11 4 11 4

XM2 8 6 12 5 12 5

XM3 27 25 330 198 240 144

XM4 27 25 330 132 240 96

XM5 31 23 348 198 249 99

TB1 62 46 12561 1623 5126 743

TB2 87 86 38527 2455 12067 814

TB3 118 100 97285 1164 29563 624

TB4 177 138 123669 1874 38693 798

TB5 209 182 132503 2805 42915 1341

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Label Stream Partition for Efficient Holistic Twig Join 817

effectiveness of partition schemes, it is not shown due to space limitations as
their experiment results are similar to IO time.

4.2 Experiment Results and Analysis

We show the experiments results for XMark data in Fig. 4. We did not show
the pruning time for XMark as it is only a few milliseconds, for all queries,
thus is a negligible component of total response time. It is clear that holistic
twig join with RPS partition is faster than Tag+Level (T+L) partition and non-
partitioned Tag in both input reading and structural join as a result of less labels
scanned and processed. We can also observe that RPS is comparable to PPS for
XM1 and XM2 containing non-recursive query tags and slightly better than PPS
for XM3–5 containing recursive query tags in terms of structural join and total
response time. Theoretically, the number of labels scanned in PPS is less than
or equal to RPS. So, it is interesting to see RPS is better than PPS in input
reading for XM3 as shown in Fig. 4(a). This is the result of the larger overhead
of PPS to read the same number of labels in more streams compared to RPS.

 0

 5000

 10000

 15000

 20000

 25000

XM5XM4XM3XM2XM1

IO
 T

im
e

(m
s)

Tag
T+L
PPS
RPS

(a) IO time of reading labels

 0

 1000

 2000

 3000

 4000

 5000

XM5XM4XM3XM2XM1

Jo
in

 T
im

e
(m

s)

Tag
T+L
PPS
RPS

(b) CPU time of structural
join

 0

 5000

 10000

 15000

 20000

 25000

XM5XM4XM3XM2XM1

T
ot

al
 T

im
e

(m
s)

Tag
T+L
PPS
RPS

(c) Total processing time

Fig. 4. Experimental Results for XMark dataset (metrics of different scales)

 1

 10

 100

 1000

 10000

 100000

TB5TB4TB3TB2TB1

P
ru

ni
ng

 T
im

e
(m

s)

Tag
T+L
PPS
RPS

(a) Pruning time

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

TB5TB4TB3TB2TB1

IO
 T

im
e

(m
s)

Tag
T+L
PPS
RPS

(b) IO time of reading labels

 0

 3000

 6000

 9000

 12000

 15000

 18000

TB5TB4TB3TB2TB1

Jo
in

 T
im

e
(m

s)

Tag
T+L
PPS
RPS

(c) CPU time of structural join

 0

 10000

 20000

 30000

 40000

 50000

 60000

TB5TB4TB3TB2TB1

T
ot

al
 T

im
e

(m
s)

Tag
T+L
PPS
RPS

(d) Total processing time

Fig. 5. Experimental Results for TreeBank dataset (metrics of different scales)

The results for TreeBank data set are shown in Fig. 5. We can see from
Fig. 5(a), RPS is much faster than PPS, but slower than Tag+Level in pruning
phase as expected. In reading inputs (Fig. 5(b)), PPS is the best since it reads the
least amount of labels by pruning more label streams; RPS is a bit slower than
PPS, but much faster than Tag and Tag+level. For CPU time of structural join

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

818 B. Chen et al.

(Fig. 5(c)), non-partitioned Tag scheme is the best. Although PPS processes the
least amount of labels, it is still the worst in structural join time due to high cost
of merge-sorting too many streams. RPS is better than Tag+level in structural
join time in general because RPS processes much less labels, which outweighs
the overhead of merge-sorting more streams. For RPS alone, although it is not
the best in any of the pruning, input reading or structural join, the beneficial
trade-off between IO and CPU helps RPS to be the best in overall query response
time (up to 2 times faster than the most competitive ones) as shown in Fig. 5(d).

5 Conclusion and Future Work

In this paper, we propose a novel stream partition scheme for efficient holistic
twig joins, namely recursive path stream. RPS scheme is a generalization of
prefix path stream proposed in [3]. Experiment results show that RPS is more
efficient than other stream partition techniques in recursive XML data while it
is as good as PPS and better than others in non-recursive data. As a part of
future work, we would like to study the cost model for holistic twig joins with
stream partition and indexing.

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
Structural joins: A primitive for efficient XML query pattern matching. In Proc.
of ICDE Conference, pages 141–152, 2002.

2. N. Bruno, D. Srivastava, and N. Koudas. Holistic twig joins: optimal XML pattern
matching. In Proc. of SIGMOD Conference, pages 310–321, 2002.

3. T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In Proc. of SIGMOD Conference, 2005.

4. B. Choi, M. Mahoui, and D. Wood. On the optimality of the holistic twig join
algorithms. In Proc. of DEXA, pages 28–37, 2003.

5. H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig queries with
or-predicates. In Proc. of SIGMOD Conference, 2004.

6. H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on indexed XML docu-
ments. In Proc. of VLDB Conference, pages 273–284, 2003.

7. C. Li, T. W. Ling, and M. Hu. Efficient processing of updates in dynamic XML
data. In Proc. of ICDE, 2006.

8. J. Lu, T. Chen, and T. W. Ling. Efficient processing of XML twig patterns with
parent child edges: a look-ahead approach. In Proc. of CIKM, pages 533–542, 2004.

9. J. Lu, T. W. Ling, C. Chan, and T. Chen. From region encoding to extended
dewey: On efficient processing of XML twig pattern matching. In Proc. of VLDB
Conference, pages 193–204, 2005.

10. J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient processing of ordered XML
twig pattern. In Proc. of DEXA, 2005.

11. T. Yu, T. W. Ling, and J. Lu. Twigstacklistnot: A holistic twig join algorithm for
twig query with not-predicates on XML data. In Proc. of DASFAA, 2006.

12. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On sup-
porting containment queries in relational database management systems. In Proc.
of SIGMOD Conference, pages 425–436, 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using
GUI-Driven Prefetching in a Single-User Environment

Sandeep Prakash1, Sourav S. Bhowmick1,2, Klarinda G. Widjanarko1,2,
and C. Forbes Dewey Jr.3

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 Singapore-MIT Alliance, Nanyang Technological University, Singapore

3 Division of Biological Engineering, Massachusetts Institute of Technology, USA
{assourav,klarinda}@ntu.edu.sg, cfdewey@mit.edu

Abstract. In this paper, we address the problem of efficient processing of
XQueries in single-user relational environment where the queries are formulated
using a user-friendly GUI. We take a novel and non-traditional approach to im-
proving query performance by prefetching data during the formulation of a query.
The latency offered by GUI-based query formulation is utilized to prefetch por-
tions of the query results. To realize this, we present an algorithm for prefetching
based on data synopses statistics and GUI actions during visual query formula-
tion. Experimental evaluation indicates that prefetching is viable as the combined
time taken by all the prefetching operations is not significantly more than normal
query execution time. Our experiments in the context of biological data show that
prefetching improves the query response time by 7-96% with a greater improve-
ment for larger data sets. Also, we show the impact of errors committed by users
during query formulation on the query performance.

1 Introduction

Querying XML data involves two key steps: query formulation and efficient processing
of the formulated query. However, due to the nature of XML data, formulating an XML
query using an XML query language such as XQuery requires considerable effort. A
user must be completely familiar with the syntax of the query language, and must be
able to express his/her needs accurately in a syntactically correct form. In many real life
applications (such as life sciences) it is not realistic to assume that users are proficient
in expressing such textual queries. Hence, there is a need for a user-friendly visual
querying schemes to replace data retrieval aspects of XQuery.

In this paper, we address the problem of efficient processing of XQueries in the
relational environment where the queries are formulated using a user-friendly GUI.
The work presented here is part of our ongoing research of building a system called
Da Vinci’s Notebook that would empower biologists to explore huge volumes of ex-
perimental biology data. We take a novel and non-traditional approach to improving
query performance by prefetching data during the formulation of a query in a single-
user environment. The latency offered by the GUI-based query formulation is utilized
to prefetch portions of the query results. In order to expedite XML query processing

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 819–833, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

820 S. Prakash et al.

using such GUI-based prefetching two key tasks must be addressed. First, given a user-
friendly visual query interface, GUI actions that can be used as indicators to perform
prefetching need to be identified. Second, each GUI action can possibly lead to more
than one prefetching operation. Therefore, an algorithm needs to be designed to select
the “best” operation. In this paper, we address these issues in detail. A short overview
of this approach appeared as a poster paper in [3].

To the best of our knowledge, this is the first work that makes a strong connection
between prefetching-based XML query processing and GUI-based query formulation.
The key advantages of our approach are as follows. First, our optimization technique is
built outside the relational optimizer and is orthogonal to any other existing optimiza-
tion techniques. Hence, our approach provides us with the flexibility to “plug” it on top
of any existing optimization technique for processing XML data in relational environ-
ment. Second, our approach is not restricted by the underlying schema of the database.
As a result, it can easily be integrated with any relational storage approaches. Third, the
prefetching-based query processing is transparent from the user. Consequently, there
does not exist any additional cognitive overhead to the users while they formulate their
queries using the GUI. Finally, our non-traditional approach noticeably improve the per-
formance of XML query execution. As we shall see in Section 5, our experiments with
biological data indicate a performance improvement of 7% to 96% with an increasing
improvement as the size of the data grows. Moreover, we also show that errors commit-
ted by users while formulating queries do not significantly affect the query performance.

2 Visual Query Interface

In this section, we present the visual interface which we shall use in the rest of the
paper for formulating XML queries. Ideally, a full implementation of the GUI-driven
prefetching system would require a fully-functional XQuery support. However, it is also
true that a visual interface is useful when it serves the needs of the majority of the users

A

B

C

D

E

F

2
3

4 5

Join Condition

ExprBox ComparisonExpr QueryExpr

(a) Query formulation.

for $b in /sptr/entry, $c in /enzyme/entry
where
 ($b/feature/@type='transmembrane region' or
 $b/organism/name='human') and
 $c/swissprot_reference/@swissprot_accession =
 $b/accession
return $b/sequence, $c/enzyme_id

(b) XQuery representation.

Fig. 1. Visual query interface and XQuery representation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 821

in expressing majority of their queries, which are typically simple [1]. A complete but
too complex graphical interface would fail both in replacing the textual language and
in addressing all the users’ needs [1]. Furthermore, the focus of this paper is to study
the effect of GUI-driven prefetching on XML query processing and not design of a
complete visual interface for formulating XML queries. Hence, we implemented an
interface that supports simpler types of XQuery. These queries are sufficient to justify
the positive contributions made by the GUI-based prefetching technique. Specifically,
the syntax of the basic XQuery query that can be formulated using our GUI is as follows.
Note that we assume that the DTDs/XML schemas of data sources are available to the
user during query formulation.

FOR x1 in p1, . . . , xn in pn

WHERE W
RETURN r1, r2, . . . , rk

where pi is a simple linear path expression, W is a set of predicates that are connected
by AND/OR operator(s). A predicate w ∈ W can be one of the two forms: si op c or
si op sj where si and sj are path expressions that may contain a selection predicates
and c is a constant. The variable ri is a simple path expression.

Our system allows the user to formulate visual queries in an intuitive manner without
having to learn any query language. The user interface (Figure 1(a)) is presented as an
adjustable multi-panel window comprising the following items. The Repositories View
(labelled A) occupies the left pane. It serves as a data source browser in which the
user can view the list of available data sources and their respective structures in terms
of a tree display of their DTD/XML Schema. Showing multiple data sources allows
the formulation of queries spanning more than one source. The data sources shown in
Figure 1(a) are SWISSPROT and ENZYME.

The Query Editors are stacked in the middle pane (labeled C), with tabs for navigat-
ing between queries. It enables the user to specify the WHERE clause. The user drags
the node to be queried from the Repositories View and drops it in a Query Editor. A
Condition Dialog (labeled E), appears and the user is expected to fill in the condi-
tion that should be satisfied by the selected node. In Figure 1(a), the selected node is
/sptr/entry/feature/@type and the condition is "=transmembrane
region" thus forming the predicate .sptr.entry.feature.@type= "
transmembrane region" (labeled 2). This expression is called Comparison
Expr and the visual representation of a ComparisonExpr type is referred to as
ExprBox.

The user can combine two or more visual components that represent the
ComparisonExpr by dragging a region around them and assigning an AND or OR
condition. In Figure 1(a), the first two ComparisonExpr (labeled 2 and 3) are com-
bined using the OR operator thus forming the QueryExpr (.sptr.entry.fea-
ture.@type="transmembrane region" OR .sptr.entry.organism.
name="human"). In order to specify a join condition two nodes, each representing
one side of the join condition are selected and dragged on to the Query Editor. This is
shown by the labels 4 and 5 in Figure 1(a). The visual representation of a QueryExpr
type is also referred to as ExprBox.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

822 S. Prakash et al.

The Selections View (labeled B) is a drop target for nodes dragged from the Repos-
itories View and displays the nodes that will be visible in the result of the query. This
enables the visual formulation and representation of the XQuery RETURN clause. The
user can execute the query by clicking on the “Run” icon in the Query Toolbar. The
Results View (labeled D) displays the query results.

To formulate a query, the user first selects the nodes that should be present in the
RETURN clause. For instance, in Figure 1(a), the nodes selected are sequence and
enzyme id indicating that the user only wants to view these elements in the result.
Next, the predicates in the WHERE clause are formulated in the Query Editor. The visual
constructs in the Query Editor and Selections View need to be translated to formulate
a complete XQuery. Each ComparisonExpr or QueryExpr can be combined to
obtain a Query type. The translation to XQuery can be easily done by following the
syntax presented earlier. Figure 1(b) shows the XQuery corresponding to Figure 1(a).

3 Computing Query Formulation Time

Our query processing approach utilizes the user’s query formulation time to prefetch
results of the intermediate queries. To determine the time available for prefetching (and
to measure the improvement provided by prefetching), the time required to formulate a
query visually needs to be measured. This is referred to as the query formulation time
(QFT). It is the duration between the time the first predicate is added and the execution
of the “Run” command as prefetching can start only when the first predicate is known.

We have used the Keystroke-Level Model (KLM)[4] to calculate QFT. The KLM
is a simple but accurate means to produce quantitative, a priori predictions of task
execution time. These times are has been estimated from experimental data [4]. The
basic idea of KLM is to list the sequence of keystroke-level actions that the user must
perform to accomplish a task, and sum the time required by each action. The KLM
has been applied to many different tasks such as text editing, spreadsheets, graphics
applications, handheld devices, and highly interactive tasks [4,6].

Figure 2(a) lists average task times for a subset of physical operators (K (key-stroking),
P (pointing), H (homing), and D (drawing)) as defined by KLM [4]. Figure 2(b) depicts
the estimated times for a set of atomic actions for visual query formulation. Note that the
times are computed using the physical operators in Figure 2(a). Figure 2(c) shows the
list of tasks the user needs to perform in order to formulate a query. Each task consists
of a set of atomic actions (Figure 2(b)). For example, adding a join predicate (Task T 2)
involves selecting the two join nodes (Action A1 twice) and dragging them on to the
Query Editor (Action A2). The estimated time taken to perform each task is simply the
sum of average times of the atomic actions.

Note that QFT does not include higher level mental tasks for formulating a query
such as planning a query formulation strategy. These tasks depend on what cognitive
processes are involved, and is highly variable from situation to situation or person to
person. We assume that the user has already planned the set of actions he/she is going
to take to formulate his/her query and any other mental tasks. That, is our QFT in the
following discussion consists of a sequence of physical operators only. This assumption
enables us to investigate the impact of prefetching for minimum QFT for a particular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 823

Action
ID

Atomic Actions
Average Time

(s)
Sequence of physical operator

A1 Select predicate node
(a) Move the mouse on the node (P)
(b) Press mouse button (B)

P+B=1.2

A2
Drag and drop
predicate node

(a) Move the mouse to Query Editor (P)
(b) Release mouse button (B)

P+B=1.2

A3
Selection of
comparison condition
in condition dialog box

(a) Move the mouse to V button (P)
(b) Click mouse button (BB)
(c) Click mouse button on selected
 condition (BB)

P+2BB=1.5

A4
Type comparison
value (avg 10
characters)

(a) Move the mouse to text box (P)
(b) Moving the hand between keyboard
 and mouse (H)
(c) Type characters (T(10))
(d) Moving the hand between keyboard
 and mouse (H) [for subsequent action]

P+2H+T(10)
= 1.1 + 0.8 + 2.8

= 4.7

A5
Click on a button in the
combo box

(a) Move the mouse on the button (P)
(b) Click mouse button (BB)

P+BB=1.3

A8 Click on RUN
(a) Move the mouse to RUN icon (P)
(b) Click mouse button (BB)

P+BB=1.3

A6 Select action to UNDO
(a) Move the mouse to UNDO icon (P)
(b) Click mouse button (BB)

P+BB=1.3

A7 Click on UNDO
(a) Move the mouse to the action (P)
(b) Click mouse button (BB)

P+BB=1.3

A9
Drag predicate in
Query Editor (for AND/
OR clause)

(a) Drag mouse to other predicate (P)
(b) Release mouse (B)

P+B=1.2

A10
Select AND/OR
operator

(a) Move mouse on the AND or OR icon
 (P)
(b) Click mouse button (BB)

P+BB=1.3

(b) Average execution times for atomic actions

Notation Physical Operator
Average
Time (s)

K Keystroke 0.28

T(n) Type a sequence of n characters on a keyboard n x K

P Point with mouse to a target on the display 1.1

B Press or release mouse button 0.1

BB Click mouse button 0.2

H Moving the hand between keyboard and mouse 0.4

(a) Keystroke-Level Model

Task
ID

Set of Task for QF Average Time (s)

T1 Add non-join predicate A1+A2+A3+A4+A5 = 9.9

Sequence of
Actions

<A1, A2, A3, A4, A5>

T2 Add join predicate 2A1+A2 = 3.6<A1, A1, A2>

T3 Combine predicate with AND/OR A9+A10+A5 = 3.8<A9,A10,A5>

(c) Average execution times for query formulation tasks

Undo
ID

Task
Average Time

(s)

U1 Modify the LHS of a non-join predicate A1+A2+A5 = 3.7

Sequence of
Actions

<A1, A2, A5>

U2 Modify the RHS of a non-join predicate A4+A5 = 6<A4, A5>

U3
Modify the comparison operator of a non-join
predicate

A3+A5 = 2.8<A3, A5>

U4 Modify the LHS or RHS of a join predicate A1+A2+A5 = 3.7<A1, A2, A5>

U5 Change a AND to a OR (or vice versa) A10 = 1.3<A10>

U6 Deleting a predicate/RETURN clause A5=1.3
<A5> (Click delete
button in UNDO box)

(d) Average execution times for UNDO tasks

T4 Add a RETURN clause element A1+A2 = 2.4<A1,A2>

Fig. 2. Query formulation times using Keystroke-Level model

query. Addition of mental operators while formulating a query will only increase the
QFT and consequently increase the performance gain achieved due to prefetching. In
other words, in this paper we investigate the benefits of prefetching for “worst case”
QFT (without mental operators).

We first compute QFT in the absence of any query formulation error committed by
the user. We call such QFT as error-oblivious query formulation time (EO QFT). Note
that our model for calculating the QFT can as well be used for other types of visual
XML query formulation systems (such as XQBE [1]). This is because similar actions
would be required to formulate a query.

3.1 Error-Oblivious QFT (EO QFT)

Based on the timings (Figures 2(b) and 2(c)) discussed above the EO QFT (denoted as
Tf) for a query can be calculated as follows:

Tf = 9.9(xnj − 1) + 3.6xj + 3.8b + 1.3 (1)

where xnj is the number of non-join predicates, xj is the number of join predicates, b is
the number of boolean operators in the query, and 1.3s is the time taken to click on the
“Run” icon (Action A8 in Figure 2(b)). Observe that (xnj−1) is used as prefetching can
start only when the first query formulation step is complete in the Query Editor. That
is, QFT does not include the time taken to add the RETURN clause. This is because
if prefetching were to start as soon as the RETURN clause were added, it is possible
to retrieve very large results many of which may not be relevant eventually as WHERE
clause predicates are yet to be added in the Query Editor. Fortunately, as we shall in
Section 5, we achieve significant performance improvement even though we postpone
the prefetching till addition of a WHERE clause predicate in the Query Editor.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

824 S. Prakash et al.

G

G

Fig. 3. Undo operation

3.2 Error-Conscious QFT (EC QFT)

The above approach used to calculate error-oblivious QFT does not take into account
errors committed by the user. These errors are referred to as query formulation errors
(QFE). Note that QFEs may impact our prefetching approach. Hence, it is necessary to
quantify the effect of QFEs by extending EO QFT with the time lost due to QFEs. We
first discuss how the GUI enables the user to correct queries by undoing certain actions.
Then, we compute the error-conscious QFT (EC QFT) that incorporates QFE.

Figure 3 shows the interface presented to the user. When the user discovers a mistake
he/she clicks on the UNDO icon (labeled F in Figure 1(a)). The user is then presented
with the list of actions he/she has performed (labeled G in Figure 3). For example,
in Figure 3 the list shows that the user has added two predicates and combined them
using a conjunction. The user then selects the action(s) to be corrected. Suppose the user
wanted the second predicate to be .sptr.entry.comment.text="cardiac
muscle" instead of .sptr.entry.comment.text="skeletal muscle" in
Figure 3. Consequently, the user has to modify the predicate by replacing "skeletal
muscle" with "cardiac muscle". In general, a user will execute the following
steps to rectify a mistake.

Step 1 (Click on the UNDO icon): This takes 1.3s (A7 in Figure 2(b)).

Step 2 (Select the action(s) to modify): The user may select an action to update or delete
by clicking on it or he/she may click the “Insert” button to insert new predicate(s) in
the WHERE and RETURN clauses. Each action selection for update or delete will take
at most 1.3s (A6 in Figure 2(b)). As there can be k number of actions to be modified,
the total time will be 1.3k seconds. The time taken to click “Insert” button is 1.3s (A5
in Figure 2(b)). If there are i such clicks then the total time is 1.3i. The time taken to
insert new non-join/join predicate(s) is (9.9inj +3.6ij) (Equation 1). Note that addition
of AND/OR operators will be included by Step 3. The time taken to insert r RETURN

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 825

clause elements is also 2.4r (T 4 in Figure 2(c)). If “Insert” button is pressed then Step
3 is ignored by the user.

Step 3: In this step, some of the actions in Figure 2(d) need to be taken if the user
selects action(s) for update or delete.

Step 4 (Click on “OK” to accept the changes): This will take 1.3s (A5 in Figure 2(b))
and will have to be done for each modification. As a result, the total time taken for this
operation is 1.3 × � where � = (inj + ij + r + p� + pr + pc + pj + pd + pb) and
p�, pr, pc, pj , pd, pb are numbers of times corrections U1, U2, U3, U4, U5, and U6 in
Figure 2(d) are made respectively.

Step 5 (Click on “OK” button in Figure 3): This takes 1.3s (A5 in Figure 2(b)).

Therefore, each time the UNDO icon is clicked and a set of mistakes is corrected, the
additional time taken for formulating a query will be (2.6 + 1.3k + 1.3i + Tu) where
0 < k ≤ �, i ≥ 0 and

Tu = 9.9inj + 3.6ij + 2.4r + 3.7p� + 6pr + 2.8pc + 3.7pj + 1.3pd + 1.3pb + 1.3�
= 11.2inj + 4.9ij + 3.7r + 5p� + 7.3pr + 4.1pc + 5pj + 2.6pd + 2.6pb (2)

The query formulation time Tf can now be extended to incorporate QFEs. If the user
clicks on UNDO n times and corrects a set of mistakes each time then error-conscious
query formulation time (denoted as Tfe) is given by the following equation.

Tfe = 9.9(mnj − 1) + 3.6mj + 3.8mb +
n∑

s=1

(2.6 + 1.3is + 1.3ks + Tus) + 1.3(3)

where ks,is and Tus are the number of actions to be modified, the number of times
“Insert” button is selected, and the total time taken to correct the mistakes respectively,
for the sth instance of the UNDO operation. The variables mnj , mj , and mb are the
number of non-join predicates, number of join predicates, and the number of boolean
operators correctly added during query formulation respectively. Note that mnj , mj ,
and mb do not include those predicates and boolean operators that contain mistakes or
inserted/deleted during UNDO operation.

4 GUI-Based Prefetching

We now describe our approach to improving query performance by utilizing the la-
tency offered by GUI-based query formulation. Given an XML document and a path
expression P the Path Count (denoted as C(P)) is defined as the number of leaf nodes
that satisfy P . The C(P) value for a non-root-to-leaf path P is

∑k
j=1 C(Pj) where

P1, P2, . . . , Pk are the root-to-leaf paths that satisfy P . Note that, as C(P) increases so
does the I/O cost of a query that contains P as one of its path expressions. The Total
Path Count for an XML document is defined as T =

∑N
j=1 C(Pj) where N is the num-

ber of distinct root-to-leaf paths in the XML document. Next, we define the notion of
value selectivity. Given an XML document and a root-to-leaf path P , value selectivity
V (P) is defined as the number of nodes in the XML document with path P that have
unique text values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

826 S. Prakash et al.

Input: Actions from the query interface.
Output: Intermediate materializations.
1: State S = getGUIState()
 /*prefetch till user executes query*/
2: while S != “Execute Query” do
 /*Call materialization selection algorithm*/
3: selectMaterialization()
 /*Call materialization replacement algorithm*/
4: replaceMaterialization()
5: S1 = getGUIState()
6: while S1 == S do /*wait till GUI state changes*/
7: S1 = getGUIState()
8: end while
9: end while

(a) Prefetching algorithm.

Input: Expressions K = in descending order of cost().
 Materialization limit LM.
Output: Coefficient of each in the final materialization.
1: start = 0, end = 2n - 1, middle
2: while start < end do
3: middle = (start + end)/2
4: /*GetSelection(order, n) generates
5: the coefficients for orderth combination out of 2n-1.*/
6: S = GetSelection(middle, n)
7: lS =
8: if lm > LM then
9: end = middle - 1
10: else if then
11: start = middle + 1
12: end if
13: end while
14: return GetSelection(middle, n)

)(cost
0 j

n

j js κ∑ =
×

},...,,{ 21 nκκκ
iκ

iκ

(b) Algorithm selectMaterialization.

Fig. 4. Algorithms for prefetching

Based on the above definitions, the cost of evaluating a QueryExpr κ, denoted
as cost(κ), can be calculated as follows. (1) If κ ::= PathExpr (ValueComp)
Literal then the usual procedure to estimate the I/O cost is followed. When Value
Comp is "=" or ">" cost(κ) = C(P)/V (P) or cost(κ) = C(P)/3 respectively [5],
where P is the parameter of type PathExpr. This can be extended to other types
of ValueComp. (2) If κ ::= PathExpr (ValueComp) PathExpr and the two
PathExpr types are denoted as P1 and P2 then cost(κ) = C(P1)

V (P1)
× C(P2)

V (P2)
. (3) If κ ::=

ComparisonExpr (∧) ComparisonExpr and the two ComaprisonExpr
types are denoted as κ1 and κ2 then the probability that κi (i = 1, 2) is satisfied is
cost(κi)

T . Therefore, cost(κ) = cost(κ1)×cost(κ2)
T . (4) If κ ::= ComparisonExpr

(∨) ComparisonExpr and the two ComaprisonExpr types are denoted as κ1

and κ2 then cost(κ) = cost(κ1) + cost(κ2). Note that the last two formulae can be
extended for any number of conjunctions and disjunctions.

4.1 Prefetching Algorithm

The basic idea we employ for prefetching is that we prefetch constituent path expres-
sions, store the intermediary results, reuse them when connective is added or “Run” is
pressed. To realize this, the prefetching algorithm needs to perform prefetching oper-
ations at certain steps. In order to perform these operations, prefetching friendly GUI
actions need to be identified first. Recall from Section 2, when a user formulates a query,
constructs of types QueryExpr and ComparisonExpr are created. These types are
parts of the final query and, therefore, are candidates for temporary materializations.
Therefore, GUI actions that result in the addition of these types are also indicators for
prefetching. These actions are: (1) the addition of an ExprBox and (2) combining
two or more ExprBox types to create another ExprBox type that corresponds to a
QueryExpr type.

Next, given a GUI state, the optimal prefetching operations need to be determined.
Finally, since each prefetching operation is useful for the next, existing materializations
need to be replaced with new materializations preferably using the previous material-
izations. Figure 4(a) shows the overall prefetching algorithm. The process continues till
the user clicks on “Run” to execute the query (line 2). The process waits for changes in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 827

Input: GUI state, last GUI operation op and
 current set of materializations M.
Output: Updated M.

1: if op is add then
2: selectMaterialization() /* refer to Figure 4(b) */
3: end if
4: if op is combine then
5: e1 and e2 are the combined ExprBox types
6: m1 and m2 are the corresponding materializations.
7: if op is OR then
8: if m1 and m2 then
9: m = m1 m2
10: M = M - (m1) - m2
11: M = M m
12: end if
13: if !m1 or !m2 then
14: M = selectMaterialization()
15: end if
16: end if
17: if op is AND then
18: if m1 and m2 then /* m1 and m2 have already been materialized */
19: m = GetCommonNodes(m1,m2)
20: M = M - (m1) - m2

∪

∪

21: M = M m
22: end if
23: if !m1 or !m2 then /* m1 or m2 or both are not materialized yet */
24: M = selectMaterialization()
25: if (m1 m2) M then
 /* Use m1 or m2 to generate the new SQL query */
26: SQL s = SQL query using only m1 and m2.
27: M = M - (m1 and m2)
28: materialize s.
29: M = M s
30: end if
31: end if
32: end if
33: end if
34: if op is UNDO then
35: Cancel ongoing materialization.
36: MD = completed materializations dependant on step being corrected.
37: for all md MD do
38: Delete md.
39: end for
40: end if
 /*materialize the new ComparisonExpr or QueryExpr types in M*/
41: materializeNew()

∪

∧

∪

∈

∈

Fig. 5. Algorithm replaceMaterialization

the user interface (lines 5 to 8) before selecting new materializations (line 3). Once new
materializations are selected, existing ones are replaced (line 4).

Materialization Selection: At any given step during query formulation there can be
more than one materialization option. Therefore, an algorithm that selects the “best”
materialization is required. We begin by presenting two heuristics that are used in our
algorithm.

Heuristic 1:We consider only disjunctions of ComparisonExpr and QueryExpr
as candidates for temporary materializations. We elaborate on the rational behind this
heuristic now. While formulating queries the GUI contains n ComparisonExpr and
QueryExpr types (denoted as κi where i = 1 . . . n. Then, the possible materializations
are (κ1 ∨ κ2 ∨ κ3 ∨ . . .∨ κn), (κ1 ∧ κ2 ∨ κ3 ∨ . . .∨ κn), (κ1 ∧ κ2 ∧ κ3 ∨ . . .∨ κn) and
so on. The number of possible combinations is 2n−1. Obviously, evaluating all possible
materializations, though guaranteed to generate a useful materialization, is not feasible.
Therefore, only disjunctions are generated. This is because given κ1, . . . , κn, (κ1 ∧ κ2

∧ . . .∧ κn) can be evaluated from the materialization of (κ1 ∨ κ2 ∨ . . .∨ κn).

Heuristic 2: Given a materialization space limit LM , we include the maximum possible
number of expressions κi in the materialization. This is because the greater the number
of expressions included in the current materialization the greater the usefulness of the
intermediate result towards evaluating the final result.

Based on the above heuristics we define the notions of materialization selection
and the optimality of a materialization selection. Given κ1, κ2 . . . κn, a materializa-
tion selection is defined as S = {μ1, μ2, . . . , μn} where μi ∈ {0, 1} and the cost
associated with the selection (which is the same as the result size) is calculated as
lS =

∑n
i=1 cost(κi)× μi. Essentially, an expression κi is included in the material-

ization if μi = 1. The cost lS is a summation as only disjunctions are considered based
on Heuristic 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

828 S. Prakash et al.

The optimality of a materialization selection, denoted as Θ(S), is defined as follows.
Given two materialization selections Sa = 〈μa1 , μa2 , . . . , μan〉 and Sb =
〈μb1 , μb2 , . . . , μbn〉, Θ(Sa) > Θ(Sb) if and only if (

∑n
i=1 μai >

∑n
i=1 μbi) ∨

(
∑n

i=1 μai =
∑n

i=1 μbi∧lSa > lSb
). This optimality condition satisfies Heuristic 2. We

elaborate on the usefulness of this with an example. Consider a GUI state with three ex-
pressions κ1, κ2 and κ3 such that cost(κ1) > cost(κ2) > cost(κ3). The most desirable
materialization selection would be S = {1, 1, 1} as it will include all the expressions.
However, if lS > LM then selections with only two expressions will have to be consid-
ered. Then, the optimal materialization would be S = {1, 1, 0} as it includes the expres-
sions that will yield the largest result. This can be extended to generate the sequence
Θ({1, 1, 1}) > Θ({1, 1, 0}) > Θ({1, 0, 1}) > . . . > Θ({0, 0, 1}) > Θ({0, 0, 0}).
Note that this sequence can be generated for any number of expressions n.

The algorithm is shown in Figure 4(b). The input to the algorithm is the list of
ComparisonExpr and QueryExpr types, κi, currently present in the GUI. They
are listed in decreasing order of cost(κi) as discussed above. Essentially, the algorithm
performs a binary search over this sequence to determine the best materialization given
the limit LM . Notice that the sequence need not be pre-generated. The GetSelection
method returns a selection S given its order in the sequence and the number of ex-
pressions n. For example, in the case where n = 3, GetSelection(3, 3) would return
{1, 0, 1} - the third selection for three rules. Similarly, GetSelection(1, 3) would return
{1, 1, 1}. It can be shown that the overall time complexity of the algorithm is O(n3).
Once the list of expressions is selected by the algorithm a separate materialization, de-
noted as Mκi , is maintained for each κi. Note that a disjunction of the selected κis
could be maintained instead. However, the cost for both is approximately the same and
is equal to

∑
cost(κi).

Materialization Replacement: Once the optimal materialization to replace the current
state is selected it needs to be generated preferably using the results from the previous
materializations. The materialization replacement algorithm is presented in Figure 5.
The worst case complexity of the replacement algorithm without executing the new
materialization is O(n3) - when selectMaterialization() is called. The over-
all time taken depends on the execution time the SQL query(s) corresponding to the
new materialization.

5 Performance Study

The prototype system of GUI-driven prefetching technique was implemented using
JDK1.5. The visual interface was built as a plug-in for the Eclipse platform
(www.eclipse.org). The RDBMS used was SQL Server 2000 running on a P4 1.4GHz
machine with 256MB RAM. As mentioned in Section 1, our approach can be built on
any XML-to-relational storage mechanism. In this paper, we have adopted our schema-
oblivious XML storage system called SUCXENT++ [8].

The experiments were carried out with three data sets of size 300MB, 600MB and
1200MB respectively generated by combining the data sets shown in Figure 6(a). The
300MB data sets was generated using 150MB each of the SWISS-PROT and EMBL data
sets. The 600MB data set was generated using 300MB each and the 1200MB data set

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 829

Query Characteristic Tf (s)

Q1

for $b in /sptr/entry
where $b/protein/name = ’Sesquiterpene
Cyclase’
return $b/accession

- Database: Swiss-Prot
- single non-join predicate
- small result size

1.3

Q2

for $b in /sptr/entry
where $b/feature[@type = ’transmembrane
region’] and $b/organism/name = ’human’
return $b/accession

- Database: Swiss-Prot
- two non-join predicates
- AND operator
- large result size

11.7

Q3

for $b in /sptr/entry
where ($b/keyword = ’Chloride Channel’
or $b/comment/text = ’skeletal muscle’)
return $b/accession,$b/sequence

- Database: Swiss-Prot
- two non-join predicates
- OR operator
- small result size

14.8

Q4

for $b in /sptr/entry
where ($b/keyword = ’Chloride Channel’
or $b/comment/text = ’skeletal muscle’)
and $b/organism/name=’human’
return $b/accession,$b/sequence

- Database: Swiss-Prot
- three non-join predicates
- AND/OR operator
- small result size

24.9

Q5
for $b in /embl/entry
where $b/keyword = “%gene%”
return $b/accession

- Database: EMBL
- single non-join predicate
- large result size

1.3

Q6

for $b in /embl/entry
where $b/source/organism=’Homo Sapiens’
and $b/keyword = ’%gene%’
return $b/accession

- Database: EMBL
- two non-join predicates
- AND operator
- large result size

11.98

Q7

for $b in /embl/entry
where $b/descr = ’%gene%’ or $b/keyword
= ’%gene%’
return $b/accession

- Database: EMBL
- two non-join predicates
- OR operator
- large result size

11.98

Q8

for $b in /embl/entry
where ($b/descr = ’%gene%’ or $b/keyword
= ’%gene%’) and $b/source/organism =
"Homo Sapiens"
return $b/accession

- Database: EMBL
- three non-join predicates
- AND/OR operator
- large result size

24.34

Q9

for $b in /sptr/entry, $c in /embl/entry
where $b/protein/name = ’Sesquiterpene
Cyclase’ and $b/dbReference[@id=$c/
accession]
return $b/accession, $c/accession

- Database: Swiss-Prot,
 EMBL
- single join predicate
- AND operator

8.7

Q10

for $b in /sptr/entry, $c in /
enzyme_pathway/entry, $d in /embl/entry
where $d/keyword = ’%gene%’ and $b/
accession=$c/swissprot_reference/
reference and $b/
dbreference[@type="EMBL"]
and $b/dbReference[@id=$d/accession]
return $b/accession, $c/accession

- Database: Swiss-Prot,
 Enzyme and EMBL
- two join predicates
- three Boolean operators

26.22

Result
Size

3

2838

145

3349

3278

3883

43

3

3596

68

Query Characteristic Tf (s)
Result
Size

Data URL
Size
(MB)

Node
Count

Leaf
Count

Depth

Swiss-Prot http://us.expasy.org 600 26,035,096 17,385,288 6

EMBL http://ebi.ac.uk 600 15,265,784 13,460,524 6

Enzyme http://ebi.ac.uk 3 86,413 74,892 7

Total 1203 41,387,293 30,920,704

(a) Data Set

(b) Queries

Fig. 6. Data set and queries

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Queries

T
i
m
e

(
s
)

(a) 300 MB

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Queries

T
i
m
e

(
s
)

(b) 600 MB

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Queries

T
i
m
e

(
s
)

(c) 1200 MB

Fig. 7. Materialization replacement cost

was generated using the complete data sets. The 3MB ENZYME data set was used in all
experiments. It is not reflected in the respective sizes due to its much smaller size. Ten
queries were used to test the system. The list of queries together with their EO QFT
values and query results size for 1200MB data is shown in Figure 6.

We now define few terms that are used in the subsequent discussion. The response
time as perceived by the user when prefetching is not employed is called the normal
execution time (NET) (denoted as Tn). The perceived response time (PRT) is the query
response time when prefetching is employed. In the absence of QFEs, we refer to the
PRT as error-oblivious perceived response time (EO PRT). If QFEs are present then
we refer to the PRT as error-conscious perceived response time (EC PRT). The total
time taken for all prefetching operations is called total prefetching time (TPT). Next
we define the notion of error realization distance. Consider a query with n formulation
steps where the user clicks on “Run” at nth step. Suppose that the error is committed
at pth step and the UNDO operation is invoked at qth step where 0 < p < q ≤ n − 1.
Then, the error realization distance, denoted as ε, is defined as ε = q − p.

Materialization Replacement Cost: Figure 7 shows the results of materialization re-
placement cost. Here the running times of individual materialization operations are pre-
sented. Each section of the stacked columns represents the running time associated with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

830 S. Prakash et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

T
i
m
e

(
s
)

TPT NET

(a) 300 MB

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

T
i
m
e

(
s
)

TPT NET

(b) 600 MB

0

5

10

15

20

25

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

T
i
m
e

(
s
)

TPT NET

(c) 1200 MB

Fig. 8. NET vs. TPT

0

10

20

30

40

50

60

70

80

90

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

I
m
p
r
o
v
e
m
e
n
t

(
%
)

(a) 300 MB

0

10

20

30

40

50

60

70

80

90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

I
m
p
r
o
v
e
m
e
n
t

(
%
)

(b) 600 MB

0

10

20

30

40

50

60

70

80

90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

I
m
p
r
o
v
e
m
e
n
t

(
%
)

(c) 1200 MB

Fig. 9. NET vs EO PRT

the corresponding materialization. For example, Q1 has two formulation steps and, there-
fore, two sections in the corresponding stacked column. There are two main observations.
First, the increase in the running times as the data set size increases is less than linear.
Therefore, the cost associated with materialization replacement is scalable. Second, the
replacement cost for disjunctions is less than that for conjunctions. This is reflected in
the results for queries involving disjunction (Q3, Q4, Q7 and Q8) as opposed to queries
involving conjunction (Q2, Q6, Q9 and Q10). This is expected as the materialization
selection algorithm selects materializations with disjunctions (Heuristic 1). As a result,
evaluating conjunctions would involve an additional step.

NET vs TPT: This experiment is required to test the viability of prefetching. Figure 8
shows the results for this experiment. There are three main observations. The first is
that the difference is not significant indicating that prefetching is a viable option. The
second observation is that the conjunctive queries show a smaller difference than dis-
junctive ones. This is because conjunctive queries are evaluated from the corresponding
disjunction based on materialization selection/replacement algorithms. This means that
conjunctive queries will have a more significant prefetching overhead. This observation
can be extended to queries that proceed from less selective partial queries to more se-
lective final queries during formulation. The final observation is that for some of the
queries (e.g., Q2, Q4, Q10), interestingly, the sum of the prefetching operations is less
than the actual query execution time. This difference increases with data set size. This
can be explained as follows. The search phase during query optimization typically treats
the estimated cost model parameter values as though they were completely precise and
accurate, rather than the coarse estimates that they actually are. Consequently, the rela-
tional query optimizer may fail to produce query plans that are more robust to estima-
tion errors especially for complex queries. For Q2, Q4, and Q10, individual prefetching

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 831

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

I
m
p
r
o
v
e
m
e
n
t

(
%
)

(a) 300 MB

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Queries

I
m
p
r
o
v
e
m
e
n
t

(
%
)

(b) 1200 MB

-5

0

5

10

15

20

25

30

35

40

Q2 Q3 Q6 Q7 Q9
Queries

P
e
n
a
l
t
y

(
%
)

Step 3

Step 2

Step 1

(c) 300MB - 3 form. steps

Fig. 10. EC PRT vs NET and EC PRT vs EO PRT(1)

queries are relatively simpler compared to a single normal query. Hence, we observe
such response time.

NET vs EO PRT: The next experiment compares the NET with the error-oblivious
perceived response time. This comparison is done as a percentage of improvement over
normal execution. It is measured as improvement = (1 - EO PRT

NET)×100. Figure 9
show the results for the three data sets. There are two main observations. First, the
improvement in performance is more for larger data sets. For the 300MB data set the
improvement range is 7-76%. This range increases to 16-89% for the 600MB data set
and 47-96% for the 1200MB data set. The second observation is that simple queries
(Q1, Q5 and Q9) with one predicate and small result sets benefit the least. Queries with
multiple predicates and large result sets benefit the most. This is indeed encouraging as
query response time is more critical for large data set. Also queries with disjunctions
benefit more than the queries with conjunctions. This is expected as the materializa-
tion selection algorithm selects disjunctions as the intermediate results. Q2 seems to
go against this observation. As mentioned earlier, this is due to the wide gap in the
optimality of the query plans generated in the two approaches.

NET vs EC PRT: In this experiment we evaluate the effect of QFE on perceived re-
sponse time over normal execution time. This comparison is done as a percentage of im-
provement over normal execution. It is measured as improvement = (1 - EC PRT

NET)×
100. In this experiment we present the worst-case value for EC PRT as discussed
in[2]. The results are presented in Figures 10(a) and 10(b). We only take the smallest
and the largest data sets (300MB and 1200MB) for this experiment. The main observa-
tion is that EC PRT is still significantly better than NET for most queries. Also ob-
serve that similar to EO PRT , there is larger improvement for larger data size. Hence,
QFEs do not significantly affect the performance improvement achieved by GUI-driven
prefetching.

EC PRT vs EO PRT: This comparison is done to measure the penalty on PRT due
to QFE. It is measured as penalty = EC PRT−EO PRT

EO PRT × 100. Again, the worst case
value of EC PRT is used for comparison. Particularly, we measure EC PRT for
q = n− 1 (UNDO operation invoked just before clicking “Run”) and vary error realiza-
tion distance. Figures 10(c) and 11 show the results for the 300MB and 1200MB data
sets. Figure 10(c) shows the results for queries that have three formulation steps (two
predicates and a conjunction/disjunction) other than clicking on “Run” and Figure 11(a)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

832 S. Prakash et al.

-5

45

95

145

195

245

Q4 Q8 Q10
Queries

P
e
n
a
l
t
y

(
%
)

Step 1

Step 2

Step 3

Step 4

Step 5

(a) 300MB - 5 form. steps

-5

15

35

55

75

95

115

135

155

175

Q2 Q3 Q6 Q7 Q9
Queries

P
e
n
a
l
t
y

(
%
)

Step 1

Step 2

Step 3

(b) 1200MB - 3 form. steps

-5

45

95

145

195

245

295

345

Q4 Q8 Q10

Queries

P
e
n
a
l
t
y

(
%
)

Step 1

Step 2

Step 3

Step 4

Step 5

(c) 1200MB - 5 form. steps

Fig. 11. EC PRT vs EO PRT (2)

shows the results for queries with five formulation steps. The three values shown for
each query in Figure 10(c) measure the penalty when the error was committed at the
first step, the second step and the third step respectively (variation of ε). The penalty
axis starts at −5 to allow the display of cases where penalty = 0.

The results shown highlight two main points. First, QFE generally has a greater effect
with the increase in error realization distance. This is expected as an early mistake will
lead to more materializations being recalculated. However, there are some exceptions.
The query Q2 for the 1200MB data set shows an increase as the evaluation of the second
predicate is more expensive than the first. Similar phenomenon is observed for query
Q4. Second, the impact of QFE increases with data set size. The 1200MB data set
shows a maximum increase of 316%. The 300MB data set shows a maximum increase
of 187%. The impact of QFE is felt on only four queries for the 300MB data set whereas
all queries are effected for the 1200MB data set. This can be attributed to the higher cost
of reevaluating materializations for the larger data set.

6 Related Work

GUI-latency driven optimization: Closest to our work is the effort by Polyzotis et
al. [7] in speculative query processing. The method described is for relational data and
incorporates speculation where the final query (or sub-queries that will be present in the
final query) is predicted based on the user’s usage profile. Machine learning techniques
are applied on past user actions and a user-behavior model is formulated. In comparison,
our approach employs deterministic prefetching without speculating on the final form
of the query. This could result in a less than maximum gain in certain cases but there
are no penalties. Speculation can lead to execution time penalties when the prediction
is incorrect. In our case, this problem does not arise. Furthermore, we do not need to
keep track of user’s usage profile, but still can achieve comparable query performance
improvement.

Prefetching and Caching: To the best of our knowledge, we have not found any pub-
lished work related to prefetching techniques for XML data. Closest to the prefetch-
ing approach is caching, which although investigated extensively in relational database
systems, is a relatively new area of research for XML data. However, XML caching
techniques mentioned in [9] operate on the final query and do not take into account
the individual steps in query formulation. In our approach, partial queries are materi-
alized at each formulation step by utilizing the latency offered by GUI-driven query

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 833

formulation. This presents a significant advantage over caching as every query benefits
from prefetching unlike caching - where only those queries whose results have been
cached improve in performance.

7 Conclusions and Future Work

The main contribution of this paper is to show that the latency offered by visual query
formulation can be utilized to prefetch partial results so that the final query can be an-
swered in a shorter time. We show that prefetching is viable as the combined time taken
by all the prefetching operations is not significantly more than normal query execution
time. In fact, for some queries the total time taken by all prefetching operations is less
than the normal execution time due to a better query plan generated by the relational
query optimizer. Our experiments also show that prefetching improves the perceived
query response time by 7-96% with a greater improvement for larger data sets. In addi-
tion, query formulation errors have no significant influence on the perceived response
time compared to the normal execution time. GUI-driven prefetching is potentially of
value in XML query processing context where one would like to use a user-friendly GUI
to formulate queries. Future directions of research include extension of our prefetching
technique to more advanced XQueries, more sophisticated I/O cost estimation tech-
nique, and explore benefits of prefetching in a multiuser environment.

References

1. E. AUGURUSA, D. BRAGA, A. CAMPI, S. CERI. Design and Implementation of a Graphical
Interface to XQuery. In ACM SAC, 2003.

2. S. S. BHOWMICK AND S. PRAKASH. Efficient XML Query Processing in RDBMS
Using GUI-driven Prefetching in a Single-User Enviroment. Technical Report, CAIS-
03-2005, School of Computer Engg, NTU, 2005 (Available at http://www.ntu.
edu.sg/home/assourav/papers/cais-03-2005-TR.pdf).

3. S. S. BHOWMICK AND S. PRAKASH. Every Click You Make, I Will be Fetching It: Efficient
XML Query Processing in RDBMS Using GUI-driven Prefetching. In ICDE, 2006 (Poster
paper).

4. S. K. CARD, T. P. MORAN, AND A. NEWELL. The Keystroke-level Model for User Perfor-
mance Time with Interactive Systems. Commun. ACM, 23(7):396–410, 1980.

5. G. GRAEFE (ED.). Special Issue on Query Processing in Commercial Database Management
Systems. IEEE Data Engineering, 16:4, 1993.

6. L. LUO AND B. E. JOHN. Predicting Task Execution Time on Handheld Devices Using the
Keystroke-Level Model. In ACM CHI, 2005.

7. N. POLYZOTIS AND Y. IOANNIDIS. Speculative Query Processing. In CIDR, 2003.
8. S. PRAKASH, S. S. BHOWMICK, S. K. MADRIA. Efficient Recursive XML Query Processing

Using Relational Databases. In DKE), 58(3), 2006.
9. L.-H. YANG, M.-LI. LEE, AND W. HSU. Efficient Mining of XML Query Patterns for

Caching. In VLDB, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 834 – 849, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Holistic Twig Joins in Leaf-to-Root Combining
with Root-to-Leaf Way

Guoliang Li, Jianhua Feng, Yong Zhang, and Lizhu Zhou

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

{liguoliang,fengjh,dcszlz}@tsinghua.edu.cn,
Zhangy@tsinghua.org.cn

Abstract. Finding all the occurrences of a twig pattern on multiple elements in
an XML document is a core operation for efficient evaluation of XML queries.
Holistic twig join algorithms, TwigStack and TSGeneric, have been recognized
as optimal solutions when the twig pattern only involves A-D(ancestor-
descendant) relationships, while iTwigJoin can be optimal for partial twig
patterns that contain A-D only or P-C (parent-child) only relationships.
However, existing algorithms involve unnecessary computations and CPU cost
of them can be further improved, and we in this paper mainly address this
problem. We first propose three effective optimization rules to avoid those
unnecessary computations, and then present two algorithms incorporated with
these optimization rules to effectively answer twig patterns in leaf-to-root
combining with root-to-leaf way. Experimental results on various datasets
indicate that our algorithms perform significantly better than existing proposals.

1 Introduction

XML is emerging as a de facto standard for information exchange over the Internet.
Although XML documents could have rather complex internal structures, they can be
modeled as rooted, ordered and labeled trees. Queries in XML query languages
(e.g., XPath [BBC+02], XQuery [BCF+02]) typically specify patterns of selec-
tion predicates on multiple elements which have some specified structural
relationships. For example, to retrieve all paragraphs satisfying the XPath:
//section[//title//keyword]//paragraph[//figure]. Such a query can be represented as a
node-labeled twig pattern (or a small tree) with elements and string values as node
labels [BKS02]. Finding all occurrences of a twig pattern is a core operation in XML
query processing [FK99, STZ+99, TVB+02].

A typical approach is to first decompose the pattern into a set of binary structural
relationships (P-C or A-D) between pairs of nodes, then match each of the binary
structural relationships against the XML database, and finally stitch together the
results from those basic matches [ZND+01, LM01, AJK+02, CVZ+02, JLW03,
MHH06]. The main disadvantage of such a decomposition based approach is that
intermediate result sizes can become very large, even if the input and the final result
sizes are much more manageable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 835

To address this problem, many holistic twig join algorithms are proposed, such as
TwigStack [BKS02], TSGeneric [JWL+03], TJFast [LLC+05], iTwigJoin [CLL05].
They answer the twig query holistically and avoid huge intermediate results. However
they have to recursively call a subroutine getNext many times, which is a core
function for the holistic algorithms. getNext always returns a node q and ensures that:
(i) the current element in stream q has a descendant element in each stream qi, for
qi∈children(q), and (ii) each current element in stream qi recursively satisfies the first
property. If node q satisfies the two properties, q is called to have a solution
extension, which will be introduced in detail in section 4. However, existing
algorithms will call getNext many times, but most of them are unnecessary and could
be avoided. Hence, they involve many unnecessary computations, and the potential
benefit of CPU cost is not fully explored among those existing proposals. For
example, if querying Q1 on the XML document in Fig.1(a), existing algorithms will
call getNext(s), getNext(p), getNext(f), getNext(t), getNext(k) many times respectively,
but only a few times are useful and pivotal, and other times can be pruned. Table 1
lists the main flow about how algorithm TwigStack works on the example in Fig.1.
The flow is similar to those of other algorithms and merging the partial solutions is
omitted.

However, there are three circumstances that some computations could be avoided:

1) Self-nested suboptimal. Given two nodes u1,u2 with the same label, if u1 is an
ancestor of u2, we call they are self-nested. For example, in Fig.1, as s1 is an
ancestor of s2, which in turn is an ancestor of s3, so s1, s2 and s3 are self-nested.
Since s1 has a solution extension through calling getNext in steps 1-5, and when
checking whether s2 has a solution extension, we only need to check whether s2
is a common ancestor of p1 and t1, which are current elements of its child nodes
p and t. However, it is unnecessary to recursively check whether p, t and their
corresponding descendants, i.e. f, k, have solution extensions. The reason is that
the streams of p, t and their descendants are not changed, and even if checking
them again, getNext will return the same results as steps 1-5. Accordingly,
existing algorithms involve self-nested suboptimal, and some unnecessary
computations (e.g. steps 6-15) can be pruned.

2) Order suboptimal. If a node has more than one child, selecting which child to
first check whether having a solution extension is important to twig joins,
however existing algorithms do not consider this problem. For example, in Table
1, if node t (but not node p) is first selected to check, it will return node k directly
without involving to check p and f, subsequently steps 22,23,27,28 are
unnecessary and can be pruned.

3) Stream null suboptimal. If stream q is empty, it is unnecessary to scan elements
in the streams of q’s ancestors and descendants, because the elements in those
streams will not contribute to final solutions. For example, in Fig.1, when the
stream of node t is empty, it is unnecessary to check the elements of node s (the
parent of t) and k (a descendant of t), thus steps 34, 35 in Table 1 are
unnecessary. Even if there are some other elements in streams s and k, and start
values of them are larger than start value of t1, they also can be skipped directly.
Accordingly, if some streams are empty, elements in the streams of their
ancestors and descendants can be skipped.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

836 G. Li et al.

(a) An XML document (b) The Element set of (a) (c) A query Q1

Fig. 1. An XML document and a query Q1

Table 1. The main flow about how TwigStack (or TSGeneric) works

getNext(s) getNext(p) getNext(f) getNext(t) getNext(k)
steps result steps result steps result steps result steps result

1 s(s1) 2 p 3 f 4 t 5 k
6 s(s2) 7 p 8 f 9 t 10 k
11 s(s3) 12 p 13 f 14 t 15 k
16 t(t1) 17 p 18 f 19 t 20 k
21 k(k1) 22 p 23 f 24 k 25 k
26 k(k2) 27 p 28 f 29 k 30 k
31 p(p1) 32 p 33 f 34 t 35 k
36 f(f1) 37 f 38 f
39 f(f2) 40 f 41 f

To discover a partial solution, existing algorithms do not consider the circumstances

of self-nested, order and stream null suboptimal, and they have to check whether a sub-
twig pattern has a solution extension many times and involve additional computations.
In this paper, we will demonstrate how to avoid those unnecessary computations under
these three circumstances through discovering the partial solutions in leaf-to-root
combining with root-to-leaf way. We first propose three effective optimization rules to
improve these three suboptimal and further explore the potential benefit of CPU cost,
and subsequently present an algorithm, TJEssential, which avoids repeatedly checking
whether a sub-twig pattern has a solution extension.

Our contributions can be summarized as follows:

• We propose three optimization rules to explore the potential benefit of CPU
cost, which can avoid self-nested, order and stream null suboptimal of existing
studies.

• We present an efficient holistic twig join algorithm, TJEssential, which discover
all the solutions in leaf-to-root combining with root-to-leaf way. More
importantly, we incorporate the three optimization rules into our algorithm to
optimize twig joins.

• We implemented our proposed method and conducted an extensive performance
study using both real and synthetic datasets of various characteristics. The
results showed that our algorithm achieved high efficiency and outperformed
existing proposals.

The rest of the paper proceeds as follows. Section 2 is dedicated to some related
work. We introduce some notations in section 3. Then TJEssential algorithm is
proposed in detail in section 4. Section 5 reports experimental results, and we
conclude in section 6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 837

2 Related Work

In the context of semi-structured and XML databases, structural join was essential to
XML query processing because XML queries usually imposed certain structural
relationships. For binary structural join, Zhang et al. [ZND+01] proposed a multi-
predicate merge join (MPMGJN) algorithm based on (start,end,level) labeling of
XML elements. Li et al [LM01] proposed ξξ/ξA-Join. Stack-tree-Desc/Anc was
proposed in [AJK+02], and [CVZ+02], [G02], [JLWO03] were index-based
approaches. The later work by Wu et al [WPJ03] studied the problem of binary join
order selection for complex queries on a cost model which took into consideration
factors such as selectivity and intermediate results size.

Bruno et al [BKS02] proposed a holistic twig join algorithm, namely TwigStack, to
avoid producing a large intermediate result. With a chain of linked stacks to
compactly represent partial results of individual query root-to-leaf paths, TwigStack
merged the sorted lists of participating element sets altogether, without creating large
intermediate results. TwigStack has been proved to be optimal in terms of input and
output sizes for twigs with only A-D edges. Further, Jiang et al [JWL+03] studied the
problem of holistic twig joins on all/partly indexed XML documents. Their proposed
algorithms used indices to efficiently skip the elements that do not contribute to final
answers, but their method can not reduce the size of intermediate results. Choi et al
[CMW03] proved that optimality evaluation of twig patterns with arbitrarily mixed
ancestor-descendant and parent-child edges was not feasible. Lu et al [LCL04]
proposed the algorithm TwigStackList, which was better than any of previous work in
term of the size of intermediate results for matching XML twig pattern with both P-C
and A-D edges. Chen et al [CLL05] proposed an algorithm iTwigJoin, which was still
based on region encoding, but worked with different data partition strategies (e.g.
Tag+Level and Prefix Path Streaming), and Tag+Level Streaming can be optimal for
both A-D and P-C only twig patterns whereas PPS streaming could be optimal for A-
D only, P-C only and one branch node only twig patterns assuming there was no
repetitive tag in the twig patterns. [LLC+05] proposed a novel algorithm, TJFast on
extended Dewey that only used leaf nodes’ streams and saved I/O cost. More recently,
Mathis et al. [MHH06] proposed a set of new locking-aware operators for twig
pattern query evaluation to ensure data consistency, and Chen et al. [CLT+06]
presented Twig2Stack algorithm to avoid huge intermediate results. However,
Twig2Stack reduced the intermediate results at the expense of a huge memory
requirement, and it was restricted by the fan-out of the XML document.

3 Background

XML data model and numbering scheme. XML data is commonly modeled by a
tree structure, where nodes represent elements, attributes and texts, and edges
represent element-subelement, element-attribute and element-text pairs. Most existing
XML query processing algorithms use a region code (start, end, level) to present the
position of a tree node in the data tree. start and end are calculated by performing a
pre-order traversal of the document tree; level is the level of a certain element in its
data tree. The region encodings support efficient evaluation of structural relationships.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

838 G. Li et al.

Formally, element u is an ancestor of element v if and only if u.start<v.start<u.end.
For P-C relationship, it is also necessary to check whether u.level=v.level-1.

Twig pattern matching. Queries in XML query languages make use of twig patterns
to match relevant portions of data in an XML database. A twig pattern is a selection
predicate on multiple elements in an XML document. Such query patterns can
generally be represented as node-labeled trees. Twig pattern nodes may be elements,
attributes and texts, and twig pattern edges are either P-C relationships (denoted by
″/″) or A-D relationships (denoted by ″//″). If the number of children of a node is
greater than one, we call this node a branching node. While if the node has only one
child, it is a non-branching node. Matching a twig pattern against an XML database is
to find all occurrences of the pattern in the database. Formally, given a twig pattern Q
and an XML database D, a match of Q in D is identified by a mapping from nodes in
Q to nodes in D, such that: (i) query node predicates are satisfied by the
corresponding database elements; and (ii) the P-C and A-D relationships between
query nodes are satisfied by the corresponding database elements. The answer
(solution) to query Q with n nodes can be represented as a list of n-array tuples, where
each tuple (q1,q2,...,qn) consists of the database elements that identify a distinct match
of Q in D.

Notations. Let q denote a twig pattern, as well as (interchangeably) the root node of
the twig pattern. The self-explaining functions isRoot(q) and isLeaf(q) examine
whether a query node q is a root or a leaf node. The function children(q) gets all child
nodes and parent(q) returns the parent node of q. When there is no ambiguity, we may
also refer to node q as the sub-query tree rooted at q. In the rest of this paper, ″node″
refers to a tree node in the twig pattern (e.g., node q), while ″element″ refers to the
elements in the dataset involved in a twig join. Let’s assume there is a data stream
associated with each node in the query tree. Every element in the data stream is
already encoded in the following region format: (start, end, level). Each data stream is
already sorted on the start attribute. We also assume the join algorithms will make use
of two types of data structures: cursors and stacks. Given a query tree Q, we associate
a cursor (Cq) and a stack (Sq) to every node q∈Q. Each cursor Cq points to some
element in the corresponding data stream of node q. Henceforth, ″Cq″ or ″element Cq″
will refer to the element Cq points to, when there is no ambiguity. The cursor can
move to the element (if any) next to element Cq. Such behavior can be invoked with
Cq->advance(). We add nil to the end of each stream, and Cq points to nil(denoted as
Cq=nil) means all the elements of q have been processed. Similarly, we can access the
attribute values of element Cq by Cq.start, Cq.end and Cq.level. Initially, all the
cursors point to the first element of the corresponding data stream, and all stacks are
empty. We can access the top and bottom elements of Sq by Sq.top() and Sq.bottom().
During query execution, each stack Sq may cache some elements before the cursor Cq
and these elements are strictly nested from bottom to top, i.e. each element is a
descendant of the element below it. We also associate with each element e in Sq a
pointer to the lowest ancestor in Sparent(q). Thus, we can efficiently access all e's
ancestors in Sparent(q). In fact, cached elements in stacks represent the partial solutions
that could be further extended to full results as the algorithm goes on.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 839

4 The TJEssential Algorithm

4.1 Preliminaries

We first introduce some concepts and then present three optimization rules in this
section.

Definition 1(Solution Extension). Node q has a solution extension if there is a
solution for the sub-query rooted at q composed entirely of the current elements
(cursors point to) of the query nodes in the sub-query [JWL+03].

Definition 2(Partial Solution). The tuple (e1,e2,...,en) consists of the database
elements that identify a match of Q on document D, and the tuple(ei1,ei2,...,eik)
composed of elements of the query nodes on the path from the root to any leaf, is
called a partial solution, where ei1,ei2,...,eik are elements in tuple (e1,e2,...,en).

Definition 3(Quasi-Potential Element). Suppose a sub-query q of Q has a solution
extension, q′ is any non-leaf node in q, and Startmin=min{Cqi.start| qi∈children(q′)},
Startmax=max{Cqi.start|qi∈children(q′)}. For any element C′q′, which is Cq′ or any
element after Cq′ in the stream of q′, C′q′ is a quasi-potential element of q′ if C′q′.start<
Startmin and C′q′.end>Startmax. In addition, current elements of leaf nodes in stream
q are also quasi-potential elements.

Definition 4(Potential Element). If q has a solution extension and q is the root of
query Q, then quasi-potential elements of nodes in q are potential elements.

Definition 5(Minimal Leaf Element). Minimal leaf element, CLmin, is the leaf
element whose start value is minimal among the current elements of all the leaf nodes
in Q, that is, Lmin=minargLi{CLi.start | Li is any leaf node of Q}.

Example. In Fig.1, when each cursor points to the first element of each str-
eam, s1 has a solution extension. As s has a solution extension,
Startmin=min{Cp.start,Ct.start}=Ct.start, Startmax=max{Cp.start,Ct.start}=Cp.start,
s1.start<Startmin and s1.end>Startmax, so s1 is a quasi-potential element. In the
same way, s2,s3 are quasi-potential elements of s. t1, p1 are quasi-potential elements
of t, p, and k1, f1 are quasi-potential elements of k, f. As node s is the root of Q1, so
these elements are potential elements. k1 is the current minimal leaf element. (s1, t1,
k1, p1, f1) is a match of //s//[//t//k]//p[//f], and it is a solution of Q1. (s1,t1,k1) is a
partial solution, where the path from the root to the leaf node, k, is //s//t//k.

According to above concepts, we can deduce that if a node has a solution extension,
then all of its descendants in the query also have solution extensions, and Lemma 1
guarantees its correctness. While Lemma 2 assures that the potential elements in one
non-leaf node are self-nested, and they should be pushed into corresponding stacks
together directly according to Corollary 1, without calling subroutine getNext again
and again to check whether their descendant nodes have solution extensions.
Accordingly, Lemma 2 and Corollary 1 can avoid the self-nested suboptimal.

Lemma 1. Suppose the root of query Q has a solution extension, then for any node q
in Q, q also has a solution extension.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

840 G. Li et al.

Lemma 2. Potential elements of the same non-leaf node q in Q are self-nested, that
is, for potential elements ei and ej of q, ei is an ancestor of ej, or vice versa.

Corollary 1. For any non-leaf nodes qi and qj in Q, and eqi, eqj are potential elements
of qi and qj respectively. If qi is an ancestor of qj, then eqi must be an ancestor of eqj.

Example. In Fig.2, a2 has a solution extension, and a2,a3 are quasi-potential
elements of node a. b3,c2,d2,e2 are quasi-potential elements of node b,c,d,e
respectively. As a is the root of Q2, so a2(a3), b3, c2, d2, e2 are potential elements,
and they compose a solution. a2 and a3 are self-nested according to Lemma 2. As a2
and a3 are both potential elements of a, so they are ancestors of b3, c2, d2, e2
according to Corollary 1.

 (a) An element set (b) A query Q2

Fig. 2. An XML element set and a query Q2

Potential elements are very crucial for answering twig patterns and Lemma 3 assures
potential elements must contribute to final solutions and can not be discarded. Thus,
after locating the match of q in Q on D, all the potential elements of non-leaf nodes
should be pushed into corresponding stacks. Accordingly the self-nested suboptimal is
avoided.

Lemma 3. Potential elements must contribute to some final solutions.

Lemma 4. Suppose node q (except for the root) in Q has a solution extension. If ∃epq,
an potential element of parent(q), which is an ancestor of Cq, then quasi-potential
elements of nodes in q are potential elements; otherwise, these quasi-potential
elements are not potential elements.

We can distinguish which quasi-potential elements are potential elements and which
are not according to Lemma 4. Once there is a potential element epq in parent(q),
which is an ancestor of Cq, the quasi-potential elements of nodes in q are potential
elements and must contribute to solutions; otherwise, these quasi-potential elements
are not potential elements and can be discarded. Since potential elements must
contribute to final solutions according to Lemma 3, once locating the match of any
node q in Q, we should push all the potential elements into corresponding stacks.
Subsequently, we introduce Rule 1, which describes how to push potential elements
into stacks, and Lemma 5 guarantees that the elements pushed into stacks via Rule 1
must be potential elements.

Rule 1. Suppose a non-leaf node q in Q has a solution extension,
i) if q is the root, potential elements of any non-leaf node q′ in q are pushed into

Sq′.

ii) Otherwise, only if element, Sparent(q).bottom(), is an ancestor of Cq, quasi-
potential elements of each non-leaf node q′ in q are pushed into Sq′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 841

Lemma 5. The elements pushed into stacks via Rule1 must be potential elements.

 Example. In Fig.2, as c3 has a solution extension, so c3 is a quasi-potential element
of c. Suppose Sa={a2,a3}. As c3 is not a descendant of a3, so c3 is not a potential
element for a3, but it is a potential element for a2 according to Lemma 4. c3 will be
pushed into Sc according to Rule 1. If there is no potential element of node a, which is
an ancestor of c3, c3 will not be a potential element. While c6 has a solution
extension and Sa={a2}, as c6 is not a descendant of a2, so c6 is not a potential
element of a2 according to Lemma 4, thus c6 will not be pushed into Sc immediately.

In this way, we first locate the match of a sub-query q in Q in root-to-leaf way, then
push all the potential elements of nodes in q into corresponding stacks, and finally
detect all the partial solutions through selecting current minimal leaf element, CLmin.
Once Sparent(Lmin) is empty, the next match of a certain node should be located, but
selecting which node is very crucial, therefore we introduce the notion of key node
and Rule 2 to address this issue.

Definition 6(Key Node). Suppose q is the parent node of Lmin, CLmin is the current
minimal leaf element. If Sq is empty, key node (kq) will be defined, which satisfies:

i) if q is the root, then kq=q;
ii) else if there is at least one element, which is an ancestor of CLmin, in Sparent(q),

that is, Sparent(q).bottom().end>CLmin.start, then kq=q;
iii) else, kq=q′, q′ is an ancestor node of q, and q′ satisfies:

 a) ∃eq′, which is an ancestor of CLmin in Sparent(q′), but ~∃eq which is an
ancestor of CLmin in Sq′ i.e. Sparent(q′).bottom().end>CLmin.start,
Sq′.bottom().end<CLmin.start; or

b) q′ is the root and ~∃eq, which is an ancestor of CLmin in Sq′, i.e.,
Sq′.bottom().end <CLmin.start.

Rule 2. Minimal leaf element, CLmin, is first selected to discover partial solutions,
i) if after popping all the elements, which are not ancestors (or parents) of CLmin

from Sparent(Lmin), each stack from the root to parent(Lmin) is not empty, then
(es1,…,esk, CLmin) is a partial solution, where s1,…,sk are the stacks of nodes on
the path from parent(Lmin) to the root, and esi is any element in si(1 ≤ i ≤ k).

ii) Otherwise, the key node (kq) is detected from Lmin to the root, and the match of
kq is located. All the elements are popped from Sq′, where q′ is any non-leaf
node in kq.

In Rule 2, if Sparent(CLmin) is not empty, the partial solutions will be outputted according
to i); otherwise the next match of a certain node need to be located, but selecting
which node to match is very important, hence key node is defined. If selecting key
node to match, many useless computations will be avoided. This is because, current
potential elements of nodes in sub-query kq are processed already, and they will not
contribute to any solution in the future, but elements in its ancestor stacks may
contribute to solutions in the future. In Definition 6, i) means that if q(parent(Lmin)) is
the root, Cq may be a potential element, thus q is selected as the
key node; ii) means that CLmin is a descendant of an element in Sparent(q), that is, there
may be a potential element which is an ancestor of CLmin in Sparent(q), and Cq may be a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

842 G. Li et al.

potential element in the future, therefore, q is selected as key node; iii) means that
current potential elements of q′ and q′’s descendants have been processed, but
elements of q′’s parent(if any) may contribute to solutions with the new quasi-
potential elements of q′ in the future, thus q′ is selected as key node.

In addition, in Rule 2, once selecting a minimal leaf element, we only need to check
whether there is an ancestor of this minimal leaf element in its parent stack, but do not
need to call subroutine getNext from the root many times. We always select the minimal
leaf element, CLmin, to locate a partial solution according to Rule 2, which avoids
checking whether Lmin’s following siblings and Lmin’s following siblings’ descendants
have solution extensions. Accordingly, we can avoid order suboptimal through Rule 2.

To check whether the minimal leaf element will contribute to partial solutions, we
present Lemma 6. If Lmin is a potential element, the partial solution that contains it
will be outputted as i); otherwise, all the elements of nodes in kq will be popped,
which have ever been potential elements but have already been processed, from
corresponding stacks as ii). At the same time, it assures the correctness of Rule 2.

Lemma 6. The elements that are not ancestors of CLmin in Sparent(Lmin) cannot
contribute to partial solutions in the future. After popping these elements from
Sparent(Lmin),

i) if Sparent(Lmin) is still not empty, then (es1,…,esk,CLmin) is a partial solution,
where s1,…,sk are the stacks of nodes on the path from parent(Lmin) to the
root, and esi is any element in si (1≤i≤k).

ii) Otherwise, all the elements in Sqi will not contribute to final solutions in the
future and should be popped, where qi is any descendant node (if any) of kq.

Rule 1 assures that potential elements are always pushed into corresponding stacks
from-root-to-leaf, and self-nested suboptimal can be avoided. Rule 2 always selects
the minimal leaf element, CLmin, to discover partial solutions, and once Sparent(Lmin) is
empty, the key node will be detected from-leaf-to-root and the next solution extension
of it will be located. Once detecting Cq pointing to nil, Rule 3 avoids stream null
suboptimal through locating Cq′ to nil. Rule 1-3 together can avoid those three
suboptimal. We in the next section propose an efficient twig join algorithm, and
incorporate these three rules into it.

Rule 3. Suppose key node kq has no solution extension, q′ is any node in kq or an
ancestor (if any) of kq. Elements in stream q′ will not be potential elements, and thus
Cq′ should be located to nil (beyond the last element of stream q′).

kq having no solution extension means that elements of nodes in kq will not compose a
match of kq. Thus, once detecting one cursor Cqi pointing to nil, where qi is any node
in kq, we need not scan the elements of nodes in kq. Rule 3 is employed to skip these
elements, and its correctness is guaranteed by Lemma 7 and Lemma 8.

Lemma 7. Suppose q is a node (except for the root) in Q, and Cq points to nil. ∀Aq,
which is an ancestor node of q, CAq or elements after it in the stream of Aq will not be
potential elements.

Lemma 8. Locating Cq′ to nil will not miss any final solutions through Rule 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 843

Fig. 3. An element set and a query Q3

Example. In Fig.3, when each cursor points to the first element of each stream, a1
has a solution extension, and a1, b1, c1 are pushed into Sa, Sb, Sc respectively. When
CLmin=d2, b1 is popped from Sb, and kq is b. As Cb=nil, so the cursors of its sub-
nodes, Cd, Ce and its ancestor Ca should be located to nil. However, Cc can not be
located to nil, because Sa is not empty, and some elements in stream c may be
potential elements, such as c2. While CLmin=f3, a1 is popped from Sa, c2 from Sc, and
kq is a. As Sa={}, so Cc, Cf, Cg are located to nil. Accordingly, elements e2, d3, e3,
c3, g3, c4, f4, g4 are skipped.

Rule 1 assures that potential elements are always pushed into corresponding stacks
from-root-to-leaf and thus self-nested suboptimal can be avoided. Rule 2 always
selects the minimal leaf element, CLmin, to discover partial solutions. In addition, once
detecting Cq pointing to nil, Rule 3 avoids stream null suboptimal through locating
some cursors to nil. Rule 1-3 together avoid those three suboptimal. We in the next
section propose an efficient twig join algorithm and incorporate the three rules into it.

4.2 The TJEssential Algorithm

TJEssential operates two phases, as follows:

1. Output partial solutions. TJEssential discovers and outputs partial solutions
according to the three Rules in section 4.1. It first locates the match of a sub-
query q of Q and pushes the potential elements of non-leaf nodes in q into
corresponding stacks through Rule 1, and then it selects the current minimal leaf
element to output partial solutions: if this minimal leaf element can contribute to
partial solutions together with potential elements in current stacks, it outputs this
partial solution and selects the next minimal leaf element as Rule 2; otherwise, it
detects the key node as Definition 6. If this key node has a solution extension,
TJEssential locates the match of it; otherwise locates all the cursors of this key
node’s ancestors and descendants to nil as Rule 3.

2. Merge partial solutions to final solutions. All the partial solutions in the first
phase are merged to produce the final solutions to the whole twig pattern.

The main difference between our algorithm and existing proposals(e.g. TSGeneric)
is that, to output a partial solution, existing proposals will recursively call its
subroutine getNext many times, i.e., TSGeneric will check whether the nodes in Q
have solution extensions many times and involves unnecessary computations, but
TJEssential won’t. Once detecting a match of a sub-query of Q, TJEssential pushes all
the potential elements of non-leaf nodes in this sub-query into corresponding stacks.
Moreover, it selects the key node to locate the next match, but does not always locate
a match of the root as existing studies. Accordingly, TJEssential avoids many
unnecessary computations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

844 G. Li et al.

According to the three Rules in 4.1, we demonstrate our algorithm, TJEssential. It
first locates the match of a node in Q through calling getMatch in line 1, and then
discovers and outputs all the partial solutions according to Rule 2 in lines 2-10, finally
it sticks the partial solutions in line 11. TJEssential always selects the minimal leaf
element, CLmin to discover partial solutions in line 3, and if Lmin is not the root, pops
the elements from Sparent(Lmin) which are not ancestor of CLmin in line 4-5; otherwise, if
Lmin is the root or Sparent(Lmin) is not empty, TJEssential outputs partial solutions and
advances CLmin in line 6-8; otherwise, finds the next key node kq from the leaf to the
root and locates the match of kq in line 9.

Algorithm 2 getMatch(q)
Input: node q in the query Q.
{Locate the next match of the key node}
1. q=getKeyNode(q);
2. if(not LocateExtension(q))
3. Locate2End(q);
4. return;
5. if isRoot(q) and not isLeaf(q) then

Push2Stack(q);
6. else if Cq.start<Sparent(q).bottom().end then
7. cleanStack(Sparent(q),Cq);
8. Push2Stack(q);
9. else return;

Function getKeyNode(q)
Return the key node according to Definition 6.

Function LocateExtension(q)
1. if q has a solution extension then
2. locate the match of q; return true;
3. else return false.
Procedure Locate2End(q)
 Locate Cq to nil via Rule 3, where q is any

ancestor or descendant of q;
Procedure Push2Stack(q)

Pop the elements from the stacks of nodes in q,
and push the quasi-potential elements into
corresponding stacks.

Function end(q)
If all the leaf streams in sub-query q are
empty then return true; else return false.

Procedure cleanStack(Sq, Cp)
Pop all the elements from Sq that are not
ancestors of Cp;

Procedure mergeAllPartialSolutions()
Merge the partial solutions to final
solutions;

Procedure outputPartialSolutions(CLmin)
 Output partial solutions that contain CLmin;

Algorithm 1 TJEssential()
1. getMatch(root);
2. while not end(root) do
3. Lmin = minargLi{CLi.start};
4. if not isRoot(Lmin) then
5. cleanStack(Sparent(Lmin),CLmin);
6. if isRoot(Lmin) or (not empty(Sparent(Lmin)))then
7. outputPartialSolutions(CLmin);
8. CLmin->advance();
9. else getMatch(parent(Lmin));
10. end while
11. mergeAllPartialSolutions();

Algorithm getMatch is used to detect the next key node kq from-leaf-to-root and
then locate the next match of kq. It detects the key node in line 1, where getKeyNode
is used to get the key node according to Definition 6, then calls LocateExtension to
locate the match of kq in line 2, where LocateExtension(q) is used to locate the match
of a sub-query q as [JWL+03], but the difference is that when q has no solution
extension, it returns false. If it returns false, getMatch calls Locate2End(q) to locate
the cursors of certain nodes to the end of their streams according to Rule 3 in line 3.
Otherwise, if kq is the root, it pushes potential elements into corresponding stacks by
calling push2Stack in line 5, where push2Stack(q) is used to push potential elements
of non-leaf nodes in q into corresponding stacks recursively according to Rule 1. If
there are some elements in Sparent(q) that are ancestors of Cq
(Cq.start<Sparent(q).bottom().end), it will call push2Stack(q) to push potential elements
of nodes in q into corresponding stacks in lines 6-8, and TJEssential will continue to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 845

discover partial solutions of this solution extension; otherwise, it returns to
TJEssential to deal with the next minimal leaf element in line 9.

Theorem 1. Given a twig query Q and an XML database D, the TJEssential
algorithm correctly returns all the answers for Q on D.

4.3 The TJEssential* Algorithm

TJEssential is optimal when the twig pattern only involves A-D relationships. To
efficiently support P-C relationships, we propose TJEssential*, which introduces
Tag+Level stream and PPS stream into TJEssential. Therefore,
TJEssential*(Tag+Level) is optimal when the twig pattern involves A-D only or P-C
only relationships, and TJEssential*(PPS) is optimal for A-D only, P-C only and
one branch node only twig patterns assuming there is no repetitive tag in the
twig patterns. TJEssential* is similar to TJEssential, and the only difference is that,
the former employs tag streams, but the latter employs Tag+Level or PPS streams. In
addition, our three optimization rules can be incorporated into Twig2Stack.

5 Experiment

In this section, we present the experiments conducted to evaluate the efficiency of
various algorithms and report some of the results obtained.

We compared TJEssential with TwigStack, TSGeneric when the twig pattern only
involved A-D relationships, while if the twig pattern involved A-D and P-C
relationships, TJEssential* was more efficient and could avoid some intermediate
results as iTwigJoin. Subsequently, we compared TJEssential* (Tag+Level) with
iTwigJoin(Tag+Level), but iTwigJoin(PPS) and TJEssential* (PPS) were omitted,
because both of them involved too many streams and induced inefficiency, especially
when the depth of an XML document was too deep. All the algorithms were coded
using Microsoft Visual C++ 6.0, and experiments were conducted on an AMD XP
2600+ PC with 1G RAM, running Windows 2000 server. We used real-world
[TreeBank] and synthetic[XMark] datasets for our experiments: (1)XMark, which is
synthetic and generated by an XML data generator. It has many repetitive structures
and fewer recursions. The benchmark data was generated with SF(scale factor)=1, and
the raw text file was 113MB; (2) TreeBank(TB), which is obtained from the
University of Washington XML repository and the text file is 82MB. The DTD of
Treebank is deep recursive, and the deep recursive structure of this data makes it ideal
for experiments of twig pattern matching algorithms.

We selected eight queries for XMark, TB respectively as shown in Table 2.
There are some branching nodes in the first five XMark queries (XMark 1-5), thus
TwigStack and TSGeneric involve much order and stream null suboptimal on these
five queries. For the first five TB queries(TB 1-5), there are some nodes, i.e., NP,
PP, which are self-nested, therefore TwigStack and TSGeneric involve much
self-nested sub-optimal on these five queries. To compare TJEssential* with
iTwigJoin, we devised several queries XMark 6-8 and TB 6-8, which contained
both ″//″ and ″/″.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

846 G. Li et al.

Table 2. Queries used in our experiments

XMark1 //person[//profile[//age][//interest][//education][//gender][//business]][//address]//emailaddress
XMark2 //person[//emailaddress][//homepage][//name]//address[//country]//city
XMark3 //site[//person[//homepage][//emailaddress]][//open_auction[//bidder][//reserve]]//closed_auction[//annotation]//price
XMark4 //closed_auction[//annotation[//description]][//price][//date][//buyer]//seller
XMark5 //open_auction[//bidder[//personref][//time][//date]][//quantity][//reserve]//current
TB1 //S//VP//PP[//NP//VBN]//IN TB3 //S[//VP[//NN][//VBD]]//NP[//IN]//DT
TB2 //S//NP[//PP//TO][//VP//_NONE_]//JJ TB4 //S[//NP][//_NONE_]//VP//PP[//IN]//DT
TB5 //S[//NP[//DT][//NN]]//PP[//IN]//NN
XMark6 //text[/bold][/keyword]/emph TB6 //S[/VP[//NN][/VBD]]/NP[/IN]/DT
XMark7 //listitem[/bold]/text/emph TB7 //S[/NP][/_NONE_]/VP//PP[/IN]/DT
XMark8 //listitem[//bold]/text[//emph]/keyword TB8 //S[/NP[/DT][/NN]]//PP[/IN]/NN

To compare these algorithms, we introduce a metric, Improved Ratio (IR), and
IRX,Y= (TX-TY)/TX, where TX and TY are the running times for algorithms X and Y
respectively. TJEssential mainly improves CPU cost of existing algorithms, thus we
also compare running time of CPU cost only(without I/O cost), and employ another
metric IR′X,Y=(T′X-T′Y)/ T′X, where T′X and T′Y are running time of CPU cost only for
algorithms X and Y.

0

2

4

6

8

10

12

14

XMark1 XMark2 XMark3 XMark4 XMark5

XMark Datasets

R
un

ni
ng

 T
im

e(
S)

TwigStack

TSGeneric

TJEssential

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

XMark1 XMark2 XMark3 XMark4 XMark5

XMark Datasets

R
un

ni
ng

 T
im

e
of

 C
PU

 c
os

t (
S

)

TwigStack

TSGeneric

TJEssential

(a) Running time of CPU and I/O on XMark (b) Running time of CPU only on XMark

0

2

4

6

8

10

12

14

16

TB1 TB2 TB3 TB4 TB5

Treebank Datasets

TwigStack

TSGeneric

TJEssential

0

1

2

3

4

5

6

7

8

TB1 TB2 TB3 TB4 TB5

Treebank Datasets

TwigStack

TSGeneric

TJEssential

(c) Running time of CPU and I/O on TreeBank (d) Running time of CPU only on TreeBank

Fig. 4. Queries only involving ′′//′′

On XMark, IRTwigStack,TJEssential is more than 30% and IRTSGeneric,TJEssential is more than
20% when considering running time of both CPU and I/O cost as shown in Fig.4(a). If
only considering running time of CPU without I/O cost, IR′TwigStack,TJEssential is at least
50% and IR′TSGeneric,TJEssential is at least 35% as shown in Fig.4(b). Especially,
IR′TwigStack,TJEssential exceeds 68% and IR′TSGeneric,TJEssential exceeds 41% on XMark1.

On Treebank, IRTwigStack,TJEssential is at least 40% and IRTSGeneric,TJEssential is at least
30% as illustrated in Fig.4(c). Since Treebank is deep recursive, TJEssential avoids

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 847

self-nested, order and stream null suboptimal together. Especially, IR′TwigStack,TJEssential

exceeds 85% and IR′TSGeneric,TJEssential exceeds 75% on TB1 as shown in Fig.4(d).

0

2

4

6

8

10

12

14

16

XMark6 XMark7 XMark8 DB6 DB7 DB8

Datasets

R
u
n
n
i
n
g

T
i
m
e
(
S
)

TwigStack

TSGeneric

TJEssential

iTwigJoin

TJEssential*

0

1

2

3

4

5

6

7

8

XMark6 XMark7 XMark8 TB6 TB7 TB8

Datasets

R
u
n
n
i
n
g

t
i
m
e

o
f

C
P
U

c
o
s
t
(
S
) TwigStack

TSGeneric

TJEssential

iTwigJoin

TJEssential*

 (a) Running time of CPU and I/O (b) Running time of CPU only

Fig. 5. Queries involving ′′//′′ and ′′/′′

To compare TJEssential*(Tag+Level) with iTwigJoin (Tag+Level), we employ six
queries: XMark 6-8 and TB 6-8. TJEssential* is more efficient than TwigStack,
TSGeneric and iTwigJoin when the query contains both ″//″ and ″/″.
IRTwigStack,TJEssential*, IRiTwigJoin,TJEssential* and IRTSGeneric,TJEssential* are more than 50% on
TB6,TB7 as shown in Fig.5(a). Especially, IR′TwigStack,TJEssential*, IR′TSGeneric,TJEssential* and
IR′iTwigJoin,TJEssential* reach 89%, 80%, 74% respectively on TB8 as shown in Fig.5(b).
In conclusion, TJEssential and TJEssential* solve the disadvantages of existing
algorithms that involve too many unnecessary computations, and explore the potential
benefit of CPU cost on self-nested, order, stream null suboptimal.

6 Conclusion

This paper addresses the problem that there are unnecessary computations of existing
holistic twig join algorithms. We first propose three optimization rules to avoid self-
nested, order and stream null suboptimal of existing studies, and then present an
effective twig join algorithm, TJEssential, to explore potential benefit of CPU cost.
Incorporated with these three optimizations, TJEssential can speed up answering twig
patterns through discovering the solutions in leaf-to-root in accordance with root-to-
leaf way. Experimental results show that our approach achieves high efficiency and
outperforms existing proposals.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under
Grant No.60573094, the National Grand Fundamental Research 973 Program of
China under Grant No.2006CB303103, the National High Technology Development
863 Program of China under Grant No.2006AA01A101, Tsinghua Basic Research
Foundation under Grant No. JCqn2005022, and Zhejiang Natural Science Foundation
under Grant No. Y105230.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

848 G. Li et al.

References

[AJK+02] S.Al-Khalifa, H.V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava and Y. Wu.
Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In ICDE, pages
141-152, 2002.

[BBC+02] A. Berglund, S. Boag, D. Chamberlin et al. XML path language 2.0. Technical
report, W3C, 2002.

[BCF+02] S. Boag, D.Chamberlin, M.Fernandez et al. XQuery 1.0: An XML query language.
W3C, 2002.

[BKS02] N. Bruno, N. Koudas et al. Holistic Twig Joins: Optimal XML Pattern Matching. In
SIGMOD, 2002.

[CLC04] T. Chen, T. W. Ling, and C. Y. Chan. Prefix path streaming: a new clustering method
for optimal XML twig pattern matching. In DEXA, pages 801–811, 2004.

[CLL05] T. Chen, J. Lu, and T.W. Ling. On Boosting Holism In XML Twig Pattern Matching
Using Structural Indexing Techniques. In SIGMOD, 2005.

[CLT+06] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal and K. Candan Twig2Stack: Bottom-up Processing of Generalized-Tree-Pattern
Queries over XML Documents. In VLDB, pages 283-294, 2006.

[CMW03] B. Choi, M. Mahoui et al. On the Optimality of Holistic Algorithms for Twig
Queries. In DEXA, 2003.

[CVZ+02] S.-Y.Chien, Z. Vagena et al. Efficient Structural Joins on Indexed XML Documents.
In VLDB, 2002.

[FK99] D. Florescu,D. Kossmann. Storing and querying XML data using an RDBMS. IEEE
Data Eng., 1999.

