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Preface

The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
has been held every year since 1997. This year, the 11th in the series (PAKDD
2007), was held at Nanjing, China, May 22–25, 2007. PAKDD is a leading in-
ternational conference in the area of data mining. It provides an international
forum for researchers and industry practitioners to share their new ideas, origi-
nal research results and practical development experiences from all KDD-related
areas including data mining, machine learning, databases, statistics, data ware-
housing, data visualization, automatic scientific discovery, knowledge acquisition
and knowledge-based systems.

This year we received a record number of submissions. We received 730 re-
search papers from 29 countries and regions in Asia, Australia, North America,
South America, Europe and Africa. The submitted papers went through a rigor-
ous reviewing process. Every submission except very few was reviewed by three
reviewers. Moreover, for the first time, PAKDD 2007 introduced a procedure
of having an area chair supervise the review process of every submission. Thus,
most submissions were reviewed by four experts. The Program Committee mem-
bers were deeply involved in a highly engaging selection process with discussions
among reviewers and area chairs. When necessary, additional expert reviews
were sought. As a result, a highly selective few were chosen to be presented at
the conference, including only 34 (4.66%) regular papers and 92 (12.6%) short
papers in these proceedings.

The PAKDD 2007 program also included four workshops. They were a work-
shop on Data Mining for Biomedical Applications (BioDM 2007), a workshop on
Data Mining for Business (DMBiz 2007), a workshop on High-Performance Data
Mining and Applications (HPDMA 2007) and a workshop on Service, Security
and Its Data Management Technologies in Ubi-Com (SSDU 2007). A data min-
ing competition under the PAKDD flag was also organized for the second time
after the first competition that was held in PAKDD 2006.

PAKDD 2007 would not have been successful without the support of many
people and organizations. We wish to thank the members of the Steering Com-
mittee for their invaluable suggestions and support throughout the organization
process. We are indebted to the area chairs, Program Committee members and
external reviewers for their effort and engagement in providing a rich and rig-
orous scientific program for PAKDD 2007. We wish to express our gratitude
to our General Workshop Chair Takashi Washio for selecting and coordinat-
ing the exciting workshops, to the Tutorial and PAKDD School Chair Graham
Williams for coordinating the fruitful tutorials and school lecturers, to the Indus-
trial Track Chair Joshua Z. Huang for handling industrial track papers, to the
PAKDD Competition Chair Nathaniel Noriel for organizing the PAKDD Compe-
tition and to the distinguished keynote speakers and tutorial presenters for their
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wonderful talks and lectures. We are also grateful to the Local Arrangement
Chairs Yang Gao and Xianglin Fei as well as the Local Organizing Committee,
whose great effort ensured the success of the conference.

We greatly appreciate the support from various institutions. The conference
was organized by the LAMDA Group of Nanjing University, Nanjing, China,
in cooperation with Nanjing University of Aeronautics and Astronautics, the
Japanese Society for Artificial Intelligence, and the Singapore Institute of Statis-
tics. It was sponsored by the National Natural Science Foundation of China
(NSFC), Microsoft AdCenter Labs, NEC Labs China, Microsoft Research Asia
(MSRA), Salford Systems and K.C. Wong Education Foundation.

We also want to thank all authors and all conference participants for their
contribution and support. We hope all participants took this opportunity to
share and exchange ideas with one another and enjoyed PAKDD 2007.

January 2007 Zhi-Hua Zhou
Hang Li

Qiang Yang
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Research Frontiers in Advanced Data Mining
Technologies and Applications

Jiawei Han

Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract. Research in data mining has two general directions: theoretical foun-
dations and advanced technologies and applications. In this talk, we will focus
on the research issues for advanced technologies and applications in data mining
and discuss some recent progress in this direction, including (1) pattern min-
ing, usage, and understanding, (2) information network analysis, (3) stream data
mining, (4) mining moving object data, RFID data, and data from sensor net-
works, (5) spatiotemporal and multimedia data mining, (6) biological data
mining, (7) text and Web mining, (8) data mining for software engineering and
computer system analysis, and (9) data cube-oriented multidimensional online
analytical processing.

Data mining, as the confluence of multiple intertwined disciplines, including statis-
tics, machine learning, pattern recognition, database systems, information retrieval,
World-Wide Web, and many application domains, has achieved great progress in the
past decade [1]. Similar to many research fields, data mining has two general direc-
tions: theoretical foundations and advanced technologies and applications. Here we fo-
cus on advanced technologies and applications in data mining and discuss some recent
progress in this direction. Notice that some popular research topics, such as privacy-
preserving data mining, are not covered in the discussion for lack of space/time. Our
discussion is organized into nine themes, and we briefly outline the current status and
research problems in each theme.

1 Pattern Mining, Pattern Usage, and Pattern Understanding

Frequent pattern mining has been a focused theme in data mining research for over a
decade. Abundant literature has been dedicated to this research and tremendous progress
has been made, ranging from efficient and scalable algorithms for frequent itemset min-
ing in transaction databases to numerous research frontiers, such as sequential pattern
mining, structural pattern mining, correlation mining, associative classification, and
frequent-pattern-based clustering, as well as their broad applications.

Recently, studies have proceeded to scalable methods for mining colossal patterns
where the size of the patterns could be rather large so that the step-by-step growth using
an Apriori-like approach does not work, methods for pattern compression, extraction of
high-quality top-k patterns, and understanding patterns by context analysis and gener-
ation of semantic annotations. Moreover, frequent patterns have been used for effective
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classification by top-k rule generation for long patterns and discriminative frequent pat-
tern analysis. Frequent patterns have also been used for clustering of high-dimensional
biological data. Scalable methods for mining long, approximate, compressed, and so-
phisticated patterns for advanced applications, such as biological sequences and net-
works, and the exploration of mined patterns for classification, clustering, correlation
analysis, and pattern understanding will still be interesting topics in research.

2 Information Network Analysis

Google’s PageRank algorithm has started a revolution on Internet search. However,
since information network analysis covers many additional aspects and needs scalable
and effective methods, the systematic study of this domain has just started, with many
interesting issues to be explored. Information network analysis has broad applications,
covering social and biological network analysis, computer network intrusion detection,
software program analysis, terrorist network discovery, and Web analysis.

One interesting direction is to treat information network as graphs and further de-
velop graph mining methods. Recent progress on graph mining and its associated struc-
tural pattern-based classification and clustering, graph indexing, and similarity search
will play an important role in information network analysis. Moreover, since informa-
tion networks often form huge, multidimensional heterogeneous graphs, mining noisy,
approximate, and heterogeneous subgraphs based on different applications for the con-
struction of application-specific networks with sophisticated structures will help in-
formation network analysis substantially. The discovery of the power law distribu-
tion of information networks and the rules on density evolution of information net-
works will help develop effective algorithms for network analysis. Finally, the study
of link analysis, heterogeneous data integration, user-guided clustering, user-based net-
work construction, will provide essential methodology for the in-depth study in this
direction.

3 Stream Data Mining

Stream data refers to the data that flows into the system in vast volume, changing dy-
namically, possibly infinite, and containing multi-dimensional features. Such data can-
not be stored in traditional database systems, and moreover, most systems may only be
able to read the stream once in sequential order. This poses great challenges on effective
mining of stream data.

With substantial research, progress has bee made on efficient methods for mining fre-
quent patterns in data streams, multidimensional analysis of stream data (such as con-
struction of stream cubes), stream data classification, stream clustering, stream outlier
analysis, rare event detection, and so on. The general philosophy is to develop single-
scan algorithms to collective information about stream data in tilted time windows,
exploring micro-clustering, limited aggregation, and approximation. It is important to
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explore new applications of stream data mining, e.g., real-time detection of anomaly in
computer networks, power-grid flow, and other stream data.

4 Mining Moving Object Data, RFID Data, and Data from Sensor
Networks

With the popularity of sensor networks, GPS, cellular phones, other mobile devices,
and RFID technology, tremendous amount of moving object data has been collected,
calling for effective analysis. There are many new research issues on mining moving
object data, RFID data, and data from sensor networks. For example, how to explore
correlation and regularity to clean noisy sensor network and RFID data, how to integrate
and construct data warehouses for such data, how to perform scalable mining for peta-
byte RFID data, how to find strange moving objects, how to cluster trajectory data,
and so on. With time, location, moving direction, speed, as well as multidimensional
semantics of moving object data, likely multi-dimensional data mining will play an
essential role in this study.

5 Spatiotemporal and Multimedia Data Mining

The real world data is usually related to space, time, and in multimedia modes (e.g.,
containing color, image, audio, and video). With the popularity of digital photos, audio
DVDs, videos, YouTube, Internet-based map services, weather services, satellite im-
ages, digital earth, and many other forms of multimedia and spatiotemporal data, min-
ing spatial, temporal, spatiotemporal, and multimedia data will become increasingly
popular, with far-reaching implications. For example, mining satellite images may help
detect forest fire, find unusual phenomena on earth, and predict hurricanes, weather
patterns, and global warming trends.

Research in this domain needs the confluence of multiple disciplines including im-
age processing, pattern recognition, parallel processing, and data mining. Automatic
categorization of images and videos, classification of spatiotemporal data, finding fre-
quent/sequential patterns and outliers, spatial collocation analysis, and many other tasks
have been studied popularly. With the mounting in many applications, scalable analysis
of spatiotemporal and multimedia data will be an important research frontier for a long
time.

6 Biological Data Mining

With the fast progress of biological research and the accumulation of vast amount of
biological data (especially, a great deal of it has been made available on the Web), bi-
ological data mining has become a very active field, including comparative genomics,
evolution and phylogeny, biological databases and data integration, biological sequence
analysis, biological network analysis, biological image analysis, biological literature
analysis (e.g., PubMed), and systems biology. This domain is largely overlapped with
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bioinformatics but data mining researchers has been emphasizing on integrating biolog-
ical databases with biological data integration, constructing biological data warehouses,
analyzing biological networks, and developing various kinds of scalable bio-data min-
ing algorithms.

Advances in biology, medicine, and bioinformatics provide data miners with abun-
dant real data sets and a broad spectrum of challenging research problems. It is expected
that an increasing number of data miners will devoted themselves to this domain and
make contributions to the advances in both bioinformatics and data mining.

7 Text and Web Mining

The Web has become the ultimate information access and processing platform, housing
not only billions of link-accessed “pages”, containing textual data, multimedia data, and
linkages, on the surface Web, but also query-accessed “databases” on the deep Web.
With the advent of Web 2.0, there is an increasing amount of dynamic “workflow”
emerging. With its penetrating deeply into our daily life and evolving into unlimited
dynamic applications, the Web is central in our information infrastructure. Its virtually
unlimited scope and scale render immense opportunities for data mining.

Text mining and information extraction have been applied not only to Web mining
but also to the analysis of other kinds of semi-structured and unstructured informa-
tion, such as digital libraries, biological information systems, business intelligence and
customer relationship management, computer-aided instructions, and office automation
systems.

There are lots of research issues in this domain, which takes the collaborative efforts
of multiple disciplines, including information retrieval, databases, data mining, natural
language processing, and machine learning. Some promising research topics include
heterogeneous information integration, information extraction, personalized informa-
tion agents, application-specific partial Web construction and mining, in-depth Web
semantics analysis, and turning Web into relatively structured information-base.

8 Data Mining for Software Engineering and Computer System
Analysis

Software program executions and computer system/network operations potentially gen-
erate huge amounts of data. Data mining can be performed on such data to monitor
system status, improve system performance, isolate software bugs, detect software pla-
giarism, analyze computer system faults, uncover network intrusions, and recognize
system malfunctions.

Data mining for software and system engineering can be partitioned into static anal-
ysis and dynamic/stream analysis, based on whether the system can collect traces be-
forehand for post-analysis or it must react at real time to handle online data. Differ-
ent methods have been developed in this domain by integration and extension of the
methods developed in machine learning, data mining, pattern recognition, and statis-
tics. However, this is still a rich domain for data miners with further development of
sophisticated, scalable, and real-time data mining methods.
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9 Data Cube-Oriented Multidimensional Online Analytical
Processing

Viewing and mining data in multidimensional space will substantially increase the
power and flexibility of data analysis. Data cube computation and OLAP (online
analytical processing) technologies developed in data warehouse have substantially in-
creased the power of multidimensional analysis of large datasets. Besides traditional
data cubes, there are recent studies on construction of regression cubes, prediction
cubes, and other sophisticated statistics-oriented data cubes. Such multi-dimensional,
especially high-dimensional, analysis tools will ensure data can be analyzed in hier-
archical, multidimensional structures efficiently and flexibly at user’s finger tips. This
leads to the integration of online analytical processing with data mining, called OLAP
mining.

We believe that OLAP mining will substantially enhance the power and flexibility
of data analysis and bring the analysis methods derived from the research in machine
learning, pattern recognition, and statistics into convenient analysis of massive data with
hierarchical structures in multidimensional space. It is a promising research field that
may lead to the popular adoption of data mining in information industry.
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Abstract. Pattern discovery is one of the fundamental tasks in data
mining. Pattern discovery typically explores a massive space of potential
patterns to identify those that satisfy some user-specified criteria. This
process entails a huge risk (in many cases a near certainty) that many
patterns will be false discoveries. These are patterns that satisfy the
specified criteria with respect to the sample data but do not satisfy
those criteria with respect to the population from which those data are
drawn. This talk discusses the problem of false discoveries, and presents
techniques for avoiding them.
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Abstract. Noise handling is an essential task in data mining research
and applications. There are three issues in dealing with noisy information
sources: noise identification, noise profiling, and noise tolerant mining.
During noise identification, erroneous data records are identified and
ranked according to their impact or some predefined measures. Class
noise and attribute noise can be distinguished at this stage. This identi-
fication allows the users to process their noisy data with different priori-
ties based on the data properties. Noise profiling discovers patterns from
previously identified errors that can be used to summarize and monitor
these data errors. In noise tolerant mining, we integrate the noise profile
information into data mining algorithms and boost their performances
from the original noisy data. In this talk, I will present our existing and
ongoing research efforts on these three issues.
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Introduction 

Under large scale data, machine learning becomes inefficient. In order to enhance its 
performances, new methodologies should be adopted. Taking video retrieval as an 
example, we discuss its two basic problems: representation and classification 
problems. 

In spite of the form (text, image，speech, or video) of information there always 
exists a big semantic gap between its low-level feature based machine representations 
and the corresponding high-level concepts used by users, so the traditional single 
feature machine representation is not available under large scale data. To deal with 
the problem, the multi-modal and multi-granular representation is introduced. The 
reasons are the following. On the one hand, the representations from different 
modalities of the same video such as speech, image, and text may complement each 
other. On the other hand, a coarse representation of one modality, for example the 
global feature of an image such as color moment, color correlagram and global 
texture has a good robustness but a poor expressiveness. Contrarily, its fine 
representation, a representation with small grain-size, such as a pixel-based 
representation of an image has a good expressiveness but a poor robustness. Both 
expressiveness and robustness are needed in machine representation. Therefore, the 
multi-granular representation in one modality may solve the contradiction among 
them. We present a set of experimental results in image (and video) retrieval to show 
how the multi-modal and multi-granular representation improves the performances of 
machine learning. 

By machine representation, a video (text, speech or image) will be translated into a 
vector (point) in a high dimensional feature space generally. Then information 
processing becomes a set of operations on a point set of the space. And the supervised 
machine learning becomes the classification of a set of points. By using multi-modal 
and multi-granular representation it means that the number of dimensionality of the 
feature space increases. It improves the learning performance but increases the 
computational complexity as well. This is so called dimensionality curse in machine 
learning. When the size of data increases, the problem becomes more serious. The 
general methodology used is the multi-classifier strategy. In the multi-classifier 
system, each classifier has its own classification criterion and input feature set. 
Firstly, the strategy is used to optimize the combination of the results from different 
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classifiers, that is, the information fusion problem. There have been many different 
information fusion approaches so far. Secondly, the multi-classifier is used in a 
hierarchical way, that is, multi-level classifiers. In the multi-level classifiers, a set of 
data is divided into a collection of subsets first and then each subset is further divided 
until the final result is obtained. By properly organizing the classifiers, the 
computational complexity can be reduced greatly. We will show some experimental 
results to verify the above statement. Thirdly, new efficient learning algorithms 
should be invented. Although there have been many learning algorithms recently the 
performance of most of them worsen when facing large scale data. We will present 
some learning algorithms that have rather good performances when dealing with the 
large scale data. 

In conclusion, multi-modal and multi-granular learning is a new methodology 
inspired by human intelligence. The cognitive power in human learning consists of a 
set of resourceful strategies such as multi-modal, multi-granular representation, multi-
feature fusion, and hierarchical structure, etc. In order to improve the machine 
learning, it should integrate both the cognitive power of human learning and the 
computational power of computers.   
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Abstract. A challenge involved in applying density-based clustering to
categorical datasets is that the ‘cube’ of attribute values has no ordering
defined. We propose the HIERDENC algorithm for hierarchical density-
based clustering of categorical data. HIERDENC offers a basis for design-
ing simpler clustering algorithms that balance the tradeoff of accuracy
and speed. The characteristics of HIERDENC include: (i) it builds a
hierarchy representing the underlying cluster structure of the categorical
dataset, (ii) it minimizes the user-specified input parameters, (iii) it is in-
sensitive to the order of object input, (iv) it can handle outliers. We eval-
uate HIERDENC on small-dimensional standard categorical datasets,
on which it produces more accurate results than other algorithms. We
present a faster simplification of HIERDENC called the MULIC algo-
rithm. MULIC performs better than subspace clustering algorithms in
terms of finding the multi-layered structure of special datasets.

1 Introduction

A growing number of clustering algorithms for categorical data have been pro-
posed in recent years, along with interesting applications, such as partitioning
large software systems and protein interaction data [6,13,29]. In the past, poly-
nomial time approximation algorithms have been designed for NP-hard parti-
tioning algorithms [9]. Moreover, it has recently been shown that the “curse of
dimensionality” involving efficient searches for approximate nearest neighbors
in a metric space can be dealt with, if and only if, we assume a bounded di-
mensionality [12,21]. Clearly, there are tradeoffs of efficiency and approximation
involved in the design of categorical clustering algorithms. Ideally, a set of prob-
abilistically justified goals for categorical clustering would serve as a framework
for approximation algorithms [20,25]. This would allow designing and comparing
categorical clustering algorithms on a more formal basis.

Our work is motivated by density-based clustering algorithms, such as
CLIQUE [1], CLICKS [28], CACTUS [10], COOLCAT [5], DBSCAN [8], OP-
TICS [4], Chameleon [19], ROCK [14], DENCLUE [15], and others. Although
most of these approaches are efficient and relatively accurate, we go beyond
them and approach the problem from a different viewpoint. Many of these al-
gorithms require the user to specify input parameters (with wrong parameter
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values resulting in a bad clustering), may return too many clusters or too many
outliers, often have difficulty finding clusters within clusters or subspace clusters,
or are sensitive to the order of object input [6,12,13,28]. We propose a categor-
ical clustering algorithm that builds a hierarchy representing a dataset’s entire
underlying cluster structure, minimizes user-specified parameters, and is insen-
sitive to object ordering. This offers to a user a dataset’s cluster structure as
a hierarchy, which is built independently of user-specified parameters or object
ordering. A user can cut its branches and study the cluster structure at differ-
ent levels of granularity, detect subclusters within clusters, and know the central
densest area of each cluster. Although such an algorithm is slow, it inspires faster
simplifications that are useful for finding the rich cluster structure of a dataset.

A categorical dataset with m attributes is viewed as an m-dimensional ‘cube’,
offering a spatial density basis for clustering. A cell of the cube is mapped to
the number of objects having values equal to its coordinates. Clusters in such
a cube are regarded as subspaces of high object density and are separated by
subspaces of low object density. Clustering the cube poses several challenges:

(i) Since there is no ordering of attribute values, the cube cells have no or-
dering either. The search for dense subspaces could have to consider several
orderings of each dimension of the cube to identify the best clustering (unless
all attributes have binary values).

(ii) The density of a subspace is often defined relative to a user-specified value,
such as a radius. However, different radii are preferable for different subspaces
of the cube [4]. In dense subspaces where no information should be missed, the
search is more accurately done ‘cell by cell’ with a low radius of 1. In sparse
subspaces a higher radius may be preferable to aggregate information. The cube
search could start from a low radius and gradually move to higher radii. Al-
though the term ‘radius’ is borrowed from geometrical analogies that assume
circular constructs, we use the term in a looser way and it is not a Euclidean
distance.

We present the HIERDENC algorithm for hierarchical density-based cluster-
ing of categorical data, that addresses the above challenges. HIERDENC clusters
the m-dimensional cube representing the spatial density of a set of objects with
m categorical attributes. To find its dense subspaces, HIERDENC considers an
object’s neighbors to be all objects that are within a radius of maximum dis-
similarity. Object neighborhoods are insensitive to attribute or value ordering.
Clusters start from the densest subspaces of the cube. Clusters expand outwards
from a dense subspace, by connecting nearby dense subspaces. Figure 1 shows
examples of creating and expanding clusters in a 3-d dataset. The radius is the
maximum number of dimensions by which neighbors can differ.

We present the MULIC algorithm, which is a faster simplification of HIER-
DENC. MULIC is motivated by clustering of categorical datasets that have a
multi-layered structure. For instance, in protein interaction data a cluster often
has a center of proteins with similar interaction sets surrounded by peripheries of
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Fig. 1. A cluster is a dense subspace
with a ‘central’ cell marked with a
dot. (a) radius=1, two new clusters.
(b) radius=1, clusters expand. (c)
radius=2, clusters expand. (d) ra-
dius=2, one new cluster.

Fig. 2. Two HIERDENC
‘hyper-cubes’ in a 3D cube,
for r=1

proteins with less similar interaction sets [7]. On such data, MULIC outperforms
other algorithms that create a flat clustering.

This paper is organized as follows. Section 2 presents the HIERDENC algo-
rithm. Section 3 describes the MULIC clustering algorithm and its relation to
HIERDENC. Section 4 discusses the experiments. Section 5 concludes the paper.

2 HIERDENC Clustering

Basics. We are given a dataset of objects S (which might contain duplicates)
with m categorical attributes, X1, · · · , Xm. Each attribute Xi has a domain Di

with a finite number of di possible values. The space Sm includes the collection of
possibilities defined by the cross-product (or cartesian product) of the domains,
D1 ×· · ·×Dm. This can also be viewed as an m-dimensional ‘cube’ with

∏m
i=1 di

cells (positions). A cell of the cube represents the unique logical intersection in
a cube of one member from every dimension in the cube. The function λ maps
a cell x = (x1, · · · , xm) ∈ Sm to the nonnegative number of objects in S with
all m attribute values equal to (x1, · · · , xm):

λ : {(x1, · · · , xm) ∈ Sm} → N.

We define the HIERDENC hyper-cube C(x0, r) ⊂ Sm, centered at cell x0
with radius r, as follows:

C(x0, r) = {x : x ∈ Sm and dist(x,x0) ≤ r and λ(x) > 0}.
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The dist(·) is a distance function. The Hamming distance is defined as follows:

HD(x,y) =
m∑

i=1

δ(xi, yi) where δ(xi, yi) =

{
1, if xi �= yi

0, if xi = yi

HD is viewed as the most natural way to represent distance in a categorical
space. People have looked for other distance measures but HD has been widely
accepted for categorical data and is commonly used in coding theory.

Figure 2 illustrates two HIERDENC hyper-cubes in a 3-dimensional cube.
Since r=1, the hyper-cubes are visualized as ‘crosses’ in 3D and are not shown
as actually having a cubic shape. A hyper-cube excludes cells for which λ returns
0. Normally, a hyper-cube will equal a subspace of Sm. A hyper-cube can not
equal Sm, unless r = m and ∀x ∈ Sm λ(x) > 0.

The density of a subspace X ⊂ Sm, where X could equal a hyper-cube
C(x0, r) ⊂ Sm, involves the sum of λ evaluated over all cells of X :

density(X) =
∑

c∈X

λ(c)
|S| .

This density can also be viewed as the likelihood that a hyper-cube contains a
random object from S, where |S| is the size of S. HIERDENC seeks the densest
hyper-cube C(x0, r) ⊂ Sm. This is the hyper-cube centered at x0 that has the
maximum likelihood of containing a random object from S. The cell x0 is a
member of the set {x ∈ Sm : Max(P (Ω ∈ C(x, r)))}, where Ω is a discrete
random variable that assumes a value from set S.

The distance between two clusters Gi and Gj is the distance between the
nearest pair of their objects, defined as:

D(Gi, Gj) = min{dist(x,y) : x ∈ Gi and y ∈ Gj}.

Clusters Gi and Gj are directly connected relative to r if D(Gi, Gj) ≤ r. Clusters
A and B are connected relative to r if: A and B are directly connected relative
to r, or if: there is a chain of clusters C1, · · · , Cn, A = C1 and B = Cn, such that
Ci and Ci+1 are directly connected relative to r for all i such that 1 ≤ i < n.

HIERDENC Algorithm and Discussion. Figure 3 shows the HIERDENC
clustering algorithm. The default initial value of radius r is 1. Gk represents
the kth cluster formed. The remainder set, R = {x : x ∈ Sm and x /∈ Gi, i =
1, · · · , k}, is the collection of unclustered cells after the formation of k clusters.

Step 1 retrieves the densest hyper-cube C ⊂ Sm of radius r. Step 1 checks that
the densest hyper-cube represents more than one object (density(C(x0, r)) >
1
|S|), since otherwise the cluster will not expand, ending up with one object. If the
hyper-cube represents zero or one object, then r is incremented. Step 2 creates
a new leaf cluster at level r ≥ 1. Starting from an existing leaf cluster, step 3
tries to move to the densest hyper-cube of radius r nearby. If a dense hyper-
cube is found near the cluster, then in step 4 the cluster expands by collecting
the hyper-cube’s cells. This is repeated for a cluster until no such connection
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Input: space Sm.
Output: a hierarchy of clusters.
Method:

r = 1. //radius of hyper-cubes
R = Sm. //set of unclustered cells
k = 0. //number of leaf clusters
kr = 0. //number of clusters at level r
Gk = null. //kth cluster
U = null. //set of hyper-cube centers

Step 1:Find x0 ∈ R such that max
x0

density(C(x0, r)).

If density(C(x0, r)) ≤ 1
|S| , then:

(1) r = r + 1.
(2) If kr−1 > 1, then:
(3) Merge clusters that are connected relative to r.
(4) kr = #merged + #unmerged clusters.
(5) Repeat Step 1.

Step 2: Set xc = x0, k = k + 1, Gk = C(xc, r), R = R − C(xc, r) and U = U ∪ {xc}.

Step 3: Find x∗ ∈ C(xc, r) such that x∗ /∈ U and max
x∗

density(C(x∗, r)).

Step 4: If density(C(x∗, r)) > 1
|S| , then:

Update current cluster Gk: Gk = Gk ∪ C(x∗, r).
Update R: R = R − C(x∗, r).
Update U : U = U ∪ {x∗}.
Re-set the new center: xc = x∗.
Go to Step 3.

Otherwise, move to the next step.

Step 5: Set kr = kr + 1.
If kr > 1, then execute lines (3) − (4).
If r < m and density(R) > 1%, then go to Step 1.

Step 6: While r < m, execute lines (1) − (4).

Fig. 3. The HIERDENC algorithm

can be made. New objects are clustered until r = m, or density(R) ≤ 1% and
the unclustered cells are identified as outliers (step 5 ). For many datasets, most
objects are likely to be clustered long before r = m.

Initially r = 1 by default, since most datasets contain subsets of similar ob-
jects. Such subsets are used to initially identify dense hyper-cubes. When r is
incremented, a special process merges clusters that are connected relative to r.
Although the initial r = 1 value may result in many clusters, similar clusters are
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Fig. 4. The HIERDENC tree resulting
from clustering the zoo dataset. A link
(circle) represents two or more merged
clusters.

Fig. 5. A cluster has
a center surrounded
by peripheral areas
(CAIDA)

merged gradually. As Figure 4 shows, a merge is represented as a link between
two or more links or leaf clusters, created at a level r ≥ 1. A link represents a
group of merged clusters. This process gradually constructs one or more cluster
tree structures, resembling hierarchical clustering [18,24]. The user specifies a
cut-off level (e.g. r = 3) to cut tree branches; links at the cut-off level are
extracted as merged clusters. Step 5 checks if a newly formed cluster is connected
to another cluster relative to r and if so links them at level r. Step 6 continues
linking existing clusters into a tree, until r = m. By allowing r to reach m, an
entire tree is built. At the top of the tree, there is a single cluster containing all
objects of the dataset.

In [3] we propose and evaluate several methods for setting the HIERDENC
tree cut-off level. One method involves cutting the HIERDENC tree at level r
such that the average connectivity of the resulting merged clusters is minimized.
The connectivityr of a merged cluster (a set of connected leaf clusters) relative
to r is the fraction of its objects that have another object within distance r in
a different leaf cluster in the same connected set. Another method useful for
finding clusters within clusters is to set the cut-off(s) for a branch of links from
leafs to root at the level(s) r ≥ 1 such that the resulting merged cluster has
0.0 < connectivityr < 1.0. Another method is to balance the number of clusters
with the entropy of the partition [22]. This involves setting the cut-off at level r
such that the Akaike’s Information Criterion (AIC) is minimized [2]. The AIC
of a partition is entropy + 2k, where k is the number of clusters.

Although HIERDENC has similarities to CLIQUE [1], the two have signifi-
cant differences. HIERDENC is intended for categorical data while CLIQUE for
numerical data. HIERDENC minimizes input parameters, while CLIQUE takes
as input parameters the grid size and a global density threshold for clusters.
HIERDENC retrieves the densest hyper-cube relative to the radius. The radius
relaxes gradually, implying that HIERDENC can find clusters of different densi-
ties. HIERDENC can often distinguish the central hyper-cube of a cluster from
the rest of the cluster, because of its higher density. HIERDENC creates a tree
representing the entire dataset structure, including subclusters within clusters.
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3 MULIC as a Simplification of HIERDENC

MULIC stands for multiple layer clustering of categorical data. MULIC is a faster
simplification of HIERDENC. MULIC balances clustering accuracy with time
efficiency. The MULIC algorithm is motivated by datasets the cluster structure
of which can be visualized as shown in Figure 5. In such datasets a cluster often
has a center of objects that are similar to one another, along with peripheral
objects that are less similar to the central objects. Such datasets include protein
interaction data, large software systems and others [7].

MULIC does not store the cube in memory and makes simplifications to de-
crease the runtime. A MULIC cluster starts from a dense area and expands
outwards via a radius represented by the φ variable. When MULIC expands a
cluster it does not search all member objects as HIERDENC does. Instead, it
uses a mode that summarizes the content of a cluster. The mode of cluster c is
a vector μc = {μc1, · · · , μcm} where μci is the most frequent value for the ith
attribute in the given cluster c [16]. The MULIC clustering algorithm ensures
that when an object o is clustered it is inserted into the cluster c with the least
dissimilar mode μc. The default dissimilarity metric between o and μc is the
Hamming distance presented in Section 2.1, although any metric could be used.
A MULIC cluster consists of layers formed gradually, by relaxing the maximum
dissimilarity criterion φ for inserting objects into existing clusters. MULIC does
not require the user to specify the number of clusters and can identify outliers.
Figure 6 shows the main part of the MULIC clustering algorithm. An optional
final step merges similar clusters to reduce the number of clusters and find more
interesting structures.

Merging of Clusters. Sometimes the dissimilarity of the top layers of two
clusters is less than the dissimilarity of the top and bottom layers of one of the
two clusters. To avoid this, after the clustering process MULIC can merge pairs
of clusters whose top layer modes’ dissimilarity is less than the maximum layer
depth of the two clusters. For this purpose, MULIC preserves the modes of the
top layers of all clusters. The default merging process, detailed in [3], merges
clusters in a non-hierarchical manner such that clusters have a clear separation.
However, a hierarchical cluster merging process is also proposed [3].

MULIC Discussion. MULIC is a simplification of HIERDENC. The tradeoffs
between accuracy and time efficiency are as follows:

(i) When creating a cluster, HIERDENC searches the cube to retrieve the
densest hyper-cube relative to r representing two or more objects, which is costly.
MULIC creates a cluster if two or more objects are found within a dissimilarity
distance of φ from each other, likely indicating a dense subspace. Clusters of size
one are filtered out. MULIC’s φ variable is motivated by HIERDENC’s radius r.
The initial objects clustered with MULIC affect the modes and the clustering.
For this issue we propose in [3] an optional preprocessing step that orders the
objects by decreasing aggregated frequency of their attribute values, such that
objects with more frequent values are clustered first and the modes will likely
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Input: a set S of objects.
Parameters: (1) δφ : the increment for φ.

(2) threshold for φ : the maximum number of values that
can differ between an object and the mode of its cluster.

Default parameter values: (1) δφ = 1.
(2) threshold = the number of categorical attributes m.

Output: a set of clusters.
Method:

1. Order objects by decreasing aggregated frequency of their attribute values.
2. Insert the first object into a new cluster, use the

object as the mode of the cluster, and remove the object from S.
3. Initialize φ to 1.
4. Loop through the following until S is empty or φ > threshold

a. For each object o in S
i. Find o’s nearest cluster c by using the dissimilarity metric

to compare o with the modes of all existing cluster(s).
ii. If the number of different values between o and c’s mode

is larger than φ, insert o into a new cluster
iii. Otherwise, insert o into c and update c’s mode.
iv. Remove object o from S.

b. For each cluster c, if there is only one object
in c, remove c and put the object back in S.

c. If in this iteration no objects were inserted in
a cluster with size > 1, increment φ by δφ.

Fig. 6. The MULIC clustering algorithm

contain the most frequent values. This object ordering process has been evalu-
ated in [3], which showed that it is better than a random ordering of objects; we
do not include the same results here.

(ii) When expanding a cluster HIERDENC searches the member cells to find
dense hyper-cubes relative to r, which is costly. MULIC instead uses a ‘mode’ as
a summary of a cluster’s content and only clusters objects within a distance of
φ from the mode. MULIC increases φ by δφ when no new objects can be clus-
tered, which is motivated by HIERDENC’s increasing r. MULIC can create new
clusters at any value of φ, just as HIERDENC can create new clusters at any
value of r. Although MULIC can find clusters of arbitrary shapes by increasing
φ, it loses some of HIERDENC’s ability in this realm.

(iii) MULIC’s cluster merging is motivated by HIERDENC’s merging. The
MULIC cluster merging process can organize clusters into a tree structure as
HIERDENC does. For MULIC applications, such as the one on protein interac-
tion data discussed in [3], we do not construct a tree since we prefer the clusters
to have a clear separation and not to specify a cut-off.

MULIC has several differences from traditional hierarchical clustering, which
stores all distances in an upper square matrix and updates the distances after
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each merge [18,24]. MULIC clusters have a clear separation. MULIC does not
require a cut-off to extract the clusters, as in hierarchical clustering; this is of
benefit for some MULIC applications, such as the one on protein interaction
data discussed in [3]. One of the drawbacks of hierarchical clustering is that the
sequence of cluster mergings will affect the result and ‘bad’ mergings can not
be undone later on in the process. Moreover, if several large clusters are merged
then interesting local cluster structure is likely to be lost. MULIC, on the other
hand, does not merge clusters during the object clustering. Instead, any cluster
mergings that may be desirable for the particular application are done after
object clustering has finished. MULIC aims not to lose cluster structure caused
by several large clusters being merged during the clustering process.

Computational Complexity. The best-case complexity of MULIC has a
lower bound of Ω(mNk) and its worst-case complexity has an upper bound
of O(mN2 threshold

δφ ). The cost is related to the number of clusters k and the
number of objects N . Often k 	 N , m 	 N , and all objects are clustered in
the initial iterations, thus N often dominates the cost. The worst-case runtime
would occur for the rather uncommon dataset where all objects were extremely
dissimilar to one another, such that the algorithm had to go through all m iter-
ations and all N objects were clustered in the last iteration when φ = m. The
MULIC complexity is comparable to that of k-Modes of O(mNkt), where t is
the number of iterations [16].

4 Performance Evaluation

To evaluate the applicability of HIERDENC and MULIC to the clustering prob-
lem, we first use the zoo and soybean-data categorical datasets. These datasets
were obtained from the UCI Repository [23]. Objects have class labels defined
based on some domain knowledge. We ignore class labels during clustering. We
compare the HIERDENC and MULIC results to those of several other density-
based algorithms, ROCK [14], CLICKS [28], k-Modes [16], and AutoClass [26].
CLICKS was shown to outperform STIRR [11] and CACTUS [10]. To evaluate
the clustering quality we use HA Indexes [17] and Akaike’s Information Cri-
terion (AIC) [2]. HA Indexes is a class-label-based evaluation, which penalizes
clustering results with more or fewer clusters than the defined number of classes.
Since the class labels may or may not be consistent with the clustering structure
and dissimilarity measure used, we also estimate the AIC of each clustering. AIC
penalizes non-uniformity of attribute values in each cluster and too many clus-
ters. In [3] we discuss MULIC with non-hierarchical and hierarchical merging of
clusters applied to protein interaction data and large software systems.

For MULIC we set δφ = 1, threshold = m, and we order the objects as de-
scribed in [3]. We applied the other algorithms (except HIERDENC) on more
than 10 random orderings of the objects. For k-Modes and ROCK we set the
number of clusters k to the number of classes, as well as larger numbers. Auto-
Class considers varying numbers of clusters from a minimum of 2.
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Table 1. HA Indexes (higher is better), Entropy, and AIC measures (lower is better)

zoo (7 classes) soybean-data (19 classes)
Tool HAI. Entr. AIC k sec HAI. Entr. AIC k sec

HIERDENC (leaf clusters) 85.5% 2.15 36.15 17 0.04 92.2% 4.4 182.4 89 2.1

HIERDENC (after tree cut) 94% 2.3 18.3 8 0.04 95% 7.5 47.5 20 2.1

MULIC (no merging) 84% 2.5 40.5 19 0 92% 4.6 182.6 89 0.05

MULIC (after merging) 91.5% 2.8 22.8 10 0.03 93% 11.5 61.5 25 0.08

k-Modes 90% 3.5 23.5 10 0.005 80% 16.12 66.12 25 0.03

ROCK 73% 3.7 23.7 10 0.008 69.2% 19.5 69.5 25 0.04

AutoClass 79.5% 4.8 16.8 6 0.04 77.6% 25 39 7 0.13

CLICKS 91.5% 2.5 20.5 9 0.01 70% 10 90 40 1

Chameleon (wCluto part.) 72% 3.8 23.8 10 0 79% 16.5 66.5 25 0.1

HIERDENC Results. Table 1 shows the HIERDENC results for these
datasets before and after cutting the tree. After cutting the HIERDENC tree for
zoo, its HA Indexes, Entropy, and AIC are slightly better than CLICKS. The
HIERDENC results for soybean-data are significantly better than CLICKS. The
Entropy is naturally lower (better) in results with many clusters; by comparing
results of algorithms with similar numbers of clusters, the HIERDENC Entropy
is often lower. The drawback we notice is that the HIERDENC runtime is sig-
nificantly higher on soybean-data than on zoo.

Figure 4 illustrates the HIERDENC tree for zoo. There are 17 leaf clusters
in total in the HIERDENC tree. Except for the last 3 created leaf clusters, all
other leaf clusters are homogeneous with regards to the class labels of member
objects. The last 3 leaf clusters were created for high r values of 7, 6, and 4. The
rest of the leaf clusters were created for lower r values. For zoo we cut off the
HIERDENC tree at level r = 1; zoo is a rather dense cube with many nonzero
cells and we do not want to aggregate information in the cube. The r = 1 cut-off
minimizes the connectivity relative to r of the resulting clusters. By cutting the
HIERDENC zoo tree at r = 1, there are 8 resulting clusters. There are a few
cases of incorrectly clustered objects by cutting at r = 1. However, the lower
number of clusters results in improved HA Indexes.

For the soybean-data set, there are 89 leaf clusters in total in the HIERDENC
tree. The leaf clusters created for r ≤ 9 are homogeneous with regards to the class
labels of member objects. For leaf clusters created for r > 9, the homogeneity
of the class labels decreases. Only 23 objects are clustered for r > 9, so these
could be labeled as outliers. For soybean-data we cut off the HIERDENC tree at
r = 4; soybean-data is a sparse cube of mostly ‘0’ cells, since the dataset has 35
dimensions but only 307 objects. The r = 4 cut-off minimizes the connectivity
relative to r of the resulting clusters. By cutting the HIERDENC soybean-data
tree at r = 4, there are 20 resulting merged clusters.

MULIC Results. Table 1 shows the MULIC results for these datasets with
and without merging of clusters. MULIC has good Entropy measures and HA In-
dexes, because the attribute values are quite uniform in clusters. It is interesting
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how MULIC finds subclusters of similar animals; for example, the animals
‘porpoise’, ‘dolphin’, ‘sealion’, and ‘seal’ are clustered together in one MULIC
cluster. MULIC with non-hierarchical merging of clusters has as a result that
the number of clusters decreases, which often improves the quality of the result
according to the HA Indexes. After merging the MULIC clusters, the number
of clusters for zoo and soybean-data is close to the class-label-based number of
classes. After merging the MULIC clusters for zoo, the HA Indexes, Entropy,
and AIC are as good as CLICKS. The MULIC results for soybean-data are bet-
ter than CLICKS. The Entropy is naturally lower (better) in results with many
clusters; by comparing results of algorithms with similar numbers of clusters, the
MULIC Entropy is often lower. MULIC runtimes are lower than HIERDENC.

5 Conclusion

We have presented the HIERDENC algorithm for categorical clustering. In HI-
ERDENC a central subspace often has a higher density and the radius relaxes
gradually. HIERDENC produces good clustering quality on small-dimensional
datasets. HIERDENC motivates developing faster clustering algorithms.

MULIC balances clustering accuracy with time efficiency. MULIC provides a
good solution for domains where clustering primarily supports long-term strate-
gic planning and decision making, such as analyzing protein-protein interaction
networks or large software systems [3]. The tradeoffs involved in simplifying
HIERDENC with MULIC point us to the challenge of designing categorical
clustering algorithms that are accurate and efficient.
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Abstract. Complex objects are often described by multiple representations mod-
eling various aspects and using various feature transformations. To integrate all
information into classification, the common way is to train a classifier on each
representation and combine the results based on the local class probabilities. In
this paper, we derive so-called confidence estimates for each of the classifiers
reflecting the correctness of the local class prediction and use the prediction hav-
ing the maximum confidence value. The confidence estimates are based on the
distance to the class border and can be derived for various types of classifiers
like support vector machines, k-nearest neighbor classifiers, Bayes classifiers,
and decision trees. In our experimental results, we report encouraging results
demonstrating a performance advantage of our new multi-represented classifier
compared to standard methods based on confidence vectors.

1 Introduction

In many application areas such as multimedia, biology, and medicine, objects can be
described in multiple ways. For example, images can be described by color histograms
or texture features or proteins can be described by text annotations, sequence descrip-
tions, and 3D shapes. To classify these multi-represented objects, it is often useful to
integrate as much information as possible because the representation providing the best
suitable object description might vary from object to object. A simple way to combine
multiple representations would be to span a feature space with respect to all features
occurring in some representation. However, this approach induces treating sparse di-
mensions such as word occurrences in the same way as color distributions or texture
descriptions. Therefore, established methods for classifier combination, which is also
called classifier fusion, train a classifier on each representation and derive a global class
prediction based on the class probabilities of each of these classifiers.

In this paper, we introduce a new method for combining local class predictions based
on so-called confidence estimates. A confidence estimate reflects the degree of reliabil-
ity for the class prediction of a given classifier. In contrast, the probability distributions
used in the established methods for building combined classifiers represent the likeli-
hood that an object o belongs to any of the possible classes. The difference becomes
clear when considering the following two-class case. A classic probability estimate for
class c1 of 40 % implies that it would be better to predict class c2 which must have
correspondingly a probability estimate of 60 %. On the other hand, a confidence es-
timate of the class decision for class c1 of 40 % only implies that the result of the
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classifier is rather unreliable. In multi-class problems, the difference can be seen more
easily because there is only 1 confidence estimate for the class decision and not a sepa-
rated probability estimation for each of the classes. In this paper, we argue that reliable
confidence estimates are easier to derive and that a confidence estimate yields enough
information for learning powerful multi-represented classifiers.

A second advantage of the proposed method is that confidence estimates can be de-
rived from multiple types of classifiers such as Support Vector Machines (SVMs), Bayes
classifiers, k-nearest-neighbor (kNN) classifiers and decision trees. Since the principle
idea of deriving confidence estimates is the same for each of these classifiers, the con-
fidence estimates are directly comparable even for different types of classifiers trained
on varying feature spaces. This is not necessarily the case for probability estimation be-
cause the idea behind approximating the class probabilities is often quite different for
various classifiers. Thus, the semantic of the probabilities is not necessarily comparable
leading to suboptimal classification results.

To derive confidence estimates, we introduce the concept of the confidence range
of a decision. The confidence range is the smallest range inside which the classified
object could be moved in order to be assigned to a different class. In other words, the
confidence range corresponds to the distance of an object to the closest class border.
Therefore, deriving confidence estimates from SVMs can be done in a straightforward
way. However, there still exist major differences between the probability estimation for
a SVM as proposed in [1] and the confidence estimate employed in this paper. First of
all, it is possible to derive a confidence estimate of less than 50 % for the predicted
class, if it is quite uncertain that the prediction is correct. Additionally, the method
proposed in [1] yields a solution for probability estimation in two class problems while
our method using confidence estimates can be applied to an arbitrary number of classes.
For employing other classifiers than SVMs, we will provide algorithms for several well-
established classification methods like Bayes classifiers, decision trees, and kNN clas-
sifiers for deriving confidence ranges. Afterwards the confidence ranges are used to
calculate confidence estimates which are finally used to find the global class decision.
The main contributions of this paper are:

– A new method for combining classifiers based on the confidence estimates instead
of complete distribution vectors.

– Methods for deriving confidence ranges for various classifiers such as decision
trees, Bayes classifiers, or kNN classifiers.

– Methods for learning a function that derives confidence estimates from the derived
confidence ranges.

Our experimental evaluation illustrate the capability of our new approach to improve
the classification accuracy compared to combined classifiers that employ distribution
vectors.

The rest of the paper is organized as follows. Section 2 surveys related work. In
section 3, we introduce the general idea for our method of classifier combination. Af-
terwards, section 4 describes methods to derive confidence ranges for various classifiers
and explains their use for deriving confidence estimates. The results of our experimental
evaluation are shown in section 5. Section 6 concludes the paper with a summary and
ideas for future work.
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2 Related Work

In general, methods that employ multiple learners to solve a common classification
problem are known as ensemble learning. An overview over ensemble learning tech-
niques can be found in [2]. Within the area of ensemble learning our work deals with the
subarea of classifier combination. The aim of classifier combination is to use multiple
independently trained classifiers and combine their results to increase the classification
accuracy in comparison to the accuracy of a single classifier. Combining classifiers to
learn from objects given by multiple representations has recently drawn some attention
in the pattern recognition community [3,4,5]. The authors of [3] developed a theoretical
framework for combining classifiers which use multiple pattern representations. Fur-
thermore, the authors propose several combination strategies like max, min, and, prod-
uct rule. [4] describes so-called decision templates for combining multiple classifiers.
The decision templates employ the similarity between classifier output matrices. In [5]
the author proposes a method of classifier fusion to combine the results from multiple
classifiers for one and the same object. Furthermore, [5] surveys the four basic combina-
tion methods and introduces a combined learner to derive combination rules increasing
classification accuracy. All methods mentioned above assume that a classifier provides
reliable values of the posteriori probabilities for all classes. Techniques for deriving
probability estimates from various classifiers can be found in [1,6]. Learning reliable
probability estimates and measuring their quality is a rather difficult task, because the
training sets are labeled with classes and not with class probability vectors. In contrast
to these solutions, we propose a method that calculates a single confidence estimate
reflecting the correctness of each particular class decision. A related subarea of ensem-
ble learning is co-training or co-learning which assumes a semi-supervised setting. The
classification step of co-training employs multiple independent learners in order to an-
notate unlabeled data. [7] and [8] were the first publications that reported an increase
of classification accuracy by employing multiple representations. The most important
difference of co-learning approaches to our new approach of multi-represented classi-
fication is that we do not consider a semi-supervised setting. Additionally, co-training
retrains its classifiers within several iterations whereas the classifiers in our approach
are only trained once. Recently, methods of hyper kernel learning [9] were introduced
that are also capable of employing several representation in order to learn a classifier.
In contrast to our method the hyper kernel learners optimize the use of several kernels
that can be based on multiple representations within one complex optimization problem
which is usually quite difficult to solve.

3 Confidence Based Multi-represented Classification

In this section we will specify the given task of multi-represented classification and
describe our new approach of using a single confidence value for each representation to
derive global class decisions.

A multi-represented object o is given by an n-tuple (o1, . . . , on) ∈ R1 × . . . × Rn

of feature vectors drawn from various feature spaces Ri = Fi ∪ {−}. Fi denotes the
corresponding feature space of representation i and ”−” denotes that there is no object
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description for this representation. Missing representations are a quite common problem
in many application areas and thus, should be considered when building a method.
Obviously, for each object there has to be at least one oj �= ”−”. For a given set of
classes C = ci, . . . , ck, our classification task can be described in the following way.
Given a training set of multi-represented objects TR ⊂ R1 × . . . × Rn, we first of
all train a classifier CLi : Ri → C for each representation. Afterwards, we train a
confidence estimator CECLi : Ri → [0..1] based on a second training set TRconf

for each classifier which predicts the confidence of the class decision CLi(oi) for each
object oi. Let us note that we employed cross validation for this second training since
the number of training objects is usually limited. To combine these results, we employ
the following combination method:

CLglobal(o) = CLargmax
0≤j≤n

{CECLj(o)}(o)

where o is an unknown data object.
In other words, we employ each classifier CLj(o) for deriving a class and afterwards

determine the confidence of this class decision CECLj (o). As a global result, we predict
the class ci which was predicted by the classifier having the highest confidence estimate
CECLi(o). To handle unknown representations, we define CECLj (−) = 0. Thus a
missing representation cannot have the highest confidence value.

4 Deriving Confidence Estimates

After describing our general pattern for multi-represented classification, we now turn
to describing the method for deriving the confidence estimates. The main idea of our
proposed confidence estimation is that the larger the area around an object for which
the class prediction does not change, the larger is the confidence for the class decision.
In other words, the more we can alter the characteristics of an object without changing
its class, the more typical is this object for the given class in the given feature space.
The confidence range can be determined by calculating the distance of the classified
object o to the closest class border. Let us note that we can apply this idea regardless
of the used classification method. To formalize the area around each object for which
the class prediction remains unchanged, we define the confidence range of an object as
follows:

Definition 1. Let o ∈ F be a feature vector and let CL : F → C be a classifier w.r.t.
the class set C. Then the confidence range CRange(o) is defined as follows:

CRange(o) = min {‖v‖ |v ∈ F ∧ CL(o) �= CL(o + v)}

The methods for deriving the confidence range are varying between the classification
methods. For SVMs the method to extract a confidence range is straightforward. For
the two-class case, we can use the output of the SVM as distance to the separating
hyperplane. In the case of multi-class SVMs, the minimum distance to all of the used
hyperplanes is considered. For other classification paradigms, the calculation is less
straightforward. In general, the confidence range of an object o can be determined by
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taking the minimum distance for which the class prediction changes from class cpred to
some other class cother. Thus, we can determine CRange(o) by:

CRange(o) = min
cother∈C\c{pred}

CRangecpred,cother
(o)

where CRangecpred,cother
(o) is the distance of o to the class border between the pre-

dicted class cpred and the class cother. In the following, we will provide methods for
approximating CRange(o) for three well-established classification methods.

4.1 Bayes Classification

For a Bayes classifier over a feature space F ⊆ R
d, each class c is determined by a prior

p(c) and a density function corresponding to p(x|c) where x ∈ F . The class having the
highest value for p(c) · p(x|c) is predicted. Thus, for each class cother, we need to
consider the following equation describing the class border between two classes:

p(cpred) · p(x|cpred) = p(cpred) · p(x|cother)
⇒ p(cpred) · p(x|cpred) − p(cpred) · p(x|cother) = 0

To determine the distance of an object o to this class border, we need to solve the
following optimization problem:

min
x∈Rd

d(o, x)

s.t. p(cpred) · p(x|cpred) − p(cpred) · p(x|cother) = 0

For example, the optimization problem for a general Gaussian distribution can be
formulated as follows:

min
x∈Rd

d(o, x)

s.t.(x − μ1)T × (Σ1)−1 × (x − μ1)

−(x − μ2)T × (Σ2)−1 × (x − μ2) − ln
p(c1) · Σ2

p(c2) · Σ1
= 0

To solve this problem, we employed a gradient descent approach which is an iterative
method for solving non linear optimization problems. Beginning at an initialized point,
the direction of the steepest descent is determined. Then, a step in this direction is made
whereas the step size is calculated by applying the Cauchy principle. The steps are
repeated until the minimum is reached which usually occurs after a small number of
iterations.

4.2 Decision Trees

For most decision trees, each node in the tree belongs to some discriminative function
separating the training instances with respect to a single dimension of the feature space.
Therefore, each leaf of a decision tree corresponds to a hyper rectangle. However, to
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Fig. 1. Example and pseudo code for determining CRange for decision trees

determine CRange(o), it is not sufficient to calculate the minimum distance of o to
the border of this hyper rectangle. If the neighboring leaf does correspond to the same
class, the border of the leaf does not provide a class border. Therefore, for determining
CRange(o), we need to find the distance of object o to the closest leaf belonging to
any other class than cpred. To find this leaf node while traversing the tree for classifi-
cation, we collect all subtrees that do not contain o, i.e. the subtrees that are omitted
during the classification of o. Each of these subtrees is stored in a priority queue which
is ordered by the minimum distance of o to any node of the subtree. After the classi-
fication algorithm reaches a leaf node (i.e. o is classified), we can process the priority
queue containing the collected subtrees. If the first object in the queue is a leaf node, we
determine whether the leaf corresponds to a class which is different to the class predic-
tion. In this case, we can calculate CRange(o) as the distance of o to the boundaries
of this leaf. Since the priority queue is ordered by the minimum distance to o, there
cannot exist any other leaf with a boundary closer to o than the calculated CRange(o).
If the top element of the queue is a subtree, we remove the tree from the queue and
insert its descendants. Figure 1 illustrates an example for a small decision tree on the
left side. The right side of Figure 1 describes the proposed algorithm in pseudo code.
Let us note that calculating the minimum distance of o to any leaf node in the tree can
be done by only considering the attributes which are encountered while traversing the
tree. For each other attribute, the feature value of o must be contained within the range
of the tree node.

4.3 kNN Classification

Though it is sufficient for finding an accurate class decision, determining the k nearest
neighbors for an object o is not enough to determine CRange(o). Since the k nearest
neighbors do not necessarily contain representative objects of each of the classes, find-
ing the class border for a kNN classifier needs to consider additional objects belonging
to each of the classes. If the number of considered neighbors is one, the class borders
are described by Voronoi cells around the training objects. In this case, we can easily



Multi-represented Classification Based on Confidence Estimation 29

calculate CRange(o) on the basis of the particular CRangecpred,cother
(o). Thus, we

only need to compare the distances to the class border which is determined by the near-
est neighbor uc of the predicted class c to any nearest neighbor uĉ of the other classes
ĉ. This distance can be calculated using the following lemma.

Lemma 1. Let o be an object, let uc be the nearest neighbor belonging to class CL(o)=
c and let uother be the nearest object belonging to some other class other ∈ C \ c.
Furthermore, let d(x1, x2) be the Euclidian distance in R

d. Then, CRangec,other(o)
for a nearest neighbor classifier can be calculated as follows:

CRangec,other(o) =
d(uc, uother)2 + d(uc, o)2 − d(uother, o)2

2d(uc, uother)
− d(uc, uother)

2

A proof for this lemma can be found in [10].
Unfortunately, CRangec,other(o) is much more complicated to calculate for k > 1

because this would require to calculate Voronoi cells of the order k. Since this would
cause a very time consuming calculations, we propose a heuristic method to approxi-
mate CRange(o) for the case of k > 1. The idea of our heuristic is to determine the set
Uk

c consisting of the k closest objects for each class c. Note that the union of these sets
obviously contains the k nearest neighbors as well. For each class, we now build the
weighted centroid. The weights for determining the centroid are derived by the inverse
squared distance to the classified object o, in order to mirror the well-known weighted
decision rule for kNN classifiers. Formally, these class representatives are defined as
follows:

Repk
c (o) =

∑

ui∈Uk
c

1
d(o, ui)2

· ui · 1
∑

ui∈Uk
c

1
d(o,ui)2

After having calculated a representative for each class, we can proceed as in the case
for k = 1. Let us note that using this heuristic, an object might have a negative distance
to the class if it is placed on the wrong side of the estimated class border. However, this
only occurs if the distance to the border is rather small and thus, the class decision is
more or less unreliable.

4.4 From Ranges to Confidence Estimates

Our goal is to compare the results of various classifiers trained on varying feature
spaces and employing various classification paradigms. However, the derived confi-
dence ranges do not represent a comparable and accurate confidence estimate so far. To
transform the confidence ranges into usable confidence estimates, we must cope with
the following two problems. First the confidence ranges are distances in different fea-
ture spaces and thus, a comparably small distance in R1 might induce a much higher
confidence than a larger confidence range in representation R2. Obviously, we have to
learn which confidence range induces a high likelihood for a correct class prediction.
A second problem we have to cope with is noise. In a noisy representation, an object
having a comparably high confidence range might still be classified with comparably
low confidence. Therefore, the confidence estimates should mirror the global reliability
of the classifier as well as the confidence range of the individual object.
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(a) Naive Bayes (b) Decision Tree

(c) kNN (d) SVM

Fig. 2. Relationship between confidence range and classification accuracy

In order to understand the relationship between confidence ranges and the reliabil-
ity of the class prediction, we performed several experiments. First, we partitioned the
training data of each representation into three folds. We used two folds to train the clas-
sifier and used the remaining fold, the test fold, for calculating the confidence ranges.
Afterwards, we formed a curve expressing the accuracy of the class predictions for all
objects having a smaller CRange(o) then the given x-value in the graph. More pre-
cisely, for each test object o a set of objects was determined containing all objects u in
the test fold for which CRange(u) ≤ CRange(o). Then, the classification accuracy for
each of these subsets was calculated providing the y-value for the x-value CRange(o).
We observed small classification accuracies for subsets having a small maximal con-
fidence range. The accuracy is improved with increasing maximal confidence range
values and finally reaches the accuracy observed on the complete test set. Furthermore,
the graph displayed a sigmoidal pattern, i.e. there is a range of values where a small
increase of the confidence ranges results in a high increase of classification accuracy.
The results of the above described experiments are presented in Figure 2. The curve
labeled with ’Measured’ corresponds to these observed accuracy values while the curve
labeled with ’Fitted’ displays the function we will introduce in the following to model
this behavior. As can be seen in Figure 2, the measured values form a sigmoidal shape
for all examined classification techniques.

Based on these observations we developed a technique to calculate confidence esti-
mates for each classifier. These confidence estimates range from 0 to 1 and thus, unlike
confidence ranges, the confidence estimates are directly comparable to each other. Since
the confidence estimates cannot become larger than the classification accuracy on the
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Table 1. Description of the data sets

DS1 DS2 DS3 DS4 DS5 DS6 DS7

Name Oxidore-
ductase

Trans-
ferase

Transporter
Activity

Protein
Binding

Enzyme
Regularization

Sonar Wave
5000

No. of Classes 20 37 113 63 19 2 3
No. of Objects 1051 2466 2218 4264 1046 208 5000

complete test set, the noise level in each representation is considered as well. In the
following, the calculation of the confidence estimates is described in detail.

1. For a given classifier CLj , perform a 3-fold cross validation with the training data
in order to yield confidence range/accuracy pairs as described above.

2. A suitable optimization algorithm (e.g. Levenberg-Marquardt algorithm [11]) is
used to determine the parameters αj and βj that minimize the least squares error
for the sigmoid target function accuracyj(o) = 1

1+exp(αj×CRangej(o)+βj)
given

the observed pairs of confidence ranges and classification accuracy.
3. For classifier CLj and object o the confidence estimate CECLj (o) can finally be

calculated as:

CECLj (o) =
1

1 + exp(αj × CRangej(o) + βj)

The derived confidence estimates are now used for classifier combination as de-
scribed in section 3, i.e. the classification result based on the representation yielding the
highest confidence estimate is used as the global prediction of the combined classifier.

5 Experimental Evaluation

For our experimental evaluation, we implemented our new method for classifier com-
bination and confidence estimation in Java 1.5. All experiments were performed on a
workstation featuring two Opteron processors and 8 GB main memory. For comparing
our method to the established methods for classifier combination as described in [5],
we used the J48 (decision tree), Naive Bayes, SMO (SVM), and IBK (kNN classifier)
classifiers provided by the WEKA machine learning package [12]. The WEKA imple-
mentation provides probabilities for each of the classes which were combined using the
minimum, the maximum, the product, and average. For example, a joined confidence
vector v is constructed by taking the average class probability for each class ci over
all representation Rj as ith component vi. For our confidence estimates we used the
same classifiers and additionally implemented our new method. For fitting the sigmoid
functions we used the method introduced in [11].

We tested our new ensemble method on 5 multi-represented data sets describing
proteins (DS1-DS5). The 5 test beds consist of 19 to 113 Gene Ontology [13] classes.
The corresponding objects were taken from the SWISS-PROT [14] protein database
and consist of a text annotation and the amino acid sequence of the proteins. In order to
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(a) Protein data sets (b) UCI data sets

Fig. 3. Classification accuracy of CE-Comb. compared to separated classification

obtain a flat class-system with sufficient training objects per class, the original data was
adapted. We employed the approach described in [15] to extract features from the amino
acid sequences. The basic idea is to use local (20 amino acids) and global (6 exchange
groups) characteristics of a protein sequence. To construct a meaningful feature space,
we formed all possible 2-grams for each kind of characteristic, which yielded the 436
dimensions of our sequence feature space. For text descriptions, we employed a TFIDF
[16] vector for each description that was built of 100 extracted terms. Since these data
sets could only be tackled by the more flexible SVMs and kNN classifiers, we could not
test the Naive Bayes and the J48 decision tree classifiers on these problems. Therefore,
by splitting the wave-5000 (DS7) and the sonar data set (DS6) from the well-known
UCI machine learning repository [17] vertically, we generated two additional multi-
represented. Thus, we derived for each data set two representations containing only
half of the attributes of the original data set. An overview of our 7 test beds is given in
Table 1.

For our experiments, we first of all classified each representation separately using
several classifiers. Afterwards, we combined the best classification method for each
representation using our new method based on confidence estimates (CE-Comb.) and
the 4 standard methods mentioned above which are based on probability vectors. For
the UCI data sets, we tested only Naive Bayes and J48 because these data sets were
chosen to provide an example for these two types of classifiers.

Our first result compares the classification accuracy of our new combination method
with the classification accuracy achieved in the separated representations. Figure 3 dis-
plays the achieved classification accuracies. In all 7 data sets our new combination
method achieved a higher classification accuracy than both corresponding classifiers
which rely on only a single representation. Thus, using the additional information of
both representations was always beneficial.

In Table 2 we compare our new method to the established methods of classifier
combination. The accuracies which where achieved using our confidence estimates are
shown in the first row. For all data sets our new method for classifier combination out-
performs the established approaches. The improvement by using our new combination
method was up to 4 % in data sets DS3 and DS6. Let us note that the classifiers in
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Table 2. Accuracies for different combination methods

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7

CE-Comb. 0.8287 0.8454 0.7939 0.8562 0.7973 0.7692 0.7954
Product 0.7761 0.8092 0.7633 0.8302 0.7514 0.7307 0.7794
Sum 0.8072 0.8051 0.7768 0.8142 0.7877 0.7307 0.7808
Min 0.7761 0.8053 0.7610 0.8332 0.7466 0.7307 0.7786
Max 0.8058 0.7939 0.7718 0.8090 0.7868 0.7307 0.7806

Table 3. Comparing various combinations

DS 1 DS 2 DS 3 DS 4 DS 5

kNN+SVM 0.8116 0.8215 0.7831 0.8485 0.7782
SVM+kNN 0.8287 0.8454 0.7939 0.8562 0.79732
SVM+SVM 0.8097 0.836 0.7921 0.8410 0.7906
kNN+kNN 0.789 0.8215 0.7889 0.8499 0.7667

each representation for all types of ensembles were always exactly the same. Thus, the
improvement is achieved by the different combination method only.

Our final result illustrates that the capability to combine classifiers of different types
proves to be beneficial on real world data sets. We tested all possible combinations of
SVMs and kNN classifiers for the 5 protein data sets. The results are displayed in Table
3. For all data sets, the combination of using a linear SVM for text classification and a
nearest neighbor classifier for sequence classification proved to yield the best accuracy.
Thus, our new method is capable of exploiting different types of classifiers which often
yields a better ensemble than using only classifiers of one and the same type.

6 Conclusions

In this paper we describe a new method for classifier combination. The two main as-
pects of our new approach are the following. First of all, the global class decision is not
dependent on complete probability distributions over all classes but depends only on
a confidence estimate that the given classification result is indeed correct. The second
aspect is that the used confidence estimates are not limited to a particular type of classi-
fier. By introducing the general concept of confidence ranges, it is possible to generate
comparable confidence estimates for different types of classifiers and varying feature
spaces. To derive these confidence estimates, we provide algorithms to calculate confi-
dence ranges for kNN classifiers, decision trees, and Bayes classifiers. The confidence
ranges are transformed into meaningful confidence estimates using a trained sigmoid
function. Our experimental evaluation shows that our new method is capable of outper-
forming established methods based on probability vectors. Additionally, we observed
that it is sometimes indeed useful to use different types of classifiers for classifying
different representations.

In our future work, we are going to extend our new idea for classifier combina-
tion to other methods of ensemble learning like co-training. Measuring the agreement
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between the used classifiers by means of our new confidence estimates might yield an
improvement compared to established methods using probability vectors.

References

1. Platt, J.: ”Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods”. In: Advances in Large Margin Classifiers, MIT Press. (1999) 61–74

2. Valentini, G., Masulli, F.: ”Ensembles of learning machines”. Neural Nets WIRN (2002)
3. Kittler, J., Hatef, M., Duin, R., Matas, J.: ”On Combining Classifiers”. IEEE Transactions

on Pattern Analysis and Machine Intelligence 20 (1998) 226–239
4. Kuncheva, L., Bezdek, J., Duin, R.: ”Decision Templates for Multiple Classifier Fusion: an

Experimental Comparison”. Pattern Recognition 34 (2001) 299–314
5. Duin, R.: ”The Combining Classifier: To Train Or Not To Train?”. In: Proc. 16th Int. Conf.

on Pattern Recognition (ICPR’02), Quebec City, Canada). (2002) 765–770
6. Zadrozny, B., Elkan, C.: ”Obtaining calibrated probability estimates from decision trees and

naive Bayesian classifiers”. In: Proc. 18th Int. Conf. on Machine Learning, San Francisco,
CA. (2001) 609–616

7. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In:
ACL. (1995) 189–196

8. Blum, A., Mitchell, T.: ”Combining labeled and unlabeled data with co-training”. In: Proc.
of the eleventh annual conference on Computational learning theory (COLT ’98), New York,
NY, USA (1998) 92–100

9. Ong, C.S., Smalo, A.: ”Machine Learning with Hyperkernels”. In: Proc. of the 20th Int.
Conf. (ICML 2003), Washington, DC, USA. (2003) 576–583

10. Kriegel, H.P., Schubert, M.: ”Advanced Prototype Machines: Exploring Prototypes for clas-
sification”. In: in Proc. 6th SIAM Conf. on Data Mining, Bethesda, MD. USA. (2006) 176–
188

11. Levenberg, K.: ”A method for the solution of certain problems in least squares”. Quart.
Appl. Math. 2 (1944) 164–168

12. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with
Jave Implementations. Morgan Kaufmann (1999)

13. The Gene Ontology Consortium: ”Gene Ontology: Tool for the Unification of Biology”.
Nature Genetics 25 (2000) 25–29

14. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Mar-
tin, M., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: ”The SWISS-
PROT Protein Knowledgebase and its Supplement TrEMBL in 2003”. Nucleic Acid Re-
search 31 (2003) 365–370

15. Deshpande, M., Karypis, G.: ”Evaluation of Techniques for Classifying Biological Se-
quences”. In: Proc. of the 6th Pacific-Asia Conf. on Advances in Knowledge Discovery
and Data Mining (PAKDD ’02), London, UK (2002) 417–431

16. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-
formation by Computer. Addison-Wesley (1989)

17. University of Irvine. http://www.ics.uci.edu/ mlearn/MLRepository.html, UCI Machine
Learning Repository. (2005)



Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 35–46, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Selecting a Reduced Set for Building 
Sparse Support Vector Regression in the Primal 

Liefeng Bo, Ling Wang, and Licheng Jiao 

Institute of Intelligent Information Processing 
Xidian University, Xi’an 710071, China 
{blf0218, wliiip}@163.com 

http://see.xidian.edu.cn/graduate/lfbo 

Abstract. Recent work shows that Support vector machines (SVMs) can be 
solved efficiently in the primal. This paper follows this line of research and 
shows how to build sparse support vector regression (SVR) in the primal, thus 
providing for us scalable, sparse support vector regression algorithm, named 
SSVR-SRS. Empirical comparisons show that the number of basis functions re-
quired by the proposed algorithm to achieve the accuracy close to that of SVR 
is far less than the number of support vectors of SVR. 

1   Introduction 

Support vector machines (SVMs) [1] are powerful tools for classification and regres-
sion. Though very successful, SVMs are not preferred in application requiring high 
test speed since the number of support vectors typically grows linearly with the size 
of the training set [2]. For example in on-line classification and regression, in addition 
to good generalization performance, high test speed is also desirable. Reduced set 
(RS) methods [3-4] have been proposed for reducing the number of support vectors. 
Since these methods operate as a post-processing step, they do not directly approxi-
mate the quantity we are interested in. Another alternative is the reduced support 
vector machines (RSVM) [5], where the decision function is expressed as a weighted 
sum of kernel functions centered on a random subset of the training set. Though sim-
ple and efficient, RSVM may result in a lower accuracy than the reduced set methods 
when their number of support vectors is kept in the same level. 

Traditionally, SVMs are trained by using decomposition techniques such as 
SVMlight [6] and SMO [7], which solve the dual problem by optimizing a small 
subset of the variables each iteration. Recently, some researchers show that both 
linear and non-linear SVMs can be solved efficiently in the primal. As for linear 
SVMs, finite Newton algorithm [8-9] has proven to be more efficient than SMO. As 
for non-linear SVM, recursive finite Newton algorithm [10-11] is as efficient as the 
dual domain method. Intuitively, when our purpose is to compute an approximate 
solution, the primal optimization is preferable to the dual optimization because it 
directly minimizes the quantity we are interested in. On the contrary, introducing 
approximation in the dual may not be wise since there is indeed no guarantee that 
an approximate dual solution yields a good approximate primal solution. Chapelle 
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[10] compares the approximation efficiency in the primal and dual domain and 
validates this intuition. 

In this paper, we develop a novel algorithm, named SSVR-SRS for building the re-
duced support vector regression. Unlike our previous work [11] where recursive finite 
Newton algorithm is suggested to solve SVR accurately, SSVR-SRS aims to find a 
sparse approximation solution, which is closely related to SpSVM-2 [12] and kernel 
matching pursuit (KMP) [13], and can be regarded as extension of the key idea of 
matching pursuit to SVR. SSVR-SRS iteratively builds a set of basis functions to 
decrease the primal objective function by adding one basis function at one time. This 
process is repeated until the number of basis functions has reached some specified 
value. SSVR-SRS can find the approximate solution at a rather low cost, i.e. 2( )O nm  
where n  is the number of training samples and m  the number of all picked basis 
functions. Our experimental results demonstrate the efficiency and effectiveness of 
the proposed algorithms. 

The paper is organized as follows. In Section 2, support vector regression in the 
primal is introduced. SSVR-SRS is discussed in Section 3. Comparisons with RSVM, 
LIBSVM 2.82 [14] and the reduced set method are reported in Section 4. Some con-
clusions and remarks are given in Section 5. 

2   Support Vector Regression in the Primal 

Consider a regression problem with training samples { } 1
,

n

i i i
y

=
x  where ix  is the input 

sample and iy  is the corresponding target. To obtain a linear predictor, SVR solves 

the following optimization problem 
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Eliminating the slack variables { }
1

,
n

i i i
ξ ξ

=
 and dividing (1) by the factor C, we get the 

unconstrained optimization problem 

( ) ( ) 2

,
1

min ,
n

i i
b

i

L b l b yε ε λ
=

⎛ ⎞= ⋅ + − +⎜ ⎟
⎝ ⎠

∑
w

w w x w ,   (2) 

where 
1

2C
λ =  and ( ) ( )max ,0

p
l r rε ε= − . The most popular selections for p are 1 

and 2. For convenience of expression, the loss function with p=1 is referred to as 
insensitive linear loss function (ILLF) and that with p=2 insensitive quadratic loss 
function (IQLF). 
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Non-linear SVR can be obtained by using the map ( )φ i  which is determined im-

plicitly by a kernel function ( ) ( ) ( ),i j i jk φ φ=x x x xi . The resulting optimization is 

( ) ( )( ) 2

,
1

min ,
n

i i
b

i

L b l yε ε φ λ
=

⎛ ⎞= ⋅ − +⎜ ⎟
⎝ ⎠

∑
w

w w x w ,   (3) 

where we have dropped b for the sake of simplicity. Our experience shows that the 
generalization performance of SVR is not affected by this drop. According to the 
representer theory [15], the weight vector w  can be expressed in terms of training 
samples, 

( )
1

n

i i
i

β φ
=

=∑w x .    (4) 

Substituting (4) into (3), we have 

( ) ( ) ( )
1 1 1
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n n n

i i j i i j i j
i j i

L l k y kε ε β λ β β
= = =

⎛ ⎞⎛ ⎞
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∑ ∑ ∑β

β x x x x . (5) 

Introducing the kernel matrix K  with ( ),ij i jk=K x x  and iK  the i-th row of K , (5) 

can be rewritten as  

( ) ( )
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n

T
i i

i

L l yε ε λ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑β
β K β β Kβ .  (6) 

A gradient descent algorithm is straightforward for IQLF; however, it is not appli-
cable to ILLF since it is not differentiable. Inspired by the Huber loss function [16], 
we propose an insensitive Huber loss function (IHLF)  

  ( ) ( )
( )( )
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,

0

2
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l z z if z

z if z

ε

ε

ε ε

ε ε
Δ

⎧ ≤
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Δ − − Δ − ≥ Δ⎪⎩

,   (7) 

to approximate ILLF. We emphasize that Δ  is strictly greater than ε , ensuring that 
IHLF is differentiable. 

The properties of IHLF are controlled by two parameters: ε  and Δ . With certain 
ε  and Δ  values, we can obtain some familiar loss functions: (1) for 0ε =  and an 
appropriate Δ , IHLF becomes the Huber loss function; (2) for 0ε =  and Δ = ∞ , 
IHLF becomes the quadratic (Gaussian) loss function; (3) for 0ε =  and εΔ → , 
IHLF approaches the linear (Laplace) loss function; (4) for 0 ε< < ∞  and Δ = ∞ , 
IHLF becomes the insensitive quadratic loss function; and, (5) for 0 ε< < ∞  and 

εΔ → , IHLF approaches the insensitive linear loss function. 
Introducing IHLF into the optimization problem (6), we have the following primal 

objective function: 

( ) ( ), ,
1

min
n

T
i i

i

L l yε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
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∑β
β K β β Kβ .   (8) 
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3   Selecting a Reduced Set in the Primal 

In a reduced SVR, it is desirable to decrease the primal objective function as much as 
possible with as few basis functions as possible. The canonical form of this problem is 
given by 

( ) ( ), ,
1

0

min

. .

n
T

i i
i

L l y

s t m

ε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
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≤

∑β K β β Kβ

β
,  (9) 

where 
0
i  is the 0l  norm, counting the nonzero entries of a vector and m  is the 

specified maximum size of basis functions. However, there are several difficulties in 
solving (9). First, the constraint is not differentiable, so gradient descent algorithms 
can not be used. Second, the optimization algorithms can become trapped in a shallow 
local minimum because there are many minima to (9). Finally, an exhaustive search 
over all possible choices (

0
m≤β ) is computational prohibitive since the number of 

possible combinations is 
1

m

i

n

m=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , too large for current computers. 

Table 1. Flowchart of SSVR-SRS 

Algorithm 3.1 SSVR-SRS 

1. Set P = ∅ , { }1,2, ,Q n= , =β 0 ; 

2. Select a new basis function from Q ; let s  be its index and set 

{ }P P s= ∪  and { }Q Q s= − ; 

3. Solve the sub-problem with respect to Pβ  and the remaining variables 

are fixed at zero. 
4. Check whether the number of basis functions is equal to m , if so, 

stop; otherwise go to step 2. 

In this paper, we will compute an approximate solution using a matching pursuit-
like method, named SSVR-SRS, to avoid optimizing (9) directly. SSVR-SRS starts 
with an empty set of basis functions and selects one basis function at one time to 
decrease the primal objective function until the number of basis functions has reached 
a specified value. Flowchart of SSVR-SRS is shown in Table 1. The final decision 
function takes the form 

( ) ( ),i i
i P

f kβ
∈

=∑x x x .    (10) 

The set of the samples associated with the non-zero weights is called reduced set. 
Because here the reduced set is restricted to be a subset of training set, we consider 
this method as “selecting a reduced set”. 
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3.1   Selecting Basis Function 

Let PK  the sub-matrix of K  made of the columns indexed by P , XYK  the sub-

matrix of K  made of the rows indexed by X  and the columns indexed by Y  and Pβ  

the sub-vector indexed by P . 
How do we select a new basis function from Q ?  A natural idea is to optimize the 

primal objective function with respect to the variables Pβ  and jβ  for each j Q∈  and 

select the basis function giving the least objective function value. The selection proc-
ess can be described as a two-layer optimization problem, 

( ) ( ), ,,
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K Kβ β
β K β K β

K K
. (11) 

This basis function selection method, called pre-fitting, has appeared in kernel match-
ing pursuit for least squares problem. Unfortunately, pre-fitting needs to solve the 

1P +  dimensional optimization problem Q  times, the cost of which is obviously 

higher than that of optimizing the sub-problem. 
A cheaper method is to select the basis function that best fits the current residual 

vector in terms of a specified loss function. This method originated from matching 
pursuit [17] for least squares problem and was extended to an arbitrary differentiable 
loss function in gradient boosting [18]. However, our case is more complicated due to 
the occurrence of the regularization term, and thus we would like to select the basis 
function that fits the current residual vector and the regularization term as well as 
possible. Let the current residual vector be 
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r β K β y
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where opt
Pβ  is the optimal solution obtained by solving the sub-problem, and the index 

of basis function can be obtained by solving the following two-layer optimization 
problem, 

( ) ( )( ), ,
1

arg min min
j

Topt optn
PP PjP Popt

j i P ij j
j Q i j jP jj j

s L l rε εβ
β β λ

β βΔ Δ
∈ =

⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟= = + + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠
∑

K Kβ β
β K

K K
. (13) 

Note that unlike pre-fitting, here opt
Pβ  is fixed. 

( ), jLε βΔ  is one dimensional, piecewise quadratic function and can be minimized 

exactly. However, in practice, it is not necessary to solve it precisely. A simpler 

method is to compare the square of the gradient of ( ), jLε βΔ  at 0jβ =  for all j Q∈ , 

( )( ) ( )22

, 0 2T opt
j P PjLε λΔ∇ = +g K β K ,   (14) 

where 



40 L. Bo, L. Wang, and L. Jiao 

( )
( )( ) ( )( ) ( )
( )( )( ) ( )

0

2

2
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i P

opt opt opt
i i P i P i P

opt opt
i P i P

if r

g sign r r if r

sign r if r

ε

ε ε

ε

⎧ ≤
⎪
⎪= − < < Δ⎨
⎪
⎪ Δ − ≥ Δ⎩

β

β β β

β β

,  (15) 

where ( )sign z  is 1 if 0z ≥ ; otherwise ( )sign z  is -1. To be fair, the square of the 

gradient should be normalized to 

( )2

22

2 2

T
j

j

g K

g K
,     (16) 

where 
2 opt

Pλ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

g
g

β
 and 

j

j
Pj

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K
K

K
. This is an effective criterion because the gradi-

ent measures how well the j-th basis function fits the current residual vector and the 
regularization term. If set 0ε = , Δ = ∞  and 0λ = , this criterion is exactly the one in 
the back-fitting version of KMP. 

If each j Q∈  is tried, then the total cost of selecting a new basis function is 

( )2O n , which is still more than what we want to accept. This cost can be reduced to 

( )O n  by only considering a random subset O  of Q  and selecting the next basis 

function only from O  rather than performing an exhaustive search over Q , 

( )2

22

2 2

arg min
T

j

j O Q
j

s
∈ ⊂

⎛ ⎞−⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

g K

g K
.    (17) 

In the paper, we set 100O = . 

3.2   Optimizing the Sub-problem 

After a new basis function is included, the weights of basis functions, Pβ  are no 

longer optimal in terms of the primal objective function. This can be corrected by the 
so-called back-fitting method, which solves the sub-problem containing a new basis 
function and all previously picked basis functions. Thus, the sub-problem is a P  

dimensional minimization problem expressed as 

( ) ( ), ,
1

min
P

n
T

P iP P i P PP P
i

L l yε ε λΔ Δ
=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑β
β K β β K β .  (18) 

( ), PLε Δ β  is a piecewise quadratic convex function and continuously differentiable 

with respect to Pβ . Although ( ), PLε Δ β  is not twice differentiable, we still can use the 

finite Newton algorithm by defining the generalized Hessian matrix [11]. 
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Define the sign vector ( ) ( ) ( )1 , ,
T

P P n Ps s= ⎡ ⎤⎣ ⎦s β β β  by 

( )
( )
( )

1

1

0

i P

i P i P

if r

s if r

otherwise

ε
ε

< < Δ⎧
⎪

= − − Δ < < −⎨
⎪
⎩

β

β β ,   (19) 

the sign vector ( ) ( ) ( )1 , ,
T

P P n Ps s= ⎡ ⎤⎣ ⎦s β β β  by 
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( )
( )

1

1

0

i P

i P i P

if r

s if r

otherwise

≥ Δ⎧
⎪

= − ≤ −Δ⎨
⎪
⎩

β

β β ,     (20) 

and the active matrix  

( ) ( ) ( ){ }1 , ,P P n Pdiag w w=W β β β      (21) 

by ( ) ( )2
i P i Pw s=β β . The gradient of ( ), PLε Δ β  with respect to Pβ  is 

( ) ( ) ( ) ( ) ( ) ( ), 2 2 2 2T T T
P P P P P P P P PP PLε ε ε λΔ∇ = − + Δ − +β K W β r β K s β K s β K β . (22) 

The generalized Hessian is 

( ) ( )2
, 2 2T

P P P P PPLε λΔ∇ = +β K W β K K .   (23) 

The Newton step at the k-th iteration is given by 

( )( ) ( )1
1 2

, ,
k k k k
P P P Pt L Lε ε

−+
Δ Δ= − ∇ ∇β β β β .   (24) 

The step size t  can be found by a line search procedure that minimizes the one di-
mensional piecewise-smooth, convex quadratic function. Since the Newton step is 
much more expensive, the line search does not add to the complexity of the algorithm. 

3.3   Computational Complexity 

In SSVR-SRS, the most time-consuming operation is computing the Newton step 
(24). When a new basis function is added, it involves three main steps: computing the 
column sK , which is ( )O n , computing the new elements of the generalized Hessian, 

which is ( )O nm  and inverting the generalized Hessian that can be computed in an 

incremental manner [12], which is ( )2O m . When the active matrix ( )PW β  is 

changed, the inversion of the generalized Hessian needs to be updated again, which is 

( )2O cm . In most cases, c  is a small constant, so it is reasonable to consider ( )O nm  

as an expensive cost since n m . Adding up these costs till m  basis functions are 

chosen, we get an overall complexity of ( )2O nm . 
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4   Experiments 

In this section, we evaluate the performance of SSVR-SRS on five benchmark data 
sets and compare them with SVM, the reduced set method and reduced SVM.  

4.1   Experimental Details 

SVR is constructed based on LIBSVM 2.82 where the second order information is 
used to select the working set. RSVM is implemented by our own Matlab code. The 

reduced set method determines the reduced vectors { } 1

m

i i=
z  and the corresponding 

expansion coefficients by minimizing 

( )
2

1

m

j j
j

α φ
=

−∑w z ,    (25) 

where ( )i i
i S

β φ
∈

=∑w x  is the weight vector obtained by optimizing (5) and S  is the 

index set of support vectors. Reduced set selection (RSS) is parallel to SSVR-SRS 
and determines a new basis function by 

( )

2

2

2

,

arg min
, ,

SjT T
S P

Pj

T Tj O Q
S P j j

s
k∈ ⊂

⎛ ⎞⎛ ⎞⎡ ⎤⎜ ⎟⎡ ⎤− −⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎜ ⎟=
⎜ ⎟⎡ ⎤−⎣ ⎦⎜ ⎟
⎜ ⎟
⎝ ⎠

K
β α

K

β α x x
.   (26) 

Five benchmark data sets: Abalone, Bank8fh, Bank32fh, House8l and Friedman3 
are used in our empirical study. Information on these benchmark data sets is summa-
rized in Table 2. These data sets have been extensively used in testing the perform-
ance of diversified kinds of learning algorithms. The first four data sets are available 
from Torgo’s homepage: http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html. 
Friedman3 is from [19]. The noise is adjusted for a 3:1 signal-to-noise ratio. 

All the experiments were run on a personal computer with 2.4 GHz P4 processors, 
2 GB memory and Windows XP operation system. Gaussian kernel 

( ) ( )2

2
, expi j i jk γ= − −x x x x  is used to construct non-linear SVR. The free parame-

ters in the algorithms are determined by 10-fold cross validation except that Δ  in the  
 

Table 2. Information on benchmark data sets 

Problem Training Test Attribute m  
Abalone 3000 1177 8 50 
Bank8fh 5000 4192 8 50 
Bank32h 5000 4192 32 150 
House8l 15000 7784 8 300 

Friedman3 30000 20000 4 240 
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insensitive Huber loss function is fixed to 0.3. For each training-test pair, the training 
samples are scaled into the interval [-1, 1], and the test samples are adjusted using the 
same linear transformation. For SSVR-SRS, RSS and RSVM, the final results are 
averaged over five random implementations. 

4.2   Comparisons with LIBSVM 2.82 

Table 3-4 reports the generalization performance and the number of basis functions of 
SVR and SSVR-SRS. As we can see, compared with SVR, SSVR-SRS achieves the 
impressive reduction in the number of basis functions almost without sacrificing the 
generalization performance. 

Table 3. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets. 
Error denotes root-mean-square test error, Std denotes the standard deviation of test error and 
NBF denotes the number of basis functions. For SSVR-SRS, λ  is set to be 1e-2 on the first 
four data sets and 1e-3 on Friedman3 data set. 

Error SVR SSVR-SRS 
2.107 Error NBF Error Std NBF 

Abalone 2.106 1152 2.107 0.006783 18 
Bank8fh 0.071 2540 0.071 0.000165 40 

Bank32nh 0.082 2323 0.083 0.000488 83 
House8l 30575 2866 30796 126.106452 289 

Friedman3 0.115 9540 0.115 0.000211 203 

Table 4. Test error and number of basis functions of SVR, SSVR-SRS on benchmark data sets. 
For SSVR-SRS, λ  is set to be 1e-5. 

SVR SSVR-SRS Problem 
Error NBF Error Std NBF 

Abalone 2.106 1152 2.106 0.012109 17 
Bank8fh 0.071 2540 0.071 0.000259 44 

Bank32nh 0.082 2323 0.083 0.000183 119 
House8l 30575 2866 30967 219.680790 282 

Friedman3 0.115 9540 0.115 0.000318 190 

4.3   Comparisons with RSVM and RSS 

Figure 1-5 compare SSVR-SRS, RSVM and RSS on the five data sets. Overall, 
SSVR-SRS beats its competitors and achieves the best performance in terms of the 
decrease of test error with the number of basis functions. In most cases, RSVM is 
inferior to RSS, especially in the early stage. An exception is House8l data set where 
RSVM gives smaller test error than RSS when the number of basis functions is be-
yond some threshold value. SSVR-SRS significantly outperforms RSS on Bak32nh, 
House8l and Friedman3 data sets, but the difference between them becomes very 
small on the remaining data sets. SSVR-SRS is significantly superior to RSVM on  
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Fig. 1. Comparisons of SSVR-SRS, RSVM and RSS on Abalone 

 

Fig. 2. Comparisons of SSVR-SRS, RSVM and RSS on Bank8fh 

 

Fig. 3. Comparisons of SSVR-SRS, RSVM and RSS on Bank32nh 

 

Fig. 4. Comparisons of SSVR-SRS, RSVM and RSS on House81 
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Fig. 5. Comparisons of SSVR-SRS, RSVM and RSS on Friedman3 

four of the five data sets and comparable on the remaining data set. Another observa-
tion from Figure 1-5 is that SSVR-SRS with small regularization parameter starts 
over-fitting earlier than that with large regularization parameter, e.g. Abalone data set. 

One phenomenon to note is that the reduced set selection has a large fluctuation in 
the generalization performance in the early stage. This is because the fact that, the 
different components of the weight vector W  usually have a different impact on the 
generalization performance and therefore the better approximation to W  does not 
necessarily leads to the better generalization performance. The fluctuation is allevi-
ated with the increasing number of basis functions because the large number of basis 
functions can guarantee that each component of W  is approximated well. 

4.4   Training Time of SSVR-SRS 

We do not claim that SSVR-SRS is more efficient than some state-of-the-art training 
decomposition algorithms such as SMO. Our main motivation is to point out that 
there is a way that can efficiently build a highly sparse SVR with the guaranteed gen-
eralization performance. In practice, depending on the number of basis functions, 
SSVR-SRS can be faster or slower than the decomposition algorithms. It is not fair to 
directly compare the training time of our algorithm with that of LIBSVM 2.82 since 
our algorithm is implemented by Matlab and however LIBSVM 2.82 by C++. But, we 
still list the training time in Table 5 as a rough reference. 

Table 5. Training time of four algorithms on benchmark data sets 

Problem SSVR-SRS RSVM LIBSVM2.82 RSS 
Abalone 5.73 2.59 1.70 2.85 
Bank8fh 7.39 4.61 8.03 9.65 
Bank32h 47.63 31.03 17.55 24.76 
House8l 416.92 391.47 98.38 118.79 

Fiedman3 565.59 462.57 1237.19 1276.42 

5   Concluding Remarks 

We have presented SSVR-SRS for building sparse support vector regression. Our 
method has three key advantages: (1) it directly approximates the primal objective 
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function and is more reasonable than the post-processing methods; (2) it scales well 
with the number of training samples and can be applied to large scale problems; (3) it 
simultaneously considers the sparseness and generalization performance of the result-
ing learner. 

This work was supported by the Graduate Innovation Fund of Xidian University 
(No. 05004). 
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Abstract. We study the problem of mining frequent itemsets from un-
certain data under a probabilistic framework. We consider transactions
whose items are associated with existential probabilities and give a for-
mal definition of frequent patterns under such an uncertain data model.
We show that traditional algorithms for mining frequent itemsets are
either inapplicable or computationally inefficient under such a model.
A data trimming framework is proposed to improve mining efficiency.
Through extensive experiments, we show that the data trimming tech-
nique can achieve significant savings in both CPU cost and I/O cost.

1 Introduction

Association analysis is one of the most important data-mining model. As an
example, in market-basket analysis, a dataset consists of a number of tuples,
each contains the items that a customer has purchased in a transaction. The
dataset is analyzed to discover associations among different items. An important
step in the mining process is the extraction of frequent itemsets, or sets of items
that co-occur in a major fraction of the transactions. Besides market-basket
analysis, frequent itemsets mining is also a core component in other variations
of association analysis, such as association-rule mining [1] and sequential-pattern
mining [2].

All previous studies on association analysis assume a data model under which
transactions capture doubtless facts about the items that are contained in each
transaction. In many applications, however, the existence of an item in a trans-
action is best captured by a likelihood measure or a probability. As an example,
a medical dataset may contain a table of patient records (tuples), each of which
contains a set of symptoms and/or illnesses that a patient suffers (items). Ap-
plying association analysis on such a dataset allows us to discover any potential
correlations among the symptoms and illnesses. In many cases, symptoms, being
subjective observations, would best be represented by probabilities that indicate
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Table 1. A diagnosis dataset

Patient ID Depression Eating Disorder

1 90% 80%

2 40% 70%

their presence in the patients’ tuples. Table 1 shows an example patient dataset.
A probability value in such a dataset might be obtained by a personal assess-
ment conducted by a physician, or it could be derived based on historical data
statistics. (For example, a patient who shows positive reaction to Test A has
a 70% probability of suffering from illness B.) Another example of uncertain
datasets is pattern recognition applications. Given a satellite picture, image pro-
cessing techniques can be applied to extract features that indicate the presence
or absence of certain target objects (such as bunkers). Due to noises and lim-
ited resolution, the presence of a feature in a spatial area is often uncertain and
expressed as a probability [3]. Here, we can model a spatial region as an object,
and the features (that have non-zero probabilities of being present in a region)
as the items of that object. The dataset can thus be considered as a collection of
tuples/transactions, each contains a set of items (features) that are associated
with the probabilities of being present. Applying association analysis on such
a dataset allows us to identify closely-related features. Such knowledge is very
useful in pattern classification [4] and image texture analysis [5].

In this paper we consider datasets that are collections of transactional records.
Each record contains a set of items that are associated with existential probabil-
ities. As we have mentioned, a core step in many association analysis techniques
is the extraction of frequent itemsets. An itemset is considered frequent if it ap-
pears in a large-enough portion of the dataset. The occurrence frequency is often
expressed in terms of a support count. For datasets that contain uncertain items,
however, the definition of support needs to be redefined. As we will discuss later,
due to the probabilistic nature of the datasets, the occurrence frequency of an
itemset should be captured by an expected support instead of a traditional sup-
port count. We will explain the Possible Worlds interpretation of an uncertain
dataset [6] and we will discuss how expected supports can be computed by a
simple modification of the well-known Apriori algorithm [1].

Since the existence of an item in a transaction is indicated by a probability,
an advantage of the existential uncertain data model is that it allows more in-
formation to be captured by the dataset. Consider again the example patient
dataset. If we adopt a binary data model, then each symptom/illness can either
be present (1) or absent (0) in a patient record. Under the binary model, data
analysts will be forced to set a threshold value for each symptom/illness to quan-
tize the probabilities into either 1 or 0. In other words, information about those
(marginally) low values is discarded. The uncertain data model, however, allows
such information be retained and be available for analysis. The disadvantage of
retaining such information is that the size of the dataset would be much larger
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than that under the quantized binary model. This is particularly true if most
of the existential probabilities are very small. Consequently, mining algorithms
will run a lot slower on such large datasets. In this paper we propose an efficient
technique for mining existential uncertain datasets, which exploit the statistical
properties of low-valued items. Through experiments, we will show that the
proposed technique is very efficient in terms of both CPU cost and I/O cost.

The rest of this paper is organized as follows. Section 2 describes the Possible
Worlds interpretation of existential uncertain data and defines the expected sup-
port measure. Section 3 discusses a simple modification of the Apriori algorithm
to mine uncertain data and explains why such a modification does not lead to
an efficient algorithm. Section 4 presents a data trimming technique to improve
mining efficiency. Section 5 presents some experimental results and discusses
some observations. We conclude the study in Section 6.

2 Problem Definition

In our data model, an uncertain dataset D consists of d transactions t1, . . . , td.
A transaction ti contains a number of items. Each item x in ti is associated
with a non-zero probability Pti(x), which indicates the likelihood that item x
is present in transaction ti. There are thus two possibilities of the world. In
one case, item x is present in transaction ti; in another case, item x is not
in ti. Let us call these two possibilities the two possible worlds, W1 and W2,
respectively. We do not know which world is the real world but we do know, from
the dataset, the probability of each world being the true world. In particular, if
we let P (Wi) be the probability that world Wi being the true world, then we
have P (W1) = Pti(x) and P (W2) = 1−Pti(x). We can extend this idea to cover
cases in which transaction ti contains other items. For example, let item y be
another item in ti with probability Pti(y). If the observation of item x and item y
are independently done1, then there are four possible worlds. The probability of
the world in which ti contains both items x and y, for example, is Pti(x) ·Pti (y).
We can further extend the idea to cover datasets that contains more than one
transaction. Figure 1 illustrates the 16 possible worlds derived from the patient
records shown in Table 1. In traditional frequent itemset mining, the support
count of an itemset X is defined as the number of transactions that contain
X . For an uncertain dataset, such a support value is undefined since we do not
know in the real world whether a transaction contains X with certainty. We can,
however, determine the support of X with respect to any given possible world.
Let us consider the worlds shown in Figure 1, the supports of itemset AB in
world W1 and W6 are 2 and 1, respectively. If we can determine the probability
of each possible world and the support of an itemset X in each world, we can
determine the expected support of X .

Definition 1. An itemset X is frequent if and only if its expected support not
less than ρs · d, where ρs is a user-specified support threshold.
1 For example, we can consider that different symptoms are diagnosed by independent

medical tests.



50 C.-K. Chui, B. Kao, and E. Hung

W1

A B

t1 ✔ ✔

t2 ✔ ✔

W2

A B

t1 ✔ ✔

t2 ✔ ✘

W3

A B

t1 ✔ ✔

t2 ✘ ✔

W4

A B

t1 ✔ ✘

t2 ✔ ✔

W5

A B

t1 ✘ ✔

t2 ✔ ✔

W6

A B

t1 ✔ ✔

t2 ✘ ✘

W7

A B

t1 ✘ ✘

t2 ✔ ✔

W8

A B

t1 ✔ ✘

t2 ✔ ✘

W9

A B

t1 ✘ ✔

t2 ✘ ✔

W10

A B

t1 ✘ ✔

t2 ✔ ✘

W11

A B

t1 ✔ ✘

t2 ✘ ✔

W12

A B

t1 ✘ ✘

t2 ✔ ✘

W13

A B

t1 ✘ ✘

t2 ✘ ✔

W14

A B

t1 ✘ ✔

t2 ✘ ✘

W15

A B

t1 ✔ ✘

t2 ✘ ✘

W16

A B

t1 ✘ ✘

t2 ✘ ✘

Fig. 1. 16 Possible Worlds derived from dataset with 2 transactions and 2 items

Given a world Wi and an itemset X , let us define P (Wi) be the probability of
world Pi and S(X, Wi) be the support count of X in world Wi. Furthermore, we
use Ti,j to denote the set of items that the jth transaction, i.e., tj , contains in the
world Wi. If we assume that items’ existential probabilities in transactions are
determined through independent observations2, then P (Wi) and the expected
support Se(X) of X are given by the following formulae:

P (Wi) =
d∏

j=1

⎛

⎝
∏

x∈Ti,j

Ptj (x) ·
∏

y �∈Ti,j

(1 − Ptj (y))

⎞

⎠ , and (1)

Se(X) =
|W |∑

i=1

P (Wi) × S(X, Wi). (2)

where W is the set of possible worlds derived from an uncertain dataset D.
Computing Se(X) according to Equation 2 requires enumerating all possible

worlds and finding the support count of X in each world. This is computationally
infeasible since there are 2m possible worlds where m is the total number of items
that occur in all transactions of D. Fortunately, we can show that

Se(X) =
|D|∑

j=1

∏

x∈X

Ptj (x). (3)

Thus, Se(X) can be computed by a single scan through the dataset D.

Proof. Let Stj(X, Wi) be the support of X in transaction tj w.r.t. possible world
Wi. If X ⊆ Ti,j, Stj (X, Wi) = 1; otherwise, Stj (X, Wi) = 0.

Se(X) =
|W |∑

i=1

P (Wi)S(X, Wi) =
|W |∑

i=1

P (Wi)
|D|∑

j=1

Stj (X, Wi)

=
|D|∑

j=1

|W |∑

i=1

P (Wi)Stj (X, Wi) =
|D|∑

j=1

∑

X⊆Ti,j

P (Wi) =
|D|∑

j=1

∏

x∈X

Ptj (x).

2 For example, the existential probabilities of two symptoms of the same patient are
determined independently by two lab tests.
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3 Preliminaries

Most of the algorithms devised to find frequent patterns (or itemsets) from
conventional transaction datasets are based on the Apriori algorithm [1]. The
algorithm relies on a property that all supersets of an infrequent itemset must
not be frequent. Apriori operates in a bottom-up and iterative fashion. In the kth

iteration, the Apriori-Gen procedure generates all size-k candidate itemsets Ck

and uses a Subset-Function procedure to verify their support counts. Candidate
itemsets with support counts larger than a user-specified support threshold are
regarded as frequent. The set of frequent k-itemsets Lk is then used by the
Apriori-Gen procedure to generate candidates for next iteration. The algorithm
terminates when Ck+1 is empty.

Under our uncertainty model, the Subset-Function procedure has to be revised
such that it can obtain the expected support count of each candidate. In the
traditional Apriori algorithm, Subset-Function processes one transaction at a
time by enumerating all size-k subsets contained in the transaction in the kth

iteration. The support count of a candidate is incremented by 1 if it is in Ck. By
Equation 3, we will instead increment the expected support count by the product
of the existential probabilities of all items x ∈ X . This modified algorithm is
called the U-Apriori algorithm.

Inherited from the Apriori algorithm, U-Apriori does not scale well on large
datasets. The poor efficiency problem becomes more serious under uncertain
datasets, as mentioned in Section 1, in particular when most of the existen-
tial probabilities are of low values. Let us consider a transaction t containing
three items A, B and C with existential probabilities 5%, 0.5% and 0.1%, re-
spectively. In the Subset-Function procedure, the product of the probabilities
(0.05 × 0.005 × 0.001 = 0.00000025) will be computed and the support count of
candidate {ABC} will be retrieved. By Equation 3, the support count of candi-
date {ABC} should be incremented by 0.00000025 which is insignificantly small.
If most of the existential probabilities are small, such insignificant increments
will dominate the Subset-Function procedure and waste computational resources
since in most cases an infrequent candidate will not be recognized as infrequent
until most of the transactions are processed.

To illustrate the impact of items with low existential probabilities on the per-
formance of U-Apriori, we conducted a preliminary experiment on five datasets.
The datasets have the same set of frequent itemsets but are fine tuned to have
different percentages of items with low existential probabilities. Let R be the
percentage of items with low probabilities in a dataset. In the five datasets, R is
set as 0%, 33.3%, 50%, 66.6% and 75% respectively. 3 In Figure 2a, we see that
U-Apriori takes different amount of time to execute even though all datasets
contain the same sets of frequent itemsets. We can conclude that when there are
more items with low existential probabilities (larger R), U-Apriori becomes more
inefficient. This result also indicates that by reducing the number of insignifi-
cant candidate increments, we might be able to reduce the execution time on all

3 Please refer to Section 5 for the details of our data generation process.
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datasets to the time of the dataset with R = 0%. This motivates our study on an
efficient technique called Data trimming by exploiting the statistical properties
of those items with low existential probabilities.

4 Data Trimming

To improve the efficiency of the U-Apriori algorithm, we propose a data trim-
ming technique to avoid insignificant candidate support increments performed
in the Subset-Function. The basic idea is to trim away items with low existential
probabilities from the original dataset and to mine the trimmed dataset instead.
Hence the computational cost of those insignificant candidate increments can be
reduced. In addition, the I/O cost can be greatly reduced since the size of the
trimmed dataset is much smaller than the original one.

Data Trimming Framework. More specifically, the data trimming technique
works under a framework that consists three modules: the trimming module,

U-Apriori

Infrequent
k-itemsets

Frequent
itemsets in

D

Trimmed
Dataset

D

Potentially
frequent

k-itemsets

Trimming
Module

Pruning
Module

Patch Up
Module

Statistics Potentially
frequent itemsets

Frequent
itemsets

in D

Pruned itemsetsIteration k

Original
Dataset

D

T T

Fig. 3. The Data Trimming Framework
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pruning module and patch up module. As shown in figure 3, the mining pro-
cess starts by passing an uncertain dataset D into the trimming module. It
first obtains the frequent items by scanning D once. A trimmed dataset DT is
constructed by removing the items with existential probabilities smaller than a
trimming threshold ρt in the second iteration. Depending on the trimming strat-
egy, ρt can be either global to all items or local to each item. Some statistics
such as the maximum existential probability being trimmed for each item is kept
for error estimation.

DT is then mined by U-Apriori. Notice that if an itemset is frequent in DT ,
it must also be frequent in D. On the other hand, if an itemset is infrequent in
DT , we cannot conclude that it is infrequent in D.

Definition 2. An itemset X is potentially frequent if ST
e (X) ≤ dρs ≤ ST

e (X)+
e(X) where ST

e (X) is the expected support of X in DT and e(X) is the upper
bound of the error estimated for ST

e (X).

Lemma 1. An itemset X cannot be frequent if ST
e (X) + e(X) < dρs.

The role of the pruning module is to estimate the upper bound of the mining
error e(X) by the statistics gathered from the trimming module and to prune
the itemsets which cannot be frequent in D according to Lemma 1. After mining
DT , the expected supports of the frequent and potentially frequent itemsets are
verified against the original dataset D by the patch up module.

A number of trimming, pruning and patch up strategies can be used under
this framework. Due to limitation of space, we only present a simple method,
called the Local trimming, Global pruning and Single-pass patch up strategy (the
LGS-Trimming strategy), in this paper.

Local Trimming Strategy. The Local trimming strategy uses one trimming
threshold ρt(x) for each item x. ρt(x) can be determined based on the distribu-
tion of existential probabilities of x in D. The distribution can be obtained by
sorting the existential probabilities of x in D in descending order and putting
them in an array lx. We then plot the curve fx(α) =

∑α
i=0 lx[i] where the y-axis

is the cumulative sum of the probabilities
∑α

i=0 lx[i] and the x-axis is the slot ID
of lx. Figure 2b shows the curves fa(α) and fb(α) of two hypotheoretical items a
and b. The horizontal line labeled ”minsup” is the minimum support threshold.

We regard item a as marginally frequent because Se(a) exceeds the minimum
support by a small fraction (e.g. dρs ≤ Se(a) ≤ 1.1 × dρs). Assume fa(α) in-
tersects with the minimum support line at about α = i. In this case, the Local
trimming strategy sets the trimming threshold ρt(a) to be lx[i], which is the exis-
tential probability of the item at the ith slot of the array lx (i.e. ρt(a) = la[75]).
The rationale is that the supersets of a are likely to be infrequent, therefore
those insignificant candidate increments with existential probabilities smaller
than ρt(a) are likely to be redundant.

On the other hand, we classify item b as another type of items as Se(b) � dρs.
The Local trimming strategy determines ρt(b) based on the change of slope of
fb(α). In this case, since the chance of the supersets of b to be frequent is larger,
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we adopt a more conservative approach. We use point p2 in Figure 2b as a
reference point to determine ρt(b) (i.e. ρt(b) = lb[345])4. The reason is that if one
of the supersets of b is actually infrequent, the error would be small enough for
the Pruning module to obtain a tight estimation and identify it as an infrequent
itemset by Lemma 1.

Global Pruning Strategy. We illustrate the Global pruning strategy by an
example in the second iteration. Let MT (x) be the maximum of the existen-
tial probabilities of those untrimmed item x, and similarly M∼T (x) for those
trimmed x. We also let ST

e (x) be the sum of the existential probabilities of those
untrimmed x, and similarly S∼T

e (x) for those trimmed x. If an itemset {AB} is
infrequent in DT (i.e. ST

e (AB) < dρs), we can obtain the upper bound of the
error e(AB) by the following formula:

e(AB) = ŜT,∼T
e (AB) + Ŝ∼T,T

e (AB) + Ŝ∼T,∼T
e (AB). (4)

where ŜT,∼T
e (AB) is an upper bound estimation of the expected support of {AB}

for all transactions t with Pt(A) ≥ ρt(A) and Pt(B) < ρt(B).
If we assume all the untrimmed items A exist with maximum existential prob-

ability MT (A), then the maximum number of transactions with an untrimmed
item A which may coexist with a trimmed item B is given by ST

e (A)−ST
e (AB)

MT (A) .
On the other hand, if we assume all the trimmed items B exist with maximum
probability M∼T (B), then the maximum number of transactions with a trimmed
item B is given by S∼T

e (B)
M∼T (B) . Therefore, we can obtain ŜT,∼T

e (AB) as shown in

Equation 5. Ŝ∼T,T
e (AB) is similarly obtained.

Ŝ∼T,∼T
e (AB) is an upper bound estimation of the expected support of {AB}

for all transactions t with Pt(A) < ρt(A) and Pt(B) < ρt(B), assuming that
the case of estimating ŜT,∼T

e (AB) and Ŝ∼T,T
e (AB) happens in D. It can be

calculated by Equation 7 after obtaining ŜT,∼T
e (AB) and Ŝ∼T,T

e (AB).

ŜT,∼T
e (AB) = min(

ST
e (A) − ST

e (AB)
MT (A)

,
S∼T

e (B)
M∼T (B)

) · MT (A) · M∼T (B). (5)

Ŝ∼T,T
e (AB) = min(

S∼T
e (A)

M∼T (A)
,
ST

e (B) − ST
e (AB)

MT (B)
) · M∼T (A) · MT (B). (6)

Ŝ∼T,∼T
e (AB) = min(

S∼T
e (A) − Ŝ∼T,T

e (AB)

M∼T (A)
,
S∼T

e (B) − ŜT,∼T
e (AB)

M∼T (B)
)·M∼T (A)·M∼T (B).

( ) (7)

Single-pass Patch Up Strategy. The Single-pass patch up strategy requires
only one scan on the original dataset D. This strategy requires the Apriori-Gen

4 Due to space limitation, we only present the abstract idea of Local trimming strategy
in this paper.
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procedure to include the potentially frequent itemsets during the mining process
so that the set of potentially frequent itemsets will not miss any real frequent
itemsets. In the patch up phase, the true expected supports of potentially fre-
quent itemsets are verified by a single scan on the original dataset D. At the same
time, the true expected supports of frequent itemsets in DT are also recovered.

5 Experimental Evaluation

We ran our experiments on Linux Kernel version 2.6.10 machine with 1024 MB
of memory. The U-Apriori algorithm and the LGS-Trimming technique were
implemented using C programming language.

Data were generated in the following two-step procedure. First we generate
data without uncertainty using the IBM synthetic generator used in [1]. This
step is to generate dataset which contains frequent itemsets. We set the average
number of items per transaction (Thigh) to be 20, the average length of frequent
itemsets (I) to be 6 and the number of transactions (D) to be 100K 5.

In the second step, we introduce uncertainty to each item of the dataset
generated from the first step. Since we want to maintain the frequent patterns
hidden in the dataset, we assign each items with relatively high probabilities
following a normal distribution with specified mean HB and standard deviation
HD. To simulate items with low probabilities, we add Tlow number of items into
each transaction. These items have probabilities in normal distribution with
mean LB and standard deviation LD. Therefore, the average number of items
per transaction, denoted as T , is equal to Thigh + Tlow. We use R to denote the
percentage of items with low probabilities in the dataset (i.e. R = Tlow

Thigh+Tlow
).

As an example, T 80R75I6D100KHB90HD5LB10LD6 represents an uncer-
tain dataset with 80 items per transaction on average. Of the 80 items, 20 items
are assigned with high probabilities and 60 items are assigned with low proba-
bilities. The high(low) probabilities are generated following normal distribution
with mean equal to 90%(10%) and standard deviation equal to 5%(6%). For
simplicity, we call this dataset Synthetic-1 in later sections.

5.1 Varying Number of Low Probability Items Per Transaction

We first investigate the CPU cost of U-Apriori and LGS-Trimming on datasets
with different number of low probability items per transaction. We keep the same
set of frequent itemsets in all datasets, therefore an increase in R means more
low-probability items are added during the second step of data generation. We
set ρs = 0.5% in the experiments. Figure 4a and 4b show the CPU cost and
the percentage of CPU cost saving (compare with U-Apriori) of U-Apriori and
LGS-Trimming as R varies from 0% to 90%.

5 We have conducted our experiments using different values of Thigh, I and D but due
to the space limitation we only report a representative result using Thigh20I6D100K
in this paper.
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Fig. 4. CPU cost and saving with different R

From Figures 4a, we observe that the CPU cost of U-Apriori increases ex-
ponentially with the percentage of low probability items in the dataset. This is
mainly due to the combinatorial explosion of subsets contained in a transaction.
This leads to huge amounts of insignificant candidate support increments in the
Subset-Function. For instance, when R is 90%, the average number of items per
transaction with non-zero probability is about 200 (20 items with high probabil-
ities, 180 items with low probabilities), leading to 200C2 = 19900 size-2 subsets
per transaction. In other words, there are 19900 candidate searches per transac-
tion in the second iteration. When R is 50%, however, there are only 40C2 = 780
candidate searches per transaction in the second iteration.

From Figure 4b, we see that the LGS-Trimming technique achieves positive
CPU cost saving when R is over 3%. It achieves more than 60% saving when R
is 50% or larger. When R is too low, fewer low probability items can be trimmed
and the saving cannot compensate with the extra computational effort in the
patch up phase. These figures suggest that the LGS-Trimming technique is very
scalable to the percentage of low probability items in the dataset.

5.2 Varying Minimum Support Threshold

This section assesses the performance of U-Apriori and LGS-Trimming by vary-
ing ρs from 1% to 0.1%. Here we only report the result of using Synthetic-1 in
this experiment because experimental results on other datasets with different
values of HB, HD, LB and LD also lead to a similar conclusion. Figures 5a and
5b show the CPU cost and the saving (in %) of the two mining techniques.

Figure 5a shows that LGS-Trimming outperforms U-Apriori for all values of
ρs. Figure 5b shows that LGS-Trimming achieves very high and steady CPU cost
saving ranging from 60% to 80%. The percentage of CPU cost saving increases
gently when ρs increases because the low probability items become less significant
to the support of itemsets when the support threshold increases. Therefore more
low probability items can be trimmed, leading to better saving.
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5.3 CPU Cost and I/O Cost in Each Iteration

In this section we compare the CPU and I/O cost in each iteration of U-Apriori
and LGS-Trimming. The dataset we use is Synthetic-1 and we set ρs = 0.5%.
From Figure 6a, we see that the CPU cost of LGS-Trimming is smaller than
U-Apriori from the second to the second last iteration. In particular, LGS-
Trimming successfully relieves the computational bottleneck of U-Apriori and
achieves over 90% saving in the second iteration. In the first iteration, the CPU
cost of LGS-Trimming is slightly larger than U-Apriori because extra effort
is spent on gathering statistics for the trimming module to trim the original
dataset. Notice that iteration 8 is the patch up iteration which is the over-
head of the LGS-Trimming algorithm. These figures show that the computa-
tional overhead of LGS-Trimming is compensated by the saving from the second
iteration.

Figure 6b shows the I/O cost in terms of dataset scan (with respect to the
size of the original dataset) in each iteration. We can see that I/O saving starts
from iteration 3 to the second last iteration. The extra I/O cost in the second

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

C
P

U
 C

os
t

Iteration

CPU Cost per Iteration

U-Apriori
LGS-Trimming

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4  5  6  7  8

N
um

be
r 

of
 d

at
as

et
 s

ca
n 

(w
.r

.t.
 D

)

Iteration

Number of dataset scan (w.r.t. D) per Iteration

U-Apriori
LGS-Trimming

(a) (b)

Fig. 6. CPU and I/O costs of U-Apriori and LGS-Trimming in each iteration



58 C.-K. Chui, B. Kao, and E. Hung

iteration is the cost of creating the trimmed dataset. In this case, LGS-Trimming
reduces the size of the original dataset by a factor of 4 and achieves 35% I/O
cost saving in total. As U-Apriori iterates k times to discover a size-k frequent
itemset, longer frequent itemsets favors LGS-Trimming and the I/O cost saving
will be more significant.

6 Conclusions

In this paper we studied the problem of mining frequent itemsets from existen-
tial uncertain data. We introduced the U-Apriori algorithm, which is a modified
version of the Apriori algorithm, to work on such datasets. We identified the com-
putational problem of U-Apriori and proposed a data trimming framework to
address this issue. We proposed the LGS-Trimming technique under the frame-
work and verified, by extensive experiments, that it achieves very high perfor-
mance gain in terms of both computational cost and I/O cost. Unlike U-Apriori,
LGS-Trimming works well on datasets with high percentage of low probability
items. In some of the experiments, LGS-Trimming achieves over 90% CPU cost
saving in the second iteration of the mining process, which is the computational
bottleneck of the U-Apriori algorithm.
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6. Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Uncer-
tainty Management in Information Systems. (1996) 35–88



QC4 - A Clustering Evaluation Method

Daniel Crabtree, Peter Andreae, and Xiaoying Gao

School of Mathematics, Statistics and Computer Science
Victoria University of Wellington

New Zealand
daniel@danielcrabtree.com, pondy@mcs.vuw.ac.nz, xgao@mcs.vuw.ac.nz

Abstract. Many clustering algorithms have been developed and
researchers need to be able to compare their effectiveness. For some
clustering problems, like web page clustering, different algorithms pro-
duce clusterings with different characteristics: coarse vs fine granular-
ity, disjoint vs overlapping, flat vs hierarchical. The lack of a clustering
evaluation method that can evaluate clusterings with different charac-
teristics has led to incomparable research and results. QC4 solves this
by providing a new structure for defining general ideal clusterings and
new measurements for evaluating clusterings with different characteris-
tics with respect to a general ideal clustering. The paper describes QC4
and evaluates it within the web clustering domain by comparison to ex-
isting evaluation measurements on synthetic test cases and on real world
web page clustering tasks. The synthetic test cases show that only QC4
can cope correctly with overlapping clusters, hierarchical clusterings, and
all the difficult boundary cases. In the real world tasks, which represent
simple clustering situations, QC4 is mostly consistent with the existing
measurements and makes better conclusions in some cases.

1 Introduction

Comparing the performance of different clustering algorithms in some problem
domains (i.e. web page clustering) has been problematic. Different algorithms
produce clusterings with different characteristics: the clustering granularity may
be coarse, so that there are just a few large clusters covering very broad topics,
or fine, so that there are many small clusters of very focused topics; the clusters
may be disjoint and constitute a partition of the results, or the clusters may
overlap, so that the same page may appear in several clusters; the clustering
may be “flat” so that all clusters are at the same level, or the clustering may be
hierarchical so that lower-level clusters are sub-clusters of higher level clusters. As
a result, many of the existing evaluation methods are biased towards algorithms
that produce clusterings with certain characteristics. An evaluation method that
fairly evaluates clusterings with different characteristics is needed; so that all
clustering algorithms can be compared with a consistent method.

An example clustering domain is web page clustering, which helps users find
relevant web pages by organizing the search result set from a search engine into
clusters of semantically related pages. These clusters provide the user with an
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overview of the entire result set, and the clusters can be selected to filter the
results or refine the query. Many clustering algorithms have been applied to web
page clustering: K-means [1], Hierarchical Agglomerative Clustering [2], Link
and Contents Clustering [3], Suffix Tree Clustering (STC) [4], Extended Suffix
Tree Clustering (ESTC) [5], and Query Directed Clustering (QDC) [6]. A survey
of clustering algorithms can be found in [7].

Many evaluation methods [1,4,7,8,9,10,11] are used to evaluate web clustering
algorithms, but the results are often incomparable. There is probably no stan-
dard method because web page clustering algorithms produce clusterings that
exhibit different characteristics, making web clustering an ideal application for
an evaluation method that handles clusterings with different characteristics.

This paper proposes QC4, a new clustering evaluation method. Our prelim-
inary research on QC4 was very briefly introduced in a short paper [12]. This
paper further develops the full specifications of QC4, and evaluates it against ex-
isting measurements on synthetic test cases and real world web clustering tasks.
QC4 allows clustering algorithms that produce clusterings with vastly different
characteristics to be compared by generalizing the “gold-standard” approach to
use a new structure for ideal clusterings and by developing new measures of
quality and coverage. QC4 is currently targeted at web clustering, but is easily
adapted to any domain where clusterings have different characteristics.

The next section discusses the related work. Section 3 describes and specifies
QC4’s richer ideal clustering structure and measurements. Section 4 evaluates
QC4 by comparing it against the standard evaluation measurements using syn-
thetic test cases and using nine clustering algorithms on four web page search
result clustering tasks. Section 5 concludes the research and provides direction
for future work.

2 Related Work

2.1 Approaches to Evaluation

There are two broad methodologies for evaluating clusterings. Internal quality
[7,8] evaluates a clustering only in terms of a function of the clusters themselves.
External quality [7,8] evaluates a clustering using external information, such as
an ideal clustering. When external information is available, external quality is
more appropriate because it allows the evaluation to reflect performance relative
to the desired output.

There are three main approaches to evaluation using the external methodol-
ogy: gold-standard [9], task-oriented [9], and user evaluation [4]. Gold-standard
approaches manually construct an ideal clustering, which is then compared
against the actual clustering. Task-oriented approaches evaluate how well some
predefined task is solved. User evaluation approaches involve directly studying
the usefulness for users and often involve observation, log file analysis, and user
studies similar to those carried out in the user evaluation of Grouper [4].

Task-oriented methods have a bias towards the selected task. For example,
search result reordering [4], which involves reordering the search results using the
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clusters, has a bias towards small clusters, which tend to have higher quality.
Randomly generating a perfect cluster of five pages is much more likely than
generating a perfect cluster of fifty pages. In the extreme case of one cluster per
page (singleton clustering), the clustering is evaluated as perfect, when clearly
it is not.

User evaluation methods are very difficult to reproduce as they are dependent
on the users. The large cost, and time involved in conducting good user evalua-
tions is also a significant drawback. The lack of reproducibility, large cost, and
time involved in conducting user evaluations makes them poor candidates for a
standardized clustering evaluation method.

Therefore our evaluation method uses external information in the form of an
ideal clustering to define a gold-standard and measures a clustering against this
ideal clustering.

2.2 Measurements

This section discusses the measurements most commonly used to evaluate a
clustering against an ideal clustering in the web clustering domain. We refer to
the clusters of the ideal clustering as topics, to distinguish them from the clusters
of the clustering being evaluated.

A perfect clustering matches the ideal clustering. A clustering can be less than
perfect in two ways: some clusters may be of poor quality because they do not
match any topics well, and the clustering may not include (cover) all the pages
in the ideal clustering. There is often a tradeoff between quality and coverage,
and algorithms can often be tuned to achieve one well at the cost of the other.
Good overall evaluation methods must measure both factors.

The rest of the paper uses the following notation: C is a set of clusters, T is
a set of topics (the clusters of the ideal clustering), and D is a set of pages. c,
t, and d are individual elements of C, T , and D respectively. Dc is the pages in
cluster c, Dt is the pages in topic t, and Dc,t is the pages in both cluster c and
topic t. Cd is the set of clusters containing page d and Ct is the set of clusters
that best match topic t: Ct = ci| argmaxtj

(Dci,tj ) = t.
Precision and recall are common measurements used in information retrieval

[13] for evaluation. The precision, P (c, t), of a cluster relative to a topic is the
fraction of the pages in the cluster that are also in the topic. Whereas the recall,
R(c, t), is the fraction of the pages in the topic that are in the cluster. The
F-measure [1,8,11] combines precision and recall with equal weight on each.

P (c, t) = Precision = |Dc,t|
|Dc|

R(c, t) = Recall = |Dc,t|
|Dt|

F (c, t) = F-measure = 2∗P (c,t)∗R(c,t)
P (c,t)+R(c,t)

Purity is the precision of a cluster relative to its best matching topic. Be-
cause the pages in a topic may be included in several clusters, recall is seldom
used for clustering. However, we could define the recall of a topic to be the total
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coverage of a topic among all clusters that best match that topic. F-measure is
the f-measure of a cluster relative to its best matching topic.

Purity(c) = maxt∈T {P (c, t)}
Recall(t) = |

⋃
c∈Ct

Dc,t|/|Dt|
F (c) = maxt∈T {F (c, t)}
The Entropy and Mutual Information measures [1,8] are based on information

theory [14]. The Entropy measure is the average “narrowness” of the distribution
of the pages of a cluster among the topics. More precisely, it is the amount of
information required to refine the cluster into the separate topics it represents.
Mutual Information (MI) is an average of a measure of correspondence between
each possible cluster topic pair.

Entropy(c) = −
∑

t∈T P (c, t)log|T |P (c, t)
MI = 2

|D|
∑

c∈C

∑
t∈T |Dc,t|log|C||T |( |Dc,t||D|

|Dc||Dt| )

Average Precision (average purity over clusters), Weighted Precision (cluster
size weighted average purity over clusters), Average Entropy (average over clus-
ters), and Weighted Entropy (cluster size weighted average over clusters) [1] can
be used for overall quality evaluation. Average Recall (average over topics) and
Weighted Recall (topic size weighted average over topics) [5] can be used for
overall coverage evaluation. Mutual Information [8] and F (cluster size weighted
average over clusters) provide overall measures that combine evaluation of qual-
ity and coverage.

Although the measurements are reasonable for some kinds of clusterings, they
all have problems with overlapping clusters and hierarchical clusterings. Mutual
information gives some non ideal clusterings better values than ideal clusterings.
When the topics are of very different sizes, Weighted Precision, Weighted En-
tropy, and F give a high value for useless clusterings (such as a single cluster
containing all pages). Average / Weighted Precision and Entropy only measure
quality, and are maximized by a set of singleton clusters.

3 New Method - QC4

A fair clustering evaluation method should not inherently favor any particular
algorithm. QC4 ensures this by minimizing the bias towards clusterings with
particular characteristics (cluster granularity: coarse or fine, clustering structure:
hierarchical or flat, disjoint or overlapping): if the bias towards the different
possible characteristics of a clustering is minimized, then so is the bias towards
the algorithms that produce those clusterings.

3.1 The Ideal Clustering

An ideal clustering is created by a human expert based on the pages to be
clustered. The classical ideal clustering structure is a single level partition at
a chosen granularity. QC4 uses a richer ideal clustering structure to describe
clusterings with all kinds of characteristics.
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QC4’s ideal clustering structure is a hierarchy of topics, organised in levels,
so that the set of topics at the top level represents a coarse categorisation of the
pages, and the sets of topics at lower levels represent progressively finer categori-
sations. This allows QC4 to fairly compare algorithms that produce clusterings
of different granularity and to compare algorithms that generate hierarchical
clusterings.

Topics may overlap other topics (at the same and different levels), since real
pages may belong to multiple topics. However, all pages must be contained in at
least one topic at each level. This allows QC4 to evaluate algorithms that return
overlapping clusters as well as algorithms that return partitions.

Since search engines often return outliers — pages that are unrelated to all
the other pages — the hierarchy may contain a single outlier topic (present at
every level) that contains all the outliers. The outlier topic must be disjoint from
the other topics. QC4 handles outliers by not counting them when measuring
coverage, and by removing clusters that contain a majority of outliers.

3.2 Quality and Coverage Measurements

The standard measures do not work well on hierarchical clusterings with over-
lapping clusters. Therefore, QC4 introduces four new measures of quality and
coverage.

In addition to the notation in section 2.2, the rest of the paper uses the
following notation: L is the set of levels from the topic hierarchy (eg, 1, 2, 3)
and l is an individual level. Tl is the set of topics at level l, Td is the set of topics
containing page d, and T∅ is a set containing the outlier topic. sub(t) is the set
of all descendants of topic t. lvl(t) is the lowest level of topic t.

Cluster Quality. Cluster Quality, QU(c), is a measure of how closely a cluster
matches a single topic. It is based on a modified entropy measure, E(c).

The standard entropy measure of a cluster does not work with overlapping
topics since pages in multiple topics are overcounted. There are two kinds of
overlap: overlap of topics at different levels, and overlap of topics at the same
level. Overlap between levels is handled by computing the entropy over the topics
in a single level. QC4 chooses the level1, L(c), containing the topic that is the
most similar to the cluster as measured by the f-measure.

L(c) = cluster-level = lvl(argmaxt∈T\T∅
{F (c, t)})

E(c) = mintb∈TL(c){−
∑

t∈TL(c)
P ′(c, t, tb)log|TL(c)|P

′(c, t, tb)}

Overlap of topics at the same level is handled by computing a modified pre-
cision measure P ′(c, t, tb). The modified measure removes the overcounting by
temporarily removing pages in the “best” topic from the other topics, and then
normalizing the precision to remove the effect of any other over counting.

P ′(c, t, tb) =

⎧
⎨

⎩

|Dc,t|
|Dc| if{t = tb}

(|Dc|−|Dc,tb
|)|Dc,t\Dc,tb

|
|Dc|

∑
t′∈TL(c)\{tb} |Dc,t′\Dc,tb

| otherwise

1 If multiple topics maximize F , the one with lowest level is selected.
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E(c) measures how focused a cluster is on a single topic, choosing the appro-
priate level of granularity, and allowing both disjoint and overlapping topics to
be handled fairly. However, it does not take cluster and topic size sufficiently
into account and it does not recognize random clusters. To account for these,
E(c) is scaled down by a new measure that takes account of the cluster and topic
size by Srecall(c) and recognizes random clusters using Srandom(c).

QU(c) = (1 − E(c))min{1, Srecall(c), Srandom(c)}
E(c), being a precision/entropy based measure, gives a good value to focused

clusters (all their pages belong to the same topic) regardless of the size of the
clusters. However, very small clusters, even if they are highly focused, are not
very useful to a user if they only contain a small fraction of the topic. To be
useful, a cluster should be close to a topic by being both focused on the topic
and by being of similar size to the topic. That is, the cluster should not only
have good precision/entropy, but should also have good recall. QC4 scales down
the quality measure of clusters that are much smaller than the topic that they
are focused on by the recall measure. Since a page in a cluster may belong to
multiple topics, the standard recall measure was modified to handle pages in
multiple topics by averaging the recall of a cluster over all topics weighted by
the modified precision P ′(c, t, tb).

Srecall(c) = maxtb∈TL(c){
∑

t∈TL(c)
P ′(c, t, tb)R′(c, t)}

In the web page clustering domain, a cluster with low recall on a small topic
is almost useless to the user. On the other hand, a cluster with the same low
recall fraction of a very large topic will have more than enough pages for the
user to understand the cluster and make an appropriate decision. Therefore, the
recall measure can be modified by a non-linear function of the size of the topic
to amplify the scaling for clusters focused on small topics.

R′(c, t) = 2
R(c,t)−1

R(c,t)log2 |Dt|

Clusters that are similar to a random selection of pages from the result set
provide almost no information, and will not be helpful to the user. Such a clus-
tering should receive near zero quality. However, the modified entropy, E(c), of
randomly constructed clusters will generally not be the maximally bad value,
especially if the topics are of varying sizes. QC4 uses a modified version of MI,
Srandom(c), to scale down the quality measure of clusters that are similar to a
random set of pages. Srandom(c) has to deal with overlapping topics in a single
level, which it does by extracting the intersections of topics into temporary dis-
tinct topics and applying MI to the expanded, disjoint set of topics, ρ(l). It also
applies a threshold to ensure that only clusters that are very close to random
or very small are scaled down. The resulting value is also normalized by the
maximum MI to account for the varying maximum value of MI.

ρ(l) = {r ⊆ D|((∃Tα ⊆ Tl)(|r| > 0 ∧ r =
⋂

r′∈Tα
Dr′ −

⋃
r′′∈Tl\Tα

Dr′′)}

Srandom(c) =
∑

r∈ρ(L(c)) |Dc∩r|log|ρ(L(c))|
|Dc∩r||D|

|Dc||r|

0.05 mint∈TL(c)\T∅{
∑

r∈ρ(L(c)) |Dt∩r|log|ρ(L(c))|
|Dt∩r||D|

|Dt||r| }
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Topic Coverage. Topic Coverage, CV (t), is a measure of how well the pages
in a topic are covered by the clusters. It is an average of the page cover-
age, PC(d, t, l), of each of the pages in the topic. The coverage uses just level
one topics because the page coverage already incorporates topics lower in the
hierarchy.

CV (t) =
∑

d∈Dt
PC(d,t,1)
|Dt|

A page in a topic is covered to some extent if any cluster contains the page.
However, the user is unlikely to find a page if it is in a cluster that appears
to be associated with a different topic, so a page will be better covered if it is
contained in a cluster that matches a topic that the page is in. The better the
match, the better the coverage. If a page is in topic t and cluster c, the precision
P (c, t) would be a good measure of how well the page is covered, as long as the
page is not also in any other topics or clusters and the cluster is not merely
a random selection of the pages. Both topics and clusters can overlap: a page
may be in several topics and several clusters. In particular, each page in a top
level topic will also be in subtopics of that topic at each level of the hierarchy.
Therefore we need something more complicated than precision to measure page
coverage.

QC4’s page coverage measure considers all the clusters that a page is in,
and also all the topics and subtopics the page is in. At each level of the topic
hierarchy, it finds the average precision of the clusters that contain the page with
respect to the best matching subtopics containing the page. It then recursively
computes the maximum of this measure at each level to compute a page coverage
measure over the whole hierarchy.

PC(d, t, l) =
∑

t′∈Tl∩Td∩sub(t) max{PC′(d,t′,l),PC(d,t′,l+1)}
|Tl∩Td∩sub(t)|

PC′(d, t, l) = maxc∈{ci|ci∈Cd∧L(ci)=l}{P (c, t)min{1, Srandom(c)}}

Overall Measurements. QC4 has four overall measurements, based on the
measures of cluster quality QU(c) and topic coverage CV (t). The overall mea-
surements of clustering quality, AQ and WQ are the average of the cluster
qualities, but in WQ they are weighted by cluster size. Similarly, the overall
measurements of clustering coverage, AC and WC are the average of the topic
coverages, but in WC they are weighted by topic size. The averages give a fairer
measure of the smaller, fine grained clusters and topics; the weighted averages
give a fairer measure of the larger, broad clusters and topics.

AQ = average quality =
∑

c∈C QU(c)
|C|

WQ = weighted quality =
∑

c∈C QU(c)|Dc|∑
c∈C |Dc|

To compute the overall coverage measures, AC and WC, the topic coverage
is averaged over the top level topics of the ideal clustering.

AC = average coverage =
∑

t∈T1\T∅
CV (t)

|T1\T∅|
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WC = weighted coverage =
∑

t∈T1\T∅
CV (t)|Dt|

∑
t∈T1\T∅

|Dt|

The measurements fairly evaluate both disjoint and overlapping topics, and
topics of varying granularity without bias. Hierarchical and flat clusterings are
considered fairly, because the measurements consider the individual clusters, not
the hierarchical structure, and cope with overlapping clusters, including clusters
that are subsets of other clusters.

4 Evaluation

This section describes how we evaluated QC4 by comparison with existing eval-
uation measurements. Evaluation of QC4 was completed in two ways: using
synthetic test cases and using real world web clustering problems. The synthetic
test cases highlight the problem scenarios and boundary cases where existing
measurements fail. The real world web clustering tasks show that for simple
clusterings, where existing measurements work reasonably well, QC4 reaches
conclusions similar to those of existing measurements.

4.1 Synthetic Test Cases

To compare QC4 with existing measurements we devised an extensive set of
synthetic test cases with different features present. A test is passed if the measure
gives an appropriate distinction between the test cases with and without the
feature. The tests were organised into eight groups shown in table 1, according to
the feature being tested. The columns of table 1 give the different combinations of
evaluation measurements that we considered as overall measurements to compare
against QC4, where MI, F, AP, WP, AR, WR, AE, WE are mutual information,
f-measure, average precision, weighted precision, average recall, weighted recall,
average entropy, and weighted entropy respectively. The tests passed by each
overall measurement are shown with a Y in the appropriate rows, for example,
QC4 passes all eight tests and the 9th column shows that using just Weighted
Precision (Purity) for overall evaluation fails seven of the eight tests.

QC4 handles the overlapping and hierarchical clusterings, but none of the
other evaluation methods do. QC4 gives perfect scores only to ideal clusterings,
but three of the other measures fail; for example, mutual information gives a
better than perfect score to a clustering that contains an ideal clustering and a
low quality cluster. QC4 includes separate measures for quality and coverage, but
MI and F do not and the individual measures of precision, recall, and entropy do
not measure both quality and coverage. QC4 handles clusterings with clusters or
topics of vastly different sizes where one or more may be relatively large, but eight
of the other measures fail; for example, when there is one big cluster containing
all pages, the precision, entropy, and weighted recall measures give unduly good
scores. QC4 handles clusterings with many small clusters or topics, but none of
the other evaluation methods do; for example, all other measures give unduly
good performance to a singleton clustering (one that has one cluster for each
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Table 1. Synthetic test cases comparing QC4 with a wide range of overall evaluation
measurements, where Y indicates passing all tests in that rows group of tests

QC4 MI F AP AE WP WE AP WP AR WR AE WE
WP WE WR WR
AR AR
WR WR

Overlapping Clusters Y - - - - - - - - - - - -
Hierarchical Clusterings Y - - - - - - - - - - - -
Perfect Clustering Y - Y Y Y Y Y Y Y - - Y Y
Separate Measures Y - - Y Y Y Y - - - - - -
Large cluster/topic bias Y Y - Y Y - - - - Y - - -
Small cluster/topic bias Y - - - - - - - - - - - -
Random Clustering Y Y - - Y - Y - - - - Y Y
Split Cluster Y Y - - - - - - - - - - -

document) and in fact precision, recall, and entropy measures give perfect scores
to the singleton clustering. QC4 gives low scores to random clusterings, but seven
of the other measures fail; for example, the precision and recall measures can
give unduly high scores to random clusterings, often exceeding the scores given
to more sensible clusterings. QC4 gives lower scores when perfect clusters are
split into smaller clusters, but eleven of the other measures fail; for example,
splitting a perfect cluster has no effect of precision, recall, or entropy measures.

The results show that none of the current measurements for overall evaluation
are satisfactory, while QC4 passes all tests. While existing measurements can still
produce meaningful results and conclusions with simple clustering problems,
these tests show that there are conditions under which existing methods can
produce inaccurate results, especially with overlapping clusters or hierarchical
clusterings. Conclusions drawn from the existing measurements are therefore
questionable.

4.2 Real World Web Clustering Tasks

To evaluate QC4 on real world web clustering tasks we selected four queries
(Jaguar, Salsa, GP, and Victoria University) and evaluated the performance of
nine clustering algorithms (random clustering, and full text and snippet vari-
eties of K-means [1], STC [4], ESTC [5], and QDC [6]) on each of the queries
using twelve evaluation measurements (Mutual Information, F-measure and Av-
erage and Weighted versions of QC4 Quality, QC4 Coverage, Precision, Recall,
Entropy). We averaged the values across the four queries and combined the av-
erage and weighted versions of each measurement by averaging them. For the
overall evaluation in figure 1C, we also averaged the quality and coverage mea-
sures for QC4.

These clustering tasks represented simple clustering problems with little over-
lap or hierarchy, where existing measurements work reasonably well. Figures 1A,
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Fig. 1. Comparing measures averaged over four real world web clustering tasks.
A) cluster quality measures. B) topic coverage measures. C) overall measures.
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1B, and 1C show that the QC4 quality, coverages, and overall measures, respec-
tively reach similar conclusions to those of the existing measurements.

In the few cases QC4 differs from the existing measurements, QC4 agrees
with the conclusions of the relevant research literature [4,5,6], which rank the
algorithms as QDC, ESTC, STC, K-means, and finally Random clustering, in
order of overall web clustering performance. QC4 correctly identifies K-means
as a low performing algorithm, whereas F-measure ranks its performance too
highly. QC4 correctly identifies ESTC as outperforming STC, whereas mutual
information incorrectly identifies STC as the higher performer. This indicates
that QC4 makes sensible conclusions on real world tasks.

The real world web clustering tasks also show that QC4 is as expressive as
any of the existing standard evaluation methods, and is significantly better than
Precision, Recall, and F-measure due to the much lower performance given to
random clusterings.

4.3 Applicability to Other Clustering Domains

QC4 has been designed and evaluated with respect to web page clustering, but
it can be easily generalized to other clustering domains where clusterings feature
different characteristics. The only web specific assumption in QC4 is that it is
more desirable to identify small clusters than to extend the coverage of large
clusters. If this assumption is not applicable in the clustering domain, the as-
sumption can be removed by simply using the standard recall measure R(c, t)
instead of R′(c, t) in QC4’s quality measure.

5 Conclusions

This paper introduced QC4, a new clustering evaluation method that allows the
fair comparison of all clustering algorithms, even those that produce clusterings
with vastly different characteristics (cluster granularity: coarse or fine, clustering
structure: hierarchical or flat, disjoint or overlapping, and cluster size: large or
small). QC4 achieved this by generalizing the gold-standard approach to use
a more general ideal clustering that can describe ideal clusterings of varying
characteristics and introduced four new overall measurements that function with
clusterings of different characteristics fairly in terms of cluster quality and topic
coverage.

QC4 was evaluated by comparison to the standard evaluation measurements
in two ways: on an extensive set of synthetic test cases and on a range of real
world web clustering tasks. The synthetic test cases show that QC4 meets all the
requirements of a good evaluation measurement, while all the current measure-
ments fail with overlapping clusters, hierarchical clusterings, and some boundary
cases. On simple real world web clustering tasks, where the existing methods are
less affected by the conditions tested by the synthetic test cases, the results show
that QC4 is at least as good as the existing evaluation measurements and gives
a better evaluation in several cases.
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In the future, standard test data sets can be constructed and used to evaluate
standard clustering algorithms to provide a baseline for comparison. QC4 should
also be evaluated on other clustering domains, especially those where clusterings
have different characteristics.
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Abstract. Given its importance, the problem of object discovery in
High-Resolution Remote-Sensing (HRRS) imagery has been given a lot
of attention by image retrieval researchers. Despite the vast amount of
expert endeavor spent on this problem, more effort has been expected
to discover and utilize hidden semantics of images for image retrieval.
To this end, in this paper, we exploit a hyperclique pattern discovery
method to find complex objects that consist of several co-existing indi-
vidual objects that usually form a unique semantic concept. We consider
the identified groups of co-existing objects as new feature sets and feed
them into the learning model for better performance of image retrieval.
Experiments with real-world datasets show that, with new semantic fea-
tures as starting points, we can improve the performance of object dis-
covery in terms of various external criteria.

1 Introduction

With the advances of remote sensing technology and the increases of the public
interest, the remote-sensing imagery has been drawing the attention of peo-
ple beyond the traditional scientific user community. Large collections of High-
Resolution Remote-Sensing (HRRS) images are becoming available to the public,
from satellite images to aerial photos. However, it remains a challenging task to
identify objects in HRRS images. While HRRS images share some common fea-
tures with traditional images, they possess some special characteristics which
make the object discovery more complex and motivate our research work.

Motivating Examples. Users are interested in different types of objects on
Earth as well as groups of objects with various spatial relationships. For ex-
ample, consider Emergency Response Officers who are trying to find shelters to
accommodate a large number of people. However, shelters are not distinguishable
in Remote Sensing (RS) images. Instead, the officers could search for baseball
fields, because most probably, a baseball field is connected to a school and the
school could be used as a temporary shelter in emergency. In addition, qualified
shelter should not be far away from water source. Therefore, the query might
be “select all the baseball fields in Newark within 1 mile from any water body”.
Another interesting application domain would be urban planning. With HRRS
image retrieval, we may have the task to find out “the disinvestment area in
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Hudson county industrial area”. This task indicates that we need to identify the
industrial areas with a lot of empty lots. While traditional Content Based Image
Retrieval (CBIR) techniques discover objects such as buildings and water bod-
ies, these two examples demonstrate that one need to discover semantic objects
such as schools and urban areas from RS or HRRS images.

Based on the above observation, we categorize the target objects that can be
recognized in RS or HRRS images into three concept levels: (1) Basic Terrain
Types; (2) Individual Objects; and (3) Composite Objects. The first concept
level is to distinguish the basic terrain type of the area covered by the images.
There are several basic ground layouts: bare land, mountain, water, residential
area, forests, etc. The second type of objects are individual objects that are
recognizable in images, such as individual buildings, road segments, road in-
tersections, cars, etc. Objects in the third concept level are composite objects.
Composite objects are objects that consist of several individual objects that form
a new semantics concept. For example, parks, airports, and baseball fields are all
composite objects. In the motivating examples, both shelter and disinvestment
area are composite objects. As one can notice, the spatial relationships among
objects play a critical role in identifying composite objects and interpreting the
semantics of HRRS images.

Despite the vast amount of expert effort, it is well known that the performance
of CBIR is limited by the gap between low-level features and high-level semantic
concepts. Recently, researchers proposed several statistical models [6,1,12,2,3,9]
for analyzing the statistical relations between visual features and keywords.
These methods can discover some hidden semantics of images. However, these
methods annotate scenery images according to the individual objects’ presence
in each image. Spatial relations among objects are not taken into considera-
tion. Those spatial relationships are critical and cannot be ignored in HRRS
images. Hence, in HRRS images, users pay more attention on composite ob-
jects than on individual objects. This suggests that we have to examine the
spatial relationships among objects when we try to identify objects in HRRS
images.

In this paper, we investigate the problem of automatically annotating images
using relevance-based statistical model on HRRS images. Specifically, we exploit
a hyperclique pattern discovery method [13] to create new semantic features
and feed them into the relevance-based statistical learning model. Hyperclique
patterns have the ability to capture a strong connection between the overall sim-
ilarity of a set of objects and can be naturally extended to identify co-existing
objects in HRRS images. Traditionally, by using a training set of annotated im-
ages, the relevance-model can learn the joint distribution of the blobs and words.
Here, the blobs are image segments acquired directly from image segmentation
procedure. Our approach extends the meaning of blobs by identifying the co-
existing objects/segments as new blobs. The proposed approach has been tested
using the USGIS high-resolution orthology aerial images. Our experimental re-
sults show that, with new semantic features as starting points, the performance
of learning model can be improved according to several external criteria.
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2 Domain Challenges

In this section, we describe some domain challenges for object discovery in HRRS
images as follows.

– First, it is nontrivial to perform feature selection for image retrieval in HRRS
images. In [12], researchers developed a mechanism to automatically assign
different weights to different features according to the relevance of a feature
to clusters in the Corel images. However, unlike Corel Image, HRRS images
are severely affected by the noise such as shadow and the surface materials of
HRRS images are limited. This makes the primitive features, such as color,
texture and shape, not good enough for identifying objects in HRRS images.
As a result, in addition to the primitive features, the derivative features, such
as geometric features and semantic features, are required for better object
discovery in HRRS images. In this research, we add semantic features that
capture the spatial relationships among objects to image annotation model.

– Also, HRRS images usually lack salient regions and carry a lot of noise [4].
This data problem has been largely ignored by existing approaches, thus not
suitable for object discovery in HRRS images. Indeed, existing methods often
use segmentation techniques which may not work well in noisy environments.
Moreover, the grid technology [3], a substitute of segmentation, often assume
that each grid only contains one salient object. To satisfy the assumption,
we have to cut the image into very small grids. However, according to our
observation, both traditional segmentation algorithms and grid technology
will generate 40-120 segments/grids for a 512×512 1-foot resolution aerial
image, which makes the performance of annotation model deteriorate dra-
matically compared to 10-20 segments/grids per image. Therefore, we pro-
pose a two-stage segmentation algorithm to accommodate the uniqueness of
HRRS images.

– Finally, another challenge faced by the HRRS image annotation is the impor-
tance of measuring spatial relationships among objects. In the HRRS images,
individual objects cannot determine the semantics of the entire scene by it-
self. Rather, the repeated occurrence of certain object in the scene or the
co-occurrence of objects reflect high-level semantic concepts. For instance,
if there is an remote sensing image about a city or urban area, instead of
roof of individual house, people maybe more interested in identifying a park,
which is the composition of grass land, pond, and curvy road. People would
not be interested in large building roof alone. Nevertheless, if we identify
that large building roofs have large parking lot and major road nearby, this
would also be interesting, as we can annotate the image as shopping mall.

3 Object Discovery with Semantic Feature Selection

In this section, we introduce a method for Object disCovery with semantiC
featUre sElection (OCCUE). Figure 1 shows an overview of the OCCUE method.
A detailed discussion of each step of OCCUE is given in the following subsections.
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Fig. 1. A Overview of the OCCUE Method

3.1 Image Segmentation

Image segmentation divides an image into separated regions. In a large-scale
HRRS image database, the images naturally belong to different semantic clus-
ters. For example, most of HRRS images can be categorized into four main
semantic clusters at the land cover level including grass, water, residence and
agriculture [10]. These land-cover level semantic clusters can also be divided into
semantic subclusters at an object level. For these subclusters, the distinguishing
primitive features are different. Moreover, the objects in each land-cover clus-
ter are very different. For example, the objects in urban areas are usually road
segments, single house roofs, or small vegetated areas. In contrast, woods and
grass are dominant in suburban areas. Likewise, different composite objects also
appear in different land-cover clusters. For instance, a park is always a large
contiguous vegetated area. This different scale distinguishes parks from gardens.
In OCCUE, we exploit a two-step approach to increase segmentation reliability.
Our two-step segmentation approach satisfies the uniqueness of RS images by
segmenting images at the land-cover level first and then dividing images further
into individual objects or components of an individual object.

Another major advantage of using two-step image segmentation approach
is that this segmentation approach can reflect the hierarchies that exist in the
structure of the real-world objects which we are detecting. By abstracting houses,
buildings, roads and other objects, people can identify residential areas and the
aggregation of several residential areas yields a town. This hierarchy is obviously
determined by scale.

In OCCUE, we apply the texture-based algorithms proposed by [4] to segment
image at the land cover level. This segmenting method consists of three major
steps: (i) hierarchical splitting that recursively splits the original image into
children blocks by comparing texture features of blocks, (ii) optimizing, which
adjusts the splitting result, if the results of the reduced resolution images have
dramatically reduced segments, (iii) merging, in which the adjacent regions with
similar texture are merged until a stopping criterion is satisfied.

After the land-cover level segmentation, images are segmented into small re-
gions using eCognition along with different input parameters according to land-
cover type [5]. Each segment is represented by the traditional features, e.g. col-
ors, textures and shapes, as well as the geometric features. eCognition utilizes
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a bottom up-region-merging technique starting with one-pixel. In subsequent
steps, smaller image segments are merged into bigger ones [5]. We believe that
this is one of the easy-to-use and reliable segmentation tools for HRRS images,
given the characteristics of the HRRS images: 1)with salt and pepper noises; 2)
affected by the atmosphere and the reflective conditions.

The following extracted features represent major visual properties of each
image segment.

– Layer Values are features concerning the pixel channel values of an im-
age segment, mainly the spectral features, including mean, brightness, max
difference, standard deviation, the ratio of layer mean value of an image
segment over the all image, minimum pixel value, maximum pixel value,
the mean difference to neighboring segment, the mean difference to brighter
neighboring segment, mean difference to darker neighboring object.

– Shape Features include area (measured by pixel), length/width ratio which
is the eigenvalues of the covariance matrix with the larger eigenvalue being
the numerator of the factor, length, width, border length, density expressed
by the area covered by the image segment divided by its radius, main direc-
tion, asymmetry, compactness (the product of the length m and the width n
of the corresponding segment and divided by the number of its inner pixels),
elliptic fit and rectangular fit.

– Texture Features evaluate the texture of an image segment based on the
gray level co-occurrence matrix (GLCM) and the grey level difference vec-
tor (GLDV) of the segments pixel [5]. The grey level co-occurrence matrix
(GLCM) is a tabulation of how often different combinations of pixel grey
level occur in an image. A different co-occurrence matrix exists for each spa-
tial relationship. Therefore, we have to consider all four directions (0 45, 90,
135) are summed before texture calculation. An angle of 0 represents the
vertical direction, an angle of 90 the horizontal direction. Every GLCM is
normalized, which guarantee the GLCM is symmetrical. The more distant
to the diagonal, the greater the difference between the pixels grey level is.
The GLCM matrices can be further broken down to measure the homogene-
ity, contrast, dissimilarity (contrast increases linearly), entropy (distributed
evenly), mean, standard deviation, and correlation. GLDV is the sum of di-
agonals of GLCM. It counts the occurrence of references to the neighbor
pixels. Similarly to GLCM matrices, GLDV can measure the angular second
moment (high if some elements are large), entropy (high if all similar), mean,
and contrast.

– Position Features refer to the positions of segments within an image.

3.2 Fuzzy Classification

After we segment the images into relatively homogeneous regions, the next step
is to group similar image segments into a reasonable number of classes, referred
as blob tokens in [12]. Segments in each class are similar even though they are not
spatially connected. In the literature [12], unsupervised classification algorithms
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is employed using the primitive features or weighted features. Using the weighted
features would successfully reduce the dimensionality compared with using all
primitive features as clustering algorithm input. However, we used supervised
classification method that is efficient in grouping image segments into semantic
meaningful blobs.

Specifically, fuzzy logic based supervised classification is applied to generate
blobs. Starting with an empty class hierarchy, we manually insert sample classes
and using the features description as definition of a certain class. While nearest
neighbor and membership functions are used to translate feature values of arbi-
trary range into a value between 0 (no membership) and 1 (full membership),
logical operators summarize these return values under an overall class evaluation
value between 0 and 1. The advantages of fuzzy classification are [5]

– Translating feature values into fuzzy values standardizes features and allows
to combine features, even of very different ranges and dimensions.

– It enables the formulation of complex feature descriptions by means of logical
operations and hierarchical class descriptions.

Finally, fuzzy classification also helps to merge the neighboring segments that
belong to the same class and get a new semantic meaningful image blob which
truly represents the feature and not just a part of it.

3.3 Hyperclique Patterns

In this paper, hyperclique patterns [13,14] are what we used for capturing co-
existence of spatial objects. The concept of hyperclique patterns is based on
frequent itemsets. In this subsection, we first briefly review the concepts on
frequent itemsets, then describe the concept of hyperclique patterns.

Let I = {i1, i2, ..., im} be a set of items. Each transaction T in database D is a
subset of I. We call X ⊆ I an itemset. The support of X supp(X) is the fraction
of transactions containing X . If supp(X) is no less than a user-specified minimum
support, X is called a frequent itemset. The confidence of association rule X1 →
X2 is defined as conf(X1 → X2) = supp(X1 ∪ X2)/supp(X1). It estimates the
likelihood that the presence of a subset X1 ⊆ X implies the presence of the other
items X2 = X − X1.

If the minimum support threshold is low, we may extract too many spuri-
ous patterns involving items with substantially different support levels, such as
(caviar, milk). If the minimum support threshold is high, we may miss many
interesting patterns occurring at low levels of support, such as (caviar, vodka).
To measure the overall affinity among items within an itemset, the h-confidence
was proposed in [13]. Formally, the h-confidence of an itemset P = {i1, i2, ...im}
is defined as hconf(P ) = mink{conf(ik → P − ik)}. Given a set of items I and
a minimum h-confidence threshold hc, an itemset P ⊆ I is a hyperclique pattern
if and only if hconf(P ) ≥ hc. A hyperclique pattern P can be interpreted as
that the presence of any item i ∈ P in a transaction implies the presence of
all other items P − {i} in the same transaction with probability at least hc.
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This suggests that h-confidence is useful for capturing patterns containing items
which are strongly related with each other. A hyperclique pattern is a maximal
hyperclique pattern if no superset of this pattern is a hyperclique pattern.

3.4 Converting Spatial Relationship into Feature Representation

Approaches for modelling spatial relationships can be grouped into three cate-
gories: graph-based approaches, rule based approaches, and mathematical logic
using 2D strings as the projections of the spatial relationships. However, none of
this can be used as input for statistical Cross Relevance Model (CRM). In addi-
tion, we concentrate on the presence of the objects in the image rather than the
complex geometric or topological spatial relationships. For example, consider
a golf course, we are interested in the appearance of the well textured grass-
land, sand, non-rectangle water-body in a relatively small region. Whether the
sand is left or right to the water-body is not important. In OCCUE, we apply
hyperclique pattern discovery algorithm [13] to detect co-existing objects.

Table 1. A sample image-blob data set

Image Blobs
in1 3,7,11,12,19,22,23,24,25
in2 3,7,6,12,13,15,18,20,23,24
in3 3,7,6,11,16,18,20,24,26
in5 7,6,10,11,12,20
in6 3,7,6,19,20,23,24,25
in7 3,7,12,19,20,23
in8 3,6,7,10,11,12,19,20,23
in9 3,6,15,11,12,20,24,26
in10 6,7,11,12,23,24
in11 3,6,7,11,12,19,22,23,24
in12 3,7,12,19,20,23,24

Example 2.1. After segmentation, images are represented by the blob ID as
shown in Table 1, let us consider a pattern X={b3, b7, b24}, which implies that
blob (#3 roof type II, #7 shade type II , #24 grass type IV) usually appears
together. We have supp(b3) = 82%, supp(b7) = 91%, supp(b24) = 73%, and
supp(b3, b7, b24) = 55%. Then, conf(b3 → b7, b24) = supp(b3, b7, b24)/supp(b3) =
67%; conf(b7 → b3, b24) = supp(b3, b7, b24)/supp(b7) = 60% ; conf(b24 →
b3, b7) = supp(b3, b7, b24)/supp(b24) = 75%. Therefore, hconf(X)=min(conf(b3
→ b7, b24), conf(b7 → b3, b24), conf(b24 → b3, b7)) = 60%. According to the defi-
nition of hyperclique pattern, pattern {b3, b7, b24} is a hyperclique pattern at
the threshold 0.6. Therefore, we treat the set of these three blobs as a new seman-
tic feature. We treated these newly discovered hyperclique pattern as new blobs in
additional to the existing blobs. Meanwhile, the original blobs #3, #7, and #24
are deleted from the original table. Table 1 will be converted to Table2. The new
blobs are represented using 3 digits number in order to distinguish from the orig-
inal blobs. We convert the spatial relationship into a measurable representation,
so that we can apply statistical model in the next step.
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Table 2. A sample image represented in new blob

Image Blobs
in1 11,12,19,22,23,25,105
in2 6,12,13,15,18,20,23,105
in3 11,16,18,20,26,105
in5 7,6,10,11,12,20
in6 6,19,20,23,25,105
in7 3,7,12,19,20,23
in8 3,6,7,10,11,12,19,20,23
in9 3,6,15,11,12,20,24,26
in10 6,7,11,12,23,24
in11 6,11,12,19,22,23 105
in12 12,19,20,23,105

3.5 A Model of Image Annotation

Suppose we are given an un-annotated image in image collection I ∈ C. We have
the object representation of that image I = {o1 . . . om}, and want to automati-
cally select a set of words {w1 . . . wn} that reflect the content of the image.

The general approach is widely accepted by statistical modelling approach.
Assume that for each image I there exists some underlying probability distri-
bution P(·|I). We refer to this distribution as the relevance model of I [8,7]. The
relevance model can be thought of as an urn that contains all possible objects
that could appear in image I as well as all words that could appear in the an-
notation of I. We assume that the observed image representation {o1 . . . om} is
the result of m random samples from P(·|I).

In order to annotate an image with the top relevance words, we need to
know the probability of observing any given word w when sampling from P(·|I).
Therefore, we need to estimate the probability P(w|I) for every word w in the
vocabulary. Given that P(·|I) itself is unknown, the probability of drawing the
word w can be approximated by training set T of annotated images.

P (w|I) ≈ P (w|o1 . . . om) (1)

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w, o1, . . . , om|J) (2)

Assuming that observing w and blobs are mutually independent for any
given image, and identically distributed according to the underlying distribu-
tion P(·|J). This assumption guarantees we can rewrite equation (2) as follows:

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w|J)
m∏

i=1

P (oi|J) (3)

We assume the prior probability P (J) follows uniform over all images in train-
ing set mathcalT . We follow [6] and use smoothed maximum likelihood estimates
for the probabilities in equation (3). The estimations of the probabilities of blob
and word given image J are obtained by:

P (w|J) = (1 − αJ )
Num(w, J)

|J | + αJ
Num(w, T )

|T | (4)
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P (o|J) = (1 − βJ)
Num(o, J)

|J | + αJ
Num(o, T )

|T | (5)

Here, Num(w, J) and Num(o, J) represents the actual number of times the word
w or blob o occurs in the annotation of image J . Num(w, T ) and Num(o, T )
is the total number of times w or o occurs in all annotation in the training set
T .|J | denotes for the aggregate count of all words and blobs appearing in image
J, and |T | denotes the total size of the training set. The smoothing parameter
αJ and βJ determine the interpolation degree between the maximum likelihood
estimates and the background probabilities. Due to the different occurrence pat-
terns between words (Zipfian distribution) and blobs (uniform distribution) in
images, we separate the two smoothing parameter as αJ and βJ .

Finally, Equation (1) - (5) provide the mechanism for approximating the prob-
ability distribution P (w|I) for an underlying image I. We annotate images by
first estimating the probability distribution P (w|I) and then select the highest
ranking n words for the image.

4 Experimental Evaluation

In this section, we present experiments on real-world data sets to evaluate the
performance of object discovery with semantic feature selection. Specifically, we
show: (1) an example set of identified semantic spatial features, (2) a performance
comparison between the OCCUE model and a state-of-the-art Cross-media Rel-
evance Model (CRM) model [6].

4.1 The Experimental Setup

Experimental Data Sets. Since our focus in this paper is on HRRS images
rather than regular scenery images, we will not adopt the popular image dataset
Corel, which is considered as a benchmark for evaluating the performance of
image retrieval algorithms. Instead, we use the high resolution orthoimagery
of the major metropolitan areas. This data set is distributed by United States
Geological Survey (USGS - http://www.usgs.gov/). The imagery is available
as Universal Transverse Mercator (UTM) projection and referenced to North
American Datum of 1983. For example, the New Jersey orthoimagery is available
as New Jersey State Plane NAD83. The file format is Georeferenced Tagged
Image File Format(GeoTIFF).

Data Preprocessing. We downloaded the images of 1-foot resolution in the
New York metro area and Springfield MA. Each raw image is about 80MB,
which is then be processed using the Remote Sensing Exploitation Platform
(ENVI - http://www.ittvis.com/envi/). Images with blurred scene or with no
major interesting objects, such as square miles of woods, are discarded. For
images that contain objects we are interested in, we grid the image into small
pieces (2048 × 2048 pixels). Finally, we have 800 images in our experimental
data set and there are 32 features: 10 color features, 10 shape features and 12
texture features.
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Keywords. The keywords used to annotate the semantics of the HRRS images
are also different from the traditional scenery images. First of all, they are not
attainable directly from the data seta as those of Corel images. Rather, it is
manually assigned by domain experts. These keywords can be divided into three
groups: keywords regard landcover, individual objects, and composite objects.

Validation. In our experiments, we divided the data set into 10 subsets with
equal number of images. We performed 10-cross validation. For each experiment,
8 randomly selected sub-dataset are used as training set, a validation set of
80 images and a test set of 80 images. The validation set is used to select the
model parameters. Every images in the data set is segmented into comparatively
uniform regions. The number of segments in each image, and the size of each
segment (measured by the number of pixels) are empirically selected using the
training and validating sets.

Blobs. A fuzzy classification algorithm is applied to generate image blobs. In
our experiment, we generated 30 image blobs. Table 3 shows some examples of
image blobs. Also, Figure 2 shows a sample image and its blob representation.

Table 3. Examples of Blobs

ID Description size color shape texture
1 house I (0,1200) (150,180) rectangle smooth
2 house II (1200, 3000) (150, 180) rectangle smooth
3 house III (0, 1200) (180, 255) rectangle smooth
4 grass I (0, 2000) (140, 160) irregular smooth
5 grass II (0, 2000) (140, 180) irregular rough
30 sand (0, 5000) (190,210) round rough

Blob ID

1, 2
3, 4

11, 12
28

Fig. 2. An Image and Its Blob Representation

Spatial Semantic Features. All images with identified image blobs are used to
identify the co-occurrence of image blobs. Specifically, we exploited a hyperclique
pattern discovery method to find complex objects that consist of co-existing
image blobs, which usually form a unique high-level semantic concept and are
treated as spatial semantic features. For instance, Table 4 shows some example
semantic features.

4.2 Results of Composite Object Annotation

To evaluate the annotation performance, we apply some external metrics includ-
ing Precision, Recall, and F-measure. Specifically, we judge the relevance of the
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Table 4. An Example of Semantic Features

blobID Comp-Object

17, 8 Golf Course

3, 20 Industrial Building

3, 4, 24 Industrial Building

1, 2, 5 Residential Building

1, 2, 9, 10 Residential Building

2, 12, 22 Baseball Field
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Fig. 3. F-measure Values at Different Parameters

retrieved images by looking at the manual annotations of the images. A Recall
measure is defined as the number of the correctly retrieved images divided by
the number of relevant images in the test data set. The Precision measure is
defined as the number of correctly retrieved images divided by the number of
retrieved images. In order to make a balance between the recall and precision
measures, we also compute the F-measure which is defined as 2∗Recall∗Precision

Recall+Precsion .

Parameter Selection. The hyperclique pattern discovery algorithm has two
parameters: support and h-confidence. We examine the impact of these two
parameters on the performance of object annotation. The minimum support
and the h-confidence thresholds would affect object discovery. For example, the
set of blobs (1, 2, 5, 9, 10) can be identified as co-existing objects with minimum
support 0.05 and h-confidence 0.4, while it could not be identified when we
change the minimum support to 0.15. Figure 3 shows the F-measure values with
the change of minimum support and h-confidence thresholds. As can be seen, the
F-measure values vary at different support and h-confidence thresholds. However,
we can observe a general trend is that the F-measure values increase with the
increase of H-confidence. Also, the maximum F-measure value is achieved when
the support threshold is relatively high. This is reasonable, since a relatively
high support threshold can guarantee statistical significance and provide a better
coverage of objects. For this reason, in our experiments, we set relatively high
support and h-confidence thresholds.
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Table 5. A Performance Comparison

measures word class Avg. Prec. Avg. Recall F-Measure
CRM land use 0.6801 0.5923 0.6332

OCCUE land use 0.7512 0.7229 0.7368
CRM object level 0.3013 0.1827 0.2274

OCCUE object level 0.4682 0.3677 0.4119

A Model Comparison. We compared the annotation performance of the two
models, the CRM model and the OCCUE model. We annotate each test image
with 1 word from the land-cover level, 3 words from the composite object level.
Table 5 shows the comparison results. In the table, we can observe that, for
both land-cover level and composite-object level, the performance of OCCUE is
much better than that of CRM in terms of Precision, Recall, and F-measure. For
instance, for the composite-object level, the F-measure value is improved from
0.2274 (CRM) to 0.4119 (OCCUE). This improvement is quite significant.

5 Conclusions and Future Work

In this paper, we proposed a semantic feature selection method for improving
the performance of object discovery in High-Resolution Remote-Sensing (HRRS)
images. Specifically, we exploited a hyperclique pattern discovery technique to
capture groups of co-existing individual objects, which usually form high-level
semantic concepts. We treated these groups of co-existing objects as new se-
mantic features and feed them into the learning model. As demonstrated by our
experimental results, with new semantic feature sets, the learning performance
can be significantly improved.

There are several potential directions for future research. First, we propose to
adapt Spatial Auto-Regression (SAR) model [11] for object discovery in HRRS
images. The SAR model has the ability in measuring spatial dependency, and
thus is expected to have a better prediction accuracy for spatial data. Second,
we plan to organize the identified semantic features as a concept hierarchy for
the better understanding of new discovered high-level objects.
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Abstract. Distance-preserving projection based perturbation has gained much
attention in privacy-preserving data mining in recent years since it mitigates the
privacy/accuracy tradeoff by achieving perfect data mining accuracy. One apriori
knowledge PCA based attack was recently investigated to show the vulnerabil-
ities of this distance-preserving projected based perturbation approach when a
sample dataset is available to attackers. As a result, non-distance-preserving pro-
jection was suggested to be applied since it is resilient to the PCA attack with
the sacrifice of data mining accuracy to some extent. In this paper we investigate
how to recover the original data from arbitrarily projected data and propose AK-
ICA, an Independent Component Analysis based reconstruction method. Theo-
retical analysis and experimental results show that both distance-preserving and
non-distance-preserving projection approaches are vulnerable to this attack. Our
results offer insight into the vulnerabilities of projection based approach and sug-
gest a careful scrutiny when it is applied in privacy-preserving data mining.

1 Introduction

Privacy is becoming an increasingly important issue in many data mining applications.
A considerable amount of work on privacy preserving data mining has been investigated
recently [2,1,9,7,12]. Among them, randomization has been a primary tool to hide sen-
sitive private data for privacy preserving data mining. Random perturbation techniques
aim to distort sensitive individual values while preserving some particular properties
and hence allowing estimation of the underlying distribution.

Consider a data set X with n records of d attributes. The randomization based ap-
proaches generate a perturbed data set Y following some predefined procedure, e.g.,
additive noise based approach applies Y = X + E where E is an additive noise data
set, projection based approach applies Y = RX to map the sensitive data into a new
space where R is a transformation matrix. Usually the perturbed data Y is expected
to be dissimilar to the original X while some aggregate properties (e.g., mean and co-
variance matrices for numerical data) of X are preserved or can be reconstructed after
perturbation. The additive noise based approach has been challenged in privacy preserv-
ing data mining community and several individual value reconstruction methods have
been investigated [9,7,5,6].

In this paper, our focus will be the projection based approach. A special projection
based approach called rotation projection has recently been investigated in [4,11]. Since
the transformation matrix R is required to be orthonormal (i.e., RRT = RT R = I),
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geometric properties (vector length, inner products and distance between a pair of vec-
tors) are strictly preserved. Hence, data mining results on the rotated data can achieve
perfect accuracy. One apriori knowledge PCA based attack was recently investigated
to show the vulnerabilities of this distance preserving projected based perturbation ap-
proach when a sample dataset is available to attackers [10]. As a result, non-distance
preserving projection was suggested be applied since it is resilient to the apriori knowl-
edge PCA based attack with the sacrifice of data mining accuracy to some extent.

We investigate whether attackers can recover the original data from arbitrarily
projected data (R can be any transformation matrix, hence the distance might not be pre-
served in the transformed space). Specifically, we propose an Apriori-Knowledge ICA
based reconstruction method (AK-ICA), which may be exploited by attackers when a
small subset of sample data is available to attackers. Our theoretical analysis and empir-
ical evaluation shall show AK-ICA can effectively recover the original data with high
precision when a part of sample data is a-priori known by attackers. Since the proposed
technique is robust with any transformation matrix even with a small subset of sample
data available, it poses a serious concern for projection based privacy preserving data
mining methods.

The rest of this paper is organized as follows. In Section 2 we review the projection
based perturbation approach and show current attempts to explore the vulnerability of
this model. In Section 3 we briefly revisit ICA technique, which will be used when we
introduce our AK-ICA attack in Section 4. We also show why AK-ICA can breach
privacy from arbitrary transformation with the help of a small part of sample data.
Section 5 presents our experimental results. We offer our concluding remarks and point
out future work in Section 6.

2 The Projection Based Perturbation

The projection based perturbation model can be described by

Y = RX (1)

Where X ∈ Rp×n is the original data set consisting of n data records and p attributes.
Y ∈ Rq×n is the transformed data set consisting of n data records and q attributes. R is
a q×p transformation matrix. In this paper, we shall assume q = p = d for convenience.

In [4], the authors defined a rotation based perturbation method, i.e., Y = RX ,
where R is a d × d orthogonormal matrix satisfying RT R = RRT = I . The key
features of rotation transformation are preserving vector length, Euclidean distance and
inner product between any pair of points. Intuitively, rotation preserves the geometric
shapes such as hyperplane and hyper curved surface in the multidimensional space. It
was proved in [4] that three popular classifiers (kernel method, SVM, and hyperplane-
based classifiers) are invariant to the rotation based perturbation.

Similarly, the authors in [11] proposed a random projection-based multiplicative
perturbation scheme and applied it for privacy preserving distributed data mining. The
random matrix Rk×mis generated such that each entry ri,j of R is independent and
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identically chosen from some normal distribution with mean zero and variance σ2
r .

Thus, the following properties of the rotation matrix are achieved.

E[RT R] = kσ2
rI E[RRT ] = mσ2

rI

If two data sets X1 and X2 are perturbed as Y1 = 1√
kσr

RX1 and Y2 = 1√
kσr

RX2

respectively, then the inner product of the original data sets will be preserved from the
statistical point of view:

E[Y T
1 Y2] = XT

1 X2

Previously, the authors in [13] defined a rotation-based data perturbation function
that distorts the attribute values of a given data matrix to preserve privacy of individuals.
Their perturbation scheme can be expressed as Y = RX where R is a d×d matrix with
each row or column having only two non-zero elements, which represent the elements
in the corresponding Rp.

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosθ1 0 sin θ1 0 ...
... ... ... ... ...
0 − sin θ2 0 cos θ2 ...
... ... ... ... ...

− sin θ1 0 cos θ1 0 ...
... ... ... ... ...
0 cos θ2 0 sin θ2 ...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It is easy to see that the perturbation matrix R here is an orthogonormal matrix when
there are even number of attributes. If we have odd number of attributes, according to
their scheme, the remaining one is distorted along with any previous distorted attribute,
as long as some condition is satisfied.

In summary, all the projection matrices applied above tend to be orthogonal such
that distance is mostly preserved. Hence they can be considered as special cases of the
general projection model investigated here.

Attacking Methods
For the case where RT R = RRT = I , it seems that privacy is well preserved after
rotation, however, a small known sample may be exploited by attackers to breach pri-
vacy completely. We assume that a small data sample from the same population of X is
available to attackers, denoting as X̃ . When X ∩ X̃ = X‡ �= ∅, since many geometric
properties (e.g. vector length, distance and inner product) are preserved, attackers can
easily locate X‡’s corresponding part, Y ‡, in the perturbed data set by comparing those
values. From Y = RX , we know the same linear transformation is kept between X‡

and Y ‡: Y ‡ = RX‡. Once the size of X‡ is at least rank(X) + 1, the transformation
matrix R can easily be derived through linear regression.

For the case where X‡ = ∅ or too small, the authors in [10] proposed a PCA attack.
The idea is briefly given as follows. Since the known sample and private data share the
same distribution, eigenspaces (eigenvalues) of their covariance matrices are expected
to be close to each other. As we know, the transformation here is a geometric rotation
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which does not change the shape of distributions (i.e., the eigenvalues derived from the
sample data are close to those derived from the transformed data). Hence, the rotation
angles between the eigenspace derived from known samples and those derived from
the transformed data can be easily identified. In other words, the rotation matrix R is
recovered.

We notice that all the above attacks are just for the case in which the transformation
matrix is orthonormal. In our general setting, the transformation matrix R can be any
matrix (e.g. shrink, stretch, dimension reduction) rather than the simple orthonormal
rotation matrix. When we try to apply the PCA attack on non-isometric projection sce-
nario, the eigenvalues derived from the sample data are not the same as those derived
from the transformed data. Hence, we cannot derive the transformation matrix R from
spectral analysis. As a result, the previous PCA based attack will not work any more
(See our empirical evaluation in Section 5.2).

Intuitively, one might think that the Independent Component Analysis (ICA) could
be applied to breach the privacy. It was argued in [4,11] that ICA is in general not ef-
fective in breaking privacy in practice due to two basic difficulties in applying the ICA
attack directly to the projection based perturbation. First, there are usually significant
correlations among attributes of X . Second, more than one attribute may have Gaus-
sian distributions. We would emphasize that these two difficulties are generally held in
practice. Although we can not apply ICA directly to estimate X from the perturbed data
Y = RX , we will show that there exists a possible attacking method AK-ICA in the
following sections.

3 ICA Revisited

ICA is a statistical technique which aims to represent a set of random variables as linear
combinations of statistically independent component variables.

Definition 1 (ICA model) [8]
ICA of a random vector x = (x1, · · · , xm)T consists of estimating of the following
generative model for the data:

x = As or X = AS

where the latent variables (components) si in the vector s = (s1, · · · , sn)T are as-
sumed independent. The matrix A is a constant m × n mixing matrix.

The basic problem of ICA is to estimate both the mixing matrix A and the realizations of
the independent components si using only observations of the mixtures xj . Following
three restrictions guarantee identifiability in the ICA model.

1. All the independent components si, with the possible exception of one component,
must be non-Gaussian.

2. The number of observed linear mixtures m must be at least as large as the number
of independent components n.

3. The matrix A must be of full column rank.
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The second restriction, m ≥ n, is not completely necessary. Even in the case where
m < n, the mixing matrix A is identifiable whereas the realizations of the independent
components are not identifiable, because of the noninvertibility of A. In this paper, we
make the conventional assumption that the dimension of the observed data equals the
the number of independent components, i.e., n = m = d. Please note that if m > n,
the dimension of the observed vector can always be reduced so that m = n by existing
methods such as PCA.

The couple (A, S) is called a representation of X . Since X=AS=(AΛP )(P−1Λ−1S)
for any diagonal matrix Λ (with nonzero diagonals) and permutation matrix P , X can
never have completely unique representation.

The reason is that, both S and A being unknown, any scalar multiplier in one of the
sources si could always be canceled by dividing the corresponding column ai of A by
the same scalar. As a consequence, we usually fixes the magnitudes of the independent
components by assuming each si has unit variance. Then the matrix A will be adapted
in the ICA solution methods to take into account this restriction. However, this still
leaves the ambiguity of the sign: we could multiply an independent component by −1
without affecting the model. This ambiguity is insignificant in most applications.

4 Our AK-ICA Attack

In this section we present our AK-ICA attack which may be exploited by attackers when
a subset of sample data is available. Let X̃ ⊂ X denote this sample data set consisting
of k data records and d attributes. Our result shall show attackers can reconstruct X
closely by applying our AK-ICA attack method when a (even small) sample of data, X̃ ,
is available to attackers.

The core idea of AK-ICA is to apply the traditional ICA on the known sample data
set, X̃ , and perturbed data set, Y , to get their mixing matrices and independent com-
ponents respectively, and reconstruct the original data by exploiting the relationships
between them. Figure 1 shows our AK-ICA based attack.

The first step of this attack is to derive ICA representations, (Ax̃, Sx̃) and (Ay, Sy),
from the a-priori known subset X̃ and the perturbed data Y respectively. Since in gen-
eral we can not find the unique representation of (A, S) for a given X (recall that
X = AS = (AΛP )(P−1Λ−1S) for any diagonal matrix Λ and perturbation matrix P
in Section 2), S is usually required to have unit variance to avoid scale issue in ICA.
As a consequence, only the order and sign of the signals S might be different. In the
following, we shall prove there exists a transformation matrix J such that X̂ = Ax̃JSy

is an estimate of the original data X in Section 4.1, and present how to identity J in
Section 4.2.

4.1 Existence of Transformation Matrix J

To derive the permutation matrix J , let us first assume X is given. Applying the inde-
pendent component analysis, we get X = AxSx where Ax is the mixing matrix and Sx

is independent signal.
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input Y , a given perturbed data set
X̃, a given subset of original data

output X̂, a reconstructed data set

BEGIN
1 Applying ICA on X̃ and Y to get

X̃ = Ax̃Sx̃

Y = AySy

2 Deriving the transformation matrix J by comparing the distributions of Sx̃ and Sy

3 Reconstructing X approximately as
X̂ = Ax̃JSy

END

Fig. 1. AK-ICA Attack

Proposition 1. The mixing matrices Ax, Ax̃ are expected to be close to each other and
the underlying signals Sx̃ can be approximately regarded as a subset of Sx.

Ax̃ ≈ AxΛ1P1 (2)

Sx̃ ≈ P−1
1 Λ−1

1 S̃x

Proof. Considering an element xij in X , it is determined by the i-th row of Ax, ai, and
the j-th signal vector, sj , where ai = (ai1, ai2, · · · , aid) and sj = (s1j , s2j , · · · , sdj)T .

xij = ai1s1j + ai2s2j + · · · + aidsdj

Let x̃p be a column vector in X̃ which is randomly sampled from X . Assume
x̃p = xj , then the i-th element of this vector, x̃ip can also be expressed by ai and
the corresponding signal vector sj .

x̃ip = ai1s1j + ai2s2j + · · · + aipspj

Thus, for a given column vector in X̃ , we can always find a corresponding signal
vector in S and reconstruct it through the mixing matrix Ax. Since Sx is a set of in-
dependent components, its sample subset S̃x ⊂ Sx can also be regarded as a set of
independent components of X̃ when the sample size of X̃ is large.

There exists a diagonal matrix Λ1 and a permutation matrix P1 such that

X̃ = Ax̃Sx̃ ≈ AxS̃x = (AxΛ1P1)(P−1
1 Λ−1

1 S̃x)
Ax̃ ≈ AxΛ1P1

Sx̃ ≈ P−1
1 Λ−1

1 S̃x

Proposition 2. Sx and Sy are similar to each other and there exists a diagonal matrix
Λ2 and a permutation matrix P2 that

Sy = P−1
2 Λ−1

2 Sx (3)
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Proof.

Y = RX + E = R(AxSx) + E = (RAx)Sx + E

Since permutation may affect the order and phase of the signals Sy , we have

Y = AySy + E ≈ (RAxΛ2P2)(P−1
2 Λ−1

2 Sx) + E

By comparing the above two equations, we have

Ay ≈ RAxΛ2P2

Sy ≈ P−1
2 Λ−1

2 Sx

Theorem 1. Existence of J . There exists one transformation matrix J such that

X̂ = Ax̃JSy ≈ X (4)

where Ax̃ is the mixing matrix of X̃ and Sy is the independent components of the
perturbed data Y .

Proof. Since

Sx̃ ≈ P−1
1 Λ−1

1 S̃x

Sy ≈ P−1
2 Λ−1

2 Sx

and S̃x is a subset of Sx, we can find a transformation matrix J to match the independent
components between Sy and Sx̃. Hence,

JP−1
2 Λ−1

2 = P−1
1 Λ−1

1

J = P−1
1 Λ−1

1 Λ2P2

From Equation 2 and 3 we have

X̂ = Ax̃JSy

≈ (AxΛ1P1)(P−1
1 Λ−1

1 Λ2P2)(P−1
2 Λ−1

2 Sx)
= AxSx

= X

4.2 Determining J

The ICA model given in Definition 1 implies no ordering of the independent compo-
nents. The reason is that, both s and A being unknown, we can freely change the order
of the terms in the sum in Definition 1, and call any of the independent component as
the first one. Formally, a permutation matrix P and its inverse can be substituted in the
model to give another solution in another order. As a consequence, in our case, the i-th
component in Sy may correspond to the j-th component in Sx̃. Hence we need to figure
out how to find the transformation matrix, J .



Deriving Private Information from Arbitrarily Projected Data 91

Since Sx̃ is a subset of Sx, each pair of corresponding components follow similar
distributions. Hence our strategy is to analyze distributions of two signal data sets, Sx̃

and Sy . As we discussed before, the signals derived by ICA are normalized signals.
So the scaler for each attribute is either 1 or -1. It also can be easily indicated by the
distributions.

Let S
(i)
x̃ and S

(j)
y denote the i-th component of Sx̃ and the j-th component of Sy

and let fi and f
′

j denote their density distribution respectively. In this paper, we use the
information difference measure I to measure the similarity of two distributions [1].

I(fi, f
′

j) =
1
2
E[

∫

ΩZ

| fi(z) − f
′

j(z) | dz] (5)

The above metric equals half the expected value of L1-norm between the distribution
of the i-th component from Sx̃ and that of the j-th component from Sy . It is also equal
to 1 − α, where α is the area shared by both distributions. The smaller the I(f, f ′),
the more similar between one pairs of components. The matrix J is determined so that
J [f

′

1, f
′

2, · · · , f
′

d]
T ≈ [f1, f2, · · · , fd]T .

5 Empirical Evaluations

The data set we used in our experiments is a Bank data set which was previously used
in [12]. This data set contains 5 attributes (Home Equity, Stock/Bonds, Liabilities, Sav-
ings, and CDs) and 50,000 records. In our AK-ICA method, we applied JADE pack-
age1 implemented by Jean-Francois Cardoso to conduct ICA analysis. JADE is one
cumulant-based batch algorithm for source separation [3].

Since our AK-ICA attack can reconstruct individual data in addition to its distri-
bution, in this paper we cast our accuracy analysis in terms of both matrix norm and
individual-wise errors. We measure the reconstruction errors using the following
measures:

RE(X, X̃) =
1

d × N

d∑

i=1

N∑

j=1

| xij − x̂ij

xij
|

RE-Ri(X, X̃) =
1
N

N∑

j=1

| xij − x̂ij

xij
| i = 1, · · · , d

F-RE(X, X̃) =
‖X̃ − X‖F

‖X‖F

where X, X̂ denotes the original data and the estimated data respectively, and ‖ · ‖F

denotes a Frobenius norm 2.
All the above measures show how closely one can estimate the original data X from

its perturbed data Y . Here we follow the tradition of using the difference as the measure

1 http://www.tsi.enst.fr/icacentral/algos.html
2 The Frobenius norm of X: ‖X‖F =

√∑d
i=1

∑n
j=1 x2

ij .
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to quantify how much privacy is preserved. Basically, RE (relative error) represents the
average of relative errors of individual data points. RE-Ri represents the average of
relative errors of the i-th attribute.F -RE denotes the relative errors between X and
its estimation X̂ in terms of Frobenius norm, which gives perturbation evaluation a
simplicity that makes it easier to interpret.
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Fig. 2. Reconstruction error vs. varying sample ratio

1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Round (k = 50)

F−RE
RE

(a) F -RE and RE

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Round

R
E−

R
i

Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 5

(b) RE-Ri

Fig. 3. Reconstruction error vs. random samples with the fixed size k = 50

5.1 Changing the Sample Size

In this experiment, we first evaluate how the sample size affects the accuracy of recon-
struction of AK-ICA method. We change the ratio between known sample size and the
original data size from 0.1% to 10%. Please note that all sizes of known samples in
this experiment are small compared with the size of the original data. We set the trans-
formation matrix R as non-orthonormal by generating all its elements from a uniform
distribution.

Figure 2 shows the reconstruction error (in terms of F -RE and RE in Figure 2(a)
and RE-Ri for each attribute in Figure 2(b)) decreases when the sample size is in-
creased. This is because that the more sample data we have, the more match between
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derived independent components. When we have known records which account for 1%
of the original data, we could achieve very low reconstruction error (F -RE = 0.108,
RE = 0.115). When the sample size is decreased, more errors are introduced. However,
even with known samples which only account for 0.1% of the original data, we can still
achieve very close estimations for some attributes (e.g., RE-Ri = 0.125 for attribute 1).

Next we evaluate how different sample sets X̃ with the same size affect AK-ICA
reconstruction method, especially when sample size is very small. Here we randomly
chose 10 different sample sets with the fixed size k = 50 (sample ratio 0.1%). Figure 3
shows the construction errors with 10 different sample sets. The performance of our
AK-ICA reconstruction method is not very stable in this small sample case. For exam-
ple, the first run achieves 0.1 of F -RE while the third run achieves 0.44 as shown in
Figure 3(a). The instability here is mainly caused by Ax̃ which is derived from X̃ . Since
Y = RX is fixed, the derived Sy doesn’t change.

We also observed that for each particular attribute, its reconstruction accuracy in
different rounds is not stable either. As shown in Figure 3(b), the attribute 5 has the
largest error among all the attributes in round 5, however, it has the smallest error in
round 7. This is because the reconstruction accuracy of one attribute is mainly deter-
mined by the accuracy of its estimate of the corresponding column vector in Ax̃. This
instability can also be observed in Figure 2(b). We plan to theoretically investigate how
the sample’s properties(size, distribution etc.) affect reconstruction accuracy of the pro-
posed AK-ICA attack. We also plan to investigate how the distribution of data affects
reconstruction accuracy when a sample data set is fixed. As we point out in the future
work, both problems are very challenging since there is no study on this problem in
statistics.

5.2 Comparing AK-ICA and PCA Attack

In this experiment, we evaluate the reconstruction performance of our approach and the
PCA attack in [10]. We fix the sample ratio as 1% and apply different transformation
matrices. Here R is expressed as R = R1 + cR2, where R1 is a random orthonormal
matrix, R2 is a random matrix with uniformly distributed elements([-0.5,0.5]) and c is
a coefficient. Initially, c is set as 0 which guarantees the orthonormal property for R.
By increasing c, R gradually loses orthonormal property and tends to be an arbitrary
transformation.

From Figure 4(a) and 4(b) we can observe that our AK-ICA attack is robust to various
transformations. The reconstruction errors do not change much when the transforma-
tion matrix R is changed to more non-orthonormal. On the contrary, the PCA attack
only works when R is orthonormal or close to orthonormal. When the transformation
tends to be more non-orthonormal (with the increase of c as shown in Table 1), the
reconstruction accuracy of PCA attack degrades significantly. For example, when we
set c = 5, the relative reconstruction errors of PCA attack are more than 200% (F -
RE=2.1414 , RE = 2.1843) while the relative reconstruction errors of AK-ICA attack
are less than 20% (F -RE=0.1444 , RE = 0.1793).
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Table 1. Reconstruction error of AK-ICA vs. PCA attacks by varying R

c ||cR2||F
||R1||F

AK-ICA PCA c ||cR2||F
||R1||F

AK-ICA PCA
F -RE RE F -RE RE F -RE RE F -RE RE

0 0 0.0824 0.1013 0.013 0.0126 1.5 0.8059 0.1533 0.169 0.3336 0.3354
0.2 0.1299 0.1098 0.1003 0.0451 0.0448 2 1.2755 0.1709 0.1523 0.7598 0.7368
0.3 0.1988 0.0701 0.0618 0.1288 0.1247 2.5 1.5148 0.0816 0.1244 0.8906 0.8946
0.4 0.3121 0.1336 0.1631 0.1406 0.1305 3 1.9321 0.1142 0.1373 0.6148 0.592
0.5 0.3011 0.1867 0.2436 0.1825 0.1704 3.5 2.1238 0.1303 0.1566 1.631 1.6596
0.7 0.4847 0.1227 0.1188 0.2415 0.2351 4 2.4728 0.1249 0.1314 1.5065 1.5148
1 0.539 0.065 0.0606 0.35 0.334 4.5 3.049 0.0707 0.0543 1.0045 0.9815

1.25 0.804 0.1177 0.1399 0.5565 0.5695 5 3.4194 0.1444 0.1793 2.1414 2.1843
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Fig. 4. Reconstruction error of AK-ICA vs. PCA attacks by varying R

6 Conclusion

In this paper, we have examined the effectiveness of general projection in privacy pre-
serving data mining. It was suggested in [10] that the non-isometric projection approach
is effective to preserve privacy since it is resilient to the PCA attack which was designed
for the distance preserving projection approach. We proposed an AK-ICA attack, which
can be exploited by attackers to breach the privacy from the non-isometric transformed
data. Our theoretical analysis and empirical evaluations have shown the proposed at-
tack poses a threat to all projection based privacy preserving methods when a small
sample data set is available to attackers. We argue this is really a concern that we need
to address in practice.

We noticed that the sample’s properties (size, distribution etc.) would affect the re-
construction accuracy from our empirical evaluations. It is a very challenging topic to
explore the theoretical relationship between those properties and the reconstruction ac-
curacy. To our knowledge, there is no study on this topic in statistics. We plan to tackle
this issue with researchers in statistics in our future work. We would also investigate
how transformation matrix affects the data utility.
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Rough sets are widely used in feature subset selection and attribute reduction. 
In most of the existing algorithms, the dependency function is employed to 
evaluate the quality of a feature subset. The disadvantages of using dependency 
are discussed in this paper. And the problem of forward greedy search 
algorithm based on dependency is presented. We introduce the consistency 
measure to deal with the problems. The relationship between dependency and 
consistency is analyzed. It is shown that consistency measure can reflects not 
only the size of decision positive region, like dependency, but also the sample 
distribution in the boundary region. Therefore it can more finely describe the 
distinguishing power of an attribute set. Based on consistency, we redefine the 
redundancy and reduct of a decision system. We construct a forward greedy 
search algorithm to find reducts based on consistency. What’s more, we employ 
cross validation to test the selected features, and reduce the overfitting features 
in a reduct. The experimental results with UCI data show that the proposed 
algorithm is effective and efficient. 

1   Introduction 

As the capability of gathering and storing data increases, there are a lot of candidate 
features in some pattern recognition and machine learning tasks. Applications show 
that excessive features will not only significantly slow down the learning process, but 
also decrease the generalization power of the learned classifiers. Attribute reduction, 
also called feature subset selection, is usually employed as a preprocessing step to 
select part of the features and focuses the learning algorithm on the relevant 
information [1, 3, 4, 5, 7, 8]. In recent years, rough set theory has been widely 
discussed and used in attribute reduction and feature selection [6, 7, 8, 14, 16, 17]. 
Reduct is a proper term in rough set methodology. It means a minimal attribute subset 
with the same approximating power as the whole set [14]. This definition shows that a 
reduct should have the least redundant information and not loss the classification 
ability of the raw data. Thus the attributes in a reduct should not only be strongly 
relevant to the learning task, but also be not redundant with each other. This property 
of reducts exactly accords with the objective of feature selection. Thereby, the process 
of searching reducts, called attribute reduction, is a feature subset selection process. 
As so far, a series of approaches to search reducts have been published. Discernibility 
Matrices [11, 14] were introduced to store the features which can distinguish the 
corresponding pair of objects, and then Boolean operations were conducted on the 
matrices to search all of the reducts. The main problem of this method is space and 



 Consistency Based Attribute Reduction 97 

time cost. We need a 104

×104 matrix if there are 104 samples. What’s more, it is also 
time-consuming to search reducts from the matrix with Boolean operations. With the 
dependency function, a heuristic search algorithm was constructed [1, 6, 7, 8, 16].  

There are some problems in dependency based attribute reduction. The dependency 
function in rough set approaches is the ratio of sizes of the positive region over the 
sample space. The positive region is the sample set which can be undoubtedly 
classified into a certain class according to the existing attributes. From the definition 
of the dependency function, we can find that it ignores the influence of boundary 
samples, which maybe belong to more than one class. However, in classification 
learning, the boundary samples also exert an influence on the learned results. For 
example, in learning decision trees with CART or C4.5 learning, the samples in leaf 
nodes sometimes belong to more than one class [2, 10]. In this case, the nodes are 
labeled with the class with majority of samples. However, the dependency function 
does not take this kind of samples into account. What’s more, there is another risk in 
using the dependency function in greedy feature subset search algorithms. In a 
forward greedy search, we usually start with an empty set of attribute, and then we 
add the selected features into the reduct one by one. In the first round, we need to 
compute the dependency of each single attribute, and select the attribute with the 
greatest dependency value. We find that the greatest dependency of a single attribute 
is zero in some applications because we can not classify any of the samples beyond 
dispute with any of the candidate features. Therefore, according to the criterion that 
the dependency function should be greater than zero, none of the attributes can be 
selected. Then the feature selection algorithm can find nothing. However, some 
combinations of the attributes are able to distinguish any of the samples although a 
single one cannot distinguish any of them. As much as we know, there is no research 
reporting on this issue so far.  

These issues essentially result from the same problem of the dependency function. 
It completely neglects the boundary samples. In this paper, we will introduce a new 
function, proposed by Dash and Liu [3], called consistency, to evaluate the 
significance of attributes. We discuss the relationship between dependency and 
consistency, and employ the consistency function to construct greedy search attribute 
reduction algorithm. The main difference between the two functions is in considering 
the boundary samples. Consistency not only computes the positive region, but also the 
samples of the majority class in boundary regions. Therefore, even if the positive 
region is empty, we can still compare the distinguishing power of the features 
according to the sample distribution in boundary regions. Consistency is the ratio of 
consistent samples; hence it is linear with the size of consistent samples. Therefore it 
is easy to specify a stopping criterion in a consistency-based algorithm. With 
numerical experiments, we will show the specification is necessary for real-world 
applications.  

In the next section, we review the basic concepts on rough sets. We then present 
the definition and properties of the consistency function, compare the dependency 
function with consistency, and construct consistency based attribute reduction in 
section 3.We present the results of experiments in section 4. Finally, the conclusions 
are presented in section 5. 
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2   Basic Concepts on Rough Sets 

Rough set theory, which was introduced to deal with imperfect and vague concepts, 
has attracted a lot of attention from theory and application research areas. Data sets 
are usually given as the form of tables, we call a data table as an information system, 
formulated as >=< fVAUIS ,,, , where },,{ 21 nxxxU L=  is a set of finite and 

nonempty objects, called the universe, A  is the set of attributes characterizing the 
objects, V is the domain of attribute value and f is the information function 

VAUf →×: . If the attribute set is divided into condition attribute set C and 

decision attribute set D , the information system is also called a decision table. 
With arbitrary attribute subset AB ⊆ , there is an indiscernibility relation 

:)(BIND  

)}()(,|,{)( yaxaBaUUyxBIND =∈∀×>∈<= . 

)(, BINDyx >∈<  means objects x and y are indiscernible with respect to attribute set 

B. Obviously, indiscernibility relation is an equivalent relation, which satisfies the 
properties of reflexivity, symmetry and transitivity. The equivalent class induced by 
the attributes B is denoted by 

}),(,|{][ UyBINDxxxx iBi ∈>∈<= . 

Equivalent classes generated by B are also called B-elemental granules, B-
information granules. The set of elemental granules forms a concept system, which is 
used to characterize the imperfect concepts in the information system.  

Given an arbitrary concept X in the information system, two unions of elemental 
granules are associated with  

},][|]{[ UxXxxXB BB ∈⊆= , },][|]{[ UxXxxXB BB ∈∅≠= I . 

The concept X is approximated with the two sets of elemental granules. XB  and 

XB  are called lower and upper approximations of X in terms of attributes B. XB  is 

also called the positive region. X is a definable if XBXB = , which means the 

concept X can be perfectly characterized with the knowledge B, otherwise, X is 

indefinable. An indefinable set is called a rough set. XBXBXBND −=)(  is called 

the boundary of the approximations. As a definable set, the boundary is empty.  
Given <U, C, D, V ,f>, C and D will generates two partitions of the universe. 

Machine learning is usually involved in using condition knowledge to approximate 
the decision and finding the mapping from the conditions to decisions. Approximating 

DU /  with CU / , the positive and boundary regions are defined as: 

XCDPOS
DUX

C
/

)(
∈

= U , XCXCDBND
DUXDUX

C
//

)(
∈∈

−= UU . 

The boundary region is the set of elemental granules which can not be perfectly 
described by the knowledge C, while the positive region is the set of C-elemental 
granules which completely belong to one of the decision concepts.  The size of 
positive or boundary regions reflects the approximation power of the condition 
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attributes. Given a decision table, for any CB ⊆ , it is said the decision attribute set D 
depends on the condition attributes with the degree k, denoted by DB k⇒ , where 

||

|)(|
)(

U

DPOS
Dk B

B == γ . 

The dependency function k measures the approximation power of a condition 
attribute set with respect to the decision D. In data mining, especially in feature 
selection, it is important to find the dependence relations between attribute sets and to 
find a concise and efficient representation of the data.  

Given a decision table >=< fVDCUDT ,  ,, U , if CQP ⊆⊆ , we have 

)()( DD PQ γγ ≥  

Given a decision table >=< fVDCUDT ,  ,, U , CB ⊆ , Ba ∈ , we say that the 

condition attribute a is indispensable if )()()( DD BaB γγ <− , otherwise we say a is 

redundant. We say CB ⊆  is independent if any a in B is indispensable. Attribute 
subset B is a reduct of the decision table if 

1) )()( DD CB γγ = ; 

2) :Ba ∈∀ )()( DD aBB −> γγ . 

A reduct of a decision table is the attribute subset which keeps the approximating 
capability of all the condition attributes. In the meantime it has no redundant attribute. 
The term of “reduct” presents a concise and complete ways to define the objective of 
feature selection and attribute reduction. 

3   Consistency Based Attribute Reduction 

A binary classification problem in discrete spaces is shown in Figure 1, where the 
samples are divided into a finite set of equivalence classes },,,{ 21 KEEE L based on 

their feature values. The samples with the same feature values are grouped into one 
equivalence class. We find that some of the equivalence classes are pure as their 
samples belong to one of decision classes, but there also are some inconsistent 
equivalence classes, such as 3E  and 4E  in figure1. According to rough set theory, 

they are named as decision boundary region, and the set of consistent equivalence 
classes is named as decision positive region. The objective of feature selection is to 
find a feature subset which minimizes the inconsistent region, in either discrete or 
numerical cases, accordingly, minimizes Bayesian decision error. It is therefore 
desirable to have a measure to reflect the size of inconsistent region for discrete and 
numerical spaces for feature selection. Dependency reflects the ratio of consistent 
samples over the whole set of samples. Therefore dependency doesn’t take the 
boundary samples into account in computing significance of attributes. Once there are 
inconsistent samples in an equivalence class, these equivalence classes are just 
ignored. However, inconsistent samples can be divided into two groups: a subset of 
samples under the majority class and a subset under the minority classes. According  
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Fig. 1. Classification complexity in a discrete feature space 

to Bayesian rule, only the samples under the minority classes are misclassified. Fox 
example, the samples in 3E  and 4E  are inconsistent in figure 1. But only the samples 

labeled with )|( 23 ωEP  and )|( 14 ωEP  are misclassified. The classification power 

in this case can be given by  

[ ])()|()()|(1 414323 EPEPEPEPf ωω −−= . 

Dependency can not reflect the true classification complexity. In the discrete cases, 
we can see from comparison of figure 1 (1) and (2) although the probabilities of 
inconsistent samples are identical, the probabilities of misclassification are different. 
Dependency function in rough sets can not reflect this difference. 

In [3], Dash and Liu introduced the consistency function which can measure the 
difference. Now we present the basic definition on consistency. Consistency measure 
is defined by inconsistency rate, computed as follows. 

Definition 1. A pattern is considered to be inconsistent if there are at least two objects 
such that they match the whole condition attribute set but are with different decision 
label.  

Definition 2. The inconsistency count iξ  for a pattern ip  of feature subset is the 

number of times it appears in the data minus the largest number among different class 
labels. 

Definition 3. The inconsistency rate of a feature subset is the sum, ∑ iξ , of all the 

inconsistency counts over all patterns of the feature subset that appears in data divided 
by ||U , the size of all samples, namely ||/ Ui∑ξ . Correspondingly, consistency is 

computed as ( ) ||/|| UU i∑−= ξδ . 

Based on the above analysis, we can understand that dependency is the ratio of 
samples undoubtedly correctly classified, and consistency is the ratio of samples 
probably correctly classified.  

There are two kinds of samples in MDPOS B U)( . )(DPOSB  is the set of 

consistent samples, while M  is the set of the samples with the largest number among 
different class labels in the boundary region. In the paper, we will call M  pseudo-
consistent samples. 
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Property 1: Given a decision table <U, C, D, f>, CB ⊆∀ , we have 1)(0 ≤≤ DBδ , 

)()( DD BB δγ ≤ . 

Property 2 (monotonicity): Given a decision table <U, C, D, f>, if DBB ⊆⊆ 21 , 

we have )()( 21 DD BB δδ ≤ . 

Property 3: Given a decision table <U, C, D, f>, if and only if DUCU // ⊆ , 

namely, the table is consistent, we have 1)()( == DD CC γδ  

Definition 4. Given a decision table >=< fVDCUDT ,  ,, U , CB ⊆ , Ba ∈ , we 

say condition attribute a is indispensable in B if )()()( DD BaB δδ <− , otherwise; we 

say a is redundant. We say CB ⊆  is independent if any attribute a in B is 
indispensable.  

)(DBδ  reflects not only the size of positive regions, but also the distribution of 

boundary samples. The attribute is said to be redundant if the consistency doesn’t 
decrease when we delete it. Here the term “redundant” has two meanings. The first 
one is relevant but redundant, the same as the meaning in general literatures [6, 7, 8, 
14, 16, 17]. The second meaning is irrelevant. So consistency can detect the two kinds 
of superfluous attributes [3]. 

