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Abstract. This work presents a kernel method for clustering the nodes
of a weighted, undirected, graph. The algorithm is based on a two-step
procedure. First, the sigmoid commute-time kernel (KCT), providing a
similarity measure between any couple of nodes by taking the indirect
links into account, is computed from the adjacency matrix of the graph.
Then, the nodes of the graph are clustered by performing a kernel k-
means or fuzzy k-means on this CT kernel matrix. For this purpose,
a new, simple, version of the kernel k-means and the kernel fuzzy k-
means is introduced. The joint use of the CT kernel matrix and kernel
clustering appears to be quite successful. Indeed, it provides good results
on a document clustering problem involving the newsgroups database.

1 Introduction

This work presents a general methodology for clustering the nodes of a weighted,
undirected, graph. Graph nodes clustering is an important issue that has been
the subject of much recent work; see for instance [4], [5], [7], [11], [17] and [19].

On the other hand, kernel-based algorithms are characterized by two proper-
ties: they allow (i) to compute implicitly similarities in a high-dimensional space
where the data are more likely to be well-separated and (ii) to compute similari-
ties between structured objects that cannot be naturally represented by a simple
set of features. In this paper we propose a new kernel matrix on a weighted,
undirected, graph, which defines similarities between the nodes. These similar-
ities take both direct and indirect links into account; they therefore take the
indirect paths between the nodes into consideration. Two nodes are considered
as similar if there are many short paths connecting them.

Based on this kernel matrix, nodes are clustered thanks to a kernel clustering.
The kernel clustering algorithms proposed in this paper differ from existing ones
([2], [9], [10], [20], [22] and [23]) by the fact that a prototype vector is explicitly
defined for each cluster. This is more natural since it allows to mimic the iterative
update rules reminiscent from k-means and fuzzy k-means in the sample space,

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 1037–1045, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



1038 L. Yen et al.

instead of the feature space. In addition to be very similar to the original feature-
based algorithms, this sample-based method can easily be extended to variable-
metric or multi-prototype kernel k-means, in the same way as the original k-
means and fuzzy k-means [6]. In addition to this, the resulting algorithm is very
simple and natural.

The performances are evaluated on the problem of clustering newsgroups
documents, and compared to the popular spherical k-means algorithm, which
is especially designed for document clustering [3], as well as a classic spectral
clustering method [12]. The collection of documents is viewed as a graph and
the basic problem is to cluster the documents in order to eventually retrieve
the newsgroups. The results indicate that the introduced algorithms perform
well in comparison with the spherical k-means and the spectral clustering, with
significant improvement.

The paper is organized as follows. Section 2 introduces the sigmoid commute-
time kernel (KCT) on a graph that will be used as similarity measure for clus-
tering the nodes. Section 3 derives our version of the kernel k-means and kernel
fuzzy k-means, while Section 4 shows the results obtained on the newsgroups
database. Section 5 is the conclusion.

2 The Sigmoid Commute-Time Kernel on a Graph

Let us consider that we are given a weighted, undirected, graph, G, with symmet-
ric weights wij > 0 on the edges connecting pairs of nodes i, j. The elements aij of
the adjacency matrix A of the graph are defined in a standard way as aij = wij if
node i is connected to node j and 0 otherwise. Based on the adjacency matrix, the
Laplacian matrix L of the graph is defined by L = D−A, where D = Diag(ai.)
is the degree matrix, with diagonal entries dii = [D]ii = ai. =

∑n
j=1aij . We

suppose that the graph has a single connected component; that is, any node can
be reached from any other node of the graph. In this case, L has rank n − 1,
where n is the number of nodes. Moreover, it can be shown that L is symmetric
and positive semidefinite (see for instance [8]).

The “commute time” kernel [14], [8] takes its name from the average com-
mute time, n(i, j), which is defined as the average number of steps a random
walker, starting in node i �= j, will take before entering a node j for the first
time, and go back to i. Indeed, we associate a Markov chain to the graph in
the following obvious manner. A state is associated to every node (n in total),
and the transition probabilities are given by pij = aij/ai. where ai. =

∑n
j=1aij .