[G02] T. Grust. Accelerating XPath Location Steps. In SIGMOD, pages 109-120, 2002.
[JLWO03] H.F. Jiang, H.J. Lu et al. XR-Tree:Indexing XML Data for Efficient Structural

Joins. In ICDE, 2003.
[JWL+03] H.F. Jiang, W. Wang, H.J. Lu et al. Holistic Twig Joins on Indexed XML

Documents. In VLDB, 2003.
[JLW04] H.F. Jiang, H.J. Lu et al. Efficient Processing of Twig Queries with OR-Predicates. In

SIGMOD, 2004.
[LCL04] Jiaheng Lu, Ting Chen and Tok Wang Ling. Efficient Processing of XML Twig

Patterns with Parent Child Edges: A Look-ahead Approach. In CIKM, pages 533-542,2004.
[LLC+05] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan and Ting Chen. From Region

Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching. In
VLDB, pages 193-204, 2005.

[LM01] Q. Li and B. Moon. Indexing and Quering XML Data for Regular Path Expressions. In
VLDB, 2001.

[MHH06] Christian Mathis, Theo Härder and Michael Haustein. Locking-Aware Structural
Join Operators for XML Query Processing. In SIGMOD, 2006.

[STZ+99] J. Shanmugasundaram, K. Tufte, C. Zhang, H. Gang, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In VLDB, pages 302-314, 1999.

[TVB+02] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. In SIGMOD, pages
204-215, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Efficient Holistic Twig Joins in Leaf-to-Root Combining with Root-to-Leaf Way 849

[WPJ03] Y. Wu, J. Patel and H. Jagadish. Structural join order selection for XML query
optimization. In ICDE, 2003.

[ZND+01] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In SIGMOD, pages
425-436, 2001.

[TreeBank] University of Washington XML Repository. http://www.cs.washington.edu/research
/xmldatasets/.

[XMark] http://monetdb.cwi.nl/xml

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast

Lu Qin, Jeffrey Xu Yu, and Bolin Ding

The Chinese University of Hong Kong, China
{lqin,yu,blding}@se.cuhk.edu.hk

Abstract. Twig pattern matching problem has been widely studied in recent
years. Give an XML tree T . A twig-pattern matching query, Q, represented as
a query tree, is to find all the occurrences of such twig pattern in T . Previous
works like HolisticTwig and TJFast decomposed the twig pattern into single paths
from root to leaves, and merged all the occurrences of such path-patterns to find
the occurrences of the twig-pattern matching query, Q. Their techniques can ef-
fectively prune impossible path-patterns to avoid producing a large amount of
intermediate results. But they still need to merge path-patterns which occurs high
computational cost. Recently, Twig2Stack was proposed to overcome this prob-
lem using hierarchical-stacks to further reduce the merging cost. But, due to the
complex hierarchical-stacks Twig2Stack used, Twig2Stack may end up many ran-
dom accesses in memory, and need to load the whole XML tree into memory in
the worst case. In this paper, we propose a new algorithm, called TwigList, which
uses simple lists. Both time and space complexity of our algorithm are linear with
respect to the total number of pattern occurrences and the size of XML tree. In
addition, our algorithm can be easily modified as an external algorithm. We con-
ducted extensive experimental studies using large benchmark and real datasets.
Our algorithm significantly outperforms the up-to-date algorithm.

1 Introduction

The Extensible Markup Language (XML) is an emerging standard for data representa-
tion and exchange on the Internet. Pattern matching is one of the most important types
of XML queries to retrieve information from an XML document. Among many reported
studies, Zhang et al. in [1] introduced the region encoding to process XML queries and
proposed a multi-predicate merge join algorithm using inverted list. Al-Khalifa et al. in
[2] proposed a stack-based algorithm which breaks the twig query into a set of binary
components. The drawback of the early work is the large intermediate results generated
by the algorithm. Bruno et al. in [3] used a holistic twig join algorithm TwigStack to
avoid producing large intermediate results. Jiang et al. in [4] proposed an XML Region
Tree (XR-tree) which is a dynamic external memory index structure specially designed
for nested XML data. With XR-tree, they presented a TSGeneric+ algorithm to effec-
tively skip both ancestors and descendants that do not participate in a join. Lu et al.
in [5] proposed TwigStackList to better handle twig queries with parent-child relation-
ships. Lu et al. in [6] used a different labeling scheme called extended Dewey, and
proposed a TJFast algorithm to access only leaf elements. However, all of the above
algorithms can not avoid a large number of unnecessary path mergings as theoretically
shown in [7]. Hence, Aghili et al. in [8] proposed a binary labeling algorithm using

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 850–862, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 851

the method of nearest common ancestor to reduce search space. However, this tech-
nique is efficient in the cases when the returned nodes are the leaf nodes in the twig
query. Most recently, Chen et al. in [9] proposed a Twig2Stack algorithm which uses
hierarchical-stacks instead of enumeration of path matches. Twig2Stack outperforms
TwigStack and TJFast. But Twig2Stack may conduct many random accesses and may
use a large memory space due to the complexity of hierarchical-stacks it uses.

The main contribution of this paper is summarized below. We present a new algo-
rithm, called TwigList, which is independently developed and shares similarity with
Twig2Stack [9]. Our algorithm significantly outperforms Twig2Stack. The efficiency of
our TwigList algorithm is achieved by using simple lists rather than the hierarchical-
stacks used in Twig2Stack to reduce the computational cost. In addition, because of
the simple list data structure and maximization of possible sequential scans used in
our algorithm, we extend TwigList as an external algorithm, which still outperforms
Twig2Stack using a 582MB XMark benchmark, a 337MB DBLP dataset, and a 84MB
TreeBank dataset, as reported in our extensive experimental studies.

The remainder of this paper is organized as follows. Section 2 gives the problem of
processing twig-pattern matching queries. Section 3 discusses two existing algorithms
and outlines their problems. We give our new algorithm in Section 4. Experimental
results are presented in Section 5. Finally, Section 6 concludes the paper.

2 Twig-Pattern Matching Queries

An XML document can be modeled as a rooted, ordered, and node-labeled tree, T ,
where a node represents an XML element, and an edge represents a parent/child rela-
tionship between elements in XML. For simplicity, in this work, a label of a node is
a value that belongs to a type (tag-name). An example of an XML tree is shown in
Fig. 1 (a). In the XML tree, a node is associated with a value xi which belongs to a type
X (denoted xi ∈ X). For example, the root node has a value a1 that belongs to type A.
The ordering among sibling nodes specifies a traversal order.

A twig-pattern matching query is a fragment of XPATH queries that can be repre-
sented as a query tree, Q(V, E). Here, V = {V1, V2, · · · , Vn} is a set of nodes repre-
senting types. We let Vi denote both the ith typed query node in Q and the set of the
ith typed elements in the XML tree T , E is a set of edges. An edge between two typed
nodes, for example, A and D, is either associated with an XPATH axis operator // or /
to represent A//D or A/D. Given an XML tree T , the former is to retrieve all A and
D typed elements that satisfy the ancestor/descendant relationships, and the latter is to
retrieve all A and D typed elements that satisfy parent/child relationships. We call the
former //-edge and the latter /-edge in short. As a special case, the root node has an
incoming //- or /-edge to represent an XPATH query, //A or /A, suppose the root node
is A-typed. The answer of a n-node query tree, Q(V, E), against an XML tree T , is a
set of all n-ary tuples (v1, v2, · · · , vn) in T , for vi ∈ Vi (1 ≤ i ≤ n), that satisfy all
the structural relationships imposed by Q. Consider an XPATH Q = //A[//C]//B. The
query tree is illustrated in Fig. 1 (b). When Q is issued against the XML tree (Fig. 1 (a)),
the answer includes (a1, b1, c3) and (a3, b3, c1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

852 L. Qin, J. Xu Yu, and B. Ding

3

(1,20,1)

(13,14,3)(7,8,3) (9,12,3) (17,18,3)

(16,19,2)(2,5,2) (6,15,2)

(3,4,3)

1

3

b

b4(10,11,4)

a

a

2b 1c 3cb1

2c2a

(a)

A

B C
(b)

Fig. 1. An XML tree (a) and a query tree Q (b)

In this paper, we focus ourselves on efficient processing twig-pattern matching queries.
For efficiently determining ancestor/descendant relationships among nodes in an XML

tree, a node u is encoded with a triple, (su, eu, du), where su and eu together represent
a region (starting/ending position), denoted reg(u), and du represents the level of the
node in the XML tree. (The root is at level 1.) With the region encoding (starting/ending
position), a node u is an ancestor of a node v iff the reg(v) ⊆ reg(u) such that su <
sv ≤ ev < eu, a node u is a parent of a node v iff reg(v) ⊆ reg(u) and dv = du + 1,
which implies that the node v is one level deeper than node u. For example, as shown
in Fig. 1 (a), b2 is a descendant of a1, because the region of b2, (7,8), is contained in the
region of a1 (1, 20). Also, b2 is not a child of a1 because the levels for b2 and a1 are
3 and 1.

3 Two Existing Algorithms: TwigStack and Twig2Stack

The twig-pattern matching query was first studied by Bruno, Koudas and Srivastava in
[3]. A TwigStack algorithm was proposed to process a twig-pattern matching query, Q,
in two steps. In the first step, in brief, a PathStack algorithm was proposed to efficiently
process every query path in a given query tree. Consider the query Q = //A[//C]//B
(Fig. 1 (b)). There are two query paths, Qp1 = //A//B and Qp2 = //A//C. The
PathStack algorithm finds answers for both of them using stacks. In the second step,
TwigStack checks if the results for all the query paths can be merged to satisfy the struc-
tural relationships imposed by the given twig-pattern matching query. For TwigStack,
the first step can be processed efficiently, but the second step consumes much time
because it needs to process merging.

Below, in brief, we discuss the difficulties for TwigStack to reduce computational
cost for merging in the second step after introducing PathStack. Consider a query path
in the query tree Qp = //V1//V2// · · · //Vn. A stack is created for every node Vi, denoted
stack(Vi). The whole query path is processed while traversing the given XML tree T
following the preorder. When traversing a Vi-typed node vi in XML tree T (vi ∈ Vi),
PathStack pops up nodes that are not ancestors of vi in stack(Vi) and stack(Vi−1),
because they are no longer needed. Then PathStack pushes node vi into stack(Vi), iff

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 853

stack(Vi−1) is not empty. When vi can be pushed into stack(Vi), there is a pointer
from vi pointing to the top element in stack(Vi−1). Consider processing query path
Qp1 = //A//B against XML tree T (Fig. 1 (a)). There are two stacks stack(A) and
stack(B). Following preorder traversal, PathStack pushes a1 and a2 into stack(A).
When b1 is traversed, the top element of a2 in stack(A) is an ancestor of b1, so b1 is
pushed into stack(B). PathStack will report (a1, b1) and (a2, b1) as result for the query
path, because all the other elements in stack(A) are ancestors of the top element. Then,
a3 is traversed, and PathStack will pop up a2 before pushing a3 into stack(A), because
a2 is not an ancestor of a3 and is not needed in the later processing. Similarly, when b2 is
traversed, b1 is popped up. The merging process ensures the results satisfying the entire
structural relationships. Reconsider Q = //A[//C]//B (Fig. 1 (b)) against XML tree T
(Fig. 1 (a)). Here, (a3, b2) satisfies Qp1 = //A//B, (a1, c2) satisfies Qp2 = //A//C, but
the two do not jointly satisfy Q = //A[//C]//B. The cost of merging is considerably
high as processing n joins, if there are n query paths for a twig-pattern matching query.

It is worth noting that TwigStack cannot allow the same stack, say stack(A), to
be shared by two query paths Qp1 = //A//B and Qp2 = //A//C, and process twig-
pattern matching queries without the merging step. It is because the sibling relationships
cannot be easily maintained in the framework of TwigStack, and the push/popup, that
are designed for each query path, cannot be used to control multiple paths (branches).
Due to the different timing of push/popup, some answer may be missing.

In order to avoid the high cost in the step of merging, Chen et al. in [9] proposed
a Twig2Stack algorithm which instead uses a hierarchical-stack, denoted HSVi , for
each node, in query tree Q, to compactly maintain all twig-patterns for a twig-pattern
matching query.

Consider a query tree Q(V, E) with n nodes (V = {V1, V2, · · · , Vn}). Twig2Stack
maintains n hierarchical-stacks HSVi for 1 ≤ i ≤ n. Each HSVi maintains an ordered
sequence of stack-trees, ST1(Vi), ST2(Vi), · · · , and a stack-tree, STj(Vi), is an ordered
tree of stacks. Each stack in the stack-tree contains zero or more document elements.
The ancestor/descendant relationships are maintained by the stacks in the hierarchical-
stacks. Suppose in an XML tree, u is an ancestor of v. If u and v have the same type,
say Vi, in Twig2Stack, they may appear in the same stack. If so, v will be pushed into
the stack before u is in HSVi . If u and v have different types, Vi and Vj , then u will be
in one stack in HSVi and v will be in one stack in HSVj and there is a pointer from the
stack in HSVi to the stack in HSVj to represent their ancestor/descendant relationship.

Take an example of processing Q = //A[//C]//B (Fig. 1 (b)) against XML tree T
(Fig. 1 (a)). Twig2Stack traverses T in preorder: a1, a2, b1, a3, b2, b3, b4, c1, c2, and
c3, and will push them into a special stack called docpath in such order. Initially, a1,
a2 and b1 are pushed into the stack docpath in order. When Twig2Stack is about to
push a3 into docpath, it finds that b1 is not an ancestor of a3 and therefore pops-up
b1 from docpath and pushes b1 to the hierarchical-stack HSB , and it then finds that
a2 is not an ancestor of a3 either and therefore simply discards it (because a2 does not
have any C-typed descendants now, and will not have any later). When Twig2Stack is
about to push b3 into docpath after pushing b2 into docpath, Twig2Stack finds that b2

is not b3’s ancestor, it pops up b2 from docpath and pushes b2 into HSB . Since b2 is not
an ancestor of b1, there will be two single-node stack-trees in HSB . Fig. 2 (a) shows

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

854 L. Qin, J. Xu Yu, and B. Ding

c
a
a

b
b
bb

1

3

1

1 2 4
(3,4) (7,8) (9,12)

docPathHS

HS HSB C

A

3

(a) After traversal to c1

a c
a

b
b
bb c

3 2

1

1 2 4 1

(7,12)

(3,4)

(6,15)

(7,8) (9,12) (13,14)

docPathHS

HS HSB C

A

3

(b) After traversal to c2

a
a

b
b
bb

c
cc

3

1 2 4 1

2

(7,12)

(3,4)

(1,20)

(3,12)

(7,8) (9,12) (13,14)

(13,19)

docPath

(16,19)

HS

HS HS

3

B C

A

3

1

(c) Final

Fig. 2. Twig2Stack for the query tree Q (Fig. 1 (b)) against XML tree T (Fig. 1 (a))

the docpath, the hierarchical-stacks after c1 is pushed into docpath. Fig. 2 (b) shows
the docpath, the hierarchical-stacks, HSA and HSB and HSC , after c2 is pushed into
docpath. Note: there are two stack-trees in HSB. From a3 in HSA, there is a pointer
pointing to a subtree in HSB indicating that it is an ancestor of b2, b3 and b4; also there
is a pointer to HSC indicating that a3 is an ancestor c1. Fig. 2 (c) shows the hierarchical-
stacks after all XML tree nodes are pushed/popped-up into/from docpath. As can be
seen from Fig. 2 (c), all twig-patterns are maintained by the stacks in the hierarchical-
stacks. After the hierarchical-stacks are constructed, Twig2Stack enumerates the results
in a bottom-top manner. For example, for a1, Twig2Stack enumerates the stacks, and
conduct Cartesian-product between a1 and {b1, b2, b3, b4} and {c1, c2, c3}.

As shown in [9], Twig2Stack is a linear-time (w.r.t. the number of nodes of T) al-
gorithm to construct the hierarchical-stacks, and is a linear-time (w.r.t. the total number
of matchings) enumeration algorithm based on intermediate structures maintained in
the hierarchical-stacks. But there are also some problems in Twig2Stack. First, the way
of maintaining ancestor/descendant relationships across the hierarchical-stacks is too
complex, which results in a large number of random memory accesses and therefore
increases the processing time. Second, TwigStack needs to maintain a large number of
stacks. In the worst case, it needs to load the whole XML tree into memory.

4 A New Algorithm: TwigList

We have developed a new algorithm TwigList for processing twig-pattern matching
queries. The main difference between our TwigList algorithm and Twig2Stack is that
we do not need to maintain complicated hierarchical-stacks for nodes in a query tree Q.
Instead of maintaining a hierarchical-stack for a node, Vi, in the query tree, TwigList
simply maintains a list, LVi . The list is used based on the following remark.

Property 1. Consider A//B against an XML tree T . If an A-typed node is an ancestor of
a set of B-typed nodes in XML tree T : (1) It must be able to specify a minimal interval
for the A-typed node to cover all such B-typed nodes; (2) It must be the case that there
does not exist any B-typed node in the interval that is not a descendant of the A-typed
node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 855

Algorithm 1. TwigList (Q, T)
Input: a query tree Q with n nodes {V1, · · · , Vn}, and an XML tree T ;
Output: all n-ary tuples as answers for Q;

1: let Xi be a sequence of Vi-typed XML tree nodes sorted in preorder, for all 1 ≤ i ≤ n;
2: let X be the set of all Xi for 1 ≤ i ≤ n;
3: obtain a set of lists L = {LVi , LV2 , · · · LVn} by calling TwigList-Construct (Q, X);
4: R ← TwigList-Enumerate (Q, L);
5: return R;

It is important to know that existing algorithms TwigStack and Twig2Stack do not
fully make use of this property. Push/pop operations together with stacks cannot effec-
tively maintain this property. We fully and effectively make use of this property. Unlike
TwigStack and Twig2Stack, we mainly use lists instead of stacks. Unlike TwigStack,
we minimize the cost of enumerating results to the minimum (linear time), because
the merging procedure of n joins is avoided. Unlike Twig2Stack, we do not need to
use complex hierarchical-stacks, and maximize the possibility to conduct sequential
scans over the lists. When generating outputs for a twig-pattern matching query, Q,
by enumerating the generated lists, we do not need to use any extra memory space,
which further saves cost. Our algorithm is optimal in the sense that both time and space
complexities of our algorithm are linear w.r.t. the total number of occurrences of twig-
pattern matchings and the size of XML tree. As shown in our experimental studies, our
external TwigList algorithm outperforms Twig2Stack as well as TwigStack.

TwigList algorithm is outlined in Algorithm 1, which takes two inputs, a query tree
Q(V, E), representing a twig-pattern matching query, and an XML tree, T . The query
tree has n nodes, {V1, V2, · · · , Vn}. TwigList constructs lists for all Vi-typed nodes in
T , and sorts them following preorder. There are two main steps. First, it calls TwigList-
Construct to obtain a set of lists that compactly maintain all twig-patterns for answer-
ing Q (line 3). Second, it calls TwigList-Enumerate to obtain all n-ary tuples for Q
(line 4). In the following, we discuss the two main algorithms, TwigList-Construct and
TwigList-Enumerate, in detail. For simplicity, we first concentrate on query trees, Q,
where only //-edges appear. Then, we will discuss how to process a query tree with
//-edges as well as /-edges.

4.1 TwigList-Construct Algorithm

TwigList-Construct is outlined in Algorithm 2. We explain how TwigList works using
an example of the same twig-pattern matching query Q = //A[//C]//B (Fig. 1 (b))
against XML tree T (Fig. 1 (a)). In Q, there are three types A, B, and C. A is the root
node, and B and C are leaf nodes. Accordingly, as input, X consists of three sequences
for the three types, XA = 〈a1, a2, a3〉, XB = 〈b1, b2, b3, b4〉, and XC = 〈c1, c2, c3〉.
TwigList-Construct will generate three lists, LA, LB and LC , to determine all possi-
ble n-ary tuples for answering Q. Here, for this Q, every XML tree node, ai, in LA

will maintain two pairs of pointers to specify the intervals for its B-typed descendants,
(startB , endB), and its C-typed descendants, (startC , endC).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

856 L. Qin, J. Xu Yu, and B. Ding

Algorithm 2. TwigList-Construct (Q, X)
Input: a query tree Q with n nodes {V1, · · · , Vn}, and a set of sequences X, a sequence in X,
Xi, maintains a list of Vi-typed XML nodes;
Output: all LVi for each 1 ≤ i ≤ n.

1: initialize stack S as empty;
2: initialize all list LVi as empty for all Vi ∈ V (Q) (The length of LVi is initialized as 0);
3: while not all Xq = ∅, for 1 ≤ q ≤ n, do
4: let Vq be the node such that its top element is the first following the preorder traversal

among all top elements in all Xi;
5: let v be the top element in Xq ;
6: remove v from Xq ;
7: toList(S, Q, reg(v));
8: for each child of Vq in query tree Q, Vp, do
9: v.startVp ← length(LVp) + 1;

10: push(S, v);
11: toList(S, Q, (∞, ∞));

Procedure toList(S,Q, r)

12: while S �= ∅ ∧ r �⊆ reg(top(S)) do
13: vj ← pop(S);
14: let vj ’s type be Vj ;
15: for each child of Vj in query tree Q, Vk, do
16: vj .endVk ← length(LVk);
17: append vj into list LVj if vj .startVk ≤ vj .endVk for every Vj ’s child, Vk;

Initially, it initializes a working stack S to be empty (line 1), and create empty lists,
LA, LB, and LC (line 2). Below, we use length(LX) to indicate the length of the list
LX . All the lengths of the lists are zero. In line 3-10, it repeats until all sequences, XA,
XB , and XC , become empty. In every iteration, TwigList-Construct selects a node from
the sequences that is the first following preorder (line 4-6). For this example, TwigList-
Construct access a1, a2, b1, a3, b2, b3, b4, c1, c2, and c3 in order, and will push them
into S.

Suppose a1, a2 and b1 are pushed into S already. a1 and a2’s startB and startC
pointers will point to the ends of LB and LC (length(LB) + 1 and length(LC) + 1),
respectively. Their endB and endC will be updated later, because they are unknown
now. When TwigList-Construct is about to push a3 into S, it calls toList (line 7) with
its region-code reg(a3). The body of toList is from line 12 to line 17. toList finds that
b1 as the top element in S is not an ancestor of a3 and therefore pops-up b1 from S and
appends b1 to LB. Here, a3’s startB will point to length(LB) + 1, because b1 is not a
descendant of a3 and a3’s B-typed descendants will come after it, if any. a3’s startC
will point to LC (length(LC) + 1) which is still empty. Then, toList also finds that a2

as the current top element in S is not an ancestor of a3. toList does not append it into
LA because it does not have any C-typed descendants now, and will not have any later
(line 17). When TwigList-Construct is about to push b3 into S after pushing b2 into S,
toList finds that b2 is not b3’s ancestor, it pops up b2 from S and appends b2 to LB .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 857

c
a
a
S

1

1

3

b b b b1 4 3

[

[] [2

]

]

L

LLB C

A

(a) After traversal to c1

a

b b b b c

3

1 14 3

[

[] [2]

]A

c
a
S

1

2

LB LC

L

(b) After traversal to c2
S

a a

b b b b c c c2 3

13

1 14 3

][

[] []2

AL

L LCB
(c) Final

Fig. 3. TwigList-Construct for the query tree Q (Fig. 1 (b)) against XML tree T (Fig. 1 (a))

Fig. 3 (a) shows the stack S and the lists, LA, LB, and LC , after c1 is pushed into
S. Fig. 3 (b) shows S and the lists after c2 is pushed into S. When c2 is pushed into S,
toList enforces c1 and a3 to be popped up, and append to the corresponding lists. This is
the timing for a3 to fill in its endB and endC positions (length(LB) and length(LC)),
respectively. Fig. 3 (c) shows the stack S and the lists after all XML tree nodes are
pushed/popped-up into/from S. As can be seen from Fig. 3 (c), all twig-patterns are
maintained by the lists.

In line 11, TwigList-Construct uses (∞, ∞) as the largest region code to enforce all
in stack S to be appended into a list if possible.

Time/Space Complexity: Given a twig-pattern matching query, Q, and an XML tree T .
Suppose the corresponding query tree, Q, has n nodes, V1, V2, · · · , Vn. The time/space
complexity of TwigList-Construct (Algorithm 2) are both O(d · |X |) in the worst case,
where |X | is the total number of nodes, vi, in XML tree that is Vi-typed 1 ≤ i ≤ n, and
d is the max degree of a node in the query tree Q. Note: every XML tree node that is
Vi-typed will be pushed/popped-up into/from the stack S only once. It needs at most d
times to calculate its intervals. Therefore, TwigList-Construct is linear w.r.t. |X |.

4.2 TwigList-Enumerate Algorithm

TwigList-Enumerate is outlined in Algorithm 3. It takes two input parameters, the n-
node query tree Q and a set of lists, L, which consists of the lists obtained in TwigList-
Construct. TwigList-Enumerate simply inserts all n-ary tuples as answers into a relation
R to be returned.

Continue the above example, the three lists, LA, LB , and LC , are shown in Fig. 3 (c).
Initially, start = [a3, b2, c1], and end = [a1, b3, c1] (line 2-4). Here, pair (a3, a1) spec-
ifies the interval for all A-typed XML tree nodes. (b2, b3) specifies the interval where
a3’s B-typed descendants exist, and (c1, c1) specifies the interval where a3’s C-typed
descendants exist. Line 5, move = [a3, b2, c1] records the current positions for out-
putting results. Then, it calls moreMatch to generate all n-ary tuples. In moreMatch, it
first inserts the n-ary tuple pointed by the n-element move array. The termination con-
dition is specified in line 9 when there is no tuple to be generated. TwigList-Enumerate
will result (a3, b2, c1), (a3, b4, c1), and (a3, b3, c1), followed by (a1, b1, c1), · · · .

Time/Space Complexity: Given a twig-pattern matching query, Q(V, E), as a query
tree, and an XML tree T . Suppose lists LV1 , LV2 , · · · , LVn have been constructed, the
time complexity of TwigList-Enumerate algorithm is O(n · |R|), where |R| is the to-
tal number of twig-pattern matchings, and n is the number of nodes in query tree, Q.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

858 L. Qin, J. Xu Yu, and B. Ding

Algorithm 3. TwigList-Enumerate (Q, L)
Input: a query tree, Q, with n nodes {V1, · · · , Vn}; a set of lists, L, consisting of all LVi , for
1 ≤ i ≤ n;
Output: all n-ary tuples as answers for Q;

1: let R ← ∅;
2: let start[1..n], end[1..n] be n-element arrays for maintaining the regions for the n lists;
3: let V1 be the root node in the query tree Q; start[1] and end[1] point to the begin and end

positions of LV1 ;
4: initialize the other start[i] and end[i] for Vi as the interval specified by the first element in

its parent list;
5: let move[1..n] be a n-element array where move[i] ← start[i];
6: while moreMatch(R, start, end, move) �= false do;
7: return R;

Function moreMatch(R, start, end,move)

8: insert (move[1], · · · , move[n]) as a n-ary tuple into R;
9: if ∀i: move[i] = end[i] then return false;

10: select Vi such that move[i] < end[i], but all its descendants, Vj , in the query tree Q,
move[j] = end[j];

11: move[i] ← move[i] + 1;
12: let vi be the Vi-typed element pointed by move[i];
13: for all Vi’s descendants, Vj , in query tree Q do
14: reset all their start[j], end[j], and move[j] according to the interval specified by its

parent (rooted at vi);
15: return true;

Because in each run of function moreMatch, we will get one more matching (line 8),
and the operations below in moreMatch require time O(n). The space complexity of
TwigList-Enumerate is the same for TwigList-Construct, because it does not consume
any more memory space, other than three arrays start[1..n], end[1..n], and move[1..n].
Hence, the time complexity for TwigList is the sum of that for TwigList-Construct and
TwigList-Enumerate, O(d · |X | + n · |R|). This algorithm is optimal because it is linear
w.r.t. |R| and |X |. Note O(n · |R|) is lower bound to output all twig-pattern matchings
of a n-node query tree explicitly.

4.3 Discussions

Handling /-Edges in Query Trees: If there are /-edges in a query tree, Q, it needs to
have additional information to maintain the sibling information for efficiently process-
ing twig-pattern matching queries. Consider Q′ = //A[//C]/B against the XML tree
T (Fig. 1 (a)). Only (a3, b2, c1) and (a3, b3, c1) are the answers of Q′. We can simply
extend TwigList-Construct to construct lists when there are /-edges in a given query
tree. For Q′ = //A[//C]/B, the lists constructed are shown in Fig. 4. As shown in
Fig. 4, there is no need to append a1 into list LA, because a1 does not have a B-typed
child when it is about to append. When b3 is about to be appended into LB , TwigList-
Construct knows that b2 is a sibling which shares the same A-typed parent of b3, a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 859

S

a

b b b b c c c2 3

3

1 14 3

[

[] []2

AL

L LCB

]

Fig. 4. TwigList-Construct for Q′ = //A[//C]/B against XML tree T (Fig. 1 (a))

sibling link can be added from b2 to b3. Note: some bi and cj are not in the interval
of a3 as shown in Fig. 4, it is because that it is unknown whether it is in the interval
of its parent when it is appended into the corresponding list. With the sibling pointers,
TwigList-Enumerate can quickly enumerate all results.

External Algorithm: When the set of lists L is too large to fit into memory, TwigList
can be simply extended to work as an external algorithm by maintaining all lists on
disk. It is because the access patterns against the lists usually focus on intervals and are
not random. We implemented an external TwigList algorithm with n 4KB-pages for a
query tree with n nodes. The external TwigList algorithm outperforms Twig2Stack.

5 Performance Study

We have implemented three algorithms for processing twig-pattern matching queries:
Twig2Stack [9], our TwigList, and our external version of TwigList (E-TwigList) using
C++. We choose Twig2Stack as the basis to compare, because Twig2Stack is the most
up-to-date algorithm which outperforms TwigStack [3] and TJFast [6]. TJFast is a fast
algorithm for processing twig-pattern matching queries with both //-edges and /-edges.

Three Datasets: We used both benchmark dataset, XMark, and two real datasets, DBLP
and TreeBank. For XMark, we set the scaling factor to be 5.0 and generated a 582MB
XMark dataset with 77 different labels and a maximum depth of 12. For real datasets,
we use a 337MB DBLP dataset which has 41 different labels and a maximum depth of 6,
and the 84MB TreeBank dataset which has 250 different labels and a maximum depth
of 36. The DBLP dataset is wide but shallow, whereas the TreeBank dataset is deep and
recursive.

All experiments were performed on a 2.8G HZ Pentium (R)4 processor PC with
1GB RAM running on Windows XP system. We mainly report processing time for
construction and enumeration used in Twig2Stack, TwigList, and E-TwigList, since the
other time as loading and storing final results are the same. The buffer size used for
E-TwigList is a 4KB-page for every node in a query tree.

Twig-pattern matching queries: We conducted extensive testing, and report the results
for 15 twig-pattern matching queries (query trees) as shown in Table 1. For each of the
three datasets, we report five query trees, which have different combinations of /-edges
and //-edges and different selectivities. In each group of 5 query trees, the first 2 are
selected from the queries used in [9], and the second 2 are constructed by adding some
branches into the first 2. The last is a rather complex query tree.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

860 L. Qin, J. Xu Yu, and B. Ding

Table 1. A list of query trees used in the experiments

Name Dataset QueryTrees ResultSize

XQ1 XMark //item[location]/description//keyword 136, 282
XQ2 XMark //people//person[.//address/zipcode]/profile/education 15, 859
XQ3 XMark //item[location][.//mailbox/mail//emph]/description//keyword 86, 533
XQ4 XMark //people//person[.//address/zipcode][id]/profile[.//age]/education 7, 997
XQ5 XMark //open auction[.//annotation[.//person]//parlist]//bidder//increase 141, 851
DQ1 DBLP //dblp/inproceedings[title]/author 1, 205, 196
DQ2 DBLP //dblp/article[author][.//title]//year 625, 991
DQ3 DBLP //dblp/inproceedings[.//cite/label][title]/author 132, 902
DQ4 DBLP //dblp/article[author][.//title][.//url][.//ee]//year 384, 474
DQ5 DBLP //article[.//mdate][.//volume][.//cite//label]//journal 13, 785
TQ1 TreeBank //S/VP//PP[.//NP/VBN]/IN 1, 183
TQ2 TreeBank //S/VP/PP[IN]/NP/VBN 152
TQ3 TreeBank //S/VP//PP[.//NN][.//NP[.//CD]/VBN]/IN 381
TQ4 TreeBank //S[.//VP][.//NP]/VP/PP[IN]/NP/VBN 1, 185
TQ5 TreeBank //EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]//PP/NP// NONE 94, 535

 0

 500

 1000

 1500

 2000

 2500

 3000

XQ5XQ4XQ3XQ2XQ1

P
ro

c
e
ss

in
g
 T

im
e
(m

s) TwigList
E-TwigList
Twig2Stack

(a) XMark

 0

 2000

 4000

 6000

 8000

 10000

DQ5DQ4DQ3DQ2DQ1

P
ro

c
e
ss

in
g
 T

im
e
(m

s) TwigList
E-TwigList
Twig2Stack

(b) DBLP

 0

 500

 1000

 1500

 2000

TQ5TQ4TQ3TQ2TQ1

P
ro

c
e
ss

in
g
 T

im
e
(m

s) TwigList
E-TwigList
Twig2Stack

(c) TreeBank

Fig. 5. Processing Time (ms)

Fig. 5 depicts the processing time of query trees listed in Table 1 for the datasets,
XMark (Fig. 5 (a)), DBLP (Fig. 5 (b)), and TreeBank (Fig. 5 (c)). TwigList and even
E-TwigList outperform Twig2Stack in all tests. TwigList (E-TwigList) outperforms
Twig2Stack, mainly due to the linear structure (lists) used to organize the elements
instead of complex hierarchical-stacks used in Twig2Stack. Also, when enumerating
results, Twig2Stack uses a join approach which produces a lot of intermediate results,
whereas our TwigList (E-TwigList) does not generate any intermediate results.

For XMark (Fig. 5 (a)), on average, TwigList is 3-4 times and E-TwigList is 2-3 times
faster than Twig2Stack. For DBLP (Fig. 5 (b)), on average, TwigList is 4-8 times and E-
TwigList is 2-4 times faster than Twig2Stack. For TreeBank (Fig. 5 (c)), TwigList and
E-TwigList outperform Twig2Stack, in particular when the query tree becomes com-
plex, for example, TQ5. Our algorithms based on linear structures (lists) replace a large
number of random accesses with sequential accesses in both memory and disk.

E-TwigList Test: We further test E-TwigList by choosing three queries, XQ3, DQ3 and
TQ3, as representations of the queries over XMark, DBLP and TreeBank datasets. Their
structures are moderately complex, and they produce a moderate number of matchings.
XQ3 has 7 nodes with a tree of depth 4 and max node degree 3, DQ3 has 6 nodes with a
tree of depth 4 and max degree 3, and TQ3 has 8 nodes with a tree of depth 5 and max
degree 3. The total number of I/Os include the I/O cost in loading, construction and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TwigList: Make Twig Pattern Matching Fast 861

 0

 500

 1000

 1500

 2000

 2500

 3000

20k16k12k8k4k

Pr
oc

es
si

ng
 T

im
e(

m
s) DBLP

XMark
TreeBank

(a) Processing time varying buffer size

 0

 5000

 10000

 15000

 20000

20k16k12k8k4k

To
ta

l I
/O

s

DBLP
XMark

TreeBank

(b) Total I/Os varying buffer size

Fig. 6. Total Processing time and I/Os varying buffer size

enumeration. We vary the buffer size from 4KB to 20KB. As shown in Fig. 6(b), we
can see that the total number of I/Os decreases when the buffer size increases. We can
also see from Fig. 6(a) that the processing time decreases when the buffer size increases,
but the effect of buffer sizes on processing times is not obvious. It concludes that only
a small buffer is needed for a node in a query tree.

6 Conclusion and Future Work

In this paper, we propose a new TwigList algorithm to compactly maintain the twig-
patterns using simple lists. The algorithm can be easily extended as an external algo-
rithm (E-TwigList). The time and space complexity of the algorithm are linear with
respect to the total number of occurrences of twig-patterns and the size of XML tree.
Our algorithm significantly outperforms Twig2Stack algorithm.

As the future work, we are planning to study the pattern matching over directed
acyclic graphs using the similar method to get a better performance.

Acknowledgment. This work was supported by a grant of RGC, Hong Kong SAR,
China (No. 418206).

References

1. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting containment
queries in relational database management systems. In: SIGMOD. (2001)

2. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.: Structural joins:
A primitive for efficient XML query pattern matching. In: ICDE. (2002)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching.
In: SIGMOD. (2002)

4. Jiang, H., Lu, H., Wang, W., Ooi, B.C.: Xr-tree: Indexing XML data for efficient structural
joins. In: ICDE. (2003)

5. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent child
edges: a look-ahead approach. In: CIKM. (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

862 L. Qin, J. Xu Yu, and B. Ding

6. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey: On efficient
processing of XML twig pattern matching. In: VLDB. (2005)

7. Choi, B., Mahoui, M., Wood, D.: On the optimality of holistic algorithms for twig queries. In:
DEXA. (2003)

8. Aghili, S., Li, H.G., Agrawal, D., Abbadi, A.E.: Twix: Twig structure and content matching
of selective queries using binary labeling. In: INFOSCALE. (2006)

9. Chen, S., Li, H.G., Tatemura, J., Hsiung, W.P., Agrawal, D., Candan, K.S.: Twig2stack:
Bottom-up processing of generalized-tree-pattern queries over XML documents. In: VLDB.
(2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CircularTrip: An Effective Algorithm for

Continuous kNN Queries

Muhammad Aamir Cheema, Yidong Yuan, and Xuemin Lin

The University of New South Wales, Australia
{macheema, yyidong, lxue}@cse.unsw.edu.au

Abstract. Continuously monitoring kNN queries in a highly dynamic
environment has become a necessity to many recent location-based ap-
plications. In this paper, we study the problem of continuous kNN query
on the dataset with an in-memory grid index. We first present a novel
data access method – CircularTrip. Then, an efficient CircularTrip-based
continuous kNN algorithm is developed. Compared with the existing al-
gorithms, our algorithm is both space and time efficient.

1 Introduction

Continuously monitoring k nearest neighbors over moving data objects has be-
come a necessity to many recent location-based applications. This is mainly due
to the increasing availability of wireless networks and inexpensive mobile devices.
Consequently, a number of techniques [1,2,3,4,5,6,7,8,9] have been developed to
process continuous kNN queries.

Different from a conventional kNN query, continuous kNN queries are issued
once and run continuously to generate results in real-time along with the up-
dates of the underlying datasets. Therefore, it is crucial to develop in-memory
techniques to continuously process kNN queries due to frequent location updates
of data points and query points. In many applications [6,7,9], it is also crucial to
support the processing of a number of continuous kNN queries simultaneously;
consequently, scalability is a key issue.

To address the scalability, in this paper we focus on two issues: (1) minimiza-
tion of computation costs; and (2) minimization of the memory requirements.
We study continuous kNN queries against the data points that move around in
an arbitrary way. To effectively monitor kNN queries, we develop a novel data
access method – CircularTrip. Compared with the most advanced algorithm,
CPM [9], our CircularTrip-based continuous kNN algorithm has the following
advantages. (1) time efficient: although both algorithms access the minimum
number of cells for initial computation, less cells are accessed during continuous
monitoring in our algorithm. (2) space efficient: our algorithm does not employ
any book-keeping information used in CPM (i.e., visit list and search heap for
each query). Our experimental study demonstrates that CircularTrip-based con-
tinuous kNN algorithm is 2 to 4 times faster than CPM, while its memory usage
is only 50% to 85% of CPM.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 863–869, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

864 M.A. Cheema, Y. Yuan, and X. Lin

Our contributions in this paper can be summarized as follows: (1) We develop
a novel data access method – CircularTrip which returns the cells intersecting
a given circle with the minimum number of cells examined; (2) Based on Circu-
larTrip, a time- and space- efficient continuous kNN algorithm is developed.

The rest of the paper is organized as follows: Section 2 gives the problem defi-
nition and presents the related work. We present our continuous kNN algorithm
in Section 3. Experimental study and remarks are reported in Section 4.

2 Background Information

Suppose that P is a set of 2D1 moving data points and data points change
their locations frequently in an unpredictable fashion. Each data point p ∈ P is
represented by (p.x, p.y). At each time stamp, the move of a data point p from
ppre to pcur is recorded as a location update 〈p.id, ppre, pcur〉 and the moves of
query points are recorded similarly. The problem of continuous kNN query is
formally defined below.
Continuous kNN Query. Given a set of moving data points, a moving query
point q, and an integer k, the continuous kNN query is to find k closest data
points to q at each time stamp.
Grid Index. In this paper, we assume that the dataset is indexed by an in-
memory grid index which evenly partitions the space into cells. The extent of
each cell on each dimension is δ. Cell c[i, j] indicates the cell at column i and
row j and the lower-left corner cell is c[0, 0]. Clearly, point p falls into the cell
c[�p.x/δ�, �p.y/δ�].

In the grid index, each cell is associated with an object list and an influence list.
Object list contains all the data points in this cell. Influence list of cell c maintains
the references of all the queries q such that mindist(c, q) ≤ q.distk where q.distk
is the distance of kth nearest neighbor from q. Specially, mindist(cq, q) = 0
where cq is the cell containing q. Note that both object list and influence list
are implemented as hash tables so that lookup, insertion, update, and deletion
of entries take constant time.

Accessing and encountering are two basic operations on cells. Specifically,
accessing a cell is to evaluate all data points in this cells against queries and
encountering a cell only computes its minimum distance to queries. Clearly, cost
of encountering a cell is neglected when compared with accessing a cell.

SEA-CNN [6], YPK-CNN [7], and CPM [9] are the most related existing work
to the study in this paper. Due to space limitation, we omit the details of these
techniques here. Interested readers can find them in [6,7,9], respectively.

3 Continuous kNN Algorithm

Our CircularTrip-based continuous kNN algorithm consists of two phases. In
phase 1, the initial results of each new continuous kNN query is computed. Then,
1 In this paper, we focus on 2D space only. But the proposed techniques can be applied

to higher dimensional space immediately.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CircularTrip: An Effective Algorithm for Continuous kNN Queries 865

q

Round 1 Round 2

r0

p1

p2

q

p1

p2

distk

Round 3

q

p1

p2

r0+
distk

Fig. 1. An NN Query

q

c

cu
cr

upper-left upper-right

lower-left lower-right

cstart

Fig. 2. CircularTrip

the results are incrementally updated by continuous monitoring module at each
time stamp upon the moves of query points and data points (i.e., phase 2). Both
phases take advantages of CircularTrip algorithm. Section 3.1 and Section 3.2
present phase 1 and phase 2, respectively.

3.1 Initial kNN Computation

The basic idea of kNN computation algorithm is to access the cells around query
point q round by round. A round Ci contains all the cells that intersect the cir-
cle of radius ri = r0 + iδ centered at q. Formally, Ci = {∀c | mindist(c, q) <
ri ≤ maxdist(c, q)}. r0 is the the first circle’s radius. Obviously, r0 is at most
maxdist(cq, q); otherwise cell cq will not be accessed by the algorithm. Examples
of round are shown as the shaded cells in Fig. 1. In each round, the algorithm
accesses the cells in ascending order of their mindist(c, q). The algorithm termi-
nates when the next cell to be accessed has mindist(c, q) ≥ q.distk. The following
theorem proves the correctness and optimality of this algorithm.

Lemma 1. In a grid consisting of cells with size δ×δ, given a cell c and a query
point q where c does not contain q, δ ≤ maxdist(c, q)−mindist(c, q) ≤

√
2δ. ��

Theorem 1. Given a query q, in our initial kNN algorithm, the minimal set of
cells are all accessed and only these cells are accessed. ��

According to Lemma 1, a cell is intersected by at most two consecutive circles
(e.g., the dark shaded cells in Fig. 1). Although these cells are encountered
twice during kNN computation (i.e., these cells appear in two rounds), they are
accessed once only. This is because for a query q (1) our kNN algorithm only
accesses the cells where q is not in their influence lists; and (2) q will be inserted
into its influence list after a cell is processed. In fact, Theorem 2 proves the upper
bound of the total number of times the cells are encountered in our algorithm.

Theorem 2. In kNN algorithm, the total number of times the cells are encoun-
tered is at most 1.27 times of the number cells in the minimum set of cells. ��

The detailed kNN computation algorithm is shown in Algorithm 1. We use the
following example to present its details.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

866 M.A. Cheema, Y. Yuan, and X. Lin

Algorithm 1. ComputeNN(G, q, k)
Input: G: the grid index; q: query point; k: an integer;
Output: the kNN of q;
1: q.distk := ∞; q.kNN := ∅; H := ∅; r := r0 := maxdist(cq, q);
2: insert the cells returned by CircularTrip(G, q, r) into H ;
3: while H �= ∅ and mindist(eH , q) < q.distk do
4: insert q into the influence list of eH ;
5: ∀p ∈ eH , compute dist(p, q) and update q.distk and q.kNN ;
6: remove eH from H ;
7: if H = ∅ and r < q.distk then
8: r := min{r + δ, q.distk};
9: cells C := CircularTrip(G, q, r);

10: ∀c ∈ C, insert c into H if q �∈ the influence list of c;
11: return q.kNN ;

Example 1. Fig. 1 illustrates a concrete example of an NN query. As no data point
is found in the first round, the algorithm continues to process the cells in the next
round with radius (r0 + δ). In this round, p1 is found and q.distk is updated to
be dist(p1, q). Then, a third round with radius q.distk (as dist(p1, q) < r0 + 2δ)
is processed because the previous radius is smaller than q.distk. In round 3,
q.kNN and q.distk are updated after p2 is found. Computation stops when
q.distk (= dist(p2, q)) is less than mindist(eH , q) of the top entry eH .

CircularTrip Algorithm. To collect a round of cells, CircularTrip starts from
one cell intersected by the given circle and checks the cells along the circle.
Without loss of generality, consider cell c intersected by the circle which locates
in the upper-left quadrant as shown in Fig. 2. The key fact is that the next cell
intersected by the circle (i.e., the cell in which the arc is connected to one in c)
is the adjacent cell either above c (i.e., cu) or right to c (i.e., cr). This is because
the outgoing circle crosses either the upper boundary or the right boundary of
c. These two adjacent cells, cu and cr, are called candidate adjacent cells of c.
Clearly, to collect the next cell intersected by the circle, CircularTrip only needs
to examine one of the candidate adjacent cells (i.e., check its mindist(c, q) with
the given radius r). As a result, the total cost of CircularTrip to collect a round
C of cells is to compute mindist(c, q) of |C| cells, where |C| is the number of
cells in round C.

Algorithm 2 presents the implementation of CircularTrip algorithm. It always
starts from the left most cell of the round cstart (as shown in Fig. 2) and examines
the cells clockwise along the given circle until cstart is encountered again. When
the quadrant of the current cell being examined is changed, the directions to
find its candidate adjacent cells are updated accordingly (i.e., lines 9 – 10).

3.2 Continuous Monitoring

Same as in CPM, when the query moves, we simply re-issue the query on the
new location. So, continuous monitoring only concerns update of data points.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CircularTrip: An Effective Algorithm for Continuous kNN Queries 867

Algorithm 2. CircularTrip(G, q, r)
Input: G: the grid index; q: query point; r: the radius;
Output: all the cells which intersect the circle with center q and radius r;
1: C := ∅; c := cstart := c[i, j] (i := �(q.x − r)/δ�, j := �q.y/δ�);
2: Dcur := Up; /* clockwise fashion: Up → Right → Down → Left → Up */
3: repeat
4: insert c into C;
5: c′ := the adjacent cell to c in Dcur direction;
6: if c′ does not intersect the circle then
7: c′ := the adjacent cell to c in the next direction of Dcur;
8: c := c′;
9: if (c.i=cq .i and c.j = �(q.y ±r)/δ�) or (c.i = �(q.x±r)/δ� and c.j = cq.j) then

10: Dcur := the next direction of Dcur;
11: until c = cstart

12: return C;

Regarding a query q, the update of data point p, 〈p.id, ppre, pcur〉, can be classi-
fied into 3 cases:

• internal update: pcur ∈ q.kNN and ppre ∈ q.kNN ; clearly, only the order of
q.kNN is affected so we update the order of data points in q.kNN accordingly.
• incoming update: pcur ∈ q.kNN and ppre ∈ q.kNN ; p is inserted in q.kNN .
• outgoing update: pcur ∈ q.kNN and ppre ∈ q.kNN ; p is deleted from q.kNN .

It is immediately verified that only the queries recorded in the influence lists
of cell cppre or cell cpcur may be affected by the update 〈p.id, ppre, pcur〉, where
cppre (cpcur) is the cell containing ppre (pcur). Therefore, after receiving an update
〈p.id, ppre, pcur〉, continuous monitoring module checks these queries q only. If
dist(pcur, q) ≤ q.distk, it is treated as an incoming update (if ppre ∈ q.kNN)
or an internal update (if ppre ∈ q.kNN). On the other hand, If dist(ppre, q) ≤
q.distk and dist(pcur, q) > q.distk, it is handled as an outgoing update.

After all the updates of data points are handled as described above, we update
the results of affected queries. For each query q, if |q.kNN | ≥ k, we keep the
k closest points and delete all other. For any query q where |q.kNN | < k, we
update its result in a similar way to Algorithm 1. Note that here the starting
radius r0 is set as q.distk. The intuition is the fact that any update within this
distance has already been handled.

4 Experimental Study and Remarks

In accordance with the experimental study of previous work [6,9], we use the
same spatio-temporal data generator [10]. Data points with slow speed move
1/250 of the extent of space per time stamp. Medium and fast speed are 5
and 25 times faster than slow speed, respectively. Continuous kNN queries are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

868 M.A. Cheema, Y. Yuan, and X. Lin

 0

 200

 400

 600

 800

 1000

256641641

T
im

e
(s

)

CPM
CicularTrip

(a) Time

 0

 10

 20

 30

256641641

M
em

or
y

(M
B

)

78% 77% 76%
77%

78%CPM
CircularTrip

(b) Space

Fig. 3. Effect of k

 0

 100

 200

 300

 400

 200 150 100 70 50 30

T
im

e
(s

)

CPM
CircularTrip

(a) Varying N (×1K)

 0

 100

 200

 300

 400

 10 7 5 3 1

T
im

e
(s

)

CPM
CircularTrip

(b) Varying n (×1K)

Fig. 4. Effect of N and n

 0

 100

 200

 300

 70 50 30 10

T
im

e
(s

)

CPM
CircularTrip

(a) Varying Agility (%)

 0

 50

 100

 150

 200

 250

fastmediumslow

T
im

e
(s

)

CPM
CircularTrip

(b) Varying Speed

Fig. 5. Data Movement

generated in the similar way. All queries are evaluated at each time stamp and
the length of evaluation is 100 time stamps. The grid index has 256 × 256 cells.

We evaluate our CircularTrip-based continuous kNN technique against various
parameters: number of NNs (k), number of data points (N), number of queries
(n), and data point agility and moving speed. In our experiments, their default
values are 16, 100K, 5K, 50%, and medium, respectively. The experimental
results are reported in Fig. 3, 4, and 5.

In this paper, we develop an efficient CircularTrip-based continuous kNN al-
gorithm. Compared with the existing algorithm, our technique accesses the min-
imum set of cells for initial computation and significantly reduces the continuous
monitoring cost, while less memory space is required.

References

1. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:
SSTD. (2001) 79–96

2. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases.
In: SIGMOD Conference. (2002) 334–345

3. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB.
(2002) 287–298

4. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD. (2003) 443–454

5. Iwerks, G.S., Samet, H., Smith, K.P.: Continuous k-nearest neighbor queries for
continuously moving points with updates. In: VLDB. (2003) 512–523

6. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE. (2005) 643–654

7. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE. (2005) 631–642

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

CircularTrip: An Effective Algorithm for Continuous kNN Queries 869

8. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD. (2005) 479–490

9. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD. (2005)
634–645

10. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2) (2002) 153–180

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Multiple In-Network Aggregate

Queries in Wireless Sensor Networks�

Huei-You Yang, Wen-Chih Peng, and Chia-Hao Lo

Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan, ROC
{hyyang, wcpeng, chlo}@cs.nctu.edu.tw

Abstract. In this paper, we explore the feature of sharing partial re-
sults of multiple queries to reduce the total number of messages incurred.
Those queries sharing their partial results are referred to as backbones.
Given a set of queries, we shall determine backbones with the purpose
of minimizing the total number of messages. Specifically, given a set of
queries, we derive a graph, where each vertex represents one query and
the corresponding weight edge denotes the number of messages reduced
by sharing partial results. Then, we develop a heuristic algorithm SB
(standing for Selecting Backbones) to derive a cut in which both back-
bones and non-backbones are determined. Simulation results show that
by sharing partial results, algorithm SB is able to significantly reduce
the total number of messages involved.

1 Introduction

In monitoring applications of wireless sensor networks, queries are typically long-
running and executed over a specified period. Since each query is independently
performed, wireless sensor networks consume a considerable amount of energy
when the number of queries increases. Queries issued could be categorized ac-
cording to their aggregate operator and monitored time period. Queries in the
same group have the same aggregate operator and monitored time period. As
such, queries in the same group are able to further share their query results to
reduce the number of messages. Given a set of queries with the same aggregate
operator and time duration, we elaborate on sharing query results to reduce the
total number of messages without influencing final query results. Queries are
divided into two sets: backbone and non-backbone sets. Queries in the backbone
set are issued as usual and should share their partial results with those queries
in the non-backbone set. The problem addressed in this paper is that given a set
of query trees, we should determine which query tree should be put in the back-
bone set and non-backbone set so as to minimize the total number of messages
involved in multiple queries.

� This paper is supported in part by the National Science Council, Project No. NSC
95-2221-E-009-061-MY3 and NSC 995-2221-E-009-026, Taiwan, Republic of China.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 870–875, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Multiple In-Network Aggregate Queries 871

In order to determine which query tree should be put in the backbone set
and the number of backbones, we first formulate the problem of selecting back-
bones and transform this problem into Max-Cut problem. Specifically, given
a set of queries, we derive a graph, where each vertex represents one query
and the corresponding weight edge denotes the number of messages reduced by
sharing partial results. According to the graph derived, we develop a heuris-
tic algorithm SB (standing for Selecting Backbones) to derive a cut in which
both backbones and non-backbones are determined. Performance of algorithm
SB is comparatively analyzed and simulation results show that by sharing par-
tial results, algorithm SB is able to significantly reduce the total number of
messages.

A significant amount of research efforts have been elaborated upon issues of
in-network query processing for power saving in wireless sensor networks [3][5][6].
Prior works [2][6] explore the feature of in-network aggregation in which sensor
nodes in a routing tree are able to perform aggregate operators. The authors
in [1] proposed in-network materialized view that could be shared by multiple
queries to reduce the number of messages. To the best of our knowledge, no
prior works exploit the feature of sharing partial results of in-network aggregate
queries, let alone formulating the problem of selecting backbones and devising
algorithms to determine backbones for partial result sharing.

The rest of this paper is organized as follows. Preliminaries are presented
in Section 2. In Section 3, we develop algorithm SB for backbone selection.
Performance studies are conducted in Section 4. This paper concludes with
Section 5.

2 Preliminaries

The goal of this study is to reduce the total number of messages spent for
multiple queries. In order to share partial results, queries with the same aggregate
operator and time duration are considered. Similar to prior works in [6], query
Qi is able to represent as a query tree, denoted as Ti. The leaf nodes of a query
tree are data sources that will report sensing data and intermediate nodes of the
query tree are used to aggregate sensing data from their child nodes. Hereafter,
to facilitate the presentation of our paper, query Qi is referred to as a query
tree Ti. The number of messages spent for a query Qi, expressed by N(Ti), is
the number of tree edges in Ti. For query tree Ti, Di(Sj) represents the partial
result generated at sensor Sj and Ni(Sj) is the number of messages spent for
partial result Di(Sj), which is the number of tree edges of the subtree rooted at
sensor Sj .

To facilitate the presentation of this paper, the backbone set (respectively,
the non-backbone set) is expressed by B (respectively, NB). Clearly, by sharing
partial results from backbones, non-backbones are able to reduce a considerable
amount of messages. Denote the number of messages reduced for non-backbone
T

j
as R(Tj , B). Thus, the total number of messages involved for a set of query

trees can be formulated as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

872 H.-Y. Yang, W.-C. Peng, and C.-H. Lo

∑
Ti∈B

N(Ti) +
∑

Tj∈NB

(N(Tj) − R(Tj , B))

From the above formula, we could verify that minimizing the total number of
messages is achieved by maximizing the number of messages reduced for queries
in the non-backbone set. Intuitively, this problem is able to model as a Max-Cut
problem. Explicitly, each query tree is viewed as a vertex and an edge represents
the number of reduced messages achieved by sharing partial results.

3 Algorithm SB: Selecting Backbones

3.1 Determining Edges and Weights Among Query Trees

When two query trees have some overlaps in their data sources, an edge will be
added in the graph to represent the partial result sharing relationship. Specif-
ically, suppose that the partial result on Sm of Ti is the same as the one on
Sn of Tj. In other words, Di(Sm) is the same as Dj(Sn) due to the same data
sources. For query trees Ti, Tj, wi,j(Sm, Sn) denotes the number of messages
reduced when sensor Sn in Tj obtains the partial result of sensor Sm in Ti. To
formulate the value of wi,j(Sm, Sn), we should consider that Sn should access
the partial result Di(Sm) from Sm. Therefore, an extra transmission cost is re-
quired and this extra transmission cost is therefore estimated as the minimal
hop count between Sm and Sn, denoted as dS(Sm, Sn). Consequently, the value
of wi,j(Sm, Sn) is formulated as Nj(Sn) − dS(Sm, Sn).

To facilitate the presentation of all possible ways for sharing partial results
from Ti and Tj , Wi,j is used to represent the set of weights for various partial
result sharing scenarios between Ti and Tj . As mentioned above, the weight of
each possible sharing scenario is in fact in the form of wi,j(Sm, Sn), meaning
that Ti shares the partial result in Sm to sensor Sn in Tj.

3.2 Design of Algorithm SB

The objective of algorithm SB is to maximize
∑

Tj∈NB

R(Tj, B). Thus, algorithm

SB is greedy in nature and selects the backbone with the maximal number of
messages reduced for those non-backbones each time until no any message could
be reduced when additional backbone is selected.

In essence, the value of R(Tj, B) is related to how the sensor nodes of Tj

access partial results from backbones. Since there are many possible scenarios
for Tj to get partial results from backbones, we should avoid redundant mes-
sage transmissions when formulating the value of R(Tj, B). Thus, we have the
following property.

Property 1. If non-backbone Tj gets a partial result for a node Sx in Tj, it is
unnecessary to further access partial results for the ancestors or descendants of
Sx in Tj.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Multiple In-Network Aggregate Queries 873

Assume that nodes Sy and Sz are the child nodes of node Sx and both nodes Sy

and Sz access partial results from backbones. Obviously, since the partial results
of Sy and Sz is used to aggregate the result on Sx, node Sx should not access
the partial result from backbones. For the same reason, it is also unnecessary to
get partial results for the descendants of Sy or Sz.

In light of Property 1, we have developed a procedure to determine how many
messages could be reduced through the partial result sharing. The algorithmic
form of the proposed procedure is given below:

Procedure R(Tj, B):

1. set Y = ∪i∈BWi,j .T o, to determine the union set of sensors from the auxiliary
table ;
2. Generate the power set of Y , denoted as P (Y), is the set of all subsets of Y ;
3. ∀ X ∈ P (Y), if there exists any ancestor or descendant relationship in X ,
prune X from P (Y);
4. return max∀X∈P (Y)(

∑
Sn∈X and i∈B

wi,j(Sm, Sn))

In the beginning, we will determine the set of Y from the auxiliary table.
As described above, the auxiliary table will contain all the detailed information
related to the partial result sharing. Thus, given the backbone set, we could
easily decide the set of Y . In fact, Y contains all the sensors in Tj that could
access the partial results from backbones. In order to enumerate all the possible
scenarios, we should generate the power set of Y , denoted as P (Y). According
to Property 1, we should avoid redundant message cost and thus, for each set in
P (Y), we should check whether there is any ancestor and descendant relationship
or not. Note that one could refer to query tree Tj to verify any ancestor and
descendant relationship. As such, the set of P (Y) has all the possible scenarios
of partial result sharing for Tj . Consequently, the number of messages reduced
for Tj is able to be the maximal value among these possible scenarios.

To evaluate the benefits of selecting query tree Ti as a backbone, we have the
following definition.

Definition 1. The backbone gain achieved by selecting Ti as a backbone, de-
noted by δ(Ti), can be formulated as δ(Ti) =

∑
Tj∈(NB−Ti)

R(Tj , B ∪ Ti) −∑
Tj∈NB R(Tj , B).

In light of Definition 1, we propose a heuristic algorithm SB that iteratively select
backbones according to backbone gains of query trees. Initially, the backbone
set is empty and the non-backbone set is the set of query trees given. For each
query tree in the non-backbone set, we will calculate the corresponding backbone
gain. Then, the query tree with the maximal backbone gain is included in the
backbone set. Once one query tree is selected as a backbone, we should update
backbone gains for query trees in the non-backbone set. Similarly, according to
the backbone gains of query trees in the non-backbone set, we will select the
one with the maximal backbone gain as a backbone. Algorithm SB selects the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

874 H.-Y. Yang, W.-C. Peng, and C.-H. Lo

0

1000

2000

3000

4000

5000

6000

20 40 60 80 100

Number of queries

N
um

be
r

of
 m

es
sa

ge
s SB

Origin

(a)

0

100

200

300

400

500

600

0 20 40 60 80 100

Overlapping degree

N
um

be
r

of
 m

es
sa

ge
s

Origin

SB

(b)

Fig. 1. Performance comparison of Origin and SB (a) with number of queries varid.
(b) with overlapping degree varied.

query trees in the non-backbone set iteratively until no additional query tree is
selected in the backbone set. When query trees in the non-backbone set have
their corresponding backbone gains smaller than zero, no query tree will be
selected in the backbone set since no more benefit will be earned. As such, a set
of query trees is divided into two sets: the backbone set and the non-backbone
set, which is akin to Max-Cut problem with the objective of maximizing the cut,
meaning that the number of messages reduced is maximized.

4 Performance Evaluation

4.1 Simulation Model

A wireless sensor network is simulated, where there are 500 sensors randomly
deployed in a 500*500 m2 region. The sink is at the left-top corner of the region.
The transmission range of sensors is set to 50 m. Users submit queries to the
sink and each query utilizes scheme TAG [2] to form a query tree, where the root
node is the sink. Query range is referred to those sensors whose sensing data are
the data sources of one query tree. A query region set of a query tree is referred
to the set of nodes in the query trees except the root node (i.e., sink). Assume
that two query trees with their query region sets as R1 and R2. Then, we define
the overlapping degrees of these two query trees as R1∩R2

R1∪R2
. Note that with higher

value of overlapping degree, query trees have more sensors in their overlap area,
which means that more partial results are sharable among query trees. For the
comparison purpose, scheme Origin is referred to the scenario that queries are
performed as usual without any partial result sharing.

4.2 Experimental Results

First, we investigate the impact of sharing partial query results, where the over-
lapping degree is set to 50% and we set the query range to 100 x 100 m2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimizing Multiple In-Network Aggregate Queries 875

As can be seen in Fig. 1(a), the numbers of messages of scheme Origin, algo-
rithm SB increase as the number of queries increases. Note that through the
partial result sharing, algorithm SB has smaller numbers of messages involved.
Note that when query trees have more overlapping area of query regions, these
query trees are likely to have more opportunities to share partial results. Now,
we examine the impact of overlapping degree, where the number of queries is set
to 10 and the query range of each query is set to 100 x 100 m2. The performance
of Origin and SB with the overlapping degree varied is shown in Fig. 1(b). The
number of messages is reduced in SB as the overlapping degree increases. This
phenomenon agrees with our above statement that with a larger value of the
overlapping degree, query trees have more changes to share partial results. As a
result, the performance of SB is better than that of Origin.

5 Conclusion

In this paper, we exploited the feature of sharing partial results to reduce the
total number of messages. Specifically, given a set of queries, we derived a graph,
where each vertex represents one query and the corresponding weight edge de-
notes the number of messages reduced by sharing the partial results. According
to the graph derived, we developed heuristic algorithm SB to derive a cut in
which both backbones and non-backbones are determined. Performance of al-
gorithm SB was comparatively analyzed and experimental results show that by
sharing the partial results, algorithm SB is able to significantly reduce the total
number of messages.

References

1. K. C. K. Lee, W.-C. Lee, B. Zheng, and J. Winter. Processing multiple aggregation
queries in geo-sensor networks. In Proceeding of the 11th International Conference
on Database Systems for Advanced Applications (DASFAA), pages 2034, 2006.

2. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny AGgrega-
tion service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review,
36(SI):131146, 2002.

3. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acqui-
sitional query processing system for sensor networks. ACM Transactions on Data
Base Systems (TODS), 30(1):122173, 2005.

4. A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis. Balancing energy efficiency
and quality of aggregate data in sensor networks. The VLDB Journal, 13(4):384 403,
2004.

5. N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman. Multi-query opti-
mization for sensor networks. In Proceeding of the first IEEE International Confer-
ence on Distributed Computing in Sensor Systems (DCOSS), pages 307321, 2005.

6. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Record, 31(3):918, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visible Nearest Neighbor Queries

Sarana Nutanong1, Egemen Tanin1,2, and Rui Zhang1

1 Department of Computer Science and Software Engineering,
University of Melbourne, Victoria, Australia

2 NICTA Victoria Laboratory, Australia

Abstract. We introduce the visible k nearest neighbor (VkNN) query,
which finds the k nearest objects that are visible to a query point. We
also propose an algorithm to efficiently process the VkNN query. We
compute the visible neighbors incrementally as we enlarge the search
space. Our algorithm dramatically reduces the search cost compared to
existing methods that require the computation of the visibility of all
objects in advance. With extensive experiments, we show that our al-
gorithm to process the VkNN query outperform the existing algorithms
significantly.

Keywords: Nearest Neighbor, Spatial Algorithms, Spatial Data
Structures.

1 Introduction

In many interactive spatial applications, users are only interested in objects that
are visible to them. For example, tourists are interested in locations where a view
of a scene, e.g., sea or mountains, is available; in an interactive online game, a
player is commonly interested in having an overview map of the enemy locations
that can be seen from his/her position. A simple visible nearest neighbor (VNN)
query finds the nearest object that is visible to a query point. Figure 1 shows
an example of the VNN query. The dataset consists of data objects (black dots
and circles) and obstacles (lines). Q is the query point. From Q, some objects
are visible (b, d, f, h, represented by black dots) while the views of some objects
are blocked by obstacles, namely, invisible (a, c, e, g, represented by circles). a
has the smallest distance to Q among all objects, therefore a is the NN in the
traditional sense. However, a is not the VNN of Q since a is invisible to Q.
Among all the visible objects, b is nearest to Q, therefore b is the VNN of Q.
In analogy to the k nearest neighbor (kNN) query, we can have the visible k
nearest neighbor query. In the example, the V3NN of Q is {b, d, f}.

Formally, the VNN query is defined as follows:

Definition 1 (Visible nearest neighbor (VNN) Query). Given a data set
S and a query point Q, find an object O ∈ S, so that: (1) O is visible to Q; and
(2) ∀O′ ∈ S, if O′ is visible to Q, then dist(O, Q) ≤ dist(O′, Q), where dist()
is a function to return the distance1 between the query point and an object. O is
called the visible nearest neighbor (VNN) of Q.
1 In this paper, we focus on the Euclidian distance, although any distance function

can be used in general.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 876–883, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visible Nearest Neighbor Queries 877

Further, the definition of the VkNN query is given as follows:
Definition 2 (Visible k nearest neighbor (VkNN) Query). Given a data
set S and a query point Q, find a set of objects A, so that: (1) A contains k
objects from S; and (2) ∀O ∈ A, O is visible to Q; and (3) ∀O′ ∈ S − A, if
O′ is visible to Q, then dist(O, Q) ≤ dist(O′, Q), where dist() is a function to
return the distance between the query point and an object. A is called the visible
k nearest neighbor set (VkNN) of Q.
The notion of visibility has been extensively studied in the area of computer
graphics and computational geometry [1]. Specifically, given a set of spatial ob-
jects and obstacles, there are efficient algorithms to determine the visible regions,
i.e., the regions where objects are visible. Therefore, a naive method to process
the VkNN query is to use a NN search algorithm to find objects progressively
according to their distances to the query point and use the visibility knowledge
as the post-condition to discard the invisible objects. The process stops when k
visible objects are retrieved. But it requires the visible regions to be determined
in advance, which accesses all the obstacles.

In this paper, we propose an algorithm for VkNN search without pre-computing
the visible regions. Our algorithm is based on the observation that a farther
object cannot effect the visibility of a nearer object. Therefore, we can start
from retrieving the nearest object and incrementally obtain the knowledge of
visibility while finding visible neighbors. By this means, the cost for determining
the visibility of data objects is minimized.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes our proposed VkNN algorithm. Section 4 presents the results
of our experimental study and Section 5 concludes the paper.

Fig. 1. The VNN query

2 Related Work

An incremental nearest neighbor algorithm was introduced in [6] based on a spa-
tial index such as the R-tree [5]. Using this incremental approach, the number of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

878 S. Nutanong, E. Tanin, and R. Zhang

nearest neighbors required, k, need not to be specified in advance and can be re-
trieved in order incrementally. The major benefit of this algorithm compared to
the kNN approach in [8] is that obtaining the next nearest neighbor after having
obtained the k nearest neighbors incurs minimal additional effort. The algorithm
uses a priority queue to maintain the candidates (index nodes or data entries)
ranked by an optimistic distance estimator. Every time an object is retrieved
from the priority queue, the property of the optimistic distance estimator ensures
that nothing left in the priority queue can be nearer to the query point than the
object. Therefore, the objects are retrieved incrementally in increasing order of
their distances to the query point. Our VkNN uses the same incremental search
strategy to find the results. More importantly, we incrementally compute the vis-
ibility knowledge, therefore the visibility determination cost is greatly reduced.

The notion of the constrained nearest neighbor query which combines the
NN problem with the linear-constrained-search problem is introduced in [4]. A
constrained nearest neighbor query finds the nearest neighbor inside a convex-
polygonal spatial constraint. Only nearest neighbors satisfying the constraint set
are returned and only regions satisfying the constraints are explored. Although
the visibility knowledge can be modeled as a set of constraints, it is inefficient to
use the constraint nearest neighbor algorithm to solve the VkNN problem. This
is because the constraint nearest neighbor query requires the constraints to be
given in advance causing preprocessing of the visibility constraints.

Recently, a new type of spatial query, nearest surrounder (NS), is presented in
[7]. A nearest surrounder query finds the nearest object for each distinct range
of angles around the query point. Each returned object is associated with its
orientation, which is the range of angles in which the object is the nearest to the
query point. By this means, only objects that are not entirely eclipsed by nearer
objects can be returned as results. This is similar to VkNN which finds k visible
objects around the query points. The main difference of these two spatial queries
is that NS finds all “visible” objects around the query point whereas the number
of objects in VkNN is user-determined. Using our pre-pruning mechanism, we
can modify VkNN to efficiently find the complete set of nearest surrounders
by running VkNN to completion and associating each returned object with its
visible range of angles.

3 Visible Nearest Neighbor Algorithms

Our algorithm is based on the observation that a farther object cannot effect the
visibility of a nearer object. Therefore, both results and visibility knowledge can
be incrementally obtained. By doing this, the cost for determining the visibility
of data objects is minimized.

Without loss of generality, to simplify our discussion, we make no distinction
between the point objects which can be returned as results and the obstacles
that create invisible regions of space; we refer to both of them as objects. In gen-
eral, objects are represented by polygons (points are special cases of polygons).
Objects represented as polygons (i.e., with extents) can be partially visible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visible Nearest Neighbor Queries 879

Therefore, we introduce a new distance function, called MinViDist, which re-
turns the distance between a query point and the nearest visible point of an
object with regard to a given visibility setting. This distance function is different
from the commonly used MinDist function. The MinDist between a polygon and
a point is the distance between the point and the nearest point in the polygon.

Formally, the MinViDist function is defined as follows:

Definition 3 (MinViDist). Given a polygon P and a query point Q, Min-
ViDist is the distance between Q and a point T ∈ P , so that (1) T is visible to
Q; and (2) ∀T ′ ∈ P , if T ′ is visible to Q, then dist(T, Q) ≤ dist(T ′, Q), where
dist() is a function to return the distance between two points.

(a) (b)

Fig. 2. Comparison of MinDist and MinViDist

As shown in Fig. 2(a), the MinViDist between the query point q and the object c
is the length of the dashed line pointed to the surface of c, whereas the MinDist
between q and c is the length of the solid line pointed to the surface of c, passing
through the obstacle b. The MinDist and MinViDist for object a are the same
since no obstacle is in between. If we order the objects according to MinDist,
we get {b, c, a}; if we order the objects according to MinViDist, we get {b, a, c}.
Therefore, if we rank the objects according to MinDist, we may not get the
answers for a VkNN query in the correct order.

Figure 2(b) shows another example of the difference between MinDist and
MinViDist. The MinViDist between the query point q and the object a is the
length of the dashed line pointed to the surface of a, whereas the MinDist be-
tween q and a is the length of the solid line pointed to the surface of a. They
are different because of the obstacle b. The MinDist between q and c is the
length of the solid line pointed to the surface of c, passing through the obstacle
b; whereas the MinViDist between q and c is infinity, that is, c is invisible to q. If
we issue a 3NN query (which actually uses MinDist to rank the objects), we get
{b, c, a}; if we issue a V3NN query (which actually uses MinViDist to rank the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

880 S. Nutanong, E. Tanin, and R. Zhang

objects), we get {b, a}. c is not returned for V3NN since it is invisible. Therefore,
using MinDist, we may not even get the same set of answers as those retrieved
according to MinViDist.

Given the definition of MinViDist, we can now describe our algorithm to
process the VkNN query. In our presentation, we assume that all the objects
are indexed in an R-tree [5], although our algorithms are applicable to any
hierarchical spatial index structure such as the k-d-tree [3] or the quadtree [9].
We propose three variations of the algorithm which differ in whether pruning
objects by visibility is done before or after retrieving a node, and differ in what
distance estimator we use to order objects in the priority queue that maintains
the candidates. The results are ranked according to the MinViDist function for
all of three variations.

Algorithm PrePruning-MinDist (IsNewQuery, QueryPoint)
1 if IsNewQuery then
2 PriorityQueue ← PriorityQueueCreate()
3 VisibilityConstraintSet ← VisibilityConstraintSetCreate(QueryPoint)
4 NewPQueueNode ← PQueueNodeCreate(RootNode)
5 PriorityQueue.Insert(NewPQueueNode)
6 endif
7 while PriorityQueue.IsEmpty() = false do
8 PQueueNode ← PriorityQueue.Front()
9 SpatialEntity ← PQueueNode.SpatialEntity
10 PriorityQueue.PopFront()
11 if IsInvisible(VisibilityConstraintSet, SpatialEntity) then
12 continue
13 else if IsObject(SpatialEntity) then
14 PQueueNode.Distance ← MinViDist(VisibilityConstraintSet, QueryPoint, SpatialEntity)
15 if PQueueNode.Distance < PriorityQueue.Front().Distance then
16 Update(VisibilityConstraintSet, SpatialEntity)
17 return (SpatialEntity, PQueueNode.Distance)
18 else
19 PriorityQueue.Insert(PQueueNode)
20 endif
21 else if IsBlock(SpatialEntity) then
22 for SubEntity in SpatialEntity.SubEntities do
23 if IsVisible(VisibilityConstraintSet, SpatialEntity) then
24 NewPQueueNode ← NewPQueueNodeCreate()
25 NewPQueueNode.Distance ← MinDist(QueryPoint, SpatialEntity)
26 PriorityQueue.Insert(NewPQueueNode)
27 endif
28 endfor
29 endif
30 endwhile
31 return nil

Fig. 3. Algorithm PrePruning-MinDist

PostPruning: We use a similar kNN search algorithm as in [6] (MinDist is
used to sort the candidates in the priority queue). The only differences are
the post-pruning process discarding invisible objects and result-ranking use
MinViDist. This variation of the algorithm is an adaptation of the existing
algorithm [6].

PrePruning-MinDist: Similar to PostPruning, MinDist is used as the esti-
mator but the index nodes and objects are checked for visibility before they
are retrieved. By this means, we avoid needlessly searching invisible regions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visible Nearest Neighbor Queries 881

which will not produce useful results. Figure 3 shows the detailed steps of
the algorithm. The algorithm is also based on the incremental NN algorithm
[6]. The differences between the two algorithms are that: (1) index nodes and
objects are checked for visibility before they are retrieved from the R-tree
(Line 23) and after they are dequeued from the head of the priority queue
(Line 11); and (2) results are ranked according to MinViDist (Line 14).

PrePruning-MinViDist: This variation differs from PrePruning-MinDist only
in that we use a MinViDist (which is more accurate and more expensive to
calculate) as the metric to order the candidates in the candidate priority
queue. This is done by replacing MinDist in Fig. 3 Line 25 with MinViDist.

4 Performance Evaluation

This section compares the performance of the three variations of the VkNN
search algorithm described in Section 3. In our implementation, a disked-based
R*-tree [2] is used. The data set contains 10,000 objects synthetically generated
and uniformly distributed in a unit 2-dimensional space. These 10,000 objects
also serve as obstacles. The width and height of each object are randomly gen-
erated in a uniform manner ranging between 0.0001 and 0.001 units. The fanout
of the R*-tree nodes is 24. The performance evaluation is conducted on a Intel
Pentium 4 machine with the main memory of 2 GB.

The cost for VkNN calculation can be broken down into five components: data
retrieval, visibility determination, distance calculation, priority queue access,
and reevaluation (the cost for reinserting objects back into the priority queue
for reevaluation). This breakdown can be used to determine which of the three
approaches presented in Section 3 is more suitable in different settings.

The experimental results are presented in six charts. Each chart plots the
performance of the three approaches as a function of k. Figure 4(a) compares the
data-retrieval costs of the three variations, which is measured by the number of
blocks accessed. The result for visibility-determination costs is given in Fig. 4(b).
Figure 4(c) shows the time to calculate the distance of a node in microseconds.
Fig. 4(d) presents the maintenance cost of the priority queue in terms of the
queue size. It is plotted on the logarithmic scale because the priority-queue
access cost is logarithmic with respect to the queue size (when implemented
using heaps). Figure 4(e) displays the reevaluation cost measured by the number
of objects reinserted into the priority queue. This incurs a different type of cost
from the data retrieval cost because it does not involve storage access. The total
response time is displayed in Fig. 4(f).

These experimental results suggest that PrePruning-MinDist have the same
data-retrieval and priority-queue maintenance costs as PrePruning-MinViDist
but the time taken to calculate the distance of each block for PostPruning and
PrePruning-MinDist is much smaller (the reevaluated object counts are small in
general for our settings and can be ignored). Due to the fact that PostPruning
has a larger search space, it has higher reevaluation and queue processing costs.
According to the results, the improvement in terms of search-space reduction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

882 S. Nutanong, E. Tanin, and R. Zhang

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500N
u

m
b

e
r

o
f

re
tr

ie
ve

d
 b

lo
ck

s

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(a) Data retrieval

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

b
lo

ck
s

te
st

e
d

 f
o

r
vi

si
b

ili
ty

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(b) Visibility determi-
nation

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0 100 200 300 400 500

T
im

e
 t

a
ke

n
 t

o
 c

a
lc

u
la

te
 t

h
e

 d
is

ta
n

ce
 (

m
s)

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(c) Distance calculation

 10

 100

 1000

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

ite
m

s
in

 t
h

e
 p

ri
o

ri
ty

 q
u

e
u

e

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(d) Queue Size

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500N
u

m
b

e
r

o
f

re
e

va
lu

a
te

d
 o

b
je

ct
s

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(e) Reevaluation

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500

T
o

ta
l r

e
sp

o
n

se
 t

im
e

 (
m

s)

k

PostPruning
PrePruning-MinDist

PrePruning-MinViDist

(f) Total response time

Fig. 4. Experimental Results

made by using MinViDist instead of MinDist as the distance estimator is con-
sidered to be insignificant while the cost for MinViDist calculation is much higher
than MinDist calculation. We suspect the reason that PrePruning-MinDist and
PrePruning-MinViDist incur the same amount of search space is that the R*-tree
margin-minimization criterion [2] prefers quadratic-shaped index nodes. This
means that most nodes are either invisible or have MinDist about the same
as MinViDist; instead of having a large difference in MinDist and MinViDist.
We can therefore conclude that PrePruning-MinDist which uses the MinDist
metric as the distance estimator and visibility pruning is a better approach for
VNN. The MinViDist metric should be primarily considered for ranking pur-
poses than as a search-estimator. In disk-based R*-trees, PrePruning-MinDist
is clearly a better option than PostPruning. Since in such settings, the data-
retrieval costs dominates the total cost of query processing [6]. A setting that
would make the first approach comparable to PrePruning-MinDist is when the
R*-tree is memory-based and the CPU speeds are very slow, because this makes
it cheaper to retrieve a block from the R*-tree but more expensive to determine
the visibility of a block.

5 Conclusion

In this paper, we introduced a new type query, the visible k nearest neighbor
(VkNN) query. We also introduced a new metric called minimum visible dis-
tance (MinViDist) for result ranking as well as search ordering. Furthermore,
we propose an algorithm (particularly, three variations of the algorithm) to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visible Nearest Neighbor Queries 883

process the VkNN query. All the three variations build up the visibility knowl-
edge incrementally as the visible nearest objects are retrieved and therefore the
computation cost for visibility determination is minimized. It is shown in the
experimental results that the latter two variations, PrePruning-MinDist and
PrePruning-MinViDist, put more effort on the visibility pruning in order to re-
duce the data-retrieval cost. This could be beneficial in settings with disk-based
or network-based storage where the data-retrieval costs are more critical than
the CPU costs. These two variations differ in the computation cost of calculating
the distance estimator and the number of disk accesses for visible objects, which
is a tradeoff depending on computing power and object retrieval cost. Both of
them are more efficient than the first variation, PostPruning, which is an adap-
tation of the existing algorithm [6]. In our experiments, the improvement in
terms of response time of the query processing is up to 35%.

References

1. T. Asano, S. K. Ghosh, and T. C. Shermer. Visibility in the plane, pages 829–876.
Handbook of Computation Geometry. Elsevier Science Publishers, Amsterdam, The
Netherlands, 2000.

2. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient
and robust access method for points and rectangles. In Proceedings of the ACM
SIGMOD Conf., pages 322–331, Atlantic City, NJ, USA, 1990. ACM Press.

3. J. L. Bentley. Multidimensional binary search trees used for associative searching.
CACM, 18(9):509–517, 1975.

4. H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abbadi. Constrained nearest
neighbor queries. In Proceedings of the SSTD Conf., pages 257–278, London, UK,
2001. Springer-Verlag.

5. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings
of the ACM SIGMOD Conf., pages 47–57, Boston, MA, USA, 1984. ACM Press.

6. G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans.
Database Syst., 24(2):265–318, 1999.

7. K. C. K. Lee, W. C. Lee, and H. V. Leong. Nearest surrounder queries. In Proceedings
of the ICDE Conf., pages 85–94, Atlanta, GA, USA, 2006. IEEE Computer Society.

8. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings
of the ACM SIGMOD Conf., pages 71–79, San Jose, CA, USA, 1995. ACM Press.

9. H. Samet. The quadtree and related hierarchical data structures. ACM Comput.
Surv., 16(2):187–260, 1984.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Query Processing Considering Energy

Consumption for Broadcast Database Systems

Shinya Kitajima1, Jing Cai1, Tsutomu Terada2,
Takahiro Hara1, and Shojiro Nishio1

1 Dept. of Multimedia Eng., Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{kitajima.shinya, cai, hara, nishio}@ist.osaka-u.ac.jp

2 Cybercommunity Division, Cybermedia Center, Osaka University
5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

tsutomu@cmc.osaka-u.ac.jp

Abstract. In recent years, there has been an increasing interest in the
broadcast database system where the server periodically broadcasts con-
tents in a database to mobile clients such as portable computers and
PDAs. There are three query processing methods in the broadcast data-
base system, while each method consumes different amount of power
for query processing. In this paper, we propose a new query processing
method which dynamically chooses an appropriate method among the
three query processing methods by considering energy consumption.

Keywords: data broadcast, broadcast database system, query process-
ing, power consumption.

1 Introduction

The recent evolution of wireless communication technologies has led to an in-
creasing interest in broadcast information systems in which data is disseminated
via the broadcast. In such systems, a server broadcasts various data periodi-
cally via the broadband channel, while clients pick out and store necessary data.
There are many studies for improving the performance of broadcast information
systems[1,2,3]. Most of them deal with broadcast data as data items simply,
and do not address the performance improvement by considering contents and
characteristics of broadcast data.

In this paper, we assume a broadcast system that the server periodically
broadcasts contents in a database and clients issue queries to retrieve data from
the database. We call such a system broadcast database system. There are three
basic query processing methods in this system. However, the performance of each
method changes according to the system situation such as query frequency.

In [5], we proposed a query processing method which chooses the method with
the least response time among these three methods. In this paper, based on the
method in [5], we propose a new query processing method which considers the
energy consumption of mobile clients when choosing a query processing method.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 884–890, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Query Processing Considering Energy Consumption 885

Main
channel

Sub
channel

Uplink
Database

Broadcasting data

1

2 3
4

5…
Broadcasting data

1

2 3
4

5… Downlink

Server

Clients

Fig. 1. Broadcast database system

Furthermore, the simulation evaluation confirms that the proposed method im-
proves the lifetimes of clients with a low battery power left.

The remainder of this paper is organized as follows. Section 2 describes the
outline of a broadcast database system and introduces three basic query process-
ing methods and the traditional method in the broadcast database system. Sec-
tion 3 explains our method in details. Section 4 evaluates the performance of
our method. Finally, we conclude the paper in Section 5.

2 Broadcast Database System

Fig. 1 illustrates the concept of a broadcast database system. In this system, the
server broadcasts contents in a relational database via the broadcast channel
and processes queries from clients. Clients issue queries to retrieve the necessary
data from the database. Clients have a small storage, low power resource, and
low CPU capability, such as a PDA. The broadcast channel from the server to
clients is divided into two channels: a broadband main channel to disseminate the
contents in a database repeatedly, and a narrowband sub channel to disseminate
the other data. Moreover, there is a narrowband uplink channel from clients to
the server. Clients use the uplink channel to send queries to the server.

2.1 Assumed Environment

We assume that our method is used for disseminating information to many and
unspecified users. For example, for an information service in a shopping center,
the server broadcasts data in the database including advertising information,
shop information, and goods information in the shopping center, while thousands
of users receive the broadcast information and retrieve the necessary information.
The broadcast data contains maps of shops and images of goods.

The users occasionally issue queries to the server to retrieve the information,
such as a natural join operation “I want the image of item A, and the map to
the shop selling the item”. We assume several minutes’ delay for receiving query
result is acceptable for clients. On the other hand, users set the deadline of the
response time to each query. When users cannot receive query result by the time
of deadline, the query fails. Although users stay in shopping center for a certain

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

886 S. Kitajima et al.

time, the battery is limited and the users who run out of the battery cannot
receive the service.

2.2 Query Processing Methods

In the broadcast database system, there are three basic query processing methods
and one adaptive method as follows.

On-demand method: A client sends a query to the server through the uplink.
The server processes the query and broadcasts the query result via the sub
channel. In this method, the query processing is completely done by the server, no
workspace is required for query processing at client, thus the energy consumption
is low.

Client method: A client stores all the tables related to the query, and processes
the query by itself. Query processing causes a heavy workload on the client which
consumes a lot of battery power.

Collaborative method: A client sends a query to the server through the up-
link. The server processes the query, attaches the query identifier to the tuples
that appear in the query result, creates rules for the client to process the data,
and then broadcasts the rules via the sub channel. Based on the received rules,
the client receives the necessary tuples via the main channel referring to the
identifiers, and reconstructs the query result by combining these tuples[4].

LRT (Least Response Time) method: The system performance, when each
method is used individually, changes with the environmental conditions such
as query frequency. In the LRT method[5], when the server receives a query, it
calculates the response time respectively for the on-demand method, the client
method, and the collaborative method, and then chooses a query processing
method with the least response time.

3 ELEC Method

In the LRT method, there is a problem that the lifetimes of clients with a low bat-
tery become short. Therefore, we propose a new query processing method, called
ELEC (Extended LRT considering Energy Consumption) method, that considers
the battery capability of mobile clients when choosing a query processing method,
and improves the lifetimes of clients which remain a low battery power.

3.1 Outline

In the ELEC method, the server basically chooses a query processing method
according to the LRT method. However, the server checks the remaining battery
of the client issuing query, and preferentially chooses the method with the lowest
energy consumption when the remaining battery is lower than the threshold
PTH . The procedure of the query processing is as follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Query Processing Considering Energy Consumption 887

1. If the remaining battery of the client which currently issues a query is more
than PTH , the server chooses the query processing method according to the
LRT method.

2. Otherwise, the server chooses the query processing method with lowest en-
ergy consumption.

The optimal PTH will be changed according to the query frequency, remaining
battery of clients, and so on.

3.2 Calculation of the Thresholds

For deciding the optimal threshold PTH , the server duplicates last q queries
while changing the tentative value of the threshold. Then, the server sets the
threshold, so that the energy consumption for clients of which the remaining
battery is less than the threshold, becomes least.

1. We define the remaining battery of the client which issues the last x-th
query Qx as Px. We also define the sequence of numbers which consists of
q elements as A = (P1, P2, . . . , Pq), and the ascending sequence of A as the
sequence of nominated thresholds A′.

2. We represent the k-th element of A′ as A′[k]. The server takes the following
steps for A′[i](i = 1, 2, . . . , q).

(2a) The server duplicates last q queries by setting A′[i] as tentative threshold.
(2b) The server calculates the energy consumption per query of which the

remaining battery is less than A′[i], which is represented as Ei.
(2c) If Ej > Ej−1 > Ej−2(j = 1, 2, . . . , q), the server judges the optimal

threshold is less than Aj , and goes to step 3.
3. We represent the minimum of Ei(i = 1, 2, . . . , q) as Emin i, while the thresh-

old for next q queries as A′[min i].

4 Evaluation

This section evaluates the ELEC method. Three evaluation criteria are intro-
duced as follows.

Lifetime: The elapsed time from the user arrival to the user exit, due to either
spending enough time or running out of the battery. Note that clients consume
battery only by the processes related to query processing.

Success rate: The ratio of the queries of which clients could get the results to
all of the queries clients issued.