Definition 5. Attribute subset B is a consistency-based reduct of the decision table if 

(1) )()( DD CB δδ = ; 

(2) :Ba ∈∀ )()( DD aBB −> δδ . 

In this definition, the first term guarantees the reduct has the same distinguishing 
ability as the whole set of features; the second one guarantees that all of the attributes 
in the reduct are indispensable. Therefore, there is not any superfluous attribute in the 
reduct. 

Finding the optimal subset of features is a NP-hard problem. We require evaluating 

12 −N  combinations of features for find the optimal subset if there are N  features in 
the decision table. Considering computational complexity, here we construct a 
forward greedy search algorithm based on the consistency function. We start with an 
empty set of attribute, and add one attribute into the reduct in a round. The selected 
attribute should make the increment of consistency maximal. Knowing attribute 
subset B, we evaluate the significance of an attribute a as 

)()(),,( DDDBaSIG BaB δδ −= U . 

),,( DBaSIG  is the increment of consistency by introducing the new attribute a in 

the condition of B. The measure is linear with the size of the new consistent and 
pseudo-consistent samples. Formally, a forward greedy reduction algorithm based on 
consistency can be formulated as follows. 
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Algorithm: Greedy Reduction Algorithm based on Consistency  
Input: Decision table >< fdCU ,, U     

Output: One reduct red . 
Step 1: red→∅ ; // red  is the pool to contain the selected attributes. 
Step 2:  For each redAai −∈  Compute  

)()(),,( DDDredaSIG rediaredi δδ −= U  

        end 
Step 3:  select the attribute ka which satisfies: 

                  )),,((max),,( BredaSIGDredaSIG i
i

k =  

Step 4:  If 0),,( >DredaSIG k , 

redared k →U   

go to step2 
        else  

return red   
Step 5: end 

 
In the first round, we start with an empty set, then specify 0)( =∅ Dδ . In this 

algorithm, we generate attribute subsets with a semi-exhaustive search. Namely, we 
evaluate all of the rest attributes in each round with the consistency function, and 
select the feature producing the maximal significance. The algorithm stops when 
adding any of the rest attributes will not bring increment of consistency value. In real-
world applications, we can stop the algorithm if the increment of consistency is less 
than a given threshold to avoiding the over-fitting problem. In section 4, we will 
discuss this problem in detail. The output of the algorithm is a reduced decision table. 
The irrelevant, relevant and redundant attributes are deleted from the system. The 
output results will be validated with two popular learning algorithms: CART and 
SVM, in section 4.   

By employing a hashing mechanism, we can compute the inconsistency rate 
approximately with a time complexity of |)(|UO [3]. In the worst case the whole 

computational complexity of the algorithm can be computed as 

2/||||)1|(|||)1|(||||||| UCCUCUCU ××+=++−×+× L . 

4   Experimental Analysis 

There are two main objectives to conduct the experiments. First, we compare the 
proposed method with dependency based algorithm. Second, we study the 
classification performance of the attributes selected with the proposed algorithm, In 
particular, how the classification accuracy varies with adding a new feature. This can 
tell us where the algorithm should be stopped.  

We download data sets from UCI Repository of machine learning databases. The 
data sets are described in table 1. There are some numerical attributes in the data sets. 
Here we employ four discretization techniques to transform the numerical data into  
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Table 1. Data description  

Data set Abbreviation Samples Features Classes 
Australian Credit Approval Crd 690 15 2 
Ecoli Ecoli 336 7 7 
Heart disease Heart 270 13 2 
Ionosphere Iono 351 34 2 
Sonar, Mines vs. Rocks Sonar 208 60 2 
Wisconsin Diagnostic Breast Cancer WDBC 569 31 2 
Wisconsin Prognostic Breast Cancer WPBC 198 33 2 
Wine recognition Wine 178 13 3 

categorical one: equal-width, equal-frequency, FCM and entropy. Then we conduct 
the dependency based algorithm [8] and the proposed one on the discretized data sets. 
The numbers of the selected features are presented in table 2.  

From table 2, we can find there is a great problem with dependency based 
algorithm, where, P stands for dependency based algorithm, and C stands for 
consistency based algorithm. The algorithm selects two few feature for classification 
learning as to some data sets. As to the discretized data with Equal-width method, the 
dependency based algorithm only selects one attribute, while the consistency one 
selects 7 attributes. As to Equal-frequency method, the dependency based algorithm 
selects nothing for data sets Heart, Sonar and WPBC. The similar case occurs to 
Entropy and FCM based discretization methods. Obviously, the results are 
unacceptable if a feature selection algorithm cannot find anything. By contrast, the 
consistency based attribute reduction algorithm finds feature subsets with moderate 
sizes for all of the data sets. What’s more, the sizes of selected features with the two 
algorithms are comparable if the dependency algorithm works well. 

Why does the dependency based algorithm find nothing for some data sets? As we 
know, dependency just reflects the ratio of positive regions. The forward greedy 
algorithm starts off with an empty set and adds, in turn, one of the best attributes into 
the pool at a time, those attributes that result in the greatest increase in the 
dependency function, until this produces its maximum possible value for the data set. 
In the first turn, we need to evaluate each single attribute. For some data sets, the 
dependency is zero for each single attribute. Therefore, no attribute can be added into 
the pool in the first turn. Then the algorithm stops here. Sometimes, the algorithm can  
 

Table 2. The numbers of selected features with different methods 

Equal-width Equal-frequency Entropy FCM  Raw 
data P C P C P C P C 

Crd 15 11 11 9 9 11 11 12 11 
Ecoli 7 6 6 7 7 1 7 1 6 
Heart 13 10 9 0 8 0 11 0 8 
Iono 34 1 7 1 7 10 8 10 9 

Sonar 60 7 7 0 6 0 14 6 6 
WDBC 30 12 12 6 6 7 7 8 10 
WPBC 33 9 10 0 6 11 7 7 7 
Wine 13 5 4 4 4 4 5 4 4 
Aver. 25.63 7.63 8.25 -- 6.63 -- 8.75 -- 7.63 
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also stop in the second turn or the third turn. However, the selected features are not 
enough for classification learning. Consistency can overcome this problem as it can 
reflect the change in distribution of boundary samples.  

Now we use the selected data to train classifiers with CART and SVM learning 
algorithms. We test the classification power of the selected data with 10-fold cross 
validation. The average classification accuracies with CART and SVM are presented 
in tables 3 and 4, respectively. From table 3, we can find most of the reduced data can 
keep, even improve the classification power if the numbers of selected attributes are 
appropriate although most of the candidate features are deleted from the data. It 
shows that most of the features in the data sets are irrelevant or redundant for training 
decision trees; thereby, it should be deleted. However, the classification performance 
will greatly decrease if the data are excessively reduced, such as iono in the equal-
width case and ecoli in the entropy and FCM cases. 

Table 3. Classification accuracy with 10-fold cross validation (CART)  

Equal-width Equal-frequency Entropy FCM  Raw 
data P C P C P C P C 

Crd 0.8217 0.8246 0.8246 0.8346 0.8150 0.8288 0.8186 0.8274 0.8158 
Ecoli 0.8197 0.8138 0.8138 0.8197 0.8138 0.4262 0.8168 0.42620 0.8168 
Heart 0.7407 0.7630 0.7630 0 0.7704 0  0.7630 0 0.7815 
Iono 0.8755 0.7499 0.9064 0.7499 0.9064 0.9318 0.8922 0.9089 0.9062 

Sonar 0.7207 0.7024 0.7014 0 0.7445 0 0.7448 0.6926 0.6976 
WDBC 0.9050 0.9367 0.9402 0.9402 0.9508 0.9420 0.9420 0.9351 0.9315 
WPBC 0.6963 0.7413 0.7024 0 0.7121 0.6805 0.6855 0.6955 0.6924 
Wine 0.8986 0.9090 0.9035 0.9208 0.9153 0.9208 0.9437 0.8972 0.8972 
Aver. 0.8098 0.8051 0.8194 -- 0.8285 -- 0.8258 -- 0.8174 

We can also find from table 4 that most of classification accuracies of reduced data 
decrease a little compared with the original data. Correspondingly, the average 
classification accuracies for all of the four discretization algorithms are a little lower 
than the original data. This shows that both dependency and consistency based feature 
selection algorithms are not fit for SVM learning because both dependency and 
consistency compute the distinguishing power in discrete spaces.   

Table 5 shows the selected features based on consistency algorithm and the 
corresponding turns being selected for parts of the data, where we use the FCM 
discretized data sets. The trends of consistency and classification accuracies with  
 

Table 4. Classification accuracy with 10-fold cross validation (SVM) 

Equal-width Equal-frequency Entropy FCM  Raw 
data P C P C P C Positive C 

Crd 0.8144 0.8144  0.8144 0.8028 0.82729 0.8100 0.8275 0.8058 0.8058 
Ecoli 0.8512 0.8512 0.8512 0.8512 0.8512 0.4262 0.8512 0.4262 0.8512 
Heart 0.8111 0.8074 0.8074 0 0.8111 0 0.8111 0.0000 0.8074 
Iono 0.9379 0.7499 0.9320 0.7499 0.9320 0.9154 0.9207 0.9348 0.9435 

Sonar 0.8510 0.7398 0.7595 0 0.7300 0 0.8229 0.7074 0.7843 
WDBC 0.9808 0.9668 0.9650 0.9597 0.9684 0.9561 0.9649 0.9649 0.9632 
WPBC 0.7779 0.7737 0.7684 0 0.7737 0.7632 0.7632 0.7837 0.7632 
Wine 0.9889 0.9444 0.9701 0.9660 0.9660 0.9722 0.9556 0.9486 0.9486 
Aver. 0.8767 0.8309 0.8585 -- 0.8575 -- 0.8646 -- 0.8584 

 



 Consistency Based Attribute Reduction 105 

Table 5. The selected Features with method FCM + Consistency 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
Heart 13 12 3 10 1 4 7 5   
Iono 5 6 8 21 9 3 10 7 28  

Sonar 11 16 37 3 9 33     
WDBC 28 21 22 3 7 14 15 2 4 6 
WPBC 25 33 1 7 23 18 6    
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Fig. 4. Trends of consistency, accuracies with CART and SVM   

CART and SVM are shown in figure 4. As to all of the five plots, the consistency 
monotonously increases with the number of selected attributes. The maximal value of 
consistency is 1, which shows that the corresponding decision table is consistent. 
With the selected attributes, all of the samples can be distinguished. What’s more, it is 
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noticeable that the consistency rapidly rises at the beginning; and then slowly 
increases, until stops at 1. It means that the majority of samples can be distinguished 
with a few features, while the rest of the selected features are introduced to discern 
several samples. This maybe leads to the over-fitting problem. Therefore the 
algorithm should be ceased earlier or we need a pruning algorithm to delete the  
over-fitting features.  The classification accuracy curves also show this problem. In 
figure 4, the accuracies with CART and SVM rise at first, arrive at a peak, then keep 
unchanged, or even decrease. In terms of classification learning, it shows the features 
after the peak are useless. They sometimes even deteriorate learning performance. 

Here we can take two measures to overcome the problem. The first one is to stop 
the algorithm when the increment of consistency is less than a given threshold. The 
second one is to employ some learning algorithm to validate the selected features, and 
delete the features after the accuracy peak. However, sometimes the first one, called 
prepruning method, is not feasible because we usually cannot exactly predict where 
the algorithm should stop. The latter, called post-pruning, is widely employed. In this 
work, cross validation are introduced to test the selected features. Table 6 shows the 
numbers of selected features and corresponding classification accuracies. We can find 
that the classification performance improves in most of the cases. At the same time, 
the selected features with consistency are further reduced. Especially for data sets 
Heart and Iono, the improvement is high to 10% and 18% with CART algorithm. 

Table 6. Comparison of features and classification performance with post-pruning 

 Raw data CART SVM 
 features  CART SVM features Accuracy features Accuracy 

Heart 13 0.7630     0.8111 3 0.8519 4 0.8593 
Iono 34 0.7499    0.9379 6 0.9260 9 0.9435 

Sonar 60 0.7024   0.8510 3 0.7407 6 0.7843 
WDBC 30 0.9367     0.9808 6 0.9420 5 0.9702 
WPBC 33 0.7413     0.7779 7 0.7461 7 0.7837 

5   Conclusions 

In this paper, we introduce consistency function to overcome the problems in 
dependency based algorithms. We discuss the relationship between dependency and 
consistency, and analyze the properties of consistency. With the measure, the 
redundancy and reduct are redefined. We construct a forward greedy attribute 
reduction algorithm based on consistency. The numerical experiments show the 
proposed method is effective. Some conclusions are shown as follows. 

Compared with dependency, consistency can reflect not only the size of decision 
positive region, but also the sample distribution in boundary region. Therefore, the 
consistency measure is able to describe the distinguishing power of an attribute set 
more finely than the dependency function. 

Consistency is monotonous. The consistency value increases or keeps when a new 
attribute is added into the attribute set. What’s more, some attributes are introduced 
into the reduct just for distinguishing a few samples. If we keep these attributes in the 
final result, the attributes maybe overfit the data. Therefore, a pruning technique is 
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required. We use 10-fold cross validation to test the results in the experiments and 
find more effective and efficient feature subsets. 
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Abstract. A new anomaly detection method based on models of user behavior 
at the command level is proposed as an intrusion detection technique. The 
hybrid command sequence (HCS) model is trained from historical session data 
by a genetic algorithm, and then it is used as the criterion in verifying observed 
behavior. The proposed model considers the occurrence of multiple command 
sequence fragments in a single session, so that it could recognize non-sequential 
patterns. Experiment results demonstrate an anomaly detection rate of higher 
than 90%, comparable to other statistical methods and 10% higher than the 
original command sequence model.  

Keywords: Computer security; IDS; Anomaly detection; User model; GA; 
Command sequence. 

1   Introduction 

Preventative methods are widely used to safeguard against access to restricted 
computing resources, including techniques such as accounts, passwords, smart cards, 
and biometrics to provide access control and authentication [1]. However, with 
growing volume and sensitivity of data processed on computer systems, data security 
has become a serious consideration, making it necessary to implement secondary 
defenses such as intrusion detection [2]. Once intruders have breached the 
authentication level, typically using the system under a valid account, online intrusion 
detection is used as a second line of defense to improve the security of computer 
systems. Intrusion detection systems (IDS) have been studied extensively in recent 
years with the target of automatically monitoring behavior that violates the security 
policy of the computer system [3] [4] [5].  

The present study focuses on anomaly detection at the command line level in a 
UNIX environment. Each user in a homogeneous working environment has 
specific characteristics of input that depending on the task, such as familiar 
commands and usage habits, and the topic of work will be stable within discrete 
periods. Users also differ individually in terms of work content and access 
privileges. For example, a programmer and a secretary may exhibit very different 
usage behaviors. One means of intrusion detection is therefore to construct a user 
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model by extracting characteristics of user behavior from historical usage data 
and detecting out any variation from this typical usage pattern as a potential 
intruder.  

The present authors have already conducted some research on anomaly detection at 
the command level using such a user model [7]. Detection was realized by a simple 
command sequence (SCS) model method, in which the user model was built by 
extracting command sequence fragments frequently used by the current user and 
seldom used by others. The model was trained by machine learning with a genetic 
algorithm (GA), and the method successfully detected more than 80% of anomalous 
user sessions in the experiment. 

In this paper, a new hybrid command sequence (HCS) model is presented. The 
characteristics of user behavior are extracted by machine learning, and a list of unique 
and frequently used command combinations are built for each user. The trained HCS 
model can then be used as the criteria on detecting illegal user behavior (breach of 
authentication) or anomalous internal user behavior (misuse of privileges). These 
improvements provide a substantial increase in performance over the original SCS 
method, and it also shows comparable to other statistical methods based on the 
experiment of a common command sequence data set. 

2   Related Work 

Intruder detection systems are broadly based on two ways: anomaly detection and 
misuse detection. Anomaly detection is based on the assumption that on a computer 
system, the activity during an attack will be noticeable different from normal system 
activity. Misuse detection is realized by matching observed behavior with that in a 
knowledge base of known intrusion signatures [3]. Each of these techniques has 
weaknesses and strengths. Anomaly detection is sensitive to behavior that varies from 
historical user behavior and thus can detect some new unknown intrusion techniques, 
yet also often judges new but normal behavior as illegal. In contrast, misuse detection 
is not sensitive to unknown intruder techniques but provides a low false alarm rate. 

Anomaly detection using Unix shell commands has been extensively studied. In 
addition to providing a feasible approach to the security of Unix systems, it’s also 
possible to be generalized to other systems. Schonlau et al. [6] summed up six methods 
of anomaly detection at command line level: “Uniqueness”, “Bayes one-step Markov”, 
“Hybrid multi-step Markov”, “Compression”, “IPAM” and “Sequence-match”. The 
Bayes one-step Markov method is based on one-step transitions from one command to 
the next. The detector determines whether the observed transition probabilities are 
consistent with the historical transition probabilities. The hybrid multi-step Markov 
method is based mostly on a high-order Markov chain and occasionally on an 
independence model depending on the proportion of commands in the test data that 
were not observed in the training data. The compression method involves constructing 
a reversible mapping of data to a different representation that uses fewer bytes, where 
new data from a given user compresses to about the same ratio as old data from the 
same user. The incremental probabilistic action modeling (IPAM) method is based on 
one-step command transition probabilities estimated from the training data with a 
continually exponential updating scheme. The sequence-matching method computes a 
similarity measure between the 10 most recent commands and a user’s profile using a 
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command-by-command comparison of the two command sequences. The uniqueness 
method is based on the command frequency. Commands not seen in the training data 
may indicate a masquerade attempt, and the more infrequently a command is used by 
the user, the more indicative that the command is being used in a masquerade attack.  

These approaches conducted anomaly detection in a statistical way, where 
deviation of system running state was monitored with a statistical value, and a 
threshold was used as the classify standard. However, the characteristic based 
classification is another way to anomaly detection. That is, it should be possible to use 
unique command combinations specific to each user to verify user behavior and 
define security policies. The SCS model was proposed by the present authors [7] as 
such an approach, in which the characteristic user model was constructed by 
extracting frequently appearing command sequence fragments for each user and 
applying GA-based machine learning to train the model. In this paper, the HCS model 
is presented as an extension of the SCS model to account for additional characteristics 
of user behavior. GA programming is also employed for machine learning the model 
from historical profile data.  

3   Hybrid Command Sequence Model 

3.1   Hybrid Command Sequence Model 

The SCS model is constructed from the historical session profile data of individual 
users, where session is defined as the command sequences inputted between login and 
logout. A session is regarded as a basic analysis unit for user behavior, which involves 
activities conducted to achieve a certain missions. By analyzing user behavior in 
discrete periods with similar task processing, the unique behavioral characteristics for 
each user can be extracted. The SCS model was thus constructed to characterize user 
behavior, and the trained model was used to label unknown sessions. The model is 
trained by a GA method from historical session profile data to search command 
sequence fragments that frequently appeared in the current user’s normal session data 
set {St}, but which occurred only rarely in the data sets of other users {Sf}. For each 
user, the number of commands in one command sequence (CS) fragment and the 
number of CS fragments in the learned SCS model are all variable according to the 
training process. For an unknown session, if it contains either CS fragment of the SCS 
model, it’ll be labeled as legal input, otherwise as illegal. The matching between CS 
fragments of the SCS model and the observed session data is illustrated in Fig. 1, 
where the CS fragment (CS3) contains three commands C31, C32 and C33. If the 
observed session contains these three commands sequentially, regardless of their 
location in the session, it is labeled as legal. Experiment results showed that the SCS 
model is capable of up to 80% accuracy in detection of illegal sessions.  

 

Fig. 1. Matching between a CS fragment of a SCS model and the observed session data 

CS3 C31 C32 C33

Session …C31 …C32 C33…
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However, the SCS model could not fit to the situation that frequently used 
command combinations (combination of CS fragments) may occur in one session but 
not necessarily in sequential order. For multiple CS fragments in a single session may 
be more powerful in characterizing user behavior, the hybrid command sequence 
(HCS) model is therefore proposed. The HCS model, as an extension of the SCS 
model, could describe further characteristics such as multiple CS fragments and 
discrete commands in a single session. 

Fig. 2 shows the structure of the HCS model. The model is constructed by multiple 
units, and each unit contains multiple CS fragments. The number of units in one 
model, the number of CS fragments in one unit, and the number of commands 
(denoted C in Fig. 2) in one CS fragment are all variable depending on training. An 
example of the HCS model is shown in Fig. 3. The different numbers of unit, CS 
fragment and command in the HCS model could describe different characteristics of 
user behavior. For example, if each unit contains only one CS fragment, the HCS 
model is identical to the SCS model; while if each CS fragment contains only one 
command, these discrete commands in the unit are used as the criteria for anomaly 
detection without consideration of the sequential characteristic. In the case that one 
unit contains both continuous sequence and discrete commands, the model is a 
composite of these two characteristics. The HCS model is thus a more powerful 
model in representing characteristics of user behavior. 

When the HCS model is used to detect an unlabeled session, the session is labeled 
as legal if either unit of the model is found in the session, which means that all CS 
fragments of the unit must be contained by the session. An illustration of the 
matching between a unit of the HCS model and a session is shown in Fig. 4, where a 
unit consists of two CS fragments (CS11, CS12), the CS fragment CS11 contains 
three commands (C111, C112 and C113), and CS12 contains two commands (C121 
and C122). Thus, if the session contains both CS11 and CS12, the session is labeled 
as legal. 

 

Fig. 2. Structure of the hybrid command sequence model 
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UNIT1:
CS11: exit

CS12: le le

CS13: make vi

UNIT2:
CS21: ll vi

CS22: ll

UNIT3:
CS31: ll

CS32: kill

CS33: cd  

Fig. 3. Example of an HCS model 

 

Fig. 4. Matching between a unit in the HCS model and the observed session data 

3.2   Definition 

Judgment of the legality of a session is a binary classification problem. The 
verification of T unlabeled sessions, with TP as correct acceptance classifications, TN 
as correct alarms, FP as false acceptances classifications, and FN as false alarms 
(T = TP + TN + FP + FN), is therefore given by  

FNTP

FN
FRR

+
= . (1) 

FPTN

FP
FAR

+
= . (2) 

where FRR is the false rejection rate (incorrect classification of normal data as 
hostile), FAR is the false acceptance rate (incorrect classification of hostile data as 
normal). The quality of a detector can then be judged in terms of its ability to 
minimize either FRR or FAR. In reality, there is often a bias favoring on either FRR or 
FAR. Therefore, the overall quality of the method can be evaluated by a cost function 
as follows. 

FARFRRCost ×+×= βα . (3) 

As the cost of a false alarm and a miss alarm will vary to the application, there is 
no way to set relative values of α and β to achieve an optimal cost in all cases. By 
convention, α and β in a cost function are both set to 1, given the relation 

FARFRRCost += . (4) 

CS11 : C111 C112 C113

Session : C112C111 C113 …

CS12 : C121 C122

C121 C122…… 
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3.3   Machine Leaning of HCS by GA 

The training of a model with historical user data is a search problem to find specific 
and differential behavioral characteristics for a particular user. It’s impossible to 
search such complex command patterns of the HCS model directly from the large data 
space. GA is a relatively efficient approach for searching in a large data space. In the 
learning stage by GA, the optimization target is to find the model that occurs 
frequently in the target user’s normal data set {St} and seldom in the data of other 
users {Sf}. The two-stage GA is employed. Encoding and implementation are 
described as below.  

3.3.1   GA Encoding 
Training of the HCS model is performed to find the optimal combinations of 
commands. A command table of frequently appearing commands is constructed 
initially, and each command is indexed by a number value. The search operation is 
conducted based on frequently appeared commands rather than all commands to 
improve searching efficiency. Each chromosome in GA has a structure similar to that 
of the HCS model (Fig. 2), so that each HCS model is encoded as a chromosome. 
Rather than binary encoding, each gene in a chromosome is encoded using the indices 
in the command table. In the decoding stage, each chromosome is decoded as a 
solution of the HCS model which contains multi-command combinations. One 
solution of the HCS model appears as shown in Fig. 3. The numbers of unit, CS 
fragment and command are all variable depending upon the initialization and the 
evolutionary operation of the GA. 

 

Fig. 5. GA processing 
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3.3.2   GA Processing 
GA processing typically involves an initialization stage and an evolution stage, which 
includes fitness calculation, selection, crossover and mutation, as shown in Fig. 5. 
When initializing a population, numbers of unit, CS fragment and command are all set 
randomly. Here, the CS fragments are initialized with randomly selected CS 
fragments extracted from the user’s sessions. The optimization target of the GA is to 
gain the minimum cost function (Eq. (3) or (4)). Therefore, the fitness function is 
defines as: 

)(2 FARFRRFitness ×+×−= βα . (5) 

where α + β = 2, and α and β may vary according to different applications. By 
convention, α and β are set to 1 in this paper, leading to the relation 

)(2 FARFRRFitness +−= . (6) 

Selection is processed under the proportional selection strategy according to 
individuals’ fitness.  

Crossover, a key process of evolution in GA, is performed in a special way to 
account for the variability of the numbers of unit, CS fragment and command in a 
chromosome. Here, the two stage crossover is employed: CS-level crossover and 
command-level crossover, where the former provides stability and ensures evolution 
of the population, and the latter allows evolution of the number of commands. In CS-
level crossover, a randomly chosen point is assigned as a crossover point for a pair of 
mated individuals. As the example shown in Fig. 6, the crossover point is 4. For 
command-level crossover operations, a pair of CS fragments is chosen randomly 
according to a probability (set at 0.1 here based on experiences) from a pair of mated 
individuals. Crossover points are then selected randomly for the two CS fragments 
separately. As the example shown in Fig. 7, the crossover point of CS33 is 2, and 
CS33’ is 3. Result of the crossover operation is shown in Fig. 8.  

Mutation is realized by randomly choosing one Gene in a chromosome according 
to a probability, and setting the point to a randomly selected value from the command 
table index. 

 
Fig. 6. CS-level crossover of two individuals at point 4 

 

Fig. 7. Selection of two CS fragments for command-level crossover 

CS11    CS12 CS13 CS21 CS22’ CS23’ … 

CS11’ CS12’ CS13’ CS21’ CS22 CS23 … 

CS33’ C1’ C2’ C3’ C4’ 

CS33 C1 C2 C3 C4 C5 
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Fig. 8. Result of command-level crossover operation in Fig. 7 

4   Experiments 

The HCS model method was evaluated on the same “session data” as the SCS model, 
where session is regard as analysis unit. At same time, to compare the HCS model 
with other previous methods, experiments were also conducted on the common data 
set provided by Schonlau et al. [6]. However, the Schonlau data is a simply collection 
of 15000 commands for each user, without labeling the session each command 
belongs to. Thus, to apply the HCS model to the Schonlau data, the command set of 
each user is divided manually into 150 sessions with 100 commands in each session.    

4.1   The Session Data  

The session data set consists of historical session profile data for 13 users collected 
over 3 months. The users were graduate computer science students who used the 
computer system for programming, document editing, email, and other regular 
activities. Only sessions containing more than 50 commands were recorded, 
command arguments were excluded. A total of 1515 sessions were collected, 
including 83694 commands. For seven users, 529 sessions were used as the training 
data, and the remaining 521 sessions were used as the testing data. The 465 sessions 
for the other six users were used as the independent testing data [7]. 

The results are listed in Tables 1–3. FRR and FAR of the HCS model for the 
training, testing and independent data exhibits a remarkable 10% improvement 
compared to that achieved by the SCS method [7]. The average FRR for the testing 
data set is higher than the average FAR for the testing and independent data, and it 
shows that the HCS model is relatively more powerful for anomaly detection, but 
suffers from a slightly elevated FRR. The average FRR for the testing data set is 
also much higher than the average FRR for the training data, and it shows that there 
has some degradation when the trained model is applied to the test data. The FAR  
 

Table 1. FRR and FAR for the training data (%) 

Subject FRR FAR 
User 1 3.2 6.5 
User 2 10.4 0.5 
User 3 14.3 3.6 
User 4 16.9 19.0 
User 5 14.7 0.0 
User 6 1.2 1.1 
User 7 3.8 1.1 
Average 9.2 4.5 

CS33 C1 C2 C4’ 

CS33’ C1’ C2’ C3’ C3 C4 C5 
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Table 2. FRR and FAR for the testing data (%) 

Subject FRR   FAR 
User 1 5.7 6.5 
User 2 26.0 0.6 
User 3 31.6 3.6 
User 4 19.7 25.7 
User 5 41.5 3.2 
User 6 18.6 3.6 
User 7 17.9 1.0 
Average 23.0 6.3 

Table 3. FAR for the independent data (%) 

Subject FAR 
User 8 6.9 
User 9 0.0 
User 10 19.3 
User 11 12.4 
User 12 0.0 
User 13 17.2 
Average 9.3 

value for user 5 is 14.7% for the training data and 41.5% for the testing data. This 
therefore indicates that a certain users as user 5 are difficult to describe uniquely by 
the HCS model. 

4.2   The Schonlau Data 

Schonlau et al. collected command line data for 50 users, with 15000 commands in 
the set (file) for each user. The first 5000 commands do not contain any masqueraders 
and are intended as the training data, and the remaining 10000 commands (100 blocks 
of 100 commands) are seeded with masquerading users (i.e. with data of another user 
not among the 50 users). A masquerade starts with a probability of 1% in any given 
block after the initial 5000 commands, and masquerades have an 80% chance of 
continuing for two consecutive blocks. Approximately 5% of the testing data are 
associated with masquerades [6].  

The time cost for the collection of data in the Schonlau set differs for each user. To 
adopt the session notation, the training data are divided manually into 100 sessions of 
100 commands. Although this will result in some degradation of the performance of 
the HCS method, which is built on the notion of session, the results are still 
comparable with other methods. The first 5000 commands of each user are divided 
into 50 sessions as the training data. The 50 sessions of the current user are used as 
the legal training data, and 1000 sessions of other 20 randomly selected users are used 
as the illegal training data. Experiment results of previous methods and the HCS 
method based on the Schonlau data are shown on Table 4, and Cost is calculated 
according to Eq. 4. We could see efficiency of HCS is better than others, and it gains 
the best Cost value with a relative high FRR of 33.9%. 
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Table 4. Results based on the Schonlau data (%)  

Method FAR FRR Cost 
1-step Markov 30.7 6.7 37.4 
Hybrid Markov 50.7 3.2 53.9 

IPAM 58.6 2.7 61.3 
Uniqueness 60.6 1.4 62.0 

Sequence Matching 63.2 3.7 66.9 
Compression 65.8 5.0 70.8 

HCS 1.4 33.9 35.3 

5   Discussion 

The HCS model is an extension of the SCS model. Besides the sequential 
characteristic as the SCS model, it could also describe the co-existence characteristic. 
As searching such complex command patterns directly from the large data space is 
impossible, GA, which is a relatively efficient approach for searching in a large data 
space, is employed for learning the HCS model. As a result, the HCS model method 
exhibited a 10% improvement in anomaly detection compared to that of the SCS 
model method. 

Different from previous methods, which took all commands into account in a 
statistical way, the HCS model method only depends on the usages of typical 
command combinations owned by individual users. Therefore, processes of anomaly 
detection by the HCS model is more directly and interpretable than that of statistical 
methods. Additionally, for anomaly detection by the HCS method only needs 
matching operation between input commands and commands patterns of the model, it 
needs less computation cost than other methods. 

The performance of the HCS method based on the Schonlau data is also 
comparable to that of the other six methods summarized by Schonlau et al. As while, 
the performance of the HCS method is somewhat lower on the Schonlau data than on 
the session data. This is partly due to the manual division of the data set into sessions, 
which destroys the structure of the data set. The Schonlau data was collected without 
the consideration of session or period. A long period of data collection may also cause 
a substantial shift in user behavior, reducing the performance of the HCS method. To 
adapt to variation of user behavior over time, the HCS model should be further 
maintained periodically to ensure its efficiency. 

In both experiments, the FRR is much higher than the FAR. It rests on that: in the 
HCS model, only typical characteristics of command combination used by the current 
user are searched and employed to verify normal behavior of this user. For the typical 
characteristics of the current user are rarely used by anomaly sessions inputted by 
other user, it gained a high efficiency in anomaly detection. At same time, for only 
limited typical characteristics are extracted to describe behaviors of the current user, 
the normal behavior, which doesn’t necessarily contain typical usages, will be apt to 
be judged as abnormal and leads to a high false alarm rate. That’s the reason why the 
FRR is difficult to decrease even using different parameters of α and β in Eq. (5).  

The start point of the HCS is different from other statistical methods. As in the 
Uniqueness method, commands not seen before or infrequently used are extracted and 
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used to label anomaly behaviors. Yet, the HCS method extracts command patterns 
that frequently used by the current user and seldom used by others to discriminate 
normal behaviors. Therefore, the two methods are complimentary in using 
characteristics of user behavior, and the composition of the two methods is expected 
to be researched in future to gain a better result. 

6   Conclusions 

The hybrid command sequence model (HCS) was proposed as the basis for a new 
intrusion detection method. The HCS model is constructed by extracting 
characteristics of user behavior (combinations of command sequence fragments) from 
historical session data by GA. When applying the learned model to the unknown 
session data, the HCS model method achieves a false acceptance rate of lower than 
10% for anomaly detection, and provides a 10% improvement in efficiency than the 
previous the SCS model. The HCS method also performs comparable to other 
statistical techniques, even though the method approaches the problem from a 
different starting point. When combined with other preventative methods such as 
access control and authentication, the HCS method is expected to improve the 
security of a computer system significantly.  

The HCS model also has the advantage of low computation cost in anomaly 
detection, requiring only a matching operation between a set of limited command 
combinations of the HCS model and the observed session.  

For the present system still has a high false rejection rate (>20%), future work 
should be done to improve efficiency further more. It may include taking a wider 
range of characteristics of user behavior into account, and composing the HCS 
method with other statistical techniques. Additionally, it should also be evaluated on 
other context, such as fraud detection, mobile phone based anomaly detection of user 
behavior, and so on. 
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Abstract. Workflow Management Systems help to execute, monitor
and manage work process flow and execution. These systems, as they are
executing, keep a record of who does what and when (e.g. log of events).
The activity of using computer software to examine these records, and
deriving various structural data results is called workflow mining. The
workflow mining activity, in general, needs to encompass behavioral
(process/control-flow), social, informational (data-flow), and organiza-
tional perspectives; as well as other perspectives, because workflow sys-
tems are ”people systems” that must be designed, deployed, and under-
stood within their social and organizational contexts. In this paper1, we
especially focus on the behavioral perspective of a structured workflow
model that preserves the proper nesting and the matched pair properties.
That is, this paper proposes an ICN-based mining algorithm that redis-
covers a structured workflow process model. We name it σ-Algorithm,
because it is incrementally amalgamating a series of temporal workcases
(workflow traces) according to three types of basic merging principles
conceived in this paper. Where, a temporal workcase is a temporally or-
dered set of activity execution event logs. We also gives an example to
show that how the algorithm works with the temporal workcases.

Keywords: Workflow Management System, Events Log, Workflow Min-
ing, Process Rediscovery, Temporal Workcase, Workflow Process Mining
Framework.
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1 Introduction

A Workflow Management System (WfMS) is defined as a system that (partially)
automates the definition, creation, execution, and management of work processes
through the use of software that is able to interpret the process definition, inter-
act with workflow participants, and invoke the use of IT tools and applications.
Steps of a work process are called activities, and jobs or transactions that flow
through the system are called workcases or workflow instances. Such a WfMS
and its related technologies have been constantly deployed and so gradually
hot-issued in the IT arena. This atmosphere booming workflows modeling and
reengineering is becoming a catalyst for triggering emergence of the concept of
workflow mining that rediscovers several perspectives—control flow, data flow,
social, and organizational perspectives—of workflows from workflow execution
histories collected at runtime.

In this paper, we especially focus on the control flow perspective of the work-
flow mining functionality. A workflow model is described by several entities, such
as activity, role, actor, invoked applications, and relevant data. The control flow
perspective specifies the transition precedences—sequential, conjunctive(AND)
and disjunctive(OR) execution sequences—among the activities, and it is repre-
sented by the concept of workflow process model defined in this paper by using
the graphical and formal notations of the information control net (ICN)[10].
Also, we assume that the workflow process model keeps the proper nesting and
the matched pairing properties in modeling the conjunctive and the disjunctive
transitions—AND-split, AND-join nodes and OR-split, OR-join nodes—in or-
der to compose a structured workflow model[16]. Based upon the concept of the
structured workflow process model, we propose a workflow process mining algo-
rithm that is a means of rediscovering a structured workflow process model from
log of activity execution events. A workflow event log is typically an interleaved
list of events from numerous workcases—workflow instances.

In the remainder of this paper, we are going to show that our mining algorithm
is able to handle all of the possible activity execution cases through the concepts
of temporal workcase. At first, the next section presents the meta-model of the
structured workflow process model with graphical and formal notations. In the
main sections of this paper, we present a workflow process mining framework and
the detailed description of the workflow process mining algorithm with respect
to its basic principles and constructs with some examples. Finally, we discuss
the constraints of the workflow process mining algorithm and its related work.

2 Structured Workflow Process Model

In this paper, we use the information control net methodology[10] to represent
wokflow models. The information control net (ICN) was originally developed
in order to describe and analyze information flow by capturing several entities
within office procedures, such as activities, roles, actors, precedence, applica-
tions, and repositories. It has been used within actual as well as hypothetical
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automated offices to yield a comprehensive description of activities, to test the
underlying office description for certain flaws and inconsistencies, to quantify
certain aspects of office information flow, and to suggest possible office restruc-
turing permutations. In this section, especially, we focus on the activities and
their related information flows by defining structured workflow process model
through its graphical and formal representations.

2.1 Graphical Representation

As shown in Fig. 1, a workflow process model consists of a set of activities
connected by temporal orderings called activity transitions. In other word, it
is a predefined set of work steps, called activities, and a partial ordering (or
control flow) of these activities. Activities can be related to each other by com-
bining sequential transition types, disjunctive transition types (after activity αA,
do activity αB or αC , alternatively) with predicates attached, and conjunctive
transition types (after activity αA, do activities αB and αC concurrently). An
activity is either a compound activity containing another subprocess, or a ba-
sic unit of work called an elementary activity. An elementary activity can be
executed in one of three modes: manual, automatic, or hybrid.

Fig. 1. Graphical Notations for the Basic Transition Types

2.2 Formal Representation

The structured workflow process model needs to be represented by a formal no-
tation that provides a means to eventually specify the model in textual language
or in database, and both. The following definition is the formal representation
of the structured workflow process model:

Definition 1. Structured Workflow Process Model(SWPM). A basic struc-
tured workflow process model is formally defined through 4-tuple Γ = (δ, κ, I,O)
over an activity set A, and a transition-condition set T, where

– I is a finite set of initial input repositories, assumed to be loaded with infor-
mation by some external process before execution of the model;
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– O is a finite set of final output repositories, which is containing information
used by some external process after execution of the model;

– δ = δi ∪ δo,
where, δo : A −→ ℘(α ∈ A) is a multi-valued mapping function of an activity
to its set of (immediate) successors, and δi : A −→ ℘(α ∈ A) is a multi-
valued mapping function of an activity to its set of (immediate) predecessors;

– κ = κi ∪ κo ,
where κi : T −→ ℘(α ∈ A) is a multi-valued mapping function of an activ-
ity to its incoming transition-conditions (∈ T) on each arc, (δi(α), α); and
κo : T −→ ℘(α ∈ A) : is a multi-valued mapping function of an activity to
its outgoing transition-conditions (∈ T) on each arc, (α, δo(α)).

Summarily, the structured workflow process model will be constructed by Struc-
tured Modeling Methodology[16] preserving the proper nesting and the matched
pairing properties, and its formal definition implies that the structured ordering
of a workflow process model can be interpreted as the ordered combination of
the following basic transition types graphically depicted in Fig. 1.

(1) Sequential Transition
incoming → δi(αB ) = {{αA}}; outgoing → δo(αB ) = {{αC}};

(2) OR Transition
or-split → δo(αA) = {{αB}, {αC}}; or-join → δi(αD ) = {{αB}, {αC}};

(3) AND Transition
and-split → δo(αA) = {{αB , αC}}; and-join → δi(αD ) = {{αB , αC}};

3 Structured Workflow Process Mining Algorithm

In this section, we propose a workflow mining framework that eventually redis-
covers a structured workflow process model from the workflow execution events
log. The framework is made up of a series of concepts and algorithms. How-
ever, we particularly focus on the mining algorithm and its directly related con-
cept—temporal workcase. Finally, in order to prove the correctness of the algo-
rithm, we show how it works for a typical structured workflow process model,
as example, comprising the three types of control flow transition.

3.1 Framework

The workflow process mining framework is illustrated in Fig. 2. The framework
starts from the event logs written in XWELL (XML-based Workflow Event Log
Language)[7], by which the workflow event logging mechanism of a workflow en-
actment engine stores all workflow process execution event histories triggered by
the engine components. The XWELL needs to be standardized so that hetero-
geneous workflow mining systems are able to collect the event logs without any
additional data transformations. In general, the event logs might be produced
by the workflow engine’s components, like event triggering components, event
formatting components and event logging components. Once, a log agent receives
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Fig. 2. The Workflow Process Mining Framework

event logs and then transforms them into XML-based log messages, and store
the transformed messages onto the Log File Storage.

Based on the XML-based event logs on the log file storage, we can build a
workflow process mining warehouse that shapes into a cube with three dimen-
sions, such as workflow process models, temporal workcases, and activities. From
the cube we extract a set of temporal workcases (traces) that is instantiated from
a structured workflow process model. A temporal workcase is a temporal order
of activity executions within an instance of the corresponding workflow process
model, and it will be formally represented a workcase model. The details of the
temporal workcase and its related models are precisely defined in the next sec-
tion. Finally, the workflow process mining algorithm rediscovers a structured
workflow process model by incrementally amalgamating a series of workcase
models, ω1 ∼ ωn , one-by-one. The details of the algorithm and its operational
example are described in the next sections, too.

3.2 σ-Algorithm

This section gives a full detail of the workflow process mining algorithm and
demonstrates the algorithm’s correctness though an example of structured work-
flow process model. In order to mine a workflow process model if we use one of
the existing algorithms[9], we have to assume that there might be many and pos-
sibly infinite workflow process models (if fake activities are allowed) that could
be mined from a set of traces, even though some of these models are very easy to
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compute, the others are not, and that we must pick one reasonable model out of
the infinitely many models as a final output of the algorithm. However, we take
a fundamentally different approach to conceive an algorithm. More specifically,
our algorithm will build up one reasonable model by amalgamating one trace
after another, each of which is embodied in a workcase model. In summary, the
central idea of our approach is as follows:

– The algorithm repeatedly modifies a temporarily rediscovered workflow pro-
cess model, which is called reasonable model, by incorporating one at a time
into it until running out all traces. Thus, it is an incremental algorithm;
after seeing the first trace the algorithm generates a new reasonable model,
and upon seeing the second trace it merges into the existing reasonable model,
and so forth. Conclusively, the algorithm is made up of a series of rewrite
operations that transform the reasonable model plus one trace into a new
reasonable model until bringing up to the last. The final reasonable model
becomes the structured workflow process model rediscovered from all traces of
the corresponding workflow process model.

3.2.1 Workflow Traces: Temporal Workcases
As a workflow process instance executes, a temporal execution sequence of its
activities is produced and logged into a database or a file; this temporal execution
sequence is called workflow trace or temporal workcase, which is formally defined
in Definition 3. The temporal workcase is made up of a set of workflow event
logs as defined in the following Definition 2. Also, we would define the concept
of workflow process log in Definition 4, which is produced from a set of temporal
workcases spawned from a single structured workflow process model.

Definition 2. Workflow Event Log. Let we = (α, pc,wf , c, ac, ε, p∗, t , s) be a
workflow event, where α is a workitem (activity instance) number, pc is a pack-
age number, wf is a workflow process number, c is a workflow instance (case)
number, ac is an activity number, ε is an event type, which is one of {Scheduled,
Started, Changed, Completed}, p is a participant or performer, t is a timestamp,
and s is an activity state, which is one of {Inactive, Active, Suspended, Com-
pleted, Terminated, Aborted}. Note that * indicates multiplicity.

In general, we consider a workflow event log to be stored in an XML format.
An XML based workflow event log language has been studied and proposed in
[7] for the purpose of workflow mining. Because of the page length limitation,
we now assume to simply use the language to describe the XML schema of a
workflow event logs in this paper.

Definition 3. Workflow Trace (Temporal Workcase). Let WT(c) be the work-
flow trace of process instance c, where WT (c) = (we1 , . . . ,wen). Especially, the
workflow trace is called temporal workcase, TW(c), if all activities of its under-
lined process instance are successfully completed. There are three types of tem-
poral workcases according to the events type—Scheduled, Started, Completed:
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– ScheduledTime Temporal Workcase
{wei |wei .c=c ∧ wei .e = ’Scheduled’∧wei .t≤ wej .t ∧ i < j ∧ 1 ≤ i , j ≤n},which
is a temporally ordered workflow event sequence based upon the scheduled
time stamp.

– StartedTime Temporal Workcase
{wei |wei .c=c ∧ wei .e = ’Started’∧ wei .t ≤wej .t ∧ i < j ∧ 1 ≤ i , j ≤ n}, which
is a temporally ordered workflow event sequence based upon the stated time
stamp.

– CompletedTime Temporal Workcase
{wei |wei .c=c ∧ wei .e = ’Completed’ ∧ wei .t ≤ wej .t ∧ i < j ∧ 1 ≤ i , j ≤ n},
which is a temporally ordered workflow event sequence based upon the com-
pleted time stamp.

As shown in the definition of temporal workcase, there are three types of tem-
poral workcases differentiated from the temporal information (the event’s times-
tamp) logged when the corresponding activity’s workitem event was happened.
Originally, in the workflow event log schema[7], the events that are associated
with the workitem are related to Scheduled, Started and Completed in order
to form the types of temporal workcases to be used in the workflow mining
algorithm.

Definition 4. Workflow Process Log and Warehouse. Let Ii = {ci
1 , ..., ci

m}
be a set of completed process instances (m is the number of the process instances)
that have been instantiated from a workflow process model, Ii . A workflow pro-
cess warehouse consists of a set of workflow process logs, WL(I1 ), . . ., WL(In),
where WL(Ii) = ∀WT (ci ∈ Ii), and n is the number of workflow process models
managed in a system.

Based on these defined concepts, we are able to prepare the temporal work-
cases that become the input data of the workflow mining algorithm proposed
in this paper. Additionally, according to the types of temporal workcases, we
can build three different types of workflow process logs and their warehouses as
defined in Definition 4. Conclusively speaking, the workflow mining algorithm
may consider taking the temporal workcases, as input data, coming from one
of three workflow process warehouse types—ScheduledTime-based Warehouse,
StartedTime-based Warehouse, and CompletedTime-based Warehouse. Also, the
algorithm may simultaneously take two types of temporal information such as
ScheduledTime/CompletedTime or StartedTime/CompletedTime to rediscover
structured workflow process models. In this case, the algorithm needs to take
two types of the temporal workcases, each of which is belonged to its warehouse
type, respectively. The algorithm presented in this paper will be taking care of
the StartedTime-based workflow process warehouse as the source of the tempo-
ral workcases. Nevertheless, it is sure for the algorithm to be able to be extended
so as to handle two types of the temporal workcases as its input data.
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3.2.2 Workcase Model
Each of the temporal workcases, as the input data of the algorithm, is represented
into a workcase model through a series of converting operations of the algorithm.
In the following Definition 5, we formally define the workcase model, and also
it can be graphically represented, too, as shown in Fig. 3. The primary reason
we use the formal workcase model is that because it is surely convenient in
composing the workflow mining algorithm.

Definition 5. Workcase Model (WCM). A workcase model is formally defined
through 3-tuple W = (ω,P,S) over an activity set A, where

– P is a predecessor activity of some external workcase model, which is con-
nected into the current workcase model;

– S is a successor activity of some external workcase model, which is connected
from the current workcase model;

– ω = ωi ∪ ωo,
where, ωo : A −→ ℘(α ∈ A) is a single-valued mapping function of an activ-
ity to its immediate successor in a temporal workcase, and ωi :A −→℘(α∈A)
is a single-valued mapping function of an activity to its immediate predeces-
sor in a temporal workcase.

3.2.3 The Basic Amalgamating Principles
As described in the previous section, a structured workflow process model is
designed through the three types of control transitions—sequential, disjunctive
and conjunctive transition—with keeping the matched pair and proper nesting
properties. Therefore, the workflow mining algorithm must be obligated to redis-
cover these transitions by amalgamating the temporal workcases of a workflow
process log. The basic idea of the amalgamation procedure conducted by the
algorithm is to incrementally amalgamate one workcase model after another.
Also, during the amalgamation procedure works, the most important thing is to
observe and seek those three types of transitions.

Precisely, the basic amalgamating principles seeking each of the transition
types are as follows: if a certain activity is positioned at the same temporal
order in all workcase models, then the activity is to be involved in a sequential
transition; else if the activity is at the different temporal order in some workcase
models, then we can infer that the activity is to be involved in a conjunctive
transition; otherwise if the activity is either presented in some workcase models
or not presented in the other workcase models, then it has got to be involved in
a disjunctive transition.

As simple examples of the amalgamating principles, we algorithmically illus-
trate the amalgamation procedures rediscovering a conjunctive transition and a
disjunctive transition through simple examples. As an example of the conjunc-
tive transition, suppose we examine the workflow process log of a structured
workflow process model that has three activities, a1, a3 and a4, and try to amal-
gamate two specific workcase models; the temporal order of a3 and a4 in one
workcase model, is reversed on the other workcase model. Therefore, we can
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infer that the activities, a3 and a4, are involved in a conjunctive transition of
the structured workflow process.

As an example of the disjunctive transition, we also assume that we examine
the workflow process log of a structured workflow process model that has four
activities, a1, a3, a4 and a5, and try to amalgamate two specific workcase models;
the temporal order of a1 and a5 in one workcase model is same on the other
workcase model; also, the positions of a3 and a4 on the temporal order are same
in these two workcase models respectively, and, while on the other, the activities,
a3 and a4, are not presented in these two workcase models at the same time.
Therefore, we can infer that the activities, a3 and a4, are involved in a disjunctive
transition of the structured workflow process.

3.2.4 SWPM Rediscovering Algorithm
Based upon the basic amalgamating principles, we conceive a workflow mining
algorithm in order to rediscover a reasonable structured workflow process model
from a workflow process log. We name it σ-Algorithm, because its basic idea is
to incrementally amalgamate the temporal workcases, which is just reflecting the
conceptual idea of the summation operator(

∑
) in mathematics. Because of the

page limitation we would not make a full description of the algorithm in here.
However, we just introduce the detailed algorithm as follows, which is pseudo-
coded as detail as possible with some explanations in comments, so that one is
able to easily grasp the algorithm without the full description.

PROCEDURE SWPMRediscovery():

1: Input : A Set of Temporal Workcases, ∀(wc[i], i = 1..m);
2: where, wc[1] == START(�), wc[m] == END(�);
3: Output : (1) A Rediscovered Structured Workflow Process Model (SWPM), R = (δ, κ, I, O);
4: - The Activity Set of SWPM, A = {α1 .. αn}, (wc[i], i = 1..m) ∈ A;
5: (2) A Set of Workcase Models (WCMs), ∀ W = (ω, P, S);
6:
7: Initialize : δi(START(�))← {NULL};
8: δo(END(�))← {NULL};
9: PROCEDURE WPMRediscovery()
10: BEGIN
11: WHILE ((wc[]← readOneWorkcase()) 	= EOF) DO
12: i ← 1;
13: WHILE (wc[i] 	= END(�)) DO
14: ωo(wc[i])← wc[i + 1]; i ← i + 1; ωi(wc[i])← wc[i − 1];
15: END WHILE
16: /* Rediscovering the temporary RWPM from the current WCM */
17: FOR (i = 1; i < m; i + +;) DO
18: IF (Is δo(wc[i]) an empty-set?) THEN
19: δo(wc[i])← ωo(wc[i]); continue;
20: END IF
21: IF (isANDTransition(wc[i], ωo(wc[i])) == TRUE) THEN
22: continue;
23: END IF
24: FOR (each set, a, of sets in δo(wc[i])) DO
25: SWITCH (checkupTransition(a, ωo(wc[i])) DO
26: Case ’fixed transition’:
27: Case ’sequential relationship’:
28: δo(wc[i])← ωo(wc[i]);
29: break;
30: Case ’conjunctive transition (AND-split)’:
31: ANDset← makeANDTransition(a, ωo(wc[i]));
32: δo(wc[i])← δo(wc[i]) ∪ ANDset;
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33: eliminatePreviousTransition(a, ωo(wc[i]));
34: break;
35: Case ’disjunctive transition (OR-split)’:
36: ORset← makeORTransition(a, ωo(wc[i]));
37: δo(wc[i])← δo(wc[i]) ∪ ORset;
38: eliminatePreviousTransition(a, ωo(wc[i]));
39: break;
40: Default: /* Exceptions */
41: printErrorMessage();
42: break;
43: END SWITCH
44: END FOR
45: END FOR
46: END WHILE
47: finishupSWPM(); /* with its input-activity sets, (δi (wc[i]), i = 1..n)
48: and its transition-conditions */
49: δi(α1 )← {START(�)}; δo(αn)← {END(�)};
50: PRINTOUT
51: (1) The Rediscovered Structured Workflow Process Model, SWPM, R = (δ, κ, I, O);
52: (2) A Set of the Workcase Models, WCMs, ∀W = (ω, P, S);
53: END PROCEDURE

Finally, the algorithm’s operational example is algorithmically illustrated in
Fig. 3. The right-hand side of the figure is the rediscovered structured workflow
process model that the algorithm mines from the temporal workcases, which
are the typical four temporal workcases possibly produced from the original
structured workflow process model. As might be expected, the algorithm doesn’t
care the original model; nevertheless, we need it to generate a set of temporal
workcases and verify the algorithm. Fortunately, we are able to imagine that
the original model produces the following four StartedTime temporal workcases:
(1) a1→a2→a4→a3→a6 (2) a1→a2→a5→a3→a6 (3) a1→a2→a3→a4→a6 (4)
a1→a2→a3→a5→a6.

Fig. 3. An Operational Example mining a Structured Workflow Process Model

3.3 Constraints of the Algorithm

As emphasized in the previous sections, this algorithm is operable on the con-
cept of structured workflow process model that retains the proper nesting and
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matched pair properties[16]. Keeping these properties causes to constrain the
algorithm as well as the modeling work; nevertheless, it might be worthy to
preserve the constraints because they can play a very important role in increas-
ing the integrity of the workflow model. Additionally, not only the improperly
nested workflow model makes its analysis complicated, but also the workflow
model with unmatched pairs may be stuck and run into a deadlock situation
during its runtime execution.

Another important issue in designing workflow mining algorithms is about how
to handle loop transitions in a workflow process model, because they may produce
not only a lot of workflow event logs but also much more complicated patterns
of temporal workcases. Precisely, according to the number of repetitions and the
inside structure of a loop transition, the model’s execution may generate very di-
verse and complicated patterns of temporal workcases. Therefore, the algorithm
proposed in this paper has got to be extended in order to properly handle the loop
transitions. We would leave this issue to our future research work.

4 Related Works

So far, there have been several workflow mining related researches and develop-
ments in the workflow literature. Some of them have proposed the algorithms
[1,3,4,5,8,9,11,13,15] for workflow mining functionality, and others have devel-
oped the workflow mining systems and tools[2,6]. Particularly, as the first in-
dustrial application of the workflow mining, J. Herbsta and D. Karagiannisb in
[2] presented the most important results of their experimental evaluation and
experiences of the InWoLvE workflow mining system. However, almost all of
the contribution are still focusing on the development of the basic functional-
ity of workflow mining techniques. Especially, W.M.P. van der Aalst’s research
group, through the papers of [1,9,14], proposed the fundamental definition and
the use of workflow mining to support the design of workflows, and described
the most challenging problems and some of the workflow mining approaches
and algorithms. Also, Clarence Ellis’s research group newly defined the scope
of workflow mining concept from the view point of that workflow systems are
”people systems” that must be designed, deployed, and understood within their
social and organizational contexts. Thus, they argue in [11,12] that there is a
need to expand the concept of workflow discovery beyond the process dimension
to encompass multidimensional perspective such as social, organizational, and
informational perspectives; as well as other perspectives. This paper is the partial
result of the collaborative research on mining the workflow’s multidimensional
perspectives.

5 Conclusion

In this paper, we proposed a mining algorithm rediscovering a structured work-
flow process from the temporal workcases out of a workflow process log. The
algorithm is based on the structured workflow process model designed by the
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information control net workflow modeling methodology, and we showed that
it is able to properly handle the three different types of control transitions—
sequential, conjunctive and disjunctive transitions—through an operational ex-
ample. Also, we need to extend the algorithm to cope with the loop transition in
the near future. In a consequence, workflow mining methodologies and systems
are rapidly growing and coping with a wide diversity of domains in terms of
their applications and working environments. So, the literature needs various,
advanced, and specialized workflow mining techniques and architectures that
are used for finally giving feed-backs to the redesign and reengineering phase of
the existing workflow models. We strongly believe that this work might be one
of those impeccable attempts and pioneering contributions for improving and
advancing the workflow mining technology.
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Abstract. A MPEG video traffic prediction model in ATM networks
using the Multiscale BiLinear Recurrent Neural Network (M-BLRNN) is
proposed in this paper. The M-BLRNN is a wavelet-based neural network
architecture based on the BiLinear Recurrent Neural Network (BLRNN).
The wavelet transform is employed to decompose the time-series to a mul-
tiresolution representation while the BLRNN model is used to predict a
signal at each level of resolution. The proposed M-BLRNN-based pre-
dictor is applied to real-time MPEG video traffic data. When compared
with the MLPNN-based predictor and the BLRNN-based predictor, the
proposed M-BLRNN-based predictor shows 16%-47% improvement in
terms of the Normalized Mean Square Error (NMSE) criterion.

Keywords: MPEG, Recurrent Neural Networks.

1 Introduction

The dynamic nature of bursty traffic data in Asynchronous Transfer Mode
(ATM) networks may cause severe network congestion when a number of bursty
sources are involved. Therefore, the demand for dynamic bandwidth allocation
to optimally utilize the network resources and satisfy Quality of Service(QoS)
requirements should be taken into account. In order to dynamically adapt for
bandwidth allocation, prediction of the future network traffic generated by end-
users according to the observed past traffic in the network plays a very important
role in ATM networks. Various traffic prediction models have been proposed for
MPEG video traffic prediction. Classical linear models such as the Autogressive
(AR) model [1] and adaptive linear model [2] have been widely used in prac-
tice. However, these models may be not suitable for predicting traffic over ATM
networks due to the bursty characteristics of these networks.

A number of new nonlinear techniques have been proposed for MPEG video
traffic prediction. Among them, the neural network (NN)-based models have
received significant attention [3,4]. These recent studies reported that satisfac-
tory traffic prediction accuracy can be achieved for a single-step prediction,i.e.,
the prediction for only next frame. However, the sing-step prediction may not
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be suitable in application such as dynamic bandwidth allocation since it is im-
practical to reallocate the bandwidth frequently for a single frame. Therefore,
multi-step prediction of MPEG video traffic should be explored.

In this paper, a MPEG video traffic prediction model using a Multiscale
BiLinear Recurrent Neural Network (M-BLRNN) [5]is proposed. The M-BLRNN
is a wavelet-based neural network architecture based on the BiLinear Recurrent
Neural Network (BLRNN)[6]. The M-BLRNN is formulated by a combination of
several individual BLRNN models in which each individual model is employed
for predicting the signal at a certain level obtained by the wavelet transform.

The remainder of this paper is organized as follows: Section 2 presents a
review of multiresolution analysis with the wavelet transform. A brief review
of the BLRNN is given in Section 3. The proposed M-BLRNN-based predictor
is presented in Section 4. Section 5 presents some experiments and results on
several real-time MPEG data sets including a performance comparison with the
traditional MLPNN-based predictor and BLRNN-based predictor. Concluding
remarks provided in Section 6 close the paper.

2 Multiresolution Wavelet Analysis

The multiresolution analysis produces a high quality local representation of a
signal in both the time domain and the frequency domain. The wavelet trans-
form [7] has been proven suitable for the multiresolution analysis of time series
data [8].

The à trous wavelet transform was first proposed by Shensa [7] and the cal-
culation of the à trous wavelet transform can be described as follows: First, a
low-pass filter is used to suppress the high frequency components of a signal and
allow the low frequency components to pass through. The smoothed data cj(t)
at a given resolution j can be obtained by performing successive convolutions
with the discrete low-pass filter h,

cj(t) =
∑

k

h(k)cj−1(t + 2j−1k) (1)

where h is a discrete low-pass filter associated with the scaling function and
c0(t) is the original signal. A suitable low-pass filter h is the B3 spline, defined
as ( 1

16 , 1
4 , 3

8 , 1
4 , 1

16 ).
From the sequence of the smoothing of the signal, the wavelet coefficients are

obtained by calculating the difference between successive smoothed versions:

wj(t) = cj−1(t) − cj(t) (2)

By consequently expanding the original signal from the coarsest resolution
level to the finest resolution level, the original signal can be expressed in terms
of the wavelet coefficients and the scaling coefficients as follows:

c0(t) = cJ (t) +
J∑

j=1

wj(t) (3)
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where J is the number of resolutions and cJ(t) is the finest version of the signal.
Eq.(3) also provides a reconstruction formula for the original signal.

3 BiLinear Recurrent Neural Networks

The BLRNN is a simple recurrent neural network, which has a robust ability
in modeling dynamically nonlinear systems and is especially suitable for time-
series data. The model was initially proposed by Park and Zhu [6]. It has been
successfully applied in modeling time-series data [6,9]. In the following, we sum-
marize a simple BLRNN that has N input neurons, M hidden neurons and where
K = N − 1 degree polynomials is given. The input signal and the nonlinear in-
tegration of the input signal to hidden neurons are:

X[n] = [x[n], x[n − 1], ..., x[n − K]]T

O[n] = [o1[n], o2[n], ..., oM [n]]T

where T denotes the transpose of a vector or matrix and the recurrent term is a
M × K matrix

Zp[n] = [op[n − 1], op[n − 2], ..., op[n − K]]

And

sp[n] = wp +
N−1∑

k1=0

apk1op[n − k1] (4)

+
N−1∑

k1=0

N−1∑

k2=0

bpk1k2op[n − k1]x[n − k2]

+
N−1∑

k2=0

cpk2x[n − k2]

= wp + AT
p ZT

p [n] + Zp[n]BT
p X[n] + CT

p X[n]

where wp is the weight of bias neuron. Ap is the weight vector for the recurrent
portion, Bp is the weight matrix for the bilinear recurrent portion, and Cp is
the weight vector for the feedforward portion and p = 1, 2..., M .

More detailed information on the BLRNN and its learning algorithm can be
found in [6,9].

4 Multiscale BiLinear Recurrent Neural Network

The M-BLRNN is a combination of several individual BLRNN models where
each individual BLRNN model is employed to predict the signal at each
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Fig. 1. Example of Multiscale BiLinear Recurrent Neural Network with 3 resolution
levels

resolution level obtained by the wavelet transform [5]. Fig. 1 illustrates an
example of the M-BLRNN with three levels of resolution.

The prediction of a time-series based on the M-BLRNN can be separated into
three stages. In the first stage, the original signal is decomposed into the wavelet
coefficients and the scaling coefficients based on the number of resolution levels.
In the second stage, the coefficients at each resolution level are predicted by an
individual BLRNN model. It should be noted that the predictions of coefficients
at each resolution level are independent and can be done in parallel. In the third
stage, all the prediction results from each BLRNN are combined together using
the reconstruction formula given in Eq.(3):

x̂(t) = ĉJ (t) +
J∑

j=1

ŵj(t) (5)

where ĉJ(t), ŵj(t), and x̂(t) represent the predicted values of the finest scaling
coefficients, the predicted values of the wavelet coefficients at level j, and the
predicted values of the time-series, respectively.

5 Experiments and Results

The experiments were conducted based on several real-time MPEG trace se-
quences provided by the University of the Wuerzburg, Wuerzburg, Germany.
These trace sequences can be downloaded at

http://www3.informatik.uni-wuerzburg.de/MPEG/

We selected 4 typical trace sequences for training and testing: “Star Wars”,
“Mr. Bean”, “New Show”, and “Silence of the Lambs”. From these sequences,
the first 1,000 frames of the “Star Wars” sequence were used for training while
the remaining of “Star Wars” and other sequences were saved for testing. All
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Fig. 2. Prediction performance versus number of steps for the “Silence of the Lambs”
video trace

Fig. 3. Prediction performance versus number of steps for the “News Show” video
trace

data were subsequently normalized in a range (0,1) to render it suitable for
inputs of neural networks.

In order to demonstrate the generalization ability of the M-BLRNN-based
predictor, a M-BLRNN model with 3 resolution levels using the adaptive learn-
ing algorithm is employed. Based on the statistical analysis of correlations, each
individual BLRNN model in the M-BLRNN model shares a 24-10-1 structure
and 3 recursion lines in which the indices denote the number of neurons in the
input layer, the hidden layer and the output layer, respectively. A traditional
BLRNN employing a structure of 24-10-1 with 3 recursion lines and a MLPNN
model employing a structure of 24-10-1 are also employed for a performance
comparison. The iterated multistep prediction [11] was employed to perform the
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multistep prediction of the real-time MPEG video traffic. To measure the per-
formance of the multistep prediction, the normalized mean square error (NMSE)
was employed.

Figs. 2 and 3 show the prediction performance on the remainder of the the
“Silence of the Lambs” and the “News Show”, respectively. As can be seen from
these figures, the M-BLRNN-based predictor that employs the wavelet-based
neural network architecture outperforms both the traditional MLPNN-based
predictor and the BLRNN-based predictor. In particular, the M-BLRNN-based
predictor can predict up to a hundred steps with a very small degradation of
performance whereas the traditional MLPNN-based predictor and the BLRNN-
based predictor fail to do so.

6 Conclusion

A MPEG traffic prediction model using a Multiscale BiLinear Recurrent Neural
Network (M-BLRNN) is proposed in this paper. The M-BLRNN is a wavelet-
based neural network architecture based on the BiLinear Recurrent Neural
Network (BLRNN). The proposed M-BLRNN-based predictor is applied to the
long-term prediction of MPEG video traffic. Experiments and results on several
real-time MPEG data sets show a significant improvement in comparison with
the traditional MLPNN-based predictor and BLRNN-based predictor. This con-
firms that the proposed M-BLRNN is an efficient tool for dynamic bandwidth
allocation in ATM networks.
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Abstract. An important application of graph partitioning is data clus-
tering using a graph model — the pairwise similarities between all data
objects form a weighted graph adjacency matrix that contains all nec-
essary information for clustering. The min-cut bipartitioning problem is
a fundamental graph partitioning problem and is NP-Complete. In this
paper, we present an effective multi-level algorithm based on ant colony
optimization(ACO) for bisecting graph. The success of our algorithm re-
lies on exploiting both the ACO method and the concept of the graph
core. Our experimental evaluations on 18 different graphs show that our
algorithm produces encouraging solutions compared with those produced
by MeTiS that is a state-of-the-art partitioner in the literature.

1 Introduction

An important application of graph partitioning is data clustering using a graph
model [1], [2]. Given the attributes of the data points in a dataset and the
similarity or affinity metric between any two points, the symmetric matrix con-
taining similarities between all pairs of points forms a weighted adjacency ma-
trix of an undirected graph. Thus the data clustering problem becomes a graph
partitioning problem [2]. The min-cut bipartitioning problem is a fundamental
partitioning problem and is NP-Complete [3]. It is also NP-Hard to find good
approximate solutions for this problem [4]. Because of its importance, the prob-
lem has attracted a considerable amount of research interest and a variety of
algorithms have been developed over the last thirty years [5],[6]. The survey by
Alpert and Kahng [7] provides a detailed description and comparison of vari-
ous such schemes which can be classified as move-based approaches, geometric
representations, combinatorial formulations, and clustering approaches.

Most existing partitioning algorithms are heuristics in nature and they seek
to obtain reasonably good solutions in a reasonable amount of time. Kernighan
and Lin (KL) [5] proposed a heuristic algorithm for partitioning graphs. The
KL algorithm is an iterative improvement algorithm that consists of making
several improvement passes. It starts with an initial bipartitioning and tries to
improve it by every pass. A pass consists of the identification of two subsets
of vertices, one from each part such that can lead to an improved partition if
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the vertices in the two subsets switch sides. Fiduccia and Mattheyses (FM) [6]
proposed a fast heuristic algorithm for bisecting a weighted graph by introducing
the concept of cell gain into the KL algorithm. These algorithms belong to the
class of move-based approaches in which the solution is built iteratively from an
initial solution by applying a move or transformation to the current solution.
Move-based approaches are the most frequently combined with stochastic hill-
descending algorithms such as those based on Simulated Annealing [8], Tabu
Search [8],[9], Genetic Algorithms [10], Neural Networks [11], etc., which allow
movements towards solutions worse than the current one in order to escape from
local minima. For example, Leng and Yu [12],[13] proposed a boundary Tabu
Search refinement algorithm that combines an effective Tabu Search strategy
with a boundary refinement policy for refining the initial partitioning.

As the problem sizes reach new levels of complexity recently, it is difficult to
compute the partitioning directly in the original graph and a new class of graph
partitioning algorithms have been developed that are based on the multi-level
paradigm. The multi-level graph partitioning schemes consist of three phases
[14],[15],[16]. During the coarsening phase, a sequence of successively coarser
graph is constructed by collapsing vertex and edge until its size is smaller than
a given threshold. The goal of the initial partitioning phase is to compute initial
partitioning of the coarsest graph such that the balancing constraint is satis-
fied and the partitioning objective is optimized. During the uncoarsening phase,
the partitioning of the coarser graph is successively projected back to the next
level finer graph and an iterative refinement algorithm is used to optimize the
objective function without violating the balancing constraint.

In this paper, we present a multi-level algorithm which integrates an effec-
tive matching-based coarsening scheme and a new ACO-based refinement ap-
proach. Our work is motivated by the multi-level ant colony algorithm(MACA)
of Koros̃ec who runs basic ant colony algorithm on every level graph in [17] and
Karypis who introduces the concept of the graph core for coarsening the graph
in [16] and supplies MeTiS [14], distributed as open source software package
for partitioning unstructured graphs. We test our algorithm on 18 graphs that
are converted from the hypergraphs of the ISPD98 benchmark suite [18]. Our
comparative experiments show that our algorithm produces excellent partitions
that are better than those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some defi-
nitions and describes the notation that is used throughout the paper. Section
3 briefly describes the motivation behind our algorithm. Section 4 presents an
effective multi-level ACO refinement algorithm. Section 5 experimentally eval-
uates our algorithm and compares it with MeTiS. Finally, Section 6 provides
some concluding remarks and indicates the directions for further research.

2 Mathematical Description

A graph G=(V,E ) consists of a set of vertices V and a set of edges E such that
each edge is a subset of two vertices in V. Throughout this paper, n and m denote
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the number of vertices and edges respectively. The vertices are numbered from 1
to n and each vertex v ∈ V has an integer weight S (v). The edges are numbered
from 1 to m and each edge e ∈ E has an integer weight W (e). A decomposition
of a graph V into two disjoint subsets V 1 and V 2, such that V 1 ∪ V 2=V and
V 1 ∩ V 2=∅, is called a bipartitioning of V. Let S (A)=

∑

v∈A
S(v) denotes the size

of a subset A ⊆ V. Let IDv be denoted as v ’s internal degree and is equal to
the sum of the edge-weights of the adjacent vertices of v that are in the same
side of the partition as v, and v ’s external degree denoted by EDv is equal to
the sum of edge-weights of the adjacent vertices of v that are in different sides.
The cut of a bipartitioning P={V 1,V 2} is the sum of weights of edges which
contain two vertices in V 1 and V 2 respectively. Naturally, vertex v belongs at
the boundary if and only if EDv > 0 and the cut of P is also equal to 0.5

∑

v∈V
EDv.

Given a balance constraint r, the min-cut bipartitioning problem seeks a solution
P={V 1,V 2} that minimizes cut(P) subject to (1 -r)S (V )/2 ≤ S(V 1),S(V 2) ≤
(1+r)S (V )/2. A bipartitioning is bisection if r is as small as possible. The task
of minimizing cut(P) can be considered as the objective and the requirement that
solution P will be of the same size can be considered as the constraint.

3 Motivation

ACO is a novel population-based meta-heuristic framework for solving discrete
optimization problems [19],[20]. It is based on the indirect communication among
the individuals of a colony of agents, called ants, mediated by trails of a chem-
ical substance, called pheromone, which real ants use for communication. It is
inspired by the behavior of real ant colonies, in particular, by their foraging
behavior and their communication through pheromone trails. The pheromone
trails are a kind of distributed numeric information which is modified by the
ants to reflect their experience accumulated while solving a particular problem.
Typically, solution components which are part of better solutions or are used
by many ants will receive a higher amount of pheromone and, hence, will more
likely be used by the ants in future iterations of the algorithm. The collective
behavior that emerges is a form of autocatalytic behavior. The process is thus
characterized by a positive feedback loop, where the probability with which ant
chooses a solution component increases with the number of ants that previously
chose the same solution component.

The main idea of ACO is as follows. Each ant constructs candidate solutions
by starting with an empty solution and then iteratively adding solution com-
ponents until a complete candidate solution is generated. At every point each
ant has to decide which solution component to be added to its current partial
solution according to a state transition rule. After the solution construction is
completed, the ants give feedback on the solutions they have constructed by
depositing pheromone on solution components which they have used in their
solution according to a pheromone updating rule.
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In [21], Langham and Grant proposed the Ant Foraging Strategy (AFS) for
k-way partitioning. The basic idea of the AFS algorithm is very simple: We have
k colonies of ants that are competing for food, which in this case represents the
vertices of the graph. At the end the ants gather food to their nests, i.e. they
partition the graph into k subgraphs. In [17], Koros̃ec presents the MACA ap-
proach that is enhancement of the AFS algorithm with the multi-level paradigm.
However, since Koros̃ec simply runs the AFS algorithm on every level � graph
Gl(Vl,El), most of computation on the coarser graphs is wasted. Furthermore,
MACA comes into collision with the key idea behind the multi-level approach.
The multi-level graph partitioning schemes needn’t the direct partitioning algo-
rithm on Gl(Vl,El) in the uncoarsening and refinement phase, but the refinement
algorithm that improves the quality of the finer graph Gl(Vl,El) partitioning
PGl

={V1
l ,V

2
l } which is projected from the partitioning PGl+1={V1

l+1,V
2
l+1} of

the coarser graph Gl+1(Vl+1,El+1).
In this paper, we present a new multi-level ant colony optimization refinement

algorithm(MACOR) that combines the ACO method with a boundary refine-
ment policy. It employs ACO in order to select two subsets of vertices V1′

l ⊂ V1
l

and V2′

l ⊂ V2
l such that { (V1

l −V1′

l )∪V2′

l , (V2
l −V2′

l )∪V1′

l }is a bisection with
a smaller edge-cut. It has distinguishing features which are different from the
MACA algorithm. First, MACA exploits two or more colonies of ants to compete
for the vertices of the graph, while MACOR employs one colony of ants to find
V1′

l and V2′

l such that moving them to the other side improves the quality of
partitioning. Second, MACA is a partitioning algorithm while MACOR is a re-
finement algorithm. Finally, MACOR is a boundary refinement algorithm whose
runtime is significantly smaller than that of a non-boundary refinement algo-
rithm, since the vertices moved by MACOR are boundary vertices that straddle
two sides of the partition and only the gains of boundary vertices are computed.

In [14], Karypis presents the sorted heavy-edge matching (SHEM) algorithm
that identifies and collapses together groups of vertices that are highly connected.
Firstly, SHEM sorts the vertices of the graph ascendingly based on the degree of
the vertices. Next, the vertices are visited in this order and SHEM matches the
vertex v with unmatched vertex u such that the weight of the edge W (v,u) is
maximum over all incident edges. In [22], Sediman introduces the concept of the
graph core firstly that the core number of a vertex v is the maximum order of a
core that contains that vertex. Vladimir gives an O(m)-time algorithm for cores
decomposition of networks and O(m· log(n))-time algorithm to compute the core
numbering in the context of sum-of-the-edge-weights in [23],[24] respectively. In
[16], Amine and Karypis introduce the concept of the graph core for coarsening
the power-law graphs. In [13], Leng present the core-sorted heavy-edge matching
(CSHEM) algorithm that combines the concept of the graph core with the SHEM
scheme. Firstly, CSHEM sorts the vertices of the graph descendingly based on
the core number of the vertices by the algorithm in [24]. Next, the vertices are
visited in this order and CSHEM matches the vertex v with its unmatched
neighboring vertex whose edge-weight is maximum. In case of a tie according to
edge-weights, we will prefer the vertex that has the highest core number.
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In our multi-level algorithm, we adopt the MACOR algorithm during the re-
finement phase , the greedy graph growing partition (GGGP) algorithm [14] dur-
ing the initial partitioning phase, an effective matching-based coarsening scheme
during the coarsening phase that uses the CSHEM algorithm on the original
graph and the SHEM algorithm on the coarser graphs. The pseudocode of our
multi-level algorithm is shown in Algorithm 1.

Algorithm 1 (Our multi-level algorithm)

INPUT: original graph G(V,E)
OUTPUT: the partitioning PG of graph G
/*coarsening phase*/
l = 0
Gl(Vl,El)=G(V,E)
Gl+1(Vl+1,El+1)=CSHEM(Gl(Vl,El))
While ( |Vl+1| > 20) do

l = l + 1
Gl+1(Vl+1,El+1)=SHEM(Gl(Vl,El))

End While
/*initial partitioning phase*/
PGl

=GGGP(Gl)
/*refinement phase*/
While ( l ≥ 1 ) do

P
′

Gl
=MACOR(Gl,PGl

)
Project P

′

Gl
to PGl−1 ;

l = l − 1
End While
PG=MACOR(Gl,PGl

)
Return PG

4 An Effective Multi-level Ant Colony Optimization
Refinement Algorithm

Informally, the MACOR algorithm works as follows: At time zero, an initial-
ization phase takes place during which the internal and external degrees of all
vertices are computed and initial values for pheromone trail are set on the ver-
tices of graph G. In the main loop of MACOR, each ant’s tabu list is emptied
and each ant chooses (V1′

,V2′
) by repeatedly selecting boundary vertices of each

part according to a state transition rule given by Equation(1)(2), moving them
into the other part, updating the gains of the remaining vertices and etc. After
constructing its solution, each ant also modifies the amount of pheromone on the
moved vertices by applying the local updating rule of Equation(3). Once all ants
have terminated their solutions, the amount of pheromone on vertices is mod-
ified again by applying the global updating rule of Equation(4). The process is
iterated until the cycles counter reaches the maximum number of cycles NCmax,
or the MACOR algorithm stagnates.
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The pseudocode of the MACOR algorithm is shown in Algorithm 2. The
cycles counter is denoted by t and Best represents the best partitioning seen
so far. The initial values for pheromone trail is denoted by τ0=1/ε, where ε is
total number of ants. At cycle t, let τv(t) be the pheromone trail on the vertex v
and tabuk(t) be the tabu list of ant k, Bestk(t) represents the best partitioning
found by ant k and the current partitioning of ant k is denoted by Pk(t), the ant k
also stores the internal and external degrees of all vertices and boundary vertices
independently which be denoted as IDk(t), EDk(t) and boundaryk(t) respectively.
Let allowedk(t) be denoted as the candidate list which is a list of preferred vertices
to be moved by ant k at cycle t and is equal to {V − tabuk(t)}

⋂
boundaryk(t).

Algorithm 2 (MACOR)

INPUT: initial bipartitioning P, maximum number of cycles NCmax

balance constraint r, similarity tolerance ϕ, maximum steps smax

OUTPUT: the best partitioning Best, cut of the best partitioning cut(Best)
/*Initialization*/
t = 0
Best = P
For every vertex v in G = (V, E) do

IDv =
∑

(v,u)∈E∧P [v]=P [u]
W (v,u)

EDv =
∑

(v,u)∈E∧P [v] �=P [u]
W (v,u)

Store v as boundary vertex if and only if EDv > 0;
τv(t) = τ0

End For
/*Main loop*/
For t = 1 to NCmax do

For k = 1 to ε do
tabuk(t) = ∅

Store Pk(t) = P and Bestk(t) = P independently;
Store IDk(t), EDk(t), boundaryk(t) of G = (V, E) independently;
For s = 1 to smax do

Decide the move direction of the current step s;
If exists at least one vertex v ∈ allowedk(t) then

Choose the vertex v to move as follows

v =

{
arg max

v∈allowedk(t)
[τv(t)]

α ·
[
ηk
v (t)

]β if q ≤ q0

w if q > q0

(1)

Where the vertex w is chosen according to the probablity

pk
w(t) =

⎧
⎪⎨

⎪⎩

[τw(t)]α·[ηk
w(t)]β

�

u∈allowedk(t)

[τu(t)]α·[ηk
u (t)]β

if w ∈ allowedk(t)

0 otherwise
(2)
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Else
Break;

End If
Update Pk(t) by moving the vertex v to the other side;
Lock the vertex v by adding to tabuk(t);
original cut Minus its original gain as the cut of Pk(t);
Update IDk

u(t), EDk
u(t), gain of its neighboring vertices u and

boundaryk(t);
If ( cut(Pk(t)) < cut(Bestk(t)) and P k(t) satisfies constraints r) then

Bestk(t) = Pk(t)
End If

End For /*s ≤ smax*/
Apply the local update rule for the vertices v moved by ant k

τv(t) ← (1 − ρ) · τv(t) + ρ · 
τk
v (t) (3)

Adjust q0 if similarity((V1′
,V2′

)k, (V1′
,V2′

)(k-1)) ≥ ϕ;
End For /*k ≤ ε*/
If min

1≤k≤ε
cut(Bestk(t)) < cut(Best) then

Update Best and cut(Best);
End If
Apply the global update rule for the vertices v moved by global-best ant

τv(t) ← (1 − ξ) · τv(t) + ξ · 
τgb
v (4)

For every vertex v in G = (V, E) do
τv(t+1) = τv(t)

End For
End For /*t ≤ NCmax*/
Return Best and cut(Best)

In the MACOR algorithm, a state transition rule given by Equation(1)(2) is
called pseudo-random-proportional rule, where q is a random number uniformly
distributed in [0. . . 1] and q0 is parameter (0 ≤ q0 ≤ 1) which determines the
relative importance of exploitation versus exploration. If q ≤ q0 then the best
vertex, according to Equation(1), is chosen(exploitation), otherwise a vertex is
chosen according to Equation(2)(exploration). To avoid trapping into stagnation
behavior, MACOR adjusts dynamically the parameter q0 based on the solutions
similarity between (V1′

,V2′
)k and (V1′

,V2′
)(k-1) found by ant k and k-1. In

Equation(1)(2), α and β denote the relative importance of the pheromone trail
τv(t) and visibility ηk

v(t) respectively, ηk
v(t) represents the visibility of ant k on

the vertex v at cycle t and is given by:

ηk
v(t) =

⎧
⎨

⎩

√
1.0 + EDk

v(t) − IDk
v(t) if (EDk

v(t) − IDk
v(t)) ≥ 0

√
1.0/(IDk

v(t) − EDk
v(t)) otherwise

(5)
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In Equation(3), ρ is a coefficient and represents the local evaporation of
pheromone trail between cycle t and t+1 and the term 
τk

v (t) is given by:


τk
v (t) =

{
cut(Bestk(t))−cut(P)

cut(P)·ε if v was moved by ant k at cycle t
0 otherwise

(6)

In Equation(4), ξ is a parameter and represents the global evaporation of
pheromone trail between cycle t and t+1 and the term 
τgb

v is given by:


τgb
v =

{
cut(Best)−cut(P)

cut(P) if v was moved by global-best ant
0 otherwise

(7)

5 Experimental Results

We use the 18 graphs in our experiments that are converted from the hypergraphs
of the ISPD98 benchmark suite [18] and range from 12,752 to 210,613 vertices.
Each hyperedge is a subset of two or more vertices in hypergraph. We convert
hyperedges into edges by the rule that every subset of two vertices in hyperedge
can be seemed as edge. We create the edge with unit weight if the edge that
connects two vertices doesn’t exist, else add unit weight to the weight of the
edge. Next, we get the weights of vertices from the ISPD98 benchmark. Finally,
we store 18 edge-weighted and vertex-weighted graphs in format of MeTiS [14].
The characteristics of these graphs are shown in Table 1.

Table 1. The characteristics of 18 graphs to evaluate our algorithm

benchmark vertices hyperedges edges

ibm01 12752 14111 109183
ibm02 19601 19584 343409
ibm03 23136 27401 206069
ibm04 27507 31970 220423
ibm05 29347 28446 349676
ibm06 32498 34826 321308
ibm07 45926 48117 373328
ibm08 51309 50513 732550
ibm09 53395 60902 478777
ibm10 69429 75196 707969
ibm11 70558 81454 508442
ibm12 71076 77240 748371
ibm13 84199 99666 744500
ibm14 147605 152772 1125147
ibm15 161570 186608 1751474
ibm16 183484 190048 1923995
ibm17 185495 189581 2235716
ibm18 210613 201920 2221860
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We implement the MACOR algorithm in ANSI C and integrate it with the
leading edge partitioner MeTiS. In the evaluation of our multi-level algorithm,
we must make sure that the results produced by our algorithm can be easily com-
pared against those produced by MeTiS. We use the same balance constraint r
and random seed in every comparison. In the scheme choices of three phases of-
fered by MeTiS, we use the SHEM algorithm during the coarsening phase, the
GGGP algorithm during the initial partitioning phase that consistently finds
smaller edge-cuts than other algorithms, the boundary KL (BKL) refinement
algorithm during the uncoarsening and refinement phase because BKL can pro-
duce smaller edge-cuts when coupled with the SHEM algorithm. These measures
are sufficient to guarantee that our experimental evaluations are not biased in
any way.

Table 2. Min-cut bipartitioning results with up to 2% deviation from exact bisection

benchmark
MeTiS(α) our algorithm(β) ratio(β:α) improvement

MinCut AveCut MinCut AveCut MinCut AveCut MinCut AveCut

ibm01 517 1091 259 531 0.501 0.487 49.9% 51.3%
ibm02 4268 11076 1920 5026 0.450 0.454 55.0% 54.6%
ibm03 10190 12353 4533 5729 0.445 0.464 55.5% 53.6%
ibm04 2273 5716 2221 3037 0.977 0.531 2.3% 46.9%
ibm05 12093 15058 8106 9733 0.670 0.646 33.0% 35.4%
ibm06 7408 13586 2111 5719 0.285 0.421 71.5% 57.9%
ibm07 3219 4140 2468 3110 0.767 0.751 23.3% 24.9%
ibm08 11980 38180 10500 13807 0.876 0.362 12.4% 63.8%
ibm09 2888 4772 2858 3905 0.990 0.818 1.0% 18.2%
ibm10 10066 17747 5569 7940 0.553 0.447 44.7% 55.3%
ibm11 2452 5095 2405 3423 0.981 0.672 1.9% 32.8%
ibm12 12911 27691 5502 13125 0.426 0.474 57.4% 52.6%
ibm13 6395 13469 4203 6929 0.657 0.514 34.3% 48.6%
ibm14 8142 12903 8435 10114 1.036 0.784 -3.6% 21.6%
ibm15 22525 46187 17112 25102 0.760 0.543 24.0% 45.7%
ibm16 11534 22156 8590 12577 0.745 0.568 25.5% 43.2%
ibm17 16146 26202 13852 18633 0.858 0.711 14.2% 28.9%
ibm18 15470 20018 15494 18963 1.002 0.947 -0.2% 5.3%

average 0.721 0.589 27.9% 41.1%

The quality of partitions produced by our algorithm and those produced by
MeTiS are evaluated by looking at two different quality measures, which are
the minimum cut (MinCut) and the average cut (AveCut). To ensure the sta-
tistical significance of our experimental results, two measures are obtained in
twenty runs whose random seed is different to each other. For all experiments,
we allow the balance constraint up to 2% deviation from exact bisection by set-
ting r to 0.02, i.e., each partition must have between 49% and 51% of the total
vertices size. We also set the number of vertices of the current level graph as the
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value of parameter smax. Furthermore, we adopt the experimentally determined
optimal set of parameters values for MACOR, α=2.0, β=1.0, ρ=0.1, ξ=0.1,
q0=0.9, ϕ=0.9, NCmax=80, ε=10.

Table 2 presents min-cut bipartitioning results allowing up to 2% deviation
from exact bisection and Fig. 1 illustrates the MinCut and AveCut comparisons
of two algorithms on 18 graphs. As expected, our algorithm reduces the AveCut
by 5.3% to 63.8% and reaches 41.1% average AveCut improvement. Although
our algorithm produces partition whose MinCut is up to 3.6% worse than that of
MeTiS on two benchmarks, we still obtain 27.9% average MinCut improvement
and between -3.6% and 71.5% improvement in MinCut. All evaluations that
twenty runs of two algorithms on 18 graphs are run on an 1800MHz AMD
Athlon2200 with 512M memory and can be done in two hours.

Fig. 1. The MinCut and AveCut comparisons of two algorithms on 18 graphs

6 Conclusions

In this paper, we have presented an effective multi-level algorithm based on
ACO. The success of our algorithm relies on exploiting both the ACO method
and the concept of the graph core. We obtain excellent bipartitioning results
compared with those produced by MeTiS. Although it has the ability to find
cuts that are lower than the result of MeTiS in a reasonable time, there are
several ways in which this algorithm can be improved. For example, we note that
adopting the CSHEM algorithm alone leads to poorer experimental results than
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the combination of CSHEM with SHEM. We need to find the reason behind it
and develop a better matching-based coarsening scheme coupled with MACOR.
In the MinCut evaluation of benchmark ibm14 and ibm18, our algorithm is 3.6%
worse than MeTiS. Therefore, the second question is to guarantee find good
approximate solutions by setting optimal set of parameters values for MACOR.
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Abstract. Online detection of outliers and change points from a data stream are 
two very exciting topics in the area of data mining. This paper explores the 
relationship between these two issues, and presents a unifying method for 
dealing with both of them. Previous approaches often use parametric techniques 
and try to give exact results. In contrast, we present a nonparametric method 
based on local polynomial fitting, and give approximate results by fuzzy 
partition and decision. In order to measure the possibility of being an outlier 
and a change point, two novel score functions are defined based on the forward 
and backward prediction errors. The proposed method can detect outliers and 
changes simultaneously，and can distinguish between them. Comparing to the 
conventional parametric approaches, our method is more convenient for 
implementation, and more appropriate for online and interactive data mining. 
Simulation results confirm the effectiveness of the proposed method. 

Keywords: Data stream, outlier, change point, data mining, local polynomial 
fitting, fuzzy partition. 

1   Introduction 

As there is a growing number of emerging applications of data streams, mining of 
data streams is becoming increasingly important. Recent research indicates that online 
mining of the changes in data streams is one of the core issues with applications in 
event detection and activity monitoring [1]. On the other hand, outlier detection is 
also a popular issue in data mining, which is closely related to fraud detection, 
abnormality discovery and intrusion detection [2]. In the previous literature, outlier 
detection and change detection are often derived from respective problems and are 
addressed independently. Both statistical methods and fuzzy approaches have been 
employed to solve these two issues, such as methods based on regression analysis, 
hidden Markov model (HMM), hierarchical Bayesian model and fuzzy clustering, 
fuzzy entropy principle [7], etc. 

However, the outliers and change points often exist simultaneously in real data 
streams. It’s necessary to design a unifying method to detect the outliers and change 
points simultaneously. Thus, in this paper, we explore the relationship between outlier 
and change detection, and deal with them together. Intuitively, an outlier is a point 
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largely deviating from the holistic regularity, while a change point is a point from 
which the holistic regularity changes. Although outlier and change are two different 
concepts, they can be unified based on a probabilistic model. When a data stream is 
modeled as a time series with some probabilistic structure, both outliers and changes 
can be defined by the variation of statistical regularity, and the only difference is the 
variation kind. In [4], a unifying framework for mining outliers and changes was 
proposed, but the two issues were dealt with at two different stages. In [5], we have 
developed this work into a one-stage framework based on the forward and backward 
predictions. However, these two methods need pre-selected parametric models, and 
the parameters must be estimated adaptively in real time implementation. These will 
increase the difficulty in application, and are the drawbacks of all the parametric 
methods.  

In this paper, we propose a nonparametric unifying method for online mining 
outliers and changes from data streams. The data stream herein is modeled as a time 
series with some probabilistic structure. An outlier is defined as a point with both 
small forward and backward conditional density, while a change is a point with small 
forward conditional density and large backward conditional density. In order to 
measure the possibility of being an outlier and a change point, we define two score 
functions based on the forward and backward prediction errors. Unlike parametric 
approaches, all predictions are estimated using the local polynomial fitting technique 
[6] which does not need parameter estimation, but approximates the predictions by 
fitting a polynomial using the local data around the testing point. This nonparametric 
method provides many advantages. For example, there’s no need to determine the 
type of the time series model. The prediction accuracy will not be affected by the 
parameter estimation error. It is appropriate to both the linear and nonlinear time 
series, which is difficult for parametric methods. 

Approaches proposed in the previous literature often try to give an exact partition 
among outliers, changes, and normal points. However, exact answers from data 
streams are often too expensive, and approximate answers are acceptable [3]. So in 
this paper, fuzzy partition and decision approaches are used to alarm possible outliers 
and changes. The magnitude of the possibility is visualized by the values of 
membership functions based on which people can make their own decisions. Thus, we 
believe that our method will be more effective in online and interactive mining of 
outliers and changes. 

The rest of the paper is organized as follows: In Section 2, we formulate the 
problem of outlier and change detection, and give formal definition of outlier and 
change point. We give a brief introduction to the local polynomial fitting technique in 
Section 3, and present the unifying nonparametric outlier and change detection 
method in Section 4. Simulation results on several data sets are provided in Section 5 
and a section of conclusion follows.  

2   Problem Formulation 

In this section, we will formulate the problem of outlier and change detection from the 
statistical point of view. While the term “outliers” or “changes” sounds general and 
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intuitive, it is far from easy to define them. One natural description is that an outlier is 
a point largely deviates from the holistic regularity, while a change point is a point 
from which the holistic regularity changes. Although this description is inexplicit, it 
suggests something common between outlier and change. The holistic regularity 
varies at both outlier and change point, and only the type of the variation is different. 
Therefore, detection of outliers and changes is to find the variations of the regularity 
and distinguish between the different types. Considering a data 
stream { : 1,2, } tx t = , if it is modeled with some probabilistic structure, its 

conditional probability distribution can be incrementally learned from the data stream 
every time a datum tx  is input.  That means we can learn the statistical regularity of 

the data stream adaptively and find the variations. 
We model the real data stream{ }tx as a local stationary time-series. Here, each tx is 

regarded as a continuous random variable. We use the notation 1( | )t
t t Lp x x −

− to 

represent the conditional density of tx given by 2 1, , ,t L t tx x x− − − , and call it forward 

conditional density. Similarly, the notation 1( | )t L
t tp x x +

+  is used to represent the 

conditional density of tx given by 1 2, , ,t t t Lx x x+ + + , and is named backward 

conditional density. Then, the formal definition of outlier and change point is given as 
follows: an outlier tx is a point with small 1( | )t

t t Lp x x −
− and small 1( | )t L

t tp x x +
+ , while a 

change point tx is a point with small 1( | )t
t t Lp x x −

− and large 1( | )t L
t tp x x +

+ . Here, we are 

only interested in the sudden changes. 
Now, some criterions should be selected to measure the possibility of being an 

outlier and a change point. In many previous literature, parametric time-series model 
is employed, and the form of the conditional density function is pre-decided. Then, 
the unknown parameters in the conditional density function can be estimated 
adaptively from { }tx . Two score functions are often used as criterions in the 

parametric approaches [4], [5]. One is based on logarithmic loss: 

1
1( ) log ( | , )t

t t t L tScore x p x x θ−
− −= − , (1) 

where 1
1( | , )t

t t L tp x x θ−
− − is the estimated parametric conditional density function at time 

point 1t − . Another one is based on quadratic loss: 

2ˆ( ) ( )t t tScore x x x= − , (2) 

where, ˆtx denotes the prediction for tx  given 2 1, , ,t L t tx x x− − − based on the estimated 

conditional density function as follows: 

1 1
1ˆ [ | ] ( | , ) .t t

t t t L t L tx E x x xp x x dxθ− −
− − −= = ∫  (3) 

However, the estimation for the parametric conditional density function is based on 
parametric modeling and enough data. In online data mining, only limited data are 
available for parametric modeling. Thus the modeling biases may arise with high  
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probability and the detection accuracy will be degraded. Moreover, many data in 
applications exhibit nonlinear features that require nonlinear models to describe. 
However, beyond the linear parametric models, there are infinitely many nonlinear 
forms that can be explored. This would be a daunting task for any analysts to try one 
model after another. In addition, both of the two score functions only consider the 
forward conditional density, which can not distinguish between the outliers and 
changes. Thus, in this paper, we propose two novel score functions based on the 
forward and backward prediction errors (see Section 4.1), and employ a simpler and 
effective nonparametric approach, the local polynomial fitting, to calculate the 
predictions. 

3   Local Polynomial Fitting 

Local polynomial fitting is a widely used nonparametric technique. It possesses 
various nice statistical properties [6]. Consider a bivariate sequence 
{( , ) : 1, , }t tX Y t N= that can be regarded as a realization from a stationary time 

series. We are interested in estimating tY  by tX , and the best estimation of tY  based 

on tX x=  is the conditional expectation of tY  given tX x= . Define a regression 

function in the following form: 

( ) ( | ),t tm x E Y X x= =  (4) 

then tY can be expressed as follows: 

( ) ( ) ,t tY m x xσ ε= +  (5) 

where 2 ( ) ( | )t tx Var Y X xσ = = , and tε is a random variable that 

satisfies ( | ) 0t tE Xε = , ( | ) 1t tVar Xε = . 

Denote an arbitrary value of the regression function by 0( )m x . Local polynomial 

fitting is a method for estimating 0( )m x . Since the form of ( )m x is not specified, a 

remote data point from 0x provides very little information about 0( )m x . Hence, we can 

only use the local data around 0x . Assume that ( )m x has the ( 1)p + derivative at the 

point 0x . By Taylor’s expansion, for x in the local neighborhood of 0x , we have the 

local model: 

0
0

( ) ( ) ,
p

j
j

j

m x x xβ
=

≈ −∑  (6) 

where ( )
0( ) !j

j m x jβ =  and are called local parameters. One can estimate the local 

parameters by minimizing 
2

0 0
1 0

( ) ( ).
pN

j
t j t h t

t j

Y X x K X xβ
= =

⎧ ⎫
− − −⎨ ⎬

⎩ ⎭
∑ ∑  (7) 
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The weight function ( )hK ⋅ is defined as ( ) ( )hK K h h⋅ ⋅ , where ( )K ⋅ is a kernel 

function and h is a window bandwidth controlling the size of the local area. The 
parameter p is named fitting order. Formula (7) means the local parameters are 
estimated by fitting the local model (6) using the local data in the area 0 0[ ,  ]x h x h− + . 

Since 0 0
ˆˆ ( )m x β= , estimate for 0( )m x is actually the weight least square (WLS) 

solution to the minimizing problem of (7). 

4   Outlier and Change Detection 

As mentioned before, both of the two score functions (1) and (2) need parametric 
estimation of the conditional density function, and can not distinguish between the 
outliers and changes. So in this section, we define two novel score functions based on 
the forward and backward prediction errors. These two scores are then used to alarm 
possible outliers and changes based on fuzzy partition and decision. If the prediction 
of tx is regarded as a regression function, it can be calculated by local polynomial 

fitting without parametric modeling. Thus, the outliers and changes can be detected 
by nonparametric techniques. 

4.1   Forward and Backward Scores 

We first consider two bivariate sequences 1 2 1{( , ), , ( , )}t L t L t tx x x x− − + − − and 

2 1 1{( , ), , ( , )}t t t L t Lx x x x+ + + + − . Then two regression functions can be defined as the 

forward prediction of tx which means prediction of tx given by 1tx − : 

1( ) ( | ),f t tm x E x x x−= =  (8) 

and the backward prediction of tx which means prediction of tx given by 1tx + : 

1( ) ( | ).b t tm x E x x x+= =  (9) 

Similar local models can be defined as (6), and forward and backward local 
parameters can be defined as 

( ) ( )
1( ) !f j

j f tm x jβ −= , and ( ) ( )
1( ) !,   0, ,b j

j b tm x j j pβ += = . (10) 

Fitting the local models using the forward data 2{ , , }t L tx x− − and the backward data 

2{ , , }t t Lx x+ + respectively, estimates for the forward and backward predictions can be 

obtained:  

( ) 1ˆ ( ) ,f T T
f f f f f fX W X X W yβ −=  (11) 

and 
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( ) 1ˆ ( ) .b T T
b b b b b bX W X X W yβ −=  (12) 

where  

1 1 1 1

1 2 1

2 1 1

( ,..., ) ,  ( ,..., ) ,

( ( ), , ( )),

( ( ), , ( )),

T T
f t L t b t t L

f h t L t h t t

b h t t h t L t

y x x y x x

W diag K x x K x x

W diag K x x K x x

− + − + + −

− − − −

+ + + +

= =

= − −

= − −

 

1 1

2 1 2 1

1 ( ) ( )

,

1 ( ) ( )

p
t L t t L t

f
p

t t t t

x x x x

X

x x x x

− − − −

− − − −

⎛ ⎞− −
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

2 1 2 1

1 1

1 ( ) ( )

1 ( ) ( )

p
t t t t

b
p

t L t t L t

x x x x

X

x x x x

+ + + +

+ + + +

⎛ ⎞− −
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

. 

 

Thus the forward and backward predictions of tx are ( )
0

ˆ fβ and ( )
0

ˆ bβ , based on which 

two novel score functions are defined to measure the possibility of being an outlier 
and a change point. One is Forward Score: 

( ) 2 2
0

ˆ ˆ( ) ( ) ,f
f t t fScore x x β σ= −  (13) 

another one is Backward Score: 

( ) 2 2
0

ˆ ˆ( ) ( ) .b
b t t bScore x x β σ= −  (14) 

Where 2ˆ fσ  is the moment estimate for the variance of the forward data 2{ , , }t L tx x− − , 

and 2ˆbσ  is the moment estimate for the variance of the backward data 2{ , , }t t Lx x+ + .  

Dividing by the estimated variance is to make the scores more adaptive to the data 
stream with varying variance. 

Predictions based on local polynomial fitting do not need pre-selected parametric 
models, and can be adjusted to both the linear and nonlinear data streams. 
Furthermore, the window bandwidth h is always small enough to keep the mined 
outliers outside the local data, which otherwise may degrade the detection 
performance in parametric methods. So we believe that our method is simpler and 
effective, and more convenient for implementation. 

4.2   Fuzzy Partition and Decision 

According to the definition of outlier and change point (see Section 2), an outlier 
always has both large forward and backward scores, while a change point usually has 
a large forward score and a small backward score. Here, these characters will be used 
basing on fuzzy partition and decision theory to distinguish between outliers and 
change points. 
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We consider the data set { }tX x as a domain, and define four fuzzy sets on it: 

{ }
{ }
{ }
{ }

( , ( )) | ,

( , ( )) | ,

( , 1 ( )) | ,

( , 1 ( )) | ,

t f t t

t b t t

t f t t

t b t t

FNormalX x FNormalX S x x X

BNormalX x BNormalX S x x X

NotFnormalX x NotFnormalX S x x X

NotBnormalX x NotBnormalX S x x X

μ

μ

μ

μ

= = ∈

= = ∈

= = − ∈

= = − ∈

 
 

(15) 

 

where ( ) ( ( ))f t f tS x S Score x , ( ) ( ( ))b t b tS x S Score x , and 

2

2

1,

1 2 , ( ) 2

( ) .

2 , ( ) 2

0,

x a

x a
a x a b

b a
S x

b x
a b x b

b a

x b

≤⎧
⎪

−⎛ ⎞⎪ − < ≤ +⎜ ⎟⎪ −⎪ ⎝ ⎠= ⎨
−⎛ ⎞⎪ + < ≤⎜ ⎟⎪ −⎝ ⎠⎪

>⎪⎩

                       

   

      

                     

 (16) 

The parameters ,a b in (16) are two predefined constants that are used to control the 
value of the membership functions. 

Then, we define two fuzzy sets named as Outlier and Change respectively as 

,

.

Outlier NotFnormalX NotBnormalX

Change NotFnormalX BNormalX

= ∩
= ∩

 (17) 

Their membership functions are 

min( , ),

min( , ).

Outlier NotFnormalX NotBnormalX

Change NotFnormalX BNormalX

μ μ μ
μ μ μ

=
=

 (18) 

Finally, point tx with high value of Outlierμ is highly probably an outlier, while 

point tx with high value of Changeμ is highly probably a change point. 

Note that there is another character of a change point tx . That is 1tx −  often has a 

small forward score and a large backward score. Hence, if one wants to reduce the 
false alarm rate, he can add another four fuzzy sets: 

{ }
{ }
{ }
{ }

1

1

1

1

( , ( )) | ,

( , ( )) | ,

( , 1 ( )) | ,

( , 1 ( )) | ,

t f t t

t b t t

t f t t

t b t t

PFNormalX x PFNormalX S x x X

PBNormalX x PBNormalX S x x X

NotPFnormalX x NotPFnormalX S x x X

NotPBnormalX x NotPBnormalX S x x X

μ

μ

μ

μ

−

−

−

−

= = ∈

= = ∈

= = − ∈

= = − ∈

 (19) 

Then the data set Change can be revised to 

,Change PFNormalX NotPBnormalX NotFnormalX BNormalX= ∩ ∩ ∩  (20) 

and its membership function is  
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min( , , , ).

Change

PFNormalX NotPBnormalX NotFnormalX BNormalX

μ
μ μ μ μ

=
 (21) 

The possibility of being an outlier or a change can be visualized by the values of 
the membership functions. Analysts can set a threshold to alarm possible outliers and 
changes. Users can also make their own decisions according to the membership 
functions and the practical experience. So we believe that our method which 
synthesizes both statistical and fuzzy approaches will be more effective in interactive 
online mining of outliers and changes. 

4.3   Parameter Selection  

In the proposed detection method, some parameters are essential to the detection 
performance, such as the bandwidth h of the weight function, and the fitting order p. 

It is shown in [6] that, for all choices of p, the optimal kernel function is 

Epanechnikov kernel which is 23
( ) (1 )

4
K z z += − . Nevertheless, some other kernels 

have comparable efficiency for practical use of p. Hence, the choice of the kernel 
function is not critical. 

Selection of the bandwidth h is important for the detection performance. Too large 
bandwidth will result in large estimated bias, while too small bandwidth will results in 
large estimated variance. A basic idea for searching the optimal bandwidth is to 
minimize the estimated mean integrated square error (MISE) which is defined as 

2ˆ ˆarg min {( ( ( ))) ( ( ))}opt
h

h Bias m x Var m x dx= +∫  (22) 

However, the solution of (22) is too complex for practical use. In this paper, we 
employ a more convenient method to find a suboptimal bandwidth. First, we set an 
acceptable threshold of the MISE denoted by δ and an initial value of h, which 

is max min[ )] ( 1)f fh X X L= − − for forward parameter estimation, and 

max min[ )] ( 1)b bh X X L= − − for backward parameter estimation. 

Here, max 2max( , , )f
t L tX x x− − , and min 2min( , , )f

t L tX x x− − . The max
bX and min

bX are 

defined similarly. If ( )MISE h δ> , then multiply h by an expanding factor 1C > , 

i.e. h Ch= , until it satisfies ( )MISE h δ≤ . An advisable value of C is 1.1. This 

searching algorithm can find a reasonable h quickly. 
From the analysis in [6], we know that local polynomial fitting with odd order is 

better than that with even order.  Increasing fitting order will increase computational 
complexity. So we set 1p = for most cases and add it to 3 if necessary. 

5   Simulations 

We evaluate our methods by numerical simulations using different data sets.  

Case (1). The first data set is generated from an AR(2) model: 

1 1 2 2 ,t t t tx a x a x e− −= + +  (23) 
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where, te is a Gaussian random variable with mean 0 and variance 1, and 

1 20.6, 0.5a a= = − . The data length is 10000. The mean of data changes at time 

1000 1 ( 1,2, ,9) t τ τ= Δ + Δ = with change size 10x τΔ = − Δ . Outliers occur at 

time 1000 501 ( 0,1, ,9) t τ τ= Δ + Δ = with deviation size 10 0.8( 1)x τΔ = − Δ + . Fig.1 

(a) shows the data set 1 and the membership functions of the fuzzy sets Outlier and 
Change at different time points. Here, we set 8, 30a b= = . As shown in the figure, 
the outliers and changes can be distinguished and detected simultaneously if the size 
is not very small.  

Fig.1 (b) shows false alarm rate versus effective alarm rate of the outlier detection 
for data set 1. The effective alarm points are defined as the points during the area 

* *[ 10,  10]t t− + where *t is the true non-normal point. Three different detection 

methods are compared. They are the proposed method, the CF method proposed in 
[4], and the parametric method proposed in [5] which is denoted by CIS method. We 
test the outlier of size 2.8 at time t=8501 for 1000 independent runs. It is observed 
that for the linear data stream with changing mean and constant variance, the 
proposed method performs comparably to the other two parametric methods. 
 

 
Fig. 1. Outlier and change detection for data set 1. (a) shows the data set 1, and the membership 
functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of 
outlier detection for data set 1. 

Case (2). In this case, we use the similar AR(2) model as data set 1. The only difference 
is the variance of te varies gradually: 2 ( ) 0.1/[0.01 (10000 ) /10000]e t tσ = + − . Changes 

and outliers occur at the same time points as data set 1, but all with size 1. The second 
data set and the membership functions of Outlier and Change are given in Fig.2 (a). 
Here we set 25, 60a b= = . Similar as the case (1), Fig.2 (b) shows false alarm rate 
versus effective alarm rate of the change detection for data set 2. Here, we testing the 
change point of size 5 at time t=5001. Comparing Fig.1 and Fig.2, we can see the 
advantage of the proposed score functions. Because of dividing by the estimated 
variance, the influence of the slow varying variance has been decreased a lot. That’s 
why the proposed method outperforms the other two parametric methods in this case. 
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Fig. 2. Outlier and change detection for data set 2. (a) shows the data set 2, and the membership 
functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of 
change detection for data set 2. 

Case (3). In this case, we change the AR(2) model to a nonlinear time series model, 
the ARCH(1) model:  

2 2
0 1 1,  and .t t t t tX e c b Xσ σ −= = +  (24) 

where ~ (0,1)te N , 0 0.5c = and 1 0.5b = . The mean of data also changes at 

1000 1 ( 1,2, ,9) t τ τ= Δ + Δ = with size 10x τΔ = − Δ . Outliers occur at 

time 1000 501 ( 0,1, ,9) t τ τ= Δ + Δ = with deviation size 7. Fig.3 (a) shows the third 

data set and the membership functions of Outlier and Change. Curves of false alarm 
rate versus effective alarm rate of outlier and change detection for data set 3 are 
shown in Fig.3 (b). Here, we test the outlier of size 7 at time t=1501, and the change  
 

 

Fig. 3. Outlier and change detection for data set 3. (a) shows the data set 3, and the membership 
functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of  
outlier and change detection. 
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Fig. 4. Outlier and change detection for real data 

point of size 3 at time t=7001. It is easy to see the proposed nonparametric detection 
method is also appropriate to the nonlinear data streams, which is difficult for the 
parametric methods. 

Case (4). The real data case. Here, we test our method by a real data set sampling 
from the dataset KDD Cup 1999 which is prepared for network intrusion detection. 
There are 3 intrusions in this real data set, respectively at time t=250, t=1087, and 
t=1434. The mean and variance of the normal data suddenly change at t=501, and 
recover at t=602. We present the real data set and the membership functions of 
Outlier and Change in Fig.4. It is shown that the proposed method is effective in the 
real data case. The intrusions are detected as outliers, and the sudden change of the 
normal data is detected as change points. 

6   Conclusion 

This paper presents a unifying method for outlier and change detection from data 
streams. Unlike conventional parametric methods, the proposed method is based on a 
nonparametric technique, the local polynomial fitting. Fuzzy partition and decision 
method are used to alarm possible outliers and changes. The proposed method is more 
appropriate to online and interactive data mining. Simulation results reveal its 
robustness and efficiency. 
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Abstract. Automatic tuning of hyperparameter and parameter is an essential in-
gredient and important process for learning and applying Support Vector Ma-
chines (SVM). Previous tuning methods choose hyperparameter and parameter
separately in different iteration processes, and usually search exhaustively in pa-
rameter spaces. In this paper we propose and implement a new tuning algorithm
that chooses hyperparameter and parameter for SVM simultaneously and search
the parameter space efficiently with a deliberate initialization of a pair of starting
points. First we derive an approximate but effective radius margin bound for soft
margin SVM. Then we combine multiparameters of SVM into one vector, con-
verting the two separate tuning processes into one optimization problem. Further
we discuss the implementation issue about the new tuning algorithm, and that of
choosing initial points for iteration. Finally we compare the new tuning algorithm
with old gradient based method and cross validation on five benchmark data sets.
The experimental results demonstrate that the new tuning algorithm is effective,
and usually outperforms those classical tuning algorithms.

Keywords: Support Vector Machines; Model Selection; Radius Margin Bound;
Tuning Algorithm.

1 Introduction

Choosing hyperparameter and parameter is an important and indispensable process for
learning and applying Support Vector Machines (SVM) [1,2,3]. The common tuning
strategies, like cross validation and grid search, which searched in the hyperparameter
space exhaustively, would become intractable, because these strategies attempted to run
the algorithm on every possible value of the hyperparameter vector. Some researchers
explored the possibilities of meta learning and evolutionary learning approaches [4,5,6].
Chapelle proposed a gradient descent approach to choosing hyperparameter [7], which
reduced the numbers of searching steps drastically. Keerthi studied the implementation
issue of this gradient based strategy in [8].

Let � be the hyperparameter vector, and Æ denote some estimation of SVM, such
as single validation estimate, support vector count, Jaakkola-Haussler bound, Opper-
Winther bound, radius margin bound, and span bound. The general framework for pre-
vious tuning methods could be summarized as follows:

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 162–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1. Initialize �,
2. Solve the optimization problem:g(�) � minÆ G(�� Æ),
3. Update hyperparameter � with certain strategy,
4. Go to step 2 unless termination condition is satisfied.

There are two nested optimization problems in the framework. Whatever the strategy
is, Æ must be calculated in step 2 before � is updated. This is the disadvantage that limits
the convergence speed.

To address the problem, we propose a new framework that combines steps 2 and 3
into one:

1. Initialize X,
2. Compute f (X),
3. Update X with certain strategy,
4. Go to step 2 unless terminating condition is satisfied,

where X �

�
�T � �T �T , � and � are hyperparameter and Lagrange multiplier of soft

margin SVM respectively. Then � and Æ(�) can be updated in one iteration, and the
optimal classifier and hyperparameter can be obtained simultaneously.

The paper is organized as follows. In Section 2 we lay the theoretical foundation for
the new tuning framework. We derive a new formula of soft margin SVM, and obtain
an approximate but effective radius margin bound. Then the new tuning framework
can be constructed based on these results. In Section 3 we address the implementation
issue. We design an algorithm by combining Sequential Unconstrained Minimization
Technique and Variable Metric Method [9,10], and describe initialization problem of
starting points for iteration. In Section 4 we present experimental results of the new
tuning algorithm compared with other usual approaches on a variety of databases. We
end in Section 5 with conclusions and future works.

2 Constructing New Tuning Model

2.1 New Formula of Soft Margin SVM

The soft margin SVM can be described as follows:

min
1
2

wT w �C
l�

i�1

�i�

s�t� yi
�
wT�

�
xi
�
� b

� � 1 � �i� �i � 0�

where �i represents the training error and C called penalty parameter adjusts the error.

Let z̃ �
�
�
�
xi
�T
� eT

i

Æ�
C
�T

, in which ei is a 0-vector of l length except the ith component
is 1, then the soft margin SVM problem can be converted to the standard SVM form:

min
1
2

w̃T w̃�

s�t� yi
�
w̃T z̃i � b

� � 1�
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where w̃ �

�
wT �

�
C�

�T . Further more, from the solution of the dual problem we can
get

w̃ �

�
i

�iyi�
�
z̃i
�
�

and let I �

�
1 : i � j
0 : i � j

, K̃ can be expressed by K:

K̃
�
xi� x j

�
� K � I�C�

The dual problem becomes to

min L̃D �

1
2

�
i� j

�i� jyiy j
�
K �

I
C
� ��

i

�i�

s�t�
�

i

�iyi � 0� �i � 0�
(2.1)

2.2 Calculating Radius Margin Bound

SVM is based on the Statistical Learning Theory (SLT) [11], its generalization bound
is R2 �w�2, where R is the radius of the hypersphere that contains all training points.
According to Burges [12],

R �

�
i� j

	i	 jK
�
xi� x j

� � 2
�
i� j

	iK
�
xi� x j

�
�

�
i

K
�
xi� xi

�
� (2.2)

That is, R is determined by kernel function as well as margin 
. It is not hard to get the
theorem bellow.

Theorem 1. The generalization bound is smooth in �. (Cristianini,1998. See [13])

Formula 2.2 is not efficient in practice, as it requires expensive matrix operations. We
need a new expression of R2. It is obviously that the diameter of the hypersphere that
encloses all the samples in feature space is determined almost by the farthest two

sample points. So let D be the diameter 1, D2
�

�����
xp
� ��

�
xq
����2

, where �p� q� �
argmax
�i� j� i� j �l

�����
xi
� � �

�
x j
����2

.

Theorem 2. �p� q� can be calculated in the input space when the RBF kernel is a mono-
tone function of �xi � x j�.

Proof. Since �����
xi
� � �

�
x j
����2

� 2r
�
0
� � 2K

�
xi� x j

�
�

1 These expressions of D and R2 are not precise. There is a tradeoff between computational
complexity and learning accuracy. You could calculate them accurately using 2.2. We will
discuss the issue deeply in Section 4.
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�p� q� can be calculated according to the monotonicity of K
�
xi� x j

�
in the input space:

�p� q� �

�				
				�
argmin
�i� j� i� j �l

�xi � x j�2 : increasing�

argmax
�i� j� i� j �l

�xi � x j�2 : decreasing�

��
Then R2

�

�
r(0) � K

�
xp� xq

��
�2, if Gauss kernel is used, we have

R2
�

1 � K
�
xp� xq

�
2

� (2.3)

R2 is determined only by kernel function, needing not to know the feature map � :
�

n 	 �
m, m � n. Obviously, formula 2.3 is more efficient than formula 2.2, as p, q

usually come from different classes, the computation overheads can be cut down a half
on average.

In soft margin SVM, K̃ � K � I�C, then

R̃2
�

�
1 � Kpq

�
2

�

1
2C

�

i.e.

R̃2
� R2

�

1
2C

� (2.4)

The radius margin bound changes to

�
1 � Kpq �

1
C
� �w̃�2 � (2.5)

It is easier to compute than the original one. Shölkopf discussed the relationship be-
tween kernel and the bound in [14], and Chung has proved some properties of this
bound in [15].

2.3 The New Tuning Approach

From formula 2.5 we have:

min f � R̃2 
 L̃D�

s�t�
�

i

�iyi � 0� �i � 0�C � 0� �2 � 0�

Combining C, �2, and � into one vector X �

�
C� �2� �T �T and constructing vector

Ỹ �

�
0� 0� YT �T , where Y �

�
y1� � � � � yl

�T , we can describe the new tuning approach as
follows:

min f (X) �

�
1 � Kpq �

1
C

 ��������1
2

�
i� j

�i� jyiy j
�
K �

I
C
� ��

i

�i

�������� �
s�t� XT Ỹ � 0� X � 0�

(2.6)

The approach is derived from the transformed radius margin bound given by for-
mula 2.5. It is an augmented radius margin bound method that takes into account both
the radius and the margin. Since there is only one optimization process in this approach,
we can obtain the optimal classifier and the hyperparameter simultaneously.
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3 Implementation

In this section we address the implementation issue of the new tuning approach.

3.1 A Synthetic Schema

To solve formula 2.6, we first transform it to an unconstrained minimization problem
with SUMT (Sequential Unconstrained Minimization Technique)[9], then search for X�

with a gradient descent based approach VMM (Variable Metric Method)[10].

Given a constrained minimization problem:

min f
�
X
�
�

s�t� gi
�
X
�
� 0� i � 1� � � � �m�

g j
�
X
�
� 0� j � 1� � � � � p�

SUMT reconstructs a new object function without constrain:

J
�
X� rk�

� f
�
X
�
�

1
rk

m�
i�1

gi(X)2
� rk

p�
j�1

1
g j(X)

�

where r0 � r1 � r2 � � � � � rk � � � � � 0, rk 	 0, 1
rk 	 �.

Accordingly formula 2.6 is converted to

min J
�
X� rk�
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1 � Kpq �
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 ��������1
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XT Ỹ
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� rk

�
i

1
eiX

�

(3.1)

The solution of formula 3.1 viz. X� is also the solution of formula 2.6 [9].

Chapelle et al. present a very useful result about calculating gradient and searching
direction in [7](see Lemma 2). The details can be found in Appendix.

3.2 Choosing Start Points

Here we also take Gauss kernel K
�
xi� x j

�
� exp

� � �xi � x j�2�2�2� for discussion.

Theorem 3. All training points become support vectors as � 	 0.

Proof. When � 	 0,

lim
��0

K
�
xi� x j

�
�

�
1 : xi � x j�

0 : xi � x j�

Suppose the training set has l samples, in which the number of samples whose label are
yi � �1 or yi � �1 is l� or l� respectively. Assume the Lagrange multiplier �i is

�i �

�
�� : yi � �1
�� : yi � �1

0  ��� ��  C�



Simultaneous Tuning of Hyperparameter and Parameter for Support Vector Machines 167

Because i � l �i � 0, all the sample points become support vectors. Below we want to
find a solution to �i. From the dual problem solution of SVM we have

l�
i�1

�iyi � 0�

hence,
��l� � ��l� � 0� (3.2)

From the KKT condition we get

�i

�
yi

�
wT�(xi) � b

�
� 1

�
� 0 and wT�(xi) � b � yi�

which can be transformed to

l�
j�1

� jy jK
�
x j� xi

�
� b � yi� i � 1� 2� � � � � n�

Let � 	 0 we get the simultaneous equations:
�

�� � b � 1�
��� � b � �1�

(3.3)

Combining with formula 3.2, we can finally obtain the value of �i and b:

�� � 2l��l� �� � 2l��l� b � (l� � l�)�l�

Let C � max �2l��l� 2l��l�, the claim holds. ��

Theorem 4. SVM ranks all the test samples to the same class when �	 �.

Proof. When � 	 �, lim
���

K
�
xi� x j

�
� 1, the determine function is

f
�
x
�
�

l�
i�1

�iyiK
�
xi� x

�
� b � b�

��

Therefore, the proper value of � must be neither too large nor too small. See Figure 1.
It shows the relationship between classification accuracy and �. We can see clearly
that when � 	 0 the training rate is close to 100%, and the testing rate is close to a
constant G:

G �

�
l���l� : b � 0�
l���l� : b  0�

When � � �xi�x j� the testing rate also converges to G. Our experiment reveals that the

recommended region of � is
�
0� �xi � x j�max

�
. We prefer X�0

�

�
C0� �20

� �0� r0� starting
at

�
1� 1� 0� 100

�
. Algorithm 1 is the algorithm for formula 3.1.
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Fig. 1. Relationship between classification accuracy and log–�

Algorithm 1. SimulTuning

1: Initialize X�0 � Rn, � � 0, H0
� I, k � 0.

2: �p� q� � argmax
�i� j� i� j �l

�xi � xj�
2.

3: while gk
� �J(X�k) � � do

4: Pk
� �Hkgk, �k

� arg min
�

J
�
X�k

� �Pk�, X�k�1
� X�k

� �Pk.

5: if k � n then
6: X�0

� X�n.
7: else
8: Compute gk�1, �X�k,Zk, Bk, Ck, Hk�1

� Hk
� Bk � Ck, k � k � 1.

9: end if
10: end while
11: return X�

� X�k.

4 Experiment Results

In our experiments, we assess the convergence properties, number of iteration steps,
and classification accuracy, comparing our SimulTuning (Algorithm 1, adopting Gauss
kernel) with gradient based search and cross validation approaches on five benchmark
data sets: Heart,Diabetes,and A2a [16] 2; W1a [17]; and German.Numer [18] 3. Fig-
ure 2 shows the track of hyperparameter during searching for the optimal value. We
can see clearly that hyperparameter point moves along the ridge line, which ensures
the convergence of our algorithm. Figure 3 depicts a comparison of iteration efficien-
cies, illustrating that our algorithm is superior to 5-fold cross validation in four out
of five training data sets. Finally, table 1 lists the experimental results about

2 Available at http://www.ics.uci.edu/�mlearn/MLRepository.html
3 Available at http://www.liacc.up.pt/ML/old/statlog/datasets.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.liacc.up.pt/ML/old/statlog/datasets.html
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Table 1. Classification accuracies of SimulTuning (S-T), gradient based approach (Grad) and
cross validation (5-fold). n � dimension of training samples, l � number of training samples,
ltest � number of test samples, log C and � are the optimal value calculated by SimulTuning. We
tag the best results in bold.

���������Data Sets
Attributes

n l ltest J(X��) log C �
Accuracy

S-T Grad 5-fold

A2a 83 2265 30296 176.42 5.6 3.54 84.470 83.978 81.766

German 24 300 700 104.2 3 1.5 88.032 88.113 75.156

Heart 13 100 170 1.53 6 4.15 91.852 89.672 86.741

W1a 299 2477 47272 4.34 2.3 2.67 97.830 97.024 97.039

Diabetes 8 300 468 25.9 6 2.1 80.078 78.125 76.823
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classification accuracies of our algorithm SimulTuning, gradient decent based approach
and 5-fold cross validation performed on the five benchmark data sets. The data of ac-
curacies and various attributes demonstrate that our new tuning algorithm SimulTuning
surpasses cross validation in all five benchmark tests and gradient based approach in 4
tests.

SimulTuning has a little inferior performance to gradient based approach on German
data set (88.052:88.113). This phenomenon can be explained as follows. R̃2 is calcu-
lated approximately in SimulTuning, some sample points with a boxed ‘+’ as shown in
figure 4 are not enclosed in the hypersphere determined by R̃2. But this kind of sample
distribution pattern of German data set is rare, the other four data sets do not have these
‘boxed’ points.

5 Conclusions and Future Works

It is said an advantage of SVM over ANN is that SVM elegantly separates things to
different stages where the innermost one solves simple convex problems. However, this
will make sense only when proper hyperparameters are given. In this paper, we present
a new approach to tuning hyperparameter and parameter simultaneously for SVM. Ex-
periments on benchmark data sets demonstrate that the tuning algorithm SimulTuning
based on this approach outperforms classical approaches without sacrifice of efficiency.
Our work also illustrates that combination approach to model selection for SVM is
promising.

Although the tuning approach only deals with model selection problem on bench-
mark data sets and with Gauss kernel, the benefits of approximate estimation, the feasi-
bility of combination of hyperparameter and parameter, and the interesting phenomenon
relating to German data set reveal some focuses of future works. First, a thorough in-
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vestigation of approximation in complex sample distribution is needed. Second, com-
bination feasibilities of parameters for other kernels should be demonstrated. Third,
attention to heuristic strategies for model selection on large scale data set is deserved.
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Appendix

A Computing Gradient

Let �J(Xk� rk) be the gradient of formula 3.1. It can be computed as follows:
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2 �
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2C (cf formula 2.4).

B Computing Searching Direction

Let Pk be the updating direction of X�k
�

�
XkT

� rk�T . In the kth interaction, let
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Abstract. In region-based image retrieval, the key problem of unsu-
pervised image segmentation is to automatically determine the num-
ber of regions for each image in a database. Though we can solve this
kind of model selection problem with some statistical criteria such as
the minimum description length (MDL) through implementing the EM
algorithm, the process of evaluating these criteria may incur a large com-
putational cost. From competitive learning perspective, some more ef-
ficient approaches such as rival penalized competitive learning (RPCL)
have also been developed for unsupervised image segmentation. However,
the segmentation results are not satisfactory and the object of interest
may be merged with other regions, since the RPCL algorithm is sensi-
tive to the rival learning rate. In order to solve such problems, we then
propose an iterative entropy regularized likelihood (ERL) learning algo-
rithm for unsupervised image segmentation based on the finite mixture
model, which can make automatic model selection through introducing
entropy regularization into maximum likelihood (ML) estimation. Some
segmentation experiments on the Corel image database further demon-
strate that the iterative ERL learning algorithm outperforms the MDL
based EM (MDL-EM) algorithm and the RPCL algorithm, and leads to
some promising results.

1 Introduction

Image segmentation is one of the basic problems of image processing. In general,
there are two approaches to do such a task, i.e., region growing [1] and boundary
detection [2]. For the region growing approach, each pixel is assigned to one
homogeneous region with respect to some features such as gray level, color and
texture, while for boundary detection, discontinuity of those features is regarded
as an edge and a boundary consists of such edges. In this paper, only the first
kind of image segmentation is considered.

Our study on unsupervised image segmentation was motivated by require-
ments and constraints in the context of image retrieval by content [3,4]. Most
approaches use the query-by-example principle, performing queries such as “show

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 173–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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me more images that look like this one”. However, the user is often more par-
ticularly interested in specifying an object (or region) and in retrieving more
images with similar objects (or regions), which is opposed to similar images as a
whole. Our aim is to allow the user to perform a query on some parts (objects of
interest) of an image. In this paper, we focus on the problem of clustering based
segmentation of each image in the database to allow partial queries.

Though there have been various clustering methods, such as the EM algorithm
[5] for maximum likelihood (ML) [6] and k-means algorithm [7], the number k of
clusters in the data set is usually assumed to be pre-known. However, since the
image databases for image retrieval are often huge, the prior setting of cluster
number for each image is no longer feasible. Such requirement then motivates
our interest to the idea of selecting cluster number automatically before or dur-
ing clustering. Actually, we can solve this model selection problem with some
statistical criteria such as the minimum description length (MDL) [8] through
implementing the EM algorithm [9], but the process of evaluating these criteria
may incur a large computational cost. Some more efficient approaches such as
rival penalized competitive learning (RPCL) [10] have also been proposed to
make automatical model selection during clustering. Though great improvement
can be made as compared with k-means algorithm, the segmentation results are
not satisfactory and the object of interest may be merged with other regions,
since the RPCL algorithm is sensitive to the rival learning rate.

Under regularization theory [11], we present an iterative algorithm for entropy
regularized likelihood (ERL) learning [12,13] to solve such problems, through in-
troducing entropy regularization into ML estimation on finite mixture model
for clustering based unsupervised image segmentation. This kind of entropy reg-
ularization [14] has already been successfully applied to parameter estimation
on mixtures of experts for time series prediction and curve detection, and some
promising results have been obtained due to automatic model selection for mix-
tures of experts. In this paper, we further utilize entropy regularization to make
model selection on finite mixture for unsupervised image segmentation, that is,
to determine the number of regions of an image automatically.

Finally, we conducted image segmentation experiments to test our algorithm
on the Corel image database used as benchmark in [15]. Several experiments have
demonstrated that the iterative ERL learning algorithm can automatically select
the number of regions for each image in the databases during parameter learning.
Moreover, since the object of interest even can be successfully detected from the
confusing background, the iterative ERL learning algorithm then performs much
better than the MDL based EM (MDL-EM) algorithm and the RPCL algorithm
with much less computational cost in the mean time.

2 Entropy Regularization for Automatic Model Selection

We consider the following finite mixture model for cluster analysis:

p(x | Θ) =

k∑

l=1

αlp(x | θl),

k∑

l=1

αl = 1, αl ≥ 0, (1)



Entropy Regularization, Automatic Model Selection 175

where p(x | θl)(l = 1, ..., k) are densities from the same parametric family, and
k is the number of mixture components.

Given a sample data set S = {xt}N
t=1 generated from a finite mixture model

with k∗ true clusters and k ≥ k∗, the negative log-likelihood function on the
finite mixture model p(x | Θ) is given by

L(Θ) = − 1

N

N∑

t=1

ln(

k∑

l=1

(p(xt | θl)αl)). (2)

The well-known ML learning is just implemented by minimizing L(Θ).
With the posterior probability that xt arises from the l-th component in the

finite mixture

P (l | xt) = p(xt | θl)αl/
k∑

j=1

p(xt | θj)αj , (3)

we have the discrete Shannon entropy of these posterior probabilities for the
sample xt

E(P (l | xt)) = −
k∑

l=1

P (l | xt) ln P (l | xt), (4)

which can be globally minimized by

P (l0 | xt) = 1, P (l | xt) = 0(l �= l0), (5)

that is, the sample xt is classified into the l0-th cluster.
When we consider the mean entropy over the sample set S:

E(Θ) = − 1

N

N∑

t=1

k∑

l=1

P (l | xt) ln P (l | xt), (6)

all the samples can be classified into some cluster determinedly by minimiz-
ing E(Θ), and some extra clusters are then discarded with mixing proportions
reduced to zero.

Hence, the parameter learning on the finite mixture model p(x | Θ) can then be
implemented by minimizing the following entropy regularized likelihood function

H(Θ) = L(Θ) + γE(Θ), (7)

where γ > 0 is the regularization factor. Here, E(Θ) is the regularization term
which determines the model complexity, and the mixture model can be made as
simple as possible by minimizing E(Θ). Moreover, L(Θ) is the empirical error
of learning on the data set S, and the ML learning by minimizing L(Θ) is only
a special case of the ERL learning with no regularization term.

3 An Iterative Algorithm for Unsupervised Image
Segmentation

In this section, we apply the above ERL learning to unsupervised image seg-
mentation via developing an iterative algorithm. For a N1 × N2 color image to
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be segmented, we consider an 8-dimensional vector consisting of color, texture,
and position features for each pixel just the same as [9]. The three color features
are the coordinates in the L*a*b* color space, and we smooth these features of
the image to avoid over-segmentation arising from local color variations due to
texture. The three texture features are contrast, anisotropy, and polarity, which
are extracted at an automatically selected scale. The position features are simply
the (x, y) position of the pixel, and including the position generally decreases
over-segmentation and leads to smoother regions. Finally, we can get a sample
set S of N = N1 · N2 samples for each image in the database.

In the following, we only consider the well-known Gaussian mixture model for
unsupervised image segmentation, that is,

p(x | θl) =
1

(2π)n/2|Σl|1/2 exp {−(1/2)(x − ml)
T Σ−1

l (x − ml)}, (8)

where n is the dimensionality of x, and θl = (ml, Σl), l = 1, ..., k are the mean
vectors and covariance matrices of the Gaussian distributions.

We now derive an iterative algorithm to solve the minimum of H(Θ) as fol-
lows. Firstly, we aim to make the above minimum problem without constraint

conditions by implementing a substitution: αl = exp(βl)/
k∑

j=1
exp(βj), where

−∞ < βl < ∞, l = 1, ..., k. Using the general methods for matrix derivatives, we
are then led to the following series of equations:

∂H(Θ)

∂ml
= − 1

N

N∑

t=1

U(l | xt)Σ
−1
l (xt − ml) = 0, (9)

∂H(Θ)

∂Σl
= − 1

2N

N∑

t=1

U(l | xt)Σ
−1
l [(xt − ml)(xt − ml)

T − Σl]Σ
−1
l = 0, (10)

∂H(Θ)

∂βl
= − 1

N

N∑

t=1

k∑

j=1

U(j | xt)(δjl − αl) = 0, (11)

U(l | xt) = P (l | xt)(1 + γ

k∑

j=1

(δjl − P (j | xt)) ln(p(xt | θj)αj)), (12)

where δjl is the Kronecker function. Then, the solution of those equations can
be given explicitly as follows:

m̂l =
1

N∑

t=1
U(l | xt)

N∑

t=1

U(l | xt)xt, (13)

Σ̂l =
1

N∑

t=1
U(l | xt)

N∑

t=1

U(l | xt)(xt − ml)(xt − ml)T , (14)

α̂l =
1

k∑

j=1

N∑

t=1
U(j | xt)

N∑

t=1

U(l | xt). (15)
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These explicit expressions give us an iterative algorithm for minimum H(Θ):
during each iteration, we first update P and U according to (3) and (12), re-
spectively, and then update Θ with newly estimated U according to (13)–(15).
Hence, this iterative algorithm seems very similar to the EM algorithm on Gaus-
sian mixture. Actually, the iterative ERL learning algorithm just degrades into
the EM algorithm when the regularization factor γ is reduced to zero. However,
it is different from the EM algorithm in that the mechanism of entropy regular-
ization is implemented on the mixing proportions during the iterations, which
leads to the automatic model selection.

Once the iterative ERL learning algorithm has converged to a reasonable
solution Θ∗, all the samples (i.e., pixels) from a color image can then be divided
into k clusters or regions by

C[l] = {xt : P (l|xt) = max
j=1,...,k

P (j|xt)}. (16)

Due to the regularization mechanism introduced in the iteration process, some
clusters may be forced to have no samples and then the desired k∗, that is, the
true number of regions in an image, can be selected automatically.

As compared with the gradient implementations for the ERL learning in
[12,13], the above iterative algorithm has the following two advantages. On one
hand, there is no need to select so many parameters for the iterative algorithm,
which makes the implementation much more easy. In fact, for the gradient algo-
rithm, we must select an appropriate learning rate on a sample data set, which
is generally a difficult task. On the other hand, just like the EM algorithm,
the iterative algorithm is generally faster than the gradient algorithm, which is
specially appropriate for image processing.

Though we originally introduce entropy regularization into the maximum like-
lihood estimation (implemented by EM algorithm) for automatic model selection
on the Gaussian mixture, it can also be observed that the minimization of the
ERL function H(Θ) is robust with respect to initialization and the drawbacks
of EM algorithm may be avoided. That is, when local minima of the negative
likelihood L(Θ) arise during minimizing the ERL function, the average entropy
E(Θ) may still keep large and we can then go across these local minima. Hence,
some better segmentation results may be obtained by minimum H(Θ).

For example, the standard EM algorithm may not escape one type of local
minima of the negative likelihood when two or more components in the Gaussian
mixture have similar parameters, and then share the same data. As for image
segmentation, it means that the object of interest in an image may be split into
two or more regions. However, the iterative ERL learning algorithm can promote
the competition among these components by minimum E(Θk) as shown in [12],
and then only one of them will “win” and the other will be discarded.

4 Experimental Results

We further applied the iterative ERL learning algorithm to unsupervised image
segmentation, and also made comparison with MDL-EM algorithm and RPCL
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 1. The segmentation results on one set of randomly selected images by the three
learning algorithms: (a) The original images; (b)&(c) The results by the RPCL al-
gorithm; (d)&(e) The results by the MDL-EM algorithm; (f)&(g) The results by the
iterative ERL learning algorithm. The gray segments for each algorithm are just the
connected components of the color segments.

algorithm on the Corel image database used as benchmark in [15]. We carried out
a large number of trials on the database, and only eight images were randomly
selected (see Fig. 1(a) and Fig. 2(a)) to show the segmentation results.

In all the segmentation experiments, the parameters of the three learning al-
gorithms can be set as follows. The iterative ERL learning algorithm is always
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. The segmentation results on another set of randomly selected images by the
three learning algorithms: (a) The original images; (b)&(c) The results by the RPCL
algorithm; (d)&(e) The results by the MDL-EM algorithm; (f)&(g) The results by the
iterative ERL learning algorithm. The gray segments for each algorithm are just the
connected components of the color segments.

implemented with k ≥ k∗ and γ ∈ [0.2, 0.5], while the centers and widths of
the Gaussian units are initialized by some clustering algorithms such as the
k-means algorithm. In the segmentation, we actually set k a relatively larger
value (e.g., k = 6), and select γ in the empirical range which is obtained by
a large number of segmentation trials. Since we can not adaptively select this
model selection parameter for each image in the database, we simply set γ = 0.4
for all the images uniformly. Moreover, the ERL learning is always stopped
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when |(H(Θ̂) − H(Θ))/H(Θ)| < 10−5. Just the same as the ERL learning, the
RPCL algorithm also fixes k at 6, while the MDL-EM algorithm selects k in the
range [2, 5]. Finally, the learning rates for winner and rival units during RPCL
clustering are set as ηw = 0.05 and ηr = 0.005, respectively.

Once a segmentation model is selected after the clustering is stopped, the
next step is to perform spatial grouping of those pixels belonging to the same
color/texture cluster. We first produce a k∗-level image (i.e., the color vision
of segmentation results for each algorithm in Fig. 1 and Fig. 2) which encodes
pixel-cluster memberships by replacing each pixel with the label of the cluster
for which it attains the highest likelihood, and then run a connected-components
algorithm to find image regions (i.e., the gray vision of segmentation results for
each algorithm in Fig. 1 and Fig. 2). Note that there may be more than k∗ of
these regions for each image. Finally, to enforce a minimal amount of spatial
smoothness in the final segmentation, we apply a 3 × 3 maximum-vote filter to
the output of each clustering algorithm. This filter assigns its output value as
the value that occurs most often in the 3 × 3 window.

From the segmentation results shown in Fig. 1 and Fig. 2, we can find that
the iterative ERL learning algorithm successfully detects the object of interest
from the confusing background and performs generally better than the other two
algorithms. That is, the MDL-EM algorithm may converge at local minima and
the object of interest may be split into two regions (see brown bear and horse)
when two or more Gaussian centers are initialized in the region of it, while
the RPCL algorithm is sensitive to the rival learning rate ηr and the object of
interest may be merged with other regions (see brown bear and sparrow).

Moreover, the average seconds per image taken by the three learning algo-
rithms for segmentation of the eight randomly selected images are also listed in
Table 1. Note that we just recorded the computational cost by the clustering for
grouping pixels into regions, and the postprocessing of the segmentation results
such as searching connected components is not included. In all the segmenta-
tions, we process the images by the three learning algorithms offline on a 3.0GHz
Pentium IV computer. As expected, the iterative ERL learning algorithm runs
much faster than the MDL-EM algorithm since the process of evaluating the
MDL criterion incurs a larger computational cost. As compared with the RPCL
algorithm, the iterative ERL learning algorithm also keeps more efficient to make
unsupervised image segmentation.

The further experiments on the other images in the database have also been
made successfully for segmentation in the similar cases. Actually, in many ex-
periments, the iterative ERL learning algorithm can automatically detect the
number of regions for a color image in the database and maintain the edges of

Table 1. The average seconds per image taken by the three learning algorithms for
segmentation of the randomly selected images

RPCL MDL-EM ERL

57.7 80.6 38.5
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the object of interest well even in the confusing background. Note that the it-
erative ERL learning algorithm is just compared with the MDL-EM algorithm,
and the comparison results should be the same when some other model selec-
tion criteria are taken into account to determine the model scale k for the EM
algorithm. Additionally, once the color/texture features are assigned to those
connected components of the color images, we can then implement region-based
image retrieval on the Corel image database. In the future work, we will evaluate
the iterative ERL learning algorithm using the precision-recall measure in the
context of image retrieval.

5 Conclusions

We have proposed an iterative ERL learning algorithm for unsupervised image
segmentation with application to content based image retrieval. Through intro-
ducing a mechanism of entropy regularization into the likelihood learning on
the finite mixture model, the iterative ERL learning algorithm can make model
selection automatically with a good estimation of the true parameters in the
mixture. When applied to unsupervised image segmentation, the iterative ERL
learning algorithm can even successfully detect the object of interest from the
confusing background, and then performs much better than the MDL based EM
(MDL-EM) algorithm and the RPCL algorithm with much less computational
cost in the mean time.
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Abstract. In order to reuse and assess ontologies, it is critical for on-
tology engineers to represent and manage ontology versioning and evo-
lutions. In this paper, we propose a timing analysis model for ontology
evolution management with more expressive time constraints in a dis-
tributed environment. In the model, a timing change operation sequence
is called a timing evolution behavior that must satisfy all of the time con-
straints in a distributed environment. Using this timing analysis model,
we can detect whether ontology evolutions are timing consistent in the
distributed environment. Given a timing change operation sequence, we
also can detect whether it is a timing evolution behavior of the dis-
tributed environment. All of these detections can be reduced to detecting
whether the group of inequations has solutions. This enables us to better
manage dynamic versioning and evolutions of distributed ontologies. We
also developed a prototype system called TEAM that can perform our
timing analysis task of distributed ontology evolutions.

1 Introduction

It is an important goal for ontology engineers to reuse knowledge-based sys-
tems by building and sharing domain ontologies, which are semantically sound
specifications of domain conceptualizations [1]. Especially within Semantic Web
environment, many Web ontology languages have been developed such as OWL1.
Moreover, Semantic Web will not be realized by agreeing on a single global ontol-
ogy, but rather by weaving together a large collection of partial ontologies that
are distributed across the Web [2]. Current research areas had rapidly shifted
from applications based on simple ontology to some aspects such as representa-
tion, evolutions and management of multiple ontologies in a distributed environ-
ment [3]. These aspects can be tackled using mapping, combining and versioning
among distributed ontologies [4,5,6].

On one hand, evolution and version management of multiple ontologies in
a distributed environment should efficiently represent ontology changes in de-
tails. This enables us to trace evolution history of multiple ontologies and assess
1 www.w3c.org/TR/owl-ref/

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 183–192, 2007.
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whether any two ontology versions are based on different conceptualizations or
whether they represent the same conceptualization. On the other hand, we also
should specify change operations of ontologies and further analyze the different
causalities in diverse contexts because of these change operations. Current some
ontology versioning approaches such as KAON2 and Protege3, cannot jointly ad-
dress the two aspects [7]. More importantly, considering ontology versioning is
changing over time, we need an approach with time constraints for representing
ontology versioning and evolution, especially for specifing ontology versioning
and evolution with more specific time constraints. For example, the change op-
eration op to ontology o occurs 3 time units earlier than the change operation op′

to ontology o′; the change operation op based on ontology o takes place 2 time
units, and so on. In our opinion, we urgently need an ontology evolution manage-
ment approach that not only can specify change details between ontologies and
analyze ontology change operations and implications between these operations,
but also can represent more expressive time constraints. This paper will work
towards this goal.

In this paper, we propose a timing analysis model for ontology evolution
management with more expressive time constraints. Using this timing analy-
sis model, we can detect whether ontology evolutions are timing consistent in
a distributed environment. Given a timing change operation sequence, we also
can detect whether it is a timing evolution behavior of the distributed environ-
ment. This enables us to better manage dynamic versioning and evolutions of
distributed ontologies.

This paper is organized as follows: Section 2 briefly introduces the motivation
of this paper. Section 3 first proposes the timing analysis model of ontology
versioning and evolution based on a single context. Then in Section 4, we extend
work of Section 3 to a distributed environment. Meanwhile, we analyze some
important properties from the timing analysis model. The time analysis model
based on a single context is also suitable for distributed environments. Section
5 briefly introduces the architecture and implementation of prototype system
called TEAM. Section 6 and Section 7 are the related work and conclusion,
respectively.

2 Motivation

In a distributed environment, especially knowledge based system with real-time
characteristics, diverse contexts probably own themselves ontologies that are se-
mantically overlapped with each other. In the situation, when an ontology is
changed with respect to an ontology change operation in some context, some
ontology change operations in other contexts must be triggered to change their
ontologies and hence keep semantic consistencies between these distributed on-
tologies. We use Figure 1 to illustrate our example.

2 kaon.semanticweb.org
3 protege.stanford.edu
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Fig. 1. An example of distributed ontology evolution

In this example, there are three diverse contexts (columns) in the distributed
environment. They are denoted e1, e2 and e3, respectively. These distributed
contexts own themselves original ontology version. We use O(ei,0) to represent
the original ontology from the context ei (1 ≤ i ≤ 3). O(ei,n) is used for represent-
ing the nth ontology version from the context ei. For any context ei (1 ≤ i ≤ 3),
it continually evolves in accord with the time axis from top to bottom. Consid-
ering the example in Figure 1, in the context e1, because of the ontology change
operation op1, the original ontology version O(e1,0) is changed to ontology version
O(e1,1). Of course, the change probably causes semantic inconsistencies with se-
mantic terms from other contexts. In order to keep semantic consistency among
semantic terms from these different contexts, another ontology change opera-
tion op2 is triggered which revises semantic terms in ontology version O(e2,0)
in the context e2 to O(e2,1). The eight ontology change operations in the figure
have caused version evolutions of multiple ontologies in the whole distributed
environment. Compatangelo et al. [7] formally specify three types of operations
performed on distributed ontologies using rewriting rules which include creation
of a concept, renaming of a concept and addition of attribute/value pair to a
concept. In this paper, we will not concentrate on the specific types of these
ontology change operations because our time analysis model is independent of
specific types of ontology change operations.

The arrows denote the path of ontology changes. The dashed arrows denote
the virtual path of ontology changes in a single context. In the bottom of the
figure, each context owns a time constraint set which represents some time con-
straints of the form

a ≤ c1(op1 − op′1) + c2(op2 − op′2) + · · · + cn(opn − op′n) ≤ b
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where op1, op′1, op2, op′2, · · ·, opn, op′n are ontology change operations, a, b, c1,
c2, · · ·, cn are real numbers (b may be ∝).

In this example, we must address some problems as follows:

1) Given a specific sequence of change operations performed on these dis-
tributed environments, how can we detect whether the sequence reflects a cor-
rect change behavior of distributed ontology evolutions. That is to say, we need
to detect whether the sequence is timing consistent with respect to all the time
constraints of the distributed environment.

2) Given all the time constraints of the distributed environment, how will we
know whether there exists some timing consistent evolution behavior? That is,
we need to know whether there exists a sequence of ontology change operations
that satisfies all the time constraints of the whole distributed environment.

In order to specify ontology changes and evolution with exact time constraints
in a distributed environment, we must answer the two questions. Regarding to
the first question, if the given operation sequence cannot satisfy all the time
constraints, then we know that these change operations performed on distributed
ontologies are meaningless because the sequence is not a correct change behavior
w.r.t all the time constraints. As for the second problem, if there does not exist
any sequence σ such that σ satisfies all the time constraints, then we know that
the time constraints are unreasonable and they should be reset.

3 Time Analysis Model on Single Context

Definition 1. In context e, O(e,0) is the original ontology. The set of evolving
ontology versions based on context e is denoted as Se ={O(e,0), O(e,1), · · · , O(e,n)}.

Definition 2. In context e, a timing analysis model for ontologies based on Se

is denoted as TAMe = (Se, OPe, Ce, V Se, T ), where
— Se is the evolving ontology set
— OPe is the set of ontology change operations performed on ontologies
— Ce is a set of time constraint marks of the form:

a ≤ c1(op1 − op′1) + c2(op2 − op′2) + · · · + cn(opn − op′n) ≤ b
where op1, op

′
1, op2, op

′
2, · · · , opn, op′n ∈ OPe

— V Se is the version space based on ontology set Se and V Se ⊆ Se×OPe×Se

— T is a linear ordering about change operation triggering T ⊆ OPe × OPe

where T is irreflective, transitive, asymmetry and comparable.

As for the example in Figure 1, we construct TAMe2 with respect to the con-
text e2, we find that ontology set Se2 = {O(e2,0), O(e2,1), O(e2,2), O(e2,3), O(e2,4)}.
Because of the sequence of change operations from OPe2 = {op2, op3, op5, op8},
ontologies continually change from one version to another version. The version
space V Se2 = {(O(e2,0), op2, O(e2,1)), (O(e2,1), op3, O(e2,2)), (O(e2,2), op5, O(e2,3)),
(O(e2,3), op8, O(e2,4))}, the time constraint set Ce2 = {0 ≤ 2(op5 − op3) − (op8 −
op5)}. The linear ordering set T = {(op2, op3), (op3, op5), (op5, op8)}.
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We use a change operation sequence for representing and modeling an un-
timing evolution behavior of ontologies. Any operation sequence is of the form
op0 − op1 − · · · − opn, which represents opi+1 takes place after opi for any
0 ≤ i ≤ n − 1, where op0, op1, · · · , opn are the change operation names that
are triggered because of the causalities of them.

Definition 3. As for the timing analysis of ontology evolutions based on e, any
operation sequence σ = op0 − op1 − · · · − opn is untiming evolution behavior of
untiming analysis model TAMe if and only if the following conditions hold:

— all operations opi in OPe occur in the sequence σ, and opi �= opj for any
i, j (i �= j, 0 ≤ i, j ≤ n)

— for any opi, opj such that (opi, opj) ∈ T , then 0 ≤ i ≤ j ≤ n.

Considering the example in Figure 1, we say the sequence op2−op3−op5−op8 can
be regarded as an untiming evolution behavior of ontologies based the context e2.
It is not difficult to give an algorithm to check if there is an untiming evolution
behavior for a given time analysis model. As mentioned above, however, an
untiming evolution behavior cannot fully specify dynamic evolution behavior of
ontologies. We concentrate on the timing evolution behavior. A timing change
operation sequence is of the form (op0, t0) − (op1, t1) − · · · − (opn, tn), where opi

is a change operation name, and for any i (0 ≤ i ≤ n), ti is a nonnegative real
number that represents the performed time finishing operation opi. The sequence
represents that op0 takes place t0 time units after ontology changes start, op1
takes place t1 time units after op0 takes place, · · ·, opn takes place tn time units
after opn−1 takes place. The needed time performing the whole sequence σ is
called performed time of σ and denoted as PT (σ). The occurrence time of an
operation opi in σ is denoted as OT (opi). It is obvious to obtain the following
lemma.

Lemma 1. For any timing change sequence γ = (op0, t0) − (op1, t1) − · · · −
(opn, tn) of TAMe, its performing time is denoted as PT (γ) = Σn

j=0tj and
OT (opi) = Σi

j=0tj for any i (0 ≤ i ≤ n).

Definition 4. A timing change operation sequence γ = (op0, t0) − (op1, t1) −
· · ·− (opn, tn) is a timing evolution behavior of the timing analysis model TAMe

if and only if the following conditions hold:
— op0 − op1 − · · · − opn is an untiming evolution behavior of TAMe, and
— the different time units t0, t1, · · · , tn must satisfy the time cons-

traints in Ce, i.e., for any time constraint a ≤ Σn
i=0ci(fi − f ′i) ≤ b in Ce

such that a ≤ c0δ0 + c1δ1 + · · · + cnδn ≤ b, where for each i(0 ≤ i ≤ n),
1) if fi = opj and f ′i = opk then if j ≤ k then δi = −(OT (opk)−OT (opj)),
2) otherwise, if k < j then δi = OT (opj) − OT (opk)

From the previous definitions, we can detect if a timing change operation se-
quence is a timing evolution behavior of a given time analysis model. That is to
say, we can judge whether the sequence correctly reflects versioning and evolution
under specific time constraints. We have resolved the first problem put forward
in Section 2. For example, we continue to consider the context e2 in Figure 1,
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a operation sequence γ = (op2, 1) − (op3, 1) − (op5, 1) − (op8, 1) is a timing evo-
lution behavior of the given TAMe2 because γ satisfies every time constraint in
Ce2, whereas the sequence σ = (op2, 1) − (op3, 2) − (op5, 1) − (op8, 3) cannot be
regarded as a timing evolution behavior of TAMe2 because it doesn’t satisfies
the time constraint {0 ≤ 2(op5 − op3) − (op8 − op5)}.

We use the notation TEBS(TAMe) for representing the set of all timing
evolution behaviors which are the change operation sequences satisfying all the
time constraints in TAMe. In order to better represent time operation sequence,
we define a special change operation ε which represents the start of ontology
changes.

Definition 5. If there is a change operation sequence γ = (ε, 0) − (op1, t1) −
· · · − (opn, tn) such that γ is a timing evolution behavior of TAMe, then we say
ontology versioning and evolution based on TAMe is timing consistent.

Considering the problem put forward in Section 2, we will discuss whether a
given TAMe is timing consistent. We briefly give the following theorem.

Theorem 1. Ontology versioning and evolution based on TAMe is timing con-
sistent if and only if TEBS(TAMe) �= ∅.

Proof. According to the previous definitions, we know that TEBS(TAMe) is
the set of all of timing evolution behaviors of the time analysis mode TAMe

based on the context e. Next, according to definition 5, if ontology versioning
and evolution based on TAMe is timing consistent, then there at least exists a
timing evolution behavior of TAMe. Of course, TEBS(TAMe) �= ∅.

If TEBS(TAMe) �= ∅, this means that at least exists a timing evolution
behavior of TAMe, hence we know that ontology versioning and evolution based
on TAMe is timing consistent. �	

In the following, we will extend the time analysis approach to a distributed
environment, we find that this approach will still work well in diverse contexts.

4 Extending Timing Analysis Model to Distributed
Environments

Definition 6. A timing analysis model base on a distribute environment ENV
is denoted as TAM , which is a six-tuple, TAM = (ENV, S, OP, C, V S, T ), where

— ENV = {e1, e2, · · · , em} is the set of diverse contexts
— S =

⋃
e∈ENV Se represents the set of all changing ontlogies in ENV

— OP =
⋃

e∈ENV OPe represents the set of all change operations in ENV
— C =

⋃
e∈ENV Ce represents the set of all time constraints in ENV

— V S is the version space in ENV , and V S ⊆ S × OP × S
— T is a linear ordering for representing triggering relations between change

operations, T ⊆ OP × OP , and T is irreflective, transitive, asymmetry
and comparable.
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We consider the example in Figure 1. In the distributed environment,
ENV = {e1, e2, e3},
S = {O(e1,0), O(e1,2), O(e1,3), O(e2,0), O(e2,1), O(e2,2), O(e2,3), O(e2,4), O(e3,0),

O(e3,1), O(e3,2)},
OP = {op1, op2, op3, · · · , op8},
C = {2 ≤ op4 − op1 ≤ 5, 0 ≤ 2(op5 − op3) − (op8 − op5)},
V S = {(O(e1,0), op1, O(e1,1)), (O(e1,1), op2, O(e2,1)), (O(e2,1), op3, O(e2,2)),

(O(e2,2), op5, O(e2,3)), (O(e2,3), op6, O(e3,1)), (O(e3,1), op7, O(e3,2)),
(O(e3,2), op8, O(e2,4))}.

T = {(op1, op2), (op2, op3), (op3, op4), (op4, op5), (op6, op7), (op7, op8)}.

Definition 7. Based on the time analysis model TAM in a distributed envi-
ronment ENV , if there is a change operation sequence γ = (ε, 0) − (op1, t1) −
· · · − (opn, tn) such that γ is a timing evolution behavior of TAM , then we say
ontology versioning and evolution based on TAM is timing consistent.

From the theorem 1, we can easily obtain the following extended theorem.

Theorem 2. Ontology versioning and evolution based on TAM is timing con-
sistent if and only if TEBS(TAM) �= ∅.

The theorem gives a framework for detecting whether a given time analysis
model is timing consistent based on a distributed environment. It can answer
the second problem put forward in Section 2. Although theorem 1 provides a
framework for detecting whether a given time analysis model is timing consistent,
the framework is difficult to be operated well because we have no any straight-
forward solution to check whether the set of the timing evolution behaviors is
empty. Therefore, we need to deeply exploit a framework and obtain a feasible
and well-operated algorithm.

According to the previous definitions, a timing change operation sequence
σ = (ε, 0) − (op1, t1) − · · · − (opn, tn) is a timing evolution behavior of TAM ,
then all t1, t2, · · · , tn in σ must satisfy all time constraints r1, r2, · · · , rk in the
time constraint set C of TAM , where for any 1 ≤ i ≤ k,

ri = ai ≤ Σn
j=1c(i,j)(fj − f ′j) ≤ bi (1)

If fj = opp, and f ′j = opq for any p �= q, and 1 ≤ p, q ≤ n,

ri = ai ≤ Σn
j=1c(i,j)δj ≤ bi (2)

where

δj =
{ −(tp+1 + tp+2, · · · , tq), p < q, (3)

tq+1 + tq+2, · · · , tp, q < p. (3′)

From equations (2),(3) and (3’), we can find that all t1, t2, · · · , tn, per se, must
satisfy a group of inequalities consisting of r1, r2, · · · , rk. We denote the group of
inequalities as GI(TAM). We immediately will find a solution to judge whether
a given sequence γ is a timing evolution behavior of TAM . That is, if γ is a
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timing evolution behavior of TAM , then t1, t2, · · · , tn must be a solution of the
group of inequalities in accord with the time constraints in TAM . If there is
no any sequence that can satisfy the group of inequalities, i.e, the group has no
solution, the ontology versioning based on TAM is not timing consistent. Then
we will obtain the following theorem.

Theorem 3. Ontology versioning and evolution based on TAM is timing con-
sistent if and only if GI(TAM) has at least a solution.

We will find that theorem 3 gives me a feasible and well-operated solution to
dynamically detect evolution behaviors of distributed ontologies. The specific
algorithm can be reduced to evaluating the group of inequalities corresponding
to the TAM . This can easily be solved by linear programming.

5 Architecture of TEAM

We developed a prototype system call TEAM (TimE Analysis Model) for simply
simulating the specific time consistency analysis applications in distributed envi-
ronments. This system provides a GUI interface for interacting with users. Each
local ontology repository is used for storing partial ontology and its evolution
versions. Each ontology from each repository can use time consistency checker
for detecting their time consistency. Using main control component, the whole
distributed system also can be configured and further detect time consistency
based evolutions of distributed ontologies. Time Consistency Checker is, per se,
a solution resolver for an inequation set. We use LINDO API 4.1 [10] for our
time consistency checker. It can be used to define and resolve a group of inequal-
ities in accord with our time analysis model. Figure 2 gives an example of time
consistency checking of an version evolving sequence.

One of key problems of the prototype system is how we can label the time
marks for each evolution version. We use OWL language for describing ontology

Fig. 2. Time consistency checking of an version evolving sequence
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information. We know that each ontology description document includes some
ontology version information such as <owl:versionInfo>. We can add some
labels such as <dc:revisionBegin> and <dc:revisionEnd> into the version
information description of ontology documents, their literal values are defined
as built-in datatype time. When we want to extract information of performed
time of version evolution operations, we can only find these labels and further
calculate subtraction of corresponding values of these labels.

6 Related Work and Discussion

Current research areas had rapidly shifted from applications based on simple
ontology to some aspects such as representation, evolutions and management of
multiple ontologies in a distributed environment. Some research approaches con-
centrate on ontology versioning and evolution within a distribute environment
with diverse but overlapped semantic contexts. These semantically overlapped
research work includes some ontology versioning approaches such as KAON,
Protege. Compatangelo et al [7] propose a blackboard architecture that also al-
lows the centralized management of different ontology versions in distributed
environments. They also formally specify three types of operations performed
on distributed ontologies using rewriting rules which include creation of a con-
cept, renaming of a concept and addition of attribute/value pair to a concept.
It seems that these work above didn’t deal with ontology versioning and evolu-
tions with explicit time constraints. Huang et al. [8] developed a temporal logic
approach for reasoning multi-version ontologies based on LTLm, the standard
model checking algorithm [9] for evaluating a query in the temporal logic LTLm.
This approach can better express simple linear time constraints between ontol-
ogy versions, e.g., ontology o occurs prior to ontology o′. It is rather difficult
for ontology engineers to specify ontology versioning and evolution with more
specific time constraints. Compared with these works, our work is based on the
work about different kinds of change operations specified in [7] and extends the
work into ontology evolutions with real-time characteristics. It can represent
multiple ontology versioning and evolutions with more explicit time constraints
in distributed environments. Especially, it can detect valid dynamic evolution
behavior of ontologies by the group of inequations. In the case, our model also is
feasible and well-operated, and can easily be solved by linear programming. The
prototype system can easily be implemented as plugins for some current ontology
versioning and evolution management systems. We concentrate on timing ver-
sioning of multiple and distributed ontologies because of their operation changes.
Therefore, we do not consider semantic change relations between terminologies
inside ontologies. In fact, semantic change relations have been partially addressed
in above related work such as [8]. In future work, we will apply our distributed
timing analysis model to real-time applications of electric power information and
provide real-time information maintenance and decision supports.
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7 Conclusion

In this paper, we propose a timing analysis model for ontology evolutions with
more expressive time constraints in distributed environments. Dynamic version-
ing and evolutions in the distributed environment can be represented and de-
tected using this timing analysis model. All of these detections can be reduced
to detecting whether a group of inequalities has solutions. This enables us to
better manage dynamic versioning and evolutions of distributed ontologies.
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Abstract. High-throughput single nucleotide polymorphism (SNP)
genotyping technologies make massive genotype data, with a large num-
ber of individuals, publicly available. Accessibility of genetic data makes
genome-wide association studies for complex diseases possible. One of the
most challenging issues in genome-wide association studies is to search
and analyze genetic risk factors resulting from interactions of multiple
genes. The integrated risk factor usually have a higher risk rate than sin-
gle SNPs. This paper explores the possibility of applying random forest
to search disease-associated factors for given case/control samples. An
optimum random forest based algorithm is proposed for the disease sus-
ceptibility prediction problem. The proposed method has been applied
to publicly available genotype data on Crohn’s disease and autoimmune
disorders for predicting susceptibility to these diseases. The achieved ac-
curacy of prediction is higher than those achieved by universal prediction
methods such as Support Vector Machine (SVM) and previous known
methods.

Keywords: random forest, association study, complex diseases, suscep-
tibility, risk factor,prediction.

1 Introduction

Assessing the association between DNA variants and disease has been used
widely to identify regions of the genome and candidate genes that contribute
to disease [1]. 99.9% of one individual’s DNA sequences are identical to that of
another person. Over 80% of this 0.1% difference will be Single Nucleotide Poly-
morphisms, and they promise to significantly advance our ability to understand
and treat human disease. In a short, an SNP is a single base substitution of one
nucleotide with another. Each individual has many single nucleotide polymor-
phisms that together create a unique DNA pattern for that person. It is impor-
tant to study SNPs because they represent genetic differences among humans.
Genome-wide association studies require knowledge about common genetic vari-
ation and the ability to genotype a sufficiently comprehensive set of variants in
a large patient sample [2]. High-throughput SNP genotyping technologies make
massive genotype data, with a large number of individuals, publicly available.
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Accessibility of genetic data make genome-wide association studies for complex
diseases possible.

Success stories when dealing with diseases caused by a single SNP or gene,
sometimes called monogenic diseases, were reported. However, most complex
diseases, such as psychiatric disorders, are characterized by a non mendelian,
multifactorial genetic contribution with a number of susceptible genes interacting
with each other [3,4]. A fundamental issue in the analysis of SNP data is to
define the unit of genetic function that influences disease risk. Is it a single
SNP, a regulatory motif, an encoded protein subunit, a combination of SNPs
in a combination of genes, an interacting protein complex, or a metabolic or
physiological pathway [5]? In general, a single SNP or gene may be impossible to
associate because a disease may be caused by completely different modifications
of alternative pathways, and each gene only makes a small contribution. This
makes the identifying genetic factors difficult. Multi-SNP interaction analysis is
more reliable but it’s computationally infeasible. In fact, a 2-SNP interaction
analysis for a genome-wide scan with 1 million SNPs requires 1012 pairwise
tests. An exhaustive search among multi-SNP combination is computationally
infeasible even for a small number of SNPs. Furthermore, there are no reliable
tools applicable to large genome ranges that could rule out or confirm association
with a disease.

It’s important to search for informative SNPs among a huge number of SNPs.
These informative SNPs are assumed to be associated with genetic diseases. Tag
SNPs generated by multiple the linear regression based method [6] are good in-
formative SNPs, but they are reconstruction-oriented instead of disease-oriented.
Although the combinatorial search method [7] for finding disease-associated
multi-SNP combinations has a better result, the exhaustive search is still very
slow.

Multivariate adaptive regression splines models [8,9] are related methods used
to detect associations between diseases and SNPs with some degree of success.
However, the number of selected predictors is limited and the type of possible
interactions must be specified in advance. Multifactor dimensionality reduction
methods [10,11] are developed specifically to find gene-gene interactions among
SNPs, but they are not applicable to a large sets of SNPs.

The random forest model has been explored in disease association studies
[12]. It was applied on simulated case-control data in which the interacting model
among SNPs and the number of associated SNPs were specified, thus making the
association model simple and the association relatively easier to detect. For real
data, such as Crohn’s disease [13], multi-SNP interaction is much more complex
which involves more SNPs.

In this paper, we first propose an optimum random forest model for searching
the most disease-associated multi-SNP combination for given case-control data.
In the optimum random forest model, we generate a forest for each variable (e.g.
SNP) instead of randomly selecting some variables to grow the classification tree.
We can find the best classifier (a combination of SNPs) for each SNP, then we
may have M classifiers if the length of the genotype is M . We rank classifiers
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according to their prediction rate and assign a weight for each SNP, and in such
way we can decide which SNP is more disease-associated.

We next address the disease susceptibility prediction problem [14,15,16,17].
This problem is to assess accumulated information targeted to predicting geno-
type susceptibility to complex diseases with significantly high accuracy and sta-
tistical power. We use the most disease-associated multi-SNPs (generated from
the optimum random forest) to grow a random forest and make the genetic sus-
ceptibility prediction. The proposed method is applied to two publicly available
data: Crohn’s disease [13] and autoimmune disorder [18]. The accuracy of the
prediction based on the optimum random forest is higher than the accuracy of
all previously known methods implemented in [14,15].

In the next section we will overview the random forest tree and classifica-
tion tree, describe the genetic model, address the problem of searching of most
disease-associated multi-SNP and propose the optimum random forest algorithm
to find the combination of SNPs which are most associated with diseases. In
Section 3 we give the disease susceptibility prediction problem formulation and
describe the random forest algorithm. In Section 4 we describe the two real
case/control population samples and discuss the results of our experiments.

2 Search for the Most Disease-Associated Multi-SNPs

In this section we first give an overview of the random forest tree and classi-
fication tree, then we will describe the genetic model. Next we formulate the
problem of searching for the most disease-associated multi-SNP and propose the
optimum random forest algorithm.

2.1 Classification Trees and Random Forests

In machine learning, a Random Forest is a classifier that consists of many clas-
sification trees. Each tree is grown as follows:

1 If the number of cases in the training set is N , sample N cases at random
- but with replacement, from the original data. This sample will be the
training set for growing the tree.

2 If there are M input variables, a number m � M is specified such that at
each node, m variables are selected at random out of the M and the best
split on these m is used to split the node. The value of m is held constant
during the forest growing.

3 Each tree is grown to the largest extent possible. There is no pruning [19].

A different bootstrap sample from the original data is used to construct a tree.
Therefore, about one-third of the cases are left out of the bootstrap sample and
not used in the construction of the tree. Cross-validation is not required because
the one-third oob (out-of-bag) data is used to get an unbiased estimate of the
classification error as trees are added to the forest. It is also used to get estimates
of variable importance. After each tree is built, we compute the proximities or
each terminal node.
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In every classification tree in the forest, put down the oob samples and com-
pute the importance score for each tree based on the number of votes cast for
the correct class. This is the importance score for variable m. All variables can
be ranked and those important variables can be found in this way.

Random forest is a sophisticated method in data mining to solve classification
problems, and it can be used efficiently in disease association studies to find most
disease-associated variables such as SNPs that may be responsible for diseases.

2.2 Genetic Model

Recent work has suggested that SNP’s in human population are not inherited
independently; rather, sets of adjacent SNP’s are present on alleles in a block
pattern, so called haplotype. Many haplotype blocks in human have been trans-
mitted through many generations without recombination. This means although
a block may contain many SNP’s, it takes only a few SNP’s to identify or tag
each haplotype in the block. A genome-wide haplotype would comprise half of
a diploid genome, including one allele from each allelic gene pair. The geno-
type is the descriptor of the genome which is the set of physical DNA molecules
inherited from the organism’s parents. A pair of haplotype consists a genotype.

SNP’s are bi-allelic and can be referred as 0 for majority allel and 1, other-
wise. If both haplotypes are the same allele, then the corresponding genotype
is homogeneous, and can be represented as 0 or 1. If the two haplotypes are
different, then the genotype is represented as 2.

The case-control sample populations consist of N individuals which are rep-
resented in genotype with M SNPs. Each SNP attains one of the three values
0,1, or 2. The sample G is an (0, 1, 2)-valued N × M matrix, where each row
corresponds to an individual, each column corresponds to a SNP.

The sample G has 2 classes, case and control, and M variables, and each
of them is represented as a SNP. To construct a classification tree, we split the
sample S into 3 child nodes, depending on the value (0, 1, 2) of the variable
(SNP) on split site (loci). We grow the tree to the largest possible extent. The
construction of the classification tree for case-control sample is illustrated in Fig.
1 . The relationship of a leaf to the tree on which it grows can be described by
the hierarchy of splits of branches (starting from the trunk) leading to the last
branch from which the leaf hangs. The collection of split site is a Multi-SNPs
combination (MSC), which can be viewed as a multi-SNP interaction for the
disease. In this example, MSC = {5, 9, 3} and m = 3, which is a collection of 3
SNPs, represented as its loci.

2.3 Most Disease-Associated Multi-SNPs Problem

To fully understand the basis of complex diseases, it is important to identify the
critical genetic factors involved, which is a combination of multiple SNPs. For a
given sample G, S is the set of all SNPs (denoted by loci) for the sample, and a
multi-SNPs combination (MSC) is a subset of S. In disease associations, we need
to find a MSC which consists of a combination of SNPs that are well associated
with the disease. The problem can be formulated as follows:
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Fig. 1. Classification tree for case-control sample

Most Disease-associated Multi-SNPs Problem. Given a sample G with a
set of SNPs S, find the most disease-associated multi-SNPs combination
(MDMSC) such that the sample is classified correctly by the MDMSC with
high confidence.

Although there are many statistical methods to detect the most disease asso-
ciated SNPs, such as odds ratio or risk rates, the result is not satisfactory [15].
We decide to search the MDMSC based on the random forest.

2.4 Optimum Random Forest

We generate a MSC for each SNP, the size of the MSC should be much less than
the number of SNPs set S (m � M ). The MSCi (i = 1, 2, . . . , M) must include
the ith SNP and the other (m − 1) SNPs can be randomly chosen from S. In
this way, the M MSCs will cover all SNPs in the sample.

For each MSC, we grow many trees, by permuting the order of the MSC and
the training sample. We run all the testing samples down these trees to get the
classifier for each sample in the training set, then we can get a classification rate
for each tree of a MSC. The classification rate for the MSC is that of the tree
whose rate is the highest, and this tree is the best tree. Each member(SNP) of
the MSCi is assigned a weight wi,j (j ∈ MSC) based on the accuracy. The
weights for SNPs in the same MSC are the same. All SNPs in all other MSCs
will be assigned a weight too. If a SNP is not a member of MSCi, then wi,j = 0.

The weight for each SNP Wj (j = 1, 2, . . . , M) in M is the sum of weights
from all MSCs.

Wj =
M∑

i=1

wi,j (1)
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In the general random forest (GRF) algorithm, the MSC is selected completely
randomly and m � M . It may miss some important SNPs if they are not chosen
for any MSC. In our optimum random forest (ORF) algorithm, this scenario is
avoided because we generate at least one MSC for each SNP. On the other
hand, in GRF, the classifier (forest) consists of trees where there is a correlation
between any two trees in the forest, and the correlation will decrease the rate of
the classifier. But in ORF, we generate a cluster by permuting the order of the
MSC and samples for each tree and the prediction for testing samples is on this
cluster only, which is completely independent from the other trees. In this way,
we extinguish the correlation among trees.

All SNPs are sorted according to their weights. The most disease-associated
SNP is the one with the highest weight. The contribution to diseases of each
SNP is quantified by its weight, but in GRF there is no way tell the difference
of contribution among SNPs.

3 Disease Susceptibility Prediction

In this section we first describe the input and the output of prediction algorithms
and then we show how to apply the optimum random forest to the disease
susceptibility prediction.

Data sets have n genotypes and each has m SNPs. The input for a prediction
algorithm includes:

(G1) Training genotype set gi = (gi,j), i = 0, . . . , n, j = 1, . . .m, gi,j ∈ {0, 1, 2}
(G2) Disease status s(gi) ∈ {0, 1}, indicating if gi, i = 0, . . . , n , is in case (1) or

in control (0) , and
(G3) Testing genotype gt without any disease status.

We will refer to the parts (G1-G2) of the input as the training set and to the
part (G3) as the test case. The output of prediction algorithms is the disease
status of the genotype gn, i.e., s(gt).

We use leave-one-out cross-validation to measure the quality of the algorithm.
In the leave-one-out cross-validation, the disease status of each genotype in the
data set is predicted while the rest of the data is regarded as the training set.

Below we describe several universal prediction methods. These methods are
adaptations of general computer-intelligence classifying techniques.

Closest Genotype Neighbor (CN). For the test genotype gt, find the closest
(with respect to Hamming distance) genotype gi in the training set, and set the
status s(gt) equal to s(gi).

Support Vector Machine Algorithm (SVM). Support Vector Machine
(SVM) is a generation learning system based on recent advances in statistical
learning theory. SVMs deliver state-of-the-art performance in real-world appli-
cations and have been used in case/control studies [17,21]. There are some SVM
softwares available and we decide to use libsvm-2.71 [22] with the following radial
basis function:



An Optimum Random Forest Model for Prediction of Genetic Susceptibility 199

exp(−γ ∗ |u − v|2)
This is the kernel function, where γ is 0.0078125.

General Random Forest (GRF). We use Leo Breiman and Adele Cutler’s
original implementation of RF version 5.1 [19]. This version of RF handles unbal-
anced data to predict accurately. RF tries to perform regression on the specified
variables to produce the suitable model. RF uses bootstrapping to produce ran-
dom trees and it has its own cross-validation technique to validate the model for
prediction/classification.

Most Reliable 2 SNP Prediction (MR2) [23]. This method chooses a pair
of adjacent SNPs (site of si and si+1) to predict the disease status of the test
genotype gt by voting among genotypes from the training set which have the
same SNP values as gt at the chosen sites si and si+1. They choose the 2 adjacent
SNPs with the highest prediction rate in the training set.

LP-based Prediction Algorithm (LP). This method is based on a graph
X = {H, G}, where the vertices H correspond to distinct haplotypes and the
edges G correspond to genotypes connecting its two haplotypes. The density
of X is increased by dropping SNPs which do not collapse edges with opposite
status. The linear program assigns weights to haplotypes such that for any non-
diseased genotype the sum of weights of its haploptypes is less than 0.5 and
greater than 0.5 otherwise. We maximize the sum of absolute values of weights
over all genotypes. The status of the testing genotype is predicted as sum of its
endpoints [14].

Optimum Random Forest(ORF). In the training set, we use random forest
to choose those most disease-associated SNPs . The selected disease-associated
multi-SNPs combination (MDMSC) (a collection of m SNPs) is used to build the
optimum random forest. The m variables are used to split the sample. We may
use the same MDMSC to grow many different trees (Tree T3,5,8 is different from
Tree T8,3,5) and choose the best tree (classifier) to predict the disease status
of the testing genotype. The best tree has the highest prediction rate in the
training set. Since the training set is different when the testing individual is left
out, the MSC and the best classifier are different too. The Optimum Random
Forest algorithm is illustrated in Fig.2.

4 Results and Discussion

In this section we describe the two real case/control population samples and
the results of optimum random forest based susceptibility prediction method on
these sets.

4.1 Data Sets

The data set Daly et al [13] is derived from the 616 kilobase region of human
Chromosome 5q31 that may contain a genetic variant responsible for Crohn’s
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Input: Training genotype set Gn,m = (gi,j | gi,j ∈ {0, 1, 2}, i = 1..n, j = 1..m),
Disease status of Gn,m, sn,m,
The corresponding most disease-associated multi-SNPs combination (MDMSC) for Gn,m,
The number of trees generated from MDMSC t,
Testing genotype gt.

For i = 1 to t,

Permute MDMSC, generate a tree Ti,

For j = 1 to 1000,

Randomly generate a bootstrapped sample Sj from G,

Run Sj down the tree Ti to get the classification tree,

Predict testing sample G′
j (G′

j = G − Sj) to get the prediction rate pi,j ,

Compute the average prediction rate p̄i for Ti,

Find the best tree Tb which has the highest p̄,

Run gt down the best tree Tb to get the disease status.

Output: Disease status of the test genotype s(gt).

Fig. 2. Optimum Random Forest Prediction Algorithm

disease by genotyping 103 SNPs for 129 trios. All offspring belong to the case
population, while almost all parents belong to the control population. In the
entire data, there are 144 case and 243 control individuals. The missing genotype
data and haplotypes have been inferred using the 2SNP phasing method [20].

The data set of Ueda et al [18] are sequenced from 330kb of human DNA
containing genes CD28, CTLA4 and ICONS which are proved related to autoim-
mune disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune
disorder and 652 controls. Similarly, the missing genotype data and haplotypes
have been inferred.

4.2 Measures of Prediction Quality

To measure the quality of prediction methods, we need to measure the deviation
between the true disease status and the result of predicted susceptibility, which
can be regarded as measurement error. We will present the basic measures used
in epidemiology to quantify accuracy of our methods.

The basic measures are:

Sensitivity: the proportion of persons who have the disease who are correctly
identified as cases.

Specificity: the proportion of people who do not have the disease who are
correctly classified as controls.

The definitions of these two measures of validity are illustrated in the following
contingency table.
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Table 1. Classification contingency table

True Status

+ -

Classified + a b a + b Positive tests

status - c d c + d Negative tests

Total a + c b + d

Cases Controls

In this table:
a = True positive, people with the disease who test positive
b = False positive, people without the disease who test positive
c = False negative, people with the disease who test negative
d = True negative, people without the disease who test negative

From the table, we can compute Sensitivity (accuracy in classification of cases,
Specificity (accuracy in classification of controls) and accuracy:

sensitivity =
a

a + c
(2)

specificity =
d

b + d
(3)

accuracy =
a + d

a + b + c + d
(4)

Sensitivity is the ability to correctly detect a disease. Specificity is the ability
to avoid calling normal as disease. Accuracy is the percent of the population
that are correctly predicted.

4.3 Results and Discussion

In Table 2 We compare the optimum random forest (ORF) method with
the other 5 methods we described above. The best accuracy is achieved by ORF

Table 2. The comparison of the prediction rates of 6 prediction methods for Crohn’s
Disease (Daly et al)[13] and autoimmune disorder (Ueda et al) [18]

Prediction Methods
Data Set Measures CN SVM GRF MR2 LP ORF

Sensitivity 45.5 x 20.8 34.0 30.6 37.5 70.1
(Daly et al) Specificity 63.3 88.8 85.2 85.2 88.5 76.9

Accuracy 54.6 63.6 66.1 65.5 69.5 74.4
Sensitivity 37.7 14.3 18.0 6.9 7.1 59.4

(Ueda et al) Specificity 64.5 88.2 92.8 97.2 91.2 79.6
Accuracy 54.8 60.9 65.1 63.9 61.3 72.1
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- 74.4% and 72.1%, respectively. From the results we can find that the ORF
has the best result since we select the most disease-associated multi-SNPs to
build the random forest for prediction. Because these SNPs are well associated
with the disease, the random forest may produce a good classifier to reflect the
association.

Fig. 3 shows the receiver operating characteristics (ROC) curve for 6 methods.
A ROC curve represents the tradeoffs between sensitivity and specificity. The
ROC curve also illustrates the advantage of ORF over all previous methods.
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If the size of MDMSC is m, and the total number of SNPs is M , to get a good
classifier, then m should be much less than M . The prediction rate depends on
the size of MDMSC, as shown in Fig. 4. In our experiment, we found that the
best size of MDMSC is 19 for Crohn’s Disease (103 SNPs) and 24 for autoimmune
disorder (108 SNPs), respectively.

5 Conclusions

In this paper, we discuss the potential of applying random forest on disease
association studies. The proposed genetic susceptibility prediction method based
on the optimum random forest is shown to have a high prediction rate and the
multi-SNPs being selected to build the random forest are well associated with
diseases. In our future work we are going to continue validation of the proposed
method.
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Abstract. This work focuses on applying data mining techniques to detect 
email worms. We apply a feature-based detection technique. These features are 
extracted using different statistical and behavioral analysis of emails sent over a 
certain period of time. The number of features thus extracted is too large. So, 
our goal is to select the best set of features that can efficiently distinguish 
between normal and viral emails using classification techniques. First, we apply 
Principal Component Analysis (PCA) to reduce the high dimensionality of data 
and to find a projected, optimal set of attributes. We observe that the application 
of PCA on a benchmark dataset improves the accuracy of detecting novel 
worms. Second, we apply J48 decision tree algorithm to determine the relative 
importance of features based on information gain. We are able to identify a 
subset of features, along with a set of classification rules that have a better 
performance in detecting novel worms than the original set of features or PCA-
reduced features. Finally, we compare our results with published results and 
discuss our future plans to extend this work. 

Keywords: Email worm, data mining, feature selection, Principal Component 
Analysis, classification technique. 

1   Introduction 

Worms are malicious code that infect a host machine and spread copies of itself 
through the network to infect other hosts. There are different kinds of worms such as: 
Email worms, Instant Messaging worms, Internet worms, IRC worms and File-
sharing Networks worms. Email worm, as the name implies, spreads through infected 
email messages. The worm may be carried by attachment, or the email may contain 
links to an infected website. When the user opens the attachment, or clicks the link, 
the host is immediately infected. Email worms use the vulnerability of the email 
software at the host machine and sends infected emails to the addresses stored in the 
address book. In this way, new machines get infected. Examples of email worms are 
“W32.mydoom.M@mm”, “W32.Zafi.d”, “W32.LoveGate.w”, “W32.Mytob.c”, and 
so on. Worms do a lot of harm to computers and people. They can clog the network 
traffic, cause damage to the system and make the system unstable or even unusable.   
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There has been a significant amount of research going on to combat worms. The 
traditional way of dealing with a known worm is to apply signature based detection. 
Once a new worm appears, researchers work hard to find a unique pattern in the code 
that can identify it as a particular type of worm. This unique pattern is called the 
signature of the worm. Thus, a worm can be detected from its signature. But the 
problem with this approach is that it involves significant amount of human 
intervention and it may take long time (from days to weeks) to discover the signature. 
Since worms can propagate very fast, there should be a much faster way to detect 
them before any damage is done.  

We are concerned with the problem of detecting new email worms without 
knowing their signatures. Thus, our work is directed towards automatic (i.e., without 
any human intervention) and efficient detection of novel worms. Our work is inspired 
by [1], which does not require signature detection; rather, it extracts different features 
from the email (to be explained shortly) and tries to classify the email as clean or 
infected. They employ two classifiers in series, the first one is Support Vector 
Machine (SVM) and the next one is Naïve Bayes (NB). We will refer to this two-
layer approach as ‘SVM + NB series’ approach. They report a very high accuracy, as 
well as very low false positive and false negative rate. But we address several issues 
with their approach. First, they do not apply a balanced dataset to test classification 
accuracy. Second, they do not apply cross validation on the dataset. Third, our 
experimental results indicate that a two-layer approach is less efficient than a single 
layer approach in terms of cross validation accuracy on a balanced dataset. Fourth, 
they apply too many features, most of which is found to be redundant by our study. 
We deal with all these problems and provide efficient solutions. 

Our contributions to this research work are as follows: First, we compare 
individual performances of NB and SVM with their SVM + NB series counterpart. 
We show that the series approach is less effective than either NB or SVM alone. So, 
we claim that one of the layers of the two-layer approach is redundant. Second, we 
rearrange the dataset so that it becomes more balanced. We divide the dataset into two 
portions: one containing only known worms (and some clean emails), the other 
containing only a novel worm. Then we apply a three-fold cross validation on the 
‘known worm’ dataset, and we test the accuracy of each of the learned classifiers on 
the ‘novel worm’ dataset. We report the cross validation accuracy, and novel 
detection accuracy for each of the datasets. Third, we apply PCA on the dataset to 
improve the efficiency of classification task. PCA is commonly used to extract 
patterns from high dimensional data, especially when the data is noisy. Besides, it is a 
simple and nonparametric method. Since the original dataset contains a total of 94 
attributes, it is very likely that some of these attributes are redundant, while some 
others add noise into the data, and PCA could be effectively applied to reduce this 
data to a lower dimension; revealing the underlying simple pattern hidden in the data. 
Fourth, we build decision tree, using the WEKA [2] implementation of C4.5 [3] 
called the J48, from the dataset to identify the most important features according to 
information gain. We find that only a few features are sufficient to obtain similar or 
better classification accuracy. We report the features as well as the classification rules 
obtained from the decision tree.  

The rest of this paper is organized as follows: section 2 describes related work in 
automatic email worm detection, section 3 describes the feature reduction and 
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selection techniques, section 4 describes the dataset, section 5 describes the 
experiments, section 6 discusses the results, and section 7 concludes with future 
guidelines for research. 

2   Related Work 

There are different approaches to automate the detection of worms. These approaches 
are mainly of two types:  behavioral and content-based. Behavioral approaches 
analyze the behavior of messages like source-destination addresses, attachment types, 
message frequency etc. Content-based approaches look into the content of the 
message, and try to detect signature automatically. There are also combined methods 
that take advantage of both techniques. 

An example of behavioral detection is social network analysis [4, 5]. It detects 
worm infected emails by creating graphs of network, where users are represented as 
nodes, and communications between users are represented as edges. A social network 
is a group of nodes among which there exists edges. Emails that propagate beyond the 
group boundary are considered to be infected. But the drawback of this system is that 
worms can easily bypass social networks by intelligently choosing the recipient lists, 
by looking at recent emails in the user’s outbox.  

Statistical analysis of outgoing emails is another behavioral approach [6, 7].  
Statistics collected from frequency of communication between clients and their mail 
server, byte sequences in the attachment etc. are used to predict anomalies in emails 
and thus worms are detected. 

Example of content based approach is the EarlyBird System [8]. In this system, 
statistics on highly repetitive packet contents are gathered. These statistics are 
analyzed to detect possible infection of host or server machines. This method 
generates content signature of worm without any human intervention. Results 
reported by this system indicated very low false positive rate of detection. Other 
examples are the Autograph [9], and the Polygraph [10], developed at Carnegie 
Mellon University.  

There are other approaches to detect early spreading of worms, such as employing 
honeypot” [11]. A honeypot is a closely monitored decoy computer that attracts 
attacks for early detection and in-depth adversary analysis. The honeypots are 
designed to not send out email in normal situations. If a honeypot begins to send out 
emails after running the attachment of an email, it is determined that this email is an 
email worm.  

Martin et al. [12] also report an experiment with email data, where they apply a 
statistical approach to find an optimum subset of a large set of features to facilitate the 
classification of outgoing emails, and eventually, detect novel email worms.  

Another approach by Sidiroglou et al. [13] employs behavior-based anomaly 
detection, which is different from the signature based or statistical approaches. Their 
approach is to open all suspicious attachments inside an instrumented virtual machine 
looking for dangerous actions, such as writing to the Windows registry, and flag 
suspicious messages. 

Although our approach is feature-based, it is different from the above feature-based 
detection approaches in that we apply PCA, and decision tree to reduce the dimension 
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of data. Rather than choosing a subset of features, PCA finds a linear combination of 
the features and projects them to a lower dimension, reducing noise in data. On the 
other hand, we apply decision tree to identify the most important features, thereby 
removing redundant or noisy features. Both these approaches achieve higher 
accuracy.   

3   Feature Reduction and Classification Techniques  

Firstly, we briefly describe the features that are used in email worm detection. These 
features are extracted from a repository of outgoing emails collected over a period of 
two years [1]. These features are categorized into two different groups: i) per-email 
feature and ii) per-window feature. Per-email features are features of a single email, 
while per-window features are features of a collection of emails sent within a window 
of time. Secondly, we describe our feature reduction techniques, namely, PCA and 
J48. Finally, we briefly describe the two-layer approach and its limitations. 

3.1   Feature Description 

For a detailed description of the features please refer to [12]. Each of these features 
are either continuous valued or binary. Value of a binary feature is either 0 or 1, 
depending on the presence or absence of this feature in a data point. There are a total 
of 94 features. Here we describe some of them.  

3.1.1   Per Email Features 
i. HTML in body: Whether there is HTML in the email body. This feature is used 
because a bug in the HTML parser of the email client is a vulnerability that may be 
exploited by worm writers. It is a binary feature. 
ii. Embedded image: Whether there is any embedded image. This is used because a 
buggy image processor of the email client is also vulnerable to attacks. It is a binary 
feature. 
iii. Hyperlinks: Whether there are hyperlinks in the email body. Clicking an infected 
link causes the host to be infected. It is also a binary feature.  
iv. Binary Attachment: Whether there are any binary attachments. Worms are mainly 
propagated by binary attachments. This is also a binary feature. 
v. Multipurpose Internet Mail Extensions (MIME) type of attachment: There are 
different MIME types, for example: “application/msword”, “application/pdf”, 
“image/gif”, “text/plain” etc. Each of these types is used as a binary feature (total 27).  
vi. UNIX “magic number” of file attachments: Sometimes a different MIME type is 
assigned by the worm writers to evade detection. Magic numbers can accurately 
detect the MIME type. Each of these types is used as a binary feature (total 43). 
vii. Number of attachments: It is a continuous feature. 
viii. Number of words/characters in subject/body: These features are continuous. 
Most worms choose random text, whereas a user may have certain writing 
characteristics. Thus, these features are sometimes useful to detect infected emails. 
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3.1.2   Per Window Features 
i. Number of emails sent in window: An infected host is supposed to send emails at a 
faster rate. This is a continuous feature.  
ii. Number of unique email recipients, senders: These are also important criteria to 
distinguish between normal and infected host. This is a continuous feature too.  
iii. Average number of words/characters per subject, body; average word length: 
These features are also useful in distinguishing between normal and viral activity.  
iv. Variance in number of words/characters per subject, body; variance in word 
length: These are also useful properties of email worms. 
v. Ratio of emails with attachments: usually, normal emails do not contain 
attachments, whereas most infected emails do contain them. 

3.2   Feature Reduction and Selection 

The high dimensionality of data always appears to be a major problem for 
classification tasks because i) it increases the running time of the classification 
algorithms, ii) it increases chance of overfitting, and iii) large number of instances are 
required for learning tasks. We apply PCA to obtain a reduced dimensional data and 
apply decision tree to select a subset of features, in order to eliminate these problems. 

3.2.1   Principal Component Analysis: Reducing Data Dimension 
PCA finds a reduced set of attributes by projecting the original attributes into a lower 
dimension. We observe that for some optimal dimension of projection, the reduced 
dimensional data observes a better accuracy in detecting novel worms. PCA not only 
reduces the dimension of data to eliminate all these problems, but also discovers 
hidden patterns in data, thereby increasing classification accuracy of the learned 
classifiers. As high dimensional data contains redundancies and noises, it is much 
harder for the learning algorithms to find a hypothesis consistent with the training 
instances. The learned hypothesis is likely to be too complex and susceptible to 
overfitting. PCA reduces the dimension, without losing much information, and thus 
allows the learning algorithms to find a simpler hypothesis that is consistent with the 
training examples, and thereby reduces the chance of overfitting. But it should be 
noted that PCA projects data into a lower dimension in the direction of maximum 
dispersion. Maximum dispersion of data does not necessarily imply maximum 
separation of between – class data and/or maximum concentration of within – class 
data. If this is the case, then PCA reduction may result in poor performance. That is 
why we apply PCA to reduce the 94-dimensional data into different lower 
dimensions, ranging from 5 to 90, and select the optimal dimension that achieves the 
highest classification accuracy.   

3.2.2   Decision Tree: Feature Selection Using Information Gain 
Feature selection is different from dimension reduction because it selects a subset of 
the feature set, rather than projecting combination of features onto lower dimension. 
There are different feature selection techniques available, such as greedy selection, 
which selects the features one after another until the classification accuracy 
deteriorates. But the problem with this selection approach is that it takes a lot of time 
and depending on the order of selection, results vary significantly. We apply the 
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decision tree approach for feature selection because of three reasons. First, it is fast, 
second, it applies information gain to select best features, and finally, we can extract a 
set of rules from the decision tree that reveals the true nature of the ‘positive’ or the 
‘negative’ class. Thus, we are not only aware of the essential attributes but also get an 
overall idea about the infected emails. It may also be possible to generalize two or 
more rules to obtain a generalized characteristic of different types of worms. 

Information gain is a very effective metric in selecting features. Information gain 
can be defined as a measure of the effectiveness of an attribute (i.e., feature) in 
classifying the training data [14]. If we split the training data on this attribute values, 
then information gain gives the measurement of the expected reduction in entropy 
after the split. The more an attribute can reduce entropy in the training data, the better 
the attribute in classifying the data. Information Gain of a binary attribute A on a 
collection of examples S is given by (1): 

∑
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Where p(S) is the number of positive examples in S and n(S) is the total number of 
negative examples in S. Computation of information gain of a continuous attribute is a 
little tricky, because it has infinite number of possible values. One approach followed 
by Quinlan [3] is to find an optimal threshold, and split the data into two halves. The 
optimal threshold is found by searching a threshold value with highest information 
gain within the range of values of this attribute in the dataset.  

We use J48 for building decision tree, which is an implementation of C4.5. 
Decision tree algorithms choose the best attribute based on information gain criterion 
at each level of recursion. Thus, the final tree actually consists of the most important 
attributes that can distinguish between the positive and negative instances. The tree is 
further pruned to reduce chances of overfitting. Thus, we are able to identify the 
features that are necessary and the features that are redundant, and use only the 
necessary features. Surprisingly enough, in our experiments we find that only 
four/five features are necessary among the ninety-four features. The decision trees 
generated in our experiments have better classification accuracies than both original 
and PCA reduced data.  

3.3   Classification Techniques 

We apply the NB [15] and SVM [16] classifiers in our experiments. We also apply 
the SVM+NB series classifier and J48 Decision Tree classifier. NB, SVM and the 
series classifiers are applied on the original data and the PCA-reduced data, while the 
J48 is applied on the original data only, because the classifier itself selects a subset of 
features, discarding redundant ones. The SVM+NB series is implemented as per [1].  
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We do not recommend using the series classifier because of the following reasons. 
First, it is not practical. Because we must come up with a set of parameter values such 
that the false positive of SVM becomes zero. Given a set of continuous parameters, 
the problem of finding this optimal point is computationally intractable. Second, the 
assumption in this approach is wrong. Because, even if we happen to find an optimal 
point luckily, there is no guarantee that these set of values will work on a test data, 
since this optimal point is obtained from the training data. Third, if NB performs 
poorly on a particular test set, the output would also be poor. Because, both NB and 
SVM must perform well to produce a good series result, if any one fails, the 
combined approach would also fail. In our experimental results, we have indicated the 
effect of all these problems.  

4   Dataset 

We have collected the worm dataset used in the experiment by Martin et al. [1]. They 
have accumulated several hundreds of clean and worm emails over a period of two 
years. All these emails are outgoing emails. Several features are extracted from these 
emails as explained in section 3.1. 

There are six types of worms contained in the dataset: VBS.BubbleBoy, 
W32.Mydoom.M, W32.Sobig.F, W32.Netsky.D, W32.Mydoom.U, and W32.Bagle.F. 
But the classification task is binary: {clean, infected}. The original dataset contains 
six training and six test sets. Each training set is made up of 400 clean emails and 
1000 worm emails. The worm emails are made up of 200 examples from each of the 
five different worms. The sixth virus is then included in the test set, which contains 
1200 clean emails and 200 infected messages.  

5   Experiments 

As we have mentioned earlier, the dataset is imbalanced. So we apply both cross 
validation and novel worm detection in our experiments. In our distribution, each 
balanced set contains 1600 clean email messages, which are the combination of all the 
clean messages in the original dataset (400 from training set, 1200 from test set). 
Also, each balanced set contains 1000 viral messages (from original training set), 
marked as “known worms” and 200 viral messages (the sixth worm from the original 
test set), and marked as “novel worm”. The cross validation is done as follows: we 
randomly divide the set of 2600 (1600 clean + 1000 viral) messages into three equal 
sized subsets. We take two subsets as training set and the remaining set as the test set. 
This is done three times by rotating the testing and training sets. We take the average 
accuracy of these three runs. This accuracy is shown under the column accuracy in 
following tables. Besides testing the accuracy of the test set, we also test the detection 
accuracy of the learned classifier on the “novel worm” set. This accuracy is also 
averaged over all runs and shown as novel detection accuracy.  

For SVM, we use libsvm [17] package, and apply C-Support Vector Classification 
(C-SVC) with the radial basis function using “gamma” = 0.2 and “C”=1. We use our 
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own C++ implementation of NB. We use the WEKA [2] implementation of J48, with 
pruning applied. We extract rules from the decision trees generated using J48. 

6   Results 

We discuss the results in three separate subsections. In section 6.1 we discuss the 
results found from the original data. In section 6.2, we discuss the results found from 
the reduced dimensional data using PCA. In section 6.3, we discuss the results 
obtained using J48. 

6.1   Results from the Original Dataset 

The results are shown in table 1. Table 1 reports the accuracy of the cross validation 
and novel detection for each dataset. The cross validation accuracy is shown under the 
column ‘Acc’ and the accuracy of detecting novel worms is shown under the column 
‘novel detection acc’. Each worm at the row heading is the novel worm for that 
dataset. In table 1, we report accuracy and novel detection accuracy for each of the six 
worm types. From the results reported in table 1, we see that SVM observes the best 
accuracy among all classifiers. The best accuracy observed by SVM is 99.77%, on the 
sobig.f dataset, while the worst accuracy observed by the same is 99.58%, on the 
mydoom.m dataset.  

Table 1. Comparison of accuracy (%) of different classifiers on the worm dataset 

Worm Type NB SVM SVM+NB 

  Acc (%) Novel 
detection  
Acc (%) 

Acc (%) Novel  
detection 
Acc (%) 

Acc (%) Novel          
detection   
Acc (%) 

Mydoom.m 99.42 21.72 99.58 30.03 99.38 21.06 

sobig.f 99.11 97.01 99.77 97.01 99.27 96.52 

Netsky.d 99.15 97.01 99.69 65.01 99.19 64.02 

Mydoom.u 99.11 97.01 99.69 96.19 99.19 96.19 

Bagle.f 99.27 97.01 99.61 98.01 99.31 95.52 

Bubbleboy 99.19 0 99.65 0 99.31 0 

Average 99.21 68.29 99.67 64.38 99.28 62.22 

6.2   Results from the Reduced Dimensional Data (Reduced by PCA) 

The following chart (Fig. 1) shows the results of applying PCA on the original data. 
The X axis represents the dimension of the reduced dimensional data, which has been 
varied from 5 to 90, with step 5 increments. The last point on the X axis is the 
unreduced or original dimension. Fig. 1 shows the cross validation accuracy for 
different dimensions. The data from the chart should be read as follows: a point (x, y) 
on a given line, say the line for SVM, indicates the cross validation accuracy y of 



 Feature Based Techniques for Auto-Detection of Novel Email Worms 213 

SVM, averaged over all six datasets, where each dataset has been reduced to x 
dimension using PCA.  

Fig. 1 indicates that at lower dimensions, cross validation accuracy is lower, for 
each of the three classifiers. But SVM is found to have achieved its near maximum 
accuracy when data dimension is 30. NB and SERIES reaches within 2% of 
maximum accuracy at dimension 30 and onwards. All classifiers attain their 
maximum at the highest dimension 94, which is actually the unreduced data. So, from 
this observation, we may conclude that PCA is not effective on this dataset, in terms 
of cross validation accuracy. The reason behind this poorer performance on the 
reduced dimensional data is possibly the one that we have mentioned earlier in section 
3.2. The reduction by PCA is not producing a lower dimensional data where 
dissimilar class instances are maximally dispersed and similar class instances are 
maximally concentrated. So, the classification accuracy is lower at lower dimensions.  
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Fig. 1. Average cross validation accuracy of the three classifiers on lower dimensional data, 
reduced by PCA 

We now present the results, at dimension 25, similar to the results presented in 
previous section. Table 2 compares the novel detection accuracy and the cross 
validation accuracy of different classifiers. We choose this particular dimension 
because, at this dimension all the classifiers seem to be the most balanced in all 
aspects: cross validation accuracy, false positive and false negative rate and novel 
detection accuracy. We conclude that this dimension is the optimal dimension of 
projection by PCA.  

