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Abstract. The co-association (CA) matrix was previously introduced
to combine multiple partitions. In this paper, we analyze the CA matrix,
and address its difference from the similarity matrix using Euclidean
distance. We also explore how to find a proper and better algorithm to
obtain the final partition using the CA matrix. To get more robust and
reasonable clustering ensemble results, a new hierarchical clustering al-
gorithm is proposed by developing a novel concept of normalized edges
to measure the similarity between clusters. The experimental results of
the proposed approach are compared with those of some single runs of
well-known clustering algorithms and other ensemble methods and the
comparison clearly demonstrates the effectiveness of our algorithm.

1 Introduction

Cluster analysis is an important tool for exploratory data analysis, aiming to find
homogeneous groups in a data set of unlabeled objects. Numerous algorithms
have been and are being developed [2], [9], [10], such as the K-means (KM),
the single-linkage (SL) or the average-linkage (AL) and the spectral clustering
algorithms [14], [15].

However, clustering is inherently an ill-posed problem. All the previous meth-
ods are designed with certain assumptions and favor some type of biases, and
no single one is universally suitable for solving all the problems [19]. Hoping
to exploit the strength of many individual clustering algorithms, people turn to
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clustering ensembles, seeking improvement over a single clustering algorithm in
such aspects as robustness, novelty and scalability, et al.

Besides formal arguments on the effectiveness of cluster ensembles [18], many
combining algorithms have been proposed, and their good performance further
justified the use of cluster ensembles. A few examples are: methods based on
hypergraph (CSPA, HGPA, and MCLA) [16] or bipartite graph partitioning [3],
evidence accumulation using the CA matrix (EAC-SL and EAC-AL) [6], mix-
ture model using a unified representation for multiple partitions [17], bagged
clustering [11], and combination by plurality voting [1], [4], [7], [20].

Despite the primary success achieved by those algorithms, they are far from
ideal. To make the clustering ensembles practical and helpful for us, an effective
algorithm is crucial, which is the focus of this paper. We first analyze the CA
matrix, and discuss the problem of designing a proper algorithm for it in Sect. 2.
Based on a novel concept of normalized edges as we have defined in this paper,
we propose a hierarchical algorithm to find the final partition in Sect. 3. In Sect.
4, experiment results demonstrate the effectiveness of our proposed method.

2 Analysis of the Co-Association Matrix

2.1 The Co-Association (CA) Matrix

In order to combine the multiple partitions of the data, one can first map the
data to a new feature space as a way to accumulate the information provided by
each partition. The CA matrix1 C [6] is a newly constructed similarity matrix
from multiple partitions of the original data. It takes the co-occurrence of pairs
of patterns in the same clusters as votes for their association, with elements

C(i, j) =
nij

N
, (1)

where nij is the number of times the pair xi and xj is assigned to the same
cluster among the N partitions. In fact, the CA matrix records the frequency
that every pair of points is in the same cluster.

The CA matrix (N = 30, and the number of clusters is fixed to 602) of the
2-spirals data3 (Fig. 1a) is shown in Fig. 1c. For comparison, the similarity
matrix (normalized into the 0-1 scale) based on the Euclidean distance for the
original patterns is plotted in Fig. 1b. Evidently, the similarity of pairs of points
from different clusters is mostly much smaller in the CA matrix than that in the
original similarity matrix, showing the CA matrix captures the global structure
of the data. Thus, it is not surprising that the evidence accumulation method
operating on the CA matrix [6] performs well and that is why we use the CA
matrix to combine the multiple partitions in our method.
1 This matrix is also used in the CSPA algorithm [16]; and in [12] but by the name

of consensus matrix.
2 This strategy, initially splitting the data into a large number of small clusters and

then combining them, is the so-called split-and-merge approach [5].
3 To make comparison easy, we reorder the data, so the first 100 points are from one

cluster and the last 100 points from the other cluster.
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Fig. 1. The 2-spirals data set and its similarity matrices. (a) 2-spirals data. (b) Sim-
ilarity matrix using Euclidean distance. (c) CA matrix: new similarity matrix using
multiple partitions. (d) Enlarged part of (c).

2.2 A Proper Algorithm

Despite the good discrimination ability of the CA matrix, improper clustering
algorithms can still lead to bad results. For example, in [6] (e.g. table 2) and
[17] (e.g. Fig. 9 and 10b), the authors found that, based on the CA values, the
results of the consensus functions (i.e., SL, AL and CL) differ significantly, and
the choice of a good consensus function is sensitive to the choice of the data set.
So, does there exist a better consensus function? How can we find it?