Response time: The average elapsed time from the query generation to the
acquirement of the query result. Note that the response time does not include
the time for transmitting a query from a client to the server and the time for
processing the data at the client side or the server side, since they are adequately
short.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

888 S. Kitajima et al.

Table 1. Parameters

Parameter Value

Simulation time[sec] 36000
Estimated staying time of users[sec] 7200
Query interval for a user[sec] 300
Deadline of response time[sec] 80
Number of tuples 10000
Size of a tuple[KByte] 10
Number of identifiers 200
Bandwidth of main/sub channel[Mbps] 10/1
Size of a processing rule[KByte] 1
Average ratio for all tuples of necessary tuples 0.003
Standard deviation for all tuples of necessary tuples 0.001
The initial remaining battery of each client[unit energy] 100 - 1000(uniform distribution)
The storage capacity of each client[MB] 1 - 100(uniform distribution)
The speed of writing/reading data[MB/s] 10/15

4.1 Simulation Environment

In the evaluation, the database schema and the query model is supposed for
an information service in a shopping center as described in Section 2.1. The
database consists of a shop table and a goods table. For the sake of simplicity,
all tuples are supposed to be the same size. Moreover, a client only issues queries
of a natural join with the shop table and the goods table.

Table 1 shows the parameters used in the evaluation. The rate of necessary
tuples represents the rate of tuples which are included in the query result to
all tuples in the table. The user arrival intervals are given by the exponential
distribution with a parameter of user arrival frequency, which is changed as
shown in Fig. 2. Each user has a mobile client to access service. A user, who
arrives at the shopping center, issues a query according to the query interval,
with the deadline of the response time, the storage capacity, and the remaining
battery. Each user exits the shopping center after elapsing the estimated staying
time. We assume that the CPU capability of all clients are the same. Moreover,
Mahesri et al’s measurement results in [6] are used to define that the energy
consumption of query processing is proportional to time t, it is presented as
total sum of the energy consumption for CPU (Eh

C = 2t (when CPU load is
high), El

C = 0.5t (when CPU load is low)), the energy consumption for wireless
LAN (EW = t), and the energy consumption for I/O (EI = t for reading, EO = t
for writing).

4.2 Simulation Results

Table 2 shows the evaluation results of the success rate and the average response
time of the LRT method and the ELEC method. Moreover, Fig. 3 shows the
evaluation results of the average lifetime under different initial remaining battery
of clients, which is classified in every 100 unit energies. The parameter q of the
ELEC method is set to 50 according to the preliminary experiment.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Query Processing Considering Energy Consumption 889

0

5

10

15

20

25

0 60 120 180 240 300

Time[10
2

 sec]

 U
s
e
r
fr
e
q
u
e
n
c
y
[s
e
c
]

Fig. 2. Change of user arrival frequency

Table 2. Success rate and response time

Method Success rate Average response time

LRT 94.4% 40.4[sec]
ELEC 93.5% 41.9[sec]

Fig. 3. Average lifetime

Table 2 and Fig. 3 show that the average lifetime of the ELEC method is
much longer than that of the LRT method, though the success rate and the
average response time of the ELEC method are a little worse than those of the
LRT method. In the ELEC method, the lifetime of clients which have a low
remaining battery is long, since the server preferentially chooses the method
that has lowest energy consumption when the remaining battery of the client is
low. However, the restriction of the sub channel, storage, and identifier worsens
the success rate and the average response time, due to continuously choosing the
query processing method with the lowest energy consumption.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

890 S. Kitajima et al.

5 Conclusions

In this paper, we proposed a new query processing method which dynamically
chooses a query processing method by considering the energy consumption. With
the proposed method, the server preferentially chooses the method with the low-
est energy consumption when the remaining battery is lower than the threshold.
The simulation results confirmed that the proposed method improved the life-
time of the clients which have a low remaining battery.

In future, we plan to examine a method which decides the threshold according
to the CPU capability of clients.

Acknowledgments. This research was partially supported by The 21st Cen-
tury Center of Excellence Program “New Information Technologies for Building
a Networked Symbiotic Environment” and Grant-in-Aid for Scientific Research
(A)(17200006) and (18049050) of the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

References

1. Acharya, S., Alonso, R., Franklin, M., and Zdonik, S.: Broadcast disks: data man-
agement for asymmetric communication environments. Proc. ACM SIGMOD’95,
pp. 199–210, May 1995.

2. Acharya, S., Franklin, M., and Zdonik, S.: Balancing push and pull for data broad-
cast. Proc. ACM SIGMOD’97, pp. 183–194, May 1997.

3. Aksoy, D., Franklin, M., and Zdonik, S.: Data staging for on-demand broadcast.
Proc. VLDB’01, pp. 571–580, Sept. 2001.

4. Kashita, M., Terada, T., Hara, T., Tsukamoto, M., and Nishio, S.: A collaborative
query processing method for a database broadcasting system. Proc. CIIT’02, pp. 60–
66, Nov. 2002.

5. Kitajima, S., Cai, J., Terada, T., Hara, T., and Nishio, S.: A query processing
mechanism based on the broadcast queue for broadcast database systems. Proc.
ISWPC’06, pp. 450–455, Jan. 2006.

6. Mahesri, A., and Vardhan, V.: Power consumption breakdown on modern laptop.
Proc. International Workshop on Power-Aware Computing Systems (PACS’04),
Dec. 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Vague Association Rules

An Lu, Yiping Ke, James Cheng, and Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong, China
{anlu,keyiping,csjames,wilfred}@cse.ust.hk

Abstract. In many online shopping applications, traditional Association Rule
(AR) mining has limitations as it only deals with the items that are sold but ig-
nores the items that are almost sold. For example, those items that are put into
the basket but not checked out. We say that those almost sold items carry hes-
itation information since customers are hesitating to buy them. The hesitation
information of items is valuable knowledge for the design of good selling strate-
gies. We apply vague set theory in the context of AR mining as to incorporate
the hesitation information into the ARs. We define the concepts of attractiveness
and hesitation of an item, which represent the overall information of a customer’s
intent on an item. Based on these two concepts, we propose the notion of Vague
Association Rules (VARs) and devise an efficient algorithm to mine the VARs.
Our experiments show that our algorithm is efficient and the VARs capture more
specific and richer information than traditional ARs.

1 Introduction

Association Rule (AR) mining [1] is one of the most important data mining tasks. Tra-
ditional AR mining has been extensively studied for over a decade; however, in recent
years, the emergence of many new application domains, such as the Web, has led to
many possibilities and challenges of studying new forms of ARs.

Consider the classical market basket case, in which AR mining is conducted on trans-
actions that consist of items bought by customers. However, there are also many items
that are not bought but customers may have considered buying them. We call such in-
formation on a customer’s consideration to buy an item the hesitation information of
the item, since the customer is hesitating whether to buy it. The hesitation informa-
tion of an item is useful knowledge for boosting the sales of the item. However, such
information is not considered in traditional AR mining due to the difficulty to collect
hesitation information in the past. Nevertheless, with the advance in Web technology, it
is now much easier to obtain the hesitation information of the items. Consider an online
shopping scenario, such as “Amazon.com”, it is possible to collect huge amount of data
from the Web log that can be considered as hesitation information. For example, in the
online shopping scenario: (1) the items that customers put into their online shopping
carts but were not checked out eventually; (2) the items that are in customers’ favorite
lists to buy next time; (3) the items that are in customers’ wishing lists but not yet avail-
able in the store; and so on. The hesitation information can then be used to design and
implement selling strategies that can potentially turn those “under consideration” items
into “well sold” items.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 891–897, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

892 A. Lu et al.

We apply the vague set theory [2] as a basis to model the hesitation information
of the items. Vague set theory addresses the drawback of a single membership value
in fuzzy set theory [3] by using interval-based membership that captures three types
of evidence with respect to an object in a universe of discourse: support, against and
hesitation. Thus, we can naturally model the hesitation information of an item in the
mining context as the evidence of hesitation with respect to the item. The information
of the “sold” items and the “not sold” items (without any hesitation information) in the
traditional setting of AR mining correspond to the evidence of support and against with
respect to the item.

To study the relationship between the support evidence and the hesitation evidence
with respect to an item, we propose the concepts of attractiveness and hesitation of
an item, which are based on the median membership and the imprecision membership
[4,5] that are derived from the vague membership in vague sets. An item with high
attractiveness means that the item is well sold and has a high possibility to be sold again
next time. An item with high hesitation means that customers are always hesitating to
buy the item due to some reason (e.g., the customer is waiting for price reduction) but
has a high possibility to buy it next time, if the reason of giving up the item is identified
and resolved (e.g., some promotion on the item is provided).

Using the notions of attractiveness and hesitation of items, we model a database with
hesitation information as an AH-pair database that consists of AH-pair transactions,
where A stands for attractiveness and H stands for hesitation. Based on the AH-pair
database, we then propose the notion of Vague Association Rules (VARs), which capture
four types of relationships between two sets of items: the implication of the attractive-
ness/hesitation of one set of items on the attractiveness/hesitation of the other set of
items. To evaluate the quality of the different types of VARs, four types of support and
confidence are defined. We also investigate the properties of the support and confidence
of VARs, which can be used to speed up the mining process. Based on these properties,
an efficient algorithm is then designed to mine the VARs.

Our experiments on both real and synthetic datasets verify that our algorithm to
mine the VARs is efficient. Compared with the traditional ARs mined from transac-
tional databases, the VARs mined from the AH-pair databases, which are modelled
from transactional databases by taking into account the hesitation information of items,
are more specific and are able to capture richer information. More importantly, we find
that, by aggregating more transactions into an AH-pair transaction, our algorithm is
significantly more efficient while still obtaining almost the same set of VARs.

Organization. This paper is organized as follows. Section 2 presents the VARs and
defines related concepts. Section 3 discusses the algorithm to mine the VARs. Section 4
reports the experimental results and Section 5 offers the conclusions.

2 Vague Association Rules

In this section, we define the notion of Vague Association Rules (VARs) and four types
of support and confidence used to evaluate the quality of the VARs. We then present
some properties of VARs that can be used to speed up the process of mining VARs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Vague Association Rules 893

Given the transactions of the customers, we then aggregate the transactions to obtain
the intent of each item. Based on the intent of an item, we next define the attractiveness
and hesitation of it.

Definition 1. (Intent, Attractiveness and Hesitation, AH-Pair Transactions) The in-
tent of an item x, denoted as intent(x), is a vague value [α(x), 1 − β(x)]. The at-
tractiveness of x, denoted as MA(x), is defined as the median membership of x, i.e.,
MA(x) = (α(x) + (1 − β(x)))/2. The hesitation of x, denoted as MH(x), is de-
fined as the imprecision membership of x, i.e., MH(x) = ((1 − β(x)) − α(x)). The
pair 〈MA(x), MH(x)〉 is called the AH-pair of x. An AH-pair transaction T is a tu-
ple <v1, v2, . . . , vm> on an itemset IT = {x1, x2, . . . , xm}, where IT ⊆ I and vj =
〈MA(xj), MH(xj)〉 is an AH-pair of the item xj , for 1 ≤ j ≤ m. An AH-pair database
is a sequence of AH-pair transactions.

We now present the notion of VARs and define the support and confidence of a VAR.

Definition 2. (Vague Association Rule) A Vague Association Rule (VAR), r = (X ⇒
Y), is an association rule obtained from an AH-pair database.

Based on the attractiveness and hesitation of an item, we define four different types of
support and confidence of a VAR depending on what kind of knowledge we want to
acquire. For clarity, we use A to denote Attractiveness and H to denote Hesitation.

Definition 3. (Support) Given an AH-pair database, D, we define four types of sup-
port for an itemset Z or a VAR X ⇒ Y , where X ∪ Y = Z , as follows.

1. The A-support of Z , denoted as Asupp(Z), is defined as
∑

T∈D

∏
z∈Z

MA(z)/|D|.

2. The H-support of Z , denoted as Hsupp(Z), is defined as
∑

T∈D

∏
z∈Z

MH(z)/|D|.

3. The AH-support of Z , denoted as AHsupp(Z), is defined as∑
T∈D

∏
x∈X,y∈Y

MA(x)MH(y)/|D|.

4. The HA-support of Z , denoted as HAsupp(Z), is defined as∑
T∈D

∏
x∈X,y∈Y

MH(x)MA(y)/|D|.

Z is an A (or H or AH or HA) FI if the A- (or H- or AH- or HA-) support of Z is
no less than the (respective A or H or AH or HA) minimum support threshold σ.

Definition 4. (Confidence) Given an AH-pair database, D, we define the confidence
of a VAR, r = (X ⇒ Y), where X ∪ Y = Z , as follows.

1. If both X and Y are A FIs, then the confidence of r, called the A-confidence of r

and denoted as Aconf (r), is defined as Asupp(Z)
Asupp(X) .

2. If both X and Y are H FIs, then the confidence of r, called the H-confidence of r

and denoted as Hconf (r), is defined as Hsupp(Z)
Hsupp(X) .

3. If X is an A FI and Y is an H FI, then the confidence of r, called the AH-
confidence of r and denoted as AHconf(r), is defined as AHsupp(Z)

Asupp(X) .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

894 A. Lu et al.

4. If X is an H FI and Y is an A FI, then the confidence of r, called the HA-
confidence of r and denoted as HAconf(r), is defined as HAsupp(Z)

Hsupp(X) .

Problem Description. Given an AH-pair database D, σ and c, the problem of VAR
mining is to find all VARs r such that supp(r) ≥ σ and conf(r) ≥ c, where supp and
conf are one of the A-, H-, AH-, and HA- support and confidence.

Note that the thresholds σ and c can be different for different types of VARs. Here-
after, we just set them to be the same for different types of VARs, and this can be easily
generalized to the case of different thresholds.

We give some properties of VARs which can be used to design an efficient algo-
rithm for mining VARs. The following proposition states that the support defined for an
itemset in an AH-pair database has the anti-monotone property.

Proposition 1. The following statements are true.

1. If X ⊆ X ′, then Asupp(X ′) ≤ Asupp(X) and Hsupp(X ′) ≤ Hsupp(X).
2. Given an item x, MH(x)

2 ≤ MA(x) ≤ 1 − MH(x)
2 .

3. Given a VAR, r = (X ⇒ Y), where |X| = m and |Y | = n, we have (1
2)m Hsupp(r)

≤AHsupp(r) ≤ 2nAsupp(r); (1
2)n Hsupp(r) ≤ HAsupp(r) ≤ 2mAsupp(r);

AHconf(r) ≤ 2nAconf (r); (1
2)nHconf (r) ≤ HAconf (r).

3 Mining Vague Association Rules

In this section, we present an algorithm to mine the VARs. We mine the set of all A, H ,
AH and HA FIs from the input AH-pair database, and then generate the VARs from FIs.

Let Ai and Hi be the set of A FIs and H FIs containing i items, respectively. Let
AiHj be the set of AH FIs containing i items with A values and j items with H values.
Note that AiHj is equivalent to HjAi. Let CS be the set of candidate FIs, from which
the set of FIs S is to be generated, where S is Ai, Hi, or AiHj .

Algorithm 1. MineVFI(D,σ)

1. Mine A1 and H1 from D;
2. Generate CA2 from A1, CA1H1 from A1 and H1, and CH2 from H1;
3. Verify the candidate FIs in CA2 , CA1H1 and CH2 to give A2, A1H1 and H2, respectively;
4. for each k = 3, 4, . . ., where k = i + j, do
5. Generate CAk from Ai−1 and CHk from Hi−1, for i = k;
6. Generate CAiHj from Ai−1Hj , for 2 ≤ i < k, and from A1Hj−1, for i = 1;
7. Verify the candidate FIs in CAk , CHk , and CAiHj to give Ak, Hk, and AiHj ;
8. return all Ai, Hj , and AiHj mined;

The algorithm to compute the FIs is shown in Algorithm 1. We first mine the set of
frequent items A1 and H1 from the input AH-pair database D. Next, we generate the
candidate FIs that consists of two items (Line 2) and compute the FIs from the candidate
FIs (Line 3). Then, we use the FIs containing (k − 1) items to generate the candidate
FIs containing k items, for k ≥ 3, which is described as follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Vague Association Rules 895

For each pair of FIs, x1 · · · xk−2y and x1 · · · xk−2z in Ak−1 or Hk−1, we generate
the itemset x1 · · ·xk−2yz into CAk

or CHk
. For each pair of FIs, x1 · · · xi−2uy1 · · · yj

and x1 · · · xi−2vy1 · · · yj in Ai−1Hj , or x1y1 · · · yj−2u and x1y1 · · · yj−2v in A1Hj−1,
we generate the itemset x1 · · ·xi−2uvy1 · · · yj or x1y1 · · · yj−2uv into CAiHj .

After generating the candidate FIs, we obtain the FIs as follows. For each Z ∈ CAk

(or Z ∈ CHk
), if ∃X ⊂ Z , where X contains (k−1) items, X �∈ Ak−1 (or X �∈ Hk−1),

then we remove Z from CAk
(or CHk

). For each Z = x1 · · · xiy1 · · · yj ∈ CAiHj , if
∃i′, where 1 ≤ i′ ≤ i, (Z − {xi′}) �∈ Ai−1Hj ; or ∃j′, where 1 ≤ j′ ≤ j, (Z −
{yj′}) �∈ AiHj−1, then we remove Z from CAiHj . Here, the anti-monotone property
[1] of support is applied to prune Z if any of Z’s subsets is not an FI. After that, the
support of the candidate FIs is computed and only those with support at least σ are
retained as FIs. Finally, the algorithm terminates when no candidate FIs are generated
and returns all FIs.

After mining the set of all FIs, we generate the VARs from the FIs. There are four
types of VARs. First, for each A or H FI Z , we can generate the VARs X ⇒ Y , ∀X, Y
where X ∪ Y = Z , using the classical AR generation algorithm [1]. Then, for each AH
(or HA) FI Z = (X ∪Y), where X is an A FI and Y is an H FI, we generate two VARs
X ⇒ Y and Y ⇒ X . The confidence of the VARs can be computed by Definition 4.

4 Experiments

In this section, we use both real and synthetic datasets to evaluate the efficiency of the
VAR mining algorithm and the usefulness of the VARs. All experiments are conducted
on a Linux machine with an Intel Pentium IV 3.2GHz CPU and 1GB RAM.

4.1 Experiments on Real Datasets

For the first set of experiments, we use the Web log data from IRCache [6], which is the
NLANR Web Caching project. Then we can classify Web pages into three categories:
target, non-target, and transition according to the time spent on the Web page, the
position of the Web page in the browsing trail and the number of visits to the Web page.
The three categories correspond to the three status of items, i.e., 1, 0 and h.

Since the Web log data contain a huge number of different Web sites, we only report
the result on the Web log of a single Web site (www.google.com) from all nine IRCache
servers on a single day (Aug. 29, 2006).When σ= 0.001 and c=0.9, we obtain one VAR:
http://gmail.google.com/, http://gmail.google.com/mail/ ⇒ http://mail.google.com/
mail/, with HA-support of 0.003 and HA-confidence of 0.99. This VAR shows that
http://gmail. google.com/ and http://gmail.google.com/mail/ always play the role of
transition pages to the target page http://mail.google.com/mail/. As a possible appli-
cation, we can add a direct link from the transition pages (http://gmail.google.com/ or
http://gmail.google.com /mail/) to the target page (http://mail.google.com/mail/) to fa-
cilitate the user traversal of the Web site. Actually, by typing either the URL of the two
transition pages in a Web browser, it is redirected to the URL of the target page, where
the redirect mechanism serves as a special kind of direct link.

In order to compare with the traditional ARs, we also test on the database that con-
tains all the trails without distinguishing the Web pages. At σ= 0.0008 and c=1, 70 ARs

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

896 A. Lu et al.

0

50

100

150

200

250

0 0.02 0.04 0.06 0.08 0.1 0.12

Minimum Support

R
u

n
n

in
g

 T
im

e
 (

s
e

c
.)

Step=10

Step=100

Step=1000

Step=10000

Fig. 1. Running Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.02 0.04 0.06 0.08 0.1 0.12

Minimum Support

N
u

m
b

e
r

o
f

F
Is

Step=10

Step=100

Step=1000

Step=10000

Fig. 2. Number of FIs

are returned. Among them, 59 ARs (84%) contain the entrance page (www.google.com),
which is not that interesting. Among the remaining ARs, the following rule is found:
http://mail.google.com/, http://gmail.google.com/, http://gmail.google.com/mail/ ⇒
http://mail.google.com/mail/ with support 0.001 and confidence 1, which is similar to
the VAR we find. This result shows the effectiveness of mining VARs, since the tradi-
tional AR mining approach returns many ARs but it is difficult for the user to tell which
ARs are more important for practical uses, while mining VARs can find more specific
rules directly.

4.2 Experiments on Synthetic Datasets

We test on the synthetic datasets to evaluate the efficiency and the scalability of our al-
gorithm. We modify the IBM synthetic data generator [7] by adding “hesitation” items.
The ID and the number of “hesitation” items in each transaction are generated accord-
ing to the same distributions as those for the original items. We generate a dataset with
100000 transactions and 100 items. We use a parameter Step to represent the number of
transactions which are aggregated to give an AH-pair transaction.

We first test the algorithm under different values of σ. Fig. 1 and Fig. 2 report the
running time and the number of FIs. From Fig. 1, the running time increases with the
decrease in the value of σ due to the larger number of FIs generated. We also find that,
for the same value of σ, the running time decreases significantly with the increase in
the value of Step. This is because we aggregate more transactions to a single AH-pair
transaction and hence the number of AH-pair transactions is smaller in the database.
However, Fig. 2 shows that the number of FIs for the different Step values varies only
slightly (note that all the four lines are coincided into one line in Fig. 2). We further
check the FIs obtained for the different Step values and find that they are indeed similar.
This result shows that we can actually aggregate more transactions to give the AH-
pair transactions so that we can improve the efficiency of the mining operation but still
obtain the same set of FIs and hence the VARs.

5 Conclusions

We apply the vague set theory to address a limitation in traditional AR mining problem,
that is, the hesitation information of items is not considered. We propose the notion of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mining Vague Association Rules 897

VARs that incorporates the hesitation information of items into ARs. We also define
different types of support and confidence for VARs in order to evaluate the quality of
the VARs for different purposes. An efficient algorithm is proposed to mine the VARs,
while the effectiveness of VARs is also confirmed by the experiments on real datasets.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In Buneman, P., Jajodia, S., eds.: SIGMOD Conference, ACM Press (1993)
207–216

2. Gau, W.L., Danied, J.B.: Vague sets. IEEE Transactions on Systems, Man, and Cybernetics
23 (1993) 610–614

3. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
4. Lu, A., Ng, W.: Managing merged data by vague functional dependencies. In Atzeni, P., Chu,

W.W., Lu, H., Zhou, S., Ling, T.W., eds.: ER. Volume 3288 of Lecture Notes in Computer
Science., Springer (2004) 259–272

5. Lu, A., Ng, W.: Vague sets or intuitionistic fuzzy sets for handling vague data: Which one
is better? In Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O., eds.: ER.
Volume 3716 of Lecture Notes in Computer Science., Springer (2005) 401–416

6. NLANR: (http://www.ircache.net/)
7. IBM Quest Data Mining Project. The Quest retail transaction data generator. http://www.

almaden.ibm.com/software/quest/ (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimized Process Neural Network Model�

Guojie Song1,3, Dongqing Yang1, Yunfeng Liu2, Bin Cui1, Ling Wu1,
and Kunqing Xie3

1 School of Electronic Engineering and Computer Science, Peking University, Beijing, China
gjsong@pku.edu.cn,cuibin@pku.edu.cn,dqyang@pku.edu.cn

2 Computer Center of Peking University, Beijing
3 National Laboratory on Machine Perception, Peking University, Beijing

kunqing@cis.pku.edu.cn

Abstract. In this paper, we proposed an optimized process neural network based
on fourier orthogonal base function, which can deal with both static value and
time-varied continuous value simultaneously. To further improve its performance,
we optimize the network topological structure, which adopts fourier expansion
based preprocessing. Experiments based on the real datasets show that our pro-
posed churn prediction method has better maneuverability and performance. Most
important of all, our method has been used in real applications in China Mobile
which is the major telecommunication company of the world.

1 Introduction

Many techniques have emerged for the purpose of classification, such as artificial neu-
ral networks, SVM and classification trees [1,2,5,6]. Unfortunately, inputs of all these
methods are static values. However, real applications also include many time-varied
continuous values. Such time continuous values are always being summarized firstly by
using techniques, such as sum, average etc, and then taken as input in static value by
existing methods. However, many useful information for churn prediction are contained
in such time-varied continuous values, but which will be removed with the execution of
above preprocessing unfortunately.

To solve this problem, He and Liang proposed artificial process neuron model [3] in
2000. From a point view of architecture, process neuron is similar to conventional ar-
tificial neuron, which can be considered as a general form of traditional neuron model.
The major difference is that the input, the output and the corresponding connection
weight of process neuron are not static values but time-varied functions, and capable
of imitating time-varied continuous value perfectly. Process neural network (PNN) is
composed of densely interconnected process neurons. A particularly important element
of designing process neuron is the choice of base function, which can influence its per-
formance greatly. In general, the characteristics of PNN is its high prediction accuracy
and express ability. But the efficiency of PNN is always concerned by users.

In this paper, an optimized process neural network, named MPNN, has been pro-
posed, which can deal with both traditional static data and the time-varied continuous

� This work is supported by the National Natural Science Foundation of China under Grant No.
60473051 and No.60642004 and IBM and HP Joint Research Project.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 898–904, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimized Process Neural Network Model 899

data simultaneously. Fourier orthogonal base function has been chosen as the base func-
tion of process neuron to expand each time varied continuous series efficiently. To avoid
repeating computation of fourier base function expansion and time aggregation opera-
tion, an optimized MPNN has been proposed, which use the preprocessing technique
based on fourier transform to simplify the structure of MPNN. The effectiveness and
efficiency of MPNN have also been proved by our extensively experiments based on
the real dataset. The system with the proposed churn prediction model has been imple-
mented, and used in China Mobile Communications.

The remaining of the paper is organized as follows. In Section 2, we presents the
proposed MPNN model. A performance study of the proposed method is demonstrated
in Section 3, and finally we conclude our study in Section 4.

2 MPNN: A Mixed PNN Model

2.1 Topological Structure of MPNN

The MPNN proposed is composed of four layers: input layer, two hidden layers and
one output layer. Input layer is composed of n +

∑m
i=1 Ai units, which includes both

continuous time-varied data, such as billing data, and discrete data, such as customer
gender etc. Thus, the input of MPNN include n input node dealing with continuous
time series data and

∑m
i=1 Ai nodes for discrete static input data, where each input

node di,Ai corresponds to one value of property Ai, with 1 if value(Ai) = di,Ai else
with 0. The first hidden layer is composed of n process neurons and m traditional
neurons. Process neurons deal with n time continuous input data and traditional neuron
only accept

∑m
i=1 Ai discrete static data from the input layer. The second hidden layer

is composed of p traditional neurons and the last layer is output layer. To reduce the
complexity, we will only consider the case of one output unit.

2.2 Relationship Between Input and Output

Input: The inputs of the first layer can be expressed as two parts: X(t) for time varied
continuous time series and D for discrete static input, denoted as X(t) =
(x1(t), x2(t), ..., xn(t))D = (d1,1, ..., d1,A1 , ..., dm,1, ..., dm,Am)

The outputs of the first hidden layer: We first consider the computation of j-th process
neuron connected with continuous input X(t). y

(c,1)
j = fp(

∑n
i=1

∫ T

0
wcij(t)xi(t)dt),

where wcij(t) is the link weight function between j-th process neuron in the first hidden
layer and the i-th unit of X(t) in the input layer (i, j ∈ [1, n]).

If we take fourier base function si(t), i ∈ [1, L], as process base function to expand
process weight function and input xi(t), formula 2.2 will be

y
(c,1)
j = fp

(n∑
i=1

∫ T

0

(q=L,z=L∑
q=1,z=1

c
(z)
iz wc

(q)
iq sq(t)sz(t)

)
dt

)

= fp

(n∑
i=1

q=L,z=L∑
q=1,z=1

c
(z)
iz wc

(q)
iq

∫ T

0

sq(t)sz(t)dt
)

(1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

900 G. Song et al.

Thus, the outputs in the first hidden layer can be expressed as

y
(c,1)
j =

n∑
i=1

q=L,z=L∑
q=1,z=1

c
(z)
iz wc

(q)
iq (2)

where fp is the activation function of the process neurons in the first hidden layer.

For traditional neurons in the first layer, its outputs can be expressed as y
(d,1)
k =

fd(
∑Ak

h=1 dkhwdhk), where wdhk is the link weight between k-th neuron in the first
hidden layer and the h-th value of property dk in the discrete input layer (k ∈ [1, m],
h ∈ [, Ak]). Thus, the outputs of the first hidden layer is out

(1)
r = y

(c,1)
j + y

(d,1)
h , where

r ∈ [1, m + n].
The outputs of the second hidden layer: Based on the outputs of the first hidden layer,
the outputs of the second hidden layer can be expressed as y

(2)
l = fg(

∑m+n
r=1 out

(1)
r vrl),

where vrl is the link weight between the l-th neuron in the second hidden layer and the
r-th neuron in the first hidden layer. fg is the activation function of the neuron in the
second hidden layer.

Output: The output function of the MPNN can be expressed as y(t) = fo(
∑p

l=1 y
(2)
l ul),

where ul is the link weight between the l-th neuron in the second hidden layer and the
output node. fo is the activation function of the output node.

2.3 Learning Algorithm

Assume that we have K learning sample functions:⎡
⎢⎢⎢⎣

x11(t), x12(t), ..., x1n(t), y1(t)
x21(t), x22(t), ..., x2n(t), y2(t)

...
...

xK1(t), xK2(t), ..., xKn(t), yK(t)

⎤
⎥⎥⎥⎦

where the first suffix i in xij(t) denotes the serial number of learning sample, and the
second suffix j denotes the serial number of component in input function vector. yk(t)
is the expected output function for input xk1(t), xk2(t), ..., xkn(t),(k ∈ [1, K]).

Suppose that ỹ(t) is the desired output function, and y(t) is the corresponding actual
output function of the MPNN, then the mean square error of the MPNN output can be
written as

E =
1
2

K∑
b=1

(yb(t) − ỹb(t))2 =
1
2

K∑
b=1

[
fo

(p∑
l=1

y
(2)
lb ul

)
− ỹb(t)

]2

=
1
2

K∑
b=1

{
fo

[p∑
l=1

fg

(m+n∑
r=1

(fp(
n∑

i=1

q=L,z=L∑
q=1,z=1

c
(z)
izbwc

(q)
iq) + fd(

Ak∑
h=1

dkhbwdhk))vrl

)
ul

]
− ỹb(t)

}2

For analysis convenience, Zb, Qb, Pb and Hb are defined respectively as

Hb = (
∑Ak

h=1 dkhbwdhk), Pb =
∑n

i=1

∑q=L,z=L
q=1,z=1 (c(z)

izbwc
(q)
iq)

Qb =
∑m+n

r=1 (fd(Hb) + fp(Pb))vrl, Zb =
∑p

l=1 Zbul

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimized Process Neural Network Model 901

According to the gradient descent method, the learning rules are defined as follows
wc

(q)
iq = wc

(q)
iq + αΔ, wc

(q)
iq wdhk = wdhk + βΔwdhk, vrl = vrl + γΔvrl, ul =

ul +ηΔul, where α, β, γ, η are the learning rate, and i ∈ [1, n], k ∈ [1, m], h ∈ [1, Ak],
l ∈ [1, p] , q, r ∈ [1, L].

Δwc
(k)
ik , Δwdjh, Δvik , and Δuk can be calculated as follows

Δwc
(q)
iq = − ∂E

∂wc
(q)
iq

= −Ωulf
′
g(Qb)vrlf

′
p(Pb)c

(z)
izb,

Δwdhk = − ∂E
∂wdhk

= −Ωulf
′
g(Qb)vrlf

′
d(Hb)d

(z)
kh ,

Δvrl = − ∂E
∂vrl

= −Ωulf
′
g(Qb), Δul = − ∂E

∂ul
= −Ω , where Ω =

∑K
b=1(fo(Zb) −

ỹb(t))f ′
o(Zb).

In this paper, all activation functions have been substituted by Sigmoid function, i.e.
fo(u) = fg(u) = fp(u) = fd(u) = 1

1+eu , with f ′∗(u) = f∗(u)(1 − f∗(u)).

2.4 Topological Structure

Based on formula 2, if we take fourier base function as the base function of process
neuron in MPNN, each input time varies function xi(t) can be expanded with a set of
fourier coefficient ci and corresponding weight wi. If we take xi(t) as input of process
neuron in MPNN during each time iteration of training process, it should be expanded
one time by using DFT accompanied with one time aggregation operation by using
formula

∫ T

0
sq(t)sz(t)dt. In fact, such costs of the fourier expansion can be avoided

if each input time series xi(t),i ∈ [1, n], has been preprocessed before it is input into
MPNN. Because ci is a constant and has no relationship with the training process, so
taking fourier coefficient ci as input will not influence the final results. By using such
preprocessing strategy, the process neuron in MPNN have become a traditional neuron
by losing its time aggregation ability.

3 Data and Experimental Results

3.1 Characteristics of Input Data

We get the real data from the China Mobile Communication Company for Churn pre-
diction. We sample the dataset from Jan. 2004 to April 2004. After filtering the data with
missing values, we select 220 thousands samples. 2000 samples have been selected ran-
domly for training data set and 10000 samples for testing data set. The ratio of churner
is 20%. The description of the variables for this research is presented as follows.

Time varied continuous data: It includes three kinds of usage series data: call time,
the number of messages and the number of different telephones communicated with
him(her). Each data element in series is accumulated in term of day, and 91 element
spanning three months have been generated in each series.

Traditional static discrete data: Two discrete variables have been selected, which
are customer’s gender(male:0, female:1) and age (being discreted into five segments,
(0-20), (20-30), (30, 40), (40, 60) and (60-100) in advance).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

902 G. Song et al.

Mark of churn: According to the definition of churn management strategies, different
in each province, the mark of churn for each customer can be defined with whether he
is churn in (churn:1, nonchurn:0), that is in June 2004.

3.2 Experimental Results

All experiments are conducted on a PC with Pentium IV 1.4G CPU and 512MB main
memory, running Windows XP operation system. The MPNN code was written in C++.
Some existing methods, e.g. PNN, ANN [6] and Decision Tree(C4.5)[5] have been
compared. The neural networks used in our experiments are multilayer perceptrons with
a single hidden layer which contains 10 nodes and they were trained by the back prop-
agation algorithm with the learning rate 0.3 and the momentum term 0.7. The triangle
function has been chosen as base function of PNN, and the input is three kinds of time
continuous data. Continuous data have been averaged before input ANN and C4.5. We
compared their performance about predicting accuracy, lift value and execution time.
The model predicts correctly with churn if the predicted user’s churn probability is big-
ger than (or equal to) 0.5 or the user doesn’t churn with the probability less than 0.5.
Otherwise the Model predicts wrong.

Precision measurement: In this section, two basic measures, precision and recall, have
been introduced to evaluate our prediction methods.The experimental results can be
seen in Table 1. It can be observed that our method MPNN has the best performance in
detecting the churn with precision 87.5% and recall 81.5%. C4.5 and ANN is less than
PNN no matter for precision or recall.

Table 1. Comparison of different Algorithms

Algorithm ANN C4.5 PNN MPNN

Precision 78% 71.2 % 83.3% 87.5%
Recall 73.3% 69.2 % 78.2% 81.5%

Lift value measurement: We applied MPNN to the training dataset to predict the churn
or no churn of the subscribers in the testing dataset. In the telecommunications industry,
the churn and no churn prediction is usually expressed as a lift curve. The lift curve
plots the fraction of all churners having churn probability above the threshold against
the fraction of all subscribers having churn probability above the threshold.

The lift curves are shown in Figure 1(a). As described in figure, when compared with
C4.5 and ANN, MPNN identified more churners than them under the same fraction of
subscribers. It is important to note that PNN also identified more churners than C4.5
and ANN. When compared with PNN, MPNN identified more churners than PNN did.

To better compare the performance of these models, let us consider the lift factor,
which is defined as the ratio of the fraction of churners identified and the fraction of sub-
scribers contacted. It is important to note that the lift factor for the random churn predic-
tor is 1. Owing to the limited number of staff in the carrier’s customer services center, it
can only contact 5% of all subscribers. The lift factors for these models were contacted
under different fraction of subscribers are shown in Figure 1(b). Again, MPNN obtained

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Optimized Process Neural Network Model 903

0 20 40 60 80 100
0

20

40

60

80

100

%
 C

hu
rn

er
s

Id
en

tif
ie

d

% Subscribers Identified

 Perfect
 MPNN
 PNN
 ANN
 C4.5
 Random

(a) Lift curve

0 20 40 60 80 100
0

1

2

3

4

5

Li
ft

fa
ct

or

% Subscriber Identified

 Perfect
 MPNN
 PNN
 ANN
 C4.5
 Random

(b) Lift factor

Fig. 1. Lift Measurement

Table 2. Comparison of Execution Time(sec)

SampleData ANN C4.5 PNN MPNN
2000 21.23 11.8 43.3 24.48
4000 45.24 25.2 82.9 47.078
6000 76.2 37.7 123.47 77.094
8000 93.134 59.32 164.3 99.094
10000 101.725 79.77 214.3 108.812

higher lift factors than PNN, which in turn obtained higher lift factors than ANN and
C4.5 when the first 20% subscriber are contacted.

Computation efficiency measurement: To evaluate their computation efficiencies,
Table 2 shows the execution times for MPNN, PNN, C4.5 and ANN under different
sample data size.

The experimental results showed that MPNN accomplished the churn prediction task
almost the same as ANN, since fourier base function can deal with continuous data in
linear time, and make MPNN with the same function as ANN. Of the four approaches,
C4.5 required the least execution time to complete since C4.5 used less number of iter-
ations than the rest three models. However, C4.5 is unable to produce churn prediction
as accurate as others (as described in Table 1, Figures 1). Thus, our MPNN model not
only achieved higher accuracy but also with less execution time.

4 Conclusion

In this paper, we proposed an optimized process neural network model, and its per-
formance has been investigated. The result shows that the classification accuracy of
MPNN, 87.15%, is better than of ANN, Decision Tree (C4.5).

References

1. Sun Kim, Kyung-shik Shin, Kyungdo Park: An Application of Support Vector Machines for
Customer Churn Analysis: Credit Card Case. ICNC (2) 2005: 636-647.

2. Mozer, M.C., Wolniewicz, R., Grimes, D.B.: Predicting Subscriber’s Dissatisfaction and Im-
proving Retention in the Wireless Telecommunications Industry. IEEE Transactions on Neural
Networks, Vol. 11, 3 (2000) 690-696.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

904 G. Song et al.

3. He X.G., Liang J.Z. Some Theoretical Issues on Process Neural Networks. Engineering Sci-
ence, 2 (2000) 40-44.

4. HE X.G. , XU S.H. A feedback process neuron network model and its learning algorithm[J] .
Acta Auotomatica Sinica , 2004 , 30 (6) :801 - 806.

5. C. Bishop, Neural Networks for Pattern Recognition. New York: Oxford Univ. Press, 1995.
6. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering XML Documents Based on

Structural Similarity

Guangming Xing1, Zhonghang Xia1, and Jinhua Guo2

1 Department of Computer Science, Western Kentucky University, Bowling Green,
KY 42104

guangming.xing@wku.edu, zhonghang.xia@wku.edu
2 Computer and Information Science Department, University of Michigan - Dearborn,

Dearborn, MI 48128
jinhua@umich.edu

Abstract. In this paper, we present a framework for clustering XML
documents based on structural similarity between XML documents.
Firstly, the validity of using the edit distance between XML documents
and schemata as the structural similarity is presented. Secondly, a novel
solution is given for schema extraction. The solution is based on the min-
imum length description (MLD) principle, and allows tradeoff between
the schema simplicity and precision based on the user’s specification.
Thirdly, clustering XML documents based on the edit distance is dis-
cussed. The efficacy and efficiency of our methodology have been tested
using both real and synthesized data.

1 Motivation and Literature Review

The widely use of XML in different business applications results in large volume
of heterogeneous data: XML documents conforming to different schemata. An
XML document is defined by the markup tags from a Document Type Definition
(DTD), forming a tree structure. Clustering XML documents based on the tree
structure is an important problem and is crucial for XML document storage and
retrieval [9].

Various methods [8,3] have been proposed and implemented for XML doc-
ument clustering, and most of them use tree edit distance as a measure of
similarity. Tree edit distance [6] is defined as the cost of the sequence of edit
operations to transform one tree to another. It offers a very precise measure
for document similarity between two documents. However, tree edit distance is
not a good measure for structural similarity, as edit distance between two doc-
uments can be large (one large document and one small document) while they
have very similar structures (conform to the same schema). To overcome this
problem, various methods have been proposed. For example, Jagadish [8] pro-
posed a method using graft and prune to improve the efficiency of computing
edit distance and accuracy of clustering. More recently, Dalamagas [3] studied
XML document clustering using tree summaries and top-down tree edit distance.
Both methods offers very high clustering accuracy when the set of documents

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 905–911, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

906 G. Xing, Z. Xia, and J. Guo

tree summary

a b c a b c a b c a a a b b c c c

entry entry entry

a b c

Fig. 1. Trees of Different Structure with the Same Structural Summary

conforms to the DTDs whose length of the repeat patterns is 1. However, the
performance of these two methods get significantly degraded when the underly-
ing DTDs have more complicated patterns. Although the tree summary method
significantly reduces the time complexity for computing the tree edit distance,
the structures of the trees may not be preserved by the structural summaries.
For example, consider the example in Fig. 1: the two trees on the left side have
different structures, but they share the same structural summary based on the
methods in [3], which can be illustrated by the tree on the right side in Fig. 1.

Based on the above observations and the fact that the structure of an XML
document is defined by a schema, it is natural to study the distance between
XML documents and schemata and use it as a similarity measure for document
clustering. In this paper, we use the methods presented in [2] to compute the
edit distance.

The remainder of this paper is organized as follows. The algorithm to find
a schema that can generate a set of XML documents is covered in Section 2.
Section 3 covers the use of the edit distance between an XML document and
a schema in clustering XML documents. The implementation and experimental
studies are presented and discussed in Section 4, and the conclusion remarks are
given in Section 5.

2 Schema Extraction from XML Documents

Most clustering methods rely on pairwise distances. In order to use the edit
distance defined in [2] for document clustering, the schemata of the documents
are needed. Therefore, the first task is to extract the underlying schema from
XML documents. The problem can be formulated as: Given a collection of XML
documents {d1, d2, ..., dn}, find a schema s, such that d1, d2, ..., dn are document
instances that can be generated by schema s.

The definition of an element in a schema is independent of the definitions of
other elements, and only restricts the sequence of sub-elements (the attributes
are omitted in this paper) nested within the element. Therefore, the schema ex-
traction can be simplified as inferring a regular expression (right linear grammar
or nondeterministic finite automata) from a collection of strings.

Inferring regular expressions from a set of strings has been well studied in
[11,10]. One novel contribution by Xtract is the introduction of Minimum Length
Description (MLD) to rank candidate expressions. In general, the MLD principle
states that the best grammar (schema) to infer from a set of data is the one that
minimizes the sum of: the length of the grammar Lg, and the length of the data
Ld when encoded with the grammar.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering XML Documents Based on Structural Similarity 907

In this paper, we use a similar approach as introduced in Xtract: Candidate
regular expressions are extracted based on the analysis of the repeat patterns
appearing in the input sequences. The candidate expressions are then ranked
using MLD principle. We have made the following improvements over Xtract:

1. The frequencies of the children sequences are considered in our system. This
feature helps to minimize the negative effects of noise data in clustering.

2. In our system, the relative weight between the definition and description
can be dynamically adjusted. The overall goal in our system is to minimize
L = λLg + Ld. The λ can be used to adjust the precision and generalness of
the result.

3. Instead of using a regular expression to determine the cost of encoding, we
use the cost of nondeterministic finite automata (NFA) simulation as the cost
of encoding. This eliminates the necessity for enumerate multiple sequence
partitions to compute the minimum cost for encoding.

It is difficult to represent the encoding of a string with a regular expression.
So instead of working on regular expressions, we consider NFA constructed by
Thompson’s [4] method. The NFA can be represented by encoding the states
and its transitions. So Lg can be represented as (S + T) log S, where S is the
number of states and T is the number of transitions.

To compute Ld, we use the cost of NFA simulation [5] as the cost of string en-
coding. Intuitively, the number of states in each state vector denotes the number
of choices for each step, which is the encoding cost.

The complexity of the above algorithm is O(cn2), where n is the length of the
string for inference, and c is the numbers of the strings. Although the algorithm
is quadratic w.r.t. the length of input string, it is highly efficient when the length
of the string is short.

3 Document Clustering

In this section, we show how to cluster XML documents based on their structures
using the edit distance between XML documents and schemata.

Based on the edit distance between an ordered tree and regular hedge gram-
mar, we define the structural distance δs(d1, d2) between XML documents d1

and d2 as:
δs(d1, d2) := (δ̂(d1, s2) + δ̂(d2, s1))/2

where s1 and s2 are the schemata inferred from documents d1 and d2 respectively.
To cluster a collection of XML documents, the pairwise structural distances

are computed. Each document is represented as a vector:
〈δs(di, d1), δs(di, d2), ..., δs(di, dn)〉,

and the distance vectors are fed to a clusterer.
Although pairwise structural distance is very effective in detecting groups

of documents, applying it on a large collection of XML documents is difficult.
Instead, we use a cluster-classification procedure to handle large number of
documents, which can be illustrated by Fig. 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

908 G. Xing, Z. Xia, and J. Guo

Edit

XML

documents

Schema
Extractor

Clustering Schema
Extractor

Distance
Computing

Distance
Computing

Classifier
Training

Classifying
Output

Edit

Pairwise
Structural
Distance

Computing

Fig. 2. Clustering Process for Large Collections of Documents

The advantages of using this distance metric for document clustering are two
folds:

1. Once we have the inferred grammar from each class, the representation of
each document depends only on the grammars but independent of other
documents. So the total number of distances that are needed is linear w.r.t.
the number of documents for clustering.

2. The inferred grammar from a collection of documents is likely to contain
more structural information than a single document, and the clustering-
classification procedure using a grammar to represent a group tends to
achieve higher accuracy than using a single document as a representative
for a group.

4 Implementation and Experimental Results

We have fully implemented the algorithms described in the above sections, and
developed a prototype system for document clustering.

Based on the implementation, we have tested the clustering system using
both real data and synthesized data. The following three datasets are used in
our experiments: the Sigmod collection, a synthesized data set from [3], and the
MovieDB data set from XML Mining Challenge [9].

To evaluate the time efficiency, we compared our method with the cluster-
ing method using edit distance between trees, and the clustering method using
edit distance between structural summaries. The time for structural summary
method includes time the for computing the tree summaries, and the time needed
for edit distance between tree summaries. The time for our method includes the
time for tree size reduction, schema extraction, and the time needed for com-
puting the edit distance between the tree and the schema. Fig. 3 shows the time
performance on a pair of documents of variable sizes from MovieDB dataset.

From Fig. 3, we know that the original tree distance method is the slowest
one, and our method is a little slower than the structural summary method, but
the difference is small.

The clustering quality is evaluated by following the same procedure as de-
scribed in [3]. In our experiments, the CLUTO [12] system is used to cluster the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering XML Documents Based on Structural Similarity 909

 100 200 300 400 500 600 700 800 900 1000
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

 0

 20000

 40000

 60000

 80000

 100000

 120000

Time Performance(ms)

structural summary
original

grammar

Num of Nodes in T1

Num of Nodes in T2

Time Performance(ms)

Fig. 3. Time performance for original, structural summaries, grammar

vector representations of the documents. The number of true positive, false pos-
itive, false negative for each group, and overall Precision P are used to compare
different methods.

For a collection of documents that are clustered into n groups, C1, ...Ci, ...Cn

with corresponding DTDs D1, ...Di, ...Dn, let ai be true positive for cluster Ci,
bi be false positive for cluster Ci, and ci be false negative for cluster Ci, we have
precision:

P :=
Σiai

Σiai + Σibi
.

The clustering results for different datasets are presented in Tables 1, 2, and 3.
Notice that in our algorithm, the values of P reach excellent level (better than

95%) for all three sets of data. The structural summary method can produce

Table 1. Clustering Results: Sigmod Data

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 19 1 1 20 0 0 20 0 0

2 19 1 1 20 0 0 20 0 0

3 20 0 0 20 0 0 20 0 0

P P = 96.7% P = 100% P = 100%

Table 2. Clustering Results: Bookstore Data

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 12 15 8 20 8 0 20 2 0

2 5 8 15 12 0 8 18 0 2

3 20 0 0 20 0 0 20 0 0

P P = 61.7% P = 86.7% P = 96.7%

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

910 G. Xing, Z. Xia, and J. Guo

Table 3. Clustering Results: MovieDB Data

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 8 12 12 14 4 6 20 3 0

2 7 14 13 15 7 5 20 0 3

3 10 9 10 14 6 6 20 0 0

P P = 41.6% P = 71.6% P = 95%

very good results when the length of the repeat pattern is 1, but the accuracy
becomes significantly degraded (to 71.6%) when the repeat patterns are more
complicated.

Remarks: The evaluation results indicate the following:

– Regular hedge grammar is a better way to characterize the structural prop-
erties of XML documents than structural summary.

– The schema extraction method using MLD principle and NFA simulation
cost is effective in extracting schema rules from a collection of documents.

– The time performance of computing edit distance between a tree and a
NRHG is suitable for clustering Web documents in real world applications.

5 Conclusions

In this paper, we presented a framework for clustering XML documents using
structural distance. It is based on the definition of the edit distance between an
XML document and a schema. We have also covered the validity of using the
edit distance, and a novel approach for schema extraction. Although it is more
complicated than the methods presented in [8] and [3], it can cluster documents
having more complicated structure with much higher accuracy. Experimental
studies have shown the efficiency and efficacy of our approaches using both real
and synthesized data.

References

1. N. Suzuki, Finding an Optimum Edit Script between an XML Document and a
DTD, ACM SAC’05, pp. 647 - 653, March, 2005, Santa Fe, NM.

2. G. Xing, Fast Approximate Matching Between XML Documents and Schemata,
APWeb 2006 (X. Zhou et al. Eds), LNCS 3841, pp. 425-436, Springer-Verlag, 2006.

3. T. Dalamagas, T. Cheng, K. Winkel, T. Sellis A methodology for clustering XML
documents by structure, Information Systems, 31(3): 187-228 (2006).

4. K. Thompson, Regular Expression Search Algorithm, Communications of ACM, vol
11-6, pp 419–422, 1968.

5. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering XML Documents Based on Structural Similarity 911

6. D. Shasha, K. Zhang, Approximate Tree Pattern Matching, Chapter 14 Pattern
Matching Algorithms (eds. Apostolico, A. and Galil, Z.), Oxford University Press,
June 1997.

7. M. Murata Hedge Automata: A Formal Model for XML Schemata http://
www. xml.gr.jp/relax/hedge nice.html

8. A. Nierman, H. V. Jagadish, Evaluating structural similarity in XML documents,
WebDB 2002, Madison, Wisconsin, June 2002.

9. XML Document Mining Challenge, http://xmlmining.lip6.fr/
10. Boris Chidlovskii, Schema Extraction from XML Data: A Grammatical Inference

Approach, KRDB’01 Workshop, Rome, Italy, September 15, 2001.
11. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, Xtract: A System for

Extracting Document Type Descriptors from XML Documents, SIGMOD Confer-
ence 2000, pp. 165-176, May 16-18, 2000, Dallas, Texas, USA.

12. G. Karypis, CLUTO A clustering toolkit Technical Report 02017, University of
Minnesota, Department of Computer Science, Minneapolis, MN 55455, Aug. 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 912–917, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Multi-view Information Bottleneck Clustering

Yan Gao1, Shiwen Gu1, Jianhua Li1, and Zhining Liao2

1 College of Information Science and Engineering, Central South University,
410075,Hunan, China

{gaoyan, swgu, jhli}@csu.edu.cn
2 Department of Computer Science, Loughborough University

Leics, UK, LE113TU
Z.Liao@lboro.ac.uk

Abstract. In this paper, we propose a new algorithm for information bottleneck
method in multi-view setting where instances have multiple independent
representations. By introducing the two important conditions, conditional
independence and compatibility, into the information bottleneck clustering, the
compatible constraint maximizing the agreement between clustering hypotheses
on different views is imposed on the individual views to cluster instances. Our
algorithm is developed by the compatible constraint. Experiments on three real-
world datasets indicate that our algorithm considering the relationship among
multiple views can provide solution with improved quality in multi-view
setting.

1 Introduction

The information bottleneck method [1] (IB) is to extract structure from the data by
viewing structure extraction as data compression while conserving relevant
information. IB is successfully applied to clustering instances in different domains,
such as document clustering [1][2], image segmentation [3] etc. And it is also
extended to cluster heterogeneous data [4][5] and to find classes that are in some
sense orthogonal to existing knowledge [6][7]. Different from others’ work, we want
to cluster instances with the information bottleneck in multi-view setting in which
instances have multiple independent representations. In multi-view setting, if the
information bottleneck method is used to cluster instances in the individual view, the
information in other views is omitted. The ensemble [8][9] of the partitions on
different views is a good method to cluster the multi-representative instances, but it
omits the relationship between the different views.

The co-training method proposed in [10] is a classic semi-supervised algorithm in
multi-view setting. The idea of the co-training method is to train one learner on each
view of the labeled examples and then to iteratively let each learner label the
unlabeled examples predicted with the highest confidence. The important assumptions
of co-training are: conditional independence and compatibility.

In this paper, a new algorithm is proposed for the information bottleneck method in
multi-view setting. By introducing the two important conditions of co-training:
conditional independence and compatibility, into the information bottleneck

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Multi-view Information Bottleneck Clustering 913

clustering, the compatible constraint maximizing the agreement between clustering
hypotheses on different views is imposed on the individual views to cluster
instances.

2 Related Work

2.1 Information Bottleneck

With the data modeled by a random variable X, relevant information is explicitly
modeled by a second random variable Y. The information bottleneck method [1] is to
construct a probabilistic clustering, given by a random variable C, such that the
mutual information I(X;C) between the data and the clusters is minimized, i. e. C
compresses the data as much as possible, while at the same time the mutual
information I(Y;C) of the relevant variable Y and the clusters is maximized, i. e. the
relevant structure is conserved. Both goals are balanced against each other by a real
parameter β > 0, the objective function of IB is defined as:

∑=

β−=

c,x)c(p)x(p

)c,x(p
log)c,x(p)C,X(I

)C;Y(I)C;X(IF
 (1)

2.2 Co-training

The co-training method is a classic multi-view semi-supervised algorithm. The
important conditions for multi-view learning algorithm are introduced by Blum and
Mitchell in the co-training method: conditional independence and compatibility.

Definition 1 (conditional independence): In a domain with two views V1 and V2,
the instance x is represented by a triple < x1, x2, l >. V1 and V2 satisfy conditional
independent just in the case: for all x1∈V1, x2∈V2, l∈Label,

 l]x|x[XPr l]x,x|XxPr[X

 l]x|x[XPr l]x,x|XxPr[X

221122

112211

======
====== (2)

Definition 2 (compatibility): In a domain with two views V1 and V2, supposing f1 is
the target concept in V1, f2 is the target concept in V2，f is the global target concept,
V1 and V2 satisfy compatibility just in the case: For most instances x=< x1, x2 >,

)(xf)(xf)x,f(x 221121 ==
(3)

“Conditional independence” indicates that it becomes unlikely for compatible
classifiers trained on independent views to agree on an incorrect label.
“Compatibility” indicates that the label achieved in a single view should agree with
the label obtained in other views for most instances.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

914 Y. Gao et al.

3 The Multi-view Information Bottleneck

3.1 The Multi-view Objective Function and Solution

For multi-view clustering, “conditional independence” and “compatibility” are also
important conditions. The first means that we must deduce the correct hypothesis
from the clustering hypotheses obtained in the different views. The second means that
these clustering hypotheses should agree with each other at a large extent. The mutual
information can be used to measure the agreement between the hypotheses in
different views. In this section, we analyzed the mutual information between the
hypotheses in different views, and proved that maximizing these mutual information
can reveals lots of information about correct hypothesis. Based on this deduction, a
new objective function for the information bottleneck method in multi-view setting is
proposed.

Proposition 1. In a domain with multiple views, let |V| be the number of views, C be
the correct clustering hypothesis, Ci be the clustering hypothesis in the i-th view, so
be Cj. There exists a relationship between C and Ci, Cj as:

|V|ji,1,ji,,)C;C(I
1|V|

1
)C;C(I

ij
jii ≤≤∀

−
≥ ∑

≠

 (4)

Proof. In a domain with multiple views, every view is conditional independent, and
only depends on the distribution of correct clustering hypothesis C, so a Markov chain
can consist of C and Ci, Cj: Ci->C -> Cj. And the inequality (5) can be deduced from
the data-processing inequality of information theory [11]:

∑
≠

+−

−
≥⇒

+++++≥−⇒

≠≥

ji
jii

|v|i1ii1ii1ii

ji

)C;C(I
1|V|

1
)C;C(I

)C;C(I......)C;C(I)C;C(I....)C;C(I)C;C(I)1|V(|

)ji()C;C(I)C;C(I i

(5)

According to Proposition 1, if Ci and Cj agree with each other to a large extent,
then they must reveal a lot about C. For clustering instances with multiple
representations in the i-th view, we should maximize the agreement between the
hypothesis in the i-th view and the hypotheses in other views. This is the compatible
constraint for every single view. Based on the compatible constraint, the objective
function for clustering instances in the i-th view is described as:

∑
≠−

η+−β
ij

jiii
)x|c(p

)C;C(I
1|V|

)C;X(I)C;Y(Imax
i

 (6)

Because of the conditional independence of every view, the objective function in
whole is:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Multi-view Information Bottleneck Clustering 915

∑ ∑∑
= >=

=

−
η+−β

∑

|V|

1i ij
ji

|V|..1i
iii

1)x|c(p

)}x|c(p),....x|c(p{

)C;C(I
1|V|

)]C;X(I)C;Y(I[i

ic
i

|V|1

maxarg

(7)

The Lagrangian function for (7) is:

∑∑ ∑∑∑∑
== >=

λ+
−

η+−β=
i

i
c i

|V|..1i
i

x

|V|

1i ij
j

|V|..1i
iiii)x|c(p)x()C;C(I

1|V|
)C;X(I)C;Y(I[(8)

Computing the partial derivative of the function (8) with respect to the variable
p(ci|x), the iterating equation (9)~(12) can be available. Computing these iterative
equations, the local maximum solution of (7) is obtained:

)c(p

)x|c(p)x|c(p)x(p
)c|c(p

)c|x(p)x|y(p)c|y(p

)x|c(p)x(p)c(p

))]c|c(p||)x|c(p[D
1|V|

)]c|y(p||)x|y(p[Dexp(
)i(Z

)c(p
)x|c(p

i

ix j
ij

x iiii

x ii

ij
ijjkliiikli

i
i

∑
∑

∑

∑

=

=

=

−
η−β−=

≠

(9)

(10)

(11)

(12)

Where Z(i) is normalized factor.

3.2 The Global Ensemble

When the set of hypotheses in different views are obtained, the correct hypothesis
should be deduced from these hypotheses. For this clustering ensemble problem, A.
Strehl[9] proposed an objective function based on mutual information(See Equation
13). Solving objective function (13) with the information bottleneck method too, the
final hypothesis can be obtained.

∑
=

=
|V|

1j
j

C

*)C;C(ImaxargC

(13)

4 Experiments

We performed experiments to compare the performance of our algorithm (MVIB)
with single-view IB and the traditional clustering ensemble. We use two single-view
baselines. The first baseline applies IB to a single feature set. The second baseline
applies IB to a concatenation of all views (“concat. views”). The experiments are
conducted on three datasets [12]. The first is based on Co-training dataset. The second
is based on Webkb where we choose 2124 web pages which have three views:
“anchor”, “content” and “url”. The third is artificial dataset which comes from 12 of
20 classes of the well-known newsgroups20 dataset. We randomly select 250

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

916 Y. Gao et al.

examples for each of 12 newsgroups, which result in a dataset with 1000 examples
distributed over four classes having the three-view property. The detail of the artificial
dataset is described in Table 1.

Table 1. The detail of artificial dataset based on newgroup20

 V1 V2 V3
Class 1 Comp.os.ms-windows.misc talk.politics.misc Talk.religion.misc
Class 2 Comp.sys.ibm.pc.hardware talk.politics.mideast Talk.politics.guns
Class 3 Alt.atheism Rec.sport.hockey Soc.religion
Class 4 Rec.motorcycles Rec.sport.baseball Misc.forsale

The performance of the three algorithms is measured by the average entropy over

all classes (Equation 14).The frequency pij counts the number of elements of the i-th
class in j-th cluster, and nj is the size of cluster j. The low value of entropy indicates
the good performance of the clustering algorithm. The results in our experiments are
the average entropy over 10 independent runs.

ijijj

k

1i

i plogp
n

n
E ∑∑−=

=
(14)

We use cross-validation test to select the best value of β in every view.
Considering preserving more information about terms, the parameter η is not greater
than βmin.(βmin=min{βi},1≤i≤|V|). Figure 1 shows the results on three datasets
under different value of η. It indicates that MVIB can obtain the lowest value of
entropy when η is equal to or near βmin/2. Figure 2 shows the results with three
algorithms on three datasets. It indicates the entropy of MVIB is lower than that of
single-view IB and that of clustering ensemble. It indicates that considering the
compatible constraint can improve the performance of clustering the instances with
multiple representations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

γ,η=γ×βmin

E
nt

ro
py

Co-Training
WebKB
artificial dataset

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Co- Training WebKB artificial
dataset

 E
nt

ro
py

Best with single feature set
concat views
IB_Ensemble
MVIB

Fig. 1. The results on three datasets under
different value of η

Fig. 2. The results with three algorithms on
three datasets

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Multi-view Information Bottleneck Clustering 917

5 Conclusion

We propose a new multi-view information bottleneck algorithm(MVIB) that extends
information bottleneck algorithm to multi-view setting to cluster multi-representative
instances. By maximizing the clustering hypothesis in different view, we can get a set
of clustering hypotheses that reveal lots of information about the correct hypothesis
and deduce the final clustering hypothesis from these hypotheses. This allows one to
incorporate all available information to form the best clusters when there is lots of
single-view data to be clustered. Experiments on three real-world data sets indicate
that MVIB that considers the relationship between different views can improve the
performance of clustering the instances with multiple representations.

References

1. Noam Slonim. The Information Bottleneck: Theory and Applications. PhD thesis, Hebrew
University, Jerusalem, Israel, 2002.

2. Noam Slonim, NIR friedman, Naftali Tishby. Unsupervised Document Classification
using Information Maximization, Proc.25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Tampere, Finland, 2002, pages:
129-136

3. Jacob Goldberger, Hayit Greenspan and Shiri Gordon. Unsupervised Image Clustering
using the Information Bottleneck Method, DAGM-Symposium, Zurich, Switzerland 2002.
pages:158-165

4. Dhillon, I. S., Mallela, S., & Modha, D. S. Information-theoretic co-clustering.
Proceedings of The Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003, pages: 89-98.

5. Ron Bekkerman, Ran El-Yaniv, Andrew McCallum, Multi-Way Distributional Clustering
via Pairwise Interactions, In Proceedings of the 22 International Conference on Machine
Learning, Bonn, Germany, 2005, pages: 41-48

6. D. Gondek and T. Hofmann. Non-redundant data clustering. In Proceedings of the Fourth
IEEE International Conference on Data Mining, Brighton, UK, 2004, pages: 75–82

7. David Gondek, Thomas Hofmann, Non-Redundant Clustering with Conditional
Ensembles, Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, , Chicago, Illinois, USA, 2005, pages:70-77

8. A.Topchy, A.K.Jain, and W. Punch. Combining multiple weak clusterings. In Processings
of the Third IEEE International Conference on Data Mining, Florida, USA 2003,
pages:331-338.

9. Strehl, A. and Ghosh, J. Cluster Ensembles – A Knowledge Reuse Framework for
Combining Multiple Partitions. Journal on Machine Learning Research, volume 3, (2002),
pages:583-617

10. Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
Annual Conference on Computational Learning Theory (COLT-98), Madison, USA,1998.
pages:92-100

11. Thomas M. Cover, Joy A. Thomas, The elements of information theory, China Machine
Press, 2005, page: 24.

12. Co-training, Webkb, newsgroup20. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Web Service Composition Based on Message

Schema Analysis�

Aiqiang Gao1, Dongqing Yang1, and Shiwei Tang2

1 School of Electronics Engineering and Computer Science, Peking University,
Beijing, 100871, China

{aqgao,ydq}@db.pku.edu.cn
2 tsw@pku.edu.cn

Abstract. In current work for web service composition, the schema and
structure of XML messages are abstracted and the messages are assumed
to be flat, which is not the case as far as current standards and speci-
fications are concerned. This paper proposes a method for web service
composition based on message schema analysis. This method starts from
message schema matching between two web services. The concepts of
composable web services and composition context are defined to guide
the synthesizing process. To perform message schema analysis, a method
for MSL schema matching is discussed, where MSL is a formal model for
XML Schema. Some usually used web service composition examples are
collected from the literature to evaluate the method in this paper.

1 Introduction

In current works for automatic composition and verification([1,2]), it is usually
assumed that there are a fixed set of web services and the synthesis task is to
generate a composite service with respect to this fixed set of services. However,
it is possible that the services that may be useful for a composition goal will not
be determined a priori. Thus, web service discovery is required.

For web service discovery method such as [3] and [4], the structure of XML
messages is assumed to be flat, which is not the case as far as current standards
and specifications are concerned(such as WSDL[5] and BPEL[6]).

This paper proposes a method for web service discovery and composition
based on message schema analysis. This method starts from message schema
matching between two web services. According to the result of message schema
matching, the concepts of composable web services and web service composi-
tion context are defined to guide the process of web service synthesizing. With
the initial input message being specified, this method accomplishes web service
composition semi-automatically.

Some usually used web service composition examples are collected from
current research works and are used to evaluate the method in this paper.
� This work is supported by the National Natural Science Foundation of China under

grant No. 90412010 and 60642004, and the IBM University Joint Research Proposal.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 918–923, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Web Service Composition Based on Message Schema Analysis 919

The method in this paper can solve the problem of web service synthesizing
at XML messaging level. The main contributions of this paper are:

1. Proposes an approach for synthesizing web service with service discovery
mechanism supported. It takes the schema and structure of XML message
into account, which is usually neglected by current works.

2. Discusses a method for matching two MSL schema. The matching results
serve as the base for interpreting and executing composite web services.

The rest of this paper is organized as follows. Section 2 describes MSL(Model
Schema Language) and MSL-based schema matching method; Section 3 presents
a method for synthesizing web services; Section 4 discusses implementation de-
tails and gives some composition scenarios; Section 5 reviews related works and
Section 6 concludes this paper and discusses future work.

2 MSL-Based Schema Matching Method

Model Schema Language(MSL) is an attempt to formalize some of the core ideas
in XML Schema. The benefits of a formal description is that it is both concise
and precise. MSL uses a mathematical notation that is easier to manipulate
formally than the XML syntax of Schema. Mathematical notation is used for
model groups, components, and documents. In this paper, a concise version of
MSL is introduced, which includes sequence, choice and multiple-occurrence.

Definition 1. (MSL)
g → b|t[g0]|g1{m, n}|g1, · · · , gk|(g1| · · · |gk) where b is a basic data type, t is a tag
name, m and n are two integer variables. The meaning is:

(1) t[g0] denotes an element, the tag of whose root element is t, the type of its
child is compatible with g0

(2)g1{m, n} is a sequence of elements with type g1, with min occurrence and
max occurrence being m and n,respectively

(3) g1, · · · , gk is a list of elements whose type is g1, g2, · · · , gk,respectively
(4) g1| · · · |gk is a choice between type g1, g2, · · · , gk, where gi is gotten from

g → b or g → t[g0]

Given MSL denotation, parsing process read this denotation and identify key
symbols like “{”,“}”“[”,“]”,“,” and “|”, then grammar-directed translation pro-
cedure is adopted to translate the syntax into a tree structure. The schema tree
will be used by matching method to get the compatibility between two schemas.

There are usually shared components in XML schema. Because XML Schema
in web service is relatively simpler, materialization-based method for shared
components is adopted in this paper.

For schema matching, the matching method starts from matching between
leaf nodes because leaf nodes contain the main content. The mapping for lower
level nodes are spread to upper levels. Once a couple of nodes is found to be
matching, the paths from root to the nodes in source schema tree and target
schema tree are checked. The checking has two effects: to ensure these two nodes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

920 A. Gao, D. Yang, and S. Tang

are indeed matching with respect to their path context and to record the path
as the query expression for data retrieval.

The matching method based on MSL schema tree will be used by the synthe-
sizing method to check the compatibility of two web services.

Fig. 1. An example for schema matching

For schemas shown in Fig. 1, the element investorID in target schema will
be found to be matching with element investorID in source schema. And, ele-
ment creditCard in target schema will be found to be consistent with element
creditCard in source schema.

3 SMSM Method for Web Service Synthesizing

Before presenting SMSM method(web service Synthesizing method based on
Message Schema Matching), we will discuss several concepts first.

The abstract process of a composite web service is represented using G =
(V, E; F, Q), where

(1)V = {T1, T2, · · · , Tn}, each task Ti is defined by a web service type and its
format is servicename+operationname, such as < task, operation >.

(2) each edge e ∈ E represents the transition between task Ti and Tj

(3) F : E → REL is a mapping that associates each edge e ∈ E a control tran-
sition relationship, where REL = {SEQ, AND−S, AND−J, OR−S, OR−J},
representing sequence, parallel split, parallel join, conditional split and condi-
tional join, respectively. Now, only three control structures are supported: Se-
quence, Parallel and Conditional.

(4) Q : E → Query is a mapping that associates each edge e ∈ E a rule
for transforming data, which is the result of schema matching discussed in last
section.

A web service composition context C is a pair like < MS, G >, where MS =
{MS1, MS2, . . . , MSk}, each MSi representing a XML message schema, and G
is the current abstract process of a composite web service.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Web Service Composition Based on Message Schema Analysis 921

In the following paragraphs, Composable(A, B) = True is used to denote
that A and B can be combined together. The composable of two web services is
checked according to the schema matching method in last section.

Definition 2. Executable web service
The fact that a web service ws is executable in a web service composition con-
text C = (MS, G) is denoted as executable(ws, C), which is defined as: (∃ws′ ∈
V (Composable(ws′, ws) = True))

∨
(ws.input = πws.input(MS)), where the

first part denotes that there exists web service type ws′ ∈ V satisfies
Composable(ws′, ws) = True; the second part denotes that although there is
not such a ws′, the input message of ws can be satisfied by current message set
MS, so this service is also defined as executable.

According to the above discussion, web service synthesizing method SMSM is
shown in Algorithm 1. When the client specifies input and the expected output,
the algorithm will check the satisfaction of the output recursively. At each step,
if the output is not satisfied, the executable services under current context are
discovered and one is selected to add into G. This process repeats until we get the
expected output. During this process, the client needs to participate in specifying
input and making decision when several services are identified as candidates in
current composition context.

Algorithm 1. Semi-Automatic Synthesizing Algorithm

1: Input:inMsg,outMsg;
2: Output:G = (V, E; F, Q);
3: G = (V, E; F, Q) with V = ∅,E = ∅;
4: MS = {inMsg},C = (MS, G);
5: while (outMsg is not satisfied from MS) do
6: currServiceSet = serviceDiscovery(C); � each s in currServiceSet is

executable under C,i.e.,executable(s, C) = True
7: currService is the service selected from currServiceSet;
8: MS = MS

⋃
{currService.output};

9: V = V
⋃

{currService};
10: E = E

⋃
{e}, where e = (s′, currService), with each s′ linked to currService;

11: F (e) is assigned the relationship associated with edge e;
12: Q(e) is assigned the mapping expression for currService.input;
13: end while
14: store G into process database;
15: new a web service for this process G and publish it;

4 Examples

The method discussed here is implemented in SOSE framework for Synthesizing,
Optimal Selection and Execution of composite web services. The framework
includes two parts that correspond to two phases in the life cycle of a composite
web service. During the synthesizing phase, a composite web service will be
generated and denoted as an abstract business process. Then, the process is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

922 A. Gao, D. Yang, and S. Tang

deployed and executed in the seconde phase where an optimal execution plan is
generated and performance analysis is conducted. The details of this framework
are not discussed here due to space limitation.

In our work, some examples have been discussed for Algorithm 1. The results
illustrate that SMSM can generate composite web services according to message
schema effectively. Those examples include loan approval and purchase order in
[6], flower shop in [8], travel planning in [9] and car broker in [10].

Flower delivery([8]) example is discussed briefly to illustrate the SMSM
method. Initially, the input XML message includes the following elements:
personname,personname,flowername,numofflower and creditcard. The
SMSM method searches the web services set and selects Directory(mapping
name to address) service as the initial service because it is executable according
to the initial context. Then it will select the flower shop service(flower ordering)
because the flower name, the number of flower and the target are all known.
After the flower is ordered, the CreditCard service will be added into the com-
position service to pay for the ordering. With the authorization message gotten
from the CreditCard service, the Dispatch service becomes executable in cur-
rent composition context and is combined into the composite service. In the end,
the reply message is formed and sent to users.

5 Related Works

Web service composition ([1]) is to build value-added services and web applica-
tions by integrating and composing existing elementary web services. In current
works for automatic composition and verification([2,11]), the composite web ser-
vice is generated according to a fixed set of web services. However, it is probable
that the composite web service should be synthesized from a large set of web
service with some irrelevant ones. Thus, it is necessary to consider web service
discovery mechanism.

For web service discovery method such as [3] and [4], the schema and structure
of XML messages are abstracted and assumed to be flat, which is not the case
as far as current standards and specifications are concerned.

The method in this paper for web service composition takes the schema and
structure of XML message into account. The method accomplishes the com-
position task with respect to web service discovery mechanism. It avoids the
limitation that target service is synthesized with a fixed set of services. The ser-
vice discovery method can handle the schema and structure of XML message,
which considers XML-based web service protocol stack in practice.

Schema matching methods have been discussed for years,such as [12,13,14].
Authors in [12] give a good survey where the methods are categorized according
to several criteria. Our method is similar to [13] which is schema oriented.

6 Conclusion

In this paper, a method for web service composition at message level is proposed.
To accomplish this task, a method for MSL schema matching is first discussed,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Web Service Composition Based on Message Schema Analysis 923

where MSL schema is a formal data model for XML Schema. According to
the result of schema matching, two concepts of composable web service and
composition context are defined to guide the synthesizing process. In future
works, more XML schema components and examples are needed to evaluate this
method. And the verification of composite web services is also one of the further
works.

References

1. R. Hull, M. Benedikt, V. Christophides, and J. Su.E-services: A look behind the
curtain. In Proc. ACM Symp.on Principles of Database Systems, 2003.

2. Giuseppe De Giacomo,Daniela Berardi and Massimo Mecella,Basis for Au-
tomatic Web Service Composition, tutorial at WWW2005, available at
http://www.dis.uniroma1.it/∼degiacom/

3. B. Benatallah, M. S. Hacid, A. Leger, C. Rey and F. Toumani. On automating
Web services discovery. the Vldb Journal 14(1): 84-96,2005

4. Z. Shen and J. Su. Web Service Discovery Based on Behavior Signatures. In Pro-
ceedings of IEEE International Conference on Services Computing (SCC) 2005.

5. W3C, “Web Services Description Language (WSDL) Version 2.0”, W3C Working
Draft, March 2003. (See http://www.w3.org/TR/wsdl20/.)

6. Business Process Execution Language for Web Services, version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/

7. A. Brown, M. Fuchs, J. Robie and P. Wadler. MSL a model for W3C XML
Schema. In Proceedings of the 10th International Conference on World Wide
Web(WWW),2001, 191-200.

8. A. Kumar, S. Mittal and B. Srivastava. Information Modeling for End to End
Composition of Semantic Web Services. In IBM Research Report RI05001,
2005,http://domino.watson.ibm.com/library/CyberDig.nsf/Home

9. Liangzhao Z., Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant K.,
Henry Ch., QoS-Aware Middleware for Web Services Composition, IEEE transac-
tions on Software Engineering , 2004,30(5):311-327

10. B. Medjahed, A. Bouguettaya and A. K. Elmagarmid. Composing Web services on
the Semantic Web. VLDB Journal 12(4),2003

11. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini and M. Mecella. Auto-
matic Composition of E-services That Export Their Behavior. In Proceedings of
International Conference on Service Oriented Computing(ICSOC),2003, 43-58.

12. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal 10(4),2001.

13. J. Madhavan, P. A. Bernstein and E. Rahm. Generic Schema Matching with
Cupid. In Proceedings of the 27th International Conference on Very Large
Databases(VLDB),2001, Roman,Italy.

14. D. Aumueller, H.-H. Do, S. Massmann and E. Rahm. Schema and Ontology Match-
ing with COMA++. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data,2005, 906-908.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 924 – 929, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SQORE: A Framework for Semantic Query Based
Ontology Retrieval

Chutiporn Anutariya1, Rachanee Ungrangsi1, and Vilas Wuwongse2

1 School of Technology, Shinawatra University
99 Moo 10 Bangtoey, Samkok, Pathum Thani, 12160 Thailand
{chutiporn, rachanee}@shinawatra.ac.th

2 School of Engineering and Technology, Asian Institute of Technology
P.O. Box 4, Klong Luang, Pathum Thani, 12120 Thailand

vw@cs.ait.ac.th

Abstract. Existing approaches to ontology retrieval solely base their search
mechanisms on keyword matching while taxonomic structure is solely used for
ranking purpose. Users, therefore, are not equipped with expressive means to
structurally and semantically describe their ontology needs. To tackle this
problem, this paper develops a framework for Semantic Query based Ontology
Retrieval, namely SQORE. It enables precise formulation of a semantic query in
order to best capture a user’ s ontology requirements, which include not only
the desired class and property names, but also their relations and restrictions.
SQORE employs XML Declarative Description (XDD) theory as its theoretical
foundation for modeling ontology databases and evaluating semantic queries.
Moreover, similarity score is formally defined as a key metric for ranking the
resulting ontologies based on their conceptual closeness to the given query.

1 Introduction

The Semantic Web aims to expand the World Wide Web by allowing data to be
shared and reused across applications and communities via ontology [4]. However,
existing ontology search engines primarily base their approaches on search terms
which cannot sufficiently capture the structural and semantic information about the
domain concepts that users want. Swoogle [6, 7] and OntoKhoj [9] implement the
Google’s PageRank-like algorithm [5] which creates the rankings based on ontology
referral network. However, this approach is currently inefficient due to the lack of
links among ontologies on the Web. OntoSearch [10] provides several criteria for
users to evaluate and browse the ontologies and then uses AKTiveRank [1] as metrics
for ontology ranking based on the taxonomic structure information such as class
names, shortest paths, the linking density and the positions of focused classes in the
ontology. Although a large number of ontologies are returned as the result in these
approaches, they are often un-usable because they do not meet user requirements or
otherwise they require tremendous modification efforts. Furthermore, semantic
information such as properties and ontological relations (e.g. subClassOf, inverseOf,
equivalentClass, and subPropertyOf) is not considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SQORE: A Framework for Semantic Query Based Ontology Retrieval 925

This paper develops SQORE – Semantic Query based Ontology Retrieval
framework which allows users to structurally and semantically formulate their
ontology requirements in terms of semantic queries. It employs XML Declarative
Description (XDD) theory [2, 3, 11] as its theoretical foundation for modeling
ontology databases and evaluating semantic queries, which does not only facilitate
ontology matching and retrieval, but also support reasoning capability to enhance the
matching results. Moreover, it also enables the use of a semantic lexical database,
such as WordNet [8], for determining semantic relation between two given terms.
Thus, the retrieval performance (precision and recall) can be significantly improved
when compared to a conventional keyword search. In addition, it employs similarity
score to rank the resulting ontologies by focusing on their conceptual closeness to the
formulated semantic query.

Sect. 2 presents SQORE’s overview architecture. Sect. 3 describes ontology
database modeling and its semantics. Sect. 4 develops an approach to semantic query
formulation and evaluation. Sect. 5 concludes and draws future research directions.

2 SQORE’s System Architecture Overview

Fig. 1 illustrates SQORE’s system architecture which comprises four major
components: i) a semantic query, ii) a retrieval engine, iii) an ontology database, and
iv) a semantic lexical database. In essence, the system works as follows: First, a user
formulates and submits a semantic query which precisely captures his/her ontology
requirements. The system then executes such query by semantically evaluating it
against the ontology database, which comprises a collection of ontologies and a set of
rules defining ontology axiomatic semantics. By incorporating these rules, implicit
information about classes/properties in a query and an ontology can be derived, and
hence enabling semantic query evaluation. Furthermore, when class/property names
defined in a query and an ontology do not exactly match (=), four possibilities occur:
i) equivalence (≡): the two terms are synonym, ii) more general (⊇): the query term is
broader, iii) less general (⊆): the ontology term is broader, and iv) unknown (≠): the
relation is unknown. To tackle this, a referenced lexical database, such as WordNet
[8], is employed in order to determine their appropriate semantic relation. Finally, the
system computes the semantic similarity score between a given query and an
ontology in the collection, which ranges from 0 (strong dissimilarity) to 1 (strong
similarity), and returns as the answer the list of ranked ontologies.

Query

Ranked ontologies

SQORE

Ontology Database

• Collection of Ontologies

• Axiomatic Semantics of Ontology

Modeling Constructs

Semantic Lexical Database

User

Fig. 1. SQORE System Architecture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

926 C. Anutariya, R. Ungrangsi, and V. Wuwongse

3 Ontology Database Model and Its Semantics

By employment of XDD theory, an ontology formalized in RDF(S) or OWL can
readily and directly become an XDD description. In order to determine the meaning
of a particular ontology, formalization of the axiomatic semantics of each
RDF(S)/OWL modeling construct is demanded.

Fig. 2. Semantics of the ontology O wrt. the axiomatic semantics of RDF(S)/OWL constructs

Fig. 2 gives an example of formalizing rdfs:subClassOf in terms of an XDD
description C1. By incorporating this description, the meaning of the ontology O,
consequently, yields elements E1–E9 which are explicitly defined by O, together with
the derived ones. For instance, as depicted by Fig. 2, assume that Query Q searches
for ontologies with PhDStudent modeled as a subClassOf Person, while Ontology O
defines PhDStudent as a subClassOf Student which is then a subClassOf Person;
therefore by modeling the semantics of subClassOf to be transitive, one can derive
that in Ontology O, PhDStudent is also a subClassOf Person, and thus satisfying the
query requirement.

Founded on this formalism, an ontology database ODB becomes an XDD
description with two parts: i) ODBC: An ontology collection consisting of n
ontologies O1,…, On, and ii) ODBA: A set of XML clauses defining the axiomatic
semantics of ontology modeling constructs. The database semantics, denoted by
M(ODB), are the set of OWL elements describing classes, properties or instances

(individuals) which are directly represented by the database via the ontology
collection ODBC plus those derivable from it via the axiomatic semantics ODBA.

4 Semantic Query Formulation and Evaluation

Definition 1 (Semantic Query). A semantic query is formulated as an XML element
of the form:

E1: <owl:Class rdf:resource="PhDStudent">
 <rdfs:subClassOf rdf:resource="#Student"/>
</owl:Class>

E2: <owl:Class rdf:resource="Student">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

Semantics of O

Ontology O

E2
E1

E8 E5
E9

E6

E4

E3

E7

Explicit ontology element

Implicit ontology element

Legend

<owl:Class rdf:resource="PhDStudent">
 <rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

 C1: <owl:Class rdf:about=$S:classA>
 <rdfs:subClassOf rdf:resource=$S:classC/>
 </owl:Class>
 ← <owl:Class rdf:about=$S:classA>
 <rdfs:subClassOf rdf:resource=$S:classB/>
 </owl:Class>,
 <owl:Class rdf:about=$S:classB>
 <rdfs:subClassOf rdf:resource=$S:classC/>
 </owl:Class>.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SQORE: A Framework for Semantic Query Based Ontology Retrieval 927

<sq:Query>
 <sq:mandatoryConditions> m1 m2 … mn </sq:mandatoryConditions>
 <sq:optionalConditions> o1 o2 … or </sq:optionalConditions>
 <sq:semanticLexiconReference> url </sq:semanticLexiconReference>
 <sq:similarityWeightFactors>
 <sq:mandatoryConditionWeight> wM </sq:mandatoryConditionWeight>
 <sq:stringMatching> w= </sq:stringMatching>
 <sq:synonymRelation> w≡ </sq:synonymRelation>
 <sq:moreGeneralRelation> w⊇ </sq:moreGeneralRelation>
 <sq:lessGeneralRelation> w⊆ </sq:lessGeneralRelation>
 <sq:unknownRelation> w

≠
</sq:unknownRelation>

 </sq:similarityWeightFactors>
</sq:Query>

where

− mi is an OWL/RDF(S) expression describing a query’s mandatory condition,
− oi is an OWL/RDF(S) expression describing a query’s optional condition,
− url gives a URL of a semantic lexical database,
− wM, w=, w≡, w⊇, w⊆, w≠ ∈ [0, 1] are semantic weight factors,
− semanticLexiconReference- and similarityWeightFactors-elements are optional.

Given a semantic query Q, let mcond(Q) and ocond(Q), respectively, denote the
sets of mandatory conditions and optional conditions.

Formally speaking, an ontology O in ODB satisfies a condition mi or oi if such a
conditional element is included in the meaning of O. The weight factor wM allows
explicit specification of how important the mandatory conditions are, and hence 1–wM
becomes the weight for the optional conditions. The semantic lexicon reference
specifies external knowledge used for determining appropriate semantic relations
between elements of Q and O. Thus, based on the discovered semantic relation
between a query element t1 and an ontology element t2 defined as follows, the weight
factors w=, w≡, w⊇, w⊆, w≠, respectively, allow the user to quantify how similar the
two elements are. In principle, it is recommended that 1 = w= ≥ w≡ ≥ w⊇ ≥ w⊆ ≥ w≠ = 0.
In practice, these weights can be configured as default settings of the system or
manually defined by a user.

5 Similarity Measures

This section formally defines important similarity measures. First, let Σ be an
ontology alphabet comprising ontology elements in the following sets:

• C: Class names (such as Person, Student, PhDStudent),
• P: Property names (such as firstname, lastname, supervises, isSupervisedBy),
• D: Datatypes (such as xsd:string, xsd:nonNegativeInteger),
• M: Modeling constructs of RDF(S) and OWL (such as rdfs:subClassOf),
• R: Restrictions on classes and properties, having the form m(a,b) where m ∈ M,

a ∈ (C ∪ P), b ∈ (C ∪ P ∪ D) (such as rdfs:subClassOf(Student, Person)).

The following definition first measures how well two ontology elements match.

Definition 2 (Element Similarity Score: SSE). The similarity of two ontology
elements x and y is measured by:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

928 C. Anutariya, R. Ungrangsi, and V. Wuwongse

• For x,y ∈ C or x,y ∈ P or x,y ∈ D:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=),(yxSSE

w= : if x = y
w≡ : if x ≡ y
w⊇ : if x ⊇ y
w⊆ : if x ⊆ y

w≠ : otherwise

(1)

• For x = m(a1,b1) ∈ R and y = m(a2,b2) ∈ R:
),(*),(),(2121 bbSSaaSSyxSS EEE = (2)

• Otherwise:

=),(yxSSE unknown (3)

Based on this element similarity score definition, one can measure the similarity
between a given element x in Σ and an ontology O in ODB by finding the highest
similarity score between x and each element y that is semantically defined by O. This
is defined by:

Definition 3 (Best Element Similarity Score: SSB). The similarity between an

element x ∈ C ∪ P ∪ R and an ontology O ∈ ODB is measured by:

),(max),(
)(

yxSOxSS
OMy

B ∈
= (4)

Next, the satisfaction scores of mandatory conditions (SSM) and of optional conditions
(SSO) are defined.

Definition 4 (Satisfaction Scores of Mandatory conditions: SSM and Optional
conditions: SSO). With respect to an ontology O, the satisfaction scores of Q’s
mandatory conditions (SSM) and Q’s optional conditions (SSO) are measured by:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=),(OQSSM

1 : if mcond(Q) = ∅

0 : if ∃(c ∈ mcond(Q)) SSB(c, O) ≤ w≠

|)(|

),(
)(

Qmcond

OcSS
Qmcondc

B∑
∈ : otherwise

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=),(OQSSO

1 : if ocond(Q) = ∅

0 : if SSM(Q,O) = 0

|)(|

),(
)(

Qocond

OcSS
Qocondc

B∑
∈ : otherwise

(6)

Finally, one can measure the similarity between a semantic query Q and an ontology
O by integrating the two components: mandatory condition satisfaction score and
optional condition satisfaction score, as follows:

Definition 5 (Query-Ontology Similarity Score). The similarity between a semantic
query Q and an ontology O is measured by:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SQORE: A Framework for Semantic Query Based Ontology Retrieval 929

),()1(),(),(OocondSSwOcondmSSwOQSS QOMQMM −+= (7)

6 Conclusions

This paper proposes and develops SQORE – a novel framework for ontology retrieval
system based on semantic query. It enables a user to precisely and structurally
formulate their ontology requirements, which include not only the desired class and
property names, but also their relations and restrictions. Moreover, when evaluating a
query, its semantics together with an ontology’s semantics are also taken into account
in order to correctly and semantically match them.

Acknowledgement

This work was supported by Thailand Research Fund and Commission on Higher
Education, Thailand, under grant number MRG4780192.

References

1. Alani, H. and Brewster, C.: Metrics for Ranking Ontologies. In Proceedings of 4th
International EON Workshop, 15th Int’l WWW Conference, Edinburgh, 2006.

2. Anutariya, C., Wuwongse, V. and Akama, K.: XML Declarative Description with First-
Order Logical Constraints. Computational Intelligence, Vol. 21, No. 2, pp. 130-156 (2005)

3. Anutariya, C., Wuwongse, V., Akama, K., Wattanapailin, V.: Semantic Web Modeling
and Programming with XDD. Proc. Semantic Web Working Symposium (SWWS-01), CA
(2001), 161–180.

4. Berners-Lee, T., Handler, J., and Lassila, O.: The Semantic Web, Scientific American,
May 2001.

5. Brin, S., and Page, L. The anatomy of a large-scale hyper-textual web search engine. In
Seventh International WorldWide Web Conference, Brisbane, Australia, 1998

6. Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V.,
Sachs, J., Swoogle: a search and metadata engine for the semantic web. Proc. 13 ACM
Int’l Conf. Information and Knowledge Management, November 08-13, 2004, DC

7. Finin, T., Mayfield, J., Joshi, A., Scott Cost, R., Fink, C.: Information Retrieval and the
Semantic Web, Proc. 38th Annual Hawaii Int’l Conf. System Sciences (HICSS'05) - Track
4, p.113.1, 2005

8. Miller, A., Wordnet: A lexical database for English. In Communications of the ACM,
number 38(11), 1995.

9. Patel, C., Supekar, K., Lee, Y., Park, E. K., OntoKhoj: a semantic web portal for ontology
searching, ranking and classification, Proc. 5th ACM Int’l Workshop on Web Information
and Data Management, November 07-08, 2003, Louisiana.