Results in Table 2 indicate that accuracy and novel detection accuracy of SVM are 
higher than NB, respectively. Also, as mentioned in previous section, we again 
observe that accuracy and novel detection accuracy of SVM+NB is worse than both 
NB and SVM. Thus, SVM is found to be the best among these three classifiers, in 
both unreduced and reduced dimensions.  
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Table 2. Comparison of accuracy among different classifiers on the PCA reduced worm dataset 
at dimension 25 

Worm Type NB SVM SVM+NB 
  Acc (%) Novel  

detection 
Acc (%) 

Acc (%) Novel    
detection 
Acc (%) 

Acc (%) Novel    
Detection 
Acc (%) 

Mydoom.m 99.08 25.0 99.46 30.02 99.15 24.7 

sobig.f 97.31 97.01 99.19 97.01 97.77 97.01 

Netsky.d 96.61 97.51 98.62 97.01 96.73 97.01 

Mydoom.u 96.92 97.51 98.46 97.34 97.15 97.34 

bagle.f 96.92 97.51 98.93 97.01 97.07 97.01 

Bubbleboy 96.96 0 98.88 0 97.08 0 

Average 97.3 69.09 98.92 69.73 97.49 68.85 

6.3   Results Obtained from J48  

Table 3 reports the accuracy, novel detection accuracy, #of selected features and tree 
size for different worm types. Comparing with the previous results, we find that the 
average novel detection accuracy of J48 is the highest (70.9%) among all the 
classifiers both in the original and PCA-reduced dataset. Besides, the average 
accuracy (99.35%) is also better than all other classifiers in the reduced dataset and 
very close to the best accuracy (SVM, 99.67%) in the original dataset. Surprisingly 
enough, on average only 4.5 features have been selected by the decision tree 
algorithm, which means almost 90 other features are redundant. It is interesting to see 
which features have been selected by the decision tree algorithm. First, we describe 
the rules in disjunctive normal form (DNF) that we have extracted from each of the 
decision trees. Each rule is expressed as a disjunction of one or more conditions. We 
use the symbol ‘∧’ to denote conjunction and ‘∨’ to denote disjunction.  We are able to 
detect the reason (explained later) behind the poor performance of all the classifiers in 
Bubbleboy dataset, where all of them have 0% novel detection accuracy.  

Table 3. Accuracy (%), novel detection accuracy (%), #of selected features, and tree size as 
obtained by applying J48 on the original dataset 

Worm Type  Acc (%) Novel  detection 
Acc (%) 

Total features 
selected 

Tree size 
(total nodes) 

Mydoom.m 99.3 32.0 4 11 

sobig.f 99.4 97.5 4 11 

Netsky.d 99.2 99.0 4 11 

Mydoom.u 99.2 97.0 6 15 

bagle.f 99.4 99.5 6 15 

Bubbleboy 99.6 0.5 3 7 

Average 99.35 70.92 4.5 11.67 
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Worm rules: if any of the following rules is satisfied then it is a worm 
Rule I (from Mydoom.m dataset):   
[(VarWordsInBody<=457)∧(RatioAttach<=0.9)∧(MeanWordsInBody<=22.1) ]  
∨ [(VarWordsInBody<=457)∧(RatioAttach<=0.9)] 
Rule II (from sobig.f dataset):  [(RatioAttach > 0.7) ∧ (VarAttachSize <= 7799173)]  

∨ [(RatioAttach>=0.7)∧(VarAttachSize>7799173)∧(NumAttachments>0)] 
Rule III (from Netsky.d dataset): [(RatioAttach > 0.6) ∧ (VarAttachSize <= 10229122)]  

∨ [(RatioAttach>=0.7)∧(VarAttachSize>10229122)∧(NumAttachments>0)] 
Rule IV (from Mydoom.u dataset):  
[(FreqEmailSentInWindow <= 0.067) ∧ (MeanWordsInBody <= 60.6)] 
∨ [(FreqEmailSentInWindow<=0.067)∧(MeanWordsInBody>60.6)∧(NumAttachments>0)] 
Rule V (from bagle.f dataset): [(RatioAttach > .6) ∧ (VarAttachSize <= 7799173)] 
∨[(RatioAttach>.6)∧(VarAttachSize>7799173)∧NumAttachments>0)∧(AvgWordLength<45)] 
Rule VI (from Bubbleboy dataset):  
[(NumFromAddrInWindow>1)∧(AttachmentIsText0= 1)] 

 
By looking at the above rules, we can easily find some important features such as: 

VarWordsInBody, RatioAttach, MeanWordsInBody, NumAttachments, VarAttachSize, and 
so on.  Using the above rules, we can also summarize general characteristics of worm. 
For example, it is noticeable that for most of the worms, RatioAttach >= 0.7, as well as 
NumAttachments > 0. These generalizations may lead to a generalized set of rules that 
would be effective against a new attack.  

The rule VI above is obtained from the ‘Bubbleboy’ dataset. But only one of the 
200 test cases satisfies this rule, so the novel detection accuracy is only 0.5%. Other 
classifier results also show that novel detection accuracy on the dataset is also 0%. 
This indicates that this worm has completely different characteristics, and cannot be 
detected by the generalizations obtained on other five worm types. 

7   Conclusion 

In this work, we explore three different data mining approaches to automatically 
detect email worms. The first approach is to apply either NB or SVM on the original 
dataset, without any feature reduction, and train a classifier.  The second approach is 
to reduce data dimension using PCA and apply NB or SVM on the reduced data and 
train a classifier. The third approach is to select best features using decision tree such 
as J48 and obtain classification rules. Results obtained from our experiments indicate 
that J48 achieves the best performance. Looking at the rules extracted from the 
decision tree, we conclude that the feature space is actually very small, and the 
classifiers are quite simple. That is why the tree based selection performs better than 
PCA in this dataset. It might not have been the case if the feature space had been 
more complex. In that case, the second approach would have been more effective. 
The first approach would be suitable if we have only a few features in the original 
data. In summary, all the approaches are possible to apply, depending on the 
characteristic of the dataset. 

In future, we would like to continue our research in detecting worms by combining 
feature-based approach with content-based approach to make it more robust and 
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efficient. Besides, rather than relying entirely on features, we are willing to focus on 
the statistical property of the contents of the messages for possible contamination of 
worms. Finally, we would also like to obtain a larger and richer collection of dataset.  
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Abstract. A Multiresolution-based BiLinear Recurrent Neural Network
(MBLRNN) is proposed in this paper. The proposed M-BLRNN is based
on the BLRNN that has been proven to have robust abilities in modeling
and predicting time series. The learning process is further improved by
using a multiresolution-based learning algorithm for training the BLRNN
so as to make it more robust for long-term prediction of the time series.
The proposed M-BLRNN is applied to long-term prediction of network
traffic. Experiments and results on Ethernet network traffic data show
that the proposed M-BLRNN outperforms both the traditional Multi-
Layer Perceptron Type Neural Network (MLPNN) and the BLRNN in
terms of the normalized mean square error (NMSE).

Keywords: Wavelet, Recurrent Neural Networks.

1 Introduction

Predicting a chaotic time series is equivalent to approximating an unknown non-
linear function mapping of a chaotic signal. Various models have been proposed
to model and predict the future behavior of time series. Statical models such as
moving average and exponential smoothing methods, linear regression models,
autoregressive models (AR), autoregressive moving average (ARMA) models,
and Kalman filtering-based methods have been widely used in practice [1].

In recent years, various nonlinear models have been proposed for time series
prediction [2,3]. One group of models that has garnered strong interest is neural
networks(NN)-based models, because of their universal approximation capabili-
ties [4,5]. As shown in a wide range of engineering applications, NN-based models
have been successfully applied and well accepted in numerous practical problems.
Among these NN-based models, the feed-forward neural network, also known as
the MultiLayer Perceptron Type Neural Network (MLPNN), is the most popu-
larly used, and has been applied to solve many difficult and diverse problems.
A recurrent neural network (RNN) model with consideration of the internal
feed-back was proposed to overcome the inherent limitations of the MLPNN.
The RNN has been proven to be more efficient than the MLPNN in modeling
dynamical systems and has been widely used for time series prediction [5].
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Fig. 1. Example of different representations obtained by the wavelet transform

In this paper, we propose a Multiresolution-based BiLinear Recurrent Neural
Network (M-BLRNN) for time series prediction. The proposed M-BLRNN is
based on the BLRNN that has been proven to have robust abilities in modeling
and predicting time series [6,7]. The proposed M-BLRNN is verified through
application to network traffic prediction. The experiments and results show that
the proposed M-BLRNN is more efficient than the traditional MLPNN and the
BLRNN with respect to long-term prediction of network traffic.

The remainder of this paper is organized as follows: Section 2 presents a review
of multiresolution analysis with a wavelet transform. A brief review of the BLRNN
is given in Section 3. The proposed M-BLRNN is presented in Section 4. Section 5
presents some experiments and results on a network traffic data set including a per-
formance comparison with the traditional MLPNN and BLRNN models. Section
6 concludes the paper.

2 Multiresolution Wavelet Analysis

The wavelet transform [8], a novel technology developed in the signal process-
ing community, has received much attention from neural network researchers
in recent years. Several NN models based on a multiresolution analysis using a
wavelet transform have been proposed for time series prediction [9] and signal
filtering [10]. The aim of the multiresolution analysis is to analyze a signal at
different frequencies with different resolutions. It produces a high quality local
representation of a signal in both the time domain and the frequency domain.

The calculation of the à trous wavelet transform can be described as follows:
First, a low-pass filter is used to suppress the high frequency components of a
signal while allowing the low frequency components to pass through. The scaling
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function associated with the low-pass filter is then used to calculate the average
of elements, which results in a smoother signal.

The smoothed data cj(t) at given resolution j can be obtained by performing
successive convolutions with the discrete low-pass filter h,

cj(t) =
∑

k

h(k)cj−1(t + 2j−1k) (1)

where h is a discrete low-pass filter associated with the scaling function and
c0(t) is the original signal. A suitable low-pass filter h is the B3 spline, defined
as ( 1

16 , 1
4 , 3

8 , 1
4 , 1

16 ).
From the sequence of the smoothing of the signal, the wavelet coefficients are

obtained by calculating the difference between successive smoothed versions:

wj(t) = cj−1(t) − cj(t) (2)

By consequently expanding the original signal from the coarsest resolution
level to the finest resolution level, the original signal can be expressed in terms
of the wavelet coefficients and the scaling coefficients as follow:

c0(t) = cJ (t) +
J∑

j=1

wj(t) (3)

where J is the number of resolutions and cJ(t) is the finest version of the signal.
Eq.(3) also provides a reconstruction formula for the original signal.

3 BiLinear Recurrent Neural Networks

The BLRNN is a simple recurrent neural network, which has a robust ability
in modeling dynamically nonlinear systems and is especially suitable for time-
series data. The model was initially proposed by Park and Zhu [6]. It has been
successfully applied in modeling time-series data [6,7].

Fig. 2. Learning process using the multiresolution-based learning algorithm
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In the following, we explain about a simple BLRNN that has N input neurons,
M hidden neurons and where K = N −1 degree polynomials is given. The input
signal and the nonlinear integration of the input signal to hidden neurons are:

X[n] = [x[n], x[n − 1], ..., x[n − K]]T

O[n] = [o1[n], o2[n], ..., oM [n]]T

where T denotes the transpose of a vector or matrix and the recurrent term is a
M × K matrix.

Zp[n] = [op[n − 1], op[n − 2], ..., op[n − K]] (4)

sp[n] = wp +
N−1∑

k1=0

apk1op[n − k1] (5)

+
N−1∑

k1=0

N−1∑

k2=0

bpk1k2op[n − k1]x[n − k2]

+
N−1∑

k2=0

cpk2x[n − k2]

= wp + AT
p ZT

p [n] + Zp[n]BT
p X[n] + CT

p X[n]

where wp is the weight of bias neuron. Ap is the weight vector for the recurrent
portion, Bp is the weight matrix for the bilinear recurrent portion, and Cp is
the weight vector for the feedforward portion and p = 1, 2..., M . More detailed
information on the BLRNN and its learning algorithm can be found in [6,7].

4 Multiresolution-Based Learning Algorithm

The multiresolution-based learning algorithm attempts to improve the learning
process by decomposing the original signal into a multiresolution representation.
As stated in Section 2, the original signal is decomposed into a multiresolution
representation using the wavelet transform. The representation of the signal at
a resolution level j can be calculated as follows:

rj =

⎧
⎨

⎩

x, if j = 0
cJ + wJ + wJ−1 + · · · + wj , ifj < J
cJ , if j = J

(6)

where rj is the representation of the signal at resolution level j, J is the number
of resolution levels, cJ is the scaling coefficients at resolution level J , x is the
original signal, and wj is the wavelet coefficients at resolution level j. Fig. 1 shows
an example of different representations of a signal obtained using the wavelet
transform, where r0 is the original signal, and r1, r2, and r3 are representations
of the signal at resolution levels 1, 2, and 3, respectively. The figure plots 100
samples from each representation of the signal for easy visualization.
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Fig. 3. Ethernet network traffic data over 1,000 seconds

The learning process is performed through J learning phases according to the
number of resolution levels J :

LJ(rJ ) → LJ−1(rJ−1) → · · · → L0(r0) (7)

where Lj(rj) denotes the learning phase at resolution level j using representation
rj .

The learning phase at each resolution level j, Lj(rj), uses the representa-
tion signal rj to update the network weights. The first learning phase LJ(rJ )
begins with randomly initialized network weights and the subsequent learn-
ing phase Lj(rj) begins with the updated weights from the previous learning
phase Lj−1(rj−1). It should be noted that only a single BLRNN model is em-
ployed to learn the information from the representation at different resolution
levels. Fig. 2 shows the learning process using the multiresolution-based learning
algorithm.

5 Experiments and Results

The proposed M-BLRNN is examined and evaluated in terms of its application
to the long-term prediction of network traffic. Real-world Ethernet traffic data
sets collected at Bellcore in August 1989 [11] are used to conduct experiments.
The Ethernet traffic data set is network traffic data measured at each 0.01(s)
over two normal hours of traffic corresponding to 106 samples of data. The data
were downsampled with a time scale of 1(s), resulting in 10,000 data samples.
Fig. 3 shows the first 1,000 samples from the network traffic data and Fig. 1
shows an example of different representations of the network traffic data used in
the experiments.

In order to measure the long-term prediction performance, the normalized
mean square error (NMSE) is employed. The NMSE is calculated by the following
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Fig. 4. Prediction performance for Ethernet network traffic data

formula:

NMSE =
1

σ2N

N∑

n=1

(xn − x̂n)2

where xn represents the true value of the sequence, x̂n represents the predicted
value, and σ represents the variance of the original sequence over the prediction
duration N .

Fig. 4 shows the prediction performance over 100 steps of prediction for the
traditional MLPNN, the BLRNN, and the proposed M-BLRNN in terms of the
NMSE. The performance of the MLPNN is obtained using a MLPNN model
with a structure of 24-10-1, where 24, 10, and 1 are the number of input neu-
rons, hidden neurons, and output neurons, respectively. The performance of the
BLRNN is obtained using a BLRNN model with a structure of 24-10-1 and 3
recursion lines. The result of the proposed M-BLRNN is obtained using a M-
BLRNN model with a structure of 24-10-1, 3 recursion lines, and 3 resolution
levels. The MLPNN and the BLRNN are trained with 3,000 iterations while
the M-BLRNN is trained with 1,000 iterations at each learning phase. As can
be seen from Fig. 4, the proposed M-BLRNN outperforms both the traditional
MLPNN and the BLRNN. Moreover, when the number of steps increases, the
performance of the traditional MLPNN and the BLRNN degrades significantly
while the proposed M-BLRNN suffers from a minor degradation of performance.
This implies that the proposed M-BLRNN is more robust than the traditional
MLPNN and the BLRNN for long-term prediction of time series.

6 Conclusion

A Multiresolution-based BiLinear Recurrent Neural Network (M-BLRNN) for
time series prediction is proposed in this paper. The proposed M-BLRNN em-
ployed the wavelet transform to decompose the signal into a multiresolution
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representation. The learning process based on the multiresolution-based learn-
ing algorithm is performed by learning from each representation of the signal
at each level of resolution. The proposed M-BLRNN is applied to the network
traffic prediction. The experiments and results verified that the proposed M-
BLRNN is more efficient than the traditional MLPNN and the BLRNN with
respect to long-term prediction of time series. The promising results from this
paper provide motivation to utilize the proposed M-BLRNN in other practical
applications.

References

1. Kiruluta, A., Eizenman, M., Pasupathy, S.: Predictive Head Movement Tracking
using a Kalman Filter. IEEE Trans. on Systems, Man and Cybernetics 27(2) (1997)
326-331

2. Han,M., Xi, J., Xu, S., Yin, F.-L.: Prediction of chaotic time series based on
the recurrent predictor neural network. IEEE Trans. Signal Processing, 52 (2004)
3409-3416

3. Wang, L.P., Fu, X.J.: Data Mining with Computational Intelligence, Springer,
Berlin (2005)

4. Leung, H., Lo, T., Wang, S.: Prediction of Noisy Chaotic Time Series using an
Optimal Radial Basis Function Neural Network. IEEE Trans. on Neural Networks
12(5) (2001) 1163-1172

5. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent Neural Networks and Robust
Time Series Prediction. IEEE Trans. on Neural Networks 5(2) (1994) 240-254

6. Park, D.C., Zhu, Y.: Bilinear Recurrent Neural Network. IEEE ICNN, Vol. 3,
(1994) 1459-1464.

7. Park, D.C., Jeong, T.K.: Complex Bilinear Recurrent Neural Network for Equal-
ization of a Satellite Channel. IEEE Trans on Neural Network 13 (2002) 711-725.

8. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: the Wavelet
Representation. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989) 674-693.

9. Alarcon-Aquino, V., Barria, J.A.: Multiresolution FIR Neural-Network-Based
Learning Algorithm Applied to Network Traffic Prediction. IEEE Trans. Sys. Man.
and Cyber. PP(99) (2005) 1-13.

10. Renaud, O., Starck, J.L., Murtagh, F.: Wavelet-Based Combined Signal Filtering
and Prediction. IEEE Trans. on Sys., Man, and Cyber. 35 (2005) 1241-251.

11. Leland,W.E.,Wilson,D.V.: High time-resolution measurement and analysis of LAN
traffic: Implications for LAN interconnection, Proc. IEEE INFOCOM ’91, (1991)
1360-1366



Query Expansion Using a Collection Dependent

Probabilistic Latent Semantic Thesaurus

Laurence A.F. Park and Kotagiri Ramamohanarao

ARC Centre for Perceptive and Intelligent Machines in Complex Environments,
Department of Computer Science and Software Engineering,

The University of Melbourne, 3010, Australia
{lapark,rao}@csse.unimelb.edu.au

Abstract. Many queries on collections of text documents are too short
to produce informative results. Automatic query expansion is a method
of adding terms to the query without interaction from the user in order
to obtain more refined results. In this investigation, we examine our novel
automatic query expansion method using the probabilistic latent seman-
tic thesaurus, which is based on probabilistic latent semantic analysis.
We show how to construct the thesaurus by mining text documents for
probabilistic term relationships, and we show that by using the latent
semantic thesaurus, we can overcome many of the problems associated
to latent semantic analysis on large document sets which were previ-
ously identified. Experiments using TREC document sets show that our
term expansion method out performs the popular probabilistic pseudo-
relevance feedback method by 7.3%.

1 Introduction

Short queries, consisting of only a few terms can be vague and hence cause an
information retrieval system to return documents covering a broad number of
topics which are not specific to the users information need. To assist the user,
methods of query expansion have been developed, where the retrieval system
adds terms to the short query in order to improve the precision of the results
provided. This can be done with user interaction [6] or automatically without
user interaction [8].

In this article, we will describe and examine our new method of automatic
query expansion using a probabilistic latent semantic thesaurus. Our main con-
tributions are: a generalisation model for ranking; and showing the probabilistic
latent semantic thesaurus method is both efficient in storage and memory while
yielding high precision. We show that our method of query expansion outper-
forms the popular BM25 pseudo-relevance feedback method by an average of
7.3% in terms of average reciprocal rank and also improves on our baseline
BM25 by an average 8%.

This article will proceed as follows: In section 2, we briefly explain the infor-
mation retrieval process and describes how the retrieval system can assist the
user by adding to the query, this can be done with the local relevance feedback
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methods or the global thesaurus methods. In section 3, we further explain our
new collection dependent thesaurus using probabilistic latent semantic analysis
and show how to construct it. Experimental procedures and results are provided
in section 4.

2 Query Term Expansion

Information retrieval systems are used to quickly assess whether a collection of
unexamined text documents contains the information we desire. To the retrieval
system, each text document is simply a sequence of terms. The query process
requires a set of key terms to be supplied to the retrieval system, which are
judged by the user as best describing their information need. Once the query is
given, the retrieval system compares the query to the text documents and returns
the top matching documents to the user. The user then evaluates whether the
documents suit the information need. If the information need is met, the process
is finished, but if it is not met, the user must ponder how to reword the query
in order to obtain better results.

The problem with this process lies in the guess work involved in converting
the information need into a set of query terms. The query can be expressed in
many ways due to the versatility of our language. Unfortunately information
retrieval systems use term matching to identify the documents relevant to the
query, therefore to obtain the best results, the query must be expressed using
the terms found in the document set. This implies that the user would require
some knowledge of the content of the document collection to formulate a query.
But as we mentioned, information retrieval systems are used to quickly assess
whether a collection of unexamined text documents contains the information we
desire, therefore we should not have to examine the document set in order to
construct a query.

Rather than let the user manually examine the document set before querying,
methods of term expansion have been derived that place the document analysis
within the retrieval system. Term expansion is the process of adding terms to
a query in order to create a query which is closer to the information need rel-
ative to the document set. The terms are chosen based on a similarity analysis
of the query terms within the document set. To perform term expansion, we
need a document-query scoring function (Sq(d, Q)) to rank documents based on
the users query, a term scoring function (St(t, Q)) to select terms for the query
expansion, and a document-expansion scoring function (Se(d, E)) to rank docu-
ments based on the expansion terms. The final document score is a combination
of the query and expansion term document scoring functions:

S(d, Q) = (1 − α)Sq(d, Q) + αSe(d, E) (1)

Note that using α = 0 implies that there is no feedback used and α = 1 im-
plies that purely feedback is used. Typically, an α value of less than one is used to
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put less emphasis on the expansion terms, so that they don’t dominate the query.
Each method we present will be based on the BM25 document scoring function,
therefore they will all use the same document-query scoring function:

Sq(d, Q) =
∑

t∈Q

wd,twt (2)

where

wd,t =
fd,t(k1 + 1)
K + fd,t

wt = log
(

N − ft + 0.5
ft + 0.5

)

(3)

where Sq(d, Q) is the score of document d based on the query Q, fd,t is the fre-
quency of term t in document d, N is the number of documents in the collection,
ft is the number of documents containing term t, K = k1((1−b)+b dl/avdl), k1
and b are constants, dl is the document length, and avdl is the average document
length.

In this section we will describe the two major methods of automatic term
expansion called Pseudo-relevance feedback and Thesaurus expansion.

2.1 Pseudo-relevance Feedback

Interactive relevance feedback extends the involvement of the retrieval system
in the information retrieval process to rely on user feedback. After the query
has been supplied and the top matching documents have been calculated by
the retrieval system, the system then proceeds by presenting the user with the
matching documents and asks which are relevant to the query. Once the system
receives the relevance information, it then continues by extracting terms from the
set of relevant documents that will be included in the expanded query. After the
query is formed, the retrieval system retrieves the documents that best match
the new expanded query.

Pseudo-relevance feedback is a non-interactive version of the mentioned rele-
vance feedback method. To remove the user interaction and hence speed up the
query process, the retrieval system does not question the user about the rele-
vance of the top matching documents to the query, but instead assumes that the
documents that match the query are relevant. Terms are then extracted from
this set of documents and used to build the expanded query.

A popular and effective pseudo-relevance feedback system comes from Rob-
ertson [4]. Given a query Q, the ten documents with the greatest Sq(d, Q) are
chosen for feedback. Using pseudo-relevance feedback, we assume that all ten
documents are relevant to the query. Using terms from these ten documents, we
must select a subset of terms to include in our expanded query. The selection
process involves scoring each term and selecting the top terms to be included in
our expanded query. The term scoring function used is:

St(t, Q) = fR,twt (4)
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dog puppy cat kitten

dog 0.7 0.2 0.07 0.03
puppy 0.3 0.6 0.01 0.09
cat 0.06 0.04 0.7 0.2
kitten 0.02 0.08 0.6 0.3

Fig. 1. An example of a collection dependent thesaurus. All of the words found within
the collection are listed with the probability of their relationship to each word. We can
see that the words dog and puppy have a higher probability of being related to dog than
the words cat and kitten.

where fR,t is the frequency of term t in the set of pseudo-relevant documents
R. The terms with the greatest scores are then used to query the document
collection using the document-expansion scoring function:

Se(d, E) = Sq(d, E)

where E is the set of expansion terms. The final document score is calculated
using equation 1 where α = 1/3.

2.2 Collection Dependent Thesaurus Expansion

Relevance feedback is a local query expansion because it uses only a subset of
the document set to calculate the set of expansion terms. Thesaurus expansion is
a global query expansion because it makes use of the whole document set when
calculating the set of expansion terms.

A thesaurus is a collection of words, where each word has an associated set of
words that are related to it. Many thesauruses have been constructed manually,
and can be used by those that have an understanding of the language. A typical
entry in a manually built thesaurus contains the desired word and sets of related
words grouped into different senses. To effectively find related words, we must
know which sense to choose. Unfortunately, this is not an easy task for a machine
and hence machine word-sense disambiguation is an active field in the area of
computer science and linguistics.

A collection dependent thesaurus is one that is automatically built using the
term frequencies found with a document collection. Since the thesaurus is docu-
ment collection dependent, any word relationships found will be based on docu-
ments that can be retrieved. A collection dependent thesaurus is a square table
that contains all of the words found within the collection and their relationship
to each other. Each element of the table contains the probability of a word being
related to another. A thesaurus built using a very small document set is shown
in figure 1.

The information retrieval process using a collection dependent thesaurus is
very similar to that of pseudo-relevance feedback. The difference being that the
initial document retrieval step to obtain the candidates for the query expansion
does not have to be performed since we already have a table of term relationships.
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To obtain our set of expansion terms, we must choose terms that obtain the
greatest score using the score function:

St(τ, Q) =
∑

t∈Q

P (τ |t)wt (5)

where the thesaurus element P (τ |t) is the probability of term τ being related to
term t and Q is the set of query terms. We can see that equation 5 gives higher
scores to those terms having a higher probability of being related to the query.
The document-expansion scores are calculated using:

Se(d, E) =
∑

t∈E

wd,tSt(t, Q) (6)

where E is the set of terms with the greatest term score. The document-expansion
score is the same as the document-query score except for the term weight (wt)
being replaced by the term score.

3 Probabilistic Latent Semantic Thesaurus

The previous section showed us how to use term expansion within the infor-
mation retrieval process. We described how we can use a collection dependent
thesaurus to obtain term relationships for our query expansion, but we did not
explain how the thesaurus was built and the probabilistic values were obtained.
In this section we will examine how to construct the thesaurus using probabilistic
latent semantic analysis; but before we do, we will explain the concept of latent
semantic analysis and show how it can be used to obtain term relationships.

3.1 Latent Semantic Analysis

Probabilistic [4] and vector space methods [1] of information retrieval base the
document score on the occurrence of the query terms within the document. This
implies that if the query terms do not appear within the document, it obtains a
score of zero and is considered irrelevant to the query. Any terms that are not
related to the query are ignored, even though their occurrence within a document
could infer relevance.

Rather than observing the occurrence of terms, the method of latent semantic
analysis [2] observes the occurrence of topics, where a topic is a set of related
words. Its use becomes more intuitive once we observe the following document
creation models. The document creation model with term based comparisons
uses the following sequence:

1. the author starts by having an idea that needs to be conveyed
2. the idea is put to paper by choosing specific words
3. if other words were chosen during the writing process, the written document

would not convey the same idea
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t1
t2

t3

t4

t5
t1 t2 t3

t4 t5

Fig. 2. A näıve document creation model. The author chooses specific terms for the
document. If different terms are chosen the document will not convey the same message.
This is the model used by retrieval systems that assume all terms are independent of
each other.

We can see that this model (shown in figure 2) is not correct, since our language
allows us to project the same idea using different words. This document creation
model is projected in the probabilistic and vector space methods of information
retrieval; if query terms do not appear in a document, the document is considered
irrelevant even if it does contain related terms.

A more appropriate document creation model (shown in figure 3) uses the
following sequence:

1. the author begins by having an idea that needs to be conveyed
2. the author chooses specific topics to convey the idea
3. the idea is put to paper by choosing words that are associated to each of the

chosen topics
4. if different topics were chosen during the writing process, the written docu-

ment would not convey the same idea

In this case, two documents containing different terms could project the same
idea if the terms were associated to the same topics. This more realistic model
takes into account the synonymy found in modern day languages by comparing
topics rather than terms. Latent semantic analysis is the process of discovering
these topics and their relationship to the set of terms.

3.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) [3] is the process of discovering
the topics within a document set using probabilistic means. In this section we
will describe how we can use it in our retrieval system.

The probability of choosing a specific term from a specific document within
our document collection is given as:

P (d, t) =
fd,t∑

d∈D

∑
t∈T fd,t

(7)

where D and T are the set of documents and terms respectively. Given the set
of topics Z, we are able to form the following relationship between the set of
documents D and set of terms T using Bayesian analysis:
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t1,t4,t12
t2,t6

t3,t6,t9

t4,t7,t8

t5
t1 t2 t3

t4 t5

Fig. 3. The latent semantic analysis document model. The author chooses specific top-
ics for the document and then chooses a term from the topic to place in the document.
This model implies that documents containing different terms can convey the same
message, as long as the replacement terms are associated to the same topic.

P (d, t) = P (d|t)P (t)

=
∑

z∈Z

P (d|z)P (z|t)P (t)

=
∑

z∈Z

P (d|z)P (t|z)P (z) (8)

where d and t are conditionally independent given z, d ∈ D, and t ∈ T . Since
the P (d|z), P (t|z) and P (z) values are unknown, we must obtain the best fit
that satisfies equation 8. Using expectation maximisation, we are able to obtain
an approximation of the unknown probabilities P (d|z), P (t|z) and P (z) for all
d, t and z in D, T and Z respectively.

Before we obtain the probabilities, we must choose the size of Z. By choosing
a small number of elements for Z (much less than the number of documents and
terms in the document set), we make sure that our model is not over fitted. A
small number of z ∈ Z implies that there will be a small number of topics and
hence, the documents and terms will cluster into topic sets.

3.3 Building the Thesaurus

Using probabilistic latent semantic analysis, we have obtained the probabilistic
relationships between the topics and terms, and the topics and documents. To
build a thesaurus, we need to calculate the probabilistic relationships between
each of the terms. To do so, we have derived the following relationship:

P (tx|ty) =
∑

z∈Z

P (tx|z)P (z|ty)

=
∑

z∈Z

P (tx|z)P (ty|z)P (z)
P (ty)

(9)

where tx and ty are conditionally independent given z. To obtain the probabilistic
term relationship values, we use the P (t|z) and P (z) probabilities obtained from
PLSA, and:
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P (t) =
∑

d∈D fd,t
∑

d∈D

∑
t∈T fd,t

(10)

Once we have obtained the probabilistic term relationships, we store the values
in a fast lookup index so that they can easily be accessed at the query time.

3.4 Thesaurus Performance

Every term will have a probabilistic relationship to every other term, therefore
our thesaurus will be a |T | × |T | table of non-zero floating point values, where
|T | is the cardinality of T . This implies that the thesaurus will be very large
for large document sets. This storage problem also exists in probabilistic latent
semantic indexing.

Fortunately, our use of a thesaurus means that we do not need to store all of
the terms. Each of the term relationships is based on the term samples found
within the document set. We have shown that terms that are under-sampled
(found in only a few documents) will not produce proper relationships [5], there-
fore it seems fitting to ignore the under-sampled terms. If we ignore all terms that
are found in no more than N documents, we will remove a significant amount
of terms due to the occurrence of terms following the Zipf distribution. By re-
moving these terms, we are choosing to keep the terms that appear in at least
N documents, which is directly related to the term weight (wt). By choosing
N = 50 [5], we reduce the storage required from a 4 gigabyte index to a 21
megabyte thesaurus.

We stated that there is a relationship between every term in the thesaurus.
Therefore if we were to use any number of query terms, the expanded query would
contain every term in the thesaurus. The query processing time is proportional
to the number of query terms, therefore including every term in the query would
lead to a very expensive query process. This query processing speed problem
exists in every query expansion method and can be resolved by choosing only
those terms that have the greatest term score (St(t, Q)) for the expansion. By
doing so, we receive the top M related terms to the query. From this we can see
that the query expansion size leads to a trade off between system precision and
query speed.

As for the query speed, the difference between the pseudo-relevance feedback
and thesaurus is the term expansion method. The former requires two lookups
of a sparse index, while the latter requires one lookup of a dense index. This
leads to similar query processing times.

4 Experiments

To examine the performance of our collection dependent thesaurus using prob-
abilistic latent semantic analysis, we have run experiments on two well known
document collections. The first document collection is the Associated Press ar-
ticles from TREC disk-1 (AP1) containing 84,678 documents, the second is the
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set of Associated Press articles from TREC disk-2 (AP2) containing 79,919 doc-
uments. For each of the document sets, we used the titles of queries 51 to 200
and the associated relevance judgements from TREC-1, 2 and 3.

Our experiments compared the increase in precision due to query expansion
at various levels of expansion. We reported results using our probabilistic latent
semantic thesaurus (PLST), pseudo-relevance feedback (PRFB) and a term co-
occurrence thesaurus (COT). The increase in precision shown is compared to
BM25 with no query expansion. The term co-occurrence thesaurus uses the
thesaurus method found in section 2.2, where:

P (τ |t) =
∑

d∈D fd,τfd,t
∑

τ∈T

∑
d∈D fd,τfd,t

(11)

where T is the set of terms and D is the set of documents.
We built a thesaurus for each of the document collections using the following

suggested parameters [5]. The thesaurus included all terms that were found in
at least 50 documents, the mixing parameter was set to α = 0.6, and 100 topics
were calculated. To compare our thesaurus method we also ran experiments
using pseudo-relevance feedback on the same document sets using the suggested
parameters of α = 0.25 and using the top ten documents for feedback [4]. Within
the BM25 model, we used the parameters k1 = 1.2 and b = 0.75 [4].

The precision at 10 documents and average reciprocal rank increases are shown
in figures 4 and 5 respectively. The increases are shown with respect to the BM25
(without expansion) ranking function. The two measures reported, measure the
system for different uses. The reciprocal rank of a query is the inverse of the
rank of the first relevant document (e.g. if the first relevant document is ranked
third, the reciprocal rank is 1/3). The average reciprocal rank is the average
of all reciprocal ranks from each query. If we are using the retrieval system to
find one document, we would use this value to measure the system. Precision at
10 documents is the average number of relevant documents found in those that
the system ranks in the top ten. We would use this measure if we wanted a few
relevant documents.

The results show that the PLST outperforms the COT for all levels of expan-
sion using both measures. We can see that our PLST method outperforms the
pseudo-relevance feedback method in average reciprocal rank. In fact, we can
see on both data sets that applying any expansion PRFB reduces the ARR. If
we observe the precision at 10 documents, we find that PRFB provides better
precision for low expansion sizes and PLST provides better precision for higher
expansion sizes. If we use typical expansion sizes of 20 terms to PRFB and 100
terms for PLST, we find that PLST provides an average increase of 7.3% in
ARR and 0.2% increase in prec10. This implies that for the typical Web surfer
who only wants one relevant document, PLST is the better query expansion
method to use, while for someone who wants a many relevant pages in the first
ten ranked documents, either PLST or PRFB could be used.
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Fig. 4. A comparison of the increase in precision after 10 documents (prec10) due
to query expansion of our collection dependent thesaurus using probabilistic latent
semantic analysis (PLST) against pseudo-relevance feedback (PRFB) and a term co-
occurrence thesaurus (COT) on the AP1 and AP2 document sets. The baseline BM25
(without expansion) precision after 10 documents is 0.3747 for AP1 and 0.3554 for AP2.
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Fig. 5. A comparison of the increase in average reciprocal rank (ARR) due to query
expansion of our collection dependent thesaurus using probabilistic latent semantic
analysis (PLST) against pseudo-relevance feedback (PRFB) and a term co-occurrence
thesaurus (COT) on the AP1 and AP2 document sets. The baseline BM25 (without
expansion) average reciprocal rank is 0.6214 for AP1 and 0.5374 for AP2.
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5 Conclusion

Automatic query expansion is a method of adding terms to the query without in-
teraction from the user in order to obtain more refined results. We have presented
our new method of automatic query expansion using a collection dependent the-
saurus built with probabilistic latent semantic analysis. We have shown how to
build the thesaurus using probabilistic latent semantic term relationships, and
we have shown how to efficiently query the thesaurus in order to expand our
query.

Experiments were performed and compared to the popular pseudo-relevance
feedback using the BM25 weighting scheme and a term co-occurrence thesaurus.
The results showed that our probabilistic latent semantic thesaurus outper-
formed the term co-occurrence thesaurus for all levels of recall and the pseudo-
relevance feedback retrieval by an average 7.3% when one relevant document
was desired, and an average 0.2% when observing the top ten ranked docu-
ments. This implies that a probabilistic latent semantic thesaurus would be the
query expansion choice for the typical Web surfer.
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Abstract. Domains like text classification can easily supply large
amounts of unlabeled data, but labeling itself is expensive. Semi-
supervised learning tries to exploit this abundance of unlabeled training
data to improve classification. Unfortunately most of the theoretically
well-founded algorithms that have been described in recent years are cu-
bic or worse in the total number of both labeled and unlabeled training
examples. In this paper we apply modifications to the standard LLGC al-
gorithm to improve efficiency to a point where we can handle datasets with
hundreds of thousands of training data. The modifications are priming of
the unlabeled data, and most importantly, sparsification of the similarity
matrix. We report promising results on large text classification problems.

1 Introduction

Semi-supervised learning (and transduction) addresses the problem of learning
from both labeled and unlabeled data. In recent years, this problem has gen-
erated a lot of interest among the Machine Learning community [26,38]. This
learning paradigm is motivated by both practical and theoretical issues. Indeed,
it provides a very interesting framework to up-to-date application domains such
as web categorization (e.g. [35]), text classification (e.g. [22,15,17]), camera im-
age classification (e.g. [3,25]), or computational biology (e.g. [31]). More gerally,
it is of high interest in all domains in which one can easily get huge collec-
tions of data but labeling this data is expensive and time consuming, needs the
availability of human experts, or even is infeasible. Moreover, it has been shown
experimentally that, under certains conditions, the use of a small set of labeled
data together with a large supplementary of unlabeled data allows the classifiers
to learn a better hypothesis, and thus significantly improve the generalization
performance of the supervised learning algorithms. Thus, one should sum up
transductive learning as ”less human effort and better accuracy”. However, as
has been noted by Seeger [26], issues in semi-supervised learning have to be
addressed using (probably) genuinely new ideas.

Most of the semi-supervised learning approaches use the labeled and unla-
beled data simultaneously or at least in close collaboration. Roughly speaking,
the unlabeled data provides information about the structure of the domain, i.e.
helps to capture the underlying distribution of the data, whereas the labeled
data identifies the classification task within this structure. The challenge for
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the algorithms can be viewed as realizing a kind of trade-off between robust-
ness and information gain [26]. To make use of unlabeled data, one must make
assumptions, either implicitely or explicitely. As reported in [34], the key to
semi-supervised learning is the prior assumption of consistency, that allows for
exploiting the geometric structure of the data distribution. This assumption re-
lies on a local and/or global statement(s). The former one (also shared by most
of the supervised learning algorithms) means that nearby data points should be-
long to the same class. The later one, called cluster assumption, states that the
decision boundary should lie in regions of low data density. Then, points which
are connected by a path through regions of high data density have the same
label. A common approach to take into account the assumption of consistency
is to design an objective function which is smooth enough w.r.t. the intrinsic
structure revealed by known labeled and unlabeled data.

Early methods in transductive learning were using mixture models (in which
each mixture component should be associated with a class) and extensions of
the EM algorithm [22]. More recent approaches belong to the following cate-
gories: self-training, co-training, transductive SVMs, split learning and graph-
based methods. In the self-training approach, a classifier is trained on the la-
beled data and then used to classify the unlabeled ones. The most confident
(now labeled) unlabeled points are added to the training set, together with their
predictive labels, and the process is repeated until convergence [32,25]. The ap-
proaches related to co-training [7,17] build on the hypothesis that the features
describing the objects can be divided in two subsets such that each of them is
sufficient to train a good classifier, and the two sets are conditionally indepen-
dent given the classes. Two classifiers are iteratively trained, each on one set, and
they teach each other with the few unlabeled data (and their predictive labels)
they feel more confident with. The transductive SVMs [29,15] are a ”natural”
extension of SVMs to the semi-supervised learning scheme. They aim at finding
a labeling of the unlabeled data so that the decision boundary has a maximum
margin on the original labeled data and on the (newly labeled) unlabeled data.
Another category of methods, called split learning algorithms, represent an ex-
treme alternative using the unlabeled and labeled data in two different phases
of the learning process [23]. As stated by Ando and Zhang [1], the basic idea is
to learn good functional structures using the unlabeled data as a modeling tool,
and then the labeled data is used for supervised learning based on these struc-
tures. A detailed presentation of all these approaches is beyond the scope of this
paper. In the following, we will focus on graph-based methods which are more
directly related to the Local and Global Consistency (LLGC) algorithm [34] for
which we are proposing some improvements.

Graph-based methods attempt to capture the underlying structure of the data
within a graph whose vertices are the available data (both labeled and unlabeled)
and whose (possibly weighted) edges encode the pairwise relationships among
this data. As noticed in [33], examples of recent work in that direction include
Markov random walks [28], cluster kernels [9], regularization on graphs [27,34]
and directed graphs [35]. The graph is most often fully connected. Nevertherless, if
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sparsity is desired, the pairwise relationships between vertices can reflect a nearest
neighbor property, either thresholding the degree(k-NN) or the distance (ε-NN).
The learning problem on graphs can generally be thought of as estimating a classi-
fying function f which should be close to a given function y on the labeled data and
smooth on the whole graph [34]. For most of the graph-based methods, this can
be formally expressed in a regularization framework [38] where the first term is a
loss function and the second term a regularizer. The so-defined cost (or energy)
function should be minimized on the whole graph by means of (iterative) tuning
of the edges values. Consequently, different graph-based methods mainly vary by
the choice of the loss function and the regularizer [38]. For example, the work on
graph cuts [6] minimizes the cost of a cut in the graph for a two-class problem,
while [16] minimizes the normalized cut cost and [39,34] minimize a quadratic
cost. As noticed in [38], these differences are not actually crucial. What is far
more important is the construction and the quality of the graph, which should
reflect domain knowledge through the similarity function which is used to assign
edges (and their weights). One can find a discussion of that issue in [38,3] Other
important issues such as consistency and scalability of semi-supervised learning
methods are also discussed in [37].

2 Related Work

The LLGC method of Zhou et al. [34] is a graph-based approach which addresses
the semi-supervised learning problem as designing a function f that satisfies both
the local and global consistency assumptions. The graph G is fully connected,
with no self-loop. The edges of G are weighted with a positive and symmetric
function w which represents a pairwise relationships between the vertices. This
function is further normalized w.r.t. the conditions of convergernce of the algo-
rithm [21,9]. The goal is to label the unlabeled data. According to Zhou et al., the
key point of the method is to let every point iteratively spread its label informa-
tion to its neighbors until a global state is reached. Thus, looking at LLGC as an
iterative process, one can intuitively understand the iteration as the process of
information diffusion on graphs [18]. The weights are scaled by a parameter σ for
propagation. During each iteration, each point receives the information from its
neighbor and also retains its initial information. A parameter α allows to adjust
the relative amount of information provided by the neighbors and the initial one.
When convergence is reached, each unlabeled point is assigned the label of the
class it has received most information for during the iteration process. One can
also consider the LLGC method through the regularization framework. Then,
the first term of the cost function Q(f) is a fitting constraint that binds f to stay
close to the initial label assignment. The second term is a smoothness constraint
that maintains local consistency. The global consistency is maintained by using
a parameter μ which yields a balance between the two terms.

As stated by Zhou et al., the closest related graph-based approach to LLGC
is the method using Gaussian random fields and harmonic functions presented
in [39]. In this method, the label propagation is formalized in a probabilistic
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framework. The probability distribution assigned to the classification function f
is a Gaussian random field defined on the graph. This function is constrained to
give their initial labels to labeled data. In terms of regularization network, this
approach can be viewed as having a quadratic loss function with infinite weight,
so that the labeled data are clamped, and a regularizer based on the graph
Laplacian [38]. The minimization of the cost function results in an harmoninc
function. In [14], the LLGC method and the Gaussian Random Field Model
(GRFM) are further compared to each other and to the Low Density Separa-
tion (LDS) method of Chapelle and Zien [10]. T. Huang and V. Kecman notice
that both algorithms are manifold-like methods, and have the similar property
of searching the class boundary in the low density region (and in this respect
they have similarity with the Gradient Transductive SVMs [10] too). LLGC
has been recently extended to clustering and ranking problems. Relying on the
fact that LLGC has demonstrated impressive performance on relatively complex
manifold structures, the authors in [8] propose a new clustering algorithm which
builds upon the LLGC method. They claim that LLGC naturally leads to an
optimization framework that picks clusters on manifold by minimizing the mean
distance between points inside the clsuters while maximizing the mean distance
between points in different clusters. Moreover, they show that this framework is
able to: (i) simultaneously optimize all learning parameters, (ii) pick the optimal
number of clusters,(iii) allow easy detection of both global outliers and outliers
within clusters, and can also be used to add previously unseen points to clusters
without re-learning the original cluster model. Similarly, in [30], A. Vinueza and
G.Z. Grudic show that LLGC performs at least as well as the best known outlier
detection algorithm, and can predict class outliers not only for training points
but also for points introduced after training. Zhou et al. in [36] propose a simple
universal ranking algorithm derived from LLGC, for data lying in an Euclidean
space and show that this algorithm is superior to local methods which rank data
simply by pairwise Euclidean distances or inner products. Aso note that for large
scale real world problems they prefer to use the iterative version of the algorithm
instead of the closed form based on matrix inversion. Empirically, usually a small
number of iterations seem sufficient to yield high quality ranking results.

In the following we propose extension on LLGC to cope with the compu-
tational complexity, to broaden its range of applicability, and to improve its
predictive accuracy. As reported in [37], the complexity of many graph-based
methods is close to O(n3). Speed-up improvements have been proposed, for ex-
ample in [20,11,40,33,13], but their effectiveness has not yet been shown for large
real-world problems. Section 3 will give the definition of the original LLGC al-
gorithm and detail our extensions. In Section 4 we will support our claims with
experiments on textual data. Finally Section 5 summarizes and provides direc-
tions for future work.

3 Original LLGC and Extensions

A standard semi-supervised learning algorithm is the so-called LLGC algorithm
[34], which tries to balance two potentially conflicting goals: locally, similar
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examples should have similar class labels, and globally, the predicted labels
should agree well with the given training labels. The way LLGC achieves that can
intuitively be seen as the steady state of a random walk on the weighted graph
given by the pairwise similarities of all instances, both labeled and unlabeled
ones. At each step each example passes on its current probability distribution to
all other instances, were distributions are weighted by the respective similarities.

In detail, the LLGC works as follows:

1. Set up an affinity matrix A, where Aij = e−
||xi−xj ||2

σ2 for i �= j, and Aii = 0.
2. Symmetrically normalize A yielding S, i.e. S = D−0.5AD−0.5 where D is a

diagonal matrix with D(i, i) being the sum of the i-th row of A, which is
also the sum of the i-th column of A, as A is a symmetrical matrix.

3. Setup matrix Y as a n ∗ k matrix, where n is the number of examples and
k is the number of class values. Set Yik = 1, if the class value of example
i is k. All other entries are zero, i.e. unlabeled examples are represented by
all-zero rows.

4. Initialise F (0) = Y , i.e. start with the given labels.
5. Repeat F (t + 1) = α ∗ S ∗ F (t) + (1 − α) ∗ Y until F converges. α is a

parameter to be specified by the user in the range [0, 1]. High values of α
focus the process on the propagation of the sums of the neighbourhood, i.e.
the local consistency, where low values put more emphasis onto the constant
injection of the originally given labels, and thereby focus more on global
consistency.

The seminal LLGC paper [34] proves that this iteration converges to:

F ∗ = (1 − α) ∗ (I − α ∗ S)−1 ∗ Y

The normalized rows of F ∗ can be interpreted as class probability distributions
for every example. The necessary conditions for convergence are that 0 ≤ α ≤ 1
holds, and that all eigenvalues of S are inside [−1, 1].

Before introducing the extensions designed in order to achieve the goals men-
tioned in the previous section, let us notice the following: LLGC’s notion of
similarity is based on RBF kernels, which are general and work well for a range
of applications. But they are not always the best approach for computing sim-
ilarity. For text classification problems usually the so-called cosine similarity
measure is the method of choice, likewise other domains have there preferred
different similarity measures. Generally, it is possible to replace the RBF kernel
in the computation of the affinity matrix with any arbitrary kernel function, as
long as one can show that the eigenvalues of S will still be within [−1, 1], thus
guaranteeing convergence of the algorithm. One way of achieving this is to use
”normalized” kernels. Any kernel k can be normalized like so ([2]):

knorm(x, y) =
k(x, y)

√
k(x, x) ∗ k(y, y)

As the experiments reported below concern text classification problems, for
which the so-called cosine similarity measure is the method of choice (likewise
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other domains have there preferred different similarity measures), we will employ
this similarity measure (which is already normalized) instead of RBF kernels.

3.1 Reduce Computational Complexity by Sparsifying A

The main source of complexity in the LLGC algorithm is the affinity matrix.
It needs O(n2) memory and the matrix inversion necessary for computing the
closed form needs, depending on the algorithm used, roughly 0(n2.7) time, where
n is the number of examples. If there are only a few thousand examples in total
(both labeled and unlabeled), this is feasible. But we also want to work with 105

examples and even more. In such a setting even only storing the affinity matrix
in main memory becomes impossible, let alone computing the matrix inversion.

Our approach to sparsification is based on the insight that most values in
the original affinity matrix are very close to zero anyways. Consequently we
enforce sparsity by only allowing the k nearest neighbours of each example to
supply a non-zero affinity value. Typical well-performing values for k range from
a few dozen to a hundred. There is one caveat here: kNN is not a symmetrical
relationship, but the affinity matrix has to be symmetrical. It is easy to repair this
shortcoming in a post-processing step after the sparse affinity matrix has been
generated: simply add all ”missing” entries. In the worst case this will at most
double the number of non-zero entries in A. Therefore the memory complexity of
LLGC is reduced from O(n2) to a mere O(k ∗ n), which for small enough values
of k allows to deal with even millions of examples. Additionally, when using the
iterative version of the algorithm to compute F ∗, the computational complexity
is reduced to O(k ∗ n ∗ niterations), which is a significant improvement in speed
over the original formulation, especially as the number of iterations needed to
achieve (de facto) convergence is usually rather low. E.g. even after only ten
iterations usually most labels do not change any more.

Computing the sparse affinity matrix is still O(n2) timewise, but for cases
where n ≥ 5000 we use a hierarchical clustering-based approximation, which is
O(n ∗ log(n)). Alternatively, there is currently a lot of research going on trying
to speed-up nearest-neighbour queries based on smart data-structures, e.g. kD-
trees, or cover trees[4].

3.2 Allow Pre-labeling of the Unlabeled Data

LLGC starts with all-zero class-distributions for the unlabeled data. We allow
pre-labeling by using class-distributions for unlabeled data that have been com-
puted in some way using the training data:

Yij = probj(classifierlabeledData(xi))

where classifierlabeledData is some classifier that has been trained on just the la-
beled subset of data given. For text mining experiments as described below this
is usually a linear support vector machine. There are at least two arguments
for allowing this pre-labeling (or priming) of the class probability distributions
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inside LLGC. A pragmatic argument is that simply in all experiments we have
performed we uniformly achieve better final results when using priming. We sus-
pect that this might not be true in extreme cases when the number of labeled
examples is very small, and therefore any classifier trained on such a small set
of examples will necessarily be rather unreliable. There is also a second more
fundamental argument in favour of priming. Due to the sparsification of the affin-
ity matrix, which in its non-sparse version describes a fully-connected, though
weighted graph, this graph might be split into several isolated subgraphs. Some
of these subgraphs may not contain any labeled points anymore. Therefore the
propagation algorithm would have no information left to propagate, and thus
simply return all-zero distributions for any example in such a neighbourhood.
Priming resolves this issue in a principled way.

One potential problem with priming is the fact that the predicted labels might
be less reliable than the explicitly given labels. In a different and much simpler
algorithm[12] for semi-supervised learning this problem was solved by using dif-
ferent weights for labeled and unlabeled examples. When the weights reflected
the ratio of labeled to unlabeled examples, then usually predictive accuracy was
satisfactory. In a similar spirit we introduce a second parameter β, which scales
down the initial predictions for unlabeled data in the primed LLGC algorithm:

Yij = β ∗ probj(classifierlabeledData(xi))

if xi is an unlabeled example. In the experiments reported below we usually find
that values for β as chosen by cross-validation are reasonably close to the value
that the ratio-heuristic would suggest.

4 Experiments

In this section we evaluate the extended LLGC algorithm on text classification
problems by comparing it to a standard linear support vector machine. As we
cannot compare to the original LLGC algorithm for computational reasons (see
previous section for details), we at least include both a ”pure” version which uses
only sparsification and the cosine-similarity, and the ”primed” version, which
uses the labels as predicted by the linear support vector machine to initialise the
class distributions for the unlabeled data. As explained in the previous section,
we down-weigh these pre-labels by setting β = 0.1 and also by β = 0.01, to see
how sensitive the algorithm is with respect to β. We also investigate differently
sized neighbourhoods of sizes 25, 50, and 100.

The dataset we use for this comparison is the recently released large and
cleaned-up Reuters corpus called RCV12[19]. We use a predefined set of 23149
labeled examples as proper training data, and another 199328 examples as the
unlabeled or test data. Therefore we have training labels for slightly more than
10% of the data. RCV12 defines hundreds of overlapping categories or labels
for the data. We have run experiments on the 80 largest categories, treating
each category separately as a binary prediction problem. To evaluate we have
chosen AUC (area under the ROC curve) which recently has become very popular
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Table 1. AUC values for categories CCAT and E14, SVM, pure LLGC, and primed
LLGC, for a range of α values. CCAT is the largest category, E14 a rather small one.
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especially for text classification[5], as it is independent of a specific threshold.
Secondly, as some typical text classification tasks can also be cast as ranking
tasks (e.g. the separation of spam email from proper email messages), AUC
seems especially appropriate for such tasks, as it provides a measure for how
much better the ranking computed by some algorithm is over a random ranking.

As there is not enough space to present the results for all these 80 categories
here, we have selected only two (CCAT and E14), where CCAT is the largest
one, and E14 is considerably smaller. Table 1 depicts AUC for the various al-
gorithms over a range of values for α. From top to bottom we have graphs for
neighbourhoods of size 25, 50, and 100.

The trends that can be seen in these graphs hold for all the other categories not
shown here as well. Usually all LLGC variants outperform the support vector
machine which was only trained on the labeled examples. The difference be-
comes more pronounced for the smaller categories, i.e. were the binary learning
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Table 2. AUC values for the ECML Challenge submission, pure LLGC, and a linear
support vector machine, averaged over three mailboxes; ranks are hypothetical except
for the first row

Algorithm AUC Rank

primedLLGC(k=100,alpha=0.8,beta=1.0) 0.9491 1/21
support vector machine 0.9056 7/21
pure LLGC(alpha=0.99) 0.6533 19/21

problem is more skewed. Pure LLGC itself is also usually outperformed by the
primed version, except sometimes at extreme values of α (0.01 or 0.99). For
larger categories the differences between pure and primed LLGC are also more
pronounced, and also the influence of α is larger, with best results to be found
around the middle of the range. Also, with respect to β, usually best results
for β = 0.1 are found in the upper half of the α range, whereas for the smaller
β = 0.01 best results are usually found at lower values for α. Globally, β = 0.1
seems to be the slightly better value, which confirms the heuristic presented in
the last section, as the ratio between labeled and unlabeled data in this domain
is about 0.1.

4.1 Spam Detection

Another very specific text classification problem is the detection of spam email.
Recently a competition was held to determine successful learning algorithms for
this problem[5]. One of the problems comprised a labeled mailbox with 7500
messages gathered from publically available corpora and spam sources, whereas
for prediction three different mailboxes of size 4000 were supplied. Each mailbox
had an equal amount of spam and non-spam, but that was not known to the
participants in the competition. The three unlabeled prediction mailboxes were
very coherent for their non-spam messages, as they were messages of single Enron
users. Again, that was not known to the participants. A solution based on a lazy
feature selection technique in conjunction with the fast LLGC method described
here was able to tie for first place at this competition [24]. In Table 2 we report
the respective AUCs for the submitted solution, as well as for a support vector
machine, and a pure LLGC approach. This time the support vector machine
outperforms the pure LLGC solution, but again the primed LLGC version is the
overall winner.

5 Conclusions

In this paper we have extended the well-known LLGC algorithm in three direc-
tions: we have extended the range of admissible similarity functions, we have
improved the computational complexity by sparsification and we have improved
predictive accuracy by priming. An preliminary experimental evaluation us-
ing a large text corpus has shown promising results, as has the application to
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spam detection. Future work will include a more complete sensitivity analysis
of the algorithm, as well as application to non-textual data utilizing a variety of
different kernels.
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Abstract. The study of human brain functions has dramatically in-
creased in recent years greatly due to the advent of Functional Magnetic
Resonance Imaging. In this paper we apply and compare different ma-
chine learning techniques to the problem of classifying the instantaneous
cognitive state of a person based on her functional Magnetic Resonance
Imaging data. In particular, we present successful case studies of in-
duced classifiers which accurately discriminate between cognitive states
produced by listening to different auditory stimuli. The problem inves-
tigated in this paper provides a very interesting case study of training
classifiers with extremely high dimensional, sparse and noisy data. We
present and discuss the results obtained in the case studies.

Keywords: Machine learning, feature extraction, fMRI data.

1 Introduction

The study of human brain functions has dramatically increased in recent years
greatly due to the advent of Functional Magnetic Resonance Imaging (fMRI).
While fMRI has been used extensively to test hypothesis regarding the location of
activation for different brain functions, the problem of automatically classifying
cognitive states has been little explored. The study of this problem is important
because it can provide a tool for detecting and tracking cognitive processes (i.e.
sequences of cognitive states) in order to diagnose difficulties in performing a
complex task.

In this paper we describe an approach to detecting the instantaneous cognitive
state of a person based on her Functional Magnetic Resonance Imaging data.
We present a machine learning approach to the problem of discriminating in-
stantaneous cognitive states produced by different auditory stimuli. We present
the results of two case studies in which we have trained classifiers in order to dis-
criminate whether a person is (1) listening to melodic tonal stimuli or listening
to nonsense speech, (2) listening to an auditory stimulus or mentally rehears-
ing the stimulus, (3) listening to melody, speech or rehearsing, (4) listening to
a pure tone or a band-passed noise burst, and (5) listening to a low-frequency
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tone or a high-frequency tone. The problem investigated in this paper is also in-
teresting from the machine learning point of view since it provides an interesting
case study of training classifiers with extremely high dimensional (10,000-15,000
features), sparse (32-84 examples) and noisy data.

We apply and compare different machine learning techniques to the task of
predicting a subject cognitive state given her observed fMRI data. We associate
a class with each of the cognitive states of interest and given a subject’s fMRI
data observed at time t, the classifier predicts one of the classes. We train the
classifiers by providing examples consisting of fMRI observations (restricted to
selected brain areas) along with the known cognitive state of the subject. We
select the brain areas by applying feature selection methods tuned to the data
characteristics.

The rest of the paper is organized as follows: Section 2 sets out the back-
ground for this research. In Section 3, we describe our approach to the problem
of detecting the instantaneous cognitive state of a person based on her Func-
tional Magnetic Resonance Imaging data. Section 4 presents two case studies. In
Section 5 we discuss the results of the case studies, and finally Section 6 presents
some conclusions and indicates some areas of future research.

2 Background

Functional Magnetic Resonance Imaging is a brain imaging technique that allows
the observation of brain activity in human subjects based on the increase in blood
flow to the local vasculature that accompanies neural activity in the brain. It
produces time-series data that represents brain activity in a collection of 2D
slices of the brain. The collection of the 2D slices form a 3D image of the brain
containing in the order of 12000 voxels, i.e. cubes of tissue about 3 millimeters
on each side. Images are usually taken every 1-5 seconds. Despite the limitations
in temporal resolution, fMRI is arguably the best technique for observing human
brain activity that is currently available. Figure 1 shows a fMRI image showing
the instantaneous activity of a section of the brain and the activity over time of
one of its voxels (white voxels are those with highest activity while dark voxels
are those with lowest activity).

Functional Magnetic Resonance Imaging has been widely applied to the task
of identifying the regions in the brain which are activated when a human per-
forms a particular cognitive function (e.g. visually recognizing objects). Most
of the reported research summarizes average fMRI responses when a human is
presented with a particular stimulus repeatedly. Regions in the brain activated
by a particular task are identified by comparing fMRI activity during the pe-
riod where the stimulus is presented with the activity detected under a control
condition. Other research describes the effects of varying stimuli on activity,
or correlations among activity in different brain regions. In all these cases, the
results are statistics of effects averaged over multiple trials and multiple subjects.

Haxby et al [4] detect different patterns of fMRI activity generated when a
human views a photograph of different objects (e.g. faces, houses). Although
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Fig. 1. fMRI image showing the instantaneous activity of a section of the brain and
the activity over time of one of its voxels: white voxels are those with highest activity
while dark voxels are those with lowest activity

this information was not specifically used for classifying subsequent fMRI data,
Haxby et al reported that they could automatically identify the data samples
related to the same object category. Wagner et al [9] reported that they have been
able to predict whether a verbal experience is to be remembered later based on
the amount of activity in particular brain regions during the experience. Closer
to the work reported in this paper is the work by Mitchell et al [6,7] who have
applied machine learning methods to the same problem investigated here. In
particular, they have trained classifiers to distinguish whether a subject is looking
at a picture or a sentence, reading an ambiguous or non-ambiguous sentence, and
the type of word (e.g. a word describing food, people, etc.) to which a subject
is exposed. Cox et al [2] applied support vector machine to fMRI data in order
to classify patterns of fMRI activation produced by presenting photographs of
various categories of objects.

3 Classifying Cognitive States

In this section we present our approach to training and evaluating classifiers
for the task of detecting the instantaneous cognitive state of a person. Given
a person’s observed instantaneous fMRI data at time t, we train a classifier in
order to predict the cognitive state that gave rise to the observed data. The
training data is a set of examples of fMRI observations along with the known
cognitive state.

3.1 Learning Algorithms

In this paper we explore different machine learning techniques to induce a clas-
sifier of the following form.
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Classifier(fMRIdata(t)) → CognState

where fMRIdata(t) is an instantaneous fMRI image at time t and CognState is
a set of cognitive states to be discriminated. For each subject in the fMRI data
sets we trained a separate classifier. We explored a number of classifier induction
methods, including:

– Decision Trees. A decision tree classifier recursively constructs a tree by
selecting at each node the most relevant attribute. This process gradually
splits up the training set into subsets until all instances at a node have
the same classification. The selection of the most relevant attribute at each
node is based on the information gain associated with each node of the tree
(and corresponding set of instances). We have explored the decision tree
building algorithm C4.5 [8] without pruning and with postpruning (using
subtree raising).

– Support Vector Machines (SVM). SVM [3] take great advantage of using a
non linear attribute mapping that allows them to be able to predict non-
linear models (thought they remain linear in a higher dimension space).
Thus, they provide a flexible prediction, but with a higher computational
cost necessary to perform all the computations in the higher dimensional
space. SVM have been applied successfully in applications involving high di-
mensional data. Their classification accuracy largely depends on the choice of
the kernel evaluation function and the parameters which control the amount
to which deviations are tolerated (denoted by epsilon). In this paper we have
explored SVM with linear and polynomial kernels (2nd, 3rd and 4th order)
and we have set epsilon to 0.05.

– Artificial Neural Networks (ANN). ANN learning methods provide a robust
approach to approximating a target function. In this paper we apply a gra-
dient descent back propagation algorithm [1] to tune the neural network
parameters to best fit the fMRI training set. The back propagation algo-
rithm learns the weights for a multi layer network, given a network with a
fixed set of units and interconnections. We set the momentum applied to
the weights during updating to 0.2 and the learning rate (the amount the
weights are updated) to 0.3. We use a fully-connected multi layer neural
network with one hidden layer (one input neuron for each attribute and one
output neuron for each class).

– Lazy Methods. Lazy Methods are based on the notion of lazy learning which
subsumes a family of algorithms that store the complete set of given (clas-
sified) examples of an underlying example language and delay all further
calculations until requests for classifying yet unseen instances are received.
In this paper we have explored the k-Nearest Neighbor (k-NN) algorithm
(with k ∈ {1, 2, 3, 4, 7}) which in the past has been used successfully in other
applications involving high dimensional data, and is capable of handling
noisy data well if the training set has an acceptable size. However, k-NN
does not behave well in the presence of irrelevant attributes.

– Ensemble Methods. One obvious approach to making more reliable decisions
is to combine the output of several different models. In this paper we explore
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the use of methods for combining models (called ensemble methods) gener-
ated by machine learning. In particular, we have explored voting, stacking,
bagging and boosting. In many cases they have proved to increase predictive
performance over a single model. For voting and stacking we considered deci-
sion trees, SVM, ANN, and 1-NN (for stacking the decision trees algorithm
was used as ’meta-learner’. For bagging and boosting we applied decision
trees.

3.2 Feature Selection

As the classification task reported in this paper clearly involves a high dimen-
sional training data, it is necessary to apply feature selection methods before
training the classifiers. In this paper, we consider two feature selection strate-
gies:

– select features according to how well they discriminate the classes of interest.
– select features according to how well they discriminate each class of interest

from fixation, i.e. the periods during which the subjects are typically not
performing any task but instead are staring at a fixation point.

The feature selection strategies are motivated by the fact that fMRI binary
classification problems naturally give rise to three types of data: data corre-
sponding to the two target classes, C1 and C2, and data corresponding to the
fixation condition. Data corresponding to C1 and C2 is composed of signal plus
noise, while data corresponding to the fixation condition contains only noise, i.e.
it contains no relevant signal. Thus, two natural feature selection methods are
voxel discriminability, i.e. how well the feature discriminates C1 and C2, and
voxel activity, i.e. how well the feature distinguishes C1 or C2 from the fixation
class [6]. While the former selection method is a straightforward method for se-
lecting voxels which discriminate the two classes, the later focuses on choosing
voxels with large signal-to-noise ratios, although it ignores whether the feature
actually discriminates the two classes. Within the fMRI community it is com-
mon to use voxel activity to select a subset of relevant voxels. In more detail, the
voxel discriminability and voxel activity feature selection methods are as follows:

– voxel discriminability. For each voxel and target class, a t-test is performed
comparing the fMRI activity of the voxel in examples belonging to the two
stimuli of interest. In the case of three-class classification tasks, instead of the
t-test, an f -test is performed comparing the fMRI of the voxel in examples
belonging to the different stimuli of interest. n voxels are then selected by
choosing the ones with larger t-values.

– voxel activity. For each voxel and target class, a t-test is performed comparing
the fMRI activity of the voxel in examples belonging to a particular stimulus
to its activity in examples belonging to fixation periods. For each class, n
voxels are then selected by choosing the ones with larger t-values. Note that
these voxels may discriminate only one target class from fixation.
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3.3 Classifier Evaluation

We evaluated each induced classifier by performing the standard 10-fold cross
validation in which 10% of the training set is held out in turn as test data while
the remaining 90% is used as training data. When performing the 10-fold cross
validation, we leave out the same number of examples per class. In the data sets,
the number of examples is the same for each class considered, thus by leaving
out the same number of examples per class we maintain a balanced training set.
In order to avoid optimistic estimates of the classifier performance, we explicitly
remove from the training set all images occurring within 6 seconds of the hold
out test image. This is motivated by the fact that the fMRI response time is
blurred out over several seconds.

4 Case Studies

In this section we describe two case studies on training classifiers using fMRI
data. We summarize the results we have obtained and postpone the discussion
of the results to the next section.

4.1 Melody, Speech and Rehearsal Study

In this fMRI study [5] a total of 6 right handed subjects with a mean age
of 27 (3 men and 3 women) participated. Twenty-one short unfamiliar piano
melodies, each of 3 seconds duration, were recorded using a MIDI synthesizer.
Melodies consisted of 5 to 17 notes in the C key (i.e. white keys on the piano).
Note durations ranged from 106 to 1067 msec and patterns were chosen to be
rhythmical according to Western music. An equal number of nonsense sentences
(nouns and verbs were replaced by pseudo words), also approximately 3 seconds
long, were recorded and digitalized. Each trial in this experiment consisted of an
initial stimulus presentation (music or sentence; 3 seconds duration), followed
by a 15 second rehearsal period, a representation of the stimulus (signaling the
subject to stop rehearsing), and ended with 15 seconds of rest. The next trial
was then initiated by a new stimulus item. Thus, each full trial extended over
a period of 36 seconds. fMRI images were acquired every 2 seconds. The voxel
dimensions were set to 6 x 4 x 4 mm.

We used this data to investigate the feasibility of training successful classifiers
to detect whether a subject is listening to melodic tonal stimuli, listening to non-
sense speech, mentally rehearsing a melody or simply resting (control condition).
In particular, we trained classifiers for the tasks of distinguishing among the cog-
nitive states for (1) listening to a melody versus listening to nonsense speech, (2)
listening to an auditory stimulus (a melody or nonsense speech) versus mentally
rehearsing the stimulus, and (3) listening to a melody versus listening to nonsense
speech versus mentally rehearsing the auditory stimulus (i.e. a three class clas-
sifier). This is, given the general classifier of the form Cl(fMRIdata(t)) → CS,
we are interested in the set CS of cognitive states to be discriminated to be
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{melody, speech}, {audition, rehearsal}, and {melody, speech, rehearsal}, re-
spectively for (1), (2) and (3) as above.

Initially, we filter the fMRI data by eliminating voxels outside the brain. This
is done by discarding the voxels below an activation threshold. The average
number of voxels per subject after filtering was approximately 12,000 (although
this varied significantly from subject to subject). Once the fMRI data is sifted,
we proceed to select voxels based on both the voxel discriminability and voxel
activity feature selection methods described in the previous section. We average
the activity values of contiguous voxels representing brain regions. We restricted
the amount of features for training the classifiers to 10-22.

There were a total of 84 examples available for each subject for the two-class
classification tasks (i.e. 42 examples for each class), and 126 examples for the
three-class classification task (i.e. 42 examples for each class). For the two-class
classification tasks, the expected classification accuracy of the default classifier
(one which chooses the most common class) is 50% (measured in correctly clas-
sified instances percentage), while for the three-class classification task, the ex-
pected accuracy is 33%. For the melody-versus-speech, audition-versus-rehearsal,
and melody-versus-speech-versus-rehearsal classifiers the average accuracies ob-
tained for the most successful trained classifier using the most successful feature
selection strategy were 97.19%, 84.83%, and 69.44%, respectively. For these clas-
sifiers the best subject’s accuracies were 100%, 98.57%, and 81.67%, respectively.
The results are statistically significant which indicates that it is indeed feasible
to train successful classifiers to distinguish these cognitive states. The correctly
classified instances percentage for each subject and each learning method is pre-
sented in Tables 1-4.

Table 1. Classifiers accuracies for listening to a melody versus listening to nonsense
speech (using voxel discriminability feature selection)

Subject 1 2 3 4 5 6

DTrees 76.50 96.33 86.33 77.50 79.00 100.00
SVM 95.50 98.00 91.00 88.50 95.50 100.00
ANN 88.00 98.00 91.33 70.00 98.00 100.00
k-NN 90.50 96.33 93.00 91.00 97.50 100.00
Bagging 76.50 96.33 88.00 88.50 90.50 100.00
Boosting 84.00 96.33 95.00 90.50 93.00 100.00
Voting 91.00 96.33 94.67 82.00 97.50 100.00
Stacking 95.50 96.33 86.00 86.00 100.00 100.00

4.2 Pure Tones and Band-Passed Noise

In this fMRI study [10] twelve subjects with normal hearing listened passively to
one of six different stimulus sets. These sets consisted of either pure tones (PTs)
with a frequency of 0.5, 2 or 8 kHz, or band-passed noise (BPN) bursts with the
same logarithmically spaced center frequencies and a bandwidth of one octave
(i.e. from 0.35-0.7, 1.4-2.8, and 5.6-11.2 kHz, respectively). All stimuli were 500
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Table 2. Classifiers accuracies for listening to auditory stimulus (melody or nonsense
speech) versus mentally rehearsing the stimulus (using voxel discriminability feature
selection)

Subject 1 2 3 4 5 6

DTree 82.50 67.33 79.82 70.50 76.50 81.00
SVM 97.50 78.33 81.07 88.00 79.00 83.50
ANN 95.00 74.67 80.00 84.00 64.50 70.00
k-NN 95.00 77.33 79.64 79.50 65.50 72.50
Bagging 80.00 74.67 79.46 74.50 77.00 72.00
Boosting 87.50 67.00 79.82 74.50 81.00 79.00
Voting 92.50 76.33 79.82 77.00 74.50 72.00
Stacking 85.00 72.67 74.46 78.50 66.50 81.50

Table 3. Classifiers accuracies for listening to a melody versus listening to nonsense
speech versus mentally rehearsing the auditory stimulus (using voxel discriminability
feature selection)

Subject 1 2 3 4 5 6

DTrees 42.81 72.50 73.33 53.81 59.33 66.67
SVM 50.00 68.00 73.33 57.38 42.33 73.33
ANN 45.00 77.00 78.33 60.24 54.67 69.76
kNN 43.57 77.00 80.00 54.05 55.33 57.14
Bagging 41.86 74.50 78.33 57.14 54.00 58.57
Boosting 41.38 70.50 71.67 46.90 57.00 61.67
Voting 44.76 77.00 81.67 58.81 45.67 57.14
Stacking 40.67 61.00 80.00 44.29 63.00 77.86

msec in duration including 50 msec rise/fall times to minimize on/offset artifacts.
Stimuli were presented at a rate of 1Hz during the “stimulus-on” intervals of the
functional scans. The subjects underwent 12 functional runs consisting of four
32 sec cycles divided into two 16-sec “‘stimulus-on” and “stimulus-off” epochs.
During six runs each PT and BPN bursts were the on-stimuli. The voxel size
was 3.75 x 3.75 x 4.4 mm3.

We used this data to train classifiers to detect whether a subject is listening to
a high or low frequency tone, and whether the subject is listening to a pure tone
or a band-passed noise burst. In particular, we trained classifiers for the tasks of
distinguishing among the cognitive states for (1) listening to a high frequency PT
versus listening to a low frequency PT, (2) listening to a PT versus listening to a
BPN burst (both in a middle frequency). Given the general classifier of the form
Cl(fMRIdata(t)) → CS, we are interested in the set CS of cognitive states to
be discriminated to be {PTHigh, PTLow}, and {PTMiddle, BPNMiddle}.

We select voxels in the same manner as in the previous case study. This
is, we initially filter the fMRI data by eliminating voxels outside the brain by
discarding the voxels below an activation threshold. The average number of
voxels per subject after filtering was approximately 14,000 (it varied significantly
from subject to subject). Once the fMRI data is sifted, we proceed to select voxels
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Table 4. Classifiers accuracies for listening to a melody versus listening to nonsense
speech versus mentally rehearsing the auditory stimulus (using voxel activity feature
selection)

Subject 1 2 3 4 5 6

DTrees 45.95 64.31 82.14 50.48 77.00 72.38
SVM 66.19 67.08 82.14 57.38 69.67 77.62
ANN 48.81 61.81 79.11 50.48 63.00 72.38
k-NN 64.29 69.03 81.96 57.14 72.33 73.10
Bagging 51.19 71.67 73.04 52.38 82.67 70.95
Boosting 46.67 69.17 80.71 49.05 75.00 67.86
Voting 55.24 68.89 84.29 50.48 69.33 72.38
Stacking 54.76 59.86 76.96 55.71 74.33 65.24

Table 5. Listening to a high frequency PT versus listening to a low frequency PT
(using voxel discriminability feature selection)

Subject 1 2 3 4 5 6

DTrees 100.0 90.00 96.67 97.50 100.0 80.83
SVM 100.0 100.0 100.0 100.0 100.0 100.0
ANN 100.0 100.0 100.0 100.0 100.0 100.0
k-NN 100.0 100.0 100.0 100.0 100.0 100.0
Bagging 96.67 96.67 96.67 97.50 96.67 90.00
Boosting 100.0 90.00 96.67 97.50 100.0 80.83
Voting 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 100.0 96.67 100.0 100.0 100.0 100.0

based on both the voxel discriminability and voxel activity feature selection
methods described before. We average the activity values of contiguous voxels
representing brain regions. We restricted the amount of features for training the
classifiers to 12-25.

There were a total of 32 training examples available for each subject (i.e. 16
examples for each class). The expected correctly classified instances percentage
of the default classifier (selecting the most common class) is 50%. For the both
PT-High versus PT-Low, and the PT versus BPN classifiers we obtained average
accuracies of 100% for the SVM, k-NN and voting. These results are clearly
statistically significant and indicate that it is feasible to train successful classifiers
to distinguish these cognitive states. The correctly classified instances percentage
for each subject and each learning method is presented in Table 5 and Table 6.
Similar results were obtained using voxel activity feature selection (we omit the
presentation of the corresponding tables due to space limitations).

5 Discussion

The difference between the results obtained and the accuracy of a baseline clas-
sifier, i.e. a classifier guessing at random (50% and 33% in the case of the two-
class and three-class classification task, respectively) indicates that the fMRI
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Table 6. Listening to a middle frequency PT versus listening to a middle frequency
BPN burst (using voxel discriminability feature selection)

Data Set (1) (2) (3) (4) (5) (6)

DTrees 94.17 83.37 96.67 74.17 96.67 91.67
SVM 100.0 100.0 100.0 100.0 100.0 100.0
ANN 100.0 100.0 100.0 97.50 100.0 100.0
k-NN 100.0 100.0 100.0 100.0 100.0 100.0
Bagging 97.50 93.33 96.67 80.83 100.0 91.67
Boosting 94.17 86.67 96.67 87.50 96.67 91.67
Voting 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 100.0 100.0 100.0 100.0 100.0 100.0

data contains sufficient information to distinguish these cognitive states, and
machine learning methods are capable of learning the fMRI patterns that distin-
guish these states. It is worth noting that every learning algorithm investigated
(decision trees, SVM, ANN, k-NN and the reported ensemble methods) pro-
duced significantly better than random classification accuracies for every study.
This supports our statement about the feasibility of training classifiers for the
case studies reported. However, note that this does not necessary imply that it
is feasible to train classifiers for arbitrary tasks.

The results also indicate that certain tasks seem to be more difficult to dis-
criminate than others. For example, the average accuracy of the melody-versus-
speech classifiers is consistently higher than that of the audition-versus-rehearsal
classifiers. This may seem to indicate, as previously suggested, that there is more
commonality in the underlying brain processes of audition and rehearsal, than
in the underlying processes of listening to different types of auditory stimuli.
Currently, the general question of exactly which cognitive states can be reliably
discriminated remains an open question.

The accuracy of the classifiers for different subjects varies significantly, even
within the same study and using the same learning method. Subjects producing
high accuracies with one learning method tend to produce high accuracies with
the other learning methods. These uneven accuracies among subjects may be due
to the data being corrupted (e.g. by head motion during scanning). In any case,
it has been reported that there exists considerable variation in fMRI responses
among different subjects.

We have selected the number of features n, i.e. regions raging from 1 to 12
voxels, empirically. We incrementally considered different values for n and stop
when average classifier accuracy stops improving. The number of features used
ranged from 10 to 15 and from 18-22 for the two-class classification and three-
class classification tasks, respectively.

It is worth mentioning that in all the experiments performed we provided no
information about relevant brain regions involved in the tasks performed by the
subjects. This contrasts with other approaches (e.g. [6,2]) where the input to the
classifiers is the set of voxels in the regions of interests (ROIs) selected for each
particular study. Here, we have treated equally all voxels in the fMRI studies
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regardless of which brain region they belong to. Incorporation information about
the ROI for each fMRI study would very likely improve the accuracies of the
classifiers. We decided not to provide any ROIs information in order to eliminate
any feature selection bias.

We expected the k-NN classifier to underperform the other classifiers given the
high dimensional and sparse training sets (k-NN is known to be very sensitive to
irrelevant features). However, the results show no clear trend in this respect. This
led us to think that our feature selection process indeed eliminated irrelevant
features.

Mitchell et al [6] reported that voxel activity feature selection widely out-
performed voxel discriminability feature selection in several fMRI studies. This
result may be explained by the high dimensionality, noisy and sparseness char-
acteristics of the fMRI data. Typically, in fMRI data only a few voxels contain
a signal related to the stimulus under study and given the noisy characteristics
of the data it is expected to select irrelevant voxels which appear good discrim-
inators. Thus, choosing voxels with high signal-to-noise ratios (as it is the case
with voxel activity feature selection) would eliminate a considerable number of
irrelevant voxels. However, in the two case studies reported in this paper there is
no clear accuracy difference between the classifiers trained with voxels selected
by voxel activity feature selection and those trained using voxel discriminability
feature selection. This may be due to the fact that, in contrast with the results
reported by Mitchell et al, we have trained our classifiers with a substantially
smaller number of voxels (approximately 40 compared to 800). While voxel dis-
criminability feature selection may select irrelevant voxels, voxel activity feature
selection may choose high signal to noise voxels that cannot discriminate the
target classes. It may be the case that by choosing a smaller number of features
the irrelevant voxels selected by voxel discriminability feature selection are re-
moved, which in turn minimizes the difference of the results for the two feature
selection methods. Also, the fact that classification was done using only a small
set of features, classification could, in principle, be used to extract information
about a subjects cognitive state on a near real-time basis.

6 Conclusion

In this paper we have explored and compared different machine learning tech-
niques for the problem of classifying the instantaneous cognitive state of a per-
son based on her functional Magnetic Resonance Imaging data. The problem
provides a very interesting instance of training classifiers with extremely high
dimensional, sparse and noisy data. We presented successful case studies of in-
duced classifiers which accurately discriminate between cognitive states involv-
ing different types of auditory stimuli. Our results seem to indicate that fMRI
data contains sufficient information to distinguish these cognitive states, and
that machine learning techniques are capable of learning the fMRI patterns
that distinguish these states. Furthermore, we proved that it is possible to train
successful classifiers using only a small number of features (i.e. 12-15 voxels)
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extracted from the studied fMRI data, and with no prior anatomical knowledge.
This contrasts previous approches in which a large number of voxels is consid-
ered (e.g. 800 voxels) and which consider regions of interest in the brain in order
to simplify the problem We considered two feature selection strategies: voxel
discriminability feature selection and voxel activity feature selection. Contrary
to previous results, we found no clear accuracy difference between the classifiers
trained with voxels selected by voxel activity feature selection and those trained
using voxel discriminability feature selection, in the two case studies described.
This result deserves further investigation. As future work, we are particularly
interested in exploring rule-based machine learning techniques (e.g. Inductive
logic programming) in order to explain the predictions of the classifiers and to
incorporate domain knowledge into the learning process.
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Abstract. Recently, the problem of finding frequent items in a data
stream has been well studied. However, for some applications, such as
HTTP log analysis, there is a need to analyze the correlations amongst
frequent items in data streams. In this paper, we investigate the prob-
lem of finding correlated items based on the concept of unexpectedness.
That is, two items x and y are correlated if both items are frequent
and their actual number of co-occurrences in the data stream is signifi-
cantly different from the expected value, which can be computed by the
frequencies of x and y. Based on the Space-Saving algorithm [1], we pro-
pose a new one-pass algorithm, namely Stream-Correlation, to discover
correlated item pairs. The key part of our algorithm is to efficiently esti-
mate the frequency of co-occurrences of items with small memory space.
The possible error can be tightly bounded by controlling the memory
space. Experiment results show the effectiveness and the efficiency of the
algorithm.

1 Introduction

A data stream [2,3] is a sequence of items that arrive at a rapid rate. Nowa-
days, many applications require to process high volume of data streams, such
as telecom call records, network traffic measurements, web click-streams, and
time-stamped data from sensor networks.

Finding frequent items in data streams is regarded as one of the important
research problems in streaming data management. While the task is simply to
find the items with the frequency above a specified threshold, it is very useful in
many applications. For example, in network traffic monitoring, it is of great im-
portance to track IP addresses that generate the considerable amount of traffic
in the network. The challenge of this research is that the total number of items
could be so large (considering the number of valid IP addresses) that it is impos-
sible to keep exact information for each item. Many approaches [4,5,6,7,8,9,10,1]
have been proposed to use a fixed small amount of memory for dynamically
maintaining the information of items, such that the frequent items can still be
identified but only with bounded error on their frequencies.

While all the above mentioned studies focus on finding frequent single items,
there is also a need to analyze the dependency among those frequent items
in a data stream. A motivating application of such analysis is to detect “Un-
detectable Hit Inflation (UHI)”, which is recently described in [11]. UHI is a
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type of click fraud in Internet advertising. Briefly, in the click-through payment
program (“pay-per-click”), for claiming more revenue, two dishonest web sites
collaborate together to inflate the clicks to the advertising web site. Due to the
space limit, please refer to [12,11] for details of UHI.

In [11], the above-mentioned fraud activity can be detected by mining the
strong dependency between two dishonest web sites in a stream of HTTP re-
quests, which is available from the Internet Service Provider (ISP). The task is
to find any two web sites x and y such that x is frequently requested in the
data stream and a large proportion of x requests are followed by y requests in a
specified time interval T . Such a problem is modelled as: finding any association
(x T−→ y) between two items x and y from the data stream by one scan.

In [11], the support and confidence model (with slight difference) is adopted for
discovering the dependency of two web sites (items). However, it is known that
in some cases, the support and confidence may be misleading as interestingness
measures. For example, let us consider two independent web sites W1 and W2,
both of which are frequently requested. Suppose that the requests of the web
site W2 are so frequent that even without the dependency with W1, it can still
be expected that within some time interval T , a request of W1 is likely followed
by a request of W2. In this case, based on the interestingness measure defined in
[11], W1 and W2 will be regarded as dishonest web sites by mistake. In general,
the frequencies of different items can vary significantly, failing to consider the
intrinsic frequencies of these items may provide the misleading result in the
dependency analysis.

To rectify the identified shortcoming, we evaluate the dependency of items in
terms of “unexpectedness”, i.e., a pattern/rule is interesting if it is unexpected to
prior knowledge. Particularly, we introduce a more general problem, discovering
correlated items in data streams, as stated below: Given a data stream and a time
interval T, two items x and y are correlated if 1) both items are frequent, and
2) their actual number of co-occurrences (related to the interval T) in the data
stream is significantly greater than the expected value, which is derived based on
the assumption that occurrences of x and the occurrences of y are independent.

The first condition regulates that the potentially interesting items should be
of statistical significance. The second condition specifies the correlation based on
the unexpectedness. Because we compute the expected number of co-occurrences
of two items based on the assumption that these two items are independent, the
level of “unexpectedness” can reflect their correlation. Our task is to discover all
correlated item pairs with possible bounded errors by scanning the data stream
only once. The discovered item pair (x, y) can be interpreted as: x and y are
likely to occur together. Note that in this problem, we do not consider the order
between item x and y. However, the discussions can be extend to the ordered
case readily.

Since finding frequent items has been well studied, our research focuses
on 1) computing the expected number of co-occurrences for two given items
x and y, and more importantly, 2) finding the actual number of co-occurrences
with a bounded error. In this paper, we define the co-occurrence of x and y based
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on the concept of minimal occurrence (MO) [13]. Given the interval T , any co-
occurrence of two items x and y in a stream refers to a MO of the un-ordered
item pair (x, y) with constraint T .

When computing the expected number of co-occurrences of two items x and
y, we assume that the occurrences of x and the occurrences of y are independent.
In addition, we assume that for any type of item, its occurrences in data stream
follow the Poisson process. This assumption is realistic in various applications.
For example, it is well known that the number of requests on an IP address
follows the Poisson distribution. So, in HTTP log analysis, the occurrences of
a given item (i.e., the requests on an IP address) can be well modelled by a
Poisson process. Based on this assumption and the definition of MO, we derive
the formula for computing the expected number of co-occurrences of two items
x and y, which is a function of the frequencies of x and y, and the parameter T .

Considering the task of finding the actual number of co-occurrences, obviously,
it is not possible to maintain a counter for every item pairs. We propose a data
structure, Correlation-Summary, to dynamically organize a bounded number of
counters for item pair. On top of the Space-Saving algorithm [1], we develop a
one-pass algorithm, Stream-Correlation, to approximately count the number of
co-occurrences for all potentially frequent item pairs. The proposed algorithm
can efficiently find the results with bounded error by using limited memory space.

The rest of this paper is organized as follows. Section 2 gives the related work.
In Section 3, we formulate the problem of discovering correlated item pairs. In
Section 4, our algorithm is presented followed by the theoretical analysis. Section
5 shows the experiment results. Finally, we conclude the paper in Section 6.

2 Related Work

The problem of finding frequent items in data streams can be described as:
Given a data stream S of length N , a frequency parameter α ∈ (0, 1), an error
parameter ε � α, and a probabilistic parameter ρ, at any time, with a small
bounded memory, find the items with their estimate frequency such that 1)
all items with true frequency greater than (α − ε)N are output, and 2) the
estimated frequency is higher than the true frequency by at most εN with high
probability ρ. Substantial work [4,5,6,7,8,9,10,1] has been done to handle the
problem of finding frequent items and its variations, e.g., top-k frequent items.
The proposed techniques can be classified as counter-based approaches [10,6,9,1]
and sketch-based (or hash-based) approaches [8,7,5,4]. Please refer to [1] for
details.

In our problem, we apply the Space-Saving, a counter-based algorithm pro-
posed in [1], to find the frequent items. In the algorithm, a fixed number of
counters are dynamically allocated to items. When an item is observed, if there
exists a counter for this item, its counter is increased; otherwise, counters will be
reallocated based on certain techniques. The Space-Saving algorithm only uses
� 1

ε � counters to guarantee the error bound εN (i.e., ρ = 1). We will give the
algorithm description in later section.
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The most relevant research to our work is [11], which discusses the associa-
tions between two items in the data stream. A rule (x T−→ y) is interesting if x
is frequent (w.r.t. support) and a large proportion (w.r.t. confidence) of x occur-
rences are followed by y occurrences in the specified time interval T . However,
in our work, we deal with the problem of correlation analysis. Instead of using a
support and confidence model, we define the interestingness measures based on
the unexpectedness. Due to this key difference, we need to compute the expected
number of co-occurrences based on the probability theory. Also, when counting
the number of co-occurrences of items, we propose different data structure and
algorithm procedures.

In [14], correlation is discussed in the transaction database. Given two items x
and y, let P (x), P (y), and P (x, y) be the support of {x}, {y}, and {x, y} in the
transaction database respectively. The occurrences of x and the occurrences of
y are defined as independent if P (x, y) = P (x)P (y). Otherwise, the occurrences
of x and y are dependent and their correlation can be measured by P (x,y)

P (x)P (y) .
In a data stream, it is hard to define “transactions”. So, we need to use the
unexpectedness as our interestingness measure.

3 Problem Statement

Let us consider a finite set E of items. An event is a pair (a, t), where a ∈ E
and t is the timestamp of the event. A stream S of length N is a sequence
of events (a1, t1) , . . . , (aI , tI) , . . . , (aN , tN ), which are totally ordered by their
timestamps. Given a data stream S, its duration Dur(S) is the time span of S,
namely, Dur (S) = tN − t1. Let a window w be [ts, te], where ts and te are the
start time and the end time of w respectively. The window size of w is (te − ts).

Given a stream S, the frequency of an item x, denoted as F (x), is the number
of occurrences of x in S. For two items x and y, we define the co-occurrence
of the item pair (x, y) based on the concept of minimal occurrence (MO). Note
that we do not consider the order between x and y, i.e., (x, y) = (y, x).

In [13], Mannila et al. have proposed the concept of minimal occurrence (MO)
to represent an episode that occurs in a sequence. According to their definition,
a window w is a minimal occurrence of an item pair (x, y) iff 1) the window
contains (x, y), and 2) there does not exist a subwindow w′ ⊂ w (i.e., ts ≤ t′s,
te ≥ t′e, and Size(w) 
=Size(w′)) such that w′ contains (x, y). To our problem,
we add the condition 3): Size(w) ≤ T , where T is a predefined window size.

Here we give an example of minimal occurrence of an item pair in a stream.
A stream S is visualized in Figure 1. Suppose that T is 3. For a non-ordered
item pair (b, c), the MOs of (b, c) in S are [1, 2] , [8, 10] , and [10, 12].

Fig. 1. An example of MOs
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Definition 1 (co-occurrence frequency). Given a stream S and a window
size T , we define the co-occurrence frequency of an item pair (x, y) as the number
of minimal occurrences of (x, y) with constraint T , and we denote it as F (x, y).

Definition 2 (expected co-occurrence frequency). Given a stream S, a
window size T , and two items x and y with the frequency F (x) and F (y) re-
spectively, let us assume that 1) x and y occur independently in S and 2) both
occurrences of x and occurrences of y follow the Poisson process. The expected
co-occurrence frequency of x and y, E(x, y), is defined as the expected number
of MOs of (x, y) with constraint T , which is computed under the above two as-
sumptions.

Theorem 1. Let the frequencies of two items x and y in a stream S be F (x) and
F (y) respectively. Given the window size T , the expected co-occurrence frequency

E(x, y) can be computed as: E(x, y) = 2F (x)F (y)
F (x)+F (y)(1 − e−

(F (x)+F (y))T
Dur(S) ).

Proof. When the occurrences of an item x follow the Poisson process, the formula
Px(k, t) = (λxt)k

k! e−λxt gives the probability that x occurs exactly k times in a
given time interval t. In addition, the density function for the interval t between
two successive x occurrences is fx(t) = λxe−λxt. In the above formulas, λx is
the expected number of x occurrences per time unit. To our problem, we have
λx = F (x)

Dur(S) , where Dur(S) is the duration of S.

Let us first discuss a single occurrence of x at t0 in the stream. Now we
consider the following four situations. A1 : the next x occurs after t0 + T ; A2 :
y occurs in the interval (t0, t0 + T ) at least once; A3 : the next x occurs at t0 + t
where 0 < t ≤ T ; A4 : y occurs in the interval (t0, t0 + t) at least once.

Because we assume that the occurrences of x and the occurrences of y are
independent, according to the definition of MO, the probability that the event
(x, t0) can contribute to an MO of (x, y) with the later occurrence of y is EΔ =
P (A1)P (A2) +

∫ T

0 P (A3)P (A4)dt.
Since the occurrences of both x and y follow the Poisson process, we know that

P (A1) = Px(0, T ) = e−λxT , P (A2) = 1−Py(0, T ) = 1−e−λyT , P (A3) = fx(t) =
λxe−λxt, and P (A4) = 1 − Py(0, t) = 1 − e−λyt. Therefore, we can compute that

EΔ = F (y)
F (x)+F (y) (1 − e−

(F (x)+F (y))T
Dur(S) ).

Considering the occurrences of y before t0 as well, the expected number of
MOs of (x, y) contributed by a single occurrence of x is 2EΔ. Also, because
there are F (x) occurrences of x, the expected co-occurrence frequency of (x, y)

is E(x, y) = 2F (x)EΔ
1 = 2F (x)F (y)

F (x)+F (y)(1 − e−
(F (x)+F (y))T

Dur(s) ).

Problem Definition: Given a stream S of length N , a window size T , two
threshold 0 < α < 1 and β > 1, the problem of discovering correlated items in
the stream is to find any un-ordered item pair (x, y) that satisfies the following
conditions: (i) x is a frequent item, F (x) > �αN� , (ii) y is a frequent item,
F (y) > �αN�, (iii) x and y are positively correlated, F (x,y)

E(x,y) > β.

1 Strictly, the occurence of (x, y) in the fist and last T interval on the stream should be
discussed differently. However, because T � Dur(S), such differences are neglected.
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4 Algorithm

To discover correlated item pairs in a data stream, we propose the Stream-
Correlation algorithm. According to the problem definition in Section 3, by scan-
ning the stream once, we need to complete the following three tasks:
1) approximately find all frequent items from the stream, and meanwhile 2)
for any two frequent items x and y, count the co-occurrence frequency for (x, y)
with possible bounded error, and finally 3) approximately output the correlated
item pairs. Section 4.1, 4.2, 4.3 will discuss these three tasks respectively.

4.1 Finding Frequent Items

We apply the Space-Saving algorithm, proposed in [1], to fulfil this task. For
the completeness of the representation, we briefly introduce the algorithm. In
the algorithm, a data structure, called Stream-Summary, is used to dynamically
maintain the fixed number (m) of counters for items. Each counter consists
of three fields: the corresponding item ei, the estimated frequency of the item
Count(ei), and the maximum possible over-estimation of the frequency, ε(ei).
For brevity, we can regard the Stream-Summary as a list of counters for m items
e1, . . . , em, which are always decendingly ordered by their estimated frequencies.

Algorithm 1 is the pseudocode for the Space-Saving algorithm. When an event
(aI , tI) in the stream S arrives, if the item aI is monitored in the Stream-
Summary, the counter of aI is incremented. Otherwise, aI takes the place of em,
which is the item that currently has the least estimated frequency min; also, we
set Count(aI) as min + 1 and the over-estimation ε(aI) as min.

In [1], it is proved that regardless of the data distribution and user-supplied
frequency threshold, to find all frequent items with the maximal possible error
ε ∈ (0, 1), the Space-Saving algorithm only requires to maintain � 1

ε � number of
counters, i.e., m = � 1

ε �. For any item e with the true frequency F (e) > εN is
guaranteed to be in the Stream-Summary. Also, for any item ei in the Stream-
Summary, we always have Count(ei) − εN ≤ F (ei) ≤ Count(ei).

4.2 Finding Co-occurrence Frequency for Frequent Item Pairs

In this section, based on the Spacing-Saving algorithm, we propose our key
algorithm, Stream-Correlation, to find the co-occurrence frequency for item pairs.

Algorithm 1. The Space-Saving Algorithm (Counters m, Stream S)
for each event (aI , tI) in S do

if aI is monitored then
Increment the counter of aI

else
Let em be the item with least estimated frequency, min
Replace em with aI

Assign Count(aI) with min + 1
Assign ε(aI) with min

end if
end for
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Fig. 2. Correlation-Summary data structure

Considering that the volume of stream is very high and the number of items
is large, obviously, it is impossible to maintain a counter for each item pair.
Naturally, the following principle is applied: We count the co-occurrence of x
and y only when both x and y are potentially frequent. In other words, a co-
occurrence counter Count(x, y) is allocated to item pair (x, y) iff both x and y
are currently stored in the Stream-Summary.

Once the principle is set, it is clear that if the number of items in the Stream-
Summary is m, we need to maintain at most m(m−1)

2 co-occurrence counters. The
challenge now becomes how to organize these co-occurrence counters such that
they can be incrementally maintained in an efficient way. In the remainder of
this section, we first design a data structure, Correlation-Summary, to effectively
organize the co-occurrence counters. Based on the Correlation-Summary, we
develop our algorithm Stream-Correlation to efficiently count the co-occurrence
frequency for item pairs. Finally, we discuss the complexity of the algorithm.

Correlation-Summary data structure. Figure 2 shows the data structure,
which consists of two levels. The top level is the Stream-Summary data struc-
ture which has been introduced in Section 4.1. At any moment, the items are
decendingly ordered by their estimated count, denoted as e1, e2, . . . , em. At the
second level, for each item ei in the Stream-Summary, we maintain a group of
co-occurrence counters which are associated with ei, denoted as Gei . Consid-
ering an item pair (ei, ej), intuitively, the co-occurrence counter Count(ei, ej)
could be put either in group Gei or in group Gej . However, in our data struc-
ture, we enforce the constraint that a co-occurrence counter Count(ei, ej)
always associates with the item that has lower estimated frequency. That is,
Count(ei, ej) ∈ Geionly when Count(ej) ≥ Count(ei). From this constraint, we
know that for any item ei (1 ≤ i ≤ m) in the Stream-Summary, there are at
most2 i−1 co-occurrence counters in Gei , i.e., Count(ei, e1), . . . , Count(ei, ei−1).
As a result, when the least frequent item em in the Stream-Summary is replaced,
all the co-occurrence counters that contain the item em can be dumped by simply
removing Gem . This guarantees that co-occurrence counters are only maintained
for items which are currently in the Stream-Summary. To facilitate the update

2 Some co-occurrence counters can be missing if the corresponding item pairs have
not been counted yet.
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on co-occurrence counters, for any item ei, we adopt the B+ tree structure to
organize the co-occurrence counters in Gei. We call this B+ tree a CCTree (co-
occurrence counter tree) of ei, denoted as CTei . An item ei and its CCTree CTei

are linked with a pointer pointing to the root of the tree. Note that without
loss of generality, each item can be mapped into an integer. So, a leaf node in
the CCTree of ei is in the form of < ej , Count(ei, ej) >, 1 ≤ j ≤ i − 1, where
ej is the key of the node and Count(ei, ej) gives the co-occurrence frequency
for item pair (ei, ej). With this data structure, given two items ei and ej, their
co-occurrence counter can be quickly located in the Correlation-Summary.

Incremental update algorithm. Now we present the complete algorithm
Stream-Correlation, as shown in Algorithm 2. Essentially, this algorithm is to in-
crementally maintain the structure Correlation-Summary when a new event oc-
curs. For any event (aI , tI) in the data stream, we update Correlation-Summary
in two steps. First, the Stream-Summary is updated. Note that according to
the constraint, this update may lead to the change on the structure of CC-
Trees as well. Second, we check the events occurred in [tI −T, tI) and increment
co-occurrence counters if the minimal occurrences (MOs) are detected.

In the first step, we follow the Space-Saving algorithm to update the counter
of aI . Under the following two circumstances, the CCTree(s) needs to be updated
as well. First, when the least frequent item em is replaced by aI , the CCTree
of am is dumped and the CCTree of aI is initialize as empty. Second, due to
the increase of Count(aI), aI may swap position with other item(s), say ei. To
enforce the constraint, the CCTree of aI , CTaI , and the CCTree of ei, CTei ,
should be updated as follows: remove the node with the key ei from CTaI , change
the key of this node from ei to aI , and insert the node into CTei .

In the second step, for any event (aI , tI), we update the co-occurrence coun-
ters as follows. At the moment tI , we always buffer the events occurring in the
window [tI −T, tI), denoted as (aI−k, tI−k), . . . , (aJ , tJ ) , . . . , (aI−1, tI−1), where
k is the number of events in the current window. According to the Space-Saving
algorithm, the new arriving item aI is guaranteed to be included in the Stream-
Summary, so we check previously occurred event (aJ , tJ ) (where J from I − 1
to I − k) to see whether item pair (aJ , aI) needs to be counted. According
to the principle, we only consider the event (aJ , tJ) where aJ is currently in
the Stream-Summary. If aJ 
= aI , Count(aJ , aI) is increased by one because
events (aJ , tJ) and (aI , tI) form an MO of (aJ , aI). Otherwise (in the condition
aJ = aI), we need to 1) remove (aJ , tJ) from window [tI − T, tI), and 2) stop
further checking the rest events occurred in the window [tI − T, tJ). Let us first
explain the operation 2). For any event (aJ′ , tJ′) occurring earlier than (aJ , tJ)
where tI − T ≤ tJ′ < tJ , according to the definition of MO, events (aJ′ , tJ′) and
(aI , tI) cannot form an MO for item pair (aJ′ , aI) because of the existence of
event (aJ , tJ). Considering the operation 1), due to similar reason, for any event
(aI′ , tI′) arriving later than (aI , tI) (i.e, tI′ > tI), event (aJ , tJ ) and (aI′ , tI′)
cannot be matched as an MO for item pair (aJ , aI′). So, (aJ , tJ ) will not be
considered any more and should be removed.
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Algorithm 2. The Stream-Correlation Algorithm (Counters m, Stream S )
for each event (aI , tI) in S do

/*Step1: find frequent items in stream */
Update Stream-Summary according to Algorithm 1;
Adjust the CCTree(s) in Correlation-Summary if necessary;
/*Step2: update co-occurrence counter*/
Adjust the events in a recent T interval, denoted as
ST = (aI−k, tI−k), . . . , (aJ , tJ ), . . . , (aI , tI);
for each event (aJ , tJ ) where J from I − 1 downto I − k do

if (aI == aJ ) then
Remove (aJ , tJ ) from ST ;
break;

else if aJ is in the Stream-Summary then
Update co-occurrence counter Count(aI , aJ ) in Correlation-Summary;

end if
end for

end for

When a co-occurrence counter Count(aJ , aI) requires an update, to locate
the Count(aJ , aI) in the Correlation-Summary, we first find the item (from aJ

and aI) with the lower rank in the Stream-Summary. Suppose that such item
is aI , i.e., Count(aI) ≤ Count(aJ ). We search the node with key aJ from the
CCTree of aI . If such a node exits, Count(aJ , aI) is incremented. Otherwise, it
means that the co-occurrence of (aJ , aI) is counted at the first time, then a new
node, with key aJ and Count(aJ , aI) = 1, is initialized and inserted into CTaI .

Complexity. Now we discuss the space and time complexity of the Stream-
Correlation algorithm.

According to the structure of Correlation-Summary, it is straightforward that
given the size of Stream-Summary m, the Stream-Correlation algorithm requires
at most m(m+1)

2 counters.
Let us consider the time complexity in terms of processing time per event. As

mentioned in previous part, for each event, the algorithm updates the Correlation-
Summary in two steps. For the first step, it has been proved in [1] that the up-
date on the Stream-Summary takes O(1) amortized cost. Now we consider the
cost related to updating the structure of CCTrees. When the last item em is re-
placed by aI , updating CCTrees requires O(1) time. For the situation that two
items need to swap their positions in the Stream-Summary, the cost for this op-
eration is O(log m), which is the complexity for removing / inserting a node from
a B+ -tree of size m. So, updating the counter for a single item in Correlation-
Summary requires O(c0 log m)3 amortized cost per event. Considering the second
step, updating a co-occurrence counter Count(ei, ej) in the co-occurrence counter
tree requires at most O(log m) cost. For each event (aI , tI) in the data stream, the
Stream-Correlation algorithm needs to update at most k co-occurrence counters
associate with aI , where k is the number of events in the interval [tI − T, tI) and
k < T. So, the time complexity for second step is at most O(T log m). By combin-
ing the above analysis, we know that the Streaming-Correlation algorithm has at
most O((T + c0) log m) processing time per event in the data stream.

3 An item can swap its position with more than one item in Stream-Summary. We con-
sider that the average number of swaps per event is bounded by a constant c0.
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4.3 Error Bound Analysis and Computing Correlated Item Pairs

Recall that given the size of Stream-Summary m, the error bound ε for the fre-
quency of a single item is 1

m . That is, for any item ei in the Stream-Summary, we
have F (ei) ∈ [Count(ei) − εN, Count(ei)], where F (ei) is the true frequency of
item ei. Now, we discuss the error bound for the co-occurrence frequency.

Theorem 2. For any two items ei and ej in the Stream-Summary, let F (ei, ej)
be the true value of co-occurrence frequency for item ei and ej in a stream of length
N. Given the error bound ε for the single item, the Stream-Correlation algorithm
guarantees that the condition Count(ei, ej) ≤ F (ei, ej) ≤ Count(ei, ej) + 2εN
always holds. This is true regardless of the item distribution in the stream.

Proof. Because both ei and ej are currently recorded in the Stream-Summary
(with their error ε(ei) and ε(ej) respectively), there must exist a moment t such
that 1) since t, both ei and ej are in the Stream-Summary, and 2) � t′ < t and
t′ satisfies the condition 1). According to the principle, Count(ei, ej) is the true
number of co-occurrences for ei and ej after t. So, it is obvious that Count(ei, ej) ≤
F (ei, ej). Suppose that ei is the item which is not recorded in the Stream-Summary
until the moment t. From the Space-Saving algorithm, we know that ei can be
maximally overestimated ε(ei) times before t. Note that according the definition
of MO, one occurrence of ei can lead to two occurrences of (ei, ej) at maximum.
So, the number of co-occurrences of (ei, ej) before t cannot be greater than 2ε(ei).
Therefore, in general, we have F (ei, ej) ≤ Count(ei, ej) + 2Max{ε(ei), ε(ej)} ≤
Count(ei, ej) + 2εN .

Theorem 3. Given the error bound τ (0 < τ < 1) for the co-occurrence frequency,
the Stream-Correlation algorithm requires �

2
τ �(� 2

τ �+1)
2 counters.

Proof. First, according to Theorem 2, the error bound τ equals to 2ε. Second, we
know that m = � 1

ε �. Third, the Stream-Correlation algorithm requires at most
m(m+1)

2 counters. The theorem is proved based on the above three points.

Finally, we discuss the procedures of approximately generating correlated item
pairs from the Correlation-Summary. For any two items x and y, we have F (x) ∈
[Count(x) − ε(x), Count(x)], F (y) ∈ [Count(y) − ε(y), Count(y)] and F (x, y) ∈
[Count(x, y), Count(x, y) + 2Max{ε(x), ε(y)}]. The approximate correlation dis-
covery can take two approaches, i.e., false positive oriented and false negative ori-
ented. The former may include some item pairs which are not correlated in terms
of the given threshold, while the latter may miss some correlated item pairs. Let
E+(x, y) (E−(x, y) respectively) be the approximate expected co-occurrence fre-
quency computed by the upper (lower respectively) bounds of F (x) and F (y). The
condition for false positive approach is Count(x,y)+2Max{ε(x),ε(y)}

E−(x,y) > β, while the

condition for false negative one is Count(x,y)
E+(x,y) > β. In the procedures, for any item

ei that is frequent, we need to traverse its co-occurrence counter tree CTei . For any
node corresponding to ej , if the condition (either false positive or false negative)
is satisfied, the item pair (ei, ej) is output.



270 X. Sun et al.

5 Experiment Results

In this section, we show the effectiveness and the efficiency of the Stream-
Correlation algorithm by comparing it with the naive approach, which maintains a
counter for every item and item pair. Although the naive approach guarantees the
accurate result for the problem of correlation analysis, it is not practical
for the dataset with a large number of item types because the required size of
memory will be too large. We implement the algorithms by Java and all exper-
iments are conducted on a PC with 3 GHz CPU and 1 gigabytes memory, run-
ning Microsoft Windows XP. The dataset used in the experiments is a sequence
of URLs fetched from the web proxy servers of an university. Due to privacy issue,
there is no timestamp information for each HTTP request, and the URLs
are truncated. The number of URLs in the dataset is 106, which means Dur(s) =
N = 106.

For finding the positive correlated item pairs from the dataset, we always set
the thresholds as α = 0.005 and β = 1.5. The number of single counters in the
Stream-Correlation is 500, which indicates that the maximal possible error for the
item frequency and co-occurrence frequency are 1

500 and 1
250 respectively.

We test the Stream-Correlation algorithm and the naive algorithm with differ-
ent window size T (from 10 to 100). Let us fist evaluate the effectiveness of the
Stream-Correlation by comparing its output with the accurate result (the output
of the naive approach). In all the conducted experiments, the Stream-Correlation
algorithm achieves both recall and precision equal to 1, which means that there is
no accuracy loss in terms of the item pairs discovered in the data.

The efficiency of the algorithm is measured by 1) the number of counters used
in the algorithm and 2) the runtime of the algorithm. Figure 3(a) shows that the
number of counters maintained by the Stream-Correlation is far less than that of
the naive approach. This is because in the real dataset, the number of items (dif-
ferent URLs) are very large. As a result, it is very memory-consuming to maintain
a counter for every item and item pair. We do have some experiments in which the
naive approach can not work due to running out of memory. In Figure 3(b), we can
see that the Stream-Correlation algorithm is much faster than the naive approach
in terms of the runtime because it maintains and processes significantly smaller
number of counters.

(a) # counters (b) runtime

Fig. 3. Efficiency comparison between Stream-Correlation and Naive approach
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6 Conclusion

In this paper, we have investigated the problem of finding correlated item pairs
in a data stream. We define that two items x and y are correlated if both items
are frequent, and their actual number of co-occurrences in the data stream is sig-
nificantly different from the expected value. By modelling the occurrences of each
type of item as a Poisson process, we give the expected number of minimal occur-
rences of (x, y), which is computed based on the frequencies of x and y. A one-pass
algorithm has been proposed with the focus on estimating the actual number of
co-occurrences of item pairs. The algorithm can efficiently discover the correlated
item pairs with a bounded error by using limited memory space. The experiment
results on the real data show that compared with the naive approach, our algo-
rithm can significantly reduce the runtime and the memory usage, but without
the loss of accuracy on the discovered item pairs.
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Abstract. Spatial clustering has been identified as an important tech-
nique in data mining owing to its various applications. In the conven-
tional spatial clustering methods, data points are clustered mainly ac-
cording to their geographic attributes. In real applications, however, the
obtained data points consist of not only geographic attributes but also
non-geographic ones. In general, geographic attributes indicate the data
locations and non-geographic attributes show the characteristics of data
points. It is thus infeasible, by using conventional spatial clustering meth-
ods, to partition the geographic space such that similar data points are
grouped together. In this paper, we propose an effective and efficient al-
gorithm, named incremental clustering toward the Bound INformation of
Geography and Optimization spaces, abbreviated as BINGO, to solve
the problem. The proposed BINGO algorithm combines the informa-
tion in both geographic and non-geographic attributes by constructing
a summary structure and possesses incremental clustering capability by
appropriately adjusting this structure. Furthermore, most parameters in
algorithm BINGO are determined automatically so that it is easy to
be applied to applications without resorting to extra knowledge. Exper-
iments on synthetic are performed to validate the effectiveness and the
efficiency of algorithm BINGO.

1 Introduction

Due to the widespread use of satellite surveillance system, geographic informa-
tion system (GIS), cellular phones, and sensor networks, vast spatial data with
geographic attributes are obtained and collected every day. In light of the use-
ful information from these data, spatial data clustering, which is an important
technique in data mining, has received a significant amount of research atten-
tion for years [2,5,7]. The main goal of spatial data clustering is to group data
points according to the properties in their geographic attributes. In most cases,
for example, each cluster is required to be connective to itself in the geographic
space.

Conventional spatial clustering techniques[3,6,7,11,12,13,16], in general, can
be divided into partition-based methods, hierarchical methods, density-based
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methods, and grid-based methods. The partition-based clustering algorithms
such as CLARANS [12] start with an initial partition of the data set, and then
iteratively optimize an objective function by moving the data points among k
clusters until the optimal partition is reached. Hierarchical methods use either
a top-down splitting manner or a bottom-up merging manner to generate the
clusters. CURE [6] is an example of such methods. Density-based clustering algo-
rithms such as DBSCAN [3] create clusters according to the density information
of geographic regions. Grid-based methods such as WaveCluster [13] quantize the
data space into finite grids and then perform clustering on these grids. Accord-
ing to the geographic attributes, most conventional spatial clustering methods
group data points into connective and non-overlapped clusters. In addition, sev-
eral novel techniques such as the works in [4,14,15] discuss clustering spatial data
in presence of physical constraints.

The real applications, however, have called for the need of new clustering
methods to deal with spatial data points with non-geographic attributes. Note
that data points obtained in many real applications such as weather observa-
tion station and sensor network consist of both geographic and non-geographic
attributes at the same time. In general, geographic attributes indicate the data
locations, whereas non-geographic attributes show the characteristics of data
points. To explore interesting information from this kind of data, both the con-
nective and non-overlapped properties in the geographic space, which are com-
mon requirements in spatial data clustering, and the data similarity in their
non-geographic attributes should be considered in the generation of clusters.
However, in most conventional spatial clustering methods, only the geographic
attributes are taken into consideration. It is thus infeasible, by using conventional
spatial clustering methods, to partition the geographic space such that the data
points in the same subregions are similar in their non-geographic attributes.
More specifically, when we consider the data points consisting of geographic and
non-geographic attributes, named as dual data points in this paper, the clus-
tering problem of partitioning the geographic space such that the dissimilarity
between data points in the same subregions is minimized cannot be directly dealt
with by any of conventional spatial clustering algorithms. We further explain this
problem by the examples below.

Example 1.1: Consider the Data set 1 in Figure 1(a), where the black trian-
gles and white diamonds are used to represent the clustering result of K-means
applied to the non-geographic attributes. Given such a data set, conventional
spatial clustering algorithms concern only the geographic attributes and thus
generate clusters as shown in Figure 1(b). In Figure 1(b), the black points form
a cluster, the white points form another cluster, and the gray ones are regarded
as noises. As a result, the dissimilar data points are grouped together because
of their positions in the geographic space. �
Example 1.2: Consider the same data set in Figure 1(a). An alternative method
to combine the information from both geographic and non-geographic attributes
is using clustering algorithms such as K-means with an extended objective



274 C.-H. Tai, B.-R. Dai, and M.-S. Chen
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(a) Data set 1. An illustrative example of dual data 
points projected in different spaces.

Geographic space Non-geographic space

(b) The clustering result of DBSCAN projected in 
different spaces.

Geographic space Non-geographic space

(c) The clustering result, projected in different 
spaces, of K-means with an extended 

objective function.
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(d) The possible ideal clustering result for Data 
set 1 projected in different spaces.
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Fig. 1. Illustrative examples of dual data points

function which takes a weighted average between geographic and non-geographic
attributes. Consequently, clusters may be generated as shown in Figure 1(c), in
which data points are assigned to either a black cluster or a white cluster. Note
that the black cluster does not form a connective non-overlapped geographic re-
gion due to the low similarity between the black cluster and the white diamond
points such as B (or due to the high similarity between the black cluster and the
black triangle points such as A.) On the other hand, some similar data points
such as B and C may be considered dissimilar because of their locations in the
geographic space being too far away from one another. This kind of methods
suffer from measuring the concept of connection and non-overlap of a cluster in
distances. �

In comparison with the clustering results shown in Figures 1(b) and 1(c), the
result in Figure 1(d) is considered more preferable and useful because each cluster
is a connective and non-overlapped region in the geographic space while the
dissimilarity between data points in the cluster is smaller (the result projected
in the non-geographic space in Figure 1(d) is purer then that in Figure 1(c).) Such
result not only conforms to the common requirements of spatial data clustering
but also takes account of minimizing the dissimilarity between data in clusters.

One of the main challenges for clustering dual data points is to deal with
both the geographic and non-geographic attributes at the same time such that
data points in the same cluster form a connective but non-overlapped region
in the geographic space and their dissimilarity in the non-geographic space is
minimized. As usual, the dissimilarity between data points can be estimated
from their distances in the non-geographic space. However, as shown in Example
1.2, it is inappropriate to substitute the connective meaning of a cluster with
distances in the problem of clustering dual data points. Note that the distance is
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an absolute measurement. In contrast, whether a cluster is connective or not will
depend on the projection of other clusters in the geographic space. This concept
makes the problem of clustering dual data points more challenging.

In [10], C.-R. Lin et al. proposed the first solution, algorithm ICC, for the
problem of clustering dual data points. Based on the techniques of SVM [1,8]
and complete-link [9] algorithms, their method conducts an interlaced process
of performing clustering in the non-geographic space and classification in the
geographic space to adjust the geographic scope of each cluster while minimizing
the dissimilarity between points in the clusters. However, algorithm ICC suffers
from inefficiency due to the usage of the complete-link algorithm. In addition,
their results heavily depend on the parameters of SVM. Note that selecting
optimal parameters of SVM is usually a difficult and time consuming task. It
is thus hard to apply algorithm ICC to real applications due to the efficiency
concerns, especially in situations where data points change as time goes by.

To remedy these problems, we propose in this paper the BINGO (incremen-
tal clustering toward the Bound INformation of Geography and Optimization
spaces) algorithm for solving the problem of clustering dual data points. Ex-
plicitly, we do not treat geographic attributes as distances, but instead, devise
a summary structure, named NeiGraph, to integrate non-geographic attributes
into geographic regions. Based on NeiGraph, we design BINGO − OFF and
BINGO−ON incremental clustering methods for having high quality and high
execution-efficiency results respectively. Furthermore, most parameters in our al-
gorithms are determined automatically so as to facilitate users to use our meth-
ods. As shown in the experimental studies, our algorithm executes much more
efficiently than algorithm ICC while being able to generate clusters to similar
costs.

The rest of this paper is organized as follows. The problem definition is given in
Section 2. Algorithm BINGO and a series of illustrative examples are presented
in Section 3. In Section 4, we conduct the performance studies. Finally, this
paper concludes in Section 5.

2 Problem Description

In this paper, the data we dealt with consist of two types of attributes, geographic
attributes and non-geographic attributes. Since the non-geographic attributes
are used to infer the dissimilarity which we aim to minimize between data points
in the same clusters, the non-geographic attributes are also called optimization
attributes.

Given a database Dt containing dual data points at time t, we will generate
clusters Ct that comply with the two principles below.

Principle 1. Projected to the space formed by geographic attributes, each clus-
ter locates within a connective region while not overlapping with other clusters.

Principle 2. Clustering cost according to a cost function should be minimized.

In the following, precise definitions of our problem are given.
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Definition 1. (Dual Data Point) A dual data point is an object d with attributes
{aG

1 , aG
2 , ..., aG

g , aO
1 , aO

2 , ..., aO
o , } ∈ R

g+o, where attributes {aG
1 , aG

2 , ..., aG
g } form

the geographic space G and attributes {aO
1 , aO

2 , ..., aO
o , } form the optimization

space O.

Definition 2. (Event) An event et at time t is an adjustment of data points,
including inserting new data points into and deleting existing data points from
database Dt−1.

Definition 3. (Cost) Given clusters Ct = {c1, c2, ..., ck} of a database Dt, which
contains Nt dual data points {d1, d2, ..., dNt}, the clustering cost is defined as

Cost(Ct) =

∑

ck∈Ct

∑

di∈ck

∑

di.aO
j ∈O

(
di.a

O
j − ck.aO

j

)2

Nt
,

where ck.aO
j is the center of the attribute aO

j of cluster ck.

Note that the clustering cost is defined only upon the optimization attributes.

Definition 4. (Incremental Dual Data Clustering Problem) Whenever an event
et occurs at time t, the clustering problem is to cluster the dual data points
in database Dt into k groups such that each group locates a connective non-
overlapped region in the geographic space G while minimizing the clustering cost,
Cost(Ct).

3 Algorithm BINGO

Algorithm BINGO is a new approach for solving incremental dual data clus-
tering problem. To comply with the principles of this problem, we devise a sum-
mary structure, name NeiGraph, and design the BINGO algorithm based on
this structure. NeiGraph is a graph in which each node represents a connective
non-overlapped region and the edge between two nodes implies that these nodes
can be merged to be a new node. Algorithm BINGO consists of three major
parts: the binding information (Bind-Info) procedure, the generating clusters
(Generate-Clusters) procedure, and the tuning borders (Tune-Borders) proce-
dure.

First, in the Bind-Info procedure, we partition the geographic space G into
various sizes of grids and construct NeiGraph by taking each grid as a node and
adding an edge between nodes if the corresponding grids are next to each other.
NeiGraph thus can effectively combine the data information in the optimization
space O into geographic regions by summarizing the optimization attributes of
data points in a grid into the corresponding node. After that, the Generate-
Clusters procedure selects representative nodes in NeiGraph as seeds, and then
expands seeds along the edges to complete connective non-overlapped clusters.
Whenever an event et occurs, the Tune-Borders procedure is activated to tune
the borders among clusters and update the clustering results. We next show how
NeiGraph is constructed and used to help generating clusters that comply with
the principles of dual data clustering problem.
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3.1 Binding Information

To overcome the challenge of generating connective non-overlapped clusters while
minimizing the clustering cost, we first propose the concept of T -region to draw
out a connective geographic region in which data points are considered to be
similar to one another.

Definition 5. (T -region) Given a real number T , a T -region is a geographic re-
gion in which any two data points are within the distance of T in the optimization
space O.

With the definition of T -region, we partition the geographic space G into various
sizes of grids (T -regions) in the top-down manner. Specifically, starting from the
largest grid which contains all data points in D0, we iteratively examine every
grid and divide the grid into 2g equal-size sub-grids if it is not a T -region until all
the grids are T -regions. At the same time, NeiGraph is constructed by regarding
each grid as a node and adding an edge between two nodes if the corresponding
grids are next to each other. Data information in the optimization space O can
also be bound in NeiGraph by summarizing the optimization attributes of data
points in a grid into the corresponding node. Therefore, NeiGraph can effectively
combine the data information in the geographic and optimization spaces when
it is completely constructed, and provides a broader view of data points in the
database. Moreover, we can even merge nodes to clarify NeiGraph if there is an
edge between the nodes and the merger would not change the property of being
a T -region. Note that a node in NeiGraph could be regarded as a micro-cluster
of data points, and every micro-cluster forms a connective non-overlapped region
in the geographic space G.

A problem left is how to decide the value of T such that data points in the
same T -region can be considered to be similar to one another. A mechanism
for automatically choosing a proper value of T is designed based on the lemma
and the theorem below. For interest of space, proofs of theorem are shown in
Appendix B.
Lemma 1. Given a complete graph (a graph that there is an edge between any two
nodes) consisting of n nodes, partitioning these n nodes into k groups will divide
all edges into two categories, which are intra-edges (within groups) and inter-
edges (between groups). The upper bound of the number of inter-edges appears
when k groups have equal number of nodes.

Theorem 1. Given k clusters with totally n data points, there are at least n2−nk
2k

intra-edges within clusters.

Proof. According to Lemma 1, the maximum number of inter-edges between
k clusters is obtained when each of the k groups is with the size of n

k . In
other words, when grouping n points into k clusters, there are at most n

k ×
n
k × Ck

2 = (n
k )2 k(k−1)

2 inter-edges between clusters. There are thus at least
Cn

2 − (n
k )2 k(k−1)

2 = n2−n
2 − n2k2−n2k

2k2 = n2k−nk2

2k2 = n2−nk
2k intra-edges within

clusters no matter how the n points are grouped into k clusters. Consequently,
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the minimum number of intra-edges within k clusters containing totally n data
points is n2−nk

2k . �

According to Theorem 1, for a data set with N0 points, there are at least N2
0−N0k
2k

intra-edges within clusters. Therefore, we refer to the N2
0−N0k

2k -th smallest one
among all the pairwise distances for capturing the concept of data points with
high similarity in this paper. The value of T is then set as double of the reference
distance. In other words, the distance between any data point in a T -region and
the center of the corresponding micro-cluster is smaller than T so that the center
is regarded having high similarity with the point and can be used to represent
the point. Note that, although the value of T could be any smaller number, it
is not necessary to generate results with lower clustering cost but incur higher
execution time. Moreover, to further enhance the execution efficiency of our
approach, the value of T could be approximated by a sampling mechanism since
we do not need the precise value of T and the number of data points N0 is usually
quite large. The approximation of T from a sample data set is not only efficient
but also satisfactory. In Example 3.1, we show the effectiveness of NeiGraph
constructed in this procedure.
Example 3.1: Given the Data set 2 containing 78 dual data points in Figure
2(a), we execute the Bind-Info procedure with k = 3. Figure 2(b) shows the
projection of the result in different spaces, where data points presented in the
same color and shape belong to the same T -region. There are a total of 13 T -
regions produced. Note that each T -region is a node in NeiGraph. As Figure
2(b) shows, all the nodes represent connective and non-overlapped geographic
regions while the data points in the same node are similar to one another in the
optimization space O. �

3.2 Generation of Clusters

In the previous procedure, we combined the data information in the geographic
and optimization spaces in NeiGraph. To farther conform to the principles of
dual data clustering problem, the Generate-Clusters procedure follows the bound
information to generate clusters in two major steps. The first step selects k
dissimilar representative nodes in NeiGraph as seeds of k clusters. The second
step expands seeds along the edges between nodes to complete clusters.

Intrinsically, data points located nearby are possible to be dissimilar from
one another. Because of the definition of T -region, it is possible to generate
small nodes (the nodes with few data points) surrounded by large nodes in
NeiGraph. The node with only one black square point in Figure 2(b) is an
example of such case. To avoid choosing these small nodes as seeds and thus
generating small clusters, only the nodes with size larger than average size are
deemed representative and preferred to be seeds. In addition, to minimize the
clustering cost, data points in different clusters are expected to be dissimilar
to one another. We thus expect the seeds to be as dissimilar to one another as
possible. In consideration of the execution complexity, however, we do not find
the most dissimilar set of k seeds. Instead, beginning with choosing two most
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Fig. 2. Illustrative examples of algorithm BINGO

dissimilar nodes as seeds, our method iteratively selects a node which has the
lowest similarity to all the chosen seeds as a new seed until there are k seeds
picked. Although this greedy method does not select the best set of seeds, our
methods still possess the capability of gathering similar data points as shown in
the experimental studies in Section 4.

After k seeds are chosen, each seed initially forms a cluster by itself. Then,
k clusters are completed through the iterative merger process which stops when
all the nodes in NeiGraph are clustered. At each iteration, we identify the most
similar pair of a cluster and its un-clustered neighboring node in NeiGraph,
and then expand the cluster with the neighboring node. Note that each node in
NeiGraph represents a connective non-overlapped geographic region containing
data points with high similarity. Our results thus conform to the principles of
dual data clustering problem since the expanding process is greedily done along
the edges in NeiGraph. Example 3.2 below gives a draft of the clustering results
of algorithm BINGO.
Example 3.2: Following the result of Example 3.1, we execute the Generate-
Clusters procedure to generate the clustering result for Data set 2. First, three
nodes which contain data points marked as ’♦’, ’�’, and ’×’ are picked as seeds.
Then, each seed forms a cluster and is expanded along the edges to generate the
clustering result as shown in Figure 2(c). Note that each cluster is connective and
non-overlapped in the geographic space G. On the other hand, clusters in the
optimization space O still tend to gather similar data points under the connective
and non-overlapped constraints of clusters in the geographic space G. �
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3.3 Tuning Cluster Borders

Note that data points are allowed to change as time goes by. In order to provide
the incremental clustering capability of our approach, we propose an incremental
tuning mechanism to refine clusters when data points are updated. Generally,
data points in the database Dt−1 can be updated through the deletion and
insertion operations at time t. Although we handle only the deletion and insertion
operations in this paper, we are able to deal with the modifications of data points
since a modification can be treated as a deletion followed by an insertion. We
now present the details of data adjustment process.

(I) Deletion:
When a data point dr is removed from the database Dt−1, delete dr from

node ri and cluster cj which dr is assigned to. Then, add ri into the changed set
Sc.

(II) Insertion:
When a data point da is added to the database Dt−1, locate da into the

corresponding node ri in NeiGraph according to its position in the geographic
space G, and assign da to the cluster cj which contains ri. Then, add ri into the
changed set Sc.

After the data adjustment occurs, the Tune-Borders procedure improves the
clustering results to reduce the cost in the optimization space O. In this process,
we design a greedy strategy to revise the clustering results based on NeiGraph.
The concept of this strategy is to expand each cluster if possible by iteratively
drawing in its neighboring nodes in the geographic space G from other clusters
such that a lower clustering cost can be obtained. The non-overlapped and con-
nective constraints of clusters in the geographic space G can also be complied
with by checking the connective region of each cluster. Although this process
seems to be expensive, only the nodes influenced directly by the data adjust-
ment and the nodes that become new neighboring nodes of some clusters during
the expanding iterations are possible to change their clusters.

The revision of clustering results depends on the information summarized in
NeiGraph. The nodes in NeiGraph, however, may not be T -regions anymore
because of the data adjustment. Therefore, it is important to decide a suitable
time for reforming the harmful nodes (the nodes which are not T -regions) in
NeiGraph. Nevertheless, this decision incurs the trade-off between the execution
efficiency and the clustering quality. A better way for balance is to check the
nodes only when we use the information carried by the nodes. Hence, if a node
in NeiGraph is not a T -region, it is split by the same method in Section 3.1
only at the iteration that there is a cluster trying to pull it in. That is, only
the nodes carrying the information used to tune the borders of clusters will be
examined and, if necessary, split. For those changed but not examined nodes, we
will record them in the changed set Sc until they are examined.

In addition to the Tune-Borders procedure, an alternative way to achieve the
incremental clustering capability of our approach is to reform every harmful
nodes in NeiGraph whenever data adjustment occurs, and then activate the
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Fig. 3. Visualization of Dataset 3 and the clustering results of algorithms

Generate-Clusters procedure in Section 3.2 to produce clustering results. Com-
pared to the Tune-Borders procedure, this method can generate clusters with
lower cost. However, it also incurs higher time complexity due to the modifica-
tion of whole NeiGraph in the worst case. Therefore, we regard this method
as the BINGO − OFF method for having high quality results, and regard the
Tune-Borders procedure as the BINGO−ON method for having high execution-
efficiency results. In Section 4, we conduct a series of experiments to compare
the performances of these methods.

4 Performance Studies

In this section, we conduct a series of experiments to assess the performance of
algorithm BINGO on a computer with a CPU clock rate of 3 GHz and 480 MB
of main memory. The simulation model used to generate synthetic data is the
same as that used in [10]. In Section 4.1, we show the clustering effectiveness of
algorithm BINGO with visualization of outputs. Results on scaleup experiments
are presented in Section 4.2.

4.1 Experiment I: Effectiveness

In this experiment, we apply algorithm BINGO to a complex data set in Figure
3(a), and demonstrate that our methods can achieve fine clustering quality with
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Fig. 4. (a) Scaleup performance of ICC, BINGO-OFF, and BINGO-ON, and (b) the
corresponding clustering costs

the visualization of the results in both the geographic space G and the optimiza-
tion space O. The result of our BINGO−OFF method is shown in Figure 3(b),
and the result of our BINGO − ON method is shown in Figure 3(c). Note that
the generated clusters in Data set 3 are heavily overlapped in the geographic
space G. Both BINGO−OFF and BINGO−ON still produce connective and
non-overlapped clusters in the geographic space G while gathering up similar
data points in the optimization space O with best efforts. To further evaluate
the clustering effectiveness on clustering costs, we compare our methods with
algorithm ICC in the next experiment.

4.2 Experiment II: Scaleup Performance

We compare in this experiment the execution efficiency and the clustering cost
of algorithm ICC and our methods. The execution time of these methods against
different size of data sets is shown in Figure 4(a), and the corresponding cluster-
ing costs are shown in Figure 4(b). It can be seen that both of our methods exe-
cute more efficiently than algorithm ICC, especially the BINGO−ON method.
In addition, our BINGO−OFF method can generate clusters with similar cost
to that of ICC. The BINGO − ON method, on the other hand, incurs higher
cost due to the greedy policy in the Tune-Borders procedure. Therefore, when
we concern more about the cost than the execution time, BINGO − OFF is
preferred. On the contrary, when the data size is quite large and the timing
resource is limited, the BINGO − ON method would be a better choice.

5 Conclusions

We proposed in this paper a new effective and efficient algorithm BINGO for
incremental clustering dual data points. Algorithm BINGO integrated informa-
tion in the geographic and optimization spaces by constructing a summary struc-
ture NeiGraph. Based on NeiGraph, the BINGO − OFF and BINGO − ON
methods are designed to possess the incremental clustering capability and gen-
erate effective clustering results in which each cluster forms a connective and
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non-overlapped region while gathering similar data points. Furthermore, most
parameters in algorithm BINGO are determined automatically so that it is easy
to be applied to applications without resorting to extra knowledge. Experimental
simulations have been performed to validate the effectiveness and the efficiency
of algorithm BINGO.
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Abstract. We propose a method for estimating class membership prob-
abilities of a predicted class, using classification scores not only for the
predicted class but also for other classes in a document classification.
Class membership probabilities are important in many applications in
document classification, in which multiclass classification is often applied.
In the proposed method, we first make an accuracy table by counting the
number of correctly classified training samples in each range or cell of
classification scores. We then apply smoothing methods such as a moving
average method with coverage to the accuracy table. In order to deter-
mine the class membership probability of an unknown sample, we first
calculate the classification scores of the sample, then find the range or cell
that corresponds to the scores and output the values associated in the
range or cell in the accuracy table. Through experiments on two different
datasets with both Support Vector Machines and Naive Bayes classifiers,
we empirically show that the use of multiple classification scores is ef-
fective in the estimation of class membership probabilities, and that the
proposed smoothing methods for the accuracy table work quite well. We
also show that the estimated class membership probabilities by the pro-
posed method are useful in the detection of the misclassified samples.

1 Introduction

When a classifier predicts a class for an evaluation sample in a document clas-
sification, estimating the probability with which the sample belongs to the pre-
dicted class (class membership probability) is useful in many applications. As
an example for human decision making, we describe the need of class member-
ship probabilities in “an automatic occupation coding system” in social surveys.
The occupation coding is a task for various statistical analyses in sociology, in
which researchers assign occupational codes to occupation data collected as re-
sponses to open-ended questions in social surveys. To help the human annotators
(coders), we have developed an automatic occupation coding system with ma-
chine learning [13], as well as a system called the NANACO system [14], which
displays outputs from the automatic system as candidates of occupational codes.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 284–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The NANACO system is currently being applied in important social surveys in
Japan such as the JGSS 1, in which the coders have asked us to supply a measure
of confidence for the first-ranked candidate of their confidece decisions. In fact,
class membership probabilities are widely noticed in different applications [5,3].

Although the class membership probabilities can be estimated easily using
classification scores provided from a classifier (hereafter referred to as scores) 2,
estimates should be calibrated because they are often quite different from true
values. Representative proposed methods include Platt’s method [10] and various
methods by Zadrozny et al. [15,16,17]. Platt [10] used Support Vector Machines
(SVMs) and directly estimated class membership probabilities using a sigmoid
function to transform scores into the probabilities. Zadrozny et al. proposed a
”binning” method for Naive Bayes [15], and Isotonic regression for SVMs and
Naive Bayes [17]. In the notable binning method (Zadrozny’s binning method),
the authors used the first-ranked scores of training samples, rearranged training
samples according to their scores and made bins with equal samples per bin.
In the Isotonic regression method, Zadrozny et al. proposed a method for a
multiclass classifier by dividing a multiclass classifier into binary classifiers.

In the document classification, a multiclass classification is often applied.
When a multiple classifier outputs a score for each class, a predicted class is
determined not by the absolute value of the score but by the relative position
among the scores. Therefore, the class membership probabilities are likely to
depend not just on the first-ranked score but also on other scores. We propose a
new method for estimating class membership probabilities of the predicted class,
using scores not only for the predicted class but also for other classes. In the
proposed method, we first make an accuracy table by counting the number of
correctly classified training samples in each range or cell (hereafter referred to
as cell) of scores. We then apply smoothing methods such as a moving average
method to the accuracy table to yield reliable probabilities (accuracies). In order
to determine the class membership probability of an unknown sample, we first
calculate the scores of the sample, then find the cell that corresponds to the
scores, and output the values associated in the cell in the accuracy table.

2 Related Work

2.1 Platt’s Method

Platt [10] proposed a method using SVMs and directly estimating class mem-
bership probabilities using a sigmoid function P (f) = 1/{1 + exp(Af + B)}
with the score f because f is substituted into a monotonically increasing sig-
moid function. The parameters A and B were estimated with the maximum

1 Japanese General Social Surveys ( http://jgss.daishodai.ac.jp/).
2 In Naive Bayes or decision trees, scores can be the probabilities. Even in Support

Vector Machines, scores can be transformed into probabilities by (f −min)/(max −
min) [8] or (f + max)/2 ∗ max [17], where f , max, and min represents scores of a
sample, the minimum score, and the maximum score respectively.
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likelihood method beforehand. To avoid overfitting the train set, Platt used an
out-of-sample model. Using five types of datasets from Reuters [4] and other
sources, a good experimental result was obtained for probability values. Ben-
nett [2], however, using the Reuters dataset showed that the sigmoid method
could not fit the Naive Bayes scores. Bennett proposed other sigmoid families
in approximating the posterior distribution given the Naive Bayes log odds ap-
proximation. Zadrozny et al. [17] also showed that Platt’s method could not be
applied for some datasets and proposed a different approach.

2.2 Zadrozny’s Binning Method

Zadrozny et al. [15] proposed the discrete non-parametric binning method, which
indirectly estimates class membership probabilities by referring to the ”bins”
made for the Naive Bayes classifier beforehand. The method is described as
follows. First, samples are rearranged in order of the values of their scores, and
intervals are created to ensure that the number of samples falling into each area
(bin) equals a fixed value. For each bin Zadrozny et al. computes lower and
upper boundary scores. Next, the accuracy of samples in each bin is calculated.
Finally, an evaluation of the new sample is done using the score to find a matching
bin, and the accuracy of the bin is then assigned to the sample. Using KDD’98
datasets, a good experimental result was obtained in terms of some evaluation
criteria such as Mean Squared Error (MSE) or average log-loss (bin=10). The
method has a problem, however, in answering how the best number of bins can
be determined.

2.3 Isotonic Regression and Expansion for a Multiclass Classifier

Based on a monotonic relationship between classifier scores and accuracies,
Zadrozny et al. [17] next proposed a method via the PAV (Pair-Adjacent Vi-
olators) algorithm, which has been widely researched for problems of Isotonic
regression. As a result of experiments for SVMs and Naive Bayes, PAV per-
formed slightly better than the sigmoid method, while it always worked better
than the binning method. For a multiclass classifier, they applied PAV as fol-
lows. First they transformed a multiclass classifier into binary classifiers by a
one-against-all code matrix, all-pairs, and a one-against-all normalization. Next
they calibrated the predictions from each binary classifier and combined them
to obtain target estimates. The performance of PAV for a multiclass classifier
using 20 Newsgroups dataset 3 for Naive Bayes was much better in terms of
MSE, although the error rate was not good.

2.4 Comparison of the Methods

Niculescu-Mizil et al. [8] compared 10 classifiers for calibration using Platt’s
method with Zadrozny’s method via Isotonic regression using 8 datasets from
3 http://people.csail.mit.edu/jrennie/20Newsgroups/. Zadrozny et al. used the

original dataset (19,997 documents).
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UCI and other sources, and showed that Platt’s method was most effective when
the data was small, while Isotonic regression was more powerful when there was
sufficient data to prevent overfitting 4. Jones et al. [5] compared Isotonic regres-
sion with the sigmoid method, and showed that the sigmoid method outper-
formed Isotonic regression by root-mean squared error and log-loss. The reason
for the outperformance was that Isotonic regression tended to overfit.

3 Proposed Method

We propose generating an accuracy table using multiple scores and by applying
a smoothing method to the accuracy table as follows.

STEP 1 Create cells for an accuracy table.
STEP 2 Smooth accuracies.
STEP 3 Estimate class membership probability for an evaluation sample.

Before describing the details of STEP 1-3, we explain the reason for using
multiple scores. We assume that a multiple classifier outputs a score for each
class. A predicted class is determined not by the absolute value of the score,
but by the relative position among the scores because the predicted class for an
evaluation sample is a class with the largest value in multiple scores. For example,
even if the first-ranked score is low, as long as the second-ranked score is very
low (the difference between the two classes is large), the classification output will
likely be reliable. In contrast, when the score for the first-ranked class is high,
if the score of the second-ranked class is equally high (a negligible difference
in score between the two classes), then the classification output is unreliable.
Therefore, the class membership probabilities are likely to depend not just on
the first-ranked score, but also on other scores. For effective calibration, it may
be better to use not only the first-ranked score, but also other-ranked score.

STEP 1. To generate an accuracy table, we need a pair of scores and clas-
sification status (incorrect/correct) for each sample. To obtain these pairs, we
divide the whole of the training dataset into two datasets: a) a training dataset
to make “an accuracy table” and b) a test dataset for the table. We employed
cross-validation. For example, in a 5-fold cross-validation, we divide the whole
training data into five groups, and use four-fifths of the data to build a classifier
with the remaining one-fifth of the data used to output scores from the classifier;
we repeat the process four more times (a total of five times) by changing the
data used for training and outputting the score to make an accuracy table.

We create cells for an accuracy table as follows. First, the score is used as
an axis, divided into even intervals. For example, the size of an interval may be
0.1 on SVMs. In the case of using multiple scores, this step takes place for each
score. When we use the first-ranked scores and the second-ranked scores, we split
a rectangle up into several intervals. Second, we decide, on the basis of the score,
4 Niculescu-Mizil et al. also showed that both Platt’s method and Isotonic regression

improved the probabilities predicted by any boosting model.
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to which cell each training sample belongs. Finally, we check the classification
status (correct/incorrect) of the training samples in each cell and calculate the
accuracy of that cell, that is, its ratio of correctly classified samples. In this
method, an accuracy table can be made for any number of scores (dimensions)
used because the training samples do not need be sorted according to their
scores for create cells. However, this proposed method has a similar problem as
Zadrozny’s binning method in that we can discover the best size of cell intervals
only by experiments. Furthermore, because the number of samples for a cell may
be different, the reliabilities of accuracies in cells are probably variant. To solve
the problem, we use coverage for each cell as weight.

STEP 2. The original accuracy table generated above does not yield reliable
probabilities (accuracies), when there are no or very few samples for some cells.
Therefore, we propose smoothing on the original accuracy table. There are sim-
ple smoothing methods such as Laplace’s law (Laplace) and Lidstone’s law (Lid-
stone) [6]. In this paper, we denote, for an observed cell c(f) in which f is the
classification score, the number of training data samples that appear in the cell
by N(c(f)) and denote the number of correctly classified samples within all the
samples in the cell by Np(c(f)). The smoothed accuracy PLap(f) is formulated
as PLap(f) = (Np(c(f)) + 1)/(N(c(f)) + 2), The smoothed accuracy PLid(f) is
formulated as PLid(f) = (Np(c(f)) + δ)/(N(c(f)) + 2δ), where δ specifies the
added pseudo-counts. The value of δ for Lidstone was determined for each accu-
racy table, using cross-validation within the training data.

In both Laplace and Lidstone, accuracies are smoothed using solely the sam-
ples in the cell in question. However, further examination of the entire accuracy
table shows that nearby cells fairly often have similar accuracies. Therefore, us-
ing the accuracies of cells near the target cell should be effective. We apply
some smoothing methods such as a moving average method (MA) and a median
method (Median) [1], which use values near the smoothing value target. The
MA and Median are computed according to the following formula:

PMA(f) =
Np(c(f))
N(c(f)) +

∑
s∈Nb(c(f))

Np(s)
N(s)

n
, (1)

PMedian(f) = medians∈Nb(c(f))

(
Np(c(f))
N(c(f))

, {Np(s)
N(s)

}
)

, (2)

where Nb(c(f)) is the set of cells that are adjacent to cell c(f) whose accuracy
can be defined (i.e., there is at least one sample), and n gives |Nb(c(f))| + 1.
Furthermore, we propose an extended MA, the moving average with coverage
method (MA cov), in which cells with many samples are more weighted in ac-
curacy computation because the accuracy of those cells are more reliable.

PMA cov(f) =
Np(c(f))
N(c(f)) C(c(f)) +

∑
s∈Nb(c(f))

Np(s)
N(s) C(s)

C(c(f)) +
∑

s∈Nb(c(f)) C(s)
, (3)
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where C(c(f)) is the number of the samples in the cell c(f) divided by the number
of all the samples. In this paper, we simply use the cells directly neighboring the
target cell as surrounding cells. For example, in the case of using the first-ranked
score and the second-ranked score, we use nine cells; the up cell, down cell, left
cell, right cell, the diagonal cells and the target cell.

STEP 3. We first calculate the classification scores of the sample, then find the
range or cell that corresponds to the scores, and output the values associated in
the range or cell in the accuracy table.

4 Experiments

4.1 Experimental Settings

Classifier. We used SVMs, and also used the Naive Bayes classifier for exper-
iments to show the generality of the proposed method. The reason why we se-
lected SVMs is that SVMs are widely applied to many applications in document
classification [4]. Since SVMs are a binary classifier, we used the one-versus-rest
method [7] to extend SVMs to a multiple classifier 5. Following Takahashi et
al. [13], we set the SVMs kernel function to be a linear kernel.

DataSet. We used two different datasets: the JGSS dataset, which is Japanese
survey data, and UseNet news articles (20 Newsgroups), which were also used
in Zadrozny et al.’s experiments [17] 6. First, we used the JGSS dataset (23,838
samples) taken from respondents who had occupations [13]. Each instance of
the respondents’ occupation data consists of four answers: “job task” (open-
ended), and “industry” (open-ended), both of which consisted of much shorter
texts than usual documents, and have approximately five words in each, and
“employment status” (close-ended), and “job title” (close-ended). We used these
features for learning. The number of categories was nearly 200 and by past
occupation coding, each instance was encoded into a single integer value called an
occupational code. We used JGSS-2000, JGSS-2001, JGSS-2002 (20,066 samples
in total) for training, and JGSS-2003 (3,772 samples) for testing. The reason why
we did not use cross-validation is that we would like to imitate the actual coding
process; we can use the data of the past surveys, but not of future surveys. To
generate an accuracy table, we used a 5-fold cross-validation within the training
data; we split 20,066 samples into five subsets with equal size, used four of them
for temporary training and the rest for outputting the pairs of the scores and
the status, and repeated five times with different combinations of four subsets.
We used all the pairs to make an accuracy table. The second dataset, (the
20 Newsgroups dataset), consists of 18,828 articles after duplicate articles are
removed. The number of categories is 20, corresponding to different UseNet
discussion groups [9]. We employed a 5-fold cross-validation.
5 http://chasen.org/~taku/software/TinySVM/
6 The accuracies were 74.5% (JGSS dataset) and 87.3% (20 Newsgroups dataset).
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Table 1. Relationships of cell intervals and the number of cells in SVMs

cell intervals 0.05 0.1 0.2 0.3 0.5

the number of cells (the first-ranked score used) 60 30 16 12 7

Table 2. Negative Log-Likelihood in the best case in each method for creating cells.
A boldface number indicates the best log-likelihood of the two methods.

classifier SVM SVM Naive Bayes
dataset JGSS dataset 20 Newsgroups dataset 20 Newsgroups dataset

equal intervals 2369.3(# cells=30) 1472.3(# cells=30) 1679.8(# cells=16)

equal samples 2678.3(# cells=12) 1572.9(# cells=7) 1671.0(# cells=12)

Cell Intervals. We experimentally determined the best cell intervals. For these
experiments, we created some accuracy tables with different cell intervals: 0.05,
0.1, 0.2, 0.3, and 0.5 etc. For example, Table 1 shows the relationships of
cell intervals and the number of cells in the case of the first-ranked scores
used.

Evaluation Metrics. We used the log-likelihood of test data to evaluate each
method in Experiment 1. Larger values of log-likelihood are considered to be bet-
ter. For simplicity, we use the negative log-likelihood 7. As an evaluation method
in Experiment 2, we used a reliability diagram, a ROC (receiver operating char-
acteristic) curve, reliability for each coverage, accuracy for each threshold, and
the ability to detect misclassified samples.

4.2 Experiment 1: Comparison of the Methods

The Proposed Method for Creating Cells. Before Experiment 1, we con-
ducted simple experiments to confirm the effectiveness of the proposed method
for making cells with equal cell intervals by comparing the proposed method
with the method with equal samples for each cell. We used the values without
smoothing and used only the first-ranked scores. Table 2 shows the results in
the best cases by changing the number of cells from 7 to 60. The tendencies
in other cases with the different number of cells were much the same as in Ta-
ble 2. Thus, we confirmed the effectiveness of the proposed method for creating
cells 8.

Evaluations by Log-Likelihood. Tables 3 and 4 show the negative log-
likelihood of the JGSS dataset and the 20 Newsgroups dataset by the pro-
posed methods as well as other methods for different numbers of used scores and

7 The negative log-likelihood L is given by L = −
∑

i log(p(xi)) where p(xi) is a
predicted class membership probability of an evaluation sample.

8 Zadrozny’s number of bins (bin = 10) [15] was similar to that of Table 2.
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Table 3. Negative Log-Likelihood (the JGSS dataset) 3,772 samples. MA cov repre-
sents the Moving Average with coverage method. A boldface number indicates the best
log-likelihood of all cases. In the case of rank1&rank2&rank3, the values were much
better than rank1 but slightly worse than rank1&rank2 in each cell interval for each
method except for the Sigmoid method (2232.9).

cell used no Laplace’s Lidstone’s Moving Median MA Sigmoid
intervals scores smoothing Law Law Average cov

0.1 rank1 2369.3 2368.9 2368.9 2367.5 2372.6 2364.7 2367.6
rank1&rank2 - 2356.8 2355.8 2245.8 - 2232.7 2246.9

0.2 rank1 2371.3 2371.0 2370.3 2369.3 2370.0 2369.3 2367.6
rank1&rank2 - 2252.7 2254.7 2240.6 2241.8 2235.0 2246.9

0.5 rank1 2381.9 2381.8 2381.6 2395.9 2396.4 2409.9 2367.6
rank1&rank2 2265.8 2265.6 2265.7 2327.5 2298.8 2320.6 2246.9

different intervals on SVMs, respectively 9. The Lidstone column shows the re-
sult when the predicted optimal value of δ is used. The dash (-) indicates that
we cannot compute log-likelihood for those cases because the argument of the
log function in some cells was 0. We discuss the results in Tables 3 and 4. First,
for the SVMs, the best case for each dataset was the method using both the
first-ranked score and the second-ranked score, in which we applied the moving
average with coverage method (cell intervals=0.1). Second, for each method we
obtained better log-likelihood scores when we used multiple scores than when
we used a single score. In particular, using both the first-ranked score and the
second-ranked score was the best for both datasets. The reason is that in multi-
class classification, the probability of the first-ranked class depends not only upon
the first-ranked scores, but also upon the second-ranked scores as mentioned in
Section 3. Third, in the case of using multiple scores with smaller cell intervals
(e.g. 0.1), smoothing methods such as MA or MA cov, which use the accuracies
of cells near the target cell, were more effective than the other methods.

To show the generality of the above conclusions, we conducted experiments of
the same kind as in the above-mentioned experiments, except for Lidstone, using
the Naive Bayes classifier for the 20 Newsgroups dataset. In Table 5, the dash (-)
indicates the same meaning as in Tables 3 and 4. We obtained the same results
as shown in Tables 3 and 4. First, the best of all cases was the method using
both the first-ranked score and the second-ranked score, in which we smoothed
by the Moving Average method with larger number of cells (e.g. 30). Second, for
each method we obtained a better log-likelihood when we used multiple scores
than when we used a single score. Third, in the case of using multiple scores with
a larger number of cells (e.g. 30), smoothing methods such as MA or MA cov
were effective.

9 The negative log-likelihood by the simple transforming formula mentioned in Sec-
tion 1 was 5493.2 (Niculescu-Mizil et al.), 3142.7 (Zadrozny et al.) in the JGSS
dataset, (-) (Niculescu-Mizil et al.) and 3463.6 (Zadrozny et al.) in the 20 News-
groups dataset.
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Table 4. Negative Log-Likelihood (the 20 Newsgroups dataset) 3,765 samples for each
fold. MA cov represents the Moving Average with coverage method. A boldface number
indicates the best log-likelihood score of all cases. In the case of rank1&rank2&rank3,
the values were much better than rank1 but slightly worse than rank1&rank2 in each
cell interval for each method except for the Sigmoid method (1377.5).

cell used no Laplace’s Lidstone’s Moving Median MA Sigmoid
intervals scores smoothing Law Law Average cov

0.1 rank1 1472.3 1472.4 1472.2 1468.1 1469.6 1467.4 1482.3
rank1&rank2 - 1390.2 1388.3 1362.3 - 1360.3 1386.6

0.2 rank1 1472.5 1472.7 1472.5 1474.4 1473.3 1482.7 1482.3
rank1&rank2 - 1365.4 1366.9 1374.9 - 1377.7 1386.6

0.5 rank1 1487.4 1487.5 1487.4 1503.9 1497.0 1537.9 1482.3
rank1&rank2 1388.1 1387.7 1387.8 1447.2 1408.7 1479.4 1386.6

Table 5. Negative Log-Likelihood (the 20 Newsgroups dataset) 3,765 samples for each
fold. MA cov represents the Moving Average with coverage method. A boldface number
indicates the best log-likelihood of all cases.

# used no Laplace’s Moving Median MA
cells scores smoothing Law Average cov

30 rank1 - 1680.6 1670.1 1668.4 1675.0
rank1&rank2 - 1439.7 1409.8 - 1415.3

16 rank1 1680.2 1679.8 1679.6 1675.8 1696.2
rank1&rank2 - 1428.1 1515.5 - 1536.2

7 rank1 1697.2 1697.2 1712.0 1713.5 1732.8
rank1&rank2 - 1474.8 1626.3 1644.8 1664.1

Finally, we obtained results of the sigmoid method using multiple scores as
shown in the right column in Tables 3 and 4. For expansion of the sigmoid
function, we used the formula: PLog(f1, · · · , fr) = 1/(1 + exp(

∑r
i=1 Aifi + B)),

where fi represents the ith-ranked classification score. The parameters Ai (∀i)
and B are estimated with the maximum likelihood method. In the sigmoid
method, we also showed that the values of log-likelihood were better when we
used multiple scores than when we used a single score. The sigmoid method
showed an average performance in the methods in the two tables in each dataset.

4.3 Experiment 2: Evaluation of the Proposed Method

Reliability Diagram and ROC curve. We used the reliability diagram and
the ROC curve to evaluate the proposed method. To plot a reliability diagram,
we used an average of the estimates of the samples in each interval (e.g. [0, 0.1])
as a predicted value (x) and the average of actual values corresponding to the
estimates as a true value (y). Figure 1 shows three reliability diagrams in the
JGSS dataset. In the proposed method, all points were near the diagonal line.
In the reliability diagram, the farthest a point is from the diagonal line, the
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worse the performance. As a whole, the proposed method was better than both
a method without smoothing and the sigmoid method. This tendency was the
same as in the 20 Newsgroups dataset. Figure 1 also shows three ROC curves
in the 20 Newsgroups dataset. On a ROC curve, the nearer a ROC curve is to
upper left line, the better a method is. The proposed method was the best of
the three methods, and this tendency was the same as in the JGSS dataset.

We also investigated the predicted values by the proposed method and the
actual values by increasing the coverage every 10% from 10% to 100%. Although
there is a limitation such that both the predicted value and the actual value are
not the values of the sample itself, the predicted values are nearly the same as
the actual values in descending order and ascending order in both datasets.

The proposed method
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Fig. 1. The Reliability Diagrams in the JGSS dataset and the ROC curves in the 20
Newsgroups dataset (right) on SVMs

Accuracy for each Threshold. If we could select samples accurately enough
either to process or not to process using our own threshold, the work done by
humans would be lighter. We investigated accuracies of the proposed method
by increasing the threshold of estimates every 0.1 from 0 to 0.9. The proposed
method always outperformed both a method without smoothing and sigmoid
methods in both datasets. For example, when the threshold was set to 0.9,
accuracies were approximately 96% in the JGSS dataset and 96% in the 20
Newsgroups dataset. As for coverage, the proposed method scored then second
and first in the JGSS dataset and the 20 Newsgroups dataset, respectively.

Ability to Detect Misclassified Samples. We ordered all the test instances
by ascending order of the estimated class membership probability and counted
the number of error samples in the set of samples with low probability. We
compared our method with the raw score method [12], in which the distance
from the separation hyperplane is directly used instead of the probability. We
evaluated these methods by the ratio of the detected errors. Figure 2 shows the
number of error samples detected by the proposed method and those by the
raw score method in both datasets. The proposed method always surpassed the
raw score method in each dataset. In the 20 Newsgroups dataset especially, the
proposed method performed better when coverage was lower, which is desirable
for us, since, in practice, we would like to find many errors by manually checking
only a small amount of data. The reason for the difference of the two methods
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Fig. 2. Ability to Detect Misclassified Samples on SVM (the JGSS dataset (left) and
the 20 Newsgroups dataset (right))

is not clear in the JGSS dataset. A possible explanation would be that the
JGSS dataset has many very short samples, among which there are only a few
active features. Those short samples do not have enough information for precise
probability estimation.

5 Conclusion

In this paper, to estimate class membership probabilities, we proposed using
multiple scores outputted by classifiers, and generating an accuracy table with
smoothing methods such as the moving average method or the moving aver-
age with coverage method. Through the experiments on two different datasets
with both SVMs and Naive Bayes classifiers, we empirically showed that the
use of multiple classification scores was effective in the estimation of class mem-
bership probabilities, and that proposed smoothing methods for the accuracy
table worked quite well. Further research will be necessary to discover effective
cell intervals. The use of information criteria such as AIC (Akaike Information
Criteria) [11] is the next research area we intend to pursue.

Acknowledgements. This research was partially supported by MEXT Grant-
in-Aid for Scientific Research (c)6530341.
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Abstract. In this paper, we study the privacy-preserving decision tree
building problem on vertically partitioned data. We made two contribu-
tions. First, we propose a novel hybrid approach, which takes advantage
of the strength of the two existing approaches, randomization and the
secure multi-party computation (SMC), to balance the accuracy and effi-
ciency constraints. Compared to these two existing approaches, our pro-
posed approach can achieve much better accuracy than randomization
approach and much reduced computation cost than SMC approach.

We also propose a multi-group scheme that makes it flexible for data
miners to control the balance between data mining accuracy and privacy.
We partition attributes into groups, and develop a scheme to conduct
group-based randomization to achieve better data mining accuracy. We
have implemented and evaluated the proposed schemes for the ID3 de-
cision tree algorithm.
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1 Introduction

In today’s information age, both the volume and complexity of data available for
decision-making, trend analysis and other uses continue to increase. To “mine”
these vast datasets for useful purposes has spurred the development of a variety
of data mining techniques. Of considerable interest is abstracting information
from a dataset composed of information which may be located at different sites,
or owned by different people or agencies, i.e., distributed databases. However,
data owners must be willing to share all their data. Issues of privacy and con-
fidentiality can arise which prohibit data owners from contributing to a data
warehouse. To address these critical privacy and confidentiality issues, privacy-
preserving data mining (PPDM) techniques have emerged.

In this paper, we study a specific PPDM problem: building decision trees on
vertically partitioned data sets. In this PPDM problem, the original data set
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D is vertically divided into two parts, with one part Da known by Alice, and
the other part Db known by Bob. The problem is to find out how Alice and
Bob conduct data mining on the vertically joint data set D = Da ∪ Db, without
compromising their private information.

A number of solutions have been proposed in the literature to solve vari-
ous privacy-preserving data mining problems. They can be classified into two
general categories: the secure multi-party computation (SMC) and the random-
ization approaches. In the SMC approach, Alice and Bob run a cryptographic
protocol to conduct the joint computation. SMC can conduct the required com-
putation while ensuring that the private inputs from either party are protected
from each other. Previous results using the SMC approach include [3,6,8]. In
the randomization approach, one of the parties (e.g. Alice) adds some noise to
her data to disguise the original data Da, and then she sends the disguised
data set D̂a to Bob; Several schemes have been proposed for conducting data
mining based on the partially disguised joint data formed by D̂a and Db, includ-
ing [2,1,5,4]1.

The contribution of this paper is two-fold: First, we have developed a hybrid
scheme that can harness the strength of both SMC and randomization schemes
to achieve a better accuracy and efficiency. Second, we have developed a gen-
eral multi-group scheme, which provides a flexible mechanism for data miner to
adjust the balance between privacy and accuracy.

Our proposed hybrid approach and multi-group approach are general and can
be applied to various data mining computations, including decision tree building
and association rule mining. In this paper, they are applied to the ID3 decision
tree algorithm2.

2 Problem Definition and Background

In this paper we focus on a specific decision tree building problem for vertically
partitioned data. The problem is illustrated in Figure 1(a).

Definition 1. (Two-party decision tree building over vertically partitioned data)
Two parties, Bob and Alice, each have values of different attributes of a data set.
They want to build a decision tree based on the joint database. However neither
of them wants to disclose the accurate values of the attribute he/she is holding
to other party, i.e., nobody can actually have the “joint” database.

2.1 ID3 Algorithm

In a decision tree, each non-leaf node contains a splitting point, and the main
task for building a decision tree is to identify the test attribute for each splitting
point. The ID3 algorithm uses the information gain to select the test attribute.

1 Some of these studies are not targeted at the vertically partitioned data, they can
nevertheless be trivially extended to deal with this kind of data partition scenario.

2 Our scheme can also be applied to other decision tree algorithms.
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Information gain can be computed using entropy. In the following, we assume
there are m classes in the whole training data set. We know

Entropy(S) = −
m∑

j=1

Qj(S) log Qj(S), (1)

where Qj(S) is the relative frequency of class j in S. We can compute the
information gain for any candidate attribute A being used to partition S:

Gain(S, A) = Entropy(S) −
∑

v∈A

(
|Sv|
|S| Entropy(Sv)), (2)

where v represents any possible values of attribute A; Sv is the subset of S for
which attribute A has value v; |S| is the number of elements in S.

In decision tree building, assume that the set S is associated with a node V
in the tree. All the records in S has the same values for certain attributes (each
corresponds to a node from the root to V ). We use an logical AND expression E(S)
to encode those attributes, namely all the records in S satisfy the expression
E(S). Let D represent the entire data set. We use N(E) to represent the number
of records in the data set D that satisfies the expression E. Then,

|S| = N(E(S))
|Sv| = N(E(Sv))

= N(E(S) ∧ (A = v))

Qj(S) =
N(E(S) ∧ (Class = j))

N(E(S))
.

From the above equations, we know that as long as we can compute N(E) for
any logical AND expression E, we can get all the elements that allow us to compute
entropies and information gains. We show how to compute N(E) using the SMC
approach or the randomization approach for vertically-partitioned data.

The SMC Approach. The SMC approach is depicted in Figure 1(b). Let us
divide E into two parts, E = Ea ∧ Eb, where Ea contains only the attributes



A Hybrid Multi-group Privacy-Preserving Approach 299

from Alice, while Eb contains only the attributes from Bob. Let Va be a vector
of size n: Va(i) = 1 if the ith record satisfies Ea; Va(i) = 0 otherwise. Because
Ea belongs to Alice, Alice can compute Va from her own share of attributes.
Similarly, let Vb be a vector of size n: Vb(i) = 1 if the ith data item satisfies Eb;
Vb(i) = 0 otherwise. Bob can compute Vb from his own share of attributes.

Note that a nonzero entry of V = Va ∧ Vb (i.e. V (i) = Va(i) ∧ Vb(i) for
i = 1, . . . , n) means the corresponding record satisfies both Ea and Eb, thus
satisfying E. To compute N(E), we just need to find out how many entries in
V are non-zero. This is equivalent to computing the dot product of Va and Vb:

N(E) = N(Ea ∧ Eb) = Va · Vb =
n∑

i=1

Va(i) ∗ Vb(i).

A number of dot-product protocols have already been proposed in the litera-
ture [6,3]. With these SMC protocols, Alice and Bob can get (and only get) the
result of N(E), neither of them knows anything about the other party’s private
inputs, except the information that can be derived from N(E).

The Randomization Approach. To use the randomization approach to build
decision trees, Alice generates a disguised data set D̂a from her private data Da.
Alice then sends D̂a to Bob. Bob now has the full data set D̂a ∪ Db, though
part of which is disguised. Bob can conduct data mining based on this partially
disguised data set. This approach is depicted in Figure 1(c).

There are a number of ways to perform randomization. Our scheme in this
paper is based on the randomized response technique [7]. They were proposed
in several existing work [5,4] to deal with categorical data in privacy-preserving
data mining. Readers can get details from the literature and we do not describe
them in detail here due to page limitations.

3 A Hybrid Approach for Privacy-Preserving Data
Mining

Many data mining computations involve searching among a set of candidates.
For example, in building decision trees, at each tree node, we search for the best
test attribute from a candidate set based on certain criteria; in association rule
mining, we search through a set of candidates to find those whose supports are
above certain threshold. Using SMC to conduct these searches is expensive since
the search space can be quite large. If we can reduce the search space using some
light-weight computations (in terms of both communication and computation
costs), we can significantly reduce the total costs.

Randomization scheme is a very good choice for such a light-weight compu-
tation because of two reasons: it is much less expensive than SMC, and yet it
produces results good enough for filtering purposes. If Zu is a significant portion
of Z, the costs of SMC is substantially reduced compared to the computations
that use SMC alone. The entire hybrid approach is depicted in Figure 2(a).



300 Z. Teng and W. Du

(More Accurate)
Improved Results

Results
Approximate 

SMC
ApproachApproach

Computations and Data
Reduced

Randomization

Computations and Data

Filtering

(a) General Hybrid Approach

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Randomization Parameter θ

A
cc

ur
ac

y

Adult

1G
2G
3G
4G

(b) Adult: Accuracy vs. Window
Size

Fig. 2. General Hybrid Approach and Experiment Results for Adult

In the next section, we describe a Hybrid-ID3 algorithm that uses randomiza-
tion to get some candidate splitting attributes at each node and then use SMC
method to choose the best one from these candidates.

3.1 The Hybrid-ID3 Algorithm

Let D represent the entire data set. Let Da represent the part of the data owned
by Alice, and let Db represent the part of the data owned by Bob. Alice disguises
Da using the randomization approach, and generate the disguised data set D̂a;
she sends D̂a to Bob. Bob does the same and sends his disguised part D̂b to Alice.
Alice forms the entire data set D1 = Da ∪ D̂b, while Bob forms D2 = D̂a ∪ Db.

We describe the Hybrid-ID3 algorithm which uses the randomization and SMC
schemes as building blocks. In this algorithm, we use N(E) to represent the
actual number of records in D that satisfy the expression E (computed using
the SMC approach.) We use AL to represent a set of candidate attributes. Before
conducting this algorithm, Alice and Bob have already exchanged the disguised
data. Namely Alice has D1 = Da ∪ D̂b, and Bob has D2 = D̂a ∪ Db.

Hybrid-ID3(E, AL)

1. Create a node V.
2. If N(E ∧ (class = C)) == N(E) for any class C, then return V as a leaf

node labeled with class C. Namely, all the records that satisfy E belong to
class C.

3. If AL is empty, then return V as a leaf-node with the class C = argmaxC

N(E ∧(class = C)). Namely, C is the majority class among the records that
satisfy E.

4. Find the splitting attribute using the following procedure:
(a) For each test attribute A ∈ AL, Alice computes (estimates) A’s infor-

mation gain from D1, and Bob computes A’s information gain from D2,
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both using the randomization approach. Alice and Bob use the average
of their results as A’s estimated information gain.

(b) Select ω test attributes that have the ω highest information gains.
(c) Using SMC to compute the actual information gains for these ω at-

tributes, and select the one TA with the highest information gain.
5. Label node V with TA.
6. For each known value ai of TA

(a) Grow a branch from node V for the condition TA = ai.
(b) If N(E ∧ (TA = ai)) == 0 then attach a leaf labeled with C =

argmaxCN(E ∧ (class = C)), i.e., C is the majority class among the
records that satisfy E.

(c) Else attach the node returned by Hybrid-ID3(E ∧ (TA = ai), AL −
TA).

Note that the values of N(E ∧ (class = C)) at Step 2 and Step 3 can be
obtained from Step 4.c of the previous round. Similarly, computations at Step
6.b can also be obtained from Step 4.c of the same round. Therefore, there are
no extra SMC computations in Step 2, 3, and 6.b.

3.2 Privacy and Cost Analysis

Because SMC computations do not reveal any more information about the pri-
vate inputs than what can be derived from the results, the primary source of
information disclosure is from the disguised data due to the randomization ap-
proach. Several privacy analysis methods for the randomization approach have
been proposed in the literature [1,5]. We will not repeat them in this paper.

Regarding the computation and communication costs, we are only interested
in the relative costs compared to the SMC-only approach. Since the computation
and the communication costs of the randomization part is negligible compared
to the SMC part, we use the amount of SMC computations conducted in the
hybrid approach as the measure of the cost, and we compare this cost with the
amount of SMC computations conducted in the SMC-only approach. This cost
ratio between these two approaches is primarily decided by the window size. We
will give the simulation results in section 5.

4 The Multi-group Randomization Scheme

For many data mining computations, calculating the accurate relationship among
attributes is important. Randomization tends to make this calculation less ac-
curate, especially when each attribute is randomized independently, because of
the bias introduced by the randomization schemes. The randomization schemes
proposed in the literature mostly randomize attributes independently. We have
found out that such randomization schemes lead to undesirable results for privacy-
preserving decision tree building. To achieve better accuracy, we propose a general
multi-group framework, which can be used for randomization schemes.
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In this scheme, attributes are divided into g (1 ≤ g ≤ t) groups (where t is the
total number of attributes in the data set); randomization is applied on the unit of
groups, rather than on the unit of single attribute. For example, if randomization
is to add random noise, then we will add the same noise to the attributes within
each group3. However, these numbers are independent from group to group. The
advantage of this multi-group scheme is that by adding the same random noise
to hide several attributes together, the relationship of these attributes are better
preserved than if independent random numbers are added. However, the disad-
vantage of this approach is that if adversaries know the information about one
attribute, they can find the information about the other attributes in the same
group. Thus, there is a balance between privacy and data mining accuracy. By
choosing the appropriate value of g, we can achieve a balance that is suitable for
a specific application.

To demonstrate the effectiveness of this multi-group framework, we apply
it to a specific randomization scheme, the randomized response scheme, which
has been used by various researchers to achieve privacy-preserving data min-
ing. We call our scheme the Multi-group Randomized Response (MRR) scheme.
The existing randomized response schemes are special case of the MRR scheme:
the scheme proposed in [4] is a 1-group scheme, while the schemes proposed
in [5] are essentially t-group scheme because each attribute forms its own
group.

Data Disguise. In the general randomized response technique, before sending
a record to another party (or to the server), a user flips a biased coin for each
attribute independently, and decides whether to tell a truth or a lie about the
attribute based on the coin-flipping result. In MRR scheme, the process is still
the same, the only difference is that now the coin-flipping is conducted for each
group, and a user either tells a truth for all the attributes in the same group or
tells a lie about all of them.

Estimating N(E). Let P (E) represent the portion of the data set that satisfies
E. Estimating N(E) is equivalent to estimating P (E).

Assume that the expression E contains attributes from m groups. We rewrite
E using the following expression, with ek being an expression consisting of only
attributes from the group k (we call ek a sub-pattern of E):

E = e1 ∧ e2 ∧ · · · ∧ em =
m∧

k=1

ek

We define a variation of E as E′ = f1 ∧ · · · ∧ fm, where fi is equal to either ei

or the bitwise-opposite of ei (i.e. ei). For each expression E, there are totally 2m

different variations, including E itself. We denote these variations of E as E0 to
Eω, where E0 = E and ω = 2m − 1.

3 If the domains of attributes are different, the range of the random numbers can be
adjusted to match their domains.
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Theorem 1. Let P (Ei → Ej) represent the probability that an expression Ei in
the original data becomes an expression Ej in the disguised data after the random-
ized response process. We have the following formula:

P (Ei → Ej) = θu(1 − θ)m−u,

where u represents the number of the common bits between the binary forms of
number i and number j.

Proof. Proof is omitted due to page limitations.

Let P ∗(E) represent the expected number of records, in the disguised data set,
that satisfies the expression E. P ∗(E) can be estimated by counting the number
of records that satisfy E in the disguised data set. Obviously, we have

P ∗(E) =
ω∑

i=0

P (Ei → Ej)P (Ei)

If we define a matrix A, such that A(i, j) = P (Ei → Ej) for i = 0, · · · , ω and
j = 0, · · · , ω, we get the following linear system of equations.

⎛

⎜
⎝

P ∗(E0)
...

P ∗(Eω)

⎞

⎟
⎠ = A

⎛

⎜
⎝

P (E0)
...

P (Eω)

⎞

⎟
⎠

Theorem 2. The matrix A defined as above is invertible if and only if θ �= 0.5.

Proof. Proof by induction and the proof is omitted due to page limitations.

In situations where P (E) is the only thing we need, just like in the ID3 decision
tree building algorithm, there is a much more efficient solution with cost O(m)
instead of O(2m). This technique is similar to the one used in [5] and it is omitted
here due to page limitations.

5 Evaluation

To evaluate the proposed hybrid scheme, we have selected three databases from
the UCI Machine Learning Repository 4: Adult, Mushroom, and Tic-tac-toe
datasets. We randomly divide all attributes of each data set into two parts with
the same cardinality: Alice and Bob’s share respectively.

In our experiments, we always used 80% of the records as the training data and
the other 20% as the testing data. We use the training data to build the deci-
sion trees, and then use the testing data to measure how accurate these trees can
predict the class labels. The percentage of the correct predictions is the accuracy
value in our figures. We repeat each experiment for multiple times, and each time
the disguised data set is randomly generated from the same original data set. We
plot the means and the standard deviation for the accuracy values. The results for
Tic-tac-toe dataset is omitted due to page limitations.
4 ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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5.1 Accuracy vs. Number of Groups

Figure 2(b) shows the change of accuracy along the number of groups in the
randomization-only approach for Adult dataset. In the figure, “1G”, “2G”, “3G”,
and “4G” indicate that the data are disguised using the 1-group, 2-group, 3-group,
and 4-group randomization schemes respectively. From the figure, we can see that
the accuracy decreases when the number of groups increases. When θ is close to 0.5
(e.g., θ = 0.4), the rate of deterioration is rapid as the number of group increases.
It is interesting to see that the results of the 4-group scheme are very close to those
of the 3-group scheme. This is because in this specific Adult dataset, most of the
expressions that are evaluated in building the tree contain attributes from less
than 3 groups.

5.2 Accuracy: Hybrid vs. Randomization-Only

Figures 3(a) and 4(a) show the accuracy comparisons between the hybrid ap-
proach and the randomization-only approach. The vertical bars in the figures de-
pict the standard deviations. The comparisons are shown for different random-
ization parameter θ and for different window size ω. In these three figures, “4G”
and “1G” indicate that the data are disguised using the 4-group randomization
scheme and the 1-group randomized scheme, respectively.

The figures clearly show that the hybrid approach achieves a significant im-
provement on accuracy compared to the randomization-only approach. When θ
is near 0.5, the accuracy of the trees built via the randomization-only approach is
just slightly better than the random guess (a random guess can yield 50% of accu-
racy on average). In contrast, the trees built via the hybrid approach can achieve
a much better accuracy.

When the window size is increased to 3, the accuracy difference between the
4-group randomization scheme and the 1-group randomization scheme becomes
much small. This means, choosing the 4-group randomization scheme does not
degrade the accuracy much when ω = 3, while at the same time, it achieves better
privacy than the 1-group randomization scheme.

A surprising result in all these three figures is that when the window size is set to
1, the accuracy can be improved significantly compared to the randomization-only
approach. Initially we thought that the hybrid approach with ω = 1 is equivalent
to the randomization-only approach. From this result, we realized that they are
different, and the difference is at Step 2 and 6.b of the Hybrid-ID3 algorithm.
Step 2 detects whether all the records associated with the current tree node be-
long to a single class C. If so, we will not further split this node. With the hybrid
approach, such a detection is conducted using SMC, which always generates the
accurate results. However, using the randomization-only approach, because the
result is inaccurate, it is very likely that we will continue splitting the node even
when such a splitting is unnecessary. These extra splittings may result in a dra-
matic different tree structure compared to the tree built upon the original undis-
guised data, thus cause the significant difference in their accuracy results. Step
6.b has the similar effect.
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Fig. 3. Experiment Results for Adult Data Sets

5.3 Accuracy vs. Window Size ω

Figures 3(b) and 4(b) show the relationship between the accuracy and the window
size in the hybrid approach where the number of groups g is 4.

The figures show that increasing SMC window size increases the accuracy of
the decision tree. The increase is quite rapid when the window size is small; after
certain point, the change of the window size does not affect the accuracy much.
This means that the actual best test attribute is very likely among the top few
candidates. This indicates that choosing a small window size can be the very
cost-effective: it achieves a decent degree of accuracy without having to conduct
many expensive SMC computations.
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5.4 Efficiency Improvement

The motivation of the hybrid approach is to achieve better accuracy than the
randomization-only approach, as well as achieve better efficiency than the SMC-
only approach. Our previous experiments have shown the accuracy improvement.
We now show how well the hybrid approach achieves the efficiency goal. We have
summarized the efficiency improvement in Table 1, alone with the degree of accu-
racy achieved (4-group randomization and θ = 0.45).

In Table 1, A is the accuracy of the hybrid approach minus the accuracy of the
randomization-only approach, C is the ratio of the total number of SMC compu-
tations in the hybrid approach to that in the SMC-only approach.

The table shows that the efficiency improvement for the Mushroom data set is
the most significant. This is because the number of attributes in the Mushroom
data set is larger. This trend indicates that the larger the number of attributes,
the higher level of efficiency improvement.

Table 1. Performance Improvement

ω = 2 ω = 3 ω = 4
A C A C A C

Adult 0.14 19% 0.15 28% 0.16 37%

Mushroom 0.23 10% 0.26 15% 0.27 20%

6 Conclusions and Future Work

We have described a hybrid approach and a multi-group randomization approach
for privacy-preserving decision tree buildings over vertically-partitioned data. The
hybrid approach combines the strength of the SMC approach and the randomiza-
tion approach to achieve both high accuracy and efficiency. Our experiments show
that the hybrid approach achieves significantly better accuracy compared to the
randomization-only approach and it is much more efficient than the SMC-only
approach. Our multi-group randomization approach allows data miners to con-
trol the trade-off between privacy and data mining accuracy.

For the hybrid approach, we only used a fixed window size throughout the entire
decision tree building process. In the future, we will investigate whether a dynamic
window size can help further improve the performance, i.e., the window size for
different tree nodes might be different, depending on the randomization results.
We will also investigate the effectiveness of the hybrid approach on other data
mining computations.
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Abstract. This paper proposes an approach to detect duplicates among
relational data. Traditional methods for record linkage or duplicate de-
tection work on a set of records which have no explicit relations with
each other. These records can be formatted into a single database table
for processing. However, there are situations that records from different
sources can not be flattened into one table and records within one source
have certain (semantic) relations between them. The duplicate detection
issue of these relational data records/instances can be dealt with by for-
matting them into several tables and applying traditional methods to
each table. However, as the relations among the original data records are
ignored, this approach generates poor or inconsistent results. This paper
analyzes the characteristics of relational data and proposes a particular
clustering approach to perform duplicate detection. This approach in-
corporates constraint rules derived from the characteristics of relational
data and therefore yields better and more consistent results, which are
revealed by our experiments.

1 Introduction

Data mining tasks usually work on large data warehouses where data often comes
from multiple sources. The quality of mining results largely depends on the qual-
ity of data. One problem that degrades the data quality is the duplicated data
records among the sources. Duplicate detection/elimination then is an essential
preprocessing for data mining tasks and different methods have been proposed
to deal with this problem [1,2,3,4]. The main idea of these methods is to use
certain metrics to determine if certain pairs of data records are similar enough
to be duplicates. In these methods, each data record is mostly of one same type
and exists as an independent instance during the duplicate detecting process.

On the other hand, relational data is common in reality. Databases in com-
plicated applications often have multiple tables to store multi-type records with
relations. Semi-structured data over the Web also has the relational character-
istic in terms of the referencing via hyperlinks. The requirement of duplicate
detection among relational data is then obvious. Traditional methods can still
work but without acknowledging the characteristics of relational data, they tend
to produce inadequate and even inconsistent results. Recently, several models [5]
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[6] have been proposed to address this issue. These models are built on probabil-
ity theories. They capture the relational features between records to collectively
de-duplicate them with more accuracy. To make the models work, labeled sam-
ples should be supplied for estimating model parameters and this training process
often takes a considerable amount of time due to the complexity of the model.

This paper then proposes an efficient approach to detect duplicates among
relational data. The characteristics of relational data are analyzed from the per-
spective of duplicate detection. We define constraint rules that capture these
characteristics. Our approach then incorporates these constraint rules into a typ-
ical canopy clustering process for duplicate detection. Experiments show that our
approach performs well with improved accuracy. Furthermore, as our approach
is based on clustering, no labeled samples are essentially required and no extra
training process is involved, which sometimes is good for large and raw data sets.

The rest of the paper is organized as follows. Section 2 discusses related work.
Situation of relational data and its characteristics are discussed in Section 3.
Section 4 defines constraint rules for duplicate detection in relational data. Sec-
tion 5 presents the constrained clustering approach. Experiments and evaluation
results are shown in Section 6. Section 7 concludes the paper and discusses the
future works.

2 Related Work

Duplicate detection of data was initially studied in database community as
“record linkage” [7]. The problem was formalized with a model in [1] and was
further extended in [2]. This model computes over features between pairs of
records and generates similarity scores for them. Those pairs with scores above
a given threshold are treated as duplicates and transitive closure is performed
over them to yield the final result. In [8], clustering-based methods are proposed
to identify duplicates in publication references. Their approach performs quick
canopy clustering with two thresholds at the first stage and perform more ex-
pensive clustering methods within each canopy cluster at the second stage for
refined results. The records for de-duplication in these methods are not rela-
tional, which means each record is a separate instance with no explicit relation
with another.

Supervised learning methods have also been employed to make duplicate de-
tection more adaptive with given data. Cohen et al [3] propose an adaptive
clustering method and introduces the notion of pairing function that can be
learned to check duplicates. Tejada et al [9] use a mapping-rule learner consist-
ing of a committee of decision tree classifiers and a transformation weight learner
to help create mapping between records from different data sources. Bilenko and
Mooney [4] use a stochastic model and Support Vector Machine (SVM) [10]
to learn string similarity measures from samples so that accuracy can be im-
proved for the given situation. These methods are more adaptive and accurate
because of their various learning processes which require an adequate amount of
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labeled data. Again, all of these methods work on traditional data records with
no relational features.

Recently, the relations between data records have been noticed in duplicate
detection research community. Singla and Domingos [5] build a collective model
that relies on Conditional Random Fields (CRFs) [11] to capture the relation
of records for de-duplication. The relationship is indicated just by common field
values of data records. The model proposed by Culotta and McCallum [6], which
is based on CRFs as well, deals with multi-type data records with relations other
than common field values. These methods improve the accuracy of de-duplication
by capturing relational features in their models. They also belong to the learning
paradigm, which requires labeled samples for training the model parameters. Due
to the complexity of the model, the training and inferencing require considerable
time, which poses scalability problem.

3 Situations and Characteristics

3.1 Situations

One situation of duplicated relational data can be found in [6], which gives an
example of duplicated records of papers and their venues. In this example, the
details of papers (author, title) form a database table and the details of venues
(conference/journal name) form another table. Obviously, each paper links to a
certain venue, forming a relation between the two records. This example can be
further extended so that authors may form a separate table containing details
of authors (e.g., name, email address) and papers link to certain records in the
author table. This kind of normalization is common in designing databases. But
it is not the favorite situation for traditional duplicate detection.

Data on the emerging Semantic Web [12] also has this relational feature.
Ontologies are introduced to align data on the Semantic Web. A data record (or
instance) then has several property values according to the underlying ontology.
Particularly, it may have certain property values that refer to other records.
Examples are like that an author record has a “publish” property with values
pointing to several publication records. More over, unlike the strict database
schema, ontology allows data records to be described in a very flexible way with
different angles. For example, a publication record can use a reverse property
of “publish”, say “writtenBy”, to refer to the author records. This flexibility,
together with the characteristics of decentralization on the Semantic Web, poses
challenges to record deduplication.

3.2 Characteristic of Relational Data

The main characteristic of relational data is certainly the relational feature, i.e.,
the links between different data records. This often implies that data records
may have different types, like the discussed situation where author records link
to publication records. Then, multi-type is another characteristic.
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In the discussed Semantic Web situation, data instances are not formatted as
well as in databases. They are often presented in XML format or described by
certain languages (for example, OWL [13]). Therefore, such data instances are
semi-structured. In addition, as users can choose different ways to express, the
resulting data instances then have different perspectives, not as unified as those
in databases.

4 Duplication in Relational Data

Duplication in relational data can happen on every type of related data records.
However, due to the characteristics of relational data, there are some certain
patterns among them, which allow us to define constraints. We first introduce
some basic notations and then define constraint rules.

4.1 Notations

First, for a particular domain of interest, we can obtain a set of types T , and a
set of properties P . There are two types of properties in P : data type properties
that allow instances to be described with numbers and/or string values; and
object properties that link instances to other instances with particular meanings
(following the notions in OWL [13]). An instance then can be described with a
type and a subset of properties and their corresponding values (numbers, strings,
or other instances).

We identify two classes of instances. If an instance di has certain object prop-
erty values that let it link to a set Di of other instances, then di is identified as
“primary instance”. For any instance dj (dj ∈ Di), dj is identified as “derived
instance”. The two classes are not exclusive. That is, an instance can be both
“primary” and ”derived” as long as it points to other instances and has other
instance pointing to itself. Given an object property link between two instances
(denoted by di → dj), it is easy to determine the classes of the instances.

If two instances di and dj actually refer to one same real world entity, then
the two instances are regarded as duplicates (denoted as di = dj). Duplicated
instances may not be same in terms of their types, property values as they
often come from different sources with different qualities and perspectives. But
usually they have similar values. Traditional methods thus use certain similarity
measures to compute degrees of similarity of two instances. Given a similarity
function f , a clustering process can be conducted to group instances with high
similarity degrees into same clusters. For an instance di grouped into cluster ck,
we denote as di ∈ ck or simply ck(di).

4.2 Constraint Rules

We define five constraint rules for duplicate detection using clustering approaches.
Please note although we call all of them constraints, some actually act more like
general rules with little constraint features.
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Derived distinction. Given an instance dp and Dp = {dr|dp → dr}, if ∀di, dj ∈
Dp, i �= j, then di �= dj .

This rule indicates that all the derived instances from one same primary in-
stance should not be duplicates of each other. The reason is quite obvious. Firstly,
the application of relating one instance to two or more same other instances is
very rare. A paper is always written by different authors if it has more than one
author. A conference, in principle, never allows two same papers to be accepted
and published. Secondly, the relation between one instance and other several in-
stances often occurs within one data source. Therefore, it is quite easy to maintain
so that the derived instances from one same instance are not duplicates. Consider
that a person manages his publications to ensure no duplicates occur on his/her
web pages. As a result, the instance of this person links to different instances of
publications.

Primary similarity. Given two primary instances da, db and one of the resulting
clusters c, if c(da, db), then da and db have high confidence to be duplicates. We
denote da ≈ db.

This rule prefers similar primary instances. This rule is based on the observa-
tion of the characteristic that primary instances are often described with more
detailed and accurate information while derived instances are usually given less
attention and hence have less and vaguer details. Therefore, similarity between
primary instances are more reliable for duplicate detection.

Derived similarity. Given two primary instances da, db and da ≈ db, if we have
instances dx, dy and cluster c such that da → dx, db → dy, c(dx, dy), then dx ≈ dy.

This rule treats derived instances that fall in same cluster as duplicates if their
corresponding primary instances are treated as duplicates. Strictly speaking, if
two primary instances are duplicates, all of their corresponding derived instances
should be duplicates as well. However, as noise often exists, it can not be guaran-
teed that the seeming primary instance duplicates are actual duplicates. To ensure
high precision and to prevent false duplicate spreading, we only identify those de-
rived instances that fall in same clusters to be duplicates.

Reinforced similarity. Given instances di, dj , dm, dn and clusters ck, cl, if we
have di → dm, dn → dj , ck(di, dj) and cl(dm, dn), then di ≈ dj and dm ≈ dn.

This rule addresses the issue of data expressed with different perspectives. Dif-
ferent sources have their own views and describe data from different angles. An
entity may be described as a detailed primary instance in one source; But in an-
other source, it could be a simple derived instance. while we may not be confident
in the similarity between a primary instance and a derived instance that fall in one
same cluster ck, this similarity will be reinforced if their derived/primary instances
also fall into one same cluster cl. As a result, we treat both pairs as duplicates.

Boosted similarity. Given derived instances di, dj , dm, dn and clusters ck, cl

such that ck(di, dj) and cl(dm, dn), if there exist instances dx, dy such that dx �≈
dy, dx → [di, dm] and dy → [dj , dn], then di ≈ dj and dm ≈ dn.
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This rule reflects the notion of co-referencing. It is possible that two different
instances mention two seemingly same instances that turn out to be different. But
the possibility would be much less if more than one (unique) instances mention two
sets of seemingly same but different instances. For example, two different papers
may have one author’s name in common which actually refers to two different per-
sons; But it rarely happens that two papers have two authors’ names in common
which refers to four different persons. Ideally, if more frequent primary instances
are found pointing to more sets of similar derived instances (which may be imple-
mented by frequent item set mining [14]), the confidence of the results would be
much higher.

Fig. 1 serves to illustrate the application patterns of different constraint rules
we’ve defined.

Fig. 1. Illustration of applications of different constraint rules in corresponding situa-
tions. (a) derived distinction; (b) primary similarity and derived similarity; (c) reinforced
similarity; (d) boosted similarity.

5 Constrained Clustering

This section discusses how the above rules are incorporated in the clustering pro-
cess. First we present the commonly used canopy clustering method in duplicate
detection. Then we focus on our approach.

5.1 Canopy Clustering

Canopy clustering [8] is commonly used in duplicate detection [3,4,5]. It uses two
similarity thresholds (Ttight, Tloose) to judge if an instance is closely/loosely simi-
lar to a randomly selected instance that acts as canopy center. All loosely similar
instances will fall into this canopy cluster. But those closely similar instances will
be removed from the list and never compared to another canopy center. Canopy
clustering is very effective in duplicate detection as most instances are clearly non-
duplicates and thus fall in different canopies. It is also very efficient since it often
uses quick similarity measures such as TFIDF [15] computed using inverted index
techniques.
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Since the resulting canopies may be still large and overlap with each other, a
second stage process such as Greedy Agglomerative Clustering (GAC) or Expecta-
tion-Maximization (EM) cluster are usually conducted within each canopy to yield
refined results [8].

When canopy clustering is applied to duplicate detection in relational data di-
rectly, the performance may not be as good as it is used in normal data. This is be-
cause it ignores particular characteristics of relational data. For example, for two
derived instances which may represent two different papers of one person, they
can be so similar that canopy clustering (even with GAC or EM) treats them as
duplicates.

5.2 Canopy Clustering with Constraints

To improve the performance of duplicate detection in relational data, we modified
canopy clustering by incorporating the constraints we’ve defined. The resulting
approach can be divided into four steps.

Input: Set of instances D = {d1, d2, · · · , dN};
Similarity threshold Ttight, Tloose.

Output: Set of canopy clusters C1 = {c1, c2, · · · , cK}.
Begin

C1 = ∅; Dtmp = D;
while Dtmp �= ∅ do

Create a new canopy cluster ccanopy = ∅;
Pick a random dr in Dtmp;
Let ccanopy = {di|di ∈ Dtmp ∧ sim(di, dr) > Tloose}

subject to condition:
∀dx, dy ∈ ccanopy (x �= y)⇒ {dz|dz → dx ∧ dz → dy} = ∅;

Let ccore = {di|di ∈ ccanopy ∧ sim(di, dr) > Ttight};
Dtmp = Dtmp − ccore; C1 = C1 + ccanopy;

End while
Output C1;

End

Fig. 2. Algorithm of step 1

The first step (step 1) is much like the first stage of canopy clustering except
that it subjects to the constraint that no any two derived instances from one same
instance fall into one same canopy. Fig. 2 shows the algorithm of this step. In the
algorithm, function sim(di, dr) computes the degree of similarity between the in-
stance di and dr.

Although each resulting cluster is constrained to contain no two derived in-
stances of one same instance, it still can not guarantee derived distinction due
to the existence of overlapping canopies. If two clusters, each of which contains
a derived instance of one same instance, both have an instance doverlap, this in-
stance then actually bridges the two different derived instances when we take a
transitive closure. As a result, it violates derived distinction.

Step 2 then is designed to ensure derived distinction thoroughly. it is done
by checking the overlapping instances and only allowing them to be with the most
similar derived instance. Fig. 3 shows the algorithm of step 2.
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Input: Set of instances D = {d1, d2, · · · , dN};
Set of clusters C1 generated from step 1.

Output: Set of clusters C2.
Begin

for each di ∈ D do
Dderived = {dj |di → dj};
for any dx, dy ∈ Dderived (x �= y) do

if ∃dz ∈ D, cm, cn ∈ C1 such that dz, dx ∈ cm and dz, dy ∈ cn

let δ = sim(dz , dx)− sim(dz , dy);
if δ > 0 then remove dz from cn else remove dz from cm;

end if
end for

end for
Output C1 as C2;

End

Fig. 3. Algorithm of step 2

Input:
Set of instances D;
Set of clusters C2 from step 2.

Output:
Set of duplicate pairs P1.

Begin
P1 = ∅;
for each ci ∈ C2 do

for any dx, dy ∈ ci(x �= y) do
//primary similarity
//and derived similarity
if dx → dm and dy → dn and ∃cj ∈

C2, cj(dm, dn)
P1 = P1 + (dx, dy) + (dm, dn);

end if
//reinforced similarity
if dx → dm and dn → dy and ∃cj ∈

C2, cj(dm, dn)
P1 = P1 + (dx, dy) + (dm, dn);

end if
end for

end for
Output P1;

End

Fig. 4. Algorithm of step 3

Input:
Set of instances D;
Set of clusters C2 from step 2.
Set of Pairs P1 from step 3.

Output:
Set of duplicate pairs P2.

Begin
P2 = ∅;
for any dx, dy ∈ D such that
x �= y, dx �≈ dy do

Ptmp = ∅;
while ∃dm, dn, c such that
dx → dm, dy → dn, c ∈ C2, c(dm, dn)

do
Ptmp = Ptmp + (dm, dn);

end while
if |Ptmp| > 1 then P2 = P2 + Ptmp;

end for
P2 = P2 + P1;
Output P2;

End

Fig. 5. Algorithm of step 4

The purpose of step 3 is to extract high confident duplicate pairs within each
cluster in C2 by following the definition of primary similarity,derived similar-
ity, and reinforced similarity. In step 4, boosted similarity is implemented
to extract frequent co-referenced instance pairs as potential duplicates from the
clusters. The algorithms of step 3 and 4 are illustrated in Fig. 4 and Fig. 5 respec-
tively. After all the potential duplicate pairs are extracted, a transitive closure is
performed to generate the final results.

Please note the constraint rules reflected in these steps are not incompatible
with other refinement processes such as GAC. They can be added in the procedure
to work together with the constraint rules. For example, GAC can be added after
step 2 to further refine clusters.
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5.3 Computational Complexity

We informally address the complexity of our approach.The algorithm in step 1 per-
forms a constraint check that normal canopy clustering doesn’t have. This extra
check does about O(km2) judgements where k is the number of clusters and m
is the average size of each cluster. In the setting of duplicate detection, the size of
each cluster usually is not very big (k � m). The complexity of cluster adjustments
in step 2 depends on the number of primary instances (p) and the average size of
derived instances a primary instance has (q), which is about O(pq2). Normally,
n > p � q where n is the number of all the instances. In step 3, the extraction
of potential duplicate pairs out of each cluster performs at the complexity level of
O(km2+km2q2) if we include the checking for the derived instances. The complex-
ity in step 4 depends on the implementation. Our simple implementation operates
at O(p2q2). After all, it should be noted that all the above operations (checking,
adjusting, extracting) don’t involve very expensive computations. In fact, our ex-
periments reveal that a lot of time is spent in computing the similarity between
instances.

6 Experiments

There exist some commonly used data sets for duplicate detection experiments,
but data instances in them don’t have many types and in-between relations. And
mostly they are presented from one unified perspective. This doesn’t representwell
the real world situations of relational data.Therefore, we collected data from differ-
ent sources to build the data set for our experiments. The data set is mainly about
papers, authors, conferences/jounals, publishers and their relations. Such data is
collected from DBLP web site (http://dblp.uni-trier.de) and authors’ home
pages. These data instances are converted into a working format but types, rela-
tions and original content values are preserved. Manual labeling work is done to
identify the true duplicates among the data for the purpose of evaluation of ap-
proaches in the experiments. Totally, there are 278 data instances in the data set
referring to 164 unique entities. The size may not be so big, but duplicate detection
in it may not be easy since there are a certain amount of different instances with
very high similarity, for example, different papers within same research fields and
different authors with same/similar names. The distribution of duplicates is not
uniform. About two-third of instances have one or two references to their corre-
sponding entities. The most duplicated entity has 13 occurrences.

Same as [8], we use standard metrics in information retrieval to evaluate the
performance of clustering approaches for duplicate detection. They are precision,
recall and F measure. Precision is defined as the fraction of correct duplicate pre-
dictions among all pairs of instances that fall in the same resulting cluster. Recall is
defined as the fraction of correct duplicate predictions among all pairs of instances
that fall in the same original real duplicate cluster. F measure is the harmonic av-
erage of precision and recall.

http://dblp.uni-trier.de
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We evaluate our approach in comparison with the canopy-based greedy agglom-
erative clustering approach (CB+GAC) [8]. CB+GAC also performs canopy clus-
tering first but with no constraints. It then refine each canopy cluster using GAC:
initialize each instance in the canopy to be a cluster, compute the similarity be-
tween all pairs of these clusters, sort the similarity score from highest to lowest,
and repeatedly merge the two most similar clusters until clusters reach to a cer-
tain number. Table 1 shows the evaluation results of different approaches. The two
threshold parameters for canopy clustering in this evaluation are set asTtight = 0.5
and Tloose = 0.35, which are obtained through a tuning on a sampled data set. The
number of clusters is then automatically determined by the two parameters. In the
table, “CB+GAC” is the general clustering approachwe have just discussed. “Step
12” is the approach that only performs step 1 and step 2 (refer to Section 5.2) and
then returns the resulting clusters. “Step 12+GAC” is the approach that performs
GAC after step 1 and step 2. “Step 1234” obviously is the approach that performs
all the steps to impose all the constraints we’ve defined on the clusters. From the
table, we can see that by incorporating constraint rules, the overall F measure im-
proves along with the precision. In particular, when all the constraints are applied,
the precision increases up to 20%, which indicates that our approach can predict
duplicate with very high accuracy.

Table 1. Performance of different approaches

Approach Precision Recall F score

CB+GAC 0.717 0.806 0.759
Step 12 0.728 0.877 0.796

Step 12+GAC 0.784 0.817 0.800
Step 1234 0.921 0.721 0.809

Fig. 6 shows the sensitiveness of precision of different approaches to the loose
similarity threshold (Tloose) in the canopy clustering. Since in our approach some
constraint rules are used to extract duplicate pairs out of working clusters, the
quality of the initial canopy clustering may affect the performance. That is, when
Tloose becomes more loose, each canopy cluster may have more false duplicates,
which might affect the performance of those constraint rules used for duplicate
extraction. The trend of dropping precision while Tloose decreases is well revealed
in approach “Step 12”. However, the dropping trend of approach “1234” is slightly
better than that of “Step 12”, which means that constraint rules used in step 3 and
4 can tolerate noisy canopy clusters to certain degrees.