One can show [14], [8] that, in this case, the average commute time can be
computed thanks to n(i, j) = VG (ei − ej)TL+(ei − ej) where every node i of
the graph is represented by a basis vector, ei (the i-th column of the identity
matrix I), in the Euclidean space �n and VG = a.. is the volume of the graph.
L+ is the Moore-Penrose pseudoinverse of the Laplacian matrix of the graph
and is positive semidefinite. Thus, n(i, j) is a Mahalanobis distance between
the nodes of the graph and is referred to as the “commute time distance” or the
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“resistance distance” because of a close analogy with the effective resistance in
electrical networks [8].

One can further show that L+ is the matrix containing the inner products of
the node vectors in the Euclidean space where these node vectors are exactly
separated by commute time distances. In other words, the entries of L+ can
be viewed as similarities between nodes and L+ can be considered as a kernel
matrix:

K = L+ (1)

The sigmoid commute time kernel KCT is obtained by applying a sigmoid
transform [15] on K. In other words, each element of the kernel matrix is given
by the formula

[KCT]ij = 1/(1 + exp[a l+ij/σ]) (2)

where l+ij = [L+]ij and σ is a normalizing factor, corresponding to the standard
deviation of the elements of L+. The parameter a will be set to a constant
value determined by informal preliminary tests. The sigmoid function aims to
normalize the range of the similarities in the interval [0, 1] [15]. Notice, however,
that the resulting matrix is not necessarily positive semi-definite so that, strictly
speaking, it is not a kernel matrix.

3 Kernel k-Means and Fuzzy k-Means

We now introduce our kernel, prototype-based, version of the k-means and fuzzy
k-means clustering algorithms.

3.1 Kernel k-Means

The goal is to design an iterative algorithm aiming to minimize a cost function
which, in the case of a standard k-means, can be defined, in the feature space,
as the total within-cluster inertia:

J(g1, . . . ,gm) =
m∑

k=1

∑

i∈Ck

||xi − gk||2 (3)

where the first sum is taken on the m clusters, while the second sum is taken
on the nodes i belonging to cluster k, i ∈ Ck. In Equation (3), xi is the feature
vector corresponding to node i, gk is a prototype vector of cluster k in the
feature space and ||xi −gk|| is the Euclidean distance between the node vector
and the cluster prototype it belongs to. The number of clusters, m, is provided
a priori by the user.

We denote by X the data matrix containing the transposed node vectors as
rows, that is, X = [x1,x2, . . . ,xn]T. Let us now define the following change of
parameter:

gk → XThk (4)

corresponding to the “kernel trick” (see [16]). It aims to express the prototype
vectors, gk, as a linear combination of the node vectors, xi (the columns of
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XT). The hk will be called the prototype vectors in the n-dimensional sample
space. Now, recompute the within-class inertia in terms of the hk and the inner
products:

J(h1, . . . ,hm) =
m∑

k=1

∑

i∈Ck

(xi − gk)T(xi − gk)

=
m∑

k=1

∑

i∈Ck

(kii − 2kT
i hk + hT

k Khk)

=
m∑

k=1

∑

i∈Ck

(ei − hk)TK(ei − hk) (5)

where K = XXT, kii = [K]ii = xT
i xi, ki = Xxi = coli(K).

The k-means iteratively minimizes J by proceeding in two steps, (1) re-
allocation of the node vectors while keeping the prototype vectors fixed, and
(2) re-computation of the prototype vectors, hk, while maintaining the cluster
labels of the nodes fixed. Clearly, the re-allocation step minimizing J is

li = arg min
k

{
(ei − hk)TK(ei − hk)

}
(6)

where li contains the cluster label of node i.
For the computation of the prototype vector, by taking the gradient of J with

respect to hk and setting the result equal to 0, we obtain Khk = 1
nk

∑
i∈Ck

ki =
K 1

nk

∑
i∈Ck

ei where nk is the number of nodes belonging to cluster k. By looking
carefully, we immediately observe from the left-hand side of the equation that
Khk is a linear combination of the ki, while the right-hand side is also a linear
combination of the ki. Therefore, one solution to this linear system of equations
is simply the following:

hk =
1
nk

∑

i∈Ck

ei (7)

In other words, hk contains 1/nk if i ∈ Ck and 0 otherwise. This two-step
procedure (equations (6) and (7))is iterated until convergence.