10. Thomas, E., Alani, H., Sleeman, D. and Brewster, C.: Searching and Ranking Ontologies
on the Semantic Web. In Proc. Workshop Ontology Management: Searching, Selection,
Ranking, and Segmentation. 3rd K-CAP 2005, pp. 57-60, Banff, Canada

11. Wuwongse, V., Anutariya, C., Akama, K., Nantajeewarawat, E.: XML Declarative
Description (XDD): A Language for the Semantic Web. IEEE Intelligent Systems, Vol.
16, No. 3, pp. 54–65 (May/June 2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 930 – 935, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Graph Structure of the Korea Web*

In Kyu Han, Sang Ho Lee, and Soowon Lee

School of Computing
Soongsil University, Korea

{ikhan, shlee, swlee}@comp.ssu.ac.kr

Abstract. The study of the Web graph not only yields valuable insight into
Web algorithms for crawling, searching and community discovery, and the
sociological phenomena that characterize its evolution, but also helps us
understand the evolution process of the Web. In this paper, we report the
experiments on properties of the Korea Web graph with over 116 million pages
and 2.7 billion links. This paper presents the power law distributions from the
Korea Web and then compares them with other web graphs. Our analysis
reveals that the Korea Web graph has different properties in comparison with
the other graphs in terms of the structure of the Web.

Keywords: Web graph, Power law, Web evolution, Web connectivity.

1 Introduction

The Web can be represented by a directed graph where nodes stand for Web pages,
and edges stand for hyperlinks among pages. This graph is likely to have
approximately billion nodes as of today, and it is rapidly growing at the rate of 7.3
million new pages a day [15]. There are mathematical, sociological and commercial
reasons for studying the evolution of this graph. Exploitation of the information in the
graph is helpful for improvement of algorithms for web search, topic classification,
cyber-community enumeration and so on.

In the literature, there have been a number of researches regarding the Web graph
and power law distributions found on the Web. Albert et. al. [1] estimated the
diameter of the Web. Broder and Kumar [2][8] reported the in-degree and out-degree
distributions of the global Web graph, which follows the power law distributions, and
they also analyzed the structure of the global Web graph. Boldi et. al. [6] studied the
African Web. J. Han et. al. [3] showed that the China Web graph manifests properties
different from global Web graph. The giant strongly connected component (SCC) of
the China Web graph is proportionally bigger than that of the global Web graph is.

Albert et. al. [1], Broder et. al. [2], and Kumar et. al. [13] studied the degree
distribution of nodes in the Web graph. They performed empirical studies using
graphs of sizes ranging from 325,729 nodes (University of Notre Dame) [1] to 203
million nodes (AltaVista crawler data) [2]. They found that both the in-degree and
out-degree of nodes on the Web follow the power-law distributions. The number of

* This work was supported by Korea Research Foundation Grant (KRF-2006-005-J03803).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Graph Structure of the Korea Web 931

Web pages having a degree i is proportional to 1/ik where k > 1. This implies that the
probability of finding a node with a large degree is small yet significant. G. Liu et. al.
[4] showed that the China Web has an in-degree distribution with exponent 2.05 and
an out-degree distribution with exponent 2.62.

The Web graph is likely to consist of hundreds of millions of nodes and billions of
edges. Due to this gigantic scale of the web graph, we can hardly load the full graph
into the main memory for enumerating SCCs in Web graph. To solve this problem, J.
Han et. al. [3] proposed an algorithm for enumerating SCCs in the Web graph under
the split-merge approach. The basic idea of this algorithm is to split the original graph
into parts that are smaller enough to load into the main memory, to decompose them
one by one, and finally to merge them together.

In this paper, we investigate a number of power law distributions of the properties
of the Korea Web graph. We report four power law distributions in the Korea Web.
We construct the Korea Web graph, using the SCC (strongly connected component)
enumerating algorithm [3]. We also analyze the similarities and differences between
the global Web graph and the Korea Web graph.

One contributions of this paper is to show that the Korea Web graph, a subset of
the global Web graph, shows different and similar properties in comparison with the
global Web graph in terms of the structure of the Web. The research on Korea Web
graph is useful for understanding the evolution of Korea Web graph, predicting the
growing pace of Korea Web, improving the performance of the Korea Web search
engine, and processing the Korea Web information.

2 Graph Structure of the Korea Web

For our experiment, we crawled Korea Web pages using our crawler [14] with three
machines from June 2006 to July 2006. The IP address is used to determine to see if
it belongs to the Korea sites. The crawler downloaded Korea web pages up to the
ninth depth, and it collected at most 640,000 web pages from a single site. In order to
reduce the size, we compressed links as we downloaded them. The size of the raw
data was approximately 65GB, which contain various information on URLs for pages
themselves and hyperlinks among pages. We processed the raw data to create Korea
Web graph, such as removing invalid URLs, and assigning a unique ID to each URL.
We finally constructed the Korea Web graph, which contains 116 million pages
(nodes) and 2.7 billion links (edges).

2.1 Power Law Distributions

We now consider various power law phenomenon of the Korea Web graph.

Page Number Distribution in Web Sites. Figure 1 shows the distribution of page
numbers in web sites. The x-axis shows the number of pages in each site while the y-
axis shows the number of sites which have the corresponding x pages. Each point
(x, y) on the distribution indicates that y number of sites have x pages. This graph
exhibits that the distribution of the number of pages in web sites follows the power
law while the exponent is roughly 2.3. Under this distribution, the top 18% of sites

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

932 I.K. Han, S.H. Lee, and S. Lee

possess about 90% of the total pages of the Korea Web, while 82% of sites contain
only 10% of the total pages. This implies that the distribution of the number of pages
in web sites of the Korea Web also obeys Pareto’s Law (also known as 20:80 law)
although the proportion is a little different. The anomalous points at 1417 and 1418 on
the x-axis are due to a cluster of sites that have identical web pages even though they
have different host names. The site with most pages has about 590 thousand pages.

The Korea Web is different from the China Web which has exponent of 1.74.
What it means that the probability that we find web sites in Korea becomes more
exponentially decreased than we find such web sites in China, as the number of web
pages in a site increases.

Fig. 1. Page number distribution in web sites

Degree Distribution of the Korea Web. The degree distributions in the Korea Web
also follow the power law distribution. Figure 2 and 3 are a log-log plot of the in-
degree and out-degree distributions of the Korea Web graph, respectively. In all our
log-log plots, straight lines are linear regressions for the best power law fit. Figure 2
shows that the distribution of in-degree exhibits a power law with exponent roughly
2.2, which is almost the same value as in the global Web [2] and the China Web [4].
Applying an inverse polynomial to the data, we can find the probability that a page
has i in-links to be roughly proportional to i-2.2. The page that has the most in-links
contains as many as 47 million in-links. The out-degree distribution also exhibits a
power law while the exponent is roughly 2.8, as in Figure 3. The average out-links in
a page of the Korea Web is 27.4. This number is about 3 times more than the average
out-links (i.e. eight) which was reported in 1999 [2]. Here we would like to
conjecture that the number of links in a page is increasing (at the same time the
connectivity among web pages is growing) as time goes by. Note that the pages with
out-degrees less than 100 on the x-axis significantly deviate from the best power law
fit, suggesting that we might need to have a new distribution to model pages with low
out-degrees.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Graph Structure of the Korea Web 933

in-degree distribution

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

in-degree

nu
m

be
r

of
 p

ag
es

out-degree distribution

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1 10 100 1000 10000

out-degree

nu
m

be
r

of
 p

ag
es

 Fig. 2. In-degree distribution Fig. 3. Out-degree distribution

Distribution of Strongly Connected Components. By running the split-merge
algorithm [3], we find that there is a single large SCC consisting of about 99 million
pages, and all other components are significantly smaller in size. The single large
SCC has barely 86% of all the Korean pages. Figure 4 indicates that the distribution
of the SCC sizes of the Korea Web also follows a power law with exponent
roughly 2.3.

SCC distribution

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1 10 100 1000 10000 100000 1000000 1E+07 1E+08

size of component

nu
m

be
r

of
 c

om
po

ne
nt

s

Fig. 4. Distribution of strongly connected components

2.2 The Macro Structure of the Korea Web

Broder and Kumar [2] present a picture that they refer to a bow-tie of the Web’s
macroscopic structure. There are four pieces in this structure. The first piece is a
central CORE, all of those pages can reach one another along directed links. This
giant strongly connected component is at the heart of the Web. The second and third
pieces are called IN and OUT. IN consists of pages that can reach the CORE, but
cannot be reached from it. OUT consists of pages that are accessible from the CORE,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

934 I.K. Han, S.H. Lee, and S. Lee

but do not links back to it. Finally, the TENDRILS contain pages that cannot reach
the CORE, and cannot be reached from the CORE.

Figure 5 shows the structure of the Korea Web graph. The Korea Web graph we
built contains 116 million pages and 2.7 billion links. The CORE contains about 99
million pages, the IN contains about 9 million pages, the OUT contains about 6
million pages, and the rest contains about 2.4 million pages.

The graph structure of the Korea Web exhibits characteristics that are different to
the global Web graph [2] and the China Web graph [4]. The CORE possesses around
86% of the pages of the Korea Web. This is higher than the CORE possessed by the
28% in the global Web graph [2] and 80% in the China Web graph [4]. In other
words, the connectivity of the Korea Web is higher than the global and China Web.
Furthermore, if pages u and v are randomly chosen in the Korea web, the probability
that there exists a path each other is at least 0.74 (= 86/100 * 86/100), excluding the
existence of many tiny SCCs in the Web graph.

The web service providers are currently interested in providing blog and
community services to personal users. Personal users tend to create their web pages
under a “personalized” frame, which often automatically put links to famous sites in
the newly created pages. Business users also like to put links to famous sites in their
web pages for various reasons such as increasing accessibility, advertisement and so
on. Above all, fast growing are a few giant portal companies, which provide personal
services like communities, blogs, thus allow to create a huge number of new pages.
The frontrunner companies in Korea would include “www.naver.com”,
“www.daum.net” and “www.nate.com”. As the role of such companies become
important, more web users get personalized services (private pages are also made in
these sites) and companies connect links to popular sites. After all, the Korea web
becomes more and more centralized. The observation leads us to expect the size of
CORE continue to increase.

COREIN OUT

99 million nodes
6 million nodes9 million nodes

Disconnected components 0.8 million nodes

Tendril
1.6 million nodes

COREIN OUT

99 million nodes
6 million nodes9 million nodes

Disconnected components 0.8 million nodes

Tendril
1.6 million nodes

Fig. 5. The bowtie structure of the Korea Web graph

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Graph Structure of the Korea Web 935

3 Conclusion and Future Work

We studied the Korea Web graph and analyzed the similarities and differences
between it and the global and China Web graphs. The CORE of the Korea Web has
the bigger portion than the global Web and the China Web do. We learn that the
Korea Web is highly connected and centralized. We verified power law distributions
in the Korea Web graph from several aspects, and confirmed, as expected, that power
law is a basic property of the Web. As for future work, we plan to study about how
much does the change of link structure effect the page ranking.

During the experiment, we found many web communities. A Web community is a
set of sites that have a similar topic and have many links each other. These
communities can be easily found in the form of a single SCC during constructing the
Web graph. As a perspective of web search engines, such SCC can be utilized to
satisfy given topic-oriented user requests, possibly complementing the existing
directory services.

References

1. Albert, R., Jeong, H., Barabasi, A.: Diameter of the world wide web. Nature (1999)
401(6749)

2. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,
A., Wiener, J.: Graph structure in the web. the 9th International World-Wide Web
Conference (2000)

3. Han, J., Yu, Y., Liu, G., Xue, G.: An Algorithm for Enumerating SCCs in Web Graph. the
7th Asia Pacific Web Conference (2005) 655-667

4. Liu, G., Yu, Y., Han, J., Xue, G.: China Web Graph Measurements and Evolutions. the 7th
Asia Pacific Web Conference (2005) 668-679

5. Cho, J., Roy, S.: Impact of search engines on page popularity. the 13th World-Wide Web
Conference, (2004)

6. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Structural properties of the African web.
(2002)

7. Ntoulas, A., Cho, J., Olston, C.: What’s new on the web? The evolution of the web from a
search engine perspective. the 13th International World-Wide Web Conference (2004)

8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: The
Web as a graph. Lecture Notes in Computer Science 1627 (1999)

9. Fetterly, D., Manasse, M., Najork, M., Wiener, J.: A large-scale study of the evolution of
Web pages. Software – Practice and Experience (SPE) (2004) 213-237

10. Bar-Yossef, Z., Berg, A., Chien, S., Fakcharoenphol, J., Weitz, D.: Approximating
aggregate queries about web pages via random walks. the 26th VLDB Conference (2000)

11. Heydon, A., Najork, M.: Mercator: A scalable, extensible Web crawler. the 8th
International World-Wide Web Conference (1999) 219-229

12. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science (1999)
509-512

13. Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling emerging cyber-
communities automatically. the 8th World-Wide Web Conference (1999)

14. Kim, S.J., Lee, S.H.: Implementation of a Web Robot and Statistics on the Korean Web.
the 2nd International Conference on Human.Society@Internet (2003) 341-350.

15. Moore, A., Murray, B., H.: Sizing the web. Cyveilliance, Inc. White Paper. (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyQuerier: A Keyword Based Interface for Web
Database Integration System

Xian Li1, Weiyi Meng2, and Xiaofeng Meng1

1 School of Information, Renmin University of China
{xianli,xfmeng}@ruc.edu.cn

2 Computer Science Dept., SUNY at Binghamtom
meng@cs.binghamton.edu

Abstract. Recently a lot of work on integrating the search interfaces of mul-
tiple Web databases of the same domain into an integrated interface has been
reported. Such integrated interfaces enable users to search multiple Web data-
bases using one query. However, there are two potential problems when using
these integrated interfaces in practice. First, if the number of domains is large,
it may be difficult for users to find the correct domain. Second, the integrated
interfaces can become too complicated for ordinary users to use. In this paper,
we propose a system called EasyQuerier to tackle these problems. EasyQuerier
allows the users to submit keyword-based queries to access the Web databases by
first mapping a keyword-based user query to a suitable domain and then trans-
lating the user query to a well-formatted query on the integrated interface of the
found domain. Our experiments show that both our domain mapping and query
translation techniques work very well.

1 Introduction

A large proportion of the information on the Web is stored in the Web accessible data-
bases [1] which are often called Web Databases (WDBs). WDB integration is an emerg-
ing technique for providing users an unified way to access multiple WDBs. One key
research issue here is to automatically integrate the local query interfaces of the WDBs
in the same domain into an integrated query interface [2] [3] [4]. Although this issue has
received a lot of attention in recent years, using such integrated interfaces in practice
has several problems:
1. One integrated interface is able to access only one specific domain. The users need

to first determine the desired domain and then find the corresponding integrated
interface to submit queries. As the number of domains grows, domain searching
becomes an obstacle for the wide use of the integrated interfaces.

2. The integrated query interfaces can be too complex to use for ordinary users be-
cause they typically contain a large number of attributes and many of them have
lots of pre-defined values.

3. Each attribute in the integrated interface can accept only one value at a time. So
a user has to submit multiple queries when he/she wants to set optional search
conditions. For example, if a user wants to search a job with job title “DBA” or
“Software engineer”, the user has to submit two queries to the integrated interface.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 936–942, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyQuerier: A Keyword Based Interface for Web Database Integration System 937

In this paper we propose a novel solution to overcome the above problems while still
supporting unified access to multiple WDBs. Our solution provides a simple keyword-
based interface “EasyQuerier” plus two mappings, one maps a user query to the correct
domain and the other maps the query to one or more queries on the integrated query in-
terface of the domain. EasyQuerier allows a user to submit queries against any domain.
Besides, multiple values corresponding to the same attribute on an integrated interface
can be entered in the same query. For the job-hunting example given previously, the
user can simply enter “DBA or Software engineer”.

The rest of this paper is organized as follows. Section 2 provides an overview of
EasyQuerier. Section 3 describes our domain mapping solution. Section 4 proposes the
query translation algorithm from the keyword-based interface to integrated interfaces.
Section 5 reports the experimental results and the analysis. Section 6 reviews related
work followed with the conclusion in Section 7.

2 Overview of EasyQuerier

With EasyQuerier, users only need to provide keyword-like queries. Based on the sub-
mitted query, the related domain is determined first; then the query is translated into
one or more queries that fit the integrated interface of the selected domain; finally each
translated query is mapped to the query interfaces of the local Web databases of the
domain. In this paper, we focus only on the first two steps of the above process.

In this paper, we assume that an integrated query interface for each domain has already
been constructed using some existing techniques (e.g., the WISE-Integrator [3] [5]).
EasyQuerier is built on top of these integrated query interfaces. Users can generally
submit keyword queries as what they usually do when querying search engines.

Example 1. For the following user query:
Q1: New York or Washington, education, $2000-$3000

three keyword units, {New York, Washington}, {education}, and {$2000-$3000} (a
range) are obtained and their data types are text, text, and money, respectively.

3 Domain Mapping

We aim to map a user query to the correct domain automatically without domain infor-
mation to be separately entered. We first present a model to represent each domain.

3.1 Domain Representation Model

Our survey covering nine different domains shows that near 90% of the attributes have
converging value sets We use the converged value sets to represent each domain. We
propose a domain representation model as follows. Specifically, each domain D is mod-
elled by a quadruplet: D =< d ID, CT, AT, V T >, where

1. d ID is the unique domain identifier.
2. CT = {cti|i = 1, 2, · · ·} is a set of Conceptual Terms, which describe the whole

domain concept, such as “car”, “vehicles”, “book”, “music CD”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

938 X. Li, W. Meng, and X. Meng

3. AT =
⋃

A∈D DAL(d ID, Ai) is a set of Attribute Label Terms consisting of at-
tribute labels of the products in this domain. DAL(d ID, Ai), Domain Attribute
Label set, is a set of all the terms related to the attribute label of Ai in domain d ID.
DAL(d ID, Ai) consists of terms from three classes: (1)InteLabel: The global la-
bel for Ai in the integrated query interface. (2)LocalLabel: All the labels repre-
senting Ai in the local query interfaces. (3)OtherLabel: It contains some synonyms
and immediate hypernyms/hyponyms of those terms in InteLabel and LocalLabel
obtained using WordNet.

4. V T =
⋃

A∈D DAV (d ID, Ai), is a set of the Value Terms associated with the
products’ attributes in the domain d ID. DAV (d ID, Ai), Domain Attribute Value
set, is a set of all the pre-defined values associated with Ai in domain d ID.
For Character Attribute, values are classified just like for DAL, i.e., we have Inte-
Value, LocalValue, OtherValue. For Non-text Attribute, DAV can be characterized
by the pre-defined ranges available on the integrated interfaces.

3.2 Term Weight Assignment

Often different terms have different ability to differentiate the domains. For example,
intuitively attribute label “price” is less powerful than “title” in differentiating the book
domain from other domains because the former appears in more domains than the latter.
Therefore, we should assign a weight to each term in each domain representation to
reflect its ability in differentiating the domain from other domains.

There are different ways to assign weights to a term. In this paper, we adopt a method
from [6] that was used in the context of differentiating different component search en-
gines (document databases) in a metasearch. In [6], a statistic called CVV (cue validity
variance) is used to measure the skew of the distribution of terms across all document
databases, each of which contains a number of documents. For our problem, each do-
main can be considered as a document database and each local query interface in the
domain as a document. Then the CVV of a term can be used as its weight in its ability
to differentiate different domains. Denote ifij as the interface frequency of term tj in
the i-th domain Di, i.e., it is the number of times tj appears in either AT or VT in Di.
Denote CV Vj as the CVV for tj . Then the weight of tj in Di can be computed by:
Weight(Di, tj) = CV Vj ∗ ifij .

3.3 Domain Mapping

After the representation of each domain is generated, we can map each query to a certain
domain by computing the similarity between the query and each domain.

We now discuss how to compute the similarity between Q and each domain D.
As mentioned in Section 2, we parse a query Q into a set of keyword units Q =
{u1, u2, · · · , un}. Therefore, we first compute the similarity between each ui and the
domain D. Each ui may contain one or more query terms denoted as {v1

i , v2
i , · · ·}. For

each vx
i , we first calculate its similarity with the best matching term in the represen-

tation of domain D. Only terms of the attributes that have compatible data types with
the data type of ui are considered. Let T x

i denote this term set. First, consider the case
when vx

i is a text type query term. The similarity between vx
i and a term tj in T x

i is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyQuerier: A Keyword Based Interface for Web Database Integration System 939

computed by Sim(vx
i , tj) = cw

max(|vx
i |,|tj |) , where cw is the number of common words

between vx
i and tj . Now we consider the case when vx

i is of a non-text type. In this
case, Sim(vx

i , tj) is computed based on the percentage of vx
i that is covered by tj , i.e.,

Sim(vx
i , tj) = |cr|

|vx
i | , where cr is the shared range between vx

i and tj . For both cases,

we call the term most similar to vx
i as vx

i ’s matching term and denote it as txi .
We now define the similarity between ui and D, denoted Sim(ui, D), to be

maxx{Sim(vx
i , txi)}. Let tyi be the term such that maxx{Sim(vx

i , txi)} = Sim(vy
i , tyi).

If more than one such tyi exist, take the one with the largest Weight(D, tyi). Finally, the
similarity between Q and D (called the mapping degree) is defined as a weighted sum
of all the similarities between all the keyword units in Q and D, i.e.,

Sim(Q, D) =
n∑

i=1

Sim(ui, D) ∗ Weight(D, tyi)

4 Query Translation

Each query has been parsed into several keyword units before domain mapping. The
main challenge in query translation is to map each keyword unit to its most appropriate
attribute on the integrated interface of the selected domain. In this section, we first
introduce a computation model for query translation, later we discuss how to generate
query translation solution based on this model.

4.1 Computation Model of the Query Translation

Definition 4.1. (Keyword-Attribute Matching (KAM)). Given a keyword unit u and an
attribute A from the integrated interface, their mapping is denoted as KAM(u, A).
Definition 4.2. (Degree of Matching (DM)). DM is the degree of matching for a KAM,
with value range [0, 1]. Given k keyword units and m attributes, k ∗ m KAMs can be
generated and their DM values form a k∗m matrix, which will be called the DM matrix.

Definition 4.3. (Query Translation Solution (QTS)). A QTS represents a strategy of
filling in the query interface. A QTS is comprised of k KAMs, where k is the number
of keyword units.

Definition 4.4. (Conviction). This measurement determines whether a QTS is reason-
able. The larger the DM of a KAM, the more reasonable the KAM is. Thus, the QTS
containing such a KAM will more likely yield sounder query translation. Thus the value
of Conviction is computed as a weighted sum of all the related DMs.

4.2 Computation of DM

In our system, DM(ui, A) is determined by the similarity between the keyword unit ui

and the value set of attribute A. The value set of A on the integrated interface of domain
d ID is DAV(d ID, A) (see Section 3.1).

A keyword unit in EasyQuerier may contain more than one keyword related to the
same attribute. Let ui = {v1

i or v2
i or · · · or vp

i } be such a keyword unit. When com-
puting the DM of a KAM(ui, Aj), we first calculate Sim(vx

i , Aj) which represents
the similarity between a value vx

i and an attribute Aj , then the maximum of all the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

940 X. Li, W. Meng, and X. Meng

similarities is the value of DM(ui, Aj). For each tj in the DAV of Aj Sim(vx
i , tj) is

computed as what mentioned in section 3.3. Sim(vx
i , Aj) is the maximum value of all

the Sim(vx
i , tj).

Finally, the DM(ui, Aj) is aggregated from all the Sim values related to the key-
words in ui using DM(ui, Aj) = maxp

x=1{Sim(vx
i , Aj)}.

4.3 Computation of Conviction and QTS Generation

In Definition 4.4, the Conviction value of a QTS is a weighted sum of the DMs of
the related KAMs. We compute a weight w(Aj) for each attribute Aj based on its
interface frequency. Let ifi be the number of local query interfaces that contain attribute
Ai. Intuitively, if an attribute appears in more local interfaces of a domain, it is more
important in the domain. Based on this, we compute w(Aj) = ifj/(

∑
i ifi). Finally,

for QTS = KAM(u1, A
′

1)∧KAM(u2, A
′

2)∧· · ·∧KAM(uk, A
′

k), we use the following
formula to compute its conviction:

Conviction(QTS) =
k∑

i=1

w(A
′

i) ∗ DM(ui, A
′

i)

5 Experiments

A prototype of EasyQuerier has been implemented. The data collection for the exper-
iment includes: web databases and user queries. (1) Web databases: WDBs covering
9 different domains are collected with 50 databases for each domain. (2) User query
collection: 10 students across five different majors are invited as the evaluators of our
demo system. For each domain, every student provides two different keyword queries.

The evaluation for both domain mapping and query translation is similar: we iden-
tify a correct mapping/translation by checking whether the selected domain/translated
query with the largest similarity matches the user’s intention. If the user is not satisfied
with the top result, we let them click the button “more” for more choices In general,
the top 3 choices are provided. If the correct result appears in these choices, we con-
sider the result an acceptable mapping/translation; otherwise the mapping/translation
is considered to be wrong.

Results on domain mapping. The experiment on domain mapping is conducted on the
9 domains. For each query, the produced domains are ranked in descending order of
their similarities with the query.

Figure 1 shows the overall percentages of the mapping results that are correct, ac-
ceptable and wrong, respectively, for all queries as well as for each group of queries.
As it can be seen, the overall accuracy is very good. Failurs are mostly caused by inad-
equate information in user queries.

Results on query translation. After translating the source query, one or more translated
queries are generated. Figure 2 shows the percentages of the translations that are correct,
acceptable and wrong for each domain. We find that for the nine domains considered,
most queries can be translated correctly. However, for the book, music and movie do-
mains, the average accuracy is lower at about 82.5%. The main cause of failures for
these domains is that many important attributes such as “title”, “author”, “singer”, and
“director” are textboxes for which building a value set is difficult.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyQuerier: A Keyword Based Interface for Web Database Integration System 941

 0

 0.2

 0.4

 0.6

 0.8

 1

Value OnlyWith AttrLabelWith domainOverall

A
cc

ur
ac

y

Correct
Acceptable

Wrong

Fig. 1. Domain mapping accuracy

 0

 20

 40

 60

 80

 100

AirfareMovieMusicCar rentalHotelBookRealAutoJob

A
cc

ur
ac

y

Correct
Acceptable

Wrong

Fig. 2. Query translation accuracy

6 Related Work

Automatic interface integration has been a hot issue in recent years. WISE-integrator
[3] and Meta-Querier [2] aim at integrating the complex query interfaces provided by
WDBs. As discussed in Section 1 these integrated query interfaces are likely to be too
complex for ordinary users and our work aims to provide an easy-to-use interface.

Our work is related to researches that translate natural language queries to structured
queries (such as SQL) to support natural language access to structured data (e.g., [7][8]).
The main differences between these works and our work reported here are as follows.
First, they do not deal with the domain mapping problem while we do. Second, they deal
with mostly relational databases while we deal with Web query interfaces. Third, they
have access to both the schema information and the actual data but we only have access
to the schema and very limited pre-defined values available on the query interface but
do not have access to the full data. Finally, we deal with keyword queries rather than
real natural language queries.

7 Conclusion

In this paper, we proposed a novel keyword based interface system EasyQuerier for or-
dinary users to query structured data in various Web databases. We developed solutions
to two technical challenges, one is how to map keyword query to appropriate domains
and the other is how to translate the keyword query to a query for the integrated search
interface of the domain. Our experimental study involving real users showed that our
solutions can produce very promising results.

Acknowledgment. This work is supported in part by the NSF of China under grant #s
60573091, 60273018; NSF of Beijing under grant #4073035; Program for New Cen-
tury Excellent Talents in University (NCET); US NSF grants IIS-0414981 and CNS-
0454298.

References

1. BrightPlanet: The deep web: Surfacing hidden value. (http://brightplanet.com)
2. Chang, K.C.C., He, B., Zhang, Z.: Toward large scale integration: Building a metaquerier over

databases on the web. In: CIDR. (2005) 44–55

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

942 X. Li, W. Meng, and X. Meng

3. He, H., Meng, W., Yu, C.T., Wu, Z.: Wise-integrator: An automatic integrator of web search
interfaces for e-commerce. In: VLDB. (2003) 357–368

4. Dragut, E.C., Wu, W., Sistla, A.P., Yu, C.T., Meng, W.: Merging source query interfaces on
web databases. In: ICDE. (2006) 46

5. He, H., Meng, W., Yu, C.T., Wu, Z.: Wise-integrator: A system for extracting and integrating
complex web search interfaces of the deep web. In: VLDB. (2005) 1314–1317

6. Yuwono, B., Lee, D.L.: Search and ranking algorithms for locating resources on the world
wide web. In: ICDE. (1996) 164–171

7. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to databases -
an introduction. CoRR cmp-lg/9503016 (1995)

8. A. Popescu, O.E., Kautz, H.: Towords a theory of natural language interfaces to databases.
International Conference on Intelligent User Interfaces. (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anomalies Detection in Mobile Network Management
Data

Marco Anisetti1, Claudio A. Ardagna1, Valerio Bellandi1, Elisa Bernardoni1,
Ernesto Damiani1, and Salvatore Reale2

1 Department of Information Technology, University of Milan
via Bramante, 65 - 26013, Crema (CR), Italy

{damiani,anisetti,ardagna,bellandi,bernardoni}@dti.unimi.it
2 Siemens S.p.A.

Carrier Research & Development Radio Access - Network Management
Via Monfalcone 1, 20092

Cinisello Balsamo (MI), Italy
salvatore.reale@siemens.com

Abstract. Third generation (3G) mobile networks rely on distributed architec-
tures where Operation and Maintenance Centers handle a large amount of infor-
mation about network behavior. Such data can be processed to extract higher-level
knowledge, useful for network management and optimization. In this paper we
apply reduction techniques, such as Principal Component Analysis, to identify or-
thogonal subspaces representing the more interesting data contributing to overall
variance and to split them up in “normal” and “anomalous” subspaces. Patterns
within anomalous subspaces allow for early detection of network anomalies, im-
proving mobile networks management and reducing the risk of malfunctioning.

1 Introduction

Third generation (3G) mobile networks must satisfy demanding performance require-
ments. Switching nodes, called Network Elements (NE), handle many more calls at a
time than in earlier networks. NE monitoring is carried out by Operation and Main-
tenance Centers (OMC), dealing with a huge amount of data. Mobile network data
are profoundly different from data collected in traditional IP traffic analysis. On IP
networks, in fact, years of research have produced knowledge bases supporting associ-
ation between data anomalies and their semantics. In the mobile environment, normal
network behavior is usually represented through a set of templates, and traffic data
analysis is still at an early stage. In this paper, we discuss the problem of extracting
semantic information from mobile network management data. We focus on anomaly
detection, providing a method to find out where network behavior deviates from the
normal one. Our data space is represented by a three-dimensional matrix (NE, Counters,
Time) where counters are homogeneous entities, and NEs are supposed to have similar
behavior, because they are chosen in a geographically limited area. We use data reduc-
tion techniques such as Multiway Principal Component Analysis (MPCA) to map the
huge space representing the whole dataset into a reduced subspace which is, then, split

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 943–948, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

944 M. Anisetti et al.

into two parts creating a normal and an anomalous subspace, whose axes are orthogo-
nal, i.e. all variables are independent. Our reduction technique, specifically designed to
exploit the properties of mobile network data, can be seen as “short-term data mining”,
because analysis is carried out off-line, but without the need for huge historic databases.

2 Related Work

To the best of our knowledge, no work has been published on mobile network traf-
fic anomalies detection and identification. Quite a number of research papers have
dealt with the problem of representing and processing IP network traffic measure-
ments. These two areas, though related, are however distinct; intuitively, connections
on a packet-switching network like the Internet are characterized by a more diverse set
of parameters than calls on a circuit-switching network where most performance data
is relative to call setup.1 The seminal work [6], which presented the first large-scale
analysis of flow traffic in IP networks, decomposes the structure of flow time series
into three main constituents: common periodic trends, short-lived bursts, and random
noise. Each traffic type brings into focus a different set of anomalies spanning a re-
markably wide spectrum of semantically recognizable event types, including denial of
service attacks (single-source and distributed), flash crowds, port scanning, downstream
traffic engineering, high-rate flows, worm propagation, and network outage. Principal
Components Analysis reduction techniques have been successfully adopted in several
research fields such as IP traffic analysis and industrial processes monitoring. Specifi-
cally, [9] investigates the suitability of using optical emission spectroscopy (OES) for
fault detection and classification of plasma etchers. The paper uses Multiway Principal
Component Analysis (MPCA) to assess the sensitivity of multiple scans within a wafer
with respect to typical faults. MPCA has also been successfully applied to monitoring
chemical batch and semi-batch processes. For instance in [5] a new method combining
Independent Component Analysis (ICA) and MPCA is proposed. ICA is used to express
independent variables as linear combinations of MPCA latent variables.

After data reduction, mathematical tools (like wavelet [2]) for signal analysis are
used to achieve network traffic characterization. Finally, some recent work deals with
compressing information collected in a sensor network environment. Deligiannakis
et al. [3] presented a technique for compressing multiple streams of sensor data, ex-
ploiting correlation among multiple measurements on the same sensor. However, while
sensor data analysis is somewhat related to network data monitoring, the statistic prop-
erties of the data streams turn out to be very different [3].

3 Mobile Network Data

Mobile Radio Access Network monitoring is carried out by Operation and Maintenance
Centers (OMC). Each OMC can manage hundreds of Base Station Controllers (BSCs)
that control the lower level of the network hierarchy that is composed by thousands

1 Once a call is established, a fixed bandwidth is allocated to its bit flow for its whole duration,
so no further analysis of time-variant behavior of data delivery is necessary.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anomalies Detection in Mobile Network Management Data 945

Table 1. Sample counters (mobile network) with 1 hours bin

NE-001 NE-002 NE-003 NE-004 NE-005 NE-006 NE-007 NE-008 NE-009
22/12/05 06.00 26,11 14,4 14,75 19,30 21,95 21,93 14,99 10,70 16,22
22/12/05 07.00 34,41 14,64 18,11 20,41 32,04 25,14 17,62 12,75 17,13

...
...

...
...

...
...

...
...

...
...

23/12/05 04.00 12,33 11,24 11,33 10,43 13,1 22,02 10,67 12,98 12,67
23/12/05 05.00 13,62 11,97 18,29 10,37 12,58 21,55 10,75 14,20 12,26

of Network Elements (NEs).2 OMCs periodically collect a number of raw performance
data, such as Physical Link Measurements (e.g. the bit error rate or the uplink/downlink
signal-to-noise ratio), Message Flow Measurements (e.g. the packet drop rate) and Call
Measurements (e.g. call establishments, call drops, total calls, call handover requests,
handover failures), produced by BTSs. These raw measurements are called counters.
Counters collected by OMCs are usually stored into a relational database. Every day,
each NE inserts many megabytes of data into the database. In the simplest arrange-
ment (see Table 1) this database contains a table for each class of measure3, later to be
queried and processed to assess network performance. Each column corresponds to a
NE counter, while rows correspond to NEs states at a given time. In general, counters
show strong autocorrelation, but is very difficult to map counters’ semantics to their
spectral properties. This is due to null values corresponding to missing measurements
or events and to random values due to unpredictable NE behavior. Also, high correla-
tion between counters of different classes suggests that counters’ semantics, even when
guessed correctly, cannot be used as a predictor of their spectral properties. This be-
havior is markedly different from the one of Internet traffic indicators [1]. An anomaly
on one node of the IP network propagates to the subsequent nodes in the path, while
mobile network anomalies most counters are not subject to linear propagation (with
the exception of handover counters). Also, mobile data have an intrinsic locality and
therefore can be analyzed in local sub-windows on time domain.

4 Semantic Pattern Identification in Management-Related Mobile
Data

We now describe our data reduction and analysis techniques. Then, we show an example
of anomaly detection over a data set coming from the Italian mobile network. A critical
step in mobile data analysis is the selection of a data reduction technique. Available
reduction techniques include: i) Independent Component Analysis (ICA), a statistical
technique for revealing hidden factors that underlie sets of random measurements[5];
ii) Principal Component Analysis (PCA), a multivariate procedure which rotates data
sets so that components giving the largest contribution to data variance are projected

2 We refrain from giving a full description of 3G mobile network architecture, as this is outside
of the scope of the paper.

3 Each class is composed of different measure characterized by one or more counters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

946 M. Anisetti et al.

Fig. 1. PCA matrix creation process for MPCA

onto coordinate axes; iii) Multi-way Principal Component Analysis (MPCA), an exten-
sion to traditional PCA. It is used to manage n-dimensional data sets and bring them
back to 2-dimensional sets through a data unfolding process. MPCA is largely used
for analyzing time-variant batch processes[5]; iv) Relevant Component Analysis (RCA),
a method that tries to down-scale global data variability. RCA performs a projection
of the input data into a feature space via a linear transformation which assigns a large
weight to relevant dimensions and small weight to irrelevant ones [8]. PCA is very
similar to RCA except for the fact that PCA compresses data along the dimensions
that show the smallest variability, while RCA compresses them along the dimension of
highest variability. RCA is not suitable to our purposes because we cannot distinguish
a-priori between relevant and irrelevant variability. ICA requires more information than
just the covariance matrix and is more likely to be used in case of a single physical
data source. PCA seems to be the most suitable techniques for our environment, but it
cannot be used as it is because we must deal with a multi-dimensional dataset matrix.
Therefore, we rely on a MPCA technique [7,4] applying regular PCA on two-way data
sets unfolded from our multi-way data set. Our data come naturally organized in three
dimensions: (i) Network Element, (NE) (ii) counter and (iii) (discrete sampling) time.
We monitored several counters belonging to different NEs. Our analysis, however, con-
cerns only NEs where the same class of measures is taken (homogeneous counters).
By applying MPCA to each NE, we extract the history of the evolution of a number of
homogeneous counters related to a single measure of interest. As far as data unfolding
is concerned, several strategies are available. A first approach, aimed at detecting faults
within NEs, arranges all samples and all variables of a NE in a single row. In this way
each sample represents a different NE. Figure 1 shows the unfolding of data matrices
corresponding to different NEs into a single unfolded data matrix. A second possible
approach to unfold the matrix is arranging data so that each row contains a sampling
time and each column contains the data of one counter for each NE. Hybridizing these
two strategies, one can: (i) perform a SPE and T 2 analysis on one counter for every NE;
(ii) select the most important counter for the entire NE set. In this paper we exploit the
first approach. A PCA model is then developed using the entire unfolded data matrix.
Matrix X is defined as m×(n ∗ t) mobile data matrix, where m represents the Mobile
Network Elements subject to our measurement, n represents the size of the selected
measure and t represents the number of bins in which the time series is partitioned. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anomalies Detection in Mobile Network Management Data 947

this paper, t is a number of measurement depending on bin size (in minutes). Bin size
is a variable of the type of measures which we want to analyze or check and it can vary
from 5 to 60 minutes and over, because most anomalies in our datasets lasted less than
5 minutes and showed up as a spike at a single point in time. On the other side, n can
vary depending on the measure we want to analyze. After unfolding, we rely on the
assumption that counters belonging to aggregated mobile network elements are highly
correlated. We then apply a Principal Component Analysis on the unfolded data matrix
X to reduce data dimensions and to compute two separate subspaces, representing re-
spectively normal and anomalous behavior. The benefits of our approach are threefold.
Firstly, the computational overhead of the subsequent processing steps is reduced. Sec-
ondly, noise is isolated from the signals. Thirdly, a projection into a subspace of a very
low dimension is useful for data visualization.

5 Applying Data Reduction and Analysis Techniques to a Real
Scenario

We tested our algorithm against a set of mobile network traffic data from the Italian
Mobile Network (IMN). IMN is composed of 40 BSC in GSM technology and it has
more than 70000 counter trends. About 55000 of these counter trends are zero-mean
or null, and the remaining part is composed of linear combination of Gaussian curves,
small oscillation, constant, steps, pulses. We tested our algorithm against data gathered
from a single BSC for each NE during a ten days period. In this paper we work with
data sampled every 15 minutes, i.e. the periodicity usually adopted in mobile network
management. Table 1 contains an example of a data set representing the traffic counters
in 9 different, though correlated, network elements. This table represents the normal
behavior of the counter. We considered a 3D table with more counters, then applied the
PCA technique obtaining a 2D matrix X . Applying PCA, we also compute a reduced
subspace describing principal components. Now, we need to extract only components
that contribute most toward explaining NE counters variability. We limit our PCA to
3 components which capture a great percentage of variability (> 95%). This way, we

Fig. 2. Anomaly detection with 3 PCA component selected using Multiway PCA. SPE and T 2

index indicate that NE 6 is anomalous.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

948 M. Anisetti et al.

create the subspace representing the normal behavior of the network. Then, we define a
region of acceptable variability for display purposes (acceptable region). Our algorithm
points out anomalous behavior happening on the network without trying to distinguish
real anomalies from false positives. This is mainly due to current lack of a knowledge
base mapping mobile network traffic anomalies and their semantics. We relied on hu-
man network administrators’ expertise to identify real anomalies. Both SPE and T 2

indices show that NE 6 (see Figure 2) exhibits anomalous behavior.

6 Conclusion

Anomaly detection is a crucial issue in 3G mobile network data analysis. In this pa-
per we described a promising technique for applying Multiway Principal Component
Analysis (MPCA) to mobile network data. Our solution greatly simplifies anomaly
search. Our experience with real mobile network traffic datasets suggests that MPCA
can be a good correlation as well as anomalies detection technique.

References

1. M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible
causes. IEEE/ACM Trans. Netw, 5(6):835–846, 1997.

2. M.E. Crovella and E.D. Kolaczyk. Graph wavelets for spatial traffic analysis. San Francisco,
California, April 2003.

3. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical information in
sensor networks. Paris, France, June 2004.

4. P. Geladi. Analysis of multiway (multi-mode) data. Chem. Intell. Lab., 7:11–30, 1989.
5. N. He, J. Zhang, and S. Wang. Combination of independent component analysis and multi-way

principal component analysis for batch process monitoring. IEEE International Conference
on Systems, Man and Cybernetics, 2004, 1:530–535, October 2004.

6. A. Lakhina, K. Papagiannaki, M.E. Crovella, C. Diot, E.D. Kolaczyk, and N. Taft. Structural
analysis of network traffic flows. In Proc. of ACM SIGMETRICS, New York, NY, June 2004.

7. K. Esbensen S. Wold, P. Geladi and J. Ohman. Multiway principal components and pls-
analysis. Journal Chemometr., 1:41–56, 1987.

8. N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component
analysis. In Proc. of European Conference on Computer Vision 2002 (ECCV), Copenhagen,
Denmark, 2002.

9. H. H. Yue, C. Nauert S. J. Qin, R. J. Markle, and M. Gatto. Fault detection of plasma etch-
ers using optical emission spectra. In IEEE transaction on semiconductor manufactoring,
volume 13, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Security-Conscious XML Indexing

Yan Xiao, Bo Luo, and Dongwon Lee

The Pennsylvania State University, University Park, USA
xiaoyan515@gmail.com, {bluo,dongwon}@psu.edu

Abstract. To support secure exchanging and sharing of XML data over
the Internet, a myriad of XML access control mechanisms have been
proposed. In the setting of node-level fine-grained access control, query
evaluation is a process of locating XML nodes that (1) satisfy query
constraints, and (2) do not violate security policies. In this regard, we
propose and empirically validate a suite of XML indices for multi-level
XML security model.

1 Introduction

Recently, many proposals focusing on XML security models or enforcement
mechanisms have appeared (e.g., XACML, [3], [1]). However, XML query pro-
cessing issues using indices in dealing with secure XML data has gotten little
attention. In this paper, we are interested in devising XML indexing methods to
efficiently support Multi-level security model (e.g., [7]) for XML data.

Motivation: Imagine a company that has three-level security policy: {Top
Secret, Secret, Public}, denoted as {3, 2, 1}, respectively. In the following
XML data, each node has an associated security level in the “s nodename”
attribute:
<Dept s_Dept=’1’>
<Manager s_Manager=’1’><Name s_Name=’1’>Tom</></><Staff s_Staff=’1’><Name s_Name=’1’>Jane</></>
<Proj s_Proj=’2’ pname=’Security’ s_pname=’2’>
<Year s_Year=’2’>2004</> </Year> <Budget s_Budget=’3’>300K</> </Proj>

</Dept>

When a user “Tom” with security level ‘2’ issues Q://Proj/Budget, he would not
receivebudget information for thepname=’Security’projectdue to insufficient se-
curity level. In this case, enforcing the right access controls of the queryQby “Tom”
is amount to evaluating Q′://Proj[@s Proj<=2]/Budget[@s Budget<=2].When
there are hundreds of such Proj and Budget elements in documents, therefore,
quickly locating those elements with security level ≤ 2 plays a critical role in im-
proving the “secure” query processing.The goal of this paper is, therefore, to devise
efficient indexing schemes for such a scenario. We use the notations: SL(n), SL(q)
(or {L} : q) for the security level of node n and query q, and MinSec(n, D) for
minimum SL(n) of nodes in document D.

2 Background and Related Work

Multi-Level Access Control model (e.g. [7]) assigns each object (e.g., node) and
each subject (e.g., user) a security level , and enforces a rule: “a level Li subject

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 949–954, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

950 Y. Xiao, B. Luo, and D. Lee

el
em

en
t

…
…

doc1 doc2 doc3 …

element1
element2
element3
element4

<order, size>,
depth,
Parent ID,
Security

Document ID List

B
+

T
re

e

Element list: elements with the same
name in the same document.

Element record

……

<price s_price="3">100</price>

<price s_price="3">100</price>

<price s_price="3">100</price>

<price s_price="3">100</price>

……

Price1.xml (doc_id: 1)

price nid

doc_id: 1

price1

price2

price3

price4

……

<price s_price="3">100</price>

<price s_price="4">100</price>

<price s_price="4">100</price>

<price s_price="3">100</price>

……

Price2.xml (doc_id: 2)

price nid

doc_id: 2

price1 price2

price3price4

price nid

doc_id: 2

security: 3

security: 3 security: 4

 (a) Global Index (GI) (b) SLI: nodes with the same security level (c)SLI: nodes with different security levels

Fig. 1. Global Index and Single-Level Index

cannot access a level Lj object unless Li ≥ Lj”. Its simplicity enables the wide
acceptance in military or organizational applications, but since it requires “total
order” among levels, it is less flexible. More flexible models (DAC or RBAC), al-
low lattice-based levels and are supported by commercial DBMS. In [4], a specific
authorization sheet is associated with each XML document/DTD. [3] extends [4]
by enriching the supported authorization types, providing a complete description
of specification and enforcement mechanism. In [1], an access control environ-
ment for XML documents and techniques to deal with authorization priorities
and conflict resolution issues are proposed.

We base our approach on XISS [6]. It uses a unique numbering scheme to
quickly join ancestor-descendent nodes, and at the bottom layer of the index,
information per node is sorted by document order to support fast sort-merge. [2]
studies query evaluation methods by exploiting the properties of security model.
Our indexing method is complementing [2]. The concept of “two-tier” introduced
in [5] (for RDBMS) is the basis of our work. We first adopt two-tier index to
XML context, and improve it further.

3 Security-Conscious XML Index

Global Index. As the baseline approach, Global Index constructs a regular
XML index. Here we choose element index of XISS. As shown in Figure 1 (a),
all element tags are assigned a unique ID, then indexed via B+ tree at top. The
bottom of the tree points to a document ID list that contains a list of document
IDs where the element appears. Further, each item of the document ID list points
to an element list , which stores element-related information. To support XML
access control, we add additional “security level” of each element in the element
list. In this scheme, security check is done at individual element level. Therefore,
it could be acceptable for users with high security levels, since they are likely to
access most data anyway, but could be inefficient for most users.

Single-Level Index (SLI). This approach is to have separate index for each
security level. Thus, when a query {2}://Proj is issued, one can simply look
for Proj elements from two single-level indices: security level 1 and 2. Since all
elements in that index are guaranteed to satisfy the specified security constraint,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Security-Conscious XML Indexing 951

nid

doc_id: D1

element: 1

element: 2

……

element: k

security: S1

doc_id: D2

element: 1

……

element: m
security: S2

doc_id: DL

element: 1

……

element: m
security: SL

……

* Si=MinSec(nid, Di)

……

<price s_price="3">100</price>

<price s_price="3">100</price>

<price s_price="3">100</price>

<price s_price="3">100</price>

……

Price1.xml (doc_id: 1) price nid

doc_id: 1

price1
price2
price3
price4

……

<price s_price="3">100</price>

<price s_price="4">100</price>

<price s_price="4">100</price>

<price s_price="3">100</price>

……

Price2.xml (doc_id: 2)
price nid

doc_id: 2

price1
price2
price3
price4

security: 3 security: 3

(a) (b) (c)

Fig. 2. (a) Modified SLI; (b) and (c) Examples of the modified SLI

el
em

en
t

…
…

doc1 doc2 doc3 …

element1
element2
element3
element4

<order, size>,
depth,
Parent ID,
Security

security: S1

S1 S2 S3 …
Security Index

element1
element2
security: S1

security: S2

……
<a s_a="3">
 <b s_b="4" />

<a s_a="3">
 <b s_b="4" />

<b s_b="2" />
<a s_a="3">
 <b s_b="3" />

<a s_a="1">
 <b s_b="2" />

……

Monotonic XML document

a1 (3)
a2 (3)
a3 (3)

a4 (1)

b1 (4)
b2 (4)

b3 (2)

b4 (3)
b5 (2)

(2
)

(3
)

(1
)

(4
)

(5)

Modified query steps by SFI

<a> list list

Steps (user’s security=3)

……
(1) Skip to b3
(2) Skip to a4
 (a1_security>b3_security)
(3) Go back to a1
 (ancestor-descendant check)
(4) Go to b4
(5) Compare a1 with b4
……

(a) (b)

Fig. 3. (a) Minimum-Security Index (MSI); (b) Special case of SFI

there is no need for additional check. This approach is efficient when elements
with the same name have the same security level within an document because
the document ID and elements can be stored in one security class. However, if
elements have different security levels within a document, all information has
to be stored in different security levels. This will cause large storage and query
overhead. Figure 1 (b) and (c) show examples of both scenarios.

Minimum-Security Index (MSI). Both the GI and SLI have pros and cons.
To retain only pros of each, we adopt Two-Tier Coarse Index [5] (from relational
model) and fit it into XML model. Further, we improve it with the MinSec
concept, making it Minimum-Security Index (MSI).

A problems of GI is that the document IDs we get from B+ tree may not
contain satisfactory IDs at all. Suppose an element Budget appears in document
D7 with security level 4. For a query q1, {3}://Budget, we do not have to
retrieve <Budget> from D7 to check their security levels since SL(q1) = 3 <
MinSec(Budget, D7) = 4. If we maintain a reverse link atop single-level index
that, for each MinSec, points to a document ID list (e.g., MinSec 4 points to
D7), then significant saving can be made by not visiting unnecessary documents.
To use MinSec, SLI is modified as shown in Figure 2 (a). Here, we keep element
list the same as GI, and store document ID into separate security classes based
on MinSec values. The modified SLI improves SLI by reducing multiple storage
and avoiding querying the same document multiple times. The example XML
documents in modified SLI are shown in Figure 2 (b) and (c).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

952 Y. Xiao, B. Luo, and D. Lee

The MSI, illustrated in Figure 3 (a), combines pros of GI and SLI, but exploits
the document-level security check by avoiding retrieving unnecessary documents.
Therefore, when elements in a document have unique security level (e.g., all
Proj element in D1 have security level 4), the MSI is the most advantageous.
However, when elements in a document have various security levels, it becomes
less efficient. For instance, a document D1 has 1,000 Budget elements, where
all have security level 5, except one with 2. Then, for a query {3}://Budget,
even if there is only one element satisfying the security constraint, the MSI still
retrieves all 1,000 Budget elements since MinSec(Budget, D1) is 2.

Skip-Record Index (SRI). One of the most time-consuming steps in query
processing is to retrieve elements from element list and perform sort-merge using
ancestor-descendent relationship. To speed up this step, we can avoid sort-merge
for those element pairs which cannot satisfy security constraint. One can sort
elements by security levels to quickly determine whether or not to continue
checking security, but this is not possible since elements in the element list are
already sorted by their order (i.e., pre-ordering in the XISS). To solve this, we
maintain another number per each element e1, called Skip-Record that either
(1) quickly tells how many element records to skip to get to the next element e2

that satisfies SL(e2) < SL(e1), or (2) is “-1” if there is no more such element
left in the element list. Consider the following situation:

1: <Proj s_Proj=’3’/> # Skip-Record=2 4: <Proj s_Proj=’2’/> # Skip-Record=-1
2: <Proj s_Proj=’4’/> # Skip-Record=1 5: <Proj s_Proj=’6’/> # Skip-Record=0
3: <Proj s_Proj=’5’/> # Skip-Record=0 6: <Proj s_Proj=’3’/> # Skip-Record=-1

The Skip-Record value “2” for node 1 implies that one needs to skip “two” ele-
ments to get to lower security level. The Skip-Record value “-1” of node 4 sug-
gests that there is no elements with lower security level. For query {1}://Proj,
since the security level of the first Proj is 3, it is not satisfactory for the given
query. Instead of checking element 2 and 3, we can use the Skip-Record to quickly
“skip” two records and go to element 4 directly. When this forth element is not
again satisfying the security constraint, one can quit searching in this element
list since the Skip-Record of the forth Proj is “-1”.

Skip-Forward Index (SFI). Consider the following document:

<root>
<a s_a=’3’> <b s_b=’4’/> </> # a1, b1 <a s_a=’3’> <b s_b=’4’/> </> # a2, b2
<a s_a=’3’> <b s_b=’4’/> </> # a3, b3 <a s_a=’3’> <b s_b=’4’/> </> # a4, b4
<a s_a=’1’> <b s_b=’2’/> </> # a5, b5

</root>

In processing query “a/b”, sort-merge between two lists are needed. Further-
more, the following depicts two such lists with (SL, Skip-Record) for each
element.

a-list -- a1(3,3) a2(3,2) a3(3,1) a4(3,0) a5(1,-1) ...
b-list -- b1(4,3) b2(4,2) b3(4,1) b4(4,0) b5(2,-1) ...

Consider query{3}://a//b.a1-b1pair is first compared, since it satisfiesancestor-
descendent relationship, its security is checked; a1’s security is satisfied, but b1’s is
not, thus b1 is not returned. At this point, according to b1’s Skip-Record, we can
skip the next “3” , and examine b5 immediately. However, for the a-list side,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Security-Conscious XML Indexing 953

10 20 30 40 50 60 70
0%

10%

20%

30%

40%

50%

60%

%
 o

f i
nc

re
as

e

Data Size (MB)

Storage Comparison

GI
MSI
SLI
SRI

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

T
im

e
(m

ill
is

ec
on

d)

Test Type
UM S1M S2M

GLI
SLI

MSI
SRI
SFI

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

54

56

58

60

62

64

66

68

A
ve

ra
ge

 Q
ue

ry
 T

im
e

(m
s)

MSI
SRI

% of Regional Locality

(a) (b) (c)

Fig. 4. (a) Index size comparison; (b)-(c) Query evaluation for monotonic model

next record to be evaluated is a2 since a1 was satisfied. a2 again satisfies security
constraint, but a2-b5 fails ancestor-descendent relationship check. Then we have
to continue checking all remaining <a> until it reaches a5-b5, which satisfies both
ancestor-descendent relationship and security constraint (i.e., ≤ 3).

However, in the “monotonic” security model where ancestor’s security levels
are guaranteed to be not higher than descendants’, we can avoid security check
of ancestors. In the above example, after a1-b1 pair is examined and the next
element to examine is determined to be b5, according to the Skip-Record number
of b1, we can immediately rule out a2-a4 since their security levels are higher
than b5’s and thus none of them can be ancestor of b5 in the monotonic model.
In general, in the monotonic security model, if a’s SL is greater than b’s SL,
then using the Skip-Record numbers, we can skip to the next a whose SL is no
greater than b’s SL. If current a’s Skip-Record number is “-1”, then we move
to the next a and b, and continue the above steps. If a’s SL is not greater than
b’s, we can then check ancestor-descendant relationship. There is a special case
as shown in Figure 3(b): b3 has no a ancestor. If we use above algorithm, we
jump to a4 after find a1’s security value is greater than b3’s. So, we miss a3-b4
because we skipped a3. Therefore, after we find that a4 is after b3 and is not its
ancestor, we need to go back and check with b4.

4 Experimental Validation

We implemented the five variations in the XISS system for evaluation. We have
generated three variations of security distribution for monotonic data: uniform
distribution for (UM), skewed security distribution with more low security level
data (S1M), skewed security distribution with more high security level data
(S2M); and the same for non-monotonic data: UNM, S1NM and S2NM.

Index Size: The index sizes are compared in Figure 4(a), where % of the increase
of index size was measured for different XML sizes. SRI incurs the most index
space increase since it maintains Skip-Record for each item in element list, but
the additional storage overhead is not substantial. When data size is small, the
huge increase is due to the default size allocation by XISS. As data size increases,
the overhead is within 10% range and almost 1% for other methods.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

954 Y. Xiao, B. Luo, and D. Lee

Query Evaluation Time: The impact of security model selection (monotonic
or non-monotonic) towards system performance is minor. Figure 4(b) shows the
result of five variations over three data sets under monotonic model, and the
case for non-monotonic is similar. Regardless of the skewness of the security
information, SRI and SFI outperforms conventional ones significantly.

SRI is more efficient when elements in the list are sorted by security values
in ascending order. We test query performance on different regional locality in
a document. First, we define a block for element E in an XML document as
the region where all security levels of E elements are the same or sorted by
ascending order. Then, suppose in document D, E appears n times in b blocks.
The regional locality of E in D is calculated as: R(E, D) = 100%, when b = 1;
R(E, D) = (n−b)/n, otherwise. As shown in is shown in Figure 4(c), SRI is more
efficient when R(E, D) increases. This is because the whole block of records is
skipped if the first element can not satisfy security check.

5 Conclusion and Future Work

In this paper, we consider five index schemes that support multi-level XML access
control – Global Index, Single-level Index, Minimum Security Index, Skip-Record
Index, and Skip-forward Index. By utilizing the characteristics of XML model
and monotonic/non-monotonic security models, SRI or SFI improves other vari-
ations up to 130% at best. In general, all the proposed indices can effectively take
advantage of pre-security checks, while not intruding the original XML database
like XISS and their path join algorithms. Thus, our extension is quite practical.

References

1. E. Bertino and E. Ferrari. “Secure and Selective Dissemination of XML Documents”.
IEEE Trans. on Information and System Security, 5(3):290–331, Aug. 2002.

2. S. Cho, S. Amer-Yahia, L. V.S. Lakshmanan, and D. Srivastava. “Optimizing the
Secure Evaluation of Twig Queries”. In VLDB, Hong Kong, China, Aug. 2002.

3. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. “A Fine-
Grained Access Control System for XML Documents”. IEEE Trans. on Information
and System Security, 5(2):169–202, May 2002.

4. E. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. “De-
sign and Implementation of an Access Control Processor for XML Documents”.
Computer Networks, 33(6):59–75, 2000.

5. S. Jajodia, R. Mukkamala, and I. Ray. “A Two-tier Coarse Indexing Scheme for MLS
Database Systems”. In IFIP WG 11.3 Working Conf. on Data and Applications
Security (DBSec), Lake Tahoe, CA, Aug. 1998.

6. Q. Li and B. Moon. “Indexing and Querying XML Data for Regular Path Expres-
sions”. In VLDB, Roma, Italy, Sep. 2001.

7. S. Osborn. “Mandatory Access Control and Role-Based Access Control Revisited”.
In ACM Workshop on Role Based Access Control, pages 31–40, Fairfax, VA, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 955–961, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Framework for Extending RFID Events with
Business Rule*,**

Mikyeong Moon1, Seongjin Kim1, Keunhyuk Yeom1, and Heeseok Choi2

1 Department of Computer Engineering, Pusan National University
30 Jangjeon Dong, Geumjeong Ku, Busan, 609-735, Korea

{mkmoon, sji79, yeom}@pusan.ac.kr
2 NTIS Organization, Korea Institute of Science and Technology Information

Eoeun-dong 52-11, Yuseong-gu, Daejeon, 305-806, Korea
choihs@kisti.re.kr

Abstract. Radio frequency identification (RFID) technology is believed to be
the next revolutionary step in supply-chain management. Complex process
simplification using RFID technology can offer particularly important benefits
to many enterprises. To derive real benefit from RFID, the application must
rapidly implement functions to process the large quantity of event data
generated by RFID operations. For this reason, developers are forced to
implement systems to derive meaningful high-level events from simple RFID
events. Although applications could directly consume and act on RFID event,
extracting the business rules from the business logic leads to better decoupling
of the system, which consequentially, increases maintainability. In this paper,
we describe an RFID business aware framework for extending RFID events
using business rules, and then processing these to show complex events.

Keywords: RFID, RFID event, business rule, RFID business event, RFID
application development framework.

1 Introduction

RFID may dramatically change an organization’s capability to obtain real-time
information of the location and properties of tagged people or objects. To derive real
benefit from RFID, the application must implement functions to rapidly process the
large quantity of event data generated by the RFID operations. Recently, many RFID
middleware systems have been developed by major corporations [1, 2, 3, 4]. Although
RFID middleware deletes duplicate readings from the same tag and helps manage the
flow of data, developers are required to implement systems to derive meaningful
high-level events, which contain more useful knowledge for the application than the
simple RFID events. The application developer must collect RFID events, access the

 * This work was supported by the Brain Korea 21 Project in 2007.
** This work was supported by the Regional Research Centers Program (Research Center for

Logistics Information Technology), granted by the Korean Ministry of Education & Human
Resources Development.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

956 M. Moon et al.

data server to retrieve reference data of RFID events, and process business logic to
implement the RFID applications. Moreover, application developers must be
conversant with RFID technology and communication techniques; substantial
applications should involve additional codes, rather than simply business logic, to
process RFID events. To maximize the benefits of RFID technology, with minimal
applications impact, a separate layer that manages RFID events is required.

This research has been conducted as part of the Korean national project to develop
the next generation of logistics information technology [5]. The research center has
developed a prototype, version 1.0, of the Logistics Information Technology (LIT)
RFID system, which was implemented on the basis of the Application Level Event
(ALE) Specification [6] proposed by EPCglobal [7]. In this paper, we propose an
RFID business aware framework that is located between the RFID middleware and
the application. The framework combines multiple streams of RFID events with
business rules and processes these to show more complex events, which have
significant business meaning that can then be dispatched to the appropriate
application. The framework consists of an RFID business aware language, a business
aware assistant, a business event definition tool, a business event monitoring engine,
and a simulation engine. The user-defined business events model specified by using a
business event definition tool is converted into text type XML based business aware
language and then is executed by the business event assistant. Changed RFID-related
business rules are processed in this framework level, not the application level.

2 RFID Business Aware Framework

An event is defined as an object that is a record of an activity in a system [8]. An
event may have particular data components. An RFID event is defined as an event
caused by RFID middleware. An RFID business event is defined as that which is
derived from the simple RFID event; conceptually it is a combination of an RFID
event, reference data, and business rule. The RFID biz aware framework is a means of
achieving transformation from RFID events to RFID business events. The
transformation processes consist of a small number of activities that collect RFID
events, retrieve reference data, analyze the corresponding business rule, and generate
the events. Fig. 1 shows the overall architecture and the core components of the RFID
business aware framework. This framework uses RFID middleware that refers to an
implementation of the Application Level Event (ALE) Specification proposed by
EPCglobal. In an RFID system without the RFID biz aware framework, an
application sends Event Cycle Specifications (ECSpec) to the RFID middleware to
request the current tags at a reader. In response to the ECSpec, the middleware returns
an ECReport, typically a list of the tags currently at the reader. In an RFID system
with the RFID biz aware framework, an application sends business event
specifications (BCSpec) to the framework to request business events, integrating
business rules into current tags at a reader. The framework parses the BESpec,
composes ECSpec, and sends it to the RFID middleware. The framework receives the
ECReport (referred to as the RFID event in Fig. 1) from the RFID middleware, and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Framework for Extending RFID Events with Business Rule 957

processes the RFID events according to the business rules described in BCSpec. In
response to the BESpec, the RFID biz aware framework returns business events with
their corresponding data.

RFID Biz-Event
Definition Tool

RFID Biz Aware Language

Execution Engine
(Biz Event Assistant)

RFID Middleware

M
onitoring E

ngine

Sim
ulation E

ngine

RFID Applications

RFID events

RFID Business events
RFID BESpec

ECSpec

RFID ReaderRFID ReaderRFID Reader

EPCIS

ONS

Reference
Data Server

EPCIS: EPC Information Service

ONS: Object Naming Service

Fig. 1. RFID Business aware framework architecture

2.1 RFID Business Aware Language

The RFID business aware language (Biz AL) is an XML-based language to describe
the BESpec [9]. This language is composed of declarative statements that specify
RFID business events at a high level of abstraction without dealing with the
implementation detail. That is, it can specify what has to be done but not how. In Biz
AL, an activity is a generic unit of work that is defined to generate a business event.
The activity is specified as either a declaration activity to define the data variable, a
trigger activity to collect RFID events, a reference activity to retrieve reference data,
or a rule activity to generate business events. The rule activity is comprised of a
condition and a generation; it represents a business rule, which is required in the
applications. The business rule constrains some aspects of the business related to the
RFID event and the reference data. The generation defines processes that notify the
application of the subscribed business events or specify the invocation of actions in
response to an event. If conditions of the rule are not satisfied, the rule execution
notifies an exception; the contents of the notification include the RFID business event
name, the result of the corresponding business rule, and a related data component.

2.2 RFID Business Event Assistant

The RFID business event assistant (Biz EA) provides the means of processing
BESpec that are described by Biz AL. It is designed for use on the RFID middleware
proposed by EPCglobal. Each activity in Biz AL is mapped to components in Biz EA.
Biz EA parses the BESpec, subscribes it to the middleware, processes multiple
streams of raw RFID events, and manages the flow of activities. The progress of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

958 M. Moon et al.

activities flow is controlled by the process variable and the transition condition. Biz
EA contains sophisticated logic to process the streaming event data over the business
rules established in the BESpec.

2.3 RFID Business Event Definition Tool

The RFID business event definition tool (Biz EDT) provides drag-and-drop support to
define activities and their flows and to generate business events by a Graphical User
Interface. Each activity can be expressed as a visual notation in Biz EDT. In this
environment, business events are specified as sets of graphical models with textual
complements. Fig. 2 shows the graphical user interface of Biz EDT after the
developer has opened a BESpec file. Biz EDT consists of five panes: the left pane
represents a BESpec structure as a tree, the lower left pane specifies the property of
each activity, the middle upper pane models the business events, the lower middle
pane shows the states of the selected activity, and the right pane presents the icons of
the activities. The specification of each activity is described using the activity-
property window (the popup window on the left pane, Fig. 2). When application
developers describe a BESpec, this tool gives them the advantages of improved
visibility, productivity, maintainability and accuracy. Biz EDT has core functions as
follows:

 Setting Environment
The logical names of the RFID readers are managed by the Reader Manager. After
a developer enrolls an available logical reader’s name when defining activities and
setting properties of activities, this can be used, and the value of Variables, with
their types, such as integer, string, EPC, and tag provided in Biz AL, can be set in
the Variable Dialogue. The defined variables can also be selected as a developer
describes the properties of each activity through the variable list.
 Modeling of Activities

 As shown in the center pane of Fig. 2, BESpec, which is comprised of a set of
activities, is modeled with the activity icons. An icon can be dragged and dropped
into an acceptable part within the model view. The model may be newly generated
in the GUI view or may be converted from a BESpec source that will be shown in
another tab of the center pane. The properties of each activity can be set through
an activity dialogue, which clearly provides the boundary value of the property to
the developer. Therefore, a developer can select allowable logical readers,
variables, values, and operations to define activities.
 Auto-Generation of Business Event Specification

The source window of Biz EDT (the below part in Fig. 2) shows an example of a
BESpec source described by the XML-based Biz AL. This specification is
generated automatically, simultaneously with the modeling BESpec. Conversely,
when the BESpec is modified by a developer, the BESpec model is also chan-
ged. That is, the Biz EDT continuously updates the BESpec source according
to changes in the model so that the model and BESpec source are always
consistent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Framework for Extending RFID Events with Business Rule 959

Fig. 2. Graphical User Interface of the Business Event Definition Tool

 Reuse of business event model
Design reuse is the main benefit in using frameworks. The activity icons in the
BESpec model can be reused in other BESpec models. Moreover, in a similar
business context, the flow and the property of the activities can be identified as
patterns. Biz EDT contains business event patterns extracted from the RFID
warehouse management system, u-PNU library system, RFID blood management
system, etc. For example, in the warehousing business context of the warehouse
management system, there may be business event patterns, such as checking for
non conforming products, checking the available period of products, checking the
product information with the purchase order specification, etc.

2.4 Business Event Monitoring Engine

The business event monitoring engine connects with an arbitrary business event
assistant in operation and displays a visual representation of the event data. The
monitoring engine provides information about the streaming RFID events from the
middleware, the exception conditions specified in the business rules, and the business
actions corresponding to the business rules. The monitoring engine has two types of
monitoring, console and file type. A business event can be checked in a monitoring

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

960 M. Moon et al.

window in real time and in the file. A developer can verify the business events from
BESpec in advance of applying to the RFID applications. The engine consults the
business rules to evaluate what corrective actions are best suited for checking
automatically.

2.5 Business Event Simulation Engine

The RFID system can be tested in the execution environment with physical hardware
(RFID reader and tags) on the network. The business event simulation engine
simulates the RFID readers that generate data and events and provides an effective
means of evaluating alternative business rules in the BESpec. In addition, the
simulation engine contains an abstraction of the actual external system that forms the
simulation, including EPCIS servers as a suite of Web services companies are
expected to use in managing their EPC data, databases, etc. The simulation engine,
together with the capability of the monitoring engine, improves the efficiency of
business actions and decisions by responding to business rule conditions specified in
the BESpec. Ultimately, it makes the deployment of the RFID system quick and cost
effective.

3 Related Works

Vendors, such as Sun Microsystems [1], IBM [2], Oracle [3], and Microsoft [4], have
been extending their application development and middleware technology stacks to
handle RFID. These middleware systems delete duplicate readings of the same tag
and help manage the flow of data. Several research groups are attempting to derive
meaningful context information from raw data acquired by sensors. Recent researches
have focused on providing infrastructure support for context-aware systems.
Ranganathan and Campbell proposed middleware that facilitates the development of
context-aware agents [10]. Reconfigurable Context-Sensitive Middleware facilitates
the development and runtime operations of context-sensitive pervasive computing
software [11]. Gu developed a service-oriented middleware that provides support to
acquire, discover, interpret and accesses various contexts to build context-aware
services [12]. These middleware are for general sensors, and therefore do not address
various characteristics of the RFID technology. Information representing business
rules has traditionally been embedded in application codes and database structures. To
the best our knowledge, few existing approaches focus on an RFID technology
integration of business rules. RuleBAM [13] is an architectural framework that
supports the definition of business activity management (BAM) policy, generates
business rules instances, and integrates business rules into the target system.

4 Conclusions and Future Work

To realize the impact of RFID on business processes, raw RFID events can be
translated into one or more business events and configure these for appropriate
business applications. In addition, business rules should be modeled and managed as
separate entities to reduce the impact of changes in the business logic. This paper

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Framework for Extending RFID Events with Business Rule 961

described an RFID business aware framework that enables a user to specify and
update the business rules without changing the source code of the application. The
framework processes a chain of activities that control processing the RFID business
event request. Using this framework, we have developed several RFID-enabled
applications. As a result, RFID-enabled applications do not have to involve additional
code to process RFID events, thereby substantially reducing the cost of developing
and managing RFID applications. Currently, we are in the process of working with a
company on implementing an RFID-enabled logistics based on middleware and the
proposed framework. Our future research activities include extension of the RFID
business aware framework, which is able to process RFID readers and other types of
sensors, including temperature, humidity, shock, location, etc.

References

[1] Sun Microsystems, http://www.sun.com/software/sol utions/rfid/
[2] IBM, http://www306.ibm.com/software/pervasive/w_ rfid_premises_server/, December

2004.
[3] Oracle, http://www.oracle.com/technology/products/ iaswe/edge_server
[4] Microsoft, http://www.microsoft.com/business/insigh ts/about/aboutus.aspx
[5] Research Center for Logistics Information Technology, http://www.rclit.com/
[6] EPCglobal, The Application Level Events (ALE) Specification Version 1.0, September

2005.
[7] EPCglobal, http://epcglobalus.gs1us.org/
[8] Luckham, D., The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, Addison-Wesley, ISBN 0-201-72789-7, 2002.
[9] M. Moon, Y. Kim, and K. Yeom, “Contextual Events Framework in RFID System”, In

proceedings of third International Conference on Information Technology (IEEE
Computer Society) pp. 586-587, 2006.

[10] A. Ranganathan and R.H. Campbell, “A Middleware for Context-Aware Agents in
Ubiquitous Computing Environments”, In proceedings of International Middleware
conference, LNCS Vol. 2672, pp.143-161, 2003.

[11] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta, “Reconfigurable Context-Sensitive
Middleware for Pervasive Computing”, IEEE Pervasive Computing, Vol. 1, No. 3, pp.
33-40, 2002.

[12] T. Gu, H.K. Pung, and D.Q. ZJang, “A Service-oriented middleware for building context-
aware services”, Journal of Network and Computer Applications (JNCA), Vol.28, No. 1,
pp.1-18, 2005.

[13] J. Jeng, D. Flaxer, and S. Kapoor, “RuleBAM: A Rule-Based Framework for Business
Activity Management”, In proceedings of the 2004 IEEE International Conference on
Services Computing (SCC’04), pp. 262-270, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Similarity Search over Multiple

Stream Time Series

Xiang Lian1, Lei Chen1, and Bin Wang2

1 Hong Kong University of Science and Technology Kowloon, Hong Kong, China
{xlian, leichen}@cse.ust.hk

2 Northeastern University, China
binwang@mail.neu.edu.cn

Abstract. Similarity search over stream time series has a wide spec-
trum of applications. Most previous work in static time-series databases
and stream time series aim at retrieving the exact answer to a simi-
larity search. However, little work considers the approximate similarity
search in stream time series. In this paper, we propose a weighted locality-
sensitive hashing (WLSH) technique, which is adaptive to characteristics
of stream data, to answer approximate similarity search over stream time
series. Due to the unique requirement of stream processing, we present
an efficient method to update hash functions adaptive to stream data
and maintain hash files incrementally at a low cost. Extensive experi-
ments demonstrate the effectiveness of WLSH, as well as the efficiency
of approximate similarity search via hashing on stream time series.

Keywords: approximate similarity search, weighted locality-sensitive
hashing.

1 Introduction

Similarity search over stream time series has many applications such as Internet
traffic analysis [2], sensor network monitoring [7], moving object search [1], and
financial data analysis [6]. In particular, a typical similarity query retrieves sub-
sequences from stream time series that are similar to a user-specified query time
series. In general, similarity search can be classified into two categories, exact
and approximate similarity searches. The former category obtains the exact an-
swer to queries without false dismissals, whereas the latter retrieves approximate
ones by allowing some false negatives with a certain precision.

Existing work on approximate similarity search in static time-series databases
include approximate nearest neighbor search via locality-sensitive hashing (LSH)
[3], which retrieves nearest neighbors of a query time series approximately. To
the best of our knowledge, however, there does not exist any previous work in
stream time series on such problem. In this paper, we propose a novel hashing
approach, WLSH, to answer the approximate range queries over stream time
series. We make the following contributions:

1. We propose in Section 3 a general framework for approximate similarity
search via hashing over multiple stream time series.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 962–968, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Similarity Search over Multiple Stream Time Series 963

2. We generalize in Section 4 the locality-sensitive hashing (LSH) approach
in static time-series databases [3] to the weighted locality-sensitive hashing
(WLSH), adaptive to data characteristics.

3. We illustrate in Section 4 the incremental update of hash functions, which
are adaptive to stream data, and the maintenance of hashing files.

Section 2 reviews the approximate similarity search over traditional time-series
databases. Section 5 demonstrates the performance of our proposed approach
through extensive experiments. Finally, Section 6 concludes this paper.

2 Related Work

In this section, we briefly overview the approximate similarity search in static
time-series databases. In particular, Gionis et al. [3] present a locality sensitive
hashing (LSH) approach to answer similarity queries approximately. As a conse-
quence, the retrieved series are similar to a query with a guaranteed probability.
Specifically, two assumptions of similarity search over time-series databases are
made, that is, L1-norm distance is used to measure the similarity between two
time series and all values in any time series are positive integers. The LSH
method [4] first converts each subsequence T of length w into a bit vector V (T)
containing w′ bits in the Hamming space, where w′ = (C · w) and C is the ceil-
ing in the domain of values in T . In particular, the vector V (T) is obtained by
concatenating the bit representation V (T [i]) of each value T [i] (0 ≤ i ≤ w − 1),
where V (T [i]) is a sequence of T [i] “1” bits followed by (C−T [i]) “0” bits. Then,
an LSH function Hj ∈ H is obtained by randomly selecting k positions in a bit
vector with w′ bits. Without loss of generality, assume j1, j2, ..., and jk are k
positions randomly selected by Hj , whose inputs are bit vectors V (T) of T with
w′ positions and outputs keyj(T) the concatenations of k bits from k positions
in V (T), respectively. Given two bit vectors V (T) and V (T ′) with the same
length w′, converted from time series T and T ′, respectively, if dist(T, T ′) ≤ ε,
then it holds that keyj(T) = keyj(T ′) with a probability greater than (1 − ε

w′),
where dist is an L1-norm distance function. In other words, if two time series are
similar, then it is very likely that they have the same key. This is because the L1-
norm distance between two series is exactly the number of bit differences in their
bit vectors. Two similar bit vectors have fewer bit differences and thus share the
same key with higher probability. Given any query time series Q, we first obtain
its keys using the same set of hash functions and then retrieve as candidates all
the content in buckets where keys are located. Finally, candidates are refined by
checking their real distances to the query. To the best of our knowledge, how-
ever, there is no previous work on approximate similarity search in stream time
series. Motivated by this, we introduce the problem of approximate similarity
search among multiple stream time series and a general framework for using the
hashing method to answer similarity queries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

964 X. Lian, L. Chen, and B. Wang

3 Problem Definition

Fig. 1(a) illustrates the sliding window model with m stream time series Ti, T2, ...,
and Tm. For each series Ti, we consider the most recent w data Ti[t−w+1], Ti[t−
w + 2], ..., and Ti[t] within a sliding window Ti[t − w + 1 : t] at the current
timestamp t. Note that, we use L1-norm distance to measure the similarity be-
tween two series, and assume that Ti[j] is a positive integer for any j, following
the same assumptions in [3]. Given any query time series Q of length w, a simi-
larity query retrieves those subsequences (sliding windows) Ti[t−w +1 : t] from
stream time series Ti such that dist(Ti[t−w+1 : t], Q) ≤ ε, where 1 ≤ i ≤ m and
dist is an L1-norm distance between two series. Next, at timestamp (t+1), each
series Ti receives a new data element Ti[t + 1], while the old data Ti[t − w + 1]
is out of date and discarded. Therefore, similarity queries at timestamp (t + 1)
are performed on new sliding windows Ti[t − w + 2 : t + 1] for all i 1 ≤ i ≤ m.

Fig. 1(b) illustrates the general framework of our hashing method to answer
approximate similarity search over the sliding window model (Fig. 1(a)) of mul-
tiple stream time series. Specifically, weighted locality-sensitive hashing (LSH)
functions are applied to hash subsequences from stream time series into keys.
In particular, with each hash function Hj ∈ H(1 ≤ j ≤ l), we hash m most
recent sliding windows Ti[t − w + 1 : t] of size w from m stream time series Ti,
respectively, into m keys, which are then inserted into a hash file HFj together
with their stream id’s. Given any query series Q, we first obtain the hash key
key(Q) of Q using a hash function Hj ∈ H and retrieve all the stream id’s as
candidates in the bucket of HFj where key(Q) is located. Finally, each resulting
candidate is further refined. Since our hash functions are locality-sensitive and
adaptive to stream data, the final answer can achieve high query accuracy.

We focus on two issues with respect to query processing and file organization
in our framework. First, we want to dynamically choose hash functions to achieve
high query accuracy that are adaptive to stream data. Moreover, we want the
resulting data in buckets of hash files to be of approximately equal size, in order
to achieve low query processing cost. Second, hash files is desired to have low
update cost. Typically, we consider the incremental maintenance of hash files.

(a) The Sliding Window Model (b) The General Framework

Fig. 1. Illustration of Our Problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Similarity Search over Multiple Stream Time Series 965

4 Approximate Similarity Search Via Hashing

4.1 Weighted Locality-Sensitive Hashing (WLSH)

In this section, we propose a variant of the locality-sensitive hashing (LSH) tech-
nique, weighted locality-sensitive hashing (WLSH), which adapts to the under-
lying data characteristics and achieves both high query accuracy and efficiency.
Recall that, the LSH method [4] always selects k random positions in the bit
vector uniformly, which is independent on the underlying data characteristics. In-
stead, we propose a weighted locality-sensitive hashing (WLSH) approach, which
selects k positions in bit vectors with weighted probabilities. Consider one spe-
cific position s in bit vectors of a data set, which is chosen as part of the key in
a hash function Hj . We have the lemma as follows:

Lemma 1. Let V (T) and V (T ′) be two bit vectors randomly selected from a data
set. The probability that bits V (T)[s] and V (T ′)[s] are the same is

(
1 − 2n0n1

(n0+n1)2

)
,

where s is a selected position in the hash function Hj, n0 the number of “0” bits
and n1 that of “1” bits, for the s-th position of all vectors in the data set.

Note that, 2n0n1
(n0+n1)2 in Lemma 1 is exactly two times the bit variance σ2

s at
the s-th position for all vectors. Therefore, if we increase the chance of select-
ing a position with small bit variance in hash function Hj , the probability that
two similar series have the same key value is higher than LSH. That is, we can
improve the locality of any two similar series (query accuracy) by giving high
probability (weight) to positions with small bit variance. On the other hand,
however, we want to have low query processing cost. Thus, choosing those posi-
tions with high bit variances can result in uniform bucket size, whose searching
cost is low. Based on these two observations, our WLSH method makes a trade-
off between high query accuracy and low query processing cost. Specifically,
WLSH selects the s-th position in the bit vector with the probability fs pro-
portional to p · σ2

min/(σ2
s) + (1 − p) · σ2

s/(σ2
max), where p ∈ [0, 1] is a trade-off

parameter, and σ2
s is the bit variance at the s-th position, σ2

min and σ2
max the

minimum and maximum possible bit variances, respectively.

4.2 Dynamic Maintenance of Hash Functions in Stream Time Series

Next, we apply WLSH to the stream time series scenario. Specifically, in the
sliding window model (Fig. 1(a)), we always maintain a hash file containing the
most recent sliding window Ti[t − w + 1 : t] from each stream time series Ti,
whose key keyj(Ti[t − w + 1 : t]) is obtained by using a WLSH function Hj(t)
at timestamp t. For brevity, we denote the hash function Hj(t) by H(t) and the
key keyj(Ti[t − w + 1 : t]) by key(Ti, t). Then, at the next timestamp (t + 1),
each stream series Ti receives a new data Ti[t + 1] and discards the out-of-date
one Ti[t − w + 1]. Since more positions from new bits may be included and the
expired ones removed in hash function H(t), we have to incrementally update
the hash function from H(t) to H(t + 1), illustrated as follows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

966 X. Lian, L. Chen, and B. Wang

Initialization. Up to timestamp (w−1), each stream time series Ti has received
a window Ti[0 : w −1] of w data elements. Initially, we compute the bit variance
of each position in bit vectors of all subsequences (windows), and obtain the
weight fs of each position s, where 0 ≤ s ≤ w′ − 1, as mentioned in Section 4.1.
Next, the hash function H(w − 1) randomly selects k out of w′ positions such
that each position s is selected with the probability fs/(

∑w′−1
j=0 fj).

Incremental Update. Using the same example as in the initialization step, at
the next timestamp w, due to the insertion and deletion of data, C new positions
(V (Ti)[w′ : w′ + C]) arrive and C old ones (V (Ti)[0 : C − 1]) are discarded.
Similarly, we can obtain weights fw′ , fw′+1, ..., fw′+C−1 of C new positions. One
straightforward way to obtain the new hash function is to re-select k positions
from scratch. However, this results in totally different bits in hash keys from
the previous timestamp and thus the hash file needs to be re-organized at high
cost. Motivated by this, we want to utilize as many positions as possible that
have already been selected in the window V (Ti[0 : w − 1]). We consider three
cases. For Case 1,

∑C−1
j=0 fj =

∑w′+C−1
j=w′ fj. Since weights of new and old data

are the same, the same number of bits is selected in the new data as that in
old ones. For Case 2,

∑C−1
j=0 fj <

∑w′+C−1
j=w′ fj . We deselect those positions from

C to w′ − 1 with probability (1 − (
∑w′−1

j=0 fj)/(
∑w′+C−1

j=C fj)). For the new data
from position w′ to (w′ + C − 1), we select the s-th position with probability
fs/(

∑w′+C−1
j=C fj). For Case 3,

∑C−1
j=0 fj >

∑w′+C−1
j=w′ fj . We first select sizeold ·

(
∑w′+C−1

j=w′ fj)/(
∑C−1

j=0 fj) positions for the new data. The remaining bits for
positions from C to w′ − 1 are selected with probability for the s-th position
fs/(

∑w′+C−1
j=C fj).

Finally, since each update within the sliding window may result in a new
hash function, say from H(t) to H(t + 1), hash keys of updated sliding windows
(subsequences) may also change over time. However, due to the re-use of those
already selected k positions in the hash function, only partial bits in keys have
changed (Section 4.2), which significantly reduces the hash file maintenance cost.

5 Experimental Evaluation

We evaluate the performance of our hashing approach WLSH on both real and
synthetic data sets, sstock and randomwalk, respectively, whose values are nor-
malized to the interval [1, 100] (similar to [3]). The L1-norm is used as the
distance function.

5.1 Performance of LSH vs. WLSH

First, we compare the effectiveness of LSH with WLSH to answer approximate
range queries on static data sets, in terms of the recall ratio, which is the number
of the actual answer in the candidate set divided by the total number of candi-
dates. We randomly extract 100 series of length 100 from data sets as queries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Similarity Search over Multiple Stream Time Series 967

(a) recall vs. ε (sstock)(b) recall vs. k (sstock) (c) recall vs. l (sstock) (d) recall vs. p (sstock)

(e) recall vs. ε (ran wlk)(f) recall vs. k (ran wlk)(g) recall vs. l (ran wlk)(h) recall vs.p (ran wlk)

Fig. 2. Performance of WLSH vs. LSH

Fig. 2 illustrates the comparison of recall ratios of LSH vs. WLSH under differ-
ent parameters ε, k, l, and p, using both real sstock and synthetic randomwalk
data sets. Specifically, each time we vary one parameter by assigning default
values to other parameters (i.e. ε = 300, m = 5K, k = 50, l=5, and p = 50%).
Changing parameters ε, k and l, WLSH always performs better than LSH having
higher recall ratios where p = 50%. With different trade-off p values, however,
small p gives a lower recall ratio than LSH, and nevertheless lower cost of query
processing than LSH, presented later.

5.2 Performance of Our Hashing Approach vs. VA+-Stream

Next, Fig. 3 illustrates both the query efficiency and accuracy of our proposed
hashing approach, compared to exact similarity search method, VA+-stream
[5], over multiple stream time series on sstock and randomwalk. Specifically, we
consider sliding windows of size w (= 100) in streams. In general, our hashing
approach outperforms VA+-stream requiring an order of magnitude less CPU

(a) CPU vs. p (sstock) (b) recall vs. p (sstock) (c) CPU vs. m (sstock) (d) recall vs. p (sstock)

(e) CPU vs. p (ran wlk) (f) recall vs. p (ran wlk) (g) CPU vs. m (ran wlk)(h) recall vs. p (ran wlk)

Fig. 3. Performance of Our Hashing Approach vs. VA+-Stream

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

968 X. Lian, L. Chen, and B. Wang

time per query, and yet achieving high recall ratio very close to 100% (in VA+-
stream). Since update costs of incremental hash file in our approach and VA+-
stream are similar (i.e. O(m) cost), results are omitted due to the space limit.

6 Conclusions

Similarity search over dynamic stream time series has a wide spectrum of appli-
cations. Previous work studies the approximate similarity search on static data-
bases. In this paper, we consider the same problem in the scenario of stream
time series. Specifically, we propose a novel WLSH approach to map each series
to a key, with which similarity queries can be answered with high query accuracy
and low update and query processing cost. Extensive experiments have verified
the performance of our method, compared to the exact one, VA+-stream.

References

1. L. Chen et al. Robust and fast similarity search for moving object trajectories.
SIGMOD, 2005.

2. C. Cranor et al. Gigascope: a stream database for network applications. SIGMOD,
2003.

3. A. Gionis et al. Similarity search in high dimensions via hashing. VLDB, 1999.
4. P. Indyk, R. Motwani. Approximate nearest neighbors: towards removing the curse

of dimensionality. STOC, 1998.
5. X. Liu, H. Ferhatosmanoglu. Efficient kNN search on streaming data series. SSTD,

2003.
6. H. Wu et al. Online event-driven subsequence matching over financial data streams.

SIGMOD, 2004.
7. Y. Zhu, D. Shasha. Efficient elastic burst detection in data streams. SIGKDD, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

WT-Heuristics: A Heuristic Method

for Efficient Operator Ordering

Jun-Ki Min

School of Internet-Media Engineering,
Korea University of Technology and Education,

Byeongcheon-myeon, Cheonan, Chungnam, Republic of Korea, 330-708
jkmin@kut.ac.kr

Abstract. In this paper, we focus on the processing of stream data
whose characteristics vary unpredictably by over time. Particularly, we
suggest a method which generates an efficient operator execution order
called WT-Heuristic. Our method changes the execution order with re-
spect to the change of data characteristics with minimum overheads.

1 Introduction

This paper deals with the operator ordering problem for stream data whose
properties vary over time. For brevity, we assume that a query consists of a set
of commutative filters (i.e., operators) like most related literature [1,2]. When a
tuple t is inserted into a filter, a filter drops t or outputs t with respect to the
predefined condition for a filter. Overall processing costs can vary widely across
different filter ordering. For example, operator O1 drops tuples whose values are
1, 3, and 5 in a unit time, as well as operator O2 drops tuples whose values are
2, 4, and 6 in an unit time. Let an input stream be 2, 4, 6. If an operator order
is O1 and O2, then the overall cost is 6 unit times. Otherwise, the cost is 3 unit
times.

Commutative filters are very common in stream application [3,4]. In the work
of [2], the authors show that the operator order problem is applicable to the
ordering problem for wide class of multiway joins.