Table 2 shows the precision of detecting duplicated pairs in different steps in
our approach. This can be used to roughly estimate contributions of different con-
straint rules as they are implemented in different steps. The evaluation on our data
set shows that the main contribution to the improved precision is made in step 3,
where constraint rules of “primary similarity”, “derived similariy” and “reinforced
similarity” are imposed.
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loose tight

Fig. 6. Sensitiveness of precision to Tloose for different approaches

Table 2. Precision of detection of duplicated pairs in different steps

Step 1 Step 2 Step 3 Step 4

Precision 0.650 0.682 0.881 0.888

7 Conclusions and Future Works

This paper discusses the characteristics of relational data from the perspective
of duplicate detection. Based on these characteristics, we have defined constraint
rules, which are implemented and incorporated in our cluster-based approach. Ex-
periments show that our approach performs well with improved accuracy in term
of precision and recall. Experimental evaluations also reveal that the use of con-
straint rules increases the precision of duplicate detection for relational data with
multiple perspectives.

One of the further studies is to conduct further experiments with larger data
sets. Currently, we are keeping collecting data from different sources and convert-
ing and labeling them to build larger data sets. Besides the evaluation of accuracy
on the large data sets, the efficiency of the approach will be formally evaluated.

Another further study is to design quantitative metrics to reflect characteristics
of duplicated relational data. The ideal metrics will act as soft constraint rules.
Thus, they are expected to be more adaptive to different duplicate problems.
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Abstract. In this paper, we proposes a method to understand how re-
search fields evolve through the statistical analysis of research publica-
tions and the number of new authors in a particular field. Using a Dy-
namic Bayesian Network, together with the proposed transitive closure
property, a more accurate model can be constructed to better represent
the temporal features of how a research field evolves. Experiments on the
KDD related conferences indicate that the proposed method can discover
interesting models effectively and help researchers to get a better insight
looking at unfamiliar research areas.

1 Introduction

Detecting emerging trends and field evolving in scientific disciplines can signifi-
cantly improve the ability of researchers to catch the wave in a timely manner.
Most existing works [1, 2] use statistical topic models such as Latent Dirichlet
allocation (LDA) [3] for topic extraction and analysis. Recent work has been
concerned with temporal documents [4, 5]. These works can create fine-grained,
immediately interpretable topics that are robust against synonymy and poly-
semy. However, the topic models need a pre-specified number of latent topics,
and have to be done through manual topic labeling, which is usually a labor
intensive process. More importantly, it is difficult to show the different topics
which make up different fields and how these topics evolve and develop from a
global view. Mannila et al [6] tried to find one or a (small) set of partial orders
that fit the whole data set accurately from an optimization point of view. Due
to complexity, only series-parallel orders [7] were considered in [6]. Furthermore,
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the Global Partial Orders (GPO) is a qualitative model, local information was
sacrificed for global benefits.

In this paper, we attempt to detect how a research field evolves by analyzing
the publication track records of authors, especially new authors. The global
model constructed from these sequential track records can give us a macro-view
of field evolving trend, since “a burst of authors moving into a conference C from
some other conference B are actually drawn to topics, which are currently hot
at C” as the results in [8]. This could be considered as a graph mining task but
we focus on constructing a probabilistic graphical models from sequential data
set.

In this paper, we use the Dynamic Bayesian Networks (DBN) [9], which ex-
tends the graphical models to accommodate temporal processes represented in
the sequential data. We can control the model complexities according to the
users’ request. With such a method, more detailed information can be obtained
in comparison with the GPO model.

However, the current DBN models with the first-order Markov transition can
not catch all the information in field evolving trend and it is infeasible if high-
order Markov transitions are considered due to the complexity. In this paper
a transitive closure method is proposed to capture the evolving across several
time slices. This global model constructs a sequential publication record of new
authors to highlight how the research field evolves macroscopically. The model
is constructed using information from different time periods and this allows a
general publication trend to be captured. Finally, this model can be combined
with a topic model and topic description to give a user a better understanding
of a research field.

2 Problem Statement

Research community is important for academic communications, and many re-
search communities have their individual associations to best foster academic
research and collaborations. For example, as the first society in computing,
ACM (Association for Computing Machinery) has 34 distinct Speciate Interest
Groups (SIGs)1 in a variety of research fields to address different research inter-
ests. They organize and sponsor a large number of leading conferences in many
research fields, such as SIGGRAPH, SIGMOD, SIGKDD, SIGIR, etc. Most of
these premier conferences represent the frontier of their corresponding sub-fields
in computer science, such as SIGGRAPH for computer graphcs, SIGKDD for
knowledge discovery and data mining, etc. These conferences attract not only
the researchers in their local fields but also large proportion of top researchers
from other fields, who publish their research outputs in those top conferences.
Through investigating these top conferences, it is possible to gain an understand-
ing of the evolution of a particular research field.

According to the difference of duration time, in one time slot, members in a
community can be divided into three types:
1 http://www.acm.org/sigs/
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new author: authors who publish papers in this community for the first time;
regular author: regular contributors to the community;
retiring author: authors who may leave the community soon.

Though regular authors may shape the research field, the new comers are more
important in order to sense the emerging research topics. They often not only
bring in new resources and thoughts into a community, but also participate in the
hottest topics. Especially, in rising and developing fields, the role and influence
of new authors are more obvious. Through analyzing this type of new authors
by their publication records, we can obtain an understanding of how a research
field evolves, and reveal the trend through comparing the models in different
time periods.

2.1 Publication Track Records

The objective of this paper is to discover a global model based on the sequential
publication records of new authors in the interested community. The definition
of the publication track records is as the following.

Definition 1. The author’s publication track records (APTC) is defined
as a sequence S =< s1, s2, · · · , sn >(si ⊆ C), where C = {c1, · · · , cm} be the
conference set we analyzed, essentially denoting the field. This sequence shows
the conference attending history of an author ordered by year.

An APTC records the research sequence of an author, and this sequence rep-
resents their research field during different period. In this paper, we focus on
those premier conferences in which the authors or research groups are generally
stable, and the authors in those conferences are generally quite focused on their
research area, and seldomly publish their papers everywhere.

Definition 2. For one target conference, the new author’s publication track
records (NAPTC) is a sequence, of the new comer’s publishing track before he
or she first published a paper on that conference.

2.2 Problem Formalization

In analyzing, we assume that each NAPTC is generated independently. Since
our goal is to analyze the field evolving, we assume each conference focus on
one research field. This is usually true in reality for majority of conferences.
Especially, in the computer science, most famous conferences focus on one field.
Thus, we can use the conference name to represent its research field.

The formal definition of the problem can be denoted as: given the target
conference and time, with the new authors’ publication track sequence S =
{S1, S2, · · · , Sm}(Si is ith new comer), constructing the global model using Dy-
namic Bayesian Network (DBN) [10]. The model learned from data aims to find
the best model of the joint probability distribution of all conferences C under-
lying the temporal process. This is a structural learning process. In the next
section, we present an unified probabilistic approach to the constructing of a
global model.
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3 Method

DBN, represents both the inter-slice conditional independence assumptions, and
the intra-slice conditional independence assumptions. Among which we only care
about the inter-slice links. In this section, we first preprocess the data, then
introduce some methods to improve model constructing, and give an algorithm
process, finally interpret the model discovered.

3.1 Preprocessing

When the target conference and time are given, the publishing track of new
comers compose a subset of C. It often contains hundreds of conferences so
the computing will be intractable due to the complexity of BN structure learn-
ing. Moreover, there are many conferences that appear only once or twice. This
largely increases the computing complexity, but gains little benefit and even de-
stroys the conciseness of the result. Therefore we only focus on top k conferences
according to the support number.

Assuming {c1, · · · , ck} is the conference variable set analyzed, ci ∈ {0, 1}. ci[t]
is the random variable that denotes the value of the attribute ci at time t, and
C[t] is the set of random variable ci[t].

In the NAPTC listings, many conferences have multiple representations for
each year the conference has run. As such, many feedback loops can emerge
which can impact the expression and understanding of the final result. Also
when a researcher publishes a paper in one conference, it usually means that
he has involved in the corresponding field. As such, in this paper we will only
record the first participating.

3.2 Transitive Closure

After preprocessing, there are k binary random vari-
Table 1. An example

Sequence Times
a c b 10
a d b 10
a e b 10
a f b 10
a g b 10

ables C[t] = {c1[t], c2[t], · · · , ck[t]} in each time slice t.
Based on the the first-order Markov property, the state
sequences can only be represented into a set of consec-
utive one time slice transition. For example the state
sequence C1C2C3C4 can only be divided into three
time slice transitions C1 → C2, C2 → C3, C3 → C4.
This is usually not accurate enough for our task as
shown in the example below.

Considering the data set in Table 1. It is a part
of sequence data. The total number of sequences is 1000 and the number of
appearance of each node a, b, c, d, e, f and g is 100. In the remaining part of a
sequence, there are no one time slice transitions which is the same as Table 1,
such as a → c, a → d, f → b, · · ·. With a greedy search and BDeu score, we
construct DBN. In the result, no transition is significant enough to appear in
DBN model so the resulting graph is a set of isolated nodes. This loses one
important information the transition from a to b. The reason is that the model
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can only deal with transitions for consecutive time slices. However, this transition
is valuable for our problem. Considering when a scholar published a paper in
ICML 2000, this research field may affect his following research, not only the
immediate ones. To solve this problem, we introduce the idea of transitive closure
and use Property 1 to modify the definition of time slices in the first-order markov
model.

Property 1. The transition probability of any two random variables across any
time slices is equal. The corresponding formula is P (ci|cj) = P (ci[t]|cj [t′]), i, j ∈
{1, · · · , k}, t′ ∈ [1, t − 1].

In our track record sequences, the data is sparse and the sequence is usually short,
showing the time span is not large. Furthermore, a conference represents one field
only. In this situation, the field transitions almost remain stable, even if spanning
limited time slices. Thus, in our two time slice model we define time slice 0 to
mean the start of a transition and time slice 1 to mean the destination. The
transition can cover any time slices. Instead of dividing the state sequences into
a set of one time slice transitions, we now need to generate the transitive closure
about the set of one time slice transitions. The state sequence C1C2C3C4 will
generate a set of candidate transition pairs C1 → C2, C1 → C3, C1 → C4, C2 →
C3, C2 → C4, C3 → C4. With the transitive closure, the DBN constructed from
Table 1 has the transition a → b. This property improves the model accuracy.

3.3 The Prior Model

In transitive closure, the first-order extension can not capture all possible tran-
sition probabilities, especially in sequence data and the activities occur with
sequence, such as P (Ct|Ct−2, Ct−1) (the second-order markov process) and the
P (Ct|Ct′ , · · · , Ct′′)(t > t′′ > t′). For a better representation of the sequence,
we need to consider these transitions. However, considering all these transitions
increases the complexity. The model does not need to be an exact match to,
or model all features of, real sequence data, so long as it captures many of the
important sequence features. Some methods consider the top k transition. The
value of k is hard to define and may lose some important information. Using the
global partial order as the prior model, we can effectively obtain the sequence.

As a generative model, global partial order describes a set of sequences using a
mixture model of partial orders. The likelihood of a given partial order producing
a sequence compatible with it is inversely proportional to the number of total
orders compatible with the partial order. The method tries to find a set of
partial orders that are specific enough to capture significant ordering information
contained in the data. Through using the trivial partial order and an unrestricted
partial order, the global optimization model can be found. Using the results to
initialize a search over unrestricted partial orders with DBN, we can obtain a
good result. Due to the high complexity of global partial order constructed, we
restrict the model learning to a small number of nodes h(<= k).
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3.4 The Procedure of Constructing DBN

With the descriptions mentioned above, we can construct our DBN as Algo-
rithm 1. In model learning the objective is to maximize the posterior probability
P (M |S) of M given S, where S is our sequence data set and M is the model.
Since with small amounts of data in our problem, BIC/MDL is known to over-
penalize, we use the BDeu scoring metrics [11] in this paper.

Algorithm 1. The procedure of DNB constructing
Data: The conference sequence set (SS) after being preprocessed,

parameter k and h.
Result: The global model constructed based on Dynamic Bayesian Network.
begin

Step 1. Hold the top k conference variables in SS.
Step 2. Obtain the global partial order M from SS with top h variables.
Step 3. Transitive closure computation.
for ∀s ∈ SS do

Divide the sequence s into binary transition pairs;
Count their transitive closure;
Store the transitive closure of s in sequence set SSC;

Step 4. Construct Dynamic Bayesian Network on SSC.
while true do

generate all the network structures M ′ from M ;
for ∀M ′

i ∈ M ′ do
computing its BDeu score;

let i be the index such that M ′
i has the highest BDeu score.

if the BDeu score of M ′
i is higher than M then

M = M ′
i ;

else
break while;

Step 5. Draw the DBN model as a graph;
Represent the inference probability.

end

In step 1, we preprocess the sequence and hold the top k conference variables.
Step 2 constructs the global partial order from SS with the top h variable,
then uses this as the prior model. With step 3, the conference sequences are
transformed with the transitive closure. In step 4, based on the transitive closure
and the prior model, we can construct the Dynamic Bayesian Network. In the
search process, we use the greedy search with random restarts [12], which can
restart from another random graph to escape the local maximum. In step 5, we
draw the DBN with the top score value model as a brief graph, and interpret
the model through the CPT or influence scores [13].



326 J. Wang et al.

3.5 Network Interpretation

In the network interpretation we only care about the field (conference variable)
evolving represented by inter-slice links. Thus in the brief graph the nodes are
defined as the random variables and the links are defined as the inter-slice links.
At a quantitative level, relationships between variables are described by a family
of joint probability distributions (conditional probability table, CPT) that are
consistent with the independence assertions embedded in the graph. Sometimes,
people usually want to know the influence that a parent gives to its child, we
consider the influence score [13] as an alternative choice. The influence score is
arranged between -1 and 1. Positive numbers represent activating relationships
of a parent on a child, while negative numbers represent repressing relationships.

In our model based on DBN, in general, each slice can have any number of
state variables. If there is a node connected by several nodes, we need to carefully
explain it as the value of the node is influenced by those nodes connected to it.
The quantitative analysis of the influence should rely on the CPTs and with the
help of influence score.

Additionally, in our graph, positive correlation in some degree means the high
probability of the sequential appearance comparing with negative correlation
and independence. So from the positive correlations a set of binary orders of
the nodes covering one time slice can be created, and with concatenating these
binary orders together a global order can be generated. Therefore the nodes
on the bottom of the global order usually appear later than the nodes above
them.

4 Experiments

We apply the method presented in Section 3 to construct our DBN model. We
also use the LDA model2 for topic discovery. Empirical results show that our
model provides a compact representation, which is better than global partial
order model and current DBN method. Through our model, we can provide a
potential source for understanding the sequential data deeper and catching how
a research field evolves and develops better.

4.1 Data Preparation

In the experiments, we use the two data sets, the first is the DBLP set of
datasets3. Through DBLP(by October 2006), we can extract the publication
track sequence of authors. In these data, the duplicate names are only a tiny
part of the whole dataset, thus will not be a problem in our model construction.

The second data set consists of the abstracts in SIGKDD conference proceed-
ings from 2001 to 2006. Through these data, we can extract the topics for better
explaining our model’s advantage. All the abstracts were crawled from the ACM
2 http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
3 http://dblp.uni-trier.de/
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digital library4. For better discovering the topic, we filter some phases, such as
“the”, “a”, etc., which may affect the accuracy of the results.

4.2 Global Model

This section compares the all global models as the following:

1. Global partial order (GPO);
2. Dynamic Bayesian Network (DBN);
3. DBN with Transitive Closure (DBN-TC);
4. DBN with Transitive Closure and Prior Network (DBN-TCPN);

The GPO model is constructed based on [6], the others DBN, DBN-TC and
DBN-TCPN are constructed based on Dynamic Bayesian Network. The DBN
model constructed without the transitive closure is based on the first-order
markov. The DBN-TC model is based on DBN with the transitive closure. The
DBN-TCPN is the model proposed in this paper, with transitive closure and
prior network GPO. The sequence data are gathered from publication track se-
quences of new authors in SIGKDD 2006. The prior network presents the global
partial order model with top 12 conference variables. And the DBN models are
constructed from the top 20 conference variables.

Fig.1 shows the four models. Classifying the edges into positive and negative
correlation according to the influence score [13], all three DBN models have no
negative edges. The DBN (DBN, DBN-TC and DBN-TCPN) models all present
more information than GPO model. In the following, we describe our model
DBN-TCPN and use it to understand how research field evolves.

4.3 Model Detail

In this subsection, we describe this model in detail, including both the topology
and probabilistic table. Fig.1(d) or Fig.2(d) represents the topology of publica-
tion track records with new comers in SIGKDD 2006. As the model does not
have negative correlations. This is quite convenient for us to gain the sequential
feature of the conferences. The figure shows many application fields. Especially
www based research conferences appear in the low level in the network, such as
SIGIR, CIKM, WWW, APWeb. It also indicates how the KDD research field
develops and is enlarged, due to the emergence of ICDM and PAKDD, two other
conferences in the KDD field.

From the part of the corresponding probability table shown in the Fig.1(d),
it is evident that many people change research field from theory conference to
application conference, such as the CPT for the WWW conference node, the
value “1” means that researchers of the discrete algorithm symposium SODA,
a famous forum focusing on discrete problems, bring their research into WWW
when they have no Expert Systems field. And from the CPT for the ICDM
conference node, multimedia domain is related positively to the data mining
ICDM.
4 http://portal.acm.org/dl.cfm
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Fig. 1. Global model comparision

4.4 Comparision with Topic Model

In this section, we use our DBN-TCPN model (DBN with Transitive Closure
and Prior Network) constructed in different period in SIGKDD conference to
reveal the evolving and trend in data mining and knowledge discovery. For better
explanations, we also compare it with the topic model.

In the model construction, the prior network is with top 12 conference vari-
ables. And the DBN-TCPN models are constructed with top 20 variables except
for the 2002 year with top 22 (This is due to that the conference variable support
counts are difficult to be distinguished). From the models in Fig.2, where isolate
variables have not been shown, we can find that the model constructed is more
and more sparse gradually as shown by the statistical property shown in Fig.2.
Such as in the 2000, 2004 and 2006 year, the variable number is all 20, but the
edge number decreases from 30 to 25 to 18. This shows that the effect of the
KDD field is larger and larger, attracting various fields’ researchers.

Analyzing the figure closely, Fig.2(a) indicates that new comers in 2000 usu-
ally come from the database field (SIGMOD, ICDE, PODS, VLDB), artificial
intelligence (AAAI/IAAI, IJCAI, UAI) and machine learning (ICML). These
conferences appear in the low-level in the graph. This indicates that they have
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SIGMOD_Conference

VLDB PODS

AAAI

AAAI/IAAI

UAI

ICML ICDE

Variable Number: 20

Edge Number 30

(a) 2000

PAKDD

ICDM

VLDBICDE PODS SIGMOD_Conference

SIGIR

ICML

Variable Number: 22

Edge Number:29

(b) 2002

ICDMCIKMSIGIR

PAKDD

WWW

VLDB

ICML

Variable Number: 20

Edge Number:25

(c) 2004

CIKM

PAKDD

SIGIR

WWW

APWeb

ICDM

Variable Number: 20

Edge Number:18

(d) 2006

Fig. 2. Global model with different time in SIGKDD. In the figures, we use different
color to differentiate different fields’ conferences, which may be interesting.

some other domain background, and the research field evolves from theoretical
computing to DB, AI and ML, with further transforms to DM and knowledge
discovery (KDD). In that period, the DM and KDD fields where in their in-
fancy, and many algorithmic and theoretic problems needed to be studied. In
2002 (Fig.2(b)) the DB field maintains a presence in KDD, and the KDD field
has developed, some forums (PAKKD and ICDM) have also attracted the re-
searchers from other fields. Additionally, the field closed to SIGIR emerged. In
2004, KDD continues developing, and application fields play an important role in
KDD, they introduce the web application to web mining using a machine learn-
ing method, and this trend continues in 2006. Moreover, the number of KDD
applications has increased in relation to other research topics such as multimedia
(ACM Multimedia), SIGIR and WWW.
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For a better comparison, we used the yearly data of a target conference to
analyze trends in topics over time based on topic model. Using the topic ob-
tained earlier, the documents were partitioned by year, and for each year all
the documents were assigned to the topic using the model. These fractions pro-
vide useful indicators of relative topic popularity in research literatures in recent
years. And for better analysis, we respectively compute the one of all authors
and new authors.

Table 2 lists the 10 topics analyzed based on SIGKDD abstract data from
2001 to 2006.

Table 2. Topics discovered with manual labels

Topic No. manual namings Topic No. manual namings

0 classification 5 web mining

1 graph mining 6 clustering

2 network learning 7 probabilistic model

3 application based on rule 8 text mining

4 real application 9 algorithm design

For convenience, we combine the related topics, such as topic No. 0 (classifi-
cation), topic No. 6 (clustering) as machine learning topics, topic No. 2 and No.
5 for web mining, and average their topic intensity. Figure 3 shows topic inten-
sity of all papers by new authors and all authors in Machine Learning (ML),
Algorithm Design (AD) and Web Mining (WM). To represent the results, we
use a polynomial function to show that the data fit the line in Figure 3. The
results indicate that the topics of new authors are consistent with that of all
authors, and this is consistent with our assumptions and model described above.
However, we cannot see KDD development and other related field evolving in-
formation from how a topic changes, which makes it difficult to understand how
a particular research field evolves. If these topic models can be integrated with
a global model, the quality of prediction can be improved.

(a) FP (b) ML (c) WM

Fig. 3. Topic Model
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5 Conclusions

Understanding how a research field evolves is essential for scientists, analysts and
decision makers to identify emerging trends in the body of scientific literature.
This paper provides a method to help researchers understand unfamiliar subject
areas and guide them toward hot topics and trends using a global model. This
was accomplished by combining a Dynamic Bayesian Network with the proposed
transitive closure property, to more accurately model the temporal features of
how a research field evolves. Through the introduction of Global Partial Order
(GPO) model (a good global model), we can synthesize the ordering informa-
tion. Models constructed are compared in order to identify change as a sign of
an emerging trend. The experimental results with SIGKDD show our model is
effective. Also the models constructed represent the research trend accurately
in data mining and knowledge discovery field. Especially with the comparative
analysis between our model and topic model in the experimental data set, the
result shows the consistent and our model can reveal more trend information
than topic model.
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Abstract. In recent years, a series of manifold learning algorithms have
been proposed for nonlinear dimensionality reduction (NLDR). Most of
them can run in a batch mode for a set of given data points, but lack a
mechanism to deal with new data points. Here we propose an extension
approach, i.e., embedding new data points into the previously-learned
manifold. The core idea of our approach is to propagate the known co-
ordinates to each of the new data points. We first formulate this task as
a quadratic programming, and then develop an iterative algorithm for
coordinate propagation. Smoothing splines are used to yield an initial
coordinate for each new data point, according to their local geometrical
relations. Experimental results illustrate the validity of our approach.

1 Introduction

Recently, some manifold learning algorithms have been proposed for nonlinear di-
mensionality reduction (NLDR). Typical algorithms include Isomap [1], local lin-
ear embedding (LLE) [2], Laplacian eigenmap [3], local tangent space alignment
(LTSA) [4], charting [5], Hessian LLE (HLLE) [6], semi-definite embedding [7],
conformal eigenmap [8], spline embedding (SE) [9], etc. Real performances on
many data sets show that they are effective methods to discover the underlying
structure hidden in the high-dimensional data set.

All the manifold learning algorithms are initially developed to obtain a low-
dimensional embedding for a set of given data points. The problem in general
is formulated as an optimization problem, in which the low-dimensional coordi-
nates of all the given data points need to be solved. Matrix eigen-decomposition
or other mathematical optimization tools (for instance, the semidefinite pro-
gramming [7]) are used to obtain the final results, i.e., the intrinsic embedding
coordinates. Accordingly, the algorithms run in a batch mode, once for all the in-
put data points. When new data points arrive, one needs to rerun the algorithm
with all data points. In applications, however, rerunning the algorithm may be-
come impractical as more and more data points are collected sequentially. On

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 332–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the other hand, rerunning means the previous results are simply discarded. This
may be very wasteful in computation.

Our interest here is to embed the new data points into the previously-learned
results. This is also known as out-of-sample problem. In literature, out-of-sample
extensions for LLE, Isomap, Laplacian Eigenmap are given by Bengio et al.,
using kernel tricks [10]. This problem is further formulated as an incremental
learning problem, and extensions for LLE and Isomap are given by several re-
searchers [11,12]. These approaches are suitable for once dealing with one new
data point. For more than one new data points, however, we need to embed them
one by one.

A
B C

(a) (b)

Fig. 1. (a) The task of embedding new data points; (b) coordinate propagation in a
neighborhood

Let us use Fig. 1 to explain our motivation. We are given two sets of data
points which are well sampled from a manifold embedded in a high-dimensional
Euclidean space. The low-dimensional embedding coordinates of one data set are
also given, saying in Fig. 1(a), the data points with (dark) purple color. Under
these conditions, our task is to embed the new data points (yellow points). In
this work setting, the coordinates of the neighbors of a new data point may be
known, partly known or even all unknown (Fig. 1(a)).

Our idea to solve this problem is to propagate the known coordinates to the
new data points. To this end, we first consider this problem in view of coordinate
reconstruction in the intrinsic space and formulate it as a quadratic program-
ming. In this way, we can get a global embedding for the new data points. Then,
we develop an iterative algorithm through a regularization framework. Through
iterations, each new data point gradually obtains a coordinate (Fig. 1(b)). We
call this process coordinate propagation. We also use smoothing splines to gen-
erate an initial coordinate for each new data point to speed up the precess.

2 Model and Algorithm

2.1 Problem Formulation

The NLDR problem. Given a set of data points X = {x1,x2, · · · ,xn} ⊂ R
m,

which lie on a manifold M embedded in a m-dimensional Euclidean space. The
goal is to invert an underlying generative model x = f(y) to find their low-
dimensional parameters (embedding coordinates) Y = {y1,y2, · · · ,yn} ⊂ R

d

with d < m. In this form, NLDR is also known as manifold learning.
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The out-of-sample extension problem. Given a set of data points X = {x1, · · · ,
xl,xl+1, · · · , xn} ⊂ R

m and the low-dimensional embedding coordinates YL =
{y0

1, · · · ,y0
l } ⊂ R

d learned from the first l data points. The goal is to obtain the
low-dimensional coordinates YU = {yl+1, · · · ,yn} of the rest n − l data points,
according to their relevances to the first l data points.

2.2 Model

A large family of nonlinear manifold learning algorithms can be viewed as the
approaches based on minimizing the low-dimensional coordinate reconstruction
error. The algorithms in this family include LLE, Laplacian eigenmap, LTSA,
and spline embedding (SE). The optimization problem can be uniformly formu-
lated as follows:

min tr(Y T MY )
s. t. Y T CY = I

(1)

where tr is a trace operator, M is a n × n matrix which is calculated according
to the corresponding geometrical preserving criterion, C is a n × n matrix used
to constrain Y to avoid degenerate solutions, and Y = [y1, · · · ,yn]T is a n × d
matrix to be solved, in which yi is a d-dimensional embedding coordinate of
xi (i = 1, · · · , n). That is, each row of Y corresponds to a low-dimensional
coordinate of a data point in X .

Specifically, in LLE, M = (I − W )T (I − W ); in Laplacian eigenmap, M =
D−W ; in LTSA, M = ST WT WS, and in SE, M = ST BS. In these algorithms,
C is a n × n identity matrix. Problem (1) can be easily solved via matrix eigen-
decomposition.

Now we use problem (1) to solve the out-of-sample problem. Introducing the
known low-dimensional embedding coordinates of the first l data points in X ,
naturally we can obtain a linearly constrained optimization problem:

min tr(Y T MY )
s. t. yi = y0

i , i = 1, 2, · · · , l
(2)

It seems that problem (2) is very complex since the variable to be optimized
is a matrix which has d × n unknown components. Directly solving it may be
very expensive due to different constraints from problem (1).

Now we rewrite Y in terms of column vectors, and denote it by Y = [ỹ1, · · · ,
ỹd], in which ỹi ∈ R

n (i = 1, · · · , d) is the i-th coordinate component vector of
all the n data points. Then

tr(Y T MY ) =
∑d

i=1
ỹT

i M ỹi (3)

We can see that ỹ1, · · · , ỹd are decoupled from each other in Eq. (3). We further
write out the d coordinate components of y0

i and let y0
i = [f0

i (1), · · · , f0
i (d)]T ,

i = 1, · · · , l. Based on the Lagrange multiplier method, problem (2) can be
converted, equivalently, into the following d subproblems, each of which is used
to optimize a coordinate component vector :
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min yT My
s. t. yi = f0

i (1), i = 1, 2, · · · , l
· · ·

min yT My
s. t. yi = f0

i (d), i = 1, 2, · · · , l

(4)

where y = [y1, · · · , yn]T is a n-dimensional vector to be solved. Note that each
subproblem is a convex quadratic programming (QP) since M is a positive semi-
definite matrix1. Therefore, we can easily solve them.

To reduce the number of variables to be solved, we write M as follows [13]:

M =
(

Mll Mlu

Mul Muu

)

(5)

where Mll is a l × l sub-block, Mlu is a l × (n − l) sub-block, Mul is a (n − l) × l
sub-block, and Muu is a (n − l) × (n − l) sub-block. Let yl = [y1, · · · , yl]T and
yu = [yl+1, · · · , yn]T . Then

yT My = yT
u · Muu · yu + yT

l (Mlu + MT
ul)yu + yT

l · Mll · yl

Note that yl is known in each subproblem. Substituting it into the correspond-
ing objective function, problem (4) can be further reduced to the following QP
problems: ⎧

⎨

⎩

min yT
u · Muu · yu + hT

1 · yu

· · ·
min yT

u · Muu · yu + hT
d · yu

(6)

where hi (∈ R
n−l, i = 1, · · · , d) is calculated according to (Mul + MT

lu)yl. Now
each QP subproblem in (6) has only n − l variables to be solved. Meanwhile,
Muu is also positive semidefinition2. Thus, each QP in (6) is a convex QP, which
has a global optimum.

Finally, we can combine the d global optima of problem (6) together into
n− l d-dimensional coordinates. In this way, we achieve a low-dimensional global
embedding for n − l new data points.

2.3 Iterative Algorithm for Coordinate Propagation

In this subsection, we develop an iterative algorithm for solving the out-of-sample
extension problem. The iterative algorithm can reduce the computational com-
plexity and need much less computation resources. In an iterative framework, it
would be possible for us to embed a very large number of new data points.
1 This can be easily justified in LLE, LTSA, and SE. In Laplacian eigenmap, M is

a Laplacian matrix, which is also positive semidefinition. Actually, for any vector
x = [x1, · · · , xn]T ∈ R

n, xT Mx = xT (D − W )x = 1
2

∑
i,j (xi − xj)

2wij . Since each

component wij in W is nonnegative, then xT Mx ≥ 0.
2 For any x = [0, · · · , 0, xl+1, · · · , xn]T , since M is positive semidefinition, we have

xT Mx = [xl+1, · · · , xn] · Muu · [xl+1, · · · , xn]T ≥ 0. This indicates that Muu is also
positive semidefinition.



336 S. Xiang et al.

Here we consider one of the subproblems in problem (4) since they have the
same form. For convenience, we omit the superscripts and the subscripts in the
constraints, and rewrite the problem as follows:

min yT My
s. t. yi = fi, i = 1, 2, · · · , l

(7)

Converting the hard constraints in (7) into soft constraints and introducing a
predicting term for the new data points, we have the following regularization
representation:

min yT My + μ1

∑l

i=1
(yi − fi)2 + μ2

∑n

i=l+1
(yi − gi)2 (8)

where μ1 > 0 and μ2 > 0 are regularization parameters, and gi is a predicted
value for yi, i = l +1, · · · , n. Here, gi will be evaluated from the neighbors of xi.
We use spline interpolation to solve this problem (in Section 3).

In (8), the first term is the smoothness constraint, which means that the
embedding coordinates should not change too much between neighboring data
points. The second term is the fitting constraint, which means that the estimated
function y should not change too much from the given values. The third term
is the predicting constraint, which means that function y should not bias too
much from the predicted values. The trade-off among these three constraints are
stipulated by μ1 and μ2. We can see that the second term is equivalent to the
hard constraints in (7) in case of μ1 → ∞.

Let us assume for the moment that each gi is known. Differentiating the
objective function with respect to y ∧= [yT

l ,yT
u ]T , we have

{
Mllyl + μ1yl + Mluyu − μ1fl = 0
Muuyu + μ2yu + Mulyl − μ2gu = 0 (9)

where fl = [f1, · · · , fl]T ∈ R
l and gu = [gl+1, · · · , gn]T ∈ R

n−l. For an out-of-
sample extension problem, we need not solve yl since yl = fl is known. Thus
we only need to consider yu. Here we can see that the second equation in (9)
is equivalent to the subproblem in (6) when μ2 = 0. Now it can be transformed
into

yu =
1

1 + μ2
Syu − 1

1 + μ2
Mulfl +

μ2

1 + μ2
gu

where S = I − Muu and I is a (n − l) × (n − l) identity matrix. Let us introduce
two new variables: α = 1

1+μ2
and β = 1 − α. Then we can get an iteration

equation:
y(t+1)

u = αSy(t)
u − αMulfl + βgu (10)

Some Remarks. (1). According to the theories of linear algebra, the sequence
{y(t)

u } generated by Eq. (10) is convergent if and only if the spectral radius of αS
is less than one, i.e., ρ(αS) < 1. Note that the spectral radius of a matrix is less
than any kinds of operator norms3. Here we can take α = 1/(||S||1 + 1). Thus
3 ||A||1 = max

j
{
∑m

i=1 |aij |, j = 1, · · · , n}, ||A||∞ = max
i

{
∑n

j=1 |aij |, i = 1, · · · , m}, etc.
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ρ(αS) < 1. (2). In Eq. (10), the first term is the contribution from the new data
points, while the second term is the contribution from the previously learned
data points on the manifold. Note that these contributions are decreased since
α < 1 holds. If we only consider these two terms, then the sequence will converge
to y∗u = −α(I − αS)−1Mulfl. This may be far from the optimization optimum
−M−1

uu Mulfl, especially when α is a small number. To avoid attenuations, we
introduce a compensation term, i.e., the third term in Eq. (10). Here we call it a
prediction to the new data points in the iterative framework, and its contribution
to yu is stipulated by the positive parameter β, which is a parameter in (0, 1).
Therefore, it is necessary for us to get a good prediction to gu. We will evaluate
it along the manifold via spline interpolation on the neighbors.

The steps of the iterative algorithm can be summarized as follows:

(1) Provide an initial coordinate component vector g(0)
u (in Section 3); Let

i = 0.
(2) Let gu=g(i)

u and run the iteration equation (10) to obtain a y∗u.
(3) Justify if it is convergence.
(4) Predict a g(i+1)

u according to y∗u and fl (in Section 3).
(5) i = i + 1, go to step (2).

Through the iterations, each new data point gradually receives a value (here
it is a coordinate component). To construct d coordinate component vectors,
we need to perform the iterative algorithm d times. In this way, the known
coordinates are finally propagated to the new data points.

A

B
C

(a)

A

Neighbors on the manifold

A

Local coordinate system

A

Global coordinate sytem

(b)

Fig. 2. Coordinate propagation. (a) The first three steps of coordinate prediction; (b)
Two steps of mapping the neighbors on the manifold to the global coordinate system.

In computation, we set the maximum iteration times to 100 when performing
the iteration Equation (10). Now a task to be solved is to provide an initial g(0)

u

and generate a g(i+1)
u in step (4). Details will be introduced in Section 3.

3 Predicting Coordinates Via Smoothing Splines

We first discuss how to provide a g(0)
u . Fig. 2(a) is used to explain our idea. There

we first select to predict the new data point “A” since it has the maximum
number of neighbors with known coordinates. After “A” is treated, then we
select “B”. After “A” and “B” have been treated, “C” is one of the candidates in
next time.
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In the above process, a basic task can be summarized as follows. Given a new
data point x ∈ R

m and its k neighbors {x1, · · · ,xr,xr+1, · · · ,xk}. We assume
that the low-dimensional coordinates of the first r data points are known. The
task is to generate a coordinate for the center point x.

Our method includes two steps (Fig. 2(b)). (1). Construct a local coordinate
system to represent x and its k neighbors, and calculate r + 1 local coordinates
t, t1, · · · , tr ∈ R

d. (2). Construct a function g : R
d → R through which we

can get a value f = g(t) for x. Here f can be considered as a low-dimensional
coordinate component. Furthermore, g should meet the following conditions:

fj = g(tj), j = 1, 2, · · · , r (11)

where fj is a known coordinate component of xj (j = 1, · · · , r). Actually, we
use g to map the local coordinate t of x into the global coordinate system with
lower dimensionality, in which the original data points are represented.

Suppose that the n data points in X are densely sampled from the manifold,
then the tangent space of the manifold M at x ∈ X can be well estimated from
the neighbors of x [14]. We use this subspace to define the local coordinates [4,6].
To be robustness, we simultaneously coordinatize the k + 1 data points. Note
that the computation for the rest data points xr+1, · · · ,xk is also necessary for
us to generate g(i+1)

u . After the local coordinates are evaluated, then we need to
map them into the global coordinate system. Fig. 2(b) shows the above process.

To satisfy the conditions in (11), spline regression method is used to construct
the function g. The spline we use is developed from the Sobolev space, and has
the following form [15,16]:

g(t) =
∑r

j=1
αj φj(t) +

∑p

i=1
βi pi(t) (12)

where the first term is a linear combination of r Green’s functions φj(t) (j =
1, · · · , r), and the second term is a polynomial in which all pi(t), i = 1, · · · , p,
constitute a base of a polynomial space. Here we take the one-degree polynomial
space as an example to explain pi(t). Let t = [t1, t2]T in the case of d = 2, we
have p1(t) = 1, p2(t) = t1 and p3(t) = t2. In this case, p is equal to 3.

In addition, the Green’s function φj(t) is a general radical basis function [15,16].
For instances, in the case of d = 2, φj(t) = (||t − tj ||)2 · log(||t − tj ||); in the case
of d = 3, φj(t) = ||t − tj ||.

To avoid degeneracy, we add the following conditionally positive definition con-
straints [17]:

∑r

j=1
αj · pi(tj) = 0, i = 1, · · · , p (13)

Now substituting the interpolation conditions (11) into Eq. (12) and Eq. (13), we
can get a linear system for solving the coefficients α ∈ R

r and β ∈ R
p:

(
K P
PT 0

)

·
(

α
β

)

=
(

f
0

)

(14)

where K is a r × r symmetrical matrix with elements Kij = φ(||ti − tj ||), P is a
r × p matrix with elements Pij = pi(tj), and f = [f1, · · · , fr]T ∈ R

r.
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We point out that g is a smooth function and fj = g(tj) holds for all j, j =
1, · · · , r. Faithfully satisfying the given conditions in (11) is necessary for us to
rely on it to interpolate a new point x.

To avoid error accumulation, the above performance is only used to yield a co-
ordinate component for the center point x and not used to map the rest new data
points xr+1, · · · ,xk. To get the d coordinate components of x, we need to con-
struct d splines. That is, we need to solve Eq. (14) d times. Note that in each time
the coefficient matrix keeps unchanged since it is only related to the r local coor-
dinates tj (j = 1, · · · , r). Finally, according to the steps as illustrated in Fig. 2,
each new data point can get an initial coordinate.

To predict a new vector g(i+1)
u during the iterations, we only need to set r = k

and perform the above algorithm again for each new data point.

p 

(a)

 

(b)

Fig. 3. (a): The 1200 data points sampled from a S-surface; (b): The intrinsic structure
of the data points in (a), i.e., a 2-dimensional rectangle

4 Experimental Results

We evaluated the algorithm on several data sets including toy data points and
real-world images. Here we give some results obtained by the global optimization
model (GOM) and the coordinate propagation (CP). These experiments can give
us a straightforward explanation on the data and the learned results. In addition,
the computation complexity is also analyzed in this section.

Fig. 3(a) illustrates 1200 data points sampled from a S-surface. Among these
data points, 600 data points below the horizontal plane “p” are treated as original
data points, and the rest 600 data points above the plane “p” are treated as new
data points. The intrinsic manifold shape hidden in these data points is a rectangle
(Fig. 3(b)). The sub-rectangle located in the left of the center line in Fig. 3(b) can
be viewed as the 2-dimensional (2D) parameter domain of the original data pints.
Our goal is to use the new data points to extend it to the right sub-rectangle.

We use LLE, LTSA and SE to learn the original data points. The results with
k = 12 nearest neighbors are shown in the left region of the dash line in Fig. 4(a)/
4(b), Fig. 4(d)/4(e), and Fig 4(g)/4(h), resepctively. Naturally, the learned struc-
ture is only a part of the whole manifold shape. The intrinsic manifold structure
hidden in these 600 original data points is a small rectangle.

The new data points are embedded into the right region by GOM and CP. In
Fig. 4(a) and Fig. 4(b), the M matrix in Eq. (5) is calculated according to LLE
with k = 12, i.e., M = (I − W )T (I − W ). In Fig. 4(d) and Fig. 4(e), the M
matrix is calculated according to LTSA with k = 12, i.e., M = ST WT WS; In



340 S. Xiang et al.

−2 0 2 4 6

−2

0

2

4

(a) GOM (LLE)

−2 0 2 4 6

−2

0

2

4

(b) CP (LLE)

−2 −1 0 1 2

−2

−1

0

1

2

(c) LLE

−2 0 2 4
−2

−1

0

1

2

(d) GOM (LTSA)

−2 0 2 4
−2

−1

0

1

2

(e) CP (LTSA)

−2 −1 0 1 2
−2

−1

0

1

2

(f) LTSA

−2 0 2 4
−2

−1

0

1

2

(g) GOM (SE)

−2 0 2 4
−2

−1

0

1

2

(h) CP (SE)

−2 −1 0 1 2
−2

−1

0

1

2

(i) SE

Fig. 4. The 2-dimensional embedding results of 1200 data points as illustrated in
Fig. 3(a). The center lines are drawn manually.

Fig 4(g) and Fig. 4(h), the M matrix is calculated according to SE with k = 12,
i.e., M = ST BS. From the ranges of the learned coordinates, we can see that
the learned manifold shape is extended along the right direction by the new data
points.

For comparison, Fig. 4(c), Fig. 4(f) and Fig. 4(i) show the 2D embedding results
of all the 1200 data points directly by LLE, LTSA and SE. As can be seen, the
results are confined into a square region, not extended to be a long rectangle, which
is the real low-dimensional structure hidden in the data points.

Fig. 5 shows the results by GOM and CP, which use a combination of SE and
LLE.That is, the original datapoints are learnedbySE to get their low-dimensional
coordinates, but the M matrix in Eq. (5) is calculated via LLE. Compared with
the results purely based on LLE (see Fig. 4(a) and Fig. 4(b)), here the shape of the
manifold is better preserved.

Fig. 6 shows two experiments on image data points. In Fig. 6(a) and Fig. 6(b), a
face moves on a noised background image from the top-left corner to the bottom-
right corner. The data set includes 441 images, each of which includes 116 × 106
grayscale pixels. The manifold is embedded in R

12296. Among these images, 221
images are first learned by SE with k = 8. The learned results are shown with (red)
filled squares. The rest data points are treated as new data points. From Fig. 6(a)
and Fig. 6(b), we can see that they are faithfully embedded into the previously
learned structure by GOM and CP. Here, the M matrix in Eq. (5) is calculated
according to SE.
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Fig. 5. The embedding results by GOM and CP. The original data points are learned
by SE, while the M matrix in Eq. (5) for GOM and CP is calculated via LLE.

(a) GOM (b) CP (c) GOM (d) CP

Fig. 6. The embedding results by GOM and CP on two image data sets. The original
data points are learned by SE. The M matrix in Eq. (5) is calculated according to SE.
Representative images of some new data points are shown at the side of the correspond-
ing circle points.

In Fig. 6(c) and Fig. 6(d), 400 color images are treated, which are taken from a
teapot via different viewpoints aligning in a circle. The size of the images is 76 ×
101. The manifold is embedded in R

23028. Among the images, 200 images are first
learned by SE with k = 5, and the results are illustrated with (red)filled circles.
The rest 200 images are treated as new data points. They are embedded into the
right positions by GOM and CP, using SE to calculate the M matrix in Eq. (5).

Computation Complexity. Both GOM and CP require to calculate the M ma-
trix in Eq. (5). Differently, in GOM we need to solve d QP problems. The compu-
tation complexity is O(d(n − l)3). In CP, we need to perform the singular value
decompositions (SVD) of n − l matrices in R

(k+1)×(k+1) when computing k + 1
local coordinates in tangent space [4,6] for each of n − l new data points. We also
need to solve d × (n − l) linear systems formulated as Eq. (14). The computa-
tion complexity of SVD is O((k + 1)3), while that of the linear system is near to
O((k+d+1)2) (using Gauss-Seidel iteration). In addition, the computation com-
plexity in Eq. (12) is near to O(k + d + 1). Thus, totally the complexity in each a
coordinate propagation is about O((n − l)[(k + 1)3) + (k + d + 1)2 + k + d + 1]).
Compared with O(d(n− l)3) in GOM method, the computation complexity in CP
is only linear to the number of new data points.

In most experiments, the real performance of CP is convergent when iteration
counter i is equal to one. That is, we only need to provide g(0)

u and g(1)
u once and

the convergence is achieved during iterating Eq. (10). This is reasonable since the
data points are assumed to be well sampled in manifold learning. Thus we can get a
good prediction to each new data point along the manifold via spine interpolation.



342 S. Xiang et al.

5 Related Work on Semi-supervised Manifold Learning

A parallel work related to out-of-sample extension for manifold learning is the
semi-supervised manifold learning [13,18,19]. In a semi-supervised framework, the
coordinates of some landmark points are provided to constrain the shape to be
learned. The landmark points are usually provided according to prior knowledge
about the manifold shape or simply given by hand. The goal is to obtain good
embedding results via a small number of landmark points. In generally, it is for-
mulated as a transductive learning problem. Intrinsically, the corresponding al-
gorithm runs in a batch mode. In contrast, out-of-sample extension starts with a
known manifold shape which is learned from the original data points, and focuses
on how to embed the new data points, saying, in a dynamic setting which are col-
lected sequentially. During embedding, the coordinates of previously learned data
points can maintain unchanged.

6 Conclusion

We have introduced an approach to out-of-sample extension for NLDR. We de-
veloped the global optimization model and gave the coordinate propagation al-
gorithm. Promising experimental results have been presented for 3D surface data
and high-dimensional image data, demonstrating that the framework has the po-
tential to embed effectively new data points to the previously learned manifold,
and has the potential to use the new points to extend an incomplete manifold
shape to a full manifold shape. In the future, we would like to automatically in-
troduce the edge information about the manifold shape from the data points so
as to obtain a low-dimensional embedding with better shape-preserving.
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Abstract. While null space based linear discriminant analysis (NLDA) obtains
a good discriminant performance, the ability easily suffers from an implicit as-
sumption of Gaussian model with same covariance each class. Meanwhile, mix-
ture model discriminant analysis, which is a good way for processing issues on
multiple subclasses in each class, depends on human experience on the number
of subclasses and has a highly complex iterative process. Considering the cons
and pros of the two mentioned approaches, we therefore propose a new algo-
rithm, called Spectral clustering based Null space Linear Discriminant Analysis
(SNLDA). The main contributions of the algorithm include the following three
aspects: 1) Employing a new spectral clustering method which can automatically
detect the number of clusters in each class. 2) Finding a unified null space for
processing multi-subclasses issues with eigen-solution technique. 3) Refining the
calculation of the covariance matrix in a single sample subclass. The experimen-
tal results show the promising of the proposed SNLDA algorithm.

1 Introduction

A large number of subspace methods have been proposed for processing high dimen-
sional data in last decades. Among these methods, Principal Component Analysis
(henceforth PCA), which is to find an optimal set of projection directions in the sample
space and maximize the covariance of the total scatter across all samples, has difficulties
in solving nonlinear problems. Linear Discriminant Analysis (LDA), which attempts to
maximize inter-class distances and minimize intra-class distances simultaneously, al-
ways suffers from a small sample size (SSS) problem especially for high dimensional
data. Null Space Linear Discriminant Analysis (NLDA) in which the null space of the
intra-class scatter matrix SW is preserved and then projected to the inter-lass scatter
matrix SB [1], can obtain a high classification accuracy than PCA and LDA because
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of saving more discriminant information. However, a disadvantage of the NLDA algo-
rithm as well as LDA, is that each class is implicitly assumed to subject to Gaussian
distributions with equal covariance.

On the other hand, mixture models based approaches, such as Multiple Discriminant
Analysis (MDA) [2] and Multimodal Oriented Discriminant Analysis (MODA) [3], as-
sume that training samples of each class are generated from a mixture model constituted
of multiple Gaussian subclasses with different covariances, and extract discriminant in-
formation from the subclasses which are obtained by cluster analysis. While these meth-
ods obtain better discriminant performance than the traditional single model ones, there
are still some drawbacks among them. Firstly, the number of subclasses of training data
needs to be manually assigned. Secondly, the employed iterative algorithm has a high
computational complexity and low convergence rate. Thirdly, the multimodal methods
suffer by the SSS problem more seriously when the number of training samples is small
enough (e.g. = 2).

To address the aforementioned issues, we propose the SNLDA algorithm. First of all,
a new spectral clustering method proposed by Lihi Z.M. & Pietro P. [5] is introduced
for automatical detecting the number of subclasses of each class. Then, covariances
from different subclasses are unified for modeling a null space. Finally, principal fea-
ture vectors are extracted from the null space with eigen-solution approach. Without the
iterative procedure employed by the MDA and MODA, the proposed SNLDA algorithm
builds a system with higher recognition performance and less computational complex-
ity. Meanwhile, the SSS problem which cannot be solved by the mentioned multimodal
methods is circumvented through the SNLDA algorithm.

The rest of the paper is organized as follows: Section 2 is the details of the proposed
SNLDA method. The experiment results are reported in Section 3. In Section 4, we end
up this paper with a conclusion.

2 The Proposed SNLDA Method

In this section, a new spectral clustering algorithm that can automatically detect the
number of clusters (or subclasses) in each class is first introduced. Then the details of
deriving the unified null space will be proposed. Finally, a pseudo-code of the proposed
algorithm and some refinements will be given.

2.1 Spectral Clustering

Generally speaking, an underlying distribution of data can be properly approximated
by a mixture of Gaussian models with cluster analysis. To achieve this task, the MODA
algorithm introduces multiclass spectral clustering [4] which employs an iterative pro-
cedure with non-maximum suppression and uses singular value decomposition (SVD)
to recover the rotation R. However, the method requires the pre-assignment of the num-
ber of clusters and easily gets stuck in local minima [4].

In this section, a new spectral clustering method proposed by Lihi Z.M. & Pietro
P. [5] is introduced. Assuming that the eigenvector X ∈ �n×C in an ideal case is
polluted by a linear transformation R ∈ �C×C , the method can recover the rotation R
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through a gradient descent scheme, the corresponding cost function J to be minimized
is defined as:

J =
n∑

i=1

C∑

j=1

Z2
ij

M2
i

(1)

Where Z is the rotated eigenvector, n is the number of points, C means the possible
group number, Mi = maxj Zij , i and j denote the row and the column of matrix Z,
respectively. As a result, the number of clusters in each class could be automatically
estimated without local minimum. It is noticeable that the spectral clustering method
can perform quite well even for small sample sizes. The details on the introduction of
the method can be seen in [5].

2.2 Deriving the Unified Null Space

After cluster analysis, each class will be automatically divided into several Gaus-
sian clusters. To measure the distance between two different normal distributions
N (x; μr1

i , Σr1
i ) and N (x; μr2

j , Σr2
j ), the Kullback-Leibler (KL) divergence is first de-

fined as follows [3]:

DKL =
∫

dx(N (x; μr1
i , Σr1

i ) − N (x; μr2
j , Σr2

j )) log
N (x; μr1

i , Σr1
i )

N (x; μr2
j , Σr2

j )

= tr((Σr1
i )−1Σr2

j + (Σr2
j )−1Σr1

i − 2I) (2)

+(μr1
i − μr2

j )T ((Σr1
i )−1 + (Σr2

j )−1)(μr1
i − μr2

j )

Where x ∈ �d is the training sample, μ and Σ denote mean and covariance, the super-
script and subscript of each symbol indicate the index of cluster and class, respectively.
For example, μr1

i and Σr1
i denote the mean and the covariance of the r1-th cluster in

the i -th class. The symbol “tr” denotes the trace of matrix. Our aim is to find a linear
transformation B ∈ �d×k (i.e. normalization factor) so that for all clusters,

BT xi ∈ N (BT μr
i , BΣr

i BT ) ∀i, r

can maximizes the KL divergence among different clusters under the low dimensional
subspace, namely:

E(B) =
∑

i

∑

j �=i

∑

r1∈Ci

∑

r2∈Cj

DKL

∝
∑
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=
∑

i

∑

r1∈Ci

tr((BT Σr1
i B)−1(BT AiB)) (3)

Ai =
∑

j �=i

∑

r2∈Cj

((μr1
i − μr2

j )(μr1
i − μr2

j )T + Σr2
j )

It is difficult to directly optimize the energy function in Eq. (3) [3], because second-
order type of gradient methods do not scale well for a large size of matrix. As a result,
the MDA algorithm applies the EM algorithm in the optimization procedure. De la
Torre & Kanade proposed a bound optimization method called Iterative Majorization
for monotonic reducing the value of the energy function [3]. However, when using these
EM-like iterative algorithms, complexities in time and storage are quite high. Also, if
data belong to a single sample cluster, discriminant information will be lost due to the
fact that all zero intra-cluster scatter matrix will be produced.

Eq.(3) cannot be solved by an eigen-solution like the traditional LDA because there
are many different normalization factors (BT Σr1

i B)−1 [3]. In order to eliminate the
influence of the normalization factors, our basic idea is to first project different intra-
cluster scatter matrix of each cluster to a unified null space, then get the feature vectors
by maximizing the inter-cluster scatter matrix in the null space of the intra-cluster one.
For the sake of unifying each intra-cluster scatter matrix, a proposition must be pro-
posed first:

Proposition. Suppose the training set is composed of a total of C clusters. Let Σ de-
note the sum covariance of all clusters Σ =

∑C
n=1 Σn. If the orthnormal bases

B can project the sum covariance Σ to its null space, namely, BT ΣB = 0 and
(BT B = I), it can also project each sub covariance Σn to its null space, which is
BT ΣnB = 0.

A proof on the proposition can be seen in the appendix. For each covariance matrix Σr
i ,

which belongs to the r-th cluster in the i-th class, we have

Σ =
∑

i

∑

r

Σr
i (4)

then we can get the orthonormal bases B which can project Σ to its null space

BT ΣB = 0 (BT B = I) (5)

Under the mentioned proposition, the orthonormal bases B can also project each co-
variance Σr

i to its null space
BT Σr

i B = 0 (6)

Therefore, we can modify the objective function Eq.(3) as

E(B) =
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= arg max
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∑
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It is obviously that the different normalization factor (BT Σr1
i B)−1 has been re-

placed by the unified null space BT ΣB = 0, and the orthonormal bases B can min-
imize each covariance Σr

i onto zero and avoid the numerical influence of the ratio
with Eq. (7). Meanwhile, an eigen-solution way can be applied for optimizing the en-
ergy function instead of the EM-like algorithms. Therefore, the proposed method has
less computational complexity than MDA and MODA which use iterative optimization
strategy.

2.3 Further Refinements and a Pseudo-code of the SNLDA Algorithm

If a cluster consists of only one sample which is often happened in many databases
(e.g. face recognition), all the elements in the intra-cluster scatter matrix will be equal
to zero. Hence a modification in the definition of cluster covariance is proposed:

Σr
i = (x − μi)(x − μi)T (8)

where x is the only data point of the r-th cluster in the i-th class, μi indicates the
mean of the i-th class. Through the replacement, the rank of the modified intra-cluster
covariance will not become 0 but 1, and discriminant information can be preserved.
It should be pointed out that, because the spectral clustering demands the number of
samples in each class is not less than 2, we do not take the instance of a single training
sample per class into account in this paper.

Furthermore, some of the other literatures still mention that the null space of the
inter-class matrix is no use for discriminant analysis [6], and therefore project the ob-
servation space to the null space of the intra-class scatter matrix. Under this conception,
we redefine the total inter-cluster covariance S as Sraw. The details of the SNLDA al-
gorithm are described in Tab.1:

It also should be mentioned that, while the proposed unified null space removes
the different covariances components of each cluster, the SNLDA algorithm can still
solve the issue of non-Gaussian covariance. We have designed a simulated database to
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Table 1. A Pseudo-Code of The SNLDA Algorithm

1 . Performing spectral clustering for each class by the proposed SNLDA method.
2 . Calculating the covariance Σr

i of each cluster, then summarizing all the covariance matrices
according to the following eqaution.
Σ =

∑
i

∑
r Σr

i

3 . Finding the orthonormal bases Bnull which project Σ onto its null space.
(Bnull)

T ΣBnull = 0 ((Bnull)
T Bnull = I)

4 . Calculating the inter-cluster covariance matrix S as follows:
S =

∑
i

∑
r1∈Ci

∑
j �=i

∑
r2∈Cj

(μr1
i − μr2

j )(μr1
i − μr2

j )T

5 . Finding the observation space Sraw by keeping the non-zero eigenvalues and eigenvectors
in S’s eigen-decomposition.
[U , V ] = eig(S)

Uraw ∈ U d×k, Vraw ∈ V k×k

Sraw = UrawVrawUT
raw

Where k = rank(S), d is the dimension of a single sample.
6 . Rebuilding the objective function by projecting Sraw to the sum covariance Σ’s null space.

Sop = (Bnull)
T SrawBnull

7 . Choosing the eigenvectors Bcom corresponding to the first m largest eigenvalues of Sop.
(Bcom)T SopBcom = Λ

8 . The feature vector B for discriminant analysis is described as
B = BnullBcom

test the non-Gaussian problem in Section 3.2, the experimental results can support our
viewpoint.

3 Experiments

In this section, four databases, including a multi-view UMIST face database [7], two
FERET face databases [8], and a simulated database, are used for evaluating the perfor-
mance of the proposed SNLDA algorithm. Some examples of the three face databases
are illustrated in Fig.1. In the UMIST database, 10 subjects with 54 images per per-
son are randomly selected and each image is resized to 32 × 30 pixels. And both of
the two FERET databases include 40 subjects, each with 10 images of the face. The
first database (FERET1) is mainly composed of frontal images while in the second one
(FERET2), large pose variation is introduced. The images in FERET1 are cropped to
30×30 pixels for removing the influences of background and hairstyle. In the FERET2
database, images are zoomed into 24 × 36 pixels followed by ellipse masking. Mean-
while, all the face images are roughly and manually aligned.

For all the experiments, each database is randomly divided into a training set and a
test set without overlapping. The NN (nearest neighbor) algorithm will be applied for
classification as soon as the dimension reduction is achieved. All the reported results is
the average of 20 repetitions under the mentioned procedure.
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(a) The UMIST Face Database (b) The FERET-1 Database (c) The FERET-2 Database

Fig. 1. Examples of The Three Face Databases
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Fig. 2. In left figure, MODA2 ∼ MODA8 are the cluster number manually assigned model.
SNLDAop redefines the covariance in single-sample clusters, while SNLDAor does not. The
right figure denotes the average number of clusters detected by the SNLDA algorithm.

3.1 The UMIST Database

In the first subsection, we attempt to employ the UMIST database to compare the ac-
curacy between the SNLDA algorithm and the MODA algorithm in which the number
of clusters is manually set to be 2, 3, 5 and 8, respectively. The results on the average
recognition rate versus the number of training samples of each class are shown as in
Fig.2(a).

It can be seen from Fig.2(a) that when the MODA algorithm is applied, the highest
recognition rates do not always correspond to a fixed number of clusters. Compared
with the MODA algorithm, SNLDA can be self-tuned as the number of training samples
varies and sounds more stable. What’s more, the accuracy of the refined SNLDAop

algorithm is always better than those of the other algorithms even if the number of
training samples is fewer. It is clear that the mentioned disadvantage of the SNLDAor

algorithm is partially overcame by the the SNLDAop.
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For better understanding the clustering algorithm in the SNLDA algorithm, a curve
on the average detected number of clusters for the database is also illustrated in Fig 2(b).
From the figure it can be found that as the number of training samples increases, the
number of clusters also fluctuates. Also, none of the average cluster number is close
to 1 or the upper bound of the class which is an important condition for ensuring the
stability of subsequent classification. Therefore, the spectral clustering method used by
the SNLDA algorithm is quite fit for data with small sample size and the proposed
SNLDA approach is better in accuracy than the traditional MODA one.

3.2 Non-gaussian Simulated Database

In this subsection, a simulated database is generated for evaluating the discriminant abil-
ity of the proposed SNLDA algorithm under the condition of non-Gaussian covariance.
Here 200 samples from five different 200-dimensional (d = 200) Gaussian classes
were generated. Each sample of the c-th class is generated as xi = Bcc + μc + n,
where xi ∈ �200. And each element of random matrix Bc ∈ �200×60 is gener-
ated from N (0, I), c ∈ N60(0, I), n ∈ N200(0, I). The means of five classes are
μ1 ∈ 4[

−→
1 200]T , μ2 ∈ 4[

−→
0 200]T , μ3 ∈ −4[

−→
0 100

−→
1 100]T , μ4 ∈ 4[

−→
1 100

−→
0 100]T ,

μ5 ∈ −4[
−→
1 50

−→
0 50

−→
1 50

−→
0 50]T , respectively [3]. To delicate the performance on no-

Gaussian covariance, we give a contrast of the classical PCA (Principal Component
Analysis) algorithm, the MODA2 algorithm and the SNLDAop algorithm. The ex-
perimental results are shown in Tab.2.

Table 2. A Comparison of Recognition Rate

Samples 2 6 10 14 18
PCA 55.36±4.89 57.88±7.76 66.06±5.97 70.88±7.29 72.86±5.50

MODA2 55.58 ± 4.25 64.12±2.08 76.33±4.07 77.69±1.84 83.18±4.50
SNLDAop 55.47±4.16 67.29 ± 3.90 76.50 ± 4.64 82.92 ± 2.72 85.59 ± 3.31

In the aspect of recognition rate, the SNLDA algorithm outperforms PCA by an
average of 10% and the MODA algorithm by an average of 2.8%. An exception is
that in the first column of the table, the accuracy of the three algorithms is almost the
same. It is shown that when the number of training samples are small (e.g.leq2), the
accuracy of the three mentioned algorithms are similar. The experiment results show
that the SNLDA algorithm can get better performance than others even in non-Gaussian
covariance conditions.

3.3 The FERET Databases

Finally, a comparative experiment among PCA, LDA (Linear Discriminant Analysis),
NLDA (Null-space Linear Discriminant Analysis), MODA and the proposed SNLDA
algorithm is carried out on the two FERET face databases. The results are shown
in Fig.3. Considering the limitation of the paper’s size, furthermore, only a table on
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Fig. 3. A comparison among different discriminant analysis methods

recognition rates with standard deviations of the FERET-2 database is tabulated in
Tab.3. The results about the FERET-1 database are similar to those about the FERET-2
database.

From Fig. 3 and Tab.3, we can see that the performance of SNLDAop is always
the best. When the number of samples is over 5, furthermore, the performance of two
SNLDA algorithms are higher than the traditional methods. When 3 or 4 samples per
subject are regarded as training samples, however, the multi-classes method MODA
and SNLDAor are not ideal due to the influence of many single sample clusters. In
addition, the MODA algorithm can outperform the SNLDAor algorithm in these con-
ditions, that ascribe to the iterative procedure which can extract much information from
the different normalization factors. Totally, the recognition rate of the SNLDAop al-
gorithm is 4% ∼ 7% higher than the traditional MODA and NLDA, almost 17% higher
than PCA and LDA.

Table 3. Recognition Rates (%) with Stand Deviations (%) on the FERET-2 Face Database

Samples 3 4 5 6 7 8
PCA 47.28±2.68 51.88±1.53 52.56±2.96 55.54±1.62 62.19±2.67 64.69±4.42
LDA 52.21±2.30 62.17±2.96 63.58±2.41 64.27±2.34 67.99±3.29 72.85±4.00

NLDA 70.93±1.90 74.48±1.82 76.69±2.49 79.65±2.05 79.89±1.69 78.59±4.14
MODA2 62.02±2.38 71.11±3.89 77.33±4.04 80.41±4.61 81.38±7.92 87.91±4.02

SNLDAor 56.95±2.01 70.23±2.11 78.60±3.68 83.48±2.60 86.89 ± 2.13 88.76±3.21
SNLDAop 72.64 ± 3.54 75.83 ± 5.21 85.90 ± 3.36 84.87 ± 2.73 86.83±3.35 90.75 ± 4.38

4 Conclusion

In this paper, we propose a spectral clustering based null space linear discriminant anal-
ysis algorithm. A main contribution is that we generalize the NLDA algorithm into
multiple clusters through the combination of the spectral clustering and the proposed
unified null-space technique. Considering SSS problem and the properties of null-space,
meanwhile, two further refinements on the definition of covariance and the null-space
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are proposed. The experimental results on face databases and simulated database show
that the proposed SNLDA approach can help classifiers to obtain higher recognition
rate than the mentioned traditional discriminant analysis approaches.

Recently, M. L. Zhu and A. M. Martinez have introduced the spectral clustering
method for LDA [9] and get the appropriate cluster number by considering the angle
information of the eigenvectors of the covariance matrix. We will try to combine the
clustering process with the oriented discriminant analysis method and give a compari-
son with this method in the further researches.
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Appendix

Proof. By definition, the covariance of the n-th cluster is formulated as:

Σn =
L(n)∑

l=1

(xl
n − μn)(xl

n − μn)T (9)

where xl
n ∈ �d is the l-th sample in cluster n, μn denotes the mean, L(n) is the

sample’s number of cluster n. Let An = [x1
n − μn, . . . , x

L(n)
n − μn], Eq.(9) can

be expressed as:

Σn = An(An)T (10)

if βk is an orthonormal basis which can project Σ to its null space, then

0 = (βk)T Σβk = (βk)T (
C∑

n=1

Σn)βk =
C∑

n=1

(βk)T Σnβk

=
C∑

n=1

(βk)T An(An)T βk =
C∑

n=1

‖(An)T βk‖2 (11)

where βk is a basis in the null space of Σ, k ∈ 1, . . . , RN = d − rank(Σ), ‖ · ‖
denotes the Euclidean norm. Obviously, Eq.(11) holds if (An)T βk = 0. From this
relation, we can see that

0 = ((An)T βk)T (An)T βk = (βk)T AnAn
T βk = (βk)T Σnβk (12)

where k is independent, therefore, we have

0 = [β1, . . . , βRN ]T Σn[β1, . . . , βRN ] = BT ΣnB (13)

which proves the proposition.
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Abstract. Kernel-based machine learning techniques, such as support
vector machines, regularization networks, have been widely used in pat-
tern analysis. Kernel function plays an important role in the design of
such learning machines. The choice of an appropriate kernel is critical
in order to obtain good performance. This paper presents a new class of
kernel functions derived from framelet. Framelet is a wavelet frame con-
structed via multiresolution analysis, and has both the merit of frame
and wavelet. The usefulness of the new kernels is demonstrated through
simulation experiments.

1 Introduction

The goal of regression is to approximate a function from function values, maybe
perturbed by noise, evaluated at a finite set of points. Kernel methods, such
as support vector machines (SVMs) [4,15,16], regularization networks (RN) [1],
have been successfully applied to solve regression problems because of their ca-
pacity in handling nonlinear relations and learning form sparse data. Kernel
function plays an important role in such methods. However, there are a number
of open questions that have not been well solved such as the selection of kernel
functions and selection of kernel parameters [3,5].

Recently, some researchers respectively proposed classes of frame-based ker-
nels and demonstrated that they are superior to the well-established kernel func-
tions in the framework of SVM regression (SVR) and RN [8,10,11,17]. The re-
dundant property of frames make them well-suited to deal with noisy samples in
a robust way. These kind of kernels are good at approximating multiscale func-
tions. However, those frame-based kernels all depend on knowing the dual frame,
which is always difficult to compute for a given frame. The effect of choosing
frame elements with different approximation properties has not been considered.
The purpose of this paper is to present a new class of kernel functions constructed
by means of the framelet theory. A framelet is a multiresolution analysis (MRA)-
based tight wavelet frame, its dual frame is itself. They combine the power of
� Corresponding author.
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MRA and the flexibility of redundant representations. We will use them in SVR
and RN for function approximation. The usefulness of framelet-based kernels
and effect of choosing different framelet elements will be discussed. We start by
presenting some basic concepts of SVR and RN in section 2. Then we introduce
the framelet theory in sections 3. In section 4 we introduce the construction of
framelet kernels. Finally, some results on simulation experiments are presented
in section 5, and section 6 concludes the paper.

2 Support Vector Regression and Regularization
Networks

For regression problem with input-output pairs {(xi, yi),xi ∈ R
n, yi ∈ R, i =

1, 2, . . . , l} it is desired to construct a function f that maps input vectors x
onto labels y. When new input x is presented the target output y is predicted
by the function f(x). Support vector regression and regularization networks are
kernel-based techniques for solving regression problems of learning from exam-
ples. In fact, they both can be justified in Vapnik’s Structural Risk Minimiza-
tion (SRM) framework [7,13]. Next we briefly review the concepts of SVR and
RN.

2.1 SVM for Regression

Consider the regression problem of estimating an unknown function f : R
n → R,

from the noisy observations

yi = f(xi) + εi, i = 1, 2, . . . , l

where the additive measurement errors εi are uncorrelated zero-mean Gaussian
random variables. Let {(x1, y1), . . . , (xl, yl)} be a set of training samples. The
SV algorithm for regression computes a linear function in the high dimensional
feature space F . Thereby this algorithm can compute a nonlinear function by
minimizing the following functional:

H [f ] =
l∑

i=1

|yi − f(xi)|ε + λ‖f‖2
K (1)

where ‖f‖2
K is a norm in a Reproducing Kernel Hilbert Space (RKHS) HK

defined by the kernel function K(x,y), λ ∈ R
+ is a regularization constant and

|x|ε =
{

0 if |x| < ε,
|x| − ε otherwise.

is Vapnik’s ε-insensitive loss function [15,16]. The parameter ε defines the tube
around the regression function within which errors are not penalized.
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2.2 Regularization Networks

Regularization theory is a classical way to solve the ill-posed problem of ap-
proximating a function from sparse data [2,14]. Classical regularization theory
formulates the regression problem as the following variational problem

min
f∈H

H [f ] =
l∑

i=1

(yi − f(xi))2 + λ‖f‖2
K (2)

where the second term is a penalty functional called stabilizer [9].

3 Framelet Theory

Framelet is tight wavelet frame constructed via MRA [6]. Tight wavelet frame is
different from orthonormal wavelet in one important respect: it is redundant sys-
tem but with the same fundamental structure as wavelet system. It has both the
merit of frame and wavelet. We briefly present some results on the construction
of framelets and the approximation properties of the system.

Suppose that (Vj)j is a MRA induced by a refinable function ϕ in L2(Rd).
Let Ψ := {ψi, i = 1, . . . , r} be a finite subset of V1. Then there exist a set of 2π-
periodic measurable functions {τi, i = 1, . . . , r} called wavelet masks such that
ψ̂i = (τiϕ̂)( ·2 ) for every i. There also exists a 2π-periodic measurable function
τ0 called refinable mask such that ϕ̂ = (τ0ϕ̂)( ·2 ). We will simplify the notations
by writing τ := (τ0, . . . , τr) for the combined MRA mask. We define ψj,k(·) :=
2jd/2ψ(2j · −k) and the dyadic wavelet system

X(Ψ) := {ψj,k : ψ ∈ Ψ, j ∈ Z, k ∈ Z
d}

The following is the fundamental tool to construct framelets:

Definition 1. Given a combined MRA mask τ := (τ0, . . . , τr), the fundamental
function Θ is defined as

Θ(ω) :=
∞∑

j=0

r∑

i=1

|τi(2jω)|2
j−1∏

m=0

|τ0(2mω)|2.

Proposition 1 (The Oblique Extension Principle (OEP) [6]). Suppose
that there exists a 2π-periodic function Θ that is non-negative, essentially bounded,
continuous at the origin with Θ(0) = 1. And for every ω ∈ {−π, π}d and ν ∈
{−π, π}d

Θ(2ω)τ0(ω)τ0(ω + ν) +
r∑

i=1

τi(ω)τi(ω + ν) =
{

Θ(ω) if ν = 0,
0 otherwise.

then the wavelet system X(Ψ) defined by τ is a tight frame.
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For Θ ≡ 1, proposition 1 reduces to the Unitary Extension Principle.
The approximation order of the framelet system is proved to be strongly

connected to the number of vanishing moment of the mother wavelet system [6].
Let X(Ψ) be an framelet system, then

Proposition 2. Assume that the system has vanishing moments of order m1,
and the MRA provides approximation order m0. Then, the approximation order
of X(Ψ) is min{m0, 2m1}.

4 Framelet Kernels in Hilbert Space

The choice of the kernel K(x,y) determines the function space in which the
norm ‖f‖2

K in equation (1) and (2) is defined. It also determines the form of
the solution. A kernel function computes the inner product of the images of two
data points under a nonlinear map Φ

K(x,y) = 〈Φ(x), Φ(y)〉

where Φ defines the feature space. In practice, the kernel K can be defined
directly without explicitly defining the map Φ. It is this property that makes the
kernel methods so attractive.

Theorem 1. Let Ψ := {ψ1, . . . , ψr} be the mother wavelets of a framelet system

X(Ψ) := {ψi,j,k : i = 1, 2, . . . , r, j ∈ Z, k ∈ Z
d}

in L2(Rd) where ψi,j,k(·) := 2jd/2ψi(2j ·−k). Then the framelet kernel is defined
as

K(x,y) =
r∑

i=1

∑

j∈Z

∑

k∈Zd

ψi,j,k(x)ψi,j,k(y) (3)

Proof: We prove that framelet kernel (3) is admissible reproducing kernel.
With the kernel K, we can define a function space HK to be the set of functions

of the form

f(x) =
r∑

i=1

∑

j∈Z

∑

k∈Zd

αi,j,kψi,j,k(x)

for αi,j,k = 〈f, ψi,j,k〉 ∈ R, and define the scale product in our space to be
〈

r∑

i=1

∑

j∈Z

∑

k∈Zd

αi,j,kψi,j,k(x),
r∑

i=1

∑

j∈Z

∑

k∈Zd

βi,j,kψi,j,k(x)

〉

HK

=
r∑

i=1

∑

j∈Z

∑

k∈Zd

αi,j,kβi,j,k

It is easy to check that such an Hilbert space is a RKHS with reproducing kernel
given by K(x,y). In fact, we have

〈f(y), K(y,x)〉HK =
r∑

i=1

∑

j∈Z

∑

k∈Zd

αi,j,kψi,j,k(x) = f(x)
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The framelet ψi,j,k is a frame for the RKHS HK which is called the feature
space induced by the kernel K. Hence, the framelet-based kernel K and the
corresponding space HK can be used within the framework of SVR and RN.

Most constructions of framelets based on a spline MRA structure whose re-
finable function is chosen to be B-splines. In the following, we choose three
univariate spline framelets presented in [6] to generate our kernels. They will be
used in the experiments in next section.

A. Linear Spline Framelet Kernel K1
Let φ be the B-spline function of order 2 supported on [0, 2] which is a piece-

wise linear polynomial. Then the refinable mask is τ0(ω) = (1 + e−iω)2/4. Let

τ1(ω) = −1
4
(1 − e−iω)2 and τ2(ω) = −

√
2

4
(1 − e−2iω)

be the wavelet masks. The corresponding {ψ1, ψ2} generates a framelet system
with vanishing moments 1 and the approximation order 2. We use {ψ1, ψ2} to
construct framelet kernel K1

K1(x, y) =
2∑

i=1

∑

j∈Z

∑

k∈Z

ψi,j,k(x)ψi,j,k(y)

B. Cubic Spline Framelet Kernel K2
Let φ be the B-spline function of order 4 supported on [0, 4], which is a

piecewise cubic polynomial. Then the refinable mask is τ0(ω) = (1 + e−iω)4/16.
Let

τ1(ω) = −1
4
(1 − e−iω)4, τ2(ω) = −1

4
(1 − e−iω)3(1 + e−iω),

τ3(ω) = −
√

6
16

(1 − e−iω)2(1 + e−iω)2, τ2(ω) = −1
4
(1 − e−iω)(1 + e−iω)3.

The corresponding {ψ1, ψ2, ψ3, ψ4} generates a framelet system with the van-
ishing moments 1 and the approximation order 2. We use {ψ1, ψ2, ψ3, ψ4} to
construct our framelet kernel function K2

K2(x, y) =
4∑

i=1

∑

j∈Z

∑

k∈Z

ψi,j,k(x)ψi,j,k(y)

C. Cubic Spline Framelet Kernel K3
The third one is also a cubic spline framelet kernel. It is based on the same

MRA structure as in K2 but has different vanishing moments and approximation
order. We take
τ1(ω) = t1(1 − e−iω)4[1 + 8e−iω + e−2iω],
τ2(ω) = t2(1 − e−iω)4[1 + 8e−iω + (7775/4396t − 53854/1099)e−2iω + 8e−3iω + e−4iω],
τ3(ω) = t3(1 − e−iω)4[1 + 8e−iω + (21 + t/8)(e−2iω + e−4iω) + te−3iω + 8e−5iω + e−6iω].
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Fig. 1. Kernel functions. (a) Framelet kernel K1 with jmin = −5, jmax = 1. (b)
Framelet kernel K2 with jmin = −5, jmax = 1. (c) Framelet kernel K3 with jmin = −5,
jmax = 1. (d) Gaussian kernel with σ = 0.2.

where t = 317784/7775+ 56
√

16323699891/2418025, t1 =√
11113747578360− 245493856965t/62697600, t2 =

√
1543080 − 32655t/40320,

t3 =
√

32655/20160.
Then the corresponding {ψ1, ψ2, ψ3} generates another framelet system with

vanishing moments 4 and approximation order 4. We use {ψ1, ψ2, ψ3} to con-
struct a framelet kernel function K3

K3(x, y) =
3∑

i=1

∑

j∈Z

∑

k∈Z

ψi,j,k(x)ψi,j,k(y)

The sum of infinite terms can be truncated into a sum of finite terms in
practical applications. For the three framelet kernels above, only finite terms
corresponding to the shift index k are summed because the framelet elements
are all compactly supported. We will truncate the infinite index j by defining the
minimal and maximal dilations jmin and jmax. Note that these last two param-
eters determine the different scales in the kernel function. The kernel functions
K1, K2 and K3 with jmin = −5 and jmax = 1 are plotted in Figure 1(a),(b) and
(c) respectively, (d) is the Gaussian kernel.
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5 Simulation Experiments

This section provides two experiments on single-variate function regression prob-
lems using SVM regression and regularization networks methods. We illustrate
the usefullness of framelet-based kernels K1, K2, K3 by comparing with the
classical Gaussian kernel

K(x, y) = exp
(

−‖x − y‖2

2σ2

)

in the simulated regression experiments I and II.
For both SVR and RN, some hyperparameters have to be tuned. The perfor-

mance of SVR in (1) depends on the hyperparameters such as ε, regularization
factor λ. The performance of RN in (2) depends on the choice of regulariza-
tion factor λ. Different approaches have been developed for solving this model
selection problem [3,5]. The idea is to find the parameters that minimize the
generalization error of the algorithm at hand. This error can be estimated either
via a bound given by theoretical analysis or via testing on some data which has
not been used for learning (hold-out testing or cross-validation techniques).

In our experiments, the hyperparameters were optimized from a range of
finely sampled values, where the generalization error was estimated by the 10-
fold cross-validation. We split the data set into 10 roughly equal-sized parts; for
the ith part, we fit the model to the rest parts of the data, and calculate the
mean-square error of the fitted model when predicting the ith part of the data;
the generalization error is estimated by averaging the 10 mean-square prediction
errors.
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Fig. 2. The true function f1 and its sample set
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Table 1. Generalization error for SVM regression and regularization networks using
Framelets and Gaussian kernel with optimal hyperparameters in experiment I

SVM Regression Regularization Networks

Framelet Kernel K1 0.0224 0.0272

Framelet Kernel K2 0.0182 0.0253

Framelet Kernel K3 0.0168 0.0221

Gaussian Kernel 0.0203 0.0132

5.1 Experiment I

In this experiment, the sample set {(xi, yi)} come from the function

f1(x) = x−1 sin(2πx)

which was commonly used to test SVR [8,16]. The data points {xi}150
i=1 were

obtained from uniform random sampling 150 data points of interval [−10, 10],
they were not necessarily equal-spaced. The targets yi were corrupted by the
zero-mean Gaussian noise with variance 0.2. Figure 2 shows the sample set and
the true function.

The performance of the framelet kernel strongly depends on the value of the
scale parameters jmin and jmax. We find that if we fix jmax, the generalization
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Fig. 3. SVM regression results for experiment I. (a) Framelet kernel K1 with jmin =
−5, jmax = 1, λ = 0.4, ε = 0.06. (b) Framelet kernel K2 with jmin = −5, jmax = 1,
λ = 0.2, ε = 0.04. (c) Framelet kernel K3 with jmin = −5, jmax = 1, λ = 0.6, ε = 0.06.
(d) Gaussian kernel with σ = 0.15, λ = 0.2, ε = 0.02.
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Fig. 4. The true function f2 and the sample set

Table 2. Generalization error for SVM regression and regularization networks using
Framelet and Gaussian kernels with optimal hyperparameters in experiment II

SVM Regression Regularization Networks

Framelet Kernel K1 0.0221 0.0133

Framelet Kernel K2 0.0343 0.0250

Framelet Kernel K3 0.0318 0.0238

Gaussian Kernel 0.0589 0.0260

error for the two learning machines decreases monotonously as jmin reduced.
However, the results improve slightly after the value of −5. So we fix the scale
lower bound parameter jmin to be −5. The scale upper bound parameter jmax

is taken from −3 to 5. The parameter σ for Gaussian kernel is selected by using
cross validation introduced above. Table 1 lists the generalization error for the
two learning machines and the different kernels using the optimal hyperparame-
ter setting. For SVR the optimal parameters are jmin = −5, jmax = 1, λ = 0.4,
ε = 0.06 for K1; jmin = −5, jmax = 1, λ = 0.2, ε = 0.04 for K2; jmin = −5,
jmax = 1, λ = 0.6, ε = 0.06 for K3; and σ = 0.15, λ = 0.2, ε = 0.02 for Gaussian
kernel. For RN the optimal parameters are jmin = −5, jmax = 1, λ = 0.4 for
K1; jmin = −5, jmax = 1, λ = 1 for K2; jmin = −5, jmax = 1, λ = 0.6 for K3;
and σ = 0.35, λ = 0.1 for Gaussian kernel. Figure 3 shows the SVR results of
the optimal parameters. The slender lines depict the true function and the bold
lines represent the approximation functions.

As can be seen, the framelet kernels achieve good performance in SVR. The
best performance in SVR is given by the framelet kernel K3 which has the
highest approximation order. In RN, the framelet kernels do not give better
performance compared to Gaussian kernel. The best result in RN is achieved by
Gaussian kernel and it is better than the best one in SVR. This may be because
the sample set came from a smoothly changed function and large sample size
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give enough information for approximation, and the SVM algorithm loses its
superiority.

5.2 Experiment II

To illustrate the multiscale approximation property of framelet kernels, we use
the following function

f2(x) =
6

|x + 6| + 1
+

4
3|x + 3| + 1

+
5

2.5|x − 2| + 1
+

6
|x − 6| + 1

which contains multiple scales as shown in Figure 4. The tips of the cones at
x = −6, −3, 2 and 6 are singular points so that f2(x) is not differentiable there.
Note that the function is composed of four cone-shaped parts which are different
from each other of the width and position. A data set of 150 is generated by
uniform random sampling from the interval [−10, 10] in which the targets are
corrupted by the zero-mean Gaussian noise with variance 0.2. Figure 4 shows
the sample set and the true function.

Table 2 shows the generalization error for the two learning machines and
the different kernels using the optimal hyperparameter setting. For SVR the
optimal parameters are jmin = −5, jmax = 0, λ = 0.6, ε = 0.04 for K1; jmin =
−5, jmax = 0, λ = 0.2, ε = 0.06 for K2; jmin = −5, jmax = 0, λ = 0.6,
ε = 0.02 for K3; and σ = 0.4, λ = 0.6, ε = 0.02 for Gaussian kernel. For RN
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Fig. 5. Regularization Networks results for experiment II. (a) Framelet kernel K1 with
jmin = −5, jmax = 0, λ = 0.1. (b) Framelet kernel K2 with jmin = −5, jmax = 0,
λ = 0.1. (c) Framelet kernel K3 with jmin = −5, jmax = 0, λ = 0.1. (d) Gaussian
kernel with σ = 0.3, λ = 0.1.
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the optimal parameters are jmin = −5, jmax = 0, λ = 0.1 for K1; jmin =
−5, jmax = 0, λ = 0.1 for K2; jmin = −5, jmax = 0, λ = 0.1 for K3; and
σ = 0.3, λ = 0.1 for Gaussian kernel. Figure 5 shows the RN results of the
optimal parameters. The slender lines depict the true function and the bold
lines represent the approximation functions.

The neighborhood of the singular points is the most difficult part to approxi-
mate. It is obvious that the performance of the framelet kernels is superior to the
Gaussian kernel in that place. In both SVR and RN, Gaussian kernel achieved
the poorest performance and framelet kernl K1 is the best. This suggests that
the framelet kernels are good at catching the multiscale structures of the signal.

6 Conclusion

In this paper, we introduced a class of kernel functions based on framelet theory
for the learning methods of SVM regression and regularization networks. This
kind of kernels inherit the merits of multiscale representation and redundant rep-
resentation from the framelet system. They are good at approximating functions
with multiscale structure and can reduce the influence of noise in data. Specifi-
cally, there is sufficient choice of framelet kernels, the tools introduced in section
3 facilitate us greatly to construct framelet kernels with certain approximation
properties. Experiments in this article illustrated the superiority of the newly
proposed kernels to the classical kernel. More comparison with other kernels and
extensions to two dimensions will be considered in our future work.
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Abstract. Existing clustering algorithms use distance, density or concept as 
clustering criterion. These criterions can not exactly reflect relationships among 
multiple objects, so that the clustering qualities are not satisfying. In this paper, 
a mechanics based clustering algorithm is proposed. The algorithm regards data 
objects as particles with masses and uses gravitation to depict relationships 
among data objects. Clustering is executed according to displacements of data 
objects caused by gravitation, and the result is optimized subjecting to 
Minimum Potential Energy Principle. The superiority of the algorithm is that 
the relationships among multiple objects are exactly reflected by gravitation, 
and the multiple relationships can be converted to the single ones due to force 
composition, so that the computation can be executed efficiently. Experiments 
indicate that qualities of the clustering results deduced by this algorithm are 
better than those of classic algorithms such as CURE and K-Means.  

Keywords: Data Mining; Clustering Analysis; Mechanics; Minimum Potential 
Energy Principle. 

1   Introduction 

Clustering analysis is the data mining technique to achieve the feature and pattern 
information of unknown object sets. It is widely used in many applications such as 
financial data classification, spatial data processing, satellite photo analysis, medical 
figure auto-detection and so on. Since the 1940’s, researchers have proposed a large 
number of clustering algorithms (CURE[1], CHAMELEON[2], BIRCH[3], COBWEB[4], 
PDDP[5], K-Means[6,7], CLARANS[8], CLARA[9], WaveCluster[10], STING[11], 
CLIQUE[12], DBSCAN[13], OPTICS[14], DBCLASD[15]) . 

Clustering divides the data set into clusters, making objects similar in the same 
cluster and dissimilar among different clusters. The quality of clustering algorithms 
depends heavily on the clustering criteria. Three kinds of criteria are employed in 
existing algorithms: distance (e.g., CURE、 PDDP、 K-Means), density (e.g., 
DBSCAN、OPTICS、DBCLASD) and concept (e.g., COBWEB). Distance only 
reflects the relationship between two objects, while can’t reflect the relationships and 
interaction among multiple objects. Density is the average distance among objects in a 
region, which reflects the global characteristic of the whole region and can’t reflect 
the relationship between each pair of objects. Concept is constrained with the data 
type and only fits for conceptual and categorical data. So current clustering criteria 
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can not quantitatively reflect the relationships among multiple objects, and qualities 
of the clustering algorithms based on the above criteria are not satisfying in actual 
applications. 

In this paper, a new clustering algorithm based on Mechanics (CABM) is 
proposed, which uses gravitation to reflect the relationship among data objects. The 
algorithm regards data objects as particles with mass, and they are linked with flexible 
poles which twist as trussing structures. The function of the trussing structures is to 
limit the particles’ moving scope so as to keep the original shape of the clusters. The 
structures deform under gravitation, and when the structures are stable, particles are 
grouped into clusters according to displacements and the change of the structure’s 
potential energy. The advantage of CABM is that the relationships among multiple 
objects are reflected as forces. Due to the composition of forces, multiple 
relationships can be equally converted to single ones and the computation is 
simplified. Experimental results indicate that the quality of CABM is much better 
than those of CURE and K-means.   

The rest of this paper is organized as follows. In section 2 we introduce some 
definitions and notations. The CABM algorithm is described in detail in section 3. We 
evaluate the experimental results upon CURE, K-Means and CABM in section 4. And 
finally, the paper is concluded in section 5. 

2   Preliminaries 

Clustering is the problem of grouping data objects based on similarity. 

Definition 1. Let 1 2{ , , , }nP p p p= L  be a set of data objects. Clustering is the 

process of dividing P into sub-sets 1 2{ , , , }kC C C C= L , such that 

, {1,2, , }i j k∀ ∈ L , 
1

k

i
i

C P
=

=U  i jC C φ=I , ,i jC Cφ φ≠ ≠ , where 
iC  is called 

the ith  cluster of P . 

The objective of clustering is to achieve high similarity among objects inside a same 
cluster as well as high dissimilarity among different clusters. Sergio M.Savaresi, etc. 
proposed a method to evaluate the quality of clustering algorithms as follows.   

Given 1 2{ , ,..., }kw w w w= , , {1,2,..., }i j k∀ ∈ , where iw is the barycenter 

of iC . The inner-cluster similarity is measured by || || | |
i

i i ip C
SC p w C

∈
= −∑ .  

The inter-cluster dissimilarity is measured by the distance between two clusters, 

i.e., min ( )i j ijd d= , || ||ij i jd w w= − . 

With the above inner-cluster similarity and inter-cluster dissimilarity measures, the 
quality of a clustering division is computed as: 

1 2 1
( , , . . . , ) | | /

k

k i i ii
Q C C C C S C d n

=
= ∑ . 

(1) 

The smaller Q is, the higher clustering quality is achieved. 
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In CABM, each object ip  is viewed as a particle with unit mass in an s-dimension 

data space. The gravitation between each pair of particles is defined as follows: 

Definition 2. Let io and jo are two particles with mass im and jm respectively, the 

Euclid-Distance between io and jo is denoted by ijl , and the gravitation constant is 

denoted by 0G , then the gravitation between io and jo is 2
0m mij i j ijF G l=

uuv
. 

The particles move under the gravitation until equilibrium is reached. If there isn’t 
any constraint on the particles, the particles will contract into a mass. Then the 
particles leave their original positions completely and the clusters’ original shapes are 
broken. Therefore, in order to reflect the motion tendency and limit the motion scope 
of particles, linear elasticity poles are added between some pairs of particles to 
constraint the particles’ motion in CABM algorithm. We denote the intersection 
surface of a pole by A.  

Definition 3. The force imposed on the intersection surface of a pole is called a 
stress, denoted byσ . The deformation on a unit length of a pole is called a strain, 
denoted byε . The ratio of a pole’s stress to its strain is called elasticity modulus, 

denoted by E σ ε= . 

Assume that a pole with length ijl deforms under the stalk force and the deformation 

is ijlΔ . Then the pole’s stress is = F Aσ and the strain is ij ijl lε = Δ . 

3   Clustering Algorithm Based on Mechanic (CABM) 

CABM firstly divides the data set into several regions and elects some delegation 
nodes for each region. The algorithm then builds a truss on the delegation nodes, 
computes the displacements of the nodes and clusters the nodes according to the 
displacements. Finally the algorithm marks the original data objects according to the 
clustering result of the delegation nodes and the clustering result on the original data 
set is achieved. 

3.1   Pre-processing 

The aim of pre-processing is to eliminate noise and reduce the scale of the data set. 
CABM adopts the same processing method as CURE (see [1]): 

Firstly, divide the data set P as 1 2{ , , , }tP R R R= L , subjecting 

to , {1,2, , }i j t∀ ∈ L , ∩ =i jR R φ  and
1

t

i
i

R P
=

=U , each iR is called a candidate 

cluster. It is proved that the number of clusters of a data set with n objects is less 

than n  [16], thus in this paper， t n= .  
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Let 1 2' { ' , ' , , ' }tw w w w= L , {1,2, , }i t∀ ∈ L , where 'iw  denotes the barycenter 

of candidate cluster iR , whose mass is denoted by 'im , and its coordinate in the s-

dimension data space is 1 2( ' , ' , , ' )i i isX X XL , then { }sj ,,2,1 L∈∀ , 

{ }nk ,,2,1 L∈ , 

1'
| |

p Rik

n

kj
k

ij
i

x
X

R

∈
==
∑

,

 ' | |i im R=
. (2) 

Secondly, select π  particles in the candidate cluster and contract the particles 
towards the barycenter with a given contracted factor α  [1], the resulting virtual 

particles are the delegation nodes of the candidate cluster. Let {1,2, , },i t∈ L  and 

1 2{ , , , }i i i iV v v vπ= L  is the delegation node set of the candidate cluster iR . Suppose that 

{1,2, , }, ijj vπ∈ L is the jth delegation node of iR whose coordinate is 

1 2( , , , )ij ij ijsX X XL , and the mass of ijV  is ijm , then,  

1

|| ' ||
'

|| ' ||

ij i
ij i

i i
a

v w
m m

v w
π

α
=

−
=

−∑
 . 

(3) 

Definition 4. {1,2, , }k t∀ ∈ L ,
1 1

1
|| ||

| |

2

k ik jk
i j ik

v v
R

π π

ζ
= = +

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  is the effective 

radius of kR . 

Definition 5. Let crζ be a pre-defined threshold, for {1,2, , },i t∈ L  if k crζ ζ> , then 

the candidate cluster iR  is an isolated region, and if j ip R∈ , then jp  is an outlier. 

crζ is chosen by experience. All the candidate clusters except isolated regions are the 

study objects of CABM algorithm. 

3.2   Building the Trussing Structure 

The quantity of the gravitation depends on the distance between a pair of delegation 
nodes. The delegation nodes can be classified as adjacent nodes and non-adjacent nodes.  

Definition 6. Let ,ij ikv v be two delegation nodes in the ith  candidate cluster, if 

|| ||ij ik iv v ζ− ≤ , then ,ij ikv v are adjacent nodes, otherwise, they are non-adjacent 

nodes. 
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Fig. 1. Diagram of building the trussing structure 

In CABM, the adjacent nodes in a candidate cluster are connected with poles. The 
poles twist with each other. Fig. 1 shows the distribution of some delegation nodes. In 
the figure, the solid circles represent delegation nodes, and the hollow circles 
represent outliers. Four delegation nodes inside the frame are in the same candidate 
cluster. 

For every trussing structure, consider the gravitation between the every pair of 
nodes inside as well as outside the candidate cluster. According to the principle of 
composition of forces and the orthogonal decomposition method, compose the force 
computed each time and decompose to the force belong the each 

direction sxxx ,,, 21 L , denoted by
1 2

T

, , ,
s

i i i i
x x xF F F F⎡ ⎤= ⎣ ⎦

uur uur uuur uuur
L , see Fig. 1. Now the 

trussing structure is built and the forces are computed. 

3.3   The Analysis and Computation of the Trussing Structure 

Poles of a trussing structure will deform under external forces. Let the intersection 
angle of the pole and the positive direction of the axis of the global coordinates 

1 2, , , sx x xL  is 1 2, , , sβ β βL , then the unit stiffness matrix in the global 

coordinates is 1e eθ θ−Ω = Ω ,  in whichθ is transformation of coordinates matrix as 
follows: 

1 2( , , , )sfθ β β β= L  . (4) 

For the six nodes in Fig. 1, we have the unit stiffness matrices 
( )1Ω , ( )2Ω , ( )3Ω , ( )4Ω , ( )5Ω and ( )6Ω . So the total stiffness matrix of the trussing 

structure shown in Fig. 1 is: 
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(1) (4) (5) (1) (5) (4)
11 11 11 12 13 14

(1) (1) (2) (6) (2) (6)
21 22 22 22 23 24
(5) (2) (2) (3) (5) (3)
31 32 33 33 33 34
(4) (6) (3) (3) (4) (6)
41 42 43 44 44 44

e

⎡ ⎤Ω + Ω + Ω Ω Ω Ω
⎢ ⎥Ω Ω + Ω + Ω Ω Ω⎢ ⎥Ω =
⎢ ⎥Ω Ω Ω + Ω + Ω Ω
⎢ ⎥

Ω Ω Ω Ω + Ω + Ω⎢ ⎥⎣ ⎦  

(5) 

According Hooke’s law e e eF = Ω Δ
uuv uuv

, we have: 

1
(1) (4) (5) (1) (5) (4)
11 11 11 12 13 14

2 (1) (1) (2) (6) (2) (6)
21 22 22 22 23 24
(5) (2) (2) (3) (5) (3)3
31 32 33 33 33 34
(4) (6) (3) (3) (4) (6)

4 41 42 43 44 44 44

F

F

F

F

⎧ ⎫ ⎡ ⎤Ω + Ω + Ω Ω Ω Ω⎪ ⎪ ⎢⎪ ⎪ Ω Ω + Ω + Ω Ω Ω⎪ ⎪ ⎢=⎨ ⎬ ⎢ Ω Ω Ω + Ω + Ω Ω⎪ ⎪ ⎢⎪ ⎪ Ω Ω Ω Ω + Ω + Ω⎢⎣ ⎦⎪ ⎪⎩ ⎭

uuv

uuv

uuv

uuv

1

2

3

4

⎧ ⎫Δ
⎪ ⎪⎥ ⎪ ⎪Δ⎪ ⎪⎥ ⎨ ⎬⎥ Δ⎪ ⎪⎥ ⎪ ⎪⎥ Δ⎪ ⎪⎩ ⎭

uuv

uuv

uuv

uuv

 

(6) 

Where iΔ
uuv

is the displacement of node i and can be computed following the formula.  
In Fig. 2, the arrows indicate the displacements of nodes. 
Because of displacements, the candidate cluster to which each delegation node 

belongs should be redefined. Now we give some related geometric definitions. 

 

Fig. 2. Displacements of node in the trussing structure under forces 

Definition 7. The boundary of the candidate clusters consists of planes which divide 
the whole region. A closed region enclosed by the planes is called a boundary 
polyhedron. Providing that the positive direction of an edge on every plane of a 
boundary polyhedron is clockwise, the direct edge which makes up the boundary 
polyhedron is called boundary vector.  

Let 'vv
uuv

represent the displacement of node v , let u be the node closest to v in the 

boundary polyhedron. The projection of 'vv
uuv

on the plane to which u belongs is 
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denoted by '' '''v v
uuuuuv

. If the plane with u is a concave polygon andη is a concave point, 

then the two boundary vectors on the counter-clockwise direction linked withη are 

noted as 1 2,e e
uv uuv

, otherwise the two boundary vectors are noted as 1 2,e e
uv uuv

 on the clock-

wise direction. n
v

 denotes the normal of the plane.  

Principle 1. Point v belongs to the original candidate cluster after the deformation if 

and only if 1( '' ''') 0e v v n× • ≤
uv uuuuuv v

 and 2( '' ''' ) 0v v e n× • ≥
uuuuuv uv v

. 

Principle 1 prescribes whether a delegation node should belong to the original cluster 
it is located. The principle is based on geometrical principles, we omit its proof here 
to save space. Delegation nodes not belonging to their original clusters need to be 
relocated into other clusters, we show how to do this in the next sub-section. 

3.4   Delegation Node Relocation 

When a delegation node does not belong to the original candidate clusters, it needs to 
be relocated into a new cluster. At this time, the stability of the structure should be 
considered.  

Theorem 1. An elastic pole or a structure is in the stable state if and only if its 
potential energy under the deformation is the minimum[17,18]. 

Theorem 1 indicates that the deformation of a structure tends to make the potential 
energy minimum.  

Rule 1. (Node Relocation Rule) Delegation nodes should be located into candidate 
clusters so that the potential energy of the structure is the minimum. 

Move a delegation node along the direction of displacement vector to the 
corresponding new candidate cluster. The motion is limited by the boundaries of the 

adjacent candidate clusters. An example is shown in Fig. 2. As Fig. 2 shows, 3v is 

judged not to belong to 3R . The displacement vector of 3v points to 1R and 2R , 3v  

should be relocated into the one which makes the potential energy minimum. 
CABM iteratively executes the rule until the sum of the potential energy of all the 

trussing structures converges. At this time, there isn’t any node motion among the 
candidate clusters, and the clustering result is stable. 

3.5   Original Data Object Labeling 

The above process is the clustering process of the delegation nodes. In order to cluster 
the original data objects, the algorithm labels each original data object with the index 
of the cluster to which its corresponding delegation node belongs. Now every original 
data object has a unique index except outliers. Objects with the same index are 
regarded as to be in a same cluster, in this way, the task of clustering is accomplished. 
See algorithm 1 for the whole process of CABM. 
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Algorithm 1. CABM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.6   Performance Analysis 

The time cost by CABM is mainly the time to compute the displacement of every 
delegation node and the potential energy of every truss. A cluster makes up a truss in 

CABM. Each cluster has crn kζ delegation nodes at most. Thus the time of one 

iteration is ( )3*( )crO k n kζ . When the clustering result is stable, the total time is 

( )3*( ) *crO k n k tζ ,  in which t is the iterative time. 

4   Experimental Evaluation 

We compare the performances of CABM, K-Means and CURE through two series of 
experiments in this session. The experiments were conducted on Windows 2000. We 
use engineering mechanics software Ansys 7.0 to compute the displacements of 
points and the potential energy of the trusses. 

4.1   Clustering Results on the Same Data Sets 

The first series of experiments was to compare the different clustering results of the 
three clustering algorithms on the same data set with 2000n=  points on the square 
[0,10]×[0,10] as Fig. 3(a) shows. 

Algorithm: CABM 
Input: the set of data points and related parameters 
Output: clusters 
Begin: 

(1) Data processing: Divide the set of data objects into t candidate clusters. 
Select π virtual points in each candidate cluster and contract the points 
towards the centre by the given contracted factorα  to get the delegation 
node. Judge the isolated regions and outliers according to given 
parameter crζ . 

(2) Constructing truss: Link the adjacent points and get the truss. Compute the 
gravitation between particles and represent the gravitation on a particle 
with an equivalent external composition of force. The external force acts 
on the points of the truss. Compute the displacement of every particle. 

(3) Iteratively executes the node relocation rule until the sum of the potential 
energy of all the trussing structures converges. 

(4) Label the original datum: On the basis of the clustering of the delegation 
nodes, label the original data objects in the candidate clusters with the 
index of the cluster to which the corresponding delegation nodes belong. 

End 
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          (a) The original data objects                             (b) The clustering result of CABM 

   

       (c) The clustering result of K-Means               (d) The clustering result of CURE 

Fig. 3. The clustering results of CABM, K-Means and CURE with 2000n = data objects 

The clustering results of CABM, K-Means and CURE are shown in Fig. 3(b), 
Fig. 3(c) and Fig. 3(d) respectively. The parameters in CABM were given as 

45t = , 0.11α = , 1.41crζ = . The nodes with the same color belong to one cluster in 

Fig. 3(b). Through the process of CABM, the number of candidate clusters decreases 
from 45 to 4. Fig. 3(c) shows the clustering result of K-Means with 4k = . Fig. 3(d) 
shows the result of CURE. It is clearly that the ability to explore arbitrary shape of 
Fig. 3(c) and Fig. 3(d) is not as good as Fig. 3(b). The four sharp angles in the right 
and down region of Fig. 3(b) are submerged in Fig. 3(c) and Fig. 3(d), indicating that 
K-Means and CURE have weak abilities than CABM to explore concave regions. 

Fig. 4 represents the relationship between the number of nodes moving among the 
clusters and the iterative times. As the figure shows, there are almost no nodes 
moving among the clusters after the th11  iteration of CABM. While CURE and K-
Means tends converge after 13 and 19 iterations. It is clear that CABM converges 
faster than CURE and K-Means. It follows that CABM is more efficient than CURE 
and K-Means. 
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Fig. 4. The relationship between iterative times and the number of nodes moving among the 
clusters 

4.2   Clustering Results on Different Data Sets 

The series of experiments is to compare the clustering results of CABM, K-Means 
and CURE on different data sets. We selected seven different data sets with 

1000,2000, ,7000n= L . We use Q introduced in section 2 to evaluate the quality of 

the clustering results. The quality of the clustering results of the three algorithms on 

seven different data sets ranges from 1.0100 to 1.0300. Q monotonously increases 
as the number of the data points increases. On every data set, 

CABM K-Meansmin{ , }CUREQ Q Q< . This indicates that the qualities of the clustering 

results of CABM are better than those of CURE and K-Means. 

 

Fig. 5. Relationship between the number of data objects and the qualities of the clustering of 
the three algorithms 
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5   Conclusion 

The clustering algorithm based on mechanics proposed in this paper considers the 
clustering problem in the view of the force and energy and transforms the theoretical 
problem into physical entity model. The clustering result is optimized with the 
theories of engineering mechanic. Experiments indicate the effectiveness of the 
algorithm. Future works includes studying the optimization of the model and the 
algorithm and trying other mechanical models. 
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Abstract. Feature extraction is one of the hot topics in face recognition. 
However, many face extraction methods will suffer from the “small sample size” 
problem, such as Linear Discriminant Analysis (LDA). Direct Linear 
Discriminant Analysis (DLDA) is an effective method to address this problem. 
But conventional DLDA algorithm is often computationally expensive and not 
scalable. In this paper, DLDA is analyzed from a new viewpoint via QR 
decomposition and an efficient and robust method named DLDA/QR algorithm 
is proposed. The proposed algorithm achieves high efficiency by introducing the 
QR decomposition on a small-size matrix, while keeping competitive 
classification accuracy. Experimental results on ORL face database demonstrate 
the effectiveness of the proposed method. 

1   Introduction 

Face Recognition (FR) has a wide range of applications, such as military, commercial 
and law enforcement et al. Within the past two decades, numerous FR [1-3],[6-16] 
algorithms have been proposed. Among these FR methods, the most popular methods 
are appearance-based approaches. 

Of the appearance-based FR methods, those utilizing Linear Discriminant Analysis 
(LDA) [4-16] techniques have shown promising results. Conventional LDA [4,5] 
algorithm aims to find an optimal transformation by minimizing the within-class scatter 
matrix and maximizing the between class scatter matrix simultaneously. The optimal 
transformation is readily computed by applying the eigen-decomposition to the scatter 
matrices. But an intrinsic limitation of conventional LDA is that its objective function 
                                                           
* This work was supported by NSF of China (60632050, 60472060, 60473039, 60503026 and 

60572034). 
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requires the within-class scatter matrix nonsingular. For many real applications, the 
within-class scatter matrix is often singular since the dimension of sample exceeds the 
number of sample and conventional LDA based methods suffer from the so-called 
“small sample size” [6-8] problem. 

In the last decades, numerous methods have been proposed to solve this problem. 
Tian et al [9] used the pseudoinverse method by replacing inverse of within-class 
scatter matrix with its pseudoinverse. The perturbation method is used in [10], where a 
small perturbation matrix is added to within-class scatter matrix in order to make it 
nonsingular. Cheng et al [11] proposed the Rank Decomposition method based on 
successive eigen-decomposition of the total scatter matrix and the between-class scatter 
matrix. However, the above methods are typically computationally expensive since the 
scatter matrices are very large. Swets and Weng [12] proposed a two stages PCA+LDA 
method, also known as the Fisherface [6] method, in which PCA is first used for 
dimension reduction so as to make the within-class scatter matrix nonsingular before 
the application of LDA. By far, the PCA+LDA method is popular used. However, 
algorithms based on this solution may discard effective features in PCA step. To 
prevent this from happening, many extended LDA algorithms with null space 
conception were proposed. Chen et al [13] and Yang et al [14] developed DLDA 
algorithm for face recognition, which can effectively solve “small sample size” 
problem and extract optimal classification features from original samples. But 
conventional DLDA [13-15] algorithm is often computationally expensive and not 
scalable. 

In this paper, first of all, we briefly recall the DLDA algorithm. Then we perform an 
in-depth analysis on DLDA algorithm and proposed a DLDA/QR algorithm. The 
utilization of the QR [16-17] decomposition on the small-size matrix is one of key 
steps. Thus we can implement the second stage of DLDA in a low dimensional space. 
Hence the proposed method is efficient and robust. Moreover, the theoretical 
foundation of the proposed method is revealed. 

2   Outline of Direct LDA 

Throughout the paper, C  denotes the number of classes, m  is the dimension, N  is 

the number of samples in each class, iμ  is the centroid of the ith class, and μ  is the 

holistic centroid of the whole data set. bS , wS  and tS  represent between-class scatter 

matrix, within-class scatter matrix and total class scatter matrix, respectively. 

DLDA [13-15] algorithm was proposed by Chen and Yang, which attempts to avoid 

the shortcomings existing in conventional solution to the “small sample size” problem. 

The basic idea behind the DLDA algorithm is that the null space of wS  may contain 

effective discriminant information if the projection of bS  is not zero in that direction, 

and that no effective information will be lost if the null space of bS  is discarded. For 
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example, assuming that bN  and wN  represent the null space of bS  and wS , 

respectively, the complement spaces of bN  and wN  can be written as 

b
n

b NRN −='  and w
n

w NRN −=' . Therefore, the optimal discriminant subspace 

extracted by the DLDA algorithm is the intersection space wb NN ∩' .  

The difference between Chen’s method and Yang’s method is that Yang’s method 

first diagonalizes bS  to find '
bN , while Chen’s method first diagonalizes wS  to find 

wN . Although there is no significant difference between the two approaches, it may be 

intractable to calculate wN  when the size of wS  is large, which is the case in most FR 

application. Therefore, we adopted Yang’s method as the derivation of the proposed 

algorithm. 

3   DLDA/QR Algorithm for Dimension Reduction and Feature 
Extraction 

In this section, we will present the DLDA/QR algorithm. Based on the analysis of 
DLDA algorithm, the proposed algorithm can be realized through two stages. The first 
stage is the maximum separability among different classes obtained by 
QR-decomposition. The second stage contains LDA algorithms that involve the 
concern of within-class distance. 

The first stage aims to solve the following optimization problem: 

( )GSGtraceG b
T

IGGT =
= maxarg  (1) 

From Eq.(1), we can find this optimization problem only gives the concern on 

maximizing between-class scatter matrix. The solution can be obtained by solving the 

eigenproblem on bS  similar to PCA algorithm. However, the solution to Eq.(1) can 

also be obtained through the QR-decomposition on the matrix bH  as follows, where 

( ) ( )][ 1 μμμμ −−= Cb NNH L  (2) 

and satisfies 

T
bbb HHS =  (3) 

Let 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
, 21

R
QQH b  (4) 
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be the QR decomposition of bH , where tmXQ ×∈1 , ( )tmmXQ −×∈2 , LtXR ×∈ , 

and ( )bSrankt = . It is easy to verify that RQH b 1=  is a full-rank decomposition 

of bH . Then WQG 1= , for any orthogonal matrix ttRW ×∈ , solves the 

optimization problem in Eq.(1). Note the rank t  of the matrix bH , is bounded above 

by 1−C . In practice, the C  centroids in the data set are usually linearly independent. 

In this case, the reduced dimension ( )bSrankCt =−= 1 . 

The second stage of DLDA/QR algorithm will concern the within-class distance. In 

this stage, the optimization problem is exactly the same one as in classical DLDA, but 

with matrixes of much smaller size, hence can be solved efficiently and stably. After we 

have obtained the matrix 1Q , we assume that 11

~
QSQS tt =  and 11

~
QSQS bb = . In 

this case, it is easy to verify that both tS
~

 and bS
~

 are tt ×  matrices. In addition, it 

should be noticed that the matrix bS
~

 is nonsingular. 

In this stage, we should find a matrix that simultaneously diagonalizes both bS
~

 and tS
~

: 

Λ=VSV t
T ~

, IVSV b
T =~

 (5) 

Where Λ  is a diagonal matrix whose diagonal elements are sorted in increasing order 

and I  is a unitary matrix. 

In simultaneous diagonalization mentioned above, first, we diagonalize the 

symmetric matrix bS
~

. Since the dimension of the matrix bS
~

 is tt × , generally 

mt << , it is easy to diagonalize the matrix. 

Assume that there exists the matrix U  such that 

bb
T USU Λ=~

 (6) 

where IUU T =  and bΛ  is a diagonal matrix whose diagonal elements are sorted in 

decreasing order. 

Let  

21−Λ= bUZ  (7) 

Then we can obtain 

( ) IUSU bb

T

b =ΛΛ −− 2121 ~
⇒ IZSZ b

T =~
 (8) 
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Next, let 

ZSZS t
T

t

~ˆ =  (9) 

In a similar way, we can diagonalize the matrix tŜ . 

Assume that there exists the matrix Y  such that 

tt
T YSY Λ=ˆ  (10) 

where IYY T =  and tΛ  is a diagonal matrix whose diagonal elements are sorted in 

increasing order. 

Ordinarily, we select s  ( ts ≤ ) eigenvectors corresponding to the first s  smallest 

eigenvalues. Assume that s  eigenvectors constitute the matrix 

( )si yyyP ,,,,1 LL= , where iy  is the ith column of the matrix Y . Then we obtain 

st
T PSP Λ=ˆ  (11) 

Let 

ZPVs =  (12) 

Then, we can obtain 

st
T

t
TT

t
T

s PSPZPSZPVSV Λ=== ˆ~~
 (13) 

And 

IIPPZPSZPVSV T
b

TT
b

T
s === ~~

 (14) 

Therefore, we obtain the matrix ZPVs =  simultaneously diagonalizes both bS
~

 

and tS
~

. Certainly, ZYV =  also satisfies this condition. 

Thus, we can obtain the following transform matrix: 

21
1

−Λ= sZPQE  (15) 

where E  is a sm ×  matrix. 

To a test image testx , the feature of this test image is found by 

test
T

test xE=Ω  (16) 

which can be used to classify. 
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Furthermore, the aforementioned simultaneous diagonalization can be further 
simplified by the following theorem [4]. 

Theorem 1. We can diagonalize two symmetric matrices tS
~

 and bS
~

 as 

Λ=VSV t
T ~

, IVSV b
T =~

, where V  and Λ  are the eigenvector and eigenvalue 

matrix of tb SS
~~ 1−  and satisfy VVSS tb Λ=− ~~ 1 . 

Assume that the diagonal elements of the matrix Λ  are sorted in increasing order. 

Accordingly, the final transform matrix is 21
1

−Λ= ssVQE , where sV  is a st ×  

matrix that consists of the first s  column vectors of V  and sΛ  is a ss ×  matrix that 

is obtained by the matrix Λ . 
Based on the above discussion, the proposed DLDA/QR algorithm is described as 

follows: 

Step 1: Obtain bH , bS  and tS , and calculate the QR decomposition of bH . Let 

11

~
QSQS tt =  and 11

~
QSQS bb = . 

Step 2: Calculate the eigenvector matrix and the eigenvalue matrix of ( ) tb SS
~~ 1−

, 

denote by V  and Λ . Assume the first s ( ts ≤ ) eigenvectors corresponding to the 

first s  smallest eigenvalues that the s  eigenvectors and eigenvalues form the matrix 

sV  and sΛ , respectively. Hence we can obtain the final transform matrix 
21

1
−Λ= ssVQE . 

Step 3: Project samples into subspace according to Eq.(16) and classify. 

4   Experimental Results 

To demonstrate the effectiveness of our method, experiments were done on the ORL 
face database (http://www.uk.research.att.com/facedatabase.html). Fig.1 depicts some 
images from the ORL face database. 

 

 
Fig. 1. Some samples from the ORL face database 
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Table 1. Recognition rates (%) on the ORL face database with Euclidean distance (mean and 
standard deviation) 

# Training sample / 

class (ϑ ) 
4 5 6 

Fisherface 89.85 ± 1.88 92.90 ± 1.37 93.13 ± 1.02 

DLDA 92.58 ± 1.33 95.00 ± 0.75 95.10 ± 0.78 

DLDA/QR 92.71 ± 1.26 96.00 ± 0.47 96.56 ± 1.11 

Table 2. Recognition rates (%) on the ORL face database with cosine distance (mean and 
standard deviation) 

# Training sample / 

class (ϑ ) 
4 5 6 

Fisherface 91.62 ± 0.64 93.25 ± 1.55 93.31 ± 1.56 

DLDA 92.62 ± 1.02 94.10 ± 1.58 94.75 ± 1.54 

DLDA/QR 93.05 ± 0.83 95.50 ± 1.29 96.31 ± 0.62 

In our experiments, the training and testing set are selected randomly from each 
subject. In each round, the training samples are selected randomly from the gallery and 
the remaining samples are used for testing. This procedure was repeated 10 times by 
randomly choosing different training and testing sets. The number of training samples 
per subject,ϑ , increases from 4 to 6 and the number of final discriminant vectors is 39 
(i.e. 1−C ). After feature extraction, a nearest neighbor classifier with different 
distance metrics is employed for classification. Two distance metrics: Euclidean 
distance metric and cosine distance are used in our experiments. 

 

Fig. 2. Comparison of recognition rates with different features numbers ( 5=ϑ ). Top: 
recognition rate with Euclidean metric. Bottom: recognition rate with cosine metric. 
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For each distance metric, mean and standard deviation of Fisherface, DLDA and 
DLDA/QR are listed in Table 1 and Table 2. From these results, we can conclude that 
the performance of the DLDA/QR algorithm is as well as (even slightly better than) that 
of conventional DLDA algorithm and superior to that of Fisherface algorithm. Then, 
recognition rates with different features numbers are shown in Fig.2. In this figure, as 
the features numbers varying from 20 to 39 with number of training samples per subject 
equals to 5 and number of classes equals to 40, the recognition rates are depicted. From 
this figure, we can conclude that the DLDA/QR algorithm is robust and stable, 
especially with cosine distance metric. Results with these experiments demonstrate 
that, with the QR decomposition, the DLDA algorithm becomes efficiency and 
scalability. Furthermore, after QR decomposition, the second stage of the proposed 
algorithm can implement in a low dimension space, which avoids handling large 
matrices and improves the stability of the computation. 

5   Conclusions 

In this paper, we proposed an extension of direct linear discriminant analysis algorithm, 
namely, DLDA/QR algorithm, which is highly efficient and scalable. The proposed 
method does not require the whole data matrix in main memory. This is desirable for 
large data sets. In addition, our theoretical analysis indicates that the computational 
complexity of the DLDA/QR algorithm is linear in the number of the data items in the 
training data set as the number of classes and the number of dimensions. It is the QR 
decomposition that contributes to the efficiency and scalability of the DLDA/QR 
algorithm, which is not only shown by our theoretical analysis, but also strongly 
supported by our experimental results. 

Our experiments on face database have shown that the accuracy achieved by the 
DLDA/QR algorithm is competitive with the ones achieved by DLDA and Fisherface 
algorithm. With efficiency and scalability, DLDA/QR algorithm is promising in 
real-time application involving extremely high-dimensional data. 
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Abstract. In graph mining applications, there has been an increasingly strong
urge for imposing user-specified constraints on the mining results. However, un-
like most traditional itemset constraints, structural constraints, such as density
and diameter of a graph, are very hard to be pushed deep into the mining process.

In this paper, we give the first comprehensive study on the pruning properties
of both traditional and structural constraints aiming to reduce not only the pattern
search space but the data search space as well. A new general framework, called
gPrune, is proposed to incorporate all the constraints in such a way that they re-
cursively reinforce each other through the entire mining process. A new concept,
Pattern-inseparable Data-antimonotonicity, is proposed to handle the structural
constraints unique in the context of graph, which, combined with known pruning
properties, provides a comprehensive and unified classification framework for
structural constraints. The exploration of these antimonotonicities in the context
of graph pattern mining is a significant extension to the known classification of
constraints, and deepens our understanding of the pruning properties of structural
graph constraints.

1 Introduction

Graphs are widely used to model complicated structures in many scientific and commer-
cial applications. Frequent graphs, those occurring frequently in a collection of graphs,
are especially useful in characterizing graph sets, detecting network motifs [2], dis-
criminating different groups of graphs [3], classifying and clustering graphs [4,5,6],
and building graph indices [7]. For example, Huan et al. [5] successfully applied the
frequent graph mining technique to extract coherent structures and used them to iden-
tify the family to which a protein belongs. Yan et al. [7] chose discriminative patterns
from frequent graphs and applied them as indexing features to achieve fast graph search.

Unfortunately, general-purpose graph mining algorithms cannot fully meet users’
demands for mining patterns with their own constraints. For example, in computational
biology, a highly connected subgraph could represent a set of genes within the same
functional module [8]. In chem-informatics, scientists are often interested in frequent
graphs that contain a specific functional fragment, e.g., a benzine ring. In all these
applications, it is critical for users to have control on certain properties of the mining
results for them to be meaningful. However, previous studies have left open the problem
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of pushing sophisticated structural constraints to expedite the mining process. This gap
between user demand and the capability of current known mining strategies calls for a
constraint-based mining framework that incorporates these structural constraints.

Related Work. A number of efficient algorithms for frequent graph mining are
available in data mining community, e.g., AGM [14], FSG [15], the path-join algo-
rithm [16], gSpan[17], MoFa[3], FFSM [18], SPIN[19] and Gaston [20]. Few of them
considered the necessary changes of the mining framework if structural constraints
are present. Constraint-based frequent pattern mining has been studied in the context
of association rule mining by Ng et al. [9], which identifies three important classes
of constraints: monotonicity, antimonotonicity and succinctness and develops efficient
constraint-based frequent itemset mining algorithms for a single constraint. Ng et al.
also pointed out the importance of exploratory mining of constrained association rules
so that a user can be involved in the mining process. Other complicated constraints, such
as gradients [26], block constraints [27], constraints on sequences [28], and connectiv-
ity constraints [23], are proposed for different applications. Pei et al. discovers another
class of constraint convertible constraints and its pushing methods. Constrained pattern
mining for graphs has been looked into by Wang et al., [29], although only constraints
with monotonicity/antimonotonicity/succinctness are discussed. Bucila et al. [10] intro-
duced a DualMiner framework that simultaneously takes advantage of both monotonic-
ity and antimonotonicity to increase mining efficiency. The general framework of these
mining methods is to push constraints deep in order to prune pattern search space. Al-
though this is effective in many cases, the greatest power of constraint-based frequent
pattern mining is achieved only when considering together the reduction on both the
pattern search space and the data search space. Bonchi et al.have taken successful steps
in this direction by proposing ExAnte, [11,12,13], a pre-processor to achieve data re-
duction in constrained itemset mining. ExAnte overcame the difficulty of combining the
pruning power of both anti-monotone and monotone constraints, the latter of which had
been considered hard to exploit without compromising the anti-monotone constraints.
Boulicaut and De Raedt [1] have explored constraint-based mining as a step towards
inductive databases.

Our Contributions. In this paper we show that the data reduction technique can in fact
be extended beyond the preprocessing stage as in ExAnte, and pushed deeper into the
mining algorithm such that the data search space is shrunk recursively each time it is
projected for a pattern newly grown, through the entire mining process. More impor-
tantly, our study of graph constraints shows that for sophisticated constraints in data
sets whose structures are more complicated than itemsets, data space pruning could be
effective only when the structural relationship between the embedded pattern and the
data is taken into account. This new constraint property, which we term as Pattern-
inseparable D-antimonotonicity, is unique in the context of graphs and, to our best
knowledge, has not been explored before in literature. It distinguishes itself from other
pruning properties in that most sophisticated structural constraints, e.g., diameter, den-
sity, and connectivity, exhibit neither antimonotonicity nor monotonicity. Without ex-
ploiting Pattern-inseparable D-antimonotonicity, current mining algorithms would have
to enumerate all frequent graphs in the first place and then check constraints on them
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one by one. The paper makes the following contributions: First, we present the first sys-
tematic study of the pruning properties for complicated structural constraints in graph
mining which achieves pruning on both pattern and data spaces. The full spectrum of
pruning power is covered by (1) extending the known antimonotonicities for itemsets
to easier cases and (2) discovering novel pattern-separable and pattern-inseparable D-
antimonotonicities to handle structural constraints when pattern embeddings have to be
considered. Secondly, a general mining framework is proposed that incorporates these
pruning properties in graph pattern mining. In particular, data space pruning is cou-
pled tightly with other constraint-based pruning such that data reduction is exploited
throughout the entire mining process. Thirdly, discussion is given on mining strategy
selection when a trade-off has to be made between the naive enumerating-and-checking
approach and our pruning-property-driven approach.

2 Preliminaries

As a convention, the vertex set of a graph P is denoted by V (P ) and the edge set
by E(P ). For two graphs P and P ′, P is a subgraph of P ′ if there exists a subgraph
isomorphism from P to P ′, denoted by P ⊆ P ′. P ′ is called a supergraph of P . In
graph mining, a pattern is itself a graph, and will also be denoted as P . Given a set of
graphs D = {G1, G2, . . . , Gn}, for any pattern P , the support database of P is denoted
as DP , and is defined as DP = {Gi|P ⊆ Gi, 1 ≤ i ≤ n}. DP is also referred to as the
data search space of P , or data space for short. A graph pattern P is frequent if and
only if |DP |

|D| ≥ σ for a support threshold σ.
A constraint C is a boolean predicate on the pattern space U . Define fC : U → {0, 1}

as the corresponding boolean function of C such that fC(P ) = 1, P ∈ U if and only if
P satisfies the constraint C. For example, let C be the constraint Max Degree(P )≥
10 for a graph pattern P . Then fC(P ) = 1 if and only if the maximum degree of all
the vertices of P is greater than 10. We formulate the constraint-based frequent graph
pattern mining problem as the following:

Definition 1. (Constraint-based Frequent Graph Pattern Mining) Given a set of
graphs D = {G1, G2, . . . Gn}, a support threshold σ, and a constraint C, constraint-
based frequent graph pattern mining is to find all P such that |DP |

|D| ≥ σ and fC(P ) = 1.

Here are some graph constraints used in this paper: (1) The density ratio of a graph P ,
denoted as Density Ratio(P ), is defined as Density Ratio(P ) = |E(P )|

|V (P )|(|V (P )|−1)/2 .

(2) The Density of a graph P is defined as Density(P ) = |E(P )|
|V (P )| . (3) The Diameter

of a graph P is the maximum length of the shortest path between any two vertices of
P . (4) EdgeConnectivity(P )(V ertexConnectivity(P )) is the minimum number of
edges(vertices) whose deletion from P disconnects P .

3 Pattern Mining Framework

gPrune can be applied to both Apriori-based model and the pattern-growth model.
In this paper, we take the pattern-growth model as an example to illustrate the prun-
ing optimizations. Nevertheless, the techniques proposed here can also be applied to
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Apriori-based methods. The pattern-growth graph mining approach is composed of two
stages (1) pattern seed generation (2) pattern growth. The mining process is conducted
by iterating these two stages until all frequent patterns are found.

Pattern Seed Generation: We use gSpan[17] to enumerate all the seeds with size of
increasing order. One pattern seed is generated every time and proceeds to the pattern
growth stage. A pattern seed could be a vertex, an edge, or a small structure.

Pattern Growth: As outlined in Algorithm 1, PatternGrowth keeps a set S of pattern
seeds and a set F of frequent patterns already mined. Each iteration of PatternGrowth
might generate new seeds (added to S), and identify new frequent patterns (added to
F ). Line 1 initializes the data structures. Initially, S contains only the pattern seed. Line
2 to 11 grow every pattern seed in S until S is exhausted. For each pattern seed Q,
which is taken from the set S in Line 3, Q is checked through its data search space
and augmented incrementally by adding a new edge or vertex (Lines 4 and 5). Each
augmented pattern is checked for pattern pruning in Line 6 and dropped whenever it
satisfies the pattern pruning requirements. All the augmented patterns that survive the
checking are recorded in St. Then in Line 8, for each surviving pattern, we construct its
own support data space from that of Q’s. Line 9 checks data pruning for each G in the
support space. Since each thus augmented pattern is a frequent pattern, we add them to
F in Line 10. Finally, these patterns are added to S, so that they will be used to grow
new patterns. When S is exhausted, a new pattern seed will be generated until it is clear
that all frequent patterns are discovered. The algorithm input: A frequent pattern seed
P , graph database D = {G1, G2, . . . , Gn} and the existing frequent pattern set F . The
algorithm output: New frequent pattern set F .

Algorithm 1. PatternGrowth

1: S ← {P}; F ← F
⋃

{P}; St ← ∅
2: while S �= ∅;
3: Q ← pop(S);
4: for each graph G ∈ DQ

5: Augment Q and save new patterns in St;

6: Check pattern pruning on each P ∈ St;

7: for each augmented pattern Q′ ∈ St

8: Construct support data space DQ′ for Q′;

9: Check data pruning on DQ′ ;

10: F ← F
⋃

St;
11: S ← S

⋃
St;

12: return F ;

PatternGrowth checks for pattern pruning in Line 6 and data pruning in Line 9.
Pattern pruning is performed whenever a new augmented pattern is generated. This
means any unpromising pattern will be pruned before constructing its data search space.
Notice that data pruning is performed whenever infrequent edges are dropped after a



392 F. Zhu et al.

new data search space is constructed and offers chance to drop new target graphs. As
such, the search space for a pattern keeps shrinking as the pattern grows.

4 Pruning Properties

A pruning property is a property of the constraint that helps prune either the pattern
search space or the data search space. Pruning properties which enable us to prune
patterns are called P-antimonotonicity, and those that enable us to prune data are called
D-antimonotonicity.

4.1 Pruning Patterns

(1) Strong P-antimonotonicity

Definition 2. A constraint C is strong P-antimonotone if fC(P ′) = 1 → fC(P ) = 1
for all P ⊆ P ′.

Strong P-antimonotonicity is simply the antimonotone property which has been known
long since [9]. We call it strong P-antimonotonicity only to distinguish it from the other
P-antimonotonicity introduced below. An example of strong P-antimonotone constraint
for graph is acyclicity.

(2) Weak P-antimonotonicity
Constraints like “Density Ratio(G) ≥ 0.1” is not strong P-antimonotone. Growing
a graph G could make Density Ratio(G) go either up or down. However, they have
weak P-antimonotonicity, which is based on the following intuition. If a constraint C
is not strong P-antimonotone, then there must exist a pattern P violating C and a su-
pergraph of P , say Q, that satisfies C. In this case, we cannot prune graph P even if P
violates C because Q might be missed if Q can only be grown out of P . However, if
we can guarantee that Q can always be grown from some other subgraph P ′ such that
P ′ satisfies C, we can then safely prune P .

Definition 3. A constraint C is weak P-antimonotone if for a graph P ′ where |V (P ′)|
≥ k for some constant k, fC(P ′) = 1 → fC(P ) = 1 for some P ⊂ P ′, such that
|V (P )| = |V (P ′)| − 1.

k is the size of the minimum instance to satisfy the constraint. When mining for weak
P-antimonotone constraints, since we are sure that, for any constraint-satisfying pat-
tern Q, there is a chain of substructures such that g1 ⊂ g2 ⊂ ... ⊂ gn = Q and gi

satisfies the constraint for all 1 ≤ i ≤ n, we can drop a current pattern P if it vi-
olates the constraint, even if some supergraph of P might satisfy the constraint. Weak
P-antimonotonicity allows us to prune patterns without compromising the completeness
of the mining result. A similar property on itemsets, ”loose antimonotonicity”, has been
discussed by Bonchi et al.in [13]. Notice that if a constraint is strong P-antimonotone,
it is automatically weak P-antimonotone; but not vice versa. Also note that we can have
similar definition of weak P-animonotonicity with the chain of substructure decreasing
in number of edges.

We us the graph density ratio example to illustrate the pruning. The proof of the
following theorem is omitted due to space limit.
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Theorem 1. Given a graph G, if Density Ratio(G) > δ, then there exists a sequence
of subgraphs g3, g4, . . . , gn = G, |V (gi)| = i (3 ≤ i ≤ n) such that g3 ⊂ g4 ⊂ . . . gn

and Density Ratio(gi) > δ.

Theorem 1 shows a densely connected graph can always be grown from a smaller
densely connected graph with one vertex less. As shown in this example of graph den-
sity ratio, even for constraints that are not strong P-antimonotone, there is still pruning
power to tap if weak P-antimonotonicity is available.

4.2 Pruning Data

(1) Pattern-separable D-antimonotonicity

Definition 4. A constraint C is pattern-separable D-antimonotone if for a pattern P
and a graph G ∈ DP , fC(G) = 0 → fC(P ′) = 0 for all P ⊆ P ′ ⊆ G.

For constraints with pattern-separable D-antimonotonicity, the exact embeddings of the
pattern are irrelevant. Therefore, we only need to check the constraint on the entire
graphs in the pattern’s data search space, and safely drop a graph if it fails the constraint.

Consider the constraint “the number of edges in a pattern is greater than 10”. The
observation is that every time a new data search space is constructed for the current
pattern P , we can scan the graphs in the support space and prune those with less than
11 edges.

It is important to recognize that this data reduction technique can be applied repeat-
edly in the entire mining process, instead of applying in an initial scan of the database
as a preprocessing procedure. It is true that we will not benefit much if this data pruning
is effective only once for the original data set, i.e., if any graph surviving the initial
scanning will always survive in the later pruning. The key is that in our framework,
data pruning is checked on every graph in the data search space each time the space
is updated for the current pattern. As such, a graph surviving the initial scan could
still be pruned later. This is because when updating the search space for the current
pattern P , edges which were frequent at last step could now become infrequent, and are
thus dropped. This would potentially change each graph in the data search space, and
offer chance to find new graphs with less than 11 edges which become eligible for prun-
ing only at this step. Other examples of pattern-separable D-antimonotonic constraints
include path/feature containment, e.g., pattern contains three benzol rings.

(2) Pattern-inseparable D-antimonotonicity
Unfortunately, many constraints in practice are not pattern-separable D-antimonotone.
V ertexConnectivity(P ) > 10 is a case in point. The exact embedding of the pattern
is critical in deciding whether it is safe to drop a graph in the data search space. These
constraints are thus pattern-inseparable. In these cases, if we “put the pattern P back to
G”, i.e., considering P together with G, we may still be able to prune the data search
space.

Definition 5. A constraint C is pattern-inseparable D-antimonotone if for a pattern
P and a graph G ∈ DP , there exists a measure function M : {P} × {G} → {0, 1}
such that M(P, G) = 0 → fC(P ′) = 0 for all P ⊆ P ′ ⊆ G.
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Constraint strong weak pattern-separable pattern-inseparable
P-antimonotone P-antimonotone D-antimonotone D-antimonotone

Min Degree(G) ≥ δ No No No Yes
Min Degree(G) ≤ δ No Yes No Yes
Max Degree(G) ≥ δ No No Yes Yes
Max Degree(G) ≤ δ Yes Yes No Yes

Density Ratio(G) ≥ δ No Yes No Yes
Density Ratio(G) ≤ δ No Yes No Yes

Density(G) ≥ δ No No No Yes
Density(G) ≤ δ No Yes No Yes

Size(G) ≥ δ No Yes Yes Yes
Size(G) ≤ δ Yes Yes No Yes

Diameter(G) ≥ δ No Yes No Yes
Diameter(G) ≤ δ No No No Yes

EdgeConnectivity(G) ≥ δ No No No Yes
EdgeConnectivity(G) ≤ δ No Yes No Yes
G contains P (e.g., P is a benzol ring) No Yes Yes Yes

G does not contain P (e.g., P is a benzol ring) Yes Yes No Yes

Fig. 1. A General Picture of Pruning Properties of Graph Constraints

The idea of using pattern-inseparable D-antimonotone constraints to prune data is the
following. After embedding the current pattern P into each G ∈ DP , we compute by
a measure function, for all supergraphs P ′ such that P ⊂ P ′ ⊂ G, an upper/lower
bound of the graph property to be computed in the constraint. This bound serves as
a necessary condition for the existence of a constraint-satisfying supergragh P ′. We
discard G if this necessary condition is violated. For example, suppose the constraint is
V ertexConnectivity(P ) > 10. If after embedding P in G, we find that the maximum
vertex connectivity of all the supergraphs of P is smaller than 10, then no future pattern
growing out of P in G will ever satisfy the constraint. As such G can be safely dropped.
The measure function used to compute the bounds depends on the particular constraint.
For some constraints, the computational cost might be prohibitively high and such a
computation will not be performed. Another cost issue associated with pruning based
on pattern-inseparable D-antimonotonicity is the maintenance of the pattern growth
tree to track pattern embeddings. The Mining algorithm has to make a choice based
on the cost of the pruning and the potential benefit. More discussion on the trade-off
in these cases is given in Section 5. We use the vertex connectivity as an example to
show how to perform data pruning. The time cost is linear in the pattern size for this
constraint.

Let Neighbor(P ) be the set of vertices adjacent to pattern P . For the vertex connec-
tivity constraint, the following lemma gives a necessary condition for the existence of a
P ′ such that V ertexConnectivity(P ′) ≥ δ.

Lemma 1. If |Neighbor(P )| < δ, then there exists no P ′ such that P ⊂ P ′ ⊂ G and
V ertexConnectivity(P ′) > δ.

Therefore, for each pair of pattern P and G ∈ DP , the measure function M(P, G) could
first embed P in G, and then identify Neighbor(P ). If |Neighbor(P )| is smaller than
10, returns 0. This pruning check is computationally cheap and only takes time linear
in |V (G − P )|.

We summarize our study on the most useful constraints for graphs in Figure 1. Proofs
are omitted due to space limit.
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5 Mining Strategy Selection

The checking steps for pruning patterns and data are both associated with a computa-
tional cost. Alternatively, one can first mine all frequent patterns by a known mining
algorithm, gSpan [17] for example, then check constraints on every frequent pattern
output, and discard those that do not satisfy the constraint. We call this method the
enumerate-and-check approach in the following discussion. Which approach is better
depends on the total mining cost in each case. The best strategy therefore is to estimate
the cost and potential benefit for each approach at every pruning step, and adopt the one
that would give better expected efficiency.

The growth of a pattern forms a partial order ≺ defined by subgraph containment,
i.e., P ≺ Q if and only if P ⊆ Q. The partial order can be represented by a pattern tree
model in which a node P is an ancestor of a node Q if and only if P ≺ Q.

Each internal node represents a frequent pattern, which is associated with its own
data search space {Ti}. The execution of a pattern mining algorithm can be viewed as
growing such a pattern tree. Every initial pattern seed is the root of a new tree. Every
time it augments a frequent pattern P , it generates all P ’s children in the tree. As such,
each leaf corresponds to an infrequent pattern, or, in our mining model, a pattern that
does not satisfy the constraints, since it is not further grown. Accordingly, the running
time of a pattern mining algorithm can be bounded by the total number of nodes it
generates in such a tree. This total sum is composed of two parts: (1) the set of all
internal nodes, which corresponds to all the frequent patterns and is denoted as F ; and
(2) the set of all leaves, denoted by L, which corresponds to the infrequent patterns or
constraint-violating patterns.

Let’s look at the running time of the enumerate-and-check approach. Let the mini-
mum support threshold be σ, i.e.a frequent pattern has to appear in at least σ|D| graphs,
where D is the entire graph database. Let Tc(P ) be the cost to check a constraint C on a
graph P . The running time of the enumerate-and-check approach can be lower-bounded
as follows:

1. Internal Nodes
If an augmented pattern P is frequent, at least σ|D| time has to be spent in the
frequency checking and data search space construction. Hence, the construction
time for such a node P is |DP | + Tc(P ) ≥ σ|D| + Tc(P ).

2. Leaf Nodes
If P is infrequent, at least σ|D| time has to be spent in frequency checking. Since
frequency checking is limited to support data space of P ’s parent node, denoted as
Parent(P ), the construction time for P is ≥ min(σ|D|,|DParent(P )|)= σ|D|.

Then the total cost, TP , for mining from an initial pattern seed P by the enumerate-
and-check approach is lower-bounded as TP ≥

∑
Pi∈FP

(σ|D|+Tc(Pi))+
∑

Pi∈L σ|D|
=σ|D||FP |+

∑
Pi∈FP

Tc(Pi)+σ|D||L| ≥ 2σ|D||FP |+
∑

Pi∈FP
Tc(Pi), where FP is

the set of frequent patterns grown from P . Essentially, the time cost of the enumerate-
and-check approach is proportional to |FP |. To bound |FP | means to bound the number
of frequent patterns that would be generated from a pattern P . It is very hard to analyti-
cally give an accurate estimation of this heavily-data-dependent quantity. Our empirical
studies show that in general, |FP | is very large for small patterns. An upper-bound of
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|FP | can also be proved to be Θ(2|G|), G ∈ DP . The proof is omitted due to space
constraint.

Now we show how we should choose between the enumerate-and-check approach
and our mining framework in both pattern pruning and data pruning cases.

1. Pruning Patterns: If we can prune a frequent pattern P after checking constraints
on it, then the entire subtree rooted at P in the pattern tree model will not be grown.
The time we would save is TP . The extra time spent for constraint checking is
Tc(P ). If it turns out that we can not prune it after the checking, we will grow it as
in the enumerate-and-check approach. The expected cost of using our mining model
is Tprune = Tc(P )+(1−p)·TP where p is the probability that P fails the constraint
checking. Tc(P ) depends on the algorithm used for the constraint checking, while
p will be estimated empirically. The cost of the enumerate-and-check approach is
TP . As such, pattern pruning should be performed when Tc(P ) ≤ p · TP .

2. Pruning Data: If we can prune a graph G from the data search space of P after
data pruning checking, G will be pruned from the data search spaces of all nodes
in the subtree rooted at P . Therefore the time we save is lower-bounded by TP . Let
Td(P, G) be the time cost to check data pruning for a pattern P and a graph G ∈
DP . Let q be the probability that G can be discarded after checking data pruning.
Then for a graph G ∈ DP , using data pruning by our model takes expected time
Tprune = Td(P, G) + (1 − q)TP , while the enumerate-and-check approach would
cost time TP . The probability q can be obtained by applying sampling technique
on DP . We would perform data pruning checking for G if Td(P, G) < q · TP .
Otherwise, we shall just leave G in the search space.

6 Experimental Evaluation

In this section, we are going to demonstrate the pruning power provided by the the new
antimonotonicities introduced in our framework, i.e., weak pattern-antimonotonicity
and data-antimonotonicity. Among all of structural constraints described in Figure 1,
minimum density ratio and minimum degree are selected as representatives. All of our
experiments are performed on a 3.2GHZ, 1GB-memory, Intel PC running Windows XP.

We explored a series of synthetic datasets and two real datasets. The synthetic data
generator1 is provided by Yan et al.[23], which includes a set of parameters that allow
a user to test the performance under different conditions. There are a set of parameters
for users to specify: the number of target graphs(N ), the number of objects (O), the
number of seed graphs (S), the average size of seed graphs (I), the average number of
seed graphs in each target graph (T ), the average density of seed graphs (D), and the
average density of noise edges in target graphs.

The detailed description about this synthetic data generator is referred to [23].
For a dataset which has 60 relational graphs of 1,000 distinct objects, 20 seed graphs
(each seed graph has 10 vertices and an average density 0.5), 10 seed graphs per re-
lational graph, and 20 noise edges per object (0.01 × 1, 000 × 2), we represent it as
N60O1kS20T10I10 D0.5d0.01.

1 It will produce a distinctive label for each node in a graph.
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Fig. 2. WeakP-Antimonotonicity
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Fig. 3. WeakP-Antimonotonicity

The first experiment is about the minimum density ratio constraint. As proved in
Section 4, minimum density ratio has weak pattern-antimonotonicity property. For each
graph whose density ratio is greater than δ (0 < δ ≤ 1.0), we can find a subgraph with
one vertex less whose density is greater than δ. That means we can stop growing any
frequent pattern with one more vertex if its density is less than δ.

Figure 2 shows the pruning performance with various minimum density ratios. The
data set used here is N60O1kS20T10I10 D0.5d0.01. The Y axis depicts the intermediate
frequent patterns that are accessed during the mining process. The fewer the intermedi-
ate patterns, the better the performance, given the cost of checking the pattern’s density
ratio is negligible. The two curves show the performance comparison between methods
with and without weak P-antimonotone pruning. As the figure shows, with the inte-
gration of the minimum density ratio constraint, we only need to examine much fewer
frequent patterns, which proves the effectiveness of weak pattern-antimonotonicity. In
the next experiment, we fix the density ratio threshold at 0.5 and change the average
density ratio of seed graphs (D) in the above synthetic dataset. The denser the seed
graphs, the more the dense subgraph patterns. It could take longer to find these patterns.
Figure 3 depicts the performance comparison between methods with or without weak
P-antimonotone pruning. We found that when D is greater than 0.6, the program with-
out P-antimonotone pruning cannot finish in hours, while the one with P-antimonotone
pruning can finish in 200 seconds.

Besides the weak P-antimonotone pruning, we also examined pattern inseparable D-
antimonotonicity to pruning the data search space for the density ratio constraint. Given
a frequent subgraph P and a graph G in the database (P ⊆ G), we need a measure to
quickly check the maximum density ratio for each graph Q, where P ⊆ Q ⊆ G. For
this purpose, we developed an algorithm for fast maximum density ratio checking. Let
P ′ be the image of P in G. Our algorithm has three steps: (1) transform G to G′ by
merging all of the nodes in P ′. (2) apply Goldberg’s maximum density ratio subgraph
finding algorithm to find a maximum density ratio subgraph in G′ (time complexity
O(n3logn), where n = |V (G′)|) [24]. (3) for graph G, calculate a maximum density
ratio subgraph that contains P ′; if this density ratio is below the density ratio threshold,
we can safely drop G from the data search space of P (i.e., G does not contain any sub-
graph Q that contains P and whose density ratio is greater than the threshold). For each
discovered subgraph, we perform this checking to prune the data search space as much
as possible. Although this checking is much faster than enumerating all subgraphs in
G, we find it runs slower than a method without pruning, due to the high computational
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cost. That is, the cost model discussed in Section 5 does not favor this approach.
Through this exercise, it was learned that, in order to deploy D-antimonotone pruning,
the corresponding measure function in Defintion 5 has to be fast enough.

We applied the above frequent dense subgraph mining algorithm to the real data that
consists of 32 microarray expression sets measuring yeast genome-wide expression pro-
files under different types of perturbations, e.g., cell cycle, amino acid starvation, heat
shock, and osmotic pressure. Each dataset includes the expression values of 6661 yeast
genes over multiple conditions. We model each dataset as a relational graph, where
nodes represent genes, and we connect two genes with an edge if they have high cor-
relation in their expression profiles. The patterns mined by our methods exhibit strong
biological meanings. The mining result was published in our previous work [23].

Although we did not find a good D-antimonotonicity for the density ratio constraint,
D-antimonotonicity is still applicable for other constraints, e.g., the minimum degree
constraint. Neither pattern antimonotonicity nor weak pattern antimonotonicity is avail-
able for the minimum degree constraint. Thus, we develop a pruning technique us-
ing pattern-inseparable data antimonotonicity, which checks the minimum degree of a
pattern embedded in each graph. If the degree is below threshold δ, we drop the cor-
responding graph from the data search space. The dropping will also decrease the fre-
quency of each pattern and its superpatterns, which may make them infrequent as a
result.

Figure 4 shows the comparison of pruning performance between data-
antimonotonicity and a one-scan pruning method that drops vertices with less than δ
edges before running PatternGrowth. When the minimum degree constraint is weak,
e.g., minimum degree threshold is low, these two methods have similar performance.
However, when the constraint becomes strong, the pruning based on data-
antimonotonicity performs much better.

Figure 5 shows the number of subgraph isomorphisms performed for these two algo-
rithms. It is clear that, using data antimonotonicity, a lot of graphs are pruned in the early
stage so that the number of subgraph isomorphisms done in the later stage can be signifi-
cantly reduced. We now check one constraint with pattern separable D-antimonotonicity
— the minimum size constraint. The minimum size constraint on frequent itemset min-
ing and sequential pattern mining has been explored before, e.g., SLPMiner developed
by Seno and Karypis [25]. Suppose our task is to find frequent graph patterns with
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minimum length δ. One approach is to check the graphs in the data search space of
each discovered pattern P and prune the graphs that are not going to generate patterns
whose size is no less than δ. We developed several heuristics and applied our algorithm
to mine the AIDS antiviral screen compound dataset from Developmental Theroapeu-
tics Program in NCI/NIH [30]. The dataset contains 423 chemical compounds that are
proved active to HIV virus.

Figure 6 shows the runtime of the two algorithms with and without pattern separable
D-antimonotone pruning, with different support thresholds. The size constraint is set
in a way such that less than 10 largest patterns are output. It is a surprise that for this
dataset, pattern separable D-antimonotone pruning is not effective at all. Closer exami-
nation of this dataset reveals that most of the graphs can not be pruned because the sizes
of frequent patterns are relatively small in comparison with the graphs in the database.
This once again demonstrates, as also shown in the density ratio constraint, that the
effectiveness of the integration of a constraint with the mining process is affected by
many factors, e.g., the dataset and the pruning cost.

7 Conclusions

In this paper, we investigated the problem of incorporating sophisticated structural con-
straints in mining frequent graph patterns over a collection of graphs. We studied the
nature of search space pruning for both patterns and data, and discovered novel an-
timonotonicities that can significantly boost pruning power for graph mining in each
case: (1) weak pattern-antimonotonicity for patterns; (2) pattern-separable and pattern-
inseparable data-antimonotonicities for data. We showed how these properties can be
exploited to prune potentially enormous search space. An analysis of the trade-off
between the enumerating-and-checking approach and the antimonotonicity-based ap-
proach was also given in this study.

References

1. Boulicaut,J.,De Raedt, L.: Inductive Databases and Constraint-Based Mining. (ECML’02)
Tutorial.

2. Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent
subgraphs in biological networks. (ISMB’04). 200–207

3. Borgelt, C., Berthold, M.R.: Mining molecular fragments: Finding relevant substructures of
molecules. (ICDM’02), 211–218

4. Deshpande, M., Kuramochi, M., Karypis, G.: Frequent sub-structure-based approaches for
classifying chemical compounds. (ICDM’03). 35–42

5. Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., Tropsha, A.: Mining spatial
motifs from protein structure graphs. (RECOMB ’04), 308–315

6. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based ap-
proaches for classifying chemical compounds. IEEE TKDE 17(8) (2005) 1036–1050

7. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based ap-
proach.(SIGMOD’04), 335–346

8. Butte, A., Tamayo, P., Slonim, D., Golub, T., Kohane, I.: Discovering functional relation-
ships between rna expression and chemotherapeutic susceptibility. In: Proc. of the National
Academy of Science. Volume 97. (2000) 12182–12186



400 F. Zhu et al.

9. Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimiza-
tions of constrained associations rules. (SIGMOD’98), 13–24

10. Bucila, C., Gehrke, J., Kifer, D., White, W.: DualMiner: A dual-pruning algorithm for item-
sets with constraints. Data Mining and Knowledge Discovery 7 (2003) 241–272

11. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: Anticipated data reduction in
constrained pattern mining. (PKDD’03)

12. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: A preprocessing method for
frequent-pattern mining. In: IEEE Intelligent Systems 20(3). (2005) 25–31

13. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining.
(PAKDD’04), 114 – 124

14. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent sub-
structures from graph data. (PKDD’00), 13–23

15. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. (ICDM’01), 313–320
16. Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from semistruc-

tured data. (ICDM’02), 458–465
17. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. (ICDM’02), 721–724
18. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of

isomorphism. (ICDM’03), 549–552
19. Prins, J., Yang, J., Huan, J., Wang, W.: Spin: Mining maximal frequent subgraphs from graph

databases. (KDD’04), 581–586
20. Nijssen, S., Kok, J.: A quickstart in frequent structure mining can make a difference.

(KDD’04), 647–652
21. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. (VLDB’94), 487–499
22. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. (SIG-

MOD’00), 1–12
23. Yan, X., Zhou, X.J., Han, J.: Mining closed relational graphs with connectivity constraints.

(KDD’05), 324–333
24. Goldberg, A.: Finding a maximum density subgraph. Berkeley Tech Report, CSD-84-171
25. Seno, M., Karypis, G.: Slpminer: An algorithm for finding frequent sequential patterns using

length decreasing support constraint. (ICDM’02), 418–425
26. Dong, G., Han, J., Lam, J., Pei, J., Wang, K., Zou, W.: Mining constrained gradients in

multi-dimensional databases. IEEE TKDE 16 (2004) 922–938
27. Gade, K., Wang, J., Karypis, G.: Efficient closed pattern mining in the presence of tough

block constraints. (KDD’04), 138 – 147
28. Zaki, M.: Generating non-redundant association rules.(KDD’00), 34–43
29. Wang, C., Zhu, Y., Wu, T., Wang, W., Shi, B.: Constraint-based graph mining in large

database. (In: APWeb 2005) 133 – 144
30. Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns (KDD’03)286-295



Modeling Anticipatory Event Transitions

Ridzwan Aminuddin, Ridzwan Suri, Kuiyu Chang, Zaki Zainudin, Qi He,
and Ee-Peng Lim

School of Computer Engineering
Nanyang Technological University

Singapore 639798
{muha0005,ridz0001,muha003,aseplim}@ntu.edu.sg,

{kuiyu.chang,qihe}@pmail.ntu.edu.sg

Abstract. Anticipatory Event Detection (AED) attempts to monitor
user anticipated events, called Anticipatory Events (AE) that have yet
to occur. Central to AED is the Event Transition Graph (ETG), which
defines the pre and post states of a user specified AE. A classification
model can be trained on documents in the pre and post states to learn to
detect an AE. However, this simplistic classification model does not make
use of discriminatory keywords between the two states. We propose a
simple but effective feature selection method to identify important bursty
features that highly discriminate between the pre and post states of an
AE. Bursty features are first computed using Kleinberg’s Algorithm, then
various combination of features in both states are selected. Experimental
results show that bursty features can significantly improve the accuracy
of AED.

1 Introduction

The value of providing accurate and timely information, especially news, has
exponentially increased with the prevalence of the Internet. For example, push-
based news alert systems like Google News Alerts notify subscribers when user
pre-specified events (called Anticipatory Event or AE) take place.

As alerts are pushed into handheld devices 24/7, it is extremely important[1]
for the alerts to be delivered accurately and precisely. Unfortunately, current
alert systems are not smart enough to figure out if a news document contain-
ing the user defined words satisfy the AE. In fact, to ensure uncompromisable
accuracy, some portals like Yahoo rely on a human operator to approve system
triggered news alerts, whereas others like Google use a completely automated
approach, resulting in many false alarms[2].

AED systems based on classifying sentences/documents into pre/post AE
states have been previously proposed[2,3]. The idea is to train a classifier using
the pre/post documents of historical events with similar characteristics to the
AE. For example, to create an AED system to detect an AE such as “US invades
Iran”, it can be trained using available documents from the pre/post states of
the historical events “US invades Afghanistan” and “US invades Iraq”. The crux
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c© Springer-Verlag Berlin Heidelberg 2007



402 R. Aminuddin et al.

of the AED system is thus the 2-state Event Transition Graph (ETG), where
documents are assigned to either the pre or post states of the AE.

However, the trained model is a black box that does not open up for in-
terpretation. Further, the element of time is not considered if we use standard
Information Retrieval (IR) techniques to represent the documents from each of
the two states. We therefore propose a novel approach to select representative
features from the pre and post states based on the burstiness of words before
and after the AE transition in the ETG, respectively.

2 Related Work

He et al.[3,2] originally proposed the AED concept as a new area under Topic
Detection and Tracking (TDT). They also defined the general AED framework
which includes an Event Transition Graph (ETG). Our work focus on deriving
better features to represent the two states of an ETG, thereby improving the
model.

Tax et al.[4] explained the application of support vector classifiers in two-
class classification problems. The paper discussed the strengths as well as some
of the critical limitations of the support vector classifier. Amongst these were the
problems of small sample size as well as peaking effect. It proved that using as
many features as possible does not necessarily improve the overall classification
accuracy. Instead, there exists an optimal number of features beyond which
performance of the classifier degrades. Our work, hopes to approximate this
approach by limiting the features selected for classification in hope of improving
the classification accuracy.

Kleinberg[5] formulated a finite state automaton to identify and define bursty
words in a document stream. Bursty words are useful for extracting the structure
of the document stream and thus attach a formal meaning to the stream. This
is possible because bursty words add an additional time dimension to the set of
documents. Such a model can be applied in many ways, one of which is to identify
scientific research topics and trends as illustrated in [6]. Noting its usefulness,
we applied this algorithm in our feature selection approach.

3 Model

3.1 The Anticipatory Event Detection Model

An overview of the AED framework is given in Figure 1. The ETG involves the
formation of the individual events and the AE transition from one event to the
next. Our primary goal is thus to accurately model each event in the ETG. An
AE could be any event with a predecessor in the ETG. Once the ETG is well
defined, say with a list of keywords, it could then be used to classify and trigger
an AE.
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Fig. 1. Overview of the AED Model

3.2 Kleinberg’s Burst Model

Kleinberg’s burst model [5] finds bursty words from a document stream. A word
is considered bursty if its document frequency (DF) exceeds a pre-defined thresh-
old over a given time period. The idea thus is to extract a set of bursty words
related to the two states of an AE. The bursty words would provide additional
disciminatory information between the two states. We adopt the batch process-
ing formulation of Kleinberg’s 2-state automaton model as defined by Ketan
Mane[6]. Figure 2 shows an overview of the model with two states q0 and q1,
where the transition cost from the lower to the higher state is defined along with
the cost for remaining in each state. Note that there is no cost for going from
state q1 back to q0.

Fig. 2. Overview of Kleinberg’s State Automaton

The objective of Kleinberg’s model is to find for each word a state sequence
with minimum cost. A word is considered bursty if its state sequence includes at
least one bursty state q1. Each burst has an associated weight, which is simply
the reduction in cost between states q1 and q0 over its bursty interval. Thus, if
the aggregated bursty weight value of a word is large, it implies that there are
many periods in time when the word DF is extremely high.
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3.3 Our Feature Selection Approach

We applied Kleinberg’s algorithm to word DF of the set of pre and post transition
documents separately as shown in Figure 3. In particular,

Fig. 3. Overview of Our Feature Selection Method

1. Select a set of documents corresponding to an AE.
2. Manually label each document as negative (pre) or positive (post).
3. For every word in a given document set, its DF is plotted and ranked.
4. The set of top DF words from each set are then fed into Kleinberg’s algo-

rithm where each word’s state sequence and burstiness weight is computed.
This state sequence characterizes the burstiness period of the word in time
whereas the weight quantifies its overall burstiness.

5. If a word’s ouput state sequence has at least one transition to state q1, it
will be considered bursty.

6. Top bursty words from each of the pre and post document streams are then
collected to form two bursty sets: Positive (P ) and Negative (N), respec-
tively.

We tried different ways of selecting the bursty words for classification:

1. Union (P ∪ N): Union of all bursty words found in both sets.
2. Union+ (P ∪ N + P ∩ N): Same as Union, except that weights of common

bursty words will be boosted by a factor of two.
3. Discriminatory (P ∪ N − P ∩ N): Union of unique words from both sets.
4. Baseline: Set of all (bursty and non-bursty) words.
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Our approach aims to combine the best of static and temporal information
from the document stream. The word document frequency ranking returns a list
of highest document frequency terms within documents in an AE state. On the
other hand, Kleinberg’s model aims to select the words that encounter a sudden
and extended burst in document frequency. The former selects the most frequent
words and the latter extract words among which that becomes more relevant in
some time periods.

3.4 SVM Classifier

Representing the documents from the pre/post event states using each of the
4 feature spaces, we train 4 SVM classifiers[7]. The SVM attempts to create a
hyperplane that separates the pre and post states of the AE.

4 Experiments

4.1 Dataset

Six topics from the TDT3[8] corpus of news articles were selected and manually
filtered to find a suitable event for modelling a state transition, i.e., from a
‘negative’ event state to a ‘positive’ event state. In simple terms, this means that
we manually split each topic dataset into a two-state event-transition model.

Listed in Figure 4 are the six manually selected datasets. Negative and posi-
tive events were defined for each dataset, and the corresponding documents were
identified and appropriately tagged. These datasets consist of only relevant doc-
uments with no off-topic items. Figure 5 shows the well balanced characteristics
of each dataset.

Document vectors were created for all the documents within each of the test
datasets. This was achieved by running the dataset documents through the
Lucene [9] software that enabled indexing, removal of common stopwords, and
representation of the dataset items into a document vector format. These were
then utilized to obtain the top 500 high frequency terms and high document-
word frequency terms for each dataset.

These high frequency words were then fed into Kleinberg’s two state model,
which will then output the burstiest words amongst the set of 500 high frequency
words. It should be noted that Kleinberg’s model does not take into account the
term frequency of the word but instead considers the word document frequency
to calculate the transition costs from state to state.

The SVM classifier is then used to train and test the datasets using the doc-
ument vectors created using each of the 4 feature space representation.

4.2 Overlap of Bursty Features

In our experiments, bursty words are independently selected over the collec-
tions of negative and positive AE documents. The intention is simply to identify
possible terms within the event states that would best represent each AE.
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Fig. 4. Description of the 6 TDT3 topics

Fig. 5. Details of the 6 TDT3 topics

Figure 6 illustrates the overlap of the top 15 bursty words between the two
sets. We see that the words selected are quite representative of the fired AE, e.g.
‘deal’ and ‘money’ were some of the discriminating words for the passed budget,
while ‘relief’, ‘aid’, ‘million’, ‘food’ confirms the arrival of Hurricane Mitch.

4.3 AED Results

For each topic, five-fold cross validation was done to obtain the average SVM
test results, which include the overall accuracy, and for each class of data the
precision, recall, and F-measure. Results are summarized in Figure 7. Clearly,
the 3 bursty feature selections consistently meet or better the full feature space,
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Fig. 6. Top 15 Bursty Features for Each Dataset

Fig. 7. Experimental Results

with the Union+ strategy leading the pack in every topic. Results of the Discrim-
inatory selection seems more varied, probably due to SVM needing the removed
common words to determine an optimal hyperplane.
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Note that some of the 100% baseline precision and recall values are due to
SVM classifying the majority or all of the data as positive, which skews the
F-Measure for the positive target class. This can be seen by the corresponding
lower negative class metric values. Moreover, accuracy should be considered since
the classes are well-balanced.

5 Conclusion and Future Work

Our feature selection approach effectively enables the accurate classification of
documents to their appropriate event states for AED. Equal or better classifi-
cation accuracies were obtained by using less than 4% bursty features from the
whole corpus, a great savings in time/complexity. This opens up further research
in AED. Specifically, the formation of a more complex ETG including the tran-
sitions from one event to the next will be our focus research area in the near
future. Lastly, it is noted that our simple yet effective feature selection approach
can be applied to a myriad of applications involving text streams, such as chat
messages.
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Abstract. In this study, we propose a modified version of relationship
based clustering framework dealing with density based clustering and
outlier detection in high dimensional datasets. Originally, relationship
based clustering framework is based on METIS. Therefore, it has some
drawbacks such as no outlier detection and difficulty of determining the
number of clusters. We propose two improvements over the framework.
First, we introduce a new space which consists of tiny partitions cre-
ated by METIS, hence we call it micro-partition space. Second, we used
DBSCAN for clustering micro-partition space. The visualization of the
results are carried out by CLUSION. Our experiments have shown that,
our proposed framework produces promising results on high dimensional
datasets.

1 Introduction

One of the important problems of Data mining (DM) community is mining
high dimensional datasets. As dimensionality increases, the performance of the
clustering algorithms sharply decreases.

In this paper we introduce a new high dimensional density based clustering
and visualization framework based on Strehl & Ghosh’s relationship based clus-
tering framework [1]. Their framework has two fundamental parts named CLU-
SION (CLUSter visualizatION toolkit) and OPOSSUM (Optimal Partitioning of
Sparse Similarities Using METIS). CLUSION is a similarity matrix based visu-
alization technique and OPOSSUM is a balanced partitioning system which uses
a graph based partitioning tool called METIS [2]. OPOSSUM produces either
sample or value balanced clusters. Since METIS is a partitioning system, there is
no outlier detection or filtering on OPOSSUM/CLUSION framework. We have
modified Strehl & Ghosh’s framework to deal with density based clustering and
outlier filtering. Our framework uses DBSCAN to filter outliers and an inter-
mediate space called micro-partition space as an input space for the DBSCAN.
Micro-partition space is created by using METIS.
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2 Related Work

Graphbasedpartitioningmethods performbest onveryhighdimensional datasets.
Currently, the most popular programs for graph partitioning are CHACO and
METIS [2,3].

Density-based clustering algorithms group neighboring data objects into clus-
ters based density. DBSCAN (Density-Based Spatial Clustering of Applications
with Noise)[4] is a typical representative of this group of algorithms.

There are many visualization techniques for high dimensional datasets. Keim
and Kriegel [5] grouped visual data exploration techniques for multivariate,
multidimensional data into six classes. These techniques become useless on the
datasets that have dimensions above some hundreds.

To overcome the drawbacks of dimensionality, matrix based visualization tech-
niques [6] can be used on very high dimensional datasets. In matrix based vi-
sualization techniques, similarity in each cell is represented using a shade to
indicate the similarity value: greater similarity is represented by dark shading,
while lesser similarity by light shading. CLUSION, a matrix based visualization
technique, is used in both Strehl and Ghosh’s and our framework as explained
in the following sections.

3 Relationship-Based Clustering Approach

Strehl A. and Ghosh J. proposed a different approach in [1] very high dimensional
data mining. In their framework the focus was on the similarity space rather
than the feature space. Most standart algorithms spend little attention on the
similarity space. The key difference between relationship-based clustering and
regular clustering is the focus on the similarity space S instead of working directly
in the feature domain F. Once similarity space is computed, a modified clustering
algorithm which can operate on the similarity space, is used to partition the
similarity space. The resulting space is reordered, so that the points within the
same cluster put on adjacent positions. The final step is the visualization of the
similarity matrix and visually inspecting the clusters.

3.1 Relationship-Based Clustering Framework

A brief overview of the general relationship-based framework is shown in figure 1.
χ is a collection of n data source. Extracting features from pure data source yields
X feature space. In most cases, some data preprocessing is applied to the data
source to obtain feature space. Similarities are computed, using e.g. euclidean,
cosine, jaccard based similarity Ψ yielding the n × n similarity matrix S. Once
the similarity matrix is computed, further clustering algorithms run on similarity
space. Clustering algorithm Φ yields cluster labels λ.

3.2 OPOSSUM/CLUSION System and Problems

Relationship-based clustering framework employs METIS for clustering. It can
operate on similarity space. Strehl and Ghosh call METIS based balanced
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Fig. 1. Relationship-based clustering framework [1]

partitioning visualization system as OPOSSUM [1]. OPOSSUM differs from
other graph-based clustering techniques by sample or value balanced clusters
and visualization driven heuristics find an appropriate k.

CLUSION is a matrix based visualization tool which is used for visualizing
the results. It looks at the output of the clustering routine (λ index), reorders
the data points so that points with the same cluster label are contiguous, and
then visualizes the resulting permuted similarity matrix, S′. Mathematical back-
ground of the system can be found on [1].

The computing performance and the quality of the clusters produced by
OPOSSUM/CLUSION framework is quiet impressive. However it is not perfect.
It has two major drawbacks:

a) Determining the number of clusters : Since partitioning based METIS is
used for clustering the similarity space, finding the ’right’ number of clusters
k for a dataset is a difficult and often ill-posed problem, even for the same
dataset, there can be several answers depending on the scale or granularity
one is interested in.

b) No outlier filtering : Partitioning based clustering algorithms generally suf-
fer from outliers. As it is denoted in previous sections, OPOSSUM system
produces either value or sample balanced clusters. On this kind of systems,
outliers can reduce the quality and the validity of the clusters depending on
the resolution and distribution of the dataset. Outliers are filtered before
clustering process in some applications.

4 Our Framework for Density Based Partitioning and
Outlier Filtering

The architecture of our framework is shown in Figure 2. It consists of the fol-
lowing three major improvements:

a) An intermediate space is introduced. We call it ’micro-partition space’ and it
is denoted by M in figure 2. We use METIS for ordering the similarity space
and creating micro-partitions. This process is represented by μ in figure 2.
METIS ensures that, neighboring points are put in adjacent positions in
similarity matrix. See section 4.1 for details of creating micro-partition space.

b) Using DBSCAN for density based clustering of micro-partition space. This
part is represented by Φ in figure 3. Since the dimensionality of micro-
partition space is less than the similarity space, DBSCAN shows better per-
formance on micro-partition space rather than the original similarity space.
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c) Easier determination of input parameters. METIS is dependent on k, on the
other hand, DBSCAN depends on ε-neighborhood radius (Eps) and mini-
mum number points within the ε-neighborhood (MinPts). Determining Eps
and MinPts are easier than the determination of k. There is a simple but
effective heuristics to determine DBSCAN parameters in [4].

DBSCAN produces λ index from micro-partition space. We use CLUSION for
visualizing the micro-partition space which is reordered by λ index.

Fig. 2. Our framework for density based partitioning and outlier filtering

4.1 Micropartition Space

When DBSCAN is directly applied to the similarity space, it can not properly
order it. In other words, although it can deal with the outliers, DBSCAN can not
put the neighboring points in adjacent positions on the similarity graph. This
causes poorly distinguishable CLUSION graphs. For human eye it is not easy
to find out the clusters from the graphs. Hence, we used METIS for properly
ordering the similarity space. METIS needs the number of partitions k as an
input parameter. Since we do not know how many partitions exists, we have
used METIS with a predetermined value of k. Micro-partition space contains
the partitions produced by METIS. DBSCAN algorithm treats micro-partitions
as input data, in other words DBSCAN works on micro-partition space.
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Fig. 3. a) Points on similarity space before METIS, b) METIS creates micro-partitions
c) μ function creates M space

Let p be the number of samples within a micro-partition, then the relation
between k and p should be:

n >> p > 1 (1)

k =
n

p
(2)
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where n is the number of samples. In figure 3, schematic representation of creat-
ing micro-partition space for p = 3 is shown. Let xj be a sample in dataset with
j ∈ {1, ..., n} and six samples be placed as shown in figure 3.a. If similarities
s(1, 2), s(1, 3), s(2, 3) for x1, x2, x3 are sufficiently small, METIS will put them
into the same partition. x4, x5, x6 will be another partition accordingly (figure
3.b). From now on, micro-partitions in S are treated as samples of M in such
way that

μ(x1, x2, x3) ⇒ m1 (3)

μ(x4, x5, x6) ⇒ m2 (4)

μ(xn−2, xn−1, xn) ⇒ mk (5)

μ function takes METIS partitions as input, produces a single representative
point no matter how many samples exist in micro-partition. μ function chooses
the representative point within micro-partition randomly. If similarities s(1, 2),
s(1, 3), s(2, 3) are sufficiently small, any of these points can be chosen as repsen-
tative with a very small amount of error.

As can be seen from figure 4, the error is

E(mi, mj) = |s(xactmi
, xactmj

) − s(mi, mj)| (6)

s(mi, mj) = s(xrepmi
, xrepmj

) (7)

Where i, j ∈ {1, ..., k} and xact are actual point, xrep is the representative point.
As the micro-partition size increased, the error will also increase. This is why
we choose p as small as possible. We experienced that p = 3 or p = 4 values
generally yield good results.

4.2 Density Based Clustering of Micropartition Space Using
DBSCAN and Outlier Filtering on CLUSION Graphs

DBSCAN operates on micro-partition space which is k×k dimensional according
to equation 2. Due to the decrease in dimensionality, DBSCAN performs better
on M space than original on S space. We use DBSCAN for outlier filtering and
density based clustering of M space. Since M space is ordered by METIS, this
reduces the neighborhood search time in DBSCAN.
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Fig. 4. Demonstration of error in micro-partition space
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λ indexes are used to reorder S and M spaces. λM denotes index produced
by METIS where λM ∈ {1, ..., k}, and λD denote index produced by DBSCAN
where λD ∈ {−1, 1, ..., k}. METIS is a partitioning system, therefore there is no
outlier remarking capability of λM index. However, DBSCAN is a density based
clustering algorithm and it has the capability of remarking outliers. λD index
remarks outliers with the value of -1. When samples from M space are reordered
according to the λD index, outliers will appear in front of the array. As a result,
outliers will be placed on the upper left corner of the CLUSION graph (cross
patterned areas in figure 5.b and 5.c).

a) b) c)

Fig. 5. a) Reordering by λM index (no outliers) b) Reordering by λD index (less out-
liers) c) Reordering by λD index (more outliers)

Figure 5.a shows the schematic results of reordering by λM index. There are a
few outliers in figure 5.b which show results of reordering by λD index. Figure 5.c
has more outliers. Note that, gray areas on the graph are placed for illustrative
purposes, therefore the real life graphs may differ from the ones in figure 5.

5 Experiments

We evaluated our proposed framework on two different real world datasets. The
first dataset consists of 9636 terms from 2225 complete news articles from the
BBC News web site, corresponding to stories in five topical areas (business,
entertainment, politics, sport, tech) from 2004-2005 [8]. The second one (COIL
2000) consists of 86 attributes (dimensions) of the 5822 customers and includes
product usage data and socio-demographic data derived from zip area codes [7].

In the first experiment we initially used OPOSSUM to cluster BBC news arti-
cles dataset. Figure 6 shows the result of OPOSSUM. The optimal k for sample
based clustering is found at k = 3 after numerous trial and error. There is no way
to find out and filter outliers on the graph. Figure 7 shows CLUSION graph of
our framework for p=5. Increasing p dramatically reduces the computing time.
p = 3, p = 4 and p = 5 values are optimal for most cases. Consequently, complex
determination routines for p values are not necessary.

DBSCAN is used to cluster M space with ε = 0.066 and MinPts=5 parame-
ters. MinPts value is chosen to be equal to p and then the simple heuristics men-
tioned in [4] is used to determine ε approximately. The heuristics yield ε = 0.066.
As it can be seen from the figure 7, the graph is windowed by one horizontal
and one vertical line. The outliers are placed on upper left window and the lower
right window shows filtered clusters. It is clearly seen that, the filtered area con-
tains almost equal three clusters. One should perform numerous trials to find
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Fig. 6. CLUSION graph of OPOS-
SUM on BBC news articles dataset for
k = 3

Fig. 7. CLUSION graph of our frame-
work on BBC dataset with p=5, ε =
0.066, MinPts=5

Fig. 8. CLUSION graph of OPOSSUM
for k = 5 on COIL 2000 dataset

Fig. 9. CLUSION graph of our frame-
work on COIL 2000 dataset with p=5,
ε = 0.1, MinPts=5 (dotted lines show
cluster borders)

out correct number of clusters using OPOSSUM, indeed the resulting clusters
will contain outliers. On the other hand, our framework filtered the outliers and
found three clusters just running it only once or a few times.

The second experiment carried out on COIL 2000 dataset. The results of
OPOSSUM for k=5 is shown in figure 8. Due to the fuzziness on the CLUSION
graphs, none of them produced well distinguishable cluster structure. Therefore
we could not discover the exact value of k. We applied our framework for p = 5. If
we look at the lower right window of the figure 9, we can see two distinct clusters.
One bigger cluster is placed on the upper left and one smaller cluster placed
on the lower right across the main diagonal. When we carefully examine the
intersection of two clusters, we can see a small cluster with very close relationship
with the both clusters. To see clearly, the borders of the clusters are marked as
dotted lines in figure 9. Therefore we can say that, our framework has succesfully
found three clusters on COIL 2000 dataset.
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6 Conclusion

This paper proposes a new framework for density based clustering of high
dimensional datasets and getting better interpretations for clustering results
by filtering the outliers from the main perspective of the CLUSION graph.
This is achieved by using a new space called micro-partition space and mod-
ifying DBSCAN algorithm to operate on micro-partition space. Our proposed
framework is based on the relationship based clustering approach of Strehl
and Ghosh. Our experiment shows that our improvements and modifications
help us better clustering and visualization of the high dimensional data. In
future work, we will replace METIS with another faster partitioning tool for
performance improvements and better integration with DBSCAN.
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ber FEN DKR-270306-0055 from Marmara University Scientific Research
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Abstract. In this paper, a new region-based algorithm for detecting
skin color in static images is described. We choose the single Gaussian
skin color model in the normalized r-g space after analyzing the distri-
butions of skin color in six different 2-D chrominance spaces. Images
are first segmented into patches using a improved fuzzy C-means algo-
rithm, in which the local characteristic is adopted to constrain fuzzy
functions, and a simple method for initializing clustering centriods is
adopted. Then, the percentage of skin color pixels in each patch can be
obtained. According to corresponding percentages, patches are classified
as skin color regions or not.

Keywords: skin color detection, fuzzy C-means clustering, color image
segmentation.

1 Introduction

Skin color detection has played an important role in many applications such
as face recognition, gesture recognition, human-computer interaction, tracking
faces, and filtering pornographic images in web pages [1, 2, 3]. However, it is
not easy to detect skin color accurately, because images are taken with different
camera hardwares and under confusing illumination. Moreover, there are many
other objects whose color are similar to skin and which are easily confused with
skin. Finally, different human races present different skin tones.

Plenty of detecting strategies and skin color models have been proposed to de-
tect skin color in images. These approaches can be classified into two categories:
pixel-based methods and region-based methods [4]. Pixel-based methods have
long history. Kovac et al. defined explicitly skin color cluster boundaries through
a series of decision rules in the RGB color space [2]. Jones et al. constructed skin
and non-skin color histogram models and derived a skin pixel classifier through
the standard likelihood ratio approach [5]. As for parametric skin color distri-
bution models, a single Gaussian or a mixture of Gaussians probability density
function was used to model the distribution of skin color in a 2-D chrominance
space [3]. In contrast to pixel-based methods, region-based detection methods
use spatial arrangement information of skin color pixels to improve detection
rates. Considering that skin patches especially human faces are nearly elliptic,
Kruppa et al. [1] and Yang et al. [6] refined detection algorithms with this shape
information.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 417–424, 2007.
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In this study, we propose a new region-based approach to detect skin color
without assuming that skin color pixels merge in ellipses. In section 2, we first
choose the chrominance space in which the single Gaussian model fits the distri-
bution of training skin color samples best. Then, a few decision rules are defined
to delete some background color, and nearly 95% of skin pixels are preserved.
Fuzzy C-means (FCM) algorithm is employed to segment remainder pixels in
Section 3. In particular, the local characteristic [7] is adopted to constrain fuzzy
functions in order to decrease influences of illumination. Besides that, the algo-
rithm initializes the maximum number of classes and cluster centroids adaptively
in terms of histogram properties of images. In Section 4, how to classify skin color
patches and experiments are introduced. Section 5 summarizes our study.

2 Skin Color Distribution and Raw Detection Rule

2.1 Skin Color Distribution in Different Color Spaces

A color space efficiently separating chrominance from luminance in the original
color image helps to improve a robustness to changes in illumination conditions.
This can be achieved by reducing one dimension from a color space through a
transformation from the 3-D RGB color space into a 2-D chrominance space [3].
Different algorithms use different spaces. The algorithm presented in [2] was
realized in the Cb-Cr chrominance space. Perceptually uniform spaces CIE-Luv
and CIE-Lab were also adopted in [6, 4].

We collect 200 real-world images randomly from Internet and sample nearly
1.2 million skin color pixels as the training database. The races include Caucasian
and Asian. The cumulative distributions of all training skin pixels are mapped
with 256 × 256 bins in six different chrominance spaces: normalized r-g, T-S,
H-S, CIE-ab, I-Q, Cb-Cr (Fig. 1). Comparing the six histograms, we draw a
conclusion that the distribution of skin color in the normalized r-g space is a bit
more compatible than that in other spaces and fits the single Gaussian model
best. The single Gaussian model is given by the following expression

f(x|skin) =
1

2π|Σ| 1
2

exp
[

−1
2
(x − μ)T Σ−1(x − μ)

]

. (1)

Parameters μ and Σ are mean color vector and covariance matrix respectively,
which can be trained from training data using Maximum Likelihood Estimation.
f(x|skin) is considered as the measure of the likelihood of color x to skin color.
So a pixel will be labeled as a skin color pixel if its f(x|skin) is greater than a
threshold. As the first part of Eq. 1 is a constant once Σ is given, Eq. 1 reduces
to

θ(x) = exp
[

−1
2
(x − μ)T Σ−1(x − μ)

]

. (2)

Then, the classification rule is replaced by

θ(x) ≥ θs, θs ∈ [0, 1] . (3)
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Fig. 1. Cumulative histograms of the training skin color pixels in different chrominance
spaces: normalized r-g, T-S, H-S, CIE-ab, I-Q, Cb-Cr

2.2 Raw Detection Rule

Using confining detection rules to describe the skin cluster is very attractive
because of its simplicity and low computing consumption. However, detection
rules alone are not satisfied. But, as a pre-processing step, they can eliminate
some non-skin pixels without losing many skin pixels, which helps to diminish
computing cost. This also means that complexities of backgrounds are reduced.

After analyzing the skin color histogram in the normalized r-g chrominance
space, we make some detection rules. Projected into the r-g plane, the distri-
bution of skin color forms a approximate ellipse. So a external rectangle of the
ellipse is employed to bound the skin color class. It should keep more than 95%
of skin color pixels in original images. Meanwhile, we adopt and change some
rules of [2]. Lastly, our detection rules are the following

pixel x will be preserved if
R > 80 AND G > 40 AND B > 20 AND (4)
80 < r < 155 AND 60 < g < 105 ,

where r and g are normalized by 255.

3 Image Segmentation

3.1 Fuzzy C-Means Clustering Algorithm

When the FCM algorithm is applied to cluster data set X = {x1, x2, . . . , xn}
into c classes, it is derived by minimizing the following cost function

Jm =
c∑

i=1

n∑

j=1

um
ij d2(xj , vi) , (5)
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where uij is the membership function of xj to the ith class, subjecting to the
constrains [9]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uij ∈ [0, 1], i = 1, 2, . . . , c and j = 1, 2 . . . , n
c∑

i=1
uij = 1, j = 1, 2, . . . , n

0 <
n∑

j=1
uij < n, i = 1, 2, . . . , c

(6)

and
d2(xj , vi) = (xj − vi)T A(xj − vi) . (7)

A is a p×p positive definite matrix; p is the dimension of xj ; vi is the centroid of
the ith class [8]. If A is replaced by the identity matrix I, d will be the Euclidean
distance between xj and vi. m is the fuzziness index [8], m ∈ [1.5, 2.5] is probably
the best choice and the midpoint m = 2 is often the preferred choice [10].

The solution of FCM algorithm is a iterative process. The execution process
is expressed as follows [8]:

1. Initialize cluster centroids V = (v1, v2, . . . , vc).
2. Fuzzy membership functions is computed by

uij =

(
1

d2(xj ,vi)

) 1
m−1

c∑

i=1

(
1

d2(xj ,vi)

) 1
m−1

, j = 1, 2, . . . , n . (8)

3. Update centroids V by

vi =

n∑

j=1
um

ij xj

n∑

j=1
um

ij

, i = 1, 2, . . . , c . (9)

4. Repeat until the value of Jm is no longer decreasing.

If d(xi, vj) = 0, the membership function uij cannot be computed by Eq. 8. It
is then defined as {

uij = 0, if d(xj , vi) �= 0
uij = 1, if d(xj , vi) = 0 . (10)

Considering that the number of classes cannot be known previously for each
image, we adopt Xie-Beni cluster validity criteria S function [8] to measure the
average compactness and separation of clusters and to decide the optimal number
of classes. The Xie-Beni criteria is described by

S =
Jm

n min
i,k

‖vi − vk‖2 , i, k = 1, 2 . . . , c , (11)

where c = 2, 3, . . . , cmax, and the value of c corresponding to the minimal S is
the optimal number of classes.
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3.2 Improved Fuzzy C-Means Algorithm

In this study, a approximate method, valid and fast, is used to initialize cluster
centroids. The histogram of a pre-processed image shapes several mountains.
An example can be seen in Fig. 2(c). As color vectors corresponding to peaks of
mountains are in the interior of samples and distributions of samples near peaks
are tight, these color vectors are initialized as initial centroids, and the number
of local peaks is used to set the upper limit of the number of classes cmax in the
cluster validity algorithm.

(a) (b) (c)

Fig. 2. An example of pre-processed image histograms. (a) The original image; (b) the
pre-processed image; (c) the histogram of the pre-precessed image.

In addition, we propose to use the local characteristic [7] to restrain illumina-
tion effect in segmentation. The local characteristic is the conditional probability
of pixel xj classified to the ith class. It is defined by [7]

f(ij |ηj) =
eβδj(i)

c∑

i=1
eβδj(i)

, j = 1, 2, . . . , n . (12)

Here, ij represents that pixel xj is classified into the ith class; ηj represents
categories of neighborhoods (usually 8-neighbors) of pixel xj ; δj(i) is the number
of pixels in class i of neighborhoods. The influence of β on clustering is illustrated
in [7]. Let β = 1.5 in our algorithm and it seems to work well in experiments.
Furthermore, xj belongs to the class i∗ according to the following rule

i∗ = argmax
i

uij , i = 1, 2, . . . , c and j = 1, 2, . . . , n . (13)

Therefore, the steps of FCM becomes
1. Initialize cluster centroids V = (v1, v2, . . . , vc) using the approach above.
2. Classify xj by u

(p−1)
ij using the classifying rule Eq. 13, where p is the iteration

index. Then, compute fuzzy membership functions using

u
(p)
ij =

(
1

d2(xj ,vi)

) 1
m−1 × f(ij|ηj)

c∑

i=1

[(
1

d2(xj ,vi)

) 1
m−1 × f(ij|ηj)

] , j = 1, 2, . . . , n . (14)
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3. Update centroids V using

vi =

n∑

j=1
u

(p)m
ij xj

n∑

j=1
u

(p)m
ij

, i = 1, 2, . . . , c . (15)

4. Repeat until the value of Jm is no longer decreasing.

A comparison of the performance of the original FCM algorithm and the
improved FCM algorithm is shown in Fig. 3. In order to distinguish conve-
niently, different gray values are used to denote different patches in Fig.3(c) and
Fig.3(d).

(a) (b) (c) (d)

Fig. 3. An example of image segmentation. (a) The original image; (b) the result after
pre-processing; (c) the result of the original FCM; (d) the result of the improved FCM.

4 Experiments

Skin patches will be decided with the following method. Initially, label each
patch of segmented images, and the same class which do not connect each other
in space will be labeled as different patches. Next, compute the ratio of skin
pixels in each patch. A patch will be considered as a skin patch, if its ratio
exceeds the threshold τ . This condition is defined as

PATCHi is classified as a skin patch if
Si

Pi
≥ τ ,

(16)

where Si and Pi are the number of skin pixels and total pixels in PATCHi

respectively.
Another 160 pictures downloaded from Internet form our test database. These

pictures are also chose randomly. Different values of θs and τ will definitely
lead to distinct detection results. We first draw a ROC curve shown in Fig. 4
corresponding to θs and τ = 1

3 . Table 1 lists the ratios of correct detection and
false detection corresponding to different τ and θs = 0.15, 0.2.
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Fig. 4. ROC curve corresponding to the threshold θs and τ = 1
3

Table 1. Ratios of correct detection and false detection with τ = 1
4 , 1

3 , 1
2 and θs =

0.15, 0.2

Correct Detection Ratios False Detection Ratios

θs = 0.15 θs = 0.2 θs = 0.15 θs = 0.2

τ = 1
4 92.3% 91.7% 38.1% 32.5%

τ = 1
3 90.4% 86.5% 32.3% 29.7%

τ = 1
2 82.8% 75.2% 25.5% 23.9%

(a) (b) (c) (a) (b) (c)

Fig. 5. Examples of experimental results. (a) Original images; (b) segmentation results;
(c) detection results of the proposed algorithm.

Fig. 5 are some examples of our algorithm performance with θs = 0.15 and
τ = 1

3 . The images in Fig. 5(b) are segmentation results, and different gray values
label different patches. Although the edges of skin patches in results (Fig. 5(c))
are not detected accurately, the results are acceptable.
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5 Conclusions

The paper presents a new region-based skin detection algorithm. Images are seg-
mented into patches using fuzzy C-means algorithm improved by employing the
local characteristic which helps to overcome influences of illumination. Mean-
while, in order to decrease computing cost, local peak values of histograms are
initialized as cluster centroids. Lastly, a skin patch is decided by checking its
ratio of skin pixels to total pixels in the patch.
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Abstract. Many classification algorithms degrade their learning performance 
while irrelevant features are introduced. Feature selection is a process to 
choose an optimal subset of features and removes irrelevant ones. But many 
feature selection algorithms focus on filtering out the irrelevant attributes 
regarding the learned task only, not considering their hidden supportive 
information to other attributes: whether they are really irrelevant or 
potentially relevant? Since in medical domain, an irrelevant symptom is 
treated as the one providing neither explicit information nor supportive 
information for disease diagnosis. Therefore, the traditional feature selection 
methods may be unsuitable for handling such critical problem. In this paper, 
we propose a new method that selecting not only the relevant features, but 
also targeting at the latent useful irrelevant attributes by measuring their 
supportive importance to other attributes. The empirical results demonstrate a 
comparison of performance of various classification algorithms on twelve 
real-life datasets from UCI repository. 

Keywords: supportive relevance, latent correlation, data preprocessing, feature 
selection, data mining. 

1   Introduction 

The objective of a classification problem is to accurately and efficiently map an input 
instance to an output class label, according to a set of labeled instances. While many 
aspects affect the classification performance, among all, data is a prominent one. 
More data no longer means more discriminative power; contrarily, they may increase 
the complexity and uncertainty to the learning algorithms, thus burden with heavy 
computational cost. On the other hand, less data may be either over-fitting or cause 
the learning algorithms unable to learn meaningful results. In order to learn 
efficiently, one of the data preprocessing algorithms – feature selection, which aims to 
optimize the data to be learned, can be involved to overcome such obstacles. 

Various state-of-the-art feature selection algorithms are described in [1], as well as 
their evaluations and comparisons in [2], [3]. The existing feature selection methods 
are mainly divided into two categories: filter and wrapper. Filter approach evaluates 
the selected features independently, does not take the learning algorithm into the 
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evaluation process. The advantage of this approach is its reasonable computational 
complexity and cost; while wrapper approach involves the learning algorithm as part 
of the evaluation function, for each subset a classifier is constructed and used for 
evaluating the goodness of generated subset. The advantage of this approach is its 
high and reliable classification accuracy. Furthermore, most feature selection methods 
used sequential forward/backward search [4], [5] to construct the best subset of 
features by starting with an empty set or a full feature set. Then, the search goes on by 
adding or deleting one more feature each time to or from the best feature subset, until 
no more performance improvement. In this paper, we adopted filter approach with 
sequential forward search in our method. 

In the next sections, we describe our novel method LUIFS – Latent Utility of 
Irrelevant Feature Selection in detail, as well as the feature selection problem under 
medical domain. The evaluation of the proposed method on some real-life datasets is 
performed in the section following. Finally, we discuss the limitations of the method 
and present the directions for our further research. 

2   Feature (Attributes) Selection 

Feature selection is a process that chooses an optimal subset of features according to a 
certain criterion [1]. Features can be categorized into: relevant, redundant, and 
irrelevant. An irrelevant feature does not affect the target concept in any way; while a 
redundant feature does not add anything new to the target concept and a relevant 
feature is neither irrelevant nor redundant to the target concept [6].  

2.1   Feature Selection Problem 

The ordinary feature selection methods focus on selecting relevant attributes and 
filtering out the irrelevant ones regarding the class attribute (learned task) only. This 
may sometimes lose the significant supportive information hidden in the irrelevant 
features. For instance, a forward selection method recursively adds a feature xi to the 
current optimal feature subset OptimalA, among those that have not been selected yet 
in feature set A, until a stop criterion is met. In each step, the feature xi that makes 
evaluation measure W be greater is added to the subset OptimalA. Starting with 
OptimalA ={}, the forward step is illustrated in equation (1).  

iOptimalA := OptimalA {A\ OptimalA | W(OptimalA {x }) is maximum}∪ ∪  . (1) 

The main disadvantage of the above formula is that it is impossible to have in 
consideration certain basic interactions among features, i.e., if x1, x2 are such 
interacted attributes, that W({x1, x2})>>W({x1}), W({x2}), neither x1 and x2 could be 
selected, in spite of being very useful [7]. This is because most feature selection 
methods assume that the attributes are independent rather than interactive, hence their 
hidden correlations have been ignored. However, an attribute that is completely 
useless by itself can provide a significant performance improvement when taken with 
others. Two attributes that are useless by themselves can be useful together [8], [9]. 
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2.2   A Medical Example 

In medical domain, a single symptom seems useless regarding diagnosis, may be 
potentially important by providing supportive information to other symptoms. For 
example, when learning a medical dataset for diagnosing cardiovascular disease, 
suppose a dataset contains attributes such as patient age, gender, height, weight, blood 
pressure, pulse, ECG result, chest pain, etc., during feature selection process, most 
often attribute age or height alone will be treated as the least important attributes and 
discarded accordingly. However, in fact attribute age and height together with weight 
may express potential significance: whether a patient is overweight? On the other 
hand, although attribute blood pressure may be treated as important regarding 
classifying a cardiovascular disease, while together with a useless attribute age, they 
may reveal more specific meaning: whether a patient is hypertensive? As we know 
that a person’s blood pressure is increasing as his/her age increasing. The standard for 
diagnosing hypertension is a little bit different from young people (regular is 120-
130mmHg/80mmHg) to the old people (regular is 140mmHg/90mmHg) [10]. 
Obviously, the compound features overweight and/or hypertensive have more 
diagnostic power regarding classifying a cardiovascular disease than the individual 
attributes weight and blood pressure. It is also proven that a person is overweight or 
hypertension may have more probabilities to obtain a cardiovascular disease [11]. 

According to the above example, sometimes a useless symptom by itself may 
become indispensable when combined with other symptoms. To overcome such 
problem, in this paper our new feature selection method LUIFS that focuses on 
discovering the potential importance for those irrelevant attributes rather than 
ignoring them. The method takes the attributes’ interdependences into consideration, 
in order to uncover the hidden supportive information possessed by the irrelevant 
attributes. Since in medical domain, compound symptoms always could reveal more 
accurate diagnostic results.  

3   Latent Supportive of Irrelevant Attribute (LSIA) 

Our preprocessing method LUIFS mainly focuses on discovering the potential 
usefulness of LSIA and recruiting them into the optimal feature subset for final 
classification. It takes the inter-correlation between irrelevant attributes and other 
attributes into consideration to measure the latent importance of the irrelevant 
attributes. As we believe that in medical field an irrelevant attribute is the one that 
providing neither explicit information nor supportive or implicit information.  

In [12], Pazzani proposed a similar method to improve the Bayesian classifier by 
searching for dependencies among attributes. However, his method has several 
aspects that are different from ours: (1) it is restricted under the domains on which the 
naïve Bayesian classifier is significantly less accurate than a decision tree learner; 
while our method aims to be a preprocessing tool for most learning algorithms; (2) It 
used wrapper model to construct and evaluate a classifier at each step; while a simpler 
filter model is used in our method, which minimized the computational complexity 
and cost; (3) His method created a new compound attribute replacing the original two 
attributes in the classifier after joining attributes. This may result in a less accurate 
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classifier, because joined attributes have more values and hence there are fewer 
examples for each value, as a consequence, joined attributes are less reliable than the 
individual attributes. Contrarily, our method adds the potential useful irrelevant 
attributes into the optimal feature subset to assist increasing the importance of the 
other relevant attributes, instead of joining them. 

Our method generates an optimal feature subset in two phases: (1) Relevant 
Attributes Seeking: for each attribute in a dataset, work out its relevant weight regarding 
the target class, selects the one whose weight is greater than a pre-defined threshold. For 
the ones whose weights are smaller than the threshold (irrelevant attributes), carry out 
the second phase; (2) LSIA Discovery: for each irrelevant attribute, determine its 
supportive importance by performing a multivariate interdependence measure that 
combined with another attribute. There are two cases that such an irrelevant attribute 
becomes a potentially supportive relevant attribute and will be selected into the optimal 
feature subset. Case 1: if a combined attribute is a relevant attribute and already be 
selected into the optimal feature subset, then the combinatorial weight should be greater 
than the relevant weight of the combined attribute; case 2: if a combined attribute is an 
irrelevant attribute too whose weight is smaller than the threshold, then the 
combinatorial weight should be greater than the pre-defined threshold, such that both 
irrelevant attributes become relevant and will be selected into the optimal feature subset 
accordingly.  

3.1   Relevant Attributes Seeking (RAS) 

In this phase, each attribute is calculated its relevant weight respect to the target class. 
Information gain theory [13] is used as the measurement, which may find out the most 
informative (important) attribute A relative to a collection of examples S and is 
defined as: 

( )

| |
( , ) ( ) ( )

| |∈
= − ∑ v

v
v Values A

S
InfoGain S A Entropy S Entropy S

S
 . (2) 

where Values(A) is the set of all distinct values of attribute A; Sv is the subset of S for 
which attribute A has value v, that is { }| ( )= ∈ =vS s S A s v . And Entropy(S) is: 

( ) ( ) ( ( ))
∈

=−∑ i i
i C

Entropy S p S log p S  . (3) 

where p(Si) is the proportion of S belonging to class i.  
Attributes are first sorted in descending order, from the most important one (with 

the highest information gain) to the least useful one. Meanwhile, a threshold ϖ is 
introduced to distinguish the weightiness of an attribute. The value of a threshold 
either too high or too low may cause the attributes insufficient or surplus. Therefore it 
is defined as a mean value excluding the ones with maximum and minimum 
information gain, in order to eliminate as much bias as possible.  

An attribute A will be selected into the optimal feature subset if InfoGain(S, A) > 
ϖ; otherwise, it will be filtered out and fed into the second phase as the input. In 
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addition, if an attribute A is a numeric attribute, it is discretized first by using the 
method of [14] to avoid the bias in information gain algorithm that favors attributes 
with many values. This RAS phase requires only linear time in the number of the 
given features N, i.e. O(N). 

3.2   LSIA Discovery 

This phase is the key spirit of LUIFS, since its objective is to uncover the usefulness 
of the latent or supportive relevant attributes. It is targeted at the irrelevant attributes 
that filtered out from RAS phase, looking for their latent utilities in supporting other 
attributes. To determine whether an irrelevant attribute is potentially important or not, 
we measure the interdependence weight between it and another attribute regarding the 
class attribute. We use relief theory [15], [16], which is a feature weighting algorithm 
based on distance measure for estimating the quality of attributes, such that it is able 
to discover the interdependencies between attributes. Our method adopts the 
combinatorial relief in equation (4), which measures the interdependent weight 
between a pair of attributes rather than a single attribute regarding the class attribute. 
It approximates the following probability difference: 

[ ] = 

(different value of |nearest instances from different class ) 

- (different value of |nearest instances from same class )

i j

i j i

i j j

W a + a

P a + a c

P a + a c

 . (4) 

where ai is an irrelevant attribute, whose information gain measure in equation (2) is 
smaller than the mean threshold ϖ and is filtered out in RAS phase; aj is a combined 
attribute either relevant or irrelevant; ci and cj are the different values of class attribute 
C. W[ai+aj] is the combinatorial interdependent weight between attributes ai and aj 
regarding the class attribute C, and P is a probability function for the weight of 
feature pair ai and aj. Equation (4) measures the level of hidden supportive importance 
for an irrelevant attribute to another attribute, hence the higher the weighting, the 
more information it will provide, such that the better the diagnostic results. According 
to our hypotheses, an irrelevant attribute ai may become latent relevant if there exists 
another attribute aj, where ai ≠ aj, so that the combinatorial interdependent measure 
W[ai+aj] > W[aj] if aj is an explicit relevant attribute and already be selected into the 
optimal feature subset; or W[ai+aj] > ϖ (a pre-defined threshold) if aj is an irrelevant 
attribute also. 

Unlike the RAS phase, the complexity of this LSIA Discovery phase is no longer 
simple linear in time. In the worst case, if there is only one important attribute was 
selected after RAS phase, that is, there are (N-1) irrelevant attributes were ignored and 
unselected. For each irrelevant attribute ai ∈ UnselectedAttributes, calculate its 
interdependent weight with another attribute. Again in the worst case, if ai could not 
encounter an attribute that makes it becoming useful, then the process should be 
repeated for (N-1) times. Whereas the algorithm is symmetric, i.e. W[ai+aj] = 
W[aj+ai], so the total times should be in half respect to the number of 
UnselectedAttributes, which equals to (N-1)/2. Therefore, the complexity of such 
phase for irrelevant attributes is (N-1)∗(N-1)/2 for the worst case, i.e. O(N2). 
Nevertheless the data preprocessing is typically done in an off-line manner [17], in 
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the meantime, the capacity of the hardware components increase while the price of 
them decrease. Because of these, the execution time of an algorithm becomes less 
important compared with its final class discriminating performance. 

4   Experiments 

We have evaluated the effectiveness of LUIFS on twelve real-life datasets from UCI 
repository [18], the detailed characteristics of each dataset is listed in Table 1. In the 
experiment, two learning algorithms ID3 [19] and C4.5 [20], [21] are involved as the 
evaluation algorithms. LUIFS is used as the preprocessing method for them. The last 
column LRA in Table 1 indicates the number of irrelevant attributes becoming useful, 
and is additionally selected into the optimal feature subset for learning. 