3.2 Kernel Fuzzy k-Means

We now apply the same procedure for deriving a kernel fuzzy k-means. This
time, the cost function is

J(g1, . . . ,gm;U) =
m∑

k=1

n∑

i=1

uik||xi − gk||2 with
m∑

k=1

u
1/q
ik = 1 for all i (8)

where the uik define the degree of membership of node i to cluster Ck. The pa-
rameter q > 1 is controlling the degree of fuzzyness of the membership functions.
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As for the kernel k-means, we perform the change of parameter (4), leading to
the following update formula for the membership function.

uik =

⎡

⎢
⎢
⎢
⎢
⎣

(
(ei − hk)TK(ei − hk)

)−1/(q−1)

m∑

l=1

((ei − hl)TK(ei − hl))
−1/(q−1)

⎤

⎥
⎥
⎥
⎥
⎦

q

(9)

and the re-computation of the prototype vectors is simply,

hki = [hk]i =
uik

n∑

j=1

ujk

(10)

4 Experiments

4.1 Data Set

In order to test the performances of the KCT k-means and the KCT fuzzy
k-means, both algorithms will be assessed on a real data set and compared
to classical clustering algorithms. The idea is to assess both algorithms on
graph data set where only the information on relation between nodes is given.
The tested graphs are extracted from the newsgroups data set (Available from
http://people.csail.mit.edu/jrennie/20Newsgroups/); it is composed of 20,000
unstructured documents, taken from 20 discussion groups (newsgroups) of the
Usernet diffusion list. As the data set is composed of documents, the clustering
performances of both methods will be compared to the spherical k-means [3],
which is a reference in text mining; and to Ng’s spectral clustering [12], which
presents some similarities with our approach.

For our experiment, 9 subsets including different topics are extracted from
the original database, as listed in figure 1. More precisely, for each subset, 200
documents are sampled from different newsgroups. Thus, the three first subsets
(G-2cl-A, G-2cl-B, G-2cl-C) contain 400 documents sampled from two news-
groups topics, the next three subsets (G-3cl-A, G-3cl-B, G-3cl-C) contain 600
documents sampled from three topics and the last three subsets (G-5cl-A, G-
5cl-B, G-5cl-C) contain 1000 documents sampled from five topics. The selected
topics can be related such as politics/mideast and politics/guns in subset G-
5cl-A. Both the classification rate (obtained by comparing the clustering to the
real newsgroups and performing an optimal assignment) and the adjusted Rand
index (with values scaled in [0, 1]) will be reported.

4.2 Graph Definition

The newsgroups data set can be seen as a large bipartite graph between docu-
ments and terms. Each document node is connected to terms nodes contained
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G-2cl-A politics/general, sport/baseball

G-2cl-B computer/graphics, motor/motorcycles

G-2cl-C space/general, politics/mideast

G-3cl-A sport/baseball, space/general, politics/mideast

G-3cl-B computer/windows, motor/autos, religion/general

G-3cl-C sport/hockey, religion/atheism, medicine/general

G-5cl-A computer/windowsx, cryptography/general, politics/mideast, politics/guns,

religion/christian

G-5cl-B computer/graphics, computer/pchardware, motor/autos, religion/atheism,

politics/mideast

G-5cl-C computer/machardware, sport/hockey, medicine/general, religion/general, forsale/general

Fig. 1. Document subsets used in our experiments. Nine subsets are selected from
the Newsgroups data set, with 2, 3 or 5 topics. For each subset, 200 documents are
randomly selected from each topic.

in the document, each edge being weighted by the tf.idf factor [18]. After some
preprocessing steps (see below) aiming to reduce the number of terms, a graph
involving only documents is computed from this bipartite graph in the following
way: the link between two documents is given by the sum of all document-term-
document paths connecting them and passing through the terms they have in
common. In other words, if W represents the term-document matrix contain-
ing the tf.idf factors, the adjacency matrix of the resulting document-document
graph is provided by A = WTW.

4.3 Preprocessing Steps

In order to reduce the high dimensionality of the feature space (terms), the
following standard preprocessing steps are performed on the data set before the
clustering experiment.