2 Related Work

In the work of [2], the A-Greedy technique for operator ordering was proposed.
In the A-Greedy technique, when the operator ordering is Of(1), Of(2), . . . ,
Of(n), the query cost C can be formalized as the follow:

n∑
i=1

(ti · Di), where Di =

{
1 (i = 1)∏i−1

j=1(1 − d(j|j − 1)) (i > 1)
(1)

In Equation (1), d(i|j) denotes the conditional probability that Of(i) will drop
a tuple e from input stream I, given that e was not dropped by any of Of(1),

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 969–974, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

970 J.-K. Min

Of(2), . . . , Of(j). And, ti represents the expect time for Of(i) to process one
tuple. Thus, C is the average time to process (or drop) an incoming tuple. The
goal of the A-Greedy technique is to find efficient orderings that minimize C. In
order to achieve their goal, the A-Greedy technique uses a greedy heuristic rule
which rearranges the operator order satisfying the following formula:

d(i|i − 1)
ti

≥ d(j|i − 1)
tj

, 1 ≤ i < j ≤ n (2)

In order to apply the greedy heuristics, A-Greedy uses a profiling technique.
The profile is a sliding window of profile tuples. In profiling, a tuple e which was
dropped during processing is selected with probability p, called the drop-profiling
probability. Then, the A-Greedy profiler artificially applies e to all operators and
generates a profiler tuple whose attribute bi is 1 if Oi drops e and bi = 0
otherwise (see Figure 1-(a)).

b1 b2 b3 b4 O4 O1 O3 O2

1 0 0 0

0 0 1 1

0 1 1 1

1 0 1 1

0 0 0 1

 (a) Profile window (b) Matrix View

4 2 3 1

 1 0 0

 0 0

 0

Fig. 1. A-Greedy profile

The A-Greedy reoptimizer, which keeps the operator order to obey the greedy
heuristic rule, maintains a specific view (see Figure 1-(b)) using the profile win-
dow. As shown in the first row of Figure 1-(b), O4 drops the most tuples. Thus,
if the processing costs of all operators are equal, O4 is the first operator. The
second row reports the numbers of tuples which are not dropped by O4 but
dropped by O1, O3, and O2, respectively. Using this manner, A-Greedy arranges
the operator order. When the profile changes, the reoptimizer computes a new
operator order.

The problem of the A-Greedy technique is that the profiling overhead is
large. A normal tuple may be dropped by an operator, but a tuple for pro-
filing is applied to all operators. The cost of a normal tuple is Equation-(1). But
the cost of a tuple for profile is

∑n
i=1 ti which is grater than or equal to

Equation-(1).

3 WT-Heuristics

3.1 Goal of WT-Heuristics

The purpose of query processing is to process input data and generate output
efficiently. Thus, the time for processing a tuple which will not be in results
should be minimized.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

WT-Heuristics: A Heuristic Method for Efficient Operator Ordering 971

Let the selectivity of the first operator O1 be s1 and the processing cost of O1

be t1. If a tuple is sent to O1, the expected cost for dropping a tuple is (1−s1)·t1.
And, let the processing cost of the second operator O2 be t2 and the conditional
selectivity of O2 be s2 which denotes the probability that O2 will not drop a
tuple e, given that e was not dropped by O1. Then, the waste time to drop a
tuple e on O2 is (1 − s2) · (t1 + t2). Thus, the total waste time W can be defined
as the follow:

W =
n∑

i=1

(
(1 − s(i|0, 1, . . . , i − 1)) ·

i∑
j=1

tj
)

(3)

In Equation-(3), s(i|0, 1, . . . , i − 1) is the conditional probability that a tuple
e is selected by Of(i), given e is not dropped by any Of(0),Of(1), Of(2), . . . ,
Of(i−1). tj is the processing cost of an operator Of(j) to process a tuple.

3.2 WT-Heuristics

Assume that a query consists of n commutative operators (i.e., filters) and
the current operator order is O0, O1, . . . , On, where O0 denotes the stream
source itself. Each operator Oi (1 ≤ i ≤ n) keeps its processing cost ti and
conditional selectivity s(i|0, 1, . . . , i − 1). In addition, the conditional proba-
bility s(i + 1|0, 1, . . . , i − 1) is estimated. To obtain s(i + 1|0, 1, . . . , i − 1) in
WT-heuristics, when a tuple e is not dropped by an operator Oi−1 (1 ≤ i ≤
n − 1), e is chosen with probability p, called swap-probability. If e is chosen,
e is transmitted to operator Oi+1, instead Oi. By using this, we can estimate
s(i+1|0, 1, . . . , i−1). Also, if the chosen tuple e is not dropped by Oi +1, the tu-
ple e is sent to the operator Oi. Thus, we can estimate a conditional probability
s(i|0, 1, . . . , i − 1, i + 1).

As shown in Figure 2, general tuples are processed following the current oper-
ator order, . . . , Oi−1, Oi, Oi+1, In contrast, a tuple e with swap-probability
p is processed following the order, . . . , Oi−1, Oi+1, Oi,

Oi-1
Queue

… Oi Oi+1

Normal Flow: … Oi-1- Oi - Oi+1 -…

Swap Flow : …Oi-1- Oi+1 - Oi -…

1

2

3

Fig. 2. Operator swapping

In WT-heuristics, using these conditional probabilities, the waste time Wi,i+1

when a tuple is processed with Oi, Oi+1, and the waste time Wi+1,i with Oi+1,
Oi can be estimated. The formulae for Wi,i+1 and Wi+1,i are defined as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

972 J.-K. Min

Wi,i+1 = (1 − s(i|0, 1, . . . , i − 1))(
i∑

j=1

tj)

+(1 − s(i + 1|0, 1, . . . , i))(
i+1∑
j=1

tj) (4)

Wi+1,i = (1 − s(i + 1|0, 1, . . . , i − 1))(
i−1∑
j=1

tj + ti+1)

+(1 − s(i|0, 1, . . . , i − 1, i + 1))(
i+1∑
j=1

tj) (5)

Since Wi,i+1 denotes the partial waste time on current operator order and
Wi+1,i denotes the estimated waste time when the operators Oi, and Oi+1 are
interchanged, if Wi,i+1 is greater than Wi+1,i, WT-heuristics rearranges the op-
erator order such that . . . , Oi+1, Oi,

WT-heuristics detects situation where a swap between adjacent operators in
the current operator will improve performance. Thus, the WT-heuristics tech-
nique may take much time to converge the best plan generated by the A-Greedy
technique. Also, WT-heuristics may stay on local optimal plan. However, WT-
heuristics has very low run-time overhead compared to A-Greedy .

If WT-heuristics reacts sensitively with respect to change of input stream’s
characteristics, the operator ordering can trash. Particularly, if Wi,i+1 and Wi+1,i

are almost equal, the operator trashing incurs. In order to avoid trashing, we
borrow trash-avoidance parameter α (0 < α ≤ 1) from [2]. Thus, if Wi+1,i <
α·Wi,i+1, two adjacent operators are interchanged.

4 Experiments

In this paper, we analyze the performance of our proposed method, WT-heuristics
using simulation. We empirically compared the performance of WT-heuristics
with A-Greedy and a static operator ordering using synthetic data sets. In our ex-
periments, we found that WT-heuristics shows significantly better performance.

4.1 Experimental Environments

The experiments were performed on Pentium IV-1.7GHz platformed with Win-
dows XP and 1GBytes of main memory.

In order to show the efficiency of WT-heuristics, we implemented three oper-
ator ordering algorithms: WT-heuristics, A-Greedy, and the static method. The
static method does not change the initial operator order and the other methods
changes the orders adaptively.

Synthetic data sets are generated with uniform distribution whose domain is
[0, 10000). The other characteristics of parameters used in the experiments are
summarized in Table 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

WT-Heuristics: A Heuristic Method for Efficient Operator Ordering 973

Table 1. Parameters

Parameter Default Value
Number of operators 6
Number of Input Data 100000
Operator Processing Cost 1
Unconditional selectivity 50%
Correlation factor (Γ) Γ = 2
Trash avoidance parameter (α) α = 0.9
Drop-profiling probability (for A-Greedy) 0.01
Profile window Size (for A-Greedy) 500
Swap probability (for WT-heuristics) 0.01

One of factors affecting performance is the correlation among operators. To
capture the correlation among operator, we used the correlation factor Γ in-
troduced in [2]. The n operators are divided into �n/Γ � groups containing Γ
operators each. Two filters are independent (but is not disjoint) if they belong
to different group. If they belong to same group, they have positive correlation
such that they generate the same results on 80% of input data.

4.2 Experimental Results

The experimental result with default parameters is presented in Figure 3-(a).
Since WT-heuristics does not incur extra overheads to obtain a profile, WT-
heuristics is superior to the other methods.

200000

205000

210000

215000

220000

225000

230000

235000

240000

245000

Static A-Greedy WT-Heuristics

T
im

e

190000

200000

210000

220000

230000

240000

250000

260000

270000

280000

4 6 8 10 12

Num. of Operators

ti
m

e

Static A-Greedy WT-Heuristics

(a) Default Parameters (b) Number of operators

0

200000

400000

600000

800000

1000000

1200000

1400000

50K 100K 200K 300K 400K 500K

Num. of data

tim
e

Static A-Greedy WT-Heuristics

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Cost1 Cost2 Cost3 Cost4

ti
m

e

Static A-Greedy WT-Heuristics

(c) Number of data (d) Operator costs

Fig. 3. Experimental results

As shown in Figure 3-(b), as the number of operators increases, the process-
ing costs of each technique increases. But the performance ratio of each tech-
nique does not change significantly. Figure 3-(c) illustrates the processing cost

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

974 J.-K. Min

of each technique varying the number of stream data: 50,000, 100,000, 200,000,
300,000,400,000, and 500,000. When the number of data is extremely small
(i.e., 50,000), A-Greedy shows the worst performance since the profiling over-
head appears but the benefit of the rearranged operator order is not shown in
A-Greedy. Finally, we measure the performance of each technique varying the
cost of individual operators. As Cost1, we assign the operator costs <1,1,1,1,5,5>
to six operators sequentially. As Cost2, operator costs <1,1,5,5,5,5> are used as
well as <1,5,1,5,1,5> for Cost3, and <5,1,5,1,5,1> for Cost4.

The performance of each technique is plotted in Figure 3-(d). In Cost1, Cost2,
and Cost3, WT-heuristics shows the best performance. In Cost4, WT-heuristics
is worse than A-Greedy. In this experiment, we found that the final operator
orders of A-Greedy and WT-heuristics are equal. As mentioned earlier, since
WT-heuristics swaps adjacent operators at once, WT-heuristics may take much
time to converge the best plan. The experiment of Cost4 shows this case. How-
ever, as shown in the other experimental results, since WT-heuristics does not
incur the extra overhead, the performance gap is amortized over time.

Consequently, WT-heuristics shows the best performance over most of all
cases.

5 Conclusion

In this paper, we propose WT-heuristics which modifies the operator orders in
environments where changes unpredictably. The goal of WT-heuristics is to re-
duce the waste time. We implement our WT-heuristics and conducted extensive
experimental study with synthetic data over diverse environments. Experimen-
tal results show that WT-heuristics improves the processing costs since WT-
heuristics obtains the required information without the system overheads.

Acknowledgement. This research was supported by the Ministry of Infor-
mation and Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-0603-0031.

References

1. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In:
Proceedings of ACM SIGMOD Conference. (2000) 261–272

2. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive ordering
of pipelined stream filters. In: Proceedings of ACM SIGMOD Conference. (2004)
407–418

3. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filtering
algorithms and implementation for very fast publish/subscribe. In: Proceedings of
ACM SIGMOD Conference. (2001) 115–126

4. Ross, K.A.: Conjunctive selection conditions in main memory. In: Proceedings of
PODS Conference. (2002) 109–120

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient and Scalable Management of

Ontology

Myung-Jae Park1, Jihyun Lee1, Chun-Hee Lee1, Jiexi Lin1,
Olivier Serres2, and Chin-Wan Chung1

1 Korea Advanced Institute of Science and Technology, Korea
{jpark,hyunlee,leechun,jesse,chungcw}@islab.kaist.ac.kr

2 University of Technology of Belfort-Montbéliard, France
olivier.serres@utbm.fr

Abstract. OWL is a recommended language for publishing and shar-
ing ontologies on the Semantic Web. To manage the ontologies, several
OWL data management systems have been proposed. However, the ex-
isting systems have limitations of the scalability and the reasoning. In
this paper, we propose an OWL data management system, ONTOMS,
which stores OWL data into class based relations, performs complete in-
verseOf, symmetric, and transitive reasoning for instances, and efficiently
evaluates OWL-QL queries against ontologies in a relational database.

1 Introduction

Web Ontology Language(OWL) [1] is a semantic markup language for publishing
and sharing ontologies on the Web. OWL is developed as a vocabulary extension
of RDF [2] and RDFS [3] to increase the expressive power of ontology data, which
leads OWL as a recommended ontology language for the Semantic Web. OWL
data can be represented by a graph like RDF as shown in Fig. 1.

To support the expressive power of OWL data, several OWL reasoners [4,5,6]
have been proposed. However, those reasoners confronted the scalability issue,
due to the use of memory. To overcome this problem, RDBMS based OWL data
management systems [7,8,9] have been proposed. Since RDBMSs do not support
the reasoning ability, those systems cannot obtain complete class and property
hierarchies and perform the instance reasoning. As a result, those systems incor-
porated OWL reasoners to obtain such hierarchies completely. However, due to
the scalability drawback of OWL reasoners, instance reasoning is not supported.

To retrieve instances of classes or properties, OWL Query Language(OWL-
QL) [10] has been proposed. OWL-QL is based on query patterns, in the form
of (property, subject, object). To evaluate query patterns over OWL data stored
in RDBMS, a proper relational schema is required. However, existing systems
do not incorporate efficiency consideration in designing their relational schemas.
Thus, in this paper, we propose ONTOMS, an efficient and scalable ONTOlogy
Management System, to efficiently manage large sized OWL data. ONTOMS
stores OWL data into a class based relational schema to increase query process-
ing performance. On the average, the query performance of ONTOMS is about

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 975–980, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

976 M.-J. Park et al.

Fig. 1. An example of OWL data (a simple university ontology)

90 times better than DLDB [7]. To provide the complete results, ONTOMS sup-
ports instance reasoning for inverseOf, symmetric, and transitive properties. To
our best knowledge, ONTOMS is the first RDBMS based OWL data manage-
ment system which supports the complete instance reasoning.

2 Related Work

There are several OWL reasoners to manage OWL data. FaCT [5] performs class
and property related reasoning only. RACER [4] and Pellet [6] support class and
property hierarchy reasoning, as well as instance reasoning.

SnoBase [9] stores class and property definitions (e.g., subClassOf and sub-
PropertyOf) into Fact relation. SnoBase also stores every triple (i.e., (subject,
property, object)) into Fact relation. To provide reasoning, SnoBase utilizes SQL
triggers. However, the runtime depth level of trigger cascading supported in
RDBMSs is limited. Also, SnoBase does not support instance reasoning.

Instance Store [8] uses Descriptions relation to store class definitions, Primi-
tives relation to store individuals, and other four relations (Type, Equivalents,
Parents and Children) to maintain class hierarchy information. Instance Store
uses FaCT or RACER to only obtain class hierarchies. In addition, Instance
Store only supports classes without any consideration on properties.

DLDB [7] maintains one class relation for each class and one property relation
for each property. For class and property hierarchies, DLDB uses FaCT. However,
DLDB does not support any instance reasoning. Thus, DLDB cannot provide
complete query results for properties which require instance reasoning.

3 OWL Data Storage

The class hierarchy and the property hierarchy are generated from Pellet. To
maintain containment relationship information among nodes of each hierarchy,
a pair of (start, end) values is assigned to each node according to the node’s
position, which was originally proposed for XML data [11]. Fig. 2 shows class
and property hierarchies for the OWL data in Fig. 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient and Scalable Management of Ontology 977

Thing

Person Course University

Professor Student

GraduateStudent

takesCourse teachesCourse hasAlumnusdegreeFrom

doctoralDegreeFrom

[1,14]

[2,9]

[3,4]
[5,8]

[10,11] [12,13]

[6,7]

[1,2] [3,4] [5,8] [9,10]

[6,7]

(a) The class hierarchy (b) The property hierarchy

Fig. 2. Class and Property Hierarchies

ONTOMS generates a class based relational schema, where one relation is
created for each class. Each class relation contains associated properties as at-
tributes. Associated properties are the properties that have the class as domains.

To efficiently utilize the property hierarchy, we only retain properties which
do not have any super properties (called highest properties) among associated
properties. Class relations also have start and end attributes for each highest
property. If the highest property has no subproperties, those are omitted.

degreeFrom_EdegreeFrom_SdegreeFromUID
Person

degreeFrom degreeFrom_EdegreeFrom_StakesCourseUID
Student

GS1
degreeFrom_EdegreeFrom_SdegreeFromUID

GraduateStudent

C3GS1

C2GS1

C1GS1
ValueUID

GraduateStudent

C3Prof1

C2Prof1

C1Prof1
ValueUID

76Univ1Prof1
degreeFrom_EdegreeFrom_SdegreeFromUID

Professor

UID
Course

Univ1
hasAlumnusUID

University

Professor
_teachesCourse_takesCourse

Fig. 3. Relational Tables in ONTOMS

A number of redundant tuples would be generated for a multi-valued property.
The multi-valued property indicates where one instance of property’s domain
has more than one values. For example, in Fig. 1, Prof1 has three different
values (i.e., C1, C2, and C3) for teachesCourse property. As a result, ONTOMS
separates multi-valued properties from class relations. A new relation is assigned
to each multi-valued property. Fig. 3 shows the relations1, generated for the OWL
data presented in Fig. 1. Note that ONTOMS stores new tuples generated after
performing instance reasoning. The (Univ1, null) tuple in University relation
should be updated as (Univ1, Prof1) for the inverseOf property, hasAlumnus.

Note that the translation process of OWL-QL queries to SQL queries for the
class based relations can be found in [12].

4 Instance Reasoning

OWL defines five types of properties: inverseOf, symmetric, transitive, functional
and inverseFunctional properties. Only the first three properties may generate a
1 Internally, ONTOMS assigns a unique label identifier (UID) to each instance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

978 M.-J. Park et al.

large number of new facts2. Therefore, we focus on reasoning for inverseOf, sym-
metric and transitive properties (which we will refer to as IST properties). Note
that the definitions of the IST properties are given in the OWL Reference [1].

Definition 1. Relation R of a property P is the set of (x,y) in P.

Definition 2. Let property P be inverseOf property P’, R be the relation of P,
and R’ be the relation of P’. The inverseOf reasoning for P or R is the process
of adding (y,x) to R for all (x,y) in R’, if (y,x) is not in R.

Definition 3. Let P be a symmetric property and R be the relation of P. The
symmetric reasoning for P or R is the process of adding (y,x) to R for all (x,y)
in R, if (y,x) is not in R.

Definition 4. Let P be a transitive property and R be the relation of P. The
transitive reasoning for P or R is the process of computing the transitive closure
of R.

A relation R after inverseOf reasoning is written as RI .3 Similarly, a relation R
after symmetric and transitive reasoning is written as RS and RT , respectively.

In this paper, we propose an IST reasoning algorithm which does not require
recursive or iterative processing. The algorithm guarantees that the complete
set of new facts can be obtained by performing reasoning only once for each
type of property in a certain sequence, i.e., first for inverseOf property, then for
symmetric property, and last for transitive property.

Lemma 1. Suppose relation R is inverseOf relation R’. After symmetric rea-
soning for R and R’, RS is inverseOf R’S.

Lemma 2. Suppose relation R is inverseOf relation R’. If R is symmetric, then
R’ is symmetric. If R is transitive, then R’ is transitive.

Theorem 1. Suppose property P is inverseOf property P’, P is symmetric and
transitive. Let R be the relation of P and R’ the relation of P’. By following
the sequence <inverseOf reasoning, symmetric reasoning, transitive reasoning>
for R and R’, the resulting relations of R and R’ are inverseOf of each other,
symmetric and transitive.

The proof for Theorem 1 and the algorithm for IST reasoning, which can be
found in [12], are not included due to the page limitation.

5 Experiments

We implemented ONTOMS using IBM DB2 UDB 8.2. We interfaced DLDB with
IBM DB2 since DLDB uses MS-Access. Experiments were performed on 3GHz
2 Referred to as newly generated instances in Sect. 3.
3 Here,we introduce RI to indicate the change of R as a result of inverseOf reasoning.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient and Scalable Management of Ontology 979

Pentium 4 with 1024MB of main memory. We used Lehigh University Benchmark
Data(LUBM)4. We generated various sizes of OWL data: 1MB, 5MB, 10MB,
50MB, 100MB, and 500MB. Since LUBM queries (Q1 to Q14) are not sufficient,
we added three queries (Q15 to Q17). Detailed information on the query set,
which can be found in [12], is not included due to the page limitation.

We compared the total query processing time of ONTOMS and that of DLDB
using 17 queries. We show the total query processing time for only 50MB data
in Fig. 4 since the shapes of graphs for different sizes are similar.

(a) Query processing time(<2 sec) (b) Query processing time(>=2 sec)

0

8

16

24

Q2 Q4 Q7 Q8 Q9 Q16 Q17

T
im

e(
se

co
nd

s)

976

0

0.4

0.8

1.2

1.6

Q1 Q3 Q5 Q6 Q10 Q11 Q12 Q13 Q14 Q15

T
im

e(
se

co
nd

s)

ONTOMS DLDB

Fig. 4. Query Processing Time for 50MB OWL Data

The number of joins in ONTOMS is less than or equal to that of DLDB. There-
fore, in Fig. 4, ONTOMS is better than DLDB for most of 17 queries. However,
for Q7 and Q13, ONTOMS is worse than DLDB. Since Q7 and Q13 have values
as their subjects, there are just a few bindings satisfying those queries.

(a) Single-valued property (Q16) (b) Multi-valued property (Q17)

0

10

20

30

40

1MB 5MB 10MB 50MB 100MB 500MB

Ti
m

e(
se

co
nd

s)

ONTOMS DLDB

0

40

80

120

1MB 5MB 10MB 50MB 100MB 500MB

T
im

e(
se

co
nd

s)

Fig. 5. Query Processing Time over Differently Sized OWL Data

In Fig. 5, all properties of Q16 are single-valued properties while those of Q17
contain multi-valued properties. Thus, the performance gap between ONTOMS
and DLDB is much larger in Q16.

Consequently, ONTOMS outperforms DLDB for most queries in spite of its
support of instance reasoning. ONTOMS is 90 times faster than DLDB on the
average, calculated by averaging performance differences for queries over 1MB,
5MB, 10MB, 50MB, 100MB, and 500MB OWL data.

4 Available in http://swat.cse.lehigh.edu/projects/lubm/index.htm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

980 M.-J. Park et al.

6 Conclusion

In this paper, we proposed ONTOMS, an OWL data management system using
an RDBMS. ONTOMS generates the class based relational schema in which a re-
lation is created for each class and contains associated properties as its attributes.
To avoid data redundancy, ONTOMS creates class-property relations for multi-
valued properties. Thus, this schema is of great advantage to queries having less
multi-valued properties. In addition, ONTOMS supports the reasoning on the
IST properties and the class and property hierarchies. The experimental results
show that ONTOMS outperforms DLDB in the query response time.

Acknowledgments. This research was supported by the Ministry of Infor-
mation and Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-0603-0031.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C
Recommendation, http://www.w3.org/TR/owl-ref (Feb. 2004)

2. Manola, F., Miller, E., McBride, B.: RDF Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer (Feb. 2004)

3. Brickley, D., Guha, R.V., McBride, B.: RDF Vocabulary Description Language
1.0: RDF Schema. http://www.w3.org/TR/rdf-schema (Feb. 2004)

4. Haarsley, V., Moller, R.: RACER System Description. In: Proc. of 1st International
Joint Conference on Automated Reasoning. (June 2001) 701–706

5. Horrocks, I., Sattler, U.: A Tableaux Decision Procedure fore SHOIQ. In: Proc. of
19th International Joint Conference on Artificial Intelligence. (Aug. 2005) 448–453

6. Parsia, B., Sirin, E.: Pellet: An OWL DL Reasoner. In: Proc. of 3rd International
Semantic Web Conference. (Nov. 2004)

7. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: Proc. of 3rd International Semantic Web Conference. (Nov.
2004) 274–288

8. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic
Reasoning with Large Numbers of Individuals. In: Proc. of 2004 International
Workshop on Description Logic. (June 2004) 31–40

9. Lee, J., Goodwin, R.: Ontology Management for Large-Scale Enterprise Systems.
IBM Technical Report, RC23730 (Sep. 2005)

10. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL-A Language for Deductive Query
Answering on the Semantic Web. Journal of Web Semantics 2(1) (Dec. 2004)
19–29

11. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: Proc. of the
2001 ACM SIGMOD Conference. (May 2001) 425–436

12. Park, M.J., Lee, J.H., Lee, C.H., Lin, J., Serres, O., Chung, C.W.: ONTOMS: An
Efficient and Scalable Ontology Management System. In: KAIST CS/TR-2005-246.
(Dec. 2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 981–987, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Estimating Missing Data in Data Streams∗

Nan Jiang and Le Gruenwald

The University of Oklahoma
School of Computer Science
Norman, OK, 73019, USA

{nan_jiang, ggruenwald}@ou.edu

Abstract. Networks of thousands of sensors present a feasible and economic
solution to some of our most challenging problems, such as real-time traffic
modeling, military sensing and tracking. Many research projects have been
conducted by different organizations regarding wireless sensor networks;
however, few of them discuss how to estimate missing sensor data. In this
research we present a novel data estimation technique based on association
rules derived from closed frequent itemsets generated by sensors. Experimental
results compared with the existing techniques using real-life sensor data show
that closed itemset mining effectively imputes missing values as well as
achieves time and space efficiency.

1 Introduction

Many research projects have been conducted by different organizations regarding
wireless sensor networks; however, few of them discuss how to estimate the sensor
data that are missing because they are lost or corrupted or arrive late when being sent
from sensors to servers. Traditional methods to handle the situation when data is
missing are to ignore them, make sensors to send them again or use some statistical
methods to perform the estimation. As we discuss in Section 2, these methods are not
specially suited for wireless sensor networks.

In this paper, we propose a data estimation technique using association rule mining
on stream data based on closed frequent itemsets (CARM) to discover relationships
between sensors and use them to compensate for missing data. Different from other
existing techniques [4-6, 10, 12], CARM can discover the relationships between two
or more sensors when they have the same or different values. The derived association
rules provide complete and non-redundant information; therefore they can improve
the estimation accuracy and achieve both time and space efficiency. Furthermore,
CARM is an online and incremental algorithm, which is especially beneficial when
users have different specified support thresholds in their online queries.

The remainder of this paper is organized as follows. Section 2 describes the data
missing problem and reviews the existing data estimation solutions. Section 3
discusses the definitions of terms used in the paper. Section 4 presents the proposed

∗ This research is partially supported by the NASA grant No. NNG05GA30G and a research

grant from the United States Department of Defense.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

982 N. Jiang and L. Gruenwald

online data estimation algorithm based on the discovered closed frequent itemsets.
Section 5 depicts the performance evaluation comparing the proposed algorithm with
the existing techniques using real-life traffic data. Finally, Section 6 concludes the
paper.

2 Related Works

Many articles have been published to deal with the missing data problem, and a lot of
software has been developed based on these methods. Some of the methods totally
delete the missing data before analyzing them, like listwise and pairwise deletion [16],
while some other methods focus on estimating the missing data based on the available
information. The most popular statistical estimation methods include mean
substitution, imputation by regression [3], hot deck imputation [7], cold deck
imputation, expectation maximization (EM) [10], maximum likelihood [2, 9],
multiple imputations [11, 13], and Bayesian analysis [5]. However, a number of
problems arise when applying them to sensor networks applications. First, none of the
existing statistical methods answers the question that is critical to data stream
environments: how many rounds of information should we use in order to get the
associated information for the missing data estimation? Second, it is difficult to draw
a pool of similar complete cases for a certain round of a certain sensor when it needs
to perform the data estimation, which makes some statistical methods difficult to use.
Third, since the missing sensor data may or may not be related to all of the available
information, using all of the available information to generate the result as described
in some of the statistical methods would consume unnecessary time. And fourth,
sensor data may or may not Miss At Random (MAR), which makes it unfavorable to
use those statistical methods that require the MAR property.

In [6], the authors proposed the WARM (Window Association Rule Mining)
algorithm for estimating missing sensor data. WARM uses association rule mining to
identify sensors that report the same data for a number of times in a sliding window,
called related sensors, and then estimates the missing data from a sensor by using the
data reported by its related sensors. WARM has been reported to perform better than
the average approach where the average value reported by all sensors in the window is
used for estimation. However, there exist some limitations in WARM. First, it is
based on 2-frequent itemsets association rule mining, which means it can discover the
relationships only between two sensors and ignore the cases where missing values are
related with multiple sensors. Second, it finds those relationships only when both
sensors report the same value and ignores the cases where missing values can be
estimated by the relationships between sensors that report different values.

In view of the above challenges, in this paper we propose a data estimation
technique, called CARM (Closed Itemsets based Association Rule Mining), which
can derive the most recent association rules between sensors based on the current
closed itemsets in the current sliding window. The definition of closed itemsets is
given in Section 3 where we describe the notations that are used throughout this
paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Estimating Missing Data in Data Streams 983

3 Definitions

Let D = {d1, d2,…, dn} be a set of n item ids, and V = {v1, v2,…, vm} be a set of m
item values. An item I is a combination of D and V, denoted as I = D.V. For example,
dn.vm means that an item with id dn has the value vm. A subset X ⊆ I is called an
itemset. A k-subset is called a k-itemset. Each transaction t is a set of items in I. Given
a set of transactions T, the support of an itemset X is the percentage of transactions
that contain X. A frequent itemset is an itemset the support of which is above or equal
to a user-defined support threshold [1].

Let T and X be subsets of all the transactions and items appearing in a data stream
D, respectively. The concept of closed itemset is based on the two following
functions, f and g: f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ D | ∀ i ∈ X, i ∈ t}.
Function f returns the set of itemsets included in all the transactions belonging to T,
while function g returns the set of transactions containing a given itemset X. An
itemset X is said to be closed if and only if C(X) = f(g(X)) = f•g(X) = X where the
composite function C = f•g is called Galois operator or closure operator [14].

From the above discussion, we can see that a closed itemset X is an itemset the
closure C(X) of which is equal to itself (C(X) = X). The closure checking is to check
the closure of an itemset X to see whether or not it is equal to itself, i.e., whether or
not it is a closed itemset.

An association rule X Y (s, c) is said to hold if both s and c are above or equal
to a user-specified minimum support and confidence, respectively, where X and Y are
sensor readings from different sensors, s is the percentage of records that contain both
X and Y in the data stream, called support of the rule, and c is the percentage of
records containing X that also contain Y, called the confidence of the rule. The task of
mining association rules then is to find all the association rules among the sensors
which satisfy both the user-specified minimum support and minimum confidence.

4 Data Estimation Algorithm Based on Closed Frequent Itemsets

In this section, we present an online data estimation technique called CARM based on
a closed frequent itemsets mining algorithm in data streams that we have proposed
recently, called the CFI-Stream [8]. We first briefly describe the CFI-Stream data
structure called DIrect Update (DIU) tree that is used to compute online the closed
frequent itemsets in data streams. Then we discuss how to estimate the missing data
based on the association rules derived from the discovered closed frequent itemsets.

A lexicographical ordered direct update tree is used to maintain the current closed
itemsets. Each node in the DIU tree represents a closed itemset. There are k levels in
the DIU tree, where each level i stores the closed i-itemsets. The parameter k is the
maximum length of the current closed itemsets. Each node in the DIU tree stores a
closed itemset, its current support information, and the links to its immediate parent
and children nodes. Fig.1. illustrates the DIU tree after the first four transactions
arrive. The support of each node is labeled in the upper right corner of the node itself.
The figure shows that currently there are 4 closed itemsets, C, AB, CD, and ABC, in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

984 N. Jiang and L. Gruenwald

the DIU tree, and their associated supports are 3, 3, 1, and 2. We assume in this paper
that all current closed itemsets are already derived, and based on these closed
itemsets, we generate association rules for data estimation. Please refer to [8] for the
detail discussion of the update of the DIU tree and the closure checking procedures.

tid

1

2

3

4

items

C, D

A, B

A, B, C

A, B, C

Φ

AB3
CD1

ABC2

tim
eline

C3

Fig. 1. The lexicographical ordered direct update tree

CARM proceeds in the following manner. First, it checks if there are missing
values in the current round of sensor readings. If yes, it uses the current round of
readings X that contains the missing items to find out its closure online. If the rules
from X to its immediate upper level supersets satisfy the user specified support and
confidence criteria, these upper level supersets are treated as starting points to explore
more potential itemsets until CARM estimates all missing sensor data. Following this
method, CARM continues to explore and find all closed itemsets that can generate
association rules satisfying the users’ specified support and confidence criteria. All
these closed itemsets are the supersets of the exploration set and have the support and
confidence along the path above or equal to the users’ specified thresholds.

CARM generates the estimated value based on the rules and selected closed
itemsets, which contain item value(s) that are not included in the original readings X.
It weights each rule by its confidence and calculates the summation of these weights
multiplied with their associated item values as the final estimated result. These item
values can be expected as the missing item values with the support and confidence
values equal to or greater than the users’ specified thresholds. In this way, CARM
takes into consideration all the possible relationships between the sensor readings and
weights each possible missing value by the strength (confidence) of each relationship
(rule). This enables CARM to produce a final estimated result near the actual sensor
value based on all of the previous sensor relationships information. We show the
CARM algorithm in Fig. 2, where X is the itemset in the current round of sensor
readings, Y represents all supersets of X, Confy represents the strength of the rule
from itemset X to Y, Support(X) represents X’s support, Closure(X) is the closure of
itemset X in the current transactions, Min(X) represents X’s immediate upper level
supersets in the DIU tree, C represents all closed frequent itemsets, S(I),VI represents
the value VI of sensor id S(I), Xestimate represents the returned estimation itemset which
contains the sensor ids with missing values in the current round of readings of stream
data and their corresponding estimated values, Sspecify represents the user specified
support, and Cspecify represents the user specified confidence.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Estimating Missing Data in Data Streams 985

1 Xestimate=φ;
2 For all (M ⊆ X)
3 confM=1;C_estimate(M, confM, Xestimate)
4 If (Xestimate contains all the missing values)
5 break;
6 End for
7 Procedure C_estimate(X, Confx, Xestimate){
8 Xnew=φ;
9 If (X=Closure(X))
10 For all (Y⊃X and Y∈C and Y = min(X))
11 Confy=Confx*Support(Y)/Support(X);
12 Xnew = Xnew∪(Y/Xestimate)
13 End for
14 For all (I∈Xnew)
15 For all (Z⊃X and Z=min(Z))
16 If(I∈Z)
17 ConfI=ConfZ;
18 End for
19 If (Support(I∪X)>Sspecify and ConfI>Cspecify)
20 S(I).VI =S(I).VI +ConfI*VI

21 End for
22 If(Xnew doesn’t contain all missing sensor data)
23 For all (X’⊃X and X’∈C and X’= min(X))
24 Call C_estimate(X’, Confx’, Xestimate∪ Xnew)
25 End if
26 Else
27 Xc=Closure(X); Xnew=Xc/X; ConfXc=1;
28 If(Support(Xc)> Sspecify)
29 For all (J∈ Xnew)
30 ConfJ = ConfXc; S(J).VJ =S(J).VJ +ConfJ*VJ;
31 End if
32 If(Xnew doesn’t contain all missing sensor data)
33 Call C_estimate(Xc, ConfXc, Xnew)
34 End if
35 End procedure

Fig. 2. The CARM online data estimation algorithm

5 Experimental Evaluations

Several different simulation experiments are conducted comparing CARM with four
existing statistical techniques: Average Window Size (AWS), the Simple Linear
Regression (SLR), the Curve Regression (CE), and Multiple Regression (MR), and
with WARM, a data estimation algorithm in sensor database [6].

As shown in Fig. 3(a), the experiment results show that CARM gives the best
estimation accuracy, followed by WARM and AWS. The regression approaches
perform worse than WARM, CARM and AWS. The main reason of this might be that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

986 N. Jiang and L. Gruenwald

they only based on the regressions between the neighbor sensor readings, while
CARM and WARM discover all of the relationships between the existing sensors.
CARM provides better estimation accuracy than WARM because the association rules
in CARM are derived from a compact and complete set of information, while those in
WARM are derived from only the 2-frequent itemsets in the current sliding window.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120

Window Size

R
M

S
E

WARM
CARM
AWS
SLR
CE
MR

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Window Size

TM
M

A
T

(m
se

c)

WARM
CARM
AWS
SLR
CE
MR

(a) (b)

Fig. 3. RMSE and TMMAT for AWS, SLR, CE, MR, WARM and CARM approaches

In terms of TMMAT, which is the time for performing all main memory accesses
required for updating the associated data structures and estimating missing values per
round of sensor readings, as shown in Fig. 3(b), CARM is outperformed by all other
four statistical approaches, but it is still very fast comparing with the cases in which
sensors must resend the missing data, and is faster than WARM. The TMMAT of
WARM increases slightly when the window size increases since the information in
WARM is stored in the cube data structures, and the time needed to process this
information increases when the size of the cube increases. For CARM, the TMMAT
first increases as the number of transactions increases since the number of closed
itemsets that are newly discovered increases.

In terms of Memory Space, CARM is outperformed by all other four statistical
approaches, but it still requires far less memory space than that provided in a
contemporary computer. The needed memory space in CARM is much lower than
that in CARM because the tree data structure used in CARM stores only the
condensed closed itemset information while the cube data structures in WARM store
the sensor readings of all sensors and the supports of pairs of sensors in the current
sliding window.

6 Conclusions

In this paper we proposed a novel algorithm, called CARM, to perform data
estimation in sensor network databases based on closed itemsets mining in sensor
streams. The algorithm offers an online method to derive association rules based on
the discovered closed itemsets, and imputes the missing values based on derived
association rules. It can discover the relationships between multiple sensors not only
when they report the same sensor readings but also when they report different sensor
readings. Our performance study shows that CARM is able to estimate missing sensor
data online with both time and space efficiency, and greatly improves the estimation
accuracy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Estimating Missing Data in Data Streams 987

References

1. R. Agrawal, T. Imielinski, A. Swami; Mining Association Rules between Sets of Items in
Massive Databases; Int'l Conf. on Management of Data; May 1993.

2. Allison, P. D. Missing data. Thousand Oaks, CA: Sage; 2002.
3. Cool, A. L. A review of methods for dealing with missing data; Annual Meeting of the

Southwest Educational Research Association, Dallas, TX. 2000.
4. Dempster, N. Laird, and D. Rubin; Maximum Likelihood from Incomplete Data via the

EM Algorithm; Journal of the Royal Statistical Society; 1977.
5. Gelman, J. Carlin, H. Stern, and D. Rubin; Bayesian Data Analysis; Chapman & Hall;

1995.
6. M. Halatchev and L. Gruenwald; Estimating Missing Values in Related Sensor Data

Streams; Int'l Conf. on Management of Data; January 2005.
7. Iannacchione, V. G. Weighted sequential hot deck imputation macros. Proceedings of the

SAS Users Group International Conference; 1982.
8. N. Jiang and L. Gruenwald, "CFI-Stream: Mining Closed Frequent Itemsets in Data

Streams", ACM SIGKDD intl. conf. on knowledge discovery and data mining, 2006.
9. Little, R. J. A., Rubin, D. B. Statistical analysis with missing data; John Wiley and Sons.

1987.
10. G. McLachlan and K. Thriyambakam; The EM Algorithm and Extensions; John Wiley &

Sons; 1997.
11. D.Rubin. "Multiple Imputations for Nonresponce in Surveys". John Wiley & Sons; 1987
12. D. Rubin; Multiple Imputations after 18 Years; Journal of the American Statistical

Association; 1996.
13. J. Shafer; Model-Based Imputations of Census Short-Form Items; Annual Research

Conference, Washington, DC: Bureau of the Census, 1995.
14. R. Taouil, N. Pasquier, Y. Bastide and L. Lakhal; Mining Bases for Association Rules

Using Closed Sets; International Conference on Data Engineering; 2000.
15. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein,

and R. Altman. "Missing Value Estimation Methods for DNA Microarrays;"
Bioinformatics, 17, 2001.

16. Wilkinson & The APA Task Force on Statistical Inference, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

AB-Index: An Efficient Adaptive Index for

Branching XML Queries�

Bo Zhang1, Wei Wang2, Xiaoling Wang1, and Aoying Zhou1

1 Department of Computer Science and Engineering
Fudan University, China

{zhangbo, wxling, ayzhou}@fudan.edu.cn
2 School of Computer Science and Engineering

University of New South Wales, Australia
weiw@cse.unsw.edu.au

Abstract. Query-adaptive XML indexing has been proposed and shown
to be an efficient way to accelerate XML query processing, because it
dynamically adapts to the workload. However, existing adaptive index
lack of support for branching queries, and also with low efficiency for
query processing and adaptation operations. In this paper, we propose a
new Adaptive index for Branching queries, which is named as AB-Index.
It is designed to support XML path queries with branching predicates.
Efficient index construction, query processing, and index adaptation al-
gorithms are proposed for AB-Index. In the experiments, the proposed
index is demonstrated to outperform the state-of-the-art approach in the
area of adaptive index in terms of query and adaptation efficiencies.

1 Introduction

XML has become the standard for data representation and exchange on the
Internet. The rapid popularity of XML repositories require systems that can
store and query XML data efficiently. Indexing the structure of XML data is an
effective way to accelerate XML query processing, because it can greatly reduce
the search space. Researchers have proposed various kinds of XML indexes to
facilitate the query processing. Among them, adaptive indexes [1,3,7] are well-
known for their high performance as they can adapt their structures to suit the
query workload.

However, most of the proposed adaptive indexes can only accommodate a
rather limited class of XPath queries efficiently. Little attention has been given
to the problem of building an adaptive index for branching queries. For ex-
ample, APEX [1] is designed to only support suffix path queries of the form
//l1/l2/ . . . /lk (where li is a tag name) efficiently, and cannot tackle branching
queries. Query and update performances of existing adaptive indexes are also
insufficient for branching queries.

� This work is partially supported by Sybase Project, NSFC under grants(No.60673137
and 60403019) and National Hi-Tech program under grant 2006AA01Z103.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 988–993, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

AB-Index: An Efficient Adaptive Index for Branching XML Queries 989

In this paper, we propose the AB-Index designed for both simple path queries
and branching queries. The basis of AB-index is F&B index [2], thus we can
index and manipulate a group of “similar” nodes, which are nodes in F&B index.
We propose efficient algorithms to construct and update the index, as well as
evaluate queries using the index. Our experiment results show that the proposed
index significantly outperforms previous approach in both query and adaptation
efficiencies.

2 The AB-Index

2.1 Overview of the AB-Index

An F&B index[2] for the XML data is a partition of nodes according to their
incoming and outgoing paths, such that it can answer all the branching queries.
However, an F&B index is query-independent and could be over-refined and
thus sub-optimal for a given query workload. For example, answering the query
//e using the F&B index in Figure 1 requires a traversal of the complete F&B
index. The basic idea of our AB-Index is to group F&B index nodes according
to the frequent queries in a given workload, such that the frequent queries can
be efficiently answered.

id Query subQs groups

1 //a ⊥ {1}

2 //b ⊥ {2}

3 //c ⊥ {3}

4 //d {6} {4}

5 //e ⊥ {5}

6 //c//d ⊥ {6}

id IGroup

1 (1)

2 (2) (6) (10)

3 (3) (5) (7)

4 (11)

5 (9) (12)

6 (4) (8)

QTable IGroups

a

b

c

d

c

b

d

e

b

c

d e

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8) (9)

(10)

(11)

(12)

F&B Index

Fig. 1. Example AB-Index (‘⊥’ denotes NULL pointer)

The AB-Index consists of three parts: an F&B index for the XML data,
IGroups and QTable. Figure 1 shows the example AB-Index adapted for the
frequent query //c//d.1

Each entry of IGroups keeps a group of F&B index nodes. Each group belongs
to one query as part of the query result. One property is that all the F&B index
nodes within the same IGroup will either be accessed together for a query or
none of them will be accessed.

The QTable records a list of frequent queries. Each entry of the QTable con-
sists of three fields: Query, subQs and groups. The Query field keeps the queries.
The subQs field is a list of child queries that are directly contained by the current
query. This design eliminates the data redundancy problem and also facilitates
containment checking [4] which is frequently used in query processing and adap-
tation processes. The groups field is a list of pointers, each pointing to one group
in the IGroup table.
1 The rest queries (i.e., //tag) are added in the initialization phase.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

990 B. Zhang et al.

The above structure enable us to keep the containment relationship between
frequent queries, and it is easy to get the result for a frequent query. Let
Result(Q) be the result of a query in the form of a list of its corresponding
F&B index nodes. Our design of the index has the following property for every
query in the QTable:

Result(Q) = (∪Qi∈Q.subQsResult(Qi)) ∪ Q.groups (1)

2.2 Initializing the AB-Index

The initialization phase is similar to that of the APEX [1] in that we add a list of
hypothetical queries in the form of //tag to the index. The purpose of inserting
such queries is to ensure that there always exists a query in the AB-Index that
contains any new queries. The algorithm to build the initial AB-Index is rather
straight-forward: (a) firstly we build the full F&B index; (b) secondly we combine
all the F&B index nodes with the same tag name into a group and put them
into the IGroup table; (c) finally, we insert all the query //tag into the QTable,
and link them to the corresponding IGroup entries.

2.3 Adapting the AB-Index

The AB-Index is a workload-aware index that can adapt to new frequent queries
and remove infrequent queries from its data structure, based on the information
collected by a built-in query statistics module. The update process is supported
by two basic operations: inserting queries, and deleting queries.

Insert New Frequent Queries. The main task here is to adjust the con-
tainment relationship for queries in QTable to accommodate a new query Qn.
We first find a minimal query, Qp, that contains Qn. To judge the contain-
ment relationship, we first convert the queries into PatternTrees [4] and then
use the containment judgement method in [4]. Next, we need to insert Qn as
a child query of Qp, and adjust the subQs and groups fields in QTable of ex-
isting queries as we need to ensure there is no duplicates. Consider inserting
a new query Qn under another query Qp. Denote the sibling queries of Qp is
sibling(Qp) (i.e., the queries correspond to the sibling nodes of Qn in the AB-
Index), then it is sufficient to adjust queries that are descendants of Qp or any
query in sibling(Qp). The update algorithm thus updates the AB-Index in a
top-down, recursive manner for all the affected queries.

Delete Old Infrequent Queries. When a query cease to be frequent among
the recent N queries, we have to delete it from the AB-Index(the query is called
as Qd). The main task is to adjust the subQs and groups in Qd. The algorithm
works by first finding all the parent queries that contains Qd in their subQs fields,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

AB-Index: An Efficient Adaptive Index for Branching XML Queries 991

then copying Qd.subQs and Qd.groups to the result of Qd’s parent queries, and
removing Qd at last.

2.4 Query Processing over the AB-Index

Given a new query Qn, if it is identical to one of the existing query in the
AB-Index, it can be easily answered by fetching its result in a recursive manner
according to (1). The AB-Index, however, may efficiently answer query that does
not exactly match the frequent queries, thus significantly boosts the performance
of the system. We introduce two such approaches in the following.

Utilize Matching Queries. We use the following example to illustrate the
intuition behind the “match” concept and its query processing method.

Example 1. Consider Qn = //a[./b]/c/d/e and Qm = //a/c/d. The prefixes
of depth 3 for Qn and Qm are //a[./b]/c/d and //a/c/d, respectively. Although
the prefixes are not identical, the former is contained by the latter. The suffix
of the query Qn queries is ./e. Our observation is that we can answer Qn with
Qm by refining Qm’s result from an upward composing query2 Qup

c = .\.\[./b]
(where \ denotes the parent axis), and then evaluate a downward composing
query Qdown

c = ./e for the qualified results after the previous step.

Utilizing Query Containment Relationships. The second approach is based
on the idea that a frequent query, Qp might contain a superset of query result of
a new query Qn.

Example 2. Consider Qn = //a[./b]/c/d/e and Qp = //a//e. Since Qp ⊇ Qn,
we can obtain the result of Qn by validating Qp’s result against Qn. The vali-
dation is essentially evaluating an upward composing query Qup

c = .\d\c\a[./b].
In addition, if we have another query Q′

p = //a[./b]/c//e, since Qp ⊇ Q′
p ⊇ Qn,

we should answer Qn using the minimal query that contains Qn, which is Q′
p.

3 Experimental Evaluation

In this section, we report experimental results conducted on AB-Index (abbrevi-
ated as AB) in comparison with APEX index [1]. We implement the
construction, update and evaluation algorithms of APEX. All algorithms are
implemented in Java 1.4 and ran on a PC of 3.2GHz CPU, 2GB memory, and
80G hard disk. We measure the query processing time and index update time.
The dataset used is 100M XMark [5] data.

Three kinds of query workload, PCP (for path queries with only / axes),
Path (general path queries), and Twig (general twig queries) are created by
adapting the query generator in YFilter [8]. Note that APEX cannot support
Twig workload. All workloads have 500 queries and are divided into 5 batches.
2 Given two queries X and Y , a composing query of X to Y is a query C such that

C ◦ X = Y [6].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

992 B. Zhang et al.

 0

 200

 400

 600

 800

 1000

Q401-500Q301-400Q201-300Q101-200Q1-100

T
im

e
(m

s)

Queries

Average Query Time (XMark 100M, PCP Workload)

APEX0
APEX

APEX-opt
AB0

AB
AB-opt

(a) Query Time (PCP)

 100

 1000

 10000

 100000

Q401-500Q301-400Q201-300Q101-200Q1-100

T
im

e
(m

s)

Queries

Average Query Time (XMark 100M, Path Workload)

APEX0
APEX

APEX-opt
AB0

AB
AB-opt

(b) Query Time (Path)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Q401-500Q301-400Q201-300Q101-200Q1-100

T
im

e
(m

s)

Queries

Average Query Time (XMark 100M, AD Workload)

AB0
AB

AB-opt

(c) Query Time (Twig)

 10

 100

 1000

 10000

 100000

 1e+006

Q401-500Q301-400Q201-300Q101-200Q1-100

T
im

e
(m

s)
Queries

Average Query Time (XMark 100M, AD Workload)

APEX -- PCP
AB -- PCP

APEX -- Path
AB -- Path
AB -- Twig

(d) Adaptation Time

Fig. 2. Experiment Results

Query Performance. Query performances of APEX and AB is shown in
Figures 2(a), 2(b) and 2(c). Note that for each kind of index, we apply three
variations: (a) Index0: we construct a static initial index; (b) Index: the index
is adapted to the past workload after each batch of queries; (c) Index-opt: the
index is adapted to the next batch of workload. Hence, Index0 gives the baseline
performance of a static index, and Index-opt is an offline optimal adaptive index.
Measuring the performance of Index0 and Index-opt gives us a better picture of
how Index performs.

The following observations can be made:

– The adaptive versions of the indexes outperform their static versions (for
both APEX and AB). This is expected as adaptive index can reduce the
query processing time of frequent queries.

– The performances of both indexes are close to their optimal versions. Fluc-
tuations are mainly due to the changes of the frequent query distributions
as we adapt indexes to the current batch of queries, which might be sub-
optimal for the next batch of queries. In addition, the average query time
drops quickly after the first adaptation and remains fairly stable in the subse-
quent updates. This shows that both indexes can quickly adapts to the query
workload and start to perform quite well even if there are small fluctuations
in the query workload.

– AB outperforms APEX, especially for the Path workload. This is because
APEX cannot deal with queries in the Path workload directly, and have
to rewrite queries into several PCP queries and then execute each query
respectively. It is the rewriting process which depresses the performance of
APEX. Also, AB-Index outperforms APEX because the query processing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

AB-Index: An Efficient Adaptive Index for Branching XML Queries 993

method for non-frequent queries in AB-Index boost the query performance
greatly.

– For the Twig queries, AB’s performance is between AB0 and AB-opt. This
also shows that if the frequent query distribution is stable, AB can approach
the performance of AB-opt, which greatly reduces the query processing time
for frequent branching queries.

Update Performance. We show the efficiencies of adapting APEX and AB
for different workloads in Figure 2(d). We can draw the following observations:

– AB significantly outperforms APEX in update performance. This is mainly
because APEX need to traverse the entire XML data tree for each and every
update. In contrast, our AB-Index uses the query hierarchy to narrow down
the update scope and rearrange F&B index nodes instead of its extents.

– As expected, the average adaptation time for the three workloads is generally
ordered as PCP < Path < Twig due to the increasing complexities in the
update routines.

– The adaptation time for AB is only a small fraction of the query time. So even
if we include the cost of update into the AB’s query time, it still outperforms
both the static AB (AB0) and APEX.

4 Conclusions

In this paper, we introduce the AB-Index, which is a workload-adaptive index for
XML branching queries. The AB-Index organizes frequently occurring queries
and their results in the query workload as in a hierarchical and non-redundant
way. Efficient index construction, query processing and adaptation algorithms
have been proposed. The effectiveness of the proposed index has been demon-
strated in the experiment.

References

1. C. Chung, J. Min, and K. Shim. APEX: An Adaptive Path Index For XML Data.
In SIGMOD 2002 : 121-132.

2. R. Kaushik, P. Bohannon, J. F. Naughton and H. F. Korth. Covering Indexes for
Branching Path Queries. In SIGMOD 2002 : 133-144.

3. H. He and J. Yang. Multiresolution Indexing of XML for Frequent Queries. In ICDE
2004 : 683-694.

4. G. Miklau and D. Suciu. Containment and Equivalence for an XPath Fragment. In
PODS 2002 : 65-76.

5. XMark Data Set. http://monetdb.cwi.nl/xml
6. B. Mandhani and D. Suciu. Query Caching and View Selection for XML Databases.

In VLDB 2005 : 469-480.
7. Damien K. Fisher and Raymond K. Wong. Adaptively indexing dynamic XML.

In:DASFAA 2006 :233-234
8. Y.Diao, P.Fischer, M.Franklin, and R.To. Yfilter: Efficient and scalable filtering of

XML documents. In:ICDE 2002 :341

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 994 – 1000, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Semantic XPath Query Transformation:
Opportunities and Performance

Dung Xuan Thi Le1, Stephane Bressan2, David Taniar3, and Wenny Rahayu1

1 La Trobe University, Australia
{dx1le, w.rahayu}@cs.latrobe.edu.au

2 National University of Singapore
steph@nus.edu.sg

3 Monash University, Australia
David.Taniar@infotech.monash.edu.au

Abstract. In this paper we identify the opportunities for the semantic
transformation of XPath queries using the structural and explicit semantics
defined in an XML schema. Our classification of transformation is the semantic
path expression where a path can be semantically contracted, expanded or
complemented. Among several applications of such transformations, an
obvious one is the semantic optimization of XPath queries. The transformation
is likely to result in an improved response time for a given system. We
empirically evaluate the gain or loss of performance of the identified
transformations with two representative off-the-shelf XML data management
systems and XPath query processors.

Keywords: XML, XPath, Query Processing, Semantic XML Query
Optimization.

1 Introduction

Semantic query optimization is the process of rewriting, under the knowledge of some
integrity constraints, a query into a semantic equivalent one that can be processed
more efficiently [3,4,5,7]. The common availability of structural and explicit
constraints in XML Schema coupled with XML data renews the interest for the study
of semantic query optimization for XML query languages such as XPath and XQuery
as well as the optimization of programs in XML languages such as XSL.

Semantic query optimization for XML data has been discussed [9, 10, 12] earlier.
However, the problem of these proposed solutions is that they have completely
ignored the usefulness of the unique path locations which can be easily defined and
traced in the XML Schema. The existing work explicitly focuses on the early possible
binding variables before it proceeds to the path processing and checks the presence of
three constraints including Occurrence, Inclusive and Exclusive.

Ontology [12] has foreseen an optimization opportunity from an Object-Oriented
design perspective, which has explicitly excluded the obvious important structure of
XPath expression such as location paths.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Semantic XPath Query Transformation: Opportunities and Performance 995

In this paper we present a simple typology of the opportunities for the semantic
query rewriting of XPath queries into their equivalent ones using the unique path
location constraints specified in the XML Schema Definition (XSD). We evaluate the
practical potential of these semantic path transformations by comparatively assessing
the performance of the workload of XPath queries and their transformations. We use
two system representatives of the state of the art XML database management and
query processing systems: native XML database system (quoted as XMS) and XML-
enabled database system (quoted as XDB).

2 Related Work

Semantic query optimization has been extensively studied for relational and deductive
databases [2, 4, 5, 11]. The seminal work [2] proposes a typology of rewriting
including literal insertion; literal elimination; range modification (modification of a
condition); and queries that can be answered without accessing the database (typically
when a contradiction is exposed in the query, which, consequently, denotes an empty
answer).

Earlier work in semantic query optimization for XML data includes a query tree
technique [9, 10] for representing the structural query pattern of an XQuery, and using
some primitive constraint definitions in the schema to assist with the derivation of
semantic rules. Their goal is to reduce the unnecessary computation for minimizing
the buffer size. This technique has a problem in handling the detection of the
descendents in a given path.

XPath in [15] shows the contents such as descendent edges ‘//', wildcard selection,
and branching are decidable. Simple path expressions [14] excludes ‘//' in order to
minimize the complexity of queries and uses restricted fragment of XPath (*,/,[]),
which can also be processed in polynomial time by pruning redundant nodes.

The rather obvious range modification and inaccessibility have been introduced as
semantic optimization techniques for relational, deductive and object databases, are
still applicable to XPath and XML schema. Literal insertion and elimination are
reciprocal thus it is difficult to find a deterministic optimization algorithm as there is
always the possibility of endlessly applying literal insertion and literal elimination.
Whereas range modification and transformations that shows the query can be
answered without accessing the database are related to value constraints (as opposed
to structural constraints).

In order to see the effectiveness of the full rewriting, our work would cover a range
of transformation contraction, expansion and complement to answer the query without
accessing the database. In particular with the path expression context, for this paper,
we apply semantic expansion, contraction and complement to achieve optimization in
accessing data using semantic path locations.

3 A Typology of Semantic XPath Query Rewriting Opportunities

In this section we present our typology of semantic query transformation opportunities
by formulating a set of definitions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

996 D.X. Thi Le et al.

Our work is different from the existing work in that we concentrate on the unique
location path constraints defined in the schema to find opportunities to rewrite XPath
queries with a consideration of one or more transformation rules including (i)
Semantic Path Expansion; (ii) Semantic Path Contraction; or (iii) Semantic Path
Complement. We utilize the key and keyref constraints to locate the unique path
location and apply them in our rewiring. XPath is formed by one or more nodes n
where ∀n∈N and one or more operators po. N is a sequence of ordered nodes n where
N={n1, n2, n3...ni} and Po={po1, po2, ..pon}={/, *, //,..}. While the “*” represents an
unknown node in a given path, the “//” allows a descendant from any specific node.
Operator ‘..’ is the parent of the current node. These operators give opportunities for
a derivation of semantic path transformations.

a. Semantic Path Expansion. An XPath is semantically expanded. sExpand() is a

function.

Definition 1: Let Pe be a user XPath and Pu be a unique path pre-defined in the
schema. Pe = <∃n∈N, ∃po∈Po>; Pu =<N, '/'>. Pu ←sExpand(Pe) and Pu⊆Pe.and target
node nm occurred only once in the XML schema document where m ≥ 1.

For example Pe=/a/b/*/e and Pu=/a/b/c/e. Let R1 be the result set of Pu and R2 is
the result set of Pe. Pu ≡ Pe iff ‘*' is proved to be c, e where e does not re-occur in
the XML schema document T, and R1≡R2.

b. Semantic Path Contraction. An XPath Pe is semantically contracted. sContract()

is a function.

Definition 2: Let Pe be a user XPath and Pu = {pu1, pu2… pui} be a collection of unique
paths pre-defined in the schema. Pe=<∃n∈N, ∃po∈Po>; pui=<N, ‘/'> and
sContract(pui)=<nm,‘//'>; sContract(Pu)←sContract(Pe) iff Pu⊆Pe and target node nm
re-occurs in XML schema document where i≤ m .

For example Pe=/a/*//e and Pu={pu1, pu2} where pu1=/a/b/c/e, pu2=/a/b/d/e. Let R1

be the result set of Pe, R2 is the result set of pu1∪pu2. Pu=//e is the semantic path
contraction of Pe iff e occurs in all pui where i≥1, e is a target node of Pe and Pu and
R1≡R2.

c. Semantic Path Complement. An XPath Pe semantically complementary.

sComplement() is function.

Definition 3: Let Pe be a user XPath and Pu={pu1, pu2,..pui} be collection of unique
paths pre-defined in the schema. Pe=<∃n∈N, ∃po∈Po>; pui=<N, ‘/’> where i≥ 1.
∃pu∈Pu←sComplement(Pe) iff Pu⊆Pe, and target node ni occurs only once in the XML
schema.

For example Pe=//b/*/e/../f and Pu={pu1, pu2} where pu1=/a/b/c/f, pu2=/a/b/d/f. Let
R1 be the result set of Pe, R2 is the result set of pu2. pu2 is the semantic path
complement of Pe iff R1≡R2 where i≥1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Semantic XPath Query Transformation: Opportunities and Performance 997

4 Empirical Performance Evaluation

4.1 Performance Evaluation Strategy and Experimental Set-Up

We now evaluate the potential for optimization created by these proposed Semantic
XPath Transformations. For each query and its transformed counter-part in our
workload, we compare their performance. There exist essentially two practical
approaches to the management of XML data and to the processing of queries to native
XML database system and XML-enabled database system. For this series of
experiments we adopt the schema of Fig 1.

Company

dept+

location stafflist

name

perm*id

age

name

address

city

phone

email

term*id

age

name

address

city

phone

email

lastname firstname ?

lastname firstname ?

Fig. 1. Company Data Schema

Table 1. Queries and their Semantic Transformation

We use three data sets (compliant with this schema) of varying sizes: 15, 25 and 40

mega bytes. The work load, Table 1, is constituted of the queries and of their
transformed equivalent queries as given in Table 1. In each result graph, the original
queries are labeled as Qn and their transformed counterpart labeled as QnR, where n
is the sequence of the query (1 ≤ n ≤ 4). We measure, for each query and its
transformation, their performance on both a native XML database system (XMS) and
an XML-enabled database system (XDB). The experiments are performed on a PC
AMD Athlon 64 3200+, 2300 MHz 1.0 GB of RAM. The PC is disconnected from
the network.

4.2 Results

Fig 2 shows the query response time increased as the size of data is increased. Our
semantic path contraction query is a very useful and effective for an XPath that starts

Query (n) XPath (Qn) Transformation (QnR)
1 /*//ages //ages
2 //department/*/perm /company/department/staffList/perm
3 //department/staffList/perm/../contract /company/department/staffList/contract
4 /*//perm/ages //department/staffList/perm/ages

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

998 D.X. Thi Le et al.

with a wildcard selection ‘*’ followed by a descendant “//”. The result shows a
reduction of response time about 90% for semantic XPath queries in the XDB and
nearly 10% for those in XMS.

The result of semantic query applied the semantic path expansion transformation in
Q2, has shown a very confident reduction of response time between 15%. As for the
XDB, our semantic path expansion achieves a slight 4% reduction of response time
for a single node XPath attribute type expanded to a full XPath.

In Fig 3, the results show that our semantic path complement transformation in the
commercial mainstream XDB is a significant optimization since the response time of
the semantic query shows a reduction almost 95% for all data size in both Q3 and Q4.
In the commercial native XMS, our semantic path complement transformation gives a
significant optimization and even better when the data grows in size, as evidently
shown in the results for both Q3 and Q4, that it is mostly 70% of reduction of
response time for the large data size experimentation.

Semantic Path Contraction

0

200000

400000

600000

800000

Data Size (MB)

T
im

e
(m

s)

Q1XDB 11700 428000 727000

Q1RXDB 2595 2784 6728

Q1 XMS 703 1578 2641

Q1R XMS 656 1391 2594

15 25 40

Semantic Path Expansion

0

2000

4000

6000

8000

10000

Data Size (mb)

T
im

e
(m

s)

Q2 XDB 2551 5032 9481

QR2 XDB 2579 5110 9392

Q2 XMS 985 1600 2578

Q2R XMS 703 1406 1047

15 25 40

Fig. 2. Queries and Rewriting Queries

Semantic Path Complement

0

50000

100000

150000

200000

Data Size (MB)

T
im

e
(m

s)

Q3 XDB 15826 55167 177493

Q3R XDB 2550 4971 9292

Q3 XMS 765 1735 3020

Q3R XMS 719 1594 1016

15 25 40

Semantic Path Complement

0

200000

400000

600000

800000

Data Size (MB)

T
im

e
(m

s)

Q4 XDB 117000 428000 727000

Q4R XDB 2986 2765 6862

Q4 XMS 703 1578 2671

Q4R XMS 669 766 1125

15 25 40

Fig. 3. Queries and Rewriting Queries Using Path Complement

The performance of queries in the commercial mainstream XMS is generally better

than the performance of queries in XDB. We currently study the main cause of the
differences in performance, probably investigating the storing process of XML data in
the two mainstreams.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Semantic XPath Query Transformation: Opportunities and Performance 999

5 Conclusion

We have identified and classified a family of possible semantic transformations of
XPath queries into equivalent queries using explicit semantic path location constraints
available in the schema. We have quantified empirically the potential for optimization
using these proposed semantic transformations in two systems representative of the
existing options for the management of XML data and for the processing of queries in
XML databases. The results highlight significant opportunities for optimization,
which although comparatively different, exist in both systems. Our ongoing work
focuses on fine tuning the algorithm, and evaluating its cost.

References

1. Amer-Yahia, S., Cho, S., Lakshmanan, V., Srivastava, D.: Minimization of Tree Pattern
Queries. In Proceedings of the ACM SIGMOD Conference on Management of Data
(2001) 497 – 508.

2. Charkravarthy, U. S., Grant, J., Minker, J.: Logic–Based Approach to Semantic Query
Optimization. In ACM Transactions on Database Systems. Vol. 15, No. 2, (1990) 162-207.

3. Deutsch, A., Popa, L., and Tannen, V.: Query Reformulation with Constraints. SIGMOD
Rec. 35, 1 (Mar. 2006), 65-73.

4. Hammer, M., Jdondik, S. B: Knowledge-based processing. In Proceedings of the 6th Very
Large Databases (VLDB) Conference (Montreal, 1980) IEEE, 137-146.

5. King, J.: Quist: A system for semantic query optimization in relational databases. In Very
Large Database (VLDB), IEEE Computer Society (1981) 510-517.

6. Koch, C., Scherzinger, S., Schewikardt et al.: Flux Query: An Optimizing XQuery
Processor for Streaming XML Data. In Proceedings of the 30th Very Large Data Bases
(VLDB) Conference. Toronto, Canada. (2004) 228-239.

7. Shenoy, S. T . Ozsoyoglu, Z. M.: Design and Implementation of a Semantic Query
Optimizer. IEEE Transactions on Knowledge and Data Engineering (1987), Vol. 1, No. 3,
344 -361.

8. Su, H., Jian, J., Rundensteiner, E.: Raindrop : A Uniform and Layered Algebraic
Framework for XQueries on XML Streams. In International Conference on Information
and Knowledge Management (CIKM), New Orleans, Louisiana, USA. ACM. (2005)
279 – 286

9. Su, H., Murali, M., Rundensteiner, E.: Semantic Query Optimization in an Automata
Algebra Combined XQuery Engine over XML Streams. In Proceedings of the 30th Very
Large Data Bases (VLDB) Conference. Toronto, Canada (2004) 1293-1296

10. Su, H., Rundensteiner, E, Mani, M.: Semantic Query Optimization for XQuery over XML
Streams. Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB) Trondheim, Norway (2005) 277-282

11. Sun, J., Zhu, Q.: Probability Based Semantic Query Transformation. In IEEE International
Conference on +Systems, Man and Cybernetics (2002) (SMC) Volume 1, 609 – 611.

12. Sun, W., Liu, D.: Using Ontologies for Semantic Query Optimization of XML Databases.
Knowledge Discovery from XML Documents: First International Workshop on
Knowledge Discovery from XML Documents (KDXD), LNCS (2006) 64 -73

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1000 D.X. Thi Le et al.

13. Wang,, G., Liu, M., Yu, J.: Effective Schema-Based XML Query Optimization
Techniques. In Proceedings of the Seventh International Database Engineering and
Application Symposium (IDEAS) (2003). IEEE, 1-6

14. Wood, P.: Minimizing Simple XPath Expression. In the Proceedings of the 4th
International Workshop on Web and Databases (WebDB), Madison, Wisconsins (2002)
13 - 18.

15. Wood, P.: Containment for XPath Fragments under DTD Constraints. In the Proceedings
of the 9th International Conference on Database Theory (ICDT), (2003) 300-314.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TGV: A Tree Graph View for Modeling Untyped
XQuery

Nicolas Travers1, Tuyêt Trâm Dang Ngoc2, and Tianxiao Liu3

1 PRiSM Laboratory - University of Versailles, France
Nicolas.Travers@prism.uvsq.fr

2 ETIS Laboratory - University of Cergy-Pontoise, France
Tuyet-Tram.Dang-Ngoc@u-cergy.fr

3 ETIS Laboratory - University of Cergy-Pontoise & XCalia S.A, France
Tianxiao.Liu@u-cergy.fr

Abstract. Tree Pattern Queries [7,6] are now well admitted for model-
ing parts of XML Queries. Actual works only focus on a small subpart
of XQuery specifications and are not well adapted for evaluation in a
distributed heterogeneous environment.

In this paper, we propose the TGV (Tree Graph View) model for
XQuery processing. The TGV model extends the Tree Pattern represen-
tation in order to make it intuitive, has support for full untyped-XQuery
queries, and for optimization and evaluation. Several types of Tree Pat-
tern are manipulated to handle all XQuery requirements. Links between
Tree Patterns are called hyperlinks in order to apply transformations on
results.

The TGV1 has been implemented in a mediator system called XLive.

Keywords: XQuery evaluation, TGV, Extensible optimization, Cost
model.

1 Introduction

XQuery [9] has proved to be an expressive and powerful query language to query
XML data both on structure and content, and to make transformation on data.
In addition, its query functionalities come from both the database community
(filtering, join, selection, aggregation), and the text community (supporting and
defining function as text search). However, the complexity of the XQuery lan-
guage makes its evaluation very difficult. To alleviate this problem, most of the
systems support only a limited subset of the XQuery language.

XQuery expressions require a logical model to be manipulated, optimized
and then evaluated. [1] introduced the TPQ model that expresses a single FWR
query by a Pattern Tree and a formula. Then, [2] proposes GTPs that generalizes
TPQs with several Pattern Trees, the formula contains all the operations. The
representation is quite intuitive and acts as a template for the data source.
1 The XLive system and TGV is supported by the ACI Semweb project. TGV anno-

tations and cost models are supported by the ANR PADAWAN project.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1001–1006, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1002 N. Travers, T.T.D. Ngoc, and T. Liu

However, GTPs do not capture well all the expressiveness of XQuery, cannot
handle mediation problems, and do not support extensible optimization.

We design a model called TGV which provides the following features: (a)
It integrates the whole functionalities of XQuery (collection, XPath, predicate,
aggregate, conditional part, etc.) (b) It uses an intuitive representation that pro-
vides a global visualization of the request in a mediation context. (c) It provides
a support for optimization and a support for data evaluation.

In this paper we describe the TGV model for evaluating XQuery on heteroge-
neous distributed sources. This article is organized as follows. The next section
introduces the TGV structure that we had defined for modeling XQuery in a
practical way. Finally section 3 concludes with the TGV framework.

2 XQuery Modeling

XQuery modeling is a difficult goal since the language provides lots of functional-
ities. And it is all the more difficult as it needs to match mediation requirements
(data localization on sources, heterogeneous sources capabilities).

Tree Pattern matching becomes usual in XQuery modeling, trees contain
nodes and links, a formula constraints the tree pattern on tags, attributes and
contents. Since GTP, it contains joins, nesting, aggregates and optionality.

However, GTP does not handle distributed queries requirements. In fact, data
sources are not included, nor XML result constructor, nor views and query on
views modeling, nor Let and functions and tags, relations and constraints are
embedded in a boolean formula difficult to read. Moreover, there is no support
for additional information useful for optimization. Thus, this model requires
some extensions and adaptations to be the core of a distributed query-processing
algorithm in a mediator. We propose the TGV (Tree Graph View) model.

Let see all characteristics of the TGV model. First, we introduce TreePatterns
which are the XML document filters, and specific structures adapted to XQuery
requirements. Then, Constraints are added to this model to integrate general
filters, which can be attached to any type of the model. To complete this model,
Hyperlinks are introduced to link together preceding structures. A Tree Graph
View is composed of all this structure to model a complete XQuery query.

Tree Pattern. A Tree Pattern is a tree with different tags an XML document
must match with. This template is a set of XPaths extracted from the XQuery
query. TreePatterns are composed of Nodes from a label, NodeLinks that rep-
resent axis between Nodes (child, descendant, etc.), and a mandatory/optional
status. A Pattern Tree is illustrated on Figure 1. Specific Tree Patterns are
integrated to model each characteristic of XQuery illustrated in figure 2:

– A Source Tree Pattern (STP) is defined by a targeted document and a root
path. It corresponds to a for declaration on a targeted XML document with
a specific root path, that defines the set of trees to work with.

– An Intermediate Tree Pattern (ITP) specializes a previous TreePattern on
a specific Node. It corresponds to a for declaration with a new path from a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TGV: A Tree Graph View for Modeling Untyped XQuery 1003

Fig. 1. Example of a Node and of a NodeLink in a TreePattern

Fig. 2. Four types of Tree Patterns and three types of Hyperlinks

previous variable that specializes an element by creating a new set of trees.
Thus, it creates a Tree Pattern that defines a new domain.

– A Return Tree Pattern (RTP) defines the result construction of an XML
document. It corresponds to the return clause of an XQuery query, which
builds the main XML resulting document. Nodes is identified by tags, at-
tributes with a "@", quoted texts, and required XPaths.

– An Aggregate Tree Pattern (ATP) builds a temporary result set. It corre-
sponds to a let clause that defines a treatment on a set of trees. By can-
onization rules, nested queries and aggregate functions are defined in those
clauses, so they build a temporary result set.

Constraints. In XQuery queries, constraints are declared on XPaths to prune
set of trees. This constrains may be a value predicate, function or different types
of joins. Thus, we introduce the type Constraint for this purpose.

A Constraint is a restriction of the feasible solutions on sets of trees. It can
be applied on Nodes, Tree Patterns, Hyperlinks, Constraints or Constants. It
appears as Predicates or Functions:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1004 N. Travers, T.T.D. Ngoc, and T. Liu

– Predicates are constraints with a comparison operator between two element
types. Linked types can be constants, nodes, tree patterns, hyperlinks or
other constraints in order to compose constraints.

– Functions are constraints with a name and a set of links to different element
types. The function name defines the type of operation to treat. Linked types
can be constants, nodes, tree patterns, hyperlinks or other constraints for
function composition.

Constraint representation depends of the linked element type. For a node, we
put the constraint under the tag as we can see on figure 3. For a tree pat-
tern, it is represented above it, as we saw the count function in figure 2 on the
AggregateTreePattern. For hyperlinks, it depends of its type, as we will see on
JoinHyperlinks in figure 3 a link between two nodes is annotated with a equality
constraint. For constraint composition, we compose naturally at the position of
the linked element (node, tree pattern and hyperlink).

Fig. 3. Example of node constraint

Fig. 4. Examples of Hyperlinks: A SetHyperLink (union) and a IfThenElseHyperlink

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TGV: A Tree Graph View for Modeling Untyped XQuery 1005

Hyperlinks. Hyperlinks (see figure 3 and 4) have been defined to represent
additional relations between elements of the Tree Graph View:

– Hyperlinks link elements in Tree Graph Views. It represents associations by
Association Hyperlinks or transformations by Directional Hyperlinks.

– Association Hyperlinks are Hyperlinks that connects two elements of the
same type to represent a specific association, in order to filter results by
verifying this association. There are two types of Association Hyperlink :

• Join Hyperlinks are associations between two Nodes under Constraint
pruning non relevant trees on constraints (values or order operator).

• Constraint Hyperlinks are associations between Constraints with a
Boolean connector. It forms a tree, connected to a ReturnTreePattern
in order to keep constraints declaration level. Relevant trees must verify
the connected tree of constraints, at a given declaration level.

– Directional Hyperlinks are injected transformations between elements. It
specifies a transformation from a set of elements to a single one. There are
four types of Directional Hyperlinks :

• Projection Hyperlinks are Node to Node Directional Hyperlink represent-
ing a value projection of the given node. It can be an optional hyperlink.

• Specialized Hyperlinks are Node to Tree Pattern Directional Hyperlink. It
contains a mandatory or optional status. It represents the specialization
of a Node, by specifying a new TreePattern which root is the given node.

• Generalized Hyperlinks are Tree Pattern to Node Directional Hyperlink.
It contains a mandatory or optional status. It represents a TreePattern
generalization result set, which result is projected into the given node.

• Set Hyperlinks are set of Tree Patterns to Node under Constraint Di-
rectional Hyperlink. It represents a set operation (Union, Intersect or
Difference) between few TreePatterns projected on a single Node.

• IfThenElse Hyperlinks are set of Elements to Node under Constraint
Directional Hyperlink. Elements can be a Node or an AggregateTreeP-
attern, and the constraint is a Predicate or a Function. It represents a
conditional expression which result is deduced by the constraint status.

Functions. Functions take some parameters and give a single element in return.
Into our model, we will treat only parameters with element (), boolean and
number types. A function is represented by a TGV, and its parameters by an
Aggregate Tree Pattern with its function name. Variables are linked to elements
by Projection Hyperlins.

Tree Graph Views. A Tree Graph View (TGV) is a representation of an
XQuery query containing TreePatterns, Constraints and Hyperlinks. Input of
the TGV is given by SourceTreePatterns, the output is defined by the Return-
TreePattern (not a AggregateTreePattern by inheritance).

Figures 1, 2, 3 and 4 are TGV examples. For more descriptions, see [3,8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1006 N. Travers, T.T.D. Ngoc, and T. Liu

Canonical XQuery to TGV. Each queries in a canonical form can be trans-
lated to a tgv representation. All characteristics of XQuery queries correspond
to an element in the tgv model. For clauses to STP and ITP, where clauses to
constraints, Constraint Hyperlinks and Join Hyperlinks, return clauses to ATP
and RTP, let clauses to ATP, and set and conditional operations to Directional
Hyperlinks. All canonical XQuery queries can be translated in a TGV.

3 Conclusion

XQuery is an XML querying language that provides a rich expressiveness. By
this way, an efficient query processing model is all the more difficult. In this
paper, we describe our TGV model composed of Tree Patterns which are filters
on XML documents. Thanks to this model, we are able to optimize TGV with
transformation rules. Those rules rely on a mapping of Rule Patterns on a TGV
(as a TGV on XML documents). In order to take into account physical infor-
mation coming from the system, a generic annotation framework is designed on
TGV. This annotation framework allows us to describe any type of information
on TGVs (cost model, sources and traitments localization, evaluation algorithms,
etc.). The cost model is annotated on TGV in order to estimate its execution
cost. It allows the optimizer to choose an optimal TGV to evaluate the query.
More information can be found in [8].

The whole XQuery evaluation process is implemented in the mediator XLive
[4]. All XQuery queries of the W3C use-cases [5] except the typed use-cases
(STRONG) are evaluated correctly by our system, using Tree Graph Views.

As the TGV model is not specifically bound to a specific language (first de-
signed for XQuery), it can be applied to any untyped queries in any language
(SQL, OQL, OEM-QL, etc.) on structured or semi-structured data.

References

1. S. Amer-Yahia, S. Cho, Laks V. S. Lakshmanan, and D. Srivastava. Minimization
of Tree Pattern Queries. In SIGMOD, 2001.

2. Z. Chen, HV Jagadish, L. VS Laksmanan, and S. Paparizos. From Tree Patterns
to Generalized Tree Patterns: On efficient Evaluation of XQuery. In VLDB, 2003.

3. T.T. Dang-Ngoc and G. Gardarin. Federating Heterogeneous Data Sources with
XML. In Proc. of IASTED IKS Conf., 2003.

4. T.T. Dang-Ngoc, C. Jamard, and N. Travers. XLive: An XML Light Integration
Virtual Engine. In Proc. of BDA, 2005.

5. D.Chamberlin, P.Fankhauser, D.Florescu, M.Marchiori, and J.Robie. XML Query
Use Cases, september 2005. W3C. http://www.w3.org/TR/xquery-use-cases.

6. HV Jagadish, LVS Lakshmanan, D. Srivastava, and K. Thompson. TAX: A Tree
Algebra for XML. In DBPL, pages 149–164, 2001.

7. A. Sihem, C. SungRan, V. S. Laks Lakshmanan, and D. Srivastava. Tree Pattern
Query Minimization. VLDB Journal, 11(4)::315–331, 2002.

8. N. Travers. Optimization Extensible dans un Médiateur de Données XML. PhD
thesis, University of Versailles, December 2006.

9. W3C. An XML Query Language (XQuery 1.0), 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Indexing Textual XML in P2P Networks Using

Distributed Bloom Filters

Clement Jamard, Georges Gardarin, and Laurent Yeh

PRiSM Laboratory, University of Versailles, 78000 Versailles, France
{clement.jamard,georges.gardarin,laurent.yeh}@prism.uvsq.fr

Abstract. Nowadays P2P information systems can be considered as
large scale databases where all peers can store and query data in the
network. Keywords and structure indexes must be maintained. However,
indexing XML documents with massive set of words brings out a major
problem: The number of entries to be shipped in the network is huge.We
define Distributed Bloom Filter, a data structure derived from Bloom Fil-
ters, a probabilistic data structure to test whether an element is member
of a set, to summarize peer XML content and structure. Our strength is
to split the traditional Bloom Filter into several segments. We rely on a
DHT network to distribute these segments in a P2P network. Our mea-
surements show that our indexing method is scalable for a large number
of words, and outperforms similar methods.

Keywords: XML, XQuery Text, P2P Network, Database System, Bloom
Filter, Indexation.

1 Introduction

XML and Peer-to-Peer (P2P) networks are two technologies for sharing more
structured information than simple textual documents at the world scale. Among
the main qualities that distinguish P2P networks, we recall dynamicity of data
sources, robustness, scalability, reliability, no central administration, and no con-
trol over data placement. As XML database technology provides powerful query
capabilities, and P2P networks are efficient to discover dynamically new data
sources in large scale distributed mediation systems, it is valuable to couple
these two technologies.

We focus on the problem of locating efficiently XML peer content on structure
and value. P2P networks which were first used for simple queries as searching for
filenames, must be extended to index not only text values, but also structures
of XML documents. One of the main bottlenecks in P2P networks is the cost
for sending in the P2P network every value to index. Thus the indexing process
entails heavy network traffic.

Existing XML indexing solutions in P2P like [1] are build over solid and well-
known DHT (Distributed Hash Table) methods ([7], [8], [6]). Most proposals
take advantage of the storing primitive function put(key, value) for indexing
one value with an associated key on the network. For indexing XML documents

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1007–1012, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1008 C. Jamard, G. Gardarin, and L. Yeh

in P2P networks, a natural approach is to decompose an XML document into
atomic items that are indexed in the network. Then, for reducing the number
of entries shipped in the network, two kind of index can be used: dense and
non dense. Pathfinder [3] is representative of a dense distributed XML index.
Although this approach compresses the required index size and speeds up twig
queries, the number of entries to be shipped in the network remains huge.

A non dense representative index is used in DBGlobe [5], it uses Bloom Filter
[2] for locating resources in a P2P network. A Bloom Filter is a bit array of size
m, where bits are set to 1 for a set of k hash functions applied on values to index.
Bits are checked with the functions to test membership of a value. In DBGlobe,
every peer creates a Bloom Filter indexing path of its document structure. Peers
groups are filtered by the union of their filters that are used to orient queries
to groups that may contain relevant data. This approach is not scalable because
queries must visit every Bloom Filters in the network. Moreover, only document
structure is indexed.

In this paper, we propose to use Bloom Filters to index XML documents
on both structure and text content. Our data model, called Distributed Bloom
Filter, reduces the amount of entries indexed on the network for data localiza-
tion. The filter array is split into segments to be distributed on any DHT-based
network.

The remainder of paper is organized as follows: Section 2 describes our data
model for designing a distributed Bloom Filter. Section 3 describes the imple-
mentation of these distributed Bloom Filter in an existing DHT-based P2P net-
work. Section 4 presents the experimental evaluations that demonstrate the good
properties of our method. Finally, Section 5 concludes the paper.

2 A Distributed Bloom Filter

In our system, a peer joining the overlay network publishes a description of the
XML data it shares. We introduce Distributed Bloom Filters (called DBF) to
describe peer contents. We adapt the Bloom Filter structure to (i) Index XML
data on both structure and value criteria. (ii) Use the filter as a distributed
index over several peers in the network.

2.1 Constructing a DBF from XML Documents

Our indexing method aims at solving efficiently XPath expressions with text
predicates. For that, we must be able to solve structural expressions correlated
with value predicates. An example of a query is /Book//Title[. ftcontains
"XML"] looking for title elements descendant of a book with a text node contain-
ing XML.

Every document can be mapped to a set VP of valued-paths of type: /a1/.../ai[V].
In this valued-path, only the node ai contains the value V . A valued-path is created
for each word in a XML document text node.

For solving different kinds of XPath regular expressions, we define three kind of
filters each focusing on a category of potential queries. A Bloom Filter with Path

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Indexing Textual XML in P2P Networks Using Distributed Bloom Filters 1009

(BFP) indexes all elements in VP for regular path expressions. A Bloom Filter Tag
(BFT) is defined to solve XPath expressions containing descendant-or-self axis
(e.g., //name[. contains "Meier"]); only tag[value] of each valued-path in VP
are indexed. Finally, we define Bloom Filter for Words (BFW) for searching only
words (e.g., //"XML"). During the publication process, (/a1/.../ai[V]) is inserted
in BFP, (ai[V]) is inserted in BFT, and V is inserted in BFW.

Except for the BFW, each key inserted in a filter is composed of a path and
a value. A set of k Hi function is used to determine which array entries to set
to 1 in the filter for a given key. Each Hi function is the product of Hpi, a path
coding function, and Hvi, a value coding function:

Hi(key) = Hpi(key.path) ∗ Hvi(key.value)

The Hvi function is a typical hash function with value range from 0 to (S-
1), where S is the size of the array. For the Hpi function, we use a technique
for encoding path inspired by Jagadish in [4]. The main idea is to map the path
domain to a value between 0 and 1. More details can be found in [4]. The product
result then set a bit between 0 and (S-1) to 1 in the Bloom Filter array. Thus,
two paths having a different tag (e.g., /Book/Title "XML" and /Article/Title
"XML") will set to 1 different entries of the Bloom Filter.

2.2 Splitting a Bloom Filter for Distribution

To distribute a Bloom Filter, we split its array into segments of equal size.
Segments are distributed on others peers according to their segment number. A
DBF has a predefined size S shared for the whole overlay network. At the top
of figure 1 we illustrate a DBF split into segments.

0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1

0 1 1 0 1 0 1
H1(key)

H2(key)

seg. 0 seg. 1 seg. N

Fig. 1. Distributed Bloom Filter and Shadow Segment

Distributing segments leads to a major problem: the set of Hi could over-
lap randomly many segments, which would imply network traffic between peers
storing the segments when testing the DBF. To avoid this, we constraint H2 to
Hk functions to map on a single segment. Consequently, the first bloom function
(i.e., H1(key)) plays two roles, (i) It sets a bit to 1 for filtering purpose (i.e.
the first check of the DBF), (ii) It determines a segment number that we use
to choose the peer storing the segment. The segment number is obtained by the
integer division between the size S of the filter array and the value of H1(key).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1010 C. Jamard, G. Gardarin, and L. Yeh

Once the H1 function has determined a segment number, other Hi functions
maps keys (paths, valued-paths, etc.) inside this segment interval. Each segment
can be viewed as a sub Bloom Filter. Therefore, when checking for a key, we first
determine in which segment of the DBF the value should be, and then check other
functions inside this segment. At the network point of view, it avoids contacting
several peers for checking keys in segments; only one segment is needed to test
the membership of a value. As Bloom Filters are prone to false positive (i.e. a
key is not declared in the filter but succeeds the test), when a segment has a too
high probability of false positive, the segment is replaced by a bigger segment
called shadow segment. A shadow segment is illustrated at bottom of figure 1.

3 Distributing BF on a P2P Overlay

We describe in this section a P2P network overlay architecture that adapts Chord
DHT method to implement efficiently DBFs. Most existing DHTs provide the
two required primitives put(key,value) for indexing a value on the network,
and lookup(key) for retrieving all values according to a given key. We can adopt
any DHT methods to manage DBFs. In our architecture, a peer can play four
roles. As in traditional P2P networks, a peer can be a client, a server, or a router.
We add a fourth role: a peer can be a controller for managing segments of DBF.

3.1 Distribution of DBF Segments

For a server peer, each created Bloom Filter (BFW, BFT, BFP) is split into
segments that are distributed through the network according to the segment
number. The DHT put(key, value) function sends the segment to a relevant
controller peer using the H1 function to determine the key. As the H1 function
is shared for the entire network, the peer responsible for the ith segment in the
network receives all ith segments from every peer. It may lead to an overload
of segments for a given controller peer. To avoid this bottleneck, we introduce
the notion of Bloom Filter themes for publishing or querying. A user can find
the relevant themes from a catalog of all existing predefined themes, shared by
every peer in the network. The theme is combined with the segment number
in a hash function to determine the key used for the put(key,value) (resp.
lookup(key)). The message value sent through the network contains: (i) The
segment of the distributed Bloom Filter. (ii) A set of Bloom Filter hashing
functions (H2(key)...Hn(key)). (iii) The IP address of the sender.

The behaviour of put(key,value) is modified to determine the controller peer
in charge of the segment and to store all information associated to the segment.
The lookup(key) function, instead of returning all stored values corresponding to
the key, is modified into a reach(key,demand) function that process the test on
the segment and contact sources that have succeeded the test. As a Bloom Filter
is prone to false positive, we must check that the server peer contains the searched
value. This phase removes false positive due to the use of a Bloom Filter.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Indexing Textual XML in P2P Networks Using Distributed Bloom Filters 1011

3.2 Query Demand Routing

Our routing process is more complex than the traditional one because the local-
ization of a source is checked in two steps. The first step checks the DBF. As the
result is prone to a false positive answer, a second step must check the source
peer for an exact answer. To synchronize this process in a distributed manner
we use a demand that contains all necessary query information. The demand is
then resolved autonomously in the network.