Compared with ordinary similarity matrix using Euclidean distance, the CA
matrix has special characteristics. Without loss of generality, we take the CA
matrix (Fig. 1c) of the 2-spirals data as an example, part of which is highlighted
in Fig. 1d. The similarity matrix of the data using Euclidean distance is shown in
Fig. 1b. To construct a good algorithm, we believe that the following character-
istics should be taken into account: 1) points from different clusters are always
dissimilar, 2) a large percentage of pairs of points from the same cluster have
very low similarity, and 3) if two points from the same cluster are dissimilar, then
there always should be a path of some points (or just one point) between them
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who are successively similar. Referring to these features, we can also explore the
reasons why the SL, AL and CL algorithms would have such performance in [6].

3 Normalized Edges and the Algorithm

Based on the above analysis, we will customize a hierarchical clustering algorithm
to operate on the CA matrix for combining multiple partitions, in hopes of
discovering the true structure of the data more successfully and robustly.

3.1 Normalized Edges

Our proposed hierarchical clustering algorithm is based on a novel concept of
normalized edges for measuring the similarity between clusters. Treating all
points of the data as a set of vertices, we can define an undirected and un-
weighted graph. An edge exists between two points (or vertices), xi and xj , if
and only if their similarity is larger than a threshold θ. In fact, this defines a
threshold graph. For simplicity, we define a function edge between two points xi

and xj ,

edge(xi, xj) =
{

1 if sim(xi, xj) > θ,
0 otherwise. (2)

The notion of edges between two clusters Ci and Cj , edges(Ci, Cj), is just the
number of distinct edges connecting these two groups. Essentially, this can be
used as a measure of the goodness of merging them in an agglomerative hier-
archical clustering algorithm. However, this naive approach may work well only
for well-separated and approximately equal-sized clusters.

A proper way to fix this problem is to normalize the number of edges between
two clusters edges(Ci, Cj), by dividing it by the (estimated) expected number of
edges between them, which is inspired by goodness measure used in ROCK [8].
Hence, the number of normalized edges (NE) between two clusters, Ci and Cj , is

NE(Ci, Cj) =
edges(Ci, Cj)

(ni + nj)1+f(θ) − n
1+f(θ)
i − n

1+f(θ)
j

, (3)

where ni and nj are the number of points, n
1+f(θ)
i and n

1+f(θ)
j are the estimated

expected number of edges, in the clusters Ci and Cj respectively.
As in [8], we assume that every point in Ci has n

f(θ)
i edges with other points

in the cluster, then the total number of edges between points in the cluster is
n

1+f(θ)
i (each edge is counted twice). Thus the expected number of edges between

pairs of points (each point from a different cluster) becomes (ni + nj)1+f(θ) −
n

1+f(θ)
i − n

1+f(θ)
j . Intuitively, the function f(θ) is introduced to measure the

influence of θ on the number of edges. Based on the analysis of Guha et al. [8],
it is also defined as (1 − θ)/(1 + θ) in this paper.
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3.2 Our Clustering Algorithm

With the definition of normalized edges to measure the similarity between two
clusters, we can use this measure to construct a new agglomerative hierarchical
algorithm. To reduce the workload of calculation, we need not re-start calculating
the similarity between clusters after each merging step. We just have to update
the similarity between the merged and the other clusters. That is, if clusters Ci

and Cj are merged into a new cluster Ck, then we have (for l �= i, j and k)
edges(Cl, Ck) = edges(Cl, Ci) + edges(Cl, Cj), and nk = ni + nj .

Thus we can calculate the normalized edges NE(Cl, Ck) by definition.
The proposed algorithm can be summarized as follows:

The Algorithm

Input:
The similarity matrix (the CA matrix in this paper), the threshold θ, and the
number of clusters k.
Initialization:
To calculate edge between all pairs of points based on the similarity matrix.
Repeat:
1. To merge two clusters, among all possible pairs of clusters, with the largest
normalized edges ;
2. To update the edges and normalized edges between the merged clusters and
the other clusters.
Until:
Only k clusters left or the number of edges between every pair of the remaining
clusters becomes zero.

Certainly, we can speed up the algorithm by many methods used in the tra-
ditional agglomerative clustering algorithms. The edge between every pair of
points can be computed in O(n2) time, and the worst time complexity of the
clustering algorithm is O(n2logn), just as the ROCK algorithm.

For the threshold θ in our algorithm, we are still seeking a general way to de-
termine it. Empirically, the algorithm worked well with θ in the interval [0.1,0.4]
for many data sets, and was not very sensitive to it (e.g., for all the data sets in
the experiments of this paper, we fixed θ to 0.30).

4 Experiments

We compared our algorithm with single runs of some well-known clustering al-
gorithms and other ensemble ones, and the experiment results demonstrate the
effectiveness of our method.