1. Stopwords without useful information are eliminated.
2. Porter’s stemming algorithm [13] is applied so that each word is reduced to

its “root ”.
3. Words that occur too few times (< 3) or in too few documents (< 2) are

considered as no content-bearing and are eliminated.
4. The mutual information between terms and documents is computed. For a

word y, the mutual information with the documents of the data set [21] is
given by

I(y) =
∑

x

log p(x, y)/p(x)p(y), (11)

where x represents the documents of the data set. Words with a small value
of mutual information (fixed at 20% of I(y)’s median) are eliminated.

5. The term-document matrix W is constructed with the remaining words and
documents. Element [W]ij of the matrix contains the value of tf.idf factor
between the term i and the document j.

6. Each row of the term-document matrix W is normalized to 1.
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Finally, the adjacency matrix of the documents graph A is given by the
document-document matrix WTW. Based on A, KCT is computed by Equation
(2). For example, the subset G-2cl-A is composed of 400 documents, and 2898
terms with stopwords already eliminated. After preprocessing, only 1490 terms
are kept. Thus, the clustering algorithm will be run on a 400×400 document-
document matrix, instead of a 1490×400 term-document matrix for a standard
feature-based algorithm.

4.4 Experimental Settings

Suppose we have a graph of n nodes to be partitioned into m clusters. First,
the prototype vectors hi (i = 1, ..., m) are initialized by randomly selecting m
columns of the identity matrix I. Then, each algorithm is run 30 times (30
runs), and the classification rate as well as the adjusted Rand index, aver-
aged on the 30 runs, are computed. The KCT k-means, KCT fuzzy k-means
and Ng’s spectral clustering are run on the document-document matrix A,
while the spherical k-means is run on the term-document matrix W after
preprocessing.

Each run consists in 50 trials: the clustering algorithm is launched 50 times and
the best solution among the 50 trials, having the minimal within-class inertia,
is sent back as the solution.

Two parameters need to be tuned. The first one is the parameter a for comput-
ing the sigmoid transform of the KCT (see Equation (2)). The second one is the
parameter q which controls the degree of fuzzyness for the kernel fuzzy k-means
(see Equation (9)). Based on preliminary informal experiment, the parameters
a and q were set to 7 and 1.2 respectively, for all experiments.

4.5 Experimental Results and Discussion

The results (the classification rate as well as the adjusted Rand index, each
averaged on 30 runs) of the four clustering algorithms (KCT k-means, KCT fuzzy
k-means, spherical k-means and Ng’s spectral clustering) on the nine document
subsets are reported in Table 1.

We observe that the KCT k-means and the KCT fuzzy k-means outperform
the spherical k-means on the nine subsets. Ng’s spectral clustering presents good
results on the 2-classes and 3-classes data sets, but degrades when the number
of clusters increases. Moreover, the KCT fuzzy k-means provides slightly better
results than the two other methods. This can be partly explained by the fact that
the newsgroups data set is fuzzy itself, as discussed in [1]. It is hard to define clear
boundaries between the different topics: a discussion within a specific newsgroup
can also be related to other domains. A close examination of the data set shows
that several discussions can even be out of subject or are simply empty of useful
information.
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Table 1. Comparison of the clustering performances (classification rate in % and
adjusted Rand index with value scaled in [0, 1]) for the KCT k-means, KCT fuzzy
k-means, spherical k-means and Ng’s spectral clustering

KCT k-means KCT fuzzy k-means Sph. k-means Ng spec. clus.

class. rate adj. Rand class. rate adj. Rand class. rate adj. Rand class. rate adj. Rand