A demand issued from a client peer contains a set of value-localization-paths.
A value-localization-path is a searched criteria composed of a path and a value to
search. Depending on the kind of path, BFP, BFT or BFW are used to resolve the
value-localization-path. For each value-localization-path, the demand stores the
state of the resolving process: checkingDBF for contacting a controller peer, or
CheckingSource for contacting server peers. During a first phase, each controller
peer responsible of a segment answering a value-localization-path is contacted.
IP addresses of filter succeeding the test are kept in the demand. When each
value-localization-path has been checked, server peers are contacted for a final
check removing false positive and for retrieving data. Results are returned to the
client peer.

4 Experiments

We demonstrate that our non dense index is comparable to a dense index im-
plemented in Chord. We compared the number of messages exchanged and the
density of data shipped in the network when a peer enters in the network. We
use two kind of networks: a DBF network, and a classic Chord network with a
basic indexing scheme (node numbering). Results are presented in the table of
figure 2. As expected, the number of messages exchanged is constant (i.e, corre-
sponding to the number of segments) and low for a network using DBF, whereas
it depends on the number of keys to index in the second network. The total
size of messages exchanged is lower using DBF; a single message factorizes data
management (one IP address) and contains several keys whereas each message
contains one key and one IP address in the second network.

Fig. 2. Communication messages for routing a demand and connecting a pee

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1012 C. Jamard, G. Gardarin, and L. Yeh

The graph in figure 2 shows the number of hops needed to route a query to
relevant server peers. Queries are composed of several value-localization-path to
solve. We compared the two network configurations composed of 32 peers. We
observe that a network using DBF reduces the number of hops, as a query is
processed in only one demand message whereas it requires a message for every
value-localization-path in the second network.

5 Conclusion

In this paper, we have proposed a new P2P indexing model based on Bloom Fil-
ters. The index is designed to locate XML sources for processing queries on both
structure and value. One of our main contributions is to design a Distributed
Bloom Filter, and propose techniques to split the filter for efficient and fast re-
trieval on a DHT-based network. We also detail how to locate relevant sources
based on our Distributed Bloom Filter. Compare to other proposals, our index
behaves as a non dense distributed index with word and path digests as entries.
Future works are focused on methods to distribute query processing and also
integrate data updates using our data model.

References

1. S. Abiteboul, I. Manolescu, and N. Preda. Sharing Content in Structured P2P
Networks. In BDA, 2005.

2. B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM, 13(7):422–426, 1970.

3. G. Gardarin, F. Dragan, and L. Yeh. P2P Semantic Mediation of Web Sources. In
ICEIS (1), pages 7–15, 2006.

4. H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. BATON: A Balanced Tree
Structure for Peer-to-Peer Networks. In VLDB, pages 661–672, 2005.

5. G. Koloniari, Y. Petrakis, and E. Pitoura. Content-Based Overlay Networks for
XML Peers Based on Multi-level Bloom Filters. In DBISP2P, pages 232–247, 2003.

6. S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A Scalable
Content-addressable Network. In SIGCOMM, pages 161–172, 2001.

7. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and
Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science,
2218:329–350, 2001.

8. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Adaptive Information Merging Using

Selected XML Fragments

Ho-Lam Lau and Wilfred Ng

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong

{lauhl,wilfred}@cse.ust.hk

Abstract. As XML information proliferates on the Web, searching
XML information via a search engine is crucial to the experience of both
casual and experienced Web users. The returned XML fragments in the
list is not directly usable, if not confusing, to the users, since in most
cases the XML fragments extracted from a large XML repository are
incomplete, scattered and redundant. Thus, it is necessary to re-iterate
the searching process based on user preferences in order to obtain more
complete, detailed and usable results. In this paper, we propose a unify-
ing framework which takes searching, merging and user preferences into
account. We view search queries and fragment labeling as an input in
an on-going searching process, in which the relevant XML fragments are
merged into a concise form and returned to the user a ranked result list.

1 Introduction

As the amount and use of XML data continue to grow, searching and ranking
XML data has been an important issue studied in both database and information
retrieval communities [1,2,3,4,6,7,10]. Following the usual practice of handling
results in Web search engines, the search results of these proposals are usually
presented as a ranked list of small XML fragments to the users [1,3,11]. In
practice, users do not have the schema knowledge of the underlying XML sources
or have very little information of the data sources, therefore, highly structured
XML queries such as XQuery FT expressions for searching are not easy for
them to formulate. In addition, we recognize that the usual approach adopted
by web search engines, which return a once-off list of items as the answers for
a search query, is not adequate in XML setting. There are three reasons for
the inadequacy. First, the target information may be scattered on the ranked
list and thus it is not directly useful for the users. Second, the XML fragments
can be duplicated in different ways. Third, a once-off query may not contain all
desired information. In this paper, we propose a unifying framework which takes
searching, merging and user preference into account.

Figure 1 shows the conceptual overview of our proposed framework. First, the
user submits a query to the system and the system returns a list of fragments
to the user. Then, the user selects the preferred fragments as feedback, the
feedback will be merged and contribute as new search query which enlarge the

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1013–1019, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1014 H.-L. Lau and W. Ng

user
XML

source
search

fragments
with quality metrics

feedback Merge

Search

Quality
Metrics

Fig. 1. A conceptual overview of the proposed framework

set of candidate fragments for the next iteration. Finally, the merged fragment
and the new search results are returned to the user with our previously proposed
notions of Quality Metrics (QMs) [9] which help users to judge the quality of
fragments. We do not repeat the details in [9] here but mention that the QMs
proposed are simple but effective metrics to assess the quality of individual data
source or a combination of data sources, and are natural metrics to measure
different dimension of the structure, data and subtrees. We contribute two main
ideas related to searching XML information.

Unifying Framework. We propose a unifying framework that searches and
merges XML fragments in a ranked result list. The search is based on a
fragment, which is viewed as a set of path-key pairs.

Adaptive Merging. We propose an adaptive merging approach and four direc-
tional searching techniques, that are able to support progressive merging the
search results according to the users’ continuing feedback. With the combina-
tion of searching and merging, we provide flexibility on merging that match
different users’ preferences.

Paper Organization. Section 2 presents an overview of the unified framework
for searching and merging techniques. Section 3 illustrates the merging tech-
niques and introduces the merging approach for adopting the user feedback. We
conclude the framework and discuss future work in Section 4.

2 The Unifying Framework for Searching and Merging

In this section, we present an overview of our unifying framework for searching
and merging. A path-key pair is an ordered pair (p, k), where p is a path from
the root to the parent node of the keyword, k. Thus, a path-key pair can be
viewed as a simplified form of XPath [5]. An XML fragment is a sequence of
non-repeated path-key pairs.

Figure 2 depicts the basic ideas of our framework which is able to incorporate
the user preference and to support iterative searching and merging. Initially, the
user submits a query to the search engine. We view the sources as the underlying
XML database which collects XML fragments in a repository. Due to the space
limitation, we do not describe the implementation details and the searching and
ranking mechanism of the databases. However, we remark that our approach of
searching and ranking techniques of XML fragments are similar to the recent
work in [1,3,4,7,10].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Adaptive Information Merging Using Selected XML Fragments 1015

Q
Initial Query
Fragment

XML
Database A

XML
Database B

XML
Database C

Search Engine
Tags Statistic / Schema Information

<.>...</..>..

<.>...</..>

<.>...</..>
<.>...</..>

<.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..><.>...</..>..

<.>...</..>

<.>...</..>

<.>...</..>

returned
fragments

XML Merger

Preference Analyst

User
Feedbacks

1

2

3

upward

downward

forward

backward

Fragment Decomposer

5b

Additive
Increment

Merger

5a

candidate
path-key

pairs
base

4

6

User

Metric Calculator

Fig. 2. Overview of searching and merging XML information via key-tags

The search engine returns the list of ranked XML fragments as the raw list.
The raw list is decomposed into “candidate path-key pairs” sorted by the fre-
quency in the raw list. The top k path-key pairs is then displayed to the user (By
default, k = 10). Initially, we categorize all the path-key pairs as “unclassified”.
The user feedback can be collected when he/she selects the preferred path-key
pairs from the “candidate path-key pairs”, which is similar to collecting the
clickthrough data in the case of HTML data [8]. However, the main difference
between searching HTML data in the mentioned work and searching XML data
in our approach is that an XML fragment returned can be further used as a sam-
ple for re-querying. The user feedback is collected by the “Preference Analyst”
and is re-classified into two categories as follows: preferred, and unclassified.

After the (re-classification) process, the two categories of path-key pairs are
passed to the AIM. The preferred path-key pairs from the user contribute the
merging process in twofold. First, the AIM establishes the “result fragment” by
merging the “preferred” path-key pairs. The result fragment is then returned to
the user. Second, they are served as new queries (i.e. re-queries) that are sent
to the four searchers of Upward, Downward, Forward and Backward. The search
results of the “re-queries” will be decomposed, added into the “candidate path-
key pairs” and then displayed to the user in the next iteration. More details
about AIM and Directional Searching will also be given in Section 3.

3 The Merging and Searching Approaches

In this section, we explain our approach, the Adaptive Increment Merging (AIM)
approach, which supports further decomposing the selected fragments from users
into path-key pairs. We also discuss the four directional searchings which are able
to enrich the set of candidate path key pairs in the re-querying process.

3.1 The Adaptive Increment Merging Approach

The inputs of AIM are two lists: the “preferred” and “unclassified” path-key pairs
and the outputs are the “result fragment”, R, and a list of reordered candidate

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1016 H.-L. Lau and W. Ng

path-key pairs, C. R is an XML fragment resulting from merging the path-key
pairs in the “preferred” list, which is possible to grow during the merging process.
C is a list of path-key pairs displayed to the users for user feedback in each iter-
ation. The path-key pairs in C are grouped according to their data sources and
are sorted according to the their frequency among the list of fragments returned
by the search engine. The AIM approach is shown in Algorithm 1.

Algorithm 1. Adaptive Increment Merging Approach
Input: R – the result fragment; P – a set of positive path-key pairs; U – a set of

unclassified path-key pairs; � – a quota variable; S[] – an array of sets which
represent the sources; �[] – an array of weights for the sources; // e.g. �[j] is the
weight of source S[j]

Output: R – the result fragment; C – a list of candidate path-key pairs display for next
iteration;

for each source S[j] do1
S[j] = ∅ ;2
Mark S[j] as negative source;3

end4
C = ∅;5
for each path-key pairs pi ∈ P do6

R = R ∪ pi;7
if pi is originated from source S[j] then8

S[j] ∪ pi;9
Mark S[j] as positive source;10

end11
end12
for each negative source S[j] do13

�[j] = �[j]/2;14
end15
for each positive source S[j] do16

�[j] =
1−
�

weights of negative sources
number of positive sources

;17
C = C∪ top-(� × �[j]) path-key pairs in S[j];18

end19
Perform Directional Searching using (P, U);20
Return R and C;21

Consider the following example, given a query, Q = (//author : Mary, //title :
XML) and the fragments returned by the search engine is shown as trees in
Figure 3(a).

The first step of AIM is to decompose the fragments into candidates path-
key pairs and allows user to select his/her desired path-key pairs as shown
in Figure 3(b). In this example, we have three sources, F1, F2 and F3 are
from the sources, SA, SB and SC respectively. We can see that the path-key
pairs are sorted according to their frequency (i.e. the number of their appear-
ance in the raw list). For example, three path-key pairs whose path equal to
“/r/pub/author” are at position 1 to 2 of the source SA. At the first iteration,
the weights for the sources are {0.3333, 0.3333, 0.3333}, therefore the top-3 path-
key pairs from each source will be displayed to the user in next iteration. Since
there are only nine path-key pairs in this case, we need an additional path-key
pair in order to have ten path-key pairs for user to select, we may simply add
the fourth path-key pair from either SA, SB or SC , and in this example, we add
the fourth path-key pairs from SA. The ten candidate path-key pairs for next
iteration is shown in bold letters in Figure 3(b).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Adaptive Information Merging Using Selected XML Fragments 1017

r

key title

Sai

author

RJ-
2736

XML Index
Path...

pub

year

1980Strong

author

F1

/r/pub/title : XML Index Path ...

/r/SigmodRecord/article/initPage: 42
/r/SigmodRecord/article/endPage: 65

/r/publication/area: XML

SA

SB

SC

(c) (d)

author

XML Search

XML Joins

(m, 2)

(m, 3)

Mary. C Ken

Mary. F Peter. L

r

title

(a)

r

title

SigmodRecord

authors

article

initPage endPage

authorXML
Search

42 65

Mary. C Ken

F2

F3

author

r

publication

XML

area title authors

authorauthor

Mary. F Peter. L

XML
Joins

(b)

/r/SigmodRecord/article/authors/author : Mary. C
/r/SigmodRecord/article/authors/author : Ken
/r/SigmodRecord/article/title: XML Search
/r/SigmodRecord/issue/articles/article/initPage: 42
/r/SigmodRecord/issue/articles/article/endPage: 65

SB

/r/publication/authors/author : Mary. F
/r/publication/authors/author : Peter. L
/r/publication/title: XML Joins
/r/publication/area: XML

SC

/r/pub/author : Sai
/r/pub/author : Strong
/r/pub/key : RJ-2736
/r/pub/year : 1980
/r/pub/title : XML Index Path ...

SA

Fig. 3. (a)The returned fragments by the query Q, (b) the corresponding decomposed
path-key pairs (c) merged result fragment and (d) candidate path-key pairs after the
first iteration

Now, assume the user selects all path-key pairs from SB and SC . The result
fragment is shown in Figure 3(c). We can see that the result fragment is built
as expected. With the user feedback, the weight of SA is halved and SB and SC

share the decreased weight of SA, the new weights are {0.1667, 0.4167, 0.4167}.
The candidate path-key pairs are shown in bold in Figure 3(d).

3.2 Four Directional Searching Approaches

In this section we introduce four directional searching approaches used in the re-
querying process. They are upward, downward, forward and backward searchings.

Upward Searching. The objective of upward searching is to find a set of frag-
ments with similar structure but different data values. Given a query, Q, and the
list of preferred path-key pairs in previous iteration, P . We formulate a re-query,
qi, for each path-key pair in P , fi = (pi, ki) ∈ P , where pi is the path from the
root to the parent node of the keyword, ki. We check if pi is located at the root
of the document. If yes, we stop, since we cannot go up anymore, otherwise, the
re-query is given by “ρ0//ρn : ∗”, where ρ0 is the root of pi and ρn is the parent
node of ki.

Downward Searching. The objective of downward searching is to find a set
of fragments which can provide further details according to user preference. We
formulate a re-query which aims at the children or siblings of the “preferred”
path-key pairs. Given a query, Q, and the list of preferred path-key pairs in
previous iteration, P . We formulate a re-query, qi, for each path-key pair in P ,
fi = (pi, ki) ∈ P , where pi is the path from the root to the parent node of the
keyword, ki. The re-query, qi is given by “ρ0//ρn/∗ : ki”, where ρ0 is the root
of pi and ρn is the parent node of ki.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1018 H.-L. Lau and W. Ng

The Forward Searching. The core idea of forward searching is to search rel-
evant fragments that are ignored in the initiate query (i.e. the query submitted
by the user at the very beginning) by providing more detailed query for more
accurate results. Given the initiate query, Q, and the preferred path-key pairs
in previous iteration, P . For each path-key pairs fi = (pi, ki) ∈ P , if fi does
not exactly match with any path-key pairs in Q, we submit the re-query, ri, as
“//ρn : ki”, where ρn is the parent node of ki.

The Backward Searching. The backward searching is similar to forward
searching but in “opposite direction”. Backward searching aims to find infor-
mation that match the initiate query, Q, but are different from the path-key
pairs in P . Given a query, Q, and the list of preferred path-key pairs in pre-
vious iteration, P . For each path-key pairs fi = (pi, ki) ∈ P , if fi does not
exactly match with any path-key pairs in Q, we submit the re-query, ri, as “
Q ∪ //ρn : (NOT ki)”, where ρn is the parent node of ki.

4 Conclusions

An interesting contribution in our proposed framework is to unify the processes
of searching XML fragments and merging the users’ preferred XML fragments
returned from the ranked result list. We suggest rewriting the queries using
path-keys of the set of core paths in order to increase the searching coverage.
We proposed the approaches of Additive Increment Merging and Directional
Searching in order to generate more usable results in a progressive manner.

The ideas presented in this short paper pave the way to promote a wider
use of XML data, since fragment search is simple enough for existing users to
search the XML information systems. In addition, the merger provides more
usable and quality information according to the users’ preferences. This paper is
a ground work for many interesting issues for further study. For example, we can
further examine several schemes in order to estimate path-key similarity in the
merging process. This also allows us to extend our framework for searching and
merging XML and HTML data, which serves as a more useful tool for searching
heterogenous Web data.

References

1. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure
and content scoring for xml. In Proc. of VLDB, 2005.

2. J. Bremer and M. Gertz. XQuery/IR: Integrating XML document and data re-
trieval. In WebDB, 2002.

3. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching XML
documents via XML fragments. In SIGIR, pages 151–158, 2003.

4. T. T. Chinenyanga. Expressive and efficient ranked querying of XML data, 2001.
5. World Wide Web Consortium. Xquery 1.0 and xpath 2.0 full-text.
6. N. Fuhr and K. Großjohann. XIRQL: An extension of XQL for information re-

trieval, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Adaptive Information Merging Using Selected XML Fragments 1019

7. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents, 2003.

8. T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD ’02.
9. Ho-Lam Lau and Wilfred Ng. A unifying framework for merging and evaluating

XML information. In DASFAA, pages 81–94, 2005.
10. A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava. Adaptive processing of

top-k queries in XML. In ICDE, pages 162–173, 2005.
11. Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An efficient and versatile

query engine for topx search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

LAPIN: Effective Sequential Pattern Mining Algorithms
by Last Position Induction for Dense Databases

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-Ku, Tokyo 153-8305, Japan

{yangzl,ytwang,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. Sequential pattern mining is very important because it is the basis of
many applications. Although there has been a great deal of effort on sequen-
tial pattern mining in recent years, its performance is still far from satisfactory
because of two main challenges: large search spaces and the ineffectiveness in
handling dense datasets. To offer a solution to the above challenges, we have pro-
posed a series of novel algorithms, called the LAst Position INduction (LAPIN)
sequential pattern mining, which is based on the simple idea that the last position
of an item, α, is the key to judging whether or not a frequent k-length sequen-
tial pattern can be extended to be a frequent (k+1)-length pattern by appending
the item α to it. LAPIN can largely reduce the search space during the mining
process, and is very effective in mining dense datasets. Our performance study
demonstrates that LAPIN outperforms PrefixSpan [4] by up to an order of mag-
nitude on long pattern dense datasets.

1 Introduction

Sequential pattern mining, which extracts frequent subsequences from a sequence data-
base, has attracted a great deal of interest during the recent surge in data mining re-
search because it is the basis of many applications. Efficient sequential pattern mining
methodologies have been studied extensively in many related problems, including the
basic sequential pattern mining [1] [6] [4], constraint-based sequential pattern mining
[2], maximal and closed sequential pattern mining [3].

Although there are many problems related to sequential pattern mining, we realize
that the basic sequential pattern mining algorithm development is the most fundamental
one because all the others can benefit from the strategies it employs, i.e. Apriori heuris-
tic and projection-based pattern growth. Therefore we aim to develop an efficient basic
sequential pattern mining algorithm in this paper.

1.1 Overview of Our Algorithm

For any sequence database, the last position of an item is the key used to judge whether
or not the item can be appended to a given prefix (k-length) sequence.

Example 1. We will use the sequence database S shown in Fig. 1 (a) with min support
= 2 as our running example in this paper. When scanning the database in Fig. 1 (a) for

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1020–1023, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

LAPIN: Effective Sequential Pattern Mining Algorithms 1021

SID Last Position of SE Item

10 blast=5 clast=5 alast=6 dlast=7

20 alast=3 clast=4 blast=5 dlast=5

30 blast=2 alast=3 clast=4 dlast=4

(a) Sequence DB (b) Last positions of items

SID Sequence

10 a c (b c) d (a b c) a d

20 b (c d) a c (b d)

30 d (b c) (a c) (c d)

Fig. 1. Sample database

the first time, we obtain Fig. 1 (b), which is a list of the last positions of the 1-length
frequent sequences in ascending order. Suppose that we have a prefix frequent sequence
〈a〉, and its positions in Fig. 1 (a) are 10:1, 20:3, 30:3, where sid:eid represents the se-
quence ID and the element ID. Then, we check Fig. 1 (b) to obtain the first indices
whose positions are larger than 〈a〉’s, resulting in 10:1, 20:2, 30:3, i.e., (10:blast =
5, 20:clast = 4, and 30:clast = 4), symbolized as “↓”. We start from these indices to
the end of each sequence, and increment the support of each passed item, resulting in
〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3, from which, we can determine that 〈ab〉, 〈ac〉
and 〈ad〉 are the frequent patterns. The I-Step methodology is similar to the S-Step
methodology, which is not described here due to limited space.

Let D̄ be the average number of customers (i.e., sequences) in the projected DB, L̄
be the average sequence length in the projected DB, N̄ be the average total number of
the distinct items in the projected DB, and m be the distinct item recurrence rate or
density in the projected DB. Then m=L̄/N̄ (m ≥ 1), and the relationship between the
runtime of PrefixSpan (Tps) and the runtime of LAPIN (Tlapin) in the support counting
part is

Tps/Tlapin = (D̄ × L̄)/(D̄ × N̄) = m (1)

Because support counting is usually the most costly step in the entire mining pro-
cess, Eq.(1) illustrates the main reason why LAPIN is faster than PrefixSpan for dense
datasets, whose m (density) can be very high.

2 LAPIN Sequential Pattern Mining

In this section, we describe the LAPIN algorithms in detail. Refer [5] for the notations
and lemmas used in this paper. The pseudo code of LAPIN is shown in Fig. 2.

In step 1, by scanning the DB once, we obtain the SE position list table and all the
1-length frequent patterns. At the same time, we can get the SE item-last-position
list, as shown in Fig. 1 (b). In function Gen Pattern, we obtain the position list of the
last item of α, and then perform a binary search in the list for the (k-1)-length prefix
border position (step 3). Step 4, shown in Fig. 2, is used to find the frequent SE (k+1)-
length pattern based on the frequent k-length pattern and the 1-length candidate items.
We can test each candidate item in the local candidate item list (LCI-oriented), which
is similar to the method used in SPADE [6]. Another choice is to test the candidate item
in the projected DB, just as PrefixSpan [4] does (Suffix-oriented).

We found that LCI-oriented and Suffix-oriented have their own advantages for
different types of datasets. Thus we formed a series of algorithms categorized into two
classes, LAPIN LCI and LAPIN Suffix. Please refer [5] for detail.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1022 Z. Yang, Y. Wang, and M. Kitsuregawa

——————————————————————————————————————–
Input: A sequence database, and the minimum support threshold, ε
Output: The complete set of sequential patterns

Function: Gen Pattern(α, S, CanIs, CanIi)
Parameters: α = length k frequent sequential pattern; S = prefix

border position set of (k-1)-length sequential pattern;
CanIs = candidate sequence extension item list of (k+1)
-length sequential pattern; CanIi = candidate itemset
extension item list of (k+1)-length sequential pattern

Goal: Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:

1.1 Ps ← Create the position list representation of the 1-
length SE sequences

1.2 Bs ← Find the frequent 1-length SE sequences
1.3 Ls ← Obtain the item-last-position list of the 1-length

SE sequences
2. For each frequent SE sequence αs in Bs

2.1 Call Gen Pattern (αs, 0, Bs, Bi)

Function: Gen Pattern(α, S, CanIs, CanIi)
3. Sα ← Find the prefix border position set of α based on S
4. FreItems,α ←Obtain SE item list of α based on CanIs and Sα

5. For each item γs in FreItems,α

5.1 Combine α and γs as SE, results in θ and output
5.2 Call Gen Pattern (θ, Sα, FreItems,α, FreItemi,α)

——————————————————————————————————————

Fig. 2. LAPIN algorithm pseudo code

3 Performance Study

We conducted experiments on synthetic and real life datasets to compare LAPIN with
PrefixSpan. We used a 1.6 GHz Intel Pentium(R)M PC with 1G memory. Refer [1] for
the meaning of the different parameters used to generate the datasets. We first compared
PrefixSpan and our algorithms using several small-, medium-, and large- sized datasets.
The statistics of the datasets is shown in Fig. 3 (a).

Fig. 3 (b) and Fig. 3 (c) show the running time and the searched space comparison
between PrefixSpan and LAPIN and clearly illustrate that PrefixSpan is slower than
LAPIN using the medium dataset and the large dataset. This is because the searched
spaces of the two datasets in PrefixSpan were much larger than that in LAPIN. For the
small dataset, the initial overhead needed to set up meant that LAPIN was slower than
PrefixSpan. LAPIN Suffix is faster than LAPIN LCI for small datasets because the for-
mer searches smaller spaces than the latter does. However, for medium and large dense
datasets, LAPIN LCI is faster than LAPIN Suffix because the situation is reversed. The
memory usage of the algorithms is shown in Fig. 3 (d).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

LAPIN: Effective Sequential Pattern Mining Algorithms 1023

0

100

200

300

400

500

2 4 6 8 10

R
un

ni
ng

 ti
m

e(
s)

 PrefixSpan
LAPIN_Suffix
LAPIN_LCI

0

2000

4000

6000

8000

91 92 93 94 95

R
un

ni
ng

 ti
m

e(
s)

 PrefixSpan
LAPIN_Suffix
LAPIN_LCI

0

1000

2000

3000

4000

5000

98.4 98.6 98.8 99 99.2

R
un

ni
ng

 ti
m

e(
s)

 PrefixSpan
LAPIN_Suffix
LAPIN_LCI

Dataset (C10T5S5IN100D1K)

0

2

4

6

2 4 6 8 10
Minimum support (%)

S
ea

rc
he

d
sp

ac
e

(G
B

)

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

Dataset (C30T20S30I20N200D20K)

0

100

200

300

91 92 93 94 95
Minimum support (%)

S
ea

rc
he

d
sp

ac
e

(G
B

) PrefixSpan
LAPIN_Suffix
LAPIN_LCI

0

50

100

150

98.4 98.6 98.8 99 99.2
Minimum support (%)

S
ea

rc
he

d
sp

ac
e

(G
B

) PrefixSpan
LAPIN_Suffix
LAPIN_LCI

(b) Running time comparison

(a) Dataset characteristics

Dataset (C30T20S30I20N200D20K)

100

150

200

250

91 92 93 94 95
Minimum support (%)

To
ta

l m
em

or
y

us
ed

 (M
B

)
PrefixSpan
LAPIN_Suffix
LAPIN_LCI

(d) Memory usage comparison

(c) Searched space comparison

Dataset (C30T20S30I20N200D20K) Dataset (C10T5S5IN100D1K) Dataset (C50T20S50I20N300D100K)

Dataset (C50T20S50I20N300D100K)

Minimum support (%) Minimum support (%) Minimum support (%)

Dataset (C10T5S5I5N100D1K)

0

5

10

15

20

2 4 6 8 10
Minimum support (%)

To
ta

l m
em

or
ey

 u
se

d
(M

B
)

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

Dataset (C50T20S50I20N300D100K)

450

600

750

900

98.4 98.6 98.8 99 99.2
Minimum support (%)

To
ta

l m
em

or
y

us
ed

 (
M

B
)

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

Dataset # sequences Avg. length Total size
 C10T5S5I5N100D1K (small) 1000 46 270K
 C30T20S30I20N200D20K (medium) 20000 518 46M
 C50T20S50I20N300D100K (large) 100000 903 401M

Fig. 3. The different sizes of the datasets

Different parameters analysis. When C increases, T increases, and N decreases, then
the performance of LAPIN improves even more relative to PrefixSpan, by up to an order
of magnitude. The reason is that on keeping the other parameters constant, increasing
C, T and decreasing N , respectively, will result in an increase in the distinct item
recurrence rate, m.

4 Conclusions

We have proposed a series of novel algorithms, LAPIN, for efficient sequential pat-
tern mining. By thorough experiments, we have demonstrated that LAPIN outperforms
PrefixSpan by up to an order of magnitude on long dense datasets.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pp. 3-14, 1995.
2. M.N. Garofalakis, R. Rastogi and K. Shim. SPIRIT: Sequential PAttern Mining with Regular

Expression Constraints. In VLDB, pp. 223-234, 1999.
3. C. Luo and S.M. Chung. Efficient Mining of Maximal Sequential Patterns Using Multiple

Samples. In SDM, pp. 64-72, 2005.
4. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu. Min-

ing Sequential Patterns by Pattern-growth: The PrefixSpan Approach. In TKDE, Volume 16,
Number 11, pp. 1424-1440, 2004.

5. Z. Yang, Y. Wang, and M. Kitsuregawa. LAPIN: Effective Sequential Pattern Mining Algo-
rithms by Last Position Induction. Technical Report, Info. and Comm. Eng. Dept., Tokyo
University, 2005. http://www.tkl.iis.u-tokyo.ac.jp/∼yangzl/Document/LAPIN.pdf

6. M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. In Machine
Learning, Vol. 40, pp. 31-60, 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1024 – 1027, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Spatial Clustering Based on Moving Distance
in the Presence of Obstacles

Sang-Ho Park1, Ju-Hong Lee1, and Deok-Hwan Kim2

1 Dept. of Computer science and Information Engineering,
Inha University, Incheon, Korea

2 Dept. of Electronic Engineering, Inha University, Incheon, Korea
Inha University, Incheon, Korea

parksangho@datamining.inha.ac.kr,
{juhong, deokhwan}@inha.ac.kr

Abstract. The previous spatial clustering methods calculate the distance value
between two spatial objects using the Euclidean distance function, which cannot
reflect the grid path, and their computational complexity is high in the presence
of obstacles. Therefore, in this paper, we propose a novel spatial clustering al-
gorithm called DBSCAN-MDO. It reflects the grid path in the real world using
the Manhattan distance function and reduces the number of obstacles to be con-
sidered by grouping obstacles in accordance with MBR of each cluster and fil-
tering obstacles that do not affect the similarity between spatial objects.

1 Introduction

To enhance the usability of the result obtained from spatial clustering, we can extend
the previous spatial clustering method in two aspects: In first aspect, we should con-
sider obstacle constraints between spatial objects while clustering them since many
obstacles exist among them. For example, building, private area, river, mountain, etc
can be considered as the obstacle constraints. In second aspect, we should calculate
the distance values between spatial objects using the Manhattan distance function.
The road in real world can be represented as grid paths and the Manhattan distance
function can reflect the moving distance of human on the grid paths.

Therefore, in this paper, we propose a new spatial clustering method, DBSCAN-
MDO algorithm, based on density-based clustering. It consists of the process of
grouping obstacles using MBRs of each cluster and the process of identifying obsta-
cles to be considered using the Manhattan distance function. The process of grouping
obstacles can reduce the execution time of clustering algorithm since it reduces the
number of obstacles to be considered while clustering spatial objects.

2 Related Works

Some parts of the clustering methods have extension algorithms considering obstacles
such as COD-CLARANS [4], AUTOCLUST+ [1], and DBCluC [3,5].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Spatial Clustering Based on Moving Distance in the Presence of Obstacles 1025

COD-CLARANS [4] uses the Euclidean distance function to cluster spatial ob-
jects. However, COD-CLARANS requires prior knowledge about the number of
clusters in a data set and the construction of the visibility graph having the running
complexity O(n3). AUTOCLUST+ [1] uses the Delaunay graph to model the data
space. But it needs to combine different kinds of constraints. DBCluC [3,5] uses the
polygon reduction method that models the obstacles as simple polygons with mini-
mum number of line segments. But DBCluC requires the process of constructing
obstruction lines. But it does not consider the time required to construct obstruction
lines of obstacles in each cluster.

3 Clustering Based on Moving Distance

In grouping spatial objects, all obstacles between two spatial objects should be con-
sidered and the similarity values between them should be computed by moving dis-
tance of human, that is, the Manhattan distance. Human move from one data point to
the other using grid paths such as cross stripes and the roads. Fig.1 illustrates a new
clustering algorithm, DBSCAN_MDO, which consists of the obstacle grouping proc-
ess and the obstacle identification process.

Algorithm DBSCAN_MDO
Input: spatial_objects, obstacles, MinPts, Radius
1: Determine the MBRs of all spatial objects;
2: For(all obstacles)DO
3: Group the obstacles using MBRs of spatial objects;
 // GROUP_OBSTACLES algorithm.
4: ENDFOR
5: For(all pairs of spatial objects) DO
6: Identify obstacles to be considered in the presence

of obstacle group;
7: Calculate similarity values between spatial objects

with respect to identified obstacles;
// CHECK_CONSIDERATION algorithm.

8: ENDFOR
9: IF((similarity value< Radius) and (count >= MinPts)) Then
10: Cluster spatial objects using the similarity values;
//DBSCAN algorithm

Fig. 1. DBSCAN_MDO Algorithm

The first step is the computation of minimum boundary rectangles(MBRs) with
respect to all spatial objects. We start by performing DBSCAN[2] using the Man-
hattan distance function and obtaining the MBR information(in step 1). After that,
we group obstacles using the MBRs(in step 3) and identify obstacles to be consid-
ered while clustering spatial objects(in step 6). From step 7 to step 8, the algorithm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1026 S.-H. Park, J.-H. Lee, and D.-H. Kim

updates similarity values between spatial objects considering the identified obsta-
cles. At the end, the algorithm returns clusters with obstacle constraints to be
considered.

Algorithm GROUP_OBSTACLES
Input : MBRs, set of obstacles
1: min_x = MBR[i].min.x; //min x-coordinate by MBR C

i
given.

2: max_y = MBR[i].max.y;
3: max_y = MBR[i].max.x;
4: min_y = MBR[i].min.y;
5: For(an obstacle ob in the set of obstacles) Do
6: Declare four variables state1,state2,state3 and state4.

Initialize it into TRUE;
7: For(all vertices of an obstacle ob) Do
8: If(vertex.x min_x)Then state1 = TRUE & state1;
9: Else state1 = FALSE & state1;
10: If(vertex.Y max_y)Then state2 = TRUE & state2;
11: Else state1 = FALSE & state2;
12: If(vertex.X max_y)Then state3 = TRUE & state3;
13: Else state1 = FALSE & state3;
14: If(vertex.y min_y))Then state4 = TRUE & state4;
15: Else state1 = FALSE & state4;
16: ENDFOR
17: IF((state1|state2|state3|state4)== FALSE) THEN
18: Set ob as the obstacle to be considered and include

ob into the obstacle group G
i
 of MBR C

i
;

19: Else Filter out obstacle ob;
20: ENDFOR

Fig. 2. GROUP_OBSTACLES Algorithm

Fig.2 shows our grouping algorithm. Let variable min_x represent minimum value
of MBR Ci in the x-axis, max_y represent maximum value of MBR Ci in the y-axis,
max_x represent maximum value of MBR Ci in the x-axis, min_y represent minimum
value of MBR Ci in the y-axis, respectively. The algorithm requires the computational
complexity O(L·C) where L is the number of obstacles and C is the number of clusters.

4 Experimental Evaluation and Analysis

The experiments are preformed under a Window 2000 professional on 2.40 GHz
Pentinum 4 CPU with main memory of 512MB and a hard disk size of 60GB. The
map used for experiment have the size of 182475.00 × 192969.00. Spatial objects and
obstacle dataset with complex shapes are randomly generated from GMS server. In
Figs.3, the result show that our clustering method is less sensitive for the number of
obstacles, because the method can reduce the number of obstacles to be considered by
grouping obstacles while clustering spatial objects.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Spatial Clustering Based on Moving Distance in the Presence of Obstacles 1027

Fig. 3. (a) Execution time according to various numbers of spatial objects and (b) execution
time according to various numbers of obstacles

5 Conclusion

In this paper, we address the problem of clustering spatial objects in the presence of
physical constraints and propose a new extended density-based clustering algorithm
DBSCAN-MDO. It has two advantages: first, it enhances the effectiveness by using
the Manhattan distance function. Second, the obstacle grouping and the obstacle iden-
tification method can reduce the number of obstacles to be considered by filtering out
unnecessary obstacles.

Acknowledgement. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Assessment).

References

1. Estivill-Castro V., Lee I., “Autoclust+:automatic clustering of point-data sets in the presence
of obstacles.”, In International Workshoop on Temporal and Spatial and Spatio-Temporal
Data Mining(TSDM 2000), pages 133-146,2000.

2. Ester M., Kriegel H.-P., Sander J., Xu X., “ A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Knowledge Discovery and Data Mining, pages
226-231, 1996.

3. Osmar R. Zaiane, Chi-Hoon Lee, "Clustering Spatial Data in the Presence of Obstacles:
A Density-Based Approach," ideas, p. 214, International Database Engineering and Appli-
cations Symposium (IDEAS'02), 2002.

4. Tung A.K.H., Hou J., Han J.,”Spatial clustering in the presence of obstacles”, In Proc. 2001
Int.conf. On Data Engineering(ICDE’01),2001.

5. Zaiane O.R, and Lee C.H,”Clustering Spatial Data When Facing Physical Constraints”, In
Proc. of the IEEE International Conf. on Data Mining, Maebashi City, Japan, pages737-
740,2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1028 – 1031, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Tracing Data Transformations: A Preliminary Report

Gang Qian1 and Yisheng Dong2

1 School of Information Engineering, Nanjing University of Finance & Economics,
Nanjing 210046, China
abc_sir@263.net

2 Department of Computer Science and Engineering, Southeast University,
Nanjing 210096, China
ysdong@seu.edu.cn

Abstract. We study a novel problem: tracing data transformations. That is, for a
particular target data type, e.g., obtained from the output schema, we trace over
the transformation specifications and extract from them the fragments that are
exactly used to compute instance data of the type. Our work provides a piece-
meal fashion to understand a transformation semantic, and hence would be use-
ful for users to test, debug, and refine the transformation specifications.

1 Introduction

Modern information applications often need to transform data from one format to
another to support cooperation, integration, and exchange of multiple information
sources. On the other hand, constructing and maintaining the transformations (a.k.a.
schema mappings) are labor-intensive and error-prone processes, which can involve
the tasks such as testing, debugging, and refining the transformation specifications
manually. This problem becomes more intractable in the XML setting. XML has been
a standard format for data sharing. The XML query language, e.g., XQuery, is often
used to specify the transformations of XML. Currently, many public DTDs have up to
several hundreds elements and several thousand attributes. Any transformation gener-
ating XML documents for those DTDs must have a comparable complexity.

In this paper we study a novel problem: tracing data transformations. That is, for a
particular target data type, e.g., obtained from the output schema, we trace over the
transformation specifications and extract from them the fragments that are exactly
used to compute instance data of the type. Compared with the transformations com-
puting instance data of the whole output schema, the extracted fragments can be very
simple, in terms of the given data type. So, our work provides a piecemeal fashion to
understand the semantics of a complex transformation, e.g., generated by a mapping
tool like Clio [3], and hence would be useful for the user to test, debug, and refine the
transformation specifications.

We propose a mapping model, called Macor (mapping & correlation), through
which an XML transformation is modeled as a Macor tree in which each node repre-
sents an atomic transformation rule and each edge is associated with a correlation
(see Section 2). As a result, extraction of the transformation fragment is reduced to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Tracing Data Transformations: A Preliminary Report 1029

matching the given data type with the Macor tree (see Section 3). In Section 4 we
discuss related work. Finally, Section 5 concludes.

2 Mapping Model

Macor tree is an extension to a previous work presented in [4], where we introduce an
incremental approach to construct schema mappings, which can be normalized into
corresponding Macor trees.

Atomic rule is the basic building block for the Macor tree. Using XQuery, we define
it as a query returning data nodes only, i.e. tag, text, or empty nodes. Specifically, the
atomic rule consists of only one for, one return, and one optional where clauses, and
the where and return clauses contain no path navigations. Its main syntax is given as
follows.

for $v1 in sp1, …, $vn in spn (where cond)? return atomic_item

Here sp is a simple path expression with no branching predicates ([…]), cond is a
conditional expression w.r.t. the variables defined in the rule, and atomic_item refers
to returned item, which can be <a>, $xv, or (). The symbol a denotes XML tags,
and $xv is a variable bound to text values only. About cond we consider two kinds of
equivalence comparison operators: =n and =v (denoted by θ), which compare the node
identities and the values of two operands, respectively. In the following, the notation
vars(r) refers to the variables defined in an atomic rule r.

Correlation. We organize the atomic rules into a Macor tree in which each node
represents a rule and each edge is associated with a correlation, through which the
atomic rules are semantically connected together: by nesting returned data nodes or
by filtering data branches that do not satisfy certain conditions. We refer to the fist
connection as nesting correlation and the second as conditional correlation. When no
confusion arises we also use a node to refer to the atomic rule it represents. Let r1 be
the parent node of r2 in a Macor tree. A correlation between r1 and r2 is a pair of
(cpath, α). Here cpath denotes a conjunction of connection path $v1 θ $v2, where
$v1∈vars(r1) and $v2∈vars(r2). The item α in the nesting correlation is null. Semanti-
cally, for each r1’s binding tuple b1, let n1 denote the corresponding returned data
node. If there are i (i≥0) r2’s bindings b2s satisfying cpath, then the corresponding i
data nodes n2s returned by r2 will be nested within n1. Conditional correlation is used
to constrain the transformations, where α refers to a filter. Specifically, a conditional
correlation between r1 and r2 means that for each r1’s binding b1, if the data nodes n2s
returned by r2 under the connection path cpath satisfy the condition indicated by α,
then the corresponding data node n1 returned by r1 will be transformed to the target
also; otherwise the node n1 together with all its branches will be filtered out.

Macor tree. Through the atomic rule and the correlation, we model an XML trans-
formation as a Macor tree. Figure 1 shows such an example. Note that for the reason
of brevity the correlations are omitted from the figure. As can be seen, in a Macor tree
some nodes transform data, while the other nodes serve as conditions constraining the
transformation. We refer to them as d-nodes and c-nodes, respectively. Each d-node
computes a single type of data nodes, according to the return clause in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1030 G. Qian and Y. Dong

corresponding atomic rule, which can be a, text, or ε (Note that the symbol a denotes
XML tags). Notice that besides serving as a c-node, a rule returning empty data nodes
can also be used as a d-node. In our example, the name of the data type has been
given in Figure 1 for each d-node in the Macor tree. Through the rule r3, the Macor
tree states that the returned <c> nodes and <d> nodes are always paired.

3 Tracing Data Transformations

When a transformation is modeled as a Macor tree M, the exact transformation frag-
ments for a given date type T can be extracted in terms of the matches between T and
M. Each match produces a transformation for the data type T, denoted by MT. You can
regard a data type as a fragment of the output schema. In our example above, there are
two matches that have been outlined using shadow in Figure 1. Let dn be a d-node of
a Macor tree. The notation dn.cons refers to the conditional constraints over dn, i.e., the
c-nodes nested within dn. Let m be a match of the data type T on M, dn1 and dnk be
the roots of M and m, respectively. The transformation MT consists of m and all c-
nodes of the match. Further, to reflect the transformation context, dnk needs to be
rewritten into dn'k and dnk.cons needs to be rewritten into dn'k.cons'. For a node dni
(i=1..k) in the path from dn1 to dnk, let dni represent an atomic rule as follows.

for Vi in SPi where condi return atomic_itemi

For brevity, we write a single clause “V in SP” instead of “$v1 in sp1, …, $vn in spn”.
Further, let cpathi be a connection path between dni and dni+1. Then dnk is rewritten
into the following atomic rule.

for V1 in SP1, …, Vk in SPk
where cond1 and …and condk and cpath1 and …and cpathk-1

return atomic_itemk, and
dn'k.cons'=dn1.cons and …and dnk.cons.

4 Related Work

Some tools have recently been developed to assist the user to construct and maintain
the transformations semi-automatically, e.g., by discovering candidate mappings [3],
preserving their semantics as schema evolves [6], or debugging the routes of data

b

c r3 r7

r1<a>

()

r2 r8

r4<c>

r6 <e> r9<c> r10<e>

r5<d>

Fig. 1. An example Macor tree and the mathes between a data type and the Macor tree

 Macor tree

Data type

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Tracing Data Transformations: A Preliminary Report 1031

transformation [2]. These works are done based on logical transformation formalisms.
In contrast, our work provides a way to extract physical transformation specifications,
and then to facilitate the designer to understand complex transformation semantics.
Data lineage tracing [1] is another important problem in modern information systems.
Most of the work on this field concentrated on instance-level tracing by developing
methods to generate the right queries on the source schema for a particular data value
in the view, or by building annotation systems and designing some query languages
for propagating annotations as data is transformed. Our work is similar to a recent
work in [5], where the tracing problem is studied at meta-data level. However, their
work focused on annotating the transformations and developing a language to query
the transformations for some given data types. In contrast, our work concentrates on
tracing and extracting the fine-grained transformations for any given data type. The
work in [5] provides convenient for analyzing instance data, while our work facilitates
understanding and debugging transformations. From this perspective, our work com-
bines both the researches on schema mapping and on data lineage tracing.

5 Conclusion

In this work we proposed a novel problem: tracing data transformations. We designed
the Macor model to represent data transformations between nested XML schemas.
With Macor, a complex mapping can be modeled as a number of simple atomic rules,
which are organized into a Macor tree through correlations. Any fragment of a Macor
tree represents an independent transformation. Given a data type in terms of the out-
put schema, the extraction of the exact transformations was done in terms of the
matches between the data type and the corresponding Macor tree. Our work is useful
for a user to understand complex transformation semantics.

References

1. P. Buneman, S. Khanna, and W. Tan. Why and Where: A Characterization of Data Prove-
nance. In ICDT, pages 316–330, 2001.

2. L. Chiticariu, and W. Tan. Debugging Schema Mappings with Routes. In Proc. of VLDB,
2006.

3. L. Popa, Y. Velegrakis, R Miller, M. A. Hernandez, and R. Fagin. Translating Web Data. In
Proc. of VLDB, 2002.

4. G. Qian and Y. Dong. Constructing Maintainable Semantic Mappings in XQuery. In
WebDB'05, pages 121-126, 2005.

5. Y. Velegrakis, R. J. Miller, and J. MyLopoulos. Representing and Querying Data Transfor-
mations. In proc. of ICDE, 2005.

6. C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when Schemas Evolve. In
Proc. of VLDB, 2005

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

QuickCN: A Combined Approach for Efficient

Keyword Search over Databases

Jun Zhang1,2,3, Zhaohui Peng1,2, and Shan Wang1,2

1 School of Information, Renmin University of China, Beijing 100872, P.R. China
{zhangjun11,pengch,swang}@ruc.edu.cn

2 Key Laboratory of Data Engineering and Knowledge Engineering(Renmin
University of China), MOE, Beijing 100872, P.R. China

3 Computer Science and Technology College, Dalian Maritime University, Dalian
116026, P.R. China

Abstract. Much research has been done on Keyword Search Over Rela-
tional Databases(KSORD) in recent years, and several prototypes have
been developed. However, the performance of KSORD systems still is a
key issue. In this paper, we propose a combined approach QuickCN for
efficient KSORD. Firstly, schema graph is employed to generate Candi-
date Networks(CNs). Then, data graph is exploited to quickly execute
CNs instead of submitting them to RDBMS. In this way, QuickCN per-
forms more efficiently than schema-graph-based KSORD systems and
consumes less memory than that by data-graph-based KSORD systems.
Our experiments show that QuickCN is efficient and effective.

1 Introduction

In recent years, much research has been done on Keyword Search Over Rela-
tional Databases(KSORD)[1]. Many approaches have been proposed to imple-
ment KSORD techniques, and several prototypes have been developed, such as
schema-graph-based Online KSORD(SO-KSORD) systems[2,3] and data-graph-
based online KSORD(DO-KSORD) systems[4]. However, the performance of
KSORD systems still is a key issue. On one hand, SO-KSORD systems are
inefficient due to the inefficiency of JOIN operations in RDBMS because the con-
verted SQL queries usually contain many JOIN operators. On the other hand,
DO-KSORD systems consume much main memory to execute a keyword query
besides the memory occupied by the data graph itself.

Therefore, we propose a combined method QuickCN(Quickly executing Can-
didate Network) to support efficient KSORD. Firstly, QuickCN uses database
schema graph(Gs) to generate Candidate Networks(CNs)[2] which are join ex-
pressions and will be used to produce potential answers to a keyword query.
CNs can also be viewed as query patterns and result patterns. Then, QuickCN
employs data graph(Gd) to execute CNs instead of submitting CNs to RDBMS.
Gd is a model for relational databases in which each tuple in the database is
modeled as a node and each foreign-key link as a directed edge between the
corresponding nodes[4]. Actually, Gd is a huge tuple-joined network generated

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1032–1035, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

QuickCN: A Combined Approach 1033

Confs(cid,name)

Papers(pid,title,yid)

Writes(aid,pid)

Cites(pid1,pid2)

Authors(aid,name)

YearConfs(yid,year,cid)
n : 1

1 : n

1 : n

n : 1

1
 : n

1
 : n

Fig. 1. DBLP Schema Graph

q2

p1

p2

p3 p4

q4

p5

q5

q6

a1

a2
w2

w3

y1

c1

w5

y2

p6
c2

y3

w4

p7

q3

w1

w6

q1

q7

a4

p8

w7

p9

w8

a3

Fig. 2. DBLP Data Graph Sketch Map

in advance. Intuitively, the results of any complex equi-join(a join of the form
R ��R.a=S.b S) expressions between primary keys and foreign keys can be found
through Gd. In this way, we aim to improve the performance of SO-KSORD
method and reduce the main memory required by DO-KSORD method.

Unlike SO-KSORD method, QuickCN executes CNs on Gd rather than sub-
mitting CNs to RDBMS so that it can perform more efficiently. QuickCN is also
different from DO-KSORD method, such as BANKS[4]. BANKS searches the
Gd without knowing of result patterns. As a result, lots of intermediate results
will be produced during the search process. However, in QuickCN, the Gd search
process is schema-driven as the result patterns of CNs. The adjacent nodes of
each node in the Gd can be classified by their relation names and foreign-key
relationship types, and the foreign-key nodes have n:1 maps with their primary-
key adjacent nodes. The above two points can be exploited to reduce the search
space in Gd. So, QuickCN can consume less memory than that by DO-KSORD
method. Our experiments show that QuickCN is efficient and effective.

2 Our Approach QuickCN

QuickCN is divided into two stages. The first stage is to generate CNs. When
a user keyword query Qk comes, QuickCN generates CNs for Qk through a
breadth-first traversal of tuple set graph(Gts) which extends Gs by adding Tuple
Sets(TSs) created for Qk, just as IR-Style[2] does.

Example 1. Take DBLP as an example. Fig. 1 shows Gs with 6 relations: C,
Y, P, A, W, and Q(abbrev. for Confs, YearConfs, Papers, Authors, Writes and
Cites respectively). So, there are at most 4 TSs created for Qk: Cts, Yts, Pts and
Ats which indicate the TSs created from the relations: C, Y, P and A respectively.
The labels on the edges denote the foreign-key mapping types. Assume that part
of CNs generated for Qk are as follows: CN1(Yts

1:n−→ P
1:n−→ Q

n:1−→ Pts), CN2(
Pts

n:1←− Y
n:1←− C

1:n−→ Y
1:n−→ Pts), CN3(Pts

n:1←− Y (n:1←− Cts)
1:n−→ P

1:n←− Q
n:1←−

Pts), CN4(Pts
1:n←− Q

n:1−→ P (n:1←− Y
n:1←− Cts)

1:n−→ W
n:1←− Ats).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1034 J. Zhang, Z. Peng, and S. Wang

From Example 1, CNs can be classified into two types, one is path-shaped
CN(e.g. CN1, CN2), and the other is tree-shaped CN(e.g. CN3, CN4).

The second stage is to execute CNs on Gd. QuickCN adequately exploits the
characteristics of CNs and Gd to execute CNs. Furthermore, this stage is divided
into two steps, one is to generate CN Execution Plan(CNEP), and the other is
to execute CNs . Due to space limitation, all algorithms are omitted.

2.1 Generate CN Execution Plan

The static CNEP is generated before CN execution, and fits any keyword query.
First of all, each CN is converted into a path query pattern with or without
constraint queries due to its shape. For a path-shaped CN, its static CN execution
plan is to construct a path query pattern and can be uniquely generated, whereas
the plan for a tree-shaped CN is a path query pattern with constraint queries
and can have several choices. A constraint query still is a short path query with
one or more than one query nodes. When constructing execution plan for a tree-
shaped CN, the following rules are applied: (a) Find the longest path as a path
query pattern. Here each CN is viewed as a simple un-directed graph. (b) If there
is a foreign-key-to-primary-key relationship, for example, a ← b(n:1 map), and
a is a leaf node, a is given priority to be a path query node. (c) Otherwise, if b
is a leaf node, b is given priority to be a constraint query node attached to the
corresponding path query node.

Then, the CNEP for each CN determines how to match the path query pat-
tern on Gd. The following rules should also be followed: (a) The continuous
n:1 map edges from left to right in the path have priority to be matched. (b)
The continuous 1:n map edges from right to left in the path have priority to
be matched. (c) Among the rest edges, if the number of n:1 map edges is more
than that of 1:n map edges, the path query pattern will be matched from left to
right, otherwise, from right to left. (d) While matching a non-leaf node with a
constraint query, its constraint query should be matched at first.

2.2 Execute CN on Data Graph

A CN will be executed on Gd according to its static CNEP. The CN Execution
is schema-driven and stack-based. A stack is created for each node in a CN plan,
and a CN is matched at most the same steps as the size of CN on Gd. Suppose
Fig. 2 is a portion of DBLP data graph, let’s take some CNs from Example 1 as
examples to demonstrate the CN execution process in detail.

For CN1 in Example 1, suppose node y3 and p3 are bound to the leaf nodes
Yts and Pts in the CN respectively. CN1 should be matched from right to left by
its CNEP. For p3 is bound to Pts, only the adjacent foreign-key nodes q1 and q3

are candidate matching nodes for Q due to the schema-driven rule, and both of
them are pushed into the stack of Q. Then for the stack top element q3 , only p2

is the candidate matching node for P and is pushed into the stack of P. However,
p2 has a unique adjacent primary-key node y1 which doesn’t equal to the bound
node y3 for Yts. So, the search process traces back till Q, the top element q3 is
popped out, and the search process goes on with the new top element q1. Then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

QuickCN: A Combined Approach 1035

p1 is found to be matched with P, and y3 with Yts which equals to the bound
node y3. Till now, a result of ”y3 → p1 → q1 → p3” is produced from all the top
stack elements of CN1’s nodes. Finally, the search process tracks back, but no
more results are produced.

As for CN2 in Example 1, suppose node p6 and p7 are bound to the leaf
node Pts and Pts from left to right in the CN respectively. According to the CN
plan, the CN should be matched in bi-directions. Similar to the search process
of CN1, it is easy to find the result of ”p6 ← y2 ← c2 → y3 → p7” by visiting
only five nodes in the Gd.

Currently, QuickCN exploits the Global pipelined top-k Algorithm(GA) in
IR-Style[2] to produce top-k results for a keyword query.

3 Experimental Evaluation

We ran our experiments using the Oracle 9i RDBMS on the Windows platform.
BANKS[4],IR-Style[2] and QuickCN were implemented in Java. DBLP data set
was used for our experiments(Fig. 1). By our experiments, on one hand, QuickCN
performs more efficiently than IR-Style with GA about ten times faster on aver-
age, on the other hand, QuickCN consumed always about 10 megabytes memory
whereas BANKS consumed more than 200 megabytes memory on average as
query keyword number increases.

4 Conclusions and Future Work

We have presented a combined approach QuickCN to support efficient KSORD.
QuickCN uses database schema graph to generate CNs, then employs data graph
to execute CNs instead of submitting CNs to RDBMS. Our experiments show
that QuickCN is efficient and effective. In the future work, we try to compress
the data graph and improve QuickCN with dynamic CN execution plans.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(No.60473069 and 60496325), and China Grid(No.CNGI-04-15-7A).

References

1. S. Wang, K. Zhang. Searching Databases with Keywords. Journal of Computer
Science and Technology, Vol.20(1). 2005:55-62.

2. V. Hristidis, L. Gravano, Y. Papakonstantinou. Efficient IR-Style Keyword Search
over Relational Databases. VLDB, 2003:850-861.

3. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:A System for keyword Search
over Relational Databases. ICDE, 2002:5-16.

4. G. Bhalotia, A. Hulgeri, C. Nakhe et al. Keyword Searching and Browsing in Data-
bases using BANKS. ICDE, 2002:431-440.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1036–1040, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Join Query Processing in Data Grids: Exploring
Relation Partial Replicas and Load Balancing

Donghua Yang, Jianzhong Li, and Hong Gao

School of Computer Science and Technology, Harbin Institute of Technology, China
{yang.dh, lijzh, Honggao}@hit.edu.cn

Abstract. Query processing in data grids is a complex issue due to the hetero-
geneous, unpredictable and volatile behavior of grid resources. Considering the
existence of multiple partial replicas for each relation and the volatile nature of
grid environment, this paper investigates the issues and proposes an adaptive,
load-balanced join processing approach. Analytical and experimental results
show the effectiveness of our approach.

Keywords: Data Grids, Join query processing, Load balancing.

1 Introduction

The employment of data grids [1-2] provides the scientific community with fast, reli-
able and transparent access to geographically distributed data resources. It has been
applied to a variety of fields, such as global climate simulation, high-energy physics
and molecular biology.

The combination of distributed query processing and data grids is beneficial from
both perspectives [3-4]. Although data grids offers a great deal of facilities for wide-
area query processing, query processing is challenging due to the heterogeneous,
unpredictable and volatile behavior of grid resources. As far as we know, there is little
to date in the literature on distributed join query in data grids that takes relation partial
replicas and load balancing into consideration. The contribution of this paper is to
have proposed an adaptive join query processing approach to solve the problems.

2 Problem Statement

A user at any grid node issues a query that requires joining two relations R and S on
the join attribute T. R and S have been split into numerous partial replicas and these
replicas are present at different grid nodes. We assume that m1 different partial repli-
cas of R (PRRs), R1~Rm1, locate at m1 grid nodes NR1~NRm1, m2 different PRSs, S1~Sm2,
locate at NS1~NSm2, and some nodes, EN1~ENm, which have tremendous processing
capability and larger network bandwidth, are selected as execution nodes (ENs) for
parallel performing join operations for each pair of PRRs and PRSs.

Our focus in this paper is to efficiently compute R S in data grids exploring the
relation partial replicas and achieving load balancing. In general, the join of R and S is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Join Query Processing in Data Grids 1037

computed through five steps. (1) Reduce R1~Rm1 and S1~Sm2 into efficient tuple sets
R′1~R′m1 and S′1~S′m2. (2) Select n1(n1≤m1) and n2(n2≤m2) PRs from R′1~R′m1 and
S′1~S′m2 respectively as operand relations of join operations, satisfying R=R′1∪R′2

∪…∪R′n1 and S=S′1∪S′2∪…∪S′n2. (3) Select n1×n2 ENs from m available ones for

performing n1×n2 join operations in parallel. (4) Transfer efficient tuple sets R′1~R′n1
and S′1~S′n2 to n1×n2 selected ENs and perform join operations in parallel by merge-
based join algorithm. (5) Transfer desired join results to user node in parallel.

Steps 4 and 5 are straightforward and are not considered in this paper.

3 Obtainment of Efficient Tuple Sets

In order to minimize transfer cost, we only need to transfer efficient tuples of each
partial replicas to ENs for performing join operations. The algorithm, Obtain-Effient-
Tuples, is divided into three phases.

(1) Parallel get R1[T]~Rm1[T] and S1[T]~Sm2[T] at nodes NR1~NRm1 and NS1~NSm2
respectively by sort-based projection algorithm, where Ri[T] and Sj[T] are projections
of Ri and Sj on the join attribute T.

(2) Compute R[T] and S[T], i.e. R[T]=R1[T]∪R2[T]∪…∪Rm1[T], S[T]=S1[T]∪S2[T]

∪…∪Sm2[T].

(3) Parallel transfer R[T] to NS1~NSm2, and compute efficient tuple sets S′1=R[T]

S1, S′2=R[T] S2,…,S′m2=R[T] Sm2 at NS1~NSm2 in parallel. Similarly, paral-

lel transfer S[T] to NR1~NRm1 and compute efficient tuple sets R′1=S[T] R1,

R′2=S[T] R2,…,R′m1=S[T] Rm1 at NR1~NRm1 in parallel.

4 Selection of Appropriate Partial Replicas

Definition 1. Given a relation R, a set Φ={R1,R2,…,Rm} and a set F={R1,R2,…,Rn},
where R1,R2,…, Rm are all partial replicas of R, n≤m and F is a subset of Φ. F covers
R if each tuple in R belongs to one partial replica in F at least, i.e. R=
R1∪R2∪,…,∪Rn, and for Ri and Rj (Ri∈F, Rj∈F,i≠j,1≤i≤n, 1≤j≤n), Ri⊄Rj and Rj⊄Ri.

To minimize the response time of the join query, we should select an appropriate
partial replica cover <cr, cs>. The problem is formulated as follows. Given two rela-
tions R and S, two sets ΦR={R1,R2, …,Rm1} and ΦS= {S1, S2, …,Sm2}, as well as CR
and CS, where CR and CS are sets consisting of all relation replica covers of R and S
respectively, for each element <cr, cs>∈CR×CS, its minimum cost C(<cr, cs>) exists,
where the minimum cost is defined as the minimum response time of joining cr and cs
and C: CR×CS→Q+. The goal of the problem is to seek an element <rc, sc> in RC×SC
satisfying C(<rc, sc>)=Min(C(<CR, CS>)).

Once an appropriate cover <rc, sc> and ENs are determined, the tuples in rc and sc
are parallel transferred to ENs to perform join operations. To maximize the parallelism

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1038 D. Yang, J. Li, and H. Gao

of the join query, the number of partial replicas in rc and sc should be maximum. The
algorithm Select-Max-Replica-Cover [6] is to seek a relation replica cover from all
covers, in which the number of partial replicas is maximum.

5 Duplicate Removals in Selected Partial Replicas

To avoid generating duplicate join results, we have to remove duplicate tuples in
R′1~R′n1 so as for any tuple tR (tR∈R′), it only exists in one partial replica of R. Simi-

larly, the duplicate tuples in S′1~S′n1 are processed in similar way. This ensures each
join result in R S is generated only once at all ENs.

The main idea of duplicate removals in partial replicas of R is as follows. If
R′a∩R′b≠∅ (1≤a≤n1,1≤b≤n1,a≠b) holds, we remove the tuples from the larger replica
between R′a and R′b, i.e. a tuple t is removed from R′a if |R′ia|≥|R′ib| and t∈R′a∩R′b.
Similarly, duplicate removals in partial replicas of S are processed.

6 Adaptive Selection and Adjustment of Execution Nodes

Since the concept of MMEM and the algorithm Seek-MMEM, as well as the cost
model of performing join operations and the approach for selecting n1×n2 ENs have
been detailed in the literature [6], we focus on discussing adaptive adjustment of se-
lection of ENs in this paper.

Data grids is an unpredictable and volatile environment, so the loads of initial se-
lected ENs, EN1~ENn1×n2, may vary greatly with time, i.e. available CPU power de-
grade and available memory space become less and so on. It is necessary to determine
whether to re-select at most n1×n2 ENs, EN′1~EN′n1×n2, and transfer remained tuples to
them to continue finishing join operations. We solve this problem by constructing a
weighted complete bipartite graph G′ and to seek a new MMEM M′ in G′. If M′ is
same to the previous MMEM M, the remained tuples continue being transferred to
EN1~ENn1×n2 for performing join operations. Otherwise, the remained tuples are to be

transferred to EN′1~EN′n1×n2. This ensures the join operations are always parallel
performed on most efficient ENs and the time cost is minimized.

7 Experimental Results

Although we get some experimental results by implementing a lot of experiments [6],
we only indicate one group of experiment results due to space limitation.

Two approaches A-I and A-II are studied in this experiment to analyze the query
performance related to the algorithm for adaptively adjusting the selection of ENs. In
A-I, ENs are not adjusted without considering whether their loads are varied or not,
i.e. once ENs are selected, the join operations are performed at them all the time. We
adaptively adjust the selection of ENs according to their loads in A-II.

The process of join query is decomposed into three phases: Phase I includes getting
efficient tuple sets, selecting relation replica covers and removing duplications in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Join Query Processing in Data Grids 1039

reduced partial replicas; Phase II includes parallel transferring tuples to ENs and par-
allel performing join operations at selected ENs; transferring final join results to user
node is included in Phase III.

In this experiment, we adjust the selection of ENs with intervals of 30 seconds. As
Fig .1 shows, the response time of the query increases as the sizes of replicas become
larger and the performance of A-II is well than that of A-I. Although in A-II, some
time is cost for adjusting the selection of ENs and avoiding losing join results, the
time cost in A-II is much less than that in A-I. This is because load degradation of
ENs in A-I causes much higher time cost.

0

100

200

300

400

500

600

5 10 15 20 25

Size of operand relations(MB)

R
es

po
ns

e
tim

e
(S

ec
on

d) A-I

A-II

Fig. 1. Effect of adjusting the selection of execution nodes

8 Conclusion

This paper proposes a novel approach for processing join query exploring relation
partial replicas and load balancing in data grids. Analytical and experimental results
show that the approach has high performance. Nevertheless, there are still a number
of aspects requiring further investigation to improve join query processing. For exam-
ple, it is not well understood how to take relation replicas and load balancing into
consideration in processing multi-join queries.

Acknowledgements. We would like to thank the National Natural Science Foundation
of China under Grant No.60533110 and 60473075, the Program for New Century Ex-
cellent Talents in University under Grant No.NCEF-05-0333, the Key National Science
Foundation of Heilongjiang Province under Grant zjg03-05 and the National Science
Foundation of Heilongjiang Province under Grant F0208 for their supports.

References

1. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. San
Francisco, CA, Morgan Kaufmann (2003)

2. Chervenak, A., Foster, I., Kesselman, C., et al.: The Data Grid: Towards an architecture for
the Distributed Management and Analysis of Large Scientific Datasets. Journal of Network
and Computer Applications (2001) (23) 187-200

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1040 D. Yang, J. Li, and H. Gao

3. Smith, J., Watson, P., Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Dis-
tributed Query Processing on the Grid. International Journal of High Performance Comput-
ing Applications (2003) (179) (4) 353-367

4. Gounaris, A.: Resource Aware Query Processing on the Grid. Ph.D. Thesis
5. Yang, D.H., Li, J.Z., Rasool, Q.: Join Algorithm Using Multiple Replicas in Data Grid. In:

Fan, W.F., Wu, Z.H., Yang, J. (eds.): Proceedings of the International Conference on Ad-
vances in Web-Age Information Management, Springer-Verlag, Berlin Heidelberg New
York (2005) 416-427

6. Yang, D.H., Li, J.Z.: Adaptive join query processing in data grids: exploring relation partial
replicas and load balancing. http://db.cs.hit.edu.cn/donghua~/adaptive.pdf (technical report)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Semantically Equal Join on Strings

Juggapong Natwichai, Xingzhi Sun, and Maria E. Orlowska

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Qld 4072, Australia

{jpn,sun,maria}@itee.uq.edu.au

Abstract. In this paper, we address a data-level data integration prob-
lem where the compared data is semantically equivalent but the data
native representation of the values of given attributes is different. We
assume that a semantic relationship between potentially used terms is
established by a human expert prior to the designed computations, and
is represented in an auxiliary table built and maintained for each at-
tribute. We introduce a notion of semantically equal join (SEJ), which is
the join operation based on pre-defined semantic relationship. Our goal
is to propose a solution for SEJ that can be supported by a standard
SQL.

1 Introduction

The data integration issue is one of the most challenging problems that computer
science and IT practitioners face in the last decade or so. Aside from the inte-
gration problems at schema level [1], the data-level integration problems need
to be addressed. The problem at this level exists due to: potential mismatch
of attributes’ domains, adopted strings to represent attributes’ values, as well
as conventions to express the data fields. Additionally, the data mismatch may
be caused by many other reasons, such as, for instance, typing errors which are
addressed as the approximate string join problem [2,3].

In this paper, a data integration problem where two given relations are joined
with each other on some attributes is considered. In this context, we address the
synonym mismatch problem, i.e., the values of join attributes are semantically
equivalent, but unable to match due to different representation, e.g. different
abbreviation standards. Naturally, on such the attribute domain, the semantic
equivalence relationship between strings needs to be pre-defined. We call the join
operation that are based on this semantic equivalence relationship as semanti-
cally equal join (SEJ).

For example, from Figure 1a, R1 and R2 are two relations which contain the
medical records of two different hospitals respectively. Assume that one issues
a query to find pairs of patients who have the same type of disease. Due to
the fact that in medical domain, strings “Tumours”, “Kunb”, “Neoplasms” are
semantically equivalent and so are the strings “Mad Cow” and “B.S.E.” (Bovine
Spongiform Encephalopathy), the result of the query should be the relation given
in Figure 1b. We can see that this query result can be obtained by joining two

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1041–1044, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1042 J. Natwichai, X. Sun, and M.E. Orlowska

PID Desease PID Desease PID Desease PID Desease
P1 Tumours Q1 Neoplasms P1 Tumours Q1 Neoplasms
P2 Kunb Q2 B. S. E. P2 Kunb Q1 Neoplasms
P3 Mad Cow Q3 Bird Flu P3 Mad Cow Q2 B. S. E.
P4 Bird Flu P4 Bird Flu Q3 Bird Flu

R1 R2
a) Example of relation b) SEJ result

Fig. 1. SEJ Example

relations R1 and R2 on their common attribute “Disease” such that the join
condition is true iff the values of the join attribute are semantically equivalent.

In the rest of this paper, the focus is to formally define the SEJ operation and
to propose an efficient approach to compute SEJ in a standard SQL environment
which is shown in Section 2. Finally, we provide concluding remarks in Section 3.

2 Semantically Equal Join Approach

Let us first consider two relations R1(A1, . . . Am) and R2(B1, . . . Bn) such that
attributes A1 and B1 have the same domain Dom which is a set of strings.

Definition 1. Semantic equivalence, denoted as �, is a relation defined on
a given domain Dom such that for every a, b ∈ Dom, a � b iff a is a synonym of
b. Also, we define a and b are strict semantically equivalent, denoted as a ∼ b,
if a � b and a �= b.

Example 1. Consider the values of the join attribute (Disease) in Figure 1. Dom
in this example is the string set {Tumours, Kunb, Neoplasms, Mad Cow, B.S.E.,
Bird Flu}. We can define the semantic equivalence relation � on Dom as Fig-
ure 2. Also observe that in this example, the strict semantic equivalence rela-
tionship is shown as the right-hand-side of the union operator.

{(Tumours, Tumours), (Kunb, Kunb), (Mad Cow, Mad Cow), (Bird Flu, Bird Flu),
(Neoplasms, Neoplasms), (B.S.E., B.S.E.)} ∪
{(Tumours, Kunb), (Kunb, Tumours), (Tumours, Neoplasms), (Neoplasms, Tumours)
(Kunb, Neoplasms), (Neoplasms, Kunb), (Mad Cow, B.S.E.), (B.S.E., Mad Cow)}

Fig. 2. Semantic equivalence

Definition 2. Given a relation of semantic equivalence �, semantically equal
join (SEJ), denoted as �̃�, is an theta join operator in the relational algebra
such that the theta comparison operator is � .

To perform the semantically equal join between two tables R1 and R2 on at-
tributes A1 and B1, the semantic equivalence relation on domain Dom needs
to be predefined. Since it is straightforward to observe that a string can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Semantically Equal Join on Strings 1043

semantically join with itself, we define a relation Au, called auxiliary table, to
only specify the relationship of strict semantically equivalent, i.e., to give the
information of synonyms in Dom. From Definition 1, it is easy to observe that
semantic equivalence, �, is an equivalence relation1 which partitions Dom into
a set of equivalence classes Ci, i = 1 . . . l. We define the set Ω of non-trivial
equivalence classes, formally, Ω = {Ci | |Ci| > 1} where i = 1 . . . l (only |Ci| > 1
provides the information of synonyms). According to the above discussion, Au
can be regarded as the representation of the set Ω.

For brevity, we will only discuss the SEJ on a single attribute which can be
extended to k attribute readily. The problem statement is given as follows.

Problem statement: Let R1(A1, . . . Am) and R2(B1, . . . Bn) be two relations
such that attributes R1.Ai and R2.Bi (i = 1 . . . k) have the same domain Domi,
where Domi is a set of strings. For each Domi (i = 1 . . . k), let �

i be the equiva-
lence relation defined on Domi and Aui be the auxiliary table that represents the
corresponding strict semantically equivalent relationship. The semantically equal
join (SEJ) problem is: given relations R1, R2 and auxiliary table Au1, . . . , Auk,
express R1�̃�A1�1B1,...,Ak�kBk

R2. by a single SQL statement.

2.1 Schema of Auxiliary Table and Semantically Equal Join

We propose a structure of auxiliary tables, called the group-based approach for
the schema of the auxiliary table. In this approach, given the set Ω, the auxiliary
table Au is defined as Au(Gid, P) = {(i, a) | Ci ∈ Ω and a ∈ Ci}. In Example 1,
the auxiliary table is given in Figure 3a.

Gid P
1 Tumours
1 Kunb
1 Neoplasms
2 Mad Cow
2 B.S.E.

 SELECT *
FROM R1, R2

WHERE A1=B1 OR
((SELECT Gid FROM Au WHERE P=A1)
=(SELECT Gid FROM Au WHERE P=B1))

a) Group-based Au example b) Sub-query-based

Fig. 3. SEJ Approach

Given the schema of Au, the RA expression for the semantically equal join
for this schema is:

R1�̃�R2 ≡(R1 ��A1=B1 R2)∪
((R1 ��A1=P Au) ��Au.Gid=Au′.Gid (R2 ��B1=P Au′))
where Au′ is the copy of Au.

(1)

1 As a equivalence relation, “ � ” has the following property: 1) a � a for all a ∈ Dom,
2) a � b → b � a for all a, b ∈ Dom 3) (a � b) ∧ (b � c) → a � c for all a, b, c ∈ Dom.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1044 J. Natwichai, X. Sun, and M.E. Orlowska

2.2 Query for Implementing SEJ

Given the relational algebra operation in Equation (1), there are multiple ways
to build an SQL statement to compute the semantically equal join. Although
generally, different queries may have the same execution plan in a given DBMS,
in many cases, the way how to write query will affect the execution plan and the
query performance.

We propose an SQL statement which can efficiently compute semantically
equal join in Figure 3b, called sub-query-based SQL statement. The semantic
meaning behind of this query is that two tuples can be joined together if either
the values of the join attributes are the same, or they belong to the same group
in the auxiliary table. Note that when both values of A1 and B1 are not in the
auxiliary table, the condition after ‘OR’ will compare two Null values. In the
standard SQL, the result of Null=Null is ‘unknown’, which will not make two
tuples join.

For the I/O cost for computing the SEJ, when R1 and R2 are joined, for
any pair of tuples which can not equally join, auxiliary table is accessed by the
primary index (on the attribute P) twice to check the semantic join condition.
Note that in practice, auxiliary table is not very large and often can be catched
in the buffer. In this case, the I/O cost of sub-query-based SQL is close to the
cost of equal join of R1 and R2. For above discussion, we can see the sub-query
based approach requires less disk I/O when the size of Au is small.

3 Conclusion

In this paper, we have addressed the problem of synonym mismatch in the con-
text of data integration, where the data from different sources are semantically
equivalent but the data native representation is different. The originality and
contributions of our work include the following aspects: 1) We have introduced
the semantic equivalent relationship to resolve the synonym mismatch problem.
In fact, this study can also complement previous works of approximate string
join that mainly focuses on resolving typo mismatch. 2) We have formally de-
fined the concept of SEJ and proposed an efficient approach to implement the
SEJ operator in the standard RDBMS by a single SQL statement.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10 (2001) 334–350

2. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivas-
tava, D.: Approximate string joins in a database (almost) for free. In: Proceedings of
27th International Conference on Very Large Data Bases, Morgan Kaufmann (2001)
491–500

3. Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text joins for data cleansing
and integration in an rdbms. In: Proceedings of the 19th International Conference
on Data Engineering, IEEE Computer Society (2003) 729–731

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrating Similarity Retrieval and Skyline

Exploration Via Relevance Feedback

Yiming Ma and Sharad Mehrotra�

Dept. of Information and Computer Science, University of California,
Irvine, CA, USA

Abstract. Similarity retrieval have been widely used in many practical
search applications. A similarity query model can be viewed as a logical
combination of a set of similarity predicates. A user can initialize a query
model, but model parameters or the model itself may be inadequately
specified. As a result, a retrieval system cannot guarantee that it has
presented all the relevant tuples to the user. In this paper, we propose a
framework that integrates the similarity retrieval and skyline exploration.
Using the relevance feedback as a way to constrain the search space, our
framework can intelligently explore only a necessary portion of data that
contains all the relevant tuples. Our framework is also flexible enough to
incorporate model refinement techniques to retrieving relevant results as
early as possible.

1 Introduction

Similarity retrieval is attractive since it presents results quickly to the user in
relevance order and allows the search to stop when enough results are seen
(as contrasted to a potentially large collection of results from which a user must
choose the relevant ones). A fundamental weakness of the similarity query model
is that it requires a user to accurately specify the model parameters which, given
the complexity of search spaces, might be a difficult (or impossible) task. If the
user does not specify the parameters accurately, the system cannot guarantee to
retrieve all the relevant results. For instance, if the user stops the search after
retrieving k objects because the latest objects retrieved were irrelevant, there
is no guarantee that the unseen objects are also irrelevant. It is possible that
the best answer resides in the unseen results. One approach that can guarantee
the answer set containing best results is by using a skyline [1]. In a skyline
setting, the system pessimistically assumes no knowledge of the query model;
it knows only the similarity predicates in a user’s search. Instead of returning
objects based on relevance to the user, a skyline operator returns a set of objects
that are not dominated by any other object in at least one similarity dimension
(formed by a similarity predicate). This way, the top result is guaranteed to be in
the return set (irrespective of the user’s similarity query model). While skyline
� This research was sponsored by NSF Award number 0331707 and 0331690 to the

RESCUE project.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1045–1049, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1046 Y. Ma and S. Mehrotra

retrieval offers the guarantee to the best results, it suffers from three problems:
(1) the size of the return set (the skyline) may be large and the skyline size
increases as the dimensionality of the similarity space increases, (2) since the
returned objects are no longer based on any ranking criteria (within a skyline),
if a user stops the search prior to viewing the entire skyline, the top results
may be missed, and (3) it is not an interactive process (i.e., does not consider
relevance feedback).

In this paper, we build a search strategy that combines the positive aspects
of both similarity retrieval and skyline retrieval into one single technique, so
that we can retrieve results in the order of relevance, yet support the notion of
completeness. The key aspect of our technique relies on exploiting the relevance
feedback gathered from a user. We use relevance feedback in two ways, which
also represent the major contributions of this work:

• Initialized by a ranked retrieval, we use irrelevant (negative) feedback to
progressively form an interactive skyline (I-Skyline), which dynamically con-
strains the search space (Section 3).

• Using both relevant (positive) and irrelevant (negative) feedback, we in-
troduce query model refinement techniques to improve the search quality; so
that the relevant tuples will be retrieved more effectively from the search space
bounded by I-Skyline (Described in the full version [3]).

2 Related Work

To the best of our knowledge, no previous work uses relevance feedback as a
bridge to effectively integrate similarity retrieval and skyline retrieval. Our work
significantly differs from these retrieval and refinement approaches (e.g., [7, 4])
since we focus on the existing query formulation, and attempts to give a user a
sense of the query completion as we dynamically prune the search space based
on the user feedback. In addition, our refinement techniques are built on top
of the dynamic search space. The techniques are not available in any of the
refinement systems since those systems may alter the query formulation (e.g.,
predicate addition/deletion). During a search session, a user may never know if
his initial query has been completed or not. In fact, he may be even confused
by the returned tuples since he does not know the exact query formulation used
to rank the returned tuples. Our work is also very different from the work on
skyline (e.g., [5]), which mainly focus on the efficiency issues. Many of these
techniques assumes the ranking function is defined in a feature/data space, and
an index structure (e.g., R-tree) is available in the feature space. By making these
assumptions, it imposes limitations on the query, such that every attribute can
appear at most once in the query, and similarity predicates can only use distance
measures in the feature space. Therefore, it does not support general similarity
queries. Furthermore, it does not exploit the relevance feedback information to
bound the search space or refine the ranking function.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrating Similarity Retrieval and Skyline Exploration 1047

P1: MinPrice (Price, 150)
P2: MinStop(#Stop, 0)
P3: MinFlightTm(FlightTm, 2.5)
P4: ArrTm (ArrTm, 1500)
Query Model: (P1 ∨ (P2 ∧ P3)) ∧ P4

Fig. 1. Example Similarity
Predicates and Query Model

OR

P1

P2

W3 W4

P3

P4

W5 W6

AND

W1 W2

AND

Fig. 2. A Logic Tree
(P1 ∨ (P2 ∧ P3)) ∧ P4

1

2
3

4

1.0

1.0

P1: LeastPrice(Price, 150)

P
3

:
L

e
a

st
T

m
(F

l i
g

h
tT

m
,2

.5
)

Fig. 3. Skyline on P1,
P3

Terminology Explainations
Similarity Predicate Similarity based logic predicate.
Query Model (Q) A logic combination function built on top of the similarity predicates.
Logic Combination Function Used exchangeably with query model.
Monotone Function Defined in [2], a query model is also a monotone combination function.
Parameters in Query Model Weights and p values used in the query model (P-Norm [6]).
Logic Tree (LT) An operator tree representation of query model.
Full Similarity Space (FS) A similarity space defined by all the similarity predicates.

Fig. 4. Terminologies

3 I-Skyline Framework

In Figure 4, we summarize the concepts and the terminologies used in this paper.
In this paper, we assume that users can specify all the similarity predicates of
interest to their information needs. We focus on the similarity query model which,
when similarity semantics are involved, can be difficult to specify correctly. For
instance, a flight ticketing database has four attributes: price, number of stops,
flight time, and time of arrival. A typical query is to find flights that conform to
a certain desirable hypothesis expressed as a similarity query. In our example,
the search has four similarity predicates: MinPrice, MinStop, MinFlightTm
and ArrTm with obvious semantics. Figure 1 shows an example of similarity
predicates and a query model. Given a data tuple, the query model aggregates
the predicate level scores to a single relevance score using a set of logical operators
(AND, OR). A user invokes this query to find a flight with the cheapest fare
or least number of stops with the shortest flight time; the flight should also
arrive in Seattle at around 3pm. (P1 ∨ (P2 ∧ P3)) ∧ P4 nicely captures this
search request. In general, a query model using logical operators can be always
viewed as an operator tree. Figure 2 shows such an operator tree; an internal
node is a logical operator, and a leaf node corresponds to a similarity predicate.
Outgoing edges from an internal node connect the components used in a logical
operator. In this paper, we use P-Norm [6] to interpret logical operators. Because
of the tunable parameters (weights and P values), the P-Norm can be expressive.
However, if the initial parameter settings of a query model differ from the ideal
ones, the order of the returned tuples can change considerably. Skyline could
be utilized to retrieve the best answer. Given any d similarity predicates, if we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1048 Y. Ma and S. Mehrotra

Input: Database(D), FullSimSpace(FS), Monotone Comb. Func. (F)
Output: I-Skyline, RelevantSet

1: I-Skyline = ∅, RelevantSet = ∅
2: RL=compute RankedList(D, FS, F)
3: for each tuple t in RL do
4: if t is NOT Dominated by any tuple t2 ∈ I-Skyline then
5: FB = getFeedbackFromUser(t)
6: if FB == Irrelevant then
7: I-Skyline.insert(t) // Grow I-Skyline set.
8: else
9: RelevantSet.insert(t) // Grow Relevant set.

Fig. 5. I-Skyline Base

define a d-dimensional space on these predicates and project data points into
the space using their similarity scores, the skyline is guaranteed to consist the
best point under any monotone query models [1]. Figure 3 shows an example
of a 2-dimension space defined on predicates P1 and P3 in Figure 1. A skyline
retrieval will return tuples 1,2 and 4.

Instead of retrieving one best record as the skyline retrieval, in this paper,
the goal is to retrieving all the relevant tuples. We assume there is an optimal
query formulation Qopt. The relevant tuples are a list of top tuples that having
similarity scores above a threshold τ . Without knowing the Qopt and τ , the
problem is how to retrieve all the relevant tuples with minimum number of
irrelevant tuples given an initial query Q.

We now present the framework I-Skyline algorithm called I-Skyline Base in
pseudo-code (Figure 5). We first define I-Skyline as a skyline on all irrelevant tu-
ples in a given full similarity space FS (Figure 4). The algorithm I-Skyline Base
sits in between a ranked retrieval system (line 2) and a user. It interacts with
the user (line 5) and progressively selects tuples that the user needs to see (line
3 to 9). During the process, only two sets – I-Skyline set and Relevant set – are
dynamically constructed (line 7 and line 9). It can be formally proved that these
two sets contain necessary (optimal) set of tuples that the user needs to interact
with if there is no prior knowledge to the query model.

The baseline algorithm can be easily extended and enhanced in various ways
such as exploiting the partial knowledge provided to the query structure or
aggressively improving the retrieval quality by incorporating various refinement
and learning techniques. In the full version of this paper [3], we provide detail
discussions and extensive evaluations to these strategies.

References

1. S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE. 2001.

2. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

3. Y. Ma and S. Mehrotra. I-skyline: A systematic approach in integrating similar-
ity retrieval and skyline exploration via relevance feedback. UCI Technical Report
available at http://www. ics. uci. edu/˜ maym/publications/iskyline. pdf, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrating Similarity Retrieval and Skyline Exploration 1049

4. Y. Ma, S. Mehrotra, and Q. Zhong. RAF: An Activation Framework for Refining
Similarity Queries Using Learning Techniques. In DASFAA, 2006.

5. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In SIGMOD, 2003.

6. G. Salton, E. Fox, and H. Wu. Extended boolean information retrieval. Communi-
cations of the ACM, 1983.

7. L. Wu, C. Faloutsos, K. Sycara, and T. Payne. FALCON: Feedback adaptive loop
for content-based retrieval. In VLDB, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Image-Semantic Ontological Framework for

Large Image Databases

Xiaoyan Li, Lidan Shou, Gang Chen, and Kian-Lee Tan

College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
School of Computing, National University of Singapore, Singapore 117543

1 Introduction

In the past decade, the Internet has rapidly become a most prevalent platform for
information sharing and data communications all over the world. This trend has
been enhanced by the wide proliferation of home-used digital photos and videos.
Although the Web has seen numerous applications for photo storage, sharing,
and searching, few image retrieval systems provide satisfactory search service.
The so-called semantic gap and curse of dimensionality are two major barriers
that existing technologies cannot adequately address. In this paper, we propose
a framework to achieve effective and efficient content-base retrieval on images
by addressing the above two issues. That is, we need to narrow the semantic gap
while mitigating the curse of dimensionality.

In our proposed approach, we capture the descriptive properties of images
in two classes of features: textual descriptions and visual features. The textual
descriptions of an image include the content-related annotation words which
carry the semantics of the image. The visual features contain visual properties
such as colors, distribution of colors, and so on.

Our method for bridging the semantic gap is motivated by the following obser-
vation: In a CBIR system, the textual descriptions usually carry more semantics
of images compared to the visual features. As a consequence, textual descriptions
can describe high-level abstractions and concepts, while visual feature similarity
measure is effective only when their semantics are well-correlated. To bridge the
semantic gap, we need to integrate both classes of features together.

Our dimensionality reduction technique is implemented in two phases. In the
first phase, we use an ontological structure (as a simple example shown in Fig.1)
to capture the meaning of the textual data of images. This structure hierarchi-
cally organizes the concepts and their interrelationships for images. Searching
in this structure is based on keywords. In the second phase, visual similarity
computation is performed at a much more limited scale. That is, we perform vi-
sual comparison among only a small subset of images called an Atomic Semantic
Domain (ASD), which share the same semantic unit. The visual descriptors for
different images of the same semantic unit are more selective and therefore the
intrinsic dimensionality in this subset of images becomes smaller.

The remainder of this paper is organized as follows: In section 2, we present
our image-semantic ontological framework. We describe the construction process

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1050–1053, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Image-Semantic Ontological Framework for Large Image Databases 1051

of the framework in section 3. The retrieval technique is proposed in section 4.
Finally, we present the concluding remarks in section 5.

2 The Image-Semantic Ontological Framework

In this section, we introduce the three main data (feature) structures for our
framework, namely a Lexical Hierarchy for organizing words, an Image-Semantic
Ontology for organizing high-level semantics of images, and a set of ASDs for
organizing the visual features within each semantic unit.

The lexical hierarchy for annotation words: The binary lexical relations
captured in the Lexical Hierarchy may have three types: synonym, hyponym and
hypernym. The synonymous words are grouped into one synset, and pointers
are used to describe the relations between a synset and another (hyponym or
hypernym). A word may appear in more than one synset in the Lexical Hierarchy.
We mainly use nouns and some verbs to produce the hierarchy, as we intend to
classify image set according to the taxonomies of semantic categories and the
interrelations among these categories.

The image-semantic ontology: We use an ontology to organize the semantic
concepts of the image collection. The annotation words are used as the data
source for the ontology. By referring to the lexical hierarchy and combining the
generic ontological knowledge and more domain specific semantics, the semantic
ontology is able to capture the underlying ‘general knowledge’ that people have
about physical objects and substances in the world. Fig.1 shows a simple sketch
of our image-semantic ontology, where each node of the ontology tree represents
a ‘category’. The category is more generic at the higher levels and more specific
at the lower levels of the ontology. The formal definition of the representative
information (the representing keyword set and corresponding weight vector) of
each node n has been presented in [2]. The keyword vector of a node in the
higher level is likely to include more generic keywords as hypernyms of some
specific words in its offsprings.

Fig. 1. A simple ontological structure

The atomic semantic domains: Images indexed by the same leaf node of the
ontological structure form a semantic unit, referred to as an Atomic Semantic
Domain. The image semantics are well correlated within each ASD, where the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1052 X. Li et al.

low-level visual features are more discriminative in visual similarity comparison.
By adopting proper dimensionality reduction techniques, a very small number
of parameters for each image is sufficient to capture the distinguishing charac-
teristics within this semantic unit.

3 The Construction Process

In this section, we describe how we collect and organize the textual and visual
features for our framework to generate its data structures.

Textual data collection: We use the annotation words of images as the in-
put source for the Image-Semantic Ontology construction. In our proposal, the
annotation words can be collected via three methods, namely extracting from
the illustration of images, manually adding token words, and automatic image
annotation, as shown in Fig.2.

Extracting from the
Illustration of Image

Smartzone, thestates,
Images, glassware

Glassware

Chunked & tokenized Into words

Filtered & tagged

Automatic Image
Annotation

Manually adding token
words

a0.cpimg.com-image-1C-95-
1226780-55e3-00800060-

167.216.192.98-smartzone-
htestates-images-glassware151201URL: URL:

Chunked & tokenized Into words

Cpimg, com, Image

Filtered & tagged

MISS!