Table 1. Bench-mark datasets from UCI repository 

Features Instance Size Dataset 
Numeric Nominal Training Testing 

Class LRA 

Cleve 6 7 202 101 2 2 
Hepatitis 6 13 103 52 2 7 

Hypothyroid 7 18 2108 1055 2 8 
Heart 13 0 180 90 2 2 

Sick-euthyroid 7 18 2108 1055 2 7 
Auto 15 11 136 69 7 3 

Breast 10 0 466 233 2 2 
Diabetes 8 0 512 256 2 3 

Mushroom 0 22 5416 2708 2 1 
Parity5+5 0 10 100 1024 2 4 

Corral 0 6 32 32 2 2 
Led7 0 7 200 3000 10 1 

In order to make clear comparison, experiments of learning methods without 
feature selection (NoFS) and with information gain attribute ranking method (ARFS) 
are performed, as well as LUIFS. Table 2 summarizes the results in error rates of two 
algorithms for various methods respectively. As manifested in Table 2, LUIFS does 
help in increasing the classification accuracy significantly by adding the indicated 
number of LRA into the optimal feature subset. It improves the performance on 7 and 
6 datasets for ID3 and C4.5 learning algorithms respectively. And it maintains the 
performance as same as ARFS on 4 and 5 datasets for ID3 and C4.5 respectively, 
nevertheless, the results are still better than the methods with NoFS for most of these 
datasets. Although LUIFS slightly decreases the performance on one dataset Heart 
among all in compared with ARFS by adding one latent relevant attribute, the results 
are still better than the methods with NoFS. This may be due to the dataset contains 
numeric attributes only, which needs to perform an additional discretization prior the 
LSIA Discovery phase. Such step increases the unexpected uncertainty to the attribute 
being correlated, hence increases the error rate accordingly. 
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Table 2. Comparisons for results in error rate (%) of ID3 and C4.5 

ID3 algorithm C4.5 algorithm Dataset NoFS ARFS LUIFS NoFS ARFS LUIFS 
Cleve 35.64 23.762 22.772 20 22.2 19.3 

Hepatitis 21.154 15.385 13.462 15.6 7.9 7.9 
Hypothyroid 0.948 0.190 0.190 1.1 0.4 0.4 

Heart 23.333 13.333 18.889 17.8 14.4 15.6 
Sick-

euthyroid 3.791 0 0 2.5 2.5 2.4 

Auto 26.087 18.841 18.841 27.1 21.9 21.8 
Breast 5.579 6.438 5.579 5.7 5.6 5.4 

Diabetes Program 
Error 35.156 32.131 30.9 30.1 30.1 

Mushroom 0 0 0 0 0 0 
Parity5+5 49.291 50 49.291 50 50 50 

Corral 0 12.5 0 9.4 12.5 9.4 
Led7 33.467 42.533 32.8 32.6 43.7 32.3 

5   Conclusions and Future Research 

In this paper, we have proposed a novel data preprocessing method LUIFS focused on 
the discovery of the potential usefulness of irrelevant attributes. The method can be 
used before most learning algorithms. The empirical evaluation results presented in 
the paper indicate significant evidence that LUIFS can improve the final classification 
performance by adding the discovered latent important attributes into the optimal 
feature subset for learning process. However, in this work only ARFS method has 
been implemented to make the comparison. The existing feature selection methods 
can be involved further in our comparisons. In addition, our method has slow 
execution time if a dataset contains more than several hundreds of features. Our 
experiment was performed with ID3 and C4.5 learning algorithms on smaller to 
medium sized datasets, for further comparisons, we plan to perform the experiments 
on large datasets with other learning algorithms, such as Naïve Bayes [22], 1R [23], 
GA [24], or clustering methods, etc. On the other hand, limitations should be resolved 
to be able to handle large datasets efficiently and effectively.  
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Abstract. This paper fist demonstrates that current PrefixSpan-based incre-
mental mining algorithm IncSpan+ which is proposed in PAKDD05 cannot 
completely mine all sequential patterns. Then a new incremental mining algo-
rithm of sequential patterns using prefix tree is proposed. This algorithm con-
structs a prefix tree to represent the sequential patterns, and then continuously 
scans the incremental element set to maintain the tree structure, using width 
pruning and depth pruning to eliminate the search space. The experiment shows 
this algorithm has a good performance. 

1   Introduction 

The goal of Sequential pattern mining is to find frequent subsequences from a 
sequence database [1]. In many domains, the contents of databases are updated in-
crementally.  In order to get all sequential patterns, the mining algorithm has to be run 
whenever the database changes, because that some sequences which were not fre-
quent in old database may become frequent in updated database. Obviously, to dis-
cover sequential patterns from scratch every time is ineffective. This leads to the 
study of the incremental mining algorithm of sequential patterns. When new se-
quences are added into old databases, the incremental mining algorithm minimizes the 
computational and I/O costs by re-using the information from the previous mining 
results from old database.  

Currently, several incremental mining algorithms of sequential patterns have been 
proposed. But most of them are priori-like, which would generate huge set of candi-
date sequences when the sequence database is huge. Chen [2] proposed an incre-
mental mining algorithm based on PrefixSpan in KDD’04, named IncSpan. In 
PAKDD’05, Son [3] found that the IncSpan had some weakness, that is, it can not 
find complete sequential patterns. They classified these shortcomings and proposed a 
new algorithm called IncSpan+, which is an improvement of IncSpan. But we find 
that IncSpan+ also has the same weakness as in IncSpan, lacking the ability to find 
complete sequential patterns. 
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research and development program of China (863 program, No. 2006AA02Z329), 973 project 
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In this paper, we first argue that in general, IncSpan+ cannot find complete set of 
sequential patterns. Therefore, we propose a new incremental mining algorithm of 
sequential patterns based on prefix tree, called PBIncSpan. PBIncSpan first constructs 
a prefix tree to represent the sequential patterns based on PrefixSpan, and then con-
tinuously scans the incremental element set to maintain the tree structure, using some 
advanced pruning techniques named width pruning and depth pruning to eliminate the 
search space. 

The rest of this paper is organized as follows. Section 2 introduces the related 
work. In section 3, we introduce some basic concepts. Section 4 points out the non-
completeness of the IncSpan+. PBIncSpan is proposed in section 5 in detail. We 
evaluate PBIncSpan in section 6. Finally, this paper is concluded in Section 7 . 

2   Related Work 

Sequential pattern mining was first introduced in [4]. Most of the general algorithms 
for sequential pattern mining are based on Apriori property. In order to reduce the 
huge set of candidate sequences, another approach that mining sequential patterns by 
pattern-growth is proposed by Pei [5], called PrefixSpan. Other algorithms include 
SPIRIT [6], MEMISP [7]. Accordingly, the general incremental sequential pattern 
mining algorithms can be divided into two main catalogs. One is priori-based; the 
other is projection-based. The former includes GSP+ [8], ISM [9], ISE [10] and 
SPADE[11]. As far as we know, the later only includes IncSpan and IncSpan+. The 
weakness of priori-based algorithms is that they have to store huge sequential index. 
PrefixSpan [1] is an efficient algorithm, using a projection-based, sequential pattern-
growth approach to mine the sequential patterns. It can avoid generating huge candi-
date sequences. Hence, IncSpan is proposed for incremental mining over multiple 
database increments, taking the advantage of PrefixSpan. IncSpan+ makes an im-
provement to IncSpan. IncSpan+ claims that it can find complete sequential patterns. 
But our study finds this is incorrect. We prove this in section 4.  

3   Preliminary Concepts 

Let I={i1, i2, …,im} be a set of items. A subset of I is named as itemset. A sequence 
s=<e1, e2, …,en} is an ordered list, where ei is an itemset. ei is also called an element 
of a sequence. A sequence α = <a1, a2, …,an > is called a subsequence of another 
sequence β = <b1, b2, …,bm > if there exists integers 1 ≤ j1<j2<…<jn ≤ m such that 
a1 ⊆ bj1, a2 ⊆ bj2,…, an ⊆ bjn.. For brevity, we assume an element has only one item. 
When an element has multiple items, the results may be deduced by analogy. 

 A sequence database D = {s1, s2, …, sm} is a set of tuples <sid, s>, where sid is a 
sequence id and s is a sequence. |D| denotes the number of sequences in D. The (abso-
lute) support of a sequence α in D is the number of sequences in D which contain 
sequence α, denoted as support(α). The relative support of a sequence α in D is its 
absolute support divides by |D|. Given a positive integer min_support as the support 
threshold, if supports(α) > min_support , the sequence α is a sequential pattern in D. 
The task of sequential pattern mining is to find all sequential patterns in D. 
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In real world, many sequence databases update over time. Let D be the old data-
base. Let db be the incremental part w.r.t D.  Let D’ be the updated database. obvi-
ously, D’=D+db. Incremental sequential pattern mining is to find all sequential pat-
terns efficiently in D’ when D updates to D’. 

In general, an incremental mining algorithm should satisfy the following condi-
tions [3]:Completeness and Efficiency. 

There are three kinds of database updates:1)deleteing a sequence, 2)inserting a new 
sequence into D, denoted as INSERT. and 3)appending a new item or itemset to a exist-
ing sequence, denoted as APPEND. Like IncSpan ,IncSpan+ and other algorithms, we 
consider the updates of database only refer to INSERT and APPEND. Fig.1 shows the 
detail. We can regard the INSERT operator as a special case of APPEND, for inserting 
a new sequence is equal to append a new sequence to an empty sequence. 

 

Fig. 1. Two kinds of database updates: one is INSERT, the other is APPEND 

According to [2], given s=<e1,e2...en>∈D, sa=<e’1,e’2...e’m>∈db, if s’=s +  sa, s’ is 
called an appended sequence of s. If s is empty, s’= sa, which means insert a new se-
quence sa to D. otherwise, it means append a sequence sa to s. Obviously, s’ ∈D’. We 
define LDB={s’|s’ ∈D’ and s’ = s + sa and sa is not empty }. 

4   The Weakness of IncSpan+ 

IncSpan+ proves that IncSpan provides incomplete results. The pruning technique that 
IncSpan+ used is as same as IncSpan, only correcting some error in IncSpan. Inc-
Span+ demonstrates that itself is correctness, which means IncSpan+ can find com-
plete sequential patterns. The algorithm outline is list as follows [3]: 

Algorithm 1. IncSpan+ 
Input: An updated database D’, min_support, frequent set ( FS ) and SFS in D  
Output: FS’ SFS’ in D’ 
(1) SFS’ =∅,FS’=∅  Determine LDB; calculate |D’|; adjust the min_support 
(2) Scan the whole D’, add new frequent items into FS’; add new semi frequent items into SFS’ 
(3) FOR each new item i in FS’ DO  PrefixSpan(i,D’|i, u*min_support, FS’,SFS’) 
(4) FOR each new item i in SFS’  DO  PrefixSpan(i,D’|i, u*min_support, FS’,SFS’) 
(5) FOR every pattern p in FS or SFS’ DO 

(6)     Check Δ sup(p) = supdb(p) 

(7)     IF supD’(p)= supD(p)+ Δ sup(p) ≥ min_support 
(8)          INSERT(FS’,p) 

(9)          IF supLDB(p) ≥ (1-u)*min_support 
(10)                PrefixSpan(p,D’|p,u*min_support,FS’,SFS’) 

(11)          ELSE IF supD’(p) ≥ u*min_support 
(12)                INSERT(SFS’,p) 
(13)                PrefixSpan(p,D’|p,u*min_support,FS’,SFS’)    
(14) RETURN  
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The pruning technique used in algorithm 1 is based on theorem 1 in [2]. 

Theorem 1. For a frequent pattern p, if its support in LDB supLDB(p) <(1 − 
μ)*min_support, then there is no sequence p’ having p as prefix changing from infre-
quent in D to frequent in D’. The proof of theorem 1 can be found in [2]. 

According to line (9) (10) in the algorithm of IncSpan+, the pruning is based on theo-
rem 1 and can happen in every node. But theorem 1 only guarantees that a sequential 
pattern p cannot change from infrequent in D to frequent in D’. It cannot prevent an 
infrequent pattern p in D changes into semi frequent in D’. If a pattern p is currently 
infrequent in D, it has a chance to be semi frequent in D’ when a new sequence ap-
pended. When D’ is updated, p might be frequent in updated database D’’. But Inc-
Span+ fails to discover this kind of patterns. So even a sequence p satisfies 
supLDB(p) < (1-μ)*min_support, it still needs to execute PrefixSpan(p, D’|p, 
u*min_sup,FS’,  SFS’)  to make sure that semi frequent patterns could be find com-
pletely. The IncSpan+ is not complete. We can illustrate by example 1. 

Table 1. A running example of an sequence database 

SeqID Sequence 
1 B A A C 
2 A B A 
3 A B A 
4 A B C C 

Example 1. Sequence database is shown in table 11. Let min_support be 3, μ be 0.6. μ 
multiplies min_support is 1.8. According to algorithm 1, a sequence will be semi 
frequent or frequent when the support of that sequence is equal to or above 2. Assum-
ing an item C is appended in the seqID 2. For a sequence AA, supLDB(AA) = 1 < (1-
μ)*min_support=1.2, so PrefixSpan(AA,D’|AA, u*min_support, FS’,  SFS’ ) is not 
executed. The semi frequent pattern AAC can not be added into SFS’.  

5   PBIncSpan Algorithm 

5.1   Prefix Tree of a Sequence Database  

Constructing a prefix tree w.r.t a sequence database is as same as the procedure of 
mining sequential patterns in a sequence database using PrefixSpan algorithm. We 
illustrate how to build prefix tree by an example. 

Example 2. Sequence database is shown in table 1. Let min_support be 2. The steps 
of construction a prefix tree w.r.t sequence database in table 1 is shown in Fig.2.  
 

                                                           
1 For simplify, here we assume an element has only one item, so the sequence is  shown as list 

of items, not itemsets. 
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Fig. 2. The steps of construction prefix tree of the sequence database shown in table 1 

5.2   Width Pruning  

For every node in prefix tree as shown in Fig.2, its child node comes from the scan of the 
projected database with prefix of that node. Let α is a node in prefix tree, if α-projected 
database remains unchanged when D updates to D’, its child node will not change. 

Example 3. Sequence database is shown in table 1. Let min_support be 2. Assuming 
an item C is appended in the seqID 1. The A-projected database and B-projected da-
tabase do not change after appending item C. Thus node A, B and their child nodes do 
not need to scan corresponding projected databases to find new sequential patterns 
when D updates to D’.  

Definition 1(IASIDS). IASIDS (insert and append sequence id) is a set of seqID w.r.t 
the sequences in LDB. In example 3, the IASIDS={1}. 

Theorem 2(width pruning). Let α be a prefix of any sequence in D, pSeqId={seqId | 
seqId ∈ α-projected database}. If  IASIDS ∩pSeqId = ∅, then the node α and its 
child nodes in the prefix tree do not change when D updates to D’. 

seqID plays important roles in pruning, the cost is that for every projected database, 
we have to check weather its seqIDs are included in IASIDS. One way to optimize the 
algorithm is to move the LDB to the top of D’, maintaining a global various 
min_Seq_ID=size of LDB. When the first sequence id in a projected database, say α-
projected database,  is great than min_Seq_ID , which means α-projected database 
and LDB are mutually exclusive,  we can use width pruning on node α. 

5.3   Depth Pruning  

Definition 2(incremental element set, IES). Let α be a prefix of any sequence in D, 
pSeqId={seqId | seqId ∈ α-projected database}.Let IPIDS = IASIDS∩pSeqId. IES is 
a set of items that append to D and their sequence ids are in IPIDS, denoted as IESα 

Theorem 3(depth pruning). Assuming node α’s parent node does not insert any 
node as its child node during the scan of D’, and IESα∩{α, α’s sibling nodes}=∅, then 
the node α and its child nodes in the prefix tree w.r.t D are as same as in the prefix 
tree w.r.t D’. 

Example 4. Sequence database is shown in table 1. Let min_support be 2. Item B and 
F is appended in seqId 1, Item E is appended in seqId 2. Starting form the root, we 
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scan D’. There is no new node can be appended as root’s child node. We calculate 
that  IESA={B,E,F}, IESB={B,E,F}, and IESC=∅. Because IESC∩{C, C’s sibling 
nodes}= IESc∩{C, A, B} = ∅,  C can be pruned (in this example, C can also be 
pruned by width pruning). Continue this step. The prefix BC can not be prune by 
using width pruning, but IESBC={B,F}, BC’s sibling node is sNode ={A, C}.  IESBC∩ 
{C}∩ sNode = ∅, so BC can be pruned by using depth pruning, do not need to scan 
BC-projected database. 

5.4   The Algorithm of PBIncSpan  

Based on width and depth pruning, PBIncSpan is given as follows: 

Algorithm 2. PBIncSpan(root, D’,db) 
Input: D’; min_support; the root node of Prefix tree (PT) w.r.t D; 

appended sequence db. 
OutPut: Prefix tree w.r.t  D’ 
(1) Calculate |D’|; adjust min_support; move LDB to the head of D’; min_Seq_ID=|LDB|;Flag = False 

(Flag is used to record whether a new node has been appended.) 
(2) Scan D’ and db once, get the Frequent Item Set (FIS) w.r.t the root of PT  
(3) IF FIS= ∅ or db=∅ 
(4)     RETURN root 
(5) FOR every item t in FIS 
(6)      IF t ∈ root’s child nodes 
(7)          Updated the support of t 
(8)      ELSE 
(9)          Create a new node t , insert to the root’s child node  
(10)          Flag=True 
(11)      DoPBIncSpan(root,p,Flag,min_Seq_ID,D’,db) 
(12) Go through tree, out put the sequential patterns, delete node whose support is less than min_support  
(13) RETURN root. 

Algorithm 3. DoPBIncSpan(q,p,Flag,min_Seq_ID,D’,db) 
Input: parent node q, current node p, q’s appending Flag (indicates whether q is appended with a new 

node), min_Seq_ID, q-projected database D’ and db 
Output: new subtree w.r.t D’ after mining  
(1) IF  the first sequences id of  p-projected database > min_Seq_ID 
(2)        RETURN      //width pruning 
(3) Scan D’ and db, get p-projected database pD’ and pdb respectively 
(4) BOOL is_Depth_Prun = True; 
(5) IF Flag=False    //check whether depth pruning can be used here 
(6)    Scan  pdb,caculate IESp 
(7)    FOR every child node of q 
(8)           IF q∩IESp≠ ∅ 
(9)            is_Depth_Prun = False  
(10)              BREAK 
(11)    IF is_Depth_Prun = True   
(12)          RETURN      //depth pruning 
(13) BOOL pFlag = False 
(14) Scan pD’, get frequent item set FIS 
(15) IF FIS = ∅       RETURN 
(16) FOR every item t in FIS 
(17)        IF t∈ p’s child nodes    Update the support of t 
(18)        ELSE   Create a new node t   ;   pFlag=True 
(19)        DoPBIncSpan(p,t,pFlag,min_Seq_ID,pD’,pdb) 
(20) RETURN 
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Theorem 4(Completeness of PBIncSpan). PBIncSpan outputs the complete set of 
sequential pattern.  

6   Performance Study 

The performance study is to check the efficiency of incremental mining algorithm. 
The incremental mining algorithm should use less time to mining sequential pattern 
than traditional one. Because PBIncSpan is based on PrefixSpan, we compare these 
two algorithms. We implement PrefixSpan using pseudoprojection. All experiments 
were conducted on a P4 2.5GHZ PC with 768 megabytes main memory, running 
windows XP Professional. All algorithms are implemented using C++ STL library 
with IDE vs2003.net. 

For the real dataset, we get Gazelle from the author of BIBE. This dataset has been 
widely used in testing the performance of sequential pattern mining algorithm. This 
dataset contains 29,369 sequences, 87,546 sessions and 1423 items. More detail in-
formation could be found in [12]. 

We store the original sequence database D1 as File 1. When D1 appends or inserts 
new sequences, it becomes D2 and is saved as File 2. The last updated sequence data-
base Dk is saved as File k. The incremental ratio is m. when Dk-1 updates to Dk, the 
inserted and appended sequences have a distribution d. In our test, we let k be four. 

Every time when the sequence database is updated, we run PrefixSpan to mine se-
quential patterns from scratch.  While PBIncSpan works in incremental way. The 
results are shown as in Fig 3 with different parameters. 

  

Fig. 3. The performance of PBIncSpan under different parameters 

Form the figure 3, we can find that when the dataset is small, the performance of 
PBIncSpan just a slightly higher than PrefixSpan. This is because when dataset is 
small, the scan of the whole database is quickly, while pruning only saves a little 
time. When sequence database grows large, PBIncSpan outperformed PrefixSpan.  

7   Conclusion and Future Work 

This paper we first demonstrate that IncSpan+ can not find complete sequential pat-
tern. Based on PrefixSpan, we use the prefix tree to maintain the sequential patterns. 
When database updated, we use width pruning and depth pruning to reduce the times 
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of scanning the updated database. But using prefix tree need more storage space when 
database is huge. Although we can store every branch into disk, but how to maintain a 
big tree is challenge.  Another problem is that depth pruning is based on Apriori prop-
erty and is not very effective when the prefix tree has lots of nodes. Further more, the 
stability of the algorithm should be strengthen. We will try to solve these problems in 
the future. 
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Abstract. In many applications such as bioinformatics and medical decision-
making, the interpretability is important to make the model acceptable to the 
user and help the expert discover the novel and perhaps valuable knowledge 
hidden behind the data. This paper presents a novel feature selection and rule 
extraction method which is based on multiple kernel support vector machine 
(MK-SVM). This method has two outstanding properties. Firstly, the multiple 
kernels are described as the convex combination of the single feature basic ker-
nels.  It makes the feature selection problem in the context of SVM transformed 
into an ordinary multiple parameters learning problem. A 1-norm based linear 
programming is proposed to carry out the optimization of those parameters. 
Secondly, the rules are obtained in an easy way: only the support vectors neces-
sary. It is demonstrated in theory that every support vector obtained by this 
method is just the vertex of the hypercube. Then a tree-like algorithm is pro-
posed to extract the if-then rules. Three UCI datasets are used to demonstrate 
the effectiveness and efficiency of this approach.  

1   Introduction  

In the domain of data mining, it is very important for a model to make the results 
more acceptable to the user and help the expert more easily discover the novel and 
perhaps valuable knowledge or possible errors in the conclusions. As a popular ma-
chine learning method, support vector machine (SVM) has strong theoretical founda-
tions and achieves success in many areas. As SVM is a “black-box” system, the 
explanation capacity hinders SVM from going further in the applications especially in 
the medical field.  

Some researchers devote to propose SVM-based feature selection methods. In the 
greedy strategy [1] or pruning strategy [2], the features are added or removed 
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according to some defined measure. It is their drawback that they are usually depend-
ent on the threshold and the solutions are usually not optimal. Recently, the genetic 
algorithm [3] becomes the popular tool to search for the optimal feature subset. It 
needs to implement the optimization of SVM repeatedly and results in the expensive 
computational cost.  

There are few papers published in the cases of rule extraction from SVM. A typi-
cal rule extraction approach treats SVM as a black-box and the output of SVM are 
used to train a machine learning method with explanation capacity such as decision 
tree to generate rules [4]. But there is lack of theoretical explanations to guarantee 
that the extracted rules can achieve good generalization performance. Another 
method uses the linear programming to optimize the vertexes of the hypercube 
based on the linear SVM [5]. This method is not suitable for the nonlinear situation 
while the nonlinear mapping and the kernel trick is one of the important characteris-
tics of SVM. 

In this paper, the feature selection and rule extraction are united in a scheme. This 
idea comes from the study of multiple kernel learning [6]. The single feature kernel 
is used as the basic kernel in this paper and then the feature selection problem is 
transformed into an ordinary multiple parameter learning problem [7]. The optimiza-
tions of these parameters (feature coefficients) are carried out by a 1-norm based 
linear programming. Every “support vector” is just the vertex of a hypercube. So a 
tree-like algorithm is proposed to adaptively extract the if-then rules. This paper is 
organized as follows: section 2 describes the MK-SVM based feature selection and 
rule extraction approach. Section 3 presents the experimental results on some UCI 
datasets. 

2   Feature Selection and Rule Extraction from MK-SVM 

Given a set of data points ( ){ }n

iii yxG
1, =

= , m
i Rx ∈ and { }11 −+∈ ，iy . The opti-

mal separating hyperplane is found by solving the following regularized optimization 
problem which is identical with SVM: 
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where c  is a regularization parameter and )(xφ is the nonlinear mapping. 

By introducing the Lagrange function and differentiating with respect to w and iξ , 

the following dual programming is gotten: 
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where )()(),( jiji xxxxk φφ= is called the kernel function.  

If each basic kernel uses a single feature, the kernel function can be described as: 
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where dix , denotes the thd component of the input vector ix . In equation (5), the 

parameter dβ  represents the weight of each single feature kernel. So it is called fea-

ture coefficient. Then the feature selection problem is transformed into finding sparse 

feature coefficients mR⊂β .  

When the kernel described in equation (5) is used, the optimization problem 
changes into: 
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A two stage iterative procedure is used in this paper. The feature coefficient dβ is 

fixed and the Lagrange coefficients jα can be gotten by solving the quadratic pro-

gramming described in (6) and (7). The optimization of the feature coefficients dβ can 

be seen as a multiple parameter learning problem. They can be obtained by minimiz-
ing some estimates of the generalization errors of SVM [8]. A 1-norm soft margin 
error function is minimized to obtain the sparse solution: 
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In equation (8), the regularized parameter λ controls the sparsity of the feature 
coefficients.  

The dual of this linear programming is: 
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Algorithm 1 
The procedures for feature selection using MK-SVM can be summarized as the fol-
lowing steps: 

1. Initialization: set the regularization parameter γ , λ  and the kernel parameter 

to some initial values. The feature coefficients dβ are set to 

{ }mdd ,,1|1)0( ==β . 

2. Solving the Lagrange coefficients )(t
jα : the Lagrange coefficients )(t

jα are ob-

tained by solving the quadratic programming described by equation (6) and (7) in 

which the feature coefficient )1( −t
dβ  is used.  

3. Solving the feature coefficients )(t
dβ : the feature coefficients )(t

dβ  are obtained 

by solving a linear programming based on the Lagrange coefficient )(t
jα solved in 

the last step. The dual problems of this linear programming are given in equation 
(10) and (11).  

4. Calculating errors: the errors on the testing set are calculated according to the coef-

ficients )(t
jα and )(t

dβ  solved in above two steps. If the results are not convergent 
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according to the defined stopping criteria, go back to step 2 and implement the 
two-stage iteration optimization again. Go back to step 1 and tune the parameters 
until the output are optimal or satisfactory. 

5. Output: the sparse feature coefficients β , support vectors and the classification 

results. The features corresponding to the non-zero feature coefficients dβ are the 

selected features. 

Definition 1: An optimal rule can be defined as that covers the hypercube with 
axis-parallel faces and has one vertex on the hyperplane. 

Then a rule defined as above has the following formulation: 

{ }uxlxR ≤≤=  (12) 

In equation (12), one of the lower bound ( l ) and upper bound ( u ) of x is the vertex 
lying on the hyperplane. 

Proposition 1: For MK-SVM with linear kernel, each support vector is one ver-
tex of a rule and the other vertex of this rule is one of the corners of the whole 
region. 

Proof: According to the Kuhn-Tucker condition, the separating hyperplane of MK-
SVM with linear kernel can be shown as: 
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According to the definition 1, each support vector (SV) lies on the hyperplane and 
then it is one vertex of a rule. The rule with biggest volume is obtained when the other 
vertex of this rule is one of the corners of the whole region. 

Proposition 2: For MK-SVM with nonlinear kernel, each support vector is one 
vertex of a rule and the other vertex of this rule is one of the corners of the re-
gion or another vector lying on the hyperplane.  

Proof: According to the Kuhn-Tucker condition, the separating hyperplane of MK-SVM 
with nonlinear kernel can be viewed as the weighted sum of the nonlinear functions: 
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,,, ),(α is a nonlinear function.  

According to the proposition 1, iz  is one vertex of a hypercube. So the bounds of the 

rule are the solutions of the following nonlinear equations: 
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It is clear that each component of the support vectors ( dix , ) is one of the solutions 

of equations (15) and (16). According to the definition 1, every support vector ix is 

one vertex of a hypercube. Considering the two situations about the interval solution 
of above univariate nonlinear equations, the other vertex of the hypercube may be the 
corner of the region or another vector lying on the hyperplane. 

The following measures are defined to evaluate the quality of the extracted rules: 
classification accuracy (hit rate) and point coverage rate (number of samples covered 
by a rule and correctly classified divided by the total number of samples in that class). 

Algorithm 2 
1. Implement the algorithm 1 to get the support vectors with the selected features. 
2. Derive the rules from support vectors according to proposition 1 and 2. 
3. Calculate the evaluation measure (classification accuracy multiplied by point 

coverage rate) of every rule in the given region and keep the best rule.  
4. Discard the region the extracted rules covered and get a new given region. 
5. Go to step 3 to extract a new rule in the new region. 
6. Stop. 

3   Experiments 

The performance of this method is measured on three widely used datasets: The breast 
cancer dataset, the heart disease dataset and the PIMA dataset.  

Considering the different misclassification cost, we use the following three meas-
ures: average overall hit rate, sensitivity (number of negative samples correctly classi-
fied divided by the total number of negative samples) and specificity (number of posi-
tive samples correctly classified divided by the total number of positive samples) to 
evaluate the classification accuracy. In this experiment, the Gaussian kernel is used. 

The selected features and three measures: average overall hit rate, sensitivity and 
specificity using MK-SVM are shown in table 1. Table 2 shows the experimental 
results of SVM using all of the features. From these two tables, it is seen that MK-
SVM outperforms SVM in most of those measures. And the selected features are used 
to extract rules in follows. 

Table 1. Experimental results of MK-SVM with selected features  

Measures Breast cancer Heart disease PIMA 
Selected features 1,3,6 8,12,13 2,8 
Overall hit rate % 97.51 87.40 77.29 
Sensitivity % 98.04 87.91 59.59 
Specificity % 97.26 86.82 87.40 
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Table 2. Experimental results of SVM with original features 

Measures Breast cancer Heart disease PIMA 
Overall hit rate % 97.30 79.90 72.65 
Sensitivity % 96.35 77.48 34.76 
Specificity % 99.35 81.79 89.76 

The extracted rules for MK-SVM on the breast cancer dataset are shown in table 3. 
Table 3 also shows the hit rate and point coverage rate for each rule and the average 
ones for each class. For MK-SVM, only two rules for the negative class and one rule 
for the positive class are extracted. For all these two classes, the average hit rate and 
point coverage rate are all superior to 90%. They are promising results.  

Table 3. Rule extraction from the breast cancer dataset using MK-SVM 

Number Class Rule body Hit rate % Coverage rate % 
1 Pos. 33 >x  93.79 89.54 

2 Pos. 51 >x and 23 3 ≥≥ x  66.67 7.84 

Overall  Pos.  92.85 97.38 
3 Neg. 43 <x  94.59 95.44 

4 Neg. 43 =x and 56 ≤x  56.25 2.74 

Overall  Neg.  92.86 98.18 

Table 4 shows the number of extracted rules and coverage rate on the breast cancer 
dataset using MK-SVM, in compared with three neural network based rule extraction 
methods (see details in [8]). It is seen that MK-SVM extracts fewer rules and achieves 
higher coverage rate at most of cases. 

Table 4. Rule extraction from the breast cancer dataset using MK-SVM and some other 
methods 

Method Class Number of 
rules 

Coverage 
rate % 

Class Number 
of rules 

Coverage 
rate % 

MK-SVM Pos. 2 97.38 Neg. 2 98.18 
NN1 Pos. 5 99.16 Neg. 6 95.27 
NN2 Pos. 4 97.07 Neg. 5 96.17 
NN3 Pos. 2  97.07 Neg. 3  95.72 

The hit rate and point coverage rate on the heart disease and PIMA dataset are 
shown in table 5. The extracted rules are omitted here. It is seen that a small number 
of rules are extracted on each dataset. The coverage rate of the negative class can be 
improved by adding new rules, but it will result in a lower hit rate. 
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Table 5. Rule extraction from the heart disease and PIMA dataset using MK-SVM 

Dataset Class Number of rules Hit rate % Coverage rate % 
heart disease dataset Pos. 3 82.35 90.32 
heart disease dataset Neg. 3 90.90 63.64 
PIMA dataset Pos. 3 82.18 81.10 
PIMA dataset Neg. 4 74.29 61.50 

4   Conclusions 

We propose a novel feature selection and rule extraction method based on multiple 
kernel support vector machine (MK-SVM). The most outstanding advantage of this 
method is that the rule is obtained in an easy way: only the support vectors necessary. 
Secondly, most rule extraction methods ignore the feature selection or leave it prior to 
the main task. This paper proposes a united system to carry out the rule extraction and 
feature selection simultaneously. In the experiments, the extracted rules with few 
selected features achieve good performance. 
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Abstract. This paper addresses the problem of spam filtering for indi-
vidual email user under the condition that only public domain labeled
emails given as the training data and all emails from the user’s email
inbox are unlabeled. Owing to the difference of wordings and distribu-
tion of emails, conventional supervised classifier such as SVM cannot
produce accurate result because it assumes the training and the testing
data come from the same source and have the same distribution. We
model these discrepancies as variation of decision hyperplane and come
up with a criterion for selecting reliable emails with classified labels which
are likely to be agreed by the user. A semi-supervised classifier then uses
these emails as the training set and propagates the label information to
other unlabeled emails by exploiting the distribution of them in feature
space. Experimental result shows that this combined classifier strategy
can classify emails for individual user with high accuracy.

1 Introduction

For most email users, email filtering seems to be an effective way to block spam.
Traditional spam filters use rule-based techniques that discriminate spam from
normal emails. This approach uses a combination of spammers’ email addresses,
IP addresses, header information, keywords of the subject line, and even the
keywords in email contents to formulate the rules that identify spam emails.
Machine learning, e.g. Bayesian learning [1], is another common approach to filter
spam. Instead of specifying a set of rules explicitly, this approach uses a set of
classified documents, including both spam and normal emails, to learn the rules
implicitly. Sometime, domain specific properties, such as the presence of “!!!!” or
“be over 21” are cooperated to make the filter more accurate. Recently, support
vector machine (SVM) [4,5] is also a very popular technique in filtering emails.
It works well even under high dimensional input space and sparse attributes.
Combination of both approaches is now becoming popular, e.g. SpamAssassin [2].

With modern machine learning techniques, it is not difficult to achieve high
accuracy in spam filtering. For example, Tretyakov [3] reported their simple
SVM and multi-layer perceptron [6] had false positive and false negative values
below 5%. These good results however require a working condition that the
training data and the testing data are drawn randomly from the same source
as most learning paradigms assume that all the data is drawn under the iid
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Fig. 1. Fig.1a shows that the hyperplane H1 separating all the training patterns cor-
rectly. In Fig.1b H1 performs badly if the distribution of the testing patterns is different
and H2 should be the right hyperplane.

(independent and identical distribution) condition. Fig. 1a shows the hyperplane
H1 separating all the training patterns correctly can perform badly (see Fig. 1b)
if the testing patterns have different distribution, in which H2 should be the
correct separating hyperplane. To train a personalized spam filter for a user,
both labeled spam and legitimate emails, getting from the same user’s email
inbox, are required. However, due to the privacy reason, it is difficult to get
emails from the user. Even the user provides his emails, labeling them manually
is a very costly and time consuming task. Without labeled emails from the user,
the performance of a spam filter will be downgraded drastically. A spam filter
test running on a dataset [7] shows that the accuracy drops from over 90% to
about 78% when training are based on public domain email dataset only and no
user’s labeled emails are provided. The is due to the discrepancy between the
word distributions of emails from public domain and that of the users’ inbox.

In this paper, a combined SVM and semi-supervised classifier is proposed
to label a user’s emails. Firstly a SVM is trained with labeled public domain
emails and it is used to classify a user’s emails. The discrepancy between them
and user’s emails is modeled as variation of decision hyperplane and “reliable
labeled emails” with classified labels which are likely to be agreed by the user are
selected. A semi-supervised classifier [8] then uses these emails as the training
set and propagates the label information to other unlabeled emails by exploiting
the distribution of them in feature space. Throughout this paper, ranking of
emails by classifier output values is used to indicate their likelihood to be spam,
rather than using simple binary labeling, e.g. {-1,1}, unless specified otherwise.
An email with higher classifier output value is ranked higher and it is more
probable to be spam. The classification is evaluated with Area under the ROC
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curve (AUC) metric [9]. In this case it can be regarded as the Wilcoxon-Mann-
Whitney (WMW) statistic [10] given as:

W =
p∑

i=1

n∑

j=1

I(xi, yj)/pn

I(xi, yj) =
{

1 iff(xi) > f(yj)
0 otherwise ,

where p is the number of spam emails and n is the number of legitimate emails,
xi and yj represent a spam and a legitimate email respectively. The function f
is a classifier which assigns a score to xi and yj for ranking. A view of the AUC
value with this setting is the probability of spam email having higher ranking
than a legitimate email.

The remainder of this paper is organized as follows. Section 2 discusses the
classification of user’s emails using SVM. Modeling of different users’ email distri-
butions and the criterion for selecting “reliable labeled emails” is also proposed.
Section 3 presents the using of the semi-supervised learning algorithm to propa-
gates the label information to unlabeled emails. Section 4 summarizes the testing
results. Finally, a conclusion is given in Section 5.

2 Classification of Emails Using SVM

Support Vector Machine (SVM) [4,5] is a very popular classifying tool in recent
years. SVM employs kernel function to map the input data into some much higher
dimensional feature space implicitly in which data becomes linearly separable.
The linear decision boundary is drawn in a manner that the margin, minimum
distance between training examples and the boundary, is maximized. In case
that the mapped data points are non-linearly separable, a cost is included to
account for the wrongly classified examples and the margin is maximized while
the cost is minimized. For spam filtering, linear kernels are found to have good
performance and thus they are used in our study.

If we form a SVM with labeled public domain emails as the training dataset
and classify a person’s email, the classifier may not give accurate result because
a considerable number of emails are classified wrongly due to the distribution
difference as described in Section 1. Fig. 2 gives another example on the situation
in a highly simplified two-dimensional plane. Referring to Fig. 2, points far away
from the decision line H1 is less likely to be affected when the decision line
is changed from H1 to H2. In fact, under certain conditions, the class label of
these points is preserved. Consider a SVM classification in N dimensional feature
space with decision hyperplane H1 which can be represented by

H1 : W ′X + b = 0 (1)

where W is the normal vector of the hyperplane and W ′ denotes its transpose.
The distance d1 between a point X ∈ RN (assume data normalized in feature
space, i.e. ‖ X ‖= 1) and the hyperplane is
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Fig. 2. Difference in wording causes different decision lines leading to different classi-
fications. H1 and H2 are two different decision lines. Point C,D are classified as +ve
data and point A is classified as -ve data if H1 is used. However, C,D are classified as
-ve data and A as +ve data if H2 is used.

d1 =
| W ′X + b |

‖ W ‖ . (2)

If the decision hyperplane of the SVM is changed to H2,

H2 : (W + δW )′X + b + δb = 0 , (3)

the new distance is

d2 =
| (W + δW )′X + b + δb |

‖ W + δW ‖ . (4)

Without loss of generality, we assume W ′X + b > 0, then

d2 =
| d1 ‖ W ‖ +δW ′X + δb |

‖ W + δW ‖ . (5)

Label of X will not be changed if

d1 >
| δW ′X + δb |

‖ W ‖ (6)

or, under the more strict condition,

d1 >
‖ δW ‖ + | δb |

‖ W ‖ . ∵‖ X ‖= 1, δW ′X ≤‖ δW ‖ (7)

Thus, class label of data points having the distance greater than (‖ δW ‖ + |
δb |)/ ‖ W ‖ to H1 will be preserved even the decision hyperplane is switched to
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H2. These data points are called “reliable” data points in the sequel. Practically,
it is hard to identify reliable data points or even their existence because ‖ δW ‖
and | δb | are not known. The above formulation, however, points out class labels
of data points are likely to be preserved if they are far from the original decision
hyperplane.

As a result, if a person’s emails having distribution not too different from
the counterparts of the public domain, these discrepancies can be modeled as
changing of decision hyperplane. Then a SVM can be trained with public domain
emails and classify the person’s emails. Classified personal emails far from the
decision hyperplane can be selected as training data for other classifiers or next
stage classification because they are likely to be reliable data points.

3 Semi-supervised Learning for Spam Filtering

Let {(x1, y1) . . . (xl, yl)} be the labeled emails, with xi ∈ RN , y ∈ {−1, 1}, and
{xl+1 . . . xl+u} the unlabeled emails. The problem is to label or assign a prob-
ability to the unlabeled emails such that a cost function is minimized. Let wij

represents the similarity between xi and xj . Then a graph where nodes represent
emails, xi, i ∈ {1, 2, . . . , l+u}, and edges represent similarity wij between xi and
xj can be created. Similarity is often evaluated with radial basis function

wij = exp

(

−‖ xi − xj ‖2

σ2

)

(8)

or cosine similarity
wij =

< xi, xj >

‖ xi ‖‖ xj ‖ . (9)

In this graph, the label of xi can propagate through edges to another node xj

according to a transition probability

Pij =
wij∑n

k=1 wik
(10)

and the transition of the whole graph can be represented by the (l + u × l + u)
dimension matrix P . Define a label matrix Y with dimension (l + u × 2), whose
i′th row has two elements having values between 0.0 and 1.0. The first element
indicates the probability that the i′th email is a legitimate email and the second
element indicates the probability that email is a spam, i.e. yi,1+yi,2 = 1.0. Under
this configuration, the class probability of unlabeled emails can be computed,
by using the label propagation algorithm [8] given as follows.

1. Initialize the label matrix Y
– If xi is labeled spam, yi,1 = 0, yi,2 = 1.
– If xi is labeled legitimate, yi,1 = 1, yi,2 = 0.
– If xi is unlabeled, randomize yi,1 , yi,2 to a small values.

2. Update Y by Computing Yn+1 = PYn.
3. Clamp the labels of labeled node to its original values.
4. Repeat 2, and 3 until Yn converge.
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This algorithm propagates the values of labeled nodes to class boundaries accord-
ing to the distribution of the unlabeled emails. The convergence of the algorithm
is guaranteed if the graph is connected. In addition, the convergence to trivial
cases such as all yi,1 = 0.0 are avoided because there are both labeled spam and
legitimate emails.

4 Testing Results

The testing dataset in [7] are used in evaluating the combined classifier strategy.
In this dataset, there are 4,000 labeled emails coming from public domain and
they are used as the training data. Three sets of unlabeled data, each contain-
ing 2,500 emails from three different users’ email inboxes, are also provided for
testing. Ground true of the emails are given for evaluation. It should be noted
that the email distributions of public domain is different from that coming from
individual users’ inboxes. Direct usage of training data to train a classifier and
to classify unlabeled emails will give unsatisfactory results. The goal is to rank
the emails for each user such that spam emails should have higher ranking than
legitimate emails. The correctness of ranking is measured with AUC value. It has
maximum value 1.0 representing the perfect case that all spam emails are ranked
higher than legitimate emails. In this dataset, there are also two additional sets
of data, “E” and “F” but they are not used in the test. Table 1 summarizes the
properties of the dataset.

Table 1. Data in the testing dataset

Dataset No. of emails Labels
(50% spam and +1:spam, -1:legitimate
50% legitimate emails)

“A” Training Emails obtained
from public domain 4000 Labeled

“B” Emails from User 00 2500 Unlabeled

“C” Emails from User 01 2500 Unlabeled

“D” Emails from User 02 2500 Unlabeled

“E” Tuning Emails obtained from
public domain 4000 Labeled

“F” Tuning Emails from User 00 2500 Labeled

“G” Ground true labels n.a. n.a.
of Emails “B”, “C”, and “D”.

A SVM is first trained with Dataset “A” and then it is used to classify Dataset
“B”,“C”,“D” with the distance of each email to the decision hyperplane is then
evaluated. As described in Section 2, emails that far from the hyperplane are
likely to be “reliable data point”. A number of classified emails farthest from the
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hyperplane are selected forming the training set of a semi-supervised classifier.
Ranking of emails are obtained from the output of the classifier. Finally, AUC of
the ranking is evaluated. The testing result is given in Table 2. Referring to this
table, it is clear that the proposed approach performs much better than SVM or
SVM1. Cases with different number of emails which are far from the hyperplane
are tested and the result shows that the proposed approach is quite stable to
the variation of this number. Finally, it is worth noting that in Table 2 the AUC
value drops as the number of “reliable data point” is over 300. It is because the
additional selected “reliable data point” is no longer “reliable”. However, the
AUC for User 2 is still very high because its email distribution is a bit similar
to that of the public domain.

Table 2. AUC values for classifying emails of User 00, User 01 and User 02. Number of
SVM classified emails (farthest to the decision hyperplane) for semi-supervised learning
is given in parentheses.

Algorithms AUC values
User 00 User 01 User 02

SVM Use SVM only 0.73 0.78 0.89
(no preprocessing)

SVM1 Use SVM only (data 0.84 0.87 0.94
preprocessed to 0/1 vector
and normalized)

SVMSSL SVM1 + Semi-supervised
classifier
(+ve / -ve “reliable” Sample)
(100 / 100) 0.913 0.947 0.983
(200 / 200) 0.912 0.952 0.987
(300 / 300) 0.907 0.957 0.989
(600 / 600) 0.861 0.942 0.992

5 Conclusion

Spam or junk emails, are very annoying to email users and filtering is one of
the ways to block spam. However, tuning a spam filter for individual user is
costly and time consuming and sometimes impractical because of privacy reason.
This paper proposes a combined supervised and semi-supervised classifier that
helps the labeling/ranking of user’s emails. As the distribution of public domain
emails is different from that of emails of individual user, classical supervised
classifiers such as SVM or näıve Bayes classifier do not gives satisfactory results.
We model the discrepancy of distribution by variation of decision hyperplanes
and come up with a criterion selecting some “reliable” SVM classified emails as
training examples for next stage classification. A semi-supervised classifier using
these examples together with exploiting user’s email distribution to classify the
unlabeled emails. Interestingly, this simple approach can classify user’s emails
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with a high accuracy, in AUC metric. Of course, the war between spammers and
anti-spammers is not over. Some spammers are now using hyperlinks to divert
people to their websites or even put their messages in image format so that they
cannot be detected easily.
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Abstract. The present paper discusses a new definition of knowledge
rough entropy based on boundary region from the aspect of Pawlak topol-
ogy. This definition accurately reflects an idea that the uncertainty of set
can be described by boundary region. It thus proves an important con-
clusion that boundary conditional entropy of knowledge monotonously
reduces with the diminishing of information granularity. Combining qual-
itative reasoning technology with knowledge information entropy based
on rough sets theory, a heuristic algorithm for feature reduction is pro-
posed which can be used to eliminate the redundancy in the qualitative
description and the qualitative differential equations are obtained. The
result shows that the rough sets theory (RST) is of good reliability and
prospect in qualitative reasoning and simulation.

Keywords: qualitative reasoning; qualitative simulation; RST; feature
reduction; boundary conditional entropy.

1 Introduction

RST, as a new mathematical tool to deal with inexact, uncertain knowledge, has
been successfully employed in machine learning, data mining and other fields
since it was put forward by Pawlak[1]. It is established on the basis of classifica-
tion mechanism, which takes classification according to equivalence relation [2].
On the other hand, RST believes that knowledge has granularity, the smaller,
the more concepts precisely expressed. Meanwhile, Uncertainty and its measure
have always been important issues in the study of RST[1,2,3]. Wierman[4] intro-
duces the definition of granularity measure, connecting Shannon entropy[5] with
uncertainty measure. Besides, Miao[6]discusses the relation between knowledge
roughness and information entropy, proving the monotony of knowledge rough
entropy; Wang[7,8] defines the equivalence of feature reduction from the aspect
of informational view and algebraic view of RST and provides reduction algo-
rithm of decision table based on conditional information entropy[8]. Liang [9]
defines a new information entropy, which can be better used for measure rough
set and rough classification.
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In the above study, knowledge rough entropy is failing to show accurately
the reason that causes conceptual uncertainty–the existence of boundary region
[1-3]. The present paper defines a new knowledge rough entropy and conditional
entropy based on boundary region and is an attempt to solve measure uncer-
tainty from the angle of set topology (Pawlak topology[2,3]). It provides feature
reduction algorithm of decision table based on boundary conditional entropy
which will be used in qualitative reasoning and simulation[10]. Qualitative rea-
soning is to ignore the details instead of collecting specific values of the system’s
variables at different time to simulate the system’s behavior. But this method
has a relatively bigger knowledge redundancy. Thus, it is advisable to delete
the problem of knowledge redundancy by using feature reduction method in
RST. The qualitative simulation of spring physical system uses attribute signifi-
cance as heuristic algorithm for feature reduction together with the technology of
qualitative reasoning and simulation.

2 General Meaning of Conditional Entropy of Knowledge

An information system is usually denoted as a triplet S = (U, C ∪ D, f), which
is called a decision table, where U is the universe which consists of a finite
set of objects, C is the set of condition attributes and D the set of decision
attributes. With every attribute a ∈ C ∪ D, set of its values Va is associated.
Each attribute a determines an information function f : U → Va such that for
any a ∈ C ∪D, and x ∈ U, f(x) ∈ Va. Each non-empty subset B ⊆ C determines
an indiscernible relation RB = {(x, y) : ∀a ∈ B, fa(x) = fa(y), x, y ∈ U}. RB is
called an equivalence relation and partitions U into a family of a disjoint subsets.
U/RB called a quotient set of U: U/RB = {[x]B : x ∈ U}, where [x]B denotes the
equivalence class determined by x with respect to B, i.e., [x]B = {y ∈ U : (x, y) ∈
RB}. B ⊆ C is a subset of attributes, and X ⊆ U is a subset of discourse, the
sets B(X) = {x ∈ U : [x]B ⊆ X}, B(X) = {x ∈ U : [x]B ∩ X �= φ} are
called B-lower approximation and B-upper approximation respectively. Given
a decision system S = (U, C ∪ D, f),partition of condition attributes U/RC =
{X1, X2 · · · Xn}, U/RB = {Y1, Y2 · · · Yk} and partition of decision attributes
U/RD = {D1, D2 · · ·Dm} ,the set B(D1) ∪ B(D2) ∪ · · · ∪ B(Dm) is called the
B-positive region of classification induced by D and is denoted by POSB(D).The
set BNB(D) = U −POSB(D) is called the B-boundary of classification induced
by D.

Definition 2.1 [6-9]. The information entropy of knowledge B is defined as
follows,

H(B) = −
k∑

i=1

p(Yi) log2 p(Yi)

Definition 2.2 [8]. Conditional information entropy of knowledge C with re-
spect to D is defined as follows,



Qualitative Simulation and Reasoning with Feature Reduction 459

H(D|C) = −
n∑

i=1

p(Xi)
m∑

j=1

p(Dj|Xi) log2p(Dj |Xi)

Where p(Xi) = |Xi|
|U| , p(Dj|Xi) = |Xi∩Dj |

|Xi| .

From Definition 2.2, we get H(D|C) = −
n∑

i=1

m∑

j=1
p(Xi ∩ Dj)[log2 p(Dj ∩ Xi) −

log2 p(Xi)], thus when Xi ∈ POSC(D), we have log2 p(Yj ∩Xi)− log2 p(Xi) = 0,
therefore, positive region of decision system has no effect on H(D|C).

3 Conditional Entropy Based on Boundary Region

According to the definition of set topology [2], set uncertainty is mainly caused
by the existence of boundary region. If it is empty, then the set is accurate; oth-
erwise, it is rough [1,2,3]. Therefore, it is quite reasonable to describe knowledge
uncertainty by boundary region.

Decision system S = (U, C ∪ D, f), P, Q ⊆ C, define partial order relation
≤: P ≤ Q ⇔ U/RP ⊆ U/RQ, then P is more refined than Q (or: Q is rougher
than P). If P ≤ Q, and P �= Q, then P is strictly more refined then Q (or: Q is
strictly rougher than P), shown as P ≺ Q.

Definition 3.1. Decision system S = (U, C ∪ D, f), B ⊆ C, partition of condi-
tion attributes B is U/RB = {X1, X2 · · · Xm} and B’s boundary region against
knowledge D is BNB(D), the corresponding classification is BNB(D)/B =
{G1, G2, · · · , Gt}, then B’s boundary entropy against D and B’s boundary
conational entropy against D are defined as follows respectively:

EBN (B) =
t∑

i=1
p(Gi) log2|Gi|

EBN (D|B) = −
t∑

i=1
p(Gi)

m∑

j=1
p(Xj |Gi) log2p(Xj|Gi)

Proposition 3.1. EBN (B ∪ D) = EBN (D|B) − EBN (B).

Proof. EBN (B ∪ D) = −
t∑

i=1

m∑

j=1
p(Xj ∩ Gi) log2 p(Xj ∩ Gi)

EBN (D|B) = −
t∑

i=1
p(Gi)

m∑

j=1
p(Xj|Gi) log2p(Xj |Gi)

= −
t∑

i=1

m∑

j=1
p(Xj ∩ Gi)[log2 p(Xj ∩ Gi) − log2 p(Gi)]

= −
t∑

i=1

m∑

j=1
p(Xj ∩ Gi) log2 p(Xj ∩ Gi) +

t∑

i=1

m∑

j=1
p(Xj ∩ Gi) log2 p(Gi)

Additionally because
m∑

j=1
p(Xj ∩ Gi) = p(Gi).
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So EBN (D|B) = EBN (B ∪ D) +
t∑

i=1
p(Gi) log2 p(Gi) = EBN (B ∪ D) + EBN (B)

That’s EBN (B ∪ D) = EBN (D|B) − EBN (B). (Finished)

Proposition 3.2. Decision system S = (U, C ∪ D, f), A, B ⊆ C. If A ≤ B,
then EBN (D|A) ≤ EBN (D|B).

Proof. Order U/RD = {D1, D2 · · · Dm}, BNA(D)/A = {G1, G2, · · · , Gt}. Be-
cause A ≤ B, then BNA(D) ⊆ BNB(D), so BNA(D)/A ≤ BNB(D)/B. Suppose
BNB(D)/B = {G1, G2, · · · , Gp−1, Gp+1, · · · Gq−1, Gq+1, · · · Gt, Gp ∪ Gq}.

According to proposition 3.1:

EBN (D|A) = −
m∑

i=1

t∑

j=1
p(Di ∩ Gj) log2p(Di ∩ Gj) +

t∑

j=1
p(Gj) log2 p(Gj),

EBN (D|B) = EBN (D|A)

−
m∑

i=1
p[(Gp ∪ Gq) ∩ Di] log2 p[(Gp ∪ Gq) ∩ Di] + p(Gp ∪ Gq) log2 p(Gp ∪ Gq)

+
m∑

i=1
p(Gp ∩ Di) log2 p(Gp ∩ Di) − p(Gp) log2 p(Gp)

+
m∑

i=1
p(Gq ∩ Di) log2 p(Gq ∩ Di) − p(Gq) log2 p(Gq)

so
ΔE = EBN (D|B) − EBN (D|A)

= −
m∑

i=1
p[(Gp ∪ Gq) ∩ Di] log2 p[(Gp ∪ Gq) ∩ Di] + p(Gp ∪ Gq) log2 p(Gp ∪ Gq)

+
m∑

i=1
p(Gp ∩ Di) log2 p(Gp ∩ Di) − p(Gp) log2 p(Gp)

+
m∑

i=1
p(Gq ∩ Di) log2 p(Gq ∩ Di) − p(Gq) log2 p(Gq)

Additionally because
m∑

i=1
p(Di ∩ Gp) = p(Gp),

m∑

i=1
p(Di ∩ Gq) = p(Gq)

Thus
ΔE = −

m∑

i=1
p[(Gp ∪ Gq) ∩ Di] log2 p[(Gp ∪ Gq) ∩ Di]

+
m∑

i=1
p[(Gp ∪ Gq) ∩ Di] log2 p(Gp ∪ Gq)

+
m∑

i=1
p(Gp ∩ Di) log2 p(Gp ∩ Di) −

m∑

i=1
p(Gp ∩ Di) log2 p(Gp)

+
m∑

i=1
p(Gq ∩ Di) log2 p(Gq ∩ Di) −

m∑

i=1
p(Gq ∩ Di) log2 p(Gq)

=
m∑

i=1
p(Gp ∩ Di){log2 p(Gp ∩ Di) + log2 p(Gp ∪ Gq) − log2 p(Gp)

− log2 p[(Gp ∪ Gq) ∩ Di]} +
m∑

i=1
p(Gq ∩ Di){log2 p(Gq ∩ Di)

+ log2 p(Gp ∪ Gq) − log2 p(Gq) − log2 p[(Gp ∪ Gq) ∩ Di]}
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= 1
|U|

m∑

i=1
{|Gp ∩ Di| log2

|Gp∩Di||Gp∪Gq|
|Gp|(|Gp∩Di|+|Gq∩Di|)

+|Gq ∩ Di| log2
|Gq∩Di||Gp∪Gq|

|Gq|(|Gp∩Di|+|Gq∩Di|)}
Order |Gp| = x, |Gq| = y, |Gp ∩ Di| = ax, |Gq ∩ Di| = by, obviously get
x > 0, y > 0, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, then

ΔE =
1

|U |

m∑

i=1

{ax log2
ax + ay

ax + by
+ by log2

bx + by

ax + by
} =

1
|U |

m∑

i=1

fi

If a × b = 0, get fi ≥ 0.
0 < a ≤ 1, 0 < b ≤ 1 shall be only considered in the following:
Order ax = λ, by = β, a

b = θ, obviously get λ > 0, β > 0, θ > 0 and

fi = λ log2
λ + θβ

λ + β
+ β log2

β + θ−1λ

λ + β

then
d(fi)
d(θ)

=
λβ(θ − 1)
θ(λ + θβ)

so, d(fi)
d(θ) < 0, 0 < θ < 1; d(fi)

d(θ) = 0, θ = 1; d(fi)
d(θ) > 0, θ > 1.

when θ = a
b = 1, function fi gets the minimal fi|θ=1 = 0.

The above shows, ΔE ≥ 0, then EBN (D|A) ≤ EBN (D|B) is proved. The propo-
sition shows that boundary conditional entropy of knowledge monotonously
reduces with the diminishing of information granularity.

4 Qualitative Simulation and Reasoning with Feature
Reduction Based on Boundary Conditional Entropy

It shows that boundary conditional entropy of knowledge decreases with the
information granularity. It proposes a greedy algorithm for feature reduction,
based on conditional entropy reduction associated to boundary region related
features. It then applies the algorithm in the field of qualitative description
of systems simulated by qualitative differential equations in order to diminish
redundancy.

4.1 Heuristic Algorithm for Feature Reduction

The significance of attribute is defined as follows:

Definition 4.1. Decision system S = (U, C ∪ D, f), B ⊆ C, the significance of
b in B with respect to D is defined as follows,

SigB\{b}(D|{b}) = EBN (D|B\{b}) − EBN (D|B)

We know such important conclusions as information entropy is monotonously
reducing with the diminishing of information granularity. Because B is more
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refined than B\{b}, therefore, SigB\{b}(D|{b}) ≥ 0. Definition 4.1 shows that
b is important in B can be measured based on the increment of boundary con-
ditional entropy. Especially, when system S = (U, C ∪ D, f) is not a decision
system, i.e., D = φ, then we can consider EBN (φ|B) = H(B).

Proposition 4.1. b is necessary in B when SigB\{b}(D|{b}) > 0.

Algorithm KIEBAFR (Knowledge Information Entropy-Based Algorithm
for Feature Reduction)
Input: decision system S = (U, C ∪ D, f)
Output: a feature reduction Red of decision system S = (U, C ∪ D, f)
Step1. calculate the boundary conditional entropy EBN (D|C)
Step2. for any c ∈ C , calculate the significance of c in C:SigC\{c}({c}) and then
obtain Red = {c|SigC\{c}({c}) > 0}
Step3. Repeat:
Step3.1 calculate boundary conditional entropy EBN (D|Red) ,if EBN (D|C) =
EBN (D|Red) output a reduction set Red and Stop; Otherwise, continue Step3.2
Step3.2 for each attribute a ∈ C\Red ,calculate SigRed({a}) ,select attribute a0
to make SigRed({a}) the maximal and compute Red = Red∪{a0} , goto step3.1
The time complexity of the algorithm is O(|C|3|U |2).
For example as shown in table 1 which has a reduction set {a, e} by CEBARKNC
or CEBARKCC [8]:

Table 1. A decision system

U a b c e d
1 1 0 1 1 0
2 0 1 0 1 1
3 0 0 0 0 0
4 0 0 0 1 1
5 0 0 0 1 1
6 0 0 0 1 1
7 0 0 1 1 1
8 0 0 1 0 0
9 0 0 1 1 1

The decision classes of objects are: D1 = {1, 3, 8}, D2 = {2, 4, 5, 6, 7, 9},
The condition classes of objects are: X1 = {1}, X2 = {2}, X3 = {3}, X4 =
{4, 5, 6}, X5 = {7, 9}, X6 = {8}. Because BNC(D)/C = φ, then EBN (D|C) = 0
Next, we give how to calculate the significance of e in attributes C: because
BNC\{e}(D)/C\{e} = {{3, 4, 5, 6}, {7, 8, 9}}, therefore,

SigC\{e}(D|{e}) = −{4
9
(
1
4

log2
1
4

+
3
4

log2
3
4
) +

3
9
(
1
3

log2
1
3

+
2
3

log2
2
3
)} = 0.198

Similarly, we can get
SigC\{c}(D|{c}) = 0; SigC\{b}(D|{b}) = 0; SigC\{a}(D|{a}) = 0.09. So Red =
{a, e}, Compute EBN (D|Red) = 0, because EBN (D|C) = EBN (D|Red), output
a result: {a, e}, Stop.
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4.2 Application of KIEBAFR in Qualitative Simulation and
Reasoning

Take the qualitative simulation of spring physical system for example[10], as
shown in Fig 1. The following four variables can be used to describe: (1) x,means
the position of the object; (2) v, means velocity of the object: v=dx/dt ; (3) a,
means acceleration of the object: a=dv/dt ; (4) f, means strength by pulling ob-
ject. The qualitative analysis obtains knowledge expression system for qualita-
tive description of spring physical system shown as Table 2[10], i.e., S = (U, C =
{[x], [f ], [a], [v]}).

Fig. 1. Spring Physical System

Table 2. A Qualitative Descriptive Knowledge System

U [x] [f ] [a] [v]

s1 + − − +
s2 + − − 0
s3 + − − −
s4 0 0 0 +
s5 0 0 0 0
s6 0 0 0 −
s7 − + + +
s8 − + + 0
s9 − + + −

The qualitative differential equations of spring physical system can be ob-
tained by KIEBAR algorithm. i.e., [f ] = [a], [f ] = [x], [x] = [a].

The explanation is as follows: in qualitative expression information system,
{[v], [x]} is the reduction of original qualitative expression system (Figure 1),
which shows it makes no difference to the classification ability of the original
knowledge expression system whether to delete [a]’s attribute or [f]’s attribute,
so [a] and [f] have consistent effect on information system, marked as [f]=[a],
and the first qualitative differential equation is obtained. So [f]=[x], [a]=[x].The
result is in accordance with that of the qualitative differential equation after the
qualitative calculation of f = ma (m is the mass of the object)and f = −kx(k
is the modulus of spring flexibility)[10].
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5 Conclusion

The existence of boundary region is the major cause of set uncertainty. The
information entropy and rough set entropy in general meaning can’t explain it
clearly. Based on this, the present paper puts forward the definition of knowl-
edge boundary rough entropy and boundary conditional entropy, and describes
some algebraic view in RST by using the method of boundary conditional en-
tropy, establishes the connection with algebraic view of RST. These important
conclusions also guarantee feature reduction algorithm based on boundary condi-
tional entropy. Qualitative simulation of spring physical system shows that RST
is a powerful method in data mining and of good reliability and prospect in
qualitative reasoning and qualitative simulation.
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which is supported by the Natural Science Foundation of Anhui Province.
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Abstract. In the study, a new hybrid incremental clustering method is
proposed in combination with Support Vector Machine (SVM) and en-
hanced Clustering by Committee (CBC) algorithm. SVM classifies the
incoming document to see if it belongs to the existing classes. Then the
enhanced CBC algorithm is used to cluster the unclassified documents.
SVM can significantly reduce the amount of calculation and the noise
of clustering. The enhanced CBC algorithm can effectively control the
number of clusters, improve performance and allow the number of classes
to grow gradually based on the structure of current classes without clus-
tering all of documents again. In empirical results, the proposed method
outperforms the enhanced CBC clustering method and other algorithms.
Also, the enhanced CBC clustering method outperforms original CBC.

1 Introduction

Most of the early clustering algorithms use single clustering technique. There
are many restrictions on those algorithms. For example, K-mean algorithm [1] is
easily influenced by noise and outlier. DBSCAN algorithm [2] requires the user
to enter the parameters. Therefore, recent researches combine different cluster-
ing algorithms to improve the quality of clustering. For example, the BRIDGE
algorithm [3] combines K-means algorithm and DBSCAN algorithm. K-mean
algorithm is simple and fast. DBSCAN algorithm is not easily influenced by
outliers. However, the clustering quality of BRIDGE algorithm is still influenced
by the different input parameters.

To solve problems above, some researches combine estimation formula of simi-
lar clusters into clustering algorithms so that similar clusters can be merged. For
example, the Relative Interconnectivity (RI) method and the Relative Closeness
(RC) method proposed by Karypis [4], have considered the distance of the two
clusters (RI) and closeness (RC) into the calculation and led out a composite
index. According to the experimental results, this technique reaches a better
result of merging. However, the time consumption is still high.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 465–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A good clustering algorithm must be able to deal with the noise, find any
form of clustering, get high quality of clusters and low time complexity. For
this reason, Patrick Pantel [5] has proposed clustering by committee algorithm
(CBC). This algorithm can automatically find out the proper number of clusters,
increase performance of clustering and classify documents to multi clusters.

Though the performance of CBC algorithm is excellent, however, it must re-
cluster all of documents again when new documents come in. In view of this, this
study tries to combine the classification and clustering technologies, and proposes
a new clustering algorithm: hybrid incremental clustering method. First, the
new document is classified by Support Vector Machine (SVM) according to the
current classes. The reason of choosing SVM is that it has the characteristic of
fast, stable and it does not require much training to get good classification result.
Besides, in many researches, its performance is better than other methods [6].
Then the enhanced CBC algorithm proposed by this study is used to cluster the
unclassified documents to form new classes, and the new classes will be added
to the existing classes so that the number of classes will increase gradually.

In the algorithm, SVM can significantly reduce the amount of calculations
and the noise of clustering. Enhanced CBC algorithm can effectively control the
number of clusters, improve performance and allow the number of classes to
grow gradually based on the structure current classes without clustering all of
documents again. According to the experimental results, the hybrid incremental
clustering performance is not just better than the enhanced CBC algorithm, it
is obviously better than other algorithms. Besides, the enhance CBC algorithm
outperforms the original CBC algorithm.

2 Hybrid Incremental Clustering Method

The structure of hybrid incremental clustering is shown in Figure 1. First, the
experimental data and structure of classification are collected from the inter-
net. The collected documents are segmented by the Chinese Words Database
and CKIP Chinese Word Segmentation System. According to the morphological
features, lexicons are divided into several word classes and the necessary word
classes are captured. Next, Chi-square is used to find out the features and to
establish the vector space. The vector space is sent to SVM to try to classify the
incoming documents into any existing class, if possible. After processing all of in-
coming documents, we check if there is any unclassified document. If so, TFIDF
is used to find out the features of the unclassified documents and establish the
vector space. Enhanced CBC algorithm is then used to cluster the unclassified
documents. If there are still any unclustered documents, they will be used as a
part of input for next cycle. Finally, the evaluation is performed.

2.1 First Phase: Classification with SVM

Support Vector Machine (SVM) is developed from Statistical Learning Theory
(SLT) [7]. The goal is to find linear functions in high dimensional space,which can
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Fig. 1. Structure of hybrid incremental clustering method

discriminate information. Those functions can be used to represent the support
vector of the information clusters and some extreme values will be rejected in
advance.The basic definition of SVM is as follows:

Provided the existing training data: (x1, y1), ...(xp, yp), where xiεR
n, yi

ε{1, −1}, p is the number of data and n is the number of vector spaces. When y
equals to 1, the document belongs to the class; when y equals to -1, the document
does not belong to the class. In the linear analysis, in an optimal hyperplane,
(w · x) + b = 0 can completely separate the sample into two conditions shown as
below, where w is the weight vector and b is a bias.

(w · x) + b ≥ 0 → yi = +1,

(w · x) + b ≤ 0 → yi = −1,

In the linear separation, it is a typical quadratic programming problem. La-
grange formula can be used to find the solution, where α is a Lagrange multiplier.

L(w, b, α) = 1
2‖w‖2 −

∑p
i=1 αi[yi(w · xi + b) − 1],

In the linear analysis, the original problem can be considered as a dual prob-
lem. To find the optimal solution, the approach is:

max W (α) =
∑p

i=1 αi − 1
2

∑p
i=1

∑p
j=1 αiαjyiyjx

T
i xj .

Constraint:
∑p

i=1 αiyi = 0, αi > 0, i = 1, 2, ..., p.

By solving the quadratic programming, the classification formula applied to
classification can be obtained as shown below.

f(x) = Sign(
p∑

i=1

yiαi(x · xi) + yi − w · xi) (1)
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Any functions that meet Mercer’s condition can be kernel functions. We adopt
Radial kernel function below as kernel function of SVM.

K(s, t) = exp(− 1
10

‖s − t‖2) (2)

2.2 Second Phase: Clustering with Enhanced CBC Algorithm

Then enhanced CBC algorithm is used to cluster the unclassified documents.
Since CBC algorithm has excellent performance on clustering, therefore, this
study modifies original CBC algorithm to determine beginning number of the
clusters. Then the merging process of similar clusters is applied to merge clusters
and determine the final number of clusters. The similarity of each document is
first calculated. The value of TFIDF of each word is calculated and sorted in
descending order. Taking discrimination and time consumption into considera-
tion, threshold of TFIDF value is set to two. Then the similarity matrix of each
document is calculated by VSM. Finally, in order to avoid missing the docu-
ments with high degree of similarity, the number of desired clusters is replaced
by similarity threshold in this study.

First, the clusters of documents with high degree of similarity are temporary
stored in committee candidates (L) (Step 1), and are sorted in descending order
according to the similarity of average-link. It is the basis of selecting committees.
The clusters in the L are examined and the similarity formula is used to calculate
the density of the clusters. If similarity between each document and the centroid
is greater than threshold θ1, then those documents form a committee (Step 3).
And make them form a committee. It becomes the new basis of classification for
other documents. In this approach, the numbers of committee are fixed so that
the amount of calculation can be reduced.

Then, all of documents that are not classified into any committee are exam-
ined. If the similarity between a document and the central point of a committee
is greater than the threshold θ2, the document will be put to the corresponding
committee. Otherwise, the document will be classified to set R (Step 4). Next,
it will check whether set C or set R is empty, or whether limited CBC algorithm
has been executed twice. If it is true, then clustering is ended and enter next
step. Otherwise, it will go back to the first step and the documents in set R are
regarded as a part of new input for next cycle. According to the experimental
results, most of the documents in set R are outliers at this stage. If it takes
too much time to force clustering of these documents in set R, the performance
of clustering algorithm will be affected and time consumption will increased.
Therefore, recursive times is set to not more than two.

Finally, it will check whether set C is empty. If not, the merging mechanism
will be activated (Step 5). Some studies have further discussed in merging mech-
anism [8]. Through the study and experiment, we choose V as the central vector
of a cluster. θ3 is the coefficient. If θ3 is large, the similarity degree of two clusters
must be high so that they can be merged (When θ3 equals to 2, it means that
V1 and V2 must be the same in order to be merged).
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In the process of testing, we find that significant performance can be reached
when θ1 is set to 0.4, θ2 is set to 0.35 and θ3 is set to 1.92 with trial and error
method. Therefore, those coefficients are adopted.

Enhanced CBC algorithm
Input:

E = {e1, e2, · · ·, en} //Set of elements
S // A similarity database
θ1,θ2,θ3 // Thresholds

Output:
C // Set of committees

First phase: Limited CBC algorithm
Repeat

1. For each e ∈E do
Cluster the top-similar elements of e from S by

average-link
For each c do

Compute the score:| c|* avgsim(c)
// |c| is the number of elements in c
// avgsim(c) is the average pairwise

similarity between each e
Store the highest-scoring cluster (c) in L
// L contains committee candidates

2.Sort each c’s score in L by descending order
3.Set C to ∅ //Set of committees, initially empty

Compute centroid of each c
For each c ∈ L in sorted order do

Compute similarity between each e and the
centroid, e ∈c

If the similarity is greater than θ1 then
C = C ∪ c

4.If C != ∅ then
Compute centroid of each c
For each e ∈ E do

Compute similarity between each e and the
centroid

If e’s similarity to every c ∈ C is greater
than θ2 then

R = R ∪ e // Set of residues
E = R

Until (C = ∅ ) or (R = ∅ ) or (Recursive times > 2)

Second phase: Expanded clustering merging
5. If C != ∅ then

For each I ∈ C do
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For each J ∈ C, J �=I do
Compute : ‖ V1 + V2 ‖,‖ V1 ‖,‖ V2 ‖
// V1 is I’s centroid vector, V2 is J’s
centroid vector

If ‖ V1 + V2 ‖ >(θ3*‖ V1 ‖) and ‖ V1 + V2 ‖ >(θ3*‖ V2 ‖)
then

Merge I and J
Return C

3 Experiments

The news webpage of YAHOO are used as the targets for verification. The col-
lection duration is from 2006/1/1 to 2006/1/13. There are totally 12 classes
and 4187 documents. Besides, the F-measure formula in experiment is set to
2PR/P+R, where P is precision and R is recall.

3.1 Evaluation of Enhanced CBC Algorithm

We compare the enhanced CBC algorithm with the original CBC algorithm in
terms of precision, recall and F-measure. The experimental results are shown
in Table 1. In Table 1, the average performances of precision, recall and F-
measure have increased 13%, 5% and 14% respectively. The number of clusters
is also under control, and the average number of clusters has dropped from
60.7 to 4.7. When the degree of similarity is 0.3, the performance is excellent.
This experiment shows that mergence of the similar clusters can increase the
performance and reduce the number of clusters. Besides, we find when the
threshold value of similarity degree is set to 0.7 in merging mechanism of similar
clusters, most of the documents can be classified to proper classes fast.

Table 1. Performance of enhanced CBC algorithm and original CBC algorithm

Enhanced CBC algorithm Original CBC algorithm
Similarity Number Precision Recall F-measure Number Precision Recall F-measure

of clusters of clusters
0 5 0.29 0.52 0.37 64 0.12 0.35 0.18

0.1 4 0.29 0.52 0.37 64 0.12 0.35 0.17
0.2 4 0.29 0.52 0.37 64 0.13 0.38 0.19
0.3 3 0.29 0.52 0.37 64 0.10 0.38 0.15
0.4 4 0.29 0.40 0.34 63 0.10 0.36 0.15
0.5 2 0.29 0.40 0.34 63 0.08 0.39 0.14
0.6 4 0.29 0.40 0.34 63 0.09 0.38 0.15
0.7 7 0.09 0.34 0.14 58 0.08 0.39 0.13
0.8 7 0.09 0.34 0.14 54 0.09 0.40 0.14
0.9 7 0.09 0.34 0.14 50 0.08 0.42 0.13

Average 4.70 0.23 0.43 0.29 60.70 0.10 0.38 0.15
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Table 2. Performance comparisons of proposed method and enhanced CBC algorithm

Enhanced CBC algorithm
Similarity Proposed method (without SVM)

Precision Recall F-measure Precision Recall F-measure
0 0.56 0.48 0.52 0.29 0.52 0.37

0.1 0.56 0.48 0.52 0.29 0.52 0.37
0.2 0.56 0.48 0.52 0.29 0.52 0.37
0.3 0.56 0.48 0.52 0.29 0.52 0.37
0.4 0.59 0.45 0.51 0.29 0.40 0.34
0.5 0.59 0.45 0.51 0.29 0.40 0.34
0.6 0.59 0.45 0.51 0.29 0.40 0.34
0.7 0.32 0.44 0.37 0.09 0.34 0.14
0.8 0.32 0.44 0.37 0.09 0.34 0.14
0.9 0.32 0.44 0.37 0.09 0.34 0.14

Average 0.50 0.46 0.47 0.23 0.43 0.29

3.2 Evaluation of Proposed Hybrid Incremental Clustering Method

The performances of the proposed method and enhanced CBC algorithm are
shown in Table 2. Table 3 shows the average performance of the proposed method
and others.

In Table 2, performance of the proposed method raise obviously. The average
performances of precision, recall and F-measure have increased 27%, 3% and 18%
respectively. When the degree of similarity is 0.7, the performance is excellent.
The reason for this result is that all documents have been filtered in the first
phase of classification. Therefore, the noise of clustering in second phase has
been reduced a lot.

In Table 3, the values of precision, recall and F-measure in the proposed
method rise 13.4%, 3.8% and 8.4% compared with the average value (36.6%,
42.2% and 38.6%) of Chameleon, Average-link, Buckshot, Bisecting K-means
and Complete-link.

Table 3. Average performances of the proposed method and others

Approach Precision Recall F-measure
Proposed method 0.5 0.46 0.47

Chameleon 0.41 0.43 0.42
Average-link 0.43 0.40 0.41

Buckshot 0.38 0.44 0.40
Bisecting K-means 0.37 0.41 0.39

Complete-link 0.24 0.43 0.31

4 Conclusions

This study proposes a new hybrid incremental clustering method. The method
applies SVM, enhanced CBC algorithm and merging mechanism of similar
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clusters. The noise of clustering is reduced. The number of clusters is under
control. It simplifies the steps so that the speed of clustering is increased. The
number of clustering classes grows gradually without re-clustering existing docu-
ments again when new documents come in. Those improvement can be referenced
for future studies.

Acknowledgement

This research was supported by the Chung Hua University under the grant no.
CHU-95-M-20.

References

1. MacQueen, J.B.: Some Methods for Classification and Analysis of Multivariate
Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability(1967)281-297

2. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: Density-based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise. In: Proceedings of the Knowl-
edge Discovery and Data Mining(1996)226-231

3. Dash, M., Liu, H., Xu, X.: Merging Distance and Density based Clustering. In:
Proceedings of the Database Systems for Advanced Applications(2001)18-20

4. Karypis, G., Han, E.-H., Kumar, V.: Hierarchical Clustering Using Dynamic Mod-
eling. IEEE Computer 32(1999)68-75

5. Pantel, P., Lin, D.: Document Clustering with Committees. In: Proceedings of the
25th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval(2002)199-206

6. Davidov, D., Gabrilovich, E., Markovitch, S.: Parameterized Generation of Labeled
Datasets for Text Categorization based on a Hierarchical Directory. In: Proceedings
of the 27th Annual International ACM SIGIR(2004)250-257

7. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New
York(1995)

8. Vats, N., Skillicorn, D.B.: Information Discovery within Organizations Using the
Athens System. In: Proceedings of the 2004 Conference of the Center for Advanced
Studies on Collaborative Research(2004)282-292



Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 473–480, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

CCRM: An Effective Algorithm for Mining Commodity 
Information from Threaded Chinese Customer Reviews 

Huizhong Duan, Shenghua Bao, and Yong Yu 

Department of Computer Science 
Shanghai Jiao Tong University 
Shanghai 200240, P.R. China 

{summer, shhbao, yyu}@apex.sjtu.edu.cn 

Abstract. This paper is concerned with the problem of mining commodity 
information from threaded Chinese customer reviews. Chinese online 
commodity forums, which are developing rapidly, provide a good environment 
for customers to share reviews. However, due to noises and navigational 
limitations, it is hard to have a clear view of a commodity from thousands of 
related reviews. Further more, due to different characters between Chinese and 
English, Researching approaches may vary a lot. This paper aims to 
automatically mine out key information from commodity reviews. An effective 
algorithm, i.e. Chinese Commodity Review Miner (CCRM) is proposed. The 
algorithm can be divided into two parts. First, we propose an efficient rule 
based algorithm for commodity feature extraction as well as a probabilistic 
model for feature ranking. Second, we propose a top-to-down algorithm to 
reorganize the extracted features into hierarchical structure. A prototype system 
based on CCRM is also implemented. Using CCRM, users can easily acquire 
the outline of a commodity, and navigate freely in it. 

Keywords: Commodity feature extraction, ranking, reorganization, algorithm. 

1   Introduction 

Nowadays, Chinese online commodity forums have been increasing at an incredible 
speed both in number and in size. These are not only great places for customers to 
review the commodities they concern about, but also good resources for prospective 
buyers as well as competing companies to survey their relative commodities. 
However, to perform such survey is not an easy task. Customer reviews often contain 
a large sum of noises. This is especially true in Chinese commodity forums. Besides, 
when searching for a commodity, the forum often returns hundreds or even thousands 
of reviews. With the limited operation and the lack of overall structure, it is too time 
and energy consuming to browse all the reviews. A full survey is nearly impossible. 

In this paper, an effective algorithm called CCRM is proposed. CCRM can be 
divided into two stages: 1). automatic commodity feature extraction and ranking, 2) 
commodity feature reorganization. 

The first stage also involves two steps. For the extraction step, we proposed an 
efficient rule based algorithm. This is a semi supervised algorithm. We use seeds to 
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prepare an original rule set. Then we propose an improved association rule mining 
algorithm (IARM) to mine out useful and representative rules from the original rule 
set. These rules are then used to extract commodity features from reviews. For the 
commodity feature ranking step, a probabilistic model is proposed. We use total 
probability formula to calculate the probability of each extracted feature.  

In the second stage, we propose a top-to-down algorithm, which finds out the sub 
events of each commodity feature and map them into the extracted feature set. This 
algorithm is based on an observation of the characteristic of Chinese language. 

CCRM automatically mines out the reviewed features of a commodity from its 
threaded relative reviews, and then reorganize these features into hierarchical 
structure, which serves as an outline of the commodity. As a case study we applied 
the CCRM into a corpus of the pconline product forum1, experimental results show 
that with the help of CCRM, users can easily find out what aspects of the commodity 
are reviewed.  

The rest of this paper is organized as follows. Section 2 discusses some related but 
different work. In Section 3 and 4, we present the algorithm for commodity feature 
extraction and reorganization in detail. Section 5 shows the experiment results. 
Finally, we give a conclusion in Section 6. 

2   Related Work 

Mining commodity information from customer reviews has been studied a lot in 
recent years. But to our knowledge, there has been no similar algorithm as CCRM, 
even in English.  

Former researches mostly focus on the extraction of sentiment information and the 
classification of sentiment polarity for customer reviews [1, 2, 7, 8, 15]. Their 
purposes are to perform judgment on a certain commodity. However, as Liu et al. [14] 
point out, sentiment classification is based on the extraction of commodity features, 
for every sentiment information is related to a feature, instead of the commodity as a 
whole. In this paper, we focus on the extraction of commodity feature. We leave 
sentiment information extraction and sentiment classification to our future work. 

Commodity feature extraction, to certain extent, is similar to the task of keyword 
extraction. They are all aimed at finding the representative words from a passage. 
There are mainly three approaches for keyword extraction. The first one is based on 
the statistical information of words [3, 6, 11, 12], e.g. term frequency, position and 
POS tag. The second approach is to build a keyword dictionary; words will only be 
extracted according to the dictionary. The third one is the rule based approach, which 
aims at discovering the general rules of keywords from their context. As the 
commodity features lack similar statistical information, the first approach tends to 
produce lots of meaningless terms, the extraction result can be very poor [10]. The 
disadvantage of the second approach is obvious: it cannot find unrecorded terms. In 
this paper, we use the rule based method to extract the commodity feature because of 
the observation that reviewers tend to use similar phrases when they comment. 

                                                           
1 http://itbbs.pconline.com.cn/ 
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[10] first applied association rule mining algorithm (ARM) into commodity feature 
extraction, but it does not rank the extracted features or build hierarchical structure. 
Ranking has always been a hot topic in IR research. Studies have been made to rank 
the web pages and search results [4, 5, 9, 13]. Our task is to rank commodity features 
extracted by rules, which differ a lot from web pages. 

For commodity feature reorganization, it is a novel try. Existing clustering 
techniques, e.g. [16], can also be used to build dynamic cluster structure of web 
content. However, the precision is not high enough to put into practical use.  

3   Automatic Commodity Feature Extraction 

3.1   Rule Mining and Feature Extraction 

We use semi supervised rule mining to build target rule set. By “semi” here, it means 
we do not manually label all the training data; instead, we use seeds to automatically 
form original rule set. This saves much time and energy. The steps are as follows: 

1. We first manually extracted features from reviews of two commodities. These 
features are used as seeds to extract all the sentences containing them from the 
training data. Below is an example of the sentences, we will use this example to 
describe the following processes.  

Sentence: “5022 ” (“The most outstanding point of 5022 is 
the screen”). The feature word is “ ” (“screen”). 

Stopwords and digits are then removed from these sentences, POS tagging is also 
performed. After this, the sentence is formatted into below: 

“<adv> \<adj> \<n> \<verb> \<n> ” 
(“<adv>most\<adj>outstanding\<n>point\<verb>is\<n>screen”) 

2. Sentences with POS tags are then segmented into triples using the rules below: 
(1). The feature term with two words before it. 
(2). The feature term with one word before it and one word after it. 
(3). The feature term with two words after it. 
Then we replace the feature term with a general term “[feature]”. Below are the 

accepted segments of the example sentence: 
“<n> \<verb> \<n>[feature]” (“<n>point\<verb>is\<n>[feature]”) 
“<verb> \<n>[feature]” (“<verb>is\<n>[feature]”) 

Each segment is transformed into a rule: 
<n> , <verb>  → <n>[feature] (<n>point, <verb>is → <n>[feature]) 
<verb>  → <n>[feature] (<verb>is → <n>[feature]) 

3. The result of step 2 is seen as the original rule set. We then perform IARM to 
mine out useful and representative rules. The reason to propose this Improved 
Association Rule Mining algorithm is that, based on our observation, rules generated 
by Association Rule Mining algorithm are too specific and therefore the recall of 
commodity feature extraction can be very low. In order to complement this, we have 
to lower the minimal confidence and support to get more rules. However, the cost of 
doing so is the great decrease in precision and efficiency. Through observation, we  
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find that most rules could be generalized. The utmost generalization is to use the POS 
tag of words to form rules. This is obviously infeasible because the precision is too 
low. Based on this observation we improve ARM as follows:  

The ARM way is, for each rule candidate “A, B → C”, calculate the confidence 
and support separately. If the two values are all above the minimal threshold, the rule 
is selected.  

The IARM way is, for each rule in the original rule set, e.g.: 

<n> , <verb>  → <n>[feature] (<n>point, <verb>is → <n>[feature]) 

We note it as:  <posA>A, <posB>B → <posC>C 
We separate it into two rules:  A, B → C 

<posA>, <posB> → <posC> 
For these two rules, we calculate confidence and support separately; and then we 

use linear addition to merge them together: 

posword confidenceconfidenceconfidence ⋅−+⋅= )1( λλ  (1) 

posword supportsupportsupport ⋅−+⋅= )1( λλ  (2) 

We empirically use 999.0=λ  in IARM. 

4. Other consideration 
In our algorithm, we also allow rules formed by bigram tuples. In order to balance 

their confidence and support, we multiply each of them by a punishment function. 
When we use rules for mining commodity features, we also allow gaps in rules.  

3.2   Feature Ranking 

In this step, we propose a statistical model for commodity feature ranking. To rank 
the extracted feature, we calculate the probability of each feature P(f). The detailed 
model is described below. 
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In the formula, R is the rule set and D is the review document set. We assume that 
R and D are independent. We first apply the total probability formula to P(f) in the 
rule space, and then in the review document space. For P(r) in the formula, we use the 
support value of rule r; and for P(d), we see it as constant. Then we calculate P(f | r,d) 
using the formula below: 

drL

drffreq
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,
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In this formula, freq(f, r, d) is the count that commodity feature f is matched in 
document d by rule r. Lr,d is the count of all the commodity features matched in 
document d by rule r. 

Then we use P(f) to rank the extracted features, and by setting a threshold we are 
able to filter out most meaningless terms. Besides, we notice that in Chinese, terms 
formed by single character can not have exact meaning, so we also filter these terms.  

4   Commodity Feature Reorganization 

For this stage, we propose a top-to-down algorithm to build the ranked features into 
hierarchical structure. The basic idea of this algorithm is based on the observation: 

Observation: In Chinese language, for two successively appearing events A and B in 
a sentence (A appears before B), it is normal that B is affiliated to A, but it barely 
happens that A is affiliated to B.  

Table 1. Reorganization Algorithm 

 
Based on the observation, we propose the reorganization algorithm in Table 1. 

5   Evaluations 

5.1   Experiment Preparation 

We crawl down a part of the mobile phone and notebook forum from pconline 
product BBS as our experiment data. We randomly divide the data into two parts, one 
for training and the other for testing. Detailed data description can be seen in Table 2. 

A proto type System is implemented based on CCRM. Using this data, we 
evaluated the extraction and ranking algorithm of CCRM over three widely accepted 
information retrieval metrics, namely Precision, Recall, and Bpref. 

Algorithm Reorganization (F) 

Given a collection of extracted commodity features F. 
For each commodity feature f in F Do 

For each related review of f Do 
Find out sentences S containing f. 
Find out all the events that appear after f in S. 
If event e is successfully mapped into F, add a sub 
feature sf named e for f, move related reviews from 
e and f to sf. 

For each commodity feature f in F Do 
If f has no related reviews and no sub feature, delete f. 

Repeat 1 to the maximal defined level. 
Hierarchy H for F. 

Input 
1 
1-1 
1-2 
1-3 
1-4 
 
 
1-5 
 
2 
Return 
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Table 2. Detailed Data Description 

Commodities Mobilephone Notebook Threads Reviews

All 23 9 14 6987 13006

Training 18 7 11 5845 10946

Testing 5 2 3 1142 2060  

5.2   Experimental Results 

Table 3 and Table 4 show the mining precision, recall and No. of rules for ARM and 
IARM with different minimal support. The ARM here is similar to the method in 
[10], but we adopted semi supervised learning. For minimal confidence, we 
empirically set it to 0.5. In Table 3 we see, with lower minimal support, ARM tends 
to generate large number of rules and get a higher recall, but meantime, the precision 
decreases a lot. For IARM in Table 4, we see the lowering of minimal support does 
not result in great decrease in precision; instead, the increase of recall is remarkable. 
This means IARM effectively filters out most of useless rules and mines out the really 
representative ones. Finally we tested the filtering function based on ranking, it has 
overall improvement on the precision, but has a negative effect on recall. 

Table 3. Commodity Feature Extraction Results Using ARM 

Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

commodity 1 72 0.776 0.820 0.793 0.694 0.804 0.625 0.818 0.625 0.823 0.583

commodity 2 64 0.779 0.828 0.840 0.656 0.844 0.593 0.833 0.547 0.825 0.516

commodity 3 60 0.813 0.650 0.857 0.500 0.879 0.483 0.900 0.450 0.885 0.383

commodity 4 82 0.769 0.854 0.787 0.720 0.797 0.671 0.781 0.610 0.806 0.610

commodity 5 38 0.765 0.684 0.821 0.605 0.846 0.579 0.857 0.474 0.842 0.421

Avg. 63 0.78 0.77 0.82 0.64 0.83 0.59 0.84 0.54 0.84 0.50

No. of rules 64478 199 111 76

NO. of

labeled

features

ARM

minsp=0.001 minsp=0.002 minsp=0.003 minsp=0.004 minsp=0.005

 

Table 4. Commodity Feature Extraction Results Using IARM 

Prec. Recall Prec. Recall Prec. Recall Prec. Recall

commodity 1 72 0.822 0.833 0.828 0.736 0.818 0.625 0.845 0.833

commodity 2 64 0.841 0.828 0.870 0.734 0.870 0.625 0.864 0.797

commodity 3 60 0.864 0.633 0.875 0.583 0.903 0.467 0.860 0.617

commodity 4 82 0.791 0.829 0.792 0.744 0.776 0.634 0.805 0.805

commodity 5 38 0.818 0.711 0.839 0.684 0.875 0.553 0.844 0.711

Avg. 63 0.83 0.77 0.84 0.70 0.85 0.58 0.84 0.75

No. of rules

NO. of

labeled

features

IARM (λ=0.999)

IARM (λ

=0.999)with

filtering

minsp=0.002 minsp=0.003 minsp=0.004 minsp=0.002

429 238 123 429  
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We note that [10] reported much higher minimal support. That is mainly because it 
uses supervised mining algorithm and manually labels all the training sentences. 
Labeling itself filters out most of the noise rules. Apparently our algorithm is much 
more practical and energy saving. 

Table 5. Ranking Results of Probability Model 

commodity 1 commodity 2 commodity 3 commodity 4 commodity 5 Avg.

bpref 0.685 0.610 0.595 0.703 0.941 0.71  

Table 5 shows the ranking evaluation of our proposed probability model. Here we 
use bpref as the measuring function and IARM with filtering as the mining approach. 
On the 5 testing commodities, CCRM achieves an average bpref of 0.71. 

 

Fig. 1. A Sample Output of Compaq Presario B2803tx in the Prototype System 

For the reorganization algorithm, as there is no convincing metric, we do not 
perform quantitative evaluation. Instead, as a case study, we consider the result of 
Compaq Presario B2803tx in the prototype system in Figure 1. We note that there are 
71 extracted commodity features and frequent commented features like “ ” 
(machine) may still have tens or even hundreds of related reviews. If there lacks a 
hierarchical structure, it would still be inconvenient for visualization and navigation. 
In this case, “ ” (machine) has 13 sub features, each containing about 5 reviews. 
In practice we find that more than 2 level hierarchy will result in a tree too big to 
traverse, thus a maximal level of 2 is just appropriate for this algorithm. 
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6   Conclusion 

In this paper, we concern about mining key information from threaded Chinese 
customer reviews. In order to provide users a clear overview of a commodity, we 
propose a novel algorithm named CCRM. CCRM mainly has two contributions: 

• It proposes an improved association rule mining algorithm for automatic 
commodity feature extraction, and a probability model for commodity feature 
ranking and filtering. 

• It proposes a top-to-down algorithm for commodity feature reorganization. 
Using this algorithm, features can be automatically organized into a 
hierarchical structure, which serves as an outline of the commodity involved. 
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Abstract. This paper studies the problem of building Web page classi-
fiers using positive and unlabeled examples, and proposes a more prin-
cipled technique to solving the problem based on tolerance rough set
and Support Vector Machine (SVM). It uses tolerance classes to ap-
proximate concepts existed in Web pages and enrich the representation
of Web pages, draws an initial approximation of negative example. It
then iteratively runs SVM to build classifier which maximizes margins
to progressively improve the approximation of negative example. Thus,
the class boundary eventually converges to the true boundary of the pos-
itive class in the feature space. Experimental results show that the novel
method outperforms existing methods significantly.

Keywords: Web page classification, rough set, Support Vector Machine.

1 Introduction

With the rapid growth of information on the World Wide Web, automatic clas-
sification of Web pages has become important for effective retrieval of Web doc-
uments. The common approach to building a Web page classifier is to manually
label some set of Web page to pre-defined categories or classes, and then use
a learning algorithm to produce a classifier. The main bottleneck of building
such a classifier is that a large number of labeled training Web page is needed
to build accurate classifiers. In most cases of automatic Web page classification,
it is normally easy and inexpensive to collect positive and unlabeled examples,
however, arduous and very time consuming to collect negative training examples
and label them by user’s own hands.

In this paper, we focus on the problem to classifying Web page with pos-
itive and unlabeled data and without labeled negative data. Recently, a few
techniques for solving this problem were proposed in the literature. Liu et al.
proposed a method (called S-EM) to solve the problem in the text domain [7].
In [8], Yu et al. proposed a technique (called PEBL) to classify Web pages given

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 481–488, 2007.
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positive and unlabeled pages. This paper proposes a more effective and robust
technique to solve the problem. Experimental results show that the new method
outperforms existing methods significantly. Throughout the paper, we call the
class of Web page that we are interested in positive and the complement set of
samples negative.

The rest of the paper is organized as follows: Section 2 presents the concepts
of the tolerance rough set briefly. Section 3 describes proposed technique. Section
4 reports and discusses the experimental results. Finally, Section 5 concludes the
paper.

2 Tolerance Rough Set

Rough set theory is a formal mathematical tool to deal with incomplete or
imprecise information [2]. The classical rough set theory is based on equivalence
relation that divides the universe of objects into disjoint classes. By relaxing the
equivalence relation to a tolerance relation, where transitivity property is not
required, a generalized tolerance space is introduced below [3],[4],[5],[6].

Let I : U → P (U) to denote a tolerance relation, if and only if x ∈ I(x)
for x ∈ U and y ∈ I(x) ⇔ x ∈ I(y) for any x, y ∈ U , where P (U) are sets
of all subsets of U . Thus the relation xIy ⇔ y ∈ I(x) is a tolerance relation
(i.e. reflexive, symmetric) and I(x) is a tolerance class of x. Define the tolerance
rough membership function μI,V , as x ∈ U, X ⊆ U ,

μI,V (x, X) = ν(I(x), X) =
|I(x)

⋂
X |

|I(x)| . (1)

The tolerance rough set for any X ⊆ U are then defined as

LR(X) = {x ∈ U |ν(I(x), X) = 1} . (2)

UR(X) = {x ∈ U |ν(I(x), X) > 1} . (3)

With its ability to deal with vagueness and fuzziness, tolerance rough set
seems to be promising tool to model relations between terms and documents.
The application of tolerance rough set in classifying Web page using positive
and unlabeled examples was proposed as a way to enrich feature and document
representation and extract reliable negative examples for improvement of classi-
fication.

2.1 Tolerance Space of Terms in Unlabeled Set

Let U = {d1, ..., dM} be a set of unlabeled Web pages and T = {t1, ..., tN} set of
terms for U . The tolerance space is defined over a universe of all terms for U . The
idea of terms expansion is to capture conceptually related terms into classes. For
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this purpose, the tolerance relation is determined as the co-occurrence of terms
in all Web pages from U .

2.2 Tolerance Class of Term

Let fU (ti, tj) denotes the number of Web pages in U in which both terms ti and
tj occurs. The uncertainty function I with regards to co-occurrence threshold θ
defined as

Iθ(ti) = {tj |fU (ti, tj) ≥ θ} ∪ {ti} . (4)

Clearly, the above function satisfies conditions of being reflexive: ti ∈ Iθ(tj)
and symmetric: tj ∈ Iθ(ti) ⇔ ti ∈ Iθ(tj) for any ti, tj ∈ T . Thus, Iθ(ti) is
the tolerance class of term ti.Tolerance class of terms is generated to capture
conceptually related terms into classes. The degree of correlation of terms in
tolerance classes can be controlled by varying the threshold θ.The membership
function μ for ti ∈ T, X ⊆ T is then defined as:

μ(ti, X) = ν(Iθ(ti), X) =
|Iθ(ti) ∩ X |

|Iθ(ti)|
. (5)

Finally, the lower and upper approximations of any subset X ⊆ T can be deter-
mined with the obtained tolerance relation respectively as [5],[6]:

LR(X) = {ti ∈ T |ν(Iθ, X) = 1} . (6)

UR(X) = {ti ∈ T |ν(Iθ, X) > 0} . (7)

2.3 Expansion the Web Pages on Tolerance Class of Term

In tolerance space of term, an expanded representation of Web document can
be acquired by representing Web document as set of tolerance classes of terms
it contains. This can be achieved by simply representing Web document with its
upper approximation, e.g., the Web page di ∈ U is represented by:

UR(di) = {ti ∈ T |ν(Iθ(ti), di) > 0} . (8)

The usage of tolerance space and upper approximation to enrich Web page and
term relation allows the proposed technique to discover subtle similarities be-
tween positive examples in positive set and latent positive examples in unlabeled
set.

3 The TRS-SVM Algorithm

We use TRS-SVM to denote the proposed classification techniques that employ
the method based on tolerance rough set to extract reliable negative set and SVM
to build classifier. The TRS-SVM algorithm is composed by following steps:

Step1: Preprocessing of Web page in set P and U.
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A preprocessing procedure is done as follows: Remove the HTML tag and
extract plain text from each Web page. All the extracted words are stemmed.
Use a stop list to omit the most common words. Finally, extract term set from
positive set P and unlabeled set U respectively, let PT be a term set for P and
UT a term set for U.

Step2: Positive feature selection.
This step builds a positive feature set PF which contains terms that occur in

the term set PT more frequently than in the term set UT. The decision threshold
σ is normally set to 1 but can be adjusted. Here freq(ti, X) denotes the number
of occurrence of term ti in set X and |X| denotes the total number of Web pages
in set X.The detail algorithm is given as follows.

1. Generating the set {t1, · · · , tn}, ti ∈ UT ∪ PT ;
2. PF = ∅;
3. For i = 0 to n
4. f i

p = freq(ti, P )/|P |,f i
u = freq(ti, U)/|U |;

5. If f i
p/f i

u > σ then PF = PF ∪ {ti};
6. End If
7. End For

Step3: Generating tolerance class of term in unlabeled set and enriching Web
page representation.

The goal of this step is to determine for each term in UT , the tolerance class
which contains its related terms with regards to the tolerance relation. In our
experiment we set θ = 7 for good result. Then, the Web page in unlabeled
set is represented with its upper approximation, e.g. the Web page d ∈ U is
represented by UR(d).

Step4: Expansion the positive feature set on tolerance class of term.
The tolerance class of term in unlabeled set which contains the positive fea-

ture term in PF will be merged with PF.The algorithm is given as follows.

1. For each ti ∈ PF ∩ UT ;
2. PF = PF ∪ Iθ(ti);
3. End For

Step5: Generating reliable negative set.
This step tries to filter out possible positive Web pages from U. A Web page

in U which upper approximation does not have any positive feature in PF is
regarded as a reliable negative example. The algorithm is given as follows.

1. RN = U ;
2. For each Web page d ∈ U ;
3. If ∃xjfreq(xj , UR(d)) > 0 and xj ∈ PF then RN = RN − d;
4. End If
5. End For
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Step6: building classifier.
This step builds the final classifier by running SVM iteratively with the sets P

and RN. The basic idea is to use each iteration of SVM to extract more possible
negative data from U −RN and put them in RN. Let Q be the set of remaining
unlabeled Web pages, Q = U − RN . The algorithm for this step is given as
follows.

1. Every Web page in P is assigned the class label +1;
2. Every Web page in RN is assigned the label -1;
3. i = 1, P r0 = 0;
4. Loop
5. Use P and RN to train a SVM classifier Ci;
6. Classify Q using Ci;

Let the set of Web pages in Q that are classified as negative be W ;
7. Classify positive set P with Ci;

Set Pri as classification precision of P ;
8. If (|W | = 0||Pri < Pri−1)

then store the final SVM classifier, exit loop;
9. else Q = Q − W ;

RN = RN ∪ W ;
i = i + 1;

10. End If
11. End Loop

The reason that we run SVM iteratively is that the reliable negative set RN
extracted by the method based on tolerance rough set may not be sufficiently
large to build the best classifier. SVM classifiers can be used to iteratively extract
more negative Web pages from Q.There is, however, a danger in running SVM
iteratively. Since SVM is very sensitive to noise, if some iteration of SVM goes
wrong and extracts many positive Web pages from Q and put them in the
negative set RN, then the last SVM classifier will be extremely poor. This is
the problem with PEBL, which also runs SVM iteratively. In our algorithm, the
iteration stops when there is no negative Web page that can be extracted from
Q or the classification precision decreases which indicates that SVM has gone
wrong.

4 Experimental Evaluation

4.1 Experiment Datasets

To evaluate the proposed techniques, we use the WebKB data set1, which con-
tains 8282 Web pages collected from computer science departments of various
universities. The pages were manually classified into the following categories:
student, faculty, staff, department, course, project, other. In our experiments,
1 http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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we used only the four most common categories: student, faculty, course, other
(respectively abbreviated here as St, Fa, Co, Ot). Each category is employed as
the positive class, and the rest of the categories as the negative class. This gives
us four datasets. Our task is to identify positive Web pages from the unlabeled
set. The construction of each dataset for our experiments is done as follows:
Firstly, we randomly select 10% of the Web pages from the positive class and
the negative class, and put them into test set to evaluate the performance of
classifier. Then, the rest are used to create training sets. For each dataset, a% of
the Web pages from the positive class is randomly selected as the positive set P.
The rest of the positive Web pages and negative Web pages form the unlabeled
set U. Our training set consists of P and U. In our experiments, we range from
10%-70% respectively to create a wide range of settings.

4.2 Performance Measures

To analyze the performance of classification, we adopt the popular F1 measure
on the positive class. F1 measure is combination of recall (Re) and precision
(Pr), F1=2.Re.Pr/(Re+Pr). Precision means the rate of documents classified
correctly among the result of classifier and recall signifies the rate of correct
classified documents among them to be classified correctly. The F1 measure
which is the harmonic mean of precision and recall is used in this study since it
takes into account effects of both quantities.

4.3 Experimental Results and Discussion

We now present the experimental results. For comparison, we include the clas-
sification results of the naive Bayesian method (NB)[1], S-EM, OSVM [9] and
PEBL. Here, NB treats all the Web pages in the unlabeled set as negative. For
SVM implementation, we used the LIBSVM2. We set Gaussian kernel as default
kernel function of SVM because of its high accuracy. PEBL and OSVM also used
LIBSVM. We set θ = 7 for good result in generating tolerance class.

We summarize the average F value results of all a settings in Figure 1. We
observe that TRS-SVM outperforms NB, S-EM, OSVM and PEBL. In fact,
PEBL performs poorly when the number of positive Web pages is small. When
the number of positive Web pages is large, it usually performs well. TRS-SVM
performs well consistently. We also ran SVM with positive set and unlabeled set.
It for the noisy situation (unlabeled set U as negative set) performs poorly (its
F values are mostly close to 0) because SVM does not tolerate noise well. Due
to space limitations, its results are not listed.

From Figure 1, we can draw the following conclusions: OSVM gives very poor
results (in many cases, F value is around 0.3-0.5). PEBL’s results are extremely
poor when the number of positive Web pages is small. We believe that this is
because its strategy of extracting the initial set of reliable negative Web pages
could easily go wrong without sufficient positive data. S-EM’s results are worse
than TRS-SVM. The reason is that the negative Web pages extracted from U by
2 http://www.csie.ntu.edu.tw/∼ cjlin/libsvm/
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Fig. 1. Average results for all a settings

its spy technique are not reliable. We observe that a single NB slightly outper-
forms S-EM. TRS-SVM performs well with different numbers of positive Web
pages.

Sensitiveness to co-occurrence threshold parameter: Co-occurrence
threshold parameter θ is rather important to our TRS-SVM. From definition
of tolerance class it is not difficult to get such deduction that inadequate co-
occurrence threshold can decrease the performance of the classification results:
on one hand, too small co-occurrence threshold can make too many negative
examples be extracted as positive examples, on the other hand, too large co-
occurrence threshold can make too little latent positive examples be identified
from U, both cases can lead to worse performance.
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Fig. 2. Sensitiveness to co-occurrence threshold

From Figure 2 we can understand our experimental result corresponds to our
deduction: when co-occurrence threshold equals value between 5 and 10, the
performance is better, however, when it is out of the interval, the performance
is worse (here, a=60% and for other a values, the results are similar).
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5 Conclusions

This paper studied the problem of Web page classification with only partial in-
formation, i.e., with only one class of labeled Web pages and a set of unlabeled
Web pages. An effective technique is proposed to solve the problem. Our algo-
rithm first utilizes the method based on tolerance rough set to extract a set of
reliable negative Web pages from the unlabeled set, and then builds a SVM clas-
sifier iteratively. The experiment we have carried has showed that the method
based on tolerance rough set it offers can extract reliable negative examples by
discovering subtle information among unlabeled data, which have positive effects
on classification quality. Experimental results show that the proposed technique
is superior to S-EM and PEBL.

Acknowledgments. This work was supported by the National Natural Sci-
ence Foundation of China (No.60475019) and the Ph.D. programs Foundation
of Ministry of Education of China (No.20060247039).
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Abstract. This paper addresses the maintenance of discovered frequent
patterns when a batch of transactions are removed from the original
dataset. We conduct an in-depth investigation on how the frequent pat-
tern space evolves under transaction removal updates using the concept
of equivalence classes. Inspired by the evolution analysis, an effective
and exact algorithm TRUM is proposed to maintain frequent patterns.
Experimental results demonstrate that our algorithm outperforms rep-
resentative state-of-the-art algorithms.

1 Introduction

Update is a fundamental data management activity. Data updates allow users
to remove expired data, to correct data, and to insert new data. Maintenance
of a dynamic dataset and its corresponding discovered knowledge is more com-
plicated compared to the knowledge discovery of a stable dataset. Updates may
induce new knowledge and invalidate discovered information. Re-execution of
discovery algorithms from scratch every time when a database is updated causes
significant computation and I/O overheads. Therefore, effective algorithms to
maintain discovered knowledge on the updated database without re-execution
of mining algorithms are very desirable.

Databases can be updated in several manners. We focus here on the case when
a batch of transactions are removed from the existing database. A novel method
is proposed to update and maintain discovered frequent patterns [1].

Let I = {i1, i2, ..., im} be a set of distinct literals called “items”. An “itemset”,
or a “pattern”, is a set of items. A “transaction” is a non-empty set of items. A
“dataset” is a non-empty set of transactions. A pattern P is said to be contained
or included in a transaction T if P ⊆ T . A pattern P is said to be contained
in a dataset D, denoted as P ∈ D, if there is T ∈ D such that P ⊆ T . The
“support” of a pattern P in a dataset D, denoted sup(P, D), is the number of
transactions in D that contain P . A pattern P is said to be frequent in a dataset
D if sup(P, D) is greater than or equal to a pre-specified threshold ms. Given a
dataset D and a support threshold ms, the collection of all frequent itemsets in
D is called the “space of frequent patterns”, and is denoted by F(ms, D).

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 489–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The “space of frequent patterns” can be large. As a result, maximum pat-
terns [3, 7], closed patterns [8], key patterns [11] (also known as generators), and
borders of equivalence classes [10] have been proposed to concisely represent
the space of frequent patterns. Borders of equivalence classes are arguably the
most flexible succinct lossless representation of the frequent pattern space [10].
Conceptually, it partitions the frequent pattern space into equivalence classes
that are convex. Then the entire space is represented by the most general and
most specific patterns of these equivalence classes. As it turns out, these most
general patterns are precisely the key patterns, and these most specific patterns
are precisely the closed patterns.

The task of frequent pattern maintenance is to update the “space of frequent
patterns” according to the updates of the dataset.

Incremental maintenance, where new transactions are inserted, has at-
tracted intensive research attention. Current incremental maintenance algo-
rithms can be categorized into two main approaches: Apriori-based [5, 6, 2]
and sliding window filtering (SWF) [4, 9]. The performance of both Apriori-
based and SWF algorithms is limited by the candidate-generation-elimination
framework, which involves multiple data scans and unnecessary computations
on infrequent candidates.

To achieve more efficient updates, algorithms are proposed to incrementally
maintain only frequent maximum patterns. ZIGZAG1 [12] is one effective repre-
sentative. ZIGZAG is inspired by its related work GenMax [7]. It incrementally
maintains maximum patterns by a backtracking search, which is guided by the
outcomes of previous maintenance iteration.

Decremental maintenance, where old transactions are removed, on the
other hand, has not received as much research attention. Zhang et al. [13] pro-
posed an algorithm, named DUA, to address the decremental maintenance prob-
lem. DUA maintains frequent patterns by a pairwise comparison of original fre-
quent patterns and patterns included in the removed transactions. Since the
number of frequent patterns is usually enormous, the pairwise comparisons cause
heavy computations. In addition, algorithms FUP2H [6], Borders [2], ZIGZAG can
also be applied to decremental maintenance with some parameter changes.

It is observed that most previous methods are proposed as an extension of
some effective data mining algorithms or data structures. E.g. FUP [5] and Bor-
ders [2] are developed based on Apriori , and ZIGZAG is inspired by GenMax.
Unlike these previous works, our algorithm is proposed based on an in-depth
study on the evolution of the frequent pattern space.

2 Basic Properties of Frequent Pattern Space

In [10], we found that the space of frequent patterns can be decomposed into
sub-spaces — equivalence classes, as shown in Figure 1 (a).

1 We thank Adriano Alonoso Veloso, Professor Srinivasan Parthasarathy and Professor
Mohammed J. Zaki for providing the ZIGZAG source codes.
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Original Frequent 
Equivalence Classes: 
{ {a}, {c}, {a, c} } : 3

{ {a, d}, {c, d},  {a, c, d} } : 2

{ {b, d} } : 2

Updated Frequent 
Equivalence Classes: 

Updated Dataset (ms =2)

a, b, c, d
b, d
a, c
b

Notation: {.} : x refers to an equivalence class with x as support 
value and consists of patterns {.}.

{ {d} } : 3

{ {a}, {c}, {a, c} } : 2Decreased in 
support

{ {b} } : 3

Merged { {d}, {b, d} } : 2

Unchanged { {b} } : 3
Decreased in 

support infrequent

Original Dataset (ms =2)

a, b, c, d
b, d
a, c, d
a, c
b

Remove transaction {a,c,d}

(a) (b)

{}

a : 3 c : 3 d : 3 b : 3

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

Fig. 1. (a)Demonstration of how a space of frequent patterns, which contains 9 pat-
terns, is decomposed into 5 frequent equivalence classes; (b)demonstration of how equiv-
alence classes may evolve when a transaction is removed

Definition 1. Let the “filter”, f(P, D), of a pattern P in a dataset D be defined
as f(P, D) = {T ∈ D | P ⊆ T }. Then the “equivalence class” [P ]D of P in a
dataset D is the collection of patterns defined as [P ]D = {Q | f(P, D) = f(Q, D),
Q is a pattern in D}. Note that under this definition, [Q]D = ∅ if Q does not
appear in D. For convenience in some of our proofs, we also use the traditional
notion of an equivalence class, and write it as [P ]∗D = {Q | f(P, D) = f(Q, D)}.

In other words, two patterns are “equivalent” in the context of a dataset D iff
they are included in exactly the same transactions in D. Thus the patterns in a
given equivalence class have the same support. So we extend the notations and
write sup(C, D) to denote the support of an equivalence class and C ∈ F(ms, D)
to mean the equivalence class is frequent. Figure 1 (a) presents the frequent
pattern space for the original dataset with ms = 2. In addition, it graphically
demonstrates how the space of frequent patterns can be structurally decomposed
into frequent equivalence classes.

Structural decomposition of frequent pattern space inspired us to solve the
maintenance problem in a divide-and-conquer manner. Instead of maintaining
the pattern space as a whole, which is computationally costly, we attack the
problem by maintaining each frequent equivalence class. Compared with the
frequent pattern space, an equivalence class is much smaller and easier to update.
Moreover, not all the equivalence classes are affected by the updates. If we can
efficiently locate only those equivalence classes that are affected by the updates,
we can solve the problem effectively by updating only the affected equivalence
classes. In addition, a nice property of equivalence classes of patterns is that they
are convex and they can be concisely represented by their borders. The border
of an equivalence class consists of a closed pattern and a group of key patterns
[10]. Thus, the corresponding closed and key patterns form the border of and
define an equivalence class.
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Definition 2. A pattern P is a “key pattern” in a dataset D iff for every P ′ ⊂
P , it is the case that sup(P ′, D) > sup(P, D). In contrast, a pattern P is a “closed
pattern” in a dataset D iff for every P ′ ⊃ P , it is the case that sup(P ′, D) <
sup(P, D).

3 Evolution of Frequent Pattern Space

We investigate in this section how frequent patterns, key patterns, closed pat-
terns, equivalence classes and their support values evolve when multiple trans-
actions are removed from an existing dataset. We use the following notations:
Dorg is the original dataset, Ddec is the set of old transactions to be removed,
and Dupd− = Dorg − Ddec is the updated dataset. We assume without loss of
generality that Ddec ⊆ Dorg.

An existing equivalence class can evolve in exactly three ways, as shown in
Figure 1 (b). The first way is to remain unchanged without any change in sup-
port. The second way is to remain unchanged but with a decreased support. If
the support of an existing frequent equivalence class drops below the minimum
support threshold, the equivalence class will be removed. The third way is to
grow—by merging with other classes, where at most one of the merging classes
has the same closed pattern and the same support as the resulting equivalence
class and all other merging classes have lower support. In short, after the decre-
mental update, the support of an equivalence class can only decrease and the
size of an equivalence class can only grow by merging.

In order to have an in-depth understanding of the three ways that an existing
equivalence class may evolve, we now provide the exact conditions for each of
these ways to occur.

Theorem 1. For every frequent equivalence class [P ]Dorg in Dorg, exactly one of the
6 scenarios below holds:

1. P is frequent in Dorg, P is not in Ddec, and f(P, Dorg) �= f(Q, Dorg)− f(Q,Ddec)
for all Q in Ddec, corresponding to the scenario where an equivalence class has
remained totally unchanged. In this case, [P ]Dupd− = [P ]Dorg , sup(P, Dupd−) =
sup(P, Dorg), f(P, Dupd−) = f(P, Dorg), and the closed pattern of [P ]Dupd− is the
same as that of [P ]Dorg . The key patterns of [P ]Dupd− are the same as that of
[P ]Dorg .

2. P is frequent in Dorg, P is not in Ddec, and f(P, Dorg) = f(Q, Dorg)− f(Q,Ddec)
for some Q occurring in Ddec, corresponding to the scenario where the equivalence
class of Q has to be merged into the equivalence class of P . In this case, let all such
Q’s in Ddec be grouped into n distinct equivalence classes [Q1]

∗
Ddec

, ..., [Qn]∗Ddec
,

having representatives Q1, ..., Qn satisfying the condition on Q. Then [P ]Dupd− =
[P ]Dorg ∪

⋃
i[Qi]Dorg , sup(P, Dupd−) = sup(P, Dorg), f(P, Dupd−) = f(P, Dorg),

and the closed pattern of [P ]Dupd− is the same as the closed pattern of [P ]Dorg .
The key patterns of [P ]Dupd− are the most general ones among the key patterns of
[P ]Dorg , [Q1]Dorg , ..., [Qn]Dorg . Furthermore, [Qi]Dupd− = [P ]Dupd− for 1 ≤ i ≤ n.

3. P is frequent in Dorg, P is in Ddec, and |f(P, Dupd−)| < ms, corresponding to the
scenario where the equivalence class is removed.
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4. P is frequent in Dorg, P is in Ddec, and f(Q, Dorg) = f(P, Dorg) − f(P, Ddec) for
some Q that is frequent in Dorg but not in Ddec, corresponding to the scenario
where the equivalence class of P has to be merged into the equivalence class of
Q. This scenario is complement to Scenario 2. In this case, the equivalence class,
support, key, and closed patterns of [P ]Dupd− is the same as that of [Q]Dupd− , as
computed in Scenario 2.

5. P is frequent in Dorg, P is in Ddec, |f(P, Dupd−)| > ms, f(Q, Dorg) �= f(P, Dorg)−
f(P, Ddec) for all Q in Dorg and not in Ddec, and f(P, Dorg) − f(P, Ddec) �= f(Q,
Dorg) − f(Q, Ddec) for all Q in Ddec and Q �∈ [P ]Dorg , corresponding to the sit-
uation where the equivalence class has remained unchanged but has decreased in
support. In this case, [P ]Dupd− = [P ]Dorg , f(P, Dupd−) = f(P , Dorg)− f(P, Ddec),
sup(P, Dupd−) = sup(P, Dorg) − sup(P,Ddec), and the closed pattern of [P ]Dupd−
is the same as that of [P ]Dorg . The key patterns of [P ]Dupd− are the same as that
of [P ]Dorg .

6. P is frequent in Dorg, P is in Ddec, |f(P, Dupd−)| > ms, f(Q, Dorg) �= f(P, Dorg)−
f(P, Ddec) for all Q in Dorg and not in Ddec, and f(P, Dorg) − f(P, Ddec) = f(Q,
Dorg) − f(Q, Ddec) for some Q in Ddec and Q �∈ [P ]Dorg , corresponding to the
situation where the equivalence classes of P and Q have to be merged. In this case,
let all such Q’s in Ddec be grouped into n distinct equivalence classes [Q1]

∗
Ddec

, ...,
[Qn]∗Ddec

, having representatives Q1, ..., Qn satisfying the condition on Q. Then
[P ]Dupd− = [P ]Dorg ∪

⋃
i[Qi]Dorg , sup(P,Dupd−) = sup(P, Dorg) − sup(P , Ddec),

and f(P , Dupd−) = f(P, Dorg) − f(P, Ddec). The closed pattern of [P ]Dupd− is the
most specific pattern among the closed patterns of [P ]Dorg , [Q1]Dorg , ..., [Qn]Dorg .
The key patterns of [P ]Dupd− are the most general ones among the key patterns of
[P ]Dorg , [Q1]Dorg , ..., [Qn]Dorg . Furthermore, [Qi]Dupd− = [P ]Dupd− for 1 ≤ i ≤ n.

Proof. Refer to the Appendix in the full online version of this paper at
http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf.

This theorem describes in detail how the space of frequent patterns evolves
when a group of transactions are removed. Moreover, it describes how to derive
equivalence classes in Dupd− from existing equivalence classes in Dorg, which is
an extremely constructive result for the maintenance of frequent patterns.

4 Proposed Algorithm: TRUM

An algorithm for maintaining the frequent pattern space after some trans-
actions are removed from the original database is proposed in Figure 2.
In the proposed algorithm TRUM, we use notations X.closed to mean the
closed pattern of an equivalence class, X.keys to mean the set of keys of
an equivalence class, and X.sup to denote the support value of an equiv-
alence class. The algorithm addresses the maintenance problem effectively
by working on the borders of equivalence classes, instead of the entire
pattern space. The proposed algorithm is proved to be correct and com-
plete. (Refer to the Appendix in the full online version of this paper at
http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf.)

With proper implementation techniques, the computational complexity of
TRUM can be approximated as O(|Ddec|), where |Ddec| denotes the size of the

http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf
http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf


494 M. Feng et al.

Input: The set O = O1, ..., On of frequent equivalence classes in Dorg ,represented by their
borders—viz., the corresponding key and closed patterns and supports—and identified by their
unique closed patterns, and the set T = T1, ..., Tm of transactions in Ddec, and the minimum
support threshold ms.

Output: The set O′
1, ..., O′

n (if they still exist) of updated frequent equivalence classes in Dupd−
represented by their borders and identified by their unique closed patterns.

Method:
1: O′

1 := O1; ...;O′
n := On;

2: for all T ∈ T , O ∈ O do
3: if O.closed ⊆ T then
4: O′.sup := O′.sup − 1;
5: end if
6: end for
7: for all O′

i ∈ {O′
1, ..., O′

n} (if they exist) do
8: if O′

i.sup < ms then
9: Remove O′

i, continue;
10: end if
11: for all O′

j ∈ {O′
i+1, ..., O′

n} (if they exist) do
12: if O′

i.sup = O′
j .sup & O′

j .closed ⊂ O′
i.closed then

13: O′
i.keys := min{K|K ∈ O′

i.keys orK ∈ O′
j .keys}

14: Remove O′
j ;

15: end if
16: if O′

i.sup = O′
j .sup & O′

j .closed ⊃ O′
i.closed then

17: O′
j .keys := min{K|K ∈ O′

i.keys orK ∈ O′
j .keys}

18: Remove O′
i;

19: end if
20: end for
21: end for

return O′
1, ..., O′

n (if they still exist);

Fig. 2. TRUM: a novel algorithm for maintaining frequent patterns after some trans-
actions are removed from the original database

decremental dataset. This shows that TRUM is much more computationally ef-
fective, compared to previous works, like [7, 12], whose computational complexity
is O(NFP ), where NFP refers to the number of frequent patterns. This is be-
cause O(|Ddec|) � NFP . (Some implementation techniques are suggested in our
full paper http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf).

4.1 Experimental Studies

Extensive experiments were performed to evaluate the proposed algorithm.
TRUM was tested using several benchmark datasets from the FIMI Reposi-
tory, http://fimi.cs.helsinki.fi. Due to space constraints, only the results
of T 10I4D100K, mushroom and gazelle are presented in this paper. These
datasets form a good representative of both synthetic and real datasets.

We varied two parameters in our experiments: minimum support ms and
update interval. For each employed ms, we preformed multiple execution of the
algorithm, where each execution employed a different update interval. Moreover,
the performance of the algorithm varies slightly when different sets of transac-
tions are removed. To have a stable performance measure, for each update inter-
val, 5 random sets of transactions were employed, and the average performance
of the algorithm was recorded. The experiments were run on a PC with 2.8GHz
processor and 2GB main memory.

http://www.ntu.edu.sg/home5/feng0010/FullPaper.pdf
http://fimi.cs.helsinki.fi
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Fig. 3. Average run time comparison of ZIGZAG, FpClose, GC-growth and TRUM
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Fig. 4. Speed-up achieved by TRUM against FpClose over various ms thresholds

To justified the effectiveness of the proposed algorithm, we compared its per-
formance against some state-of-art frequent pattern discovery and maintenance
algorithms. These algorithms includes ZIGZAG [12], FpClose [8] and GC-growth
[10]. Results of the performance comparison is presented in Figure 3.

We observe that TRUM outperforms ZIGZAG by at least an order of magni-
tude over all update intervals. The advantage of the proposed algorithm is most
obvious in mushroom dataset. For mushroom dataset, TRUM, on average, out-
performs ZIGZAG 200 times. It is measured that, for both T 10I4D100K and
gazelle, TRUM achieves around 80 and 20 times average speed-up.

TRUM is also more effective compared to re-discovering all patterns using
FpClose and GC-growth. E.g. TRUM is, on average, 30 times faster than FpClose
and 100 times faster than GC-growth for T 4I10D100K dataset. However, we also
observe that as the size of the removed transactions increases, the advantage of
TRUM diminishes. This is because, corresponding to the complexity analysis, the
execution time of TRUM increases as more transactions are removed. In contrast,
due to the shrinkage of data size, the execution time of re-discovery approaches
drops when more transactions are removed. Combining these two effects, it is
logical that the speed-up gained by our maintenance approach diminishes as the
size of removed transactions goes up.

The performance of the proposed algorithm was also evaluated under different
support thresholds ms. The results are presented in Figure 4. It demonstrates
that TRUM remains effective compared to FpClose over a wide range of minimum
support thresholds. Nevertheless, the achieved speed-up drops slightly for higher
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ms thresholds. When ms is high, the frequent pattern space becomes smaller,
which makes the discovery process much easier. As a result, the advantage of
TRUM becomes less obvious.

5 Closing Remarks

This paper has investigated how the space of frequent patterns, equivalence
classes, closed and key patterns will evolve when transactions are removed from
a given dataset. It was shown that the equivalence classes can evolve in three
ways: (1) remain unchanged with the same support value, (2) remain unchanged
with decreased support value, and (3) grow by merging with others. Based the
evolution analysis, an effective maintenance algorithm TRUM is proposed. TRUM
maintains the frequent pattern space using the concept of equivalence classes.
TRUM addresses the problem efficiently by updating only the affected equiva-
lence classes. The effectiveness of the proposed algorithm is validated by exper-
imental evaluations.

This paper, to our best knowledge, is the first to study the evolution of fre-
quent pattern space under data updates. The proposed algorithm outperforms
the state-of-the-art algorithms at least an order of magnitude over a wide range
of support thresholds and update sizes. In the future, it is interesting to exploit
the evolution of frequent pattern space under other types of updates, e.g. addi-
tion of transaction and items, or removal of items. Solving these maintenance
problems with an equivalence class approach could be promising.
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Abstract. Use of relevance feedback (RF) in the feature vector model has been 
one of the most popular approaches for fine tuning query for content-based 
image retrieval (CBIR) systems. This paper proposes a framework that extends 
the RF approach to capture the inter-query relationship between current and 
previous queries. By using the feature vector model, this approach avoids the 
need of “memorizing” actual retrieval relationship between the actual image 
indexes and the previous queries. This implies that the approach is more 
suitable for image database application where images are frequently added or 
removed. This paper has extended the authors’ previous work [1] by applying a 
semantic structure to connect the previous queries both visually and 
semantically. In addition, active learning strategy has been used in this paper to 
explore images that may be semantically similar while visually different.  

Keywords: Content-Based Image Retrieval System, Inter-Query Learning, 
Statistical Discriminant Analysis. 

1   Introduction 

In the last decade, query tuning using relevance feedback (RF) has gained much 
attention in the research area of content-based image retrieval (CBIR) systems. This is 
largely due to RF’s ability to refine the user query through a sequence of interactive 
sessions. Various approaches [2] have been introduced and they have yielded certain 
degrees of success. However, most research works have focused on query tuning in a 
single retrieval session. This is commonly known as intra-query learning. In contrast, 
inter-query learning, also known as long-term learning, attempts to analyze the 
relationship between the current and past retrieval sessions. By accumulating 
knowledge learned from the previous sessions, inter-query learning aims at further 
improve the retrieval performance of the current and future sessions. One may view 
that inter-query is an extension of the intra-query. Although intra-query in CBIR has 
been a topic of research for the last decade, inter-query in CBIR has only begun to 
attract interests in the last few years and it is yet to be fully explored. 

Previously, the authors have developed an inter-query learning framework based 
on the statistical discriminant analysis approach to represent the characteristics of a 
visual group during a retrieval session [1]. Such approach is more suitable for 
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database applications where images are added or removed on a regular basis. It is 
because that the approach avoids the needs of establishing relationships between each 
image in the database. This is a common approach used in most inter-query learning 
frameworks. A weakness with this framework is that it can only merge clusters with 
similar visual characteristics. The framework is unable to capture the semantic 
relationship between clusters. Thus, it lacks the capability of establishing 
relationships between clusters that are semantically similar and yet visually different. 

This paper extends the existing framework by introducing a semantic structure to 
connect clusters that are semantically similar. In addition, active learning strategy is 
used to explore the semantic structure for the maximum coverage on possible images 
that are semantically similar to the query image. This paper begins with a discussion 
on the background of the problem studied in this study. It is then followed by a 
description of the overall proposed framework. Experiment results are then presented 
and followed by the conclusion. 

2   Problem Background 

A feature vector based inter-query learning framework has been proposed in [1].  In 
the proposed framework, a cluster is formed after each retrieval session. The cluster is 
described by the feature space created by statistical discriminant analysis and the 
boundary of the cluster is defined by the furthest positive labeled image from the 
positive centroid. Since the cluster contains the visual information common to the 
previously selected positively labeled images, it is assumed that the two retrieval 
sessions are similar when the majority of the images gathered from the short-term 
learning algorithm fall within the boundary of a selected cluster. One may view this as 
a way measuring visual similarity between selected cluster and the short term learning 
algorithm. Experiments in [1] have shown that the developed framework improves the 
retrieval accuracy of the system. 

At the end of a retrieval session, a cluster merging policy has been proposed. The 
decision for merging is based on two criteria: based on the measurement of the visual 
similarity, and, the visual similarity between the two positive centroid points. Table 1 
is the summary of the cluster merging policy as proposed previously. From the table, 
two clusters will only be merged when both are semantically and visually similar. 
While such strategy is appropriate for condition 3 and 4 where the clusters are not 
semantically related, it may not be totally suitable for condition 2. In other words, 
although they are cases that the clusters are not visually similar, they may be 
semantically related. Such information can be valuable for future retrieval process. 
Thus, such information should also be recorded by the system. 

To resolve the issue with the condition 2, one may apply the same merging 
algorithm as used in condition 1 but with a more relax merging condition. However, 
this may be problematic. In statistical discriminant analysis, a visual group is 
generally captured and represented by a distribution function. A single distribution 
modal may not be able to capture image samples that are not visually related. Thus, 
merging of the two clusters which are not visually related may result in losing the 
visual characteristics of the original clusters. 
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Table 1. Possible Outcomes of the Merging Policy  

 Semantic Similarity Visual Similarity Merge Cluster 
1 Yes Yes Yes 
2 Yes No No 
3 No Yes No 
4 No No No 

 

Fig. 1. Example Relationships between different Visual and Semantic Image Groups 

One may consider this issue as a multimodal density analysis problem [3, 4]. Such 
approach is often based on heuristic rules and manual interaction is usually required 
to set the parameters which are necessary in analyzing the number of distribution 
modals needed. Moreover, the values of the parameters are often derived through trial 
and error. Thus, it may not be suitable for generic database. Furthermore, such 
approach is assuming that a visual group will only belong to a semantic group. This is 
not necessarily true as a visual group may belong to multiple semantic groups and 
each semantic group may not be directly related to each other. For instance, Figure 1 
shows that while the semantic groups “Animal” and “Water” both contain the visual 
group “Fish in the Water”, but “Animal” may not be directly related to “Water”. 

Alternatively, one may record the semantic relationship of clusters via a semantic 
link. The semantic relationship of the two clusters can be determined through the 
labeled image samples as gathered through user feedback cycles. The use of semantic 
relationship has the advantage of recording the relationship of the two clusters while 
preserving the visual characteristics of the clusters. Such approach will be discussed 
in more detail in the following section. 

3   Proposed Framework 

3.1   Cluster Merging Scheme 

Figure 2 depicts the logical flow of the proposed clustering merging process which an 
extension of the original framework with the additional semantic link module for 
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establishing semantic links between the selected clusters.  The selected clusters are 
only visually merged if and only if both clusters are semantically and visually similar.  
If the two clusters are only semantically similar and yet visually different, then the 
two clusters will be semantically link by the additional module. 

 

Fig. 2. Proposed Cluster Merging Process 

 

Fig. 3. The Logical View of the Structure of the clusters 

In this paper, the proposed semantic structure is represented by a tree hierarchy 
structure and each cluster acts as a visual node in the tree. If a tree contains only one 
visual node, then the visual node will also be the root node of the tree. A semantic 
node is used if the tree contains more than one visual node. The semantic node is 
merely a connection node which acts as a connection bridge between all the visual 
nodes that are semantically related. One may view this as a two layer tree structure 
framework where the semantic and visual nodes are the root and leaf of the tree 
respectively. 

Figure 3 presents the logical view of a typical semantic tree structure and also, the 
merging product of the two semantic trees. When two visual nodes are tested to be 
semantically similar such as visual node 3 and 4 as shown in the figure, the trees 
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containing the nodes will be merged. The merging process is intuitive. A new merged 
tree is merely the collection of all the visual nodes under the two original trees. Such 
relationship implies that all the visual nodes under the same tree are either directly or 
indirectly related to each other. 

3.2   Cluster Search and Explore Schemes 

Figure 4 depicts the flow sequence of the proposed clusters searching and exploring 
scheme of the new semantic framework. The proposed framework is an extension 
from the existing searching framework with two additional modules. The two 
additional modules are mainly used for identifying the visual nodes to be explored 
and the implementation of the visual node exploring strategy. The visual nodes 
selection strategy is based on the cluster searching criteria as described in [1] and it 
can be mathematically expressed as: 

p

n
p N

N
T i=  (1) 

where Np denotes the total number of positive samples gathered during the feedback 

cycle, and 
inN  is the number of positive samples that fall within the boundary of 

cluster i. 
It should be noted that the two additional modules are only activated when no more 

visual nodes are selected. The system will always explore the visual content first 
before semantic relationship is considered.  There are two reasons to support this 
design. Firstly, an assumption is made that if certain numbers of positive samples fall 
within a selected node, then it is very likely that the selected node contains 
information related to the searched topic. Secondly, it is required to gather as many 
visual nodes as possible before the system can effectively select visual nodes which 
are semantically related to the explored nodes. The selection strategy of the visual 
nodes with related semantic content is described in the following paragraph. 

To explore the semantic relationship of the visual nodes, one has to first rank the 
explored trees. This is based on the fact that a semantic tree consists of visual nodes 
that are likely to be semantically related to each other. This implies while each visual 
node is semantically related to each other while they are not necessary interpreted 
with the same semantic content. Thus, it is possible for the system to explore the 
wrong node under the same tree. The ranking of the trees is a mechanism designed to 
minimize chances of exploring visual nodes with different semantic content.  

In this paper, it is proposed the ranking of the tree is done by employing a scoring 
system. The scoring system is based on the ratio of the number of verified visual 

nodes, 
iVN , in a semantic tree, i, versus number of visual node, 

iEN , previous 

explored by the system within the same tree. The mathematical expression can be 
written as: 

i

i

E

V
i N

N
ratio =    (2)               where 

ii EV NN ∈       (3) 
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Fig. 4. Flow Diagram of the Proposed Clusters Searching and Exploring Scheme 

Such scoring system is used as an indication on the number of nodes that have 
been explored, and within these nodes, how many have been falsely explored. The 
minimum score is zero and it implies that all the visual nodes under the selected tree 
have been falsely explored. Conversely, the maximum score of one indicates that all 
the nodes within the tree have been correctly explore. Thus, a semantic tree with a 
higher score will always rank higher than one with a comparatively lower score. For 
consistency purpose, the searching criterion expressed in (1) is used for node 
verification. Once the trees have been ranked, the system will then choose the top 
trees for the exploring of the semantically related nodes. To explore the nodes, one 
first has to select a node exploring strategy. The traditional most probable approach 
often results in limiting the selection of the images into a narrow region near the 
query images. This restricts the system for exploring images with different visual 
characteristics. This is in conflict with the goal of the proposed semantic structure. On 
the other hand, active learning is a strategy with an objective to gather the most 
informative samples from the given data available. This implies that instead of 
selecting a narrow region of images, active learning strategy aims to select images in 
the unexplored regions where the images are possibly semantically related. As for this 
framework, active learning can be implemented by selecting visual nodes that have 
the biggest visual differences from the gathered samples. This can be determined by 
the number of labeled samples that are clustered by the selected visual node. The node 
with the least clustered samples will be the one with the biggest visual differences. 

4   Experiment Results 

4.1   Test Environment 

In order to test the performance of the proposed approach, three systems have been 
implemented. They are (i) the proposed semantic framework, (ii) the visual merging 
framework as proposed in [1], and (iii) a short term learning framework based on 
KBDA as reported in reference [5]. To evaluate the validity of the experiment, the 
environment and parameters used by all three systems are identical. The image 
features and the generalized eigenvector calculation method are the same and the 
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same parameters are also used in the kernel transformation algorithm for all three 
systems. In this experiment, five visual features have been selected for the analysis of 
shape, color and texture of the images. The five features are the water-filling edge 
histogram algorithm [6], HSV color coherent vector [7], HSV histogram , global edge 
detection algorithm [8], HSV color moments [9] and color intensity histogram. Each 
feature comprises a number of elements. A total number of sixty-five feature elements 
have been used. Lastly, Gaussian Radial Basis Function (RBF) is selected as the 
kernel transformation matrix for the KBDA approach. This is suggested by literatures 
[5, 10] as both claimed that RBF yields the best accuracy performance out of all the 
other kernel transformation approaches. 

4.2   Experiment Procedures and Test Data 

In this experiment, 500 images of the Corel image database were used. Within these 
images, 300 images are classified under seven different themes and each consists of 
several different visual groups. The inter-relationship of each theme is depicted in 
Figure 5. The themes “bird” and “cat” are subset of “animal”, “fish” is the subset for 
both the “animal” and “water”, while “water” also comprise of “water scene”. Lastly, 
“yellow flower” is independent from all the other themes. The inter-relationship 
between each theme is designed to emulate the complexity of the semantic 
relationship between each object in the real world. 

 

Fig. 5. Relationship between different themes in the Test Data Set 

The retrieval performance of the frameworks was measured via three different 
tests. The tests were generated by randomly selecting 300 positive labeled images 
from the labeled images as an input entry point to the system. The same data set was 
then applied to two more tests with different random sequences. The average of the 
three tests is to ensure the consistency of the test results. The retrieval accuracy is 
used as the main factor to compare the performance of the systems. 

Figure 6 shows the average retrieval accuracies of the three frameworks after three 
random sequences of 300 search sessions. As shown from the figure, the test 
framework with the semantic framework is the most effective of the three in terms of 
retrieval accuracy. With the exception of the theme “yellow flower”, the average 
retrieval accuracies for the semantic structure are all better than the visual merging as 
proposed from the previous work. From the figure, it shows that the average retrieval 
result of the theme “yellow flower” for the visual merging framework is slightly 
better than the semantic framework. However, the advantage of visual merging 
framework is only marginal. Furthermore, Table 2 shows that the advantage of the 
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visual merging scheme on the theme “yellow flower” is inconclusive. Of the three 
sequences, the performance of the semantic structure in the first sequence was 
actually better than the visual merging scheme. Thus, one may only conclude that the 
performance of the two frameworks on “yellow flower” is compatible, neither can 
claim to be more accurate over the other. 
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Fig. 6. Retrieval Performance of the Three Frameworks 

Table 2. Actual Retrieval Accuracy of the theme “Yellow Flower” for the Two Frameworks 

 Visual Merging 
(Retrieval Accuracy) 

Semantic Structure 
(Retrieval Accuracy) 

Random Sequence 1 0.41 0.44 
Random Sequence 2 0.45 0.41 
Random Sequence 3 0.44 0.41 

5   Conclusion 

A semantic structure framework for inter-query learning in CBIR system has been 
introduced. The proposed framework provides the building block for constructing 
complicated relationship between visual clusters. The complex relationships between 
different image groups are captured by using a semantic structure to connect different 
visual image groups that are semantically related. In addition, active learning has also 
been introduced as the strategy for the selection of visual nodes with related semantic 
content. The test results have demonstrated that while the retrieval performance 
between the two frameworks is compatible for simple data sets, the proposed 
semantic framework is more superior in handling data sets with a more complex 
relationship. Such framework can be easily modified and expanded by associating 
keywords to the selected clusters using during the image during retrieval session. The 
keyword, in turn, may also link to word dictionary database to further improve the 
rigor of keywords used in the search session. The incorporation of keyword 
annotation to the user log is one of the future research directions for this study. 
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Abstract. In this study, we propose a novel evolutionary algorithm-based 
clustering method, named density-sensitive evolutionary clustering (DSEC). In 
DSEC, each individual is a sequence of real integer numbers representing the 
cluster representatives, and each data item is assigned to a cluster representative 
according to a novel density-sensitive dissimilarity measure which can measure 
the geodesic distance along the manifold. DSEC searches the optimal cluster 
representatives from a combinatorial optimization viewpoint using evolutionary 
algorithm. The experimental results on seven artificial data sets with different 
manifold structure show that the novel density-sensitive evolutionary clustering 
algorithm has the ability to identify complex non-convex clusters compared 
with the K-Means algorithm, a genetic algorithm-based clustering, and a 
modified K-Means algorithm with the density-sensitive distance metric. 

1   Introduction 

Many clustering approaches, such as the K-Means Algorithm[1], partition the data set 
into a specified number of clusters by minimizing certain criteria. Therefore, they can 
be treated as an optimization problem. As global optimization techniques, 
Evolutionary algorithms (EAs) have been used for clustering tasks commonly in 
literature.[2][3][4] The solution representation and dissimilarity measure are the main 
difficulties in designing EA for clustering. Many researchers have used a 
representation approach that borrows from the K-Means algorithm: the representation 
codes for cluster center only, and each data item is subsequently assigned to a cluster 
representative according to an appointed dissimilarity measure.[5] The most popular 
dissimilarity measure is the Euclidean distance. By using Euclidean distance as a 
measure of dissimilarity, these evolutionary clustering methods as well as the K-
Means algorithm have a good performance on the data set with compact super-sphere 
distributions, but tends to fail in the data set organized in more complex and unknown 
shapes, which indicates that this dissimilarity measure is undesirable when clusters 
have random distributions. As a result, it is necessary to design a more flexible 
dissimilarity measure for clustering. Su and Chou [6] proposed a nonmetric measure 
based on the concept of point symmetry, according to which a symmetry-based 
version of the K-Means algorithm is given. This algorithm assigns data points to a 
cluster center if they present a symmetrical structure with respect to the cluster center. 
Therefore, it is suitable to clustering data sets with clear symmetrical structure. 
Charalampidis [7] recently developed a dissimilarity measure for directional patterns 
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represented by rotation-variant vectors and further introduced a circular K-Means 
algorithm to cluster vectors containing directional information. 

In this study, we propose a novel evolutionary algorithm-based clustering 
technique, named density-sensitive evolutionary clustering (DSEC), by using a novel 
representation method and a density-sensitive dissimilarity measure. In DSEC, each 
string is a sequence of the cluster representatives selected from all the data items. The 
density-sensitive dissimilarity measure can describe the distribution characteristic of 
data clustering. The experimental results on seven artificial data sets show that the 
novel density-sensitive evolutionary clustering algorithm is very suitable to identify 
complex non-convex clusters compared with the K-Means algorithm [1], a genetic 
algorithm-based clustering [3], and a modified K-Means algorithm with the density-
sensitive distance metric [8].  

2   A Novel Density-Sensitive Dissimilarity Measure 

For real world problems, the distribution of data points takes on a complex manifold 
structure, which results in the classical Euclidian distance metric can only reflect the 
local consistency which refers that data points close in location will have a high 
affinity, but fail to describe the global consistency which refers that data points 
locating in the same manifold structure will have a high affinity. We can illustrate this 
problem by the following example. As shown in Fig. 1(a), we expect that the affinity 
between point 1 and point 3 are higher than that of point 1 and point 2. In other 
words, point 1 is much closer to point 3 than to point 2 according to some distance 
metric. In terms of Euclidian distance metric, however, point 1 is much closer to point 
2, thus without reflecting the global consistency. Hence for complicated real world 
problems, simply using Euclidean distance metric as a dissimilarity measure can not 
fully reflect the characters of data clustering. 

      
(a)                                                                  (b) 

Fig. 1. (a) An illustration of that the Euclidian distance metric can not reflect the global 
consistency; (b) An illustration of that the global consistency of clustering does not always 
satisfy the triangle inequality under the Euclidean metric 

Here, we want to design a novel dissimilarity measure with the ability of reflecting 
both the local and global consistency. As an example, we can observe from the data 
distribution in Fig. 1(a) that data points in the same cluster tend to lie in a region of 
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high density, and there exists a region of low density where there are a few data 
points. We can design a data-dependent dissimilarity measure in terms of that 
character of local data density. 

At first, data points are taken as the nodes V  of a weighted undirected graph 
( , )G V E= . Edges { }ijE W=  reflect the affinity between each pair of data points. We 

expect to design a dissimilarity measure that ascribes high affinity to two points if 
they can be linked by a path running along a region of high density, and a low affinity 
if they cannot. This concept of dissimilarity measure has been shown in experiments 
to lead to significant improvement in classification accuracy when applied to semi-
supervised learning [9][10]. We can illustrate this concept in Fig 1(a), that is, we are 
looking for a measure of dissimilarity according to which point 1 is closer to point 3 
than to point 1. The aim of using this kind of measure is to elongate the paths that 
cross low density regions, and simultaneously shorten those that not cross. 

To formalize this intuitive notion of dissimilarity, we need first define a so-called 
density adjusted length of line segment. We have found a property that a distance 
measure describing the global consistency of clustering does not always satisfy the 
triangle inequality under the Euclidean metric. In other words, a direct connected path 
between two points is not always the shortest one. As shown in Fig 1(b), to describe 
the global consistency, it is required that the length of the path connected by shorter 

edges is smaller than that of the direct connected path, i.e. af fe ed dc cb ab+ + + + < . 

Enlightened by this property, we define a density adjusted length of line segment as 
follows. 

Definition 1. The density adjusted length of line segment  ( , )i jx x   is defined as 

( , )( , ) 1i jdist x x

i jL x x ρ= −  (1) 

where ( ),i jdist x x  is the Euclidean distance between ix  and jx , 1ρ >  is the flexing 

factor. 

Obviously, this formulation possesses the property mentioned above, thus can be 
utilized to describe the global consistency. In addition, the length of line segment 
between two points can be elongated or shortened by adjusting the flexing factor ρ . 

According to the density adjusted length of line segment, we can further introduce 
a new distance metric, called density-sensitive distance metric, which measures the 
distance between a pair of points by searching for the shortest path in the graph. 

Definition 2. Let data points be the nodes of graph ( , )G V E= , and lp V∈  be a path 

of length 1l p= −  connecting the nodes 1p  and 
p

p , in which 1( , )k kp p E+ ∈ , 

1 k p≤ < . Let ,i jP  denote the set of all paths connecting nodes ix  and jx . The 

density-sensitive distance metric between  ix  and jx  is defined as 

,

1

1
1

( , ) min ( , )
i j

p

i j k kp
k

D x x L p p
−

+∈
=

= ∑P
 (2) 
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Thus ( , )i jD x x  satisfies the four conditions for a metric, i.e. ( , ) ( , )i j j iD x x D x x= ; 

( , ) 0i jD x x ≥ ; ( , ) ( , ) ( , )i j i k k jD x x D x x D x x≤ +  for all , ,i j kx x x ; and ( , ) 0i jD x x =  if 

and only if i jx x= . 

As a result, the density-sensitive distance metric can measure the geodesic distance 
along the manifold, which results in any two points in the same region of high density 
being connected by a lot of shorter edges while any two points in different regions of 
high density are connected by a longer edge through a region of low density, thus 
achieving the aim of elongating the distance among data points in different regions of 
high density and simultaneously shortening that in the same region of high density. 
Hence, this distance metric is data-dependent, and can reflect the data character of 
local density, namely, what is called density-sensitive. 

3   Evolutionary Clustering Based on the Density-Sensitive 
Dissimilarity Measure 

3.1   Representation and Operators 

In this study, we consider the clustering problem from a combinatorial optimization 
viewpoint. Each individual is a sequence of real integer numbers representing the 
sequence number of K cluster representatives. The length of a chromosome is K 
words, where the first gene represents the first cluster, the second gene represents the 
second cluster, and so on. As an illustration, let us consider the following example. 

Example 1. Let the size of the clustered data set be 100 and the number of clustering 
being considered be 5. Then the individual (6, 19, 91, 38, 64) represents that the 6-th, 19-
th, 91-th, 38-th, and 64-th points are selected to represent the five clusters, respectively.  

So this representation method does not mention the data dimension. If the size of 
the data set is N and the number of clustering is K, then the search space is NK. 

Crossover is a probabilistic process that exchanges information between two parent 
individuals for generating offspring. In this study, we choose the uniform crossover 
[11] because it is unbiased with respect to the ordering of genes and can generate any 
combination of alleles from the two parents.[12][5] An example of the operation of 
uniform crossover on the encoding employed is shown in example 2. 

Example 2. Let the two parent individuals be (6, 19, 91, 38, 64) and (3, 29, 17, 61, 6), 
random generate the mask (1, 0, 0, 1, 0), then the two offspring after crossover are (6, 
29, 17, 38, 64) and (3, 19, 91, 61, 64). In this case, the first offspring is not (6, 29, 17, 
38, 6) because the 6 in bold is repeat, we keep it unchanged.   

Each individual undergoes mutation with probability pm as example 3. 

Example 3. Let the size of the clustered data set be 100 and the number of clustering 
being considered be 5. Then the individual (6, 19, 91, 38, 64) can mutate to (6, 
19+floor((100-19)*random+1), 91, 38, 64) or (6, 19-floor((19-1)*random+1), 91, 38, 
64) equiprobably, where the second gene is selected to mutate, random denotes a 
uniformly distributed random number in the range [0,1), and floor denotes rounding 
towards minus infinity. 
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3.2   Objective Function 

Each point is assigned to the cluster whose density-sensitive distance of its 
representative to the point is minimum. As an illustration, let us consider the 
following example. 

Example 4. Let the 6-th, 19-th, 91-th, 38-th, and 64-th points represent the five 
clusters, respectively. For the first point, we compute the density-sensitive distance 
between it and the 6-th, 19-th, 91-th, 38-th, and 64-th points, respectively. If the 
density-sensitive distance between the first point and the 38-th point is the minimum 
one, then the first point is assigned to the cluster represented by the 38-th point. All 
the points are assigned in the same way.  

Subsequently, the objective function is computed as follows: 

( ) ( , )
k k

k
C C i C

Dev C D i μ
∈ ∈

= ∑ ∑  (3) 

where C  is the set of all clusters, kμ  is the representative of cluster kC , and ( , )kD i μ  

is the density-sensitive distance between the i-th data item of cluster kC  and kμ . 

3.3   Density-Sensitive Evolutionary Clustering Algorithm 

The processes of fitness computation, roulette wheel selection with elitism [13], 
crossover, and mutation are executed for a maximum number of generations Gmax. The 
best individual in the last generation provides the solution to the clustering problem.  

Algorithm 1. Density-Sensitive Evolutionary Clustering (DSEC) 
Begin 
1. t=0 
2. random initialize population P(t) 
3. assign all points to clusters according to the density-

sensitive dissimilarity measure and compute the objective 
function values of P(t) 

4. t=t+1 
5. if t< Gmax 
6.    select P(t) from P(t-1) 
7.    crossover P(t) 
8.    mutate P(t) 
9.    go to step 3 
10. end if 
11. output best and stop 
end 

Fig. 2. Density-Sensitive Evolutionary Clustering 

The initial population in step 2 is initialized to K randomly generated real integer 
number in [1, N], where N is the size of the data set. This process is repeated for each 
of the P chromosomes in the population, where P is the size of the population. 
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4   Experimental Results 

In order to validate the clustering performance of DSEC, here we give the 
experimental results on seven artificial data sets, named Line-blobs, Long1, Size5, 
Spiral, Square4, Sticks, and Three-circles, with different manifold structure. The 
distribution of data points in these data sets can be seen in Fig. 3. The results will be 
compared with the K-Means algorithm (KM)[1], a modified K-Means algorithm using 
the density-sensitive dissimilarity measure (DSKM)[8], and the genetic algorithm-
based clustering technique (GAC) [3]. In all the algorithms, the desired clusters 
number is set to be known in advance. The parameter settings used for DSEC and 
GAC in our experimental study are given in Table 1. For DSKM and KM, the 
maximum iterative number is set to 500, and the stop threshold 1e-10. 

Table 1. Parameter settings for DSEC and GAC 

Parameter DSEC GAC 
Maximum Number of generations 100 100 

population size 50 50 
Crossover probability 0.8 0.8 
Mutation probability 0.1 0.1 

Clustering quality is evaluated using two external measures, the Adjusted Rand 
Index [5] and the Clustering Error [8]. The adjusted rand Index returns values in the 
interval [0, 1] and is to be maximized. The clustering error also returns values in the 
interval [0, 1] and is to be minimized.  

We perform 30 independent runs on each problem. The average results of the two 
metrics, clustering error and adjusted rand index, are shown in Table 2. 

Table 2. Results of DSEC, GAC, DSKM and KM where the results in bold are the best ones 

Clustering Error Adjusted Rand Index Problem 
DSEC GAC DSKM KM DSEC GAC DSKM KM 

line-blobs 0 0.263 0.132 0.256 1 0.399 0.866 0.409 
Long1 0 0.445 0 0.486 1 0.011 1 0.012 
Size5 0.010 0.023 0.015 0.024 0.970 0.924 0.955 0.920 
Spiral 0 0.406 0 0.408 1 0.034 1 0.033 

Square4 0.065 0.062 0.073 0.073 0.835 0.937 0.816 0.816 
Sticks 0 0.277 0 0.279 1 0.440 1 0.504 

Three-circles 0 0.569 0.055 0.545 1 0.033 0.921 0.044 

From Table 2, we can see clearly that DSEC did best on six out of the seven 
problems, while GAC did best only on the Square4 data set. DSKM also obtained the 
true clustering on three problems. KM and GAC only obtained desired clustering for 
the two spheroid data sets, i.e. Size5 and Square4. This is due to that the structure of 
the other five data sets does not satisfy convex distribution. On the other hand, DSEC 
and DSKM can successfully recognize these complex clusters, which indicate the 
density-sensitive distance metric are very suitable to measure complicated clustering 
structure. When comparisons are made between DSEC and DSKM, the two 
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algorithms can obtained the true clustering on the Long1, Spiral, Sticks in all the 30 
runs, but DSKM can not do it on the Line-blobs and Three-circles. Furthermore, for 
the Size5 and Square4 problems, DSEC did a little better than DSKM in both the 
clustering error and the adjusted rand index. The main drawback of DSKM is that it 
has to recalculate the geometrical center of each cluster as the K-Means algorithm 
after cluster assignment which reducing the ability of reflecting the global 
consistency. DSEC made up this drawback by evolutionary searching the cluster 
representatives from a combinatorial optimization viewpoint. In order to show the 
performance visually, the typical simulation results on the eight data sets obtained 
from DSEC are shown in Fig. 3. 
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Fig. 3. The typical results on the artificial data sets obtained from DSEC 
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5   Concluding Remarks 

In this paper, we proposed the density-sensitive evolutionary clustering by using a 
novel representation method and a density-sensitive dissimilarity measure. The 
experimental results on seven artificial data sets showed that in terms of cluster 
quality, DSEC outperformed GAC, DSKM and KM in partitioning most of the test 
problems. 

The density-sensitive evolutionary clustering algorithm is a trade-off of flexibility 
in clustering data with computational complexity. The main computational cost for 
the flexibility in detecting clusters lies in searching for the shortest path between each 
pair of data points which makes it slower than KM and GAC. 
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Abstract. Intrinsically unstructured or disordered proteins are proteins
that lack fixed 3-D structure globally or contain long disordered regions.
Predicting disordered regions has attracted significant research recently.
In developing a decision tree based disordered region predictor, we note
that many previous predictors applying 20 amino acid compositions as
training parameter tend to overfit the data. In this paper we propose to
alleviate overfitting in prediction of intrinsically unstructured proteins by
reducing input parameters. We also compare this approach with the ran-
dom forest model, which is inherently tolerant to overfitting. Our exper-
iments suggest that reducing 20 amino acid compositions into 4 groups
according to amino acid property can reduce the overfitting in decision
tree model. Alternatively, ensemble-learning techniques like random for-
est is inherently more tolerant to this kind of overfitting and can be a
promising candidate in disordered region prediction.

Keywords: overfitting, intrinsically unstructured proteins, disordered
region, decision tree, random forest, amino acid composition.

1 Introduction

Proteins are linear chains composed of 20 amino acids (also called residues),
linked together by polypeptide bonds and folded into complex three-dimensional
(3D) structures. Disordered regions (DRs) in protein sequence are structurally
flexible and usually have low sequence complexity [1,2,3,4]. Physicochemically,
DRs are enriched in charged or polar amino acids, and depleted in hydropho-
bic amino acids [5,6,7]. Proteins containing DRs are intrinsically unstructured
proteins (IUPs) and DR prediction can also be called IUP prediction.

Many computational studies of predicting DRs are based on the biased amino
acid composition (AAC) of DRs, which is simple and effective [3,8,9]. However,
due to the scarce of disordered training dataset and inevitable noise during
physiological experiments, the issue of overfitting [9,10,11] has been raised. The
common tackles against overfitting in IUP prediction include attribute selec-
tion [9,12] in which only the compositions with the best separating effect are
selected; or deriving profile, which is a kind of combination of 20 AAC [11]; or
choosing a less overfitting model [13] such as SVM.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 515–522, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



516 P. Han et al.

However drawback still exists for some current approaches. Attribute selec-
tion may not always improve the IUP prediction accuracy [12]. Checking every
combination of whole feature subset might help but it is prohibitively expensive.
Less overfitting models like SVM are less accessible to domain scientists.

In our research we consider two approaches alleviating overfitting in IUP
prediction. Approach one, we present a system predicts DRs using reduced AAC
with the decision tree model. It achieves the same effect as pruning and a simpli-
fied tree structure is created by limiting the number of input attributes. With the
help of domain knowledge, this solution works similar to attribute selection but
is easier and computationally more efficient. Prediction accuracy improves and a
limited set of rules are produced, which quantifies complex amino acid composi-
tion information that is previously unknown. In the second approach, we present
a novel application of a recent model in the machine learning field called ran-
dom forest (RF) [14] in IUP prediction. A special property of RF is that it does
not overfit [15,16], which generally is not the case for numerous other machine
learning algorithms. Our results demonstrate that random forest performs much
more accurate than the decision tree and is able to stand overfitting impact.

2 Decision Tree Based IUP Prediction with AAC

We first describe how the training dataset is constructed in this section. Then
we present our decision tree learning and prediction approach.

2.1 Training Data, 20-AAC and Windowing

Different from UCI [17] machine learning repository, IUP prediction has no stan-
dard training dataset. In this study, the training datasets come from DisProt
(version 2.2) [18] and PDB-Select-25 (the Oct.2004 version) [19]. DisProt is a
collection of disordered regions of proteins based on literature description. Only
disordered segments of more than 30 residues are extracted, which includes 204
disordered segments and 28386 residues. This disordered training set is called
D-train hereafter. The ordered training set is extracted from PDB-Select-25, a
representative set of protein data bank (PDB) chains that shows less than 25%
sequence homology. We selected 366 high-resolution (< 2Å) segments of stable
structures which has no missing backbone or side chain coordinates and contains
at least 80 residues. This training set includes a total of 80324 residues, and is
referred to as O-train hereafter.

The windowing technique was introduced in [20], where a sequence of residues
including the same number of residues on its both sides predicts for the residue
at the center of the window. The AAC in a window is represented by 20 numbers
(elements), denoted by n. When a window of w residues slides along a sequence
i, the content of the sequence is represented by n× (Li −w +1) elements, where
Li is the length of sequence i. As a result the disordered training segments are
represented by

∑204
i=1 n×(Li−w+1) elements, denoted as D-M , and the ordered

training segments are represented by
∑366

i=1 n × (Li − w + 1) elements, denoted
as O-M .
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Table 1. Different groups of amino acids

Reduced AAC groups Frequency Residues

Positively charged(P) FP Lys, Arg

Negatively charged(N) FN Asp, Glu

Hydrophobic(H) FH Trp, Phe, Tyr, Leu, Ile, Val, Met

Others(E) FE Ala, Cys, Gly, His, Asn, Pro, Gln, Ser, Thr

2.2 The C4.5 Decision Tree System

There are two different kinds of decision trees: classification and regression trees.
C4.5 [21] is a popular classification tree learning system and employed as our
tree based IUP predictor.

Given a set T of D(disorder) and O(order) fragments the information content
(entropy) for T is info(T ). After T has been partitioned into T1 and T2 following
a test Fi, the information needed to classify T is infoFi(T )

The information gain info(T ) − infoFi(T ) measures the information that is
gained by partitioning T with Fi. This gain is normalized by the information
generated by the split of T (split info(Fi)) into ordered and disordered to rectify
the bias towards attributes with a large number of values. Finally, the best test
to divide a space is the one with the largest gain ratio info(T )−infoFi

(T )
split info(Fi)

.

2.3 Overfitting

We found that decision tree and AAC based IUP predictor suffers from over-
fitting after comparing results of self-test and 10-fold cross validation. The pre-
dictor achieves a nearly perfect accuracy in self-test, 99.8%; however 10-fold
cross validation decreases dramatically to 76.1%. Meanwhile, around 1100 rules
are generated after the training procedure. Many of them involving complicated
amino acid relationship have a fairly low usage according to the statistics. Some
rules are contradictory to structure biology knowledge.

3 Reduced AAC Decision Trees for IUP Prediction

To tackle overfitting, we generate reduced AAC from training data D-M and
O-M . 20 AAC in a window are grouped into four compositions, according to hy-
drophobicity and polarity properties of amino acid. They are positively charged
(P ), negatively charged (N), hydrophobic (H) and others (E), as shown in
Table 1.

The training and prediction procedure of reduced AAC is the same as that
of AAC. Decision tree is constructed from the training data with reduced AAC.
After training, every path from the root of a tree to a leaf gives one if-then
rule. To classify a query protein sequence, its corresponding reduced AAC is
calculated for a given window equivalent to training. Then, starting from the
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Fig. 1. A sample decision tree. First of all, the root node tests the frequency of hy-
drophobic residues(FH ) in a window. If it is higher than 33.3%, the frequency of nega-
tively charged residues(FN ) is tested. If this frequency is higher than 6.9%, the central
residue within that window is predicted in ordered state; otherwise a set of further
tests is performed.

root, the tree node determines which composition has to be checked and what
is the residue status. The Figure 1 is a sample decision tree.

As will be discussed in the result and discussion section, prediction accuracy of
reduced AAC is significantly higher than that of AAC. Meanwhile, the number of
rules has dropped dramatically to 150, which is much easier to be analyzed. The
length of rules is shorten and these rules reveal more explicit AAC information.

4 Random Forest Based IUP Prediction

A random forest is an ensemble of unpruned decision trees, where each tree is
grown using a subset (bootstrap) of the training dataset [14]. Bootstrap is the
training set drawn randomly from original training sets with the same number of
training samples. Each tree induced from bootstrap samples grows to full length
without pruning and in different from information gain in C4.5, the splitting
criterion of random forest is the Gini index.

If a data set T contains D and O fragments, Gini index is defined as gini(T ).
After T is split into subsets T1 and T2 with a test Fi, the gini index of the split
data is defined as giniFi(T ). The split provide the smallest giniFi(T ) is chosen
to split.

In real implement, there can be a few tens even hundreds of trees. Figure 2 is
our development approach based on random forest. The number of trees in the
forest is adjustable. To classify a query sequence, each single tree in the forest
works similar to the decision tree and gives a residue status either ordered or
disordered. As a forest forms with a large number of trees, the final classification
having the most votes is chosen.

Random forest provides a reliable estimate of error using the data that is
randomly withheld from each iteration of tree development (the “out-of-bag” or
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Fig. 2. The diagram for the development of our approach based on random forest

OOB portion). The error rate of a RF decreases as more trees are added until
a certain point but will never get larger no matter how many more component
predictors are added. Thus employing more trees will not lead to overfitting [15],
which is a desirable feature for IUP prediction.

5 Result and Discussion

In this section we compare the overfitting influence on decision tree and random
forest based IUP predictors.

5.1 Overfitting Comparison

Figure 3 are the ROC curves for the decision tree and random forest models.
The bigger the area under the ROC curve the more precise the predictor is. The
two curves on top are OOB test results of the random forest including 50 trees.
The other two curves are 10-fold cross validation results of the decision tree. We
keep 90% protein sequences to do the training then predict those 10% sequences
left. After that we shift the training and predicting sequences until all protein
sequences are predicted.
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Fig. 3. ROC curves of our system for comparing overfitting in decision tree and random
forest. The training window size of random forest and decision tree is 17 and 93 residues
respectively.

For the decision tree, smaller windows generate less accuracy results, overall
random forest has a much higher ROC curve than the decision tree. The random
forest trained on AAC performs around 5% more accurate than that trained on
reduced AAC. We also tested the relationship between prediction accuracy and
different window size and the number of trees. Generally, with an increasing
number of trees, the prediction accuracy improves. This improvement becomes
marginal and tends to stabilize at 300 trees. Increasing window sizes also im-
proves accuracy. However big windows have the problem that many residues in
the beginning and at the end of the sequence are ignored. Given different win-
dow and number of trees, results of OOB test with AAC always perform superior
than the RF model with reduced AAC. So there is no obvious overfitting caused
by AAC in the RF model.

The result of C4.5 is less accurate compared to random forest. However, the
decision tree with reduced AAC totally contains the curve of AAC. With re-
duced AAC, 10-fold cross validation has improved from 76.1% to around 80%.
Given X axis is false positive rate and Y axis is true positive rate, it means
reduced AAC makes less mistakes and finds more true DRs during IUP predic-
tion. Grouping strategy makes some compositions originally vague well estab-
lished and some compositions originally redundant simplified. So overfitting is
alleviated by grouping.

Reduced AAC also significantly decreases the number of rules generated by
the decision tree model. Our experiments showed that the rule number reduced
from 1100 to around 150. Besides by reduced AAC, each rule gets more concise
which improves the rule quality, and is much easier to be studied. As a summary,
reducing the number of input parameters can be an approach complementing
current techniques to avoid overfitting.
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6 Conclusion

In this paper we focused on reducing overfitting in IUP prediction. We have
demonstrated that overfitting can be reduced by simplifying the input param-
eters with domain knowledge, rather than complicating the model. Our initial
attribute feature AAC demonstrates that overfitting happens which decreases
the performance of the predictor. As a simple approach of grouping them ac-
cording to amino acid physicochemical property, overfitting is assuaged in our
decision tree model. Furthermore, with reduced AAC, decision tree based IUP
predictor generates significantly less amount of rules, which are simpler and more
precise.

Our second approach tackles overfitting by applying ensemble learning. Ran-
dom forest as a model proven have no overfitting has outstanding accuracy in
IUP prediction. With the simple AAC information, it performs much better
than decision tree and does not suffer from the overfitting. Apart from the same
drawback as other ensemble learning where output is less accessible to domain
scientists, random forest is a very suitable tool to be used in comparative pro-
teome studies and protein structure studies.

For future work, we will study if grouping amino acids can also help reducing
overfitting in other models for IUP prediction, such as Hidden Markov Model
and Support Vector Machine. In addition to AAC we have tested, grouping
may also help reduce the overfitting in input like Markov Chain and amino acid
replacement matrix [22]. They are all groupable with physicochemical properties.
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Abstract. Various data mining methods have been developed last few
years for hepatitis study using a large temporal and relational database
given to the research community. In this work we introduce a novel tem-
poral abstraction method to this study by detecting and exploiting tem-
poral patterns and relations between events in viral hepatitis such as
“event A slightly happened before event B and B simultaneously ended
with event C”. We developed algorithms to first detect significant tem-
poral patterns in temporal sequences and then to identify temporal re-
lations between these temporal patterns. Many findings by data mining
methods show to be significant by physician evaluation and match with
reported results in Medline.

1 Introduction

Recently, a precious source for hepatitis study has been given by Chiba university
hospital to the data mining community [6]. The hepatitis temporal database
collected during twenty years (1982-2001) containing results of 771 patients on
983 laboratory tests. It is a large temporal relational database consisting of six
tables of which the biggest has 1.6 million records. In last few years, six problems
P1-P6 posed by physicians in hepatitis study using the above database have
attracted different research groups.

Temporal abstraction (TA) is an approach to temporal pattern detection that
aims to derive an abstract description of temporal data by extracting their most
relevant features over periods of time [2]. Different from the regular data pro-
cessed by the other TA methods [3], the hepatitis data was collected irregularly
in long periods, and none of the above methods can be applied to.

Our early work [4] developed a supervised TA technique called abstraction
pattern extraction (APE) whose task is to map (to abstract) a given fixed length
sequence into one of predefined abstraction patterns. In this work we develop
a unsupervised TA technique called temporal relation extraction (TRE) whose
task is to find temporal relations in terms of temporal logic [1] among detected
temporal patterns, and use these relations together with abstraction patterns to
solve problems P1-P2.
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Fig. 1. Temporal relations in Allen’s temporal logic

2 Hepatitis Data and Temporal Basic Patterns

Our focus in this work is on problems P1-P2 among six problems posed by
physicians to challenge the KDD community [6]: (P1) Discover the differences in
temporal patterns between hepatitis B and C (HBV and HCV); (P2) Evaluate
whether laboratory tests can be used to estimate the stage of liver fibrosis (LC
(liver cirrhosis) vs. nonLC (non liver cirrhosis)).

For each patient Ok the measured values ei on a medical test Aj over time
are an event sequence Sjk = (e1, t1), (e2, t2), ..., (en, tn). In case of the hepatitis
data, sequences Sjk can be long as observed during twenty years. The starting
point of our work is the view on temporal patterns that are a rather broad
concept and defined differently in temporal data mining. We particularly view
temporal patterns in terms of 13 kinds of temporal relations (Figure 1) between
two events A and B summarized by Allen in the temporal logic [1]. In [5] a
temporal pattern is considered as a set of states together with their interval
relationships described in the Allen’s interval logic [1]. We consider a temporal
pattern as a conjunction/relation of temporal basic patterns (hereafter called
basic patterns). In the hepatitis study, we selected 24 typical tests from 983
tests – based on the opinion of physicians and the preprocessing/analysis results
of different research groups – divided into two types:

1. Short-term changed tests (STCT): GOT, GPT, TTT, and ZTT that charac-
terize liver inflammation and their values can highly increase in short terms
(within several days or weeks) when liver cells are destroyed by inflammation.

2. Long-term changed tests (LTCT): These characterize the liver reserve capac-
ity and change smoothly their values in long terms (within months or years)
when their reserve capacity becomes exhausted. They are divided into two
subgroups: (a) Going down: T-CHO, CHE, ALB, TP, PLT, WBC, and HG;
(b) Going up: D-BIL, I-BIL, T-BIL, and ICG-15.

Basic patterns in STCT sequences: The abstraction states of STCT include
N (normal region), H (high), VH(very high), XH (extreme high), L (low), VL
(very low), and XL (extreme low). We call a peak the event that has its value
suddenly much higher than that of its neighbors. We define the temporal basic
patterns (BP) of a STCT the subsequence characterizing a inflammation period
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1. For each object Ok, from the event sequence Sjk on each attribute Aj , find all pos-
sible significant abstracted temporal basic patterns BP on corresponding temporal
intervals T .

2. Consider all temporal basic patterns found from all attributes for each object Ok

and detect all significant temporal relations between those temporal basic patterns
in terms of temporal logic. Represent each object Ok as a graph or a transaction
of temporal relations.

3. Using data mining methods to find temporal rules from the collection of graphs or
transactions.

Fig. 2. Framework of mining hepatitis data by temporal relation extraction (TRE)

where the sequence suddenly has the high or very high state and with/without
peaks. These basic patterns have the form:

< state of test > = high value or
< state of test > = high value & peaks

where < state of test > denotes the abstraction state of the test sequence
and the test name, and high value is one value in {H, V H, XH}. For example,
“GOT = XH & peak” means “GOT is in extremely high state with peaks”.

Basic patterns in LTCT sequences: The abstraction states of STCT include
N (normal), H (high), L(low). We define the temporal basic patterns (BP) of a
LTCT the subsequence characterizing the change of states between two state
regions. These basic patterns have the form:

< state of test > = state1 > state2
where state1 and state2 are two different values in {N, H, L} and “>” stands
for “change the state to”. For example, “ALB = N > H”, or more informally
“ALB = NormalToHigh” means “ALB changes from normal to high state”.

Denote by (BP, T ) a temporal basic pattern BP that occurs in a time interval
T = (ts, te) where (ts, te) = t1, t2, ..., tn. Examples of temporal basic patterns
are “ALB decreases from normal to low state”, “GOT has many peaks in very
high state”. In the context of temporal data, we consider only temporal patterns
happening in some period of time, and can implicitly write patterns BP instead
of (BP, T ). As defined above, temporal patterns viewed as temporal relations
between temporal basic patterns are compound statements such as “Pattern A
happened before pattern B and B happened during pattern C”.

3 Finding Temporal Patterns

This section describes solutions to the problem of finding temporal basic patterns
(step 1) and complex temporal patterns in form of temporal relations (step 2) in
the framework. The key issue in these steps is that it is hard to determine exactly
interval boundaries T in which temporal basic patterns BT occur while deter-
mining temporal relations between temporal basic patterns requires comparing
their boundaries.
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Algorithm 1. Detecting basic patterns in STCT sequences

Input: A sequence Sjk of a test data from a STCT Aj

Output: Basic patterns characterizing the inflammation in the STCT.

1. Call a data point (ei, ti) a peak if ei > ej + threshold where (ej , tj) is any

neighbor of (ei, ti).

2. Find the most left peak (ei, ti) from the sequence. Set the CurrentPeak = (ei, ti),

the starting and ending boundaries of the period are ts = ti − 1 and te = ti + 1.

3. Find the closest peak on the right of CurrentPeak.

4. If (tj < te) then set te = tj + 1, CurrentPeak = (ej , tj) and return to step 3.

5. If (tj ≥ te) then

(a) Calculate the base state BS (without considering peaks) of the interval

(ts, te),

(b) Form the abstracted temporal event “BS&P” in this interval,

(c) Set a new period with the starting and ending boundaries: ts = ti − 1 and

te = tj + 1. Set CurrentPeak = (ej , tj) and Return to step 3.

Fig. 3. Finding temporal basic patterns in a STCT sequences

3.1 Finding Basic Patterns

After smoothing data, we detect periods of state changing for both STCT and
LTCT based on the following criteria: (a) The first point and last point belong
to different states; (b) States of the first point and last point are stable for at
least 6 months; (c) Intervals between consecutive crossing pairs must less than
parameter θ1 or intervals between two crossing pairs are less than θ3 and there
are at least MinPoint crossing pairs between them; (d) The interval between two
consecutive crossing pairs must be less than θ2. By the statistics and visualization
of the data, together with discussion with physicians, we choose θ1 = 12 × 4
weeks, θ2 = 3×12×4 weeks and θ3 = 5×12×4 weeks. basic patterns for STCT
and Algorithm 2 in Figure 4 is for LTCT.

3.2 Finding Temporal Relations

The step 2 in our framework aims to build a graph or a transaction of possible
temporal relations from each object (patient) Ok starting from all of its de-
tected events. A basic algorithm to do this task was originally given in [1] using
constraint propagation technique (the transitive property of temporal events). In
this work on hepatitis data, due to the specific features of the data, we develop an
appropriate technique based on: (1) Soft matching: at the boundaries of intervals
for relations “equal ”, “meet”, “start”, “finish”, and “overlap”. The boundary
points of two events are considered the same (time) if their absolute difference is
smaller than a given threshold, or considered as different in ”overlap” relation if
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Algorithm 2. Detecting basic patterns in LTCT sequences

Input: A sequence Sjk of a test data from a LTCT Aj

Output: Basic patterns characterizing the state change periods in the LTCT.

1. Detect crossing:

If state(f(t)) �= state(f(t + 1)) then t is a crossing point.

2. Merging crossing points:

– If length(crossing point i, crossing point i+1) ≤ θ1 then merges i and i+1.

– If length(crossing point i, crossing point i + 1) > θ2 then separate i and

i + 1.

– If length(crossing point i, crossing point i + 1) < θ3 and j − i > n then

merge i and j.

3. Interval detecting: For each crossing point (an interval of merged crossing

points), if it is stable for 6 months before and after, then this crossing point (the

interval) is a change period.

Fig. 4. Detecting basic patterns in a LTCT sequences

their absolute difference is greater than a given threshold. (2) “Slightly” is a key
constraint for the “before” relation, i.e., we consider only relations of the form
“A slightly before B” viewed by some threshold.

4 Mining Abstracted Data and Evaluation

Our work follows four steps: (1) Created a transactional database for each hep-
atitis problem by proposed algorithms described in Section 3; (2) Used software
CBA1, our LUPC2 and See5 to find rules from the transactional database with
default parameters; (3) Filtered statistically significant rules by hypothesis test-
ing; (4) Analyzed the findings with/by physicians.

Rules for hepatitis types HBV and HCV: Using CBA, we were able to
generate a set of 238 rules, in which 20 rules for HBV and 218 rules for HCV.
The overall accuracy of the prediction rule sets on the training data is 89.34%.
Contingency table of the rule set on training data is as follows.

Predicted HBV HCV

Correct HBV 208 30
HCV 35 337

Table 1 shows the set of typical rules for describing HBV and HCV. We
can observe the component test items in the temporal events exhibit different
temporal patterns for each of HBV and HCV as follows:
1 http://www.comp.nus.edu.sg/∼dm2
2 http://www.jaist.ac.jp/ks/labs/ho/Projects.htm
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Observation 1: Even when there are temporal relations between GOT and GPT,
even both GOT and GPT have peaks in High region, the rules in which ALP oscil-
late between Normal and Low are for HBV while the ones in which ALP oscillate
between High and Normal are for HCV. Some rules support this observation are
the numbers: 145 (ALP changes from Low to Normal etc., class HBV), 206 (ALP
changes from Normal to Low etc., class HBV), 20 (ALP changes from High to Nor-
mal, class HCV) and 202 (ALP changes from Normal to High etc., class HCV).

Observation 2: Among patients who have peaks on both GPT and TTT in High
regions, T-BIL decreases from High to Normal in HBV patients, while T-BIL
decreases Normal to Low in HCV patients. Some rules support this observation
are the numbers: 196 (class HBV), 185 (class HCV), 203 (class HCV), 167 (class
HCV) and 25 (class HCV).

Algorithm 3. Find a transaction or a graph of temporal relations

Input: The set of all associated events to one object Ok

Output: A transaction or graph of temporal relations.

1. To build a transaction

– Initialize the transaction as an empty set.

– Check all pairs of events for each temporal relation type. If a pair matches

the relation, add this relation to the transaction.

2. To build a graph

– Build the transaction of relations as in the previous step.

– Build the graph by adding each existing temporal relation to the graph when

considering the events as vertices and relations as edges.

Fig. 5. Finding a transaction/graph of temporal relations

Table 1. Some typical rules for HBV and HCV

RID Class Cov. Conf. Rule Conditions

145 B 3 100.0% ALP=LowToNormal & GOT=Normal

206 B 20 80.0% ALP=NormalToLow & GOT=High Ends GPT=High

20 C 13 100.0% ALP=HighToNormal & GOT=High Starts GPT=High

196 B 12 83.3% T-BIL=HighToNormal & GPT=High Ends TTT=High

185 C 7 85.7% T-BIL=NormalToHigh & GPT=Normal

217 C 139 77.0% GPT=High Before TTT=High & TTT=High Before
ZTT=High

176 C 10 90.0% GPT=Normal & TTT=High Starts ZTT=High

151 B 3 100.0% TP=NormalToLow Before ZTT=High & TTT=High
Starts ZTT=High

8 C 18 100.0% TP=NormalToHigh & TTT=High Before ZTT=High

2 C 23 100.0% TP=HighToNormal & TTT=High Before ZTT=High
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Table 2. Some typical rules for (non-) liver cirrhosis

RID Class Cov. Conf. Rule Conditions

1 NonLC 10 100.0% CRE=NormalToLow & TTT=Normal

2 NonLC 10 100.0% T-BIL=NormalToLow & LDH=NormalToLow &
GOT=High & TTT=High

3 NonLC 10 100.0% T-BIL=NormalToLow & ZTT=High &
LDH=NormalToLow & TTT=High

5 NonLC 8 100.0% T-BIL=NormalToLow & ALP=NormalToHigh &
GOT=High & TTT=High

9 NonLC 7 100.0% ZTT=High Before GPT=High & ALP=NormalToHigh &
TTT=High Before GPT=High

8 NonLC 7 100.0% ALP=NormalToHigh Before TTT=High & ZTT=High

13 NonLC 6 100.0% ZTT=High & T-BIL=HighToNormal & GOT=High &
TTT=High

26 LC 4 100.0% I-BIL=HighToNormal & ALB=LowToNormal

27 LC 4 100.0% TTT=Normal & ALB=LowToNormal

37 LC 3 100.0% ALB=NormalToLow & LDH=NormalToLow

38 LC 3 100.0% T-BIL=LowToNormal & ALP=NormalToHigh &
TTT=High Before GPT=High

Observation 3: Patients who have temporal relations of peaks in both TTT
and ZTT have different state change on TP. In case of HCV , TP moves from
High to Normal, meanwhile it changes from Normal to Low for HBV. Some rules
support this observation are the numbers: 151 (class HBV), 8 (class HCV) and
2 (class HCV).

Matching with Medline abstracts: We looked for some reported results from
medical researches to find evidences for and against our findings. We developed a
simple search program integrating both keywords and synonyms in the query.

Murawaki et al [7] showed that the main difference between HBV and HCV
is that the base state of TTT in HBV is normal, while that of HCV is high. We
examined the rule sets and found that our rules are more complicated than that
as they also include various temporal relations. However, there are many rules
of very high coverage and high confidence, TTT appeared to be mostly in High
state for HCV but in Normal state for HBV. We showed some rules support
this finding in the table with numbers: 219, 227 226 and 193. This means that
even though our rules are not exactly identical to reported knowledge of medical
research, such knowledge is confirmed true in our rule set under certain condition.

Rules for liver cirrhosis: LC and non-LC: Using CBA, we were able to
generate a set of 61 rules, in which 21 rules for LC and 40 rules for non-LC.
The overall accuracy of the prediction rule sets on the training data is 96.30%.
Contingency table of the rule set on training data is as follows.

Predicted LC non-LC

Correct LC 37 0
non-LC 4 67
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Some rules in the set can be seen from the Table 2. Notions in the table
are identical to that in Table 1. From the rule sets, we observed the following
phenomena:

Observation 1: There are more rules for non-LC patients and most of them
are of higher precision and coverage. This conforms to the common knowledge
of experts that LC is harder to detect.

Observation 2: There were some long term changed test items that appeared
mostly in LC patients, namely I-BIL and ALB. The following rules for LC pa-
tients support this observation: (Rule 15) I-BIL changes from normal to low
(coverage: 5 patients, precision: 100%); (Rule 26) I-BIL changes from high to
normal and ALB changes from low to normal (coverage: 4 patients, precision:
100%); (Rule 27) ALB changes from low to normal and TTT has peaks in nor-
mal state (coverage: 4 patients, precision 100%). From this, we may induce that
I-BIL and ALP change their states mostly in LC patients, not in non-LC ones.
They can be good indicators for predicting liver cirrhosis patients.

5 Conclusion

The main contribution of this work is a temporal relation extraction method
that allows us to well abstract hepatitis data and discover interesting temporal
patterns. It is believed that the temporal relation extraction method, when ap-
propriately combined with numerical conditions or domain knowledge in other
formalisms, can be well applied to other medical data mining tasks.
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Abstract. In this paper, we address the optimization problem for huge 
Question-Answer (QA) pairs collection based Chinese FAQ-Finder system. 
Unlike most published researches which leaned to address word mismatching 
problem among questions, we focus on more fundamental problem: ranking 
function, which was always arbitrarily borrowed from traditional document 
retrieval directly. One unified ranking function with four embedded parameters 
is proposed and the characteristics of three different fields of QA pair and 
effects of two different Chinese word segmentation settings are investigated. 
Experiments on 1,000 question queries and 3.8 million QA pairs show that the 
unified ranking function can achieve 6.67% promotion beyond TFIDF baseline. 
One supervised learning approach is also proposed to optimize ranking function 
by employing 264 features, including part-of-speech, and bigram co-occurrence 
etc. Experiments show that 7.06% further improvement can be achieved. 

Keywords: FAQ-Finder, Ranking Function, Supervised Learning. 

1   Introduction 

As one of the major approaches for question answering system construction, FAQ-
Finder system answers new question by searching in a collection of previously-
answered questions. Many researches have been carried out (e. g., [1, 2, 3, 4 and 5]). 
To build FAQ-Finder system needs consider two problems: 1) how to collect large 
scale and high quality Question-Answer (QA) pairs; and 2) how to retrieve relevant 
QA pairs given new question query. 

To solve the collection problem, two resources come into researchers’ sight: the 
huge accumulations of FAQ pages on internet (e.g., [2]) and the significantly 
increased community-based question and answer services on the web where people 
answer other people’s questions (e.g., [3]). For example, the service on http:// 
zhidao.baidu.com has accumulated more than 8 million QA pairs in Chinese with 
considerable quality, which is the start point of this paper. 

For the second retrieval problem, lots of research work has been carried out, but 
most of them just focused on how to solve the word mismatching problem among 
questions, including utilizing lexical semantics dictionaries such as WordNet [1], 
conducting question type analysis [4] and employing machine translation technique 
[3] etc. Little research work paid attention to the more fundamental problem: ranking 
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function. To our knowledge, only ranking functions such as TFIDF (e.g., [1]) are 
arbitrarily borrowed from traditional document retrieval without any customizations, 
which is obviously an unfortunate neglect. Therefore, based on the analysis of 
differences between FAQ-Finder and traditional document retrieval, we pursue to 
improve FAQ-Finder system by optimizing the ranking function in this paper. 

The rest of the paper is organized as follows: section 2 describes our experimental 
collection. Unified ranking function approach and supervised learning approach are 
proposed in section 3 and section 4 separately. Finally, we conclude in section 5. 

2   Collections 

Baidu is one of the leading commercial search engines in China, and its question and 
answer service (http://zhidao.baidu.com) is also very popular. Over time, this service 
has built up a very large archive of QA pairs written in Chinese. The experiments in 
this paper are based on subsets of this archive (referred as Zhidao hereafter). 

2.1   QA Pair Archive and Query Set 

Table 1 shows a QA pair example from Zhidao archive. The question part has two 
fields - question title and question description. Question title is a brief description of 
user’s question, and the question description is an optional field that describes the 
question title in more detail. The answer part always includes several answers, among 
which one and only one best answer is marked by the question original inquirer. In 
our experiment, we only consider the best answer and discard all the other answers. 
For brief, question title, question description and best answer are referred as Q, D, and 
A respectively hereafter. For more examples, please refer http://zhidao.baidu.com. 

Table 1.  A typical QA pair in the Zhidao archive (Translated from Chinese) 

Question title How long can PC keep running? 
Question description I always need download something all night.  
Best answer Now PC is robust enough to keep running for more than one week. 
Other answer PC can keep running but the speed will drop little by little. 

We successfully download 3.9 million QA pairs, and split them into two parts 
according the posting time of each QA pair. The first part contains 3.8 million QA 
pairs which are posted before May 8, 2006, and the other part contains about 0.1 
million QA pairs posted after that date. We utilize the first part as retrieval source in 
our experiments, referred as BaiduSet hereafter. The other part is employed to 
generate the experimental query set. The purpose of separation according posting time 
is to simulate searching in the existed archive with new question query. Here we 
simply employ some word frequency based approach to select 2000 common 
questions, and employ one assistant to pickup 1000 meaningful questions to build the 
query set, referred as QuerySet hereafter. For brief, the query is referred as P 
hereafter. The average length of Q, D, A and P is 31.9, 80.6, 255.2 and 24.7 bytes 
respectively. 
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2.2   Relevance Judgment 

To verify the performance of each retrieval technique, we first construct one 
evaluation dataset according following steps: 

1) Index BaiduSet on the Q, D and A field separately with Lucene.NET [6]; 
2) For each query P in QuerySet: 

a) Conduct thrice retrievals on each of above indices; 
b) Pool the top 100, 70 and 30 QA pairs from retrieval results on Q, D and 

A indices respectively. The result is referred as the pool of P; 
c) Do manual relevance judgment between P and each QA pair in its pool. 

In manual relevance judgment, we consider two aspects: whether the question of 
the QA pair is semantically identical or similar to P and whether the A field of this 
pair is useful enough. Six grades of relevance scores are defined, as listed in Table 2.  

Table 2. Specification of six grades of relevance scores for QA pair given P 

Score Specification 
5 Semantically identical question and its answer is just what the inquirer thirsts for 

4~3 Similar question and its answer is useful 
2~1 Relevant question and its answer contains some relevant information 

0 Not relevant question or its answer does not contain any useful information 

We regard one QA pair is useful to P iff its relevance score is equal or higher than 
3. According to this specification, we employed four assistants to annotate the 
relevance score for each of the QA pair in all the pools of 1000 queries. Figure 1 
presents some distribution information about the relevance scores. 

 

Fig. 1. Distribution of relevance scores. Left and right parts show the number of queries 
grouped by the maximum relevance score and by the number of useful QA pairs respectively. 

2.3   Measure Criterion 

Since multiple grades of relevance scores are defined, according to Kazuaki Kishida’s 
work [7], we employ one multi-grades relevance indicator: the precision-oriented 
modified sliding ratio vS’, which is defined as following formula: 
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where xk indicates relevance score of the kth QA pair in a ranked pool, and yk 
represents the relevance score of kth QA pair in the ideal ranking. Average vS’ score 
(referred as vS’ too) on QuerySet is defined as the measure criterion for each FAQ-
Finder system. Because only QA pairs in the pool are manually annotated, for justice, 
the vS’ is only calculated on the QA pairs in each P’s pool after they are re-ranked 
according corresponding approach, regardless of all the other un-annotated QA pairs. 

3   Unified Ranking Function Approach 

3.1   Characteristics of FAQ-Finder 

To retrieve relevant QA pair from millions of QA pairs given new question query is a 
similar but different task comparing with traditional document retrieval. The 
differences include: 

1) Different query: the query for FAQ-Finder is a natural language question 
sentence, while for document retrieval the query is just one or several keywords. 
Therefore if TFIDF or BM25 is borrowed from document retrieval for FAQ-
Finder, some extra processings are expected, such as distinguishing the actual 
keywords from syntactic connecting or auxiliary words; 

2) Different corpus to be retrieved from: the corpus for traditionally document 
retrieval is article or html pages, which always contain at least hundreds of 
words. But in FAQ-Finder, the corpus is QA pair consisted of 2~3 fields. There 
are several statistical differences between traditional document and QA pair, 
such as length distribution and the chasm between query and corpus; 

3) Different essential difficulties: for traditional document retrieval, the most 
difficulty lies in that too much documents which cover all queried keywords can 
be found and therefore they should be ranked according their popularities or 
other information. While in FAQ-Finder, query provided in whole sentence may 
lead to empty result in finding QA pair which contains all the words in query. 
Therefore how to evaluate the weight of each matched word and how to expand 
keywords to retrieve more candidates are some key problems for FAQ-Finder. 

3.2   Unified Ranking Function 

Based on the above analysis, initialized from traditional TFIDF ranking model, we 
design one unified ranking function for FAQ-Finder as follows: 
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where, P denotes the query and F denotes one field of QA pair, such as Q, D, and A. 
tf(w, F) denotes the term frequency of word w in document F. N is the total number of 
QA pairs and n(w) is the total number of QA pairs that contain w. idfw is the inversed 
document frequency of w. idfmax denotes the maximum value of idf among all the 
words in F. α,β,γ and θ are four embedded parameters which are designed to control 
four different influences to the ranking function: 

1) α controls in what degree we care about the repeated word in F; 
2) β controls in what degree we emphasize the word with high idf value; 
3) γ controls in what degree we care about the words not found in P but in F; 
4) θ controls in what percentage words with lowest idf value are discarded; 

The default values for these four parameters are 1.0, 1.0, 1.0 and 0.0 respectively. 
Note that the unified ranking function will reduce to TFIDF ranking function if all the 
four parameters are all set as default values. The influences of the four parameters 
will be investigated later. 

3.3   Experimental Settings 

To investigate the effect of word segmentation on Chinese FAQ-Finder, we perform 
two series of experiments: one splits all text (P, Q, D and A) into single Chinese 
characters, and the other splits all text by employing one word segmentation system 
consisted of a dictionary of about 60,000 words, word frequency based segmentation 
disambiguation algorithm, and automatic proper name recognition. The word 
segmentation system achieves about 97% word segmentation accuracy evaluated on 
traditional newspapers corpus. These two experimental settings are referred as 
Dict_0K and Dict_60K respectively hereafter. And to evaluate each contribution of Q, 
D, and A field, we carry out experiments on each of the three fields separately. 

3.4   Experimental Results 

First we investigated the influences ofα,β,γand θ by setting each parameter value as 
0.0 to 2.0 with 0.1 step. Six series of experiments were conducted under experimental 
setting combinations of three fields and two word segmentation settings. Figure 2 is 
the vS’ curves against different values for each parameter. From Figure 2, we can see 
that it is possible to improve the performance by tuning the four parameters in unified 
ranking function. By employing Hill-Climbing algorithm [8], we optimized four 
parameters under each experimental setting and evaluated the improvements by 4-
folds cross validation. Table 3 shows the improvements. 

From the experimental results we can conclude: 

1) Retrieval based on Q is significant better than D and A field; 
2) Between the two word segmentation settings, different trends can be observed 

on the three fields of QA pair. Dict_0K contributes more on Q field than 
Dict_60K, while the trend reverses both on D and A fields;  

3) Okapi (just BM25) is a little worse than TFIDF while the Language Model 
(LM) based retrieval model is the worst; 

4) The optimized value of each parameter is quite rational and generalizable: β 
should be a little higher than 1.0, which means the word with high idf value should be 
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emphasized in FAQ-Finder;γ should be a little smaller than 1.0, which means we 
should care but can not care too much about those unmatched words between P and 
QA pair;θ should be 0.0 or a little higher than 0.0, which indicates that in most case all 
words in query contribute to FAQ-Finder;α should be less than 1.0 for Q and D, which 
denotes repeated words should not be considered too much. But in A, the trend is 
reversed, which means that the term frequency in answer field is useful; 

5) Significant improvement (6.67% improvement with p <= 0.000539 under Q 
and Dict_0K setting) can be achieved. 

 

Fig. 2. The curves of vS’ on six experimental settings with different α,β,γ and θ values. The title 
on each small figure denotes the experimental setting. 

Table 3.  vS’ of each ranking function under six experimental settings specified by the first two 
columns. The “Baseline” column denotes unified ranking function with the four parameters set 
as their default values (just TFIDF), and the “Optimized” column contains the performances 
achieved by optimizing four parameters. The last four columns present the value setting for 
each parameter in formation of minimum~maximum obtained in the 4-folds optimization. 

Field Dict. Okapi LM Baseline Optimized α β γ θ 
Q 0K 0.3310 0.0333 0.4170 0.4448 0.3~0.4 1.0~1.0 0.6~0.7 0.0~0.0 
Q 60K 0.3589 0.0162 0.4105 0.4270 0.2~0.4 1.0~1.1 0.5~0.7 0.0~0.2 
D 0K 0.1056 0.0156 0.1852 0.1377 0.3~0.8 0.9~1.3 0.6~0.9 0.0~0.2 
D 60K 0.1574 0.0099 0.1966 0.2019 0.4~0.8 1.2~1.6 0.6~0.8 0.0~0.2 
A 0K 0.2310 0.0117 0.2383 0.2658 1.1~1.4 1.0~1.4 0.6~0.8 0.0~0.2 
A 60K 0.2958 0.0055 0.3237 0.3373 1.3~1.7 1.0~1.1 0.6~0.7 0.0~0.2 

4   Supervised Learning Approach 

4.1   Supervised Ranking Function 

Intuitively, lots of features can be extracted from QA pair and query P to contribute 
the ranking procedure in FAQ-Finder, and here we just employ simple linear model to 
utilize various features. Assume a vector of features is extracted, noted as 

T
nxxX ),...,( 1=

v , where n is the dimension of feature vector. Then given a vector of 

feature weights ),...,( 1 nwwW =
v , the final ranking function is simply defined as: 
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Given the linear model and an annotated training corpus, there are also various 
supervised learning approaches to optimize the weight vector. Similar to the work of 
Hu et al. on entity search [8], Hill-Climbing algorithm is employed for training here. 

4.2   Features 

We totally extracted 264 features for each P and QA pair, as shown in Table 4. 

Table 4. Features extracted from each P and QA pair 

Group ID Specification
P_Q 0 Unified_rank_score(P, Q) according formula (4)

1 The numerator of unified_rank_score(P, Q) according formula (4)
Sc 2 Number of text string exactly matched word between P and Q

3 Feature 2 normalized with the total length of P and Q

Tyc 4~7
Repeat features 0~3 but substituting exact string matching with semantically
matching based on TongYiCiCiLin [9] (similar to [5])

Ed 8~11
Repeat features 0~3 but substituting exact string matching with loose matching
based on edit distance

12 Does the word with highest idf in P occur in Q?
13 Does the content word with highest idf in P occur in Q?

Top 14~19
Does the word with highest idf in P occur in Q? The part-of-speech of the
word is limited in time noun, common noun, and verb etc respectively.

20 How many quoted words in P are found in Q?
2Gram 21~32 Repeat features 0~11 by substituting unigram matching with bigram matching

D 33~65 Repeat features 0~32 but substituting Q with D
A 66~98 Repeat features 0~32 but substituting Q with A

QDA 99~131 Repeat features 0~32 but substituting Q with combined text of Q, D, and A
Dict_
60K

132~
263

Repeat features 0~131 but substituting the word segmentation setting as
Dict_0K. Features 0~131 are extracted under Dict_0K setting 

 

4.3   Experimental Results 

Experimental results (4-folds cross validation) of supervised learning approach are 
presented in Table 5 and Figure 3. From these experimental results, we can conclude 
that 1) supervised learning is an efficient approach to utilize various features in 
Chinese FAQ-Finder, and 2) there truly exist quite a lot of features that can contribute 
the retrieval performance. 

Table 5.  Experiment results of supervised learning approach 

IDs of Included Features vS’ (improvement) Sign Test 
0 (baseline of retrieval on Q field only) 0.4448  
0~32 and 132~164 (all features related to Q only) 0.4704 (+5.76%) p <= 2.82e-14 
0,33,66, and 99 (baseline of retrieval on all fields) 0.4803  
0~263 (all features) 0.5142 (+7.06%) p <= 4.39e-11 
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Fig. 3. The curves of vS’ against sequently added features under Dict_0K and Dict_60K 

5   Conclusion 

We construct a Chinese FAQ-Finder system based on 3.8 million QA pairs in this 
paper. Unlike most published researches which lean to address word mismatching 
problem among questions, we focus on how to optimize the fundamental ranking 
function and two approaches are proposed. First we design a unified ranking function 
with four parameters for Chinese FAQ-Finder which achieves 6.67% (p <= 0.000539) 
improvement. Second, supervised learning approach together with 264 features 
extracted from the input query and QA pair are employed to further optimize ranking 
function, and 7.06% (p <= 4.39e-11) significant improvement is achieved again. 
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Abstract. Convolution kernels, constructed by convolution of sub-kernels 
defined on sub-structures of composite objects, are widely used in 
classification, where one important issue is to choose adequate sub-structures, 
particularly for objects such as trees, graphs, and sequences. In this paper, we 
study the problem of sub-structure selection for constructing convolution 
kernels by combining heterogeneous kernels defined on different levels of sub-
structures. Sub-kernels defined on different levels of sub-structures are 
combined together to incorporate their individual strengths because each level 
of sub-structure reflects its own angle to view the object. Two types of 
combination, linear and polynomial combination, are investigated. We analyze 
from the perspective of feature space why combined kernels exhibit potential 
advantages. Experiments indicate that the method will be helpful for combining 
kernels defined on arbitrary levels of sub-structures. 

Keywords: SVM, convolution kernel, text mining, relation extraction. 

1   Introduction 

Most of machine learning methods require samples to be represented as feature 
vectors, with elaborate exploration of features. However, explicit extraction of 
features has very high computation cost in some cases, for instance, when samples are 
trees, graphs, or sequences [1]. Kernel functions can directly perform computation in 
the sample space. Kernel representation has released classifiers from the heavy 
burden of feature exploration.  

For composite objects, the way of defining kernels is to decompose the object 
into its sub-structures or parts, then to define sub-kernels on their sub-structures, 
and finally to convolute the sub-kernels. Kernels constructed by this way are termed 
convolution kernels [2]. Most convolution kernels are problem-specific, depending 
on the means of decomposing of an object into its sub-structures. The key issue is to 
determine the decomposition and to choose adequate sub-structures of composite 
objects. The decomposition will be crucial to the performance of learning 
algorithms because different sub-structures have quite different powers of 
expressiveness. However, the optimal sub-structures are problem-specific and can 
only be validated experimentally. 
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In this paper, we propose a method to overcome the problem of sub-structure 
selection by combining heterogeneous kernels defined on different levels of sub-
structures. Each level of sub-structure reflects its own angle to view the object and 
combined kernels can incorporate their individual strengths. Two types of 
combination, linear and polynomial combination, are studied. From the perspective of 
feature space, we analyze why combined kernels exhibit potential advantages. 
Experiments on extracting relations from bioscience texts indicate that the method is 
helpful for combining kernels defined on arbitrary levels of sub-structures.  

The rest of the paper is organized as follows: in Section 2, the background of 
kernel functions and related work is presented; in Section 3, two means of 
combination (linear and polynomial) is introduced; in Section 4, the application of 
extracting relations from bioscience texts is described; in Section 5 comparative 
experiments are shown. Finally, conclusion is drawn in Section 6. 

2   Kernel Function and Its Related Work 

A function that calculates the inner product in a feature space is a kernel function. A 
kernel function defines a mapping function from the sample space X to a feature space 
F (φ: X→F), which transforms implicitly a sample into an N-dimensional (N may be 
infinite) feature vector, as follows:  

1( ) ( ( ), , ( )) ( ( )),  1, ,N ix x x x for i Nφ φ φ φ= = =L L . 

Recently, kernel-based methods for text mining tasks have been widely studied 
 in machine learning communities. There has been tree kernel for parsing, tagging  
by [3], and relation extraction by [4], string kernel or sequence kernel for text 
categorization [5], path kernel for relation extraction [6]. These kernels each employ a 
single sub-structure such as sub-trees or sub-sequences.  

However, few efforts have been attended on kernel combination. Joachims et al 
combined two kernels defined on content and hyper-link information respectively [7]. 
Lanckriet et al proposed a method for combining kernel representations from multiple 
data sources in an optimal fashion [8]. Zhao and Grishman presented a kernel-based 
approach by combining clues from different levels of syntactic processing [9]. 
However, previous work surveyed here is quite different from ours in that they 
combine different information sources in nature while our method combines different 
kernel representations on the same information source. Our combination is made by 
representing the same information at different granularities.  

3   Kernel Combination 

In the real world, the same composite object can usually be decomposed into different 
levels of sub-structures. High levels of sub-structures may be accurate for expressing 
the information, resulting in a high precision but low recall for classification, while 
low levels of sub-structures may lead to a high recall but low precision. However, it is 
generally difficult to determine the optimal sub-structure. If the characteristics of 
different levels of sub-structures can be integrated together, combined kernels will 
potentially exhibit advantages over single kernels. For simplicity, in this paper we 
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only consider the combination of two kernels. However, the methodology is also 
applicable for combining three or more kernels. 

3.1   Linear Combination  

Given two kernels K1 and K2 defined on object x and y, which are defined on different 
levels of sub-structures respectively, the linear combination of them is simply defined 
as follows:  

1 2( , ) * ( , ) (1 )* ( , ), 0K x y K x y K x yβ β β= + − ≥% . (1) 

It is easy to prove that if K1 and K2 are kernel functions, the combined function is also 
a kernel function for any non-negative β.  