G-2cl-A 97.5 % 0.95 97.8 % 0.96 91.8 % 0.85 94.5 % 0.90

G-2cl-B 90.6 % 0.83 91.5 % 0.84 81.5 % 0.70 93.0 % 0.87

G-2cl-C 95.5 % 0.91 96.0 % 0.92 94.8 % 0.90 95.7 % 0.92

G-3cl-A 93.9 % 0.91 94.5 % 0.92 89.2 % 0.85 92.7 % 0.90

G-3cl-B 93.6 % 0.91 93.5 % 0.91 86.7 % 0.82 92.0 % 0.89

G-3cl-C 93.9 % 0.91 92.8 % 0.90 87.4 % 0.83 81.7 % 0.78

G-5cl-A 83.0 % 0.80 85.4 % 0.83 80.4 % 0.79 76.7 % 0.78

G-5cl-B 74.8 % 0.77 78.4 % 0.79 64.4 % 0.69 67.7 % 0.72

G-5cl-C 76.4 % 0.75 80.1 % 0.79 64.9 % 0.69 64.0 % 0.72

5 Conclusions and Further Work

We introduced a new method allowing to cluster the nodes of a weighted graph
by exploiting the links between them. It is based on a recently introduced kernel
on a graph, the commute-time kernel, combined with a kernel clustering. The
obtained results are promising since the proposed methodology outperforms the
standard spherical k-means as well as spectral clustering on a difficult graph
clustering problem. Further work will be devoted to (1) additional experiments
on other text databases, and (2) developing kernel versions of the Gaussian
mixture, the entropy-based fuzzy clustering, Ward’s hierarchical clustering, and
assessing their performances.

References

1. M. W. Berry, editor. Survey of Text Mining. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

2. I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means, spectral clustering and nor-
malized cuts. In Proceedings of the 2004 ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 551–556. ACM Press, 2004.

3. I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data
using clustering. Machine Learning, 42(1):143–175, 2001.

4. C. Ding and X. He. Linearized cluster assignment via spectral ordering. In ICML
’04: Proceedings of the twenty-first international conference on Machine learning,
page 30, New York, NY, USA, 2004. ACM Press.

5. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56(1-3):9–33, 2004.

6. B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Arnold Publishers, 2001.
7. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum

cut trees. Internet Math, 1(4):385–408, 2003.



Graph Nodes Clustering Based on the Commute-Time Kernel 1045

8. F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation of
similarities between nodes of a graph, with application to collaborative recommen-
dation. IEEE Transactions on Knowledge and Data Engineering, 19(3):355–369,,
2007.

9. M. Girolami. Mercer kernel-based clustering in feature space. IEEE Transactions
on Neural Networks, 13(3):780–784, May 2002.

10. D.-W. Kim, K. Y. Lee, D. Lee, and K. H. Lee. Evaluation of the performance of clus-
tering algorithms in kernel-induced feature space. Pattern Recognition, 38(4):607–
611, 2005.

11. M. Newman. Detecting community structure in networks. The European Physical
Journal B, 38:321–330, 2004.

12. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processiong Systems, volume 14, pages 849–856, Vancouver,
Canada, 2001. MIT Press.

13. M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
14. M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal components analysis

of a graph, and its relationships to spectral clustering. Proceedings of the 15th Eu-
ropean Conference on Machine Learning (ECML 2004). Lecture Notes in Artificial
Intelligence, Vol. 3201, Springer-Verlag, Berlin, pages 371–383, 2004.

15. B. Scholkopf and A. Smola. Learning with kernels. The MIT Press, 2002.
16. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.
17. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of

Utrecht, 2000.
18. S. Weiss, N. Indurkhya, T. Zhang, and F. Damerau. Text Mining: Predictive Meth-

ods for Analyzing Unstructured Information. Springer, 2004.
19. S. White and P. Smyth. A spectral clustering approach to finding communities in

graph. In SDM, 2005.
20. Z.-D. Wu, W.-X. Xie, and J.-P. Yu. Fuzzy c-means clustering algorithm based on

kernel method. In ICCIMA ’03: Proceedings of the 5th International Conference
on Computational Intelligence and Multimedia Applications, page 49, Washington,
DC, USA, 2003. IEEE Computer Society.

21. H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Bipartite graph partitioning
and data clustering. In Proc. of ACM 10th Int’l Conf. Information and Knowledge
Management (CIKM 2001), pages 25–32, 2001.

22. D.-Q. Zhang and S.-C. Chen. Fuzzy clustering using kernel method. In Proceedings
of the 2002 International Conference on Control and Automation, 2002. ICCA,
pages 162–163, 2002.

23. D.-Q. Zhang and S.-C. Chen. A novel kernelized fuzzy c-means algorithm with
application in medical image segmentation. Artificial Intelligence in Medicine,
32(1):37–50, 2004.


	Introduction
	The Sigmoid Commute-Time Kernel on a Graph
	Kernel k-Means and Fuzzy k-Means
	Kernel k-Means
	Kernel Fuzzy k-Means

	Experiments
	Data Set
	Graph Definition
	Preprocessing Steps
	Experimental Settings
	Experimental Results and Discussion

	Conclusion