 Firework

Manually add annotation words

Image segmentation

Translation model between words
& blobs (e.g. co-occurrence) Automatic annotate words

 Circle, Icon

Fig. 2. Three methods for annotation words collection

The lexical analysis and hierarchy construction: In this work, we use the
WordNet [3] as our knowledge base to perform the lexical analysis and construct
the lexical hierarchy for the annotation word set. The annotation words that we
collect from the image collection mainly consist of nouns, as well as some verbs
and adjectives that have the potential to reduce the ambiguity when combined
with nouns. The word relations discovered through lexical analysis are organized
into the Lexical Hierarchy. Since WordNet is a full word dictionary, we need to
select the main branch of the WordNet hierarchy and specify our own concepts
to adapt the semantic meanings of the images.

The image-sematic ontology construction: The elicitation of our Image-
Semantic Ontology consults the common-sense knowledge, and domain knowl-
edge, as well as sets of complex agreement rules made by designers together
with domain experts. These are the fundamental resources for constituting a
potentially valuable ontology. By using the keyword set combined with its lexi-
cal hierarchy information, we apply a Generative Hierarchical Clustering (GHC)
pattern [2], from generic to more specific, to construct a tree-like conceptual
taxonomy (see Fig.1) in a top-down fashion. The image dataset is subsequently
partitioned from coarser to finer with respect to their annotation words.

The atomic semantc domains: The visual descriptor for each image is a 64-
dimension normalized vector of wavelet coefficients extracted using Daubechies’

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Image-Semantic Ontological Framework for Large Image Databases 1053

wavelets [1]. To further improve the retrieval performance, we apply a dimen-
sionality reduction technique, the SVD (Singular Value Decomposition) method,
to select the distinguishable features from the visual descriptors.

4 The Retrieval Algorithm

The image query is handled in two phases. The first phase of a query uses the
Image-Semantic Ontology structure, to search for the nodes which contain rele-
vant image semantics. The second phase of a query searches the ASD structures
pointed to by the leaf nodes and fetches the candidate images which are visually-
similar. Given a query keyword set, provided by a user or extracted from a query
example image, the first phase can accelerate the image retrieval by indexing the
dataset through an access method tailored to a sub-domain. An image might be
indexed by multiple leaf nodes based on the results of the relevance probabilis-
tic analysis for its annotation words. To obtain more accurate results that are
both semantically-related and visually-similar, we perform the visual similarity
comparison within the single relevant ASD in the second phase.

5 Conclusion

In this work, we propose a framework which employs an ontological structure
to model and express the semantics in the image collection by using the textual
features of images. The relevant image semantic unit can be quickly located by
searching through this structure based on keywords. Visual similarity comparison
is performed within each local semantic unit to obtain the query results. Our
framework is effective in addressing the semantic gap problem in content-based
image retrieval.

Acknowledgements

This research was funded in part by the National Science Foundation of China,
in grant NSFC No. 60603044.

References

1. J. Z. Wang, G. Wiederhold, O. Firschein, S. X. Wei. Content-based image in-
dexing and searching using Daubechies’ wavelets. Int.J.on Digital Libraries 1(4):
311-328,1998.

2. X. Y. Li, L. D. Shou, G. Chen. A Latent Image Semantic Indexing Scheme For
Image Retrieval On The Web. WISE 2006, LNCS 4255, pp. 315-326, 2006.

3. G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction
to WordNet: an on-line lexical database. International Journal of Lexicography, 3,
235-244(1990).

4. C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground extrac-
tion using iterated graph cuts. Proc.ACM Siggraph, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1054–1057, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Flexible Selection of Wavelet Coefficients
for Continuous Data Stream Reduction

Jaehoon Kim and Seog Park

Department of Computer Science, Sogang University
1-1 Shinsu-Dong Mapo-Gu Seoul Korea 121-742
{chris3,spark}@dblab.sogang.ac.kr

Abstract. In this article, we introduce a continuous data stream reduction
method using wavelets summarization. Especially we consider storing a plenty
of past data stream into stable storage (flash memory or micro HDD) rather than
keeping only recent streaming data allowable in memory, because data stream
mining and tracking of past data stream are often required. In the general
method using wavelets, a specific amount of streaming data from a sensor is pe-
riodically compressed into fixed size and the fixed amount of compressed data
(selected wavelet coefficients) is stored into stable storage. However, our
method flexibly adjusts the number of selected wavelet coefficients for each lo-
cal time section. Experimental results with some real world data show that our
flexible approach has lower estimation error than the general fixed approach.

1 Introduction

Recently a great deal of attention has been driven toward processing data stream in
mobile computing, ubiquitous computing, and sensor network. For example, mobile
healthcare is to use mobile device equipped with biosensors and advanced wireless
communication technology (3G/4G) to analyze the chronic conditions of certain dis-
ease and detect health emergencies [5]. A traffic control system with smart sensors (or
called motes [1]) at major crossroads enable us to monitor and analyze traffic data in
real time.

The infinite extent of streaming data from sensors makes it necessary to periodi-
cally store the past data stream in stable storage, and queries on this past data are also
important. These queries include database queries over the past data stream, together
with analysis and data mining. However, it is impractical to store all the data because
stable storage still has restricted and low capacity in mobile device and motes. There-
fore, the data reduction method such as wavelets [4, 6], histograms, and sampling can
be considered to store much more data.

Problem Definition. Since streaming data are continuous and endless, the limits of
data to be summarized are ambiguous. Therefore, we must calculate local summaries
(i.e., the m wavelet coefficients) periodically for fixed amounts of data, and then store
them independently into stable storage. Let us assume that the data limits are an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Flexible Selection of Wavelet Coefficients for Continuous Data Stream Reduction 1055

arbitrarily long period (e.g., a month, a year, etc.) and mass stable storage can store
the summarized data within the period. Then, the long period can be divided into
multiple time sections for periodic summarization and the size of one local summary
can be decided. Figure 1 shows this environment. Independently summarized data
(equal in size) are stored in each time section of [t1, t2), [t2, t3),…, [ti, ti+1). All inter-
vals close on the left and open on the right.

Fig. 1. Periodic summarization

Let us consider the following problem when using the wavelets technique for this
periodic summarization: the local summarization should be more effective so that the
sum of local estimation errors by the local wavelet coefficients can be close to global
estimation error by the global wavelet coefficients from a single global summariza-
tion. That is, if [tI, tI+1) is the last time section and e[t1, tI+1) is the global estimation
error of the time section [t1, tI+1), it is desirable to satisfy the following: e[t1, tI+1) ≈ U1≤

i≤ I e[ti, ti+1). However, this should be not likely to occur for any other continuous sum-
marizing techniques, so a method to gain much lower overall estimation error (i.e., the
sum of all local estimation errors) is needed.

2 Our Flexible Approach

2.1 Data Based and Query Based Estimation Error

Before introducing the concept of flexible storage allocation, consider the methods for
measuring the estimation error by approximating the original data. We classified them
into two groups: data based method and query based method. For the data based
method, periodic summarization compresses the original data with a lossy-
compression scheme such as the wavelet approach, and calculates the absolute differ-
ence between the decompressed value and the original data value. Let Dk be the origi-
nal kth data value in a specific time section [ti, ti+1) and D'k be the decompressed data
value. The following error measures are defined:

- Absolute error: abs_e[ti, ti+1) = Σk |Dk – D'k|

- Relative error: rel_e[ti, ti+1) = Σk (|Dk – D'k| / |Dk|), Dk ≠ 0.

The overall estimation error for all the local time sections can also be defined as
absolute type (abs_e) or relative type (rel_e), e.g., abs_e = Σi abs_e[ti, ti+1).

One global summarization
…

t3 t4 ti ti+1 t1 t2

…
m m m m

Continuous local summarizations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1056 J. Kim and S. Park

For the query based method, the estimation error is defined as dependent on the re-
sult size of a query. Let Rk be the actual size of a query qk in a specific time section [ti,
ti+1) and let R'k be the estimated size of the query. The absolute and relative errors in a
specific time section can be defined for the given queries as above. In particular, the
p-norm average error has been defined as the estimation error for the given Q queries
in the reference [6], and we use it here. For p > 0:

- Absolute error: abs_e[ti, ti+1) = ((Σ1≤k≤Q |Rk – R'k|
p) / Q)1/p

- Relative error: rel_e[ti, ti+1) = ((Σ1≤k≤Q (|Rk – R'k| / Rk)
 p) / Q)1/p, Rk > 0.

For example, for p = 1, the 1-norm average absolute error is defined as
(Σ1≤k≤Q |Rk – R'k|) / Q, and for p = 2, the 2-norm average absolute error is defined as
√(Σ1≤k≤Q |Rk – R'k|

2) / Q .

2.2 Flexible Selection of Wavelet Coefficients

In the article [3], we already introduced the necessity of summarizing data stream
periodically, using histograms and concept hierarchy besides wavelets. However, the
experiments did not show the significant improvement because they used the data
based estimation error. Due to page limit we skip the details of our algorithm, and we
will concentrate on showing additional experimental results. We refer the reader to
the reference [3]. Our basic idea is to exclude the wavelet coefficients less significant
to reduce the local estimation error of any time section and utilize the saved storage
space from the excluded coefficients for the other time sections.

Table 1 shows the improvement ratio by our flexible approach against the existing
fixed approach, and the surplus storage space of our approach. Some real data streams
provided at the website [7] were used in our experiments: stock data, EEG measure-
ments of an albin rat, and light measurements from motes. And the following query
sets were used for the query based measurement:

{Xi | Xi = a}, {Xi | a ≤ Xi ≤ b}, {Xi | (Xi – Xi-1) ≥ a || (Xi+1 – Xi) ≥ a},

the variable Xi defines an ith data element from a sensor and the constants a and b are
a real number.

The surplus storage space of the existing fixed approach is surely zero because of
the fixed compressing size for all the local time sections, but our flexible compression
can have a surplus space. This surplus space can be used for the later time sections.
The improvement ratio under the query based error measurement shows that the cor-
rectness of the fixed approach is each 8.8 %, 17.1 %, 15.7 % less than that of our
flexible approach. However, the very low improvement ratio under the data based
error measurement shows that our flexible approach is more effective when the esti-
mation error depends on given queries.

The query based error measurement is more advantageous to predefined queries
than ad hoc queries, because it keeps more wavelet coefficients significant to given
queries (but, note that the selected coefficients can also be relevant to ad hoc queries).
The predefined query is one issued before any relevant data has arrived, on the other
hand the ad hoc query is one issued after [2].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Flexible Selection of Wavelet Coefficients for Continuous Data Stream Reduction 1057

Table 1. Improvement ratio by our flexible Approach against the exising fixed appraoch

Query Based Error Measurement Data Based Error Measurement Data Set
Improvement (%) Surplus Space (byte) Improvement (%) Surplus Space (byte)

Stock 8.8 22,604 -3.1 7,580
EEG 17.1 70,808 0 48
Light 15.7 3,148 0.1 6,112
Improvement = {(the overall estimation error of the fixed approach) –
(the overall estimation error of the flexible approach)} / (the overall estimation error of the fixed approach)
× 100 %
The absolute data based measurement and 1-norm absolute query based measurement were used.

3 Conclusions

In this article, we have introduced a periodic data stream summarization for storing as
much information about data as possible with lowering the overall estimation error.
The proposed method is to adjust the compressing size of each local time section
flexibly. Additional experimental results have shown that our flexible approach has
lower estimation error than the existing fixed approach, especially in the case of using
the query based estimation error. Although the query based estimation error is more
advantageous to predefined queries than ad hoc queries, it does not mean that the
selected wavelet coefficients cannot be relevant to ad hoc queries at all.

Acknowledgements. This study is supported in part by the Second Stage of BK21.

References

1. A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, W. Hong, “Model-Driven Data
Acquisition in Sensor Networks”, Proc. 30th International Conf. on VLDB, Toronto, Can-
ada, pp. 588-599, Sept. 2004.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and Issues in Data
Stream Systems”, Proc. the 21th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, Madison, USA, pp. 1-16, June 2002.

3. J. Kim and S. Park, “Periodic Streaming Data Reduction Using Flexible Adjustment of
Time Section Size”, International Journal of Data Warehousing & Mining, Vol. 1, No. 1,
pp. 37-56, Jan. 2005.

4. P. Karras and N. Mamoulis, “One-Pass Wavelet Synopses for Maxium-Error Metrics”,
Proc. 31th International Conf. on VLDB, Trondheim, Norway, pp. 421-432, Sept. 2005.

5. R. S. Istepanian, E. Jovanov, and Y. T. Zhang, “Introduction to the special section on M-
Health: beyond seamless mobility and global wireless health-care connectivity”, Guest Edi-
torial, IEEE Transactions on Information Technology in Biomedicine, Vol. 8, No. 4, pp.
405-413, Dec. 2004.

6. Y. Matias, J. S. Vitter, and M. Wang, “Dynamic Maintenance of Wavelet-Based Histo-
grams”, Proc. 26th International Conf. on VLDB, Egypt, pp. 101-110, Sept. 2000.

7. Time Series Data Mining Archive. http://www.cs.ucr.edu/~eamonn/TSDMA/index.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versioned Relations: Support for Conditional

Schema Changes and Schema Versioning

Peter Sune Jørgensen and Michael Böhlen

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza
Domenicani-3-Dominikanerplatz, I-39100 - Bozen-Bolzano, Italy

{jorgensen, boehlen}@inf.unibz.it

Abstract. We introduce the versioned relational data model, which al-
lows a user to apply conditional schema changes to a populated database
without breaking applications compiled against an existing schema, and
without loss of existing data. Our model is based on keeping a history of
conditional schema changes, and converting tuples on demand to fit the
correct schema in any schema version.

We provide a concrete definition of schema versioning: The ability to
specify an operator on any schema version, such that the tuples in the re-
sult are unaffected by schema versions created after the specified schema
version. Finally, we show that our model supports schema versioning.

1 Introduction

Changing the schema of a populated database without breaking existing appli-
cations and without loss of existing data remains an open issue. A common ad
hoc technique is to add new attributes on demand, and to ignore requests for
removal of attributes. This means, if we add an attribute, we pad the existing
tuples with nulls to make them fit the new schema. Conversely, since we never
remove existing attributes, we must also add nulls to new tuples to make them fit
the schema. Consequently, we may break applications, which rely on the existing
data and the existing schema.

We develop the versioned relational data model, which lets a user apply
schema changes without breaking existing applications. We consider conditional
schema changes as first introduced by Jensen and Böhlen [1]. A conditional
schema change only changes the schema for the tuples, which satisfy a given
condition, e.g., add a SSN attribute to a customer relation, where the condition
is that the customer’s country is USA.

We introduce a concrete definition of the schema versioning for versioned re-
lations: The ability to specify an operator on any schema version, such that the
result is unaffected by schema versions created after the specified schema version.
Consequently, if schema versioning is supported, we can change the schema with-
out breaking applications compiled against an existing schema version. Finally,
we show that our model supports schema versioning.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1058–1061, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versioned Relations: Support for Conditional Schema Changes 1059

2 Versioned Relations

A conditional schema change δ is a 3-tuple: δ = {Φ, A, C}, where Φ is ei-
ther add or remove, A is a set of attributes, and C is a condition. Φ deter-
mines if the conditional schema change adds or removes the set of attributes
A, when the condition C is satisfied. For example, the conditional schema
change {add, {workprg.}, date < 01/01/06} adds the attribute workprg., when date <
01/01/06.

A conditional schema CS is a condition-schema pair: CS = {C, S}. A tuple t fits
a conditional schema {C, S}, if the tuple t satisfies the condition C, and if the same
attributes occur in the schema S and in the tuple t.

Example 1. The tuple t1 = {ID → 281075, date → 01/02/06, comp. → 1000} fits the
conditional schema CS1 = {¬(date < 01/01/06), {ID, date, comp.}}.

A history H is a list of conditional schema changes < δ1, ..., δq >. A schema version V
is a set of conditional schemas {CS1, ..., CSz}. A versioned relation schema VS(H) is
a list of schema versions < V1, ..., Vm >. When we apply a conditional schema change
to a versioned relation schema VS(H): We add the conditional schema change to the
history H , and we add a schema version to the versioned relation schema consisting of
2 conditional schemas for every conditional schema in the previous schema version: (1)
a conditional schema, where the schema and the condition is changed according to the
conditional schema change, and (2) a conditional schema, where we add the negation
of the condition of the conditional schema change.

Example 2. We store information about unemployed citizens in the versioned relation
Unemp. In schema version 1, we store citizens with an ID, a date of unemployment, and
the compensation they receive. In schema version 2, we add a workprogram for citizens,
who have been unemployed since before 01/01/06. In schema version 3, we remove the
compensation for citizens in the Kpilot workprogram. This yields the history H =<
δ1, δ2, δ3 >, where δ1 = {add, {ID, date, comp.}, true}, δ2 = {add, {workprg.}, date <
01/01/06}, and δ3 = {remove, {comp.}, workprg. = Kpilot}. The versioned relation
schema VS(H) is illustrated in Fig. 1.

A versioned relation R(H) is a set of tuples, where every tuple fits a conditional schema
in the versioned relation schema VS(H). We determine the correct schema for a tuple

{true, {id, date, comp.}}

Schema version 1 {¬(date < 01/01/06), {id, date, comp.}}

Schema version 2
{¬(workprg. = Kpilot) ∧ ¬(date < 01/01/06), {id, date, comp.}}

Schema version 3

{workprg. = Kpilot ∧ ¬(date < 01/01/06), {id, date}}

{date < 01/01/06, {id, date, comp., workprg.}

{¬(workprg. = Kpilot) ∧ date < 01/01/06, {id, date, comp., workprg.}}

{workprg. = Kpilot ∧ date < 01/01/06, {id, date, workprg.}}

H1 =< δ1 >
H1 =< δ1, δ2 >

δ2 = {add, {workprg.}, date < 01/01/06}

H1 =< δ1, δ2, δ3 >

δ3 = {remove, {comp.}, workprg. = Kpilot}

ID date comp. workprg.
t1 281075 01/02/06 1000
t2 211153 01/10/05 750 Service
t3 031264 01/12/04 500 Kpilot
t4 190155 01/07/05 750

Schema Version 1

ID date comp. workprg.
t1 81075 01/02/06 1000
t2 11153 01/10/05 750 Service
t3 31264 01/12/04 500 Kpilot
t4 90155 01/07/05 750

Schema Version 2

ID date comp. workprg.
t1 81075 01/02/06 1000
t2 11153 01/10/05 750 Service
t3 31264 01/12/04 500 Kpilot
t4 90155 01/07/05 750

Schema Version 3

Fig. 1. The versioned relation schema VS(< δ1, δ2, δ3 >) and the tuples of the versioned
relation Unemp(H) converted into their correct schema in each schema version

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1060 P.S. Jørgensen and M. Böhlen

t in schema version v of the versioned relation schema VS(H) by applying the first v
conditional schema changes in the history H to an empty schema, where we use the
tuple t to evaluate the condition of each conditional schema change.

Lemma 1. Applying a conditional schema change to a versioned relation schema does
not change the correct schema for a tuple in an existing schema version.

We use the function convert(t, v, Γ, H) to convert the tuple t to fit the correct schema
in schema version v of the versioned relation schema VS(H). In the conversion we
remove attributes, which do not occur in the correct schema, and we add attribute
values, which are missing with mismatch resolutions. A mismatch resolution γ is an
attribute-tuple mapping pair {A, t → x}, where t → x is a mapping from a tuple t to
a value x for the attribute A.

Example 3. Fig. 1 illustrates the tuples of the versioned relation Unemp(H) converted
to their the correct schema in each of the 3 schema versions. Note that, an attribute
is grey, if it is missing in that schema version, and an attribute without a value means
the value is missing in that schema version.

3 Algebra for Versioned Relations and Schema Versioning

In Table 1 we define the following operators: Selection (σv,Γ), projection (πv,Γ), union
(∪v,w,Γ), and difference (−v,w,Γ), where v and w are version numbers, and Γ is a set
of mismatch resolutions.

Example 4. Here we show an example operation, where a legacy application adds a
tuple to the versioned relation Unemp(H) using schema version 2

Unemp ∪2,1,∅ {ID → 130977, date → 03/11/04, comp. → 475, workprg → Kpilot})

This succeeds, since the tuple fits the correct schema in schema version 2.

Table 1. The algebra for versioned relations

σv,Γ [P](R1(H1)) = R2(H1) R2 = {t | t ∈ R1 ∧ P (convert(t, v, Γ, H2))}
R1(H1) ∪v,w,Γ R2(H2) = R3(H1) R3 = R1 ∪ {convert(t, w, Γ, H2)|t ∈ R2

∧ convert(t, w, Γ, H2) =
convert(convert(t, w, Γ, H2), v, Γ, H1)}

R1(H1) −v,w,Γ R2(H2) = R3(H1) R3 = {t1|t1 ∈ R1 ∧ ∀t2 : (t2 ∈ R2
⇒ convert(t1, v, Γ, H1) �= convert(t2, w, Γ, H2))}

πv,Γ [{A1, ... , An}](R1(H1)) = R2(H2) R2 = {{A1 → x1, ... An → xn}|t ∈ R1
∧ t′ = convert(t, v, Γ, H1)
∧ (A1 → x1) ∈ t′ ∧ ... ∧ (An → xn) ∈ t′}
H2 =< {add, {A1, ... , An}, true} >

Definition 1. (Schema versioning) An operator supports schema versioning, when
it can be specified on all schema versions of a versioned relation, such that the tuples
in the result of the operator specified on schema version v are unaffected by schema
versions created after schema version v.

Example 5. Let v be a version number, t be a tuple, H be a history, R(H) be a
versioned relation. Then the unary operator O supports schema versioning, iff the
following constraint is satisfied ∀v : (1 ≤ v ≤ |H| ∧ t ∈ Ov(R(H)) ⇔ Ov(δ(R(H)))).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versioned Relations: Support for Conditional Schema Changes 1061

Theorem 1. The operators in the algebra for versioned relations support schema ver-
sioning.

Proof. The correct schema for a tuple t in schema version v is unaffected by schema
versions created subsequently (cf. Lemma 1).

4 Related Work

Jensen et al.[2] provide an abstract definition of schema versioning as the ability to
query through user-defined interfaces. We provide a concrete definition of schema ver-
sioning for versioned relations: The ability to specify operators on any schema version,
such that the tuples in the result are unaffected by schema versions created after the
specified schema version. In contrast with the abstract consensus definition, we can
show that our model satisfies the concrete definition

Jensen and Böhlen [1] introduced the concept of a conditional schema change, and
proposed a data model with support for conditional schema changes without loss of
existing data. Their model does not ensure that applications relying on the existing
schema will continue to function after a schema change.

Jensen and Böhlen [3] describe how a history of the conditional schema changes can
be used to classify tuples as legacy, current, or invalid tuples. We make full use of the
history of conditional schema changes to determine the correct schema for a tuple in
any schema version.

5 Conclusion

We have provided a concrete definition of schema versioning, and we have defined the
versioned relational data model with a set of algebraic operators. We have shown how
our model supports conditional schema changes and schema versioning.

References

1. Jensen, O.G., Böhlen, M.H.: Evolving relations. In: FMLDO. (2000) 115–132
2. Jensen, C.S., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P.J., Jajodia, S.: A

consensus glossary of temporal database concepts. SIGMOD Record 23 (1994)
52–64

3. Jensen, O.G., Böhlen, M.H.: Current, legacy, and invalid tuples in conditionally
evolving databases. In: ADVIS. (2002) 65–82

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1062 – 1065, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Compatibility Analysis and Mediation-Aided
Composition for BPEL Services

Wei Tan1, Fangyan Rao2, Yushun Fan1, and Jun Zhu2

1 Department of Automation, Tsinghua University, 100084 Beijing, P.R. China
2 IBM China Research Lab, 100094 Beijing, P.R. China

tanwei@mails.tsinghua.edu.cn, raofy@cn.ibm.com,
fanyus@tsinghua.edu.cn, zhujun@cn.ibm.com

Abstract. In Service Oriented Architecture (SOA), the need for inter-service
compatibility analysis has gone beyond what existing service composition/
verification approaches can handle. Given two services whose interface
invocation constraints are described by Business Process Execution Language
for Web Services (BPEL4WS, or BPEL), we analyze their compatibility and
adopt mediation as a light weight approach, to make partial compatible services
work together more adaptively, without changing their internal logic. We
transform BPEL into service workflow net which is a kind of colored Petri net.
Based on this formalism we first analyze the compatibility of two services, and
then devise an approach to check whether there exists any message mediation so
that their mediation-aided composition will not violate the constraints imposed
by either side. Later the method for mediation generation is also introduced. Our
approach is validated through a real life case and further research directions are
pointed out.

1 Introduction

We observed that partial compatibleness is a common phenomenon in real-life web
service composition, that is, two (or more) web services provide complementary
functionality; however, their interaction patterns do not necessarily fit exactly so that
they cannot be directly composed. Current research in web service composition pays
little attention to the partial compatibleness issue.

Recently, the mediation approach is attracting more attention [1-3]. Mediation (or
mediator) wraps heterogeneous services so that they can appear as homogeneous and
therefore is easier to be integrated.

Compared to existing work in service compatibility analysis, our contributions are:

1. We use state space based method to check the existence of mediator rigorously.
2. We propose the guidance to generate mediator to glue two services.

Our motivating scenario comes from the composition of eBay and a third-party
checkout service [4]. eBay, an online auction and shopping service provider, allows a
third party to handle a seller's checkout processes on eBay. In our scenario, we are to
integrate the eBay service with some other third-party checkout service so that buyers
can bid on eBay and checkout on another website. Fig. 1 (a) illustrates the internal
processes of these two services. From the figure we can observe that the messages

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Compatibility Analysis and Mediation-Aided Composition for BPEL Services 1063

Invoke TPC Initiate TPC

Process
FetchToken

Invoke
GetOrderTrans

OrderID, UserID,
SecretID

Process
GetOrderTrans

Response
 GetOrderTrans

OrderID, UserID,
SecretID, PartnerID

UserID,
SecretID

Token

Token, OrderID,
UserID

OrderData

OrderID, UserID

OrderData

Start Start

End End

eBay Third-Party Checkout
(TPC)

Ack.

COReq

(UserID,
SecretID)

eBay Third-Party
Checkout

Composition

Order

Token

(Token, OrderID,
UserID)

Process
FetchToken

Call Third
Party

Checkout

Order = OrderID UserId SecretId

Process
GetOrderTrans

Check &
Initiate a
checkout
process

COReq = Order PartnerId

Invoke
GetOrderTrans

(OrderID,
UserID)

OrderData

Response
GetOrderTrans

P14

P8

P12

P15

P11

P5

P9 P17

P7

P6

P4

P3

P2

P1

P13

P16
OrderData

Ack
P18

(a) (b)

Fig. 1. (a) eBay and third party checkout services (b) SWF-Nets of two services

content and sequence of both services do not fit exactly so that they could not be
directly composed. We will use this example to illustrate our approach in this paper.

2 Solution Approach

Our solution is based on formal model. First, we transform two BPEL services which
are to be composed to SWF-nets (which is a kind of colored Petri net), then we verify
whether the two services are directly composable, if the answer is no, we require data
mapping information. Then we’ll use data mapping to build Communicating
Reachability Graph (CRG) to verify whether there exists a mediator to glue the two
services, and if the answer is yes, we generate the mediator.

Fig. 1 (b) depicts the result of transforming two BPEL service in Fig. 1(a) into
SWF-nets.

Data mapping is to define rules to relate (syntactically/semantically) equivalent
elements of two messages so that two interfaces which belong to different services can
be linked. By specifying the output message of one interface as the input message of
another one, two services can be composed. Data mapping can be at message level,
parts level or element level. In eBay example, we have the following data mapping, as
Table 1 shows, and this data mapping table is given manually.

In order to check whether there exists a mediator to glue two partial compatible
services, we introduce the concept of Communicating Reachability Graph (CRG). The
basic idea of CRG is to construct the reachability graph of two services concurrently,
using data mapping as the communication mechanism. That is, when the source data is
ready, their target should be informed.

Given eBay service 1SN , TPC service 2SN in Fig. 1 (b), and the data mapping I in

Table 1, we can derive 1 2CRG(, ,)SN SN I , as Fig. 2 shows. In Fig. 2, the operation edges

are denoted with solid lines, and the names of the operation transition are labeled on the
lines (for example, the transition Call TPC). The mediation edges are denoted with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1064 W. Tan et al.

Table 1. Data mapping table

Source Target
eBay.Order TPC.COReq.Order

“eBay” TPC.COReq.PartnerId
eBay.Order.(UserID, SercretID) eBay.(UserID, SercretID)

TPC. (OrderID, UserID) eBay.(Token, OrderID,
UserID).(OrderID, UserID)

eBay.Token eBay. (Token, OrderID, UserID).Token

eBay.OrderData TPC.OrderData

(p1, [0 0 0 0 0 1 0 0 0 0],
p14)

(p1, [0 0 0 0 0 1 0 0 0 0], p14)

Marking of the message places
 [p5 p6 p7 p8 p9 p10 p11 p12 p13 p18]

(p2, [1 0 0 0 0 1 0 0 0 0],
p14)

(p2, [0 1 0 0 0 0 1 0 0 0],
p14)

(p3, [0 0 1 0 0 0 1 0 0 0],
p14)

Call TPC

Process
FetchToken

(p3, [0 0 1 0 0 0 0 0 0 0],
p15)

Process
FetchToken

(p2, [0 1 0 0 0 0 0 0 0 0],
p15)

Initiate Checkout

(p2, [0 1 0 0 0 0 0 1 0 0],
p16)

Invoke
GetOrderTrans

(p3, [0 0 1 0 0 0 0 1 0 0],
p16

GetOrderTrans

Process
FetchToken

TPC.COReq

(p3, [0 0 0 1 0 0 0 0 0 0],
p16

(p4, [0 0 0 0 1 0 0 0 0 0],
p16

Process
GetOrderTrans

Response
GetOrderTrans

(p4, [0 0 0 0 0 0 0 0 0 1],
p17

Status of
eBay

Status of
TPC

Marking
notion

eBay.(UserID, SecretID)

Initiate
Checkout

(Token, OrderID, UserID)

(p4, [0 0 0 0 0 0 0 0 1 0],
p16

OrderData

Fig. 2. The Communicating Reachability Graph of eBay and TPC service

dashed lines, and the data obtained by mediation are labeled on the dashed lines (for
example, the transition OrderData).

Proposition 1. Given two SWF-nets SN1 and SN2, and data mapping I (which is
complete and accurate), there exists a mediation MED w.r.t. I, and SN1 and SN2 can be
composed via MED iff CRG (SN1, SN2, I) is well-formed, that is,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Compatibility Analysis and Mediation-Aided Composition for BPEL Services 1065

1) For each reachable marking (starting at M0), the final marking Me is coverable.
2) For each reachable marking M such that M ≥ Me holds, for ∀p s.t. M(p)>Me(p),

p∈ MP1∪MP2.

Due to the limitation of space, we omit the proof details of this proposition. We can
easily verify that in Fig. 2, 1 2CRG(, ,)SN SN I is well-formed. Therefore we claim that
eBay and TPC can be composed with the aid of mediator.

Now we’ll give the method to build the mediator between message places of SN1 and
SN2, if we can judge the existence of mediator by verifying that the CRG is
well-formed.

A mediator between eBay service and TPC service can be generated according to the
information we obtained in CRG, as Fig. 3 illustrates. The mediator transitions are
denoted with black rectangles to differentiate them with operation transitions belonging
to eBay and TPC services.

Fig. 3. Mediator between eBay and TPC

3 Conclusion

In future work, we plan to find more real life cases to validate our idea; at the same
time, we’re going to make further investigations on the properties of data mapping and
its influence on mediation existence and generation.

References

1. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, 1(2): 113–137, 2002.

2. B. Benatallah, et al. Developing Adapters for Web Services Integration. In Proceedings of
the International Conference on Advanced Information Systems Engineering (CAiSE), 2005.

3. D.M. Yellin and R.E. Strom. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems, 19(2): 292-333, 1997.

4. eBay. Third Party Checkout. 2006. http://developer.ebay.com/DevZone/XML/docs/
WebHelp/ Checkout-Third_Party_Checkout.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Reasoning About

XFDs with Pre-image Semantics

Sven Hartmann, Sebastian Link, and Thu Trinh

Information Science Research Centre, Department of Information Systems
Massey University, Palmerston North, New Zealand
{s.hartmann, s.link, t.trinh}@massey.ac.nz

Abstract. The study of integrity constraints has been identified as one
of the major challenges in XML database research. The main difficulty is
finding a balance between the expressiveness and the existence of auto-
mated reasoning tools. We investigate a previous proposal for functional
dependencies in XML (XFDs) that is based on homomorphisms between
data trees and schema trees. We demonstrate that reasoning about our
XFDs is well-founded. We provide a finite axiomatisation and show that
their implication is equivalent to the logical implication of propositional
Horn clauses and thus decidable in time linear in the size of the con-
straints. Hence, our XFDs do not only capture valuable semantic infor-
mation but also permit efficient automated reasoning support.

1 Introduction

The importance of XML integrity constraints is due to a wide range of appli-
cations ranging from schema design, query optimisation, efficient storing and
updating, data exchange and integration, to data cleaning [3]. Several classes
of integrity constraints have been defined for XML including functional depen-
dencies [1,4,5,6,8,9,10,11]. While there is a well-accepted single concept for the
notion of functional dependency in relational databases the complex nature of
XML data has resulted in various proposals for XFDs that deviate in their ex-
pressiveness but are all justified as they naturally occur in XML data.

For an example consider the XML data tree in Figure 1 that stores simple
purchase profiles showing customers, the items they bought (an item is a pair
consisting of an article and its price) and the discount received for the purchase.
In the data tree the same articles have the same price. This observation is likely to
be called a functional dependency between the article and its price. In Figure 2,
this functional dependency is no longer valid. Still, the data stored in this tree is
not independent from one another: whenever two customers have purchased all
the same items then they both receive the same discount. That is, the set of items
purchased functionally determines the discount. This dependency does not occur
just accidentally but captures important semantic information that should be
satisfied by every legal data tree of this form. Lisa might have received a discount
of 0.5$ since Kiwis for the price of 2$ were on special.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1070–1074, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Reasoning About XFDs with Pre-image Semantics 1071

A
A

E

E E

E

E E

E

E
Root

E Purchase

AA
Customer

Lisa
E

E E

E Purchase

A
A

E

E E

E

E E

Customer

0.5$

Discount

Item

Kiwi

Item

Price

Banana 2$

Bart

Article PriceArticle

1$

Purchase

0$

Discount

Item

PriceArticle

1$Kiwi

Customer
Discount

Item

Price

Item

Article PriceArticle

1$Kiwi 1$Kiwi

Maggie
0$

Fig. 1. XML data tree exhibiting some functional dependency

A
A

E

E E

E

E E

E

E
Root

E Purchase

A
A

E

E E

E

E E

E Purchase

A
A

E

E E

E

E E

Customer
Discount

Item

Price

Item

Article PriceArticle

2$Banana 1$Kiwi

0$
Maggie

Customer

0$

Discount

Item

Kiwi

Item

Price

Bart

Article PriceArticle

1$

Purchase

Banana 2$

Customer
Discount

Item

Price

Item

Article PriceArticle

2$Kiwi Banana 1$

0.5$
Lisa

Fig. 2. Another XML data tree exhibiting another kind of functional dependency

The majority of proposals has considered the first kind of XFDs [1,6,9] which
is reminiscent of earlier research on path-based dependencies in semantic and
object-oriented data models, while this paper studies the second kind [4,10]. We
use the simple XML graph model from [4,5]. An XML tree is a rooted tree T
with node set VT , arc set AT , root rT , and mappings name : VG → Names and
kind : VG → {E, A}. The symbols E and A indicate elements and attributes.
A data tree is an XML tree T ′ with string values assigned to its leaves. Two
data trees T ′ and T are value-equal if there is a value-preserving isomorphism
between them. A schema tree is an XML tree T where no two siblings have the
same name and kind, and with frequencies assigned to its arcs.

A v-walk of an XML tree T is a directed path from a fixed node v to some leaf
of T . A v-subgraph of T is the union of v-walks of T . Clearly, a v-subgraph is an
XML tree again. The empty v-subgraph is denoted by ∅T,v. The total v-subgraph
T (v) is the union of all v-walks of T . Consider two XML trees T ′ and T with
a homomorphism between them. An rT ′ -subgraph U ′ of T ′ is a subcopy of T if

AA

E
Root

E

E E

E

E

E

E

E

E

E

E

E E

*

Purchase

Article Price

DiscountCustomer
Item

E

+ Item

Purchase

Article

Item

Purchase

Price

+

Item

Purchase

Article Price

+ +?

Fig. 3. A schema tree with arc labels for the frequencies, and three of its vPurchase-
subgraphs: the vPurchase-walks [[Article]] and [[Price]], and their union [[Article, P rice]]
(for convenience, we use an example where walks can be identified by their leaf names)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1072 S. Hartmann, S. Link, and T. Trinh

U ′ is isomorphic to some rT -subgraph U of T , and an almost-copy of T if it is
maximal with this property. Given an rT -subgraph U of T , the projection of T ′

to U is the union of all subcopies of U in T ′, and denoted by T ′ |U .
In relational databases, a functional dependency X → Y is satisfied if and

only if any two tuples that agree on their projections to X also agree on their
projections to Y . Surprisingly, it is not that obvious how to translate the concept
of functional dependency to XML. Most importantly, one has to decide what the
tuples in an XML data tree should be. Arenas/Libkin [1] suggested to consider
almost-copies of a schema tree T in a T -compatible data tree T ′ as tree-tuples.
Almost-copies are of interest as T ′ does not necessarily contain copies of T . XFDs
of this kind have been studied in detail, e.g., in [1,5,8,9,11].

2 Deciding Implication of XFDs Based on Pre-images

The homomorphism between a T -compatible data tree T ′ and a schema tree
T induces a mapping of the total subgraphs of T ′ to the total subgraphs of
T . For a fixed node v of T , the pre-images of the total v-subgraph T (v) are
just the total subgraphs rooted at the pre-images of the node v in T ′. In [4]
we suggested to consider pre-images as tree-tuples and gave natural examples
for such XFDs. Given T and v, a functional dependency (XFD, v-XFD) is an
expression v : X → Y where X and Y are non-empty sets of v-subgraphs of T .
T ′ satisfies v : X → Y if and only if for any two pre-images W1 and W2 of T (v)
in T ′ the projections W1 |Y and W2 |Y are value-equal for all Y ∈ Y whenever
the projections W1 |X and W2 |X are value-equal for all X ∈ X .

For example, the data tree in Figure 1 satisfies vPurchase : [[Article, Price]] →
[[Discount]]. This can be checked by inspecting the three tree-tuples, that is, the
total subgraphs rooted at the three pre-images of vPurchase. The data tree in
Figure 2 satisfies the same XFD. This is noteworthy as the latter data tree does
not satisfy the XFD [[Article, Price]] → [[Discount]] when based on almost-copies
as tree-tuples. Note that the definition of v-XFDs should not be simplified to
expressions v : X → Y with single v-subgraphs X and Y as this causes a loss
of expressiveness, e.g., the XFDs vPurchase : [[Article, Price]] → [[Discount]] and
vPurchase : [[Article]], [[Price]] → [[Discount]] are different from one another. In
fact, the data tree in Figure 2 satisfies the former XFD, but not the latter one.

Theorem 1. The inference rules below form a sound and complete set of infer-
ence rules for the implication of v-XFDs:

v : ∅T,v → T (v)
v simple

v : X → Y

Y v-subgraph

of X v : X, Y → X � Y
X,Y reconcilable

(uniqueness) (subgraph) (join)

v : X → Y Y⊆X
v : X → Y

v : X → X ∪ Y
v : X → Y, v : Y → Z

v : X → Z
(reflexivity) (extension) (transitivity)

The uniqueness axiom states that if the path from the root to the node v in
the schema tree T is simple, i.e., does only contain arcs of frequency ? or 1,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Reasoning About XFDs with Pre-image Semantics 1073

then a T -compatible data tree T ′ has at most one pre-image of T (v). The join
axiom gives a sufficient (and also necessary) condition when the projections of
a pre-image W of T (v) on two v-subgraphs X and Y uniquely determine the
projection on their union X � Y . Two v-subgraphs X, Y are called reconcilable
if whenever X and Y share some arc (u, w) of frequency other than ? or 1, then
X contains the total w-subtree of Y or Y contains the total w-subtree of X .

In the sequel we discuss how to decide implication efficiently. Let T be a
schema tree, and v a node of T . The set B(v) of essential subgraphs is defined
as the smallest set of v-subgraphs of T such that every v-walk of T belongs to
B(v) and if X, Y ∈ B(v) are not reconcilable then X � Y ∈ B(v). Note that
two pre-images that coincide on the projections to all members of B(v) must
be value-equal, and B(v) is the smallest set with this property. For a set X of
v-subgraphs of T let ϑ(X) contain all the essential subgraphs in B(v) that are
subgraphs of some member of X and are maximal with respect to this property,
i.e., ϑ(X) = max{Y ∈ B(v) : Y is v-subgraph of X for some X ∈ X}. A T -
compatible XML data tree T ′ satisfies the XFD v : X → Y if and only if T ′

satisfies the XFD v : ϑ(X) → ϑ(Y). We may therefore assume without loss of
generality that every XFD v : X → Y is of the form X = ϑ(X) and Y = ϑ(Y).

Now we establish a correspondence between the implication of XFDs and the
logical implication of propositional Horn clauses. Let ϕ : B(v) → V be a mapping
that assigns propositional variables to the v-subgraphs of T . If σ is an XFD
v : {X1, . . . , Xk} → {Y1, . . . , Yn} on T , then let Πσ be the set of the following n
Horn clauses: ¬ϕ(X1)∨· · ·∨¬ϕ(Xk)∨ϕ(Y1), . . . , ¬ϕ(X1)∨· · ·∨¬ϕ(Xk)∨ϕ(Yn).
If Σ is a set of v-XFDs on T , then let ΠΣ be the union of the sets Πσ, σ ∈ Σ.
Further, the structure of B(v) can be encoded by the set ΠT = {¬ϕ(U)∨ϕ(W) :
U, W ∈ B(v), U covers W}, where a v-subgraph U is said to cover a v-subgraph
W if U is the union of W and just one additional v-walk of T .

Theorem 2. Let Σ ∪ {σ} be a set of v-XFDs on T . Σ implies σ if and only if
ΠΣ ∪ ΠT logically implies Πσ.

Corollary 3. The problem whether Σ implies σ can be decided in time linear
in the total number of essential subgraphs in Σ.

The corollary follows straight from the linear time decidability for the implication
of propositional Horn clauses [2]. Thus, XFDs based on pre-images do not only
occur naturally in XML data but enjoy well-founded reasoning techniques that
can be implemented efficiently for native XML data management. This is in
contrast to many other classes of XML constraints [3].

References

1. M. Arenas, L. Libkin. A normal form for XML documents. ACM ToDS 29, 2004.

2. W. Dowling, J. H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. J. Logic Programming 1, 1984.

3. W. Fan. XML constraints. DEXA Workshops 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1074 S. Hartmann, S. Link, and T. Trinh

4. S. Hartmann, S. Link. More functional dependencies for XML. ADBIS 2003, LNCS
2798.

5. S. Hartmann, T. Trinh. Axiomatising functional dependencies for XML with fre-
quencies. FoIKS 2006, LNCS 3861.

6. M. Lee, T. Ling, W. Low. Designing functional dependencies for XML. EDBT
2002, LNCS 2287.

7. M. Nicola, B. van den Linden. Native XML support in DB2. VLDB 2005.
8. M. Vincent, J. Liu. Completeness and decidability properties for functional depen-

dencies in XML. CoRR cs.DB/0301017, 2003.
9. M. Vincent, J. Liu, C. Liu. Strong functional dependencies and their application

to normal forms in XML. ACM ToDS 29, 2004.
10. J. Wang. A comparative study of functional dependencies for XML. APWeb 2005,

LNCS 3399.
11. J. Wang, R. Topor. Removing XML data redundancies using functional and

equality-generating dependencies. ADC 2005, CRPIT 39.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for

Ubiquitous Environment�

Kyu Il Kim, Hyuk Jin Ko, Hyun Sik Hwang, and Ung Mo Kim

Department of Computer Engineering, Sungkyunkwan University,
300 Chunchun-dong, Jangan-gu, Suwon,
Gyeonggi-do 440-746, Republic of Korea

{kisado, hjko, hhs486, umkim}@ece.skku.ac.kr

Abstract. Ubiquitous environment that is omnipresent is existent every-
where or seems to be always present. Such an environment is a next gen-
eration paradigm in which many invisible computers are integrated into
background of our lives. However, it requires more secure technologies to
protect privacy because user may access information without time and
space restriction. In this paper, we propose the mechanism that a user
is able to automatically access to resource by means of context aware on
ubiquitous computing environments. For this purpose, we exploit Role-
Based Access Control (RBAC) and Mandatory Access Control (MAC)
policies, and defines extended context rules. We also provide an advanced
security authorization mechanism and show how to securely preserve
properties despite of dynamic change of access control privilege.

Keywords: Access Control, RBAC, MAC.

1 Introduction

In ubiquitous environment, connected devices can be aware of the status of the
users and provide information to the users automatically at any time and from
anywhere. This provides with convenience which transcends time and space. But
this can cause problems such as a privacy exposure. A mistake can be abused
immediately by the criminals. And a small error of the system can lead to big
confusion. Security techniques for a ubiquitous computing include access con-
trol, user certification and security protocol. This research focuses on privacy
access control. Privacy takes on an added important in a ubiquitous computing.
Privacy [9] is the ability of an individual or group to keep their lives and per-
sonal affairs out of the public view, or to control the flow of information about
themselves. The problem to happen in a ubiquitous environment is as follows.
For example, we assume if the car moves to the garage when the car is out of
order in the road. In case of existing approach give the driver role to user. And

� This research was supported by the MIC (Ministry of Information and Communi-
cation), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Assessment).

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1075–1085, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1076 K. Il Kim et al.

it sends role information to the garage. But driver role can sends the garage to
sensitive driver career, accident, drunken driving career and driver of personal
as well as general information such as name, address, cars kind and car year.
Even a few privacy violations could lead to user distrust and abandonment of
context-aware systems and to lost opportunities for great enhancements. The
current access control is based on a static infrastructure and is not suitable for
context access control or privacy control. The traditional system technique for
data access is controlled by access control based static security policy. In this pa-
per, we propose the technique to maintain the confidentiality and the integrity
about the private information based on ubiquitous computing. We design the
mechanism to apply existing RBAC/MAC to context rule so that it is suitable
in ubiquitous environment. The paper is organized as follows: Section2 describes
related work in the field of context-aware security. Section3 defines context rules
and Section4 presents the secure context RBAC/MAC architecture. Section5
discusses context-aware policy. Finally, Section6 presents conclusions.

2 Related Works

In this section, we briefly highlight describes several existing access models in-
fluencing work, using environment roles[12] and context-aware access control
models. Context-based security has already been applied in various settings.
Traditional RBAC is discussed in [8,15,16]. A role is a grouping mechanism
used to categorize subjects based on various properties. Individual users in the
RBAC model are called subjects. A subject can use any role that it can en-
ter. Each subject has an authorized role set which consists of all roles that the
subject is permitted to enter. This paper provides a more versatile and more
expressive framework that incorporates the use of context rules, privacy control,
and expanded RBAC. Environment roles are really one component in a Gen-
eralized Role-Based Access Control Model(GRBAC) [11]. GRBAC is a highly
expressive easy-to-use access control model designed with two major goals in
mind: flexibility and simplicity. GRBAC is flexible because it provides a policy
around subject, objects, environmental conditions, or a combination of all three.
In addition, GRBAC is a very simple model. It achieves its goal of flexibility in
policy design, using a single general grouping strategy. In GRBAC, access poli-
cies are defined by subject roles, environment roles and object roles. In the Web
Services area, several mechanisms for controlling access to web services have
been proposed. An XML access control language (XACL) for web services has
been discussed by Hada and Kudo [6]. XACL does not support roles and does
not handle context information. The OASIS eXtensible Access Control Markup
Language (XACML) specification is based on an extension of XML to define
access control specifications that support notions similar to context based priv-
ilege assignments [7]. However, it does not directly support the notion of roles.
We present a framework for context RBAC/MAC access control to support the
above problems.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for Ubiquitous Environment 1077

3 Secure Context RBAC/MAC Model

Our model is a context-aware access control framework for the design and pri-
vacy in ubiquitous environment. In this section, we define Context RBAC/MAC
model which enables privacy control in context-aware system. Traditional RBAC
is very useful. However, it suffers from subject-centric limitations that restrict
the policy designer to a subject-oriented viewpoint. That is, the RBAC leaks
the strength of security because constraints are only applied to the subject. The
access decision is based entirely on the permissions associated with the privacy
control, in order to enhance security. RBAC cannot support time-dependent ac-
cess control, so that, for example, subjects can only access object O between
10:00∼18:00 on weekdays. So RBAC cannot easily support context based ac-
cess control. New model distinguishes two different mechanisms. Context Rules
support user situation by time, location, or other contextual information that is
relevant to access control. It is flexible enough to support policies that make use
of security relevant context rules to control access to objects. As shown in Fig.1,
our model provides integration mechanism for mandatory and uses role-based
access control. Role assignment of subject doesn’t be assigned the administrator
but role be assigned automatically by context rules in ubiquitous environment.

3.1 Context Rules

In terms of context, the proposed model describes the properties and structure
of context information. In the realm of ubiquitous computing, ”context” refers to
any information of a particular circumstance, object, or condition surrounding
a user considered relevant to the interaction to the user and ubiquitous com-
puting environment. This section defines the context, context type, and context
expression terms.

Definition 1. (Context) Subject’s context information(CI) (e.g. Location, Time,
Environment, etc).

CI = c1, c2, c3, c4, cm, where cm ∈ CI

There are different types of contexts can be used by application. For exam-
ple Location contexts, information context, personal contexts, social contexts,
and system contexts, etc. Context type can be formally defined as follow:

Definition 2. (Context Type) A Context type is a pair (ct id, attribute) and
attribute compose a triple CTA = [attr name, attr domain, attr value].

Example 1. The following is example of context type.

[Location,(University, string, SungKyunKwan)]
[Time,(morning,integer, 09:00)]
[Environment, (weather, string,fine)]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1078 K. Il Kim et al.

Fig. 1. Secure Context RBAC/MAC Model

The context expression defines conjunction, disjunction, and negation as
operation.

Definition 3. (Context Expression) user id ∈ U , CiCj∈CE then user id(Ci∧Cj)
are context expresstions.

Example 2. The following are example of context expression.

Bob [Location(house, string, floor)∧Time(evening, integer, 18:00)
∧Information(action,string,TV seeing)]

3.2 Lifetime and Time Constraint

This section defines about Lifetime and Time constraints. Lifetime is the time
required between each subject, role and permission creation and completion.

Definition 4. (A lifetime) LT, is a time interval with start time(st) and end
time(et) [st, et], et>st; st/et(year, month, day, hour, min, sec) LTs � Ymeans
X.st ≤ Y.et if X ∩ Y= ∩ Ø, ET≤ST.

Definition 5. (Time Constraint) TC each property executes an object accord-
ing to lifetime, indicating a condition that can be refused. The Time constraint
executes an object, the lifetime of each property must overlap.

Definition 6. (Context Constraint) A context constraint is a clause containing
one or more context expression. It is satisfied if all its context expressions true.
Otherwise it returns false.[2]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for Ubiquitous Environment 1079

Fig. 2. Each S, R, O overlap, it has condition to execute

Context constraints are used to define conditional permissions. With respect
to the terms defined above, a conditional permission is a permission associated
with one or more context constraints. If the system grants subject for access,
only context constraints evaluate to ”true”.

3.3 Subject

To allow for the specification of authorizations not only based on the user iden-
tity, but also on the user characteristics, each user is associated with one or more
credential. A credential is a set of user attributes required for security purposes.
Credentials[1][5] are assigned when a user is created, are updated automatically,
according to the user’s profile. A system distinguishes the correct user for access-
ing credential information. Definition7 is for the privilege specification process
for user name, lifetime and privacy clearance level. In definition8, Privacy con-
trol is used compare P-CLR to P-CLS, and is based on sensitivity level [10].
Therefore subjects are assigned to role R, P-CLR≥P-CLS.

Definition 7. (User) A User, U = [UUserId, ULT , UP−CLR] is an active entity
accessing a client, and satisfied a unique UUserId∈ USERS, ULT ∈ LT, UP−CLR

∈ SLEVEL.

Definition 8. (User Authorization) UA = [UserName, Role, S-Level, CC] and
assigned role using Privacy Control and Context Constraint.

3.4 Role

A role can represent a specific task competency, such as that of a physician or a
pharmacist. A role is a named job function within the organization that describes
the authority and responsibility conferred on a member of the role. Therefore
access controls the invocation of an objects based on the role, the classification
levels of the role and object, the time period when a role can invoke the object,
and the object values under which a role is limited to invoke the object.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1080 K. Il Kim et al.

Definition 9. (User Role) A user role (UR) UR=[URName, URLT , URP−CLS]
uniquely represents a set of responsibilities, and satisfied a unique URName ∈
ROLES, URLT ∈ LT and URP−CLS ∈ SLEVEL.

Definition 10. (User Role Authorization) URA = [UR, O, LT, S-Level, CC]
and executes the object of the role using Privacy Control and Context Constraint.

3.5 Object

The objects are data objects or resource objects represented by data in the
computer system. Access control decisions can be made based on the various
characteristics for objects.

Definition 11-12 defines objects and services. The service can approach an
object by service class and object senior.

Definition 11. (Object) Each object Oij = [Oij
Name, Oij

LT , Oij + Oij
P−CLS,

Oij
CE], Oij(Oij

P−CLS) satisfied a unique Oij
Name ∈ OBJECTS, Oij

LT ∈,
Oij

P −CLS ∈ SLEVEL, Oij
CE ∈ CONTEXT EXPRESSIONS.

Definition 12. (Service) Each Service Si = [Si
Name, Si

LT , Si + Si
P−CLS,

Si
CE], Si(Si

P−CLS)has name Si
Name, LT Si

LT = [min{Si
LT .st}, max{Si

LT .st}]
Si

P−CLS = min{Si
P−CLS = minSi

P−CLS | i = l..m}, Si
CE=min{Si

CE | i =
l...m}.

Table 1. Privacy Control for Driver Role

Table 1-2 is the example to solve access control between the driver and the garage
based on definition 1-12 about previous problem. Role control decides the access
availability of service by context constraint and lifetime.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for Ubiquitous Environment 1081

Assumption

1.All of the users assigns role by our mechanism.
2.The assigned driver role limits to fifth general information and four privacy
information.
3. The garage is company to sign at certificate authority.

Bob be assigned the driver role of S-clearance by situation information among
many the roles such as table 1. If the car is out of order in the road as previous
problem, new mechanism not sends all information of the role like existing solu-
tion. The driver role separates general information and privacy information by
proposed methods. General information limits the approach by role control, life-
time, and context constraint. And privacy information applies MAC concept to
protect privacy besides them. As shown table 2, the garage obtains the informa-
tion of the customer to request the service. But, the garage gets the information

Table 2. Privacy Control for the garage

of different customer respectively by proposed mechanism. The first Bob case,
the garage is the case to get the information of the car license to confirm whether
they are a stolen vehicle with general information. The second John case, the
garage is the case to get the information of the car license and driver accident
career to confirm because it need of the state of car. The third Robert case, the
garage obtained only fourth general information such as table 2. The reason is
because role information became the violation by the restriction condition. Also
if the privacy information is empty like table 2, we are the case which the garage
did not request the privacy information or Robert rejects the request.

4 Secure Context RBAC/MAC Architecture

Sensitive private information must be protected from illegal access. In a ubiq-
uitous computing environment it is essential to protect the privacy of users.
The secure context-privacy architecture should deal with related access, pri-
vacy control, and context information (see Fig3). Context Middleware[3,4,18]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1082 K. Il Kim et al.

Fig. 3. Secure Context RBAC/MAC Architecture

provides user’s location and situation information from sensor, RFID, and Smart
card. For example, the current user situation(date, time, IP address, so on). In
addition, Context Middleware includes managing functionality and filtering the
potentially large amount of situation information that can be generated. The
Context Collection checks the authority information of the user among the sit-
uation information. And it removes the remainder information. The Relation
Manager provides privacy privileges and shared privileges using system access
control policies. If a user requests privacy information in the current situation,
the user accesses privacy control relating to the role of confidentiality and pri-
vacy protection. The context constraints can be applied to privacy control polices
based on individual. But a shard privilege applies the traditional RBAC mech-
anism because it is a common role privilege.

5 Secure Context RBAC/MAC Policy

In the Context-Privacy access control environment, an access control request
has three parameters 〈 S,O,P,C 〉 : subject(S), object(O), role permission(P),
current context(C). Each subject has an authorized role set, consisting of all the
roles that the subject has authorized for use. Permission[10,11,14] refers to the
approval of a particular mode of access to one or more objects in the system.
Objects are data resource objects represented by data in the computer system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for Ubiquitous Environment 1083

Fig. 4. Secure Context RBAC/MAC Architecture

Context is a subject’s situation information. A request in the model comes from
a certain user or subject S, with a set of associated roles.

For example if subjects request 〈 S,O,P,C 〉 from the system, the system
assigns a suitable role to the subject. And the system determines the authority
whether the request is the individual through a situation information analysis of
the user. It enforces access control if the request of the user is a shard authority.
However, if a role refers to privacy privileges, an access control is handled by
Fig4.

6 Conclusion

In this paper, we proposed a mechanism to develop context-aware access con-
trol model based on ubiquitous environment. The mechanism presented context-
aware integration model based on both role-based and mandatory polices. We

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1084 K. Il Kim et al.

are focused on solving the problem of securing privacy policies in ubiquitous
computing. And defined how it to express access control polices.

In addition, we defined context RBAC/MAC that supports security policies
that make use of context rules to control access to objects. The features of
the model include context, privacy, and security mechanisms, and the ability
to dynamically reconfigure access control polices to create different polices for
ubiquitous environment.

As part of future work, we plan to extend our approach by distributed autho-
rization framework underlying our current approach.

References

1. Elisa Bertino, Ravi Sandhu. Database security-Concepts, Approaches, and Chal-
lenges. IEEE Transaction Vol.2, No.1 (2005) 2-19

2. Gustaf Neumann, Mark Strembeck. An Approach to Engineer and Enforce Context
Constraints in an RBAC Environment, Proceeding of the eighth ACM symposium
on Access control models and technologies. (2003)

3. Manuel Roman, Roy H. Campbell, and Klara Nahrstedt. Gaia OS: A middleware
infrastructure to enable Active Spaces. IEEE Pervasive Computing, (2002) 74-83

4. Geetanjali Sampemane, Prasad Naldurg, and Roy H. Campbell. Access control
for Active Spaces. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC) Las Vegas (2002)

5. N.R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A Content-Based Authorization
Model for Digital Libraries. IEEE Transactions on Knowledge and Data Engineer-
ing, (2002) 103-112

6. Hada, S. and Kudo, M.XML Access Control Language: Provisional Authorization
for XML Document, October 2000, Tokyo Research Laboratory, IBM Research.

7. XACML and OASIS Security Services Technical Committee. eXtendible Access
Control Markup Language (xacml) committee specification 2.0. 2005.

8. Gustavo H. M. B. Motta, Sergio S. Furuie. A Contextual Role-Based Access Con-
trol Authorization Model for Electronic Patient Record. IEEE Transactions on
Information Technology in Biomedicine Vol.7 NO.3 (2003) 202-207

9. X.Jiang, J. Hong and J.Landay. Approximate Information Flow: Socially Based
Modeling of Privacy in Pervasive Computing. To be published in proceeding. Per-
vasive Computing, Springer-Verlag, Berlin (2002)

10. Charles E. Phillips, Stenen A. Demurjian. Security Assurance For an RBAC/MAC
security Model, Proceeding of the IEEE, Workshop on Information Assurance
N.Y(2003) 260-267

11. Matthew J. Moyer, Mustaque Ahamad. Generalized Role-Based Access Control,
Distributed Computing Systems, Proceeding of the IEEE, 21st International Con-
ference. (2001) 391-398

12. William Tolone, Gail-Joon Ahn,, and Tanusree Pai. Access Control in Collaborative
Systems, ACM Computing Surveys (CSUR), Vol. 37 Issue 1. (2005)

13. Elisa Bertino, Barbara Catania, Elena Ferrari, and Palolo Perlasca. A System to
Specify and Manage Multipolicy Access Control Models, Proceeding of the IEEE,
Distributed Systems and Networks.(2002) 116-127

14. Michael J.Convington, Wende Long, Srividhya Srinivasan. Securing Context-Aware
Applications Using Environment Roles, Proceeding of the sixth ACM symposium
on Access control models and technologies. (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Context RBAC/MAC Access Control for Ubiquitous Environment 1085

15. R.S. Sandhu, E. J. Cynek, H. L. Fensteink, C.E. Youmank, Role-Based Access
Control Model, IEEE Computer, Vol. 29, No.2, February (1996)

16. Jason Crampton. Specifying and Enforcing Constraints in Role-Based Access Con-
trol, Proceeding of the eighth ACM symposium on Access control models and
technologies (2003)

17. Ahn, G. -J, And Sandhu, R. Role-based authorization constraints specification.
ACM Transactions on Information and System Security Vol.3 issue4 (2000)

18. Corradi, A. Montanari, R. Tibaldi, D. Context-based access for pervasive service
provisioning, Proceedings of the 28th Annual International Vol.1 (2004) 444-451

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1086 – 1097, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extending PostgreSQL to Support
Distributed/Heterogeneous Query Processing

Rubao Lee1,2 and Minghong Zhou1,2

1 Research Centre for Grid and Service Computing, Institute of Computing Technology,
Chinese Academy of Sciences

2 Graduate University of Chinese Academy of Sciences,
PO Box 2704, 100080 Beijing, China

{lirubao,zmh}@software.ict.ac.cn

Abstract. The evolution from relational DBMS to data integration system
brings new challenges to the design and implementation of query execution
engine that must be extended to support queries over multiple distributed,
heterogeneous, and autonomous data sources. In this paper, we introduce our
work on extending PostgreSQL to support distributed query processing.
Although PostgreSQL has no built-in distributed query processor, its function
mechanism provides possibilities for us to integrate data of various data sources
and execute distributed queries. We point out several limitations in
PostgreSQL’s query engine and present corresponding query execution
techniques to improve performance of distributed query processing. Our
experimental results show that the techniques can significantly reduce response
times when running a workload consisting of TPC-H queries.

Keywords: Distributed Database, Query Processing, Performance.

1 Introduction

Modern data intensive applications need to integrate data from multiple distributed,
heterogeneous, and autonomous data sources. To support such applications,
traditional relational database management systems need to be extended to data
integration systems that provide consistent data views on top of various data sources
and support efficient distributed query processing to answer queries over the
consistent data views [1][2].

The evolution from DBMS to data integration systems brings two basic challenges.
The first challenge is how to make data integration using DBMS to be possible.
Because data sources may have various differences in access interface and data
storage, DBMS must provide a flexible and extensible architecture to enable various
sources to be plugged into the system. This is similar to the problem in UNIX kernels
that must provide support for various hardware devices using a consistent device
driver interface. The second challenge is how to improve the performance of
executing distributed queries considering the fundamental change from traditional
disk access to distributed data access.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1087

In data integration, all data are stored in remote data sources and can only be
accessed through specific access interfaces provided by data sources. This is totally
different from traditional DBMS that store all data in local storage devices like
magnetic disks and access data through the file system interface provided by the
underlying operating system. This essential difference makes it necessary for us to
review existing designs and implementations of query execution engines in order to
reduce initial delays and total response times when executing distributed queries.
Several new factors must be considered, such as network latency, network bandwidth,
and capabilities of data sources.

This paper presents our work on extending PostgreSQL to a data integration
system. PostgreSQL is a traditional relational DBMS that has no built-in support to
distributed query processing. However, the function mechanism [3] of PostgreSQL
provides a way to extend the capability of PostgreSQL backend, which forms the
foundation on which users can access and integrate data of various data sources inside
PostgreSQL. This makes data integration to be possible, however, the performance of
executing distributed queries through the function interface in PostgreSQL cannot be
improved if we do not modify the query execution engine. Because a function is a
“black box” for the engine that can only invoke the function through a specific
interface, the interval execution of the function cannot be optimized by the engine.

We highlight two features of our extension in this paper. First, we provide a well-
defined interface of data source wrappers, which enables various data sources to be
plugged into the system. Second, we create and implement several key query
execution techniques in the engine of PostgreSQL so that the performance of
executing distributed queries can be significantly improved. To our knowledge, we
are the first to add distributed query processing in PostgreSQL, although similar
extensions to commercial DBMS products have been proposed [4][5].

This paper is organized as follows. Section 2 presents an overview of adding
distributed query processing in PostgreSQL. In section 3, we discuss the performance
issues of executing distributed queries in PostgreSQL and introduce corresponding
query execution techniques. Section 4 describes various experimental results. Related
work is introduced in section 5. We conclude this paper and introduce our future work
in section 6.

2 Adding Distributed Query Processing in PostgreSQL

PostgreSQL provides function mechanism which allows developers to implement
various extensions to the backend. We can utilize the function mechanism to add
distributed query processing in PostgreSQL. For example, we can create a function
that returns all tuples of a table located in a remote Oracle database and create a view
defined on the results of invoking that function. The function concept is a way of
achieving “resource virtualization” that creates a mapping form the view object in
PostgreSQL to the physical table in the data source, which is the core of data
integration.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1088 R. Lee and M. Zhou

2.1 Data Source Wrapper

A data source wrapper is a software component between PostgreSQL and a data
source, which is like a device driver between the UNIX kernel and a hardware device.
The wrapper component hides the differences in access interface and data storage of
various data sources and provides an abstraction to enable sources to be plugged into
the system. From the point of view of query engine, a wrapper is a set of functions.
We define the interface of each function and allow for various implementations using
any programming language supported by PostgreSQL.

There are two kinds of data source wrappers. The first is for data sources which
can execute standard SQL statements, such as a DBMS. Such a wrapper must
implement a function that takes a SQL statement as one of arguments and returns
result tuples of executing the input SQL statement in the data source. The second is
for data sources which have no support of executing SQL, such as a web page or a
web service. The corresponding function in such a wrapper takes an object name as
the argument and returns all tuples converted from the contents of that object. For any
kind, it is the wrapper that is responsible for transforming specific data types in data
sources to data types supported by PostgreSQL.

2.2 Extended DDL Statements

We provide several extended DDL statements for data integration in PostgreSQL. We
extend the system catalog to store various metadata information, such as properties of
data sources, mappings between local views and remote objects, etc. When processing
distributed queries, the engine needs to utilize the metadata information.

We describe three important DDL statements. The first statement is used to register
a data source wrapper. It must provide the locations of files implementing the wrapper
functions and must tell PostgreSQL whether the wrapper has capability of executing
SQL or not so that the query engine can determine whether it can push part of a query
down to the data source or not. The DDL statement is like:

CREATE DATASOURCE WRAPPER wrapper_name (INSTALL
SCRIPT : 'file_path', EXEC FILE : 'file_path',
CAPABILITY : SQL_SUPPORT | NO_SQL_SUPPORT)

The second statement is used to register a data source. It must specify which
wrapper needs to be used to wrap the data source and must provide the “Access Path”
of the data source which is interpreted and utilized by the wrapper. For example, the
“Access Path” may be a DSN name for an ODBC data source. The DDL statement is
like:

CREATE DATASOURCE datasource_name (ACCESS PATH : 'a
string', WRAPPER: wrapper_name)

The third statement is used to register an object located in a data source. It must
provide the data source name and the object’s unique name in the data source. After
executing the statement, a view is created in PostgreSQL which is mapped to the
remote object. The DDL statement is like:

CREATE RESOURCE resource_name (DATASOURCE :
datasource_name, LOCAL ID : 'object’s ID')

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1089

We take an example to illustrate the above DDL statements. Assume that a table t1
is located in an Oracle DBMS with IP address “10.0.1.1” and a table t2 is provided by
a web service with URL “http://10.0.1.2:8080/multi_tables”. The following DDL
statements can be used to register t1 and t2 into PostgreSQL.

(1): CREATE DATASOURCE WRAPPER wrapper_for_oracle (
INSTALL SCRIPT: ‘/tmp/oracle.sql’, EXEC FILE
‘/tmp/oracle.bin’, CAPABILITY: SQL_SUPPORT);

(2): CREATE DATASOURCE ds_oracle (ACCESS PATH:
‘10.0.1.1/db/username:passwd’, WRAPPER:
wrapper_for_oracle);

(3): CREATE RESOURCE ds1.t1 (DATASOURCE: ds_oracle,
LOCAL ID: ‘t1’);

(4): CREATE DATASOURCE WRAPPER wrapper_for_ws (INSTALL
SCRIPT: ‘/tmp/ws.sql’, EXEC FILE ‘/tmp/ws.bin’,
CAPABILITY:NO_SQL_SUPPORT);

(5): CREATE DATASOURCE ds_ws (ACCESS PATH:
‘http://10.0.1.2:8080/multi_tables’, WRAPPER:
wrapper_for_ws);

(6): CREATE RESOURCE ds2.t2 (DATASOURCE: ds_ws, LOCAL
ID: ‘t2’);

After executing these DDL statements in PostgreSQL, two views ds1.t1 and ds2.t2
are created in the database and user can submit queries over the views, such as:
“select * from ds1.t1 natural join ds2.t2”. So far, data integration is realized in
PostgreSQL. In the next section, we will discuss the performance issues.

3 Query Execution Techniques

The function mechanism makes distributed query processing in PostgreSQL to be
possible, however, because PostgreSQL is not designed for processing distributed
queries in nature, some limitations in the query engine exist, so that performance of
distributed query processing is limited. In this section, we first point out these
limitations and then present corresponding query execution techniques.

3.1 Problems of Processing Distributed Query in PostgreSQL

The query execution engine in PostgreSQL is not optimized for execution of
functions because the implementation of a function is a “black box” for the engine.
To reduce initial delays and total response times of processing distributed queries,
we have to overcome several key limitations existing in the query engine of
PostgreSQL.

The first limitation is the materialization policy in implementing FunctionScan
operator. This limitation makes it impossible for clients to obtain initial results rapidly
when issuing a distributed query. When the Next function of FunctionScan operator is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1090 R. Lee and M. Zhou

first invoked, the operator will first store all result tuples returned by invoking the
underlying function into a temporal buffer and then return the first tuple in the buffer
to the parent operator. If the underlying function is used to fetch all tuples from a
remote table in a data source, then in order to get the first result tuple the parent
operator will have to wait for a long time until all tuples have been received by the
FunctionScan operator. This behavior is not acceptable for applications especially
involving Top-K queries.

The second limitation is the fact that PostgreSQL lacks query shipping mechanism
[6] when we add distributed query processing in it by utilizing its function
mechanism. For example, even though a FunctionScan operator has a filter which
indicates which tuples are needed by the parent operator in the query plan tree, the
FunctionScan operator still has to fetch all tuples of the corresponding object in the
remote data source without excluding those tuples that cannot pass the filter.
Obviously, pushing the filter down to the data source can reduce the number of result
tuples transferred over the network. To implement query shipping based on the
FunctionScan operator, the query engine must dynamically adjust arguments of the
underlying function.

The third limitation is the single-threaded implementation of the query engine in
PostgreSQL. For a distributed query involving multiple remote data sources, the
single-threaded query engine can only interact with all the data sources using a
sequential and synchronized way. In this way, once a data source cannot return next
tuples immediately, the whole query engine process will have to be blocked. Ideally,
when the query engine process is blocked by a data source, it still can obtain data
from other data sources by thread scheduling. However, the fact that codes of the
query engine are not thread-safe makes it difficult to achieve this goal inside the
query engine.

In the following subsections, we present three query execution techniques to
overcome these limitations.

3.2 Pipelined Data Fetch

To reduce the initial delay of executing a distributed query, a pipelined data path for
transferring data from the data source to the query engine is required. To archive this
goal, we re-implement the FunctionScan operator using a non-blocking policy.
Whenever the Next function of the FunctionScan operator is invoked, the operator
will fetch next tuple from the underlying wrapper. Therefore, the parent operator in
the query plan tree can rapidly obtain tuples from the FunctionScan operator without
being blocked until the FunctionScan operator receives all result tuples from the
wrapper.

Moreover, to achieve such a pipelined data path, the underlying wrapper must also
be implemented using a non-blocking policy. However, non-blocking execution of a
wrapper may be limited by the data source’s capability. For data sources with
capability of executing SQL statements, we can implement a pipelined wrapper by
holding a cursor to fetch more tuples on demand.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1091

For complex queries involving join across multiple remote relations, reducing
initial delays needs efficient algorithms, such as XJoin [7]. To implement such
algorithms in the query engine, the pipelined execution in FunctionScan and wrappers
must be provided as the prerequisite.

3.3 Query Shipping

Query shipping is to push some computations in the query plan down to data sources
instead of executing them by the query engine of PostgreSQL. Query shipping is only
applied to data sources which can execute SQL statements. We implement query
shipping by adjusting arguments of the function dynamically in the execution of the
FunctionScan operator.

We take an example to illustrate this dynamic adjusting. Assume that “rt_t1” is a
view defined on the result of a function remote_execute with the argument “select *
from t1”. When executing a query over “rt_t1”, the argument string of the function
can be dynamically replaced. For example, when executing the query “select * from
rt_t1 where field_1 > 100”, the corresponding FunctionScan operator can
dynamically replace the argument of the function to “select * from t1 where field_1 >
100” so that execution of the filter can be pushed down to the data source.

Currently, our query shipping implementation supports three kinds of operations
including selection, projection, and sorting. By pushing selection and projection
down to the data source, the amount of data transferred over the network, i.e. the
number of tuples or columns, can be reduced so that the total response time of
query execution can be reduced. Unlike this, the benefit of pushing sorting down is
mainly the reduced initial delays, as illustrated by experimental results shown later.
The default Sort operator in PostgreSQL is a blocking operator that cannot output
the first tuple before it fetched all tuples from its child operator and then sorted
them. However, after pushing sorting down the data source, the Sort operator only
needs to transmit tuples fetched from its child operator, since they have already
been sorted by the data source. Especially, if the data source has additional support
for sorting, such as index or materialized sorting results, the initial delay can be
reduced further. However, whether and how well the total response time can be
reduced by pushing down sorting is dependent on the performance of executing
sorting in data source.

3.4 Start-Fetch

PostgreSQL employs a traditional “one connection, one process” model to execute
each query. In this model, execution of FunctionScan operator is within the same
process of the query engine. If FunctionScan is blocked for some reasons caused by
network transfer or data source response, the whole process will have to wait until
FunctionScan obtains data. During the period of waiting, nothing can be done even
though the query engine can receive data from other data sources.

The goal of Start-Fetch is to utilize intra-query parallelism to hide unnecessary
network latency on the basis of single-threaded query engine. The main idea behind

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1092 R. Lee and M. Zhou

Start-Fetch is to decouple the wrapper execution from the query engine process to
improve parallelism between them. We implement the wrapper as an independent
process and employ a shared-memory mechanism to connect the wrapper and the
query engine.

In nature, Start-Fetch is a way that the query engine process interacts with a
wrapper process based on the iterator execution model [8]. When the Open function
of FunctionScan operator is invoked, the query engine sends request to the wrapper
and the wrapper must immediately return a “ticket” to the query engine. Then, the
wrapper needs to send the request to the data source and receive results
independently in its own process. This is the “Start” step in Start-Fetch. When the
Next function of FunctionScan operator is invoked, the query engine asks for next
tuple from the wrapper using the ticket obtained in the “Start” step. This is the
“Fetch” step in Start-Fetch. The decoupling policy makes parallelism between the
query engine and multiple wrappers to be possible. Start-Fetch provides two
benefits. First, for a query involving multiple data sources, initial delay of each
wrapper for waiting results from data source will not be accumulated because all
requests can be nearly simultaneously sent to the data sources. Second, independent
wrapper process can prefetch more tuples from data sources while the query engine
is consuming old tuples.

4 Experimental Results

In this section, we present the experimentation with our extended PostgreSQL.
Considering no common data integration query benchmark, we use TPC-H [9] (scale
factor 0.1, 100MB) as the basis of our experiments. We use two data sources. The
first one is a Microsoft SQL Server running on a Windows 2003 Server box with a
2.4GHz Pentium IV CPU and 1.5 GB of memory. The second one is a PostgreSQL
8.1 server running on a machine as same as the machine of data source 1. We
implement two wrappers. For the SQL Server, we use unixODBC as the client
library. And for the PostgreSQL, we use libpq. Our extended PostgreSQL is running
on a machine with a 2.8GHz Pentium IV CPU, 768MB of memory, and a FreeBSD
5.4 as the operating system. All machines are connected using a 100Mbit/sec
Ethernet.

We load the 100MB dataset into each data source. We register each table of data
source 1 into our extended PostgreSQL as a homonymic view under the schema ds1
and data source 2 under the schema ds2. For example, the view “ds2.lineitem” is
mapped to the table “lineitem” in the data source 2.

4.1 Pipelined Data Fetch

In this experiment, we examine how well the pipelined FunctionScan and wrapper can
reduce the initial delay when executing a query returning many tuples. The query is
“select * from ds2.lineitem”. The results are shown in Figure 1, which present the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1093

comparison of elapsed times for obtaining different numbers of results. Using a
pipelined data fetch can reduce the initial delay to a very low value without
sacrificing the total response time.

0

5

10

15

20

25

0 100 200 300 400 500 600

Number of Results *1000

T
i
m
e

(
S
e
c
o
n
d
)

pipeline, cursor

default, cursor

Fig. 1. Pipelined data fetch in FunctionScan can significantly reduce the initial delay without
sacrificing the total response time. The number of result tuples is 600572.

4.2 Query Shipping (Sorting)

In the next experiment, we examine how the query execution can benefit from
pushing sorting down. In the experiment, the query is “select * from ds2.lineitem
order by l_orderkey”. Figure 2 shows the results. By pushing sorting down to the data
source, the initial delay can be significantly reduced, especially when the data source
has index on the column l_orderkey of table lineitem to accelerate sorting, although
the total response time is not reduced too much.

0

5

10

15

20

25

0 100 200 300 400 500 600

Number of Results *1000

T
i
m
e

(
S
e
c
o
n
d
)

default

push sorting down, no index

push sorting down, index

Fig. 2. By pushing sorting down, the initial delay can be significantly reduced especially when
the data source has index to help sorting. The number of result tuples is 600572.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1094 R. Lee and M. Zhou

4.3 Start-Fetch

To examine Start-Fetch, we do two experiments. In the first experiment, we use the
query “select *from ds2.lineitem” to examine how prefetching in the wrapper process
can accelerate the query processing. Figure 3 shows that by prefetching next tuples
proactively, the total response time can be reduced by about 30%.

0

5

10

15

20

25

0 100 200 300 400 500 600

Number of Results *1000

T
i
m
e
(
S
e
c
o
n
d
)

start-fetch

default

Fig. 3. By using Start-Fetch, the wrapper can prefetch next tuples while the query engine is
consuming old tuples so that the total response time can be reduced

In the second experiment, we examine how Start-Fetch can hide unnecessary initial
delays when executing a query involving multiple data sources. We create a view
“orders_view” in each data source and register them into our extended PostgreSQL.
The view definition is:

create view orders_view as select * from orders where
o_orderkey in (select l1.l_orderkey from lineitem l1,
lineitem l2 where l1.l_orderkey = l2.l_orderkey and
l1.l_suppkey = l2.l_suppkey and l1.l_partkey =
l2.l_partkey)

Although the view “orders_view” contains as same tuples as the table orders,
there will be a long initial delay to obtain tuples from it. We execute a query “select
* from ds1.orders_view o1, ds2.orders_view o2 where o1.o_orderkey =
o2.o_orderkey”, and force the optimizer to choose sort-merge join in the query
plan, so that each data source will be requested to execute the query “select * from
orders_view order by o_orderkey”. Figure 4 shows that the initial delay and the
total response time can be reduced to 50% if Start-Fetch is enabled. This is because
the two data sources can receive requests from the engine almost simultaneously
and then process their own request independently. By the default execution,
however, two requests will be sequentially sent to data sources so that their initial
delays will be accumulated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1095

0

5

10

15

20

25

30

35

40

45

10 30 50 70 90 110 130 150

Number of Results *1000

T
i
m
e
(
S
e
c
o
n
d
)

start-fetch
default

Fig. 4. Start-Fetch exploits intra-query parallelism to reduce the initial delay and the total
response time when executing the query involving multiple sources

4.4 Running TPC-H Queries

In the next experiment, we test how the combination of all three query execution
techniques can improve the performance when running TPC-H queries. We use TPC-
H queries #1, #3, #5, #6, #7, #8, #9, #10, #12, #13, #14, and #19. In these queries, the
relation for lineitem is the one located in data source 1, and all other relations are
located in data source 2. Figure 5 shows that our query execution techniques can
significantly reduce total response time of executing each query.

Fig. 5. Total response times of executing TPC-H queries

5 Related Work

Several DBMS vendors extend their own DBMS products to support distributed query
processing. In [5], IBM introduces the distributed extension of DB2 on the basis of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1096 R. Lee and M. Zhou

the Garlic prototype. In [4], Microsoft introduces how to employ the OLE DB data
access interface to support distributed/heterogeneous query processing in SQL Server.
Compared with these commercial products, our extension to PostgreSQL is similar in
system architecture and wrapper usage. However, currently we do not provide a
distributed query optimizer as mentioned in these papers and in [10], which is part of
our future work. Nevertheless, the Start-Fetch technique in our extended PostgreSQL
is unique.

Many papers are related to distributed query processing. An overview of
distributed query processing can be found in [1]. In [6], the performance comparison
of data shipping, query shipping, and hybrid shipping in client-server query
processing is presented. Adaptive query execution techniques in data integration can
be found in [11][12]. The XJoin algorithm is introduced in [7], which is an adaptive
scheduling-based pipelined hash join algorithm, and whose multi-join version can be
found in [13]. We are studying XJoin and considering implementing it in our
extended PostgreSQL.

Several papers cover extending PostgreSQL to support new applications.
Telegraph [14] is a dataflow processing system based on PostgreSQL. In [15], the
authors introduce integrating active databases with publish/subscribe using
PostgreSQL and Hermes as the experimental context.

6 Conclusions and Future Work

The evolution from DBMS to data integration systems brings new challenges to the
design and implementation of query execution engine that must be extended to
support queries over multiple distributed, heterogeneous, and autonomous data
sources. In this paper, we introduce our work on extending PostgreSQL to support
distributed query processing. Our distributed extension to PostgreSQL is based on a
well-defined wrapper interface which employs the function mechanism to achieve the
goal of integrating data of various data source. However, due to the fact that
PostgreSQL is not designed for supporting distributed query processing in nature, in
order to improve the performance of executing distributed queries, we have to
overcome several limitations in the query execution engine, which include the non-
pipelined FunctionScan operator, the lack of query shipping mechanism and
synchronized query execution. We present three corresponding query execution
techniques to reduce initial delays and total response times when executing distributed
queries. Our experimental results show that these techniques can significantly
improve performance of our extended PostgreSQL when running a workload
consisting of TPC-H queries.

In the near future, we plan to (a) implement a distributed query optimizer in
PostgreSQL, (b) to implement an XJoin-like pipelined hash join, and (c) to study how
to accelerate executing distributed queries containing subqueries such as the TPC-H
query #4.

Acknowledgments. This work is supported in part by National Natural Science
Foundation of China (Grant No. 90412010 and No.60403023) and the China National
973 Program (No. 2005CB321807).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing 1097

References

1. D. Kossmann. “The State of the Art in Distributed Query Processing.” ACM Computing
Surveys, 32(4), December 2000, pp.422-469.

2. Z. G. Ives. “Efficient Query Processing for Data Integration.” PhD thesis, University of
Washington, August 2002.

3. M. Stonebraker and G. Kemnitz. “The POSTGRES Next Generation Database
Management System”. In Communications of ACM, 34(10),1991, pp.78-92.

4. J.A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan, and M.C. Wu.
“Distributed/Heterogeneous Query Processing in Microsoft SQL Server.” In Proc.ICDE,
2005

5. V. Josifovski, P. Schwarz, L. M. Hass, and E. Lin. “Garlic: a New Flavor of Federated
Query Processing for DB2”. In Proc.SIGMOD,2002

6. M. J. Franklin, B. T. Jonsson, and D. Kossmann. “Performance tradeoffs for Client-Server
Query Processing.” In Proc.SIGMOD,1996.

7. T. Urhan and M. J. Franklin. “XJoin: A reactively-scheduled pipelined join operator.”
IEEE Data Engineering Bulletin, 23(2), June 2000, pp.27-33.

8. G. Graefe. “Query evaluation techniques for large databases.” ACM Computing Surveys
25(2), June 1993, pp.73–170.

9. Transaction Processing Performance Council: http://www.tpc.org/tpch/default.asp
10. L. M. Hass, D. Kossmann, E. L. Wimmers, and J. Yang. “Optimizing queries across

diverse data sources.” In Proc.VLDB,1997.
11. Z. G. Ives, D. Florescu, M. T. Friedman, A. Y. Levy, and D. S. Weld. “An adaptive query

execution system for data integration.” In Proc.SIGMOD,1999.
12. Z. G. Ives, A. Y. Halevy ,and D. S. Weld. “Adapting to Source Properties in Processing

Data Integration Queries” In Proc.SIGMOD, 2004
13. S. Viglas, J. Naughton, and J. Burger. “Maximizing the output rate of multi-join queries

over streaming information sources.” In Proc.VLDB, 2003
14. S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,W. Hong, S.

Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. “TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World.” In Proc.CIDR, 2003

15. L. Vargas, J. Bacon, and K. Moody. “Integrating Databases with Publish/Subscribe.” In
Proc.ICDCSW,2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1098–1109, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Geo-WDBMS: An Improved DBMS with the Function of
Watermarking Geographical Data

Min Huang1, Xiang Zhou2, Jiaheng Cao1, and Zhiyong Peng1,2

1 Computer School, Wuhan University, wuhan, 430072, China
2 State Key Lab of Software Engineering, Wuhan University, wuhan, 430072, China

hm172213@hotmail.com

Abstract. This paper focuses on the issue of geographical data’s copyrights
protection. A Geo-WDBMS has been built by embedding the watermarking
functions into the inner code of the open source DBMS PostgreSQL. And its core
watermarking mechanism is to insert and detect mark bits in the coordinates of
the vertices in geographical objects using the methods of classifying and twice
majority-voting. Further more, error correcting mechanism is used to enhance the
resilience of the system and blind watermark is realized. Experiments on
watermarking digital maps showed that the marked maps are inconspicuous and
robust to various attacks.

Keywords: copyrights protection, watermarking databases, geographical data.

1 Introduction

1.1 Background

Nowadays, pirates and unlimited duplicates of digital products have severely violated
the owners’ rights and interests, so the copyrights protection of digital products is
getting more and more attentions. Database, as a kind of digital product, its copyrights
protection is a hot issue in recent database research [1, 2, and 3] P, which is different from
various studies of DBMS (such as security model, access control, and etc.). Digital
watermark technology provides an effective solution for the problem which can
confirm the data’s ownership or verify the originality of digital contents by inserting
perceptive or imperceptive information into digital products. With regard to relational
databases, some intentional small errors in the data construct imperceptive watermark
information.

Gathering data accounts for more than 80% of the cost of any GIS project. The
reasons for the high cost are: on the one hand, many GIS enterprises are in a heavily
need of geographical data; on the other hand, unlimited copies threatened the owners’
benefits from geographical database, which made the exchanges of Geo-data very
difficult. Outside the GIS community this problem has been known for a long time
using watermarking technology. 2D vector and point datasets have received less
attention from the research community; however, 3D meshes have been considered by
the CAD community and a handful of techniques are available for that case [4]. So how

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1099

to protect the ownership of 2D Geo-data is our research point. The existent resolution
mainly watermarks the vector map as graphics regardless of database aspects [5].
However, effectively combining watermarking technology and database technology is
a trend in non-multimedia data’s copyrights protection.

Watermarking geographical database provides a good resolution for this problem. In
this paper, a Geo-WDBMS is built to protect the Geo-data’s copyrights and it is
implemented through embedding watermarking mechanism into the inner code of
PostgreSQL with the support of PostGIS. PostgreSQL is an open source
object-relational DBMS, and PostGIS adds support for geographic objects to the
PostgreSQL. In effect, PostGIS "spatially enables" the PostgreSQL server, allowing it
to be used as a backend spatial database for geographic information systems (GIS),
much like ESRI's SDE or Oracle's Spatial extension.

1.2 Related Works

Recent years, lots of researches focused on multimedia watermark technology (image,
audio, video and etc.) and its theoretic system of evaluating the watermark methods has
been set up. However, the study of watermarking database for copyrights protection
just came forth in 2002 which was proposed by R.Agrawal in the 28th VLDB
conference. Thus the solution to this ongoing issue is not full-fledged which can not be
theoretically and formally demonstrated and evaluated.

Paper [6] proposed bit-resetting method which can mark the numeric attributes in
relational databases. The basic idea is to reset the selected bit of a specific attribute
value and to validate whether the database contains watermark through the threshold.
But this method just embeds random and meaningless bit-flow, so it can only determine
whether the watermark exists but gives no information of what the watermark is. What
is more, when the attacker changes the schema of the relational table (e.g. cutting an
attribute or simply re-sorting the attributes), it is almost impossible to detect the correct
watermark.

Paper [7, 8] gives a distribution preserving method which inserts a “virtual” mark
through adjusting the distribution of data in each subset. However, to adjust the data’s
distribution is time-consuming and the method is not desirable in withstanding
distortion attack.

In the area of protecting the Geo-data’s copyrights, most researches deal with digital
map as still image and use image watermarking technology, while mark each copy of
the map image is a laborious task. What is more, watermark may impact the topology of
geographical objects in the map, and the customers can not analyze the data in the map
image either. However, many applications need the data in the databases but not only
the images.

Paper [10] puts forward the idea of watermarking the geographical databases with a
secret watermarking method which does not accord with the request of public
watermarking algorithms.

Paper [11] inserts watermark by overlap or interpolation of Geo-data, which tries to
maintain the data’s accuracy at the cost of increasing the quantity of points. However,
the paper does not describe the method clearly and the interpolation method is
CPU-consuming which is hard to meet the need of real-time applications.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1100 M. Huang et al.

Paper [12] proposes a digital watermarking algorithm for vector digital maps. A
watermark bit is embedded by displacing an average of coordinates of a set of vertices
that lies in a rectangular area created by adaptively subdividing the map. However, it
needs original map to detect watermark and does not take the database watermark
technology into account. We aim at blind watermark detection.

1.3 Our Contribution

The major contributions of this paper can be described in 3 aspects:

(1) It is novel to build a DBMS with the function of watermarking relational tables.
To deal with huge amount of relational data, it is more efficient by using a WDBMS
than using a watermarking API package.