4.1 Data Sets, Algorithms and Parameters Selection

We summarized the details of the data sets in Table 1, which had been adopted
by other authors to test their ensemble algorithms [4], [6], [13], [17].
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Table 1. Characteristics of the Data Sets

Data set No. of No. of No. of Total no.
features classes points/class(noise) of points

2-spirals 2 2 100-100 200
Complex image 2 7 200-200-100- 743

100-50-50-33-(10)
3-paths 2 3 200-200-200-(200) 800

Wisconsin Breast-cancer 9 2 239-444 683
Std Yeast 17 5 67-135-75-52-55 384
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Fig. 2. The complex image and 3-paths data sets. Clusters are indicated by different
colors/patterns. Here show the clustering results of our ensemble algorithm. (a) Com-
plex image, the 10 points of the outer circle are considered as noise. (b) 3-paths, 3
path-like clusters (200 points for each), corrupted by 200 noise points.

We compared the experiment results of our ensemble algorithm (denoted by
CA-HNE) with single runs of following algorithms: KM, SL, AL, and spectral
clustering algorithm (SC) [14], and following ensemble methods: CSPA, HGPA
and MCLA [16], Boost-KM [7], EAC-SL and EAC-AL [6], and Latent-EM [17].

For the algorithms proposed by other authors, the parameters selection and
other settings are the same as suggested in their papers. The multiple partitions
of the data were obtained by running KM algorithm with random initialization
of cluster centers.

We found that, using only 10 or 20 component partitions, our algorithm
worked well for many data sets, while many other authors used a (much) larger
number for their algorithm, e.g. 50 [6], 100 [4], 500 [12]. For simplicity, we gen-
erated 30 partitions for our algorithm and 50 for all other ensemble ones. For
our algorithm, k was chosen as a constant, usually larger than the true number
of clusters of the data. The ‘true’ number of clusters of the data, was assumed
to be known, as in [6], [17].
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4.2 Results, Comparison and Analysis

Table 2 summarizes the mean error rates and standard deviations from 20 in-
dependent runs of the different methods on the data sets. The error rates are
obtained by matching the clustering results with the ground-truth information,
taken as the known labeling of the real-world data sets or the perceptual group-
ing of the artificial ones. Since all the clustering algorithms considered here do
not detect outliers in the data, we ignore the noise points when calculating the
error rates. Notice that the SL and AL algorithms give unvaried clustering results
for each data set.

Table 2. Mean Error Rates and Standard Deviations of Different Algorithms

Data set KM SL AL SC CSPA HGPA
2-spirals .399±.011 0 .480 0±0 .418±.059 .394±.078

Complex image .550±.073 .523 .478 .250±.074 .404±.076 .389±.048
3-paths .327±.005 .667 .350 .046±.001 .212±.058 .251±.068

Breast-cancer .039±.001 .349 .057 .029±0 .167±.020 .147±.017
Std Yeast .358±.057 .638 .341 .320±0 .442±.011 .431±.014
Data set MCLA Boost EAC EAC Latent CA

-KM -SL -AL -EM -HNE
2-spirals .365±.075 .429±.007 0±0 .325±.051 .418±.030 0±0

Complex image .397±.078 .533±.032 .136±.125 .546±.043 .540±.055 .013±.023
3-paths .214±.138 .328±.000 .617±.122 .375±.046 .349±.049 .006±.017

Breast-cancer .131±.030 .039±.001 .319±.093 .047±.007 .039±.001 .030±.004
Std Yeast .422±.022 .332±.021 .594±.062 .349±.023 .390±.072 .333±.030

We can see that the evidence accumulation clustering (EAC-SL or EAC-AL)
can sometimes discover the structure of the data successfully. However, which
method will succeed depends heavily on the choice of the data sets. In general,
the AL (SL) consensus function based on CA matrix is appropriate if standard
AL (SL) agglomerative clustering method works well for the data, and vice
versa [17]. This may be problematic since sometimes the characteristic of the
data is difficult to know, or is complex for standard agglomerative clustering (e.g.
3-paths). However, our algorithm tackles this problem well. For our method, the
mean error rates presented in Table 2 are all the best or comparable to the best,
and the partitions of the complex image and 3-paths data sets are as good as
we expected, see Fig. 2a and 2b. The experiments show the effectiveness of our
algorithm: it gives the best (or comparable to the best) overall performance for
all the data sets. It clusters all the chosen data sets reasonably, though they have
hybrid or complex characteristic or are corrupted by noise. The CSPA algorithm
does not perform well for these chosen data sets, though it is also based on the
CA matrix. Again, this demonstrates the importance of the choice of algorithms
for the final partition based on the CA matrix. Other ensemble methods HGPA,
MCLA, Boost-KM, latent-EM still favor some type of biases, and do not perform
well for other kinds of data sets.



Clustering Ensembles Based on Normalized Edges 671

Single runs of KM, SL, and AL algorithms result in good partitions when the
data sets are suitable for them, but fail drastically otherwise (e.g. noise, hybrid
structure). The SC algorithm gives reasonable partitions for some of the data
sets, but fails for complex image and 3-paths.
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