From the definition of kernel function, we know that a kernel function can be 
represented as a generalized inner-product, as follows:  

( , ) ( )* ( )i ii
K x y x yφ φ=∑ . (2) 

Suppose we have 
1( , ) ( )* ( )i ii

K x y x yφ φ=∑  and 
2( , ) ( )* ( )j jj

K x y x yϕ ϕ=∑ , the combined kernel 

defined by Formula (1) can be formulated as below:  

( , ) ( )* ( ) 1 ( )* 1 ( )i i j ji j
K x y x y x yβφ βφ βϕ βϕ= + − −∑ ∑% . (3) 

The feature space of the combined kernel is expanded to the following:   

1 2 1 2( , , ..., 1 , 1 , ...) : X Fβ φ β φ β ϕ β ϕΦ = − − a . (4) 

For the perspective of feature space, linear combination exploits a new feature 
space by a weighted union of the original two feature spaces. Therefore, the combined 
kernel is potentially superior to each single kernel. This analysis is very intuitive and 
there is a lack of theoretical proofs. Most convolution kernels are problem-specific 
and imply implicit feature spaces, making theoretical proof be very difficult. As we 
have mentioned before, Joachims et al [7] proved the upper bound of errors for 
different sources of information where they imposed an independence assumption, but 
this is not applicable for the same information source. The optimization method by 
Lanckriet et al [8] was also only suitable to different independent sources.  

3.2   Polynomial Combination 

The polynomial combination of two kernels can be defined as follows:   

2
1 2 1 2( , ) *( ) , 0K x y K K K Kβ β= + + + ≥% . (5) 

For brevity, we denote K1(x,y) by K1, and K2(x,y) by K2. Theoretically, more complex 
polynomial combination is admissible but whether higher power of polynomials will 
be helpful to improve the performance is yet to be verified by experiments. The 
combined kernel implies the following feature space:  



542 M. Huang and X. Zhu 

the second orderthe first order

( , , , , , , , , , ): ,  , , , , , , ,i j m n h k l r X F i j m n h k l rφ ϕ βφ φ βϕ ϕ βφϕΦ= ∀L L L L L L a
1444444244444431442443

. 
(6) 

The expanded feature space includes two terms: the simple union of the original two 
feature spaces and the polynomial multiplication of the original ones. Hence the 
polynomial combination is potentially better than the linear combination.  

4   Kernels for Relation Extraction 

The application of the work is to predict whether a relation between two protein 
entities has been asserted by the dependency path that connects them. A dependency 
path connecting two entities E1 and E2, is a sequence of connected edges: 
Path(E1,E2):=e1e2…ek , where 

Re

1: ~
l

i i ie N N+= is a dependency edge, and Rel is a 

dependency relation between node Ni and Ni+1. The first node (N1) and last node 
(Nk+1) are the two entities E1 and E2 for which we want to extract a relation. Each 
node is denoted by a triplet (word, base, pos), where word is the original form of the 
word in the sentence, base the stemmed form, and pos the part-of-speech tag. Fig. 1 
illustrates a parsing tree by MINIPAR [10], and a dependency path.  

interact (V)

Sec62p (N) 

Sec63p (N)
in_vivo (A) 

Sec61p (N)and (U) that (Det) in (U)

show (V)

We (N) 

s

mod

lex-mod 
det

conjpunc

mod

s

with

pcomp-n 

(a) Parsing tree for sentence “We show that Sec63p interacts with Sec62p and Sec61p in vivo.” 
 

interact (v)Sec63p (n) with (prep) Sec62p (n) s mod pcomp-n 

(b) Path between Sec63p and Sec62p  

Fig. 1. An example for dependency parsing tree and path (symbol in parenthesis is pos) 

The task here is to predict whether a relation between E1 and E2 has been asserted 
by the path connecting them. The following two definitions are important for our later 
statement: 

Def. 1. The string of a dependency path e1e2…ek is SDP:=w2 w3 … wk, where words 
are concatenated by a space, and each wi is the base form of the i-th node. For 
example, the string of the first path in Fig. 2 is “interact with”. 

Def. 2. The document of a dependency path e1e2…ek is DDP:={w2,w3,…,wk}, where 
each wi is the base form of node Ni. For example, the document of the first path in 
Fig. 2 is {interact, with}. 
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4.1   Edge-Based Path Kernel (EPK) 

As the previous definition shows, a dependency path can be viewed as a set of 
dependency edges. In other words, we may decompose a path into dependency edges. 
Note that an edge consists of two nodes and a relation. We first define a similarity 
function on nodes: 

1, .base .base
( , )

0,
i j

node i j

if N N
K N N

others

=⎧
= ⎨
⎩

, (7) 

and then a function on dependency relations:  

1, Rel Rel
(Rel , Rel )

0,
i j

rel i j

if
K

others

=⎧
= ⎨
⎩

. 
(8) 

Obviously, the two functions are both kernel functions. Then the following function 

can be the kernel for dependency edges 
Re

1 2: ~
il

i i
ie N N=  and 

Re

1 2: ~
jl

j j
je N N= :  

1 1 2 2( , ) ( , ) * ( , ) * ( , )i j i j
E i j node rel i j nodeK e e K N N K Rel Rel K N N= . (9) 

A path can be viewed as a discrete set of dependency edges. From the theorem 
presented in [2] (details omitted here), we can define a kernel function for 
pi= 1 2{ , , , }i i i

me e eL  and pj= 1 2{ , , , }j j j
ne e eL  as follows: 

( , ) ( , )
l j k i

E
path i j E k le p e p

K p p K e e
∈ ∈

=∑ ∑ . (10) 

This kernel is termed as edge-based path kernel (EPK for short). Apparently, paths 
are decomposed into dependency edges. This type of sub-structures is highly accurate, 
since it captures a large amount of information, including words and dependency link 
between words. 

4.2   Node-Based Path Kernel (NPK) 

A dependency path can be viewed as a set of nodes or a document, as described by 
Def. 2. Given two paths pi= 1 2{ , , , }i i i

mN N NL  and pj= 1 2{ , , , }j j j
nN N NL , we define a 

node-based path kernel as follows:  

( , ) ( , )ji
k i jl

N i j
path i j node k lN p N p

K p p K N N
∈ ∈

= ∑ ∑ . (11) 

We term this kernel node-based path kernel (NPK for short).  
The edge-based path kernel has a higher level of sub-structure than the node-based 

path kernel because dependency edges not only contain information about nodes, but 
also reveal dependency link between nodes. Hopefully the edge-based path kernel 
will offer a better precision since the sub-structure captures more dependency 
information. The edge-based and node-based path kernel reflects two possible angles 
viewing paths, and apparently, other types of sub-structures such as sub-strings are 
applicable.  
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5   Experimental Results 

A benchmark corpus, GENIA corpus [11] is used to extract protein-protein 
interactions from bioscience literature in our method. Named entities have been 
previously identified. All relations (or interactions) between proteins are manually 
annotated. Sentences are firstly parsed by MINIPAR and then dependency paths are 
obtained. Totally there are 3,151 paths, and 1,461 of them are labeled to assert a 
relation. These paths are randomly partitioned into five parts for five-fold cross-
validation. All kernels are incorporated into software package SVMlight [12]. 

5.1   Experiments on Individual Kernels 

As defined by Def. 1, a path can be viewed as a string. If we take sub-strings as sub-
structures of paths, we can define a string kernel as [5]. The best results are obtained 
when the length of substrings (n) is 3, and the decay factor (λ) is 0.5. 

The results of individual kernels are shown in Table 1. The edge-based kernel 
achieves the best precision because the level of its substructures is the highest, while 
the string kernel is the worst since it has a low level of sub-structures, which 
conforms to our previous analysis. 

Table 1.  Experimental results for SK, EPK and NPK 

Kernel Precision (%) Recall (%) F1 score (%) 
SK (String Kernel) 68.30 29.38 41.09  
NPK (Node-based Path Kernel) 74.68 35.75 48.35  
EPK (Edge-based Path Kernel) 77.84  29.75  43.05  

5.2   Experiments on Combined Kernels 

We here validate the performance by combining string kernel, edge-based and node-
based path kernel. Table 2 shows results for linear combination of the string kernel 
and edge-based path kernel when different weights are tuned. Table 3 shows results 
for polynomial combination when different weights are adjusted. In Table 4, we 
present results of several combined kernels with fixed weights (β=0.5, 0.25 
respectively). 

From these results, we observe that 1) combined kernels exhibit advantages over 
individual ones including all baseline kernels; and 2) polynomial combination 
contributes remarkable improvements over linear combination because the former can 
offer a more expressive feature space. 

5.3   Comparing Combined Kernels with Standard SVM Kernels 

In this part we compare combined kernels with traditional standard kernels. A 
dependency path here is treated as a document, and each path is represented as a 
feature vector such that standard SVM kernels can be calculated.  
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Table 5 shows the comparative results. Combined kernels outperform standard 
SVM kernels remarkably in terms of both precision and F1 score. The comparative 
results show that our method is promising although standard SVM kernels partially 
suffer from the sparseness of features since paths may be very short. 

Table 2.  Linear combination for String Kernel and Edge-based Path Kernel 

Weight  Precision (%) Recall (%) F1 score (%) 
β=0.0  (K2=Edge-based Path Kernel) 77.84 29.75 43.05 
β=0.1 77.90 32.25 45.50 
β=0.3 75.00 33.75 46.55 
β=0.5 72.28 37.88 49.52 
β=0.7 71.91 39.38 50.69 
β=0.9 70.98 41.25 52.01 
β=1.0  (K1=String Kernel) 68.30 29.38 41.09 

Table 3.  Polynomial combination for K1=String Kernel and K2=Edge-based Path Kernel  

Weight  Precision (%) Recall (%) F1 score (%) 
β=0.10 68.15 46.86 55.53  
β=0.25 69.35 48.75 57.25  
β=0.50 72.30 46.64 56.70  
β=0.75 74.44 44.86 55.98  
β=1.00 76.48 42.35 54.51  

Table 4.  Comparative results for different kernels with linear and polynomial combination, 
where LIN=0.5*K1+0.5*K2 and POL= K1+K2+0.25*(K1+K2)

2 

Kernel Combination type Precision (%) Recall (%) F1 score (%) 
SK Baseline 68.30 29.38 41.09 
NPK Baseline 74.68 35.75 48.35 
EPK Baseline 77.84 29.75 43.05 

LIN 72.28 37.88 49.71 K1=SK 
K2=EPK POL 69.35 48.75 57.25 

LIN 71.11 40.63 51.71 K1=SK 
K2=NPK POL 69.98 48.25 57.12 

LIN 76.23 35.88 48.79 K1=NPK 
K2=EPK POL 70.81 45.63 55.50 

Table 5.  Combined Kernels (polynomial) vs. Standard SVM kernels 

Kernel  Precision (%) Recall (%) F1 score (%) 
Linear Kernel 62.11 44.25 51.68  
RBF kernel 75.42 21.72 33.73  
Polynomial Kernel  70.65 34.88 46.70  
Sigmoid Kernel 55.66 46.50 50.67  
SK+EPK 69.35 48.75 57.25  
SK+NPK 69.98 48.25 57.12  
NPK+EPK 70.81 45.63 55.50  



546 M. Huang and X. Zhu 

6   Conclusion 

In this paper, we have presented a method to construct convolution kernels by 
combining heterogeneous sub-kernels defined on different levels of sub-structures. 
Strengths of single kernels are incorporated together by linear or polynomial 
combination. The problem of substructure selection is avoided because different 
levels of sub-structures can be integrated together. We also analyze why combined 
kernels can offer improvements from the perspective of feature space. Our 
experiments have shown very promising results. 

Our future work will be to validate the idea of kernel combination for solving other 
types of text mining tasks. Also, we will experiment the proposed combined kernels 
on other corpora designed for bio-text mining. 
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Abstract. We investigate situations where releasing frequent sequential
patterns can compromise individual’s privacy. We propose two concrete
objectives for privacy protection: k-anonymity and α-dissociation. The
first addresses the problem of inferring patterns with very low support,
say, in [1, k). These inferred patterns can become quasi-identifiers in link-
ing attacks. We show that, for all but one definition of support, it is
impossible to reliably infer support values for patterns with two or more
negative items (items which do not occur in a pattern) solely based on
frequent sequential patterns. For the remaining definition, we formulate
privacy inference channels. α-dissociation handles the problem of high
certainty of inferring sensitive attribute values. In order to remove pri-
vacy threats w.r.t. the two objectives, we show that we only need to
examine pairs of sequential patterns with length difference of 1. We then
establish a Privacy Inference Channels Sanitisation (PICS) algorithm. It
can, as illustrated by experiments, reduce the privacy disclosure risk car-
ried by frequent sequential patterns with a small computation overhead.

1 Introduction

Data mining poses the dilemma of discovering useful knowledge from databases
while avoiding privacy disclosure. There have been various research efforts on
privacy-preserving data mining [1,2] from different perspectives such as identifi-
cation [3], secure computation [1] and sensitive rules [4]. However, little work has
been concentrated on removing privacy threats carried by data mining results [5],
e.g., sequential patterns. In this work we study how released sequential patterns
represent threats to privacy. We will cover sensitive attribute values disclosure
and identification disclosure that focuses on the anonymity of individuals.

Our research motivation is from the healthcare domain where protecting the
patients’ privacy, such as anonymity and health status, is crucial. In Australia,
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e.g., the government agency Medicare Australia holds data on drug prescrip-
tions, while each state government holds local hospitalisation data including di-
agnoses [6]. To enhance healthcare, government agencies could analyse the health
events and release knowledge discovered, e.g., frequent sequential patterns.

Example 1. Bob gets 3 sequential patterns from the above healthcare databases:

1. [a, b, c, d] with support 1000, i.e., 1000 patients having a, later on, b, and then
c and d, where b (or c, d) may not necessarily be immediately after a (or b, c).
a, b, d indicate, say, drugs while c one condition;

2. [a, b, d] with support 1000;
3. [a, d] with support 1001.

These frequent sequential patterns represent a number of individuals as required
by the minimum support threshold [7], and seemingly do not compromise pri-
vacy. However, these released sequential patterns alone can indirectly divulge
privacy including sensitive values and re-identification. (1) From the first two
patterns, Bob easily infers that if a patient took Drugs a, b and then d, he/she
certainly suffered Condition c, which can be sensitive like HIV. This is risky
if one party, say, Medicare Australia or a third commercial insurance company,
holds prescriptions only. (2) Based on Patterns 2 and 3, Bob knows that one and
only one patient has a and then d but without b in between. Through linkage
with other data sources, this patient can be re-identified. This results in privacy
leakage via linking attacks [8,2].

To protect privacy while releasing sequential patterns and their frequency in-
formation, in Section 2, we will propose two new concrete privacy-preserving
objectives: (1) k-anonymous sequential patterns from which one impossibly in-
fers the existence of patterns with very low support; (2) α-dissociative sequential
patterns from which one impossibly infers an attribute value with very high cer-
tainty. They can serve as a standard of releasing frequent sequential patterns
without undue privacy divulgence. We analyse and formulate privacy disclosure
inference channels for the two objectives in Section 3. In Section 4, we develop
an algorithm PICS (Privacy Inference Channel Sanitisation) to detect and re-
move these possible privacy threats by deliberately incrementing support values
of released frequent sequential patterns. With small distortion, these frequent
sequential patterns can be released without undue privacy divulgence w.r.t. the
two objectives. We conclude the work in Section 5.

2 k-Anonymous and α-Dissociative Sequential Patterns

We first brief some definitions related to sequential patterns. Let E={e1, e2, · · · , ed}
be a set of d items. We call a subset A ⊆ E an itemset and |A| the size of A. A
sequence S=〈A1, A2, · · · , Am〉 is an ordered list of itemsets, where Ai⊆E , i ∈
{1, · · · , m}. The size, m, of a sequence is the number of itemsets in the sequence,

i.e., |S|=m. The length of a sequence S=〈A1, · · · , Am〉 is defined asL(S)=
m∑

i=1
|Ai|.

A sequence Sa=〈A1, · · · , An〉 is contained in another sequence Sb=〈B1, ..., Bm〉
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if there exist integers 1≤i1< i2<· · ·<in≤m such that A1⊆Bi1 , · · · , An⊆Bin . We
denote Sa�Sb, e.g., 〈a(bc)a〉�〈ab(abc)(ad)〉. For simplicity, we use 〈(ab)〉 to indi-
cate a transaction where Items a and b occur at the same time, and 〈ab〉 to indicate
that Item b is preceded by a. A sequence database D is a set of sequences with trans-
actions from E .

A pattern is an ordered list of itemsets from E , where items can be negative ei.
A negative item ei means that Item ei surely does not occur. In Pattern

[
ab(cd)

]
,

e.g., b doesn’t occur between a and (cd). A sequential pattern is an ordered list
of itemsets from E without negative one. Patterns have similar operations with
sequences, though they will be placed between ‘[’ and ‘]’, instead of ‘〈’ and ‘〉’, e.g.,
Sequence 〈ab(cdf)g〉 contains Pattern [a(cd)] but not

[
ab(cd)

]
.

The support of a sequential pattern P in D is defined as the number of se-
quences that contain P , i.e., suppD(P )=|{S |P � S, S ∈ D}|. If P1�P2, we have
suppD(P1)≥suppD(P2). Given a support threshold θs, a sequential pattern is called
a frequent sequential pattern if its support suppD(P ) is not less than θs, i.e.,
suppD(P ) ≥ θs. The problem of mining sequential patterns is to find all frequent
sequential patterns for a sequence database D, given θs. We denote all the frequent
sequential patterns as FSP(D, θs), and all frequent sequential patterns with length
l as FSP(l)(D, θs). We omit D if it is clear from the context.

We now define concrete privacy protection objectives for releasing frequent se-
quential patterns to end users. To simplify the discussion, we assume these patterns
are generated without privacy disclosure, say, in a secure environment. A frequent
sequential pattern with its support value can be regarded as a select query that
returns the size of a set of sequences containing the pattern. From this viewpoint,
we can adapt the concept of k-anonymity [8] from data to patterns in a straight-
forward way.

Definition 1. Given a small integer threshold k(> 1), a set of frequent sequential
patterns from D are called k-anonymous sequential patterns if it is impossi-
ble to identify a pattern P such that 0 < suppD(P ) < k. Pattern P is non-k-
anonymous if 0 < suppD(P ) < k.

A non-k-anonymous pattern may be used to identify a set of sequences of cardi-
nality greater than 0 and less than k. It may serve as a quasi-identifier for linking
attack [2], e.g., suppD

([
abd

])
=1 in Example 1. We assume the support threshold

θs>k, i.e., a single frequent sequential pattern is not non-k-anonymous.
Besides violating anonymity, there is another possibility of releasing sensitive

information. As in Example 1, if one patient contains [abd], it is 100% sure that
he/she suffers Condition c between taking b and d. Condition c could be sensitive.

Definition 2. Give a rational α (slightly smaller than 1.0), a set of frequent se-
quential patterns are α-dissociative sequential patterns if it is impossible to
identify a pair of patterns P1 and P2 such that

P1 �= P2, P1 � P2,
supp(P2)
supp(P1)

≥ α. (1)



550 H. Jin et al.

Using non-α-dissociativepatterns, for some individuals, we can use the existence of
sub-patternP1 to infer the existence of super-patternP2 thatmay contain sensitive
information with high certainty, say, ≥ α.

The parameters k and α can be set at any level, depending on the amount of
protection that is desired. Thus, if a set of frequent sequential patterns are k-
anonymous and α-dissociative, it is acceptable for releasing them from these two
concrete privacy-preserving perspectives.

3 Privacy Inference Channels

We now study the possibility of inferring non-k-anonymous or non-α-dissociative
patterns from the set of frequent sequential patterns FSP(D, θs). A privacy in-
ference channel indicates a subset of frequent sequential patterns from which
it is probable to infer sensitive information such as non-k-anonymous or non-α-
dissociative patterns. Based on the anti-monotonicity of frequent sequential pat-
terns [7], we have the following theorem.

Theorem 1. If FSP(D, θs) is not α-dissociative, there must exist a pair of patterns
Pt and Ps such that L(Ps) = L(Pt) − 1, Ps � Pt,

supp(Pt)
supp(Ps) ≥ α.

Proof: If it is incorrect, i.e., for each pair of Pt and Ps, if L(Ps)=L(Pt)−1 and
Ps�Pt, then supp(Pt)

supp(Ps)<α. Since FSP(D, θs) is not α-dissociative, there exists a pair
of patterns P1 and P2 satisfying Equation 1. For any P1�P2, P2∈FSP(D, θs), there
exists a list of frequent sequential patterns, {Pt1 , Pt2 , · · · , Ptj } (j � L(P2) −
L(P1)+1, i.e., j is defined to be L(P2)−L(P1)+1) such that Pt1=P1, Ptj =P2,
L(Pti)=i − 1 + L(P1), and Pti�Pti+1 for i=1,2,· · · ,j − 1. We get a contradiction.

supp(P2)
supp(P1) =

supp(Ptj
)

supp(Ptj−1 )
supp(Ptj−1 )
supp(Ptj−2 ) · · · supp(Pt2 )

supp(Pt1 ) < α × α · · · × α < α.

Theorem 1 implies that, to detect whether there exist privacy inference channels
for α-dissociation, we only need to compare the support values of pairs of frequent
sequential patterns with length difference of 1.

As for support values of patterns with negative items, it is intuitive to de-
fine one for a pattern with one negative item. For example, suppD ([ei1ei2ei3 ]) �
suppD([ei1ei3 ])−suppD([ei1ei2ei3 ]), where 1≤i1, i2, i3≤d. However, it is not correct
to extend this inference channel to patterns with two or more negative items based
on the inclusion-exclusion principle [3]. We will further show that there are not re-
liable inference channels for all but one definition (i.e., Definition 4) of support for
patterns with more than one negative item.

We first illustrate this on Pattern [ei1ei2ei3 ]. To define whether a sequence sup-
ports it, we may take account of every ei2 or at least one ei2 satisfying the pattern.
We may consider both ‘no Item ei1 preceding Item ei2 ’ and ‘no Item ei3 following
Item ei2 ’ are valid or either of them. Thus,

Definition 3. There are four possible ways to define support of [ei1ei2ei3 ]:

3.1 A sequence S is defined to support the pattern [ei1ei2ei3 ], i.e., suppS([ei1ei2

ei3 ]) = 1, if there exists such an item ei2 in S that it is not preceded by ei1 or
not followed by ei3 .
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3.2 A sequence S is defined to support the pattern [ei1ei2ei3 ] if in S there exists
ei2 that is not preceded by ei1 and not followed by ei3 .

3.3 A sequence S is defined to support the pattern [ei1ei2ei3 ] if any ei2 in S is
not preceded by ei1 and not followed by ei3 .

3.4 A sequence S is defined to support the pattern [ei1ei2ei3 ] if any ei2 in S is
not preceded by ei1 or not followed by ei3 .

We will extend Definition 3.4 to Definition 4 for any pattern P with multiple neg-
ative items to discuss its privacy inference channels. The follow theorem indicates
there are no reliable inference channels w.r.t. Definitions 3.1-3.3.

Theorem 2. There are no reliable inference channels based on the frequent sequen-
tial patterns in FSP(D, θs) to evaluate whether the pattern [ei1ei2ei3 ] is k-anonymous
or not w.r.t. Definition 3.1 (or Definition 3.2 or 3.3).

The basic idea of the proof is that we can create two sequence sets that have same
frequent sequential patterns butmuch difference on infrequent sequential patterns.
One underlying observation is that the ordering is crucial in sequential patterns.
a sequence 〈ei2ei1ei3ei2〉, e.g., containing [ei1ei2 ] and [ei2ei3 ], does not necessar-
ily contain [ei1ei2ei3 ]. For other patterns with two or more negative items, we can
similarly show there are no privacy inference channels for all but one definition of
support. The proof is omitted due to space limitation.

We introduce two patterns related to P . Let the lower bound sequential pattern
P (l) � P consist of only positive items, and the upper bound one P (u) is generated
by transferring all negative items in P into positive ones. If P1 = [ei1ei2(ei3ei4ei5)],
e.g., P

(l)
1 = [ei1(ei3ei5)] and P

(u)
1 = [ei1ei2(ei3ei4ei5)].

Definition 4. Sequence S is defined to support Pattern P with at least a nega-
tive item, i.e., suppS(P ) = 1, if it supports its lower bound sequential pattern P (l)

while does not support its upper bound one P (u). The support of any pattern with
negative item(s) is then defined as.

suppD(P ) = suppD(P (l)) − suppD(P (u)). (2)

So, if both P (u) and P (l) are frequent, there may be a privacy inference channel for
P , say, violating k-anonymity. Similar to Theorem 1, to detect and then remove
non-k-anonymity privacy inference channels of a whole set of frequent sequential
patterns, we only need to examine the support values of those patterns with one
and only one negative item due to the following property.

Theorem 3. If there are two patterns P1 and P2 such that P
(l)
1 � P

(l)
2 and P

(u)
2 �

P
(u)
1 , then, w.r.t. Definition 4,

suppD(P1) ≥ suppD(P2). (3)

The proof is easy because suppD(P (l)
1 ) ≥ suppD(P (l)

2 ) and suppD(P (u)
2 ) ≥

suppD(P (u)
1 ). Then, simply based on Equation 2, we get Equation 3. Therefore,

the search space for channel detection is reduced immensely, and our detection al-
gorithm for privacy inference channels can be very efficient.
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Algorithm 1. Privacy Inference Channel Sanitisation (PICS)
Input: k(1 < k < θs), α(0 < α < 1), FSP(D, θs).

1. for each Pi ∈ FSP(D, θs) do Pi.δ = 0; /*Initialise, say, increments as 0*/
2. i = l � maxP∈FSP(D,θs) {L(P )}; /*Start with longest sequential patterns*/
3. while (i−−) > 0 do /*Go through patterns with length decreased 1 by 1*/
4. for each Pi ∈ FSP(i)(D, θs) do
5. for each Pj ∈ FSP(i+1)(D, θs) such that Pi � Pj do
6. Pi.δ = Pi.δ + Pj .δ; /*Maintain database-compatibility*/
7. for each Pj ∈ FSP(i+1)(D, θs) such that Pi � Pj do
8. K = max

{
k,

⌊ 1−α
α

(Pj .δ + Pj .supp)
⌋

+ 1
}
;

9. δ = (Pi.δ + Pi.supp) − (Pj .δ + Pj .supp);
10. if δ<K then Pi.δ=Pi.δ+K−δ; /*Detect & remove inference channels*/
11. Output Ok,α consists of Pi with support (Pi.supp+Pi.δ) for each Pi ∈ FSP(D, θs).

4 Blocking Inference and Experimental Results

Our privacy-preserving released frequent sequential patterns FSP(D, θs) are
achieved by adjusting their support values to remove privacy inference channels
discussed in Section 3 and meanwhile maintain database compatibility. The basic
idea is to create a pseudo sequence database Dp by inserting some sequences into
D such that (1) FSP(Dp, θs) contains the same frequent patterns as FSP(D, θs) but
with a bit different support values and (2) there are no privacy inference channels
from FSP(Dp, θs). Then we release FSP(Dp, θs) instead of FSP(D, θs). To keep the
result accurate, we insert as few sequences as possible. For any inference channel
related to non-α-dissociation as in Equation 1, we simply increment the support
of the sub-pattern P1 by K1. To maintain database compatibility, the support val-
ues of all its sub-patterns are increased by K1 accordingly. It change FSP(D, θs)
into FSP(D1, θs) where D1 is D plus K1 copies of sequences only containing P1.
K1=max

{
0,

⌊
supp(P2)

α − supp(P1)
⌋

+ 1
}

is minimal to ensure that the new sup-

port value of P1 is greater than supp(P2)
α . For any non-k-anonymity inference chan-

nel as in Equation 2, we increment the support values of the lower bound frequent
pattern P (l) and all its sub-patterns by K2. It looks like inserting K2 copies of
P (l)s. K2=max

{
0, k − (supp(P (l)) − supp(P (u)))

}
is minimal to ensure that the

new support value of P (l) is not less than supp(P (u)) + k. Thus, incrementing the
support values in this way is equivalent to inserting sequences into the original D,
and thus database-compatibility is maintained. Moreover, it will not create new
inference channels.

According to Theorems 1 and 3, we only need to examine and remove the infer-
ence channels caused by pairs of frequent sequential patterns with length difference
of 1. Based on these, we propose our PICS (Privacy Inference Channel Sanitisa-
tion) algorithm for sanitising frequent sequential patterns as in Algorithm 1. Here
Pi.supp � suppD(Pi) is the original support value for the pattern Pi in D, and
Pi.δ is the support increment introduced by the sanitisation procedure. Basically,
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(a) Average distortion ra-
tio.

(b) Fraction of support ad-
justed.

(c) Execution time of PICS
and SPAM.

Fig. 1. Performance of PICS on the first sequence database with different settings

we start from frequent sequential patterns Pi with the maximal length one by
one until with the shortest patterns. For given parameters k and α, we check
whether there exists Pj ∈ FSP(|Pi|+1)(D, θs) such that Pi � Pj , δ < K where
δ�(Pi.supp+Pi.δ)−(Pj .supp+Pj .δ) andK�max{k, 	 1−α

α (Pj .δ+Pj .supp
+1}.We
then increase Pi.δ by K − δ (i.e., max {K1, K2} mentioned above) to ensure the
new support difference between Pi and Pj is K. This is embedded in Line 10. In
addition, we increase all the sub-patterns of Pi by K − δ. This is implemented in
Line 6. The adjusted support for each Pi is Pi.supp + Pi.δ as in Line 6. Lines 4-6
ensure the sanitised support values satisfy anti-monotonicity, i.e., if Pi�Pj , then
Pi.supp + Pi.δ≥Pj .supp + Pj .δ. There is a sequence database Dp whose frequent
sequential patterns are exactly the output from PICS, i.e., FSP(Dp, θs) = Ok,α for
given k and α.

We chose freeware SPAM [7] to generate frequent sequential patterns for a
sequence database. We implemented PICS in Python. Two sequence databases
were generated by IBM Quest Market-Basket Synthetic Data Generator [7]. The
first has 20,000 sequences, and 10 different items. The second has 8,000 differ-
ent sequences and 12 different items. Since PICS ensures the resulting frequent
sequential patterns are k-anonymous and α-dissociative, we only measure how
much the sanitised support values differ from the original ones. Three metrics are
used to evaluate the distortion to support values. (1) Average distortion ratio

∑

P∈FSP(D,θs)

P.δ
P.supp

|FSP(D,θs)| ×100% is the average increment to the original support of sequen-

tial patterns. (2) Fraction of support adjusted |{P |P∈FSP(D,θs),P.δ>0}|
|FSP(D,θs)| ×100%

is how often support values are incremented. (3) The execution time of PICS is
compared with that of SPAM.

A series of experimental results of PICS with different k and α on the first se-
quence database are illustrated in Fig. 1. The support threshold θs is 36, 40, · · · ,
or 60; k is 2, 5 or 10; and α is 0.90% or 0.95%. Clearly, the execution overhead of
PICS is quite small in comparison with SPAM as in Fig. 1(c). When θs = 40, e.g.,
SPAM takes 12.11 seconds while PICS takes 1.08 seconds, only 8.92% of SPAM.
PICS is quite conservative for low value of k and (1−α). Typically, when θs = 40,
SPAM generates 770 frequent sequential patterns. PICS adjusts less than 4% sup-
port values as in Fig. 1(b), and the average distortion ratio is less than 0.72% as
in Fig. 1(a). The average distortion ratio and fraction of support adjusted appear
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to decrease with θs with all the settings of k and α. In addition, when k is quite
small, say, 2, the average distortion ratio (or the fraction of support adjusted)
with α = 0.95 is much smaller than that with α = 0.90. When k is quite
large, say, 10, α values have little influence during the sanitisation procedure. This
clearly illustrates that k-anonymity and α-dissociation are two complementary
privacy-preserving objectives. Similar performance is observed for the second se-
quence database. Thus, with a small computation overhead, PICS maintains rea-
sonably good accuracy w.r.t. the original sequential patterns while resulting in k-
anonymous and α-dissociative frequent sequential patterns.

5 Conclusions

In this paper, to reduce the privacy disclosure risk caused by releasing frequent
sequential patterns, we have introduced two complementary privacy-preserving
objectives: k-anonymity and α-dissociation. They address identification and at-
tribute value disclosure respectively. We have established a practical algorithm
PICS to detect and remove all the privacy inference channels with respect to both
the objectives. After incrementing support values of a small proportion of frequent
sequential patterns, PICS can effectively and efficiently sanitise frequent sequen-
tial patterns for privacy-preserving release, as substantiated by a series of exper-
imental results. We are studying possible privacy disclosure caused by releasing
different types of data mining results but from the same database.

References

1. Vaidya, J., Clifton, C.: Privacy-preserving data mining: Why, how, and when. IEEE
Security & Privacy 2 (2004) 19–27

2. Wong, R., Li, J., Fu, A., Wang, K.: (alpha,k)-anonymity: An enhanced k-anonymity
model for privacy-preserving data publishing. In: KDD’06. (2006) 754–759

3. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: Blocking anonymity threats
raised by frequent itemset mining. In: ICDM’05. (2005) 561–564
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Abstract. The availability of large volumes of text documents has created the 
potential of a vast amount of valuable information buried in those texts. This in 
turn has created the need for automated methods of discovering relevant 
information without having to read it all. This paper focuses on detecting links 
between two concepts across text documents. We interpret such a query as 
finding the most meaningful evidence trail across documents that connect these 
two concepts. In this paper we propose to use link-analysis techniques over the 
extracted features provided by Information Extraction Engine for finding new 
knowledge. We compare two approaches to perform this task.  One is the 
concept-profile approach based on traditional bag-of-words model, and the 
other is the graph-based approach which combines text mining, graph mining 
and link analysis techniques.  Counterterrorism corpus is used to evaluate the 
performance of each model and demonstrates that the graph-based approach is 
preferable for finding focused information. For greater coverage of information 
we should use the concept-profile based approach. 

Keywords: Knowledge Discovery; Text Mining; Link Analysis. 

1   Introduction 

It is recognized that text information is growing at an astounding pace. These vast 
collections of publications offer an excellent opportunity for text mining, i.e., the 
automatic discovery of knowledge. The main theme of our paper is based on the 
hypotheses that “The wealth of recorded knowledge is greater than the sum of its 
parts”, which means a document collection often, reveals interesting information other 
than what is explicitly stated, interesting links and hidden information that connect 
facts, propositions or hypotheses can be formed by using some techniques to discover 
previously unknown logic connections among the existing information we have. 

The goal of this paper is to sift through these extensive document collections and 
find such links. The problem addressed here focuses on detecting links between two 
concepts across documents. A traditional search involving, for example, two person 
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names will attempt to find documents mentioning both of these individuals. Failing 
this, the search results in documents containing one of the names. This research 
focuses on a different interpretation of such a query: what is the best evidence trail 
across documents that connect these two individuals? For example, both may be 
involved with educational institutions, although not necessarily the same one; this 
information is gleaned from multiple documents. A generalization of this task 
involves query terms representing general concepts (e.g. airplane crash, criminal 
prosecution). We refer to this type of query as a concept chain query, a special case of 
text mining. Fig.1illustrates an example of a concept chain connecting Amir 
Abdelgani and Mohammed Saleh in the corpus. The connection is through the concept 
fuel; the model presented here was able to pick up this connection in spite of the 
textual distance between the two concepts in question. 

 
 
 
 
 
 
 
 
 

 

Fig. 1. Sample concept chain and evidence 

The remainder of the paper is organized as follows. Section 2 discusses related 
work. Section 3 presents concept-profile text mining approach, and section 4 
introduces semantic approach using graph-based retrieval model. Section 5 describes 
the experiments based on processing the 9-11 corpus and is followed by conclusions. 

2   Related Work 

Much of the work in hypotheses generation makes use of an idea originated by 
Swanson in the 1980s called the “complementary structures in disjointed literatures” 
(CSD). Swanson realized that large databases of scientific literature could allow 
discoveries to be made by connecting concepts using logical inference. He proposed a 
simple “A influences B, and B influences C, therefore A may influence C” model for 
detecting instances of CSD that is commonly referred as Swanson’s ABC model [6]. 
Using this technique, he found a connection implying patient benefit between fish oil 
and Raynaud’s syndrome, two years before clinical trials established that the benefit 
was real. Since their pioneering contributions this kind of knowledge discovery work 
has attracted the attention of other researchers. Gordon and Lindsay were among the 
first to use this approach, followed a few years later by Weeber [7]. More recently, 
Srinivasan has used this approach to demonstrate the feasibility of her approach based 
on MeSH terms and UMLS semantic types and presented open and closed text mining 

Mohammed Saleh, who provided fuel from his Yonkers gas station to make 
bombs, obtained legal permanent residency by marrying an American. Ibrahim 
Ilgabrowny passed messages between conspirators and obtained five fraudulent 
Nicaraguan passports for his cousin, El Sayyid Nosair, and his family. Nosair, 
convicted of conspiracy, married an American in 1982 and became a citizen in 
1989. He was also convicted of a gun charge in the killing of Rabbi Meir Kahane 
in 1990. Amir Abdelgani picked up fuel and helped determine targets; he, too, 
was married to an American.  
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algorithm that are built within the discovery framework established by Swanson and 
Smalheiser [5]. Our approach is motivated by Srinivsan’s closed text mining 
algorithm and we extended this technique [2, 3, 4]. 

There has been work on discovering connections between concepts across 
documents using social network graphs, where nodes represent documents and links 
represent connections between documents. However much of the work on social 
network analysis has focused on special problems, such as detecting communities [8]. 
[9] is the work which is close to the problem being presented here. The authors model 
the problem of detecting associations between people as finding a connection 
subgraph and present a solution based on electricity analogues. However there are 
several differences which should be noted. The most notable difference is the reliance 
on URL links to establish connections between documents. Our approach extracts 
associations based on content (textual) analysis. Second, the connection subgraph 
approach presents all paths together, while our approach presents the paths 
individually. This allows greater user input in determining the best paths, including 
recency, novelty, semantic coherence, etc. Third, the approach presented here 
attempts to generate an explanation of the chains, whereas the connection subgraph 
approach does not. Finally, the connection subgraph solution only addresses named 
entities whereas this approach extends to general concepts. 

3   Concept-Profile Text Mining Approach 

Concept extraction involves running an information extraction engine, Semantex [1] on 
the corpus. Semantex tags named entities, common relationships associated with 
person and organization, as well as providing subject-verb-object (SVO) relationships. 
We extract as concepts all named entities, as well as any noun phrases participating in 
SVO relationships. All named entity instances are retained as instances of their 
respective named entity concept category such as Organization, Country and Human 
Action. In the following sections, we use semantic type to denote named entity concept 
category. 

3.1   Concept Profiles 

A profile is essentially a set of concepts that together represent the corresponding 
topic.  We build topic profiles by first identifying a relevant subset of documents from 
the text collection, then identify characteristic concepts (single words and/or phrases) 
from this subset and assess their relative importance as descriptors of the topic.  
Concepts are extracted from the free-text portions of the documents which co-occur 
with the topic in the sentence level. The profiles are weighted vectors of concepts as 
shown below for a topic Tj: 

Profile (Tj) = {wj,1m1,  wj,2m2, ···,wj,nmn} .                                (1) 

Where mk represents a concept, wj,k its weight and there are totally n concepts in the 
concept dictionary. 
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3.2   Employing Semantic Types in Profiles 

Up to now our profiles are simply vectors of weighted concepts. Now we describe 
how to further differentiate between the concepts using semantic types. Basically 
concepts are separated by semantic type and concept weights are computed within the 
context of a semantic type. This result is a vector of concept vectors, one for each of 
semantic types. Thus,  

Profile (Tj) = {wj,1,1m1,1,···,},···,{wj,n,1mn,1, ···,}} .                           (2) 

Where mx,y represents the concept my 
that belongs to the semantic type x, wj,x,y is the 

computed weight for mx,y. To calculate weight, we use a variation of TF*IDF 
weighting scheme and then normalize the weights:  

wj,x,y = uj,x,y / highest(uj,x,d).  (3) 

Where d=1, ···, l  and uj,x,y = nj,x,y × log(N/nx,y). 
Here N is the number of documents in the collection, nx,y is the number of 

documents in which mx,y occurs and nj,x,y is the number of retrieved documents for Tj 

in which mx,y co-occurs with Tj in the same sentence. Then we normalize by highest 
(uj,x,d), the highest value for uj,x,y 

observed for the concepts with semantic type x, 
produces weights that are in [0, 1] within each semantic type. (Note that there are l 
concepts in the domain for semantic type x). 

Table 1 illustrates a portion of the concept profile that is constructed for Bush; the 
best concepts are shown. 

Table 1.  Portion of profile for concept ‘Bush’ 

Semantic Type Concept Weight 
Title President 1.00 
Country North Korea 

Iraq 
1.00 
0.882826 

Person Bin Ladin 
Woodward 

1.00 
0.891192 

Army Central Command 
Defense 

1.00 
0.802759 

Province Texas 
Washington 

1.00 
0.663360 

3.3   Generating Paths Between Concepts 

This stage finds potential conceptual connections in different levels, creates the 
concept chain and ranks them according to the weight of the corresponding selected 
concept. The basic algorithm is based on the method proposed in [5] but we adapted it 
to meet our needs and also extended the technique to generate concept chains. The 
algorithm is composed of the following steps where the user input is two 
topics/concepts of interest designated, A and C. 

1. Conduct independent searches for A and C. Build the A and C profiles. Call 
these profiles AP and CP respectively. 
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2. According to the semantic types for intermediate concepts specified by the 
user, compute a B profile (BP) composed of terms in common between AP 
and CP within the specified semantic types. The weight of a concept in BP is 
the sum of its weights in AP and CP, respectively. Concepts are retained and 
ranked by estimated potential for each specified semantic type. This is the 
first level of intermediate potential concepts. 

3. Expand the concept chain using the created BP profile together with the 
topics to build additional levels of intermediate concept lists which (i) 
connect the topics to each concept in BP profile in the sentence level within 
specified semantic types, and (ii) also normalize and rank them. 

Output: Levels of potential concepts ranked by their weights within specified 
semantic types. A potential conceptual connection between A and C is a path starting 
from topic A, proceeding through sequential levels of intermediate concepts until 
reaching the ending topic C. 

4   Concept-Graph Based Text Mining Approach 

The Concept Graphs, which are an extension of concept vectors, are made automatically 
by calculating the significance of concept-concept associations. The formal definition is 
as follows: 

4.1   Graph Construction 

Definition 1: A Graph G (N, E) representing a document collection (subset) is a 
weighted label graph where N is a set of nodes; E is a collection of weighted edges. 

• Node: Concept in the document collection. Multiple instances of a single 
concept are treated as one unique node in the graph.  

• Edge: Constructed based on proximity and co-occurrence relationship between 
concepts. If the two concepts co-occur within a window unit (i.e. paragraph, 
sentence), then there is an edge connecting them. 

• Weight: Represents the strength of such relationship.  

Weight ωA,B can be calculated as the co-occurrence frequency of concept A and B 
within the window, in our experiment, we use the following formula analogous to 
Dice Coefficient to measure this relationship: 

ωA,B 
 = log (1+ F (A,B)) .                                             (4) 

Where F (A, B) = 2×NA, B / (NA+NB), NA (NB) is the frequency of concept A (B) in the 
document collection. NA, B is the co-occurrence frequency of concept A and B within 
the window. Based on this model, each document can be represented as follows: 

D=[C1, C2, ··· , Cn]  A=[aij].                                          (5) 

Where D: concept list. Ci: the ith concept in the concept dictionary. A: the diagonal 
association matrix among concepts. aij: the association strength between concept Ci 
and Cj (1 ≤ i < j ≤ n). To normalize A, we get a matrix W = [ωi,j]. 
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4.2   Generating and Ranking Concept Chains 

This stage finds potential conceptual connections, creates concept chains and ranks 
them according to the weight of the corresponding selected chains. 

Firstly the graph undergoes cleaning phase. The user may adjust the size of the 
constructed graph using parameter Edge Support. This parameter is to filter the edges 
whose weights are below such threshold designated by the user. Next, the graph 
searching algorithm of finding the top n maximal-weight paths connecting these two 
concepts in different length levels, is employed. For instance, the existence of the 
chain of length 1 means there is a direct link between these two concepts within the 
window; The chains of length more than 1 indicate there exists an unapparent 
association, and the intermediate concepts are suggested by the retrieved chains and 
ranked by their estimated potential. Due to computational consideration, the algorithm 
combines the depth-first search and width-first search together. The users may specify 
path length (searching depth) and path number according to their needs through 
setting the appropriate parameters.  

The ranking of concept chains takes a total order defined as follows: 

Definition: Given two concept chains, ri and rj, ri f rj (also called ri precedes rj or ri 
has a higher precedence than rj) if  

1. the length of ri is less than that of rj or 
2. their lengths are the same, but the total weight of chain  ri (sum of the weights 

of traversed edges in the chain ri) is greater than that of rj.. 

5   Experiments on Counterterrorism Corpus  

For the experiments we used the 9/11 commission report as the corpus. This involves 
processing a large open source document collection pertaining the 9/11 attack, 
including the publicly available 9/11 commission report. The whole collection was 
preprocessed using Semantex [1]. At the end of preprocessing, a concept dictionary 
including 9131 concepts is created and each concept is assigned to one or more 
ontology category.  

5.1   Evaluation set 

The objectives of the evaluation were to measure precision and recall of the concept 
chains that the system generated. Precision was judged by manual inspection of the 
top n chains. For recall, we synthesized an evaluation set as follows. We selected 
chains of lengths ranging from 1 to 4. The chains were selected as follows: 

• We ran queries with various pairs of named entities, that is, the end points of 
the chains were named entities (although intervening concepts were not 
required to be named entities). This was done to facilitate manual judgment of 
the goodness of chains.    
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• The textual windows relevant to each query pair were then manually inspected: 
we selected those where there was a logical connection between the two 
concepts. 

• We then generated the concept chains for these concept pairs (and documents) 
as evaluation data. 

5.2   Experiment Result  

This section presents the results on the evaluation set. The experiment processes 30 
query pairs in the evaluation set and generates concept chains of lengths ranging from 
1 to 4 for each query pair. We make the comparison by calculating the average 
precision and recall of the chains each technique created for all the query pairs. Table 
2 summarizes the results we obtain on executing concept chain queries from the 
evaluation set. The comparison will be used to emphasis the strength and weakness of 
each technique compared to each other. 

Table 2.  Comparison of average precision and recall 

Model Average Precision Average Recall 
Concept-profile Model 76.19% 89.81% 
Graph Model 83.77% 81.50% 

As a post analysis, the concept-profile model handles a majority of the queries with 
a recall of 89.81%. The recall parameter shows the strength of the concept-profile 
model presented here. Through combining concept profiles and ontology information, 
we got good coverage of the links we were looking for. However, the precision in the 
semantic links represented by the graph model was better than that of concept-profile 
model, which performs 83.77% comparing with 76.19% achieved by concept-profile 
model. Our main conclusion is that if we need much focused information then the best 
results will be obtained by using the semantic links represented by the graph model. 
When we look for greater coverage of information we should use the concept-profile 
model. 

6   Conclusion 

This paper focuses on detecting links between two concepts across text documents 
(e.g. two persons). We interpret such a query as finding the most meaningful evidence 
trail across documents that connect these two concepts. We proposed to use link-
analysis techniques over the extracted features provided by Information Extraction 
Engine for finding new knowledge and compared two approaches to perform this 
task.  One is the concept-profile approach integrating ontology information, and the 
other is the graph-based approach which combines text mining, graph mining and link 
analysis techniques.  Counterterrorism corpus is used to evaluate the performance of 
each model and demonstrates that the semantic links represented by the graph model 
is preferable for finding focused information. For greater coverage of information we 
should use the concept-profile based approach. 
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Future directions include the development of more sophisticated retrieval models 
that can combine various evidence sources (concept order, occurrence, context, 
novelty etc.) in one model. We are also researching extensions of concept chains to 
concept graph queries. This will enable users to quickly generate hypotheses graphs 
which are specific to a corpus. These matched instances can then be used to look for 
other, similar scenarios.  
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Abstract. In this study, the capability of probabilistic neural network (PNN) is 
enhanced. The proposed PNN is capable of reflecting the global probability 
density function (PDF) by summing the heterogeneous local PDF automatically 
determined in the individual standard deviation of variables. The present PNN 
is applied to predict the stability number of armor blocks of breakwaters using 
the experimental data of van der Meer, and the estimated results of PNN are 
compared with those of empirical formula and previous artificial neural 
network (ANN) model. The PNN showed better results in predicting the 
stability number of armor blocks of breakwaters and provided the promising 
probabilistic viewpoints by using the individual standard deviation in a variable.  

Keywords: breakwater; armor block; stability number; multivariate Gaussian 
distribution; classification; artificial neural network (ANN); probabilistic neural 
network (PNN). 

1   Introduction 

Armor units are designed to defend breakwaters from repeated wave loads. Because 
armor units are decided by the stability numbers, these numbers are very important to 
design rubble mound breakwaters. The stability of rubble mound breakwaters is 
usually analyzed by the well-known empirical formulae by Hudson [1] and van der 
Meer [2]. Those formulae are used to determine the individual weight of armor blocks 
of breakwaters. Although those formulae were derived from a number of 
experimental data, they show too much disagreement between the measured stability 
numbers and the predicted ones. The uncertainties in the empirical formulae 
inevitably increase the factor of safety and eventually, the construction cost. 
Therefore, a number of studies have been carried out to develop an advanced 
empirical formula for breakwater stability. 

Kaku [3] and Kaku et al. [4] proposed an empirical formula for the damage level 
prediction based on the van der Meer's experimental data. Smith et al. [5] compared 
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their own test results with the prediction by Kaku et al. [4]. Hanzawa et al. [6] 
proposed an empirical formula for stability number based on their own test data. 
Although several empirical formulae have been proposed for decades, remarkable 
improvement has not been seen. Recently, Mase et al. [7] examined the applicability 
of artificial neural network (ANN) to analyzing the stability of rubble-mound 
breakwater and compared the predicted stability numbers by neural network with the 
measured ones of van der Meer and Smith et al. [5]. The ANN technique seems to 
make a breakthrough in the design of rubble mound breakwaters. Actually, the 
stability numbers predicted by the ANN agree better than those by van der Meer's 
([7]). The stability number, however, still needs to be improved. Kim, D. H. et al. [8] 
presented several network models to predict the stability number of armor blocks of 
breakwaters. The same training data set is used for ANN but the structures of the 
ANN and the number of nodes at input and hidden layer differ from those of Mase's 
ANN.  Even if the ANN technique shows better performance than the empirical 
model based approach in breakwater design, it can be adapted to new data through a 
re-training process and needs more efforts to determine the architecture of network 
and more computational time in training the network. Moreover, the estimated results 
from the ANN are not probabilistic but deterministic. The probabilistic neural 
network (PNN), therefore, could be an effective and reasonable alternative, because 
PNN needs less time to determine the architecture of the network and to train the 
network. Moreover the PNN provides the probabilistic viewpoints as well as 
deterministic classification results. 

In this paper, the PNN technique is enhanced to reflect the global probability 
density function (PDF) by summing the heterogeneous local PDF. The heterogeneous 
local PDF of the PNN is automatically determined to use the individual standard 
deviation of variables. Training and test patterns for the PNN are prepared using the 
data sets from the experimental data of van der Meer [9]. The predicted stability 
numbers are compared with those measured by laboratory. The results show that the 
PNN can effectively predict the stability numbers in spite of data complexity, 
incompleteness, and incoherence, and it can be an effective tool for designers of 
rubble mound breakwaters to support their decision process and to improve design 
efficiency. 

2   Capability Enhancement of PNN 

PNN is basically a pattern classifier that combines the well-known Bayesian decision 
strategy with the Parzen non-parametric estimator of the PDFs of different classes 
[10]. PNN has gained interest because it offers a way of interpreting the network’s 
structure in the form of a probability density function and it is easy to implement. An 
accepted norm for decision rules or strategies used to classify patterns is that they do 
so in a way that minimizes the "expected risk." Such strategies are called Bayesian 
strategies" and can be applied to problems containing any number of classes.  

Parzen showed how one may construct a family of estimates of ),(Xf  [11], and 

Cacoullos has also extended Parzen's results to estimates in the special case that the 
multivariate kernel is a product of univariate kernels [12]. In the particular case of the 
Gaussian kernel, the multivariate estimates can be expressed as 
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where X  is the test vector to be classified; )(XAf  is the value of the PDF of 

category A at input X ; m  is the number of training vectors in category A; p  is the 

dimensionality of the training vectors; AiX  is the thi  training vector for category A; 

and σ  is the smoothing parameter. Note that )(XAf  is the simple sum of small 

multivariate Gaussian distributions centered at each training sample because only one 
global smoothing parameter is used. 

The pattern layer of PNN consists of a number of pattern units. Each pattern unit 
(shown in more detail in Fig. 1) forms a dot product of the input pattern vector X  
with a weight vector iW , iiZ WX ⋅= , and then performs a nonlinear operation on 

iZ before outputting its activation level to the summation unit. Instead of the sigmoid 

activation function commonly used for back propagation neural network (BPNN), the 
nonlinear operation used here is ])1(exp[ 2σ−iZ . Assuming that both X  and iW  

are normalized to unit length, this is equivalent to using 
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which is the same form as Equation (1). 
To complement the defect of the conventional PNN using one global smoothing 

parameter, Berthold and Diamond [13] suggested a constructive probabilistic neural 
network (CPNN) by taking different smoothing parameters for different patterns. Jin 
et al. [14] applied the CPNN to classify the freeway traffic patterns for incident 
detection. However, CPNN needed to consider a different probabilistic property for 
each variable. 

Each variable, such as the permeability of breakwater ( P ), the damage level ( dS ), 

the surf similarity parameter ( mξ ), the dimensionless water depth ( sHh / ), and the 

spectral shape ( SS ), has an individual standard deviation and a different probabilistic 
property. However, the PDF did not consider the individual probabilistic property of 
variables in PNN because only one global smoothing parameter was used. Therefore, 
in this paper, the PNN enhanced to reflect the global probability density function by 
summing the heterogeneous local PDFs automatically determined to use the 
individual standard deviation of variables. The basic idea is to individually use the 
heterogeneous local PDF in a variable because the probabilistic property of variables 
is not homogenous but heterogeneous. The individual PDF was derived from the 

standard deviation of variables. The PDF for thi sample is determined to sum different 

standard deviations of the training vector with thj variables (Fig. 2). Therefore, the 

nonlinear operation of enhanced PNN can be expressed as 
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where i  and j  are indices for the thi  training pattern and thj  variable; p  is the 

number of variables; jX  is the thj  variable of input data; jiW ,  is the thj  variable  of 

the thi  training vector; jσ  is the standard deviation with the  thj  variable. 

 

Fig. 1. Pattern layer of conventional PNN

 

Fig. 2. Pattern layer of enhanced PNN 

3   Prediction of Stability Numbers Using PNN 

In order to apply the enhanced PNN to the prediction of stability numbers, the rule 
base which implicitly tells the input (design condition) output (stability number) 
relationship should first be composed by using the so-called training patterns. About 
two thirds of the experimental data by van der Meer’s ([9]) were used as training 
patterns, and the others as test patterns to evaluate the performance of the constructed 
PNN. In the van der Meer’s 641data, there are only two cases for the number of wave 
attack; 1000 and 3000 wave attacks. In general, it is not easy to have nonlinear 
mapping function using only two cases of data in function mapping problems. 
Therefore, two PNNs were separately constructed; PNN1 is for 1000 attacks and 
composed of 326 experimental data sets. PNN2 is for 3000 attacks and composed of 
315 experimental data sets. The measured stability numbers that were defined as 
output whose definitions are respectively set to 207 and 196 classes (the ranges of the 
measured stability numbers was from 0.7907 to 4.3848). In order to make the training 
pattern an adequate representation of the class distinctions, PNN1 and PNN2 were 
constructed using 207 and 196 training patterns out of 326 and 315 experimental data 
sets, respectively, which correspond to 1000 and 3000 wave attacks. Five design 
parameters including the permeability of breakwater ( P ), the damage level ( dS ), the 

surf similarity parameter ( mξ ), the dimensionless water depth ( sHh / ), and the 

spectral shape ( SS ) were used as the input set for PNN and all the input data are 
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normalized to 0.1~0.9 to give an equal weighting factor before implementing the data 
to the network. In the network, in cases of impermeability core, permeability core, 
and homogeneity structure, the permeability of breakwater ( P ) was assumed to be 
respectively 0.1, 0.5, and 0.6. In cases of Pierson Moskowitz, narrow, and wide 
spectrum, the spectral shapes ( SS ) were used to be respectively 1, 2, and 3. Table 1 
shows the samples for construction of PNN using the van der Meer [9]’s data. The 
global PDF of the PNN was derived from Equation (3). Table 2 shows the standard 
deviation values and means of the normalized variables.  

Table 1. The samples of training patterns for construction of PNN 

  Input(normalized data) Output(class) 

wN P dS m sHh / SS sN
1000 0.1(0.1) 0.76(0.11) 7.15(0.85) 14.47(0.76) 1(0.1) 2(0.94) 
1000 0.1(0.1) 2.14(0.15) 4.85(0.58) 10.06(0.53) 1(0.1) 23(1.35) 
1000 0.1(0.1) 4.04(0.20) 2.13(0.27) 8.82 (0.47) 1(0.1) 43(1.55) 
1000 0.1(0.1) 4.55(0.22) 2.19(0.28) 7.14 (0.39) 1(0.1) 84(1.96) 
1000 0.1(0.1) 7.31(0.30) 2.19(0.28) 6.37 (0.35) 1(0.1) 104(2.14) 
1000 0.1(0.1) 3.73(0.20) 1.41(0.19) 5.22 (0.29) 1(0.1) 147(2.64) 
1000 0.1(0.1) 4.07(0.21) 0.76(0.11) 4.15 (0.24) 1(0.1) 191(3.29) 
1000 0.1(0.1) 11.66(0.42) 0.78(0.11) 3.17 (0.19) 1(0.1) 206(4.30) 
3000 0.1(0.10) 0.65(0.10) 5.37(0.68) 17.24(0.90) 1(0.1) 1(0.79) 

P
N
N
1

3000 0.1(0.10) 3.43(0.15) 6.84(0.86) 9.78(0.52) 1(0.1) 27(1.39) 
3000 0.1(0.10) 5.26(0.18) 4.00(0.51) 8.21(0.44) 1(0.1) 52(1.68) 
3000 0.6(0.90) 1.29(0.11) 5.57(0.70) 7.20(0.39) 1(0.1) 75(1.91) 
3000 0.5(0.74) 7.29(0.22) 3.71(0.48) 5.11(0.29) 1(0.1) 97(2.13) 
3000 0.1(0.10) 25.96(0.55) 1.72(0.23) 5.09(0.29) 1(0.1) 149(2.71) 
3000 0.1(0.10) 7.89(0.23) 0.76(0.11) 4.15(0.24) 1(0.1) 182(3.29) 
3000 0.1(0.10) 20.81(0.46) 0.78(0.12) 3.17(0.19) 1(0.1) 196(4.30) 
3000 0.1(0.1) 2.65(0.139 4.84(0.615) 12.66(0.664) 3(0.9) 1.077(7) 
3000 0.1(0.1) 1.49(0.119 5.34(0.677) 12.17(0.640) 1(0.1) 1.119(8) 
3000 0.1(0.1) 0.86(0.107) 2.24(0.294) 11.92(0.627) 3(0.9) 1.144(9) 

P
N
N
2

3000 0.1(0.1) 2.53(0.137 2.57(0.335) 11.68(0.615) 1(0.1) 1.167 (10)
 

Table 2. Standard deviation and mean of normalized variables 

PNN1 PNN2 Variables σ  Mean σ  mean 

P  0.3291 0.4004 0.3296 0.4027 

dS
 

0.1206 0.2362 0.1334 0.2502 

mξ
 

0.1583 0.3727 0.1565 0.3709 

sHh /
 

0.1295 0.3790 0.1305 0.3806 

SS  0.2082 0.1724 0.2033 0.1698 
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To compare the performance of each model in a more reasonable way, the 
agreement index ( aI ) and the correlation coefficient ( CC ) are used as follows [15]  
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where ie  and im  denote the estimated and the measured stability numbers 

respectively; m  is the average of measured stability numbers; T  is the transpose 
matrix. If aI  is close to one, the predicted set agrees well to the measured set.  

In case where all the experimental data including trained patterns are used as 
testing patterns, the results are shown in Table 3. PNN models seem to be the best 
predictor in this example. 

To evaluate the generalized capability of the ANN and PNN, they were tested only 
by untrained patterns. The results are shown in Table 4. In which, the results by ANN 
and PNN models show slight deterioration compared to those in Table 3. However, 
the comparison results show that PNN can effectively predict the stability numbers. 

Table 3. Performance of stability models with all patterns including training patterns 

 VM1 VM2 ANN1 ANN2 PNN1 PNN2 
Ia 0.926 0.927 0.959 0.962 0.991 0.989 

CC 0.875 0.877 0.925 0.929 0.982 0.977 

Table 4. Performance of stability models with only untrained patterns 

 ANN1 ANN2 PNN1 PNN2 
Ia 0.928 0.931 0.955 0.949 

CC 0.904 0.897 0.949 0.902 

80 100 120 140 160 180 200 220
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0.88

0.90

0.92

0.94

0.96

0.98

 PNN1 with only untrained patterns

Ia

Train data(PNN1)  

Fig. 3. aI of PNN1 according to the number of trained patterns 
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0.86

0.88

0.90

0.92

0.94

0.96

0.98

 PNN2 with only untrained patterns

Ia

Train data(PNN2)  

Fig. 4. aI of PNN2 according to the number of trained patterns 

To optimize the construction of the PNN, aI of models were compared according 

to the number of training patterns. Figs. 3 and 4 show respectively the trends of aI of 

PNN1 and PNN2 according to the number of trained patterns. 

4   Conclusions 

An enhanced PNN method was proposed and incorporated to predict the stability 
number of breakwater. The permeability of breakwater ( P ), damage level ( dS ), surf 

similarity parameter ( mξ ), dimensionless water depth ( sHh / ), and the spectral shape 

( SS ) are used as inputs to the PNN, and the stability number of breakwater is defined 
as classes to be predicted by the proposed method. From the results, it has been found 
that the estimation performance of the proposed method is more effective than those 
of the empirical model and ANN. We can find the optimum condition of the 
construction of the PNN through the trend according to the number of training 
patterns. Also, the proposed technique has following merits as: 

(1) It can provide the probabilistic viewpoint as well as deterministic classification 
results in considering the uncertainties in the design of rubble mound breakwaters. 

(2) The heterogeneous local PDF of the PNN is automatically determined to use the 
individual standard deviation of variables. 
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Abstract. We propose a NE (Named Entity) recognition system using a semi-
supervised statistical method. In training time, the NE recognition system builds 
error-prone training data only using a conventional POS (Part-Of-Speech) 
tagger and a NE dictionary that semi-automatically is constructed. Then, the NE 
recognition system generates a co-occurrence similarity matrix from the error-
prone training corpus. In running time, the NE recognition system constructs 
AWDs (Acyclic Weighted Digraphs) based on the co-occurrence similarity 
matrix. Then, the NE recognition system detects NE candidates and assigns 
categories to the NE candidates using Viterbi searching on the AWDs. In the 
preliminary experiments on PLO (Person, Location and Organization) 
recognition, the proposed system showed 81.32% on average F1-measure. 

Keywords: named entity recognition, semi-supervised statistical method, acyclic 
weighted digraph. 

1   Introduction 

As NEs (Named Entities) such as organization’s names, person’s names and 
location’s names contain more informative information, NE recognition is the 
fundamental for efficient information access. Generally, the NE recognition methods 
are divided into two kinds; rule-based methods and statistical methods. The rule-
based methods use regular-expression-like patterns and NE dictionaries [6]. If the NE 
                                                           
* Corresponding author. 
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dictionaries are so much massive and the patterns are generated by referring to a large 
corpus, the performances of the rule-based methods will be good. However, it is well 
known that managing a lot of rules is very difficult and the cost for the initial 
implementation is high. Meanwhile, the statistical methods collect statistical 
knowledge from corpus and determine NE categories based on the statistical 
knowledge. The statistical methods can be divided into two kinds according to their 
learning methods; supervised learning methods and unsupervised learning methods. 
The supervised learning methods perform well, but the performances of the 
supervised learning methods depend on the size of NE tagged training data. If the size 
of NE tagged training data is small, most of supervised learning methods will raise the 
sparse data problems. On the other hand, the unsupervised learning methods do not 
require NE tagged training data, but the performances of the unsupervised learning 
methods are much less than those of the supervised learning methods. Recent 
researches have been focused on improving the accuracy of NE recognition based on 
some supervised learning models such as DT (Decision Tree) [7], MEM (Maximum 
Entropy Model) [2], HMM (Hidden Markov Model) [1], and CRF (Conditional 
Random Field) [3]. However, these approaches still need a large amount of NE tagged 
training corpus. To reduce the time-consuming tasks of training data construction, we 
propose a semi-supervised statistical method which combines a supervised factor (i.e. 
looking up a NE dictionary) with an unsupervised factor (i.e. training based on a large 
raw corpus). 

This paper is organized as follows. In Section 2, we propose a NE recognition 
system based on a semi-supervised learning method. In Section 3, we explain 
experimental results. Finally, we draw some conclusions in Section 4. 

2   NE Recognition Using Acyclic Weighted Digraphs 

The proposed system consists of a knowledge acquisition module and a NE 
recognition module. Using a conventional POS (Part-Of-Speech) tagger and a NE 
dictionary, the knowledge acquisition module, first, naively extracts NE candidates 
from a raw corpus and assigns all possible categories to the NE candidates. To 
construct the NE dictionary, we collected PLO entities (i.e. person’s names, 
location’s names, organization’s names) from an on-line yellow page and semi-
automatically classified the PLO entities into 50 subcategories by using an on-line 
encyclopedia. As a result, the NE dictionary includes 53 kinds of named entities that 
are annotated with their categories. Then, the knowledge acquisition module 
calculates all possible co-occurrence similarities between NE candidates and 
adjacent content words although the NE tagged corpus includes many errors. When 
sentences are input, the NE recognition module simply finds all possible NE 
candidates from the input sentences by using the same method with the knowledge 
acquisition module. Then, the NE recognition module filters out inadequate NE 
candidates and classifies each unfiltered NE candidate into one among 53 categories 
using the co-occurrence similarities that are already calculated by the knowledge 
acquisition module. 
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2.1   NE Dictionary Construction 

To construct the NE dictionary, we collect 489,212 PLO entities (400,438 person’s 
names, 46,776 location’s names and 41,998 organization’s names) from an on-line 
yellow page. Then, we automatically assign subcategories to the PLO entities by 
using the genera of lemmas in an on-line encyclopedia (http://100.naver.com). Most 
encyclopedias describe lemmas with genera and specific differences. A genus is a 
kind of a class to which each lemma belongs, and a specific difference is a kind of 
difference from other members of its category. For example, the lemma, ‘Woo 
island’, has its description like ‘an island which belongs to one of districts in Jeju 
island’. In such case, the genus of ‘Woo island’ is ‘island’, and the specific difference 
is ‘which belongs to one of districts in Jeju island’. Based on these characteristics of 
encyclopedias, we manually construct a mapping table with genus words and their 
categories, as shown in Table 1. 

Table 1. A part of the mapping table 

Genus (in Korean) Category 
연구소, 연구원, 연구센터 Laboratory 

시 City 

국가 Country 

학교 School 

산, 봉, 산맥, 능선 Mountain 

섬 Island 

바위 Rock 

강, 천 River 

의사, 변호사, 박사 Expert 

관공서, 공사, 공단 Government 

국회의사당 Assembly 

By looking up the mapping table, we automatically assigned subcategories to each 
PLO entity. If a PLO entity does not exist in the encyclopedia or the genus of a PLO 
entity does not exist in the mapping table, we do not assign a subcategory to the PLO 
entity. Then, we manually correct misclassified entities. 

2.2   Co-occurrence Similarity Acquisition 

To calculate co-occurrence similarities between NEs and adjacent content words, the 
knowledge acquisition module extracts all NE candidates from a raw corpus and 
assigns all possible categories to the NE candidates by using a POS tagger and the NE 
dictionary, as shown in Fig. 1. In this paper, we use articles of Chosun-Ilbo (One of 
Korean daily newspapers; http://www.chosun.com, 2,698,196 raw sentences from 
1996 to 1997) as a training corpus. 
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서울도봉구심현경씨는매일밤안절부절이다.
(Simhyunkyoung in Dobong-gu at Seoul is restless every night.)

서울/nq
(Seoul/proper noun)

심현경/nq+씨/xsn+는/j
(Simhyunkyoung/proper noun)

매일/ma
(every/adverb)

POS tagging

도봉구/nq
(Dobong-gu/proper noun)

밤/ncn
(night/noun)

안절부절/ncn+이/jp+다/ef
(is/verb+restless/adjective)

Looking up the NE dictionary

서울/city
(Seoul/city)

심현경/person+씨/xsn+는/j
(Simhyunkyoung/person)

매일/ma
(every/adverb)

도봉구/person,district
(Dobong-gu/person,district)

밤/ncn
(night/noun)

안절부절/ncn+이/jp+다/ef
(is/verb+restless/adjective)  

Fig. 1. The conceptual image of the training corpus 

Then, the knowledge acquisition module calculates all possible co-occurrence 
similarities between NE candidates and content words, as shown in Equation (1). 

),()()(

),(
),(

YXfYfXf

YXf
YXSim

−+
=  (1) 

In Equation (1), X can be a content word or a NE category, and Y can also be a 
content word or a NE category. f(X) is the frequency of X in the training corpus, and 
f(X,Y) is the frequency of X occurring with Y in a sentence. If X and Y are content 
words, Equation (1) will return the co-occurrence similarity between the two content 
words. If X is a content word and Y is a NE category, Equation (1) will return the co-
occurrence similarity between the content word and the NE category. Finally, the 
knowledge acquisition module constructs a co-occurrence similarity matrix by 
gathering all possible co-occurrence similarities, as shown in Fig. 2. 

In Fig. 2, n and m are the number of content words and the number of NE 
categories in the training corpus, respectively. wi is the ith content word, where 
content words are arranged in descending order of frequencies f(w1) ≥…≥ f(wi) ≥ … ≥ 
f(wn). cj is the jth NE category, where NE categories are arranged in descending order 
of frequencies f(c1) ≥…≥ f(cj) ≥ … ≥ f(cm). 

 
 w1 … wn c1 … cm 
W1 1.0 … 0.1 0.7 … 0.4 
… … … … … … … 
wn 0.1 … 1.0 0.1 … 0.1 
C1 0.7 … 0.1 1.0 … 0.2 
… … … … … … … 
cm 0.4 … 0.1 0.2 … 1.0 

Fig. 2. The conceptual image of the co-occurrence similarity matrix 
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2.3   NE Detection 

When a sentence is input, the NE recognition module first extracts noun phrases1 from 
the sentence by using the POS tagger and some heuristics. Then, the NE recognition 
module naively assigns all possible NE categories to the noun phrases by looking up 
the NE dictionary. Finally, the NE recognition system determines if the NE 
candidates are not fake but real by searching the optimal path on an AWD (Acyclic 
Weighted Digraph). In this paper, an AWD consists of two sets, V and E, where V is a 
finite nonempty set of vertices which represent NE categories or content words, and E 
is a set of vertex pairs that are connected with directed arcs from the ith vertex to the 
i+1th vertex in a sequence of NE categories or content words. Fig. 3 shows an 
example of the AWD for detecting real NEs. 

삼성아파트에사는현경이어제한국을만났다.
(Hyunkyoung who lives in Samsung apartment met Hankuk yesterday.)

삼성아파트

(Samgsung apartment)

Building

살

(live)
현경

(Hyunkyoung)

Person

한국

(Hankuk)

Person

삼성아파트

(Samgsung apartment)
살

(live)
현경

(Hyunkyoung)
한국

(Hankuk)

START

Building
살

(live) 현경

(Hyunkyoung)

Person

한국

(Hankuk)

Person END

Extracting noun phrases and content words

Assigning NE categories

Creating the AWD

Country

Country

삼성

(Samsung)
아파트

(apartment)

 

Fig. 3. An example of the AWD for detecting real NEs 

To find the optimal pass on the AWD, we modify the Viterbi algorithm [8] that is 
well-known as the best searching algorithm using dynamic programming. Actually, 
the Viterbi algorithm uses the transition probabilities multiplied by observation 
probabilities in HMM. However, the NE recognition module cannot directly calculate 
the observation probabilities and transition probabilities because the training corpus is 
unlabeled. Therefore, we assume that the observation probabilities of all vertices are 
1.0 and the transition probabilities can be approximated to the co-occurrence 
similarities between adjacent vertices. Although our assumptions include some flaws, 
we believe that the transition probabilities will be similar to co-occurrence similarities 
obtained from a large training corpus. Based on these assumptions, the NE 
recognition module obtains the co-occurrence similarities between adjacent vertices 

                                                           
1 In this paper, we consider a sequence of nouns as a noun phrase. 
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by looking up the co-occurrence similarity matrix and uses the co-occurrence 
similarities as the transition probabilities. Then, the NE recognition module 
determines the optimal pass on the AWD by using the modified Viterbi algorithm. If a 
NE candidate consists of a multi-word phrase like ‘삼성 아파트 (Samsung 
apartment)’ in Fig. 3, the NE recognition module calculates co-occurrence similarities 
of each word in the multi-word phrase and selects the maximum value as the co-
occurrence similarity of the multi-word phrase, as shown in Equation (2). In other 
words, the co-occurrence similarity of ‘START & 삼성 아파트(Samsung apartment)’ 
is the maximum one among the co-occurrence similarities, ‘START & 삼성 
(Samsung)’ and ‘START & 아파트 (apartment)’. 

)},({),( 1
1

1
j

ii
nj

iimulti vvtrMAXvvtr +≤≤+ =  (2) 

In Equation (2), vi is the ith vertex on the AWD, and j
iv 1+ the jth word in the i+1th 

vertex that consists of n words.  

2.4   NE Categorization 

After detecting real NEs, the NE recognition module assigns categories to the real 
NEs. The NE recognition module first removes unnecessary vertices for 
categorization. For example, if ‘삼성 아파트(Samsung Apartment)’ is detected as a 
real NE in Fig. 3, the NE recognition module will remove the two lexical forms of 
vertices ‘삼성 (Samsung)’ and ‘아파트 (apartment)’ on the AWD, as shown in Fig. 4. 

START

Building
살

(live) 현경

(Hyunkyoung)

Person

한국

(Hankuk)

Person END

Removing unnecessary vertices

Country

삼성

(Samsung)
아파트

(apartment)

START Building
살

(live) Person

Person

END

Country

 

Fig. 4. An example of the AWD for assigning NE categories 

Then, the NE recognition module finds the optimal pass on the modified AWD by 
using the same method with the NE detection. Finally, the NE recognition module 
assigns proper categories to real NEs by tracing the optimal pass. 

3   Preliminary Experiments 

3.1   Data Sets 

MUC (Message Understanding Conference) has provided on ongoing forum for 
assessing the state of the art in text analysis technology and for exchanging 
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information on innovative computational techniques in realistic tasks [4], [5]. 
However, MUC does not provide any test collections to evaluate a Korean NE 
recognition system. Therefore, to evaluate the performance of the proposed system, 
we built a Korean test collection in a telebanking domain. The test collection consists 
of 1,769 sentences that include 380 person’s names, 173 location’s names, and 238 
organization’s names. In this paper, we defined 53 NE categories (PLO categories and 
50 their subcategories), but we could not evaluate performances on classification of 
the 53 NE categories because we did not completely construct the test collection yet. 
Therefore, we evaluated the performances on classification of only the PLO 
categories (i.e. person’s names, location’s names, and organization’s names). 
Although the preliminary experiments are incomplete and coarse, we think that the 
preliminary experiments have some meaning because our goal is to recognize NE 
categories without fully-annotated training corpus. We are trying to supplement and 
expand the Korean test collection and will completely evaluate performances of the 
proposed system in the future. 

3.2   Performance Evaluation 

To evaluate performance of the proposed system, we used the F1-measure, as shown 
in Equation (3). 

 
2

1
pr

rp
F

+
=  (3) 

In Equation (3), p is the precision that means proportion of correct ones out of 
returned NE categories, and r is the recall rate that means proportion of returned NE 
categories out of classification targets. 

Table 2 shows the performance of the proposed system. As shown in Table 2, the 
performance is 81.32% on average F1-measure which is 9.28% higher than the 
baseline system that used only NE dictionary. 

Table 2. The performance of the proposed system 

 The proposed system The baseline system 
Category Precision Recall F1 Precision Recall F1 

Person 85.75 87.11 86.43 76.27 90.53 83.40 
Location 71.38 68.39 69.88 46.53 51.94 49.23 

Organization 83.27 92.02 87.64 74.16 92.86 83.51 
Average 80.13 82.51 81.32 65.65 78.44 72.04 

The performance for Organization is relatively good, while the performance for 
Location is poor. The difference is caused by biased training; the proposed system is 
actually tuned to Organization categories because the training data, the articles of 
Chosun-Ilbo, holds probably more organization’s names than location’s names. 
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4   Conclusion 

We proposed a NE recognition system using a semi-supervised statistical method. In 
training time, the proposed system extracts all possible NE candidates by looking up 
the NE dictionary that is semi-automatically constructed. Then, the proposed system 
constructs a matrix that includes co-occurrence similarities between NE candidates 
and adjacent content words. In running time, the proposed system generates AWDs 
based on the co-occurrence similarity matrix. Then, the NE recognition system detects 
NE candidates and assigns proper categories to the NE candidates using Viterbi 
searching on the AWDs. In the preliminary experiments on PLO (Person, Location, 
and Organization) recognition, the proposed system showed 81.32% on average F1-
measure. Based on the experimental results, we think that the proposed system may 
be a good solution to reduce the time-consuming tasks of training data construction 
because it does not require a large amount of NE tagged training corpus. 
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Abstract. Contrast set mining aims at finding differences between dif-
ferent groups. This paper shows that a contrast set mining task can be
transformed to a subgroup discovery task whose goal is to find descrip-
tions of groups of individuals with unusual distributional characteristics
with respect to the given property of interest. The proposed approach
to contrast set mining through subgroup discovery was successfully ap-
plied to the analysis of records of patients with brain stroke (confirmed
by a positive CT test), in contrast with patients with other neurologi-
cal symptoms and disorders (having normal CT test results). Detection
of coexisting risk factors, as well as description of characteristic patient
subpopulations are important outcomes of the analysis.

1 Introduction

Data analysis in medical applications is characterized by the ambitious goal of
extracting potentially new relationships from the data, and providing insightful
representations of detected relationships. Medical data analysis is frequently per-
formed by applying rule learning, as the induced rules are easy to be interpreted
by human experts.

The goal of standard classification rule learners [5] is to induce classifica-
tion/prediction models from labeled examples. Opposed to these predictive in-
duction algorithms which induce a model in the form of a set of rules, descriptive
induction algorithms aim to discover individual patterns in the data, described in
the form of individual rules. Descriptive induction algorithms include association
rule learners [1], and subgroup discovery systems [2,6,8,11].

This paper addresses a data analysis task where groups of labeled examples are
given and the goal is to find differences between the groups. This data analysis
task, named contrast set mining, was first presented in [3]. In this paper we
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propose to solve this task by transforming the contrast set mining task to a
subgroup discovery task and to apply the subgroup discovery methodology to
solve the task. This approach solves some open issues of existing contrast set
mining approaches, like dealing with continuous valued attributes, choosing an
appropriate search heuristic, selecting the level of generality of induced rules,
avoiding of overlapping rules, and presenting the results to the end-users.

Although the goals of contrast set mining, which aims at finding differences
between contrasting groups, and subgroup discovery, which aims at finding de-
scriptions of population subgroups, seem different, this paper proves that the
goals are the same and the results can be interpreted in both ways. The pro-
posed approach of contrast set mining through subgroup discovery (presented
in Section 4) was applied to a real-life problem of analyzing patients with brain
ischaemia (presented in Section 2), where we provide insightful data analysis
helping to answer questions about the severity of the brain damage based on risk
factors obtained from physical examination data, laboratory test data, ECG data
and anamnestic data. The usefulness of the approach is shown by the achieved
results (Section 5) interpreted by medical specialists.

2 Brain Ischaemia Data

The brain ischaemia dataset consists of records of patients who were treated
at the Intensive Care Unit of the Department of Neurology, University Hospi-
tal Center “Zagreb”, Zagreb, Croatia, in year 2003. In total, 300 patients are
included in the dataset: 209 with the computed tomography (CT) confirmed
diagnosis of brain stroke, and 91 patients who entered the same hospital depart-
ment with adequate neurological symptoms and disorders, but were diagnosed
as patients with transition ischaemic brain attack (TIA, 33 patients), reversible
ischaemic neurological deficit (RIND, 12 patients), and severe headache or cer-
vical spine syndrome (46 patients). In this paper, the goal of the experiments is
to characterize brain stroke patients confirmed by a positive CT test in contrast
with the patients with a normal CT test.

Patients are described with 26 descriptors representing anamnestic, physi-
cal examination, laboratory test and ECG data, and their diagnosis. Anamnes-
tic data: aspirin therapy (asp), anticoagulant therapy (acoag), antihypertensive
therapy (ahyp), antiarrhytmic therapy (aarrh), antihyperlipoproteinaemic ther-
apy - statin (stat), hypoglycemic therapy (hypo), sex (sex), age (age), present
smoking (smok), stress (str), alcohol consumption (alcoh), family anamnesis
(fhis). Physical examination data are: body mass index (bmi), systolic blood
pressure (sys), diastolic blood pressure (dya), fundus ocular (fo). Laboratory
test data: uric acid (ua), fibrinogen (fibr), glucose (gluc), total cholesterol (chol),
triglyceride (trig), platelets (plat), prothrombin time (pt). ECG data: heart rate
(ecgfr), atrial fibrillation (af), left ventricular hypertrophy (ecghlv).1

The diagnosis of patients is based on the physical examination confirmed by
the CT test. All the patients in the control group have a normal brain CT test
1 Details can be found on http://lis.irb.hr/PAKDD2007paper/.
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in contrast with the positive CT test of patients with a confirmed brain at-
tack. It should be noted that the group of patients with brain stroke and the
control group do not consist of healthy persons but of patients with suspected
severe neurological symptoms and disorders. In this sense, the available dataset
is particularly appropriate for studying the specific characteristics and subtle
differences that distinguish the two groups. While the detected relationships
can be accepted as the actual characteristics for these patients, the computed
evaluation measures—including probability, specificity and sensitivity of induced
rules—only reflect characteristics specific to the available data set, not necessar-
ily holding for the general population or other medical institutions.

3 Methodological Background

A common question of exploratory data analysis is “What is the difference be-
tween the given groups?” where the groups are defined by a selected property of
individuals that distinguishes one group from the others. For example, the dis-
tinguishing property that we want to investigate could be the gender of patients
and a question to be explored can be “What is the difference between males
and females affected by a certain disease?” or, if the property of interest was the
response to a treatment, the question can be “What is the difference between
patients reacting well to a selected drug and those that are not?” Searching for
differences is not limited to any special type of individuals: we can search for
differences between molecules, patients, organizations, etc.

Data analysis tasks that try to find differences between contrasting groups
are very common and the approach presented here can be applied in many
of these tasks. When the end-users ask for differences characterizing different
groups, they are usually not interested in all the differences; they may prefer a
small set of representative and interpretable patterns. Finding all the patterns
that discriminate one group of individuals from the other contrasting groups
is not appropriate for human interpretation. Therefore, as is the case in other
descriptive induction tasks, the goal is to find descriptions that are unexpected
and interesting to the end-user.

The approach presented in this paper offers this kind of analysis. From a
dataset of class labeled instances (the class label being the property of interest)
by means of subgroup discovery [7] we can find interpretable rules that offer a
good starting point for human analysis of contrasting groups.

Contrast set mining. The problem of mining contrast sets was first defined
in [3] as finding “conjunctions of attributes and values that differ meaningfully
in their distributions across groups.” They proposed the STUCCO algorithm
[3], which is based on Bayardo’s Max-Miner [4] rule discovery algorithm. In the
level-wise search for contrast sets, formed of conjunctions of attribute-value pairs
of length i, the interestingness of the conjunct is estimated by its statistical sig-
nificance, assessed using a χ2 test with a Bonferroni correction. Domain specific
parameters need to be set, like the minimum support difference between groups.
The algorithm works only on domains with nominal attributes.
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It was shown in [10] that contrast set mining is a special case of a more
general rule learning task, and that a contrast set can be interpreted as an
antecedent of a rule and Groupi, for which it is characteristic, as the rule con-
sequent: ContrastSet � Groupi.

When using rule learners (OPUS-AR and C4.5 rules) for contrast set mining
[10], the user needs to select a quality measure (choosing between support, confi-
dence, lift, coverage and leverage). In this setting the number of generated rules
largely exceeds the number of rules generated by STUCCO, unless pruned by the
user-defined maximum number of rules parameter. Expert interpretation of rules
is difficult due to a large amount of rules and sometimes also their specificity.

Subgroup discovery. A subgroup discovery task is defined as follows: “Given
a population of individuals and a property of those individuals that we are in-
terested in, find population subgroups that are statistically ‘most interesting’,
e.g. are as large as possible and have the most unusual statistical (distribu-
tional) characteristics with respect to the property of interest” [11]. The result
of subgroup discovery is a relatively small set of subgroup descriptions formed of
conjunctions of features. Members of a subgroup are examples from the dataset
that correspond to the subgroup description. Good subgroups are large (descrip-
tions covering many examples with the given property of interest), and have a
significantly different distribution of examples with the given property compared
to its distribution in the entire population.

Subgroup discovery algorithms include adaptations of rule learning algorithms
to perform subgroup discovery [7,8] algorithms for relational subgroup discovery
[9,11] and algorithms for exploiting background knowledge for discovering non-
trivial subgroups [2], among others.

Since subgroup descriptions are conjunctions of features that are characteristic
for a selected class of individuals (property of interest), a subgroup description can
be seen as a condition of a rule SubgroupDescription � Class and therefore sub-
group discovery can be seen as a special case of a more general rule learning task.

4 Contrast Set Mining Through Subgroup Discovery

We present an approach to contrast set mining by means of subgroup discovery.
Even though the definitions of subgroup discovery and contrast set mining seem
different, we here provide a proof of the compatibility of the tasks. Furthermore,
by subgroup discovery means, we solve the following open issues in contrast set
mining [10]: proposing appropriate heuristics for identifying interesting contrast
sets, appropriate measures of quality of contrast sets, and appropriate methods
for presenting contrast sets to the end-users. The issue of dealing with continu-
ous attributes is also solved by subgroup discovery algorithm SD [7].

Translating contrast set mining tasks to subgroup discovery tasks.
Contrast set mining and subgroup discovery were developed in different com-
munities, each developing its own terminology that needs to be clarified before
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Table 1. Table of synonyms from different communities

Contrast Set Mining (CSM) Subgroup Discovery (SD) Rule Learning (RL)

contrast set subgroup description rule condition

group class (property of interest) class

attribute value pair feature condition

examples in groups examples of examples of

G1, G2 (G3 . . . Gn) Class and Class C1, C2 (C3 . . . , Cn)

examples for which subgroup covered
contrast set is true examples

support of contrast set on G1 true positive rate true positive rate

support of contrast set on G2 false positive rate false positive rate

proceeding. In order to show the compatibility of contrast set mining and sub-
group discovery tasks, we first define the compatibility of terms used in different
communities as follows: terms are compatible if they can be translated into
equivalent logical expressions and if they bare the same meaning, i.e., if terms
from one community can replace terms used in another community.

To show that terms used in contrast set mining (CSM) can be translated
to terms used in subgroup discovery (SD), Table 1 provides a term dictionary
through which we translate the terms used in CSM and SD into a unifying
terminology of classification rule learning.

We now wish to show that every contrast set mining task (CSM) can be
translated into a subgroup discovery task (SD). The definitions of contrast set
mining and subgroup discovery appear different: contrast set mining searches
for discriminating characteristics of groups called contrast sets, while subgroup
discovery searches for subgroup descriptions.

A contrast set is formally defined as follows: Let A1, A2, ..., Ak be a set of k
variables called attributes. Each Ai can take values from the set {vi1, vi2, ..., vim}.
A contrast set is a conjunction of attribute value pairs defined on user defined
groups G1, G2, ..., Gn of data instances, whose characteristics we wish to uncover
through contrast set mining [3]. A special case of contrast set mining considers
only two contrasting groups G1 and G2. In such cases, we wish to find charac-
teristics of one group discriminating it from the other and vice versa.

In subgroup discovery, subgroups are described as conjunctions of features of
the form Ai = vij for nominal attributes, and Al > value or Al ≤ value for
continuous attributes. The subgroup discovery task aims at finding population
subgroups that are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest [11].

Using the dictionary of Table 1 it is trivial to show that a two-group contrast
set mining task CSM(G1, G2) can be directly translated into the following two
subgroup discovery tasks: SD(Class = G1 vs. Class = G2) and SD(Class = G2
vs. Class = G1). Since this translation is possible for two-group contrast set
mining, it is—by induction—also possible for a general contrast set mining task.
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Solving open issues of CSM with SD
In this paper, contrast set mining is performed by subgroup discovery algorithm
SD [7], an iterative heuristic beam search rule learner.

Handling continuous attributes: SD uses a feature-based data representation,
where attribute values needed for the construction of features are generated au-
tomatically from the data. In this way, the SD algorithm overcomes a deficiency
of CSM: handling of continuous attributes.

Rule quality heuristic: At each run, the SD algorithm finds subgroups for
a selected property of interest and a selected generalization parameter g. The
output of the SD algorithm is a set of rules with good covering properties on
the given example set, which is obtained by using rule quality heuristic qg(R) =

TP
FP+g , where TP (true positives) denotes the number of covered examples from
the positive class, FP (false positives) the number covered negative examples,
and generalization parameter g offers the user the opportunity to influence the
degree of specificity of rules, since with large g general rules are preferred by
the qg heuristic, while with small g each covered negative example is severely
punished thus generating specific rules.2

Rule diversity: To obtain diverse rules in different iterations, the algorithm
implements weighting of covered positive examples after selecting a rule. Instead
of the unweighted qg(R) measure, the weighted rule quality measure replaces TP
with the sum of weights of covered positive examples. Although this approach
can not guarantee the statistical independence of generated rules, it aims at
ensuring good diversity of induced rules. This can be verified also from the
results presented in the following section.

Presenting the results to end-users: In the next section we present some visu-
alization methods with the results of our experiments. The visualizations proved
to be intuitive and useful to the domain experts, and can help estimating the
quality of the results.

5 Results of Brain Ischaemia Data Analysis

In this section we illustrate the usage of the presented approach of contrast set
mining through subgroup discovery including the visualizations of the results.

There are several questions that medical doctors find interesting and that
can be investigated by using the presented method and dataset. Due to space
restrictions of this paper, we concentrate only on the question “What is the
difference between patients with confirmed stroke and patients with other severe
neurological disorders?” Other questions that could be addressed in a similar
manner are: “What is the difference between patients with TIA and RIND and
the confirmed stroke patients?”, “What is the difference between patients with
thrombolic ischaemia and embolic ischaemia”, and others.

For each of the two classes, Figure 1 shows three best rules induced by selecting
g = 10 and g = 50, visualized with the bar visualization along with their TP and
2 Generalization parameter values are usually selected in the range between 1 and 100;

in our experiments values 10 and 50 were used.
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Fig. 1. Contrast sets for groups (classes) brain stroke and normal, induced for g-values
10 and 50, visualized with the bar visualization

FP values. The order of rules is selected by the iterative SD algorithm and is de-
termined by the qg rule quality value that takes into account the covering relations
between the current rule and other rules previously selected for the same g-value.

An interesting subgroup description is rule (age>52.00) and (asp=no), which
stimulated the analysis presented in Figure 2. This analysis provides an excellent
motivation for patients to accept prevention based on aspirin therapy, as the rule
explicitly recognizes the importance of the aspirin therapy for persons older than
52 years.

In addition, the moderately sensitive and specific rules are relevant also for the
selection of appropriate boundary values for numeric descriptors included into
rule conditions. Examples are age over 58 years, and fibrinogen over 3.35. In the
case of fibrinogen, reference values above 3.7 are treated as positive while rules
induced for brain stroke domain suggest 4.45 in combination with age over 64
years, and 3.35 in combination with age over 58 years for more sensitive detection
of stroke. These values, if significantly different from generally accepted reference

Fig. 2. The probability of brain stroke, estimated by the proportion of stroke patients,
shown in dependence of patient age presented for patients taking aspirin as the pre-
vention therapy, and the probability of stroke for patients without this therapy. The
percentage of patients with the aspirin therapy is presented by a dashed line.
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values, can initialize research in the direction of possibly accepting them as new
decision points in medical decision making practice. Even more importantly,
the fact that various boundary points can be suggested in combinations with
different conditions is better than the existing medical practice which tends to
define unique reference values irrespective of the disease that has to be described
and irrespective of other patient characteristics.

6 Conclusions

This work demonstrates that subgroup discovery methodology is appropriate
for solving contrast set mining tasks. It shows the results of contrast set mining
through subgroup discovery applied to the problem of distinguishing between
patients with and without brain stroke. Attention was devoted also to the se-
lection of appropriate visualizations, enabling effective presentations of obtained
results. The presented theory and experimental results show that using subgroup
discovery for contrast set mining solves many open issues of contrast set mining.
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Abstract. The shear volume of the results in traditional support based
frequent sequential pattern mining methods has led to increasing in-
terest in new intelligent mining methods to find more meaningful and
compact results. One such approach is the consensus sequential pattern
mining method based on sequence alignment, which has been success-
fully applied to various areas. However, the current approach to consen-
sus sequential pattern mining has quadratic run time with respect to
the database size limiting its application to very large databases. In this
paper, we introduce two optimization techniques to reduce the running
time significantly. First, we determine the theoretical bound for precision
of the proximity matrix and reduce the time spent on calculating the full
matrix. Second, we use a sample based iterative clustering method which
allows us to use a much faster k-means clustering method with only a
minor increase in memory consumption with negligible loss in accuracy.

1 Introduction

The goal of sequential pattern mining is to detect patterns in a database com-
prised of sequences of itemsets. For example, retail stores often collect customer
purchase records in sequence databases in which a sequential pattern indicates
a customer’s buying habit. In such a database, each purchase is represented as
a set of items, itemsets, purchased together, and a customer sequence would be
a sequence of such itemsets.

Sequential pattern mining is commonly defined as finding the complete set of
frequent subsequences [1]. Much research has been devoted to efficient discovery
of such frequent sequential patterns [1] [7] [8]. However, such problem formu-
lation of sequential patterns has some inherent limitations. First, the result set
is huge and difficult to use without more post processing. Even the number of
maximal or closed sequential patterns are huge, and many of the patterns are
redundant and not useful. Second, the exact match based paradigm is vulnerable
to noise and variations in the data. Many customers may share similar buying
habits, but few follow exactly the same buying patterns. Finally, frequency alone
cannot detect statistically significant patterns [4].

To overcome these limitations, recently there is an increasing interest in new in-
telligent mining methods to find more meaningful and compact results. The new
methods abandon the traditional paradigm and take a fundamentally different

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 587–597, 2007.
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Table 1. Representing the underlying pattern

seq1 〈() () (BC) (DE)〉
seq2 〈(A) () (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉
seq4 〈(A) () (B) (DE)〉

consensus pat 〈(A) (BC) (D)〉

approach. One such approach to intelligent sequential pattern mining is the con-
sensus sequential pattern mining based on sequence alignment. Consensus sequen-
tial patterns can detect general trends in a group of similar sequences, and may be
more useful in finding non-trivial and interesting long patterns. It can be used to
detect general trends in the sequence database for natural customer groups, which
is more useful than finding all frequent subsequences.

Formally, consensus sequential patterns are patterns shared by many sequences
in the database but not necessarily exactly contained in any one of them. Table 1
shows a group of sequences and a pattern that is approximately similar to them.
In each sequence, the bold items are those that are shared with the consensus pat-
tern. seq1 has all items in consensus pat, in the same order and grouping, except
it is missing item A and has an additional item E. Similarly, seq4 is missing C and
has an extra E. In comparison, seq2 and seq3 have all items but each has a couple
of extra items. These evidences strongly indicate that consensus pat is the hidden
underlying pattern behind the sequences. Such pattern mining of consensus pat-
terns can effectively summarize the database into common customer groups and
identify their buying patterns.

An effective algorithm for consensus sequential pattern mining has been pro-
posed in [5]. The alignment based method, ApproxMAP(APPROXimate Multiple
Alignment Pattern mining), has been applied to many areas such as multi-
database mining [3], temporal streaming data mining [6], and policy analysis.
Moreover, a detailed comparison study of the alignment based and support base
methods has shown the effectiveness of ApproxMAP [4].

However, ApproxMAP has quadratic time complexity with respect to the size
of the database limiting its application to very large databases. The time com-
plexity is dominated by the clustering step which has to calculate the proximity
matrix and build the clusters. In this paper, we introduce two effective optimiza-
tion techniques. First, ApproxMAP can be optimized by calculating the proximity
matrix to only the needed precision. In this paper, we introduce and prove the
theoretical bound of the required precision reducing the running time consider-
ably. Second, the clustering step can be improved by adapting the well known
k-means method to ApproxMAP. Here, we introduce modifications to the typical
algorithm that address the issues with calculating the mean, cluster initializa-
tion, and determining the number of clusters required. We further investigate
the tradeoff between time and space empirically to determine the appropriate
sample size and the utility of the optimization technique.

The remainder of the paper is organized as follows. Section 2 illustrates the
basic ApproxMAP algorithm. The details and theoretical basis for the optimiza-
tion are given in Section 3. Finally, Section 4 presents the experimental results.
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Table 2. Sequence database D lexically sorted

ID Sequences ID Sequences
seq4 〈(A) (B) (DE)〉 seq6 〈(AY) (BD) (B) (EY)〉
seq2 〈(A) (BCX) (D)〉 seq1 〈(BC) (DE)〉
seq3 〈(AE) (B) (BC) (D)〉 seq9 〈(I) (LM)〉
seq7 〈(AJ) (P) (K) (LM)〉 seq8 〈(IJ) (KQ) (M)〉
seq5 〈(AX) (B) (BC) (Z) (AE)〉 seq10 〈(V) (PW) (E)〉

Table 3. cluster 1 (min strenth = 50% ∧ w ≥ 4)

seq2 〈(A) () (BCX) () (D)〉
seq3 〈(AE) (B) (BC) () (D)〉
seq4 〈(A) () (B) () (DE)〉
seq1 〈() () (BC) () (DE)〉
seq5 〈(AX) (B) (BC) (Z) (AE)〉
seq6 〈(AY) (BD) (B) () (EY)〉
seq10 〈(V) () () (PW) (E)〉

Weighted Seq wseq1 (A:5, E:1,V:1, X:1,Y:1):6 (B:3, D:1):3 (B:6, C:4,X:1):6 (P:1,W:1,Z:1):2 (A:1,D:4, E:5,Y:1):7 7
Consensus Pattern 〈(A) (BC) (DE)〉

Table 4. cluster 2 (min strength = 50% ∧ w ≥ 2)

seq8 〈(IJ) () (KQ) (M)〉
seq7 〈(AJ) (P) (K) (LM)〉
seq9 〈(I) () () (LM)〉

Weighted Sequence wseq2 〈(A:1,I:2,J:2):3 (P:1):1 (K:2,Q:1):2 (L:2,M:3):3 3
Consensus Pattern 〈(IJ) (K) (LM)〉

2 Consensus Sequential Pattern Mining: ApproxMAP

We presented sequential pattern mining based on sequence alignment in [5]. Ex-
tending research on string analysis, we generalized string multiple alignment to
find consensus sequential patterns in ordered lists of sets. The power of multi-
ple alignment hinges on the following insight: the probability that any two long
data sequences are the same purely by chance is very low. Thus, if several long
sequences can be aligned with respect to particular frequent items, we will have
implicitly found sequential patterns that are statistically significant.

ApproxMAP has three steps. First, k nearest neighbor clustering is used to
partition the database. Second, for each partition, the optimal multiple align-
ment is approximated by the following greedy approach: in each partition, two
sequences are aligned first, and then a sequence is added incrementally to the
current alignment until all sequences have been aligned. At each step, the goal
is to find the best alignment of the added sequence, p, to the existing alignment
of p − 1 sequences. A novel structure, weighted sequence, is used to summarize
the alignment information in each cluster. In short, a weighted sequence is a
sequence of itemsets with a weight associated with each item. The item weight
represents the strength of the item where strength is defined as the percentage
of sequences in the alignment that have the item present in the aligned position.
Third, a consensus pattern is generated for each partition.
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Tables 2 to 4 is an example. Given Table 2, ApproxMAP (1) calculates the
proximity matrix and partitions the data into two clusters (k = 2), (2) aligns the
sequences in each cluster – the alignment compresses all the sequences into one
weighted sequence per cluster, and (3) summarizes the weighted sequences into
consensus patterns using the cutoff point min strength. Note that the consensus
patterns 〈(A)(BC)(DE)〉 and 〈(IJ)(K)(LM)〉 do not match any sequence exactly.

3 Optimizations to ApproxMAP

ApproxMAP has total time complexity of O(N2
seq ·L2

seq ·Iseq +k ·Nseq) where Nseq

is the total number of sequences, Lseq is the length of the longest sequence, Iseq

is the maximum number of items in an itemset, and k is the number of nearest
neighbors considered. The time complexity is dominated by the clustering step
which requires the computation of the proximity matrix (O(N2

seq ·L2
seq ·Iseq)) and

builds clusters (O(k·Nseq)). The quadratic run time with respect to the database
size may limit its applications to very large databases. There are two components
constituting the running time for calculating the proximity matrix: (1) the per
cell calculation, O(L2

seq · Iseq), and (2) the total of N2
seq cell calculations needed

for the proximity matrix. We discuss how to optimize both in this section.

3.1 k-Nearest Neighbor (k-NN) Clustering

ApproxMAP uses uniform kernel density based k-nearest neighbor (k-NN) clus-
tering. We have found that such a density based method worked well due to its
ability to build clusters of arbitrary size and shape around similar sequences. In
this agglomerative method, each point links to its closest neighbor, but (1) only
with neighbors that have greater density, and (2) only up to k nearest neighbors.
Thus, the algorithm essentially builds a forest of single linkage trees (each tree
representing a natural cluster), with the proximity matrix defined as follows,

dist′(seqi, seqj) =
⎧
⎨

⎩

dist(seqi, seqj) if dist(seqi, seqj) ≤ distk(seqi) and Density(seqj , k) < Density(seqi , k)
MAX DIST if dist(seqi, seqj) ≤ distk(seqi) and Density(seqj , k) = Density(seqi , k)

∞ otherwise
(1)

where dist(seqi, seqj)=
D(seqi,seqj )

max{‖seqi‖,‖seqj‖} and MAX DIST =max{dist(seqi, seqj)} +

1. D(seqi, seqj) is the commonly used hierarchical edit distance defined via a
recurrence relation. distk(seqi) is the k-NN region defined as the maximum dis-
tance over all k-NN and Density(seqi, k) = nk(seqi)

distk(seqi)
where nk(seqi) is the

number of sequences in the k-NN region. An effective implementation has three
steps : (1) build the proximity matrix, (2) build the k-NN list using the matrix,
and (3) merge the k-NN sequences when applicable. The details are in [3].

3.2 Optimizing the Proximity Matrix Calculation

Each cell in the proximity matrix is calculated using Equation 1. Thus, the time
complexity is O(L2

seq · Iseq) for solving the recurrence relation for D(seqi, seqj)
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Table 5. Recurrence relation table

seq7 (AJ) (P) (K) (LM)
seq8 0 1 2 3 4

1
2 2 2 3 3 4 4 5

(IJ) 1
2 ↘ 1

2 1 1
2 → 11

2 2 1
2 → 2 1

2 3 1
2 → 3 1

2
2 1 1

2 1 1
2 2 1

2 1 1
2 + 1

3 = 1 5
6 3 1

2 3 1
2 4 1

2(KQ) 2
3 ↓ 1 1

2 2 1
2 ↘ 1 1

2 2 1
2 ↘ 15

6 2 5
6 → 2 5

6
3 2 1

2 2 1
2 2 1

2 2 1
2 2 5

6 1 5
6 + 1

3 = 2 1
6 3 5

6(M) 3
4 ↓ 2 1

2 3 1
2 ↘ 2 1

2 3 1
2 ↘ 2 1

2 3 1
2 ↘ 21

6

through dynamic programming such as shown in Table 5. Often a straight for-
ward dynamic programming algorithm can be improved by only calculating up
to the needed precision. Here we discuss how to reduce the per cell calculation
time by stopping the calculation of such a table midway whenever possible.

In Table 5, we show the intermediate calculation along with the final cell
value. Each cell RR(p, q) has four values in a 2x2 matrix. Let us assume we
are converting seq7 to seq8. Then, the top left value shows the result of moving
diagonally by replacing itemset p with itemset q. The top right value is the result
of moving down by inserting q. The bottom left cell is the result of moving right
by deleting p. The final value in the cell, shown in the bottom right position,
is the minimum of the three. The arrows indicate the direction. The minimum
path to the final answer, RR(‖seqi‖, ‖seqj‖) = D(seqi, seqj), is shown in bold.

For example, when calculating the value for RR(3, 2) = 1 5
6 , you can either

replace (KQ) with (K) (upper left: RR(2, 1)+REPL((KQ), (K)) = 1 1
2 + 1

3 = 1 5
6 ),

insert (KQ) (upper right: RR(3, 1) + INDEL = 2 1
2 + 1 = 3 1

2 ), or delete (K)
(lower left: RR(2, 2) + INDEL = 1 1

2 + 1 = 2 1
2 ). Since 1 5

6 is the minimum, the
replace operation is chosen (diagonal). The final distance 2 1

6 can be found by
following the minimum path: diagonal (REPLACE), right(DELETE), diagonal,
and diagonal. This path gives the pairwise alignment shown in Table 4.

In ApproxMAP, we note that we do no need to know dist(seqi, seqj) for all i, j
to full precision. In fact, the modified proximity matrix based on dist′(seqi, seqj)
has mostly values of ∞ because k � N . Thus, if a cell is clearly ∞ at any point,
we can stop the calculation and return ∞. This will reduce the per cell calcu-
lation time significantly. dist′(seqi, seqj) is clearly ∞ if seqi is not a k-nearest
neighbor of seqj , and seqj is not a k-nearest neighbor of seqi. Remember that the
modified proximity matrix is not symmetric. The following theorems prove that
seqi and seqj are not k-nearest neighbor of each other when min row(p)

max{‖seqi‖,‖seqj‖} >

max{distk(seqi), distk(seqj)} for any row p. Here distk(seqi) is the radius of
the k-nearest neighbor region for sequence seqi, and min row(p) is the smallest
value of row p in the recurrence table. In the following theorems, we denote a
cell in the recurrence table as RR(p, q) with the initial cell as RR(0, 0) = 0 and
the final cell as RR(‖seqi‖, ‖seqj‖) = D(‖seqi‖, ‖seqj‖).

Theorem 1. There is a connected path from RR(0, 0) to any cell RR(p, q) such
that (1) cells along the path are monotonically increasing, (2) the two indices
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never decrease (i.e. the path always moves downward or to the right), and (3)
there must be at least one cell from each row 0 to p − 1, in the connected path.

Proof. The theorem comes directly from the definitions. First, the value of any
cell RR(p, q) is constructed from one of the three neighboring cells (up, left,
or upper left) plus a non-negative number. Consequently, the values have to
be monotonically increasing. Second, every cell must be constructed from three
neighboring cells - namely up, left, or upper left. Hence, the path must move
downward or to the right. Finally, since there has to be a connect path from
RR(0, 0) to RR(p, q), there must be at least one cell from each row 0 to p − 1.

Theorem 2. RR(‖seqi‖, ‖seqj‖) is greater than or equal to the minimum row
value in any row. (i.e. RR(‖seqi‖, ‖seqj‖) ≥ min row(p) for all 0 ≤ p ≤ ‖seqi‖)

Proof. Let us assume that there is a row, p, such that RR(‖seqi‖, ‖seqj‖) <
min row(p). Let min row(p) = RR(p, q). There are two possible cases. First,
RR(p, q) is in the connected path from RR(0, 0) to RR(‖seqi‖, ‖seqj‖). Since the
connected path is monotonically increasing by Theorem 1, RR(‖seqi‖, ‖seqj‖)
must be greater then equal to RR(p, q). Thus, RR(‖seqi‖, ‖seqj‖) ≥ RR(p, q) =
min row(p). This is a contradiction. Second, RR(p, q) is not in the connected
path from RR(0, 0) to RR(‖seqi‖, ‖seqj‖). Now, let RR(p, a) be a cell in the
connected path. Then, min row(p) = RR(p, q) and RR(p, a) ≥ RR(p, q). Thus,
RR(‖seqi‖, ‖seqj‖) ≥ RR(p, a) ≥ RR(p, q) = min row(p). This is also a contra-
diction. Thus, by contradiction RR(‖seqi‖, ‖seqj‖) < min row(p) does not hold
for any rows p. In other words, RR(‖seqi‖, ‖seqj‖) ≥ min row(p) for all rows p.

Theorem 3. If min row(p)
max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)} for any row

p, then seqi is not a k-NN of seqj, and seqj is not a k-NN of seqi.

Proof. By Theorem 2, RR(‖seqi‖, ‖seqj‖) = D(seqi, seqj) ≥ min row(p) for any
row p. Thus, dist(seqi, seqj) = D(seqi,seqj)

max{‖seqi‖,‖seqj‖} ≥ min row(p)
max{‖seqi‖,‖seqj‖}

>max{distk(seqi), distk(seqj)} for any row p. By definition, when dist(seqi,seqj)
>max{distk(seqi), distk(seqj)}, seqi and seqj are not k-NN of each other.

In summary by Theorem 3, as soon as the algorithm detects a row p in the
recurrence table such that min row(p)

max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)}, it
is clear that dist′(seqi, seqj) = dist′(seqj , seqi) = ∞. At this point, the recur-
rence table calculation can stop and simply return ∞. Checking for the condition

min row(p)
max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)} at the end of each row takes
negligible time and space when k � N and k � L.

3.3 Optimizing the Clustering Method

Now, we investigate how to reduce the N2
seq cell calculations by using an itera-

tive clustering method similar to the well known k-mediods clustering methods.
k-mediods clustering is exactly the same as the more popular k-means algorithm,
except it works with the representative points in clusters rather than the means
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Algorithm 1 (Sample Based Iterative Clustering)
Input: a set of sequences D = {seqi}, the sampling percentage α, and the number of neighbor

sequences k′ for the sampled database;
Output: a set of clusters {Cj}, where each cluster is a set of sequences;
Method: 1. Randomly sample the database D into D′ using α. The size of

D′ will be a trade off between time and accuracy. The experiments indicate that at a
minimum ‖D′‖ should be 4000 sequences for the default k′ = 3. Furthermore, roughly
10% of the data will give comparable results when Nseq ≥ 40, 000.

2. Run uniform kernel density based k-NN clustering [3] on D′ with
parameter k′. The output is a set of clusters {C′

s}
3. Center: Find the representative sequence for each cluster C′

s. The rep-
resentative sequence, seqsr , for a cluster, C′

s, is chosen such that Σjdist(seqsr, seqsj)
for all sequences, seqsj , in cluster C′

s is minimized (minimum intra-cluster distance).
4. Initialization: Initialize each cluster, Cs, with the representative se-

quence, seqsr, found in the previous step.
5. Cluster: Assign all other sequences in the full database, D, to the

closest cluster. That is assign sequence seqi such that dist(seqi, seqsr) is minimum
over all representative sequences, seqsr .

6. Recenter: Find the representative sequence for each cluster Cs. Repeat
the centering step in 3 for all clusters Cs formed over the full database.

7. Iteratively repeat Initialization, Cluster, and Recenter. Steps 5 through
7 are repeated until no representative point change for any cluster or a certain iteration
threshold, MAX LOOP = 100, is met.

of clusters. There are two major difficulties in using the k-mediods clustering
methods directly in ApproxMAP. First, without proper initialization, it is impos-
sible to find the proper clusters. Thus, finding a good starting condition is crucial
for k-mediods methods to give good results in terms of accuracy and speed [2].
Second, the general k-mediods method requires that the user input the number
of clusters. However, the proper number of partitions is unknown in advance.

To overcome these problems, we introduce a sample based iterative clustering
method. It involves two main steps. The first step finds the clusters and its
representative sequences based on a small random sample of the data, D′, using
the density based k-NN method. Then in the second step, the number of clusters
and the representative sequences are used as the starting condition to iteratively
cluster and recenter the full database until the algorithm converges. The full
algorithm is given above. When ‖D′‖ � ‖D‖, the time complexity for clustering
is obviously O(t · Nseq) where t is the number of iterations needed to converge.
The experimental results show that the algorithm converges very quickly. Figure
1(a) shows that in most experiments it takes from 3 to 6 iterations.

When using a small sample of the data, k (for k-NN algorithm) has to be
smaller than what is used on the full database to achieve the clustering at the
same resolution because the k-NN in the sampled data is most likely (k+α)-NN
in the full database. In ApproxMAP, the default value for k is 5. Hence, the
default for k′ in the sample based iterative clustering method is 3.

4 Evaluation

In our previous work, we have developed a benchmark that can quantitatively as-
sess how well different sequential pattern mining methods can find the embedded
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patterns in the data [4]. In this section, we apply the benchmark to conduct an
extensive performance study on the two optimizations.

The benchmark uses the well known IBM data generator [1] which allows us
to study the performance systematically. In addition, the IBM data generator
embeds base patterns that represent the underlying trend in the data. By match-
ing the results back to these embedded patterns, the benchmark can be used to
measure the loss in accuracy due to the optimization. In particular, recoverabil-
ity provides a good estimation of how well the items in the base patterns were
detected. Recoverability is comparable to the commonly used recall except that
it weights the results by the strength of the patterns in the database.

Most other criteria were not influenced by the optimizations. As expected in
any alignment model, in all experiments there were no spurious patterns and
negligible number of extraneous items resulting in excellent precision close to
100%. The amount of redundant patterns in the results remained similar to
that of the basic ApproxMAP algorithm. The only criteria that was affected was
the total number of patterns returned. Not surprisingly, recoverability is a good
indicator for the number of total patterns returned increasing or decreasing
accordingly. Thus, for simplicity we only report recoverability in our results.

4.1 Proximity Matrix Calculations

ApproxMAP can be optimized with respect to O(L2
seq) by calculating the prox-

imity matrix used for clustering to only the needed precision. Here we study the
speed up gained empirically. We only need to study the reduction in running
time because this first optimization maintains the results of ApproxMAP. Fig-
ure 1(b) shows the speed up gained by the optimization with respect to Lseq in
comparison to the basic algorithm. The figure indicates that such optimization
can reduce the running time to almost linear with respect to Lseq.

To investigate the performance further, we examined the actual number of
cell calculations reduced by the optimization. That is, with the optimization, the
modified proximity matrix has mostly values of ∞ because k � N . For those
dist′(seqi, seqj) = ∞, we investigated the dynamic programming calculation for
dist′(seqi, seqj) to see how many cells in the recurrence table were being skipped.
To understand the savings in time, we report the following in Figure 1(c).
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∑
the number of cells in the recurrence table skipped

∑
the total number of cells in the recurrence table

· 100%

When 10 ≤ Lseq ≤ 30, as Lseq increases more and more proportion of the
recurrence table calculation can be skipped. Then at Lseq = 30, the proportion
of savings levels off at around 35%-40%. This is directly reflected in the savings in
running time in Figure 1(c). Figure 1(c) reports the reduction in calculations and
running time due to the optimization as a proportion of the original algorithm.
Clearly, the proportion of savings increase until Lseq = 30. At Lseq = 30 the
running time levels off at around 40%. Thus, we expect that when Lseq ≥ 30,
the optimization will give a factor of 2.5 speed up in running time. This is a
substantial improvement in speed without any loss in accuracy of the results.

4.2 Sample Based Iterative Clustering

The sample based iterative clustering method can optimize the time complexity
with respect to O(N2

seq) at the cost of some reduction in accuracy and larger
memory requirement. The larger the sample size the better the accuracy with
slightly longer running time. We investigate the tradeoff empirically.

Figure 2(a) presents recoverability with respect to sample size (k′ = 3). When
Nseq ≥ 40, 000, recoverability levels off at 10% sample size with good recoverabil-
ity at over 90%. When Nseq < 40, 000, ApproxMAP requires a larger sample size of
20%-40%. In summary, the experiment suggests that the optimization should
be used for databases when Nseq ≥ 40, 000 with sample size 10%. For databases
with Nseq < 40, 000 a larger sample size is required as 10% will result in signifi-
cant loss in accuracy (Figure 2(b)). Essentially, the experiments indicate that
the sample size be at least 4000 seqs to get comparable results when k′ = 3.
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In the iterative clustering method more memory is required in order to fully
realize the reduction in running time because the N2

seq proximity matrix needs
to be stored in memory across iterations. In the basic method, although the
full proximity matrix has to be calculated, the information can be processed
one row at a time and there is no need to return to any values. That is, we
only need to maintain the k-NN list without keeping the proximity matrix in
memory. However in the iterative clustering method, it is faster to store the
proximity matrix in memory over different iterations so as not to repeat the
distance calculations. When Nseq is large, the proximity matrix is huge. Hence,
there is a large memory requirement for the fastest optimized algorithm.

Nonetheless, the proximity matrix becomes very sparse when the number of
clusters is much smaller than Nseq. Thus, much space can be saved by using a
hash table instead of a matrix. Furthermore, a slightly more complicated scheme
of storing only up to the possible number of values and recalculating the other
distances when needed (much like a cache) will still reduce the running time
compared to the basic method. Efficient hash tables are a research topic on its
own and will be studied in the future. For now, the initial implementation of a
simple hash table demonstrates the huge potential for reduction in time well. In
order to fully understand the potential, we measured the running time assuming
(1) memory was limitless and (2) no memory was available to store the proximity
matrix. That is, distance values were never recalculated in the first experiment
and always recalculated in the second experiment.

Figure 2(b) and (c) show the loss in recoverability and the gain in running
time with respect to Nseq with the optimization (sample size=10%, k′ = 3).
Figure 2(d) depicts the relative running time with respect to Nseq. optimized
(all) is a simple hash table implementation with all proximity values stored and
optimized (none) is the implementation with none of the values stored. The
implementation of a simple hash table was able to run up to Nseq = 70, 000 with
2GB of memory (Figures 2(c) and 2(d) - optimized (all)). A more efficient hash
table could easily improve the memory requirement.

A good implementation would give running times in between the optimized
(all) and the optimized (none) line in Figure 2(c). The results clearly show
that the optimization can speed up time significantly at the cost of negligible
reduction in accuracy. Figure 2(d) show that the optimization can reduce running
time to roughly 10%-40% depending on the size of available memory. Even in
the worst case the running time is significantly faster by a factor of 2.5 to 4. In
the best case, the running time is an order of magnitude faster.

5 Conclusions

Optimizing data mining methods is important in real applications which often
have very large databases. In this paper, we proposed two optimization tech-
niques for ApproxMAP that can reduce the running time significantly for consen-
sus sequential pattern mining based on sequence alignment.
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Abstract. The classical autoregressive moving average model (ARMA) fails to 
satisfy the high request for precision in predicting nonlinear and nonstationary 
systems. Overcoming the difficulty, a hybrid prediction method is proposed in 
this paper, which organically couples the radial basis function prediction neural 
network (RBFPNN) and the functional-coefficient autoregressive prediction 
model (FARPM). An observation time series characterized by nonlinearity and 
nonstationarity can be technically decomposed with the wavelet analysis tool 
into two clusters of sequences, i.e. the smooth sequences and the stationary 
sequences, which can be effectively predicted with RBFPNN and FARPM 
respectively. Then, the integrated prediction is obtained by merging the results 
of RBFPNN and FARPM. It’s indicated by the simulation that the prediction 
precision for one step, 4 steps and 12 steps can be improved at least by 41%, 
60% and 60% respectively, compared to the prediction with ARMA, RBFPNN 
and FARPM separately. 

Keywords: Nonlinear and nonstationary system; time series; prediction; radial 
basis function neural network; functional-coefficient autoregressive model. 

1   Introduction 

A time series is a sequence of observations taken sequentially in time [1]. In recent 
years, the prediction based on time series analysis has been popularly applied in the 
fields of biology, weather, economy, traffic, industry and other fields. 

The actual observation time series from all kinds of applications such as stock price 
analysis, power load supervision and mechanical vibration monitoring, are usually 
characterized by nonlinearity and nonstationarity. The classical ARMA modeling and 
forecasting theory fails to deal with them with preferable performance [2]. 

Radial Basis Function Neural Network (RBFNN) is a local approximation neural 
network, which can model the inherent connections of training data and has favorable 
self-adaptive capability. Owning to the prominent advantages of simple structure, fast 
convergence and high prediction precision, RBFNN was efficiently applied to predict 
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nonlinear systems as a parallel processing tool [3]. However, the weakness [4] in 
approximating non-smooth functions limits its popularization in dynamic systems. 

Functio nal-coefficient Autoregressive model (FAR), which is a nonparametric 
model in statistics, has succeeded in modeling and analyzing the stationary nonlinear 
time series [5]. Compared to ARMA model, it’s able to avoid effectively the deviation 
in modeling, and then reduce the prediction error caused by the model’s unsuitability. 
However, it has limitation in dealing with a nonstationary time series. 

The Hybrid Prediction combining RBF Neural Network and FAR model (HP-
RBFNN&FAR), makes entire use of the prominence of RBFNN in predicting a 
smooth nonlinear time series and the superiority of FAR in predicting a stationary 
nonlinear time series, letting them work complementally and cooperatively. The basic 
idea is that the decomposition of the observation time series into several sequences, 
which can be separately predicted with their most suitable prediction methods, makes 
a good prediction. Here, the decomposition is based on the partition of spectrum. 

2   RBF Prediction Neural Network (RBFPNN) 

2.1   Structure of RBFPNN 

A single variable time series }{ 21 nx,...,x,x  can be predicted with the neural network on 

the following hypothesis: the observation ktx +  at a future time kt +  is the function of 

the m  available observations }{ 11 +−− mttt x,...x,x at the current time t , which can be 

expressed by the equation 

)( 11 +−−+ = mtttkt x,...x,xFx  . (1) 

Where, k ( 1≥k ) is the prediction step ahead, F is a RR am continuous function. 
Letting T

11 )( +−−= mtttt x,...x,xX , ktt xky +=)( , the equation (1) can also be written as 

)()( tt XFky =  . (2) 

RBFPNN is a 3 layer feed-forward neural network, as shown in Fig.1. The first 
layer is input layer, which has the m -dimension vector tX ( n,...,m,mt 1+= ) as its 

input and connects with the hidden layer via unitary weights. The activation functions 
on the neurons of hidden layer are locally distributed nonlinear functions called 
Radial Basis Functions (RBF), which symmetrically attenuate in the radial direction 
off centers. )( tXjψ  is the RBF acting on the thj  hidden neuron, which usually adopts 

Gauss function 

)
2

1
exp()(

2

2t jt

j

j X
σ

X c−−=ψ  . (3) 

Where, jc which has the same dimension as tX  is the center of )(⋅jψ ; jσ is the shape 

parameter of )(⋅jψ , also called RBF bandwidth. M is the number of  hidden neurons, 
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and jω  is the connecting weight between the thj hidden neuron and the output 

neuron. The last layer is called output layer, whose output is given by 

)()(
1

tj

M

j
jt XXF ψω∑

=

=  . (4) 

 

Fig. 1. Structure of RBFPNN  

2.2   Training of RBFPNN  

Training RBFPNN is the process to select the optimal network structure, determine 
the parameters jc , jσ of )(⋅jψ and calculate the connecting weights jω  ( ,...Mj 1= ). 

The improved RBFNN training algorithms [6] can also efficiently train RBFPNN. 
How to determine the optimal dimension m of tX  is an interest of research. In the 

paper, for cases of short-term or medium-term prediction ( 4≤k ), an empirical 
method based on the Partial Autocorrelation Function (PACF) is put forward, i.e. 

kLm max+= . Here, maxL is the largest of the lags, corresponding to which the PACF 

values of }{ 21 nx,...,x,x  are far more than a threshold [7] given by n/τ 2= . 

3   FAR Prediction Modeling  

3.1   FAR Model 

Considering a single variable time series }{ 21 nx,...,x,x , the functional-coefficient 

autoregressive model )FAR( dp, ( p , d are the model parameters ) admits the form [5] 

tdtt-pdtpt-dtt εxxxfxxfx ⋅+⋅++⋅= −−− )()()( 11 σL , )0;1( >+= dn,,...pt  . (5) 

Where, }{ tε is an independent and identically distributed random variable sequence 

with zero mean and unity variance, and tε is independent of jtx − ( ,...pj 1= ). dtx −  is the 

model-dependent variable. The coefficient functions )(⋅jf ( ,...pj 1= ) and )(⋅σ , which 
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are unknown continuous functions, can be estimated by using the local linear 
regression technique [8]. 

3.2   Factors Influencing on the Performance of FAR Prediction Model  

Based on model (5), the one-step-ahead FAR Prediction Model (FARPM) is given by 

1111 )()()( +−−++ ++== t-pdtptdtttt xxf̂...xxf̂xEx  . (6) 

Where, )(⋅jf̂ is the estimator for )(⋅jf . )(⋅tE  is the conditional expectation at time t . 

As for the multiple-step-ahead predictor, the method of iteration is employed. 

Since the coefficient functions’ estimators )(⋅jf̂  ( ,...,pj 1= ) are influenced by the 

kernel function [9] )(⋅K and its bandwidth [10] b , )(⋅K and b , together with model 

parameters p , d are the influence factors on the performance of FARPM.  

Overall Average Prediction Error (APE) introduced in the reference [11] is adopted 
to evaluate the performance of FARPM, which is the function of b , p and d , 

i.e. )( p,d,bAPE . The optimal bandwidth b , order p and lag d can be obtained by 

minimizing )( p,d,bAPE simultaneously for b in a certain range, d over the set 

}21{ ,p,, L and p  over the set }21{ ,n,, L . 

4   Hybrid Prediction Combining RBFNN and FAR 

Usually, it is difficult to get a satisfactory result with RBFPNN or FARPM 
individually, when predicting an observation time series characterized simultaneously 
by nonlinearity (such as nonnormality, asymmetric cycles, bimodality, and others), 
nonstationarity and larger instability. However, HP-RBFNN&FAR can make a 
success with RBFPNN and FARPM complementally and cooperatively combined, 
overcoming their respective deficiencies in approximating non-smooth functions 
which describe dynamic systems and modeling a nonstationary time series. 

As shown in Fig.2, the process of HP-RBFNN&FAR can be briefly summarized as 
follows: Firstly, spectrum of the nonstationary nonlinear observation time series is 
analyzed, and wavelet analysis tool [12] is applied to construct the optimal scale 
filters. Secondly, through scale filters, the observation time series is decomposed into 

st +  sequences, classed into two clusters. One characterized by lower frequency 
includes t ( 1≥t ) smooth trend sequences, while the other characterized by higher 
frequency includes s ( 1≥s ) stationary sequences. Thirdly, the sequences characteri-
zed by smoothness and reflecting the trend can be precisely predicted with RBFPNN, 
while the stationary sequences fluctuating randomly at zero can be well modeled and 
predicted with FARPM. Lastly, the integrated prediction is obtained by merging the 
prediction results of RBFPNN and FARPM. 

In the scheme of HP-RBFNN&FAR, the partition of spectrum directly affects the 
total prediction performance. So selection of wavelets, construction of scale filters 
and determination of t and s  are all important things for HP-RBFNN&FAR. 
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Fig. 2. Scheme of HP-RBFNN&FAR 

5   Simulation  

A technically constructed simulation model is employed to generate a nonstationary 
nonlinear observation time series with the length of 600 to analyze the capability of 
HP-RBFNN&FAR, which simultaneously contains trend elements, cycle elements 
and random elements just as most observation time series ( e.g. the daily observations 
of water level, air temperature, insect population and stock turnover, hourly vehicle 
flowrate observations and minutely power load observations) do in actual applied 
areas such as hydrology, weather, biology, economics, traffic and industry.  

 

Fig. 3. Decomposition of the simulated observation time series 
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As can be seen in Fig.3, the simulated observation time series )}({ tx∗ can be 

decomposed into two parts of a smooth trend sequence )}({ txL

∗ and a stationary 

sequence )}({ txH

∗ by the well constructed filter with the Daubechies wavelet. 

For each sequence, the first 500 data defined as training samples are used to train 
RBFPNN or determine the optimal parameters of FARPM, while the last 100 data 
defined as testing samples are used to evaluate the prediction performance. Here, 
Mean Squared Error (MSE) is adopted as a metric on prediction precision. 

For )}({ txL

∗ , letting the prediction step 1=k , the optimal dimension of input vector 

is obtained ( 4=m ) with the proposed method in Section 2.2. The testing samples of 

)}({ txL

∗ is predicted with the well trained RBFPNN, as illustrated in Fig. 4(a). The 

Mean Squared Error of One-Step-ahead Prediction (OSPMSE)  is -5109.1093× . 

 

Fig. 4. Prediction with HP-RBFNN&FAR 

For )}({ txH

∗ , using Epanechnikov kernel function: +−= )1(750)( 2u.uK . The optimal 

parameters can be obtained ( 2=p , 2=d , 9752.b = ) by minimizing )( p,d,bAPE . 

The estimated coefficient functions )(⋅jf̂ ( 21,j = ) and their polynomial-fitting curves 

)(⋅jf
~

are shown in Fig. 4 (d) and (e). The 1-step FARPM for )}({ txH

∗ is expressed by 

)1()()()()1( 21 −+=+ txuf
~

txuf
~

tx *

H

*

H

*

H .  (7) 

Where, t is the current time, )2( −= txu *

H is the model-dependent variable, and the 

polynomial-fitting curves can be written as 

431211175002090008500010)( 234

1 .u.u.u.u.uf
~ ++−−= , (8) 

7989015580033200075000120)( 234

2 .u.u.u.u.uf
~ −−++−= . (9) 
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With FARPM, the one-step-ahead predictor is got with OSPMSE 0.0959, as shown 
in Fig. 4(b). Finally the integrated prediction result is obtained with OSPMSE 0.0960. 

Table 1. Comparison of the prediction performance of different methods. The data marked with 
stars in the brackets for the 4-step-ahead prediction and the 12-step-ahead prediction. 

MSE Prediction method Optimal parameters 
1-step 4-step 12-step 

ARMA(p, q) p=6,q=4 0.2734 1.7122 17.8989 

RBFPNN m=6(9*),M=475 0.7166 1.3214 2.3721 

FARPM p=2,d=2,b=1.025 0.1842 3.2561 15.4294 

HP-RBFNN&FAR 
m=4(7*),M=25(100*), 

p=2,d=2,b=2.975 
0.0960 0.5297 0.9493 

 
Simulation is also performed to compare the performance of different prediction 

methods. From Table 1, it is indicated that the prediction precision for one step, 4 
steps and 12 steps ( standing respectively for short term, medium term and long term) 
ahead with the proposed prediction method can be improved at least by 41%, 60% 
and 60% respectively, compared to the methods with ARMA, RBFPNN and FARPM. 

 

Fig. 5. Four-step-ahead prediction with the different prediction methods 

6   Conclusion 

In the paper, a hybrid prediction method combining organically RBFPNN and FAR-
PM is put forward, with the algorithm of which is discussed. The proposed hybrid 
prediction method succeeds in predicting a nonlinear and nonstationary time series by 
combining the respective algorithms of RBFPNN and FARPM in a complemental and 
cooperative way. Compared to the prediction with ARMA, RBFPNN or FARPM, HP-
RBFNN&FAR is deemed to result in a better accuracy in actual applied areas.  

Another important finding of the research is that the total prediction performance is 
directly affected by the partition of spectrum. Thus how to select the suitable wavelet 
to construct optimal filters and make RBFPNN and FARPM more efficiently 
combined is the future work. 
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Abstract. An advanced fuzzy C-mean(FCM) algorithm for the efficient 
regional clustering of multi-nodes interconnected systems is presented in this 
paper. Owing to physical characteristics of the interconnected systems, nodes or 
points in the interconnected systems have their own information indicating the 
network-related characteristics of the system. However, classification for the 
whole system into distinct several subsystems based on a similarity measure is 
typically needed for the efficient operation of the whole system. In this paper, 
therefore, a new regional clustering algorithm for interconnected systems based 
on the modified FCM is proposed. Moreover, the regional information on the 
system are taken into account in order to properly address the geometric mis-
clustering problem such as grouping geometrically distant nodes with similar 
measures into a common cluster. We have presented that the proposed 
algorithm has produced proper classification for the interconnected system and 
the results are demonstrated in the example of IEEE 39-bus interconnected 
electricity system.  

Keywords: Fuzzy C-mean, similarity measure, interconnected power systems. 

1   Introduction 

In the regional management of interconnected network systems, the efficient and 
economical operation of the networked systems in terms of system coherency is 
essential. Hence the research of system coherency has been made by numerous 
researchers [1-4]. However, most of the studies are focused on the dynamic grouping. 
At this point, we need a novel approach to partition the total system into several 
regions considering locational information, such as locational cost, loss, regional 
distances, and so on. In this paper, grouping the locations in a networked system with 
similar locational prices has been proposed considering the regional coherency. 

                                                           
* Corresponding author. 
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Locational prices in a networked system implies the price at which the good is 
consumed at each location. Due to the physical characteristics of the transmission 
network of the systems, the good is lost as it is transmitted from supplying locations 
to consuming locations, and an additional supply must be provided to compensate the 
loss. Also, the transmission network of the systems has a capacity limitation 
preventing full uses of cheap production. Therefore, location prices at each point or 
node, is differently decided depending the network topology and supply/demand 
configuration. Similarity measure has been known as the complementary meaning of 
the distance measure [5-9]. Hence, we consider the partitioning measure not only 
similarity measure but also regional information, that is, distance measure. In the 
previous literatures, we had constructed similarity measure through distance measure 
or fuzzy entropy function [10]. Well known-Hamming distance was used to construct 
similarity measure. With only similarity measure, we can obtain unpractical results, 
which partition physically distant locations into the same group. Hence we add the 
regional information to complete modified similarity measure. In the next section, 
FCM and similarity measure are introduced and proved. In Section 3, similarity 
measures with distance measure is introduced and modified with additional regional 
information. In Section 4, illustrative examples are shown. In the example, we obtain 
a proper partitioning result, which consider both similarity and regional information. 
Conclusions are followed in Section 5. Notations of Liu's are used in this paper [5].  

2   Fuzzy C-Means Clustering and Similarity Measure  

Fuzzy C-means clustering was proposed by Bezdek in 1973 as an improvement over 
HCM(Hard C-means)[10]. FCM play a roll of partitioning arbitrary n vectors into 
c fuzzy groups, also it finds a cluster center for each group such that a cost function of 
similarity measure is maximized, or dissimilarity measure is minimized. Well known 
fact about FCM and HCM indicates that FCM employs fuzzy partitioning such that a 
data point can belong to several groups with the degree of membership grades 
between 0 and 1.  

2.1   Preliminaries  

We will illustrate the FCM result briefly [11]. Membership matrix U is satisfied as 
follows  

                                                         nju
c

i
ij ,....,1,1

1
=∀=∑

=
                                        (1) 

 
The cost function for FCM is constructed by  
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Where iju  is between 0 and 1, ic  is the center of fuzzy group i , 
jiij xcd −=  is the 

Euclidean distance between i -th cluster center and the j -th data point jx  , and m  is 

the weighting value. With Lagrange multiplier, the necessary conditions for (2) to 
reach a minimum are [11]  
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With these results, well known FCM algorithms are listed below:  

Step 1: Initialize membership matrix U  
Step 2: Calculate cici ,,1, L=  

Step 3: Compute (2). Stop if either it is below a certain tolerance  
Step 4: Compute a new U . 

 

Now for minimizing of (2), the less distance is 
jiij xcd −= , the smaller cost 

function become. Hence distance means the similarity between two data points. 
Finding similarity is determined from the types of data, time series signal, image, 
sound, etc.. Now we need proper similarity measure. In this subsection, we introduce 
a similarity measure for the fuzzy sets. And the proposed similarity measure can be 
applied to our problem.  

2.2   Similarity Measure with Distance Function  

We define modified similarity measure, which is different from that of Liu's.  

Definition 2.1: A real function +→ RPs 2: or +→ RF 2  is a modified similarity 
measure for regional point, if s  has the following properties :  

(S1) )(or)(,),,(),( XFXPBAABsBAs ∈∀=  

(S2) ),( cAAs satisfies minimum value, )(or)( XFXPA∈∀ , where cA  is the 

farthest point from A   
(S3) )(or)(,),,(max),( , XFXPBABAsDDs PBA ∈∀= ∈  

(S4) )(or)(,, XFXPCBA ∈∀ ,if ,CBA ⊂⊂  then ),(),( CAsBAs ≥  and 

).,(),( CAsCBs ≥  

With Definition 2.1, we propose the following theorem as the modified similarity 
measure.  

Theorem 2.1. For any set )(or )(, XPXFBA ∈ if d  satisfies Hamming distance 

measure, then  

])0[),((2])1[),((24),( BAdBAdBAs ∪−∩−=                     (3) 

is the similarity measure between set A  and B .  
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Proof. We prove that the eq. (3) satisfies the similarity definition. (S1) means the 
commutativity of set A  and B , hence it is clear from (3) itself. From (S2),  

  ])0[),((2])1[),((24),( ccc AAdAAdAAs ∪−∩−=  

then ])1[),((2 cAAd ∩  and ])0[),((2 cAAd ∪ are the maximum values of between 

A  and arbitrary set.  For arbitrary sets BA, , inequality of (S3) is proved by   

  ])0[),((2])1[),((24),( BAdBAdBAs ∪−∩−=  

         ])0[),((2])1[),((24 DDdDDd ∪−∩−≤    

            ),( DDs= .  

Inequality is satisfied from ])1[),((])1[),(( DDdBAd ∩≥∩  and 

]).0[),((])0[),(( DDdBAd ∪≥∪  

 Finally, (S4) is ,),(,, CBAXFCBA ⊂⊂∈∀  

])0[),((2])1[),((24).( BAdBAdBAs ∪−∩−=   

        ])0[,(2])1[,(24 BdAd −−=  

        ])0[,(2])1[,(24 CdAd −−≥  

           ),( CAs= , 

similarly ),(),( CAsCBs ≥ is obtained through ])0[,(])0[,( CdBd ≤ and 
]).1[,(])1[,( AdBd ≤  

Therefore proposed similarity measure (3) satisfy modified similarity 
measure.  Similarly, we propose another similarity measure in the following theorem.  

 
Theorem 2.2. For any set BA, )(XF∈  or )(XF  , if d satisfies Hamming distance 

measure, then  
 

])1[),((2])0[),((22),( Cc BAdBAdBAs ∪−∩−=                (4) 

  
is the similarity measure between set A  and set B .  

Proof. Proofs are shown similarly as Theorem 2.1.  

3   New Similarity with Regional Information  

In the previous section we have derived the modified similarity measures which 

satisfying the definition of similarity. To apply FCM with jiij xcd −= , it is required 

that ijd  has to satisfy similarity property. Hence we can consider ijd  as the proposed 

modified similarity measure in (2). However proposed similarity measure can group 
for the point that having similar characteristic values. For the large scale system 
whose similar measure values are close, however they are located far away. Then it is 
not realistic to gather even though they have similar valued measure. So we need 
another characteristic values considering regional information. With (3) and (4), we 
consider  
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)1/(2),(2 distance+=BAs                                (5)  

where distance  is the geometrical distance value.  
We consider the combined similarity measure as  
 

),(),(),( 2211 BAsBAsBAs ωω +=                       (6) 

 
where, ])0[),((2])1[),((22),(1 BAdBAdBAs ∪−∩−= , and 21,ωω  are the weighting 

values.  
We can verify the usefulness of (6) as follows, properties of ),(1 BAs  are proved 

in Theorem 2.1 and 2.2. Usefulness for the similarity of ),(2 BAs  can be verified as 

follows:  
Commutative values of distance are the same, hence (S1) is easily shown. From 

(S2), distance of A  and cA  is the longest, hence ),(2
cAAs  is the minimum value. 

For all )(, XPBA ∈ , inequality of (S3) is proved by                  

))distance(2/(1))distance( D,DA,BBAs +≤+= 1/(2),(2 ).,(2 DDs=   

In the above )distance(D,D  is the smallest value, .,.ei zero. So (S3) can be 

verified.  

Finally, (S4) is )(,, XPCBA ∈∀ , and CBA ,,  satisfy triangular points, then 

),,(1/(2),(2 CAsA,CA,BBAs 2 ))distance(2/(1))distance( =+≥+=  

where )distance( A,C is longer than ).distance( A,B   

Similarly, 

  ))distance())distance( (A,C)sA,C/(B,CCBs 22 121/(2),( =+≥+=   

is satisfied. Hence we can verify that ),(2 BAs satisfies the Definition 2.1.  

Then, we use (6) as the modified similarity measure for the measuring of 
particular points which have characteristic values and regional information at the 
same time. Modified similarity measures are used in the following example.  

4   Illustrative Example  

With FCM, we replace ),( BAs in (6) into jiij xcd −= in (2), and illustrate the 

system which has characteristic values and regional information at the same time. As 
an illustrative application, we consider the interconnected electricity system. The 
IEEE reliability test system which is prepared by the reliability test system task force 
of the application of probability methods subcommittee on 1996 [12] is considered as 
a test system. In the test system, 39 nodes (buses) and 10 generators are contained and 
each bus has its own locational price and information.   
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Fig. 1. A networked electricity system 

In networked electricity systems, due to the physical characteristics of the 
electricity transmission network, electricity is lost when it is transmitted from 
supplying nodes ( ..ei , supplying buses) to consuming nodes (consuming buses), and 
additional generation must be supplied to provide energy in excess of that consumed 
by customers. Moreover, the capacity limitation of the transmission network of 
electricity systems prevents full uses of system wide cheap electricity. Therefore, 
electricity price at each node, ..ei , the price at which the electricity is consumed at 
each node is differently decided depending on the network topology and energy 
configuration.  

The electricity prices at each node is defined as locational prices at each node and 
the locational prices represent the locational value of energy, which includes the cost 
of electricity and the cost of delivering it, ..ei , the delivery losses and network 
congestion. In Table 1 each locational price per kWh are illustrated for the 39 buses, 
and per unit geometrical information for each nodes are also shown.  

Locational prices of each nodes are from 28.53 to 55.00, and 39 locational 
information are represented through 2-dimensional plane at which plane is assumed to 
be flat. Considered combined similarity measures constitute as follows with the 
proposed measure: 

),(),(),( 2211 BAsBAsBAs ωω +=  

At first, we partitioned the 39 buses to the 3 groups, and the result is illustrated in 
Fig. 2. 39 buses are shown in 3 dimensional space, x-y plane is represented as the 
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locational information and height means the locational price. 3 dimensional 39 
vectors are projected to the x-y plane, in Fig. 2 we obtain the result of with only 
locational information. Result shows that there are no changes with only locational 
consideration. This strict condition does not satisfies the user's request. Hence we will 
consider the locational price and locational information simultaneously.  

Table 1.  Locational prices and per unit locations at each node 

Bus 
Locational

 price 
($/kWh) 

Location 
(per unit) 

Bus 
locational  

price 
($/kWh) 

Location 
(per unit) 

Bus 
locational  

price 
($/kWh) 

Location 
(per unit) 

BUS1 29.21 ( 0.9, 9 ) BUS14 41.74 (6.6, 6) BUS27 51.45 (4.6, 3.5) 

BUS2 28.53 (0.6, 6.2) BUS15 43.79 (6.6, 4.9) BUS28 55.00 (2.7, 1.5) 

BUS3 31.40 (3, 7.5) BUS16 45.84 (6.5, 4) BUS29 55.00 (2.7, 0.8) 

BUS4 32.78 (4.7, 7.5) BUS17 47.90 (5, 4.5) BUS30 28.53 (0, 6.2) 

BUS5 37.57 (7, 7.6) BUS18 46.40 (4.2, 6) BUS31 38.26 (8.3, 6.6) 

BUS6 38.26 (8.5, 7.6) BUS19 45.84 (6.9, 2.8) BUS32 40.00 (11.3, 5.8) 

BUS7 37.81 (9.6, 8.4) BUS20 45.84 (6.9, 1.7) BUS33 45.84 (8, 1.7) 

BUS8 37.35 (8.5, 9.1) BUS21 45.84 (8.7, 2.8) BUS34 45.84 (5.5, 1) 

BUS9 30.56 (6.1, 9.5) BUS22 45.84 (10, 2.8) BUS35 45.84 (10, 1.6) 

BUS10 40.00 (10.8, 5.8) BUS23 45.84 (11.1, 2.8) BUS36 45.84 (11.1, 1.6) 

BUS11 39.42 (9.7, 6.3) BUS24 45.84 (8.2, 4.3) BUS37 24.98 (0.7, 3.7) 

BUS12 40.00 (11.1. 7.1) BUS25 24.98 (1.4, 4.7) BUS38 55.00 (2.7, 0) 

BUS13 40.58 (8.5, 5.5) BUS26 55.00 (2.7, 3) BUS39 29.88 (3.4, 9.5) 
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Fig. 2. Clustering by FCM ( 1ω =0, 2ω =1 ) 
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Next, we consider weighting values 1ω  and 2ω as 0.2 and 0.8 respectively. Results 

are illustrated in Fig. 3. We can notice that one × and two∇ are all changed as ○, and 6 
× elements are also changed as ∇.  
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Fig. 3. Clustering by FCM ( 1ω =0.2, 2ω =0.8 )  
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Fig. 4. Clustering by FCM ( 1ω =0.27, 2ω =0.73) 
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With these results, we change the weighting values more. 1ω  and 2ω  are 0.2 and 

0.8 respectively. In Fig. 4, there is just one circle compared with Fig. 3. However Fig. 
4 has more changes than Fig. 3 if we consider initial condition of Fig. 2.  

Finally, we consider 1ω and 2ω  as 0.27 and 0.73 respectively. The result is shown 

in Fig. 4. In final result we cannot notice any special changing, however there are so 
many changes near the cluster boundaries at each iterations. As a result, we have to 
determine weighting values properly for the useful applications.  

5   Conclusion 

In this paper, we have introduced FCM and similarity. We have also constructed the 
similarity measure using the distance measure. For grouping of the interconnected 
networked system in terms of an appropriate similarity measure, regional information 
should be properly considered in the formulation of the similarity measure. In this 
paper, therefore, we have proposed a modified similarity measure accompanied with 
regional information, followed by example on the IEEE reliability test system  to 
verify the usefulness of the proposed idea of the modified similarity measure. From 
the results, we can check the coherency between the degree of similarity level and the 
number of clusters.  
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Abstract. A clustering algorithm for GPDF data called Centroid
Neural Network with Bhattacharyya Kernel (BK-CNN) is proposed in
this paper. The proposed BK-CNN is based on the unsupervised com-
petitive centroid neural network (CNN) and employs a kernel method for
data projection. In order to cluster the GPDF data, the Bhattacharyya
kernel is used to measure the distance between two probability distri-
butions for data projection. When applied to GPDF data in an image
classification model, the experiment results show that the proposed BK-
CNN algorithm is more efficient than other conventional algorithms such
as k-means algorithm, SOM and CNN with Bhattacharyya distance.

Keywords: kernel, clustering.

1 Introduction

Conventional studies on data analysis, image classification, pattern recognition
and speech recognition have used competitive algorithms based on k-means
algorithm[1] and Self-Organizing Map (SOM)[2]. Gaussian Mixture Models
(GMMs) and maximum or minimum-likelihood classifiers are used for modeling
and classification, respectively. To cluster the GPDF data in GMMs, the con-
ventional k-means algorithm and SOM clustering algorithms are widely used[1].
However, because of the selection of parameters such as learning rates and to-
tal number of iterations and the initialized conditions, the k-means algorithm
and SOM algorithms often give unstable results. Park proposed a competitive
clustering algorithm called the Centroid Neural Network (CNN)[3]. Compared
with the conventional k-means algorithm and SOM, the CNN converges stably
to suboptimal solutions[3].

In order to improve the recognition accuracy in GPDF data clustering prob-
lems, the maximum likelihood (ML) estimation is one of the empirical ap-
proaches. To utilize the full information contained in data as specified by the
probability density function, an alternative method is the cross-entropy[4]. The
Kullback-Leibler and the Bhattacharyya distance measures are the represen-
tative examples of the cross-entropy. The Centroid Neural Network with the
Bhattacharyya distance (B-CNN) was first proposed by Park and Kwon[5].

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 616–622, 2007.
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In this paper, we propose a new algorithm for clustering of GPDF data called
Centroid Neural Network with Bhattacharyya Kernel (BK-CNN). The proposed
BK-CNN is based on the CNN algorithm and employs a kernel method for
data projection. Though the kernel method has been successfully applied in
various fields such as Support Vector Machine[6] and Fuzzy Clustering [7], it was
designed for clustering of deterministic data because of its Euclidean distance.
In this paper, the Bhattacharyya kernel is used to measure the distance between
two probability distributions for clustering probability data[8].

The remaining of this paper is organized as follows: In Section 2, we briefly
review the conventional Centroid Neural Network (CNN) and the Bhattacharyya
distance as a distance measure between two GPDFs distributions. Section 3 in-
troduces the proposed BK-CNN algorithm. Section 4 shows experiments and
results including performance comparison of the BK-CNN with some conven-
tional algorithms. Finally, conclusions are provided in Section 5.

2 Centroid Neural Network and a Divergence Measure

2.1 Centroid Neural Network

The CNN algorithm has been shown excellent results as an unsupervised compet-
itive algorithm based conventional k-means algorithm[3,5]. It finds the centroids
of clusters at each presentation of data vector. Unlike conventional unsupervised
algorithms such as k-means algorithm and Self-Organizing Map, the CNN al-
gorithm updates its weights only when the status of the output neuron for the
current data has changed.

The following equations show the weight update equations for winner neuron
j and loser neuron i when an input vector x is presented to the network at
epoch n.

wj(n + 1) = wj(n) +
1

Nj + 1
[x(n) − wj(n)]

wi(n + 1) = wi(n) − 1
Ni − 1

[x(n) − wi(n)] (1)

where wj(n) and wi(n) represent the weight of the winner neuron and the loser
neuron, respectively while Ni and Nj describe the number of data vectors in
cluster i and j, respectively.

More detailed description on CNN can be found in [3,5].

2.2 Clustering in GPDF Data with Divergence Measure

The conventional k-means algorithm and its variants have been most widely used
in practice for clustering GPDF data. In order to exploit entire information in-
cluding the mean and covariance information in the GPDF data for clustering,
the divergence measure is employed as similarity distance between two proba-
bility distributions. The popular Bhattacharyya measure distance is adopted as
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divergence measure in this paper. The Bhattacharyya distance is a separability
measure between 2 Gaussian distributions and is defined as follows:

D(Gi, Gj) =
1
8
(μi − μj)T

[
Σi + Σj

2

]−1

(μi − μj) +
1
2

ln

∣
∣
∣
Σi+Σj

2

∣
∣
∣

√
|Σi| |Σj |

(2)

where μi and Σi denote the mean vector and covariance matrix of a Gaussian
distribution Gi, respectively. T denotes the transpose matrix.

3 Kernel Method and CNN with the Bhattacharyya
Kernel(BK-CNN)

3.1 Updating Cluster Prototypes

The energy function with a kernel can be written in feature space with the
mapping function Φ:

EΦ
i =

Ni∑

j=1

‖Φ(xi(j)) − Φ(wi)‖2 (3)

xi(j) denotes the data j in the cluster i.
Through the kernel substitution in Eq.(4), we obtain

‖Φ(xi(j)) − Φ(wi)‖2 = (Φ(xi(j)) − Φ(wi))(Φ(xi(j)) − Φ(wi))T

= K(xi(j),xi(j)) + K(wi,wi) − 2K(xi(j),wi)

In the case of the Gaussian kernel function, we have K(xi(j),xi(j)) = 1 and
K(wi,wi) = 1, and the objective function becomes:

EΦ
i = 2

Ni∑

j=1

(1 − K(xi(j),wi)) (4)

In order to minimize the objective function with a kernel, we use the steepest
gradient descent algorithm. The learning rule can be summarized as follows:

Δwi = η(xi(j) − wi) = η
∂EΦ

i

∂wi
(5)

In the case of the Gaussian kernel function, the objective function in Eq.(5)
can be rewritten as:

EΦ
i = 2

c∑

k=1

(1 − D(xi(j),wi)) (6)

From Eq.(7), we obtain:

Δwi = 2η(D(xi(j),wi))
′
(xi(j) − wi)

= 4η(Σxi(j) + Σwi)−1D(xi(j),wi)(xi(j) − wi)
(7)
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In the BK-CNN, (Ni + 1)−1 is used instead of 4η like the CNN,

Δwi = (Ni + 1)−1(Σxi(j) + Σwi)
−1D(xi(j),wi)(xi(j) − wi) (8)

3.2 CNN with the Bhattacharyya Kernel(BK-CNN)

Recently, the kernel method has been used in various clustering algorithms
[9,10,11]. The kernel method is based on mapping data from the input space
to a feature space of a higher dimensionality, and then solving a linear problem
in that feature space. It has been successfully employed in many traditional clus-
tering algorithms such as Support Vector Machine[6], Fuzzy Kernel Perceptron
[12]. In order to calculate the kernel between two GPDF data,the Bhattacharyya
kernel is employed. The Bhattacharyya kernel is an extension of the standard
Gaussian kernel. The Bhattacharyya kernel function between two GPDF data is
defined as follows:

BK(x(n),wj(n)) = exp (−αD(x(n),wj(n)) + b) (9)

where BK(x(n),wj(n)) is the Bhattacharyya with a kernel distance between
two Gaussian distributions x(n) and wj(n). In this paper, the Bhattacharyya
distance with a kernel as shown in Eq. (10) is employed for GPDF data.

Unlike the CNN, we should consider the variance, Σ as well as the mean, μ.
The rule of the weight update for the mean is similar to the CNN: that is, the
μ of the winner weight go close to the input data vectors while the one of the
looser weight goes away from the input vectors at every iteration. Therefore, the
update rule is defined as follows:

wj(n + 1) = wj(n) +
αBK(x(n),wj(n))

(Nj + 1) ∗ (Σx(n) + Σwj(n))
[x(n) − wj(n)]

wi(n + 1) = wi(n) − αBK(x(n),wi(n))
(Ni − 1) ∗ (Σx(n) + Σwi(n))

[x(n) − wi(n)] (10)

4 Experiments and Results

The performance of the proposed BK-CNN is evaluated and compared with
other conventional clustering algorithms by applying to the Caltech image data
set. The Caltech image data set consists of different image classes (categories) in
which each class contains different views of an object. The Caltech image data
were collected by the Computational Vision Group and can be downloaded at
http://www.vision.caltech.edu/html-files/archive.html

From these classes, we selected the 4 most easily confused classes: airplane,
car, bike, and motorbike for experiments. Each class consists of 200 images with
different views resulting in a total of 800 images in the data set. From this data
set, 100 images were randomly chosen for training while the remaining images
were used for testing. The entire images are converted to grey scale and the same
resolution. Fig. 1 shows an example of 4 image categories used in the experiments.
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(a) (b)

(c) (d)

Fig. 1. (a) Airplane (b) Car (c) Motorbike (d) Bike

Figs. 1(a), 1(b), 1(c), and 1(d) are examples of car, airplane, motorbike, and bike,
respectively. For the localized representation, the images are transformed into
a collection of 8 × 8 blocks. The block is then shifted by an increment of 2
pixels horizontally and vertically. The DCT coefficients of each block are then
computed and return in 64 dimensional coefficients. Only the 32 lowest frequency
DCT coefficients that are visible to the human eye were kept. Therefore, the
feature vectors that are obtained from each block have 32 dimensions. In order
to calculate the GPDF for the image, the mean vector and the covariance matrix
are estimated from all blocks obtained from the image. Finally, a GPDF with
32-dimensional mean vectors and 32×32 covariance matrixes is used to represent
the content of images.

After mixtures are built, the minimum-likelihood classifier is adopted for
choosing the class that the tested image belongs to:

Class(x) = argmin
i

D(x, Ci) (11)

D(G(x; μ, Σ), Ci) =
Ni∑

k=1

wikD(G(x; μ, Σ), G(x; μik, Σik)) (12)

where x is the tested image represented by a Gaussian distribution feature vector
with mean vector, μ, and covariance matrix, Σ. μik and Σik represent for the
mean vector and covariance matrix of cluster k in class Ci, respectively. wik is
the weight component of cluster k in class Ci. Ni is the number of clusters in
the class Ci.



Centroid Neural Network with Bhattacharyya Kernel 621

3 3.5 4 4.5 5 5.5 6 6.5 7
81

82

83

84

85

86

87

88

89

90

Number of code vectors

O
ve

ra
ll 

A
cc

ur
ac

y

 

 
BK−CNN
B−CNN
BK−Means
B−SOM

Fig. 2. Overall classification accuracies using different algorithms

Fig. 2 shows the classification accuracy of the classification model using SOM
with a Bhattacharyya measure (B-SOM), the k-means algorithm with a Bhat-
tacharyya measure(Bk-means), the CNN with a Bhattacharyya measure (B-
CNN) and the proposed BK-CNN. In this figure, the number of code vector
is varied from 3 code vectors to 7 code vectors in order to determine a sufficient
number of code vectors to represent for the number of mixtures in GMMs. As
can be seen from Fig. 2, the most algorithms tend to saturate at the point of
5 or 6 code vectors, while the proposed algorithm doesn’t. The BK-CNN shows
the better results than the other algorithms.

Table 1 shows the confusion matrix that describes the classification results
of the proposed classification model in detail. As can be inferred from Table 1,
cars can be well discriminated from the others while bikes and motorbikes are
easily confused. These are logical results because motorbikes and bikes are quite
similar even to the human eye while the cars are significantly different.

Table 1. Confusion matrix of image categories, using 5 code vectors

Airplane Car Bike Motorbike Accuracy

Airplane 84 4.0 10.0 2.0 84.0%
Car 0.0 100 0.0 0.0 100%
Bike 12.0 0.0 70.0 18.0 70.0%

Motorbike 0.0 0.0 4.0 96.0 96.0%

5 Conclusions

A new clustering algorithm for clustering of GPDF data called Centroid Neural
Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper.
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The proposed BK-CNN is formulated by a incorporation of the Kernel method,
the Bhattacharyya distance and the competitive learning algorithm. The kernel
method adopted in the proposed BK-CNN is used for transformation of data
from input space into feature space of higher dimensionality to obtain nonlinear
solutions. By using the Bhattacharyya divergence distance, the BK-CNN can
be used for clustering the GPDF data to utilize entire the mean values and
covariance information of the GPDF data. The proposed BK-CNN is applied to
cluster the GPDF data in the images. These encroaching results imply that the
proposed BK-CNN can be used as an efficient clustering tool for GPDF data in
other practical applications.
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Abstract. This paper proposes an interconnection approach, which is based on 
extended many-valued context and extended formal descriptions. An extended 
many-valued context Π=(G,M,Q,W,I) consists of sets G,M,Q and W and a 
quaternary-relation I ⊆G×M×Q×W. An extended formal description is regarded 
as a mapping from the set of attributes to the power set of the values, assigning to 
each attribute the set of allowed values under some conditions. The extended 
formal descriptions are naturally ordered by preciseness, and then a concept 
lattice is obtained according to the theory of FCA. This concept lattice is the well 
structure interconnection among concepts. The paper also proposed some 
important propositions, which are used to decide whether two concepts have 
semantic interconnections. In the end, the paper describes an interconnection 
algorithm with the time complexity O(n2). 

Keywords: Formal Concept Analysis; Extended Many-Valued Context; 
Semantic Interconnection; Structure Interconnection; Formal Description. 

1   Introduction  

As an effective tool for data analysis and knowledge processing, formal concept 
analysis has been applied to various fields. Most of the researches on formal concept 
analysis focus on the following topics: construction of concept lattice[1],[2], revision of 
concept lattice[3], acquisition of rules[1],[2],[4], relationship with rough set [5], and 
concept interconnection[6],[7]. 

Knowledge processing in formal concept analysis usually starts with object- 
attribute-value relationships, which is a frequently used method to code real-world 
problems[8]. They can be represented in many-valued contexts as a quadruples (G, M, 
W, I). Unfortunately, there usually exist the following challenges in knowledge  
texts: 1) Some data most often have missing values, and 2) Some attributes may have 
different values under different conditions. 

In order to discuss the concept interconnection with the problems, the paper 
proposes an approach based on the extended many-valued context and extended formal 
descriptions. A many-valued context forms an extended many-valued context by added 
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a set of conditions. An extended formal description is regarded as a mapping from the 
set of attributes to the power set of the attribute-values under some conditions, 
assigning to each attribute the set of allowed values under some conditions. 

The paper is organized as follows. Section 2 mainly discusses the structure 
interconnection based on the extended many-valued context and extended descriptions. 
Section 3 introduces the semantic interconnection based on description, and describes 
an algorithm for interconnecting two objects. Finally, section 4 concludes the paper and 
provides some interesting problems. 

2   Structure Interconnection Based on Many-Valued Context 

In the section, we firstly introduced the many-valued context based on descriptions, and 
then analyzed some important properties of the extended many-valued context and 
extended formal descriptions. Some important original definitions such as formal 
concept, many-value context and concept lattice are described in detail in article [9]. 

In order to handle empty cell in the theory of formal concept analysis 
mathematically, some researchers extended the power set of values, P(W), by adding a 
special maximal element ∝, and extend the order on P(W) given by inclusion to P*(W) 
by defining[8]: 

P*(W):= P(W)∪{∝}. (1) 

∀A,B∈P(W)(A⊆B→ A≤B);  ∀A∈P(W)(A≤∝ ∧ A≠∝). (2) 

Furthermore, each attribute m∈M is regarded as a mapping from the P(G) to P*(W): 

m: P(G)→P*(W),m(A):={m(g)|g∈A∧(g,m)∈I} or {∝|(g,m)∉I}. (3) 

Definition 1[8]: Let K=(G, M, W, I) be a many-valued context. A formal description d 
in K is a mapping d: M→P*(W) from the set M of attributes to the extended power set 
P*(W) of values. D denotes the set of all descriptions in K: D:={d: M→P*(W)}. This 
set is ordered by preciseness: d1 ≤ d2:⇔ d1(m) ≥ d2(m),∀m∈M, An object g ∈ G fulfills 
a description d, iff m(g) ≤ d(m), ∀m∈M. 

Theorem 1[8]: The set D together with the order of preciseness forms a complete 
lattice. The supremum ∨dj of a family of descriptions dj; j∈J is given by the conjunction 
of the descriptions, and the infimum ∧dj is given by their disjunction:  

∨dj:=m|→∩dj(m); ∧dj:=m|→∪dj(m) (4) 

Definition 2[8]: Let K=(G,M,W,I) be a many-valued context, and let D be the set of 
descriptions in K. A formal concept of the context K is a pair (B, d),with B⊆G, d∈D 
and B°=d and d°= B. B is called the extent and d the intend of the concept (B, d). The set 
of all concepts of the context K is denoted ℵ(K). Where B°:= M→P*(W),m→m(B), 
d°:={g∈G |m(g)≤ d(m), ∀m∈M }. 
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Proposition 1: Let (A1,d1) and (A2,d2) be formal concepts in K, then A1⊆A2⇒ d2≤d1. 

The set of concepts is ordered by extent. In the case of (A1,d1)≤(A2,d2), we call (A1,d1) a 
sub-concept of (A2,d2), and (A2,d2) a super-concept of (A1,d1). (g, g°) is called object 
concept, obviously g°=d={m→m(g)|m∈M∧m(g)≠∝},in the case d can be reformulate 
{(m, m(g))|m∈M∧m(g)≠∝}.Furthermore, ℵ(K) together with this order forms a 
complete lattice: 

Theorem 2[8]: ℵ(K) forms a complete lattice under the following Infimum and 
supremums defined by (Where {(Aj,dj)| j∈J}⊆ℵ(K).):  

∧(Aj,dj)=(∩Aj,(∩Aj)°)=(∩Aj,(∨dj)°°); ∨(Aj,dj)=((∧dj)°,∧dj)=((∪Aj)°°,∧dj)). (5) 

The definition of descriptions so far would suffice, if each object would have in every 
attribute some values or missing values under different conditions. From the 
mathematical point of view, we assigned to each attribute the set of values under some 
conditions, which are allowed for the objects we want to describe. Therefore, we treat 
time and quantity as atomic knowledge building blocks. We have defined several time 
constructs for uniquely formalizing a time. For example, to formalize a concrete day, 
we use the construct <MM>.<DD>.<YYYY>. A quantity is usually characterized by a 
number and a unit of measurement. For example, “100km/h” and “1.8m” are quantities, 
where “km/h” and “m” are the units.  

Definition 3: An extended many-valued context Π=(G, M, Q, W, I) consists of sets G, 
M, Q and W and quaternary-relation I among G, M,Q and W (i.e. I⊆G×M×Q×W) for 
which it holds that (g, m, q, w)∈I and (g, m, q, v) ∈I always imply w=v. 

The elements of G are called objects, those of M (many-valued) attributes, those of Q 
limited conditions and those of V attribute values. (g, m, q, w)∈I means that “under the 
condition q, the attribute m has the value w for the object g.” Obviously, under different 
conditions, the attribute m may have the different values the object g.  

For example, the extended formal descriptions about Abraham Lincoln and John F. 
Kennedy as following: Abraham Lincoln{(Date of Birth:<02>.<12>.<1809>), 
(Height.Being an adult: About 1.95m), (Status. From 1847 to1859: Lawyer), (Status. 
from 1861 to 1865: President), (Date of Death:<04>.<14>.<1865>),. . .}, and John F. 
Kennedy{(Date of Birth: <05>.<29>.<1917>), (Height.Being an adult: About 1.67m), 
(Status. From 1947 to 1953: Representative), (Status. from 1961 to 1963: President), 
(Date of Death: <11>.<22>.<1963>),...}. In this case, we use g(m) instead of m(g) to 
distinct the descriptions of object g in K and ones in Π. 

We regard each attribute m∈M as a mapping from the P(G) to P*(Q×W):= P*(Q×W) 
∪{(∝,∝)}: 

m: P(G)→P*(Q×W), 
m(A):={(q,g(m))|g∈A∧∃q∈Q(g,m,q,g(m))∈I}or {(∝,∝)|(g,m,q,g(m))∉I} 

(6) 

We extend the order on P(Q×W) given by inclusion to P*(Q×W) by defining 

∀A,B∈P(Q×W)((α(A)⊆α(B)→A≤B); ∀A∈P(Q×W)(A≤(∝,∝)∧A≠(∝,∝)), 
Where α: Q×W→W,(q,v)| →v. 

(7) 
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Definition 4: Let Π=(G,M,Q,W,I) be a extended many-valued context. A formal 
description d in K is a mapping d: M→P*(Q×W) from the set M of attributes to the 
extended power set P*(Q×W) of values under some conditions. The set of all 
descriptions in Π is denoted by Θ:={d:M→P*(Q×W)}. This set is ordered by 
preciseness: d1 ≤ d2:⇔ d1(m) ≥ d2(m),∀m∈M, An object g ∈ G fulfills a description d, 
iff (q, m(g)) ≤ d(m), ∀m∈M. 

Every finite many-valued context can be brought into an extended one without 
changing the structure of the concept lattice.  

Proposition 2: (Θ,≤) is a complete lattice. The supremum ∨dj of a family of 
descriptions dj; j∈ J is given by the conjunction of the descriptions, and the infimum 
∧dj is given by their disjunction: 

∨dj:=m|→∩dj(m); ∧dj:=m|→∪dj(m) (8) 

Definition 5: Let Π=(G, M, Q, W, I) be a extended many-valued context, and let Θ be 
the set of descriptions in Π.A formal concept of the context Π is a pair (A, d),with 
A⊆G, d∈Θ and A′=d and d′= A. A is called the extent and d the intend of the concept 
(A,d). ℵ(Π) denotes the set of all concepts of the context K. Where A′:=M→P*(Q×W), 
m|→m(A), d′:={g∈G |(q, g(m))≤d(m), ∀m∈M }. 

Proposition 3: Let (A1,d1) and (A2,d2) be formal concepts in Π, then A1⊆A2 ⇒ d2≤d1. 

The set of concepts is ordered by extent (which is dual to the order given by intent). In 
the case of (A1,d1)≤(A2,d2), we call (A1,d1) a sub-concept of (A2,d2), and (A2,d2) a 
super-concept of (A1,d1). Furthermore, ℵ(Π) together with this order forms a complete 
lattice: 

Proposition 4: ℵ(Π) is a complete lattice under the following Infimum and supremum. 
Given a subset of concepts {(Aj, dj)| j∈J}⊆ ℵ(Π), we can define Infimum and 
supremum by:  

∧(Aj,dj)=(∩Aj,(∩Aj)′)=(∩Aj,(∨dj)′′); ∨(Aj,dj)=((∧dj)′,∧dj)=((∪Aj)′′,∧dj)). (9) 

3   Semantic Interconnection Based on Description 

Given an extended many-valued context Π=(G,M,Q,W,I), in order to discuss semantic 
interconnection from the formal description point of view, we define two two-argument 
functions as follows:  

ψ:G×M→P(Q×W),(g,m)|→{(q,v)|∀v∈W→∃q∈Q(g(m)=v∧(g,m,q,v)∈I} (10) 

Γ:G×M→P(W),(g,m)|→{v∈W|∀v∈W→∃q∈Q(g(m)=v∧(g,m,q,v)∈I} (11) 

The function ψ assigns to each object g∈G and attribute m∈M a subset ψ(g, m)⊆ Q×W, 
and Γ assigns to each object g∈G and attribute m∈M a subset Γ(g, m)⊆W. 
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Proposition 5: For each description d and each attribute m, we can get the following 
results:1)ψ(g,m)=d(m)|g=m(g)\{(∝,∝)}; 2) Γ(g,m)=α(ψ(g,m))=α (m(g)\{((∝,∝))}); 3) 
For each concept (A, d), d(m)|A=m(A)=∪g∈A{ψ(g,m)∪{(∝,∝)}. 

Definition 6: Two object concepts C1=(g1,d1) and C2=(g2,d2), we say C1 and C2 are 
object semantic interconnect if satisfying the following conditions: 

∪m∈M (α(d1(m)|g1)∩α(d2(m)|g2))\{∝}≠Φ),or (12) 

∃m1∈M∃m2∈M (α(d1(m1)|g1)∩α(d2(m2)|g2)\{∝}≠Φ),or (13) 

∃m1∈M∃m2∈M (α(d1(m2)|g1)∩α(d2(m1)|g2)\{∝}≠Φ) (14) 

Proposition 6: The object semantic interconnection has the following basic forms: 

g1≈++g2 iff (∀m∈M (Γ(g1,m) ∩Γ(g2,m)) ≠∅) (15) 

g1≈+g2 iff (∃m1∈M∃m2∈M(Γ(g1,m1)∩Γ(g2,m2))≠∅∨(Γ(g1,m2)∩Γ(g2,m1))≠∅) (16) 

g1≈-+ g2 iff (∃m∈M (Γ(g1,m) ∩Γ(g2,m)) ≠∅) (17) 

Proposition 7: The following first-order conditions are true about semantic- 
interconnection among object concepts g1, g2 and g3 of an extended many-value 
context: 1) g1 ≈?g1, ?∈{++,-+, +};2) g1 ≈++g2↔ g2 ≈++ g1;3) g1 ≈+- g2↔ g2 ≈-+ g1;4) 
g1≈?g2→ g1 ≈? g1,?∈{++,-+, +};5) g1≈?g2→ g2 ≈? g2,?∈{++,-+, +} 

Definition 7: Given two concepts C1=(A1,d1) and C2=(A2,d2), we say C1 and C2 are 
semantic interconnect if satisfying the following conditions: 

∪m∈M (α(m(A1))∩α(m(A2)))\{∝}≠Φ),or (18) 

∃m1∈M∃m2∈M (α(m1(A1))∩α(m2(A2)))\{∝}≠Φ),or (19) 

∃m1∈M∃m2∈M (α(m2(A1))∩α(m1(A2)))\{∝}≠Φ) (20) 

Proposition 8: Given two concepts C1=(A1,d1) and C2=(A2,d2), the semantic 
interconnection has the following basic forms: 1) C1≈++ C2 iff ∀x∈A1∀y∈A2 (x ≈++ 
y);2) C1≈+- C2 iff ∃x∈A1∃y∈A2 (x ≈++ y);3)C1≈+ C2 iff ∀x∈A1∀y∈A2 (x ≈+y);4)  C1≈- 
C2 iff ∃x∈A1∃y∈A2 (x ≈+y);5) C1≈-+ C2 iff ∀x∈A1∀y∈A2 (x ≈-+ y);6) C1≈-- C2 iff 
∃x∈A1∃y∈A2 (x ≈-+ y) 

Proposition 9: The following first-order conditions are true about semantic- 
interconnection among concepts C1, C2 and C3 in an extended many-value context: 1) 
C1 ≈? C1,

?∈{++,+-,+,-, -+,--};2) C1 ≈? C2→C2 ≈? C1,
?∈{++,+-,+,-, -+,--};3) 

C1≈?C2∧C2≈?C3→C1≈?C3,
?∈{++,+, -+}; 4) C1 ≈? C2 ∧ C2 ≤ C3 → C1 ≈? C3,

?∈{++,+-,+,-, 
-+,--};5)C1 ≤ C3 ∧ C1 ≈? C2→C1 ≈? C3,

?∈{++,+-,+,-, -+,--}. 
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Proposition 10: Given two concepts C1=(A1,d1) and C2=(A2,d2), then C1 and C2 are 
structure interconnect in the concept lattice if and only if they are semantic 
interconnect. 

Definition 8: Let ≤m be an order relation on the set of values of m for every attribute m 
∈M and let C1=(A1,d1) and C2=(A2,d2) be concepts. C1 and C2 are order interconnect if 
satisfying one of the following conditions: 

∀g1∈A1∀g2∈A2∃m∈M∃g1(m)∈α(m(g1))∃g2(m)∈α(m(g2))(g1(m)≤ mg2(m)) (21) 

∀g1∈A1∀g2∈A2∃m∈M∃g1(m)∈α(m(g1))∃g2(m)∈α(m(g2))(g2(m)≤ mg1(m)) (22) 

∀g1∈A1∀g2∈A2∃m1∈M∃m2∈M∃g1(m1)∈α(m1(g1))∃g2(m2)∈α(m2(g2)){(g1(m1)≤ 

m1∨m2g2(m2))} 
(23) 

∀g1∈A1∀g2∈A2∃m1∈M∃m2∈M∃g1(m1)∈α(m1(g1))∃g2(m2)∈α(m2(g2)){(g1(m1)≤ 

m1∨m2 g2(m2))} 
(24) 

Proposition 11: Order interconnection is reflexive and anti-symmetric.  

Proposition 12: If C1≈++ C2 , or C1≈+ C2, or C1≈-+ C2, then C1 and C2 are order 
interconnect. 

Definition 9: Two object g1 and g2 are ≅- interconnect if satisfying the following 
conditions: 

∃ m1∈M∃ m2∈M∃ g1(m1)∈α(m1(g1))∃ g1(m2)∈α(m2(g1))∃ g2(m1)∈α(m1(g2)) ∃ 
g2(m2)∈ α(m2(g2)) {| g1(m1)-g2(m1)|= | g1(m2)-g2(m2)|} 

(25) 

Proposition 13: ≅- interconnection is reflexive, symmetric and anti-symmetric.  

In order to analyze relationships between attributes and concept interconnection based 
on attributes, we introduce implications between descriptions, which based on the some 
definitions described in [8],[9]. Given an extended many-valued context Π=(G, M, Q, 
W, I), an implication d1→ d2 between two descriptions d1,d2 ∈ D holds in Π, iff each 
object g∈ G, which fulfills description d1, also fulfills description d2.More formally, we 
define: 

Definition 10: Let Π=(G, M, Q, W, I) be an extended many-valued context, and let D 
be the set of all descriptions within Π. Furthermore, let d1,d2 ∈ D be descriptions. A 
extended description d∈ D respects the implication d1→ d2, if ¬(d1≤d) or (d2≤d). d 
respects a set ℘ of implications if d respects every single implication in ℘. d1→ d2 
holds in a set {d3, d4,……, dn:} of descriptions if each of the descriptions di （3≤ i ≤n）

respects the implication d1→ d2. d1→ d2 holds in the context Π if it holds in the system 
of object intents. In this case, we also say, that d1→ d2 is an implication of the context Π 
or, equivalently, that within the context Π, d1 is a premise of d2. 
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Proposition 14: Let d1→ d2 be an implication of the context Π. If C1 and C2 are 
semantic interconnect (or order interconnection) under the description d2, then they are 
too semantic interconnect (or order interconnection) under the description d1.If g1 and 
g2 are ≅-interconnect under the description d2, then they are too ≅-interconnect under 
the description d1 . 

These propositions are used to decide whether two concepts have interconnect 
tions. Now, we describe an object interconnection algorithm and analyze its time  
complexity.   

An Object Interconnection Algorithm 
Input: Concept Lattice ℵ(Π) and two object concepts (g1,d1) and (g2,d2) 
Output: A set of interconnection ℑ between (g1,d1) and (g2,d2) 

Process: 
1:ℑ←{} 
2:ℑ′′← (g1,d1)∧(g2,d2), (g1,d1)∨(g2,d2) 
3:For each attribute m∈M Do 
Case 1:If Φ≠∞}{\))(m)())(m)( 21 dd αα I , Then ℑ← =(g1(m), g2(m)). 

Case 2:If Φ≠∞∈∃∈∃ }{\))))(m())(m((( 221121 ddMmMm αα I ,  

Then ℑ← =(g1(m1), g2(m2)). 
Case 3:If g1 and g2 are satisfying (21) or (22), 

Then ℑ←≤m(g1(m), g2(m)) or ≤m(g2(m), g1(m)) . 
Case 4: If g1 and g2 are satisfying (23) or (24), 

Then ℑ←≤(m1∨m2)(g1(m1), g2(m2)) or ≤(m1∨m2)(g1(m2), g1(m1)). 
Case 5:If g1 and g2 are satisfying (25), Then ℑ← ≅(g1, g2). 
Case 6:If g1 and g2 have implication interconnection ©, Then ℑ←© 

Endfor 
4: ℑ←ℑ∪ℑ′′ 
 

Proposition15: Time complexity of the interconnection algorithm is O(n2).Where 
|M|=n. 

Proof. We can only take into account the compare number from case 1 to case 5. In the 
best condition, the compare number from case 1 to case 5 is n, n2, 2n, 2n2 and C2

n, 
respectively. Therefore, the total compare number is f(n)= C2

n+3n2+3n≤7n2(n0 ≤n).In 
the worst condition, the compare number from case 1 to case 5 is |Q|2n, 
|Q|2n2,2|Q|2n,2|Q|2n2 and |Q|2C2

n, respectively. Therefore, the total compare number is 
f(n)= |Q|2C2

n+3|Q|2n2+|Q|23n≤7|Q|2n2.                                                                          

Now, we provide an example to explain these interconnection definitions. From the 
extended formal descriptions about Lincoln and Kennedy, we can easily obtain the 
following interesting knowledge: 1) Lincoln was higher than Kennedy; 2) Lincoln 
certainly did not know when Kennedy died and what the reason was; 3) One 
hundred years after Lincoln becoming a president, John F. Kennedy won president 
position. 
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4   Conclusion 

In section 2, we mainly introduced the structure interconnection based on the extended 
many-valued context and extended description. From the concept interconnection point 
of view, concept Lattice is a well structure interconnection. Section 3 mainly dealt with 
semantic interconnection based on the extended description and implication between 
descriptions, and described an algorithm for interconnecting two objects. The paper 
proposed some important propositions, which are used to decide whether two concepts 
have interconnections. 

Several problems remain to be investigated. One of the interesting questions is how 
to interconnect fuzzy concepts and distinguishable objects in the real world. In the 
future, we will focus on these questions and formalize the concept interconnection 
more deeply. 
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Abstract. Automatic text classification of web texts in Asian languages
is a challenging task. For text classification of Thai web pages, it is neces-
sary to cope with a problem called word segmentation since the language
has no explicit word boundary delimiter. While a set of terms for any
texts can be constructed with a suitable word segmentation algorithm,
Thai medicinal texts usually has some special properties, such as plen-
tiful of unique English terms, transliterates, compound terms and typo
errors, due to their technical aspect. This paper presents an evaluation
of classifying Thai medicinal web documents under three factors; clas-
sification algorithm, word segmentation algorithm and term modeling.
The experimental results are analyzed and compared by means of stan-
dard statistical methods. As a conclusion, all factors significantly affect
classification performance especially classification algorithm. The TFIDF
with term distributions, as well as SVM, achieves high performance on
non-segmented and segmented Thai medicinal web collection as they ef-
ficiently utilize technical terms.

1 Introduction

The fast growth and dynamic change of online information, have provided us
a very large amount of information. Text Categorization (TC) is an important
tool for organizing documents into classes by applying statistical methods or
artificial intelligence (AI) techniques. With this organization, the utilization of
the documents is expected to be more effective. A variety of learning techniques
for TC, have been developed, such as Bayesian approaches [1], linear classifiers
[2] and support vector machines [3]. Most research works have used standard
data sets which is published in English, a language with word boundary delim-
iter such as Reuters, OHSUMED, 20-Newsgroups for evaluating the experiment.
Recently, some research works [4,5] have applied TC techniques to medical doc-
uments (e.g., OHSUMED). However, there is no systematic research work on
text categorization in other language, especially for Thai medicinal collection.
Like other Asian languages such as Chinese, Korean and Japanese, Thai lan-
guage also has no explicit word boundary delimiter. For languages without word
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boundary, word segmentation plays an important role to construct a set of terms
for classification process. One more feature in most Thai medicinal web pages is
that they usually include a plentiful of technical terms in both Thai and English.
This property implies a large number of unique terms in the web collection. Most
of technical terms in Thai medicinal web pages are compound terms which can
be captured by the concept of n-gram (i.e., bigram or trigram). Moreover, such
technical web pages also contain transliterates, and typo errors in both Thai and
English, due to their technical aspect.

This paper presents an evaluation of several techniques in handling these prob-
lems. Taken into account are three different factors; classification algorithm, word
segmentation algorithm and term modeling. In the rest of this paper, Section 2
presents a number of well-known classification algorithms. Some characteristics
of Thai medicinal web pages and the ways to construct representative models for
Thai medicinal web pages are given in Section 3. The data sets and experimen-
tal settings are described in Section 4. In Section 5, a number of experimental
results are given. A conclusion is made in Section 6.

2 Classification Algorithms

This section gives a brief introduction to three well-known algorithms that were
widely used for text classification i.e. näıve Bayes, centroid-based algorithms and
the support vector machine (SVM).

2.1 Näıve Bayes Algorithm

As a statistical-based algorithm, the näıve Bayes classifier (NB) first calculates
the posterior probability P (ck|dj) of class ck that the document belongs to differ-
ent classes, and assigns it to the class with the highest posterior probability. Ba-
sically, a document dj can be represented by a bag of words {w1j , w2j , . . . , wnj}
in that document (i.e., a vector of occurrence frequencies of words in the doc-
ument). NB assumes that the effect of a word’s occurrence on a given class is
independent of other words’ occurrence. With this assumption, a NB classifier
finds the most probable class ck ∈ C, called a maximum a posteriori (MAP)
cMAP for the document which is determined by arg maxck

∏n
i=1 P (wij |ck)P (ck).

As a preliminary experiment, occurrence frequency for calculating the posterior
probability P (wij |ck) outperforms the binary frequency. Therefore, this method
will be used in this work.

2.2 Centroid-Based Algorithm

The centroid-based algorithm is a linear classification algorithm. Only positive
documents are taken into account for constructing a centroid vector of a class.
The vector is normalized with the document length to a unit-length vector (or
prototype vector). In the classification stage, a test document is compared with
these prototype vectors by dot product (cosine measure) in order to find the
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nearest class. Normally, a centroid-based classifier (CB) obtained high classifi-
cation accuracy with small time complexity. The techniques to improve the CB
by introducing term-distribution factors to term weighting, in additional to the
standard tf × idf was proposed [6]. In this work, we also use term distributions
(TD) with CB. The term weighting formula is tfik×idfi√

csdik×sdi
. From this formulas,

tf ik and csdik are average class term frequency and class standard deviation of a
term ti in class ck, respectively. The idfi and sdi are inverse document frequency
and standard deviation of term ti, respectively. Normally, combination of TD
and TFIDF in an appropriate way, outperforms TFIDF.

2.3 Support Vector Machines

Support vector machines (SVMs) are based on the structure risk minimization
principle [7]. It has been shown in previous works [3] to be effective for text
categorization. SVM divides the term space into hyperplanes or surface separat-
ing the positive and negative training samples. An advantage of SVM is that it
can work well on very large feature spaces, both in terms of the correctness of
the categorization results and the efficiency of training and categorization algo-
rithm. However, a disadvantage of SVM training algorithm is that it is a time
consuming process, especially training with a large corpus.

3 Thai Medicinal Web Collection

The WWW permitted the general public to navigate easily across the global In-
ternet and view a variety of information. In Thailand, most of web documents are
conducted in Thai. However, in practical situation, English language is frequently
contributed to Thai web pages, especially educational web pages. There are a
large number of medical information related to disease, drug, herbal medicine
and so on. Most of them are written in Thai with English terms attached. So far,
several research works have developed methods for classifying medical document
written in English. Up to present, there is no systematic work for classifying
Thai medicinal web collection. From our preliminary study, we found that this
type of documents has some special properties. These documents usually contain
a lot of technical terms in both Thai and English. Most technical terms are com-
pound noun and they are easily mistyped. From these properties, the system
for classifying the collection are investigated in a systematic way. In order to
construct a set of terms (features) in the step of learning and classifying phases,
two factors are considered. Firstly, word segmentation is an essential component
in creating features (words) from a sentence. Lastly, higher-grams seem to be
a good representative for constructing features for medicinal documents. The
detail of these factors are described.

3.1 Thai Word Segmentation Algorithms

In Thai language, a word segmentation plays as an important role to construct
a set of terms for classification process. Most researchers had implemented their
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Thai word segmentation system based on using a dictionary. Currently, three al-
gorithms: longest matching, maximal matching and n-gram are well-known and
widely used. Most of early works in Thai word segmentation are based on a
longest matching algorithm [8]. The algorithm scans an input sentence from left
to right, and selects the longest match with a dictionary entry at each point. In
case that the selected match cannot lead the algorithm to find the rest of the
wards in the sentence, the algorithm will backtrack to find the next longest one
and continue finding the rest and so on. It is obvious that this algorithm will fail
to find the correct the segmentation in many cases because of its greedy charac-
teristics. The maximal matching algorithm was proposed to solve the problem of
the longest matching algorithm [9]. This algorithm first generates all possible seg-
mentations for a sentence and then select the one that contain the fewest words,
which can be done efficiently by using dynamic programming technique. Because
the algorithm actually finds real maximal matching instead of using local greedy
heuristics to guess, it always outperforms the longest matching method. Besides
the two algorithms, another popular statistical model is n-gram. The n-gram
assumes that the probability of the event depends on n previous events. For a
word segmentation, n-gram is applied as a measure of whether a word bound-
ary is likely to locate between a current character and its preceding characters
or not. Probability of this likelihood is represented by p(ci+1|c1, c2, . . . , ci−1, ci)
where c is a character in a word. It is well known that to obtain a good estima-
tion for this statistic, a large corpus is required. While up to three contiguous
characters (3-gram) is taken into account, this work apply bigram (n=2) due to
computation issue.

3.2 Representation Basis

The frequently used document representation in IR and TC is the so-called
bag of words (BOW) [10] where words in a document (or a class) are used as
basics for representing that document. In this representation, each element (or
feature) in the vector is equivalent to a unique word with a weight. In a more
general framework, the concept of n-gram can be applied. Instead of a single
isolated word, a sequence of n words will be used as representation basis. In
several applications, not specific for classification, the most popular n-grams are
1-gram (unigram), 2-gram (bigram) and 3-gram (trigram). Alternatively, the
combination of different n-grams, for instance the combination of unigram and
bigram, can also be applied. Although a higher-gram provides more information
and this may effect in improving classification accuracy, more training data and
computational power are required. Therefore, unigram and bigram are considered
in this work.

4 Data Sets and Preprocessing

The dataset used for evaluation is a set of web documents which are collected
from several Thai medicinal websites. Composed of eight categories (i.e. Educa-
tion, Disease, Drug, Food, Herbal, Toxic, Organization and Dental), the numbers
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of documents for these classes are 1298, 1615, 716, 426, 761, 323, 1492 and 258, re-
spectively. This collection was constructed under the research in a project named
“Research and Development of Resources for Processing Very Large-Scaled In-
formation on the Internet –Information Retrieval and Data Mining–”. The total
number of pages is 6889. In this collection, several web pages contain English
technical terms. Without any term selection, the number of terms in the unigram
model after passing any Thai word segmentation algorithm is approximately sev-
enty thousand. In details, there are a lot of errors triggered by mis-typing, mis-
segmenting and so on. To partially solve this problem, we select a set of terms
which appear in a collection at least three times. Focusing on unique words, the
number of English terms is nearly the same as Thai terms. The total numbers
of terms using longest matching, maximal matching and bigram algorithms in a
unigram model are 27945, 28120 and 28587. They are 221376, 220960 and 224643
in bigram models, respectively.

Three models of features are investigated. The features of the first model (non-
segmented model) are constructed from English unigram terms, Thai unigram
terms and Thai phrases. Due to the fact that Thai word segmentation is not
applied, the number of features in Thai for non-segmented model is almost as
twice as that of unigram model. In the second and third models, three Thai word
segmentation algorithms are used for the preprocessing step before starting the
training process. The second model, all features are unigram term in both Thai
and English. For the third model, we add the bigram terms into the second model
and it is so-called bigram model. As a preprocessing, some stopwords (e.g., a,
an, the) and all tags (e.g., <B>, </HTML>) were omitted from documents to
eliminate the affect of these common words and typographic words. This may
be helpful to make classification processes not depend on any specific format.

Three experiments are performed. In the first experiment, four types of classi-
fiers are evaluated i.e. näıve Bayes classifier (NB), centroid-based classifier with
tf × idf term weighting (TFIDF), centroid-based classifier with tf × idf and
term distributions (TFIDF*TD, see detail in 2.2) and support vector machine
(SVM). The query weighting is tf × idf for centroid-based classifiers. For SVM,
the linear function is applied and the term weighting is tf × idf . Three Thai
word segmentations are considered i.e. longest matching, maximal matching and
bigram. The second and last experiments investigate the effect of our focused
four classifiers and three Thai word segmentation algorithms in unigram and
bigram models, respectively . All experiments were performed using 90% for the
training set and 10% randomly for the test set. We performed 10 trials for each
experiment. The performance was measured by classification accuracy defined
as the ratio between the number of documents assigned with correct classes and
the total number of test documents. Due to the fact that one factor and two fac-
tors are involved for each experiment, one-way and two-way analysis of variance
(ANOVA) are used as a statistical method for evaluating the difference of mean
with the significant level of 0.05. The difference of average classification accuracy
between methods for each factor is compared by Scheffé’s test, a method which
is suitable for both multiple comparison and range test.
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5 Experimental Results

5.1 Effect of Classifiers

In the first experiment, performance of four classifiers, i.e. NB, TFIDF,
TFIDF*TD and SVM is explored. Table 1 showed the result in forms of the
average classification accuracy±standard error of the mean (SEM).

Table 1. Effect of classifiers in non-segmented Thai medicinal web collection

Classifier Accuracy
NB 77.24±0.39

TFIDF 63.23±0.49

TFIDF*TD 84.78±0.42

SVM 82.43±0.48

According to 1-way ANOVA between classifiers, the average accuracies of the
four classifiers are significantly different (p < 0.05). NB is an intermediated per-
formance classifier. Standard TFIDF classifier achieves the lowest performance
among the four classifiers. However, term distributions improve its performance
and outperforms SVM classifier. As describe in Section 4, the number of unique
terms in non-segmented collection is greater than segmented unigram model
collection. Term distributions efficiently utilizes these terms (or phrases).

5.2 Effect of Thai Word Segmentation Algorithms

In the second experiment, the effects of three Thai word segmentation algorithms
i.e. longest matching (Longest), maximal matching (Maximal) and bigram (Bi-
gram), and four classifiers are explored. The result is shown in Table 2.

Table 2. Effect of word segmentation algorithms and classifiers (unigram models)

Classifier Thai Word Segmentation Algorithm
Longest Maximal Bigram

NB 80.68±0.59 80.64±0.41 80.26±0.39

TFIDF 76.74±0.43 76.60±0.35 76.66±0.61

TFIDF*TD 82.06±0.30 82.79±0.44 83.66±0.62

SVM 86.35±0.35 86.79±0.39 86.58±0.35

According to 2-way ANOVA between classifiers and Thai word segmentation
algorithms, there is no significantly difference between the average accuracies
of the three Thai word segment algorithms. This indicates that the types of
word segmentation has no effect on performance and then we can apply any of
them for classifying Thai medicinal Web pages. On the contrary, the average
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accuracies of the four classifiers are significantly different (p < 0.05). Thai word
segmentations segment Thai sentences into separate words. In this case, all fea-
tures are represented with unigram model. The number of unique features in
unigram model is less than non-segmented collection. However, the number of
features in a document vector increases (longer document vector). The result is
that all classifiers except TFIDF*TD, achieves higher performance.

5.3 Effect of Bigram Models

In the last experiment, bigram models of features are used instead of unigram
models in previous experiment. The result is shown in Table 3.

Table 3. Effect of word segmentation algorithms and classifiers (bigram models)

Classifier Thai Word Segmentation Algorithm
Longest Maximal Bigram

NB 82.73±0.49 83.11±0.35 83.28±0.39

TFIDF 74.10±0.31 75.65±0.48 74.04±0.40

TFIDF*TD 85.39±0.40 85.90±0.34 85.78±0.27

SVM 87.47±0.40 87.31±0.46 87.31±0.31

According to 2-way ANOVA between classifiers and models, the average ac-
curacies of the four classifiers are significantly different (p < 0.05). There is
also significantly difference (p < 0.05) between the average accuracies on uni-
gram and bigram models. The bigram models usually achieve higher performance
than unigram models for all classifiers except only TFIDF. The SVM on bigram
model is still the best classifier in term of accuracy. However, time for learn-
ing phase increases a lot while a little bit improvement over unigram model.
The TFIDF*TD is the second classifier in terms of performance. However, its
performance in bigram models is comparable to SVM.

6 Conclusion

This paper investigated a set of methods to classify Thai medicinal Web doc-
uments in a systematic way and analyzed the results by statistical methods.
Three factors are taken into account i.e classification algorithm, word segmen-
tation algorithm and term modeling. Normally, This collection has some special
properties i.e. a large number of terms in both Thai and English, several terms
are represented in higher-gram and a lot of typing errors. From the experimental
results, classification performance depends on the three factors especially clas-
sification algorithm. In a model without Thai word segmentation, the number
of unique features is greater than those of a unigram model with Thai word
segmentation. For this case, TFIDF with term distributions efficiently utilize
these unique features. It outperformed other classifiers including SVM. When
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Thai word segmentations were applied in both unigram and bigram models,
SVM was superior to the others. However, the performance of TFIDF with term
distributions in the bigram model was higher than the unigram and only less
than the gap of 2% from the state-of-art algorithm, SVM. The results suggested
that the bigram model of TFIDF with term distributions was a good model but
we need to accept trade-off between time spent in both training phase and the
accuracy for classifying Thai medicinal Web collection. It was the classifier of
choice when Thai word segmentation was not applied or in the adaptive learn-
ing environment. The SVM is the classifier of choice when accuracy is the most
important and any of Thai word segmentation algorithms can be applied.

In the future, we will consider the Thai medicinal Web documents with less
English terminology and the other types of Thai Web documents. We will also
consider other feature selection techniques.
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Abstract. Noise significantly affects cluster quality. Conventional clustering
methods hardly detect clusters in a data set containing a large amount of noise.
Projected clustering sheds light on identifying correlation clusters in such a data
set. In order to exclude noise points which are usually scattered in a subspace,
data points are projected to form dense areas in the subspace that are regarded
as correlation clusters. However, we found that the existing methods for the pro-
jected clustering did not work very well with noise data, since they employ ran-
domly generated seeds (micro clusters) to trade-off the clustering quality. In this
paper, we propose a divisive method for the projected clustering that does not rely
on random seeds. The proposed algorithm is capable of producing higher quality
correlation clusters from noise data in a more efficient way than an agglomeration
projected algorithm. We experimentally show that our algorithm captures corre-
lation clusters in noise data better than a well-known projected clustering method.

Keywords: generalised projected clustering, SVD decomposition.

1 Introduction

Clustering is a classical technique in computing and statistics. Noise deteriorates cluster
quality significantly and prevents finding meaningful clusters when the amount of noise
is big. It is difficult to distinguish noise data objects from normal ones when we do not
have prior knowledge about the data. However, clustering can serve as the first step to
explore such a data set with noise, particularly when the prior knowledge about the data
is unavailable.
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Generalised projected clustering sheds light on solving this problem by finding cor-
related clusters. When data objects are projected to a data subspace using Singular Value
Decomposition (SVD) or PCA, the correlation clusters are condensed to a small area
whereas noise data objects scatter across the projected space. Therefore, it is possible
to separate correlated data objects from noise ones.

Most existing projected clustering methods use agglomeration methods to find corre-
lation clusters. A big data set is randomly partitioned into a large number of micro clus-
ters, and then an agglomeration approach is used to group correlation clusters. When
correlated data are split into a number of micro clusters, they themselves become noise
too. This process of randomly generated seeds affects the quality of found clusters.
When a process for noise elimination is employed, many data objects in the correlation
clusters are removed before they are grouped into clusters. Some well known examples
of generalized projected clustering are PROCLUS [2], ORCLUS [1], 4C [4], CURLER
algorithm [5] and HARP [7]. We do not consider axis-parallel projection methods, also
called subspace clustering, such as CLIQUE [3], and EPCH [6].

Instead of agglomerating randomly generated micro clusters into final clusters, we
partition a data set into clusters in a top-down manner. The key idea for such a divisive
method is to find a suitable criterion for data partition. We capture the direction of the
largest variance of data using the corresponding principle vector, thereby taking small
risk of partition correlation clusters into separate clusters. We employ grouping tech-
nique used in agglomeration methods to group correlation clusters after partitions. The
proposed divisive projected clustering method preserves the essence of projected cluster-
ing, overcoming the drawbacks of existing projected clustering methods. In addition, the
proposed algorithm is significantly more efficient than most agglomeration algorithms.

2 Problem Definitions

Projected clustering searches for hidden subspaces together with a set of data objects
such that data objects are closed with each other in the lower dimensional subspaces.
The hidden data spaces are found by using SVD decomposition. Eigenvectors corre-
sponding to eigenvalues with low spreads forms a subspace. The intuitive explanation
for this is as follows ( see more justifications in Section 4). When the covariance matrix
of a set of correlated points is decomposed by SVD, some eigenvalues should be zero
or close to zero. All the points are projected along a line in the subspace spanned by
eigenvectors corresponding to these zero eigenvalues. In other words, the tightness of
objects in the subspace defined by eigenvectors associated with the lowest eigenvalues
is an alternative to measuring the correlation level of data objects.

Formally, let D be a dataset of m data objects (row vectors) being treated as d-
dimensional feature (column) vectors. oi ∈ D stands for the i-th object in D where
oi = (oi1, oi2, . . . , oid). Simply, we have D = [oij ], 1 ≤ i ≤ m, and 1 ≤ j ≤ d.

Definition 1. Generalised projected clustering
Given the user-specified l and k, a data set D is partitioned into k disjoint subsets D1,
D2, . . . , Dk horizontally, such that, for all 1 ≤ p ≤ k, Sp contains l close to zero
eigenvalues, where UpSpV

T
p = cov(Dp) (cov is the covariance matrix of Dp, the SVD

decomposition of which results in Up, Sp, and V T
p ).
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Data points are clustered based on their closeness in some projected subspaces instead
of the original space. This clustering captures correlations among data points.

To measure the closeness of data points in a subspace, the projected distance is de-
fined as following.

Definition 2. Projected distance
Let Dp be a subset of a data D. UpSpV

T
p = cov(Dp) (cov(Dp) is the d×d covariance

matrix of Dp, and Up, Sp, and V T
p are results of SVD decomposition). Let E be the

set of eigenvectors corresponding to l smallest eigenvalues. A data object p ∈ D is
projected to E = (e1, e2, . . . , el) space as (p · e1,p · e2, . . . ,p · el). The projected
distance of objects p and q, denoted by Pdist(p,q, E),is their Euclidean distance in
projected space E.

The projected distance between two data points is the Euclidean distance between their
projected images in a subspace. This distance varies in different subspaces.

To measure the projected distance variation over a group of data points in a subspace,
the projected energy is defined as the following.

Definition 3. Projected energy
The projected energy of data set Dp is defined as Energy(Dp, E) =

∑i=N
i=1 Pdist(oi, c,

E)/N , where N is the number of objects in Dp, c the centroid of all objects in Dp, and
E an associated subspace.

The smaller the projected energy, the denser the data point in the subspace. In clustering,
low projected energy is preferred.

In projected clustering, the traditional distances between data objects are replaced
by the projected distances in subspaces. However, there are no uniform and invariant
distances in projected clustering since each tentative cluster has its own subspace. In
other words, the distance between two objects varies in different subspaces.

Projected distances have been studied in statistics. The Mahalanobis distance [8]
measures distance between two objects by using a set of reference data. But the Maha-
lanobis distance is the projected distance in the entire space. The generalised projected
distance is defined in a subspace, and is a generalised Mahalanobis distance.

As mentioned before, the ORCLUS algorithm [1] presents a variant agglomerative
method to find k projected clusters. First, D are randomly partitioned into k0 initial
data subsets D1, D2, . . . , Dk0 , where k0 >> k. If each data object is considered as
an initial micro cluster, then the computational cost will be too expensive. The smaller
k0, the faster the ORCLUS. However, the high quality of clusters is sacrificed if k0 is
small.

Second, ORCLUS performs the following two iterations:

1. Merge pairs of clusters with the smallest, combined project energy until the number
of clusters is down to kp (determined by a parameter for the step size α).

2. Redistribute all data objects to the kp clusters according to their respective, pro-
jected distance to each cluster center. An object is assigned to the cluster with the
smallest, projected distance.



642 J. Li et al.

The above procedure terminates until kp = k with a parameter α to control the step
size. If the step parameter is big, then a lot of merge occur in one iteration and the
quality of final clusters is not guaranteed. If the step parameter is small, the execution
time is increased.

A significant computational cost of the algorithm is from the decomposition of a data
subset Di. The complexity of such a decomposition is determined by the the number of
dimension (attributes). Specifically, it costs O(d3). Moreover, the computation has to
be done in each merger of two data subsets. The complexity of the ORCLUS algorithm
is therefore as high as k3

0 + k0Nd + k2
0d

2
0.

A heuristic way of speeding up the ORCLUS algorithm is to make k0 small and to
conduct more merges in each step. However, the quality of clustering has been traded
off. This problem is caused by the fact that ORCLUS is an agglomerative algorithm
and too many merges are required to form a small number of clusters. In contrast, the
divisive method needs much less steps to form clusters.

3 Divisive Projected Clustering (DPCLUS)

Large computational costs of projected clustering lie in computing covariance matrixes
and SVD (or PCA) decomposition. The computational costs of covariance matrixes
and SVD (or PCA) decomposition is largely determined by the number of attributes, d,
rather than the number of objects in a data set Ni.