(2) We proposed a watermark framework with error correction mechanism (WFEC),
which pays much attention to correcting the errors in the detected watermarks by using
BCH (Bose-Chaudhuri-Hocquenhem) coding method [9].

(3) The WFEC watermarking mechanism is embedded into the inner code of
PostgreSQL and is capable of watermarking all types of geographical data (e.g. point,
line, polygon and etc.) with the support of PostGIS. And the detection of watermark
does not need original Geo-data compared with other related works which need original
data to recover watermarks.

We propose WFEC method which inserts marks into the geographical databases
using public watermarking algorithms. Thus mark bits are hidden in the specific objects
and once the database is watermarked, all the digital maps based on it contain the
marks. Twice majority-voting method makes up for some small mistakes in the
detected watermark-bit caused by all kinds of attacks, so the final detected watermark
won’t be affected badly. BCH error correcting mechanism will enhance the success rate
of watermark detecting, which leads to a better performance.

The rest of the paper is organized as follows. Section 2 gives the framework of the
Geo-WDBMS and introduces general watermarking mechanism. Section 3 discusses
watermarking algorithms. Section 4 provides the implementation of the mechanism in
PostgreSQL and experiment evaluation. Section 5 makes a conclusion and points out
the future work.

2 Framework of Geo-WDBMS

The Geo-WDBMS is built based on the PostgreSQL with the support of PostGIS and
the function of watermarking is realized according to the following framework
represented by Fig. 1.:

During the watermark insertion phase, when a geographical table is ready for
watermarking, the Geo-WDBMS works as follows:

(1) Receive the command “AddWatermark” and recognize the command;
(2) Append the error correction code (ECC) to the watermark information to be

embedded;
(3) Execute the watermark insertion algorithm to watermark the table with the

generated watermark, a provided secret key, and a set of watermark parameters;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1101

(4) If the “AddWatermark” operation succeeds, write the marked data into the disk,
otherwise rollbacks the operation and commits a rollback log.

During the watermark detection phase, for a geographical table which is suspected to
be a pirated copy, the system works as follows:

(1) Receive the command “DecWatermark” and recognize the command;
(2) Execute the watermark detection algorithm to recover watermark information

from the suspected copy;
(3) Run error correction mechanism to correct the errors in the detected watermark;
(4) Compare the corrected watermark with the original one to determine whether or

not the relational table is piratical.

Watermarked TableWatermarked TableWatermarked TableWatermarked TableOriginal TableOriginal TableOriginal TableOriginal Table

Original TableOriginal TableOriginal TableOriginal Table Watermarked TableWatermarked TableWatermarked TableWatermarked Table
Watermarked TableWatermarked TableWatermarked TableWatermarked Table

Fig. 1. Framework of the Geo-WDBMS

2.1 Error Correction Mechanism

Verifying-bits addition and error correction are used to recover from minor mistakes
in the detected watermarks to improve resilience. Because any watermarked data will
be faced with various attacks with a high probability, and an embedded watermark is
very likely to be altered when attacks take place. Therefore, the introduction of error
correction mechanism will make the watermark more robust against malicious
attacks.

There are many error correcting codes applied in the digital watermarking
systems to protect the embedded information against noises, such as BCH
(Bose-Chaudhuri-Hocquenhem) codes [13], RS (Reed-Solomon) codes [14] and Turbo
codes [15]. They are all widely used in communication realm, but BCH and RS codes
are most common ones. BCH codes were demonstrated as good correcting codes and
can correct errors up to approximately 25% of the total number of digits achieving
Shannon limit performance. And it outperforms RS codes for the lower decoding
complexity. As we all know, BCH uses binary coding method to encode messages,
therefore, no evaluation process will be conducted once the error bit is located.

We use BCH (7, 4) code here, that is, the length of code word is 7 bits, the length of
information code is 4 bits and it can correct one bit error.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1102 M. Huang et al.

Fig. 2. Pretreatment of watermarking information

Fig. 2 gives the pretreatment of watermarking information. When the user gives the
watermark information wm, ECC generator produces the corresponding verifying-bits,
that is:

Verifying-bits = ECC (wm);

Then Verifying-bits are appended to the original watermark, that is:

Watermark to be inserted = Original watermark + Verifying-bits.

3 Watermarking Algorithms of Geo-WDBMS

Based on the framework of Geo-DBMS in section 2, we proposed an amplified
bit-resetting watermarking algorithm specified for Geo-data with error correction
mechanism.

3.1 Scheme of Watermarking Geo-data

Vector maps are stored in PostgreSQL as relational tables, and each real object in the
map is stored as a tuple in the relational table. The content to represent the spatial
information is stored in a special attribute, namely geometry attribute. The main
members in the structure of GEOMETRY in PostGIS are defined as follows:

typedef struct
{int32 type;
int32 nobjs;
int32 objType[1];
……
} GEOMETRY;

Divide wm string into several
4-bit subsets wm[i], and generate
3-bit ECC[i] simultaneously
through ECC generator. Then
connect each subset in series to
construct the watermark to be
inserted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1103

An object may have several sub-objects, so in the GEOMETRY structure: ‘nobjs’ is
the number of sub-objects, and ‘objType[1]’ is a length-variable array. ‘objType’ has 3
values: Point, Line and Polygon, which respectively refers to POINTTYPE,
LINETYPE and POLYGONTYPE.

The basic idea of watermarking Geo-data is to insert marks into the coordinates of
vertices in a map. There are three kinds of basic object types (point, line, and
polygon) in GEOMETRY, and they construct complicated object (multipoint,
multiline, and multipolygon). First, each sub-object in a tuple will be uniquely
identified, that is, the identifying granularity is the basic object type; then, they are
dealt with according to their distinct characteristics respectivly, which will be
discussed in detail in section 3.2.

For simplifying the problem, we describe the schema of relational table as R(MSA,
attr1,…attrn): MSA includes at least one attribute and each will be noted as Ai. Assume
attr1, …, attrn are all watermark candidate attributes. There are Ω tuples in table R. Any
tuple in R is represented by t and the values of attri in tuple t are noted as t.attri.

3.2 Watermark Insertion

To watermark a relational table R (MSA, attr1,…,attrn), the parameters used in
watermark inserting are defined as follows:

Table 1. Notation

κ secret key
attri candidate attribute
mark_info original watermark
1/λ Fraction of watermarked tuples to total tuples
ζ Number of the least significant bits in a value
bounds data usability constraints

① Preprocess mark_info: in regard to the properties of BCH (7, 4) code, we divide
the original watermark bit flow into 4-bit sub-watermark noted as
sub-watermark[i] which will be the input of ECC generator to produce
verifying-bits. Thus we get the final form of the watermark information =
{sub-watermark[1] verifying-bits[1] ... sub-watermark[i] verifying-bits[i] ...
sub-watermark[n] verifying-bits[n]} which is shown in Fig. 2. Then repeat
watermark information for repeatnum times.

② Calculate the id of each object: if an object contains several sub-objects, calculate
the id of each sub-object.

③ Sort all the sub-objects by their ids and divide them into several equal-sized
subsets, and the number of subsets equals to the bit length of watermark produced
in step ①. The first object’s id of each subset is kept in the array subset
_boundaries[].

④ Each subset will be marked with one bit of watermark repeatedly: according to the
type of object, the watermark will be inserted into selected objects respectively. As
to a given subset, we select a special bit position in a value and reset it to one bit of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1104 M. Huang et al.

watermark information according to the object’s id. We can repeatedly insert
watermark information to the attribute values and propagate to other attributes.

⑤ Verify whether the watermarked data is among the bounds, or satisfy the semantic
constraints and structural constraints.

Algorithm 1. shows the watermark insertion process:

Algorithm 1. AddWatermark ()
AddWatermark (,attri,MSA,mark_info, , ,repeatnum,bounds)
marks[]=ECC(mark_info[]);//preprocess original watermark
for each tuple t R do
for each sub-object t do
id=Hash(MSA(Ai Ai Aj … Av) sequence of sub-object);

//calculate the id of each sub-object
subset sort all the sub-objects by id and divide into

subsets;
subset_boundaries[] the id of the 1st sub-object;
for (i=0; i<length(marks[]); i++)
mark(subseti);
If (not Constraints.Satisfied(new_data, bounds)) then

//watermarked data is not satisfied with the constraints
{false_array[] id; Rollback}

else commit;

subroutine mark(subseti)
for each sub-object subseti do
if (id % == 0) //watermark the sub-object
{ bit_index j = id % ; //watermark the jth bit of the

value
swtich(geom1->type) //judge the type of the object
{ case Point:
 pt =(Point)geom1; break;
 //get the address of the piont

 case Line:
 {line = (Line)geom1; npoint = line->npoints;

 //get the number of points in the line
i= id % npoint; //watermark the ith point
pt = (point)line->point[i]; break;}

case Polygon:
{npoint = geom1->npoints;

 //get the number of points in the polygon
i = id % npoint;}

if (IsFirstOrEndRing(polygon,i))
 //the point is the start or end of the ring
pt1 = GetAnotherPoint(polygon,i);
 //get the other terminal
IsTwoPoint = true; break; }

ModifyPoint(pt,j,k)//the jth bit of coordinates are set
to k

If (IsTwoPoint)
ModifyPoint(pt1,j,k);}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1105

3.3 Watermark Detection and Error Correction

Firstly, we calculate each sub-object’s id and reconstitute subsets with the assistant of
subset_boundaries[] array. Then, to detect one bit of mark in each subset by the first
majority-voting. Last, to use majority-voting for the second time in all subsets to get the
detected watermark. The majority-voting method can eliminate some small errors.
Thus the mechanism can be more robust to attacks.

As to detect_mark’, using BCH decoding method to correct the errors in the
watermark and to generate final watermark. The subroutine Compare() is to verify the
similarity between original watermark and the detected one. If the similarity is larger
than a threshold, we can suspect piaracy.

Algorithm 2. DecWatermark ()
Detect(attribute,MSA, , , ,repeatnum,subset_boundaries[])

for each tuple t R do
for each sub-object t do
id=Hash(MSA(Ai Ai Aj … Av) sequence of

sub-object); //calculate the id of each sub-object
for (i=0; i<length(marks[]); i++)
{if subset_boundaries[i]< id <subset_boundaries[i+1]
then subset the sub-object; }i

//put each sub-object into its corresponding subset
for (i=0; i<length(marks[]); i++)

temp[]/ extract (subseti);
//extract watermark in each subset

detect_mark/ = majority_voting(temp[]/);
//decide the correct mark bit by majority-voting

detect_mark = Decode(detect_mark);
//error correcting by BCH

compare(mark_info, detect_mark) to verify piracy;

subroutine extract(subseti) return number
for (n=0; n<subset_size; n++)
if ((id mod == 0) && (id not in false_array)) then
bit_index j = id mod ;
temp[] the last jth bit of the marked point;

return majority_voting(temp[])

4 Implementation and Evaluation

The system implementation is in Redhat 9.0 with PostgreSQL 7.2 supported by
PostGIS. C language is used here as to preserve the original coding style of PostgreSQL

Table 2. Experimental environment

CPU Pentium 2.4 GHz
RAM SAMSUNG 512 MB
OS Linux RedHat9.0
DBMS PostgreSQL+PostGIS
SERVER Apache2+PHP

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1106 M. Huang et al.

and can call the inner functions of PostgreSQL in order to attain high performance. The
experimental environment is shown in Table 2.

4.1 Overhead of the System

We ran two experiments to assess the computational cost of watermark insertion and
detection. Performance was measured in elapsed time. Each experiment was repeated
20 times and the overhead ratios were computed from the average of individual trials.

The first experiment evaluated the cost of inserting a watermark. We tried the
worst case by setting λ to 1. In this case, the watermarking algorithm will read and
mark all the tuples. However, on average, half of the tuples will already have the
correct value for the mark. Therefore, we expect that watermarking will update only
half tuples. We compare these latencies to the time required to read all the tuples and
update half tuples. The comparison yielded a ratio of 1.92, showing a rather small
overhead of 92% incurred by watermarking. This overhead is due to the cost of
computing hash values needed to determine the mark for individual tuples and the
cost of BCH coding.

The second experiment assessed the cost of detection. We again chose the worst case
by setting λ to 1 and by choosing the sample size for detecting the watermark to be the
entire relational table. The experiment compared the time required to detect marks in all
the tuples against the time required to simply read all the tuples. The comparison
yielded a ratio of 10.12. This cost seems a little high, however, we should point out that
the major consuming of the cost in detection is the computation of one way hash
functions needed to determine the presence of the mark for each tuple and BCH
decoding procedures.

These results indicated that our algorithms have adequate performance to allow for
their use in real world applications.

4.2 Experiments Evaluation

The function of watermarking in Geo-WDBMS is tested based on large amount of
geometry data which is faced with malicious attacks. We classify all kinds of attacks
into three classes: selection attack, alteration attack, and addition attack. We carry
experiments on a vector map with 1000 tuples: attack the watermarked data with the
three methods and give the robustness evaluations of the watermark. Definition of the
parameters used in the watermarking algorithms can be referred to section 3.2.

4.2.1 Selection Attack
Selection attack is such a kind of attack that selects part of watermarked data aiming to
delete partial watermarks. Fig. 3.a shows the results when watermarked vector map was
attacked by subset selection. Whenλ=1, we can detect the watermark by the ratio of
100% in approximately 50% of data and forλ=5 we can detect by the ratio of 25% in
50% of tuples. This demonstrates that higher the ratio of watermarked data is, the
smaller the fraction of tuples is needed, and better the selectivity of subset is, the higher
the ratio of detected watermark is.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1107

Ω=1000, ζ=10, repeatnum = 5

0

20

40

60

80

100

10 20 30 50 60 70 80 90 100

a selectivity(%)

w
a
t
e
r
m
a
r
k

d
e
t
e
c
t
e
d
(
%
)

λ=1 λ=5

40

60

80

100

5 10 15 20 30 40 50
b randomly bit

alteration(%)

w
a
t
e
r
m
a
r
k

d
e
t
e
c
t
e
d
(
%
)

λ = 5 λ = 1

60

70

80

90

100

5 10 15 20 30 40 50

c subset addition(%)

w
a
t
e
r
m
a
r
k

d
e
t
e
c
t
e
d
(
%
)

λ=5

Fig. 3. (a)Watermark detected in selection attack (b) Watermark detected in alteration attack
(c) Watermark detected in addition attack

4.2.2 Alteration Attack
The attacker may randomly change some data in order to erase the watermark. Fig. 3.b
shows the results of our experiment, when λ=1, we randomly change 50% of tuples by
resetting 1 bit in a value and can detect approximately 79% of watermark. when λ=5,
we can also detect 40% watermark by changing 50% tuples randomly. The results
indicate that with the increasing of λ, the amount of watermark information decreases
and the robustness weakens.

4.2.3 Addition Attack
The attacker may add some tuples to the watermarked table. But this form of attack
almost has little impact to the watermark. In the experiment, the results are similar
whenλ=1 and λ=5, which shows that our algorithm is very robust to such addition
attack. And Fig. 3.c indicates that the watermark survives at least 75% when 50% of
tuples are added.

4.2.4 Other Attacks
Above analyses are the main attacks threatening watermarks. However, there are some
other attacks, for example: mixture attack, additive attack and collusion attack. Mixture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1108 M. Huang et al.

attack is to combine the above three attacks and the robustness to it is analogous to
above analyses. Additive attack is to add another watermark into the watermarked data,
that is, there are two copies of watermark in the data. In the paper [6], Agrawal points
that the probability of the collision of watermark bits is 0.1%, so thus bit-resetting
watermark is robust to additive attack. Collusion attack is that two or more users
carrying different versions of the same data to collude, compare their data, find a part of
embedded watermarks, and make an unauthorized copy by removing or disabling the
original marks. However, this is beyond our scope of focus and there are papers
concerned on the issue particularly.

5 Conclusion and Future Work

In this paper, we have studied the technology of watermarking geographical databases
for verifying piracy. And we proposed a new watermark framework with error
correction mechanism, which pays much attention to correcting the errors in the
detected watermarks by using BCH coding method. Further more, Geo-WDBMS has
been built based on PostgreSQL, which has the function of watermarking numeric data
and geometry data. The method of watermarking Geo-data is designed specially for
geometry data. And the experiments showed that the watermarked digital map is robust
to various attacks.

In the future, on the one hand, with the research of multi-representation maps in our
lab, we will pay more attention to enhancing the robustness of the system by improved
algorithms. On the other hand, in order to trace the illegal digital copies, we will
combine watermark with TSA（Trusted Spotting Agent）technology and thus we can
protect the copyrights of digital products on the network.

References

1. Zhang Yong, Zhao Dong-ning, Li De-yi: Digital Watermarking Techniques and Progress.
Journal of PLA University of Science and Technology, 2003, 4(3), pp.1–5

2. Zhang Li-he, Yang Yi-xian, Niu Xin-xin, Niu Shao-zhang: A Survey on Software
Watermarking. Journal of Software, 2003, 14(2), pp. 268–277

3. Radu Sion, Mikhail Atallah, Sunil Prabhakar: Key Commitment in Multimedia
Watermarking, Jan. 2002 (CERIAS TR 2002-30), http://www.cs.stonybrook.edu/~sion/

4. M. A. Bishr. Geospatial Digital Rights Management with focus on Digital Licensing of
GML datasets. Thesis of the International Institute for Geo-information Science and Earth
Observation. March, 2006.

5. Mark A. Masry: A Watermarking Algorithm for Map and Chart Images. the Proceedings of
the SPIE Conference on Security, Steganography and Watermarking of Multimedia
Contents VII, January 2005.

6. Rakesh Agrawal, Jerry Kiernan: Watermarking Relational Databases. Proceedings of the
28th VLDB Conference, Hong Kong, China, 2002, pp.155–166

7. Radu Sion, Mikhail Atallah, Sunil Prabhakar: Rights Protection for Relational Data.
Proceedings of ACM SIGMOD 2003, San Diego, pp. 98–109

8. Radu Sion, Mikhail Atallah, Sunil Prabhakar: On Watermarking Numeric Sets. Proceedings
of the Workshop on Digital Watermarking IWDW 2002, Seoul, Korea

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Geo-WDBMS: An Improved DBMS 1109

9. Hank Wallace: error detection and correction using the bch code.
http://www.aqdi.com/bch. pdf

10. Xu Zhou, Duyan Bi: Use Digital Watermarking to Protect GIS Data by Chinese
Remaindering. Journal of Image and Graphics, Vo l. 9, No. 5, 2004

11. Kyi Tae Park, Kab Il Kim, Hwan Il Kang, and Seung Soo Han: Digital Geographical Map
Watermarking Using Polyline Interpolation. PCM 2002, LNCS 2532, pp. 58–65, 2002.

12. Ohbuchi Ryutarou, Ueda Hiro, Endoh Shu: Robust watermarking of vector digital maps.
Proceedings of IEEE Conference on Multimedia and Expo 2002 (ICME 2002), Lausanne ,
Switzerland , 2002, 8.

13. P.Shankar: On BCH Codes over Arbitrary Integer Rings. IEEE Trans. Inform. Theory, Vol.
IT-25, pp. 480–483, July 1979

14. Lijun Zhang, Zhigang Cao and Chunyan Gao: Application of RS-coded MPSK Modulation
Scenarios to Compressed Image Communication in Mobile Fading Channel. Proceedings
2000 52nd IEEE Vehicular Technology Conference, VTS-Fall VTC. 2000, Volume: 3, 2000
pp. 1198–1203

15. A.Ambroze, G.Wade, C.Serdean, M.Tomlinson, J.Stander, and M.Borda: Turbo Code
Protection of Video Watermark Channel. IEEE Proceedings-Vision, Image and Signal
Processing, Volume: 148, Issue: 1, Feb 2001 pp. 54–58

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TinTO: A Tool for the View-Based Analysis

of Streams of Stock Market Data

Andreas Behrend, Christian Dorau, and Rainer Manthey

University of Bonn, Institute of Computer Science III
Roemerstr. 164, D-53117 Bonn, Germany

{behrend,dorau,manthey}@cs.uni-bonn.de

Abstract. TinTO is an experimental system aiming at demonstrating
the usefulness and feasibility of applying conventional SQL queries for
analyzing a wide spectrum of data streams. As application area we have
chosen the analysis of streams of stock market data, mainly because
this kind of application exhibits sufficiently many of those characteris-
tics for which relational query technology can be reasonably considered
in a stream context. TinTO is a technical investor tool for computing
so-called technical indicators, numerical values calculated from a cer-
tain kind of stock market data, characterizing the development of stock
prices over a given time period. In contrast to other approaches, TinTO
computes indicator values directly over the database by means of SQL
queries/views.

1 Technical Analysis of Stock Market Data

Technical analysis is concerned with the prediction of future developments of
stock market prices. In contrast to fundamental analysis, it is solely based on
the trading history while ignoring the nature of the company or commodity in
question. Technical analysis uses so-called technical indicators, numerical values
derived from the past development of prices of a certain stock. In principle,
indicators are functions applied to the price history of a certain stock and a
point in time. A technical analyst is usually interested in the change of indicator
values over a certain time period in order to predict the future price development
of the stock to which this indicator has been applied. The simple moving average
of the typical price (SMATP) is an example of a rather simple technical indicator,
defined as follows:

SMATPn(S,D) := (TP(S,D)+TP(S,D-1)+ . . .+ TP(S,D-n+1))/n
TP(S,D) := (high(S,D)+low(S,D)+close(S,D))/3

Here, TP(S,D) denotes the typical price of stock S at day D which is the mean
of the highest, lowest, and closing price of stock S at day D. SMATPn(S,D)
then represents the unweighted mean of the typical stock price of S for the last n
days. The parameter n is provided by the user and usually ranges between 10 and

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1110–1114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TinTO: A Tool for the View-Based Analysis 1111

Fig. 1. Main window of TinTO

200. Moving averages such as the SMATP are used to smooth out short-term
fluctuations, thus highlighting longer-term trends or cycles in the underlying
price history. When the stock price rises above the current SMATP value, this
is interpreted as the beginning of a positive price trend and, thus, may serve as
a buy signal.

2 The TinTo System

In its most basic form, TinTO is not much more than a nice interface for visual-
izing answers to analytical queries evaluated over a relational database of stock
data (cf. Figure 1) together with a simple query editor. The data stored are time-
stamped prices of stocks contained in a portfolio freely configurable from a wide
range of stocks traded worldwide. TinTO is a Visual Basic (VBA) application
based on MS Access. As a frontend it uses the shareware visualizer ChartDirec-
tor [2], a tool supplying a VBA library of well-established methods for drawing
financial charts. Even though ChartDirector comes along with a wide spectrum
of built-in technical indicators (computed by VBA functions) we extended the
tool by a means to specify arbitrary indicators as predefined SQL queries (i.e.,
as views), evaluated directly over the underlying database. The values of these
query-based indicators are visualized by ChartDirector in the same way as those
computed by the tool’s own indicator functions. By extending the tool with a
simple SQL view editor we can offer a system for specifying new and modifying
existing indicator definitions in an extensible manner. The system thus extended
will be called ChartDirector++ in the following. At present we experiment with
some 30 view-based indicators making use of various SQL features. Even though
some interesting indicators cannot be expressed due to restrictions in SQL in
general or its Access dialect in particular, e.g. lack of recursion, SQL has already
proved sufficiently expressive in most cases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1112 A. Behrend, C. Dorau, and R. Manthey

Even though a considerable degree of analysis is reachable this way, hardly
any streaming is involved yet, unless one already considers e.g. the sequence of
daily closing prices of stocks as a very low frequency ”stream”. However, there
are so-called intraday trading strategies which need to access a high frequency
stream. For example, an intraday strategy could employ a time duration D of 3
seconds for computing the value of SMATPn(S,D).

The crucial step towards proper stream management in TinTO consisted in
the addition of a simple VBA script automatically downloading a record of
characteristic values per stock in the port-folio at regular intervals and appending
the downloaded data to those already present in the database. The source we use
is http://finance.yahoo.comwhile the stocks to be included and the frequency
of download can be freely configured by the TinTO user. The software component
thus realized - which we will call StockGrepper in the following - generates a data
stream pulled from a permanent data source on demand as long as the script
is active. This pulling approach enables us to control duration and frequency of
data generation on the stream according to our needs.

3 Continuous Online Analysis of Stock Data

As soon as ChartDirector++ and StockGrepper are combined, a simple form
of online analysis of stocks over continuously changing data can be performed.
There are two independent processes in operation: StockGrepper produces data
and appends it to the database, ChartDirector++ consumes these data and eval-
uates the prefabricated technical indicator definitions as queries over the stream
data accumulated in the database, thus covering newly arrived as well as histor-
ical data depending on a chosen time span. In an initial setting, the producer
process works autonomously with a certain download frequency, whereas the
consumer process is started manually and by need only.

However, as soon as ChartDirector++ is turned into into a semi-automated
tool, too, autonomously updating its presentation of the selected chart in regular
intervals, affairs get more intricate. The SQL definitions of the technical indi-
cators are now turned into continuous queries to be repeatedly evaluated over
a continuously growing database of stock prices [1]. There is a certain analysis
frequency which ought to be at most as fast as the download frequency, but
will probably be considerably slower in most realistic trading scenarios. As long
as the time needed for evaluating each indicator query is less than the differ-
ence between two subsequent ”ticks” of the pull mechanism, synchronization
can easily be obtained by simply alternating between download and analysis. If
the download frequency were increased below the time needed for refreshing the
chart over the database, a buffering strategy would be required, decoupling the
producer process from the consumer process. At present, we do not yet work
with a buffer but keep the download frequency slow enough for being able to
deal with ”naive” synchronization.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

TinTO: A Tool for the View-Based Analysis 1113

Another problem apart from synchronization is the control of the sheer amount
of data pulled from the stream. Even with a moderate download frequency (like
once per minute) and only a handful of stocks in the portfolio, the number of
entries will already challenge a mini-DBMS like Access and even a commercial-
strength DBMS to its limits, so that an archiving strategy would be needed. At
present, a simple archiving script is provided as another component in TinTO,
copying selected entries from the main stream table into special archive tables
at configurable intervals (e.g. once per hour and/or once per day).

4 Efficient Delta View-Based Analysis of Data Streams

Our present experiments with the setting of TinTO outlined so far serves the
purpose of identifying limits of efficiency of technical indicators expressed as con-
tinuous SQL queries against a dynamically growing repository of stored stream
data. Depending on the choice of download and analysis frequency as well as
the power of the DBMS used such limits will be easily reached sooner or later.
However, for quite a wide range of realistic trading strategies even a limited
system like TinTO is already sufficiently powerful to master the data size and
stream frequency needed to perform the required analytical tasks in SQL.

In a further extension of TinTO we try to further push the efficiency lim-
its of view-based technical analysis by computing answers to continuous queries
incrementally rather than to re-evaluate each indicator definition each time a
refreshment is triggered. For this purpose, we record stock data which have
newly arrived since the last evaluation of the indicator in special delta tables,
representing adjacent sliding windows over the monitored stream of stock data.
The view-based definitions of the indicators are then transformed into so-called
”delta views” which restrict computation to determining the effect of the newly
arrived delta facts only. Using delta tables and delta views is not new. In fact,
delta techniques have been proposed in many contributions to the deductive
database literature for efficiently performing ”traditional” DB tasks such as in-
tegrity checking over views and maintenance of materialized views [3]. In our
group, we contributed to the development of delta techniques e.g. within the
international IDEA project during the 1990s (cf. [4]).

In principle, delta views can be automatically compiled from the original
views. At present, we do not yet have a full-fledged delta compiler for arbitrary
SQL views at hand, but perform our experiments with hand-compiled delta
views only. Increase in efficiency of continuous query evaluation obtained so far
in many cases encourages us to continue along this line. However, translating
transformation methods defined mostly in a Datalog context in the literature
on SQL is a non-trivial task (not yet mastered by relational DBMS vendors
even for integrity and view materialization purposes), so that we did not yet
invest too much effort in delta compiler construction before not having convinc-
ing evidence for the usefulness of applying delta techniques in the streaming
context.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1114 A. Behrend, C. Dorau, and R. Manthey

References

1. Shivnath Babu, Jennifer Widom: Continuous Queries over Data Streams.
SIGMOD Record 30(3): 109-120 (2001)

2. Chart Director. http://www.advsofteng.com (09.10.2006)
3. Ashish Gupta, Inderpal Singh Mumick: Materialized Views: Techniques,

Implementations, and Applications. The MIT Press (1999)
4. Ulrike Griefahn, Thomas Lemke, and Rainer Manthey: Chimera Prototyping

Tool: User Manual. Technical Report IDEA.DE.22.O.006, ESPRIT Project 6333
(IDEA), 1996

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Danäıdes: Continuous and Progressive Complex

Queries on RSS Feeds

Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

School of Computing
National University of Singapore

{tokwh,steph,leeml}@comp.nus.edu.sg

Abstract. RSS (Really Simple Syndication) is a format used for the
publication and syndication of web content. While several frameworks,
techniques and algorithms have been proposed and studied for the process-
ing of complex queries on data streams, current RSS reader and aggre-
gator software and services do not propose advanced query facilities.

We designed and implemented a prototype RSS aggregator service,
called Danäıdes, for the processing of complex queries on continuously
updated RSS feeds and of progressively producing results.

We demonstrate the prototype and its several user-interfaces with a
geographical application using geoRSS feeds. This work is a practical
application of our research on progressive query processing algorithms
for data streams.

1 Introduction

RSS (Really Simple Syndication) is an XML format used for the publication
and syndication of web content. Users subscribe to RSS feeds using RSS readers
and aggregators. Although readers and aggregators need to pull and filter data
from the RSS feeds at regular intervals, RSS technology implements web data
streams.

Existing RSS reader and aggregator software and services provide at most ba-
sic keyword-based filtering and simple feed merging. These software and services
do not yet support complex queries. Such a support however would enable the
utilization of RSS feeds to their full potential of continuous data streams and
motivate, in a virtuous circle, the production and consumption of data.

We have designed and implemented a prototype RSS aggregator service, called
Danäıdes, capable of processing complex queries on continuously updated RSS
feeds and of progressively producing results. Users subscribe their queries to the
service in a dialect of SQL that can express structured queries, spatial query and
similarity queries. The service continuously processes the subscribed queries on
the referenced RSS feeds and, in turn, published the query results as RSS feeds.
The user can read the result feed in a standard reader software or service or in
a dedicated interface.

We demonstrate the prototype and its several user-interfaces with a geograph-
ical application using geoRSS feeds. This work is a practical application of our
research on progressive query processing algorithms [1,2,3] for data streams.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1115–1118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1116 W.H. Tok, S. Bressan, and M.-L. Lee

2 Related Work

In [4], the authors describe how commercial databases can be used as a declara-
tive RSS Hub offering structured query capabilities. Since RSS is an XML format
it is also natural (yet beyond the scope of the proof of concept that this paper is
contributing) to consider XQuery for the formulation of complex query on RSS
feeds. In [5], the authors demonstrate the use of XQuery for the filtering and
merging of RSS feeds from several blogs.

Whether supporting SQL or XQuery the query processing engines of the
new aggregators that we propose must be capable of continuously processing
data streams. The above mentioned proposals for complex query in RSS ag-
gregation do not take into account the dynamic and continuous aspect of the
RSS feeds. New algorithms are being developed for the processing of queries on
data streams. The various algorithms proposed, from the XJoin [6] to the Rate-
based Progressive Join (RPJ) [7], Locality-Aware Approximate Sliding Window
Join [8], Progressive Merge Join [9] and our Result-Rate Based Progressive Join
(RRPJ) [3], try and propose non-blocking solutions that maximize throughput.
While [6,7,8] only consider relational data , our solution [3] and [9] can be easily
applied to data in other data models.

As far as we know, this is the first proposal for a continuous query processing
service for RSS feeds aggregation.

3 Scenario and Prototype

The availability of precise, instantaneous, seamless and effortless positioning
with the Global Positioning System (GPS), Galileo and GSM triangulation cou-
pled with or embedded in personal and professional portable devices, equipment
and gadgets allows the geo-tagging of content created anytime anywhere. From
the casual souvenir photographs of a tourist time-stamped, and geo-tagged with
longitude, latitude and altitude, published on Flickr 1 to the critical earthquake
monitoring data from the U.S. Geological Survey [10], geo-tagged data is com-
monly published as RSS feed (A specialization of RSS to publish geographical
data is called GeoRSS [11]).

In this demonstration we show the processing of several complex queries on
multiple GeoRSS feeds. We use data from the United States Geological Survey
Earthquake Hazards Program [10]. We show, in particular, queries involving
relational joins, spatial joins and similarity join (see Figure 1). Results are then
delivered progressively to the user as a GeoRSS feed. The result feed can be
viewed using any RSS reader or aggregator software or service. We use Internet
Explorer 72 The result feed can also be viewed on a 2D or 3D map. We use a
visualization interface that we have developed, which uses Virtual Earth3 [12].
Figure 2 illustrates these user interfaces.
1 Flickr is a trademark of Yahoo! Inc.
2 Internet Explorer is a trademark of Microsoft Corp.
3 Virtual Earth is a trademark of Microsoft Corp.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Danäıdes: Continuous and Progressive Complex Queries on RSS Feeds 1117

Find pairs of earthquake alerts with the same title within 5.6 degree of both latitude
and longitude.

SELECT *
FROM rss("http://earthquake.usgs.gov/eqcenter/recenteqsww/catalogs/
eqs1day-M2.5.xml") a, rss("http://earthquake.usgs.gov/eqcenter/
recenteqsww/catalogs/eqs7day-M5.xml") b
WHERE a.title = b.title and

dist(a.geoLat, a.geoLong, b.geoLat, b.geoLong) < 5.6

Fig. 1. Sample Query

(a) RSS Result Output (Displayed in Internet Explorer 7)

(b) Virtual Earth Augmented with GeoRSS Result

Fig. 2. Various ways of visualizing results from Danäıdes

The Danäıdes prototype consists of a scanner and a query processing engine.
The scanner periodically pulls data from RSS feeds. The query engine consists
of physical algebra operators (e.g. hash join, similarity join, selection, and pro-
jection). It constructs a query plan, executes the plan and produces a RSS feed
consisting of the results.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1118 W.H. Tok, S. Bressan, and M.-L. Lee

4 Conclusion

We propose to demonstrate an application of our prototype RSS aggregator,
Danäıdes, to the querying of earthquake alerts. Our aggregator main charac-
teristic is the support for the publishing of continuous and progressive complex
queries on RSS feeds.

References

1. Tok, W.H., Bressan, S.: Efficient and adaptive processing of multiple continuous
queries. In: EDBT. (2002) 215–232

2. Tok, W.H., Bressan, S., Lee, M.L.: Progressive Spatial Join. In: SSDBM. (2006)
353–358

3. Tok, W.H., Bressan, S., Lee, M.L.: RRPJ : Result-Rate based Progressive Rela-
tional Join. In: DASFAA. (2007) (To be published)

4. Gawlick, D., Krishnaprasad, M., Liu, Z.H.: Using the Oracle database as a declar-
ative RSS hub. In: SIGMOD. (2006) 722

5. Ivanov, I.: Processing RSS - http://www.xml.com/pub/a/2003/04/09/xquery.html
(2003)

6. Urhan, T., Franklin, M.J.: XJoin: Getting fast answers from slow and bursty net-
works. Technical Report CS-TR-3994, Computer Science Department, University
of Maryland (1999)

7. Tao, Y., Yiu, M.L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: RPJ: Pro-
ducing fast join results on streams through rate-based optimization. In: SIGMOD.
(2005) 371–382

8. Li, F., Chang, C., Kollios, G., Bestavros, A.: Characterizing and exploiting refer-
ence locality in data stream applications. In: ICDE. (2006) 81

9. Dittrich, J.P., Seeger, B., Taylor, D.S., Widmayer, P.: Progressive merge join: A
generic and non-blocking sort-based join algorithm. In: VLDB. (2002) 299–310

10. http://earthquake.usgs.gov/: (U.S. geological survey earthquake hazards program)
11. http://www.georss.org: (GeoRSS:: Geographically encoded objects for rss feeds)
12. http://www.microsoft.com/virtualearth/: Microsoft virtual earth (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: It Is Time to Embed Your Domain

Ontology in Your Database

Stéphane Jean, Hondjack Dehainsala, Dung Nguyen Xuan, Guy Pierra,
Ladjel Bellatreche, and Yamine Aı̈t-Ameur

LISI/ENSMA - Poitiers University - France
{jean,hondjack,nguyenx,pierra,bellatreche,yamine}@ensma.fr

Abstract. This demonstration presents OntoDB, a prototype that al-
lows to store explicitly in the database not only the data, but also the
conceptual model defining the structure of data and the domain ontology
representing the meaning of data. The demonstration illustrates three
main functionalities of OntoDB: (1) a storage of a domain ontology and
database content in the same repository, (2) the possibility of querying
databases at ontology level, and (3) an automatic integration of hetero-
geneous data sources referencing/extending the same domain ontology.

1 Introduction

Traditionally, the process of database application design goes through a chain of
three major steps: conceptual, logical and physical. The conceptual model (CM)
is the core of the application development. Its basic constructs (entity, relation-
ship between entities) are associated with semantics which can be understood
intuitively by designers and users. This model is then translated into a logical
model. Once this translation done, CM is usually discarded from the design
chain. Consequently, application semantics described by this CM may be lost.
Other work on ontology was undertaken in knowledge modeling [4]. Contrary
to CM, an ontology aims to describe in a consensual way the whole knowledge
of a domain. This description is agreed and shared by domain experts allowing
them to understand each other. When such an ontology exists, the process of
database design no longer needs to create completely new conceptualization, but
it just needs to extract or to specialize from the domain ontology pieces of infor-
mation that are relevant for the application to be designed. We call this approach
ontology-based modeling. Recently, Sugumaran et al. work [7] shows how domain
ontology can be used to assist in the generation of complete and consistent data-
base conceptual design. Several approaches and systems were proposed to store
in the same database, data and the ontologies describing their meanings [1,2].
In this demonstration, we present one of these systems named OntoDB [3]. By
storing the conceptual model defining the structure of data, OntoDB is the only
one to follow the ontology-based modeling approach. Moreover, we have shown
in [3] that it outperforms other systems for a set of queries.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 1119–1122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1120 S. Jean et al.

2 OntoDB Components

OntoDB represents explicitly: (1) ontologies, (2) data structures, (3) data, (4)
the links between the data and their schema and (5) the link between schema
and the ontology. Before defining the architecture of our prototype, we present
the three objectives assigned to our architecture model: (1) it shall support
an automatic integration and management of heterogeneous populations whose
data, schemas and ontologies are loaded dynamically, (2) it shall support evo-
lutions of the used ontologies (adding new classes, new properties, etc.) and
of their population schemas, and (3) it shall offer data access, at the ontology
level, whatever the type of the used DataBase Management System (DBMS)
(relational, object-relational or object). Taking in account these objectives, our
architecture is composed in four parts, where part 1 (meta base or system cata-
log) and part 2 (content) are traditional parts available in all DBMSs, and part 3
(ontology) and part 4 (meta schema) are specific to OntoDB (figure 1).

meta base

 contentontology

meta schema

Rules

1-...

2-...
Mapping object

relational : Ontology

Classes to SQL/DDL

Rules

1-...

2-...

Import

APIs

Query Module

PLIB

Exchange

Format

Mapping object

relational : EXPRESS

to SQL/DDL

PLIB

 ontology

 model

EXPRESS

Meta

schema

Export

Client applications (PLIBEditor)

Populate meta schema

Fig. 1. System Architecture

Ontology part allows to represent ontologies in the database. When ontology
model is object oriented and the target DBMS is relational, its logical schema
is defined using an object/relational mapping. The meta schema part records
the ontology model into a reflexive meta model. For the ontology part, the meta
schema part plays the same role as is played by the meta base in traditional
DBMSs. Indeed, this part allows: (1) a generic access to the ontology part, (2)
support of evolution of the used ontology model, and (3) storage of different
ontology models (OWL, PLIB [6], etc.). The link between ontology, meta base,
and content parts is established using a global universal identifier mechanism
associated to classes and properties of ontologies.

3 System Implementation

This section shows the implementation of each part of OntoDB. APIs to access
OntoDB and modules of client applications are also described (see figure 1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

OntoDB: It Is Time to Embed Your Domain Ontology in Your Database 1121

1. OntoDB. OntoDB is implemented on PostgreSQL7.4 and the (multilingual)
PLIB ontology model (POM) is specified in EXPRESS (a formal OO modeling
language associated with an environment similar to Meta Object Facility). To
implement ontology part, POM has been mapped to a logical schema by a pro-
gram generator. It is based on defined transformation rules between EXPRESS
concepts and SQL/DDL. The logical schema of the meta schema part is also gen-
erated automatically by re-using an object relational generator. Concretely, the
generator receives as input parameter an EXPRESS meta model of EXPRESS
and returns a set of tables representing the meta model. Then the meta schema
part is populated with the POM and with itself as data. To define the content
part logical schema, the database designer selects a subset of the ontology that
represents its CM and then the logical schema is generated by another object
relational mapping which takes the CM as input parameter.

2. Import module. Like OWL in XML, the POM allows to represent and ex-
change both ontologies and ontologies instances in EXPRESS exchange format.
The import module allows to read a population of the POM (ontology + data)
and to store it in the database. If the ontology already exists in the database,
it can be potentially updated (version management) and its instances will be
automatically integrated in the existing population of ontology instances.

3. Export module. It is dual of the import module. It allows to extract a
subset of an ontology from the classes of the ontology in the database, with
or without the associated content. This module combined with import module
allows to automatically migrate instances of a database to another.

4. Ontology and content edition module. It allows to dynamically display
and create classes and their properties in the ontology and to dynamically create
and visualize objects of these classes. Since each data is associated to an onto-
logical element which defines its meaning, it becomes possible to access the data
through their meaning. The interface offered by this module, called PLIBEditor
is appropriate to any ontology and any population of classes.

5. APIs. Almost all the modules of figure 1 access OntoDB using a three lay-
ered API that we have implemented. The first layer is a generic API defined at
the meta level (all parameters are strings). It allows to create instances indepen-
dently of any model in any part of the database, but without any user control.
The second layer specific to the POM, is composed of java classes generated au-
tomatically, one for each POM entity. This API calls functions of the first API.
The last layer is also generated automatically to represent ontology classes as
java instances. Note that most of the developed programs, modules and API are
not POM-specific but they may be specialized for any ontology model after its
description in the EXPRESS language.

The OntoDB architecture requires new query functionalities more those offered
by traditional languages like SQL2003. We developed a query language, called
OntoQL that allows to query data in terms of concepts of the ontology using its
expressive power (multilingual, polymorphism, etc.) [5]. Moreover, it provides a
way to extract a part of the ontology with its associated content.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1122 S. Jean et al.

4 The Scenario to Be Demonstrated

Our demonstration is based on an shared ontology (SO) defining concepts of
the LMD (License, Master, Doctorate) university course. The LMD system has
been established in order to harmonize diplomas in the European Union. The
scenario of our demonstration follows 5 mains steps: (1) Description of the
used shared ontology: the process of editing ontologies and the characteris-
tics of the POM are shown as well. Our ontology editor (PLIBEditor) is used
as client application. (2) Definition of local ontologies from SO: two dif-
ferent databases (representing two universities) specialize the SO to define the
particular concepts existing in their own course. (3) Extraction of concep-
tual models derived from the ontology: the conceptual models of the two
different databases are designed from their local ontologies. Several instances
of students are described (using the ontology concepts) and inserted in both
databases. (4) Automatic integration of information: shows the process
of students data integration of the two universities. (5) Query processing: a
set of retrieval queries using our QBE interface is executed on the integrated
data. We show specific queries expressed in different natural languages on data
involving ontology concepts that use the expressive power of the ontology model
(like inheritance, composition, . . .).

Additionally, in our demonstration, we present PLIBEditor that allows to
manage (create, delete, import, export, query, etc.) ontologies and ontology-
based data stored in OntoDB. The use of the OntoDB architecture to conceptu-
ally design a database using domain ontologies is also demonstrated. For more
details, refer to our Web site http://www.plib.ensma.fr/plib/demos/ontodb/,
some ”flash” demonstrations and snapshots are presented.

References

1. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ics-forth rdfsuite: Managing voluminous rdf description bases. In 2nd International
Workshop on the Semantic Web (SemWeb’01), 2001.

2. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Proceedings of the First International
Semantic Web Conference (ISWC’02), pages 54–68, July 2002.

3. H. Dehainsala, G. Pierra, and L. Bellatreche. Ontodb: An ontology-based database
for data intensive applications. In Proceedings of Database Systems for Advanced
Applications, 12th International Conference (DASFAA’07) (to appear), 2007.

4. T. Gruber. A translation approach to portable ontology specification. Knowledge
Acquisition, 7, 1993.

5. S. Jean, Y. Aı̈t-Ameur, and G. Pierra. Querying ontology based database using
ontoql (an ontology query language). In Proceedings of OTM Confederated Inter-
national Conferences (ODBASE’06), pages 704–721, 2006.

6. G. Pierra. Context-explication in conceptual ontologies : The PLIB approach. In
Proceedings of Concurrent Engineering (CE’03), pages 243–254, July 2003.

7. V. Sugumaran and V. C. Storey. The role of domain ontologies in database design:
An ontology management and conceptual modeling environment. ACM Transac-
tions on Database Systems (TODS), 31(3):1064–1094, September 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Aßfalg, Johannes 586
Achtert, Elke 152
Aguilar-Saborit, Josep 6
Ailamaki, Anastassia 374
Aı̈t-Ameur, Yamine 1119
Alkobaisi, Shayma 624
Anisetti, Marco 943
Anutariya, Chutiporn 924
Ardagna, Claudio A. 943

Bae, Wan D. 624
Bailey, Thomas 624
Balke, Wolf-Tilo 551
Behrend, Andreas 1110
Bellandi, Valerio 943
Bellatreche, Ladjel 497, 1119
Bernardoni, Elisa 943
Bertino, Elisa 188
Bhowmick, Sourav S. 275, 793, 819
Boey, S.H. 225
Böhlen, Michael 1058
Böhm, Christian 152
Bressan, Stéphane 43, 994, 1115
Bühmann, Andreas 349
Burns, Randal 374
Byun, Ji-Won 188

Cai, Jing 884
Cao, Jiaheng 1098
Carminati, Barbara 410
Caroprese, Luciano 459
Chang, Edward Y. 522
Cheema, Muhammad Aamir 863
Chen, Arbee L.P. 300
Chen, Bo 807
Chen, Gang 576, 1050
Chen, Jidong 611
Chen, Lei 313, 509, 962
Chen, Lijun 652
Chen, Qiming 386
Cheng, James 753, 768, 891
Cheng, Jiefeng 18
Chhieng, Van M. 598
Choi, Byron 793

Choi, Heeseok 955
Chun, Jonghoon 398
Chung, Chin-Wan 715, 975
Costa, António C. 262
Cui, Bin 563, 652, 664, 898

Damiani, Ernesto 943
Dang Ngoc, Tuyêt Trâm 1001
Dehainsala, Hondjack 497, 1119
Dewey Jr., C. Forbes 275, 819
Ding, Bolin 18, 850
Dong, Jinxiang 576
Dong, Yisheng 1028
Dorau, Christian 1110
Du, Xiaoyong 386

Fan, Yushun 1062
Feng, Jianhua 834
Ferrari, Elena 410
Foo, Jun Jie 472

Gao, Aiqiang 918
Gao, Hong 1036
Gao, Jun 652
Gao, Yan 912
Gardarin, Georges 1007
Gebski, Matthew 176
Greco, Sergio 459
Gruenwald, Le 981
Gu, Shiwen 912
Güntzer, Ulrich 551
Guo, Jinhua 905

Han, In Kyu 930
Hara, Takahiro 884
Härder, Theo 349
Hartmann, Sven 1070
Hasan, K.M. Azharul 288
Higuchi, Ken 288
Hoksza, David 361
Hsu, Wynne 31, 164
Hu, Haibo 611
Hu, Xiaohua 115
Huang, Min 1098
Huang, Shangteng 213

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1124 Author Index

Hvasshovd, Svein-Olaf 249
Hwang, Hyun Sik 1075
Hwang, Seung-won 539

Jain, Ankur 522
Jamard, Clement 1007
Jean, Stéphane 1119
Jeong, Jin-Woo 485
Jiang, Nan 981
Jing, Liping 115
Jørgensen, Peter Sune 1058

Kalashnikov, Dmitri V. 325
Kamra, Ashish 188
Kang, Hyun-Ho 447
Kao, Ben 103
Ke, Yiping 891
Kim, Deok-Hwan 1024
Kim, Jae-Myung 447
Kim, Jaehoon 1054
Kim, Kyu Il 1075
Kim, Sang-Wook 201
Kim, Seongjin 955
Kim, Seon Ho 624
Kim, Seung-Woo 201
Kim, Ung Mo 1075
Kitajima, Shinya 884
Kitsuregawa, Masaru 1, 703, 1020
Ko, Hyuk Jin 1075
Koh, Judice L.Y. 164
Kolltveit, Heine 249
Kriegel, Hans-Peter 152, 337, 586
Kröger, Peer 152, 586
Kunath, Peter 337, 586
Kwon, Yongjin 140

Lafón-Gracia, Néstor 6
Lai, Caifeng 611
Lam, Kai Tak 164
Lamarre, Philippe 237
Larriba-Pey, Josep-L. 6
Lau, Ho-Lam 1013
Le, Dung Xuan Thi 994
Lee, Chun-Hee 975
Lee, Dong-Ho 485
Lee, Dongwon 949
Lee, Ig-hoon 398
Lee, Jihyun 715, 975
Lee, Jongwuk 539
Lee, Ju-Hong 1024

Lee, Mong-Li 31, 43, 164, 1115
Lee, Rubao 1086
Lee, Sang-goo 398
Lee, Sang-Won 447
Lee, Sang Ho 930
Lee, Soowon 930
Leonardi, Erwin 793
Li, Chen 422
Li, Guoliang 688, 834
Li, Hanyu 31
Li, Jianhua 912
Li, Jianzhong 1036
Li, Juanzi 1066
Li, Ling 31
Li, Ninghui 188
Li, Xian 936
Li, Xiaoyan 1050
Li, Yongnian 676
Li, Zude 676
Lian, Xiang 962
Liao, Jia 127
Liao, Zhining 912
Lin, Dan 563
Lin, Jiexi 975
Lin, Xuemin 863
Ling, Tok Wang 807
Link, Sebastian 1070
Liu, Tianxiao 1001
Liu, Yunfeng 664, 898
Lo, Chia-Hao 870
Lofi, Christoph 551
Lohman, Guy M. 3
Loo, K.K. 103
Lu, An 891
Luan, Hua 386
Luo, Bo 949

Ma, Yiming 1045
Madeira, Henrique 262
Madria, Sanjay Kumar 703
Malik, Tanu 374
Manthey, Rainer 1110
Mehrotra, Sharad 325, 1045
Meng, Weiyi 936
Meng, Xiaofeng 434, 611, 936
Min, Jun-Ki 715, 969
Molinaro, Cristian 459
Mondal, Anirban 703
Moon, Mikyeong 955
Moon, Yang-Sae 79

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index 1125

Morishita, Shinichi 781
Muntés-Mulero, Victor 6
Müller-Gorman, Ina 152

Na, Gap-Joo 447
Natwichai, Juggapong 1041
Nehme, Rimma V. 637
Ng, Michael 115
Ng, Wilfred 753, 768, 891, 1013
Ni, Yongzhi 386
Nishio, Shojiro 884
Nuray-Turan, Rabia 325
Nutanong, Sarana 876

Okabe, Yasuo 140
Ooi, Beng Chin 688
Orlowska, Maria E. 1041
Özsu, M. Tamer 807

Papadomanolakis, Stratos 374
Park, Kyung-Wook 485
Park, Myung-Jae 975
Park, Sang-Ho 1024
Park, Sanghyun 201
Park, Seog 1054
Parker, D. Stott 740
Peng, Wen-Chih 870
Peng, Zhaohui 1032
Peng, Zhiyong 1098
Pierra, Guy 497, 1119
Pokorný, Jaroslav 361
Prakash, Sandeep 819
Pryakhin, Alexey 586

Qian, Gang 1028
Qian, Weining 55
Qin, Lu 850
Quiané-Ruiz, Jorge-Arnulfo 237

Rahayu, Wenny 994
Rao, Fangyan 1062
Reale, Salvatore 943
Renz, Matthias 337, 586
Rundensteiner, Elke A. 637

Saito, Taro L. 781
Seah, Boon-Siew 793
Serres, Olivier 975
Shi, Baile 225
Shim, Junho 398
Shirani-Mehr, Houtan 422
Shou, Lidan 576, 1050

Sinha, Ranjan 472
Skopal, Tomáš 361
Song, Guojie 664, 898
Song, Jungsuk 140
Song, Shaoxu 313
Song, Yang 275
Su, Yu-Chi 300
Sun, Xingzhi 1041

Takakura, Hiroki 140
Tan, Kian-Lee 410, 1050
Tan, Wei 1062
Tang, Jie 1066
Tang, Shiwei 918
Taniar, David 994
Tanin, Egemen 876
Terada, Tsutomu 884
Theodoratos, Dimitri 727
Tok, Wee Hyong 43, 1115
Travers, Nicolas 1001
Trinh, Thu 1070
Tsuji, Tatsuo 288

Ungrangsi, Rachanee 924

Valduriez, Patrick 237
Vieira, Marco 262

Wang, Bin 962
Wang, Guoren 127, 509
Wang, Ping 576
Wang, Shan 67, 386, 1032
Wang, Wei 225, 988
Wang, Xiaodan 374
Wang, Xiaoling 988
Wang, Yitong 1020
Wang, Yuan-Fang 522
Wang, Zhenhua 509
Wang, Zhihui 225
Widjanarko, Klarinda G. 793, 819
Won, Jung-Im 201
Wong, Raymond K. 176, 598
Wu, Ling 898
Wu, Xiaoying 727
Wu, Yi-Hung 300
Wuwongse, Vilas 924

Xia, Zhonghang 905
Xiao, Yan 949
Xiao, Zhen 434

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

1126 Author Index

Xie, Kunqing 664, 898
Xin, Junchang 509
Xing, Guangming 905
Xu, Jianliang 434, 611
Xuan, Dung Nguyen 1119

Yang, Donghua 1036
Yang, Dongqing 563, 652, 664, 898, 918
Yang, Huei-You 870
Yang, Hung-chih 740
Yang, Weijia 213
Yang, Xiaochun 422
Yang, Zhenglu 1020
Ye, Xiaojun 676
Yeh, Laurent 1007
Yeom, Keunhyuk 955
You, Gae-won 539
Yu, Bei 688
Yu, Byunggu 624
Yu, Ge 127
Yu, Jeffrey Xu 18, 91, 850
Yuan, Yidong 863

Zhan, Jiang 67
Zhang, Bo 127, 988
Zhang, Jing 1066
Zhang, Jun 1032
Zhang, Rong 55
Zhang, Rui 876
Zhang, Xiaodan 115
Zhang, Xiaoyi 509
Zhang, Yong 834
Zhao, Jiakui 652
Zhao, Peixiang 91
Zheng, Baihua 664
Zhou, Aoying 55, 988
Zhou, Lizhu 688, 834
Zhou, Minghong 1086
Zhou, Minqi 55
Zhou, Xiang 1098
Zhou, Xiaofang 127
Zhou, Xiaohua 115
Zhu, Jun 1062
Zhu, Zhenzhou 807
Zimek, Arthur 152

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title page
	Preface
	Organization
	Table of Contents
	‘Socio Sense’ and ‘Cyber Infrastructure forInformation Explosion Era’: Projects in Japan
	Introduction
	The Carquinyoli Genetic Optimizer (CGO)
	Weighted Election (WE)
	Heuristic Initial Population (HIP)
	Experimental Results
	Weighted Election Analysis
	Heuristic Initial Population Analysis
	Combining WE and HIP vs. 2PO

	Related Work
	Conclusions

	Cost-Based Query Optimization forMulti Reachability Joins
	Introduction
	Multi Reachability Joins
	Motivation
	A New Dynamic Programming Approach
	An R-Join Algorithm Based on a Multiple Interval Encoding
	Multi R-Joins Processing
	R-Join Size Estimation
	The Enumeration Space for Multi R-Joins
	Our Dynamic Programming Algorithm

	Performance Evaluation
	TwigStackD v.s. DP
	Scalability Test of Our Approach

	Conclusion

	A Path-Based Approach for Efficient StructuralJoin with Not-Predicates
	Introduction
	Related Work
	Motivating Example
	Path-Based Approach
	Path-Based Labeling Scheme
	XQuery Tree
	Algorithm PJoin
	Algorithm NJoin
	Optimality of Path-Based Approach

	Experiment Evaluation
	Effectiveness of PJoin
	Comparative Experiments

	Conclusion

	RRPJ: Result-Rate Based ProgressiveRelational Join
	Introduction
	Progressive Join Algorithms
	Problem Definition
	Rate-Based Progressive Join (RPJ)
	Locality-Aware (LA) Model
	Limitations of RPJ and LA Model

	Result-Rated Based Progressive Join (RRPJ)
	RRPJ
	Amortized RRPJ (ARRPJ)

	Performance Study
	Effect of Uniform Data Within Partitions
	Effect of Non-uniform Data Within Partitions
	Varying Data Arrival Distribution

	Conclusion

	GChord: Indexing for Multi-Attribute Query in P2PSystem with Low Maintenance Cost
	Introduction
	Related Works
	Problem Statements
	The Basic GChord Mechanism
	Data Indexing
	Query Processing

	Performance Enhancement
	Multicast Tree Clustering
	Index Buddy

	Experimental Study
	Conclusion

	ITREKS: Keyword Search over Relational Database byIndexing Tuple Relationship
	Introduction
	Related Work
	Background
	Basic Tuple Relationship
	Full Disjunction
	Computing Full Disjunction and FDJTR

	The ITREKS System
	Overview of Index and Search Steps
	Acyclization of Database Schema Graph
	FDJT-Tuple-Index Table
	Searching Step

	System Evaluation
	Conclusion and Future Work
	References

	An MBR-Safe Transform for High-DimensionalMBRs in Similar Sequence Matching
	Introduction
	Related Work
	Definition of MBR-Safe
	A DFT-Based MBR-Safe Transform
	Computational Complexity Analysis
	Performance Evaluation
	Experimental Data and Environment
	Experimental Results

	Conclusions

	Mining Closed Frequent Free Treesin Graph Databases
	Introduction
	Preliminaries
	Closed Frequent Ftree Mining: Proposed Solutions
	Pruning the Search Space
	Equivalent Occurrence
	The Safe Position Pruning
	The Safe Label Pruning
	Efficient Computation of FS(t)

	The CFFTree Algorithm
	Experiments
	Conclusion

	Mining Time-Delayed Associations fromDiscrete Event Datasets
	Introduction
	Problem Definition
	The Baseline Algorithm
	Improving the Baseline Algorithm
	Pruning Strategy
	Cache Management

	Experiment Results
	Pruning Strategy
	Candidate Generation, Cache Replacement Strategy and I/O Costs

	Conclusion

	A Comparative Study of Ontology Based Term SimilarityMeasures on PubMed Document Clustering
	Introduction
	Term Semantic Similarity Measure
	Path Based Similarity Measure
	Information Content Based Measure
	Feature Based Measure

	Document Representation and Re-weighting Scheme
	Experiment Setting and Result Analysis
	Datasets and Indexing Schemes
	Evaluation Methodology
	Result Analysis

	Conclusion
	References

	An Adaptive and Efficient Unsupervised ShotClustering Algorithm for Sports Video
	Introduction
	Dimensionality Reduction
	Valid Dimension
	Extraction Rule for Valid Dimensions

	Unsupervised Shot Clustering Algorithm
	Algorithm Description of Valid Dimension Clustering
	Stop Criterion of Valid Dimension Clustering

	Performance Study
	Experiments Set Up
	Effectiveness of Valid Dimension Clustering(VDC)

	Related Work
	Conclusions and Future Work

	A Robust Feature Normalization Scheme and anOptimized Clustering Method forAnomaly-Based Intrusion Detection System
	Introduction
	Related Work
	Normalization
	K-Means Clustering Algorithm

	Normalization
	Defining of Notations
	Methodology

	Clustering
	Selecting Initial Cluster Centers
	Allocating Data Instances
	Splitting and Merging Clusters
	Convergence Criterion
	Labeling Clusters

	Experimental Results and Analysis
	Data Set Descriptions
	Results
	Analysis

	Conclusion and Future Works

	Detection and Visualization of Subspace ClusterHierarchies
	Introduction
	Related Work
	Hierarchical Subspace Clustering
	Visualizing Subspace Cluster Hierarchies
	Experimental Evaluation
	Conclusions

	Correlation-Based Detection of Attribute Outliers
	Introduction
	Motivating Example
	Related Works
	Definitions
	Algorithms
	Experimental Validation
	World Clock Dataset
	UniProt Dataset

	Conclusion
	References

	An Efficient Histogram Method for OutlierDetection
	Introduction
	Background
	Approach
	Problem Description and Notation
	Histogram Based Outliers
	Histogram Refinement
	Refining Candidates
	Accuracy

	Experimental Evaluation
	Results

	Conclusions

	Efficient k-Anonymization Using ClusteringTechniques
	Introduction
	Preliminaries
	Basic Concepts
	Existing Techniques

	Anonymization and Clustering
	k-Anonymization as a Clustering Problem
	Distance and Cost Metrics
	Anonymization Algorithm
	Improvement for Classification

	Experimental Results
	Experimental Setup
	Data Quality and Efficiency
	Scalability

	Conclusions

	Privacy Preserving Data Mining of SequentialPatterns for Network Traffic Data
	Introduction
	Related Work
	Problem Definition
	Proposed Method
	Overall Mining Process
	Finding Frequent Items Using N-Repository Server Model
	Finding Frequent Patterns Longer Than One
	Meta Tables to Quickly Determine the Occurrence or Non-occurrence of Candidate Patterns

	Performance Evaluation
	Environment for Experiments
	Analysis of Accuracy
	Analysis of Performance

	Concluding Remarks

	Privacy Preserving Clustering for Multi-party
	Introduction
	Related Works
	Attribute-Wised Transformation Matrix
	Privacy Measurement
	Attribute-Wised Transformation

	Multi-party Clustering Protocol
	Accuracy Analysis
	Privacy Analysis
	Semi-honest Condition
	Malicious Condition

	Experiment Result
	Conclusions

	Privacy-Preserving Frequent Pattern Sharing
	Introduction
	Related Work
	Problem Statement
	Basic Concepts and Notations
	The Problem

	Generating Privacy-Free Frequent Pattern Set
	The Framework of Item-Based Pattern Sanitization
	The Sanitization Algorithms

	Experiments
	Experimental Settings
	Effectiveness
	Time for Pattern Sanitization
	Scalability

	Conclusions

	KnBest - A Balanced Request AllocationMethod for Distributed Information Systems
	Introduction
	Model and Notations
	KnBest Method
	KnBest Principle
	KnBest Property and Analysis

	Experimental Evaluation
	Baseline Methods
	Experiment Setup
	Experimental Results

	Related Work
	Conclusion

	The Circular Two-Phase Commit Protocol
	Introduction
	Related Work
	System Model
	The Non-Blocking Atomic Commitment Problem
	The Circular Two-Phase Commit Protocol
	Detailed Description
	Correctness
	C1PC

	Evaluation
	Conclusion

	Towards Timely ACID Transactions in DBMS
	Introduction
	Timeliness Requirements in Database Applications
	New Transactions Programming Approach
	Timing Failure Detection in the Client Database Interface Layer
	Timing Failure Detection in the Database Server
	Distributed Detection of Timing Failures
	Transactions Programming Interface

	Practical Example of Implementation
	Conclusion
	References

	BioDIFF: An Effective Fast Change DetectionAlgorithm for Biological Annotations
	Introduction
	Algorithm
	Type Classification Phase
	Matching Phase
	Complexity Analysis

	Performance Study
	Conclusions

	An Efficient Implementation for MOLAP Basic DataStructure and Its Evaluation
	Introduction
	Employing Extendible Arrays
	Implementing MOLAP by Extendible Array
	The Data Structure
	Compressing Sparse Array
	The Implementation Model

	OLAP Operations
	Cost Analysis
	Parameters
	Retrieval Cost
	Extension Cost
	Experimental Results
	Retrieval Cost Comparison Between CMA and EMA
	Extension Cost Comparison Between CMA and EMA
	Related Works
	Conclusion
	References

	Monitoring Heterogeneous Nearest Neighbors forMoving Objects ConsideringLocation-Independent Attributes
	Introduction
	Basic Definitions and Data Structures
	Basic Definitions
	Data Structures

	Efficient Evaluation of HkNN Queries
	Problem Characteristic and Approach Overview
	Step 1: Retrieving the First k Objects
	Step 2: HkNN Search with Pruning Mechanism

	Continuous Update of HkNN Query Answers
	Experiments
	Experimental Results

	Conclusion and Future Works
	References

	Similarity Joins of Text with IncompleteInformation Formats
	Introduction
	Distance Based Matching
	Existing Matching Approaches
	Matching of Incomplete Formats

	Similarity Function
	Cosine Similarity
	IJoin Similarity

	Algorithm Implementation
	Basic IJoin Implementation
	Extended IJoin Implementation

	Experimental Evaluation
	Data Sets
	Evaluation Criteria
	Effectiveness
	Scalability

	Conclusions

	Self-tuning in Graph-Based ReferenceDisambiguation
	Introduction
	Related Work
	Connection Strength Models
	Disambiguation

	Problem Definition
	Solution
	Adaptive Connection Strength Model
	Path Type Model
	Learning Algorithm

	Experimental Results
	Experiments on the Movies Domain
	Experiments on the Publications Domain

	Discussions and Conclusion

	Probabilistic Nearest-Neighbor Queryon Uncertain Objects
	Introduction
	Related Work
	Probabilistic Nearest Neighbor Query on Uncertain Data
	Probabilistic Nearest-Neighbor Query Based on Smooth Probabilistic Distance Functions
	Probabilistic Nearest-Neighbor Query Based on Discrete Probabilistic Distance Representations

	Experimental Evaluation
	Experiments on the Sample Rate
	Experiments on the Efficiency

	Conclusions
	References

	Making the Most of Cache Groups
	Database Caching with Cache Groups
	Designing Cache Groups
	Basics of Cache Groups
	Loading the Cache

	Optimizing the Design
	Utilizing Redundancy
	Optimization Rules
	Applying the Rules

	Example
	Conclusion

	Construction of Tree-Based Indexes forLevel-Contiguous Buffering Support
	Introduction
	Paper Contributions

	Tree-Based Indexing
	Standard Buffering and Prefetching

	Related Work
	Buffering Techniques
	Dynamic Layout Rearrangement
	Physical Designs

	Level-Contiguous Indexing
	Index Traversal Analysis
	Level-Contiguous Index Storage Layout
	Level-Contiguous Buffering

	Experimental Results
	R-Tree Testbed
	M-Tree Testbed

	Conclusions

	AWorkload-Driven Unit of Cache Replacement forMid-Tier Database Caching
	Introduction
	Caching for Scientific Databases
	Cache Environment
	Choosing the Unit of Cache Replacement

	Related Work
	Statically-Defined Cache Replacement
	Dynamically-Defined Cache Replacement
	Database Design Methods

	Query Prototype Caching
	Definition
	Discussion
	Performance Implications

	Experiments
	Query Workload
	Query Performance
	Network Savings
	Cache Pollution

	Conclusions and Future Work

	J+-Tree: A New Index Structure in MainMemory
	Introduction
	Related Work
	B+-Tree
	T-Tree
	Judy

	J+-Tree
	Definition
	Operations for J+-Tree
	Additional Illustration About J+-Tree

	Time and Space Analysis
	Experimental Results
	Experimental Setup
	Implementation Details
	Results

	Conclusions and Future Work

	CST-Trees: Cache Sensitive T-Trees
	Introduction
	Related Work
	Cache Sensitive T-Trees
	Cache Insensitiveness of T-Trees
	Cache Sensitive T-Trees
	Operations on a CST-Tree
	Time Complexity

	Performance Evaluation
	Experimental Environment
	Results

	Conclusion
	References

	Specifying Access Control Policies on Data Streams
	Introduction
	Background
	A Motivating Scenario
	Aurora

	An Access Control Model for Data Streams
	Access Control Policies Semantics
	Conclusion

	Protecting Individual Information AgainstInference Attacks in Data Publishing
	Introduction
	Related Work

	Data-Privacy Framework
	Association Rules
	Inference Attacks Using Association Rules

	Complexity Results
	Computing a Safe Partial Table Efficiently
	Algorithm for Case (a)

	Algorithm for Case (b)
	R-Graph
	Algorithm

	Experiments
	Algorithm Implementation for Case (a)
	Algorithm Implementation for Case (b)

	Conclusions

	Quality Aware Privacy Protection forLocation-Based Services
	Introduction
	Related Work
	System Model
	Basic Anonymization Algorithm
	Data Structures
	Algorithms

	Improvement with Dummy Requests
	Experiments
	Conclusion

	Implementation of Bitmap Based Incognito andPerformance Evaluation
	Introduction
	Basic Deifinitions and Incognito
	Basic Definition
	Incognito

	Bitmap-Based Incognito
	Generalization and Node Generation Using Bitmap
	Bitmap-Based Incognito Algorithm
	Advantage of Bitmap Incognito

	Optimization Techniques
	1-Level Optimization
	Reusing Optimization
	Pruning Optimization

	Performance Evaluation
	Conclusion

	Prioritized Active Integrity Constraintsfor Database Maintenance
	Introduction
	Background
	Queries

	Databases and Integrity Constraints
	Integrity Constraints
	Repairing and Querying Inconsistent Databases

	Prioritized Active Integrity Constraints
	Computing Repairs Through Datalog Programs

	Conclusions

	Using Redundant Bit Vectors for Near-DuplicateImage Detection
	Introduction
	Distinctive Interest Points
	Keypoint Reduction
	Redundant Bit Vectors
	Extending the RBV Index
	Evaluation Methodology
	Results and Analysis
	Conclusion

	OLYBIA: Ontology-Based Automatic ImageAnnotation System Using Semantic Inference Rules
	Introduction
	Related Work
	The Architecture of OLYBIA
	Semi-concept Value Mapping
	Visual and Animal Ontologies
	Semantic Inference Rules

	Design and Implementation
	Experimental Evaluation
	Conclusion
	References

	OntoDB: An Ontology-Based Database for DataIntensive Applications
	Introduction
	Context of Our Study
	PLIB Ontology Model
	PLIB Instance Data Model

	OntoDB Model Architecture
	Evaluating Instance Representation Schemes
	Databases
	Query Taxonomy
	Performance Results for Targeted Class Queries
	No Targeted Class Queries
	Update Queries

	Conclusion

	Continuously Maintaining Sliding WindowSkylines in a Sensor Network
	Introduction
	Related Work
	Preliminaries
	Sliding Window Skyline
	Properties

	Sliding Window Skyline Monitoring Algorithm
	The Computation Module
	The Maintenance Module

	Optimizations
	Snooping
	Shearing
	Compressing

	Simulation Evaluation
	Conclusions

	Bayesian Reasoning for Sensor Group-Queriesand Diagnosis
	Introduction
	Related Work
	Architecture and Model
	Bayesian Network Construction
	Query Plan Generation
	Answering Diagnostic Queries

	Experimental Validation
	Experiment Setup
	Resource Conservation
	Query Answer Quality-Loss
	Abnormality
	Selectivity

	Conclusions and Future Work

	Telescope: Zooming to Interesting Skylines
	Introduction
	Related Work
	Preliminaries
	Algorithm Telescope
	Experiments
	Real-Life Data Set
	Synthetic Data Set

	Conclusion

	Eliciting Matters – Controlling Skyline Sizes byIncremental Integration of User Preferences
	Introduction
	A Skyline Query Use-Case and Related Work
	Basic Concepts of Partial Order Skyline Processing
	Related Work

	Formalization of the Incremental Skyline Computation
	Experimental Section
	Influence of Incrementally Adding Equivalence Edges on the Result Size
	Examination of the Normalized Result Size Reductions
	Influence of Preference Depth on Skyline Result Set Sizes

	Summary and Outlook
	References

	Optimizing Moving Queries over Moving Object DataStreams
	Introduction
	Problem Statement and Related Work
	Problem Statement
	Related Work

	Continuous Query Processing on Moving Object Streams
	System Architecture
	Storage Components
	Data Processing
	Discarding Policy

	Algorithms of Continuous Range Queries
	Processing a Single Query
	Processing Multiple Queries

	Performance Study
	Conclusion

	MIME: A Dynamic Index Scheme for Multi-dimensionalQuery in Mobile P2P Networks
	Introduction
	Related Work`
	Proximity-Aware Search Method of MIME
	Query Cost Model
	Proximity-Aware Index Scheme
	Point/Range Query Algorithms

	Providing Mobile Support in MIME
	Update Algorithm of MIME
	Cache Mechanism of MIME

	Experimental Results
	Experiment Environment
	Performance Improvements of MIME
	Tuning the MIME Simulator

	Conclusions and Future Work
	References

	Interval-Focused Similarity Search in TimeSeries Databases
	Introduction
	Related Work
	Problem Statement and Contributions
	Distance Approximation of Time Series Objects
	Representing Time Series Objects by Interval Boxes
	Distance Estimation Using Interval Boxes
	Query Processing

	Generating Approximations
	Evaluation
	Conclusions

	Adaptive Distance Measurement for Time SeriesDatabases
	Introduction
	Background
	String Editing Distance
	Bounding Distances

	Distance Measurement
	Usefulness of CCED
	Lower Bound of CCED
	Tightening Lower Bound for CCED in New Feature Space

	Indexing
	Experiments
	Insertion Phase
	Retrieval Phase
	Filtering Phase

	Conclusion

	Clustering Moving Objects in Spatial Networks
	Introduction
	Related Work
	The System Model and CMON Framework
	Maintenance of CBs
	CMON Construction with Different Criteria
	Distance-Based CMON
	Density-Based CMON
	K-Partitioning CMON

	Performance Analysis
	Conclusion

	The Tornado Model:Uncertainty Model for Continuously Changing Data
	Introduction
	Related Work
	Explication of CCDO
	The Tornado Model
	E of Degree 1: Revised Ellipse Model
	E of Degree 2: Tornado Uncertainty Model

	Experiments
	Conclusion
	References

	ClusterSheddy: Load Shedding Using MovingClusters over Spatio-temporal Data Streams
	Introduction
	Spatio-temporal Similarity
	Our Contributions: ClusterSheddy Framework

	ClusterSheddy Framework
	Query Evaluation in ClusterSheddy
	Moving Cluster Abstraction
	Incremental Query Evaluation Using Moving Clusters

	Cluster-Based Load Shedding
	Load Shedding Via Cluster Nucleus
	Estimating When to Load Shed
	Estimating Which Clusters to Load Shed
	Estimating How Much Per Cluster to Shed

	Experimental Study
	Incremental vs. Non-incremental Query Evaluation
	Load Shedding Policies Comparison
	Load Shedding Cost

	Related Work
	Conclusions

	Evaluating MAX and MIN over Sliding Windowswith Various Size Using the Exemplary Sketch
	Introduction
	Previous Works
	Paper Outline

	Preliminary Knowledge
	The Exemplary Sketch
	Performance Analysis
	Experimental Results
	Conclusions

	CLAIM: An Efficient Method for Relaxed FrequentClosed Itemsets Mining over Stream Data
	Introduction
	Problem Definition
	CLAIM: Mining Relaxed Frequent Itemsets on Data Streams
	Bipartite Graph Model
	Bloom Filter Based Hash Function
	Structure of HR-Tree
	The CLAIM Algorithm for RC Mining

	Experimental Evaluation
	Effect of Minimum Support
	Effect of Relaxation Interval
	Effect of Sliding Window Size
	Effect of Data Arriving Order

	Related Works
	Conclusion

	Capture Inference Attacks for K-Anonymitywith Privacy Inference Logic
	Introduction
	Privacy Inference Logic
	Formulation of K-Anonymity Model
	Privacy Inference Attacks
	Simple Privacy Inference Attacks
	Knowledge-Based Privacy Inference Attacks

	Experiment Study
	Related Work
	Conclusion

	Schema Mapping in P2P Networks Based onClassification and Probing
	Introduction
	Related Work
	Classification-Based Schema Mapping
	Classification Overview
	Relation Mapping
	Attribute Mapping

	Reformulation
	Standardization
	Localization
	Integration

	Experimental Study
	Mapping Between Two Schemas
	Mapping in PDMS

	Conclusion

	ABIDE: A Bid-Based Economic Incentive Model forEnticing Non-cooperative Peers in Mobile-P2P Networks
	Introduction
	Related Work
	Data Sharing in ABIDE
	Value-Added Routing by Relay MPs in ABIDE
	Performance Evaluation
	Conclusion

	An Efficient Encoding and Labelingfor Dynamic XML Data
	Introduction
	Related Work
	Efficient XML Encoding and Labeling (EXEL)
	Binary Encoding in EXEL
	Enhancement of Binary Encoding
	Region Labeling in EXEL
	Query Processing

	Update
	Labeling for Update
	Update Processing

	Experiments
	Experimental Environment
	Experimental Results

	Conclusion

	An Original Semantics to Keyword Queries for XMLUsing Structural Patterns
	Introduction
	Related Work
	Data Model and Keyword Queries
	Data Model
	Keyword Query Language

	Evaluating Keyword Queries Using TPQs
	Index Graphs
	TPQs for a Keyword Query

	Using TPQs to Define Meaningful Answers
	A Transformation for TPQs
	Determining Meaningful TPQs

	Experimental Evaluation
	Conclusion

	Lightweight Model Bases and Table-DrivenModeling
	Introduction
	Lightweight Models
	The Table-Driven Modeling Concept
	Lightweight Model Bases

	Table-Driven Modeling
	Table-Driven Programming in SQL
	Lightweight Functions

	Example: A Loan-Application System
	Schema Design
	Querying and Decision Making

	Implementing and Emulating Lightweight Functions in ORDBMS
	Execution Models of Dynamic Method Dispatch in ORDBMS
	Issues of Table-Driven Programming in ORDBMS
	User-Defined Lightweight Function Processors

	Conclusions

	An Efficient Index Lattice for XML QueryEvaluation
	Introduction
	Related Work

	An Index Lattice
	The XML Structure Index Tree (SIT)
	The SIT-Lattice
	Heuristic Selection Rules

	Experimental Evaluation
	Effectiveness of Using SLEs
	Use of SLEs in Memory-Limited Devices

	Conclusions

	A Development of Hash-Lookup Trees toSupport Querying Streaming XML
	Introduction
	Related Work

	QstreamX Query Expressions
	Hash-Lookup Query Trees
	QstreamX Query Processing
	Experimental Evaluation
	Conclusions

	Efficient Integration of Structure Indexes of XML
	Introduction
	Backgrounds
	Multidimensional XML Index
	Experimental Evaluation
	Discussions and Related Works
	Conclusions and Future Work

	Efficient Support for Ordered XPath Processing inTree-Unaware Commercial Relational Databases
	Introduction
	Related Work
	Background on SUCXENT++
	Extensions of SUCXENT++
	Attribute Table
	Modified RValue Attribute
	DeweyOrderSum and SiblingSum Attributes
	Preservation of SUCXENT++'s Features

	Ordered XPath Processing
	Support for Ordered XPath Queries
	Ordered XPath Query Translation Algorithm

	Join Order Enforcement
	Performance Study
	Query Evaluation Times

	Conclusions and Future Work

	On Label Stream Partition for Efficient HolisticTwig Join
	Introduction
	Related Work
	Recursive Path Stream
	Motivation and Terminology
	Building RPS Scheme from XML Data
	Identifying Potential Solution Paths
	Adaptability of Different Stream Partition Schemes

	Experimental Evaluation
	Experimental Settings
	Experiment Results and Analysis

	Conclusion and Future Work

	Efficient XML Query Processing in RDBMS UsingGUI-Driven Prefetching in a Single-User Environment
	Introduction
	Visual Query Interface
	Computing Query Formulation Time
	Error-Oblivious QFT (EO_QFT)
	Error-Conscious QFT (EC_QFT)

	GUI-Based Prefetching
	Prefetching Algorithm

	Performance Study
	Related Work
	Conclusions and Future Work

	Efficient Holistic Twig Joins in Leaf-to-Root Combiningwith Root-to-Leaf Way
	Introduction
	Related Work
	Background
	The TJEssential Algorithm
	Preliminaries
	The TJEssential Algorithm
	The TJEssential* Algorithm

	Experiment
	Conclusion
	References

	TwigList: Make Twig Pattern Matching Fast
	Introduction
	Twig-Pattern Matching Queries
	Two Existing Algorithms: TwigStack and Twig2Stack
	A New Algorithm: TwigList
	TwigList-Construct Algorithm
	TwigList-Enumerate Algorithm
	Discussions

	Performance Study
	Conclusion and Future Work

	CircularTrip: An Effective Algorithm forContinuous kNN Queries
	Introduction
	Background Information
	Continuous kNN Algorithm
	Initial kNN Computation
	Continuous Monitoring

	Experimental Study and Remarks

	Optimizing Multiple In-Network AggregateQueries in Wireless Sensor Networks
	Introduction
	Preliminaries
	Algorithm SB: Selecting Backbones
	Determining Edges and Weights Among Query Trees
	Design of Algorithm SB

	Performance Evaluation
	Simulation Model
	Experimental Results

	Conclusion

	Visible Nearest Neighbor Queries
	Introduction
	Related Work
	Visible Nearest Neighbor Algorithms
	Performance Evaluation
	Conclusion

	On Query Processing Considering EnergyConsumption for Broadcast Database Systems
	Introduction
	Broadcast Database System
	Assumed Environment
	Query Processing Methods

	ELEC Method
	Outline
	Calculation of the Thresholds

	Evaluation
	Simulation Environment
	Simulation Results

	Conclusions

	Mining Vague Association Rules
	Introduction
	Vague Association Rules
	Mining Vague Association Rules
	Experiments
	Experiments on Real Datasets
	Experiments on Synthetic Datasets

	Conclusions

	An Optimized Process Neural Network Model
	Introduction
	MPNN: A Mixed PNN Model
	Topological Structure of MPNN
	Relationship Between Input and Output
	Learning Algorithm
	Topological Structure

	Data and Experimental Results
	Characteristics of Input Data
	Experimental Results

	Conclusion

	Clustering XML Documents Based onStructural Similarity
	Motivation and Literature Review
	Schema Extraction from XML Documents
	Document Clustering
	Implementation and Experimental Results
	Conclusions

	The Multi-view Information Bottleneck Clustering
	Introduction
	Related Work
	Information Bottleneck
	Co-training

	The Multi-view Information Bottleneck
	The Multi-view Objective Function and Solution
	The Global Ensemble

	Experiments
	Conclusion
	References

	Web Service Composition Based on MessageSchema Analysis
	Introduction
	MSL-Based Schema Matching Method
	SMSM Method for Web Service Synthesizing
	Examples
	Related Works
	Conclusion

	SQORE: A Framework for Semantic Query BasedOntology Retrieval
	Introduction
	SQORE’s System Architecture Overview
	Ontology Database Model and Its Semantics
	Semantic Query Formulation and Evaluation
	Similarity Measures
	Conclusions
	References

	Graph Structure of the Korea Web
	Introduction
	Graph Structure of the Korea Web
	Power Law Distributions
	The Macro Structure of the Korea Web

	Conclusion and Future Work
	References

	EasyQuerier: A Keyword Based Interface for WebDatabase Integration System
	Introduction
	Overview of EasyQuerier
	Domain Mapping
	Domain Representation Model
	Term Weight Assignment
	Domain Mapping

	Query Translation
	Computation Model of the Query Translation
	Computation of DM
	Computation of Conviction and QTS Generation

	Experiments
	Related Work
	Conclusion

	Anomalies Detection in Mobile Network ManagementData
	Introduction
	Related Work
	Mobile Network Data
	Semantic Pattern Identification in Management-Related Mobile Data
	Applying Data Reduction and Analysis Techniques to a Real Scenario
	Conclusion

	Security-Conscious XML Indexing
	Introduction
	Background and Related Work
	Security-Conscious XML Index
	Experimental Validation
	Conclusion and Future Work

	Framework for Extending RFID Events withBusiness Rule
	Introduction
	RFID Business Aware Framework
	RFID Business Aware Language
	RFID Business Event Assistant
	RFID Business Event Definition Tool
	Business Event Monitoring Engine
	Business Event Simulation Engine

	Related Works
	Conclusions and Future Work
	References

	Approximate Similarity Search over MultipleStream Time Series
	Introduction
	Related Work
	Problem Definition
	Approximate Similarity Search Via Hashing
	Weighted Locality-Sensitive Hashing (WLSH)
	Dynamic Maintenance of Hash Functions in Stream Time Series

	Experimental Evaluation
	Performance of LSH vs. WLSH
	Performance of Our Hashing Approach vs. VA+-Stream

	Conclusions

	WT-Heuristics: A Heuristic Methodfor Efficient Operator Ordering
	Introduction
	Related Work
	WT-Heuristics
	Goal of WT-Heuristics
	WT-Heuristics

	Experiments
	Experimental Environments
	Experimental Results

	Conclusion

	An Efficient and Scalable Management ofOntology
	Introduction
	Related Work
	OWL Data Storage
	Instance Reasoning
	Experiments
	Conclusion

	Estimating Missing Data in Data Streams
	Introduction
	Related Works
	Definitions
	Data Estimation Algorithm Based on Closed Frequent Itemsets
	Experimental Evaluations
	Conclusions
	References

	AB-Index: An Efficient Adaptive Index forBranching XML Queries
	Introduction
	The AB-Index
	Overview of the AB-Index
	Initializing the AB-Index
	Adapting the AB-Index
	Query Processing over the AB-Index

	Experimental Evaluation
	Conclusions

	Semantic XPath Query Transformation:Opportunities and Performance
	Introduction
	Related Work
	A Typology of Semantic XPath Query Rewriting Opportunities
	Empirical Performance Evaluation
	Performance Evaluation Strategy and Experimental Set-Up
	Results

	Conclusion
	References

	TGV: A Tree Graph View for Modeling UntypedXQuery
	Introduction
	XQuery Modeling
	Conclusion

	Indexing Textual XML in P2P Networks UsingDistributed Bloom Filters
	Introduction
	A Distributed Bloom Filter
	Constructing a DBF from XML Documents
	Splitting a Bloom Filter for Distribution

	Distributing BF on a P2P Overlay
	Distribution of DBF Segments
	Query Demand Routing

	Experiments
	Conclusion

	Towards Adaptive Information Merging UsingSelected XML Fragments
	Introduction
	The Unifying Framework for Searching and Merging
	The Merging and Searching Approaches
	The Adaptive Increment Merging Approach
	Four Directional Searching Approaches

	Conclusions

	LAPIN: Effective Sequential Pattern Mining Algorithmsby Last Position Induction for Dense Databases
	Introduction
	Overview of Our Algorithm

	LAPIN Sequential Pattern Mining
	Performance Study
	Conclusions

	Spatial Clustering Based on Moving Distancein the Presence of Obstacles
	Introduction
	Related Works
	Clustering Based on Moving Distance
	Experimental Evaluation and Analysis
	Conclusion
	References

	Tracing Data Transformations: A Preliminary Report
	Introduction
	Mapping Model
	Tracing Data Transformations
	Related Work
	Conclusion
	References

	QuickCN: A Combined Approach for EfficientKeyword Search over Databases
	Introduction
	Our Approach QuickCN
	Generate CN Execution Plan
	Execute CN on Data Graph

	Experimental Evaluation
	Conclusions and Future Work

	Adaptive Join Query Processing in Data Grids: ExploringRelation Partial Replicas and Load Balancing
	Introduction
	Problem Statement
	Obtainment of Efficient Tuple Sets
	Selection of Appropriate Partial Replicas
	Duplicate Removals in Selected Partial Replicas
	Adaptive Selection and Adjustment of Execution Nodes
	Experimental Results
	Conclusion
	References

	Efficient Semantically Equal Join on Strings
	Introduction
	Semantically Equal Join Approach
	Schema of Auxiliary Table and Semantically Equal Join
	Query for Implementing SEJ

	Conclusion

	Integrating Similarity Retrieval and SkylineExploration Via Relevance Feedback
	Introduction
	Related Work
	I-Skyline Framework

	An Image-Semantic Ontological Framework forLarge Image Databases
	Introduction
	The Image-Semantic Ontological Framework
	The Construction Process
	The Retrieval Algorithm
	Conclusion

	Flexible Selection of Wavelet Coefficientsfor Continuous Data Stream Reduction
	Introduction
	Our Flexible Approach
	Data Based and Query Based Estimation Error
	Flexible Selection of Wavelet Coefficients

	Conclusions
	References

	Versioned Relations: Support for ConditionalSchema Changes and Schema Versioning
	Introduction
	Versioned Relations
	Algebra for Versioned Relations and Schema Versioning
	Related Work
	Conclusion

	Compatibility Analysis and Mediation-AidedComposition for BPEL Services
	Introduction
	Solution Approach
	Conclusion
	References

	Efficient Reasoning AboutXFDs with Pre-image Semantics
	Introduction
	Deciding Implication of XFDs Based on Pre-images

	Context RBAC/MAC Access Control forUbiquitous Environment
	Introduction
	Related Works
	Secure Context RBAC/MAC Model
	Context Rules
	Lifetime and Time Constraint
	Subject
	Role
	Object

	Secure Context RBAC/MAC Architecture
	Secure Context RBAC/MAC Policy
	Conclusion

	Extending PostgreSQL to SupportDistributed/Heterogeneous Query Processing
	Introduction
	Adding Distributed Query Processing in PostgreSQL
	Data Source Wrapper
	Extended DDL Statements

	Query Execution Techniques
	Problems of Processing Distributed Query in PostgreSQL
	Pipelined Data Fetch
	Query Shipping
	Start-Fetch

	Experimental Results
	Pipelined Data Fetch
	Query Shipping (Sorting)
	Start-Fetch
	Running TPC-H Queries

	Related Work
	Conclusions and Future Work
	References

	Geo-WDBMS: An Improved DBMS with the Function ofWatermarking Geographical Data
	Introduction
	Background
	Related Works
	Our Contribution

	Framework of Geo-WDBMS
	Error Correction Mechanism

	Watermarking Algorithms of Geo-WDBMS
	Scheme of Watermarking Geo-data
	Watermark Insertion
	Watermark Detection and Error Correction

	Implementation and Evaluation
	Overhead of the System
	Experiments Evaluation

	Conclusion and Future Work
	References

	TinTO: A Tool for the View-Based Analysisof Streams of Stock Market Data
	Technical Analysis of Stock Market Data
	The TinTo System
	Continuous Online Analysis of Stock Data
	Efficient Delta View-Based Analysis of Data Streams
	Introduction
	Related Work
	Scenario and Prototype
	Conclusion

	OntoDB: It Is Time to Embed Your DomainOntology in Your Database
	Introduction
	OntoDB Components
	System Implementation
	The Scenario to Be Demonstrated

	Author Index