In most applications, we have k << m where m is the number of objects in the data
set, and k is the number of clusters. Therefore, a top-down method (divisive method)
needs significantly less number of computations of covariance matrixes and SVD (or
PCA) decomposition than a bottom-up one (agglomerative method).

A key question is how to partition the data. Given a dataset, the projected cluster
problem can be regarded as the one of partition of the dataset into k clusters such that
the sum of the projected distance of each data object to its cluster centroid is mini-
mized. Compared to the clustering in full-dimensional space, the projected clustering
makes use of the projected distance instead of the full-dimensional distance. Recall that
we need to find a best subspace and their associated subsets of data objects such that
the sum of the projected distances of data objects to their centroids is minimized. The
number of the projected clusters in our algorithm is given. So it is to determine only the
directions of spanning vectors. Within one cluster the optimal direction of the vector to
which its associated data objects are projected should reflect the minimal variance of
these data. An eigenvalue is numerically related to the variance it captures. The higher
the value, the more variance it has captured. The principal vector defines a projection
that encapsulates the maximum amount of variation in a dataset. This principal vector
is in fact the eigenvector with the highest corresponding eigenvalue.

We make use of the principle vector of eigenvectors. All data objects D are projected
to the principle vector as discussed in the previous section, and the centroid separates
data into two groups: D1 and D2. D1 contains data objects whose projected values are
greater than or equal to the means, and D2 contains the rest.
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The pseudo code of the algorithm is listed below.

DPCLUS algorithm (Divisive Projected clustering)
Input: data set D, cluster number k, subspace dimension l, the minimum object number minN ,
and the minimum distance for excluding outliers δ
Output: ≥ k projected clusters

initialise an empty tree T ;
let the root of T store D;
where (the number of leaves of T < k)

foreach Di stored in a leaf of the newest layer
Partition (Di);

Redistribute (all data sets stored in the leaves of the newest layer);
output data sets stored in all leaves of T ;

Function Partition(Di)
if Di satisfies Definition 1 or |Di| < minN

then terminate the leaf storing Di and return;
split Di into Di1 and Di2 by the centroid in the principal vector;
insert two son leaves of the node storing Di to store Di1 and Di2;

Function Redistribution(all data sets stored in the newest layer)
foreach data object p in all data sets stored in the newest layer

foreach data set Dj stored in the newest layer
compute the projected distance between p and the center of Dj ;
if projected distances of p to all data sets > δ

then exclude p from future clustering;
else assign p to the data set with the smallest projected distance;

The DPCLUS algorithm partitions a data set into clusters in a top- down manner.
The splitting point is the centroid of data objects projected to the principal vector. This
saves a lot of computation for covariance matrixes and SVD decompositions as done
in the ORCLUS algorithm. The sole dependence on the principal vector to separate
data is rough and does not produce quality clusters. We design the Redistribution
function to minimise the projected energy of each clusters after clusters are formed by
partitions.

The number of final clusters can be greater than k because the number of leaves is
not tested until all data sets stored in the newest tree layer are split and redistributed.

Outliers affect the quality of final clusters very much since they change the orien-
tations of data objects greatly. Some data objects may not belong to any cluster and
are considered outliers. To deal with this problem, we set an outlier threshold in Re-
distribution step, say δ. When the projected distance of a data object to any cluster is
greater than δ, then the data object is considered as an outlier and is excluded from the
subsequent clustering.

We discuss the complexity of the algorithm in the following.
It is assumed that k denotes the number of final classes, N the number of data objects,

d the dimension of the data set, and l the dimension of subspace.
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The cost for partition is kd3/2. d3 comes from computing covariance matrices and
SVD decomposition for a cluster. Since the partition is conducted in a binary way,
the number of total partitions is k. Each partition requires a SVD decomposition to
determine the subspace.

After the partition, each cluster has to be decomposed again to determine whether or
not it satisfies the projected clustering requirement. If no, it will participate in redistri-
bution. The number of such decomposition is 2k, and hence the costs for the decom-
positions is 2kd3. All clusters are projected to l dimensional subspaces, and each data
object has to be checked against each cluster. Therefore, the total costs for distribution
is kNl.

In sum, the computational complexity for the DPCLUS algorithm is O(3kd3+kNd).
Note that we could not do much for term d3 since it is for computing a covariance matrix
and a SVD decomposition. However, the proposed algorithm has reduced the number
of such computations significantly.

Our DPCLUS algorithm is faster than most exiting generalised projected clustering
algorithms. We compare the time complexities in the table below.

Algorithms Time complexities
ORCLUS [1] O(k3

0 + k0Nd + k2
0d

2
0)

4C [4] O(d2NlogN + d3N)(with data index )
O(d2N2 + d3)(without data index )

CURLER [5] O(k0Nd2 + k0d
3) + O(Nl2 + k2

0), wherek0 > k
HARP [7] O(d2N2 + N2log2N)
DPCLUS O(3kd3 + kNd)

It should be noted that in order to speed up, some algorithms make use of techniques
such as heuristics, small number of micro-clusters, and random samples. However, these
techniques come with a price; that is, some of the clustering quality must be sacrificed.

4 Experimental Evaluation

4.1 Efficiency Comparison to ORCLUS

We use synthetic data sets for this experiment. More details about how these data sets
were generated will be given in the following subsection.

For the test of scalability with the size of data sets, the data sets each contain 10
attributes and up to 300,000 objects. For the test of scalability with the number of at-
tributes, the data sets each contain 100,000 objects and up to 50 attributes. The number
of embedded clusters is fixed to 20 for the above two tests.

l is set to 10 for both methods. k0 is set to 15 × k to make ORCLUS efficient. δ for
both methods is set as 0.01. minN varies for different data sets, but is set as the same
for both methods. A value less than 0.0001 is consider as 0 in the experiments to test
the satisfaction of Definition 1.
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Fig. 1. The scalability of DPCLUS in comparison to that of ORCLUS

Figure 1 shows that DPCLUS is more efficient than ORCLUS in large data sets as
well as in high dimensional data sets. Consider that most computational time for pro-
jected clustering is spent on data decomposition, whose time complexity is cubic to
the dimension and independent of the data set size. DPCLUST outperforms ORCLUS
significantly in high dimensional data sets since it reduces the number of data decom-
positions significantly.

4.2 Clustering Quality

To demonstrate the clustering quality of DPCLUS, we compare it to three clustering
methods on a synthetic data set. We embedded 20 clusters that are correlated in some
subspaces over a set of random data objects. The data set contains 10,000 data objects,
with each object having 20 attributes. Each embedded cluster contains 250 data ob-
jects, which have 10% variations from the original pattern. Other 5,000 data objects are
random data objects generated by the uniform distribution.

We set the parameters of DPCLUS as l = 10, k = 20, minN = 50, and δ = 0.01.
The results from DPCLUS are shown in Figure 2. DPCLUS is able to find all embedded
clusters correctly. Although k is set as 20 in the experiment, the number of final clusters
can be any integer number between 20 to 32, because the number of clusters is not
tested until all data sets stored in the newest tree layer are split and redistributed. The
number of the found clusters are greater than 20, since some clusters are split into
two. For example, clusters at row 2: 1 and 2 are from the same cluster. DPCLUS has
successfully identified cluster patterns from random data.

Fig. 2. Left: clusters found by DPCLUS, Right: clusters found by ORCLUS
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Fig. 3. Left: clusters found by kmeans. Right: Clusters found by hierarchical clustering.

We set the parameters of ORCLUS as k = 20, l = 10, k0 = 350, and δ = 0.01. Fig-
ure 2 shows a good result. ORCLUS identified fewer than a half of embedded clusters
with high quality. Since initial micro-clusters in ORCLUS is randomly chosen, the final
clusters vary in different executions.

We further show that both k-means and hierarchical clustering methods failed to
find quality clusters in such noise data in Figure 3. Data is sampled for hierarchical
clustering method because of efficiency constraint.

5 Conclusions

We have presented a divisive, projected clustering algorithm for detecting correlation
clusters in highly noised data. The distinction of noise points from correlated data points
in a projected space offers benefits for projected clustering algorithms to discover clus-
ters in noise data. The proposed algorithm mainly explores this potential. Further, the
proposed algorithm is faster than most existing general projected clustering algorithms,
which are agglomerative clustering ones. Unlike those agglomerative algorithms, the
produced clusters by the proposed algorithm do not rely on the choice of randomly
generated initial seeds, and are completely determined by the data distribution. We ex-
perimentally show that the proposed algorithm is faster and more scalable than than
ORCLUS, a well-known agglomerative projected clustering, and that the proposed al-
gorithm detects correlation clusters in noise data better than ORCLUS.
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Abstract. This paper presents a new concept, discrimination degree theory, 
which is complementary of inclusion degree. Then the theoretical and practical 
significance of the discrimination degree is discussed, and the concept formation 
theorem of discrimination degree is given. The relationship between the 
discrimination degree and discernibility matrix is explained in attributes 
reduction of formal context. Finally, under a biology formal context, concept 
lattice is built after attributes reduced. By comparison with the lattice which 
didn't reduce attributes, it shows that reduction make the complexity of building 
lattice distinctly simplified while the key information is still retained. 

Keywords: Concept lattice; Inclusion degree; Discrimination degree; Attributes 
reduction. 

1   Introduction 

Formal concept analysis is a mathematical framework developed by Rudolf Wille and 
his colleagues at Darmstadt/Germany that is useful for representation and analysis of 
data [1]. It is virtually a concept clustering process to build the concept from the formal 
context, so it is also a kind of classification [2, 3, 4, 5, 6]. In database, redundant 
information is useless for extracting rules, but can increase the complexity of lattice 
building. So attributes reduction is necessary. This paper presents a new method for the 
attributes reduction, which based on discrimination degree. 

Inclusion degree theory has been proposed by Professor Wen-Xiu Zhang ten years 
ago, which is an effective measurement of uncertain relations [7]. It has generalized 
many methods of inference uncertain issue, such as probability inference method, 
evidence inference method, fuzzy inference method as well as information inference 
method and so on. Thus it provides a general principle for the uncertain inference. In 
addition, inclusion degree also offers a quantitative analysis method for the ordered 
mathematics theory. In some domains, such as artificial intelligence, expert system and 
rough set, the theory has been applied [8, 9]. Moreover, formal concept analysis is also 
an ordered mathematics theory. Inclusion degree has been brought into formal concept 
analysis in literature [8, 10]. 

After researching inclusion degree from the literature [7], we present discrimination 
degree theory which is complementary to inclusion degree, and give the attributes 
reduction algorithm that based on the new theory. The paper is organized as follows:  
In section 2, concept lattice and inclusion degree are introduced briefly. In section 3, 
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discrimination degree is presented, the complementary relation with inclusion degree is 
exemplified, the significance is discussed and concept formation theorem based on 
discrimination degree is given, finally the relationship of the new degree with 
discernibility matrix is also shown. In section 4, the attributes reduction algorithm 
based on the new degree is indicated, and we get a conclusion that reduction can make 
the complexity of building lattice distinctly simplified after comparing with the lattice 
which didn’t reduce attributes. Section 5 is the conclusion and future work. 

2   Correlative Definitions 

2.1   Formal Concept Analysis (FCA) Bases [1] 

Definition 1. A formal context : ( , , )K G M I= consists of two sets G and M , and a 

relation I between G and M . The elements of G are called the objects and the 
elements of M are called the attributes of the context. In order to express that an 
object g is in a relation I with an attribute m , we write gIm or ( , )g m I∈ and read it 

as “the object g has the attribute m ”. 

Definition 2. For a set A G⊆ of objects we define :A′ = { |m M gIm∈ for all 

g A∈ } (the set of attributes common to the objects in A ). Correspondingly, for a 

set B of attributes we define :B′ = { |g G gIm∈  for all m B∈ } (the set of objects 

which have all attributes in B ). 

Definition 3. A formal concept of the context : ( , , )K G M I= is a pair ( , )A B with 

A G⊆ , B M⊆ , A B′ = and B A′ = . We call A the extent and B the intent of the 

concept ( , )A B . 

Definition 4. A formal context : ( , , )K G M I= , for g G∈ , we define the 

corresponding object concept as: : ({ } ,{ } )g g gγ ′′ ′=% . In the same way, for m M∈ , 

we define the corresponding attribute concept as: : ({ } ,{ } )m m mμ ′ ′′=% . For 

convenient, we replace{ }g ′by g′ and{ }m ′ by m′ . All object concepts compose the set 

of ( )Gγ , and all attribute concepts compose ( )Mμ . 

2.2   Inclusion Degree 

Definition 5. The inclusion degree D of two sets is defined as the degree of one set 
contained in another set [7]. 

X is universe, A and B are two subsets of X, the degree that set A is contained  

by set B is called an inclusion degree, denoted as ( / )D B A =
| |

| |

A B

A

I
, where | |⋅   

represents the number of elements of the set. In general, it should satisfy the following 
conditions: 
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(1)  0 ( / )D B A≤ ≤ 1; 

(2) ( / )D B A =1 if and only if A B⊆ ; 

(3) ( / )D A C ≤ ( / )D A B if and only if A B C⊆ ⊆ ;  

(4)  For ∀ C , ( / )D A C ≤ ( / )D B C if and only if A B⊆ . 

Condition (1) is the standardization of inclusion degree in [0, 1]; Condition (2) 
indicates the coordination between inclusion degree and the classical inclusion relation, 
classical inclusion is 1 or 0 which is the special case of inclusion degree; Condition (3) 
and (4) show the monotone, it is to say that a smaller set is more easily contained by 
other sets than a larger set. 

3   Discrimination Degree Theory 

3.1   Definition of Discrimination Degree 

Definition 6. The discrimination degree D between two sets is defined as the degree of 
one set differentiates from the other set. 

X is universe, A and B are two subsets of X, the degree that set A differentiates to set B 

is called a discrimination degree, denoted as ( / )D B A =
| |

| |

A B

A

I
, where | |⋅ also 

represents the number of elements of the set. In general, it should satisfy the following 
conditions: 

(1)  0 ≤ ( / )D B A ≤ 1; 

(2) ( / )D B A =0 if and only if A B⊆ ; 

(3) ( / ) ( / )D A B D A C≤ if and only if A B C⊆ ⊆ ; 

(4)  For C∀ , ( / ) ( / )D B C D A C≤ if and only if A B⊆ . 

Like inclusion degree, so we have that condition (1) is the standardization of 
discrimination degree value in [0, 1]; Condition (3) and (4) show the monotone, it 
means that a smaller set is more easily differentiated from other sets than a larger one, 
which accords with people habit. 

Example. X is a finite set, subsets , ,A B C X⊂ , Records X ={x1,x2,x3,x4, 

x5,x6,x7}, A ={x1,x2,x3,x4}, B ={x3,x4,x5,x6,x7}, C ={x1,x3,x4,x5,x6,x7}. 

From the above definition, ( / )D C A =
| |

| |

A C

A

I
, ( / )D B A =

| |

| |

A B

A

I
are inclusion 

degrees; And ( / )D C A =
| |

| |

A C

A

I
, ( / )D B A =

| |

| |

A B

A

I
are discrimination 

degrees; C is the complement set ofC . 
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After calculating, we have ( / )D C A =3/4, ( / )D B A =2/4; B C⊂ , ( / )D C B =1;  

( / )D B A < ( / )D C A . ( / )D C A =1/4, ( / )D B A =2/4, ( / )D C B =0, ( / )D A B  

=3/5. So ( / )D C A + ( / )D C A = ( / )D B A + ( / )D B A =1, which exemplifies the 

complementarity of two degrees; for B C⊂ , ( / )D C B =0 satisfies Condition (2), 

and ( / )D C A < ( / )D B A satisfies Condition (4). 

3.2   The Significance of Discrimination Degree 

From the above we can see, discrimination degree is complementary to inclusion 
degree and a quantitative measurement for uncertain relations. In fact, it is a traditional 
cognitive process. For example, children know that apples and oranges are juicy, sweet 
and have delicious flavor. They can distinguish potato out from fruit. But it can’t be 
accomplish only by the common characters such as juicy, sweet and delicious flavor 
when people divide apples and oranges from a heap mixture of apples and oranges. So 
the separation must rely on the differences in shape, color, size and rough degree. It will 
enhance classification accuracy if discrimination degree and inclusion degree are 
combined. Another example is to identify twin brothers, we can easily identify that they 
come from the same family (by inclusion degree), then distinguish their differences (by 
discrimination degree), compare them by the memory features (in the formal context), 
we will be able to tell who is the elder and who is the younger (classification). 

The two examples above show the importance of differences among the concepts, 
which is our original intention to present the discrimination degree. We hope to 
improve classification accuracy and supplement to inclusion degree theory by using the 
new degree.  

3.3   Concept Formation Theorem Based on Discrimination Degree 

Theorem. Given a formal context : ( , , )K G M I= , for g G∀ ∈ and m M∀ ∈ , then 

(1) { | } { | ( / ) 0}g g G g g g G D g g′′ = ∈ ≤ = ∈ =% % % % , 

(2) { | } { | ( / ) 0}m m M m m m M D m m′′ = ∈ ≤ = ∈ =% % % % . 

Proof. For ( / ) 0 | | 0D g g g g g g g g= ⇔ = ⇔ ⊆ ⇔ ≤% % % %I , so we need only prove 

 { | }g g G g g′′ = ∈ ≤% % .
g g

g g g g g g g g
′′∈

′ ′′ ′′ ′′≤ ⇔ ⊇ ⇔ ⊆ ∈⇔
% %

% % % % ⇒ { |g G∈% }g g g′′≤ ⊆% .

When g g′′∈% , for 1g g′′∀ ∈ , 1( )g g ′′′ ′∈ , we have 1g g≤ from definition 2, so 

1 { | }g g G g g∈ ∈ ≤% % and   { | }g G g g g′′∈ ≤ ⊆% % . In sum, g′′= { | }g G g g∈ ≤% % . And 

the second section can be proved in the same way. 

From the theorem, the set composed by all objects which are less than or equal to a 
certain object is the extent of the corresponding object in a concept, and the set 
composed by all attributes which are more than or equal to a certain attribute is the 
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intent of the corresponding attribute in a concept [10]. Thus, the extent and intent 
constitute a new concept. 

3.4   The Relationship Between Discrimination Degree and Discernibility Matrix 

In Rough set theory, discernibility matrix is used to reduce the redundant data [11]. And 
some reduction is implemented by the matrix in FCA. Based on the differences among 
concepts we present discrimination degree. So we research on the two theories to find 
their relations.  

The discernibility matrix
M NDC

⋅
= ( ijC ), where ijC are elements of matrix, composed 

by the discriminative attributes between objects ig and jg , and1 ,i j N≤ ≤ , N is the 

number of objects in the formal context.  

And discrimination degree here is: ( / )D B A =

A B

A

I
, where ,A B represent the 

elements sets, and B represents the complement set of B .  

In a formal context : ( , , )G M IΚ = , ig G∈ , ig M′ ⊆ , ig′ is the attribute set of 

object ig . Using discrimination degree, we get ijC by: 

ijC = ( / ) ( / )j i j i j ig D g g g D g g′ ′ ′ ′ ′ ′⋅ + ⋅ = i j j ig g g g′ ′ ′ ′+I I   

4   Building Concept Lattice 

For a large number of redundant information, it is very complicated to build lattice 
directly without reduction. So it is necessary to remove redundant attributes and extract 
core attributes [4, 12]. The algorithm uses discrimination degree for attribute reduction, 
thus the formation of concept nodes and lattice construction can be simplified. 

Following is the algorithm: 

Step1: Each element of discernibility matrix is obtained by: 

ijC = ( / ) ( / )j i j i j ig D g g g D g g′ ′ ′ ′ ′ ′⋅ + ⋅  

Step2: Disjunctive logic expressions are composed by elements which are nonempty         

sets ( ijC ≠ 0, ijC ≠ Φ , ia isn’t the intercommunity attribute between object 

ig and jg ), denoted as
i ij

ij i
a C

L a
∈

= ∨ ; 

Step3: All the disjunctive logic expressions ijL intersect to get
0,ij ij

ij
C C

L L
≠ ≠Φ

= ∧ , then 

core attributes and redundant attributes can be obtained;  

Step4: Then L is transformed to the disjunctive normalize formulation i
i

L L′ = ∨ ; 

Step5: According to the result of reduction, concepts are formed based on the concept 
formation theorem which depicted in section 3.3: for i N∀ ∈  
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      1
o
 Formation of concept extent: if ( / ) 0i jD g g = then ig ′′ = { jg }, j N∀ ∈ , 

2o
 Formation of concept intent: if ( / ) 0j iD m m = then im ′′ = { jm }, j N∀ ∈ : 

Step6: Concept lattice is built according to the algorithm given in literature [13]. 

Table 1. A biology field formal context 

 nw lw ll nc 2lg 1lg mo lb sk 

Leech 1 1 0 0 0 0 1 0 0 

Bream 1 1 0 0 0 0 1 1 0 

Frog 1 1 1 0 0 0 1 1 0 

Dog 1 0 1 0 0 0 1 1 1 

Spike-weed 1 1 0 1 0 1 0 0 0 

Reed 1 1 1 1 0 1 0 0 0 

Bean 1 0 1 1 1 0 0 0 0 

Maize 1 0 1 1 0 1 0 0 0 

Table 1 is a formal context about biology field, for convenient, objects are recorded 
as {1,2,3,4,5,6,7,8}, and attributes(nw—need water; lw—lives in water; ll—lives on 
land; nc—needs chlorophyll; 2lg—2 leaf germination; 1lg—1 leaf germination; 
mo—is motile; lb—has limbs; sk—suckles young) are recorded as {a,b,c,d,e,f,g,h,i}.  

Through the beginning three steps, we have the following: 

L =h ∧ (c ∨ h) ∧ (b ∨ c ∨ h ∨ i) ∧ (d ∨ f ∨ g) ∧ (c ∨ d ∨ f ∨ g) ∧ (b ∨ c ∨ d ∨ e ∨ g) 
∧ (b ∨ c ∨ d ∨ f ∨ g) ∧ c ∧ (b ∨ c ∨ i) ∧ (d ∨ f ∨ g ∨ h) ∧ (c ∨ d ∨ f ∨ g ∨ h) ∧ (b 
∨ c ∨ d ∨ e ∨ g ∨ h) ∧ (b ∨ c ∨ d ∨ f ∨ g ∨ h) ∧ (b ∨ i) ∧ (c ∨ d ∨ f ∨ g ∨ h) ∧ (d 
∨ f ∨ g ∨ h) ∧ (b ∨ d ∨ e ∨ g ∨ h) ∧ (b ∨ d ∨ f ∨ g ∨ h) ∧ (b ∨ c ∨ d ∨ f ∨ g ∨ h 
∨ i) ∧ (b ∨ d ∨ f ∨ g ∨ h ∨ i) ∧ (d ∨ e ∨ g ∨ h ∨ i) ∧ (d ∨ f ∨ g ∨ h ∨ i) ∧ c ∧ (b 
∨ c ∨ e ∨ f) ∧ (b ∨ c) ∧ (b ∨ e ∨ f) ∧ b ∧ (e ∨ f)=b ∧ c ∧ h ∧ (e ∨ f) ∧ (d ∨ f ∨ g),  

Where (b,c,h) are core attributes, (a,i) are redundant attributes and (d,e,f,g) are the 
attributes that can be omitted; 

Step4: The output is L′ =bchef ∨ bched ∨ bcheg ∨ bchf ∨ bchfd ∨ bchfg=bchf ∨  
bched ∨ bcheg. So we have three choices;  

Step5: We choose (b,c,e,h,g) to form concept nodes according to the concept formation 
theorem; 

Step6: Building concept lattice, as Fig.2. 

Without attributes reduction, there are 19 concept nodes and 30 lines in Fig.1. But in 
Fig.2, we reduce the formal context firstly, then 14 concept nodes are formed according 
to the concept formation theorem, and there are only 22 lines in the whole lattice. 
Moreover the concept nodes (6, bc) and (4, cgh) can be removed, while 4 correlative 
lines also can be subtracted from the lattice. According to the formal context in Table 1, 
the concept node (7, ce) still can be identified Bean exclusively and node (3, bcgh) can  
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Fig. 1. Concept lattice without reduction           Fig. 2. Concept lattice based on reduction 

be identified only Frog in Fig.2. By comparison, the complication of lattice building is 
greatly simplified after reduction but the key information is retained. 

5   Conclusion 

This paper presented discrimination degree theory based on inclusion degree theory, 
and proved the complementary relationship between the two degrees, then discussed 
the theoretical and practical significance of the new theory. For attributes reduction, the 
relationship between the discrimination degree and discernibility matrix was explained. 
By comparing, the new method had greatly simplified the complexity for building 
lattices. 

At information age, intelligence and high efficiency of information processing have 
been put on the agenda. Attributes reduction of high-dimensional information is an 
effective way to improve the efficiency of information processing. It has been still a hot 
topic in the study [9, 14]. Moreover, the discrimination degree theory need to further 
perfect, applying the new degree into engineering and processing some indefinite 
information are future work. 
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Abstract. The emerging interests in spatial pattern mining lead to the
demand for a flexible spatial pattern mining language, on which easy
to use and understand visual pattern language could be built. This mo-
tivates us to define a pattern mining language called CSPML to allow
users to specify complex spatial patterns they are interested in mining
from spatial datasets. We describe our proposed pattern mining language
in this paper. Unlike general pattern languages proposed in literature,
our language is specifically designed for specifying spatial patterns. An
interface which allows users to specify the patterns visually is designed.
The visual language is based on and goes beyond the visual language
proposed in literature in the sense that users use CSPML to retrieve
patterns instead of the results of a simple spatial query.

1 Introduction

Mining implicit, potentially useful, and previously unknown patterns from spa-
tial data is becoming increasingly important due to the availability of large
spatial database collected by inexpressive location enabled devices such as GPS
and RFID. The applications of spatial data mining range from animal movement
tracking, environmental monitoring, transportation, to national security [6,14].

Mining spatial co-location patterns [9,15,7,17] is an important spatial data
mining task with broad applications. Let F = {f1, f2, . . . , fn} be a set of spa-
tial features. A spatial feature categorizes or groups spatial objects that have
the same characteristics together. Example spatial features include car accident,
traffic jam, Chromium 6 polluted water source, West Nile disease, and deforesta-
tion. Consider a number of l spatial datasets {SD1, SD2, . . . , SDl}, such that
SDi, i ∈ [1, l] contains all and only the objects that have the spatial feature fi,
e.g. the spatial objects of West Nile disease. Let R be a given spatial neigh-
bor relation (e.g. distance less than 1.5 miles). A set of spatial features X ⊆ F
is a co-location if its value im(X) of an interesting measure, which is speci-
fied differently by variants of the mining problem, is above a threshold min im.
The problem of finding the complete set of co-location patterns is called the
co-location mining problem.

Recently, co-location pattern has been extended to include positive relation-
ships, self-co-location/ self-exclusion relationships, one-to-many relationships,
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and multi-feature exclusive relationships [2]. Mining complex spatial patterns
from large spatial datasets is an emerging area in data mining [12]. Many spa-
tial features interact with each other through complex spatial relationships, e.g.
topological and directional [16], other than metric ones. A complex spatial pat-
tern refers to a subset of spatial features whose spatial objects tend to appear
in some spatial configuration specified by some spatial predicate. An example
complex spatial pattern may be (car accident, yield sign, service road) with the
spatial predicate (yield sign on service road AND car accident close yield sign).
These complex spatial patterns may be summarized by the interactions of their
spatial objects. When happenings of this configuration are observed and the pat-
tern is significant enough according to some significant measure, we report such
pattern.

Most current spatial data mining algorithms follow an almost exhaustive ex-
ploration of the problem space and recommends a large set of non-trivial, po-
tentially useful, and previously unknown patterns. This mining process entails
costly computational cost. However, most of the time domain experts posses
some basic knowledge about the data and this knowledge may be used to guide
the mining process. So a spatial data mining language that is both expressive
and easy to use will allow domain experts to incorporate their interests and
knowledge to specify complex spatial patterns. In this patter, we describe such
a language and a visual interface to accept visual query which will be translated
into the proposed language.

We make the following two contributions in this paper. First, we provide a
spatial pattern language called CSPML to specify complex spatial pattern. The
language allows users to specify a large set of complex patterns that they are
interested in. Second, we design a visual interface to relieve users from writing
CSPML queries.

2 Related Work

Existent data mining query languages are not sufficient for spatial data min-
ing. DBQL (Data Mining Query Language) [8] is a general purpose data mining
language and does not allow expression of spatial patterns. SDMOQL ( Spatial
Data Mining Object Query Language) [11] is a spatial mining language designed
for INGENS(Inductive Geographic Information System). It trains the inductive
geographic information system by inductive queries first and creates a special
user view. SDMOQL focuses more on querying spatial database than retrieving
spatial patterns. ATLaS (Aggregate and Table Language and System) [10] is
an native extension of SQL language which adds to SQL the ability of defining
new User Defined Aggregates and Table Functions. It extends DBMS to support
efficiently database-centric data mining, stream computation, and decision sup-
port applications. Snoop [3] is a model independent event specification language.
It distinguishes events from conditions of event and allows the construction of
complex events needed for a large class of applications.

A user friendly visual interface to alleviate users from the burden of writing
sophisticated query language, is important for both spatial query language and
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spatial pattern mining. Topological relationships among arbitrary spatial objects
using 9-intersection model is discussed in [5]. Regions, lines and points and all the
possible relations between them were defined [5] using point topology. Spatial-
Query-by-Sketch tries to offer an efficient visual interface for retrieving spatial
objects satisfying a spatial query in geographic information systems [4]. Twelve
positional operators and a set of their specifications in object-oriented geographic
database are considered in PQL(Pictorial Query Language) in [13]. The system
developed in this context aims at providing a visual interface with the expressive
power of a database query language such as SQL. It concerns less about spatial
pattern mining where users are more interested in patterns than spatial objects.

3 Complex Spatial Pattern Query Language

In this section, we introduce the definition of the proposed pattern mining lan-
guage for complex spatial patterns (CSPML). The formal definition of CSPML
is of the form:

FIND t
WHERE P (t)
WITH interestingness θ c

where t is variable to present an ordered (alphabetically by spatial feature name)
subset of all the spatial features in F , P is a formula, interestingness speci-
fies the interestingness measures used for the complex spatial pattern, θ is a
comparison operator that includes <, ≤, >, and ≥, and c is a constant to spec-
ify the interestingness measure threshold. The formula P (t) is built up using
conjunctive forms, which may be one of the following:

1. t.size θ c′ where t.size is the cardinality of the spatial feature set t and c′ is
a constant integer;

2. Q(t) where Q(t) is a constraint a conjunctive form with components from
the following format:
(a) t[i] � t[j], ∀i, j ∈ integer
(b) t[i].type ∈ {geo point, geo line, geo area, geo donotcare}, ∀i ∈ integer
where � is a spatial predicate, e.g. overlap, and t[k] specifies the kth spatial
feature in an ordered set t. A metric spatial predicate � has an attribute
attached which denotes distance information; There are three types of spatial
features in a geography database, namely geo point, geo line and geo area.
Every spatial feature in a pattern has one attribute called type. If the type
of a feature is known, user can provide the type. For unknown types, we
introduce a new type called geo do not care, which means any one of the
three types.

3. s ⊆ t{
∧

Q′(s, t)]}, where s is any ordered (again alphabetically) subset of the
spatial feature set F specified by a user; [Q′(s, t)] is an optional constraint
consisting one of the following form or their conjunctive combinations:
(a) (t − s)[i] � (t − s)[j], ∀, i, j ∈ integer;
(b) (t − s)[i] � s[j], ∀, i, j ∈ integer;
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(c) s[i] � s[j]∀, i, j ∈ integer;
where � is a spatial predicate, e.g. overlap, and t[k] specifies the kth spatial
feature in an ordered set t

4. t.pairwise(�), meaning pairwise spatial features in t satisfying spatial pred-
icate �

Spatial predicate � in the formula P (t) may be metric, topological, and direc-
tional [16] relationships. The interestingness measure can be anything that is
well defined for a complex spatial pattern, such as participation index [9], join
cardinality, join selectivity and support [17]. We now describe a few examples
using the proposed language to illustrate its expressiveness:

1. Find all patterns with less than 5 spatial features, spatial predicate pairwise
distance less than 5 miles, and interestingness measure participation-index
with threshold 0.7.

FIND t
WHERE t.size ≤ 5

∧
t.pairwise(close(5))

WITH participation index ≥ 0.7

2. Find all patterns which contains 3 features and one feature is Chromium 6
polluted water. The Chromium 6 polluted water contains the other two fea-
tures and the other two features are close to each other. The interestingness
is participation-index and the threshold is 0.7. In this example, the pattern
size is three with one as feature Chromium 6 polluted water, which belongs
to set s. The other two features, which are the components of set (t− s), are
close to each other and inside the Chromium 6 polluted water.

FIND t
WHERE t.size = 3

∧
(Chromium 6 polluted water) ⊆ t

∧

(t - s)[1] containedBy chromium 6 polluted water
∧

(t - s)[2] containedBy chromium 6 polluted water
∧

(t - s)[1] close to (t - s)[2]
WITH participation − index ≥ 0.7

3. Find all patterns with three features two of which are forest and river. The
other feature is to the north of the forest and close to the river. The interest-
ingness is support and the threshold is 100. The pattern size in this example
is three with two known features. So set s contains forest and river. The
other feature has relationships with both of the two features through north
of and close respectively.

FIND t
WHERE t.size = 3

∧
forest, river) ⊆ t

∧

(t - s)[1] northofforest
∧

(t - s)[1] close(defaultlength) river
WITH support ≥ 100

4. Find all the patterns of sizes from 3 to 5 and contain feature volcano. One
feature is close to volcano in the pattern. The interestingness is support and
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the threshold is 25. The pattern size is between three to five with volcano in
set s. One feature in the set (t − s) must be close to the feature volcano.

FIND t
WHERE t.size ≥ 3

∧
t.size ≤ 5

∧
(volcano)⊆ t

∧
(t - s)[1] close to volcano

WITH support ≥ 25

4 Visual Pattern Expression

There are three kinds of spatial features in spatial databases, namely geo-point,
polyline and geo-area [13]. Geo-point is a zero dimensional point to represent
events such as location of an accident. Polylines are used to represent spatial
objects such as roads and rivers. Geo-area can be used to represent forest stands
or lakes. We consider the meaningful relationships among these three features. In
all figures in this section, geo-point, polyline and geo-area are represented a dot, a
straight line (we do not consider polylines that can turn around), and a rectangle
(without holes) respectively. Due to space constraint, we could not describe the
prototype system that we implemented based on JUMP [1] architecture and
the four examples specified using our visual interface in this paper. Interested
readers should refer to the full version of the paper available from the second
author’s website.

Geo-point. Figure 1(a) and Figure 1(b) represent a geo-point on and close to
a polyline respectively. A buffer is created around the polyline to indicate the
close to relationship. The point may stand for an accident while the polyline
may stand for a road. Figure1(a) shows the accident happened on the roads
while Figure 1(b) shows that although geo-point is not on the polyline but is
still within certain distance. We use the representation in Figure 1(c) to specify
that we do not care about the relationship between the geo-point and polyline,
i.e. we want all patterns with any spatial predicate, e.g. on or close to.

Figure 1(d), 1(e) and 1(f) are the three kinds of relationships between a
geo-point and a geo-area. They are geo-point in, on and close to the geo-area
respectively. If a user does not care exactly what kind of relationship is between
the geo-point and the geo-area, users could use the representation of figure 1(g)
to find the pattern whose features may be any one of the three relationships.

Polyline. The relationship of a polyline and goe area is based on the interiors,
boundaries and exteriors of the objects [5]. A spatial relationship can be specified

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. The Expression of Relationships for Geo-point Objects
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by a matrix representing if the interior(A◦)/boundary(∂A)/exterior(A−) of one
object A intersects with the interior/boundary/exterior of another object B.
Thirty-three possible relationships between two simple polylines were considered
in [5]. We only consider straight lines and do not distinguish the boundaries
from the interiors of the polyline, only five possible relationships between two
simple polyline remain with four of them shown in figure 2 and the symmetric
relationship of 2 (d) omitted due to space constraint.

The relationships specified in 2(b) to 2(d) can be further abstracted into
a high level relationship called intersect, depending if the two polyline have
any common points or not as shown in Figure 3(b). Users may define the a
intersection relationship by using the specification as in figure 3(a). Otherwise,
users may define specify the relationship by that in Figure 3(a). Figure 3(c)
means the two polylines do not intersect while Figure 3(c) is used to express
any kind of the relationships between two polylines.

A

B

( B◦ B−

A◦ � −�
A− −� −�

)

(a)

A

B

( B◦ B−

A◦ −� −�
A− −� −�

)

(b)

BA

( B◦ B−

A◦ −� −�
A− � −�

)

(c)

A

B

( B◦ B−

A◦ −� �
A− � −�

)

(d)

Fig. 2. Four Intersection Model between Two Straight Polylines

(a) (b) (c)

Fig. 3. The Expression of Relationships between Two Polylines

Based on the twenty relationships between a polyline and a geo-area [5], we
found that the exteriors of a polyline always intersect with the interiors, bound-
aries and exteriors of a geo-area. We do not distinguish the boundary from the
interior of a polyline, so we only consider the relationships between the interiors
of a polyline with a geo-area. Figure 4 shows the matrix representation and the
five relationships between a polyline and a geo-area. Figure 4(b) and 4(c) can
be combined into a touch relationship as show in Figure 5(b).

The polyline could be in, touch, across, and out of a geo-area which are shown
in Figure 5. If a user wants to find all relationships involving a polyline and a
geo-area without providing a certain kind of relationship between them, they
could just use the specification in figure 5(e).
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Fig. 4. Three intersection Model between a Polyline and a Geo-area
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Fig. 5. The Expression of Relationships between a Polyline and a Geo-area
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Fig. 6. The Expression of Relationships between Two Geo-areas

Geo-area. We allow the specification of 5 relationships between two geo-areas
out of the 8 relationships specified in [5] as shown from Figure 6(a) to Figure 6(d)
(the symmetric relationship of Figure 6(a) is omitted). If the users do not care
the exact relationship between two features, they could specify the relationship
as in figure 6(e).

5 Conclusion and Future Work

In this paper, we designed and developed a pattern mining language called
CSPML for specifying complex spatial patterns. CSPML allows users to choose
between exhaustive pattern search and targeted pattern mining constrained by
prior knowledge about the datasets. We also proposed a pictorial language which
has the equivalent expressive power to the proposed CSPML language. Efficient
mining algorithms utilizing as much as the JTS tools of JUMP [1] will be im-
plemented in the future.
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Abstract. The co-association (CA) matrix was previously introduced
to combine multiple partitions. In this paper, we analyze the CA matrix,
and address its difference from the similarity matrix using Euclidean
distance. We also explore how to find a proper and better algorithm to
obtain the final partition using the CA matrix. To get more robust and
reasonable clustering ensemble results, a new hierarchical clustering al-
gorithm is proposed by developing a novel concept of normalized edges
to measure the similarity between clusters. The experimental results of
the proposed approach are compared with those of some single runs of
well-known clustering algorithms and other ensemble methods and the
comparison clearly demonstrates the effectiveness of our algorithm.

1 Introduction

Cluster analysis is an important tool for exploratory data analysis, aiming to find
homogeneous groups in a data set of unlabeled objects. Numerous algorithms
have been and are being developed [2], [9], [10], such as the K-means (KM),
the single-linkage (SL) or the average-linkage (AL) and the spectral clustering
algorithms [14], [15].

However, clustering is inherently an ill-posed problem. All the previous meth-
ods are designed with certain assumptions and favor some type of biases, and
no single one is universally suitable for solving all the problems [19]. Hoping
to exploit the strength of many individual clustering algorithms, people turn to
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clustering ensembles, seeking improvement over a single clustering algorithm in
such aspects as robustness, novelty and scalability, et al.

Besides formal arguments on the effectiveness of cluster ensembles [18], many
combining algorithms have been proposed, and their good performance further
justified the use of cluster ensembles. A few examples are: methods based on
hypergraph (CSPA, HGPA, and MCLA) [16] or bipartite graph partitioning [3],
evidence accumulation using the CA matrix (EAC-SL and EAC-AL) [6], mix-
ture model using a unified representation for multiple partitions [17], bagged
clustering [11], and combination by plurality voting [1], [4], [7], [20].

Despite the primary success achieved by those algorithms, they are far from
ideal. To make the clustering ensembles practical and helpful for us, an effective
algorithm is crucial, which is the focus of this paper. We first analyze the CA
matrix, and discuss the problem of designing a proper algorithm for it in Sect. 2.
Based on a novel concept of normalized edges as we have defined in this paper,
we propose a hierarchical algorithm to find the final partition in Sect. 3. In Sect.
4, experiment results demonstrate the effectiveness of our proposed method.

2 Analysis of the Co-Association Matrix

2.1 The Co-Association (CA) Matrix

In order to combine the multiple partitions of the data, one can first map the
data to a new feature space as a way to accumulate the information provided by
each partition. The CA matrix1 C [6] is a newly constructed similarity matrix
from multiple partitions of the original data. It takes the co-occurrence of pairs
of patterns in the same clusters as votes for their association, with elements

C(i, j) =
nij

N
, (1)

where nij is the number of times the pair xi and xj is assigned to the same
cluster among the N partitions. In fact, the CA matrix records the frequency
that every pair of points is in the same cluster.

The CA matrix (N = 30, and the number of clusters is fixed to 602) of the
2-spirals data3 (Fig. 1a) is shown in Fig. 1c. For comparison, the similarity
matrix (normalized into the 0-1 scale) based on the Euclidean distance for the
original patterns is plotted in Fig. 1b. Evidently, the similarity of pairs of points
from different clusters is mostly much smaller in the CA matrix than that in the
original similarity matrix, showing the CA matrix captures the global structure
of the data. Thus, it is not surprising that the evidence accumulation method
operating on the CA matrix [6] performs well and that is why we use the CA
matrix to combine the multiple partitions in our method.
1 This matrix is also used in the CSPA algorithm [16]; and in [12] but by the name

of consensus matrix.
2 This strategy, initially splitting the data into a large number of small clusters and

then combining them, is the so-called split-and-merge approach [5].
3 To make comparison easy, we reorder the data, so the first 100 points are from one

cluster and the last 100 points from the other cluster.
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Fig. 1. The 2-spirals data set and its similarity matrices. (a) 2-spirals data. (b) Sim-
ilarity matrix using Euclidean distance. (c) CA matrix: new similarity matrix using
multiple partitions. (d) Enlarged part of (c).

2.2 A Proper Algorithm

Despite the good discrimination ability of the CA matrix, improper clustering
algorithms can still lead to bad results. For example, in [6] (e.g. table 2) and
[17] (e.g. Fig. 9 and 10b), the authors found that, based on the CA values, the
results of the consensus functions (i.e., SL, AL and CL) differ significantly, and
the choice of a good consensus function is sensitive to the choice of the data set.
So, does there exist a better consensus function? How can we find it?

Compared with ordinary similarity matrix using Euclidean distance, the CA
matrix has special characteristics. Without loss of generality, we take the CA
matrix (Fig. 1c) of the 2-spirals data as an example, part of which is highlighted
in Fig. 1d. The similarity matrix of the data using Euclidean distance is shown in
Fig. 1b. To construct a good algorithm, we believe that the following character-
istics should be taken into account: 1) points from different clusters are always
dissimilar, 2) a large percentage of pairs of points from the same cluster have
very low similarity, and 3) if two points from the same cluster are dissimilar, then
there always should be a path of some points (or just one point) between them
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who are successively similar. Referring to these features, we can also explore the
reasons why the SL, AL and CL algorithms would have such performance in [6].

3 Normalized Edges and the Algorithm

Based on the above analysis, we will customize a hierarchical clustering algorithm
to operate on the CA matrix for combining multiple partitions, in hopes of
discovering the true structure of the data more successfully and robustly.

3.1 Normalized Edges

Our proposed hierarchical clustering algorithm is based on a novel concept of
normalized edges for measuring the similarity between clusters. Treating all
points of the data as a set of vertices, we can define an undirected and un-
weighted graph. An edge exists between two points (or vertices), xi and xj , if
and only if their similarity is larger than a threshold θ. In fact, this defines a
threshold graph. For simplicity, we define a function edge between two points xi

and xj ,

edge(xi, xj) =
{

1 if sim(xi, xj) > θ,
0 otherwise. (2)

The notion of edges between two clusters Ci and Cj , edges(Ci, Cj), is just the
number of distinct edges connecting these two groups. Essentially, this can be
used as a measure of the goodness of merging them in an agglomerative hier-
archical clustering algorithm. However, this naive approach may work well only
for well-separated and approximately equal-sized clusters.

A proper way to fix this problem is to normalize the number of edges between
two clusters edges(Ci, Cj), by dividing it by the (estimated) expected number of
edges between them, which is inspired by goodness measure used in ROCK [8].
Hence, the number of normalized edges (NE) between two clusters, Ci and Cj , is

NE(Ci, Cj) =
edges(Ci, Cj)

(ni + nj)1+f(θ) − n
1+f(θ)
i − n

1+f(θ)
j

, (3)

where ni and nj are the number of points, n
1+f(θ)
i and n

1+f(θ)
j are the estimated

expected number of edges, in the clusters Ci and Cj respectively.
As in [8], we assume that every point in Ci has n

f(θ)
i edges with other points

in the cluster, then the total number of edges between points in the cluster is
n

1+f(θ)
i (each edge is counted twice). Thus the expected number of edges between

pairs of points (each point from a different cluster) becomes (ni + nj)1+f(θ) −
n

1+f(θ)
i − n

1+f(θ)
j . Intuitively, the function f(θ) is introduced to measure the

influence of θ on the number of edges. Based on the analysis of Guha et al. [8],
it is also defined as (1 − θ)/(1 + θ) in this paper.
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3.2 Our Clustering Algorithm

With the definition of normalized edges to measure the similarity between two
clusters, we can use this measure to construct a new agglomerative hierarchical
algorithm. To reduce the workload of calculation, we need not re-start calculating
the similarity between clusters after each merging step. We just have to update
the similarity between the merged and the other clusters. That is, if clusters Ci

and Cj are merged into a new cluster Ck, then we have (for l �= i, j and k)
edges(Cl, Ck) = edges(Cl, Ci) + edges(Cl, Cj), and nk = ni + nj .

Thus we can calculate the normalized edges NE(Cl, Ck) by definition.
The proposed algorithm can be summarized as follows:

The Algorithm

Input:
The similarity matrix (the CA matrix in this paper), the threshold θ, and the
number of clusters k.
Initialization:
To calculate edge between all pairs of points based on the similarity matrix.
Repeat:
1. To merge two clusters, among all possible pairs of clusters, with the largest
normalized edges ;
2. To update the edges and normalized edges between the merged clusters and
the other clusters.
Until:
Only k clusters left or the number of edges between every pair of the remaining
clusters becomes zero.

Certainly, we can speed up the algorithm by many methods used in the tra-
ditional agglomerative clustering algorithms. The edge between every pair of
points can be computed in O(n2) time, and the worst time complexity of the
clustering algorithm is O(n2logn), just as the ROCK algorithm.

For the threshold θ in our algorithm, we are still seeking a general way to de-
termine it. Empirically, the algorithm worked well with θ in the interval [0.1,0.4]
for many data sets, and was not very sensitive to it (e.g., for all the data sets in
the experiments of this paper, we fixed θ to 0.30).

4 Experiments

We compared our algorithm with single runs of some well-known clustering al-
gorithms and other ensemble ones, and the experiment results demonstrate the
effectiveness of our method.

4.1 Data Sets, Algorithms and Parameters Selection

We summarized the details of the data sets in Table 1, which had been adopted
by other authors to test their ensemble algorithms [4], [6], [13], [17].
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Table 1. Characteristics of the Data Sets

Data set No. of No. of No. of Total no.
features classes points/class(noise) of points

2-spirals 2 2 100-100 200
Complex image 2 7 200-200-100- 743

100-50-50-33-(10)
3-paths 2 3 200-200-200-(200) 800

Wisconsin Breast-cancer 9 2 239-444 683
Std Yeast 17 5 67-135-75-52-55 384
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Fig. 2. The complex image and 3-paths data sets. Clusters are indicated by different
colors/patterns. Here show the clustering results of our ensemble algorithm. (a) Com-
plex image, the 10 points of the outer circle are considered as noise. (b) 3-paths, 3
path-like clusters (200 points for each), corrupted by 200 noise points.

We compared the experiment results of our ensemble algorithm (denoted by
CA-HNE) with single runs of following algorithms: KM, SL, AL, and spectral
clustering algorithm (SC) [14], and following ensemble methods: CSPA, HGPA
and MCLA [16], Boost-KM [7], EAC-SL and EAC-AL [6], and Latent-EM [17].

For the algorithms proposed by other authors, the parameters selection and
other settings are the same as suggested in their papers. The multiple partitions
of the data were obtained by running KM algorithm with random initialization
of cluster centers.

We found that, using only 10 or 20 component partitions, our algorithm
worked well for many data sets, while many other authors used a (much) larger
number for their algorithm, e.g. 50 [6], 100 [4], 500 [12]. For simplicity, we gen-
erated 30 partitions for our algorithm and 50 for all other ensemble ones. For
our algorithm, k was chosen as a constant, usually larger than the true number
of clusters of the data. The ‘true’ number of clusters of the data, was assumed
to be known, as in [6], [17].
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4.2 Results, Comparison and Analysis

Table 2 summarizes the mean error rates and standard deviations from 20 in-
dependent runs of the different methods on the data sets. The error rates are
obtained by matching the clustering results with the ground-truth information,
taken as the known labeling of the real-world data sets or the perceptual group-
ing of the artificial ones. Since all the clustering algorithms considered here do
not detect outliers in the data, we ignore the noise points when calculating the
error rates. Notice that the SL and AL algorithms give unvaried clustering results
for each data set.

Table 2. Mean Error Rates and Standard Deviations of Different Algorithms

Data set KM SL AL SC CSPA HGPA

2-spirals .399±.011 0 .480 0±0 .418±.059 .394±.078
Complex image .550±.073 .523 .478 .250±.074 .404±.076 .389±.048

3-paths .327±.005 .667 .350 .046±.001 .212±.058 .251±.068
Breast-cancer .039±.001 .349 .057 .029±0 .167±.020 .147±.017

Std Yeast .358±.057 .638 .341 .320±0 .442±.011 .431±.014

Data set MCLA Boost EAC EAC Latent CA
-KM -SL -AL -EM -HNE

2-spirals .365±.075 .429±.007 0±0 .325±.051 .418±.030 0±0
Complex image .397±.078 .533±.032 .136±.125 .546±.043 .540±.055 .013±.023

3-paths .214±.138 .328±.000 .617±.122 .375±.046 .349±.049 .006±.017
Breast-cancer .131±.030 .039±.001 .319±.093 .047±.007 .039±.001 .030±.004

Std Yeast .422±.022 .332±.021 .594±.062 .349±.023 .390±.072 .333±.030

We can see that the evidence accumulation clustering (EAC-SL or EAC-AL)
can sometimes discover the structure of the data successfully. However, which
method will succeed depends heavily on the choice of the data sets. In general,
the AL (SL) consensus function based on CA matrix is appropriate if standard
AL (SL) agglomerative clustering method works well for the data, and vice
versa [17]. This may be problematic since sometimes the characteristic of the
data is difficult to know, or is complex for standard agglomerative clustering (e.g.
3-paths). However, our algorithm tackles this problem well. For our method, the
mean error rates presented in Table 2 are all the best or comparable to the best,
and the partitions of the complex image and 3-paths data sets are as good as
we expected, see Fig. 2a and 2b. The experiments show the effectiveness of our
algorithm: it gives the best (or comparable to the best) overall performance for
all the data sets. It clusters all the chosen data sets reasonably, though they have
hybrid or complex characteristic or are corrupted by noise. The CSPA algorithm
does not perform well for these chosen data sets, though it is also based on the
CA matrix. Again, this demonstrates the importance of the choice of algorithms
for the final partition based on the CA matrix. Other ensemble methods HGPA,
MCLA, Boost-KM, latent-EM still favor some type of biases, and do not perform
well for other kinds of data sets.
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Single runs of KM, SL, and AL algorithms result in good partitions when the
data sets are suitable for them, but fail drastically otherwise (e.g. noise, hybrid
structure). The SC algorithm gives reasonable partitions for some of the data
sets, but fails for complex image and 3-paths.
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Abstract. Based on the concept and principles of quantum computing, a quan-
tum-inspired immune clonal multiobjective optimization algorithm (QICMOA) 
is proposed to solve extended 0/1 knapsack problems. In QICMOA, we select 
less-crowded Pareto-optimal individuals to perform cloning, recombination up-
date. Meanwhile, the Pareto-optimal individual is proliferated and divided into 
a set of subpopulation groups. Individual in a subpopulation group is repre-
sented by multi-state gene quantum bits. For the novel representation, qubit in-
dividuals in subpopulation are updated by applying a new chaos update strat-
egy. The proposed recombination realizes the information communication 
among individuals so as to improve the search efficiency. We compare 
QICMOA with SPEA, NSGA, VEGA and NPGA in solving nine 0/1 knapsack 
problems. The statistical results show that QICMOA has a good performance in 
converging to true Pareto-optimal fronts with a good distribution. 

1   Introduction 

The multiobjective optimization problems have attracted more attentions from re-
searchers in various fields. Evolutionary algorithms (EAs) have been recognized to be 
well suited to multiobjective optimization since early in their development because 
they deal simultaneously with a set of possible solutions. The ability to handle com-
plex problems, involving features such as discontinuities, multimodality, disjoint 
feasible spaces and noisy function evaluations, reinforces the potential effectiveness 
of EAs in multiobjective optimization, which is perhaps a problem area where Evolu-
tionary Computation really distinguishes itself from its competitors [1].  

Artificial Immune System (AIS) is a new hotspot following the neural network, 
fuzzy logic and evolutionary computation [2]. Its research production refers to many 
fields like control, data processing, optimization learning and trouble diagnosing. 
Based on immunological principles, new computational techniques are being devel-
oped, aiming not only at a better understanding of the system, but also at solving 
engineering problems [3]-[6]. 

Unlike other research areas, there has been relatively little work done in applying 
quantum computing to AIS. In [7], quantum-inspired computing was proposed. A 
quantum-inspired immune clonal algorithm (QICA) was firstly introduced in [3] for 
solving the high dimensional function optimization problems. It should be noted that 
although QICA is based on the concept of quantum computing, QICA is not a quan-
tum algorithm, but a novel optimization algorithm for a classical computer. In this 
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paper, we propose a novel multiobjective algorithm, called a quantum-inspired  
immune clonal multiobjective optimization algorithm (QICMOA). In QICMOA, 
individuals (antibodies) in a population are represented by quantum bits (qubits) [3]; 
the fitness value of each Pareto-optimal individual is assigned as the average distance 
of two Pareto-optimal individuals on either side of this individual along each of the 
objectives, which is called crowding-distance and proposed in NSGA-II [8]. Accord-
ing to the fitness values, only less-crowded Pareto-optimal individuals are selected to 
do cloning, recombination update. So in a single generation, QICMOA pays more 
attention to the less-crowded regions in the trade-off front.  

2   The Multiobjective 0/1 Knapsack Problems 

A 0/1 knapsack problem is a typical combinatorial optimization problem, yet the 
problem itself is difficult to solve (NP-hard). This single-objective problem can be 
extended directly to the multiobjective case by allowing an arbitrary number of knap-
sacks. Multiobjective 0/1 Knapsack Problems with n  knapsacks (i.e. n objectives and 
n constraints) and m items in [10] can be defined as follows: 

1 2

1

Maximize ( ) ( ( ), ( ),..., ( ))

subject to    1,2,...,

n

m

ij j i
j

     F x f x f x f x    

  w x c i n   
=

=

≤       =∑
 (1) 

Where 
1

( ) 1,2,...,
m

i ij j
j

f x p x i n
=

=       =∑  and 1( 1,..., )jx j m= =   if and only if item j  is 

selected. In the above problem (1), 1 2( , ,..., ) {0,1}m
mx x x x= ∈  is an m − dimensional 

binary vector; ijp =profit of item j  according to knapsack i ; ijw =weight of item j  

according to knapsack i ; ic =capacity of knapsack i . 

Therefore, the optimization goal of the multiobjective 0/1 knapsack problem is to 
find a set of Pareto-optimal solutions approximating the true Pareto-optimal front.  

3   QICMOA 

3.1   Representation 

In this study, an antibody represents a search point in decision space. In [3], we give a 
new representation, a qubit for the probabilistic representation that it can represent a 
linear superposition of states and has a better characteristic of population diversity 
than other representations [3], which are defined below. 

Definition 1. The probability amplitude of one qubit is defined with a pair of numbers 
( , )α β  as 

α
β
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2) 
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Satisfying 

2 2
1α β+ =  (3) 

Where 
2α  gives the probability that the qubit will be found in the ‘0’ state and 

2β gives the probability that the qubit will be found in the ‘1’ state. 

Definition 2. A qubit antibody as a string of m qubits is defined as: 

{ }1 2

1 2

...

...
m

m

α α α
β β β  (4) 

where 
2 2

1, ( 1,2,..., ).l l l mα β+ = =  

3.2   Description of the Algorithm 

In this section, we describe a novel multiobjective optimization algorithm, termed as 
quantum-inspired immune clonal multiobjective optimization algorithm (QICMOA). 
The main loop of QICMOA is as follows. 

Algorithm 1: quantum-inspired immune clonal multiobjec-
tive optimization algorithm 
Input: Gmax (maximum number of generations) 
ND (maximum size of Dominant Population) 
NA (maximum size of Active Population) 
NC (size of Clone Population) 
Output: DGmax+1 (final Pareto-optimal set) 

Step1: Initialization: Generate an initial qubit antibody 
population QB0 with the size ND. Set t=0. 

Step2: Observing Operator: Generate classical antibody 
population Bt by observing the states of QBt. 

Step3: Update Dominant Population: Identify dominant an-
tibodies in Bt; Copy all the dominant antibodies to 
form the temporary dominant population DTt+1; If the 
size of DTt+1 is no larger than ND , let Dt+1=DTt+1. 
Otherwise, calculate the crowding-distance values 
of all individuals in DTt+1, sort them in descending 
order of crowding-distance, choose the first ND in-
dividuals to form Dt+1. Modify Dt+1 with the greedy 
repair method as reported in reference [9]. Record 
the corresponding qubit of Dt+1 to get qubit domi-
nant population QDt+1. 

Step4: Termination: If t ≥ Gmax is satisfied, export Dt+1 
as the output of the algorithm, Stop; Otherwise, 
t=t+1. 

Step5: Generate active antibodies: If the size of Dt is 
no larger than NA, let At=Dt. Otherwise, calculate 
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the crowding-distance values of all individuals in 
Dt, sort them in descending order of crowding-
distance, choose the first NA individuals to form 
At. 

        Record the corresponding qubit of At to get qubit 
active population QAt. 

Step6: Cloning Operator: Get the qubit clone population 
QCt by applying the cloning T

C to QAt. 
Step7: Recombination update: Perform recombination update 

on QCt and set 
'
tQC  to the resulting population. 

Step8: Get the qubit antibody population QBt by combining 

the '
tQC  and QDt; go to Step2. 

The major elements of QICMOA are presented as follows. 

1. Observing Operator 
At Step2, in the act of observing a quantum state, it collapses to a single state 

(namely classical representation). The process is described as follows: (a) generate a 

random number p [0,1]∈ ; (b) if it is larger than
2t

lα , the corresponding bit 

in '( )P t takes ‘1’, otherwise it takes ‘0’.  

2. Cloning Operator 
In immunology, Cloning means asexual propagation so that a group of identical 

cells can be descended from a single common ancestor, such as a bacterial colony 
whose members arise from a single original cell as the result of mitosis. In this study, 
the cloning operator TC on qubit active population QA is defined as: 

1 2( ) { ( ), ( ), ..., ( )}C C C C
QAT QA T qa T qa T qa=  (5) 

Where ( ) , 1, 2,...,C
i i iT qa I qa i QA= × = , and iI is iC  dimension row vectors. iC is a self-

adaptive parameter, and 
1

QA

i C
i

C N
=

=∑ , NC is a given value of the size of the clone popula-

tion. Then the values of iC  are calculated as 

distance

distance
1

* ,
A

i c N

i

i
C N

i
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

∑

 
(6) 

Where distancei  denotes the crowding-distance values of the i-th active antibodies. 

After clone, the population becomes: 

1 21 2 1 2 1 2
1 1 1 2 2 2{{ , ,..., },{ , ,..., },....,{ , ,..., }}QACC C

QA QA QAQC qc qc qc qc qc qc qc qc qc=  (7) 
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Where
j

iiqc qa= , 1, 2,..., ij C= . In fact, cloning on antibody iqa  is to make multiple 

identical copies of iqa . The aim is that the larger the crowding-distance value of an 

individual, the more times the individual will be reproduced. So there exist more 
chances to do search in less-crowded regions of the trade-off fronts. 

3. Recombination Update 
In this paper, we use a new qubit representation, and perform cloning operator, re-

combination update on corresponding qubit antibody population so as to improve the 
search efficiency.  

If
1 2{ , ,..., }

CNQC qc qc qc= is the resulting qubit population from applying the clon-

ing to
1 2{ , ,..., }QAQA qa qa qa= , then the recombination update TR on clone population 

QC is defined as 

1 2

1 2

( ) { ( ), ( ),..., ( )}

{ ( , ), ( , ),..., ( , )}
C

C

C R R R
N

N

T QC T qc T qc T qc

recom qc A recom qc A recom qc A

=

=
 (8) 

Where ( , )irecom qc A denotes selecting one individual from the offspring generated 

by a chaos update strategy on clone iqc  and an active antibody selected randomly 

from A.  
For the chaos character of qubit [10], we propose a new chaos update strategy on 

qubit clone antibody population QC (see equation 7) as follows. 

(1 ) (1 )i iguideq a aω ω= × + − × −  

( ), ( 1,2,..., , 1,2,..., )j
ii guideqc QAq Logistic j i j Cυ= + × = =  

(9) 

Where ia , guideq and ( )Logistic j are the i-th classical antibody in At, the guide qubit 

antibody and j-th value of Logistic sequence [11] whose length is iC , respectively. 

j
iqc  is the j-th updated qubit antibody in i-th subpopulation. ω  is the guide factor 

of guideq andυ is the spread variance. Often we let [0.1,0.5]ω ∈ , [0.05,0.15]υ ∈ . 

3.3   Computational Complexity 

In this section, we only consider population size in computational complexity. As-
suming that the maximum size of dominant population is ND, the maximum size of 
active population is NA, the clone population size is NC, and then the time complexity 
of one generation for the algorithm can be calculated as follows: 

The time complexity for observing operation is ( )D CO N N+ ; the time complexity 

for identifying Pareto-optimal solutions in population is 2(( ) )D CO N N+ ; the worst 

time complexity for update the dominant population is (( ) log( ))D C D CO N N N N+ + ;  
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the worst time complexity for generate active antibodies is ( log( ))D DO N N ; the time 

complexity for cloning is ( )CO N and the time complexity for recombination operation 

is ( )CO N . So the worst total time complexity is 

2( ) (( ) ) (( ) log( )) ( log( )) ( ) ( )D C D C D C D C D D C CO N N O N N O N N N N O N N O N O N+ + + + + + + + +  (10) 

According to the operational rules of the symbol O , the worst time complexity of 
one generation for QICMOA can be simplified as 

2(( ) )D CO N N+  (11) 

So the cost of identifying the Pareto optimal individuals in population dominates 
the computational complexity of QICMOA. 

4   Performance Comparison 

In this section, we compare SPEA [9], NSGA [12], VEGA [13] and NPGA [14] with 
QICMOA in solving nine multiobjective 0/1 knapsack problems [9].The test data sets are 
available from Zitzler’s homepages (http://www.tik.ee.ethz.ch/~zitzler/testdata.html/), 
where two, three and four knapsacks with 250, 500, 750 items are taken under  
consideration. 

In the following experiments, we performed 30 independent runs on each test prob-
lem. Table 1 shows the direct comparison of QICMOA with SPEA, NSGA, VEGA 
and NPGA based on the performance metrics - Coverage. 

For 2 knapsacks with 250 items, the results of Coverage show that the solutions 
obtained by QICMOA in a certain extent weakly dominate the solutions obtained by 
SPEA and clearly weakly dominate the solutions obtained by NSGA, VEGA and 
NPGA, which indicates that the behavior of QICMOA is better than that of the other 
four algorithm for this test problem. Especially for 2 knapsacks with 500 items and 
with 750 items, all the other four algorithms' solutions are clearly weakly dominated 
by QICMOA's ones over 30 independent runs. For 3 knapsacks with 250 items, the 
results show that solutions obtained by QICMOA in a certain extent weakly domi-
nate the solutions obtained by SPEA and clearly weakly dominate the solutions ob-
tained by NSGA, VEGA and NPGA. For 3 knapsacks with 500 items and 750 items, 
the results show that solutions obtained by QICMOA in a certain extent weakly 
dominate the solutions obtained by the other four algorithms where for 3 knapsacks 
with 500 items all the NPGA's and VEGA's solutions are clearly weakly dominated 
by QICMOA's ones over 30 independent runs. For 4 knapsacks with 250 items, the 
minimum, the mean and the maximum of I(Q,S) are all smaller than that of I(S,Q), 
which indicates in a sense SPEA performs better than QICMOA for this test prob-
lems. For 4 knapsacks with 500 items and 750 items, the results show that solutions 
obtained by QICMOA also in a certain extent weakly dominate the solutions ob-
tained by SPEA NSGA and weakly dominate the solutions obtained by VEGA and 
NPGA. 
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Table 1. The Coverage of Two Sets for the Nine 0/1 Knapsack problems 

Coverage I(Q,S) I(S,Q) I(Q,NS) I(NS,Q) I(Q,V) I(V,Q) I(Q,NP) I(NP,Q) 

Min 0.64707 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Mean 0.98634 0.04965 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 2-250 

Max 1.00000 0.10588 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Mean 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 2-500 

Max 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Mean 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 2-750 

Max 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 0.8611 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Mean 0.9866 0.10733 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 3-250 

Max 1.0000 0.58000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 0.3342 0.03470 0.98947 0.00000 1.00000 0.00000 1.00000 0.00000 

Mean 0.56271 0.24133 0.99965 0.00000 1.00000 0.00000 1.00000 0.00000 3-500 

Max 0.83541 0.32000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 0.57674 0.00000 0.69795 0.00000 0.89703 0.00000 0.95070 0.00000 

Mean 0.78607 0.10124 0.84577 0.00145 0.97861 0.01596 0.98741 0.00124 3-750 

Max 0.90785 0.24158 0.96831 0.08000 0.99682 0.07250 0.99527 0.00278 

Min 0.1101 0.13333 0.66515 0.00000 0.74903 0.00000 0.80731 0.00000 

Mean 0.32948 0.50808 0.85047 0.02866 0.93261 0.00033 0.92765 0.02000 4-250 

Max 0.55200 0.69697 0.97831 0.28000 0.99682 0.01000 0.99701 0.03120 

Min 0.25324 0.12698 0.94851 0.00000 0.97849 0.00000 0.98893 0.00000 

Mean 0.59467 0.29629 0.98606 0.00000 0.99871 0.00000 0.99939 0.00000 4-500 

Max 0.80176 0.49206 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Min 0.58624 0.03500 0.99435 0.00000 1.00000 0.00000 0.99725 0.00000 

Mean 0.78526 0.12866 0.99965 0.00000 1.00000 0.00000 0.99991 0.00000 4-750 

Max 0.92958 0.38000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

5   Conclusion 

In this paper, we have introduced a new multiobjective optimization algorithm- quan-
tum-inspired immune clonal multiobjective optimization algorithm (QICMOA) to 
solve 0/1 knapsack problems. When compared with SPEA, NSGA, VEGA and 
NPGA, QICMOA is more effective for multiobjective optimization problems in the 
popular metrics-Coverage. 
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Phase Space Reconstruction Based Classification of Power 
Disturbances Using Support Vector Machines 

Zhiyong Li and Weilin Wu 
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Abstract. Using Phase Space Reconstruction (PSR) and Support Vector 
Machines (SVMs), a novel approach for power disturbance classification is 
presented. The types of concerned disturbances include voltage sags, voltage 
swells, voltage interruptions, impulsive transients, harmonics and flickers. PSR 
is applied for disturbance feature extraction. Based on PSR, power disturbance 
trajectories are constructed and then converted into binary images through 
encoding. Four distinctive features are proposed as the inputs of SVM classifier. 
Simulation results show that the classification method is effective and it requires 
less training samples. 

Keywords: Power quality, Disturbance classification, Phase space reconstruction, 
Support vector machines. 

1   Introduction 

Power quality (PQ) is an increasingly important issue to electricity consumers along 
with the proliferation of highly sensitive computerized equipments and deregulation of 
the electric power industry. But unfortunately, the contamination of electromagnetic 
environment is getting worse because extensive applied power electronic technologies 
lead to a wide diffusion of nonlinear, time-variant loads in power distribution network. 

Poor quality is attributed to the various power disturbances such as voltage sags, 
swells, interruptions, impulsive transients, harmonics, and voltage flickers, etc [1]. PQ 
disturbance detection and classification are therefore necessary in identifying the 
causes and sources of such disturbances so that their effects can be neutralized using 
suitable corrective and preventive measures. Great efforts have been made on the 
disturbance signals processing and subsequent decision making algorithms to realize 
disturbance automatic detection and classification [2-9]. 

Disturbance classification algorithm is always composed by two sequential 
processes: feature extraction and classification. In feature extraction stage, Wavelet 
Transform (WT) is widely used. Based on WT, different features like number of peaks 
of the wavelet coefficients [2], energy information at each decomposition level [3, 4], 
and energy difference between the distorted signal and the pure one [5] were chosen to 
construct the feature vectors for subsequent training and testing. Besides WT, Fourier 
transform [2], S-transform [6], Walsh transform [7] have been proved feasible in 
disturbance feature extraction. For classifier design, fuzzy-expert system [2, 3], 
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dynamic time warping [7], wavelet neural network [8], and self organizing map [9] 
have been studied. 

In this paper, we propose another novel method. Power disturbance signals are 
always measured by digital meters and saved as time series. So we apply a time series 
analysis tool (namely PSR) and define several indices to represent features of different 
disturbance patterns. SVM has received a great deal of attention recently proving itself 
a very effective approach in a variety of pattern classification tasks. It is adopted here to 
realize the automatic classification of PQ disturbance events. 

The paper is organized as follows. Section 2 introduces the basic concept of PSR and 
illustrates how to extract disturbance features using PSR. Section 3 presents the 
concept and scheme of SVM classifier. Section 4 shows the simulation results using the 
method proposed, and finally, section 5 draws the conclusion. 

2   Feature Extraction Based on Phase Space Reconstruction 

2.1   Phase Space Reconstruction 

PSR [10] was first utilized to reconstruct the motion on strange attractors in chaotic 
systems. Borrowing the idea of constructing signal trajectories from time series, Ref. 
[11] introduced PSR into PQ research field.  

The basic concept of PSR is to convert a scalar sequence of measurements into state 
vectors. The values of variables at a certain moment and those values after τ, 2τ…, 
(m-1)τ time intervals are treated as coordinates of a special point in m-dimension phase 
space. Thus, for a single variable sequence x1, x2…, xN, a delay reconstruction in m 
dimensions can be formed by the vector Xi, given as: 

( 2) ( 1)[ , ..., , ]i i i m i mx x x xτ τ τ+ + − + −=iX  .  (1) 

where i = 1, 2…, L, and L = 1, 2…, N-(m-1) τ. 
From equation (1), we get the value matrix that carries the coordinates of points 

forming the trajectory: 
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Take the sinusoid sequence as an example. From a normalized sine waveform with 
50Hz power frequency (shown in Fig. 1(a)), which is sampled at 4800Hz, we obtain 
time series of 96 points for every period. We construct the trajectory in 2-D phase plane 
(m=2, τ=20). The values of xi and xi+20 indicate the position of the i-th point in 
trajectory. Therefore, a sequence sampled from sine wave in a period can be mapped 
into 96 points which compose a sinusoid trajectory shown in Fig. 1(b). 

Similarly, Fig.2 shows several typical power disturbances and their corresponding 
PSR-based trajectories. 
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Fig. 1. A pure sine wave and its corresponding trajectory using PSR 

(a) (b)

(c) (d)

(e) (f)  

Fig. 2. Several typical power disturbance waveforms and their corresponding PSR-based 
trajectories. (a) voltage sag, (b) voltage swell, (c) voltage interruption, (d) impulsive transient,  
(e )harmonic, (f ) flicker 

2.2   Feature Extraction of Power Disturbances 

2.2.1   Encoding 
As shown in Fig. 1(b), under per-unit system, the trajectory of sine wave is restricted in 
the square [-1, 1] × [-1, 1]. Taking potential over voltage into account, we pick a larger 
area of [-1.5, 1.5] × [-1.5, 1.5] for further analysis. This area is divided into 300×300 
segments. Each segment indicates a 2-value pixel (black pixel: value 1 and white pixel: 
value 0). The pixels are assigned value 1 if any point in trajectory falls into 
corresponding segment, the remnant pixels remain value 0. After such encoding 
process, the graph in Fig. 1(b) will be transformed into a binary image. 

In such image, the power system voltage waveform can be regarded as a 
combination of a carrier (e.g. pure sine wave) and disturbance component imposed onto 
that waveform. The sinusoidal component is not the informative part in terms of an 
event detection or classification, but its existence perturbs some statistical parameters. 
For this purpose, we remove sinusoidal component (also called stable limit circle, as 
shown in Fig. 1(b)) during feature extraction procedure. 

Fig.3 illustrates the processing procedure of a voltage sag waveform. 
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(a) (b)

(c) (d)  

Fig. 3. (a) voltage sag waveform, (b) voltage sag trajectory based on PSR, (c) binary image of 
voltage sag trajectory, (d) binary image of trajectory after carrier component remove 

2.2.2   Feature Definition 
Having illustrated the image processing procedure, we further formulate how to extract 
distinctive parameters from characteristics carried by black pixels. 

Definition 1. Maximum Adjacent Distance (MAD) 
For each black pixel in binary image (as shown in Fig.3 (c) and (d)), we calculate 
minimum distance to its adjacent black pixel denoted by AD: 

2 2min( ( ) ( ) )i j i jADi x x y y= − + −  . (3) 

where (xi, yi) and (xj, yj) are coordinates of the i-th and j-th black pixel in binary image. 
i, j = 1,2…,N and i ≠ j. 

MAD is the maximum of ADi (i, j = 1,2…,N): 

max( )MAD ADi=  . (4) 

Definition 2. Carrier Component Similarity (CCS) 
The binary image of disturbance trajectory is compared with stable limit cycle. A black 
pixel in disturbance trajectory is marked as sinusoidal pixel (SP) if a relevant point can 
be found in sine wave trajectory to satisfy: 

2 2( ) ( )i j i jx x y y ε− + − ≤  . (5) 

where (xi, yi) are coordinates of the i-th black pixel in disturbance trajectory, and (xj, yj) 
indicate the relevant pixel in stable limit cycle. ε is a small value greater than zero, 
considering ubiquitous noise. 
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CCS is defined as the number of SP: 

( )CCS n SP=  . (6) 

Definition 3. Overlay Area (OA) 
After removing previous SP, the rest black pixels describe how densely disturbance 
component occupy the binary image. Hence OA is represented by the number of 
remnant pixels (RP): 

( )OA n RP=  . (7) 

Definition 4. Mean Amplitude (MA) 
The definition of MA is given as follows: 

( )
2 2

1

/ ( )
n RP

i i
i

MA x y n RP
=

= +∑  . (8) 

where (xi, yi) are coordinates of the i-th black pixel. 
These definitions represent characteristics of different disturbance patterns. Large 

MAD suggests potential impulse because the duration of impulse is short but the 
magnitude always large. The carriers of harmonic and flicker disturbance are distorted, 
which results in less CCS. In other words, CCS is feasible to separate long term 
disturbances such as harmonics or flickers from short term disturbances such as voltage 
sags, swells or interruptions. 

Because of the oscillating envelope, each cycle of flicker waveform construct a 
different trajectory in phase plane, so its overlay area is much larger than other types. 
But the duration of impulsive transient is typically within a millisecond. This implies 
few black pixels apart from stable limit cycle in binary image, therefore the value of its 
OA tends to zero. MA indicates the magnitude of disturbance event, so it is effective to 
distinguish among voltage sags, swells and interruptions. 

3   Support Vector Machines Classifier 

3.1   Support Vector Machines 

SVMs deliver state-of-the-art performance in real-world applications, and are now 
established as one of the standard tools for machine learning and data mining [12]. The 
basic objective is to find a hyperplane which best separate the positive/negative data in 
the feature space.  

Consider a binary classification task with a set of linearly separable training samples 
S = {(x1, y1)…, (xn, yn)} where x is the input vector such that x∈Rd (in d-dimensional 
input space) and yi is the class label such that yi ∈{−1, 1}. The goal of training is to 
create a suitable discriminating function: 

( )f b= ⋅ +x w x  . (9) 

where x is input vector, w is weight vector which determines the orientation of the 
hyperplane f(x)=0, and b is the bias or offset. 



 Phase Space Reconstruction Based Classification of Power Disturbances 685 

For a linear SVM, the construction of discriminating function shown in (9) results in 
a convex optimization problem formed as: 

2
,

1
min

2
. . ( ) 1, 1, 2,...,

w b

i iS T y b i n

  

      ⋅ + ≥  =

w

w x
 . (10) 

The minimization of linear inequalities is typically solved by application of Lagrange 
duality theory. By introducing Lagrange multipliers αi, (10) can be converted into 
corresponding dual problem, and finally the classifier function becomes: 

1

( ) sgn[ * *]
n

i i i
i

f x y x x bα
=

= ⋅ +∑  . (11) 

3.2   Classifier Design 

A single SVM is constructed to respond binary to the testing data. It has to be 
augmented with other strategies to achieve multicase classification. In this work, we 
adopted a one-against-all scheme by which each class can be ranked seriatim. 

The sorting logic is shown in Fig.4. The text in square brackets indicates the 
candidates for analysis, and the features in parentheses are the inputs to corresponding 
SVM. For example, values of OA of flickers are always greater than that of other 
disturbances. So OA is chosen as the input feature of SVM1, and through SVM1, 
flickers are excluded from other samples. By proceeding iteratively, all kinds of 
disturbances will be distinguished one by one. 

[sags,    swells,    interruptions,    impulses,    harmonics,    flickers]

[sags, swells, interruptions, impulses, harmonics] [flickers]

[sags, swells, interruptions, impulses] [harmonics]

[sags, swells, interruptions] [impulses]

[sags, interruptions] [swells]

[sags] [interruptions]

SVM1(OA)

SVM2(CCS)

SVM3(MAD,OA)

SVM4(MA)

SVM5(OA,MA)

 

Fig. 4. Tree diagram of sorting logic to classify six different power disturbances 
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4   Classification Results 

To obtain representative signals that possess the inherent characteristics of most 
common PQ disturbances, disturbance signals are initially generated in MATLAB 7.0. 
Some unique attributes for each disturbance are allowed to change randomly, within 
specified limits, in order to create different disturbance cases. The randomness in the 
generated signals is intended to test the universal validity of classification method 
proposed in this paper. 

Normal frequency of disturbance signals was 50 Hz. Sampling frequency was 4.8 
kHz (96 points/cycle). Length of sequence was ten power frequency cycles (960 
points). Training samples and testing samples with different parameters were generated 
according to models introduced in Ref. [4].  

We used 120 training samples to optimize the parameters of the SVMs shown in 
Fig.4, and tested the feasibility of classifier using 1200 testing samples. Considering 
ubiquitous noise, we added Signal-to-Noise Ratio (SNR) of 40 dB white noise into the 
testing samples. Table 1 shows the experimental results. It can be found that the 
constructed and trained SVM classifier results in a correct identification and 
classification rate of 99.9%, which shows that the proposed PQ disturbance 
classification method based on PSR and SVM is effective, accurate and reliable. 

Table 1. Experimental results of testing samples added with 40 dB white noise 

Classification results 
Patterns 

Sags Swells Interruptions Impulses Harmonics Flickers 
Sags 199 0 1 0 0 0 

Swells 0 200 0 0 0 0 
Interruptions 0 0 200 0 0 0 

Impulses 0 0 0 200 0 0 
Harmonics 0 0 0 0 200 0 

Flickers 0 0 0 0 0 200 
Accuracy 99.9% 

5   Conclusion 

Combining with a time series analysis tool, a novel power disturbance classification 
method is presented. This method consists of two parts: PSR-based signal processing 
and SVM-based classifier. The function of the former is to extract features from 
disturbance signals, and the latter is to recognize and classify different types of power 
disturbances. Several typical disturbances are taken into consideration. The evaluation 
results with 120 training samples and 1200 testing samples demonstrate that proposed 
method can effectively classify different kinds of PQ disturbances in poor SNR and 
training sample size conditions. 

Our proposed method reduces calculation burden in feature extraction stage using 
PSR-based approach instead of mathematical manipulation such as wavelet transform or 
S-transform. The size of the feature set is also greatly reduced compared with other 
existing techniques. Furthermore, linear SVM classifier function is computationally 
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much simpler. These characteristics make the proposed method a proper candidate for 
on-line disturbance recognition. And the idea of the combining PSR with SVM 
classifier could potentially be used in other domains, such as audio data analysis, 
automatic target recognition, etc. 
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Abstract. Usenet is a world-wide distributed discussion system, and it
is one of the representative resources on Internet. The structure of news-
group on Usenet forms gradually along with the evolution of the news-
group and could provide helpful information for the users. In this paper,
we present a method to evaluate the impact factors of participators and
threads based on the structure of newsgroup. Some analysis and exper-
imental results on real data sets are also provided. The impact factors
could provide useful intrinsic information of the newsgroup and can be
used in some applications to help access information more efficiently on
the Usenet. The method can be also applied on other discussion systems,
such as web forums, bulletin board systems, and so on.

1 Introduction

Usenet is world-wide discussion system on various topics. It provided a conve-
nient way for the communication and organization of discussions. Comparing
with web pages, the content of postings on Usenet is generally more informal,
brief and personalized. It contains rich information and ideas contributed by
the participators. It is difficult to access the information needed efficiently from
all the postings in a group due to its huge size and loose organization. People
can only subscribe a few groups and generally read a small fraction of the post-
ings. It may take quite much time for a newbie to familiar with a group and its
participators to use the group sensibly.

On WWW, because of the intrinsic hyperlink property of web pages, link
analysis based on ideas of social networks has been used in the ranking system
of some search engines [1,2]. The simplicity, robustness and effectiveness of link-
based ranking method have been witnessed with the success of Google, whose
basis of ranking system is PageRank. Social networks have been applied in other
domains, such as marketing [3], email relationship [4] and so on.

As most postings on the Usenet do not contain hypertexts, they can not be
benefited from these link-based algorithms of WWW directly. The briefness and
casualty of newsgroup postings make it difficult for conventional text mining
techniques. Some investigations based on social networks have also been done to
extract useful information from the Usenet [5,6].
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On the Usenet, person is judged only by his postings. Some people are in-
fluential and popular in the newsgroup owing to their character and knowledge
background. Some threads are more helpful and valuable than other threads
due to their posting contents. The calculation of impact factors of participators
(IFP) and impact factors of threads (IFT) can offer useful references for the
newsgroup users and could be used in the ranking system of Usenet search in
organizing the search results. Therefore, good IFP and IFT can provide intrinsic
properties of a group and make the information on Usenet more accessible.

In this paper, according to the characteristics of Usenet, a link-based method
to calculate the impact factors of participators and threads on Usenet is pro-
posed. Some mathematical analysis of this method is discussed and experimental
results on real data sets are also given.

2 IFP, IFT and Their Calculation

2.1 Usenet Group and Its Representation

The postings on a newsgroup of Usenet were organized by threads. Each thread is
invoked by one seed posting and followed by several response postings. The struc-
ture of a newsgroup can be represented with weighted bipartite graph G(P, T, E).
In the graph, there are two classes of nodes pi ∈ P, ti ∈ T , which represent par-
ticipators and threads respectively. Considering a newsgroup containing np par-
ticipators and nt threads, there are totally np+nt nodes in G. If one participator
pi posted some postings in thread tj , there is an edge {pi, tj} ∈ E connecting
node pi and tj in G, whose weight is the number of postings by participator pi

in the thread ti.
The graph of a newsgroup can be represented with posting matrix M, whose

row and column represent the participator pi and thread tj respectively and the
elements of M equals to the weight of edge e = {pi, tj}. Therefore, M is a np×nt
dimensional nonnegative matrix.

A B C D

I II III

1
2

1
4

1
1

2

Fig. 1. graph representing newsgroup con-
taining 12 postings

Let na be the total number of post-
ings in the newsgroup. A small news-
group containing 4 participators, 3
threads and 12 postings was shown in
Fig. 1. It can be represented as post-
ing matrix

M =

⎛

⎜
⎜
⎝

1 0 2
0 1 0
4 1 1
0 0 2

⎞

⎟
⎟
⎠ .

2.2 The Calculation of IFP and IFT

One intuitive idea to calculate IFP is that if a participator posted more postings,
he is more influential. Thus, the number of total postings of one participator can
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be a candidate of his IFP. Let np dimensional row vector fp represent the IFP
vector of all participators. The IFP value of pi is fp,i. Therefore, the IFP vector
can be calculated with fp = (Mep)T , where ep is a np dimensional column
vector with all ones. Let et be a nt dimensional column vector. Using f t = etM,
IFT row vector f t can be calculated in similar way.

This method seems to be simple and feasible. However, this calculation works
with the assumption that all postings have equal contribution to IFP and IFT,
which is not reasonable enough. All postings are not created equal. A posting of
more influential participator may have more impact than a posting by unknown
one. This posting can improve the impact of the thread containing it. So it is bet-
ter to consider the difference of the postings when calculating the f t. This effect of
the opposite orientation may also work. A thread with high IFT makes the partici-
pators more visible for others. Considering this, the IFP vector fp and IFT vector
f t can be retrieved from the Usenet structure recursively, and we can find that
the results have an interesting interpretation with later mathematical analysis.

In the following discussions, by M , V we denote matrix space and vector
space respectively. Transformation N : M → M is defined as the normalization
of the row vectors of matrix based on their l1 norms. That is, for A ∈ M ,
Nij(A) = Aij/

∑n
j=1 Aij .

After transformed with N , the posting matrix M was normalized to a stochas-
tic matrix. The elements of normalized posting matrix Nij(M) represent the
proportion of postings posted by participator pi on thread tj and can be viewed
as vote from pi to tj . Similarly, N(MT ) is a nt×na dimensional stochastic matrix
and represents the votes of the reversed direction.

The IFP vector fp and IFT vector f t can be calculated as follow.

f ′
p(k) = f ′

t(k − 1)N(M) (1)

f ′
t(k) = f ′

p(k − 1)N(MT ). (2)

Since M is not a square matrix, the selection of the dimension of initial vector
will effect the finial results, so we use two initial vectors and the results need to
be merged together. Starting from initial vectors f ′

p(0) = ep and f ′
t(0) = et,

Eq. (1) and (2) can converge to their stable values f ′
p1, f

′
t1 and f ′

p2, f
′
t2

respectively. Then fp and f t can be obtained with

fp =
f ′

p1 + f ′
p2

np + nt
, f t =

f ′
t1 + f ′

t2

np + nt
. (3)

The properties and convergence of our calculation will be discussed in section 2.3.
The implementation of the IFP and IFT calculation is matrix-free and only

nnz(M) multiplications are needed for each iteration, where nnz(M) is the
number of non-zeros in M. Since M is a sparse matrix, O(nnz(M)) ≈ O(n).
Only the storage of one vector f ′

p(k) or f ′
t(k) is required at each iteration.

Thus, this algorithm is suitable for the size and sparsity of posting matrix. We
performed some experiments to evaluate the impact factors on realistic datasets.
Some experimental results achieved will be discussed in section 3.2.
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2.3 Analysis on the Calculation

Let us define np×np dimensional square matrix R(p) = N(M)N(MT ) and nt×nt
dimensional square matrix R(t) = N(MT )N(M). The following properties of
R(p) and R(t) can be deduced.

Property 1. R(p) and R(t) are stochastic.

Proof. Omitted. ��

Property 2. Let B : M → M represents the binary transformation, that is,
for A ∈ M ,

Bij(A) =

{
0 if Aij = 0
1 if Aij �= 0.

B(R(p)), B(R(t)) are symmetric, and the diagonals of B(R(p)), B(R(t))are ep, et
respectively.

Proof. Let np × np dimensional square matrix S = MMT , we have

Sij =
nt∑

k=1

MikMT
kj =

n∑

k=1

MT
kiMjk = Sji.

Hence S is symmetric. Then we can get

B(R(p)) = B(N(M)N(MT )) = B(S) = B(ST )

= B(N(ST )) = B(NT (S)) = BT (R(p)),
(4)

so B(R(p)) is symmetric.
According to definition in section 2.2, there is at least one link for the par-

ticipator, so Sii =
∑nt

k=1 MikMT
ki > 0. Therefore the diagonal of B(R(p)) is ep.

The property of B(R(t)) can be proved in the same way. ��

From Eq. (1) and Eq. (2), we can get f ′
p(k) = f ′

p(k − 1)R(p) = f ′
p(0)Rk

(p).
When k → ∞, f ′

p(k) → f ′
p, so f ′

p can be calculated using power method and
f ′

t can also be obtained with f ′
t = f ′

pN(MT ). Although R(p) is a stochastic
matrix, it maybe not irreducible. Hence the convergence of power method can
not be proved directly and this will be discussed next.

If R(p) is not irreducible, some nodes can not be accessible from other node in
graph G. From the definition of graph G, it means G is not connected and can be
decomposed to serval connected components. Suppose G can be decomposed to
s connected components, and each component contains npccm participators and
ntccm threads where m = 1, 2, . . . , s. There exists permutation matrix H with
which R(p) can be permuted to a block diagonal matrix D(p). Thus, H satisfies

D(p) = HR(p)H =

⎛

⎜
⎜
⎜
⎝

D(pcc1) 0
D(pcc2)

0
. . .

D(pccs)

⎞

⎟
⎟
⎟
⎠

, (5)
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where the rows and columns of block D(pcc1),D(pcc2), . . . ,D(pccs) represent the
participators of connected components. From the definition and discussion above,
we can get that each block D(pccm), m = 1, 2, . . . , s, is stochastic and its spectral
radius equals to 1. Therefore, according to Property 2, we can infer that the
Markov chain with transition matrix D(pccm) is irreducible and ergodic. Suppose
row vector v(pccm) satisfies

v(pccm)D(pccm) = v(pccm), m = 1, 2, . . . , s. (6)

From Eq. (6), v(pccm) is the left eigenvector of D(pccm), and its normalization
v(pccm)/‖v(pccm)‖1 is a probability vector which is the stable solution of Markov
chain with transition matrix D(pccm). v(pccm) can be calculated using power
method with any non-zero initial vector and the rate of convergence correspond-
ing to the second largest eigenvalue of D(pccm).

Since H is permutation matrix, H = HT = H−1. According to Eq. (5),

f ′
p(k) = f ′

p(0)Rk
(p) = f ′

p(0)(HD(p)H)k = f ′
p(0)HDk

(p)H

= f̂p(0)

⎛

⎜
⎜
⎜
⎜
⎝

Dk
(pcc1) 0

Dk
(pcc2)

0
. . .

Dk
(pccs)

⎞

⎟
⎟
⎟
⎟
⎠

H,
(7)

where f̂p(0) = f ′
p(0)H. When k → ∞, Eq. (7) yields

f ′
p = lim

k→∞
f ′

p(k) = [v(pcc1)v(pcc2) . . . v(pccs)]H.

Since R(p) and R(t) are a stochastic square matrices, the l1 norms of f ′
p(k)

and f ′
t(k) keep unchanged after each iteration. Therefore, ‖f ′

p1‖1 = ‖f ′
t1‖1 =

‖f ′
p(0)‖1 = np, and ‖f ′

p2‖1 = ‖f ′
t2‖1 = ‖f ′

t(0)‖1 = nt. According to Eq. (3),
the l1 norm of vpccm in fp is

‖vpccm‖1 =
npccm + ntccm

np + nt
, m = 1, 2, . . . , s.

Therefore fp equals to the permuted eigenvectors of the D(p) and the IFP
of each participator corresponds to the value of stable solution of Markov chain
with transition matrix D(pccm), which derives from the connected components in
G. Similarly, IFT equals to the eigenvector value of block matrix in D(t), which
is a block diagonal matrix transformed from R(t). Therefore, IFP and IFT in
our calculation are intrinsic properties of the posting matrix and could reflect
the nature features of G, so they might be good measures of the participators
and threads in a newsgroup.

3 Experiments and Their Results

3.1 Datasets Preparation

We wrote a bot program in Perl to download the postings from the nntp server.
The bot program communicates with nntp server using socket connection
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Fig. 2. The process of data collec-
tion and structure extraction of Usenet
newsgroup

Fig. 3. The convergence rates of exper-
iments on DS1 and DS2

following RFC 977 specification [7] and save the postings in text file with Mail-
box format. Since only the headers are needed in our calculation, the headers
were separated from the postings from the Mailbox file, and they are stored us-
ing csv format after some text treatment. The contents in csv file were ordered
and imported to database. SQL statements were performed on the database by a
Java program through JDBC interface to construct and extract the structure of
newsgroup based on the header information. The process of data sets collection
and newsgroup structure extraction was shown in the diagram of Fig. 2.

Experiments were preformed on two data sets collected from comp.lang.perl.
misc and comp.lang.python, which are two active newsgroups about computer
languages on Usenet. The datasets are called DS1 and DS2 in the following.

DS1 contains 10532 postings including 1286 participators and 1774 threads
of comp.lang.perl.misc from Mar 5, 2006 to Jun 27, 2006. DS2 contains 18821
postings including 2463 participators and 3408 threads of comp.lang.python from
Mar 5, 2006 to Jun 27, 2006.

3.2 Experimental Results

We measure the rates of convergence using the l1 norm of the residual vector, i. e.,

Δ(k) = ‖f(k) − f (k − 1)‖1.

The convergence rates of in our experiments of DS1 and DS2 were plotted on
semi-log graph shown in Fig. 3. Our method could converge rapidly, which fol-
lows O(αk) where α ∈ (0, 1).

According to the analysis in section 2.3, we can get ‖fp‖1 = ‖ft‖1 = 1.
Since the impact factors are small, the logarithms of IFT and IFP of DS1 and
DS2 are shown in the histogram Fig. 4 and Fig. 5. In these histograms, most
of the impact factors are quite small and a few impact factors are relatively
high. Heavy tail features are exhibited in these distributions of IFP and IFT. In
DS1, the participator with highest IFP is fredrik@pythonware.com whose IFP
is 4.195 × 10−2 and the highest IFT thread is “What is Expressiveness in a
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Fig. 4. Histograms of the logarithm of
IFT and IFP of DS1

Fig. 5. Histograms of the logarithm of
IFT and IFP of DS2

Computer Language” with IFT 4.297 × 10−2. In DS2, tadmc@augustmail.com
got the highest IFP of 2.911 × 10−2 and the highest IFT thread is also “What
is Expressiveness in a Computer Language” with IFT 2.481 × 10−2.
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IFP and IFT results can be used
in some mining tasks on Usenet. For
example, we can obtain the charac-
teristics of each participator by con-
sidering IFP and IFT simultaneously.
Let T (pi) be the set of threads partic-
ipated by pi. We can define fave,i

t as
the average IFT of T (pi), that is

fave,i
t =

∑

tj∈T (pi)

ft,j/mi
t,

where mi
t is size of T (pi). The rela-

tionship of vector fave
t and fp in DS1

was shown in Fig. 6. In this figure,
each symbol represents a participator.
Only a few participators have both high fave,i

t and high fp,i. The IFP of pi is
influenced by the fave,i

t and the number of postings. A participator can improve
his IFP by participating threads with high IFT or by posting a lot of postings.
The average IFT of participator who owns very high IFP is generally not very
high.

4 Conclusions and Discussions

In this paper, we proposed a method to mine the impact factors of the partici-
pators and threads according to the characteristics of Usenet. From the analysis,
we can see that our method can converge rapidly. Its results correspond to the
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eigenvectors of block matrices and the stationary vectors of Markov chains of
connected components.

Our method is link-based and content independent, and it can be computed
offline using only the posting headers. Therefore, it can be implemented on the
servers of newsgroup services or on the newsgroup client softwares. The results
could provide useful intrinsic information of the newsgroup and can be used in
many applications including helping organizing the search results, investigating
hot topics and their evolutions for some period and so on.

Our method provides an essential way to determine the impact factors. Some
improvements can be done based on it to adjust the results according to the
requirements. For example, the seed posting invokes the whole thread and plays
special roles in the newsgroup, so it is better to give extra bonus to the seed
postings other than the response postings in some situations.

On the WWW, it has been confirmed that link carries less noisy information
than text, and the effectiveness of link analysis has been testified by some web
search engines. Similar with web structure, the structure of newsgroup forms
gradually along with the evolution of newsgroup. It represents the judgments
and choices of participators. Therefore, it could provide rich information for the
mining assignments on Usenet. Together with the IR methods based on text
contents, link analysis can be used in the clustering, topic discovery, etc..
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Abstract. Classical rough set theory has shown powerful capability in attribute 
dependence analysis, knowledge reduction and decision rule extraction. 
However, in some applications where the subjective and apriori knowledge 
must be considered, such as cost-sensitive learning and class imbalance 
learning, classical rough set can not obtain the satisfying results due to the 
absence of a mechanism of considering the subjective knowledge. This paper 
discusses problems connected with introducing the subjective knowledge into 
rough set learning and proposes a weighted rough set learning approach. In this 
method, weights are employed to represent the subjective knowledge and a 
weighted information system is defined firstly. Secondly, attribute dependence 
analysis under the subjective knowledge is performed and weighted 
approximate quality is given. Finally, weighted attribute reduction algorithm 
and weighted rule extraction algorithm are designed. In order to validate the 
proposed approach, experimentations of class imbalance learning and cost-
sensitive learning are constructed. The results show that the introduction of 
appropriate weights can evidently improve the performance of rough set 
learning, especially, increasing the accuracy of the minority class and the AUC 
for class imbalance learning and decreasing the classification cost for cost-
sensitive learning.  

Keywords: weighted rough set; knowledge reduction; rule extraction; class 
imbalance learning; cost-sensitive learning. 

1   Introduction 

In many practical machine learning problems, such as class imbalance learning and 
cost-sensitive learning, in order to gain better performance, some subjective and 
aprior knowledge about applications, such as class distribution and misclassification 
cost, are necessary. Recently, these kinds of learning problems have been recognized 
as a crucial problem in machine learning and data mining because such problems are 
encountered in a large number of domains, such as fraud detection [1], medical 
diagnosis [2] and text classification [3]. In some cases, the absence of consideration of 
the subjective knowledge causes seriously negative effects on the performance of 
machine learning methods. In order to introduce the subjective and aprior knowledge 
into machine learning, many learning methods have been developed [4], [5], [6]. 
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However, most of the research efforts are devoted to making decision trees, neural 
networks and SVM subjective [7], [8], [9].  

Rough set theory, proposed by Pawlak [10], has shown powerful capability dealing 
with inconsistent information in attribute dependence analysis, knowledge reduction 
and decision rule extraction. However, there are only a few studies to consider the 
subjective knowledge in rough set. Through assigning each attribute an appropriate 
weight in the reduction process, Xu C.-Z. introduced some subjective knowledge 
about attributes into attribute reduction [11]. But the subjective knowledge about 
objects related with class distribution and misclassification costs can’t be considered 
in this method yet. In [12] and [13], probability rough set was introduced and each 
object was associated with a probability p(x), which may include some subjective 
knowledge about objects. However, how to determine the probability under the 
subjective knowledge was not given. What’s more, specific knowledge acquiring 
algorithms were not presented and systemic experimental analyses were not carried 
out in their works. 

In order to make rough set subjective, we propose a weighted rough set approach 
in this paper. The rest of the paper is organized as follows. Weighted rough set 
learning is proposed and discussed in section 2. Experimental studies of class 
imbalance learning and cost-sensitive learning based on weighted rough set are 
carried out in section 3. Section 4 concludes this paper. 

2   Weighted Rough Set Learning 

In this section, we will introduce weights as a representation of the subjective 
knowledge and proposed a weighted rough set learning method. 

A weighted information system is formally denoted by >=< fVAWUWIS ,,,, , 

where U  is a finite set of objects, W is a weight distribution on U, which can be 
given by expert or be estimated from data, A  is a finite set of attributes, V  is the 
value domain of A, and f  is an information function VAUf →×: . If DCA U= , 

where C is the condition attribute set and D is the decision attribute set, WIS  is called 
a weighted decision table. 

In WIS, weights provide some necessary and additional information about 
applications, which can not be given by data. Since the equivalence class is the 
elementary information granule that expresses knowledge, it is necessary to obtain the 
weight of a set of objects. Let )(Xw  be the weight of UX ⊆ , )(Yw  be the weight 

of UY ⊆  and )( YXw U  be the weight of YX U , if ∅=YX I , then 

)(

)()()()(
)(

YXp

YpYwXpXw
YXw

U
U

+= , (1) 

where )(Xp , )(Yp  and )( YXp U  represent respectively the probability of the set of 

objects X , Y  and YX U .  
Since the family of equivalence classes associated with the attribute set A in WIS is 

the same as that in classical IS, lower and upper approximation of the decision class in 
WIS are also the same as that in classical IS. However, the quality of classification in 
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WIS and classical IS will be quite different. For >==< fVDCAWUWIS ,,,, I , if 

CB ⊆  is the condition attribute set, D is the decision attribute set and )(DPosB  is 

the B-positive region of classification induced by D, the weighted quality of 

classification, denoted by )(DW
Bγ , is defined as 

UUw

DposDposw
D BBW

B )(

)())((
)( =γ . (2) 

When the weight of each object of U is equal, the weighted quality of classification 
will degenerate into the classical quality of classification.  

Attribute reduction is a core problem in rough set. Based on the weighted quality 
of classification, we design a heuristic attribute reduction algorithm under the 
subjective knowledge as Algorithm 1. This algorithm adds the attribute with the 
greatest weighted quality of classification to attribute subset CB ⊆  in sequence 

until )()( DD W
C

W
B γγ = . In order to guarantee CB ⊆ is a reduct of C, at the end of 

process this algorithm checks whether B is a minimal subset that has the same 
knowledge representation ability as C, i.e. whether the elimination of any attribute a 
from B remains )()( DD W

C
W
B γγ = . For the real world applications, in order to restrain 

the noise, a threshold ε is introduced to stop the reduction process in the above 
algorithm, i.e. until εγγ ≤− )()( DD W

B
W
C , instead of until )()( DD W

C
W
B γγ = . 

Algorithm 1. Weighted attribute reduction 
Input: >==< fVDCAWUWIS ,,,, U  and a threshold ε . 

Output: a D-reduct B of C.  
1. begin 

2.    compute the maximal weighted quality of classification )(DW
Cγ ; 

3.    ∅←B ； 

4.    while CB ⊂  do  
5.    begin 
6.       for each BCa −∈  do 

7.          compute )(}{ DW
aBUγ ; 

8. select maxa  such that )(}{ DW
aB maxUγ  is maximum ; 

9.       }{ maxaBB U← ; 

10.       if εγγ ≤− )()( DD W
B

W
C  then exit the loop; 

11.    end  
12.    for each Ba ∈  

13.       if εγγ ≤− − )()( }{ DD W
aB

W
C  then }{aBB −← ; 

14.    return B; 
15. end 

Another important problem which can be solved using rough set is rule extraction. 
For >==< fVDCAWUWIS ,,,, I , if AQ ⊆  and )(/ QINDUE ∈ , then 

))((),( EfaQEDes a=∧= , where Qa ∈ , is called the description of class E with 
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respect to Q. If CB ⊆ , )(/ BINDUX ∈  and )(/ DINDUY ∈ , a decision rule r  can 

be represented as an assertion of the form  

),(),( DYDesBXDes → , (3) 

where ),( BXDes is the condition part of r and ),( DYDes is the decision part of r . 

Nowadays, there are many known rule extraction algorithms inspired by the rough 
set theory. Among these algorithms, LEM2 algorithm, proposed by Grzymala in [14], 
is one of the most used rough set based rule induction algorithm. In LEM2, a 
generalized decision is defined firstly, which may be a decision, or may be the 
conjunction of more than one decision. According to the generalized decisions, the 

objects is partitioned into a family of disjoint subsets of objects, denoted by Y
~

. Each 

of Y
~

 may be the lower approximation of a decision class )(/ DINDUY ∈ , or may  

be one of the disjoint subsets of the boundary of a decision class. For instance,  
assume that three decision classes, 321 ,, YYY , are roughly defined in the decision  

table, then the boundary of 1Y  will consist of three disjoint subsets,  

i.e. )()()()( 3212313211 YBYBYBYBYBYBYBYBYBYBND IIUIUI −−= , where 1YB , 2YB  

and 3YB  represent respectively the upper approximation of 21,YY and 3Y . Obviously, 

Y
~

 is consistent with respect to the generalized decisions. For each consistent object 

set YK
~∈ , LEM2 uses a heuristic strategy to generate a minimal rule set of K.  

On the basis of LEM2, we design a rule extraction algorithm under the subjective 
knowledge as Algorithm 2. In Algorithm 2, c is an element of the description of class 
with respect to the condition attribute set and Φ is a conjunction of such element c 
being a candidate for condition part of a decision rule. Additionally, GΦ denotes the 

set of elements currently considered to be added to the conjunction Φ and ][Φ  

denotes the cover of Φ . 
In order to evaluate discovered rules and predict the unseen objects, the weighted 

support coefficient and confidence coefficient are defined at first. For 
>==< fVDCAWUWIS ,,,, I , if CB ⊆ , )(/ BINDUX ∈ and )(/ DINDUY ∈ , 

the weighted support coefficient )(rW
sμ  and weighted confidence coefficient )(rW

cμ  

of a decision rule r : ),(),( DYDesBXDes → , are defined as 

XXw

YXYXw
r

UUw

YXYXw
r W

c
W
s )(

)(
)(   ,

)(

)(
)(

IIII
== μμ . (4) 

Suppose that there are N rules Nrrr ,,, 21 L  matched with the description of the 

new objects and there are K decisions Kddd ,,, 21 L , then the overall weighted 

support coefficient of rules with decision kd  is computed as 

∑ ∈
=

ki dr i
W
sk

W
s rd )()( μμ , (5) 

where ki dr ∈  means that the decision of rule ir  is kd .  
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According to the principle of majority voting, the decision algorithm can give the 
decision of an unseen object with the following guideline 

)(max)(: k
W
s

k

W
s ddd μμ = . (6) 

Algorithm 2. Weighted rule extraction 
Input: a set of objects YK

~∈  
Output: rule set R of K  
1. begin 
2.    KG ← , ∅←R ; 

3.    while ∅≠G  do 
4.    begin 

5.       ∅←Φ , }][:{G ∅≠←Φ Gcc I ; 

6.       while ( ∅=Φ ) or (not( K⊆Φ][ )) do 

7.       begin 

8.    for each GΦ∈c , select maxc  such that |][|)]([ GcGcw II  is maximum; 

9.          }{ maxcUΦ←Φ , GcG max I][← ; 

10.          }][:{G ∅≠←Φ Gcc I , Φ−Φ←Φ GG ; 

11.       end 
12.       for each Φ∈c  do 

13.          if Kc ⊆−Φ ][  then }{c−Φ←Φ ; 

14.       create rule r  basing on the conjunction Φ ; 

15.       }{rRR U← , ][rKG Rr∈−← U ; 

16.    end 
17.    for each Rr ∈  do 

18.       if KSrRs =−∈ ][U  then rRR −← ; 

19. end 

3   Experimental Studies 

In order to validate the proposed algorithm, in this section, we will carry out the 
experimental studies of class imbalance learning and cost-sensitive learning based on 
weighted rough set.  

In the experiments, 20 UCI data sets[15], which consist of 10 two-class data 
sets(echocardiogram, Hepatitis, heart_s, breast, horse, votes, credit, breast_w, tictoc, 
german) and 10 multi-class data sets(zoo, lymphography, wine, machine, glass, 
audiology, heart, solar, soybean, anneal), are used. In these data sets, class distribution 
is imbalanced. Especially, the size ratio of the majority class to the minority class is 
from 1.25 to 3.84 for the two-class data sets. For the multi-class data sets, the size 
ratio of the maximum class to the minimum class is from 1.48 to 85.5, and the size of 
most minimum class is less than 10 objects. In order to perform the experiment based 
on weighted rough set, the preprocessing on data sets is done at first. In each data set, 
missing values on continuous attributes are set to the average value while those on 
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nominal attributes are set to the majority value, and all the continuous attributes are 
discretized via entropy (MDLP) [16]. 

3.1   Class Imbalance Learning 

For class imbalance learning, the introduction of the subjective knowledge of class 
distribution is necessary to achieve the satisfying results. In order to improve the 
classification accuracy of minority classes, we need assign greater weights to the 
objects of minority classes. Here we use the inverse class probability as the weight of 
each object. Formally, the inverse class probability weight of x  is computed by 

))((/1 xDp , where D(x) denotes the decision equivalence class containing object x.  

Via 10-fold cross-validations, the experimental results obtained by classical rough 
set (RS) and weighted rough set (WRS) are shown in Table 1. It can be found that 
weighted rough set learning improves evidently the accuracy of the minimum class by 
averagely 0.0689 on all data sets. At the same time, the accuracy of the maximum 
class decreases by averagely 0.0463 and the overall accuracy decreases by averagely 
0.0140. The AUC is a popular classification performance measure for class imbalance 
learning. In the experiment, the AUC achieved by WRS is bigger than that achieved 
by RS on most of data sets and increases by averagely 0.0161 on all data sets. 
Through the consideration of the subjective knowledge of class distribution, WRS 
improves greatly the accuracy of the minimum class and increases the AUC. 

Table 1. Detail results in class imbalance learning 

Accuracy of  
minimum class 

Accuracy of  
maximum class 

Overall accuracy AUC Data set 
 RS WRS RS WRS RS WRS RS WRS  

echocardiogram 0.7100 0.7350 0.8056 0.7722 0.7780 0.7626 0.7578 0.7536 
hepatitis 0.7167 0.7833 0.9083 0.9026 0.8700 0.8779 0.8125 0.8429 
heart_s 0.7583 0.7750 0.7733 0.7733 0.7667 0.7741 0.7892 0.7908 
breast 0.2833 0.4125 0.7412 0.6967 0.6049 0.6118 0.5845 0.6261 
horse 0.9560 0.9632 0.9699 0.9699 0.9648 0.9675 0.9738 0.9773 
votes 0.9221 0.9221 0.9437 0.9513 0.9357 0.9403 0.9385 0.9404 
credit 0.7719 0.7947 0.7781 0.8146 0.7754 0.8058 0.8115 0.8321 
breast_w 0.9210 0.9252 0.9520 0.9564 0.9414 0.9457 0.8307 0.8458 
tictoc 0.8099 0.8127 0.8978 0.9010 0.8674 0.8705 0.8856 0.8947 
german 0.0567 0.8733 0.9771 0.4071 0.7010 0.5470 0.5169 0.6402 
zoo 0.8000 0.8000 1.0000 1.0000 0.9409 0.9518 0.9312 0.9462 
lymphography 0.2690 0.5214 0.8042 0.8139 0.7295 0.7286 0.6926 0.7036 
wine 0.9600 0.9600 0.9714 0.9714 0.9778 0.9778 0.9829 0.9829 
machine 1.0000 1.0000 0.8103 0.7192 0.6750 0.6788 0.7406 0.7646 
glass 0.6500 0.7500 0.7054 0.6661 0.7338 0.6818 0.8218 0.8137 
audiology 0.2000 0.1000 0.9100 0.8967 0.7617 0.7522 0.7868 0.7956 
heart 0 0 0.8037 0.7493 0.5280 0.4985 0.5715 0.5562 
solar 0 0.0333 0.9191 0.7271 0.8297 0.6716 0.5263 0.5257 
soybean 1.0000 1.0000 0.8111 0.8667 0.8097 0.8667 0.9008 0.9463 
anneal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Average 0.6392 0.7081 0.8741 0.8278 0.8096 0.7956 0.7928 0.8089 
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3.2   Cost-Sensitive Learning 

Many practical classification problems have different costs associated with different 
types of errors. For example, in medical diagnosis, the error committed in diagnosing 
someone as healthy when they have a life-threatening disease is usually considered to 
be far more serious (thus, higher cost) than the opposite type of error. In such 
applications, cost-sensitive learning is necessary. 

In order to perform cost-sensitive learning using weighted rough set, it is necessary 
to know the weight of each object associated with misclassification cost. This can be 
solved according to [7], where misclassification cost matrix is divided into three 
types. Suppose that ),( jiCost  denotes the cost of misclassifying an object of the ith 

class to the jth class and )(iw  denotes the weight of the ith class associated with 

misclassification cost, then )(iw  is defined respectively as follows: 

(a) 0.10),(0.1 ≤< jiCost only for a single value of Jj =  and 0.1),( =≠ JjiCost  

for all ij ≠ , then ),()( JiCostiw =  for Jj ≠  and 0.1)( =Jw . 

(b) 0.10),(0.1 ≤=≤ iHjiCost for each ij ≠  and at least one 0.1=iH , then 

iHiw =)( . 

(c) 0.10),(0.1 ≤≤ jiCost  for all ij ≠  and at least one 0.1),( =jiCost , then  

∑=
j

jiCostiw ),()( . 

For each type of cost matrix, via 10-fold cross-validations with randomly generated 
cost matrices belonging to the same cost type, the average experimental results of 
cost-sensitive learning obtained by classical rough set (RS) and weighted rough set 
(WRS) on 20 data sets are shown in Table 2. The results show that weighted rough set 
decreases the number of errors of high cost class and the overall classification cost for 
all types of cost matrix, although it increases the overall number of errors. 

Table 2. Average results in cost-sensitive learning 

(a) (b) (c) Cost matrix type 
 RS WRS  RS WRS  RS WRS  

Misclassification cost 19.6748 14.4895 25.6586 20.9979 28.4562 22.041 
Number of errors 7.2250 8.6850 7.2250 8.4300 7.2250 8.6600 
Number of errors 
of high cost class 

3.0450 1.7100 4.2250 2.9700 4.4950 3.2300 

4   Conclusions 

In this paper, we have introduced a weighted rough set learning method to consider 
the subjective and aprior knowledge in machine learning. Some basic definitions of 
classical rough set are extended under the subjective weights, and weighted attribute 
reduction algorithm and weighted rule extraction algorithm are designed. 
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Our experimental results show convincingly that weighted rough set learning 
achieves the better performance than classical rough set in both class imbalance 
learning and cost-sensitive learning. The introduction of appropriate weights directly 
contributes to this improved performance, respectively, increasing the accuracy of the 
minority class and the AUC for class imbalance learning and decreasing the 
classification cost for cost-sensitive learning. 
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Abstract. The Self-Splitting Competitive Learning (SSCL) is a power-
ful algorithm that solves the difficult problems of determining the number
of clusters and the sensitivity to prototype initialization in clustering.
The SSCL algorithm iteratively partitions the data space into natural
clusters without a priori information on the number of clusters. It starts
with only a single prototype and adaptively splits it into multiple proto-
types during the learning process based on a split-validity measure. It is
able to discover all natural groups; each is associated with a prototype.
However, one major problem of SSCL is the slow speed of learning pro-
cess, because only one prototype can split each time. In this paper, we
introduce multiple splitting scheme to accelerate the learning process and
incorporates prototypes merging. Besides of these, Bayesian Information
Criterion (BIC) score is used to evaluate the clusters. Experiments show
that these techniques make the algorithm 5 times faster than SSCL on
large data set with high dimensions and achieve better quality of clus-
tering.

1 Introduction

Clustering is the unsupervised classification of patterns (observations, data items,
or feature vectors) into subgroups (clusters). It has important applications in
many problem domains, such as data mining, document retrieval, image segmen-
tation and pattern classification. One of the well-known methods is the k-means
algorithm [3], which iteratively reassigns each data point to the cluster whose cen-
ter is closest to the data point and then recomputes the cluster centers.

Several algorithms have been proposed previously to determine cluster number
(called k) automatically. Bischof et al. [2] use a Minimum Description Length
(MDL) framework, where the description length is a measure of how well the
data are fit by the model optimized by the k-means algorithm. Pelleg and Moore
[4] proposed a regularization framework for learning k, which is called X-means.
The algorithm searches over many values of k and scores each clustering model.
X-means chooses the model with the best score on the data.

Recently, Zhang and Liu presented the SSCL algorithm [7] based on the One
Prototype Takes One Cluster (OPTOC) learning paradigm. The OPTOC-based
learning strategy has the following two main advantages: 1) it can find natural
clusters, and 2) the final partition of the data set is not sensitive to initialization.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 704–711, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Although promising results have been obtained in some applications [7], the
learning speed is slow due to that only one prototype can split at one time.
This paper will introduce multiple splitting into SSCL to accelerate the learning
speed.

The remainder of this paper is organized as follows. In Section 2, the origi-
nal SSCL algorithm is introduced. Section 3 will describe the details of multiple
splitting and merging. Their performance in identifying Gaussian clusters is com-
pared in Section 4. Finally, Section 5 presents the conclusions.

2 SSCL Algorithm

Clustering is an unsupervised learning process [1]. Given a data set of N dimen-
sions, the goal is to identify groups of data points that aggregate together in some
manner in an N -dimensional space. We call these groups “natural clusters.” In
the Euclidean space, these groups form dense clouds, delineated by regions with
sparse data points.

The OPTOC idea proposed in [7] allows one prototype to characterize only one
natural cluster in data set, regardless of the number of clusters in the data. This
is achieved by constructing a dynamic neighborhood using an online learning
vector Ai, called the Asymptotic Property Vector (APV), for the prototype Pi,
such that patterns inside the neighborhood of Pi contribute more to its learning
than those outside. Let |XY | denote the Euclidean distance from X to Y , and
assume that Pi is the winning prototype for the input pattern X based on the
minimum-distance criterion. The APV Ai is updated by

A∗i = Ai +
1

nAi

· δi · (X − Ai) · Θ(P i, Ai, X) (1)

where Θ is a general function given by

Θ(μ, ν, ω) =
{

1 if |μν| ≥ |μω|,
0 otherwise, (2)

and δi, within the range 0 < δi ≤ 1, is defined as

δi =
(

|P iAi|
|P iX| + |P iAi|

)2

. (3)

nAi is the winning counter which is initialized to zero and is updated as follow:

nAi
= nAi

+ δi · Θ(P i, Ai, X). (4)

The winning prototype Pi is then updated by

P ∗i = P i + αi(X − P i), (5)

where,

αi =
(

|P iA
∗
i |

|P iX| + |P iA∗i |

)2

. (6)
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If the input pattern X is well outside the dynamic neighborhood of Pi, i.e.,
|PiX| � |PiAi|, it would have very little influence on the learning of Pi since
αi → 0. On the other hand, if |PiX| � |PiAi|, i.e., X is well inside the dy-
namic neighborhood of Pi, both Ai and Pi would shift toward X according to
Equations (1) and (5), and Pi would have a large learning rate αi according to
Equation (5). During learning, the neighborhood |PiAi| will decrease monoton-
ically. When |PiAi| is less than a small quantity ε, Pi would eventually settle
at the center of a natural cluster in the input pattern space.

Let Ci denote the center, i.e. arithmetic mean, of all the patterns that P i

wins according to the minimum-distance rule. The distance |PiCi| measures the
discrepancy between the prototype P i found by the OPTOC learning process
and the actual cluster structure in the dataset. After the prototypes have all
settled down, a large |PiCi| indicates the presence of other natural clusters in
the dataset. A new prototype would be generated from the prototype with the
largest distance |PiCi| when this distance exceeds a certain threshold ξ.

When cluster splitting occurs, the new prototype is initialized at the position
specified by a Distant Property Vector (DPV) Ri associated with the mother
prototype Pi. The idea is to initialize the new prototype far away from its mother
prototype to avoid unnecessary competition between the two. Initially, the DPV
is set to be equal to the prototype to which it is associated with. Then each time
a new pattern X is presented, the Ri of the winning prototype Pi is updated
as follows:

R∗i = Ri +
1

nRi

· ρi · (X − Ri) · Θ(P i, X, Ri), (7)

where

ρi =
(

|P iX|
|P iX| + |P iRi|

)2

, (8)

and nRi is the number of patterns associated with the prototype Pi. Note that
unlike Ai, Ri always try to move away from Pi. After a successful split, the
property vectors (Ai, Ri) of every prototype Pi are reset and the OPTOC
learning loop is restarted.

3 Multiple Self-Splitting and Merging Competitive
Learning

3.1 Multiple Splitting

The SSCL algorithm as it was described up to this point can only allow one
prototype split when it meets the convergence and splitting criteria. This has
dramatically slowed down the learning process, especially for the data with large
number of points or clusters. We proceed now to demonstrate how to efficiently
search for the best number of clusters by letting more prototypes to split in two
at the same time.

How can we decide how many prototypes to split at one time? Pelleg and
Moore tried to split every centroid into two children and run the test locally
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Initialization :
Set the number of clusters K = 1;
Set P 1 = R1 at a random location in the input feature space;
Set A1 at a random location far from P 1;
Set winning counters nA1 and nR1 to zero;

Learning Loop :
OPTOC Learning:
Repeat

1. Randomly read a pattern X from the data set;
2. Find the winner P i, where |P iX | = minl |P lX |, l = 1, . . . , K. Label X with

i;
3. Update the APV Ai using (1);
4. Update the Prototype P i using (5);
5. Update the DPV Ri using (7);

Until maxl |P lAl| < ε or number of OPTOC iteration exceeds 10.
Record prototype set with best BIC score;
Multiple Split Stage:
1. For i = 1 : Kold

If |P iC i| > ξ

Increase K;
Set P K = Ri;

End If
If no splitting, quit the learning loop;

End For

Reset Stage:
1. Set Rl = P l, l = Kold + 1, . . . , K;
2. Set Al far from P l, l = Kold + 1, . . . , K;
3. Set all the winning counters nAl and nRl , l = 1, . . . , K, to zero;

Merging Clusters :
Repeat

Find cluster i and cluster j that minimize |CiCj | − (σi + σj) (see (9));
If |CiCj | ≤ (σi + σj)

Merge cluster i and cluster j;
Decrease the number of clusters K by 1;

End If

Until no more clusters can be merged.
Calculate BIC score;
The result is the prototype set with best BIC score;

Fig. 1. Pseudo code for the proposed MSSMCL

to make decisions that increasing the number of centroids or not in the X-
means algorithm [4]. Unfortunately, SSCL is not splitting prototypes locally.
New prototype can be generated far from the parent prototype. The method of
splitting locally and testing is not a good strategy for SSCL.
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Recall that, the prototype with the largest distance |PiCi| which exceeds a
certain threshold ξ will split. The new splitting strategy is that all the prototypes
with |PiCi| > ξ will split, called Multiple Self-Splitting Competitive Learning
(MSSCL). This allows an automatic choice of whether to increase the number of
prototypes by very few (the current number is very close to the true number, i.e.
the end of learning process) or very many (the beginning of learning process).
With this strategy, the learning process of SSCL will be accelerated.

3.2 Prototypes Merging

In essence, the MSSCL algorithm starts form one prototype and continues to add
prototypes where they are needed until the stop criterion is reached. However,
sometimes more than one DPVs are attracted by the same cluster. This may
cause more than one prototypes will split to a very close position. It is possible
that a natural cluster in the data set would be split into two or more clusters.

One merging scheme is proposed to merge two clusters when these two clusters
are close each other to the extent that their joint Probability Density Function
(pdf) form a unimodal structure [6]. Let Ci be the center (i.e., mean) of cluster
i and δi be its standard deviation. In the Multiple Self-Splitting and Merging
Competitive Learning (MSSMCL), if two clusters satisfy the following condition,
they should be merged into one:

|CiCj | ≤ δi + δj . (9)

Only comparing prototypes, merging is a quite efficient way to overcome the
potential over clustering problem brought by multiple splitting.

We then define measure of quality for a cluster μ:

distortionμ =
1
R

·
∑

i

d2(i, μ(i)) (10)

where i ranges over all input points.
During the MSSMCL learning process presented in this paper, the prototype

set that achieves the best BIC score is recorded, and this is the one that is finally
output. The pseudo code for the proposed MSSMCL is shown in Fig. 1.

4 Experimental Results

We have conducted experiments on randomly-generated data, as described in
[5]. The synthetic experiments were conducted in the following manner. First,
a data-set was generated using randomly-selected points (cluster centers). For
each data-point, a cluster was first selected at random. Then, the point coor-
dinates were chosen independently under a Gaussian distribution with mean at
the cluster center.

In our first experiment, we tested the quality of the MSSMCL solution against
that of SSCL. The test data set was 3-D data with 30 clusters, within the range
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Table 1. Distortion of SSCL and MSSMCL

Points 80000 90000 100000 110000 120000

SSCL 0.001875 0.001874 0.001853 0.001874 0.001879
MSSMCL 0.001889 0.001873 0.001871 0.00188 0.001876
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Fig. 2. Average run-times are shown for 2 dimensions and 20 clusters

(0, 1) for each dimension. We compared both algorithms by the distortion of
their output. The convergence and splitting thresholds are both set as the same
value of deviation σ, 0.025. The results shown on Tab. 1 are average of 30 runs.
The two algorithms have achieved similar results in the mean of distortion.

As far as speed is concerned, MSSMCL scales much better than SSCL. One
data set was generated as described above with 20 clusters on 2 dimensions
contained different number of points, from 30000 to 1000000, respectively drawn
this way. The deviation σ equals to 0.5 and each dimension data rage is (0, 10).
The SSCL and MSSMCL are running on this data-set and measured for speed.
The experiment is repeated 30 times and averages are taken. Fig. 2 shows the
run-times of MSSMCL and SSCL with convergence threshold ε and splitting
threshold ξ set as 0.5.

Two algorithms were also tested with the number of dimensions varied from 2
to 10 with deviation δ = 0.5. This experiment is repeated 30 times and averages
are taken. The convergence and splitting thresholds are both set to 0.5. The
number of clusters each algorithm requested to find is 20 and the each cluster
has 1000 points. The results are shown in Fig. 3, which shows that MSSMCL
runs a half time of SSCL.

Fig. 2 and Fig. 3 also show that both SSCL and MSSMCL run faster than
X-means. The run-times are shown on 2.4Ghz Pentium-4.
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Fig. 3. Run-times shown as the number of dimensions varies, 20 clusters and 20000
points
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Fig. 4. The number of iterations needed to find the best number of clusters

In terms of run-time, MSSMCL is not only faster, but increases its advantages
as the number of points (see Fig. 2), or the number of clusters increases (See
Fig. 4) . The total number of points are 10000 with clusters from 8 to 36. Fig. 4
illustrates the iterations needed as a function of number of clusters. We can see
that the iterations needed by SSCL is at least the number of the clusters if the
natural number of clusters is successfully found. MSSMCL can benefit a lot from
the multiple splitting especially for a data set with large number of clusters.
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5 Conclusion

We have presented an efficient Multiple Self-Splitting Competitive and Merging
Learning algorithm that incorporates BIC scoring and prototypes merging. It
uses statistically-based criteria to maximize the model’s posterior probabilities.
This prevents missing the better prototypes set during the learning process.
Our various experimental results on random generated data show that this new
algorithm can perform 5 times faster than SSCL on large data set with hight
dimensions and achieves better quality of clustering. This new algorithm can be
used on large size of data set with high dimensions.

References

[1] Barlow, H.B.: Unsupervised learning. Neural Computation 1 (1989) 295–311
[2] Bischof, H., Leonardïs, A., Selb, A.: MDL principle for robust vector quantization.

Pattern Analysis and Applications 2 (1999) 59–72
[3] MacQueen, J.: Some methods for classification and analysis of multivariate ob-

servations. In: Proc. 5th Berkeley Symposium on Mathematics, Statistics and
Probability, Berkeley, CA: Univ.California Press (1967) 282–297

[4] Pelleg, D., Moore, A.: X-means: Extending K-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International conference on
Machine Learning, Morgan Kaufmann, San Francisco, CA (2000) 727–734

[5] Pelleg, D., Moore, A.: Accelerating exact k-means with geometric reasoning. Tech-
nical report, Carnegie Mellon University, Pittsburgh, PA. (2000)

[6] Wu, S.H., Liew, A., Yan, H. and Yang. M.S.: Cluster analysis of gene expression
data based on self-splitting and merging competitive learning. IEEE Trans. On
Information Technology in Biomedicine 8 (2004) 5–15

[7] Zhang, Y.J., Liu, Z.Q.: Self-splitting competitive learning: A new on-line clustering
paradigm. IEEE Trans. on Neural Networks 13 (2002) 369–380



A Novel Relative Space Based Gene Feature

Extraction and Cancer Recognition

Xinguo Lu1, Yaping Lin2,1, Haijun Wang1, Siwang Zhou1, and Xiaolong Li1

1 School of Computer and Communication,
Hunan University, Changsha, 410082, China

2 School of Software, Hunan University, Changsha, 410082, China
hnluxinguo@hotmail.com

Abstract. Recognizing patient samples with gene expression profiles
is used to cancer diagnosis and therapy. In the high dimensional, huge
redundant and noisy gene expression data the cancerogenic factor’s lo-
cality is studied. Using gene feature transformation a relative space to a
cancer is built and a least spread space with least energy to the cancer
is extracted. And it is proven that the cancer is able to be recognized
in the least spread space and a cancer classification with least spread
space (CCLSS) is proposed. In the Leukemia dataset and Colon dataset
the correlation between the recognition rate and the rank of least spread
space is explored, then the optimal least spread spaces to AML/ALL and
to tumor colon tissue (TCT)/normal colon tissue (NCT) are extracted.
At last using LOOCV the experiments with different classification algo-
rithms are conducted and the results show CCLSS makes better precision
than traditional classification algorithms.

1 Introduction

Recently huge amount of large-scale gene expression data has been generated as
the development of Microarray technique and conduces to cancer diagnosis and
therapy [1][2]. Gene expression profile is a typical high dimensional, huge redun-
dant and noisy data. The research of cancer recognition using gene expression
data is usually plagued with “curse of dimensionality” [3].

Dimension reduction is often used to solve the “curse of dimensionality” in
cancer detection [4]. A method of dimension reduction is gene selection [5]. In
Golub’s approach neighborhood analysis based on signal to noise ratio was used
to Leukemia cancer dataset and 50 discriminant genes were selected [6]. In Veer’s
approach, the genes were ranked by correlation against the disease outcome
and 70 genes were identified [7]. Cho et al. systematically explored different
gene selection methods including correlation coefficient method, information gain
and mutual information on different cancer datasets. Due to different proximity
measures and optimization criterions it’s much different for selected genes [8].
Another method is feature transformation. Conde et al. presented a clustering
based cancer classification and the average values of clusters were used for train-
ing a perceptron [9]. Raychaudhur et al. summarized the observed variability

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 712–719, 2007.
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in two hidden factors with principal components analysis(PCA) in the yeast
sporulation dataset [10]. Feature transformation is able to discover the underly-
ing informative factors for classification.

The main idea of cancer classification is that many valuable gene features
are acquired via dimension reduction, then these features are applied to train
the classification models. However by now all the classification models are con-
structed on the same set of gene features without regarding of the locality of
cancerogenic factor in biology. As Fig.1 shows there are two cancer patterns
P and Q. The pattern P corresponds to the cancer samples in the x-y feature
plane which are close to one another. The pattern Q corresponds to the cancer
samples in the x-z feature plane which are also very close. Traditional cancer
classifications with dimension reduction do not work for this case.

In this paper a novel relative space(RS) based gene feature extraction and
cancer recognition is proposed. Relative space to a cancer is obtained using
feature transformation and a least spread space(LSS) with least energy to the
cancer is extracted. It is proven that the cancer is able to be recognized in
LSS. Then a sample is projected to the LSS of the corresponding cancer. Via
projection the gene expression data is compressed efficiently and the noise and
redundancy are removed effectively. Also cancer classification with least spread
space(CCLSS) is presented to classify patient samples. The experimental results
on Leukemia dataset and Colon dataset show CCLSS makes better precision
than traditional classification algorithms.

Q P

x

y Q P

x

z

Fig. 1. The locality of cancerogenic factors

2 Pre-requirements

2.1 Related Definitions

If X̃ is a set of objects and X̃={x1, x2, ..., xn}, let X be the numerical matrix
for the objects in X̃, X = (x1, x2, ..., xn), where xi = {xi1, xi2, ..., xim}T .

Definition 1. M(X̃) is defined as the mean of X̃, and M(X̃) = 1
n

∑n
i=1 xi =

1
n (

∑n
i=1 xi1,

∑n
i=1 xi2, . . . ,

∑n
i=1 xim)T

Definition 2. If X is a square matrix(m = n), the trace of X is described with
TR(X), and TR(X) =

∑n
i=1 xii
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2.2 Gene Expression Data

The gene expression data is usually represented by expression matrix. Let X be
a gene expression matrix, where rows represent genes, columns represent various
samples and cell xij is the measured expression level of gene i in sample j.

3 RS Based Feature Extraction and Cancer Recognition

3.1 Gene Feature Extraction with RS/LSS

Assume in gene expression data there are k cancer classes and n samples. Let C̃i

be the set of samples in ith cancer, and there are ni samples in C̃i, so
∑

i ni = n.
Ci is the m×ni gene expression matrix for C̃i. Relative space ε and least spread
space ε̂ for C̃i are produced as follow.

Let CT
i denote the transpose of Ci, CT

i = (g1, g2, ..., gm), where gj is the jth
gene in C̃i. Then the covariance matrix Cov(CT

i ) is decomposed as Equ.1.

Cov(CT
i ) =

∑
λrprp

T
r = P ∧ PT (1)

where λr(1≤r≤m) is eigenvalue of Cov(CT
i ) and pr(1≤r≤m) is corresponding

eigenvectors, ∧ is a diagonal matrix whose diagonal elements are λr(1≤r≤m)
and P = (p1, p2, ..., pm).

Definition 3. Given d≤m as a rank to relative space(RS), p1, p2, ..., pd con-
sist of d dimensional relative space ε for C̃i, ε = {p1, p2, ..., pd}. pj(1≤j≤d) is
denoted as the jth direction, λj is its spread coefficient, and P = (p1, p2, ..., pd)
is relative space matrix for C̃i.

Definition 4. Assume ε̂ is RS with rank of d for C̃i, and ε̂ is denoted to be
least spread space(LSS) iff max(λ1, λ2, . . . , λd)≤min(λd+1, λd+2, . . . , λm).

Definition 5. The set C̃i can be expressed as C̃i = {s1, s2, . . . , sni}, where sl =
(sl1, sl2, . . . , slm)T . The feature extraction of sl is denoted as the projection
of sl on ε P (sl, ε) = (sl·p1, sl·p2, . . . , sl·pd)

T , where pj = (pj1, pj2, . . . , pjm)T is
the jth direction of ε, and sl · pj =

∑m
k=1 slkpjk.

After feature extraction, the informative data can be compressed efficiently when
d�m and the features is accompanied with following properties.

Theorem 1. The variances of variables projected to pj(1≤j≤d) in ε equal to
the corresponding spread coefficients λj(1≤j≤d) and these variables are mutually
uncorrelated.

Proof. Given ith cancer expression matrix Ci = (s1, s2, . . . , sni). The feature
extraction of sl(1≤l≤ni) on ε is denoted as P (sl, ε) = (p1, p2, . . . , pd)T , where
pj = sl · pj = pT

j sl(1≤j≤d). Without loss of generality, P (sl, ε) can be viewed
as normal random variable. So V ar(pj) = pT

j Cov(CT
i )pj = pT

j λjpj = λj .
Cov(pj , pk) is denoted the correlation coefficient between variables pj and pk,
Cov(pj , pk) = Cov(pT

j sl, p
T
k sl) = pT

j Cov(CT
i )pk = λkpT

j pk=0. So pj and pk are
unrelated.
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Theorem.1 demonstrates that the gene features extracted by above method are
mutually uncorrelated and the noise and redundancy are eliminated efficiently.
Also the smaller λj is, the less difference between the samples in C̃i after ex-
traction is. The feature extraction owns following advantages: (1) local relative
features for special cancer are extracted; (2) mutually uncorrelated between ex-
tracted features and the noise and redundancy are eliminated; (3) in a cancer
the samples are most similar and the cancer pattern is detected.

3.2 Cancer Classification with LSS(CCLSS)

Definition 6. Given sample sj, sj′ and sl = (sl1, sl2, . . . slm)T (l = j, j′), the rel-
ative space distance(RSD) between sj and sj′ in ε is denoted as D(sj , sj′ , ε), and

D(sj , sj′ , ε) = ‖P (sj , ε) − P (sj′ , ε)‖ =
√∑d

k=1(sj · pk − sj′ · pk)2.

Assume a cancer dataset composed of k cancers and is divided into training set
and test set. At first the LSS to either cancer C̃i in training set is obtained via
above method. Then for each sample t in test set the RSD between t and either
sample s in training set in the LSS of C̃i which s belongs to is computed and
RSDs with the same cancer label of s are summarised as the weight for cancer
identification. Finally t is identified as the cancer with least weight. The details
of CCLSS is described as follows:

Inputting : training set, test set, rank d, assume ith cancer set is C̃i(1≤i≤k).
Begin :

For i=1 to k do
1. acquire the covariance matrix Cov(CT

i ) of C̃i from training.
2. compute the eigenvalues λ1, λ2, . . . , λm of Cov(CT

i ) and correspond-
ing eigenvectors p1, p2, . . . , pm.

3. the d least λ′1, λ
′
2, . . . , λ

′
d are selected and ε̂i of C̃i is formed with

corresponding p′1, p
′
2, . . . , p

′
d.

Next
For each t in test set do

the weight wi is preassigned with 0(i = 1. . .k).
For each s in training set do

1. assume s ∈ C̃i, compute D(s, t, ε̂i) in ε̂i.
2. calculate weight wi of t ∈ C̃i, wi = wi + D(s, t, ε̂i)(i = 1. . .k).

Next
t is identified as C̃i′ , if wi′ = min(wi)(i = 1. . .k).

Next
End

3.3 Algorithm Analysis

Definition 7. The class energy of C̃i in RS ε is described with E(C̃i, ε),
E(C̃i, ε) = 1

ni

∑
sl∈C̃i,l=1...ni

{D(sl, M(C̃i), ε)}2.
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The class energy describes the distance between mean and sample in a class.
The more smaller E(C̃i, ε) is, the more similar and tighter between samples in
C̃i is, or the more different and sparser is. So E(C̃i, ε) is used to evaluate ε.

Theorem 2. Given d dimensional RS εi to the cancer set C̃i, then E(C̃i, εi) =
∑d

r=1 λr, where λr is direction spread coefficient.

Proof. Assume C̃i ={s1, s2, . . . , sni}, so E(C̃i, εi)= 1
ni

∑

sl∈C̃i,l=1...ni

{D(sl, M(C̃i), εi)}2

where M(C̃i) is mean of C̃i. From Definition 6, we get D(sl, M(C̃i), εi) = ‖p(sl, εi)−

p(M(C̃i), εi)‖ =
d∑

r=1
(sl · pr −M(C̃i) · pr)

2. Then E(Ci, εi) = 1
ni

ni∑

l=1

d∑

r=1
(sl · pr − M(C̃i) ·

pr)
2 = 1

ni

d∑

r=1

ni∑

l=1
(sl · pr − M(C̃i) · pr)

2. By Theorem 1 we can demonstrate
ni∑

l=1
(sl ·

pr − M(C̃i) · pr)
2 = niλr, so E(C̃i, εi) =

d∑

r=1
λr.

The trace
∑d

r=1 λr is invariant under the transformation defined by the eigen-
system P . If d = m it reaches the peak value which means the least similarity
between samples in C̃i. Also from Definition 4 in the d dimensional LLS ε̂i the
class energy is minimized to E(C̃i, ε̂i). So the cancer pattern C̃i can be detected.

4 Experiments

4.1 Gene Expression Dataset and Preprocessing

In this paper two gene expression datasets including Leukemia dataset [6] and
Colon dataset [8] are used. In Leukemia dataset 25 of 72 samples are acute
myeloid leukemia(AML) and 47 samples are acute lymphoblastic leukemia(ALL).
Each sample contains 7129 genes. In Colon dataset 40 of 62 samples are tumor
colon tissues(TCT) and the remaining are normal colon tissues(NCT). Each
sample contains 2000 genes.

Information index to classification(IIC) [11] is used to filter genes is defined

by IIC(g) = 1
2
|μg+−μg−|
σg++σg−

+ 1
2 ln[

σ2
g++σ2

g−
2σg+σg−

], where μ and σ are mean and standard
deviation of gene expressions within corresponding class. In Leukemia dataset
the threshold to IIC is assigned to 0.8 and 196 genes are selected for following
experiments. In Colon dataset the threshold is assigned to 0.65 and genes are
reduced to 93.

4.2 Results and Analysis

Firstly Leukemia dataset and Colon dataset are randomly divided into train-
ing set and test set respectively and the corresponding percentages are 70%
and 30%. So in Leukemia dataset there are 51 training samples(18 AMLs, 33
ALLs) and 21 test samples(7 AMLs, 14 ALLs) and in Colon dataset there are 43
training samples(28 TCTs, 15 NCTs) and 19 test samples(12 TCTs, 7 NCTs).
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Fig. 2. The average precision distributed
with rank d for Leukemia dataset

1 10 20 30 40 50 60 70 80 90 93
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1  

Fig. 3. The average precision distributed
with rank d for Colon dataset

Then CCLSS is performed and the precision is calculated. The ranks of LSS for
Leukemia are assigned to 1, 2, . . . , 196 respectively and the ranks for Colon are
1, 2, . . . , 93. The presented scheme is run 10 times for each rank and the average
precisions are showed in Fig.2 and Fig.3. Fig.2 shows in Leukemia dataset the
maximal precision is acquired when d = 20. Also the appropriate rank for Colon
dataset is 18(Fig.3).

Then the locality of cancerogenic factor is discussed. In Leukemia the LSSs
ε̂AML and ε̂ALL are built. The samples distribution is showed in Fig.4 and
Fig.5. In Colon the LSSs ε̂TCT and ε̂NCT are also constructed. The samples
distribution is showed in Fig.6 and Fig.7. In Fig.4 and Fig.5 the dimensions of
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Fig. 4. For Leukemia dataset samples dis-
tribution in ε̂AML
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Fig. 5. For Leukemia dataset samples dis-
tribution in ε̂ALL

ε̂AML and ε̂ALL are ranked by their corresponding spread coefficients ascend-
ingly and denoted as dim1, dim2, . . . , dim20. In their subfigures Fig.4(a) and
Fig.5(a) dim1∼dim3 are selected. And dim5∼dim7, dim8∼dim10, dim11∼dim13,
dim15∼dim17, and dim18∼dim20 are choosen for subfigures (b), (c), (d), (e) and
(f). Fig.4 and Fig.5 show that in ε̂AML AML samples are mutually close and ALL
samples are distributed very sparsely while in ε̂ALL ALL samples are distributed
tightly and AML samples dispersively. So cancer patterns AML and ALL can
be detected in ε̂AML and ε̂ALL respectively. Also in Fig.6 and Fig.7 the dimen-
sions are denoted as dim1, dim2, . . . , dim18. Then dim1∼dim3, dim4∼dim6,
dim7∼dim9, dim10∼dim12, dim13∼dim15 and dim16∼ dim18 are used for sub-
figures (a), (b), (c), (d), (e) and (f) in Fig.6 and Fig.7 respectively. In ε̂TCT we can
distinguish the TCT samples from NCT samples and in ε̂NCT the NCT samples
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Fig. 6. For Colon dataset samples distri-
bution in ε̂TCT
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Table 1. Classification results comparison using LOOCV

Leukemia Colon
Method Features Accuracy Features Accuracy

CCLSS 20 71 18 61
Weighted Voting 50 65 40 58

SVM 50 69 40 57
KNN 50 62 40 52

Clustering 50 63 40 53

also can been picked out. So the locality of cancerogenic factor is illustrated by
these four figures.

Finally Leave-one-out cross-validation(LOOCV) is used. We pick up the first
sample of the dataset(Leukemia or Colon) as a test sample, and the remaining
samples as training set. Repeating through the first sample to the last one,
we can get an accuracy, the number of samples which are correctly predicted.
The accuracies are shown in Table 1. Also the accuracies acquired by other
methods including Weighted Voting [6], the Clustering based perceptron model
[9], SVM with RBF kernel and KNN (k=7) are presented. From Table 1, we
can see that using LSS the gene expression data can be compressed efficiently.
In Leukemia cancer dataset only 20 gene features are extracted for CCLSS and
the best accuracy is acquired while larger features are used in other traditional
algorithms. And in Colon cancer dataset the 18 extracted gene features are
applied to CCLSS instead of original data and the accuracy is also better than
any other one.

5 Conclusion

In this paper the cancerogenic factor’s locality to a cancer is explored in the
gene expression data. It is proven that a cancer pattern is able to be recog-
nized in the LLS. In the Leukemia and Colon dataset the LLSs to AML/ALL
and to TCT/NCT are extracted respectively. Then the CCLSS based on LSS
is tested using LOOCV and compared with other algorithms and the results
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show CCLSS makes better accuracy with smaller gene features. Using LLS the
gene expression data can be compressed efficiently and CCLSS is appropriate to
cancer recognition.
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Abstract. Text categorization is one of the most interesting topic, due
to the extremely increase of digital documents. The Support Vector Ma-
chine algorithm (SVM) is one of the most effective technique for solv-
ing this problem. However, SVM requires the user to choose the kernel
function and parameters of the function, which directly effect to the per-
formance of the classifiers. This paper proposes a novel method, named
Kernel Tree SVM, which represents the multiple kernel function with a
tree structure. The functions are selected and formed by using genetic
programming (GP). Moreover, the gradient descent method is used to
perform fine tune on parameter values in each tree. The method is bench-
marked on WebKB and 20Newsgroup datasets. The results prove that
the method can find a bettr optimal solution than the SVM tuned with
the gradient method.

1 Introduction

With the fast growth of the digital documents in internet, text categorization or
classification (TC) becomes a key role in organizing and retrieving the massive
online documents. Text categorization are applied in many application such as,
information retrieval, news and e-mail categorization. During a few decades,
there were many researchers attracted in this topic. Many statistical techniques
were proposed to solve the TC problems, such as, expectation maximization [13],
decision tree and rules [11], k-nearest neighbor [14], Bayesian classification and
Centroid-Based method [16,13]. Among the statistical techniques, the SVM is
one of the most efficient technique in solving classification problem. In SVM, the
hyperplane is constructed to seperate two groups of data. Not only the accuracy
of classification, the margin between classes is maximized also. However, SVM
require the user to setup some parameters to the systems. Firstly, there are
many kind of mapping function can be selected. Then, the value of parameters
in mapping function and SVM itself need to set. The setting affects directly to
the performance of SVM.

Recently, there are some studies focusing on parameter tuning for SVM. As an
early work, Chapelle and Vapnik [4] presented a well-known method called the
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gradient descent algorithm for choosing multiple SVM parameters. To achieve
invariance against linear transformations due to the problem of scaling and rota-
tion in the space of SVM parameters, the covariance matrix adaptation evolution
strategy (CMAES) was initiated by Friedrichs and Igel [5,?]. Howley and Mad-
den proposed the genetic kernel for SVM, and evaluation technique of genetic
kernel. Moreover, L1 and L2 SVM was proved to use Radius-Margin bound with
BFGS Quasi-Newton method [6,10].

In this paper, the technique for tuning SVM parameter is described. The
multiple kernel function is presented by the tree structure, called Kernel Tree.
Kernel Tree is guaranteed to be positive semi-define function. In parameter tun-
ing step, the genetic programming and BFGS Quasi-Newton method are used
to search the optimal in global and local space respectively. In the rest of this
paper, Section 2 describes the concept of SVM, kernel mapping and Mercer’s
theory. Section 3 presents the genetic programming and kernel tree. In section
4, the gradient method for tuning SVM parameter is shown. Section 5 shows the
idea when genetic and gradient are combined together. In section 6, experimen-
tal results from 20Newsgroup and WebKB are given. Finally, the conclusion is
made in section 7.

2 Overview of Support Vector Machines

2.1 Support Vector Machines (SVM)

SVM [1,2,3] is a linear binary learning system, unlikely with other linear classi-
fier e.g. Linear Discriminant Analysis (LDA), SVM finds an optimal separable
linear hyperplane by considering both minimum error and maximum margin
conditions. Given a set of examples xi with labels yi : {(xi, yi) | xi ∈ RN and
yi ∈ {−1, +1}}. The hyperplane is constructed by solving the following con-
strained quadratic optimization problem:

min
w,ξi,b

{
1
2

‖w‖2 + C
∑

i

ξi

}

(1)

subject to

yi (< xi, w > +b) ≥ 1 − ξi, i = 1, . . . , n

and

ξi ≥ 0, i = 1, . . . , n

where w and b are the variables of a linear classifier. The regularization parameter
C is the tradeoff between the empirical error and the complexity of model.
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2.2 Kernel Functions, Kernel Properties and Mercer’s Theory

The linear SVM can be applied to non-linear problems easily, by using mapping
technique called Kernel trick . Normally, there are some common kernel functions
that frequently used such as, Linear kernel, Polynamial kernel, RBF kernel and
Sigmoid kernel. Based on the Mercer’s theory, the following properties [2,7] are
valid.

Here, K1 (·) and K2 (·) are two arbitrary kernel functions.

1. K (xi, xj) = α1K1 (xi, xj) + α2K2 (xi, xj) where α1, α2 are positive scalar
values.

2. K (xi, xj) = K1 (xi, xj)K2 (xi, xj)
3. K (xi, xj) = exp (K (xi, xj)) where exp (x) is an exponential function of x.
4. K (xi, xj) = xT

i Axj where A is n × n positive definite matrix.

With these four properties, a multiple kernel function can be created by ap-
plying these theories. For example: K (xi, xj) = α1K1 (xi, xj)

2 + α2K2 (xi, xj)
2

is Mercer’s kernel by considering the first and the second properties. Anyway,
the more number of functions we combine the more complicated the combined
function is and the more parameters the function has.

3 Genetic Programming for Feature Selection

Genetic programming (GP) is one of the most well-known techniques in the
field of genetic and evolutionary computation. The population are generate with
some randomly citerias. In each generation, there are only good samples are
survived and chosen to generate offspring (new generation). Unlike other evolu-
tional method, GP algorithm works with tree structure data. In this paper, the
tree structure is designed for representing a kernel function.

3.1 A Kernel Tree

As mentioned above, basically the kernel function satisfies the properties de-
scribed in Mercer’s theory. The tree structure can be designed to fulfill these
kernel properties. Therefore, two kinds of nodes can be used to represent a ker-
nel function.

1. Operation Node: A node in a tree that presents an operation with the
Mercer ’s kernel properties. Two possible nodes are as follow.

- Additional Node: it represents the fol-
lowing additional properties
K (xi, xj) = α1K1 (xi, xj) + α2K2 (xi, xj)
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- Power/Multiply Node: it represents
the following properties
K (xi, xj) = K1 (xi, xj)

β1 K2 (xi, xj)
β2

where β1 and β2 are positive integer. This
equation can be derived from second prop-
erty.

2. Basis Kernel Node: A node in a tree that are constructed for represent-
ing common kernel functions. These nodes represent leaf nodes. Some common
functions are linear, polynomial, and RBF kernels.

- Linear Kernel Node:
K (xi, xj) = (xi · xj)

- Polynomial Kernel Node:
K (xi, xj) = ((xi · xj) + θ)d

- RBF Kernel Node:
K (xi, xj) = exp

(−‖xi−xj‖2
c

)

An operation node and a basis kernel node naturally satisfy Mercer’s proved
properties. Therefore, the function that is constructed as a tree with these
nodes are guaranteed to be a Mercer kernel. Figure 1 shows an example of ker-
nel trees represent the equation K (xi, xj) = α1

(
K1 (xi, xj)

β1 K2 (xi, xj)
β2

)
+

α2 (α3K3 (xi, xj) + α4K4 (xi, xj)). In this paper, the sigmoid function is not cho-
sen to be a basis function because the sigmoid function may not be a PSD
function for all cases of parameters.

3.2 Genetic Programming Algorithm

In an initial setup, GP generates the tree population randomly. For each iter-
ation, only good trees are survived and used to generate new offspring (new
generation). The steps of GP algorithm are:

Fig. 1. The tree of function K (xi, xj) = α1

(
K1 (xi, xj)

β1 K2 (xi, xj)
β2

)
+

α2 (α3K3 (xi, xj) + α4K4 (xi, xj))
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1. Initial the first generation. In the first generation, p number of trees are
generated randomly. Normally, the first generation is used ramped-half-and-
half method, which half number of population are guaranteed to be maximum
depth.

2. Evaluate of each individual. Each individual population is evaluated the
fitness by averaging the five-fold cross-validation.

3. Select the best q and generate offspring. The best q individuals are chosen
to be parents of new generation. The p − q offsprings are created by using
mutation and crossover with the same probability.

4. Repeat Step 2 and 3 until converged. There are two conditions for stop, the
first condition is the iteration reachs the threshold. The second condition is
the average of best s parents is not change more than t iterations.

5. Build SVM model using the n best tree. Finally, the best s trees can be
obtained and used to create the SVM model.

4 Gradient Search for Feature Selection

The gradient method is one of the most effective tools for finding the local
optimal solution. The advantages of the gradient method is the convergent speed,
comparing to the evolutional strategy. However, this method can find only the
optimal point that is close to the current position.

In applying gradient to SVM feature selection, the empirical risk is estimated
from radius-magin bound [6,10], or Leave-One-Out (LOO) bound. The gradient
of R2‖w‖2 can be calculated by following equations:

∂f

∂C
=

1
m

[
∂‖w‖2

∂C
R2 + ‖w‖2 ∂R2

∂C

]
∂f

∂θi
=

1
m

[
∂‖w‖2

∂θi
R2 + ‖w‖2 ∂R2

∂θi

]

(2)

The partial differtiation are shown here:

∂‖w‖2

∂C
=

∑

i

αi/C2 ∂R2

∂C
= −

∑

i

βi (1 − βi) /C2 (3)

∂‖w‖2

∂θi
= −

∑

i,j

αiαjyiyj
∂K̃ (xi, xi)

∂θi

∂R2

∂θi
= −

∑

i,j

βiβj
∂K̃ (xi, xi)

∂θi
(4)

where θi is the parameter of the kernel function.
In the task of minimize the objective function, there are several gradient

descent algorithms such as BFGS Quasi-Newton’s method.

5 Perspective of the Combination Between Genetic and
Gradient Method

The nature of genetic approach and gradient approach are not the same. The
genetic approach is based on evolutional process that work well on finding the
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Fig. 2. Tree 1 and Tree 3 ,that have the same tree structure, are corresponding to two
points in same parameter space. While tree 2 is in another space.

optimal in a search space. But the convergence speed of the approach is slow due
to high computational. Normally, the improvement of GP becomes slow down
when the iteration increases. On the other hand, the gradient approach finds an
optimal solution near the initial within short period. But it cannot guarantee
that the solution is global optimal. In combining both advantages of these two
approach, the genetic programming is used in the first step to search in wide
area. As shown in Figure 2, each tree is a sample when varying parameters in
a space. The trees that have the same structure are sampled from the same
space. The system selects only the points that locally give a good evaluation.
The gradient method is used to find the optimal besides each selected point.

6 Experimental Results

6.1 Datasets

The experimental was performed on two benchmark datasets that are 20News-
Group and Webkb. 20Newsgroups consists of 20 groups of news from Usenet
article,which contains around 1,000 documents per group from overall 19,997
documents. WebKB consists of WebKB1 and WebKB2 that contain 7 and 5
classes respectively. The summarized information of these datasets are shown in
Table 1 also.

In the experiment, we compares two methods. The first method is Gradient
descent (BFGS Quisi-Newton) tuned by adjusting the parameter of single RBF
kernel. The initial values are log(C) = 1 and log(γ) = 1. The second method is
GP+Gradient method. On the part of GP, the maximum depth is 5. The number
of populations for each generation is 30,and selects 10 parents. The GP run 5
iterations to get the best 10 trees. Then, the parameters in each selected tree
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Table 1. Characteristic of Webkb and 20Newsgroup Dataset

Dataset Type #Docs. #Cls #Docs/#Cls

20Newsgroup Plain Text + Header 19,997 20 1,000
WebKB1 HTML 8282 5 Table 2
WebKB2 HTML 8282 7 Table 2

Table 2. Accuracy (%) of RBF kernel and Tree kernel on 20NewGroup, Webkb1 and
Webkb2

Datasets RBF (Gr) Tree (GP + Gr)

20NewGroup 88.2967 95.4765
WebKB1 76.8415 85.5897
WebKB2 86.90 94.633

will be finely tuned with BFGS Quisi-Newton. Moreover, 5-fold cross-validation
is applied in all experiments.

From the result, the use of GP + Gr method over Tree kernel gets a better
performance for all datasets. The main advantage of the proposed method over
the gradient method is tree kernel able to represent more the complex function
(multiple kernel) while the gradient method needs user to set the function. Also
when many different shape tree are generated, it means that we can search more
in parameter space. While simple gradient method cannot search out of the func-
tion space. However, tree kernel with GP + Gr method need more computational
than simple gradient method. So, we need to set the number of GP iteration to
limit the computational cost.

7 Conclusion

In the paper, the kernel tree is suggested to solve the problem of SVM parameter
tuning. The tree kernel can represent multiple kernel and it still holds properties
according to Mercer’s theory. The GP the optimization method that used to find
the solution of the problem. In GP, the cross-validate is the fitness function. To
limit the problem of slow convergence, BFGS Quasi-Newton method is used to
do a fine tuning for all selected tree.
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Abstract. As biological databases grow larger, effective query of the biological 
sequences in these databases has become an increasingly important issue for 
researchers. There are currently not many systems for fast access of very large 
biological sequences. In this paper, we propose a new approach for biological 
sequences similarity querying in databases. The general idea is to first trans-
form the biological sequences into vectors and then onto 2-d points in planes; 
then use a spatial index to index these points with self-organizing maps (SOM), 
and perform a single efficient similarity query (with multiple simultaneous 
input sequences) using a fast algorithm, the multi-point range query (MPRQ) 
algorithm. This approach works well because we could perform multiple 
sequences similarity queries and return the results with just one MPRQ query, 
with tremendous savings in query time. We applied our method onto DNA and 
protein sequences in database, and results show that our algorithm is efficient in 
time, and the accuracies are satisfactory. 

1   Introduction 

Biological databases are becoming increasingly important, and their sizes are growing 
very rapidly, as this is the only plausible way to store newly sequenced protein or 
gene sequences. For example, GenBank already contains 56,037,734,462 base pairs 
and 52,016,762 DNA sequences as at 2005. For protein sequences, currently Release 
50.8 of Oct 3rd, 2006 of UniProtKB/Swiss-Prot contains 234,112 sequence entries, 
comprising 85,963,701 amino acids abstracted from 146,463 references. The 
increasing size of biological databases is a boon for researchers in bioinformatics, but 
this is only true if they can retrieve information from these databases effectively 
(reasonable speed and accuracy). Two approaches exist for querying sequences. 

The first is to perform database search based on sequence alignment [1]. Sequence 
alignment algorithms search for, in the database, all the sequences matching the query 
sequences. Since the time to perform sequence alignment increases proportionally to 
the size of the database, these algorithms become very slow for large sequence 
databases because databases size experienced exponential growth. 
                                                           
* Corresponding author. 
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The second approach is to use schemes similar to the BLAST algorithm [2, 3] or 
PatternHunter algorithm [4]. BLAST finds regions of local similarity between 
sequences. It compares nucleotide or protein sequences to sequences in databases and 
calculates the statistical significance of matches. It can be used to infer functional and 
evolutionary relationships between sequences as well as help identify members of 
gene families. Though BLAST is fast, it does not guarantee to output all the matched 
sequences given the query sequences. At the same level of sensitivity as BLAST, 
PatternHunter is able to find homologies between sequences as large as human 
chromosomes, in mere hours on an entry-level PC. It can even approach the Smith-
Waterman [1] exhaustive dynamic programming sensitivity at speed 3,000 times 
faster. However, the sensitivity of PatternHunter is still not as close as algorithms 
based on the first approach. 

Accordingly, we ask the question of how to cope with the biological sequences 
database so that the query is efficient, and it can output as many matched sequences 
as possible. In this paper, we propose a new approach for sequences similarity search. 
The basic idea is to map all biological sequences in the database onto a plane as 2-d 
points through the self-organizing map (SOM) [5], where they are spatially indexed 
thereafter with a spatial data structure such as the widely-used R-tree. Then, we 
perform similarity search using our multi-point range query (MPRQ) algorithm [6, 7] 
that can support multiple simultaneous queries efficiently. 

2   SOM, MPRQ and Similarity Query 

In this paper, we transform the problem of searching for similar sequences in 
sequences database to the problem of spatial search of query points in 2-d planes. Our 
approach, as mentioned before, has two major components: the self-organizing map 
(SOM) and the multi-point range query (MPRQ) algorithm. 

2.1   SOM for Sequences Transformation 

The SOM algorithm can be applied on biological sequences to form a similarity 
“map” via unsupervised training. The map is a grid of artificial nodes which are 
adapted to closer match sequences from an input database DB. Each node is a vector 
of statistical values. The node that is most similar to an input sequence S ∈ DB, the 
“winner” node, is updated to be more similar to S while the winner’s neighbors are 
also updated to be more similar to S but at a smaller degree. As a result, when a SOM 
is trained over a few thousand epochs, it gradually evolves into clusters whose data 
(sequences) are characterized by their similarity. Because of this, SOM could indicate 
relationships between clusters. Therefore, it is very suitable for analysis of the 
similarities among sequences and is widely used [8]. 

Biological sequences can be transformed to statistical vectors via SOM. In fact, 
entities that can be trained by SOM can be very general. For any entity x and y, a 
sufficient condition for them to be mapped into a SOM map is that some kind of 
symmetric distance function dist | dist(x, y) is definable for all pairs (x, y). In our 
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implementation, we used the Euclidean (L2) distance metric as similarity measure 
between any 2-d point representing sequences. 

2.2   MPRQ for Query 

Using the MPRQ algorithm from our earlier work, we are able to quickly perform 
similarity search of biological sequences in the database. The MPRQ algorithm 
accepts as input a set of query points and a search distance d, and returns all points 
(spatially indexed) that is within a distance d from any of the query points. Formally, 
given a spatial database DB, a set of points P, and a distance d, MPRQ(P, d) = { pi ∈ 
DB, pj ∈ P | dist(pi, pj) ≤ d }. The MPRQ algorithm supports any 2-d data structure 
including bulkloaded R-tree [9] which we use. 

The general idea behind MPRQ algorithm is to perform only one pass of the R-tree 
while simultaneously process multiple query points (in this case, transformed from 
input sequences) in one shot. At each minimum bounding node R in the R-tree, the 
algorithm processes all the children of R against all the query points. MPRQ takes 
O(logB n + k/B) time where B is the disk page size. Due to space constraints, we refer 
the readers to [6, 7] for more details. Previous experiments [7] showed that a large 
input (many points) does not increase the overall query time by a lot. This is due to 
the intelligent pruning rules embedded within MPRQ. 

2.3   Similarity Query 

The use of SOM is to achieve a high correlation between the proximity of 2-d points 
on the SOM map and the similarity between mapped sequences. The use of MPRQ 
algorithm is to achieve the best possible efficiency in finding similar sequences. 
Together, both SOM and MPRQ, as tools for similarity queries, present an alternative 
approach to studying the similarity query of biological sequences. 

Both the query sequence(s) and sequences databases are transformed into statistical 
vectors, ready as input for SOM. Once the sequences in database are mapped to a 2-d 
plane with SOM, we transform the query sequence(s) into query point(s) in 2-d space 
and proceed to query. At this point, it is possible to use many sequences as the query, 
which translates to multiple points in 2-d space as the input for MPRQ.  

Apart from a set of query points, MPRQ also accepts as input a parameter d that 
controls the radius of the search distance. The larger the value of d, the more 
similarity results will be returned. 

When the algorithm has terminated, the query results (2-d points, each representing 
a similar sequence) obtained from MPRQ are collected for analysis. For each point in 
the result, we inspect the 2-d point object which carries a “tag id” that identifies the 
original sequence. Fig. 1 illustrates the whole process. 

BLAST scores the sequences similarity based on a distance matrix. However, in 
our approach, we do not use a distance matrix; instead, the similarity measure of our 
approach is derived from the distance between 2-d points. To compute the number of 
matched sequences, we score and validate the candidates generated by MPRQ with 
the same distance matrix as BLAST (Fig. 2 (a)). By doing so, the results for our 
approach can be fairly compared with BLAST results. 
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3   Experiments and Results 

3.1   Datasets and Experiment Settings 

The DNA sequences database are based on the GenBank database (Release 155.0, 
ftp://ftp.ncbi.nih.gov/blast/db) [10] and the protein datasets are based on the Uni-
ProtKB/Swiss-Prot database [11]. The specifications of these datasets are in Table 1. 

MPRQ

Index 2-d 
points 

Identify real 
sequences 

Query sequence(s) 

2-d points 

Query results 
(2-d points) 

Similar sequences 
(results)

Sequences DB 

R-Tree

SOM transformation 

2-d points 

vectors vectors 

 

Fig. 1. An novel approach to process similarity sequences queries over the sequences database. 
Dashed rectangles represent data and solid rectangles represent method or algorithms. 

Table 1. Specifications of datasets used for experiments 

Type Datasets No. of seqs Average seq length Query length 
DNA E. Coli 400 11,801.8 
 Yeast 17 723,939.5 
 Drosoph 1,170 106,144.8 

100–2,000 

Protein Yeast 6,298 478.6 
 Drosoph 14,331 507.7 

100–200 

Notice that for DNA sequences, every dataset has few sequences, but each DNA 
sequence is very long. On the other hand, for protein sequences the number of 
sequences is large, and the average sequence length is about 500. It is apparent that 
the search space is very large for DNA sequences, especially for Drosoph datasets. 
Thus, it is a challenge to intelligently prune the search space for sequences to 
maintain query efficiencies. Query sequences were randomly selected from their 
respective datasets. 

For comparison with other database search algorithms, we used NCBI BLASTn [4] 
for sequences search on DNA sequences, and NCBI BLASTx [12, 13] for sequences 
search on protein sequences. These two algorithms are widely used. For mapping the 
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biological sequences onto points in planes, we used the SOM_PAK [14] package. We 
implemented our program in C++ and Perl. The experiments were performed on a 
Linux PC machine with 3.0GHz CPU and 1.0GB RAM. 

The accuracy of the sequences obtained is of great importance. For a result ρi and 
the real sequence ρ of DNA sequences, the accuracy score was computed in the same 
way as BLASTn for DNA sequences, and BLASTx for protein sequences. We call 
this function BLAST_Score. 

accuracy(ρi, ρ) = BLAST_Score(ρi, ρ) (1) 

The accuracy measures the portions of the real sequence that are in the results. 
Current algorithms generally use the number of “matches” as an indicator of the query 
results quality. For a result ρi and real sequence ρ, if accuracy(ρi, ρ) exceeds a 
threshold value t (Thresholdacc), then we say it is a match. The number of match 
results is defined as 

|match results| = No. of ρi | accuracy(ρi, ρ) > t (2) 

Since the BLASTn algorithm treats DNA sequences with scores above 10.0 as 
good results, we had also set the threshold value t of 10.0 and take these DNA 
sequences as matches. For protein sequences, the threshold value t is also 10.0, and 
the protein sequences with score above these are considered matches. 

Based on the number of match results, we define the match ratio Rm. 

Rm = 
|match results|

 |DB search results|  (3) 

where “DB search results” are the results given by database search with the combined 
SOM and MPRQ approach. 

Type DNA Protein 
match 1 

mismatch -3 
BLOSUM62 

gap open cost -5 -11 
gap extend cost -2 -1 

Thresholdacc 10.0 10.0 

(a) 
 

(b) 

Fig. 2. (a) Scoring for DNA and protein sequences alignment, (b) A sample of SOM training 
of E. Coli for a 100x100 orthogonal grid being visualized. Similar colors (or shades of grey) 
represent similarity of trained sequences. 

3.2   Results 

We first analyzed the process of mapping biological sequences onto 2-d plane. The 
aim is to test how well the distances between points on the planes reflect the 
similarities between sequences. Results show that the closer the two points on the 
plane, the more similar the sequences that they represent (details not shown here due 
to space constraint, but Fig. 3 give some clues of it). And since sequences of high 
similarity were grouped together by SOM, we believe that SOM is suitable for 
clustering analysis. Fig. 2(b) shows a sample of the SOM map that we trained from 
the E. Coli dataset. 
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Next, we analyzed the performance of the spatial index used to index the points 
from the SOM so as to guarantee efficient querying. Extensive experiments have been 
conducted in [6, 7] and we had showed that (details not reproduced here) the query 
time for MPRQ is very fast (< 1 sec) even with a large number of query points. 

In Fig. 3 we studied the effect of the search distance d on the number of results 
obtained from database search, as well as the number of matched results from 
database search. We observe that both the number of database search results and the 
number of matched results increase as the search distance d increases. This indicates a 
high correlation between the proximity of 2-d points on the SOM map and the 
similarity between the sequences. The number of matches do not increase greatly after 
d=10000 but the time increase significantly (details not shown here). Thus, in the 
following experiments, we had selected d=5000 and d=10000 for further analysis and 
comparison. From the same figure, we also infer that the match ratio Rm is very high. 
This empirically proves the effectiveness of our algorithm. 
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(a) DB search results (b) Match results 

Fig. 3. The increase of (a) the number of database search results and (b) the number of match 
results as a function of the search distance d 

We also compared our method with other existing biological sequences search 
algorithms. For DNA sequences from GenBank database, we compared with 
BLASTn. We tested the effect of the (i) size of inputs for simultaneous processing, 
(ii) search distance and (iii) total query time. We performed single input query (m = 1) 
and multiple input query (m = 10) using 10 sequences and we measured the total 
number of similar sequences. Table 2 depicts the results.  

We noticed that our algorithm does not produce as many results as BLASTn. For 
single query, we think this is because BLASTn is more accurate than our algorithm. 
And for multiple queries, this is also partly due to the fact that BLASTn does not 
support multiple inputs; so for m = 10, we perform 10 separate queries, and thus the 
sequences reported includes some (though not many) overlaps. 

The search distance parameter d influences the number of similarity results 
returned. We had selected d=5000 and d=10000 for experiments. As expected, a 
larger d value returns more results without significantly increasing the query time. 
Also, we observed that our algorithm performs very fast, especially for multiple 
inputs. Compared with BLASTn, our algorithm is faster by 1 to 2 orders of 
magnitude. The reason behind this is that our approach has transformed the similarity 
query problem for sequences into range queries of 2-d points. 
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Table 2. Comparison of the number of matched sequences and query time (secs) between our 
algorithm and the BLASTn algorithm 

Datasets 
Search 

distance (d) 
Our algorithm 

(no. of match seqs) 
BLASTn 

(no. of match seqs) 
Our algorithm 

(secs) 
BLASTn 

(secs) 
  m = 1 m = 10 m = 1 m = 10 m = 1 m = 10 m = 1 m = 10 

E. Coli 5000 5 110 0.010 0.011 
 10000 13 303 

37 403 
0.013 0.015 

0.1 0.5 

Yeast 5000 1 32 0.009 0.012 
 10000 2 90 

5 115 
0.011 0.011 

0.2 1.6 

Drosoph 5000 2 301 0.016 0.021 
 10000 4 500 

14 869 
0.019 0.022 

0.3 5.1 

We also performed experiments on real protein sequences from UniProtKB/Swiss-
Prot database. We compared our algorithm with BLASTx. The results are shown in 
Table 3. 

Table 3. Comparison of the number of matched sequences and query time (secs) between our 
algorithm and the BLASTx algorithm on protein sequences 

Datasets 
Search 

distance (d) 
Our algorithm 

(no. of match seqs) 
BLASTx 

(no. of match seqs) 
Our algorithm 

(secs) 
BLASTx 

(secs) 
  m = 1 m = 10 m = 1 m = 10 m = 1 m = 10 m = 1 m = 10 

Yeast 5000 1 16 0.010 0.012 
 10000 3 20 

4 25 
0.010 0.014 

0.2 1.3 

Drosoph 5000 3 12 0.012 0.015 
 10000 8 31 

10 36 
0.016 0.019 

0.1 0.7 

For single query, the number of matched protein sequences is about 20% to 75% of 
those by BLASTx on Yeast datasets; and are about 30% to 80% on Drosoph datasets. 
For batch query, large amount of matched protein sequences are also observed. This 
indicates that our algorithm also perform well on protein sequences queries.  

Similar to Table 2, the query time of our algorithm is 1 to 2 magnitudes smaller 
than that of BLASTx. This is very significant, especially for large query sizes. 
Comparing the query time on E. Coli, Yeast and Drosoph DNA sequences datasets, 
we observe that the process time did not increase greatly with the increase of dataset 
size. The experiments on Yeast and Drosoph protein sequences datasets also show the 
same phenomenon. Furthermore, the query time is affected only slightly by query size 
and database size. This is a very good characteristic for larger scale database queries, 
in which query size is large, and database size is also large. Though we did not 
perform experiments on larger genome datasets such as BLAST nr dataset, we believe 
that the query time on large dataset will not increase too much. 

We do, however, note that by using our algorithm, the original sequences database 
must be preprocessed before efficient queries can be performed. Most of the current 
sequences databases for queries are relatively stable (i.e. published databases are 
rarely changed radically) and most of the queries are performed on those stable 
sequences in the database. Therefore, preprocessing time can be seen as only a small 
one time overhead to the overall query efficiency. For example, the preprocessing 
time is about 1 minute for Yeast DNA dataset, and 3.5 hours for Yeast protein dataset. 
We also note that BLASTn and BLASTx also need preprocessing time. It takes  
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about 1 minute and a few minutes for these algorithms to preprocess Yeast DNA and 
Yeast protein datasets respectively. 

Since the preprocessing time is proportional to the size of the datasets, for large 
datasets such as BLAST nr genome sequences, the preprocessing time will be a big 
overhead. However, as the number of queries performed increases, the total cost for 
each query actually decreases. As a result, if a sufficiently large number of queries are 
serviced, our algorithm can perform better than BLAST as our query time is 1 to 2 
orders of magnitude faster. 

4   Discussions and Conclusion 

As the sizes of biological databases grow, we believe algorithms to effectively search 
biological sequences in the database will become the focus for many scientists. In this 
study, we proposed a new approach for indexing biological sequences in database so 
as to facilitate fast similarity queries. Essentially, this algorithm transforms sequences 
to vectors and then to 2-d points on SOM map, and use SOM and MPRQ for fast and 
accurate sequences query. Experiments show that our algorithm is not only efficient 
but also accurate in searching for similar sequences in database.  

Since this is our first attempt on this problem, we know that there are still many 
areas in our current work that can be improved. For instance, the scale of our 
experiments is still relatively small, so larger scale experiments are needed to check 
this approach further. Also, it is possible to research better data structures and 
algorithms as spatial indexes that take into consideration some characteristics of 
biological sequences rather than mere 2-d points. 

There are still many related problems waiting for further investigations. One of 
these interesting problems is how to extract biological information from such an 
indexing process. Since sequences similarity at different levels may indicate their 
functional relationships, we think research in such areas may be especially useful for 
the comprehensive comparison of sequences. 
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Abstract. For the effective detection of various intrusion methods into a 
computer, most of previous studies have been focused on the development of 
misuse-based intrusion detection methods. Recently, the works related to 
anomaly-based intrusion detection have attracted considerable attention because 
the anomaly detection technique can handle previously unknown intrusion 
methods effectively. However, most of them assume that the normal behavior 
of a user is fixed. Due to this reason, the new activities of the user may be 
regarded as anomalous events. In this paper, a new anomaly detection method 
based on an incremental clustering algorithm is proposed. To adaptively model 
the normal behavior of a user, the new profile of the user is effectively merged 
to the old one whenever new user transactions are added to the original data set.  

Keywords: Intrusion Detection, Anomaly Detection, Data Mining, Clustering. 

1   Introduction 

Due to the advance of computer and communication technologies, damages caused by 
the unexpected intrusions and crimes related to computers have been increased 
rapidly. Previously, most of the intrusion methods were very primitive and simple. 
However, they have been changed into more complicated forms, and eventually, they 
have turned to some kinds of new advanced intrusion methods. As a result, it is not 
enough to preserve security just handling the known intrusion methods individually.   

The anomaly detection model focuses on the modeling the regular patterns of 
normal user activities. In anomaly detection, if a new user activity deviates from 
his/her normal behavior pattern, those can be regarded as a possible intrusion. Typical 
conventional anomaly detection researches [1, 2, 3] have used statistical approaches. 
The statistical methods have the strong point that the size of a profile for real-time 
intrusion detection can be minimized. However, the contents of a profile are rough to 
represent its precise characteristics since only statistical operators like average and 
standard deviation are employed. As a result, anomalous user activities can be 
incorrectly detected. Furthermore, the statistical methods cannot handle infrequent but 
periodically occurring activities.  

In this paper, a new anomaly detection method is proposed by clustering the 
considerable amount of transactional audit data. The proposed method is explained by 
a density-based clustering algorithm DBSCAN [4]. While the number of data objects 
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in a specific range of a domain is an important criterion for creating a cluster in 
conventional clustering algorithms, the number of distinct transactions i.e., the 
transaction support of data objects in a specific range is an important criterion in the 
proposed method. Therefore, not only the regular patterns of user normal activities 
but also infrequent activities can be effectively modeled by the proposed method. 
Meanwhile, when new transactions occur, their normal activities should be effectively 
reflected to the set of currently identified clusters. For this purpose, clustering should 
be performed on not only the set of new transactions but also all the previous 
transactions. Alternatively, an incremental clustering algorithm should be employed. 
These two methods need to maintain and process the set of all previous transactions. 
To avoid this, clustering can be only performed on the newly occurring transactions to 
produce collected data, and the clusters for total data are updated by the comparison 
between the previous clusters and the current clusters generated by using the newly 
collected data.  

This paper is organized as follows. In Section 2, a method of clustering the 
activities of transactions generated by a user is explained. In Section 3, how to update 
a profile incrementally is described. In Section 4, a method of detecting anomalous 
behavior is described. In Section 5, an anomaly detection method based on the 
proposed method presents and the performance of the proposed method are 
comparatively evaluated and discussed. Finally, this paper is concluded in Section 6. 

2   Clustering User Activities 

In this paper, the activities of a user are modeled by clustering similar activities based 
on various features. Each feature can be such as CPU usage, file access frequency and 
system call frequency. After clustering is performed on each feature, the abnormality 
of a new user activity can be identified by the clusters of past user activities. 
DBSCAN [4] is one of the most popular clustering algorithms and it finds the groups 
of similar data objects in a plain collection of data objects. The similarity among data 
objects is defined by a predefined clustering range λ. In other words, two data objects 
are similar if the difference between their values is within λ. Consequently, they can 
be contained in a same cluster. In addition, in order to identify the normal behavior of 
a user, a transaction support is considered additionally. The transaction support of a 
data group is defined by the ratio of the number of distinct transactions contained in 
the group over the total number of transactions. If the transaction support of the data 
group is greater than or equal to a certain number of distinct transactions i.e. 
minimum support smin, the group can be a cluster. Due to this mechanism, similar 
activities performed in a considerable number of distinct transactions are modeled as 
normal behavior [5].  

Let TS denote a set of transactions occurring previously i.e., TS = {T1, T2, …, Tn}. 
Let aij denote the jth activity in the ith transaction Ti (1≤i≤n) and let vk(aij) denote the 
kth feature value for the activity aij. Let D denote a set of all activities occurring until 

now i.e., U
n

i
iTD

1=

= . For the kth feature and an activity a, the similar group Gk
λ(a, D) 

with respect to a predefined clustering range λ is defined as follows: 

Gk
λ(a, D) = {a’ | vk(a) - λ ≤ vk(a’) ≤ vk(a) + λ , a’ ∈ D} 
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For the kth feature, the transaction support sup(Gk
λ(a, D)) of the similar group for an 

activity a is formally defined as follows: 
 
Definition 1. Similar group support  
For the kth feature, the transaction support of the similar group Gk

λ(a, D) for an activity 
a is represented as follows: 

D))(a,G,I(T
n
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Given the predefined values of a minimum support and a clustering range, clustering 
process is performed as follows. If the support of a neighbor set is higher than or 
equal to the specified minimum support, the neighbor set becomes a new cluster; 
otherwise, it is considered as noise. In this algorithm, to denote the on-going 
clustering state of each data object, a state marker is associated with each data object. 
The state of an object is denoted by three states: unclassified, noise and a cluster 
identifier. Initially, all data objects in D are unclassified but the state of an object is 
fixed to either noise or a cluster identifier that it belongs to. The detailed steps of the 
clustering algorithm are described as follows. 
 
[Step 1] Sort the data set D of the kth feature by an ascending order.  
[Step 2] Choose the smallest unclassified data object aij in the sorted data set D. If 

there is no such a data object, terminate.  
[Step 3] Retrieve Gk

λ(aij, D) from the data set D, and calculate the support of Gk
λ(aij, 

D) and compare it with smin. If the support is less than smin, make the state of the 
data object aij be noise and go to Step 2. Otherwise, mark the states of all objects 
in Gk

λ(aij, D) with a new cluster-id, and push them to the stack except aij.  
[Step 4] Read a data object current from the top of the stack, and then retrieve 

Gk
λ(current, D) from this object. If the support of Gk

λ(current, D) is greater than 
smin, mark the states of unclassified or noise objects in Gk

λ(current, D) with the 
current cluster-id.  

[Step 5] If the stack becomes empty, go to Step 2. Otherwise, go to Step 4.  

3   Updating a Profile 

As new sessions of a user take place, new transactions corresponding to the sessions 
need to be reflected to the set of current clusters. In other words, the activities of the 
newly occurring transactions may contain some new activities that are different from 
the old activities. Therefore, the current profile that has summarized the old activities 
should be updated accordingly. One simple way of reflecting is that clustering is 
performed on the total data containing the previous data and the current collected data. 
However, it includes two undesirable drawbacks. In other words, the previous 
clustering information is useless and the clustering cost becomes too expensive as the 
collected data increases. For solving these problems, clustering is only performed on 
the newly collected data, and the profile of total data is updated by the comparison 
between the previous profile and the current profile generated by using the newly 
collected data. Let DO and DN denote the set of previous transactions and a set of  
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Fig. 1. Three cases of cO ∈ C(DO) and cN ∈ C(DN)  

newly occurring transactions, respectively. The entire data set DT is DT = DO ∪ DN. 
Let C(D) denote a set of clusters identified in a data D. There are three different cases 

of two clusters cO ∈ C(DO) and cN ∈ C(DN) are illustrated in the Figure 3.   

Lemma 1. The intersection between two clusters cO ∈ C(DO) and cN ∈ C(DN) is 
contained in the updated profile.  

(Proof) Let Gλ(x, D) and sup(Gλ(x, D)) be the similar data group of x and its support, 

respectively. For any x ∈ cO ∩ cN, sup(Gλ(x, DO)) ≥ |DO|ㆍsmin and sup(Gλ(x, DN)) ≥ 
|DN|ㆍsmin. By sup(Gλ(x, DT)) = sup(Gλ(x, DO)) + sup(Gλ(x, DN)), sup(Gλ(x, DO)) + 
sup(Gλ(x, DN)) ≥ |DO|ㆍsmin + |DN|ㆍsmin = |DT|ㆍsmin. Hence, cO ∩ cN is contained in 
the updated profile.                ■ 

Lemma 2. The data not contained in both of the previous profile C(DO) and cluster 
set C(DN) is not contained in the updated profile C(DT).  

(Proof) Let DO-C(DO) and DN-C(DN) be the area which cannot generate any cluster in 

historical data and in recent data, respectively. For any x ∈ (DO - C(DO)) ∪ (DN - 
C(DN)), sup(Gλ(x, DO)) < |DO|ㆍsmin and, sup(Gλ(x, DN)) < |DN|ㆍsmin. As sup(Gλ(x, 

DT)) < |DT|ㆍsmin, any cluster is not generated in (DO - C(DO)) ∪ (DN - C(DN)).         ■ 

In Figure 1, cO ∩ cN is contained in the updated profile by Lemma 1 and, (cO ∪ cN)c is 
not contained in that by Lemma 2. Therefore, the data contained in cO ∩ cN and (cO ∪ 
cN)c is not necessary to be accessed in the clustering process. However, the data 
contained in cO

c ∩ cN and cO ∩ dN
c needs to be accessed because any cluster can be 

existed. In this case, cO
c ∩ cN is mined in DO by a cluster containing cO ∩ cN. On the 

other hand, cO ∩ dN
c is mined in DO by a cluster cO ∩ cN. The cluster updating 

algorithm is as follows.   
 
[Step1] The clustering is performed using the newly collected data DN.  
[Step2] The intersection between the previous profile C(DO) and the cluster set C(DN) 

from DN is inserted to C(DT).   
 

cO cN 

cO cN 

cO cN 

cO ⊃ cN 

cO ∩ cN ≠ ø 

cO ∩ cN = ø 
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[Step3] Select ci contained in C(DT) and expand it forward or backward with 
aforementioned expanding method. During the expansion of a cluster ci, if ci 

∩ cj ≠ φ (cj ∈ C(DT) ), ci and cj are merged. 
[Step4]  If there is no cluster to be expanded, procedure terminates. 
 

The performance of profile updating is a very critical issue. If the historical data DO 
and the recent data DN are similar, the searching time for the original data will be very 
small. On the other hand, if DO and DN are different, the searching time will be very 
large. 

4   Detection of User Anomaly 

A user profile maintains a set of clusters for each feature generated by the proposed 
clustering algorithm. A cluster in a profile is represented by a tuple (average, support, 
length). The average of a cluster is the average value of all the data objects that are 
within the range of the cluster and the support of a cluster represents its actual support 
i.e., the ratio of distinct transactions whose data objects lie in the range of the cluster 
over the total number of transactions. Finally, the length of a cluster is represented by 
the minimum and maximum values of the cluster.  

The transaction support of a cluster is important to identify the abnormality of the 
activities of a user. When an abnormal activity is detected between two adjacent 
clusters of the same feature, the abnormality of this activity is measured by the 
relative distance between the clusters as follows. 

 

Definition 2. Relative Distance  
Give a cluster C of a specific feature, the relative distance R(C, v) to the 
corresponding feature value v of a user activity is defined as follows.  

⎪⎩

⎪
⎨

⎧ ≠−⋅
=

otherwise   0

0 length(C) if   
length(C)

|vavg(C)|sup(C)

v)R(C,                            

In order to detect an anomaly for the online activities of a user, when a user logs in, 
his or her profile is pre-fetched to memory and the subsequent online activities of the 
user are monitored by evaluating the abnormality between the online activities and 
their corresponding clusters of related feature in the profile. The degree of 
abnormality increases as the difference between the current user activities and the 
profile becomes larger. For an online activity of a user, the gross abnormal degree of 
all the features related to the activity is defined by Definition 3.   
 
Definition 3. Degree of Abnormality  
Let p denote the number of features related to an activity a and Ck denote the closest 
cluster of the kth feature defined by Definition 3 for the corresponding feature value 
vk(a) of the online activity. The degree of abnormality )(aρ  for an activity a is 

defined as  
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In order to decide the rate of abnormal behavior in the new object o, a set of different 
abnormality levels can be defined relatively to the normal behavior of the historical 
activities. In this paper, two different abnormality levels (green, red) are considered in 
order to classify whether the activities of a new object are anomalous or not. The 
green level is safe while the red is warning. Let n denote the total number of 
transactions in a data set TS. The range of each level is set based on an average 
abnormality Φ(TS) and its standard deviation sd for the past transactions of a user as 
follows.   
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As a result, the abnormality of a specific online activity is set to one of the two levels 
as follows:   

green level: 0 ≤ ρ(a) ≤ Φ(TS)  ·red level: Φ(TS) + sd <ρ(a) 

5   Experimental Results 

In order to evaluate the performance of the proposed algorithm in a real world 
environment, we use DARPA log data sets collected in 1998 [6]. The feature values 
of the log data sets are extracted by BSM (Basic Security Module) [7] of Solaris 2.6. 
Among these signals, 84 signals are used as basic features in the experiments. In a log 
data set, an object is defined by the number of system calls occurring in a unix 
command on a host computer. We use two types of data sets for real world 
experiment: a programmer and a system administrator. In this experiment, the 
programmer is regarded as a target user for anomaly detection. To simulate the 
environment of each data stream, a data set is replicated multiple times and its 
transactions are looked up one by one in sequence. 

In Figure 2, the execution time of the proposed method is compared with that of 
the original DBSCAN method when the number of transactions is varied. In this 
experiment, the minimum support smin is set to 50% and the clustering range is set to 4. 
Also, 500,000 transactions are used for generate an initial profile. When the number 
of new transactions is varied from 1,000 through 500,000, the execution time of the 
proposed method is very lower than that of the DBSCAN method.  

Figure 3 shows the experimental results of the anomaly detection. The anomalies 
using the data generated with the normal user activity profile are shown in Figure 
3(a), and the anomalies using intrusion data are shown in Figure 3(b). In Figure 3(a), 
although the user activities were normal with 90% of the minimum support, the 
degree of user anomalies is very high. In other words, as the minimum support 
increases, the number of the generated clusters decreases and the degree of user 
anomalies for various activities increases. However, the degree of anomaly of an 
intruder should be high. Nevertheless, if the clustering range is greater than 32, the 
degree of the anomaly decreases drastically as shown in Figure 3(b). The reason is  
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Fig. 2. Comparison between DBSCAN and the proposed method  
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(a) normal user profile               (b) intruder profile 

Fig. 3. Degree of the anomaly with the variation of clustering criteria  

 
 
 
 
 
 
 
 
 
 

Fig. 4. Detection results 

that as a clustering range increases, the activities of an intruder can be close to the 
range. Therefore, if clustering range is set under 32 and minimum support is set under 
90%, the degree of the anomalies can be optimized. 

In Figure 4, the false alarm and detection rates in the proposed method are 
compared with those of NIDES. As shown in Figure 4, the false alarm rate of NIDES 
is higher than that of the proposed method. Furthermore, the detection rate of NIDES 
is much lower than that of the proposed method. As a result, the proposed method can 
detect an anomaly more effectively than NIDES.  
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6   Conclusions 

For the host-based intrusion detection, most of the previous approaches have been 
focused on the statistical techniques. But, with the statistical techniques, the 
anomalies can be detected incorrectly because it depends on the average values for the 
analysis of user activities. And it also has a drawback in analyzing infrequent user 
activities effectively. To handle this problem, we propose a new anomaly detection 
method is proposed by clustering the considerable amount of transactional audit data. 
Especially, abnormal activities of a user can be analyzed in various aspects. That is to 
say, these activities can be classified by many different types of features and for each 
feature, normal user patterns can be generated using the proposed clustering 
algorithm. In addition, when new transactions are added to the original data, the 
previous profile can be updated efficiently based on dynamic cluster updating. With 
the evaluation results, using the normal user patterns generated from the proposed 
scheme, we show that the user anomalies can be detected more easily and effectively 
than the previous statistical method. 
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Abstract. In this paper, in order to alleviate the problem that frequent
subtree miners often discover huge number of patterns, we propose two
algorithms for discovering closed ordered subtrees under anti-monotone
constraints about the structure of patterns. The proposed algorithms
discover closed constrained subtrees by utilizing the pruning based on
the occurrence matching and border patterns effectively. Experimental
results show the effectiveness of the proposed algorithms.

1 Introduction

Frequent pattern miners often discover unmanageable number of patterns. To
overcome this problem, several algorithms for mining closed patterns, e.g.[6,3],
as well as constrained patterns, e.g.[4,5], have been proposed. Although we can
expect to obtain more sophisticated and powerful miners by combining these two
approaches, no such algorithm for structured data mining is proposed as far as
the authors know. In this paper, in order to provide such kind of tools for mining
in tree-structured databases, we propose two algorithms for discovering closed
induced ordered subtrees under anti-monotone constraints about the shape of
patterns such as maximum size and maximum height. The proposed algorithms
discover closed constrained subtrees not by post-processing but by the search
with the pruning based on the occurrence-match and patterns on the border.

The support of an ordered subtree t in a database of ordered subtrees D is
defined as supD(t) = |{s ∈ D | t � s}|/|D| where t � s denotes that t is an
induced subtree of s. A constraint C is called anti-monotone if ∀t′ � t C(t) →
C(t′) holds where C(t) means that t satisfies C. A subtree t is called closed
constrained frequent ordered subtree, or closed constrained subtree in short, if
supD(t) ≥ σ, C(t) and � ∃s 	 t (C(s) ∧ supD(t) = supD(s)) hold. The problem
we treat in this paper is formally defined as follows: given D, C and σ, find all
closed constrained subtrees.

This paper is organized as follows. In section2, as the basis of discussion, we
show a naive algorithm for mining closed constrained subtrees. In section3, two
sophisticated algorithms having the pruning capability by using border patterns
are proposed. Experimental results with synthesized and real world datasets are

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 745–752, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Algorithm NaiveCCLOOT(D, σ, C)

1: for l ∈ L in order of ≤L
2: t := (0, l)
3: if C(t) ∧ supD(t) ≥ σ then
4: Check(t, D, σ, C)

Procedure Check(t, D, σ, C)

1: if TMD,C(t) = ∅ then output(t)
2: Refine(t, D, σ, C)

Procedure Refine(t, D, σ, C)

1: for d ∈ {d(rml(t)) + 1, · · · , 1}
2: for l ∈ L in order of ≤L
3: t′ := t(d, l)
4: if C(t′) ∧ supD(t′) ≥ σ then
5: Check(t′, D, σ, C)
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Fig. 1. A naive algorithm for mining closed constrained subtrees (left) and an example
of search process (right): A subtree Ai is enumerated before Aj(i < j)

shown in section4. Finally, we conclude the paper and describe future work in
section5.

2 A Naive Algorithm for Mining Closed Constrained
Subtrees

Let L be a finite set of labels, on which a total order ≤L is given. The size of
an ordered subtree t on L, denoted as |t|, is defined as the number of nodes in
t. The label of a node v is denoted as l(v). The depth of v, denoted as d(v), is
defined as the number of edges from the root to v. A depth-label sequence of t is
defined as S(t) = (d(v1), l(v1)) · · · (d(v|t|), l(v|t|)) ∈ (N × L)|t| where v1, · · · , v|t|
is the list of nodes obtained by pre-order traversal of t[2]. Since there exists
one-to-one relation between a tree and its depth-label sequence, we use t and
S(t) interchangeably. Given two depth-label sequences S(t1)=(d(v1

1), l(v1
1)) · · ·-

(d(v1
|t1|), l(v

1
|t1|)) and S(t2)=(d(v2

1), l(v2
1)) · · · (d(v2

|t2|), l(v
2
|t2|)), we denote t1 <lex

t2 if one of the following condition holds. Furthermore, if t1 = t2 or the third
condition holds, we say that t1 is a prefix of t2 and denote it as prefix(t1, t2).

1. ∃k s.t. ∀i(1≤i<k)(d(v1
i ) = d(v2

i ) ∧ l(v1
i ) = l(v2

i )) ∧ d(v1
k) > d(v2

k)
2. ∃k s.t. ∀i(1≤i<k)(d(v1

i ) = d(v2
i )∧l(v1

i ) = l(v2
i ))∧d(v1

k) = d(v2
k)∧l(v1

k) <L l(v2
k)

3. ∀i(1≤i≤|t1|)(d(v1
i ) = d(v2

i ) ∧ l(v1
i ) = l(v2

i )) ∧ |t1| < |t2|

All closed constrained subtrees can be mined by combining the rightmost
expansion[1] and the closedness check by transaction-match[3]. Rightmost ex-
pansion is an extension of an efficient set enumeration technique. Each time a
subtree t is enumerated, it is expanded into the set of new subtrees child(t) =
{S(t) (d, l) | 1 ≤ d ≤ d(rml(t)) + 1, l ∈ L} where rml(t) denotes the rightmost
leaf in t. By applying this expansion repeatedly, all subtrees can be enumerated
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without duplication[1]. Note that a subtree t′ s.t. prefix(t, t′) will be enumer-
ated via t. The set of transaction-match of t relative to a database D and an
anti-monotone constraint C is defined as follows.

TMD,C(t) = {t′ � t | |t′| = |t| + 1, ∀s ∈ D(t � s ↔ t′ � s), C(t′)}

By definition, if C(t) ∧ TMD,C(t) = ∅ holds, then t is a closed constrained
subtree. Note that, TMD,C(t) can be computed by t and its occurrences, the
closedness of a pattern can be judged by itself. We show a naive algorithm
named NaiveCCLOOT based on the above discussion in Fig.1(left). Note that,
in this algorithm, candidate subtrees are to be enumerated in the order of <lex.

3 Mining Closed Constrained Subtrees by Using Border
Patterns

We introduce occurrence-match[3] under anti-monotone constraints for incorpo-
rating some pruning capability into NaiveCCLOOT. Two subtrees t and t′ s.t.
t � t′ are said to be occurrence-matched if, for each occurrence of t, there exists
at least one corresponding occurrence of t′[3]. The set of left occurrence-match
of a tree t under an anti-monotone constraint C is defined as follows.

OML
D,C(t) = {t′ ∈ TMD,C(t) | t′ �∈ child(t), t is occurrence matched with t′}

For t and t′ ∈ OML
D,C(t), ∀xprefix(t, x)∃x′ prefix(t′, x′) supD(x) = supD(x′)

holds. However, unlike mining closed subtrees without constraints[3], the pruning
of t s.t. OML

D,C(t) �= ∅ causes incompleteness because C(x′) does not always
hold even if C(x) holds. For example, if A11 in Fig.1 is pruned based on A3 ∈
OML

D,C(A11), then a closed constrained subtree A14 will be never enumerated.
In order to realize the complete search with the effective pruning based on the

left occurrence-match, we employ the following basic strategy. While memorizing
some subtrees called border patterns during the search process, we apply the
pruning if all subtrees which are needed to maintain the completeness can be
restored by using border patterns. In the following two subsections, we show the
concrete algorithms for mining closed constrained subtrees by using positive and
negative borders.

3.1 Pruning by Positive Borders

A subtree t is called positive border relative to a database D, an anti-monotone
constraint C and minimum support threshold σ, denoted as B+

D,σ,C(t), iff C(t) ∧
supD(t) ≥ σ ∧ ∃ t′ ∈ child(t)¬C(t′) holds. Note that, if B+

D,σ,C(t), then some
child of t′ s.t. t ∈ OML

D,C(t′) might be a closed constrained subtree but be
pruned by the left occurrence-match. For example, A5, A7, A9 and A14 in Fig.1
are examples of positive border and A14 will be pruned because B+

D,σ,C(A5),
A5 ∈ OML

D,C(A13) and A14 ∈ child(A13).
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Algorithm posCCLOOT(D, σ, C)

1: Bd:= ∅
2: for l ∈ L in order of ≤L
3: t := (0, l)
4: if C(t) ∧ supD(t) ≥ σ then
5: Check(t, D, σ, C, Bd)

Procedure Check(t, D, σ, C, Bd)

1: if B+
D,σ,C(t) then Bd:=Bd ∪ {t}

2: if OML
D,C(t) �= ∅ ∧

3: ∀y ∈ OML
D,C(t)

4: ∃y′ ∈ [y]t,+D,C s.t. y′ <lex t then
5: T := prefixmin(

⋃
y∈OM

∗,+
D,C

(t){
6: x \ (y/t) | x ∈ Bd, prefix(y, x)})
7: for t′ ∈ T in order of <lex

8: if B+
D,σ,C(t′) then Bd:=Bd ∪ {t′}

9: Refine(t′, D, σ, C, Bd)
10: return
11: if TMD,C(t) = ∅ then ouput(t)
12: Refine(t, D, σ, C, Bd)

Procedure Refine(t, D, σ, C, Bd)

1: for d ∈ {d(rml(t)) + 1, · · · , 1}
2: for l ∈ L in order of ≤L
3: t′ := t(d, l)
4: if C(t′) ∧ supD(t′) ≥ σ then
5: Check(t′, D, σ, C, Bd)

Algorithm negCCLOOT(D, σ, C)

1: Bd:= ∅
2: for l ∈ L in order of ≤L
3: t := (0, l)
4: if supD(t) ≥ σ then
5: Check(t, D, σ, C, Bd)

Procedure Check(t, D, σ, C, Bd)

1: if B−
D,σ,C(t) then Bd:=Bd ∪ {t}

2: return
3: if OML

D,C(t) �= ∅ ∧
4: ∀y ∈ OML

D,C(t)

5: ∃y′ ∈ [y]t,−D,C s.t. y′ <lex t then
6: T := prefixmin(

⋃
y∈OM

∗,−
D,C

(t){
7: x \ (y/t) | x ∈ Bd,prefix(y, x)})
8: for t′ ∈ T in order of <lex

9: Check(t′, D, σ, C, Bd)
10: return
11: if TMD,C(t) = ∅ then ouput(t)
12: Refine(t, D, σ, C, Bd)

Procedure Refine(t, D, σ, C, Bd)

1: for d ∈ {d(rml(t)) + 1, · · · , 1}
2: for l ∈ L in order of ≤L
3: t′ := t(d, l)
4: if supD(t′) ≥ σ then
5: Check(t′, D, σ, C, Bd)

Fig. 2. The algorithms for mining closed constrained subtrees by using positive borders
(left) and by using negative borders(right)

Given two subtrees x and y ∈ OML
D,C(x), the set of subtrees whose child

might be pruned even if it is a closed constrained subtree is defined as follows.

B+
D,σ,C(x, y) = {y′ \ (y/x) | prefix(y, y′), B+

D,σ,C(y′)}

where y/x denotes a node v which is in y but not in x (e.g. A3/A11 = B), and t\v
denotes a tree obtained by removing v from t. For example, B+

D,σ,C(A11, A3) =
{A13, A15, A17}. By applying the rightmost expansion repeatedly to each element
in B+

D,σ,C(x, y), we can enumerate the subtrees which are potentially closed
constrained but are pruned by the left occurrence-match. For example, A14 will
be enumerated by the following procedure : A11 → A3(∈ OML

D,C(A11)) →
A5(prefix(A3, A5), B+

D,σ,C(A5)) → A13(= A5 \ (A3/A11)) → A14(∈ child(A13)).
Given a tree x, in order to guarantee the completeness, all elements in the

set
⋃

y∈OML
D,C(x) B+

D,σ,C(x, y) have to be considered. Since the positive borders
themselves are enumerated during the search process, it is necessary to com-
pute the above set by only the borders which have been already enumerated. In
NaiveCCLOOT , if y <lex x holds, then all element y′ s.t. prefix(y, y′) must be
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enumerated before x. Therefore, given a tree x, the condition under which the
set

⋃
y∈OML

D,C(x) B+
D,σ,C(x, y) can be computed is as follows.

∀y ∈ OML
D,C(x) ∃y′ ∈ [y]x,+

D,C s.t. y′ <lex x

where [y]x,+
D,C = {y′ ∈ OML

D,C(x) | B+
D,σ,C(x, y) = B+

D,σ,C(x, y′)}

The set [y]x,+
C,D denotes the equivalence class on the left occurrence-match of x.

From the above discussion, we show the algorithm named posCCLOOT for
mining closed constrained subtrees by using positive borders in Fig.2. In this
algorithm, OM∗,+

D,C(x) = {y ∈ OML
D,C(x) | � ∃y′ ∈ [y]x,+

D,C y′ <lex y} denotes the
set of representatives of the equivalence classes on the left occurrence-match. A
function prefixmin(X) = {x ∈ X | � ∃x′ ∈ X, x �= x′, prefix(x′, x)} is used for the
avoidance of the duplicated enumeration.

3.2 Pruning by Negative Borders

The algorithm for mining closed constrained subtrees based on the negative
border is quite similar to posCCLOOT.

A subtree t is called negative border relative to D, C and σ, denoted as
B−D,σ,C(t), iff C(t \ rml(t)) ∧ supD(t) ≥ σ ∧ ¬C(t) holds. If B−D,σ,C(t), then
some subtree t′ s.t. t ∈ OML

D,C(t′) might be a closed constrained subtree but be
pruned. Given two subtrees x and y ∈ OML

D,C(x), we obtain the set of poten-
tially closed constrained subtrees which might be pruned as follows.

B−D,σ,C(x, y) = {y′ \ (y/x) | prefix(y, y′), B−D,σ,C(y′)}

For example, A6 in Fig.1 is an example of negative border and A14 will be
pruned because A6 ∈ OML

D,C(A14) holds. We can restore A14 by the following
procedure: A11 → A3(∈ OML

D,C(A11)) → A6(prefix(A3, A6), B−D,σ,C(A6)) →
A14(= A6 \ (A3/A11)).

As similar to the positive borders, the set
⋃

y∈OML
D,C(x) B−D,σ,C(x, y), which is

required to guarantee the completeness, can be computed if the following holds.

∀y ∈ OML
D,C(x) ∃y′ ∈ [y]x,−

D,C s.t. y′ <lex x

where [y]x,−
D,C = {y′ ∈ OML

D,C(x) | B−D,σ,C(x, y) = B−D,σ,C(x, y′)}

We show the algorithm named negCCLOOT for mining closed constrained
subtrees by using negative borders in Fig.2. The set of representatives of the
equivalence classes is defined as follows.

OM∗,−
D,C(x) = {y ∈ OML

D,C(x) | � ∃y′ ∈ [y]x,−
D,C y′ <lex y}

While C(t) is checked in the procedure Refine in posCCLOOT(line 4), it is done
implicitly by checking B−D,σ,C(t) in Check in negCCLOOT(line 1).

Note that, it is difficult to decide which miner should be used in advance.
For instance, if we use negCCLOOT and the negative border A6 is stored, the
redundant enumeration of A13 can be avoided. However, the enumeration of A6
itself might be redundant since A6 does not satisfy the constraint.
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Fig. 3. Examples of equivalence classes of the left occurrence-match

3.3 Classes of Constrained Occurrence Matching

While posCCLOOT and negCCLOOT are the general algorithms for discovering
closed subtrees under anti-monotone constraints, it is necessary to implement
the concrete equivalence classes of left occurrence-match for each constraint.
The equivalence classes under some constraints will be explained below with
examples shown in Fig.3.

Maximum size constraint: Since ∀y ∈ OML
D,C(x) |y| = |x| + 1 holds, all

elements in OML
D,C(x) belong to the same class.

Maximum height constraint: Each element y ∈ OML
D,C(x) belongs to one

of the following two classes according to the height of y denoted as h(y).
c1
h = {y ∈ OML

D,C(x) | h(y) = h(x)+1}, c2
h = {y ∈ OML

D,C(x) | h(y) = h(x)}
Maximum branching factor constraint: OML

D,C(x) can be divided into the
following |rmb(x)| classes where rmb(x) denotes the set of nodes on the
rightmost branch of x and b(v) denotes the set of all siblings of v.

c0
b = {y ∈ OML

D,C(x) | b(y/x) ∩ rmb(x) = ∅}
cd
b = {y ∈ OML

D,C(x) | y �∈ c0
b , d(y/x) = d} (1 ≤ d ≤ d(rml(x)))

If the extra node y/x in y ∈ OML
D,C(x) does not connect to the rightmost

branch, y belongs to c0
b . Otherwise, the class of y is determined by the depth

of the extra node.
Complex Constraint: The equivalence classes of left occurrence-match under

the combination of constraints can be prepared by combining the classes for
each constraint. We show the classes of OML

D,C(x) for the combination of
maximum size, height and branching factor below.

c0−1
k,h,b = {y ∈ c0

b | y ∈ c1
h} c0−2

k,h,b = {y ∈ c0
b | y ∈ c2

h}
cd
k,h,b = cd

b (1 ≤ d ≤ d(rml(x)))

While each ci
k,h,b(1 ≤ i ≤ d(rml(x))) is identical to ci

b because all elements in
ci
b(1 ≤ i ≤ d(rml(x))) belong to c2

h, c0
b is further divided into two subsets by

the effect of the height constraint. Note that, the maximum size constraint
gives no effect because all elements belong to the same class in this constraint.
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Table 1. Experimental results for D100: Running Time (in second)

max. size max. height max. b.f. max. (size×height×b.f.)
σ 7 10 15 3 5 7 2 4 7×3×2 10×5×4 15×7×4

3 P 65.3 110.1 144.7 62.0 100.3 167.1 234.2 144.2 50.7 98.6 166.1
N 77.0 124.3 140.9 57.9 90.4 131.1 141.6 141.4 55.8 90.0 130.8
– 90.7 179.6 315.8 64.2 134.4 241.2 250.7 324.5 49.8 131.7 243.0

1 P 123.5 248.2 382.5 118.2 232.6 468.5 713.0 363.4 92.5 219.4 460.2
N 157.8 293.4 375.1 108.6 198.6 323.5 351.5 359.3 101.1 198.4 324.1
– 179.3 428.3 940.1 126.8 325.0 711.8 746.0 1029.4 93.0 303.8 700.8

0.25 P 165.9 394.7 790.3 165.9 413.3 981.2 1824.7 712.2 116.4 351.8 921.4
N 221.6 494.6 793.0 147.1 335.2 626.7 677.4 697.5 133.8 323.9 648.0
– 239.4 683.2 2004.7 181.3 612.1 1633.2 1712.2 2574.2 118.9 490.8 1500.1

b.f. = branching factor

Table 2. Experimental results for CSLOGS

maximum (size× height × branching factor)
support=0.5 support=0.3 support=0.25

15×5×4 15×7×6 15×5×4 15×7×6 15×5×4 15×7×6

Running time (in second) and # of evaluated subtrees (in thousand)

P 12.4 (38.0) 12.4 (38.0) 22.6 (117.5) 22.5 (116.8) 29.5 (205.8) 29.9 (210.3)
N 12.4 (37.8) 12.3 (37.8) 21.7 (102.6) 21.6 (102.0) 27.4 (158.8) 27.6 (162.1)
– 12.4 (38.3) 12.4 (38.3) 23.1 (131.9) 24.0 (153.7) 30.2 (231.7) 34.2 (327.2)

4 Experiments

To assess the effectiveness of the proposed algorithms, we implement three al-
gorithms, NaiveCCLOOT , posCCLOOT and negCCLOOT , in Java and conduct
experiments with the following two datasets on a PC (Pentium 4 CPU 2.80GHz)
with 512Mbytes of main memory running Windows XP.

1. Synthetic dataset D100 generated by Tree Generator[7]. It consisnts of 50,000
subtrees and the average (maximum) size, height and branching factor is
10.65(143), 2.06(10) and 1.46(7), respectively.

2. Real world dataset CSLOGS which contains access trees to the website[7].

Experimental results are shown in Table.1 and Table.2. In these tables, ‘P’,
‘N’, and ‘–’ denotes posCCLOOT , negCCLOOT and NaiveCCLOOT , respectively.

For D100, with the decrease of minimum support from 3% to 0.25% gradually,
we measure the running time of three miners under several single constraints
as well as under the combinations of constraints. While NaiveCCLOOT runs
fastest in few cases because of some overhead for searching border patterns in
the proposed algorithms, posCCLOOT and negCCLOOT outperform the naive
algorithm in most cases. negCCLOOT runs farster than posCCLOOT in about
70% cases. As whole, the ratio of the gain is higher when the given support is
lower and the constraint is looser.
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On CSLOGS, given two combinations of constraints, the running time and
the number of evaluated subtrees were measured. In Table.2, each number in the
parenthesis means the number of evaluated subtrees. The effects of the pruning
in the proposed algorithms are confirmed because the number of evaluated sub-
trees decreases greatly. Furthermore, while it might be difficult to evaluate the
effectiveness of the proposed algorithms because the running time is very short,
the improvement of the execution time is shown in some cases. Especially, the
lower minimum support and the looser constraint give a larger improvement.

From these experimental results, we can conclude that the proposed algo-
rithms are especially effective when the search space of the problem becomes
large because of the low minimum support and/or loose constraints.

5 Conclusion

In this paper, as an integration of condensed representationmining and constraint-
based mining, we propose two algorithms for mining closed constrained frequent
ordered subtrees. The proposed algorithmsdiscover closed constrained subtrees by
the search with the effective pruning based on the occurrence matching and border
patterns.

For future work, the theoretical analysis of the proposed algorithms and fur-
ther experiments with large-scale data are necessary. We also plan to apply the
proposed algorithms to mining more complex structured data such as free trees
and graphs.
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Abstract. Clustering in a large data set of high dimensionality has always been 
a serious challenge in the field of data mining. A good clustering method should 
provide flexible scalability to the number of dimensions as well as the size of a 
data set. We have proposed a grid-based clustering method called a hybrid-
partition method for an on-line data stream. However, as the dimensionality of 
a data stream is increased, the time and space complexity of this method is 
increased rapidly. In this paper, a sibling list is proposed to find the clusters of a 
multi-dimensional data space based on the one-dimensional clusters of each 
dimension. Although the accuracy of identified multi-dimensional clusters may 
be less accurate, this one-dimensional approach can provide better scalability to 
the number of dimensions. This is because the one-dimensional approach 
requires much less memory usage than the multi-dimensional approach does. 
Therefore, the confined space of main memory can be more effectively utilized 
by the one-dimensional approach. 

Keywords: Data Stream, Clustering, Grid-based Clustering, Data Mining. 

1   Introduction 

A data stream is defined as a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Consequently, on-line data stream processing 
should satisfy the following requirements[1,2,3]. First, each data element should be 
examined at most once to analyze a data stream. Second, memory usage for data 
stream analysis should be confined finitely although new data elements are 
continuously generated in a data stream. Third, newly generated data elements should 
be processed as fast as possible to produce the up-to-date analysis result of a data 
stream, so that it can be instantly utilized upon request. To satisfy these requirements, 
data stream processing sacrifices the correctness of its analysis result by allowing 
some errors.  

To find clusters in an on-line data stream, the k-median algorithm[4] which is the 
partitioning clustering method uses an O(1)-approximate k-medoid method for each 
sub-set of a data stream. In order to overcome the iterative evaluation of the 
conventional k-medoid algorithm[5], its objective is to maintain only the consistently 
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good set of k approximate data elements ,i.e., medoids each of which represents the 
center of a cluster for the data elements observed so far in a data stream. Another 
partitioning clustering method, CluStream[6], is proposed to find the clusters of data 
elements generated in an evolving data stream. It executes the conventional K-means 
method to find initial q pseudo clusters called micro clusters. As a new data element 
arrives, the cluster features of the q micro clusters are continuously updated. The 
cluster feature vectors of all clusters at each specified timestamp are stored as a 
snapshot. The CluStream produces k final clusters called macro clusters by executing 
the K-means algorithm once more on the micro clusters of these snapshots. Although 
these partition-based clustering algorithm have relatively good scalability to the 
number of dimensions, they suffer from handling noise data elements. In other words, 
as in most partitioning clustering algorithms such as k-means and k-medoid, noise 
elements can substantially influence the generation of a cluster, so that it may be 
difficult to produce a correct result in some cases.  

We have proposed a grid-based clustering method called a hybrid-partition 
method[7] for an on-line data stream. Since the size of each grid-cell can be different, 
it is impossible to employ any index structure to directly access a specific grid-cell for 
a specified data element. Therefore, the ranges of all the partitioned grid-cells should 
be sequentially examined one by one. As the number of grid-cells is increased, this 
operation takes longer and becomes a bottleneck for the algorithm. Furthermore, the 
hybrid-partition method does not have good scalability to the number of dimensions.  

To cope with this shortcoming, a one-dimensional grid-based clustering algorithm 
is proposed in this paper. While the one-dimensional clusters of each dimension are 
traced independently, the clusters of multi-dimensional data space can be identified 
based on the one-dimensional clusters of each dimension. This one-dimensional 
approach can provide better scalability to the number of dimensions although the 
accuracy of multi-dimensional clusters may be degraded. However, this drawback is 
not critical since data stream processing produces approximate result anyway. 
Furthermore, this one-dimensional approach requires much less memory space than 
the multi-dimensional approach does. Therefore, the confined space of main memory 
can be more efficiently utilized by the one-dimensional approach. Due to these 
reasons, the one-dimensional approach can provide better performance in terms of 
time and space complexity in the grid-based clustering method.  

Unlike the hybrid-partition method, the proposed method divides a dense grid-cell 
whose current support becomes greater than or equal to a predefined partitioning 
threshold Spar into h equal-size smaller grid-cells at each dimension. Conversely, a set 
of consecutive sparse grid-cells can be merged into a single grid-cell. Subsequently, 
this recursive partitioning process is terminated when the interval of every dimension 
of a grid-cell becomes the smallest size λ. Such a grid-cell is defined as a unit grid-
cell. By carefully setting the value of λ to be aligned with the partitioning factor h, it 
is possible to make the size of every unit grid-cell be the same, so that the problem of 
our previous work can be avoided. A sibling list is a structure to manage the set of all 
grid-cells created in each dimension and it acts as an index to locate a specific grid-
cell.  

The remaining of this paper is organized as follows. Section 2 reviews the hybrid-
partition method. Section 3 presents the structure of a sibling list and proposes a one-
dimensional grid-based clustering method. In Section 4, several experiment results are 
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comparatively analyzed to evaluate the performance of the proposed method. Finally, 
Section 5 presents conclusions. 

2   Preliminaries 

A data stream for d-dimensional data space N=N1 × … × Nd is defined as an infinite set 
of continuously generated data elements as follows:  

i) A data element generated at the tth turn is denoted by by et=<e1
t,e2

t,…,ed
t>, 

ei
t
∈Ni, 1≤ i≤ d 

ii) The current data stream Dt denotes all the data elements which have been 
generated so far ,i.e. Dt={e1,e2,…,et}. 

iii) The total number of data elements generated in the current data stream Dt is 
denoted by |D t|.                                                                                             □ 

To find clusters over a data stream, we have proposed a statistical grid-based 
clustering method[7]. The range of each dimension Ni is initially partitioned by p 
number of mutually exclusive equal-size intervals Ii

 j = [si
j, fi

j] 1≤j≤p where si
j and fi

j 
denote the start and end values in the jth interval of the ith dimension. Consequently, pd 

number of initial cells are formed in N and each initial cell g is defined by a set of d 
intervals {I1,I2,…,Id} Ii ⊆ Ni 1≤i≤d. The range R(g) of an initial cell g is a rectangular 
space rs=I1 × …× Id. However, the initial rectangular space of an initial cell becomes 
a set of rectangular spaces RS={rs1,rs2,…,rsq} as a series of cell partitioning and 
pruning operations are performed subsequently. When these rectangular spaces are 
projected to the ith dimension, the intervals of the ith dimension of a cell g can be 
found and they are denoted by ISi(g)={Ii

1,Ii
2,…,Ii

q}. The sum of these intervals is 
defined as the interval size of the ith dimension of the cell g. The range of the cell g is 

the united spaces of all the rectangular spaces rs1,…,rsq, R(g)=U
q

i irs
1=

. Each cell keeps 

the current distribution statistics of those data elements in the current data stream Dt 
that are within its range as defined in Definition 1. 
 

[Definition 1] Distribution Statistics of a grid-cell g(RS,c,μ,σ) 
For the current data stream Dt, a term g(RS, ct, μt, σt) is used to denote the distribution 
statistics of a cell g which is defined by a set of its rectangular spaces RS. Let Dg

t 
denote those elements in Dt that are in the range of the cell g, i.e.,Dg

t={ e| e∈Dt and e 
∈R(g) }. The distribution statistics of the cell g are defined as follows: 

i)   ct : the number of data elements in Dg
t 

ii) μt=<μ1
t,…,μd

t > : μi
t denotes the average of the ith dimensional values of the data 

elements in Dg
t.          μi

t= ∑
=

tc

j

tj
i ce

1
/ , 1≤i≤d 

iii) σt=<σ1
t,…,σd

t > : σi
t denotes the standard deviation of the ith dimensional values 

of the data elements in Dg
t.    σi

t= tc

ij

t
i

j
i /c)μ(e

t

∑ −
=

2 , 1≤i≤d                                □ 
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As a new data element is generated continuously, each cell monitors the 
distribution statistics of data elements within its range. When the support of an initial 
cell becomes high enough, one of the dimensions of the data space is chosen as a 
dividing dimension based on the distribution statistics of data elements in the cell. 
Subsequently, the range of the dense cell is dynamically divided into two mutually 
exclusive smaller cells, called intermediate cells, with respect to the selected dividing 
dimension. In addition, the distribution statistics of the initial cell are used to estimate 
those of each divided cell. Similarly, when an intermediate cell itself becomes dense, 
it is partitioned by the same way. Differently with the initial cell, the parent 
intermediate cell is replaced by the divided cells when it is partitioned. Eventually, a 
dense region of each initial cell is recursively partitioned until it becomes the smallest 
cell called a unit cell.  

To partition a dense cell, three different methods: μ-partition, σ-partition and 
hybrid-partition are introduced in [7]. The hybrid partition method chooses one of the 
two partitioning methods based on the congestion rate of the dividing dimension for a 
given dense cell. By selecting an appropriate partition method, the number of cell 
partition steps as well as the number of cells can be minimized. 

3   One-Dimensional Grid-Based Clustering 

The definition of a one-dimensional grid-cell is the same as in Definition 1 except it 
maintains scalar values rather than vectors. Given a predefined partitioning factor h, 
the entire data range range(Nl) of the lth dimension Nl (1≤l≤d) is partitioned into h 
mutually exclusive equal-size initial grid-cells Gl={g1,g2,…,gh} where 

)(.
1

l

h

i
i NrangeIg ≡

=
U and gi.I∩gj.I=Φ ( i≠ j, 1≤ i,j≤ h). In the current data stream D of a 

multi-dimensional data space, a grid-cell g in the dimension Nl traces the recent 
distribution statistics of those data elements that are in its interval g.I. The current 
support of the grid-cell g is the ratio of the number of those data elements that are 
inside the interval of the grid-cell over the total number of data elements in Dt, i.e. 
g.c/|Dt|. When the current support of a grid-cell becomes dense enough, i.e. greater 
than or equal to Spar (Spar < Smin), it is partitioned into h smaller equal-size grid-cells. 
Since such partitioning can be performed recursively in a dense region of the 
dimension Nl, the interval of each grid-cell in the dimension Nl can be different. 
However, among grid-cells, there exists total ordering relationship according to the 
interval of a grid-cell. Let G={g1,g2,…,gv} be the set of all one-dimensional grid-cells 
in the dimension Nl andp (gi, gj) be an ordering function i.e., gi(I,c,μ,σ)p gj(I,c,μ,σ) 
iff gi.I < gj.I. In order to manage the dynamically varied configuration of grid-cells in 
the entire data space of the dimension efficiently, the grid-cells are structured by a 
sibling list defined in Definition 2. 
 

[Definition 2] A sibling list S 
Given a dimension Nl of a multi-dimensional data stream, a sibling list S of order m is 
defined as follows; 

1. A sibling list S=<E1,E2,E3,…,Ep> is a single linked list of sibling entries 
E1,E2,…,Ep. 

2. Each sibling entry Ei maintains a data structure E(min,max,G[1,…,m],next_ptr)  
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i)   The m slots in G[1,…,m] can hold at most m one-dimensional grid-cells. 
ii) When v (<m) slots are not empty, the range of the entry Ei is defined by 

range(Ei)=U
v

j

IjG
1

].[
=

 and is denoted by [min,max) where min=G[1].I.s and 

max=G[v].I.f. In the range(Ei), G[j].I p G[k].I  1≤ j<k≤ v should be true 
among all the one-dimensional grid-cells in G. 

iii) next_ptr : a pointer to the next sibling entry of S. 
3. The range of S is defined by the union of the ranges of all the sibling entries in S 

and it is the same as the entire data space of the dimension Nl.  

range(S)≡U
p

i
li NrangeErange

1

)()(
=

≡  

4. Except for the first sibling entry, every sibling entry in S has at least 

⎡ ⎤2/)2( +− hm  grid-cells at all times for a given partitioning factor h .              □ 

 

Fig. 1. A sibling list S 

As shown in Figure 1, a sibling list is structured by a single linked list of sibling 
entries each of which can hold the distribution statistics of a fixed number of one-
dimensional grid-cells. Each entry of a sibling list maintains its range [min, max) to 
locate a specific grid-cell efficiently. For a data element e, a grid-cell g whose interval 
includes the data element e is searched in the sibling list. To accomplish this, the 
sibling entry whose range includes the element e is located first and its grid-cells are 
looked up in sequence. When the distribution statistics of the grid-cell g was updated 
lastly at the vth data element in a data stream, the distribution statistics of the grid-cell 
g is updated for the tth data element as follows: 

g.μt
=

ttvv cgecgμg ./)..( +×  ,    g.σt= 2222 )(g.-./})(){(g../)(g.. tttvtvv μcgeμcgσcg ++×  

When a dense grid-cell g in a sibling list S is partitioned into h equal-size smaller 
grid-cells g1,…,gh, the distribution statistics of each partitioned grid-cell can be more 
precisely monitored. The grid-cell g is replaced by the partitioned grid-cells g1,…,gh, 
so  that total  ordering  relationship of the grid-cells in  S should be preserved. As in 
the hybrid-partition method, the distribution statistics of each partitioned grid-cell gj 
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(1≤j≤h) are estimated based on those of the grid-cell g. More specifically, the 
distribution statistics of the jth partitioned grid-cell gj are initialized by the normal 

distribution function of g, 
2

2

).(2

)-(
-

.2

1
)(

t
j

t
j

g

.gx

t
j

e
g

x
σ

μ

σπ
ϕ =   as follows: 

gj.c
t=g.ct ∫×

fg

sg

j

j

dxx
.

.

)(ϕ ,  gj.μt= ∫
fg

sg

j

j

dxxx

.

.

)(ϕ ,  gj.σt= )).())(( 2

.

.

2 μϕ j

fg

sg

gdxxx
j

j

−∫   

This partitioning procedure can be recursively invoked until a unit grid-cell is 
found. Given the range(N) of a data space of a dimension N, the total number of 
recursive partitioning operations needed to produce a unit one-dimensional grid-cell is 
logh(range(N)/λ). A one-dimensional cluster in the dimension N of a data stream D is 
a group of adjacent dense unit grid-cells whose current supports are greater than or 
equal to Smin. 

While the one-dimensional clusters of each dimension are continuously traced, the 
set of multi-dimensional clusters at a specific time in a multi-dimensional data stream 
is found in off-line by the snapshot of the one-dimensional clusters of each 
dimension. From each sibling list Si of each dimension Ni(1≤i≤d), its one-dimensional 
clusters are identified as cluster(Si) ={ci

1, ci
2,…,ci

p}. The range of a cluster range(ci
j) 

is denoted by two scalar values on the ith dimension. Given the d-dimensions, the set 
of d-dimensional clusters can be found by enumerating all the combinations of the 
one-dimensional clusters of every dimension. 

4   Experiments 

In order to analyze the performance of the proposed method, several data sets of 
varying dimensionality are generated by the data generator used in ENCLUS [8]. 
Each data set contains one million data elements. The domain size of each dimension 
is set to 100. Most of data elements are concentrated on randomly chosen 20 data 
regions whose sizes in each dimension are also randomly varied. The two support 
thresholds Smer and Spar are assigned relatively to a predefined minimum support Smin. 
The conditions of most experiments are Smin=0.02, Smer=0.1 × Smin, Spar=0.8 × Smin, 
m=10 and h=4 unless they are specified differently. Whenever 100K new data 
elements are processed, every sparse grid-cell is tried to be merged by traversing all 
the nodes of a sibling list. In all experiments, data elements are looked up one by one 
in sequence to simulate the environment of an on-line data stream.  

In Figure 2, the proposed method is compared with the hybrid-partition method 
(hybrid-1d, hybrid-multi) and K-median algorithm[4](lsearch). The term hybrid-1d 
means that the one-dimensional version of the hybrid-partition partition method is 
used to find only one-dimensional clusters while the term hybrid-multi means that the 
hybrid-partition method itself. The available memory space of clustering is confined 
to 300KB. The accuracy of the proposed algorithm is measured by the ratio of the 
number of correctly clustered elements by the proposed algorithm over the total 
number of data elements clustered by STING when λ=0.05. Let C(i,sting) denote a set 
of data elements grouped in the ith cluster by STING(λ=0.05). Similarly, let C(i,X)  
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Fig. 2. Performance comparison by varying dimensionality 
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Fig. 3. Performance comparison by varying memory space 

denote a set of data elements grouped in the same ith cluster by one of the three 
clustering methods. The accuracy is determined as follows: 

accuracy(%)= ∑ ∩
i

XiCstingiC ),(),( /∑
i

stingiC ),(  

As the number of dimensions becomes larger, the accuracy of the proposed method 
is decreased as shown in the figure. When the dimensionality of a data stream is 
increased, the memory usage is rapidly increased because the number of grid-cells is 
also increased. Therefore, given confined memory space, to find clusters successfully, 
the size of λ should be enlarged, so that the number of grid-cells can be reduced. 
Therefore, the resolution of a grid-cell is degraded as the number of dimensions is 
increased. Since the memory requirements of the three grid-based methods are 
different, the size of λ for each method is also different. This is because the available 
confined memory space is fixed. The accuracy of the hybrid-1d method is less 
accurate than that of the proposed method because the range of a grid-cell is 
dynamically determined. The accuracy of the hybrid-multi method is the worst. Due 
to this reason, as the dimensionality is increased, its memory requirement is rapidly 
increased, which also makes its processing time be longer. The accuracy of 
LSEARCH is similar to the proposed method because the partitioning clustering 
method only finds the center of a cluster rather than the exact boundary of a cluster. 

Figure 2-(b) shows the size variation of λ. For the same size of confined memory 
space, the resolution of clusters by the proposed method is more effectively 
maintained. As shown in Figure 2-(c), the processing time of the proposed method is 
better than those of the others. 
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Figure 3 shows the performance comparison when the size of confined memory 
space is varied for a 40-dimensional data stream. In Figure 3-(a), the three grid-based 
methods are compared in terms of accuracy. As the size of confined memory space is 
increased, the resolution of identified clusters becomes more precise due to the 
smaller size of λ as shown in Figure 3-(b). However, because the hybrid-multi method 
requires much larger memory usage than the others do, its size of λ is the largest, so 
that its accuracy is the worst. As shown in Figure 3-(c), the two one-dimensional 
approaches take less processing time than the hybrid-multi method does. 

5   Conclusion 

Since the grid-based clustering does not have good scalability to the dimensionality of 
a data set, the curse of dimensionality is a major challenge. A sibling list proposed in 
this paper can effectively maintain the on-going distribution statistics of continuously 
generated data elements in each dimension of a data stream. This one-dimensional 
approach can provide better scalability to the number of dimensions although the 
accuracy of identified multi-dimensional clusters may be less accurate. In other words, 
the one-dimensional approach requires much less memory space than the multi-
dimensional approach does, so that the confined space of main memory can be more 
effectively utilized by the one-dimensional approach. Therefore, the one-dimensional 
approach can provide better performance in terms of time and space complexity. 
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Abstract. In order to detect boundary points of clusters effectively, we
propose a technique making use of a point’s distribution feature of its
Eps neighborhood to detect boundary points, and develop a boundary
points detecting algorithm BRIM (an efficient Boundary points detecting
algorithm). Experimental results show that BRIM can detect boundary
points in noisy datasets containing clusters of different shapes and sizes
effectively and efficiently.

Index Terms: Data mining, boundary points, neighborhood, density.

1 Introduction

Cluster analysis has recently become a highly hot topic in data mining research;
it has been widely used in numerous applications, including data analysis, pat-
tern recognition and image processing and so on. Up to now, many cluster-
ing algorithms have been already proposed, such as k-means, CURE[2], DB-
SCAN[3],CLIQUE[4] and so on. Boundary points are data points that are lo-
cated at the margin of densely distributed data such as a cluster, while noises
are located in the sparsely populated areas. Sometimes, boundary points are
more useful and important in data mining applications because they represent
a subset of population that possibly straddles two or more classes. For example,
this set of points may denote a subset of population that should have developed
certain diseases, but somehow they do not [1]. Special attention should be cer-
tainly warranted for this set of people since they may reveal some interesting
characteristics of the disease. The knowledge of these points is also useful for
data mining tasks such as classification since these points can be potentially
misclassified. Boundary points analysis is so important in knowledge discovery,
but there are few algorithms about it. Boundary points analysis, however, hasn’t
received much attention as that of clustering and outliers.

2 Related Works

DBSCAN is a density-based clustering algorithm, and defines boundary points
based on density. If a point p is not a core point and it’s directly density-reachable
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from a core point o, then the point p is called a boundary point and is added
to the cluster that point o lies in. Because DBSCAN uses global density pa-
rameter, the definition of boundary points is close related to Minpts, that is
to say, we may get different boundary points if different parameter Minpts is
used. What’s more, the density of each cluster in the dataset is not uniform. The
central density of clusters is high while the density in the border of clusters is
low. Therefore it is hard to detect boundary points effectively according to the
definition of boundary points in DBSCAN.

A grid-based boundary points processing technique is proposed in reference
[5,6], which uses restricted k nearest neighbors and concept of relative density to
recognize boundary points of clusters. The case that boundary points are located
in lower density cell is merely discussed in those papers, but how to detect all
the boundary points of clusters is not mentioned.

Xia et al. propose a boundary points detecting algorithm BORDER[1] which
employs the special property of the reverse k-nearest neighbors, and give the
formal definition of boundary points. If an object p is one of the k-nearest neigh-
bors of object o, then o is called a reverse k-nearest neighbor of p. BORDER
computes the reverse k-nearest neighbor number of each object in the first place,
then data points are sorted according to their reverse k-nearest neighbor number
incrementally, then select the top n objects as boundary points, because bound-
ary points have smaller reverse k-nearest neighbor number than that of points
in clusters. BORDER can detect boundary points effectively in datasets without
noises. However, it still has some disadvantages: (1) The top n objects selected
after sorting all the data points according to their reverse k-nearest neighbor
number incrementally contain both outliers and boundary points in noisy dat-
sets, since outliers have smaller reverse k-nearest neighbor number than that
of boundary points in noisy datasets. Therefore BORDER can’t correctly de-
tect boundary points in noisy datasets. (2) The time complexity of BORDER
is O(kN2)(N is the size of dataset) which leads to BORDER has low efficiency.
(3) Given the dataset, it is hard for the users to estimate the size of boundary
points n.

This paper proposes a boundary points detecting algorithm BRIM(a effi-
cient Boundary points detecting algorithm)aiming at the disadvantages of the
algorithms mentioned above, which makes use of distribution feature of Eps-
neighborhood of boundary points. BRIM can detect boundary points in noisy
datasets containing different shapes and sizes clusters effectively, and has higher
efficiency and accuracy than BORDER.

3 BRIM Algorithms

We will give some related definitions used in our algorithm BRIM:

Definition 1. A boundary point p is an object that satisfies the following con-
ditions[1]:
(1) It is within a dense region R1.
(2) ∃ region R2 near p, density(R1) � density(R2) or density(R1) � density(R2).
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Definition 2. Given the dataset D, the Eps-neighborhood of a point p, denoted
by NEps(p), is defined by[2] :

NEps(p) = {q ⊆ D | dist(p, q) ≤ Eps} (1)

dist(p, q) denotes the distance between two points p, q.

Definition 3. The density attractor of a point p. If a point o satisfies following
conditions: ∀q ⊆ NEps(p), |NEps(q)| ≤ |NEps(o)| holds,then we call point p is
attracted by o and o is density attractor of point p, denoted by Attractor(p).

In fact the density attractor of point p is the point with maximal density in its
Eps-neighborhood NEps(p). For example in Fig.1. o is the density attractor of
point p. Here we need to point out: (1) If there is no other points in NEps(p) ex-
cept for p itself, obviously p is a noise point, then we define the density attractor
of p is p itself and let the boundary degree of p equals to minimal value. (2) If
there are several density attractor in NEps(p), then the point that is searched
first in NEps(p) is selected as the density attractor of point p.

Fig. 1. The feature of boundary points

Definition 4. Supposed o is the density attractor of a point p, the positive Eps-
neighborhood of a point p, denoted by PNEps(p) PNEps(p) = {q ⊆ D|q ⊆
NEps(p) ∧ separation angle of vectors −→pq, −→po ⊆ [00, 900]}

Obviously p belongs to PNEps(p).The Eps-neighborhood of a point PNEps(p)
reflects the distribution feature of the points located in NEps(p) in the direction
of density attractor o, as Fig.1. shows that the PNEps(p) of p is the upper
semicircle including o in two dimensional space.

Definition 5. Supposed o is the density attractor of a point p, the negative
Eps-neighborhood of a point p, denoted by NNEps(p) NNEps(p) = {q ⊆ D|q ⊆
NEps(p)

∧
separation angle of vectors−→pq, −→po ⊆ (900, 1800]} ∪ {p}

The NNEps(p) reflects the distribution feature of the points located in NEps(p)
in the reverse direction of density attractor o, as Fig.1. shows that the NNEps(p)
of p is the lower semicircle in two dimensional space. Note that the number of
points included in NNEps(p) will be the denominator of the following formula
computing the boundary degree of a point. However, the NNEps(p) is probably
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to be empty (no points in NNEps(p)), which brings great inconvenience to com-
putation, so we define p ⊆ NNEps(p) ,which avoids the case that denominator
equals to zero.

Through our study of clusters and boundary points, we find that the Eps-
neighborhood of boundary points has following distributional features: points
distributed in PNEps(p) are much more than points distributed in NNEps(p),
and the number of points distributed in the PNEps(p) and NNEps(p) is dis-
crepant. For points in the deep of clusters, the points included in its PNEps(p)
and NNEps(p) are not discrepant. If we define the boundary degree of a point p
as the ratio of the number of points distributed in its PNEps(p) and NNEps(p)
based on our study, then it’s easy to distinguish the boundary points from points
in clusters. Noises in the region of noises distributed densely also will form some
”small clusters” in noisy dataset. If we define the boundary degree of a point p
as the ratio of the number of points distributed in its PNEps(p) and NNEps(p)
simply, then the boundary degree of the boundary points of the ”small clusters”
would be high, it’s hard to distinguish the boundary points of clusters from the
boundary points of the ”small clusters”, since both of them has great bound-
ary degree. To solve the problem, we define the boundary degree of a point p
as the ratio multiplied by the absolute value of the number of points included
in PNEps(p), NNEps(p).Generally speaking, the density of boundary points is
greater than that of noises, so for boundary points the absolute value of the
number of points included in PNEps(p), NNEps(p) is also usually greater than
that of noises,which greatly reduce the impact of noises on the boundary degree.
The boundary degree of a point is defined as follow:

Definition 6. |PNEps(p)|, |NNEps(p)| are denoted as the number of points dis-
tributed in PNEps(p), NNEps(p) respectively, then the boundary degree of a point
p,denoted by BD(p), is defined as:

|PNEps(p)|
|NNEps(p)| ∗ ||PNEps(p)| − |NNEps(p)||

For example in Fig.1, o is the density attractor of p, and the number of points
distributed in PNEps(p),NNEps(p) is 21, 7 respectively, that is to say , PNEps(p)
=21, NNEps(p) =7, so the boundary degree of point p according to the definition
6, BD(p)=(21/7)(21 − 7)=42

Lemma 1. Supposed o is the density attractor of p and θ is the separation angle
of vectors (−→pq), (−→po), If cos θ ⊆ [0, 1], then θ ⊆ [00, 900], point q ⊆ PNEps(p);
Otherwise if cos θ ⊆ [−1, 0), then θ ⊆ (900, 1800], point q ⊆ NNEps(p)

In vector space, cos θ =
−→pq · −→po

‖−→pq‖ · ‖−→po‖ , −→pq · −→po denotes the inner product of vectors

and , and ‖−→pq‖ and ‖−→po‖ denotes the module of vectors and respectively.
It is so easy to prove lemma 1 that we don’t depict the process in this paper.

Since the value of ‖−→pq‖ and ‖−→po‖ is always non-negative, we don’t need to com-
pute whole value of cos θ. That is to say, we don’t need know the exact value
of θ , we only need to compute the positive(negative) of value of cos θ in order
to judge q ⊆ NNEps(p) or q ⊆ PNEps(p) , so we only compute the range of
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the inner product of vectors ‖−→pq‖ and ‖−→po‖, if −→pq · −→po ≥ 0, then q ⊆ PNEps(p);
otherwise q ⊆ NNEps(p).

The main idea of BRIM is as follow: scan the whole dataset and compute the
boundary degree of each point. If the boundary degree of a point p is greater
than threshold δ, then define p as boundary point. We use the square of ‖−→pq‖ to
measure the distance between two points p, q in the experiments.

Algorithm BRIM
Inputs: Eps, δ
Outputs: boundary points.

Step 1: select one point p unprocessed from the dataset D.
Step 2: search the Eps neighborhood of point p, and compute Attractor(p).
Step 3: search the points included in the NEps(p), and compute the size of
PNEps(p) and NNEps(p) respectively,denoted by |PNEps(p)| and |NNEps(p)|
respectively, and compute the boundary degree (BD(p))of point p according to
definition 6.
Step 4: If BD(p) > δ, then define point p is a boundary point.
Step 5: If there are points unprocessed in the dataset D, jump to step 1.

4 Experimental Evaluations and Analysis

In the following we will evaluate BRIM from efficiency and effectiveness. Firstly,
we use two dimensional synthetic datasets to verify effectiveness of our algorithm.
Secondly, we use different scale datasets to verify execution efficiency of our algo-
rithm. All experiments are run on PC with Pentium2.93G CUP, 256M memory,
windows XP professional operation system. The algorithm is programmed and
compiled in Visual C++6.0.

4.1 Effectiveness

In order to verify the effectiveness of algorithm, we have done experiments on
many synthetic datasets (including the datasets used in the DBSCAN,Chameleon
etc).But considering the limit of the paper, we choose three typical datasets to
explain the effectiveness.

(1) Dataset without noises, whose geometric shape is shown in Fig.2a. The
dataset has 20378 points in total and a cluster whose geometric shape looks like
a five star. Fig.2b is the result of BORDER, the parameters are: the number
of nearest neighbors K=50, the size of boundary points n=900; Fig.2c shows
the result found by BRIM, input parameters are: the neighborhood of radius
Eps=42, δ=62; From the comparison of the two figures, we can see that both
BODER and BRIM can correctly detect the boundary points in dataset without
noises.

(2) Dataset containing clusters with different density, whose geometric shape
is shown in Fig. 3(a). The dataset has 7832 points in total, contains two clus-
ters that are close to each other, different regions of the clusters have different
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(a) Dataset1 (b) BORDER(K=50, n=900) (c) BRIM(Eps=40, δ=62)

Fig. 2. The experimental results found by BORDER and BRIM in Dataset1

densities, and noises distribute sparsely. Fig.3b is the result of BORDER, the
parameters are: the number of nearest neighbors K=50, the size of boundary
points n=450; Fig.3c shows the result found by BRIM, input parameters are:
Eps=60, =100; From the comparison of the two figures, we can see that the
boundary points found by BODER are mixed with lots of noises while BRIM
can correctly detect the boundary points and distinguish boundary points from
noises in dataset containing clusters with different density.

(a) Dataset2 (b) BORDER(K=40, n=450) (c) BRIM(Eps=60, δ=100)

Fig. 3. The experimental results found by BORDER and BRIM in Dataset2

(3) Dataset containing clusters with different density, size and shape, whose
geometric shape is shown in Fig.4a. The dataset has 12919 points in total, con-
tains eight clusters of different shape, size, density and orientation, as well as
random noises. A particularly challenging feature of this data set is that clusters
are very close to each other and they have different densities. Figure 4b shows
the result found by BORDER, the parameters are: K=50, n=3000; Figure 4c
shows the result found by BRIM, input parameters are: Eps=35, =42; From the
comparison of the two figure, we can see from Fig.4 that the boundary points
found by BODER are mixed with lots of noises while BRIM can correctly detect
the boundary points.

The reason why the boundary points found by BORDER are mixed with
noises in noisy datsets is that noises have smaller reverse k nearest neighbor
number than that of boundary points in noisy datasets, while BRIM can cor-
rectly detect the boundary points in noisy datasets, which verify the effectiveness
of our algorithm.
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(a) Dataset3 (b) BORDER(K=50, n=3000) (c) BRIM(Eps=35, δ=42)

Fig. 4. The experimental results found by BORDER and BRIM in Dataset3

4.2 Time Complexity and Efficiency

The neighborhood query and computing the PNEps(p), NNEps(p) of each point
is the most time-consuming part of our algorithm BRIM, which can be answered
in O(logN) time using spatial access methods such as R and SR-tree, so the time
complexity of BRIM is O(NlogN) if some spatial access methods are used. In the
worst case, the time complexity of BRIM is O(N2), while the time complexity
of BORDER is O(kN2).

Obviously the time complexity of BRIM is lower than that of BORDER. In
order to verify the execution efficiency of BRIM, we have done experiments on
datasets of different scales rang from 6220 to 16220 coming from Chameleon.
The parameter K used in BORDER is set to 50. From the Fig.5, we can see that
obviously execution efficiency of BRIM is higher than that of BORDER.

Fig. 5. Execution time of BORDER and BRIM on datasets of different scales

5 Conclusions

A boundary points detecting algorithm BRIM is proposed based on the distinct
numbers of the points distributed in PNEps(p) and NNEps(p). BRIM can cor-
rectly detect the boundary points in dataset containing clusters with different
density, size and shape with noises, and its time complexity is lower than that
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of BORDER. The parameter δ has great impact on the number of resultant
boundary points: the greater δ is, the smaller the number of resultant boundary
points is; On the contrary, the bigger the number of resultant boundary points
is. So the number of resultant boundary points is sensitive to parameter δ. It is
hard for user with no prior knowledge to set proper δ. We will solve the problem
and use the technique to clustering next.
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Abstract. There’s now an increase in the number of Question Answering 
communities where large archives of question and answer pairs are collected up 
over time. These archives help traditional type-specified Question Answering 
(QA) systems to overcome type constraints and enable a service of general 
types. Semantic similarity measures between sentences dominate the overall 
performance of such Archive-based QA systems in finding similar questions in 
the archive to users’ requests. Available approaches to sentence similarity 
measurement mainly utility word-to-word similarity measures directly in a bag-
of-words way. In this paper, we take the syntactic evidence into account and 
carry out an examination on the impact of syntactic information on the sentence 
similarity measurement. We also compare the performance of our syntactic 
information incorporated approach with some baseline retrieval models. 
Experiments show that our approach outperforms other models both in mean 
average precision (MAP) and recall.  

Keywords: QA system, archive, similarity measure, syntactic. 

1   Introduction 

There’s now an emerging trend in web information service that people answer others’ 
questions ([1]), such as Google Answers (http://answers.google.com). As time goes 
by, these sites possess huge number of question and answer pairs which cover various 
fields and hold well-formed answer texts. For example, Baidu Zhidao (http:// 
zhidao.baidu.com), a popular Chinese web site providing this kind of service, has 
solved up to 11 million questions submitted by users till now (2007-1). Large archives 
of questions and answers are collected over time like FAQ lists. When people submit 
a question that has been solved already, corresponding answer can be returned 
immediately without waiting for manual response. Thereby, these archives can be no 
doubtfully ideal resources for a general Question Answering system if only similar 
questions could be found accurately without lag. [1] has made a first attempt to 
establish such a system for Korean based on translation model and declared an 
encouraging performance. 

Performance of such systems depends heavily on the measures of sentence 
semantic similarity i.e. how to quantify the semantic similarity between sentences. 
People of different backgrounds are likely to express the same meaning with different 
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wordings. This leads to the phenomena that two questions may have the same 
meaning but differ lexically. Therefore, a rigid lexical-based measure of sentence 
semantic similarity reduces the overall recall whereas a loose one reduces the 
precision. 

What’s more, sentence should be recognized as a sequence of words that are 
organized in specified structure. However, most of previous work on sentence 
similarity determination turns out to be bag-of-words approaches without taking the 
structure information of sentence into account ([2], [3], [4]). In this paper, we’ll 
propose an approach to quantify the degree of similarity between sentences combined 
with syntactic knowledge, and incorporate it into a Question Answering system based 
on archives of questions and answers collected from Baidu Zhidao. An examination 
will be carried out on the impact of syntactic information on the measurement. We’ll 
also show that our approach outperforms other known retrieval models that have been 
implemented in the Lemur Toolkit (http://www.lemurproject.org). 

The rest of the paper is organized as follows. Section 2 illustrates our approach in 
details. In section 3, we describe the dataset used for our experiments and evaluation. 
Experimental results are given in section 4 with the evaluation. We also give a brief 
analysis on the results in section 4. Section 5 gives the conclusions of our work. 

2   Measure Sentence Similarity 

As mentioned above, most previous traditional measures of sentence (text) semantic 
similarity take advantage of word oriented measures just in a bag-of-words way. This 
kind of approach ignores lots of important information hiding in sentence structure, 
such as syntactic roles played by different words in the sentence ([3]). Words of 
different syntactic elements in a sentence make different contributions to sentence 
semantic similarity measurement. For example, two sentences containing same or 
similar subjects are more likely to be semantic similar than those only containing 
same or similar attributes. In other words, words that act as subject of a sentence 
contribute more in measuring the similarity of sentences than those as attribute. 
Therefore, an appropriate weighting strategy is needed to give different weights to 
corresponding syntactic components in the sentence to reflect the effect that the 
component makes to the overall measurement. 

Our quantified formula for the measure is inspired by the work in [3] that used the 
inverse document frequency (IDF) to quantify the importance of a word. Given two 
sentences S1 and S2 of length m and n respectively, semantic similarity between them 
is formulated as follows:  
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2 1
{ } { }

1 2

( ( , )* ( )) / ( ( , )* ( )) /
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(1) 

Where sim(w,S2) is the similarity between word w and sentence S2 measured by the 
maximum similarity of w and words in S2. So it is with sim(w,S1). w(w) is given 
according to the syntactic element of the word and guaranteed to be a value between 



 Syntactic Impact on Sentence Similarity Measure in Archive-Based QA System 771 

0.1 and 0.9. Within this formula, two critical issues have to be re-examined in details: 
the measure of word similarity and the weighting strategy for syntactic elements. 

2.1   Measure Word Similarity 

Knowledge-based methodology is adopted in our work to quantify semantic similarity 
between words. We take use of tongyicicilin (http://www.ir-lab.org/), a Chinese 
thesaurus containing 77343 terms, as the semantic network to describe word 
relationships. In this thesaurus, all words are first classified hierarchically into 
different categories according to the degree of semantic similarity: coarse-degree, 
medium-degree and fine-degree. Furthermore, words are categorized again into 
clusters and atom-clusters to gain a more fine-grained hierarchical classification. To 
facilitate calculation, words in the thesaurus are all encoded using numbers and letters 
with a length of 8. The more overlaps codes of two words contain, the more similar 
these two words are to each other. With this characteristic, we then define semantic 
similarity of two words as five levels from synonymic to unrelated by counting the 
overlaps of their corresponding codes.  

Table 1. Word Similarity Definition (words of the same atom-cluster can be synonymic or 
relevant. Synonymic words are those of exactly the same meaning and can be replaced with 
each other while relevant words are those that are related with each other closely but are 
irreplaceable). 

Relationship Example 
OfSameAtomCluster(Synonymic) , , ,  (which all mean “elder”) 
OfSameAtomCluster(Relevant) (sergeant), (corporal) 
OfSameCluster (learner), (intern) 
OfSameFineDegreeCategory (student), (teacher) 
Unrelated (person) (computer) 

 

Table 1 gives an overview of the relationships between words, explained by 
examples. To quantify these different levels of word similarity, corresponding values 
are set for each level. 

2.2   Weighting Strategy 

Substantial efforts have been made on syntactic parsing of natural languages, and 
many sophisticated parsing grammars have been proposed to describe different 
aspects of linguistic characteristic, such as Phrase Structure Grammar ([6]) and 
Dependence Grammar ([7]). It is believed that Dependence Grammar is more suitable 
for Chinese natural language processing ([5]). In Dependence Grammar, individual 
words in a sentence are considered to be linked together over dependency relations 
instead of being combined mechanically. The main idea of Dependence Grammar is 
that roles played by words of different grammar elements in a sentence are not same 
to each other, saying that, some words depend on others while some words govern 
others. In other words, relationship between words is governing or being governed. 
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This theory is quite similar to our weighting strategy that gives weights according to 
the different importance of syntactic elements. 

We define totally 23 dependency elements in our Dependence Grammar parsing, 
and then divide these elements into 2 categories according to the contributions each 
makes to the similarity measurement of whole sentence. Obviously, subject, predicate 
and object are the skeleton of a sentence and represent the main meaning of the 
sentence. Therefore, if two sentences are of the same subject, predicate, or object, 
they tend to express the similar thing. Similarity in other grammar elements also 
augments whole similarity between sentences, but makes less contribution than the 
three ones. Contributions are then quantified based on the training corpus as two 
parameters (alpha and beta) in our approach. These two parameters sum to 1 and are 
estimated empirically. 

3   Data Sets 

3.1   Raw Data Set 

Zhidao is one of the leading question answering service providers in China and has 
collected up to 11 millions question and answer pairs in Chinese till now (2007-1). 
This site operates like a forum in which a registered user submits his question and 
then any other registered user can provide his answer to the question. Thus a list of 
answers will always be gained in the web page, waiting for being judged. Experts of 
Zhidao will timely check whether there is correct answer and mark the question as 
solved if the correct one is found. The correct answer will also be marked out with 
special tags. Therefore, a straightforward web extraction technique will be capable of 
digging out questions and correct answers from web pages. Although answers of 
questions are not used during current experiments, they will be vital in building up the 
QA system. 

Experiments conducted in our paper are based on the data set obtained from this 
large archive. The raw data set consists of more than 77,000 question and answer 
pairs over all categories and is divided into two collections: collections A and B. 
Collection A contains 50,000 pairs and is used to find the optimal parameter values 
for our approach in parameter estimation phase. Remainder pairs of the whole raw 
data set comprise collection B in which we carry out the evaluation of the 
performance of our approach with other retrieval models. 

3.2   Collections with Judgment Information 

Both parameter estimation and result evaluation require collections with judgment 
information. Therefore, raw collections A and B have to be refined for the estimation 
and the comparison of the performance of our proposed approach with other retrieval 
models. In our work, such two sets of questions with judgment information, named JA 
and JB, are constructed proportionally from collections A and B. 

100 questions are selected randomly from collection A while 50 ones from 
collection B. These questions are regarded as queries to different retrieval models 
(approaches). To gather semantically relevant questions to these queries, we employ 
the pooling technique that is used in the TREC (http://trec.nist.gov) conference series. 
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We utilize the five retrieval models implemented in Lemur Toolkit to retrieve results 
to queries from collection A and B respectively. Only top 10 results from each 
retrieval model are kept as candidates. Then judgments of semantic relevancy are 
done among the total 50 results for one query manually, ignoring overlaps. Result 
(question) is considered to be semantically relevant with the query as long as they can 
be categorized into the same question type and are semantically identical or similar to 
each other. 

Table 2. Question types defined in our system (already translated from Chinese) 

Type Example 
HUM Who is the current president of USA 

OBJ Which animals live only in China 

LOC Where is Zhejiang University 

NUM What is the population of India till now 

TIME When was PRC founded 

DES Why the sky is blue 

Other Is Google Answers still available 

Table 2 shows the 7 question types defined in our system. In addition, to get rid of 
partiality generated by one judger, we employ 2 judgers to make the judgment 
separately and then integrate their results. Finally, we’ve got 335 semantically 
relevant questions for the 100 queries in JA from collection A and 160 ones for the 50 
queries in JB from collection B. 

4   Experiments 

4.1   Parameter Estimation 

The 23 dependence grammar elements are classified into two categories: skeleton 
elements Eskeleton and non-skeleton elements Enon-skeleton. The former comprises of 
subject, predicate and object while the rest grammar elements compose the latter. 
Thereby, in the parameter estimation phase of our work, two parameters alpha and 
beta have to be estimated from JA and JB, which are used to quantify the importance 
of the elements in Eskeleton and Enon-skeleton respectively. As we assume that alpha and 
beta sum to 1, we in fact only have to estimate one parameter. 

Figure 1 show the mean average precisions (MAPs) and average recalls evaluated 
from JA, varying with alpha ranging from 0.1 to 0.9 (i.e. beta from 0.9 to 0.1). The 
results demonstrate the impact of syntactic information on the measurement of 
sentence semantic similarity. Specifically, our approach, when equipped with 
parameter alpha equal to beta (i.e. alpha=beta=0.5), can be regarded as one without 
considering the impact of syntactic evidence because it ignores the differentia 
between the importance of syntactic elements. In the graph, MAP and recall in this 
situation fail to reach the summits of the curves. This result indicates the necessity of 
considering the impact of syntactic evidence. What’s more, as we can see from the 
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curves, situations with parameter alpha larger than beta work better in average than 
those with alpha smaller than beta both in MAP and average recall. This verifies our 
assumption that syntactic elements of Eskeleton play a more important role in measuring 
sentence semantic similarity than those of Enon-skeleton. Another observation is that 
curves descend as alpha increases when alpha keeps larger than 0.6. It shows that as 
components of a sentence, elements of Enon-skeleton also contribute more or less to the 
similarity measurement. Neglect of these elements degrades the overall performance. 
Therefore, we have to make a balance between the values of alpha and beta to give 
prominence to elements of Eskeleton while still maintaining the contributions of 
elements of Enon-skeleton. 

 

Fig. 1. MAPs and Recalls varying with alpha ranging from 0.1 to 0.9 (i.e. beta from 0.9 to 0.1). 
Both of these two curves reach the summits when alpha=0.6 (i.e. beta=0.4). In other words, our 
approach gains the best performance when alpha is set to 0.6 (i.e. beta=0.4).  

4.2   Results and Evaluation 

Evaluation of our approach with other models is carried out in collection JB. 
Parameters alpha and beta are estimated in the phase above that are optimal in 
collection JA. We use our approach to retrieve relevant questions from collection B, 
given the 50 queries in JB. Results are ranked according to their semantic similarity 
with queries in descending order. Only top 5 results are used to evaluate the 
performance of the approach. Then, we compare our results with the top 5 results 
returned by the five baseline models implemented in the Lemur Toolkit. This toolkit 
is designed to facilitate researches in language modeling and information retrieval. In 
our experiments, the five baseline retrieval models include: the TFIDF retrieval model 
(TFIDF), the Okapi BM25 retrieval function (Okapi) and the KL-divergence language 
model based retrieval method with three different smooth algorithms (Jelinek-Mercer 
(KL-jm), Dirichlet prior (KL-dir) and Absolute discounting (KL-abs)).  

For each of the five baseline models, their parameters are set to the optimal values 
in JA. Table 3 demonstrates evaluation results of our approach (SynSim) with the five 
baseline models. Although both MAP and average recall are still far from being  
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Table 3. Evaluation Results of different models (approaches) 

Models TFIDF Okapi KL-abs KL-jm KL-dir SynSim 
MAP 0.24 0.272 0.29 0.284 0.224 0.327 
Average-Recall 0.291 0.326 0.344 0.34 0.278 0.386 

satisfied for a practical QA system, our approach outperforms other models. The low 
MAP and average recall are mostly caused by the lack of an adequate data collection 
which reduces the probability of encountering an existing question that is semantic 
similar to the query. We believe that an improvement in MAP and recall will be 
gained as long as a large data collection is available. 

4.3   Example and Analysis 

One typical example is showed in Table 4 to explain why our approach works better 
than other five models. 

Table 4. Examples (already translated from Chinese) 

Query Which dynasty does Du Fu belong to (
)

KL-abs SynSim 

Question 1 When was Du Fu born (
)

Rank=2 Rank=3

Question 2 Which dynasty do the four famous 
literatures reflect (

)

Rank=5 Rank=10

 

In the example, Question 1 is considered to be semantic similar to the query while 
question 2 is not. The two questions both contain a word that is also in the query. 
However, these two words are of different grammar elements in the query. “Du Fu” 
acts as subject of the query and question 1 while “dynasty” acts as attribute of the 
query and question 2 (All these grammar elements are derived when query and 
questions are in Chinese). According to our weighting strategy, we regard “Du Fu” 
more important than “dynasty” in measuring the sentence similarity. As a result, we 
finally get question 1 as a result at rank 3 while ranking question 2 at 10. However, in 
the other 5 models, they fail to get the point and return both of these two questions in 
the top 5 results. 

5   Conclusions and Future Work 

Our work is conducted for an archive-based QA system in which measures of 
sentence semantic similarity dominate the overall performance when given a large 
archive. In this paper, we propose such a method that incorporated with syntactic 
information. Words in a sentence are parsed using Dependence Grammar. The 
syntactic elements are categorized into two classes according to their contributions to 
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the similarity measurement of whole sentence. A weighting strategy is introduced to 
quantify the contributions. 

During the parameter estimation phase in our experiments, the results demonstrate 
the impact of syntactic information with different weights on similarity measurement 
and show that the consideration of syntactic information enhances the performance of 
a similarity measure. We also compare the performance of our approach with five 
baseline retrieval models implemented in the Lemur Toolkit. Experiments show that 
our approach outperforms other models in finding semantic similar sentences. 

However, in order to incorporate our sentence similarity measure into a practical 
archive-based QA system, we plan to build up a larger corpus to improve the 
performance of our approach. We also plan to add in the information of question 
types to help to measure the similarity in the future. 
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Abstract. In text mining, when we need more precise information than
word frequencies such as the relationships among words, it is necessary
to extract frequent patterns of words with a dependency structure in a
sentence. This paper proposes a semi-structure mining method for ex-
tracting frequent patterns of words with a dependency structure from a
text corpus. First, it describes the data structure representing the depen-
dency structure. This is a tree structure in which each node has multiple
items. Then, a mining algorithm for this data structure is described.
Our method can extract frequent patterns that cannot be extracted by
conventional methods.

1 Introduction

In text mining, when we need more precise information than a word frequencies
such as the relationships among words, it is necessary to extract frequent patterns
of words with a dependency structure in a sentence. In Japanese, the dependency
structure is a chunk-based dependency structure, which is a dependency struc-
ture based on a chunk of words as a unit. Some examples of word chunks are
verb phrases in Japanese and noun phrases and prepositional phrases in En-
glish. For example, Figure 1(a) shows the chunk-based dependency structure
of ” (Japan’s premier Abe went to China)”. Generally
speaking, a chunk-based dependency structure is represented as a tree structure
in which a chunk of words is regarded as one label. This representation enables
conventional semi-structure mining algorithms such as FREQT[5,6] to be used.
However, the representation causes the following problem. If we want to extract
frequent substructures from two trees (a) and (b) in figure 1 based on this rep-
resentation schema , substructure (c) is extracted. It is a serious problem that
substructure (c) has so few nodes that there is insufficient information about
the relationship among words. In Figure 1, relationships such as” (Abe)”,
” (went)”and ” (China)”are not extracted. Consequently, patterns that
have too few nodes are extracted.

To solve this problem, we propose a new data structure that represents a
chunk-based dependency structure. It is a tree structure in which each node has
multiple items rather than one label. The multiple items correspond to the words
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Fig. 1. The Example of Extracting Sub-
strucure by Conventional Methods

Fig. 2. Example of Extracting Substruc-
ture by Our Method

in a chunk. In addition, we propose a mining algorithm for this data structure.
Our mining algorithm is an improved algorithm of the sequential pattern mining
PrefixSpan[1,2] . An example of the data structure is shown in Figure 2. Each
node has multiple items and each item is a word. In Figure 2, substructure (c)
is extracted from two trees (a) and (b). The key point is that in Figure 2, it is
possible to extract nodes with more items than those in Figure 1. Substructure
(c) in Figure 2 has three nodes, while substructure (c) in Figure 1 has one node.
Therefore, our method can extract patterns that have much more information,
such as the extracted patterns shown in Figure 2(c).

The remainder of this paper is organized as follows. Sections 2 and 3 introduce,
as related work, sequential pattern mining and its algorithm PrefixSpan and
labeled orderd tree mining and its algorithm FREQT, respectively. Section 4
explains our method and Section 5 evaluates it. Section 6 summarizes our work.

2 Sequential Pattern Mining[1,2]

In this section ,we explain briefly Sequential Pattern Mining.
Let I = {i1, i2, · · · , in} be a set of items. This set of items is also called an el-

ement. An element is denoted by (i1, i2, · · · , im). An inclusive relation between
element e1 and element e2 is denoted as e1 ⊆ e2 if all items of e1 are included in
e2. Since an element is a set of items, it is necessary to sort items in an element
in lexical order in advance: it is possible to consider the original order of items if
we do not sort them in the element. A sequence is an ordered list of elements.
For example, the sequence< (a, b)(a, d) > is not equivalent to < (a, d)(a, b) >.
A sequence s is denoted by s =< e1, e2, · · · , el > where ek is an element. The
number of items in a sequence is called the length of the sequence. A sequence
with length L is called an L-sequence. A sequence α =< a1, a2, · · · , an > is called
a subsequence of another sequence β =< b1, b2, · · · , bm > if there exist integers
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1 ≤ j1 ≤ j2 ≤ · · · ≤ jn ≤ m such that a1 ⊆ bj1 ,a2 ⊆ bj2 ,· · ·,an ⊆ bjn This
relationship between α and β is denoted as α � β. A sequence database
S is a set of tuples (sid, s), where sid is a sequence id and s is a sequence
defined as follows: S = {(sid1, s1), (sid2, s2), · · · , (sidn, sn)}. The support of a
sequence α in a sequence database S is the number of tuples containing α in the
database defined as follows: supportS(α) =‖ {(sid, s) | (sid, s) ∈ S ∧α � s} ‖. A
frequent sequence α is definded as a sequence whose support is greater than
the minimunm support ζ, which is a threshold, i.e., supportS(α) ≥ ζ.

Sequential Pattern Mining is defined as the problem of extracting all
frequent sequences from a sequence database.

Constraint-based Sequential Pattern Mining is Sequential Pattern Min-
ing that uses other constraints as well as minimum support[3][4]. Our proposed
mining algorithm is also categorized into this type of constraint based sequential
pattern mining.

PrefixSpan is proposed in 2000 as a fast sequential pattern mining algo-
rithm[2]. PrefixSpan extracts frequent sequences with a depth-first search by re-
cursively executing projection operations, which is called Prefix projection. We
explain briefly Prefix projection and Prefixspan algorithm as follows . Given a se-
quence s =< e1, e2, · · · , en > and item a, it is assumed that there exists a positive
integer m (≤ n) such as e1 	
 a, e2 	
 a, · · · , em−1 	
 a, em 
 a. Moreover, sup-
pose that em = (a1, a2, · · · , aj , · · · , at), e−m = (a1, a2, · · · , aj), ak 	= a(k < j), aj =
aCand e+

m = (aj+1, · · · , at). A sequence< e1, e2, · · · , e−m > is defined as the prefix
of s based on item a. A sequence< e+

m, em+1, · · · , en > is defined as the postfix
of s based on item a. If there is no m, prefix and postfix are not defined. Prefix
projection of a sequence database S with item a is defined as the operation that
constructs a projected database from the postfixes of sequences based on item a.
It adds prefix ’ ’ to items that are in the same element as a projecting item. An
< a >-projected database S is defined as a database that is projected with item
a and is denoted by S<a>. For example, when a sequence database S = {(sid1, <
(c, d)(b)(a, d)(b, c, a) >), (sid2, < (d, a)(d, a)(b, c) >)} is projected with item a ,
the projected database S<a> is {(sid1, < ( d)(b, c, a) >), (sid2, < (d, a)(b, c) >)}

PrefixSpan algorithm is as follows:

1. Find length 1-frequent sequences
Scan a sequence database S to find frequent items(= length 1-frequent sequences)
whose supports are greater than the minimum support. Then, all frequent se-
quences are partitioned into subsets that have the length 1-frequent sequences
as each prefix.
2. Find subsets of length k−frequent sequence
For k(≥ 2), do the following procedure by incrementing k until frequent items
can not be extracted.

Extract each subset of the k−frequent sequence by finding frequent items
from a projected database projected corresponding to each (k − 1)−frequent
sequence.
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3 Labeled Ordered Tree Mining

In this section ,we explain briefly Labeled Ordered Tree Mining. A labeled or-
derd three is a tree in which each node has one label and which keeps the order
among siblings. If a labeled ordered tree α is a subset of another labeled ordered
tree β, it is defined that β ’includes’ α, denoting α � β. A labeled ordered
tree database T is a set of tuples (tid, t), where tid is an ordered tree id and
t is a labeled ordered tree, defined as s: T = {(tid1, t1), (tid2, t2), · · · , (tidn, tn)}.
The support of a labeled ordered tree α in a labeled ordered database T is the
number of tuples in the database containing α defined as follows: supportT (α) =‖
{(tid, t) | (tid, t) ∈ T ∧ α � t} ‖. A frequent labeled ordered tree α is de-
fined as a labeled ordered tree whose support is greater than minimum support
ζ, which is the threshold, i.e., supportT (α) ≥ ζ. Labeled Ordered Tree Min-
ing is defined as the problem of extracting all frequent labeled ordered trees
from a labeled ordered tree database corresponding to the minmum support.
The number of nodes of a labeled ordered tree t is called the size of a labeled
ordered tree t and is denoted as | t |.

FREQT is proposed in 2002 as a fast labeled ordered tree mining algo-
rithm[5,6]. FREQT extracts frequent ordered trees by the technique of grow-
ing a tree by attaching new nodes only on the rightmost branch of the tree,
which is called rightmost expansion. Rightmost expansion was also proposed by
Zaki et al.[7].

4 Proposed Method

In this section, we propose a new data structure to represent the chunk-based
dependency structure and a mining algorithm for the new data structure. This
is a tree structure whose node has a element,that is, a set of items. For example,
a chunk such as ”with a depth-first search” is represented as a node with an
element including four items, i.e., ( ’with’ , ’a’ , ’depth-first’,’search’ ). In this
regard, however, items in the element keep their order.

Since our data structure is not a labeled ordered tree, an existing mining
algorithm such as FREQT cannot be applied directly. But, if we transform the
data in the following way, we can make the sequential pattern mining algorithm
applicable to our data structure.

1. Enumerate elements by traversing the data structure from the root node
with a depth-first search in the anticlockwise direction.

2. Assign an index to each node in the enumerated order. As the result, the data
structure becomes one that can be dealt with sequential pattern mining.

3. Each element has index information about a structure, i.e., (parent, first
child, next sibling). If there is none, the index is set to ’-1’. The first child
of a node is the leftmost node among its child nodes. The next sibling of
a node is a neighboring node among its sibling nodes, that is, the leftmost
node among its sibling nodes.

The transformed data structure is called a semi-structured sequence.
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Fig. 3. Example of the Transformation of
the Proposed Data Structure

Fig. 4. Example of the Tree Projection
with Item a(index=0)

An example of the above transfor mation is shown in Figure 3. The data struc-
ture surrounded by the quadrangle in Figure 3 is the data structre of sequential
pattern mining. Therefore, the sequential pattern mining algorithm PrefixSpan
can be applied to our data structure. However, arbitrary use of PrefixSpan leads
to the extraction of disconnected patterns such as < (a, b, c)(c, b) > in Figure 3.
Therefore, it is necessary to put a certain constraint on PrefixSpan. Our min-
ing algorithm is an expanded PrefixSpan algorithm with a projection that is
constrained in order to extract only connected patterns from the data struc-
ture transformed by the method described above. This constrained projection is
called a Tree Projection.

4.1 Tree Projection

The tree projection of a semi-structured sequence S with item i is a projec-
tion constrained as follows. Constraint: The only items included in projected
database S<i> are ones that have a path with the items in Proj-Items.

Proj-Items is a stack into which projecting items are pushed. After projec-
tion with item i, the item i is pushed into the Proj-Items. When the projection
with item i has finished, item i is deleted from the projecting stack. The pat-
terns of items in the projecting stack are frequent patterns. Figure 4 shows the
running example of tree projection with item a (index=0).

Tree projection calls the tree projection in the following order:(1).element-
projection,(2).child-projection and (3).Level k sibling-projection. After the ex-
traction of frequent items on each projection has finished, the next projecting
item is selected and tree projection is called recursively in each projection. We
explain each projection as follows.

(1) element-projection with item i is a projection selecting items whose
element is equal to the element of the projecting item i. In PrefixSpan, these
items are denoted by adding ’ ’ as a prefix.
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Fig. 5. Example of child-projection Fig. 6. Example of sibling-projection

(2) child-projection with item i is a projection selecting items whose ele-
ment is the child element of projecting item i. Specifically, it operates as follows:

1. Find the index of the first child element of the projecting item i
2. Find the index of the next sibling element of the first child element.
3. Find the index of the next sibling element iteratively

As described above, child-projection can extract items that have the parent-child
relationship of item i. These items are stored into a projected database. Figure
5 shows a running example of child projection.

(3) Level k sibling projection with item i is a projection selecting items
whose element is a sibling element of the k-th ancestor of the projecting item i.
The k-th ancestor A of the element I indicates that there exists a path between
an element I and element A and the difference from depth(A) to depth(I) is k-1.
The parent element of the element I is 1st ancestor of the element I. The 0th
ancestor of the element I is I itself. For example, in Figure 3, the 1st ancestor
of element (c, b) is element (d, a) and the 2nd ancestor is element (a, b, c).

Specifically, it operates as follows:

1. Find the index of the k-th ancestor of the projecting item i.
2. Find the index of the next sibling element of the k-th ancestor.
3. Find the index of the next sibling element iteratively.

Suppose that d is the depth of the projecting item i from the projection start
item. Iterate Level k sibling-projection from k=0 to k=d. As described above,
Level k sibling-projection can extract the items that are the sibling elements of
the k-th ancestor of item i. Put these items into a projected database. Figure 6
shows a running example of sibling-projection.

5 Evaluation of Proposed Method

In this section, we present two evaluations: one evaluating the execution time
and the other evaluating the statistics of the number of extracted nodes. In
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Fig. 7. Comparision of Execution Times Fig. 8. Difference in Memory Usage be-
tween FREQT and pFREQT

particular,we show that our mining method with our new data structure extracts
frequent patterns with more nodes than conventional methods.

The dataset was Aviation Safety Report1 gathered by Japan Airlines Interna-
tional Co., Ltd. Dependency parsing by Cabocha2 is run to one sentence as a
unit. In a labeled ordered tree, a segment in Japanese is regarded as a label3. In
our data structure, a segment is an element and a morpheme in a segment is an
item4.

No conventional mining method can handle our data structure, so we could
not evaluate the execution time of our method in comparison with a conventional
method. However, our data structure includes a labeled ordered tree as a subset,
that is, a labeled ordered tree is our structure where an element has only one
item. In this case, tree projection corresponds to the rightmost expansion of
FREQT. Therefore, we evaluated the execution time of our method based on a
labeled ordered tree. Our method is called pFREQT(projection-based FREQT).

Figure 7 compares the execution time by pFREQT and by FREQT5 based
on a labeled ordered tree. The minimum support was two. pFREQT extracted
frequent patterns faster than FREQT. It also projected an item partially cor-
responding to the relationship of the projectiong nodes. Therefore, pFREQT
used less memory than FREQT when searching for patterns. Figure 8 shows the
difference in memory usage for FREQT and pFREQT. Apparently, the more
sentences there were to handle, the greater the additional memory consumed by
FREQT compared with pFREQT. Figure 9 shows the statistics of the number of
extracted nodes. We extracted frequent patterns with more than two nodes. We
made five datasets, which had a total of two thousand sentences. We evaluated
the meanscore, median and maximal values of the number of extracted nodes.
The horizontal axis shows each dataset. The vertical axis shows the number of
extracted nodes. Figure 9 shows that for each set of statistics, more nodes are
extracted by our method than by conventional methods. The more nodes that

1 It cannot identify individuals because individual information was eliminated.
2 http://chasen.org/˜taku/software/cabocha/
3 Refer to Figure 1.
4 Refer to Figure 2.
5 http://chasen.org/˜taku/software/freqt/
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Fig. 9. Statistics of the Number of Extracted Nodes

can be extracted, the more relationships among words with a dependency struc-
ture can be extracted.

6 Conclusion

This paper described a semi-structure mining method for extracting frequent
patterns of words with a chunk-based dependency structure. It also described
a new data structure representing a chunk-based dependency structure and a
mining algorithm for it. Our method can extract frequent patterns that the
conventional methods cannot extract.
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Abstract. Principal curves were proposed as the nonlinear generalization of
PCA. However, for the tasks of feature extraction for signal representation at
which PCA is adept, existing definitions of principal curves have some weakness
in their theoretical bases thus fail to get reasonable results in many situations.
In this paper, a new definition of principal curves - Principal Curve with Feature
Continuity (PCFC) is proposed. PCFC focuses on both reconstruction error min-
imization and feature continuity. It builds a continuous mapping from samples to
the extracted features so the features preserve the inner structures of the sample
set, which benefits the researchers to learn the properties of the sample set. The
existence and the differential properties of PCFC are studied and the results are
presented in this paper.

1 Introduction

Feature extraction for signal representation is an invariable topic in pattern recogni-
tion, which aims to concisely describe the dominant feature of a sample set. Numerous
methods have been developed to extract reliable features for various data sets. PCA
(principal component analysis) may be the most well-known and widely used method.
The features extracted by PCA have many good properties and were successfully used
in many problems. However, the world is nonlinear. When the linear model of PCA fails
to describe the complex inner structures of nonlinear patterns, many nonlinear gener-
alizations of PCA are developed. Among those methods, principal curve methods are
most attractive. Principal curve methods, such as HS principal curves (HSPC) [1], T
principal curve (TPC)[2], K principal curves (KPC)[3] ,principal curves with bounded
turn (PCBT)[4], D principal curves(DPC)[5] and so on, are proposed by generalizing
respective properties of the first principal component line. These principal curves have
been successfully applied for the tasks of data description, that is, looking for descrip-
tive models that can describe the data best [6][7].

However, for the tasks of extracting reliable features for signal presentation, exist-
ing principal curves are weak on their theoretic bases. In fact, for such tasks, the most
important requirement is that the extracted features preserve the inner structures of the
data distribution so that the properties of the data sets can be reliably reflected by the
extracted features. Generally, it is considered that the inner structures of data sets are
embodied in neighbor relationships between samples. So, a basic requirement of feature
extractor is that the features extracted from neighboring samples should still be neigh-
boring. It is easy to know that PCA does keep the neighbor relationship for neighboring
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samples. However, when we take the project index functions of principal curves as the
feature extractors, existing principal curves do not guarantee the neighbor relationship
preserving for neighboring samples. Furthermore, reconstruction error minimization is
another requirement of feature extraction for signal representation, but some kinds of
principal curves do not satisfy the requirement.

Recently, we propose a new definition of principal curves: Principal Curve with Fea-
ture Continuity(PCFC). PCFC is proposed for extracting one-dimensional features for
signal representation. It is focused on both the reconstruction error minimization and
the neighbor relationship preserving for neighboring samples. From the viewpoint of
feature extraction for signal representation, PCFC is an optimal one-dimensional fea-
ture extractor in the sample space.

The rest of the paper is organized as follows: In Section 2, we introduce the frame-
work of feature extraction for signal representation using curves and evaluate the ex-
isting kinds of principal curves inside this framework. Then the definition of PCFC is
introduced and its properties are analyzed in Section 3. Finally, Section 4 concludes
with a description of directions for future research.

2 One-Dimensional Feature Extraction for Signal Representation
Using Curves

In this section, we introduce some basic concepts of curves and the framework of feature
extraction using curves.

2.1 Preliminaries and Notation

Definition 1. A parameterized curve f is a continuous mapping f : Λ → R
d, where Λ

is a close subset of R.

We denote by If the domain of f and by Gf its range.

Definition 2. The length of a parameterized curve f : Λ → R
d over an interval

[α, β] ⊂ If , denoted by l(f , α, β), is defined by

l(f , α, β) = sup
N∑

i=1

‖f(ti) − f(ti−1)‖, (1)

where the supremum is taken over all finite partitions of [α, β] with arbitrary subdi-
vision points α = t0 ≤ t1 < · · · ≤ tN = β for N ≥ 1. The total length of the
parameterized curve f is defined as:

l(f) = sup
α,β∈If

l(f , α, β) (2)

A parameterized curve f is called rectifiable if l(f) < ∞.
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Definition 3. Consider a piecewise-linear curve f with vertices v0 . . . vn. Let ai =
vi − vi−1 and let φi be the angle between ai and ai+1. The total turn of this piecewise-
linear curve is defined by

κ(f) =
n−1∑

i=1

φi. (3)

For a general curve f , the turn accumulated over an interval [α, β] of its domain is
defined as the supremum over all piecewise-linear inscriptions in [α, β], i.e.,

κ(f , α, β) = sup
n

sup
g

κ(g) (4)

where g is a piecewise-linear curve with vertices f(t0) . . . f(tn) such that ti ∈ If and
α = t0 < t1 < · · · < tn−1 < tn = β. The total turn of the

κ(f) = sup
α,β∈If

κ(f , α, β) (5)

A parameterized curve f over If is called to be parameterized by its arc length if for any
interval [α, β] ⊂ If and t ∈ [α, β], l(f , α, t) = t − α.

The projection index of a point x to the parameterized curve f is defined as:

tf (x) = sup
t∈If

{t : ‖x − f(t)‖ = inf
τ∈If

‖x − f(τ)‖}. (6)

We denote the distortion of x due to its projection onto a parameterized curve f as:

Δ(x, f) = ‖x − f(tf (x))‖2. (7)

If the set {t : ‖x − f(t)‖ = Δ(x, f)} contains more than one element, then x is called
an ambiguity point to f .

For a random variable X , we denote the expected distortion due to its projection onto
f as:

Δ(f) = E[Δ(x, f)] = E[‖x − f(tf (x))‖2]. (8)

Two different parameterized curves f : If → Rd and g : Ig → Rd may define a
same path passing the same set of points with the same order . We can regard these
two parameterized curves define one and the same curve L. In fact, an equivalence re-
lation can be established between the parameterized curves, and an equivalence class
defines a curve(for more details, please consult [8]). In this situation, we call f and g
the parameterizations of L. It is easy to prove that all parameterizations of a curve have
the same length, the same total turn and the same distortion from a point and a random
variable. From the theory of irregular curves [8], we know that curves with finite turn
can be parameterized by its arc length. To eliminate the ambiguity of parameteriza-
tions, in the remaining parts of the paper, we only consider the curves with finite turn;
and unless explicitly mentioned, we always prescribe that the parameterized curves are
parameterized by their arc length and satisfy tf (O) = 0.



788 M.-m. Sun and J.-y. Yang

2.2 Feature Extractor and Reconstruction Function

Given a random variable X and a parameterized curve f , we define

Ff (x) = tf (x). (9)

as the one-dimensional feature extractor. In fact, according to the prescription in above
section, Ff (x) is the directed arc length between the projection points of O and x on
the curve. So Ff is independent of the parameterization.

Now the one-dimensional feature extraction framework using curves can be estab-
lished by selecting Ff as the feature extractor and f as the reconstruction function. That
is, given a sample x of X , Ff (x) is the feature of x; and given a feature value t, f(t)
is the reconstruction point of the feature t. Note that the framework is coincident with
PCA, in which f is the first principal component line of the random variable.

2.3 Evaluation Criterions of Feature Extractors

When evaluating a feature extractor for signal representation, there are commonly two
criterions:

– Feature Continuity: the feature extractor should be a continuous function of sam-
ples. This criterion evaluates the ability of feature extractor to preserve the inner
structure of data set. If this criterion is not satisfied, the features of similar samples
would be dissimilar, which is disadvantageous for researchers to learn the proper-
ties of the sample set via the extracted features.

– Reconstruction Error Minimization: the distortion between the samples and recon-
struction points should be minimized. This criterion is the natural requirement for
signal representation.

In the one-dimensional feature extraction framework using curves, these two criteri-
ons becomes: 1) Ff should be continuous; 2) Δ(f) should be minimized.

According to these two criterions, existing principal curve methods are evaluated as
follows from the view point of feature extraction for signal representation.

Feature Continuity. We can easily show instances that existing kinds of principal
curves do not preserve the continuity of Ff . For a random variable uniformly distributed
on a circle {(r, φ) : r = R}, the HSPC, DPC, TPC, KPC with upper-bound of length
larger than 2πR and PCBT with upper-bound of total turn larger than 2π are all the
circle. Given any parameterization f of the circle, the Ff cannot be continuous. From
the instance, we can see that the theories of existing principal curves do not guarantee
the continuity of the feature extractor Ff .

Because of lacking the theoretic assurance of the continuity of Ff , in practice, the
learning algorithms of existing principal curves failed to learn a reasonable feature ex-
tractor. Figure 1 exhibits the learning results of K principal curve and HS principal curve
on a data set of 100 samples uniformly distributed on a unit square, with comparison to
those of first principal component line and a desired curve.

We can see from the results that the learning results of K principal curve and HS
principal curve achieves smaller reconstruction errors. However, neighboring samples
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(a) (b) (c) (d)

Fig. 1. Learning results of (a) K principal curve, (b) HS principal curve (c) Principal component
line. The desired curve is shown in (d). In the K principal curve learning algorithm [3], the penalty
coefficient is set to 0.13 recommended in [3]. Gaussian kernel with parameter 0.3 is employed in
HS principal curve learning algorithm.

are projected to the points far from each other on the curves, which means that the
feature continuity has been violated. The first principal component line shown in Figure
1 (c) does preserve the continuity of Ff , but the reconstruction error of it is high. The
curve illustrated in Figure 1 (d) preserves the feature continuity; and compared with the
first principal component line, it achieves a lower value of Δ(f), which means more
effective in feature extraction. It is a desired curve for feature extraction.

Reconstruction Error Minimization. KPC and PCBT minimize Δ(f) in respective
curve classes, while other principal curves such as HSPC, TPC and DPC do not neces-
sarily do so.

To sum up, existing definitions of principal curves are not competent for the task of
feature extraction for signal representation. The main reason is that those definitions
do not preserve the continuity of Ff ; furthermore, some of them do not minimize Δ(f)
either.

3 Principal Curves with Feature Continuity

3.1 Concept and Definition

According to the two criterions proposed in above section, the desired curve is the
one that minimizes Δ(f) with continuous Ff . We call it Principal Curve with Feature
Continuity(PCFC). To support the validity of the concept of PCFC, we impose more
restrict regularity conditions on the class of curves to be studied.

Let us denote the open ball centered at the origin with radius r as Br. Given a pa-
rameterized curve f , if Gf ∩ Br 
= φ, then we know that f(0) ∈ Br. Let t1 = inf{t ≤
0|∀s ∈ (t, 0], f(s) ∈ Br} and t2 = sup{t ≥ 0|∀s ∈ [0, t), f(s) ∈ Br}. We define
f |Br as the curve g with Ig = [t1, t2] and g(t) = f(t), t ∈ [t1, t2]. We call f |Br the
restriction of f to the ball Br.

To avoid the situation that infimum of Δ(f) may not be achieved by any curve, (an
example is detailed in [4]), we consider the following class of curves [4]:

CT,τ = {f | κ(f) ≤ T, κ(f) − κ(f |BR) ≤ τ(R)}, (10)

where τ(R) is continuous and decreasing to zero in R.
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In order to get reliable cognition about the properties of the data set through the
extracted features, the scale of differences between the extracted features of neighboring
samples must be under control. So we consider the curves inside the following class:

Ωδ,K,S(X) = {f | ‖Ff (x1) − Ff (x2)‖ ≤ K‖x1 − x2‖,

∀x1, x2 ∈ S(X), ‖x1 − x2‖ < δ}. (11)

where S(X) denote the support of the random variable X .
Finally, for a random variable X , we consider the class of curves as follows:

ΓT,τ,δ,K,S(X) = Ωδ,K,S(X) ∩ CT,τ . (12)

Now, we give the definition of principal curve with feature continuity:

Definition 4. Given a random variable X , a parameterized curve f ∗ is called the prin-
cipal curve with feature continuity for X with parameter (T, τ, δ, K) if it minimizes
Δ(f) among all the curves in ΓT,τ,δ,K,S(X).

Given the definition, following theorem ensures that the PCFC always exists for data
distributions with finite second moments and open support:

Theorem 1. If E(‖X‖2) < ∞ and S(X) is open, then ∀T > 0, δ > 0, K ≥ 0 and τ
continuously decrease to zero, then there exists a principal curve with feature continuity
for X with parameter (T, τ, δ, K).

Because of the limitation of the space of the paper, the detailed proof is not presented
here. The outline of the proof is shown below. The key to prove the theorem is the
following lemma:

Lemma 1. For any open set Y and compact set A ⊂ R
d, the set of curves {f |Gf ⊂

A, κ(f) ≤ T } ∩ Ωδ,K,Y is compact.

Given this lemma, the other part of the proof roughly follows the way of the proof of
the existence of PCBT [4]. Let Δ∗ = inff∈ΓT,τ,δ,D,S(X) Δ(f). We know that there exists
a sequence of curves fn ∈ ΓT,τ,δ,D,S(X) such that Δ(fn) → Δ∗. In a similar way with
the proof of the existence of PCBT, we can prove that there exist in {fn} a subsequences
{fnk

} whose restrictions to any ball with radius large enough converge. Then a ’limiting
curve’ f∗ can be defined as the curve that satisfies when ∀r large enough,

fnk
|Br → f∗|Br . (13)

Then, following the way in [4], we can proof that f∗ ∈ ΓT,τ,δ,D,S(X) an Δ(f∗) = Δ∗.
Thus, f∗ is the desired principal curve with feature continuity.

When S(X) is not open, we consider to expand the support of the distribution: unite
S(X) with a set of small open balls centered at its boundary points. We denote the
resulting set as U(X). Then we find in ΓT,τ,δ,K,U(X) a curve f ∗ which minimizes
Δ(f). Similarly, we can prove that f ∗ exists. This disposal is reasonable under the
consideration of generalization and influences of noises in real world problems.
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3.2 Properties of Principal Curves with Feature Continuity

The definition of principal curves with feature continuity directly results in following
proposition:

Proposition 1. If f is a PCFC for random variable X with an open support S(X), then
there is no ambiguity point of f in S(X).
Now we study the differential properties of principal curves with feature continuity.
Since the PCFC has finite turn, according to the theory of irregular curves [8], following
proposition is valid.

Proposition 2. If f is the principal curves with feature continuity of X ( parameterized
by its arc length), then:

– ∀t ∈ If , the left derivative vector f ′l(t) and right derivative vector f ′r(t) exist and
their length equal to 1;

– the non-differentiable points of f(t) are not more than countable.

Proposition 3. If f is the principal curve with feature continuity of X ( parameterized
by its arc length). If for t0, there ∃x0, δ0 > 0 satisfying following conditions:

– t0 = tf (x0);
– O(x0, δ0) ⊂ S(X);
– ∀0 < δ < δ0, tf (O(x0, δ)) is open.

then f is first order differentiable at t0. Especially, when f(t0) is an inner point of S(X),
f(t) is first order differentiable at t0.

The facts revealed by proposition 3 are illustrated in Figure 2.

(a) (b) (c)

Fig. 2. The differential properties of PCFC. (a) A case that should not happen for PCFC, (b) A
case satisfying the condition of proposition 3, (c) A case of non smooth PCFC. In the figure,
gray region denotes a part of the support of a distribution and the circles inside them denote the
neighborhoods.

Figure 2 shows a part of a distribution and various possibilities of PCFC. In (a),
the projection of the neighborhood is split into separated parts, thus violates the feature
continuity of PCFC. Thus, the non-smoothness described in (a) is not allowed for PCFC.
(b) shows the situation that the conditions of proposition 3 describe: however small the
neighborhood is, the set of projection indexes of points in the neighborhood is open.
According to proposition 3, the PCFC must be differentiable at t0. A PCFC that is
somewhere not differentiable is shown in (c). In this case, when the neighborhood is
small enough, the points in the neighborhood all project into one and the same point,
thus the condition of proposition 3 is not satisfied.
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4 Conclusion and Future Work

In this paper, we proposed a new definition of principal curves - Principal Curve with
Feature Continuity to extract reliable one-dimensional features for signal representa-
tion. PCFC focuses on feature continuity and reconstruction error minimization. From
the viewpoint of signal representation, it is an optimal one-dimensional feature extrac-
tor in the sample space. The existence of the PCFC is guaranteed for a large set of data
distributions. PCFC also has good differential properties.

Developing an effective and efficient algorithm to learn the PCFC is an impor-
tant task in our future work. Furthermore, multi-dimensional features may benefits
researchers to understand the detailed properties of the data set. To extract multi-
dimensional features for signal representation, we would like to study the definition
and properties of principal manifold with feature continuity, which will be a part of our
future work.
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3. Kégl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE

Transaction on Pattern Analysis and Machine Intelligence 22(3) (2000) 281–297
4. Sandilya, S., Kulkarni, S.R.: Principal curves with bounded turn. IEEE Trans. on Information

Theory 48(10) (2002) 2789–2793
5. Delicado, P.: Another look at principal curves and surfaces. Journal of Multivariate Analysis

77(2) (2001) 84–116
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Abstract. The insufficiency of labeled training samples for representing
the distribution of the entire data set (include labeled and unlabeled) is
a major obstacle in automatic semantic annotation of large-scale video
database. Semi-supervised learning algorithms, which attempt to learn
from both labeled and unlabeled data, are promising to solve this prob-
lem. In this paper, we present a novel semi-supervised approach named
Kernel based Local Neighborhood Propagation (Kernel LNP) for video an-
notation. This approach combines the consistency assumption and the
Local Linear Embedding (LLE) method in a nonlinear kernel-mapped
space, which improves a recently proposed method Local Neighborhood
Propagation (LNP) by tackling the limitation of its local linear assump-
tion on the distribution of semantics. Experiments conducted on the
TRECVID data set demonstrate that this approach can obtain a more
accurate result than LNP for video semantic annotation.

Keywords: Video Annotation, Kernel Method, Label Propagation.

1 Introduction

Automatic annotation (or we may call it high-level feature extraction) of video
and video segments is essential for enabling semantic-level video search. As man-
ually annotating large video archive is labor-intensive and time-consuming, many
automatic approaches are proposed for this issue. Generally, these methods build
statistical models from manually pre-labeled samples, and then assign the labels
for the unlabeled ones using these models. This process has a major obstacle:
the labeled data is limited so that the distribution of the labeled data typically
does not well represent the distribution of the entire dataset (include labeled
and unlabeled), which usually leads to inaccurate annotation results.

Semi-supervised learning, which attempts to learn from both labeled and un-
labeled data, is a promising approach to deal with the above obstacle. Many
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works on this topic are reported in literature of machine learning community [1].
And some of them have been applied to video or image annotation [2,3,4].

The key point of semi-supervised learning is the consistency assumption [5]:
nearby samples in the feature space or samples on the same structure (also
referred to as a cluster or a manifold) are likely to have the same label. This
assumption considers both the local smoothness and the structure smoothness
of the semantic distribution.

There are close relations between the consistency assumption and nonlin-
ear dimensionality reduction schemes [6,7,10] since intrinsically they follow the
same idea of reducing the global coordinate system of the dataset to a lower-
dimensional one while preserving the local distribution structure. Recently, a
method called Local Neighborhood Propagation (LNP) [8,9] is proposed to com-
bine these two strategies. LNP borrows the basic assumption of Local Linear
Embedding (LLE) [6,10] that each sample can be reconstructed by its neigh-
boring samples linearly, and further assumes that the label of the sample can
be reconstructed by the labels of its neighboring samples using the same co-
efficients. This method potentially assumes that the mapping from the feature
to label is linear in a local area (to be detailed in Section 2). However, if the
semantic super-plane has a high curvature in this area, LNP will fail. In other
words, if the labels of the samples in the local area distribute complexly in the
feature space, this linear assumption is not appropriate. Therefore this method
is not suitable to tackle the video semantic annotation problem, since typically
the semantic distribution of video segments, which are collected from different
sources and span a large time interval, is very complex in the feature space.

In this paper, we propose a novel method for automatic video annotation
named Kernel based Local Neighborhood Propagation (Kernel LNP), which also
combines the consistency assumption and LLE but is applied in a nonlinear
kernel-mapped space. This method is able to handle more complex situation since
it holds both the advantages of LNP and kernel methods, through mapping the
input feature space to a nonlinear kernel-mapped feature space. The experiments
conducted on the TRECVID [13] data set demonstrate that Kernel LNP is more
appropriate than LNP for complex applications and can obtain a more accurate
result for video high-level feature extraction.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
LNP and analyze its limitation; and the proposed Kernel LNP for the video
semantic annotation problem is detailed in Section 3. Experiments are introduced
in Section 4, followed by the conclusion remarks and future work in Section 5.

2 LNP and Its Limitation

In this section, we briefly introduce LNP and analyze its limitation. LNP is based
on the assumption that the label of each sample can be reconstructed linearly
by its neighbors’ labels, and the coefficients of reconstructing the label is the
same as the ones for reconstructing the feature vector of the sample. This can
be formulated as
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xi =
∑

xj∈N(xi)

αjxj ⇒ fi =
∑

xj∈N(xi)

αjfj, (1)

where N(xi) is the neighbors of sample xi, and fi is the label of xi.
Define the mapping from the feature to label as f : xi �→ fi, we can obtain:

fi = f(xi) = f(
∑

xj∈N(xi)

αjxj) (2)

and
fi =

∑

xj∈N(xi)

αjfj =
∑

xj∈N(xi)

αjf(xj) (3)

Combine (2) and (3), we have

f(
∑

xj∈N(xi)

αjxj) =
∑

xj∈N(xi)

αjf(xj) (4)

Equation (4) indicates that the mapping from the feature to label is linear in
a local area. Furthermore, from the viewpoint of LLE, LNP assumes that the
semantic is a 1-D manifold embedded in the feature space. Local linear assump-
tion or 1-D manifold assumption is not able to handle the data with complex
semantic distribution. If the semantic super-plane has a high curvature in the
local area, this assumption is not appropriate. So this method cannot tackle the
video semantic annotation problem since the semantics of video segments often
have very complex distributions. We call this drawback limitation of local linear
assumption on the distribution of semantics.

3 Kernel-Based Local Neighborhood Propagation

To tackle the aforementioned limitation of LNP, in Kernel LNP, we map the
features to a kernel-mapped space and then try to obtain the reconstruction
coefficients in this nonlinear space. Kernel LNP also assumes that the label
of each sample can be reconstructed linearly by its neighbors’ labels, but the
reconstruction coefficients are obtained in the nonlinear mapped space.

Let X = {x1, x2, ..., xl, xl+1, ..., xn} be a set of n samples (i.e., video shots for
our application) in Rd (feature space with d -dimensional features). X = L

⋃
U ,

where the sample set L = {x1, x2, ..., xl} contains the first l samples labeled as
yi ∈ {1, 0} (1 � i � l) and U = {xl+1, xl+2, ..., xn} are unlabeled ones. According
to the task of high-level feature extraction in TRECVID [13], the objective here
is to rank the remaining unlabeled samples, so we will assign real values (between
0 and 1) to the samples as labels instead of “0” or “1”.

Considering a kernel mapping φ(·) operating from input space X to a mapped
space Φ:

φ : X → Φ,

x �→ φ(x).
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The data set can be mapped to {φ(x1), φ(x2), ..., φ(xl), φ(xl+1), ..., φ(xn)}. Then,
the kernel matrix K of dot products can be represented as

K = (kij)1�i�n,1�j�n, (5)

where kij = φt(xi) ·φ(xj), and for the kernel function, the Radial Basis Function
(RBF) is adopted in our experiments.

We find the k nearest neighbors N(φi) of every φ(xi) ∈ Φ using the following
distance (for concision, we use φi to substitute φ(xi)):

dist(φi, φj) = ‖φ(xi) − φ(xj)‖

=
√

φT
i φi − 2φT

i φj + φT
j φj

=
√

kii − 2kij + kjj . (6)

Please note this formula shows that the distance can be obtained directly from
the kernel matrix instead of the mapping function φ(·).

According to the assumption of LLE, xi can be linearly reconstructed from
its neighbors. Using the kernel mapping, the coefficients obtained in the mapped
space can reconstruct the labels better than the coefficients obtained in the
original feature space. To compute the optimal reconstruction coefficients, the
reconstruction error of φi is defined as:

εi = ‖φi −
∑

φj∈N(φi)

wijφj‖, (7)

where wij is the reconstruction coefficient for φi from φj ∈ N(φi) = {φi1, ..., φik},
wi = (wi1, wi2, ..., wik)T is the vector of reconstruction coefficients. We could
obtain the optimal coefficients for φi by solving the optimization problem:

w∗i = argminwiεi

= argminwi‖φi −
∑

φj∈N(φi)

wijφj‖ (8)

s.t. wij = 0 for ∀φj /∈ N(φi), and
∑

j

wij = 1

Introduce a “local” Gram matrix of φi in the kernel-mapped space here:

Gi = (φi1T − Φi)T (φi1T − Φi)
= ((φi − φp)(φi − φq))φp∈N(φi),φq∈N(φi)

= (kii − kip − kiq + kpq)φp∈N(φi),φq∈N(φi) (9)
= (gipq)φp∈N(φi),φq∈N(φi)

where Φi is a matrix formed by the mapped feature vectors for the k nearest
neighbors of i-th sample, “1” is a k -dimensional column vector with each entry
equals to 1,and gipq = kii − kip − kiq + kpq is the entry in matrix Gi (k × k).
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Please note here the subscripts p and q do not mean gipq is the element in p-th
row and q-th column (1 � p, q � n) in the matrix, but it is obtained according
to the positions of φp and φq in Φi. For example, if φp is the r -th column and
φq is the s-th column in Φi(1 � r, s � k), gipq is of the element in r -th row and
s-th column of Gi. In some unusual cases, this Gram matrix may be singular or
nearly singular. So it must be added a small multiple of the identity matrix for
regularization [10].

Similar to the distance measure (see equation (6)), we can see that the Gram
matrix in (9) also can be calculated directly from the kernel matrix instead of the
mapping function. Therefore, in the entire computing procedure, the mapping
function actually is not explicitly required.

This obtained Gram matrix is symmetric and semi-positive definite. We can
use the Lagrange multiplier to enforce the constraint

∑
j wij = 1 for the op-

timization problem in (8). According to the inverse Gram matrix, the optimal
reconstruction coefficients vector w∗i for i-th sample can be obtained as:

w∗i =
G−1

i 1
1G−1

i 1
(10)

It is intuitive that the obtained reconstruction coefficients reflect the intrinsic
local semantic structure of the samples in the mapped space. These coefficients
will be applied to reconstruct the unlabeled samples’ labels (which are real values
instead of ”0” or ”1”), that is, to estimate the prediction function f . In order to
obtain the optimal f , we define the following cost function

C(f) =
n∑

i=1

‖fi −
∑

φj∈N(φi)

wijfj‖2 + ∞
l∑

i=1

(fi − yi)2, (11)

where fi is the label of sample xi.
Minimizing this cost will optimally reconstruct the labels of all unlabeled

samples from the counterparts of their neighbors. And from the view of label
propagation, minimizing this cost results in iterative label information propaga-
tions from labeled samples to other samples according to the linear neighborhood
structure in the nonlinear mapped space. Formally, this optimization objective
is represented as

f∗ = argminf

n∑

i=1

‖fi −
∑

φj∈N(φi)

wijfj‖2 (12)

s.t. fi = yi (1 � i � l)

It has the same form as the optimization problem in [8], where three methods
were proposed to solve it: Lagrangian method, eigen-decomposition method [11]
and the method similar to anisotropic diffusion [12]. Since the video data set
typically is very large (e.g., TRECVID 2005 dataset has about 126,000 sub-
shots), it is difficult to storage the similarity matrix and compute its inversion
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or eigenvalues. To avoid handling large matrix, we adopt the third method.
Therefore, we just need to record a small amount of neighbors of each sample,
as well as the distances between the sample and its neighbors. This is actually an
information propagation process from the label of each sample to its neighbors.
The main procedure of the above algorithm is summarized as followed:

a. Using the RBF as the kernel, compute the kernel matrix K = (kij)1�i,j�n

with respect to X (K is a sparse matrix as there are many entries equal to 0);
b. Find the k nearest neighbors of each sample φi in Φ using the distance
measure in (6);
c. Compute the Gram matrix Gi according to (9), then w∗i can be computed
according to (10);
d. Predict the unlabeled samples’ real-value labels by solving the optimization
problem in (12).
e. Rank the unlabeled samples according the labels obtained in step d.

Fig. 1. The key-frame examples of the ten concepts

4 Experiments

In the following experiments, we use the video data set of the TRECVID05 cor-
pus, which is consisted of about 170 hours of TV news videos from 13 different
programs in English, Arabic and Chinese [13]. After automatic shot boundary
detection, the development (DEV) set contains 43907 shots, and the evalua-
tion (EVAL) set contains 45766 shots. Some shots are further segmented into
sub-shots, and there are 61901 and 64256 sub-shots for DEV and EVAL set
respectively.
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The high-level feature extraction task is to detect the presence or absence
of 10 predetermined benchmark concepts in each shot of the EVAL set. The
10 semantic concepts are walking running, explosion fire, maps, flag-US, build-
ing, waterscape waterfront, mountain, prisoner, sports and car with concept IDs
1038∼1047. Some key-frame examples for these concepts are shown in Fig.1. For
each concept, systems are required to return ranked-lists of up to 2000 shots,
and system performance is measured via non-interpolated mean average preci-
sion (MAP), a standard metric for document retrieval.

The low level features we used here are 225-D block-wise color moments, which
are extracted over 5×5 fixed grid partitions, each block is described using a 9-D
feature.

Using the Kernel LNP method, the 64256 sub-shots are labeled as f(subshoti),
and the sub-shots in the same shot are merged using the “max” rule:

f(shotm) = maxsubshoti∈shotm(f(subshoti)) (13)

Then the shots can be ranked according to f(shotm).
We compared Kernel LNP with LNP and SVM, and the experimental results

are shown in Fig.2. The evaluations are accomplished when all the parameters
are tuned to be nearly optimal by cross validations. Comparing these results,
we can see that Kernel LNP significantly outperforms LNP for video high-level
feature extraction, except that the result of prisoner is a little worse. The main
reason is that prisoner is too difficult to be detected and the results of all ap-
proaches are nearly random. Kernel LNP outperforms SVM for detecting maps,
flag-US, waterscape waterfront, mountain, prisoner and sports, and remarkably
outperforms the results named Median [14] (i.e., the average results of all the
participants in TRECVID05). The MAP of Kernel LNP is 0.2303, which has
an improvement of 4.7% and 64.2% over SVM and LNP, respectively. These

Fig. 2. The results comparisons among LNP, SVM, Kernel LNP and Median
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comparisons demonstrate that Kernel LNP is more appropriate than LNP and
is effective for semantic video annotation.

5 Conclusion and Future Work

We have analyzed the linear limitation of local semantics for LNP on ranking
data with complex distribution, and proposed an improved method named Ker-
nel LNP, in which a nonlinear kernel-mapped space is introduced for reconstruc-
tion coefficients optimization. The experiments conducted on the TRECVID
dataset demonstrate that the proposed method is more appropriate for the data
with complex distribution and is effective for the semantic video annotation task.
However, this method needs a complex cross validation procedure to obtain an
optimal set of parameters. Our next-step work will be focused on reducing com-
putation cost brought by this procedure.
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Abstract. Currently, learning Bayesian Networks (BNs) from data has become a
much attention-getting issue in fields of machine learning and data mining. While
there exists few efficient algorithms for learning BNs in presence of incomplete
data. In this paper, we present a scoring function based on mutual information
for evaluating BN structures. To decrease computational complexity, we intro-
duce MRMR criterion into the scoring function, which enables the computation
of the scoring function to involve in only two-dimensional mutual information.
When the dataset is incomplete, we use EMI method to estimate the Mutual In-
formation (MI) from the incomplete dataset. As for whether a node ordering is
manually given or not, we develop two versions of algorithms, named as MRMR-
E1 and MRMR-E2 respectively and evaluate them through experiments. The ex-
perimental results on Alarm network show good accuracy and efficiency of our
algorithms.

1 Introduction

In recent years, learning BNs from data has become an attractive and active research
issue in fields of machine learning and data mining. At present, there has been many
successful algorithms used for learning BN structures from complete data, which in-
clude search & scoring based algorithms such as Bayesian method[1], Minimal De-
scription Length (MDL) based method [2], dependency analysis based algorithms such
as SGS[3], PC[3], TPDA[4], SLA[4] as well as the combination of the two kinds of
algorithms mentioned above[5].

But when the training data is incomplete (i.e. containing missing values), BN learn-
ing becomes much more difficult. Now there has been some advances in learning BNs
from incomplete data. One earlier research on BNs learning from incomplete data was
made by Chickering[1], which deals with missing data by Gibbs sampling method. The
most significant advance was the SEM algorithm[6]. SEM algorithm turns the learn-
ing problem with incomplete data into the easy solving learning problem with complete
data using EM algorithm. Another research was made by W. Myers et al. They complete
the incomplete data using generic operations, and evolve the network structures and
missing data at the same time[7]. Using the idea of Friedman and Myers for reference,
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we put forward EM-EA algorithm[8], which completes data using EM algorithm and
evolves BNs using an evolutionary algorithm (EA). And we also presented a method,
named EMI, for estimating (conditional) Mutual Information from incomplete data and
described an Extended TPDA (E-TPDA) algorithm which could learn BN structures
from incomplete data[9].

Although E-TPDA is more efficient than SEM and EM-EA algorithms, it needs to
calculate conditional mutual information, which is not reliable when the dataset is not
big enough. Furthermore, calculating conditional mutual information and finding small
d-separation set in E-TPDA algorithm also lead to high computation cost. In this paper,
we present a scoring function based on mutual information. To decrease computational
complexity, we introduce Max-Relevance and Min-Redundancy (MRMR) criterion into
the scoring function. When the dataset is incomplete, we use EMI method to estimate
the Mutual Information (MI) from the incomplete dataset. As for whether a node order-
ing is manually given or not, we develop two versions of algorithms, named as MRMR-
E1 and MRMR-E2 respectively. Finally, through experiments on Alarm network, we
compare MRMR-E1 with K2 and E-TPDA algorithms given a node ordering and com-
pare MRMR-E2 with CB and E-TPDA algorithms without given a node ordering.

2 A Scoring Function with Combination of MRMR Criterion

Suppose that P is the underlying true distribution over variables X = {X1, . . . , Xn}
and Q is a distribution over these variables defined by some Bayesian network model,
then the K-L cross entropy between P and Q, CKL(P, Q), is a distance measure of how
close Q is to P and is defined by the following equation:

CKL(P, Q) =
∑

x

P (x)log2
P (x)
Q(x)

(1)

The goal of BN learning is to search for the BN model with minimal CKL(P, Q) [2].
And also in [2], Lam and Bacchus proved the following theorem:

Theorem 1. The K-L cross entropy CKL(P, Q) is a monotonically decreasing function
of

∑n
i=1 I(Xi,Πi). Hence, it will be minimized if and only if the sum is maximized.

Where Πi denotes the set of parents of Xi in a BN. Each element of the sum, I(Xi,Πi),
measures the mutual information of a local structure, Xi and its parents Πi, and is
defined by the following equation:

I(Xi,Πi) =
∑

xi,πi

P (xi, πi)log
P (xi, πi)

P (xi)P (πi)
(2)

Where xi and πi respectively represent the value of Xi and the instantiation of Πi.
According to the above theorem, we can use

∑n
i=1 I(Xi,Πi) as a scoring function

of BN models and search for the BN model with maximal value of
∑n

i=1 I(Xi,Πi).
Given the node ordering that means all the parents of any variable can only occur to the
left of variable in the ordering, maximizing each I(Xi,Πi) is equivalent to maximizing
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∑n
i=1 I(Xi,Πi). Following this idea, I(Xi,Πi) can be used as a local scoring function

of a BN, and BN learning can be implemented by determining a set of parents for each
variable on condition that the mutual information between the variable and its parents
gets to the maximum. Unfortunately, despite the theoretical computability of the local
score, the computational cost is very high because of the difficulty in getting an accurate
estimation for multivariate probability distribution P (xi, πi).

Peng et al called it Max Dependency criterion maximizing the mutual information
between a variable and a variable set in their study of feature selection and proposed an
alternative criterion for selecting features, named Max-Relevance and Min-Redundancy
(MRMR) criterion[10], which can be formalized as follows:

Φ(F) =
1

|F|
∑

Xi∈F
I(Xi, C) − 1

|F|2
∑

Xi,Xj∈F
I(Xi, Xj) (3)

Where F represents the feature set, and C is the goal variable. Suppose already having
Fm−1, the feature set with m − 1 features, the mth feature to be selected from the set
X − Fm−1 is the feature that maximizes the following equation:

I(Xj , C) − 1
m − 1

∑

Xi∈Fm−1

I(Xj , Xi), Xj ∈ X − Fm−1 (4)

This type of feature selection that adds one feature at one time is called the ”first-
order” incremental search, which can be used to find the near-optimal features defined
by Φ(.). Peng et al proved the following theorem[10]:

Theorem 2. For the first-order incremental search, MRMR is equivalent to Max De-
pendency.

According to the above theorem, we can use first-order incremental style of MRMR
criterion to find all the local structures of a BN, which is equivalent to the local scor-
ing function defined by Eq. (2). When there exists missing values in dataset, we use
EMI method to estimate each I(Xj , Xi), the details of EMI method can be found in
literature [9].

3 Learning Procedures with Combination of MRMR Criterion
and EMI Method

3.1 Learning Procedure of MRMR-E1

Given a node ordering, we use the idea of K2 algorithm for reference and develop
MRMR-E1 algorithm. MRMR-E1 adds incrementally those nodes among the prede-
cessors in the ordering to the parent set of a node according to MRMR criterion and
stops the adding process when no additional single parent can satisfy MRMR criterion.
The details of MRMR-E1 algorithm is described as follows:

Input: a dataset D and a node ordering
Output: all local structures Πi;
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For each node Xi(1 ≤ i ≤ n), find Πi as follows:
Πi = φ; NotDone = True;
WHILE NotDone and |Πi| < ui do

V = max{MI [Xl, Xi] − 1
|Πi|−1

∑
Xj∈Πi

MI [Xl, Xj ]|Xl ∈ Πc
i − Πi};

Set Z is the node that makes V get to the maximum;
If V > 0, then Πi = Πi ∪ {Z},

else NotDone = false;
End {WHILE};

In the above procedure, Πc
i is a set of the parent candidates of Xi; MI[n, n] is a

matrix storing mutual information; ui denotes the max number of parents of Xi. They
can be calculated by the following procedure:

Initial MI [n, n] to 0;
Set ui = 0 for all i = 1, . . . , n;
Set Πc

i = φ for all i = 1, . . . , n;
For each pair (i, j)(1 ≤ i ≤ n; i < j ≤ n), do the following:

MI [i, j] = MI [j, i] = I ′(xi, xj);
If MI [i, j] ≥ σ, then

uj = min{uj + 1, umax};
Πc

j = Πc
j ∪ {Xi};

Where umax is the max number of parents of all the nodes; σ is the threshold of the
mutual information, which can be set as a small positive number in reality. I ′(xi, xj) is
estimated mutual information, which can be calculated by EMI method[9].

3.2 Learning Procedure of MRMR-E2

To avoid the overdependence of the node ordering in K2 algorithm, Singh and Valtorta
presented an algorithm, called CB[11], which can use CI tests to generate a node or-
dering. CB algorithm basically consists of two phases: Phase I uses CI tests to generate
an undirected graph, and then orients the edges to get an ordering on the nodes; Phase
II takes as input a total ordering consistent with the DAG generated by phase I, and
applies the K2 algorithm to construct the network structure.

Using the Phase I of CB algorithm, we extend MRMR-E1 and present another ver-
sion of algorithm, namely MRMR-E2. MRMR-E2 use the total ordering generated
in Phase I of CB algorithm as the input of MRMR-E1 algorithm. The procedure of
MRMR-E2 algorithm is as follows.

Input: a dataset D;
Output: all local structures Πi;

Let G1 be the complete graph on the set of nodes X;
ord = 0; old Prob = 0; old Πi = φ, for all 1 ≤ i ≤ n;
REPEAT

Modify G1 and get a total node ordering following Step 2 to Step 7 in CB algorithm
[11];
Perform MRMR-E1 procedure to get all the local structures Πi, 1 ≤ i ≤ n using
the above ordering;
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new Prob =
∏n

i=1 g(Xi,Πi);
If new Prob > old Prob then

ord = ord + 1; old Prob = new Prob;
old Πi = Πi, for all 1 ≤ i ≤ n;

UNTIL new Prob ≤ old Prob
Πi = old Πi, for all 1 ≤ i ≤ n;
Output Πi, for all 1 ≤ i ≤ n.

In the above procedure, ord denotes the order of CI relations being tested, and each
REPEAT circulation tests each order of CI relations, first for 0th order CI relations,
then for 1st order CI relations, and so on until the score of the learned network does not
increase any more. g(Xi,Πi) is a scoring function for local structures of a BN, which
can be given by the following equation when a uniform priori is adopted[12]:

g(Xi,Πi) =
qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk! (5)

In the above equation, qi is the number of particular instantiations of Πi and ri is the
number of values that variable Xi can take; Nijk represents the times of the occurrence
of (xk

i , πj
i ) in the dataset; xk

i and πj
i respectively represent the kth value of Xi and jth

instantiation of Πi. Nij =
∑ri

k=1 Nijk .

4 Experimental Analysis

For evaluating our algorithms, we compare MRMR-E1 with K2 and E-TPDA algo-
rithms given a node ordering and compare MRMR-E2 with CB and E-TPDA algorithms
without given a node ordering. Because K2 and CB algorithms can’t learn BNs from
incomplete datasets, they simply delete the cases with missing values in datasets and
learn BNs from relative small and complete datasets in reality. We do this is to show the
effects of the cases with missing values to the accuracy of learned BNs. We implement
K2, CB, E-TPDA and our algorithms in a Java based system. All the experiments were
conducted on a Pentium 3.2 GHz PC with 1G MB of RAM running under Windows
2003. The experimental outcome is the average of the results run 5 times for each level
of missing data.

4.1 Experimental Results Given a Node Ordering

The given total ordering on the 37 nodes is consistent with the partial order of the nodes
as specified by Alarm network. The threshold of Mutual Information in E-TPDA and
MRMR-E1 algorithms is set as 0.01.

Table 1 and Table 2 show respectively the learning accuracy and the running time
(Seconds) of K2, E-TPDA and MRMR-E1 given a node ordering. The ”A+B” in Table
1 represents there are A extra arcs and B missing arcs in the learned networks compared
with the true network. We treat a reversed arc as if there are a missing arc and an extra
arc. From this table, we can see that the accuracy of K2 algorithm degrades very sharply
with the increase of missing data, which states that simply deleting the data records
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with missing entries will lose large amount of useful information. And also the learned
networks by MRMR-E1 are more accurate than that by E-TPDA algorithm for 10,000
and 20,000 cases and equal accurate to that by E-TPDA algorithm for 40,000 cases.
That MRMR-E1 outperforms E-TPDA for 10,000 and 20,000 cases is because that the
calculation of conditional mutual information in E-TPDA algorithm is not reliable for
relative small datasets.

Table 1. Learning accuracy of K2, E-TPDA and MRMR-E1 algorithms on Alarm network given
a node ordering

Sample
Size

Algorithms
Complete

Data
10%

Missing
20%

Missing
30%

Missing

10,000
K2
E-TPDA
MRMR-E1

1+1
2+1
1+1

18+3
3+2
3+1

32+5
4+3
3+2

52+7
7+3
5+2

20,000
K2
E-TPDA
MRMR-E1

1+1
2+1
1+1

12+3
2+2
2+1

26+4
2+2
2+1

41+6
3+3
2+2

30,000
K2
E-TPDA
MRMR-E1

1+0
2+0
1+0

8+2
2+0
2+0

17+3
2+0
2+0

32+5
2+2
2+1

40,000
K2
E-TPDA
MRMR-E1

1+0
1+0
1+0

6+1
1+0
1+0

11+2
2+0
2+0

22+4
2+1
2+1

From Table 2, the running time of K2 algorithm decreases very quickly with the
increase of missing data because K2 runs on very small datasets after deleting the data
records with missing entries. While fixing the percentage of missing data, the running
time of E-TPDA and MRMR-E1algorithms is roughly linear to the size of the data
samples. Nevertheless, MRMR-E1 is more efficient than E-TPDA, whose running time
is about half of that of E-TPDA algorithm. This also proves that calculating conditional
mutual information and finding small d-separation set in E-TPDA algorithm lead to
high computation cost.

4.2 Experimental Results Without Given a Node Ordering

In our experiments, CB algorithm also uses the partial order and a bound of 15 on the
maximal degree of the undirected graph just as in literature[11].

Table 3 and Table 4 show respectively the learning accuracy and running time of
CB, E-TPDA and MRMR-E2 without given a node ordering. The experimental results
in Table 3 and Table 4 are similar respectively to that in Table 1 and Table 2, which also
show that MRMR-E2 is advantageous over E-TPDA algorithm in terms of accuracy and
efficiency without given a node ordering. Compared with that in Table 1, the accuracy
showed in Table 3 decreases to some extent and the running time in Table 4 increases
to some extent compared with that in Table 2. This is because, without given a node
ordering, the three algorithms have to compute the partial order between variables or
infer the orientation of an arc which decreases their accuracy and efficiency.
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Table 2. Running time (Seconds) of K2, E-TPDA and MRMR-E1 algorithms on Alarm network
given a node ordering

Sample
Size

Algorithms
Complete

Data
10%

Missing
20%

Missing
30%

Missing

10,000
K2
E-TPDA
MRMR-E1

128
28
15

6.2
29
15

4.3
28
14

2.1
29
16

20,000
K2
E-TPDA
MRMR-E1

259
54
28

8.5
54
28

5.7
55
29

3.2
55
29

30,000
K2
E-TPDA
MRMR-E1

398
78
39

10.8
79
39

6.1
78
40

4.4
79
39

40,000
K2
E-TPDA
MRMR-E1

532
102
48

15
102
47

12
101
47

5.8
102
48

Table 3. Learning accuracy of CB, E-TPDA and MRMR-E2 algorithms on Alarm network with-
out given a node ordering

Sample
Size

Algorithms
Complete

Data
10%

Missing
20%

Missing
30%

Missing

10,000
CB
E-TPDA
MRMR-E2

2+1
2+2
2+1

22+4
5+2
4+1

39+5
7+3
5+2

64+7
9+3
7+3

20,000
CB
E-TPDA
MRMR-E2

2+1
2+1
2+1

18+4
4+2
3+1

29+5
6+2
4+1

54+6
7+3
5+2

30,000
CB
E-TPDA
MRMR-E2

1+1
2+1
1+1

14+3
3+1
2+1

25+4
4+1
2+2

37+5
5+2
4+2

40,000
CB
E-TPDA
MRMR-E2

1+1
1+1
1+1

7+2
2+1
2+1

13+3
3+1
3+1

25+4
4+2
3+2

Table 4. Running time (Seconds) of CB, E-TPDA and MRMR-E2 algorithms on Alarm network
without given a node ordering

Sample
Size

Algorithms
Complete

Data
10%

Missing
20%

Missing
30%

Missing

10,000
CB
E-TPDA
MRMR-E2

189
45
22

8.9
46
22

6.1
46
23

3.1
47
23

20,000
CB
E-TPDA
MRMR-E2

368
82
42

13
84
43

8.4
82
43

4.6
83
44

30,000
CB
E-TPDA
MRMR-E2

549
118
61

21
119
62

12
118
63

7.4
119
62

40,000
CB
E-TPDA
MRMR-E2

724
152
80

29
151
82

20
152
81

10.8
153
83
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5 Conclusion

In this paper, we present a scoring function evaluating BN structures based on mutual
information and introduce MRMR criterion into the scoring function to decrease com-
putational complexity. When the dataset is incomplete, we use EMI method to estimate
the Mutual Information (MI) from the incomplete dataset. As for whether a node order-
ing is manually given or not, we develop two versions of algorithms, named as MRMR-
E1 and MRMR-E2 respectively. The experimental results on Alarm network show that
MRMR-E1 and MRMR-E2 algorithms are advantageous over E-TPDA in terms of ac-
curacy and efficiency whether given a node ordering or not. The experimental results
also state that making fully use of data records with missing entries will significantly
improve the accuracy of learned BNs.
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Abstract. This article presents a new learning algorithm, CO-RBFNN, for 
complex classifications, which attempts to construct the radial basis function 
neural network (RBFNN) models by using a cooperative coevolutionary 
algorithm (Co-CEA). The Co-CEA utilizes a divide-and-cooperative 
mechanism by which subpopulations are coevolved in separate populations of 
evolutionary algorithms executing in parallel. A modified K-means method is 
employed to divide the initial hidden nodes into modules that are represented as 
subpopulation of the Co-CEA. Collaborations among the modules are formed to 
obtain complete solutions. The algorithm adopts a matrix-form mixed encoding 
to represent the RBFNN hidden layer structure, the optimum of which is 
achieved by coevolving all parameters. Experimental results on eight UCI 
datasets illustrate that CO-RBFNN is able to produce a higher accuracy of 
classification with a much simpler network structure in fewer evolutionary trials 
when compared with other alternative standard algorithms.  

Keywords: RBFNN; cooperative coevolutionary algorithms; K-means clustering; 
classification. 

1   Introduction 

Different variants of radial basis function neural networks (RBFNN) are used for 
complex classification tasks due to a number of advantages compared with other 
types of artificial neural networks (ANN), such as better classification capabilities, 
simpler network structures, and faster learning algorithms. 

The main difficulty in RBFNN configuration lies in the determination of the 
hidden layer structure. A variety of approaches based on evolutionary algorithms 
(EAs) have been developed [1,2], where an individual of the population corresponds 
to a candidate of the solution regardless of other individuals in the population. 
Therefore a large population size is required and the computation time is usually 
prohibitive. The cooperative coevolutionary algorithm (Co-CEA), which is capable of 
dealing with learning tasks with multiple, interacting subpopulations, is a powerful 
approach to solve the problem. An individual in a subpopulation receives fitness 
based on how well it performs in couple with individuals from other subpopulations. 
The Co-CEA has been successfully applied to complex optimization problems and 
recently to training the cascade networks [3] and the ANN ensemble [4].  
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The proposed algorithm in this article, named CO-RBFNN, attempts to construct 
the RBFNN models using a specially designed Co-CEA. A modified K-means method 
is employed to divide the initial hidden nodes into modules that are represented as 
subpopulation of the Co-CEA. Then the modules are used to generate populations to 
carry on the coevolution operation.  

The rest of the paper is structured as follows: Section 2 presents the fundamental 
theory of the Co-CEA and the RBFNN architecture. In Section 3, the proposed 
algorithm is described in detail. Section 4 illustrates the new algorithm’s efficiency on 
eight UCI datasets. Finally, Section 5 summarizes the key points of the paper. 

2   Fundamentals 

2.1   Cooperative Coevolutionary Architecture 

The architecture of Co-CEA model consists of two or more interacting co-adapted 
subpopulations. Each subpopulation contains individuals that represent a particular 
component of the RBFNN, so that one representative from each subpopulation is 
selected in order to assemble a complete solution. In this article, it is appropriate to 
simply let the current best individual from each subpopulation be the representative. 
Each subpopulation is evolved independently and adapts to the learning task through 
the application of an EA. Although any EA can be used in principle, coevolutionary 
versions of GA have always been employed. 

2.2   RBFNN Architecture 

The RBFNN can be viewed as a three-layer feed-forward neural network with multi-
inputs, multi-outputs, and linear output mapping. The RBFNN structure defines the 
mapping from the input vector m∈x R to the output vector n∈y R : :f →x y . The 

response by a hidden node is produced through a radial basis function: 

2

2
( ) exp

j

j
j

ϕ
σ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

x μ
x  , (1) 

where jμ is the center, and jσ is the radius width of the jth hidden node. The ith output 

may be expressed as a linear combination: 
1

( )
k

i ji j
j

y w ϕ
=

=∑ x , where the weights, jiw , 

are calculated by the pseudo-inverse method [5]. 

3   Configuration of RBFNN Using the Co-CEA 

In this study, an additional clustering layer is introduced into the standard RBFNN 
construction. After the initial hidden nodes are generated, an alterative K-means 
approach is utilized to further group them into modules.  
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3.1   Matrix-Form Mixed Encoding 

We design a matrix-form mixed encoding representation, which assigns the hidden 
nodes and the radius widths as real-valued encoding matrices and a control vector as a 
binary string. The lth individual in the tth module [ ]l l l l

t t t t=C c σ b , 1, 2, ,l L= K , 

1, 2,t K= K . [ ]
t

l l
t ti num m×=c c is the center of the hidden nodes, 1[ ]

t

l l
t ti numσ ×=σ  is the 

radius width and 1[ ]
t

l l
t ti numb ×=b is the control vector, where 0l

tib =  means that the ith 

hidden node is invalid, otherwise 1l
tib = denotes that it is valid, 1,2, , ti num= K . 

tnum is the initial number of the hidden nodes in this module.  

3.2   Initialization 

The initialization of the algorithm is done in three steps. Firstly, the DRSC method [6] 
is used to compute the hidden nodes. Secondly, a modified K-means method 
decomposes these nodes into many modules. As the evolution proceeds, the K can be 
shrunk automatically. Finally, a population contained L individuals is generated and 
every individual in one module contains all or some of the hidden nodes in this 
module. And the K-means method mentioned above can be described as follows: 

Step 1: The K samples are chosen randomly from the cN  initial hidden nodes 

jϕ as the initial centers of the modules, 1
t
%c ( 1,2, ,t K= K ). Counter i is assigned as 1.  

Step 2: The distances between centers and samples, ( , )i
j tD ϕ c% , are calculated. If 

* 1, ,
( , ) min { ( , ), 1,2, , }i i

j t j t ct K
D D j Nϕ ϕ

=
= =c c

L
% % K , then *j tϕ ∈Μ , where *tM is the set (or 

module) of the hidden nodes whose nearest clustering center is *
i
tc% . 

Step 3: If ∃ { }s
i
s=M c% , {1,2, , }s K∈ K , which means there isn’t other samples in 

the sth set except for the center i
sc% , i

sc% should be deleted, and the value of K be changed. 

Step 4: The new clustering centers are re-calculated: 1 1

tu

i
t u

tnum ϕ
ϕ+

∈
= ∑

M

c% . 

Step 5: If centers of the modules are changed, or i I<  (the maximum iteration), 
then 1i i= + , and go to Step 2; else the algorithm terminates. 

From this point of view, the introduction of the K-means clustering layer is to 
group the hidden nodes that have the similar characteristics, into the same module. 
The redundant hidden nodes in one module can be removed by modify the 
corresponding control vectors in the last step of the initialization.  

3.3   Evaluation and Selection of the Individuals 

The individuals in one module are assigned the fitness based on the cooperation with 
individuals in other modules. The best individual in each module is chosen as the 
representative, all of which compose the elite pool * * *

1 2* { , , , }K=Θ C C CK . The 

individual fitness is evaluated as a multi-objective optimization task in this algorithm 
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because the solutions based on Pareto optimality can guarantee the diversity [7] of the 
population in evolution. Two objectives are selected here for the fitness evaluation: 

1) Classification accuracy: ( ) ( )l l
r t s t eA N N=Θ Θ . The first objective is commonly 

used. ( )l
s tN Θ is the number of samples classified correctly in the evaluating set by the 

network, whose hidden nodes are * * * *
1 1 1{ , , , , , }l l

t Ktt t− += C C C C CΘ K K  . eN  is the size of 

the evaluating set. However, similar accurate rates give rise to less selection pressure 

in the population. So a modified objective is employed: ( )
1( ) (1 )

l
tIl

tf α α= − ΘΘ , where 

( )l
tI Θ  is the sort order of l

tΘ ’s classification accuracy after all accuracies are ranked 

from big to small, andα is a pre-designed real number between 0 and 1. 
2) Shared performance: This objective enforces the networks to classify different 

patterns [8]. In this way, the individuals that contribute to the network to accurately 
classify samples that are incorrectly classified by many others are rewarded. Each 
sample in the evaluating set receives a weight, namely ( )i i mw Nc N L= × . iNc is the 

number of individuals that classify the ith sample correctly in all modules, mN  is the 

number of modules. The value assigned to an individual for this objective is given by 

2
1

( ) (1 )
eN

l l
t ti i

i

f e w
=

= × −∑Θ , where l
tie is 1 if the ith sample is correctly classified by the 

network constructed by l
tΘ , and 0, otherwise.  

Totally, the fitness of an individual l
tC is calculated using an aggregating approach: 

1 2( ) ( )l l l
t t tfit a f b f= × + ×Θ Θ  , (2) 

where a and b are the coefficients of objective importance, , [0,1]a b ∈ , and 1a b+ = .  
The roulette wheel selection is utilized and the elitist selection [9] is adopted so 

that the best solution survives definitely from one generation to the next. 

3.4   Crossover 

The uniform crossover [9] is used in this paper. The individuals that undergo the 
crossover operation are grouped into pairs, and for every pair a mask binary string is 
generated randomly. Scanning the string from left to right, if the current bit is 1, the 
genes at the position in the first parent are selected; otherwise, the genes in the second 
one are selected. Thus one offspring is produced. The second offspring is produced by 
repeating the process but with the positions of 0 and 1 being exchanged in the string.  

3.5   Mutation 

The mutation is an auxiliary but also a significant operation. A ratio, adp , has been 

introduced to decide the mutation occurrence in the control bit or the real-valued part. 
For every component l

tic  in l
tC , a random number adr is generated. If ad adp r> , the 

operation only inverts the control bit. If ad adp r≤ and 1l
tib = , the mutation operates in 
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the real-valued part as ( )*l l l l
ti ti ti ti tir′ = + ⋅ − %c ccc .  l

ti
′c , l

tic , l
tic%  denote the mutated, present 

and history value respectively, and *
tic is the corresponding value in the elite pool. 

4   Experimental Studies 

We have applied our model to eight UCI datasets. For each dataset, 50% of the 
patterns were used for learning, 25% of them for validation, and the remaining 25% 
for testing. 30 runs of the algorithm were performed for each dataset. 

4.1   Experiment 1 

The experiments were carried out to test CO-RBFNN against some traditional training 
algorithms, such as GA-RBFNN [10] which evolves the RBFNN with a standard GA, 
DRSC, K-means, the probabilistic neural network (PNN) and the K-nearest neighbor 
algorithm (KNN). These methods generate RBFNN without a validation set, adding 
the validation set to the training set, except GA-RBFNN. Therefore, the valuation 
accuracies are omitted in the tables below for the simplicity in comparison. 

The experiment parameters were set as follows. The size of subpopulation, L, was 
50, the number of modules, K, was 4, and the number of generations, G, was 200. The 
crossover rate pc was 0.6, the non-structure mutation rate pm was 0.2, and the structure 
mutation rate pad was 0.2. The average accuracies, the hidden node numbers, and the 
iterations of convergence are shown in Table 1.  

Table 1. Comparison with other algorithms for eight UCI datasets. The t-test compares the 
average testing accuracy of CO-RBFNN with that of each of the other used algorithm. 

Methods  Cancer Glass Heart Iono Pima Soy Vowel Wines Ave Nc 
Train 0.9625 0.7449 0.8532 0.9397 0.7807 0.9465 0.8940 0.9685 0.8863 
Test 0.9694 0.7107 0.8300 0.9377 0.7698 0.9265 0.7501 0.9689 0.8579 

CO-
RBFNN 

Gen 10.93 60.60 18.07 21.37 81.40 61.20 200 38.13 61.46 
30.35 

Train 0.9624 0.7277 0.8361 0.9346 0.7747 0.9342 0.8523 0.9727 0.8743 
Test 0.9689 0.6893 0.8126 0.9240 0.7625 0.9065 0.7331 0.9682 0.8456 
Gen 200 200 200 200 200 200 200 200 200 

GA-
RBFNN 

t-test 0.3739 2.075 1.864 1.652 0.9863 4.376 2.689 0.4712 - 

30.92 

Train 0.9653 0.8121 0.8693 0.9330 0.7897 0.9488 0.7715 0.9749 0.8831 
Test 0.9667 0.6157 0.8224 0.9227 0.7372 0.8723 0.6696 0.9583 0.8206 DRSC 
t-test 0.8872 6.391 1.592 2.085 3.931 10.09 11.60 1.369 - 

43.03 

Train 0.9641 0.7362 0.8424 0.8958 0.7609 0.6769 0.5408 0.9744 0.7989 
Test 0.9634 0.6610 0.8054 0.8970 0.7415 0.6545 0.4820 0.9667 0.7714 K-means 
t -test 1.248 4.018 2.158 3.551 4.188 38.36 40.40 0.3214 - 

30 

Train 1.000 1.000 1.000 1.000 1.000 0.9988 1.000 1.000 0.9999 
Test 0.9494 0.6686 0.7309 0.9443 0.6950 0.7910 0.9558 0.9447 0.8350 PNN 
t -test 5.736 3.397 9.080 -0.9833 9.948 22.71 -42.09 3.207 - 

362.8 

Train 0.9736 0.7863 0.8653 0.8203 0.8073 0.9303 0.8898 0.9756 0.8811 
Test 0.9686 0.6566 0.8000 0.7871 0.7181 0.8982 0.7795 0.9697 0.8222 KNN 
t -test 0.6982 3.878 3.065 18.12 6.964 6.394 -4.675 -0.1134 - 

362.8 
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The results illuminate that CO-RBFNN yielded classification accuracies close 
to the best one for most problems and produced a smaller network structure than 
the compared algorithms. The average hidden node sizes obtained by CO-RBFNN 
were only 70.53% of the original by DRSC. Moreover, the averaged iterations 
needed to convergence were 61.46, which were quite smaller compared with the 
200 iterations needed by GA-RBFNN. Compared with many trials in the K-means 
to search a suitable solution, only one run is needed since CO-RBFNN can design 
the network structure dynamically. CO-RBFNN has both a satisfying accuracy for 
training and a comparatively high accuracy for testing while PNN and KNN need 
a big number of hidden nodes. In terms of the t-test results, CO-RBFNN 
outperforms significantly the other methods in Glass, Pima and Soybean with a 
confidence level of 95%. 

Moreover, the results obtained are better when they are compared with other 
works using these datasets. Table 2 shows a summary of the results reported in 
literatures by other classification methods. Although the experimental setups are 
different in many papers, comparisons are still illustrative. Some of the papers use 
tenfold cross-validation and obtain more optimistic estimations on some 
problems. However, we didn’t utilize tenfold cross-validation because it does not 
fit to the triplet samples partition. With these cautions, we can say that for 
Cancer, Heart, Ionosphere, Pima, Soybean and Wines datasets our algorithm 
achieves a better or similar performance.  

Table 2. Results of previous works using the same datasets  

Datasets CO-RBFNN [11]1 [12]2 [13]1 [14]1 [15]2 [16] 1 [17] 1 [18] 1 

Cancer 0.9694 0.9580 - 0.9470 0.9620 - 0.9650 0.9780 0.9490 
Glass 0.7107 0.7050 0.6856 0.6710 0.7620 0.6837 0.7510 0.7050 0.7000 
Heart 0.8300 0.8370 0.8249 - - - 0.8030 0.8370 0.7890 
Iono 0.9377 0.8970 0.9789 - 0.9370 0.8817 - 0.9310 0.9060 
Pima 0.7698 0.7720 - 0.7400 - 0.6872 0.7560 0.7430 0.7400 
Soy 0.9265 0.9250 - - - - 0.9300 0.8100 0.9140 
Vowel 0.7501 0.8170 - - 0.4830 - - 0.6520 0.7810 
Wines 0.9689 - - 0.7920 - 0.9444 - 0.9290 - 
1 k-fold cross-validation; 2 hold out 

4.2   Experiment 2 

The main difference between CO-RBFNN and GA-RBFNN is the introduction of 
the Co-CEA. The modified K-means combines the CEA frame with RBFNN. 
Thus the selection of the initial value of K is very important although it can be 
changed dynamically in the evolution process. We carried out another experiment 
by assigning different values, i.e., a set of 2,4,6,8 and 10, to K over four datasets. 
The other parameters were assigned as the same as experiment 1. Fig. 1 gives a 
description about the trend of the averaged testing accuracies and the iterations of 
convergence. 
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Fig. 1. Average testing accuracy and number of iterations obtained with different initial value 
of K in four datasets: (a) Cancer (b) Glass (c) Ionosphere (d) Pima 

The experiment results show that the testing accuracies in all the four datasets get 
to the maxima when K=4. Generally, a smaller K can lead the performance of CO-
RBFNN similar to GA-RBFNN so that the convergence is not easy to realize. On the 
other hand, although the algorithm can be speeded up with a lager K, there will appear 
premature convergence. Thus the testing accuracy does not increase along with the 
increment of K. Overall, a too small or too large initial value of K is not good for 
increasing both the testing accuracy and the convergence speed. 

5   Conclusions 

A special designed RBFNN algorithm, CO-RBFNN, has been presented, in which the 
introduction of the Co-CEA realizes the coevolution of the subpopulations in separate 
populations of GA executing in parallel. By evolving the hidden nodes and 
corresponding parameters simultaneously, the model is able to produce a higher 
accuracy of classification with a network which is much simpler in structure but 
stronger in generalization capability compared with other training algorithms. To sum 
up, CO-RBFNN is a quite competitive and powerful algorithm for classification. Two 
points should be concerned in our future work: one is the auto-division of modules by 
combining some clustering methods without human involvement and the other is the 
introduction of some new objectives of fitness. 

 

(a) (b) 

(d) (c)
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Abstract. This paper presents a new clustering algorithm named
ANGEL, capable of satisfying various clustering requirements in data
mining applications. As a hybrid method that employs discrete-degree
and density-attractor, the proposed algorithm identifies the main struc-
ture of clusters without including the edge of clusters and, then, imple-
ments the DBSCAN algorithm to detect the arbitrary edge of the main
structure of clusters. Experiment results indicate that the new algorithm
accurately recognizes the entire cluster, and efficiently solves the problem
of indentation for cluster. Simulation results reveal that the proposed new
clustering algorithm performs better than some existing well-known ap-
proaches such as the K-means, DBSCAN, CLIQUE and GDH methods.
Additionally, the proposed algorithm performs very fast and produces
much smaller errors than the K-means, DBSCAN, CLIQUE and GDH
approaches in most the cases examined herein.

Keywords: data clustering, data mining, hybrid clustering algorithm.

1 Introduction

Clustering in data mining is essential for various business applications. Numer-
ous data clustering schemes have been proposed in recent years, subsequently
attracting strong attention [1]-[6]. Many existing clustering methods have high
computational time, or may have pattern recognition problems when using large
databases. Therefore, an efficient and effective clustering algorithm is important.
Clustering approaches can be categorized as partitioning, hierarchical, density-
based, grid-based and mixed. Partitioning methods like K-means attempt to
identify K partitions containing similar objects [3]. K-means algorithm is eas-
ily and quickly implemented, but does not accurately recognizing the shapes of
patterns that are non-spherical or not the same size. DBSCAN, density-based
clustering method, measures the density of a region, and thus accurately recog-
nizes arbitrary shapes and different size clusters, and filters noise [4]. However,
DBSCAN needs to examine all objects, and thus has a high computational time.
Grid-based clustering methods define clusters using grid-cell structures. These
methods consider the grid-cell as a point to improve the problem of time cost, and
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c© Springer-Verlag Berlin Heidelberg 2007



818 C.-F. Tsai and C.-C. Yen

can therefore cluster all objects quickly. However, they cannot smoothly detect
the edges of clusters, or remove indentations in neighboring clusters. CLIQUE
is a classical grid-based clustering method [5].

To fulfill data clustering requirements and solving limitations of the above clus-
tering methods, this work presents a new algorithm named A New Grid-based
clustering method with Eliminating indention for Large databases (ANGEL)
by hybridizing hierarchical, density-based and grid-based clustering approaches.
Simulation results show that the proposed ANGEL approach is a highly effective
and efficient clustering technique.

2 Related Works

K-means, which was presented in 1967, was the first clustering algorithm [3]. It
includes the following steps. (1) Select K partition centers randomly from data
sets. (2) Assign each object to its closest center. (3) Recalculate K partition cen-
ters and repeat step 2 until the centers convergence. K-means always converges
to a local optimum. Moreover, K-means can not filter noise, and does not cluster
non-spherical patterns correctly.

CLIQUE integrates grid-based and density-based clustering techniques [5].
CLIQUE initially generates a grid map from feature space. For each dimension,
the algorithm identifies the high-density units by using the priori method. Al-
though CLIQUE has a fast clustering time, but its cluster boundaries are either
horizontal or vertical, owing to the nature of the rectangular grid.

DBSCAN is a first-density-detecting method, which depends on two argu-
ments, namely Eps and MinPts [4]. Eps denotes the radius of the search cir-
cle, and MinPts represents a number of minimal neighbors in the search circle.
These arguments are adopted to examine the ε-neighbors contained in each ob-
ject. DBSCAN can accurately recognize any arbitrary pattern by applying this
expansion. Since each expansion must examine all objects, the time complexity
of DBSCAN is also high when the database size is large.

GDH is a hybrid grid-based, density-based and hierarchical clustering tech-
nique, presented by Wang [6]. GDH refers the idea of density function and gra-
dient decrease and concept of sliding window [6]. It can significantly reduce
the limitation of edge indention of traditional grid-based algorithms. However,
GDH may fail in the edge of indention if two clusters are the same time in the
hypercube.

3 The Proposed ANGEL Clustering Algorithm

This section introduces the new ANGEL clustering concept, algorithm and its
implemented steps in the algorithm step by step as follows:

The basic concept of ANGEL clustering can be described in terms of the
following four parts.

(1) Feature space slicing and objects assigning: This step reduces the
number of searching spaces is the main idea. Like GDH, ANGEL inputs the
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Fig. 1. In the structure of the hypercube map, the hypercubes with dark colors are
called populated cube

argument of hypercube’s length, and splits the feature space into a hypercube set.
Each object of the dataset is assigned to an appropriate hypercube. A hypercube
is called populated cube if the number of objects in the hypercube is greater than
the threshold Hd. Fig. 1 describes this concept.

Influence function [6] is defined as a mathematical description that has the
influence of an object has within its neighborhood. The density function [6] is
defined as the sum of influence function of all objects in the region, and can be
any arbitrary function. For simplicity, this work applies the Euclidean density
function and Gaussian representation. The Gaussian density function is given
by [6]:

fD
Gauss(x) =

N∑

i=1

e−
d(x,xi)

2

2σ2 , (1)

where N represents the number of objects of the region; d(x, xi) denotes the
distance between x and xi, and σ is the standard deviation. A populated cube is
called a density-attractor if it has the highest Gaussian density function among
all cubes [6]. The density-attractor is the initial point of search space.

(2) Identifying the main structure: This investigation employs the
discrete-degree as a measure of grid-density detecting preprocesses to identify
the main structure of cluster excluding the cluster edge. All populated cubes
are split up into nine sub-hypercubes. ANGEL computes the number of objects
within each sub-hypercube according to the location of the objects. The range
of discrete-degree is derived and defined as follows:

UL = (n/9) ∗ (1 + PTV ) (2)

LL = (n/9) ∗ (1 − PTV ) (3)

UL and LL represent the upper and lower limits of discrete-degree, respec-
tively. n denotes the number of objects of populated cube, and PTV is the
percentage of the tolerance value. If all of the density of sub-hypercubes in the
hypercube is between UL and LL, then the density in the hypercube is equally
distributed, and the hypercube is the main structure of the cluster, and can
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Fig. 2. ANGEL concept for data clustering

be assigned to cluster directly. Otherwise, the edge detection method has to be
utilized, as displayed on hypercube B, C, E and F of Fig. 2.

(3) Edge detection: The aim of this step is to detect accurately the edge of
a cluster. A populated cube that does not belong to the main structure of the
cluster may contain objects belonging to two different clusters, as illustrated on
hypercube B and C in Fig. 2. Core points and border points of the cluster and
noise can be recognized by using DBSCAN to perform detection on hypercubes
B, C, E and F on the diagram of Fig. 2. Border points are redefined as objects
resulting from a DBSCAN run that are the closest to the hypercube border.
This redefinition shortens the computational time in DBSCAN. The light color
points (on the border) on hypercube B, C, E and F of Fig. 2 represent border
points.

(4) Merge stage: After the edge detection stage, the algorithm merges the
edge of the cluster with the main structure of the cluster, depending on which
border is closest to the main structure. ANGEL repeats the process to recognize
all clusters.

The ANGEL clustering algorithm can be described as follows:

ANGEL(DataSets,Cl,PTV,Hd,Eps,MinPts)
Initialization;
CreatGridStructure(Cl);
PopulCubes = CacluateGridsInfo(DataSets,PTV,Hd);
WHILE(TRUE) DO

C = SelectDensityAttractor(PopulCubes);
IF C = NULL

END ALGORITHM
END IF
IF isDiscreteDgreeEqual(C) == TRUE

ChangeClusterId(C,ClusterId);
SearchNeighbors(C);

ELSE
Cs = DBSCAN(C,Eps,MinPts);
MPC = ChooseMaxsizeSubcluster(Cs);
ChangeClusterId(MPC,ClusterId);
SearchNeighbors(C);

END IF-ELSE
ClusterId++;

END WHILE
END ANGEL

DataSets is an entire database or a partial dataset. Cl represents the length of
a hypercube; PTV denotes the percentage tolerance value, and Hd is the threshold
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of the hypercube’s density. Eps represents a search radius, and MinPts denotes
the smallest number of objects in the region. The algorithm is presented step by
step below.

Step 1. Initialization of all arguments.
Step 2. CreatGridStructure() function generates the structure of the hyper-

cube map, and assigns all objects to the appropriate hypercube.
Step 3. CacluateGridsInfo() function computes the range of discrete-degree

for each hypercube, filters it, and returns the populated-cube-set
PopulCubes.

Step 4. Repeat the process by while loop.
Step 5. SelectDensityAttractor() function obtains the density-attractor,

and returns to cube C.
Step 6. If cube C is null, then stop the algorithm.
Step 7. If the discrete-degree of cube C is equally distributed, then assign cube

C directly to the cluster, and continue searching neighbors by the
SearchNeighbors() function.

Step 8. Otherwise, ANGEL applies DBSCAN for the edge detecting and returns
a sub-cluster set to Cs.

Step 9. Assign a sub-cluster of Cs resulting from a DBSCAN run to a cluster
using the ChangeClusterId() function if it is the most populated.

Step 10. ANGEL then searches the neighbors of the cube C with the
SearchNeighbors() function.

The neighbor searching process SearchNeighbors(Cube) is as follows:

SearchNeighbors(Cube)
NeighborCubes = SelectNeighbors(Cube);
WHILE NeighborCubes.length() <> Empty DO

CurrCube = HighDensity(NeighborCubes);
IF isDiscreteDgreeEqual(CurrCube) == TRUE

ChangeClusterId(CurrCube,ClusterId);
SearchNeighbors(CurrCube);

ELSE
NCs = DBSCAN(CurrCube,Eps,MinPts);
FOR i FROM 1 TO NCs.length()

IF NCs.SubCluster(i).Borders.areNear(CurrCube) == TRUE
ChangeClusterId(NCs.SubCluster(i),ClusterId);

END IF
END FOR
SearchNeighbors(CurrCube);

END IF-ELSE
NeighborCubes.DeleteFirstNeighbor();

END WHILE
END SearchNeighbors

The neighbor searching step SearchNeighbors(Cube) can be illustrated as
follows:

Step 1. The SelectNeighbors() function returns a set of neighbors
NeighborCubes located on upside, downside, left side, right side, left
up side, left down, right up side and right down side of the cube Cube.

Step 2. Continue the process until the neighbors of the cube Cube is empty.
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Step 3. HighDensity() function returns a search subject to cube CurrCubewith
the highest density function.

Step 4. As stated above, if the discrete-degree of cube CurrCube is
equally distributed, then it is assigned directly to the cluster by
ChangeClusterId() function, and the neighbors searching continues by
the SearchNeighbors() function recursively.

Step 5. Otherwise, ANGEL applies DBSCAN for edge detection, and returns a
sub-cluster set to NCs.

Step 6. Each sub-cluster of NCs is assigned to a cluster if its border points are
close to cube the CurrCube.

Step 7. ANGEL then searches the neighbors of the cube CurrCube by the
SearchNeighbors() function recursively.

The process is repeated to merge the entire cluster.

4 Experiment and Analysis

In this work, ANGEL was implemented in a Java-based program, and run on
a desktop computer with 256MB RAM, an Intel 1.5GHz CPU on Microsoft
Windows 2000 professional Operational System. Seven synthetic datasets were
employed in the experiment. Fig. 3 presents the original datasets. The results
of the proposed ANGEL algorithm were compared with DBSCAN, K-means,
CLIQUE and GDH. Four datasets, with 11,500, 115,000, 230,000 and 575,000
objects in seven synthetic datasets, and all with 15% noise, were utilized in this
experiment. The computational time of DBSCAN increases significantly as the
number of databases increases. Hence, Table 1 does not list all of the simulation
results for DBSCAN (N/A means that the simulations were not performed).
Table 1 indicates that the proposed ANGEL with the lowest time cost, and the
best clustering correctness rate and noise filtering rate. Due to the limitation
of length, not all experimental results are shown. Fig. 4 depicts the experimen-
tal results of ANGEL. The experimental results demonstrate that ANGEL can
handle arbitrary shapes for clustering. However, K-means cannot recognize ar-
bitrary shapes. Although CLIQUE and GDH could handle the arbitrary shapes
in Dataset 4 to 7, CLIQUE could not smoothly detect the edges of clusters, or
remove the indentations of neighboring clusters, due to the nature of the rect-
angular grid. Additionally, the gradient decrease function in GDH placed some
clusters in the wrong position if the hypercubes were neighbors but the gradient
decrease between the hypercubes was too high. Table 1 shows the clustering ex-
perimental results with ANGEL, K-means, DBSCAN, CLIQUE and GDH using
230,000 datasets.

In complex datasets such as DataSets 4, 5, 6 and 7, GDH and CLIQUE require
set small capacity of hypercube for segmenting and detecting the edges of the
clusters that are close to each other. Hence, the time cost of GDH and CLIQUE
raises with increasing numbers of hypercubes to be searched and processed.
ANGEL usually yields more accurate results and performs fast than K-means,
DBSCAN, CLIQUE and GDH, as shown in Table 1.
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Fig. 3. The original datasets for Experiment

Fig. 4. The experimental results with 230,000 objects of ANGEL

Table 1. Comparisons with ANGEL, K-means, DBSCAN, CLIQUE and GDH
using 230,000 data sets with 15% noise; item 1 represents time cost (in seconds);
item 2 denotes the clustering correctness rate (%), while item 3 is the noise filtering
rate (%)

Algorithm Item DataSet-1 DataSet-2 DataSet-3 DataSet-4 DataSet-5 DataSet-6 DataSet-7

1 8.406 13.782 9.718 20.829 23.891 2.75 7.344
K-means 2 50.032% 56.241% 51.144% 58.108% 84.982% 49.957% 59.056%

3 0% 0% 0% 0% 0% 0% 0%

1 11465.96 N/A N/A N/A N/A N/A N/A
DBSCAN 2 99.141% N/A N/A N/A N/A N/A N/A

3 94.6% N/A N/A N/A N/A N/A N/A

1 2.578 5.203 9.141 25.813 51.984 20.688 39.656
CLIQUE 2 97.934% 99.64% 97.287% 98.208% 96.861% 89.486% 94.157%

3 96.663% 97.473% 99.013% 99.36% 98.764% 99.686% 99.666%

1 3.453 5.875 8.985 25.969 50.187 16.672 19.172
GDH 2 99.031% 99.712% 98.009% 98.642% 96.859% 97.791% 94.431%

3 96.036% 97.406% 98.766% 99.256% 98.764% 99.283% 99.336%

1 3.14 3.782 6.734 6.859 9.281 9.672 11.359
ANGEL 2 99.05% 99.051% 99.03% 99.271% 98.285% 99.025% 98.412%

3 96.683% 98.11% 98.656% 99.01% 98.115% 99.08% 99.12%
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5 Conclusion

This paper presents a new clustering algorithm called ANGEL that integrates
grid-based, density-based and hierarchical approaches. The proposed algorithm
makes the following contributions. First, the algorithm improves the clustering
performance of large databases. Second, unlike conventional clustering methods,
the proposed ANGEL algorithm successfully eliminates edge indention. Finally,
the proposed algorithm accurately identifies large patterns that are close to each
other. Additionally, simulation results reveal that the proposed new clustering
algorithm performs better than some existing well-known approaches such as
the K-means, DBSCAN, CLIQUE and GDH methods.
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Abstract. In this paper, we investigate and utilize the characteristic
of the group movement of objects to achieve energy conservation in the
inherently resource-constrained wireless object tracking sensor network
(OTSN). We propose a novel mining algorithm that consists of a global
mining and a local mining to leverage the group moving pattern. We
use the VMM model together with Probabilistic Suffix Tree (PST) in
learning the moving patterns, as well as Highly Connected Component
(HCS) that is a clustering algorithm based on graph connectivity for
moving pattern clustering in our mining algorithm. Based on the mined
out group relationship and the group moving patterns, a hierarchically
prediction-based query algorithm and a group data aggregation algo-
rithm are proposed. Our experiment results show that the energy con-
sumption in terms of the communication cost for our system is better
than that of the conventional query/update based OTSN, especially in
the case that on-tracking objects have the group moving characteristics.

Keywords: OTSN, Grouping, Data Aggregation, Prediction.

1 Introduction

Energy conservation is paramount among all design issues in the inherently
resource-constrained Object Tracking Sensor Network (OTSN). However, the
current energy conservation mechanisms and algorithms may not be properly
suitable for WSN because WSN differs from other network in many aspects
[1][2][3]. Energy conservation in OTSN is even a harder affair because the target
objects are moving. Many researches aim for designing an energy efficient OTSN.
In [4][5], a cluster-based or tree-based local network collaborates multiple nearby
sensors to handle the tracking task. By utilizing the local network, data aggrega-
tion and on-off scheduling are applied for reducing communication cost, saving
energy, or prolonging the lifetime of the efficient route to the sink. However,
while the object moving speed is relatively high, the frequency in rebuilding an
energy efficient route and the complexity in maintaining a local network make
the route and network structure no longer efficient. Prediction-based schemes

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 825–832, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



826 H.-P. Tsai et al.

predict the future movement of the on-tracking objects according to their latest
detected or average velocity to allow an energy efficient wake-up mechanism
[6][7]. Probability-based prediction approaches take advantage of object moving
patterns for future location prediction [8][9][10][11]. While investigating the fac-
tors that dominate energy cost of OTSN, we observe that many creatures such as
animals, birds, or insects have social behavior that is they usually form mass or-
ganization and migrate together for food, breeding, wintering or other unknown
reasons. The famous annual wildebeest migration is an example. Many water
birds such as Black-faced Spoonbill have patterned flight-path. Ultradian rhyth-
mus phenomenon can be found in insect world. Each year, millions of monarch
butterflies travel from Canada to Mexico and back again. These examples points
out that the movement of creatures is correlated in space and dependent in time.
Our point is that if the group relationship can be explored and the next location
of a group of objects can be predicted together, the long distance network traffic
for query can be reduced and the update data can be aggregated. That’s the
main idea of the paper and to our best knowledge, this is the first study that
considers group relationship and object movement simultaneously in OTSN.

In this paper, we propose a group moving pattern mining algorithm, a hier-
archically prediction-based query algorithm, and a group data aggregation algo-
rithm. Our contribution has two folds: first, exploring group relationship among
object moving patterns. Second, based on the group moving pattern, an efficient
energy-constrained OTSN is designed. In our algorithm, a group probabilistic
suffix tree (GPST) is used to predict objects’ next locations in hierarchically
prediction-based query algorithm. The group data aggregation algorithm uti-
lizes group information in local and small scale data aggregation. The rest of
the paper is organized as follows. Preliminaries, definitions and problem formu-
lation are presented in Section 2. Algorithms for mining group moving patterns,
a hierarchically prediction-based query algorithm, and an efficient group data
aggregation algorithm are proposed in Section 3. Experiments are presented in
Section 4. This paper concludes with Section 5.

2 Preliminaries, Definitions, and Problem Formulation

2.1 Preliminaries

Hierarchical Sensor Network. In a hierarchical WSN, nodes are heteroge-
neous in energy, computing and storage capacity. Higher-energy node can be
used to perform high complexity computing and send data while low-energy
node can be used to perform the sensing and low complexity computing. A sen-
sor equipped with higher energy acts as a cluster head (CH) on which high
complexity task are assigned. In this paper, we adopt the hierarchical cluster
structure. Sensors within a cluster have a locally unique id, and CH logical rep-
resents sensors within the cluster and acts as a sensor in view from upper layer.
When a sensor detects an on-tracking object, it informs the location information
to the CH. The CH aggregates location information then forwards to CH of up-
per layer. The process repeats until sink receives the location information. Here,
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location information of an object is the corresponding sensor id. The movement
of an object is represented by a sequence of sensor id visited by the object.

Location Modeling. The movement dependency is that the next location in
a moving sequence can be predicted from the sequence of preceding locations.
We use Variable Markov Model (VMM) for learning statistic of object moving
sequences and also a data structure called Probabilistic Suffix Tree (PST) is used
together for mining significant moving patterns [12]. PST building algorithm
is an efficient lossy compression scheme that converts a large data set into a
variable length tree. The tree represents a dictionary of significant sequences
that are meaningful for predicting next location.

2.2 Definitions and Problem Formulation

Definition 1. Group Data Aggregation Radius (GDAR) is the number of hop
counts between a sensor and its furthest neighbor in the participation of the group
data aggregation.

Definition 2. Moving Sequence is a sequence of sensor id visited by one or a
group of objects. Moving Speed is the number of sensor that an object crosses in
a time unit.

Given a moving sequence data set, our problem is to find the group relationship
and the group moving pattern and obtain an energy efficient hierarchical OTSN.

3 Designs and Algorithms for OTSN

While a sensor detects an object, it invokes a group data aggregation and then
informs a list of detected objects and a sensor id to the CH. CHs therefore collect
objects’ moving sequences within its cluster. In this section, we first present the
group moving pattern mining algorithm and then propose an efficient object
tracking sensor network.

3.1 Group Moving Pattern Mining Algorithm

The group moving pattern mining algorithm has four steps: building PST for
each object, constructing a similarity graph on PSTs, extracting highly-connected
components, and selecting Group Probability Suffix Tree (GPST). After the min-
ing is performed, CH sends the group information to upper layer and gets a group
id in return. The group information, group id and GPST are used in the hierar-
chically prediction-based query and group data aggregation.

Building PSTs for All Objects. The movement data set in the CH is a set
of moving sequences collected within this cluster. In the step, the CH builds a
PST for each object. The Build-PST algorithm is shown in Figure 1.
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Fig. 1. The Build PST Algorithm [12]

Constructing a Similarity Graph on PSTs. Given n PSTs, we want to
group them according to their structural similarities. The similarity score simp

of two PSTs is defined as follows,

simp= −log(
∑

s∈S

√∑
σ∈Σ

(P1(s)×P1(σ|s)−P2(s)×P2(σ|s))2
|Σ| ) (1)

It is a combination of condition probability and Euclidean distance over the
union of node symbol strings of the two PST. The union is identified by S. If
simp of two PSTs is higher then a given threshold, we consider they are similar.
After comparing each pair of the given PSTs, we have pair relationship among
all objects that forms a graph. Then the problem is transformed to be a graph
connectivity problem.

Extracting highly-Connected components. Connectivity k(G) of a graph
G is defined as the minimum number of edges whose removal results in a dis-
connected graph. Given a graph with n nodes, we partition the graph into sub-
graphs such that the subgraphs are highly connected. We partition the graph G
if k(G) < n

2 . The highly connected component is an induced subgraph G′ ⊆ G
such that G′ is highly connected [13]. The nodes in a highly connected subgraph
has degree at least n′

2 which means that each node in the subgraph has similar-
ity relation with at least half nodes in the subgraph. The HCS cluster algorithm
is shown in Figure 2. The clustering problem is then converted to a min-cut
problem. A simple min-cut algorithm [14] is utilized in partition of the nodes.

Selecting Group Probabilistic Suffix Tree. In last step, the similarity
graph is partitioned into highly connected subgraphs. If the size of the subgraphs
is higher than a given threshold, the objects corresponding to the subgraph are
considered as an efficient group. The threshold is selected such that the efficiency
gained on group based query algorithm and group data aggregation deserves the
mining. After groups are found, a most representative PST named GPST is
heuristically selected for each group such that the storage cost is reduced.
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3.2 The Energy Efficient Object Tracking Sensor Network

The energy efficient OTSN includes a hierarchically prediction-based query al-
gorithm and a group data aggregation algorithm. The prediction-based query
algorithm flexibly determines to query for an individual object or a group of
objects by one query. If on-tracking objects belong to a group, a group query
can be applied such that not only flooding-based network traffic is eliminated
but long-distance network traffic is reduced. In addition, the total data amount
for the updates is further compressed under acceptable location precision by
the group data aggregation algorithm. In the best situation, only one query is
required in querying for a group of objects, and only one update is required in
each updating interval for a group of objects.

Hierarchically Prediction-Based Query Algorithm. After the groups and
their best fit GPSTs are produced. The information is sent to the CHs such that
a group query and group update can be achieved efficiently. For the query-based
OTSN, while receiving a query, the sink first predicts the most possible cluster
that the object is currently located by using GPST and then sends the query to
the CH. While the CH receives the query, it performs another prediction to get
the most possible sensor that can detect the object. After receiving the query, the
sensor invites its neighbors within GDAR to participate in tracking the object.

Group Data Aggregation Algorithm. For the update-based OTSN, while an
object is detected by a sensor, a group data aggregation process is initiated. The
sensor performs as the master sensor that invites its neighbors within GDAR to
collaborate in tracking objects and handles the local data collection for a period.
After that, the master sensor reports to the CH about the detected objects and
the id of the sensor that detects most objects. Finally, the CH further compresses
total data amount by using group id and filters redundant data according to the
specified precision.

4 Experiments

We implemented an event driven simulator in C++ with SIM [15] to evaluate
the performance of our design. In the simulation, we use a Location-Dependent
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Fig. 3. Network traffic comparison

Parameterization of a Random Direction Mobility Model [16] to simulate the
roaming behavior of a group leader. The other members are followers that are
uniformly distributed around the leader within a specified Group Dispersion
Range (GDR). The metrics used in evaluating our design are the amount of
transmitted data in bytes per sensor (network traffic) and the average distance
between observed location and real location of all objects (location distance).

4.1 Experiment 1

In the first experiment, we compare the performance between conventional
query-based OTSN (CQ) and our group prediction query-based OTSN (GQ)
as well as conventional update-based OTSN and our group aggregation update-
based OTSN (GU). The sink has to persistently query for an object in query-base
OTSN, and the sensors surrounding target objects persistently update the loca-
tions of objects in update-base OTSN. Figure 3(a) shows that the network traffic
of CQ is about 20 times of GQ at the same location distance (˜1.0). While the
moving speed is higher, the rate is higher. Figure 3(b) shows that the network
cost in CU about 1.48 time of GU at the same location distance (˜1.0). While
object moving speed is low, CU can achieve high location precision at a compa-
rable network cost. However, if the object moving speed is higher, in order to
achieve the same location precision, the update frequency increases and incurs
much more traffic than GU.

4.2 Experiment 2

In the experiment, we study the impact of object moving speed and query inter-
val on the location precision in GQ. The results in Figure 4(a) show that higher
query frequency leads to a better location precision. Besides, at the same query
interval, if the object moving speed is higher, the location precision is lower. To
achieve higher location precision, higher query frequency is required.

4.3 Experiment 3

Figure 4(b) shows the impact of GDR. Higher GDR means that objects are more
scattered such that a larger GDAR is required. GDAR is an important parameter
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Fig. 4. (a)The impact of object moving speed on the location precision. (b)The impact
of GDR on the network traffic.

that influences both the location information collecting range and object query
snooping range. If GDR is higher, GDAR is set to be larger, and therefore more
local in-network traffic is incurred.

5 Conclusions

In the paper, a group moving pattern mining algorithm, a prediction-based rout-
ing algorithm, and a group data aggregation algorithm are proposed. A simula-
tion is conducted in light of the performance of the algorithms. Our contribution
has two folds: first, exploring group relationship among object moving patterns.
Second, based on the group moving pattern, an efficient prediction-based query
algorithm and an efficient data aggregation algorithm for OTSN are provided.
According to our experiments, the explored group relationship and group moving
pattern are adopted to predict the group location such that the amount of query
network traffic is significant reduced. The amount of update network traffic that
is incurred by reporting the location of monitored objects is also greatly reduced
especially while the group density of monitored objects are high. In addition,
the adaptive data aggregation range improves the prediction hit rate.
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Abstract. The spam problem continues growing drastically. Owing to
the ever-changing tricks of spammers, the filtering technique with contin-
ual update is imperative nowadays. In this paper, a server-oriented spam
detection system ProMail, which investigates human email social net-
work, is presented. According to recent email interaction and reputation
of users, arriving emails can be classified as spam or non-spam(ham).
To capture the dynamic email communication, the progressive update
scheme is introduced to include latest arriving emails by the feedback
mechanism and delete obsolete ones. This not only effectively limits the
memory space, but also keeps the most up-to-date information. For bet-
ter efficiency, it is not required to sort the scores of each email user and
acquire the exact ones. Instead, the reputation procedure, SpGrade, is
proposed to accelerate the progressive rating process. In addition, Pro-
Mail is able to deal with huge amounts of emails without delaying the
delivery time and possesses higher attack resilience against spammers.
The real dataset of 1,500,000 emails is used to evaluate the performance
of ProMail, and the experimental results show that ProMail is more
accurate and efficient.

1 Introduction

Spam, the so-called junk email, has become an imperative problem to the email
communication today. In fact, there are a huge percentage of all emails sent
are spams. The statistics [1] shows that more than 50% of emails are spams in
2004, up from 8% in 2001. Even worse, spam not only annoys email users, but
also threatens the whole email application. Some systems have been presented
to prevent the disturbance of spams. However, each of them has drawbacks and
no one settles the problem completely.

For data mining researchers, spam detection is brand-new and challenging. At
the initial stage, they commonly treated the spam detection as a text classifica-
tion task. In this way, the contents of emails are exploited for spam detection.
Some conventional machine learning techniques have been conducted. Among
them, Naive Bayes methods [2] and SVMs [3] were the most popular. Though
they have certainly reported quite excellent results, it is obvious that the spam
problem does not nearly go away. These filters generally work only when the scale
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is miniature. When they are employed on a large scale, spammers always find
new ways to attack the filters. Moreover, the contents of spam change over time.
Only filters with constant re-training can attain high performance permanently.

The other group of researchers try to look for other clues, such as the email
traffic [4], the email social network [5], and so forth [6]. These approaches are
categorized as “non-content-based spam filters”. Compared with content-based
approaches, these methods possess several advantages. First, less processing time
is required. Instead of going through the entire email contents, it is much more
efficient in dealing with non-content knowledge. Second, to create the counterfeit
non-content information is relatively difficult. Finally, the privacy issue of the
email contents has always been concerned. It is noted that non-content-based
approaches evade this issue inherently.

Due to above merits, we decide to use the non-content knowledge of email so-
cial network formed by human email communication for spam detection. Mail-
Rank [5], presented by Chirita et al, investigated the feasibility of rating the
sender addresses in the email social network. The well-known reputation algo-
rithm, PageRank [7], is the kernel of the rating mechanism of MailRank. Accord-
ing to the score obtained by the algorithm, an arriving email can be classified as
a spam or a ham. Although the authors claimed high performance of MailRank,
there are still some drawbacks that can be improved. MailRank constructs a
graph for email social network. Each node represents an email address and each
arrow points from a sender to a receiver. In this way, according to the concept
of PageRank algorithm, a sender gives a trust vote to a receiver. However, the
key idea of PageRank is that the rank of a web page is given by the pages point-
ing to this page. Therefore, if an arrow points from a sender to a receiver, it
means the receiver gets the trust vote from the sender. This scoring scheme is
a contradiction to the real world. The trust score of an email address should be
determined by the number of trusted emails it has sent instead of the number of
emails received. In addition, only a single link is allowed between two nodes in
MailRank. This diminishes the effect of different numbers of email communica-
tions between two nodes. In the real-world situation, the more spams a node has
sent, the more suspicious to be a spammer it is. Moreover, MailRank collects
merely the ham emails as training data. All links in the graph are legitimate
emails. This may lack the information of communications of junk emails.

In this paper, we propose a spam detection system ProMail, which utilizes
the non-content knowledge of the email social network. According to the latest
email interaction and reputation of users, an arriving email can be classified as
a spam or a ham. Three primary contributions of this paper are as follows.

(1) We design an innovative modeling graph of the email social network, whose
concept is illustrated in Figure 2 and is elaborated in Section 3.1.

(2) The progressive update scheme is presented to catch the evolving feature
of the real-world communication. Newly training emails are included and the
obsolete emails are pruned away. This crucial scheme makes ProMail more
suitable for modeling the latest email social network and thus with higher attack
resilience.
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Fig. 1. System model of ProMail
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Fig. 2. The modeling graph of email social network

(3) The reputation procedure, SpGrade, is proposed to rate each email ad-
dress in the modeling graph. SpGrade, which follows the concept of PageRank
[7], accelerates the convergence rate without re-running the reputation algorithm
and hence ProMail efficiently keeps the most up-to-date information for spam
detection. Consequently, ProMail is capable of handling a great quantity of
arriving emails in real time.

2 System Model of ProMail

Figure 1 demonstrates the system model of ProMail. Three input parameters,
Tm (the maximum time span of which emails retained in the modeling graph),
Ti (the time span for Incoming Update), and Tp (the time span for Periodical
Update) are given. There are two major phases in the system, namely, off-line
training phase and on-line maintaining phase. In the off-line training phase, Pro-
Mail includes initial training emails, which are collected from users for every
Tm, to construct our new modeling graph. Then, the proposed reputation pro-
cedure SpGrade is conducted to compute the initial objective score for each
node in the modeling graph. At this stage, ProMail is able to be put on-line to
do the spam detection based on the initial objective scores.

Three individual modules, Spam Detection, Incoming Update, and Periodical
Update are involved in the on-line maintaining phase. Whenever a new email ar-
rives, Spam Detection instantly reports the result based on the objective scores
obtained by SpGrade. It is noted that Spam Detection can be computed in real
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time without delaying the delivery time of arriving emails. In addition, to keep
the latest information, the feedback mechanism is introduced, and the reported
feedback emails are buffered temporarily. For every Ti, the system automatically
triggers the Incoming Update and includes buffered emails into the modeling
graph. In the meantime, SpGrade progressively adjusts the objective scores of
email users related to or influenced by the feedback emails. Note that SpGrade
considers only associated nodes rather than re-rating all nodes in the model-
ing graph. Meanwhile, the decaying effect, which conveys the concept that the
significance of emails decays over time, is also taken into account in SpGrade.
Periodical Update is triggered for every Tp. Those nodes which were not modified
in the previous time span Tp are re-rated. For efficiency concern, Tp is normally
set larger than Ti by several times. Moreover, the obsolete emails which exceed
the maximum time span Tm are eliminated in Periodical Update. Consequently,
ProMail is self-adjusting and always retains the most up-to-date knowledge of
human email communication for spam detection with limited memory space.

3 Using Progressive Email Social Network for Spam
Detection

3.1 Modeling Graph of the Email Social Network

Figure 2 shows our new modeling graph of the email social network in ProMail.
Each node denotes an email user represented by the email address. Each arrow
indicates an email communication between two nodes. There are four significant
features of the innovative modeling graph.

(1) The direction of an arrow points from a receiver to a sender. This demon-
strates the situation that the receiver gives the trust vote to the sender.

(2) There can be more than one link connected between two nodes. Namely,
each link is weighted in accordance with the number of emails. For the ease of
readability, we put all links in the modeling graph to emphasize the weighting ef-
fect. In addition, the decaying effect, which emphasizes the decays of importance
over time, is also contained on the links.

(3) Both spam and ham links are included. Solid arrows stand for spam links,
while hollow arrows represent ham links. Two types of email links are distin-
guished with each other. Thus, two respective email social networks are fused
together in the modeling graph. Each node maintains two corresponding scores
for the spam network and the ham network.

(4) The composite node, which consists of senders who appeared just once
and had identical IP address, is introduced. This is because the email header is
easily tampered by spammers. However, the IP address of the sending machine
is valid. Large amounts of spams sent from one machine may have different
fake sender addresses, but their sender IP addresses are the same. As a result,
these nodes should be enclosed to form a composite node. Comparatively, other
nodes are named as common nodes. Though normal users may be mis-enclosed
together as well, they will jump out and form a new common node by itself at the
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moment they appear the second time. The dashed circle in Figure 2 illustrates
a composite node.

3.2 Algorithm ProMail

Algorithmic form of ProMail is shown in Figure 3(a). The major objectives
of ProMail are to maintain the progressive email social network as time goes
by and to report the classification results whenever new emails arrive. There
are two primary phases in ProMail. One is off-line training phase, and the
other is on-line maintaining phase. Initially, a large set of training emails are
fed into ProMail for the off-line phase. In this phase, from line 4 to line 6,
three procedures are included. ConstructGraph utilizes the training email set
to construct the modeling graph of the email social network. The training set
contains the emails arriving in previous Tm. The reputation procedure SpGrade
is then applied to rate each node in the graph. Two corresponding scores, ham
and spam, are produced for each node. By the linear combination of two scores,
each node obtains the objective value which indicates the extent of suspicion to
be a spammer. The last step of the off-line phase is to determine the separation
threshold Sth to classify emails into spams and hams. First, ProMail samples
the nodes in the graph uniformly, and sorts the sample set of nodes by their
objective values. Then, the separation threshold is determined according to the
proportion of spams and hams in the training data. For example, if there are
1,000 sampled nodes and half of the training data are spams, Sth will be set
the same as the value of the node whose rank of the objective value is 500. At
this stage, ProMail finishes the off-line training phase and goes into the on-line
maintaining phase from line 8 to line 16. Two types of update schemes, Incoming
Update and Periodical Update, are involved. Incoming Update, from line 8 to
line 10, includes new feedback emails from users by ConstructGraph. Feedback
emails are buffered temporarily and Incoming Update is triggered for every Ti.
Since some nodes and links are inserted into the graph, SpGrade is conducted in
line 10 to re-rate the scores of the related nodes. To achieve the efficient update,
SpGrade considers merely the nodes associated with the feedback nodes. On
the other hand, Periodical Update, from line 11 to line 14, is triggered for every
Tp. The main objectives of Periodical Update are to eliminate the obsolete links
and to update the nodes which have not been updated in previous Tp. In line 13,
DeleteGraph excludes the obsolete links which exceed the time span Tm from
the graph. While DeleteGraph examines the obsolete links, the nodes which
have not been updated in previous Tp are also marked so that these nodes can
be updated in the following procedure. Finally, SpGrade is employed to re-rate
corresponding nodes. Owing to the operation of Incoming Update and Periodical
Update, ProMail is able to keep the most up-to-date information and delete the
obsolete knowledge for spam detection with limited memory space. In addition,
for efficiency concern, Tp is set larger than Ti by several times. In the following
subsections, the reputation mechanism SpGrade will be elaborated in detail.
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Algorithm ProMail
Input: Tm: maximum time span which emails

       retained in the modeling graph
Ti:  time span of incoming update
Tp: time span of periodical update

1     var Graph;  // Modeling Graph
2     var currentTime;
3     var Sth;  // the score separation of spam and ham;
3     // Off-line Training Phase
4     ConstructGraph( );
5     SpGrade( );
6     determine Sth;
7     // On-line Maintaining Phase
8     for (every time span Ti)  // Incoming Update
9         ConstructGraph( );
10       SpGrade( );
11   for (every time span Tp)  // Periodical Update
12       update currentTime;
13       DeleteGraph(Tm, Tp, currentTime);
14       SpGrade( );
15   while (new emails arrive)  // Email Classification
16       classify the email as spam, ham, or unknown by Sth;
End

Procedure SpGrade ( )
// Capital 'S' denotes the word 'score'.
1     var d_factor; // exponential decaying factor
2     var err_th; // error threshold;
3     while (there exists some marked nodes in Graph)
4         for (each marked node in Graph)
5             tmp_nodeS = node.S;
6             node.S = 0;
7             for (each inlink of the node)
8                  tmp_time = currentTime - link.time;
9                  node.S = node.S + inlink.S * exp(d_factor, tmp_time);
10                link.decayS = link.S * exp(d_factor, tmp_time);
11           if ((node.S - tmp_nodeS) / tmp_nodeS > err_th)
12               tmp_linkS = node.S / node.no_outlink;
13               for (each outlink of the node)
14                   tmp_time = currentTime - link.time;
15                   tmp_linkS = tmp_linkS * exp(d_factor, tmp_time);
16                   link.S = tmp_linkS;
17                   if ((tmp_linkS - link.decayS) / link.decayS > err_th)
18                       mark this link's terminal node for the next iteration;
19                       link.decayS = tmp_linkS;
End

(a) Algorithm ProMail (b) Procedure SpGrade

Fig. 3. Algorithm ProMail and procedure SpGrade

3.3 Details of Procedure SpGrade

SpGrade, the reputation mechanism of ProMail, is presented in Figure 3(b).
SpGrade takes charge of rating and updating the scores of nodes in the mod-
eling graph. To catch the concept of the importance of links decays over time
(called the decaying effect), d factor, the exponential decaying factor, is intro-
duced to diminish the scores of links according to the existing time. In addition,
to accelerate the convergence rate, SpGrade adopts two crucial measures. First,
only the marked nodes are considered. In the first iteration, two types of marked
nodes are involved. One is the nodes which are associated with the insertion and
the deletion of the graph. The other is the nodes which have not been updated in
Tp. During each iteration, SpGrade marks the nodes which are required to be
updated for the next iteration. The second crucial measure is that the constraint
of update propagation is included. The primary purpose of the constraint is to
avoid triggering too many slight updates caused by a single marked node. The
node triggers the update propagation only when the change percentage of scores
in a node is greater than the error threshold err th. In addition, the constraint of
update propagation is enforced on the link score as well. From line 7 to line 10,
the targeted marked node re-computes the score by summing all inlink scores
with the decaying effect. Meanwhile, each inlink decayS, the decayed score which
has been acquired by the terminal node, is updated. Providing that the score
change percentage of this node exceeds err th, the update propagation, from
line 12 to line 19, is executed. The node averagely shares the score to all of
the outlinks. From line 14 to line 16, SpGrade first updates the outlink score
by the decaying effect. Then, if the score change percentage of this outlink also
exceeds err th, the terminal node of this link will be marked for the update in
the next iteration. This measure effectively accelerates the convergence rate of
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SpGrade, and does not influence the detection results. Finally, in line 19, the
outlink decayS is updated. It is noted that the entire nodes in the graph should
be processed concurrently. The newly updated scores become effective in the
next iteration but not in the current iteration. Both ham and spam scores are
processed in the same way.

4 Experimental Evaluation

In this section, we conduct experiments to validate the feasibility of ProMail.
The real dataset used in the experiments is the email server log of Computer
Center in National Taiwan University. There are about 200,000 emails per day
in this dataset. Since the classified labels of emails are not available in practice,
we utilize the detection results from the well-known existing system, SpamAs-
sassin, as the correct labels. There are 30% of emails are spams in this dataset.
The competitive approach, MailRank, is included for comparison. We implement
ProMail and MailRank using C++ language, and execute the programs on a
computer with Pentium 4 - 3GHz CPU and 1.5GB RAM.

Fig. 4. Accuracy Evaluation

4.1 Accuracy Evaluation

The training dataset used in Figure 4(a) consists of emails in one week (Tm is
one week), and there are totally about 1,400,000 emails. Ti and Tp are both set
as one day. Another 7 days of emails are used as testing data. The procedures of
the experiment are as follows. Each day of testing emails represents the arriving
emails and are tested day by day. Then, all emails are viewed as the feedback
emails for the system. In addition, two values in the first column of Figure 4(a)
stand for the interval between the definitely ham threshold and the interval
between the definitely spam threshold with Sth. The sender address whose score
is between these two thresholds is classified as uncertain. The sender address
which does not appear in the graph is classified as unknown. The false positive
rate and the false negative rate are investigated. As mentioned in Section 1, the
false positive costs much than the false negative for spam detection problem. As
shown in Figure 4(a), the false positive rate of ProMail is lower than 0.5% in
all cases. This validates the high performance of ProMail.

Figure 4(b) shows the comparison results against MailRank. The unknown
rate of MailRank is much higher than ProMail since only hams are consid-
ered in MailRank. Moreover, ProMail outperforms MailRank in false positive
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rate considerably. The main reason is that some email senders who have sent
fewer emails possess low score, and are mis-classified as spammers by MailRank.
However, ProMail can handle this drawback well.

5 Conclusion

In this paper, we proposed a spam detection system ProMail, which utilizes
the non-content knowledge of the email social network. The innovative modeling
graph was presented to model the human email communication. In addition,
the progressive update scheme was introduced to include new feedback emails
and delete the obsolete ones, and hence the most up-to-date information is al-
ways kept for spam detection. Moreover, we designed the reputation mechanism
SpGrade to accelerate the convergence rate without re-running the reputa-
tion algorithm. The experimental results showed that ProMail outperforms
the competitive algorithm MailRank significantly. Furthermore, the outstanding
false positive rate justifies the practicability of ProMail in real applications.
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Abstract. This work proposes a generalized approach for predicting
trends in time series data with a particular interest in stocks. In this ap-
proach, we suggest a multidimensional decision support indicator mDSI
derived from a sequential data mining process to monitor trends in
stocks. Available indicators in the literature often fail to agree with their
predictions to their competitors because of the specific nature of features
each one uses in their predictions like moving averages use means, mo-
mentums use dispersions, etc. Then again, choosing a best indicator is
a challenging and also expensive one. Thus, in this paper, we introduce
a compact, but robust indicator to learn the trends effectively for any
given time series data. That is, it introduces a simple multdimensional
indicator such as mDSI which integrates multiple decision criteria into
a single index value that to eliminate conflicts and improve the overall
efficiency. Experiments with mDSI on the real data further confirm its
efficiency and good performance.

Keywords: time series datamining, stock trends, multidimensional de-
cision support indicator, technical indicator.

1 Introduction

Massive amount of financial time series data encourages investors to find new
technical devices to understand a stock’s behavior. Methods such as support
vector machines and neural networks provide excellent support for time series
data mining, particularly forecasting and predicting trends in stocks, [1,2,3], etc.
On the other hand, technical analysis promotes a wide variety of indicators to
predict the start of the trends (or derivatives) of prices or volumes over time. For
example, an indicator, the relative strength index (RSI) tracks the trends and
signals by weighing the difference between gains and losses for n days; another
indicator the momentum tags similar trends with tracking price changes over n
days; the moving averages (MA) use mean to see these trends; Stochastics (ST),
covers same trends by adjusting its momentums; the price rate of changes (ROC)
understands these with measuring the price changes; etc. However, basically
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these indicators use time series data points to detect the trends or shifts in supply
and demand, particularly identifying regions of interests such as overbought and
oversold and market conditions, namely bullish and bearish [4,5,6,7,8,9,10] are of
the interests. Overbought (or oversold) is a condition in which a stock or market
has recently experienced a sharp rise (or fall) in price and is vulnerable to a price
drop (or rise), because few buyers (or sellers) are left to drive the price up (or
down) any farther. Similarly, bullish (or bearish) signal is used to describe an
optimistic (or pessimistic) sentiment toward an issue, an index, or the market in
general; a bullish (or bearish) sentiment reflects a belief that prices will tend to
rise (or fall).

Though these indicators seem to predict the trends with more accuracies,
often they disagree in their predictions. This is due to the fact that they use
different features like moving averages use means, momentums use dispersions,
etc in their predictions. Choosing a best indicator or indicators is expensive
and challenging. Rather, in this work, we propose a generalized approach for
predicting trends in a time series data in which a univariate time series data is
transformed into multidimensional time series data where it is processed with
multiple data mining procedures. In the end, it suggests a multidimensional
decision support indicator (mDSI) to use on any time series data for learning
the trends. In general, the mDSI integrates multiple decision criteria into a
single time series index value to plot on a chart beside the price or volume in
stock analysis. Experiments on the real data confirm its performance.

Rest of this paper is organized into 5 sections. Section 2 introduces the
methodology while section 3 discusses experimental work. Section 4 justifies
and compares the proposed methodology. Section 5 concludes the work.

2 Methodology

In this section we formally introduce our proposed multidimensional decision
support indicator in the presence of multiple features. This indicator is obtained
using multiple sequential data mining steps as illustrated in Fig.1. The definitions
for these steps are summarized in the following sections:

2.1 Features and Decision Functions

Let x be a time series data point at time t , we denote as xt, then this point can
be represented as a function of time series points as shown below:

xt = l(xt−1, xt−2, ..., xt−n) (1)

 

Time 
Series 
Data 

 
Features 
Creation 

Decision 
Functions 

 
Mining 

Patterns 

 
Informati
on Gain 

 
Utility 

Function 

 
mDSI 

 

Fig. 1. Steps for constructing multidimensional decision support indicator
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A feature fi in this work is defined as an individual measurable heuristic property
of the phenomena being observed over a period of time and we can write this as:

fi = gi(xt, xt−1, ..., xt−n) (2)

Also a function of time series data points, features or a feature itself can be
identified with an technical indicator in stocks. Suppose θt is an indicator of
price action in stocks at time t, then the θt can be written as:

θt = φ(f1, ..., fk) (3)

where k is the number of features. Moreover, we define a decision criteria in this
paper as q mutually exclusive decisions or conclusions as shown below:

δtj =

⎧
⎪⎪⎨

⎪⎪⎩

α1 if fj(xt, xt−1, ..., xt−n) = Δ1
α2 if fj(xt, xt−1, ..., xt−n) = Δ2
......
αq if fj(xt, xt−1, ..., xt−n) = Δq

(4)

where α and Δ are decision values and decision threshold levels, respectively. If f1
and f2 are n1 days’ moving average and standard deviation, then a possible deci-
sion criteria, say δt12, with two mutually exclusive decisions can be designed as:

δt12 =
{

α1 if (f1 + xt)/f2 < Δ
α2 if (f1 − xt)/f2 ≥ Δ

(5)

With k features, m decision criteria can be formed (m ≥ k) and each decision
criteria can be considered, without any loss of generality, as a dimension in m-
dimensional space at any given time t. That is, a matrix of multiples of α and
m as its rows and columns could be constructed. And each row in this sample
space can assume to follow an arbitrary cluster. Let ρ be a function such that:

ρ(δ1, δ2, ..., δm) ∈ ∂(c1, .., cε, .., cν) (6)

with ν clusters (or classes). Let ξ be a weight vector of m decision criteria,
ξ = (ξ1, ξ2, ..., ξm), and decision vector, δ = (δ1, δ2, ..., δm), then we write our
index function, γt, as, γt = ψ(δ, ξ)

2.2 Estimating Weights

Since the above equation has two unknowns, in this section we propose an infor-
mation gain based weight evaluation. The information gain of two random vari-
ables is a quantity that measures the mutual dependence of the two variables.
Intuitively, mutual information measures the information about one variable that
is shared by another variable. Using this analogy, this work proposes a method-
ology to compute the weights through unsupervised learning. As a precursor, a
clustering technique is suggested to learn the patterns from the processed multi-
dimensional time series data. Later, a classification is recommended to verify and
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identify the corresponding weights through gaining the information. Repeated
process of this further encouraged to ensure that any feature is not missed out.
Let τ be an information gain parameter, then we write the gain between any δ
and ∂ as:

τ(δj ; ∂) =
∑ ∑

p(δj , ∂)log
p(δj , ∂)

p(δj)p(∂)
(7)

where p(δj , ∂) is the joint probability of δj and ∂. p(δj) and p(∂) are marginal
probabilities of δj and ∂ respectively. Then the resultant gain becomes a weight
of decision criteria j, that is,ξj = τ(δj , ∂) An optimum ξ could be further ob-
tained using the following equation:

ξj =
ξj1 + ξj2 + ... + ξjν

ν
(8)

where ξjν is a value of ξj obtained from cluster ν. Alternatively, ξ can be com-
puted by choosing a best cluster from the list, that is,ξ = ξε where ξε is a weight
vector of ε clusters subject to p(γε) = min{p(γ1), .., p(γε), .., p(γv)} and p(γε) is
the misclassification rate of ε classes.

2.3 Our Multidimensional Decision Support Indicator

Without any loss of generality, γt can be closely approximated as:

γt =
∑

j

ξjαtj (9)

with αtj as a decision value at time t and ξj as a weight of j th decision criteria.
Then It, the decision support indicator, could be deduced from Eqn.1 as It =
ϕ(γt) [11] and it can be written as:

It = 1 − γmax − γt

γmax − γmin
(10)

where γmax = max{γ1, ..., γt} and γmin = min{γ1, ..., γt}. At time t, the regions
of interests such as overbought signal line, Ut and oversold signal line, Lt could
easily be derived using statistical control limits for a specified risk as:

Ut = μ(It) + sσ(It) (11)

Lt = μ(It) − sσ(It) (12)

where μ and σ are the statistical mean and standard deviation of I and s, a
scalar quantity which measures distance from the mean.

3 Experimental Evaluation

Experiments conducted with about forty features to study the effects such as
short term and long term trends, and distributions of price movements. The
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Fig. 2. Indicator points of DJIA and its corresponding mDSI chart

 70

 75

 80

 85

 90

 95

 100

P
ric

e

IBM

Price
MA-50

MA-200

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

P
ric

e

IBM

Price
MA-50

MA-200

 0

 0.2

 0.4

 0.6

 0.8

 1

01 02 03 04 05 06 07 08 09 10 11 12

m
D

S
I

Time

oversold region
centre line

overbought region

 0

 0.2

 0.4

 0.6

 0.8

 1

01 02 03 04 05 06 07 08 09 10 11 12

m
D

S
I

Time

oversold region
centre line

overbought region

Fig. 3. A simulated example shows the sensitivity of the mDSI Chart - a change was
made on 1st June by increasing to 100 as well reduced to 50 as shown in (a) and (b),
respectively



846 K. Vellaisamy and J. Li

Table 1. Estimated Weights for Each Decision Criteria Corresponding to the Each
Feature

Feat Clust1 Clust2 Feat Clust1 Clust2 Feat Clust1 Clust2 Feat Clust1 Clust2
Wts Wts Wts Wts Wts Wts Wts Wts

f1 0.1061 0.1090 f11 0.6606 0.7079 f21 0.0953 0.1939 f31 0.7473 0.954
f2 0.1518 0.1723 f12 0.5290 0.5502 f22 0.6221 0.7594 f32 0.4779 0.8538
f3 0.2458 0.2833 f13 0.1972 0.4960 f23 0.5855 0.6148 f33 0.2673 0.4672
f4 0.2918 0.3458 f14 0.0459 0.0789 f24 0.2384 0.4831 f34 0.0007 0
f5 0.3673 0.4471 f15 0.0863 0.1877 f25 0.0677 0.1200 f35 0.0003 0.0024
f6 0.4505 0.5326 f16 0.0095 0.1296 f26 0.1151 0.1191 f36 0.0023 0.0054
f7 0.4837 0.5200 f17 0 0.0038 f27 0.0974 0.0843 f37 0.0006 0.0030
f8 0.4912 0.5101 f18 0.5020 0.5530 f28 0.0493 0.0455 f38 0.0084 0.0077
f9 0.4321 0.4416 f19 0.5358 0.6657 f29 0.0217 0.0204 f39 0.0062 0.0131
f10 0.3670 0.4013 f20 0.3419 0.5652 f30 0.7865 0.9665 f40 0.0010 0.0052

weights of each decision criteria are estimated, from a historical data of Dow
Jones industrial average [12] and Nasdaq [13] indices, and [14] using Eqn.9, for
various clusters. A sample of these weights are presented in Table 1 for two
groups in which group one has two clusters and group two has three clusters.
With these weights, the mDSI index values are computed for every period and
the results are plotted on the chart as shown in Fig.2 for DJIA index values. The
arbitrary limits for overbought and oversold are taken as .8 and .2 at par with
RSI. The charts display many times the bullish and bearish signals by staying
on top for a while as well as in the bottom. Similarly, the charts exhibit buying
and selling opportunities by crossing the limits. Further examination on mDSI
is done for its sensitivity to sudden changes or noises in prices. Fig.3 highlights
these scenario at two occasions, one with positive changes and another one with
negative changes. In both cases, the mDSI is quickly reacting to these changes.

4 Performance

To see its effectiveness when compared to its competitors, its cumulative dis-
tribution, correlation and cost are taken into the account. A sample stock of
CREAF is examined on mDSI, RSI, Stochastics, moving average convergence
and divergence (MACD) and MA indicators. The observed trends are plotted in
Fig.4. Chart 4(a) highlights trends captured by the different indicators and the
graph 4(b) shows their cumulative distributions. In both cases, the mDSI shows
its close correlation with its competitors. This is again confirmed in Fig.5 while
specifically comparing with RSI indicator. The cost comparison is done with
RSI and mDSI charts, for example. With different threshold levels for oversold
and overbought, an investment of one unit’s growth rate has been tested and
its results are presented in Table 2. This table evidences mDSI’s good perfor-
mance at every threshold levels and also at extreme levels over the RSI index.
For example, for an investment of $1000 in IBM , the investor gains about $620
when he uses mDSI and $230 when he uses RSI for a four year period. For
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Fig. 5. Correlation levels observed against mDSI and RSI for different indicators

Table 2. Cost comparison with mDSI and RSI for a period of five years

Thres IBM IBM MSFT MSFT GE GE Thres IBM IBM MSFT MSFT GE GE
hold RSI mDSI RSI mDSI RSI mDSI hold RSI mDSI RSI mDSI RSI mDSI

0.1 1.23 1.62 1.11 2.18 1 1.21 0.3 1.75 1.81 1.78 2.18 1.59 1.43
0.15 1.25 1.75 1.27 1.99 1.24 1.32 0.35 1.91 1.88 2.00 1.90 1.79 1.46
0.2 1.73 1.76 1.43 1.92 1.76 1.39 0.4 1.84 2.03 1.65 2.37 1.82 1.56
0.25 1.77 2.04 1.46 2.19 1.59 1.40 0.45 2.05 2.28 1.87 2.49 1.78 1.75

both indexes, oversold and overbought regions set at 0.9 and 0.1, respectively.
However, for better yields, the regions need to be adjusted with optimized limits.

5 Conclusion

This work suggests a general framework for modeling multiple decisions using a
utility function and information gain. Methodologies such as classification and
clustering are effectively used to calculate the weights of each decision criteria. In
particular, a multidimensional decision support indicator (mDSI) for predicting
stock trends has been proposed. This indicator function monitors stock trends
closely and indicates the outliers such as overbought and oversold regions along
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with other market conditions. The robustness of the indicator has been tested
with real data and observed sufficient evidences for better performance over its
competitors. Its preliminary experiment on cost also shows better performance
than its immediate competitor such as RSI. Further work is initiated to improve
the mDSI and also with price and volumes. This can effectively be used for any
time series data.
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Abstract. This paper put forwards a novel support vector machine ensemble 
construction method based on subtractive clustering analysis. Firstly, the train-
ing samples are clustered into several clusters according to their distribution 
with subtractive clustering algorithm. Then small quantities of representative 
instances from them are chosen as training subsets to construct support vector 
machine components. At last, the base classifiers’ outputs are aggregated to ob-
tain the final decision. Experiment results on UCI datasets show that the SVM 
ensemble generated by our method has higher classification accuracy than Bag-
ging, Adaboost and k-fold cross validation algorithms.  

1   Introduction 

Support Vector Machine (SVM) is a practical implementation of structural risk mini-
mization which bounds the generation error by the sum of training error and a term 
related to Vapnik-Chervonenkis dimension of the learning machine. The minimization 
of this bound lead to a binary classifier with high generalization performance. 
Whereas, like neural network and other machine learning algorithms, the prediction 
space of SVM is only an approximation to the hypothesis space because of statistical, 
computational and representational reasons. Ensemble learning is a promising method 
for this problem and has been shown as an effective solution for difficult tasks. An 
ensemble is a set of classifiers whose individual decisions are combined in some way 
to classify new samples. The research results indicate that ensembles are usually 
much more accurate than the separate classifier. In recent years, ensemble learning 
became a hot topic in the fields of machine learning and was regarded as the first 
direction of current machine learning [1] [2]. The idea of ensemble has been applied 
for SVM by Kim [3] [4]. Now, SVM ensemble is widely used in many fields, such as 
news audio classification [5], gene expression analysis [6], cancer recognition [7] and 
fault diagnoses [8], etc. 

In order to constructing a good SVM ensemble, two main problems should be 
solved: how to generate accurate and diverse base classifiers and how to fuse their 
outputs effectively. As well known, the first one is the key problem for ensemble 
learning, so this paper mainly focuses on it. Many methods of constructing ensembles 
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have been developed, such as Bagging [9], Adaboost [10] and k-fold cross validation 
method. These techniques are very effective for unstable learning algorithms, such as 
neural network, decision tree and rule-based learning algorithm. However, these 
methods have some randomness and unrationality because they don’t consider the 
instance distribution information when sampling. Once the training subsets are not 
appropriate, the ensemble’s performance may be even worse than before. To avoid 
these drawbacks, we put forward a new SVM ensemble based on clustering analysis. 
In this method, the training samples are firstly been clustered with subtractive cluster-
ing algorithm [11]. Then the training subsets are generated by choosing a small  
quantity of representative samples from each clustering subset. Finally, the SVM 
components are combined with majority voting method to classify new examples. 
Since the training examples are chosen from the results of clustering analysis, the 
training subsets generated by this method may bitterly reflect the actual sample distri-
bution comparing to existing methods. So the SVM ensemble constructed by our 
method has higher accuracy. 

The rest of this paper is organized as follows: section 2 provides a brief review for 
the basic concepts of support vector machine; section 3 presents an introduction of 
subtractive clustering algorithm; the main idea and detailed steps for SVM ensemble 
based on clustering analysis are given in Section 4; section 5 shows the experiment 
results and analysis of our method on synthetic and UCI datasets; finally, we draw a 
conclusion in section 6.  

2   The Basic Concepts of Support Vector Machine 

Suppose we are given a set S of labeled training samples 

1 1 2 2( , ), ( , ), , ( , )n nx y x y x yL .Each training sample m
ix R∈ belongs to either of two 

classes and is given a label { 1,1}iy ∈ −  where 1, 2, ,i n= L . To classify these 

samples, a SVM will search for a separating hyper-plane with the largest margin. The 
optimal hyper-plane problem is then regarded as the solution to the following problem 
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where C is a constant and can be regarded as a regulation parameter. Tune this pa-
rameter can make balance between margin maximization and classification violation. 
The solution of this problem can be obtained by solving its dual formulation: 
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where 
1 2( , , , )na a aα = L is the vector of nonnegative Lagrange multipliers. The 

vectors with nonzero coefficient are called support vectors. If the training points are 
not linear separable in the input space, we need to map them into a high dimensional 
feature space and find the optimal decision hyper-plane in it with kernel techniques.  
For this purpose, we only need to change (2) into the forms as following: 

1 1 1

i 1

1
max ( ) ( )

2

subject to 0   0    1,2, ,

n n n

i i j i j i j
i i j

n

i i i

W a y y k x x

y C i n

α α α

α α

= = =

=

= − ⋅

= ≤ ≤ =

∑ ∑∑

∑ L

 (3) 

where ( , )k ⋅ ⋅ is the kernel function. 

3   Introduction of Subtractive Clustering Algorithm 

Clustering analysis is an unsupervised learning method, by which we can master some 
basic knowledge about the sample distribution. There are many clustering methods, 
such as k means and competitive learning neural networks [12] [13]. But for these 
algorithms, it is a hard problem to decide the number of k or the number of competi-
tive neurons in prior. Subtractive clustering proposed by Chiu[11] is a simple and 
effective clustering method. It needn’t specify the cluster number in prior. At the 
same time, this algorithm can have a large reduction on the number of training sam-
ples based on the density of surrounding data points.  

 The algorithm goes as follows: 

  Step 1: Let mX  be a set of n data points nxxx ,...,, 21 . Normalize each point 

into a unit hyper box to make each dimension identical. 

Step 2: Compute the potential value for each ix  as: 

2

2
1

( , ) exp , 1, 2, ...,
( / 2)

n
i jm

i
j a

x x
P x X i n

r=

⎛ ⎞−⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

∑  (4) 

where 10 ≤< ar  is the clustering parameter, which defines the neighborhood radius  

of each point. 

Step 3: Select the data point ix  with the highest ),...,2,1( niPi =  as the first 

cluster center. Note the first cluster center as *
1x  and its potential is *

1P . 

Step 4: Reduce the potential value of remaining data points using 

2*
1*

1 2
exp

( / 2)
i

i i
b

x x
P P P

r

⎛ ⎞−⎜ ⎟= − −
⎜ ⎟
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 (5) 
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where 0>br  defines the neighborhood of a cluster center with which the existence 

of other cluster centers are discouraged. To avoid closely space centers, usu-

ally ab rr 5.1= . 

   Step 5: Select the highest potential *
kP  from the reduced potential iP  , and *

kx  

is the next candidate cluster center. 
 Step 6: Compute the potential for the remaining data 

2*

*
2

exp
( / 2)

i k

i i k
b

x x
P P P

r

⎛ ⎞−⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (6) 

Step 7: Repeat step 5 and step 6 until δ<1

*

k

k

P
P

. This means the algorithm ends 

when the current highest potential *
kP  is far smaller than *

1P .   

4   SVM Ensemble Based on Clustering Analysis 

4.1   The SVM Ensemble Method Based on Clustering Analysis 

Aiming at aforesaid problems, we put forward a new support vector machine ensem-
ble method based on clustering analysis (Abbreviated as SVMECA). Firstly, the  
positive and negative examples are respectively clustered with subtractive clustering 
algorithm. And the clustering centers are denoted as { }+++

pCCC ,,, 21 L  and 

{ }−−−
qCCC ,,, 21 L . Then the samples are relabeled according their distance to the 

cluster centers. Finally we can get p positive subsets, denoted as 

{ })(,),(),( 21 xTRxTRxTR p
+++ L  and q negative subsets, denoted 

as{ })(,),(),( 21 xTRxTRxTR q
−−− L .  

The main idea of SVMECA is as follows: 

1) Generating individual training subset and constructing SVM components 
Using Bagging, Adaboost, k-fold cross-validation or any other methods to choose 

certain number of examples from { })(,),(),( 21 xTRxTRxTR p
+++ L  and 

{ })(,),(),( 21 xTRxTRxTR q
−−− L  respectively to generate training subsets, denoted as 

{ })(,),(),( 21 xTRxTRxTR B
L

BB L  . Then, training support vector machines on each 

of them to obtain base classifiers.  
2) Aggregating the base classifiers’ outputs 
For any input sample x , using each SVM generated above to classify it and then 

fusing their outputs in some way to obtain the final decision. Many classifier combi-
nation methods have been proposed, such as majority voting, Borda count, Bayes 
theory, evidence theory, fuzzy integral, LSE-based weighting, double-layer hierarchi-
cal support vector net, and so on. Since there is no obvious evidence to evaluate the 
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SVM components’ performance, majority voting method may be a good selection in 
aggregating step. So in this paper, we use majority voting method to fuse the base 
classifiers’ outputs. 

The details about SVMECA are shown as follows: 

Algorihtm of  SVMECA 

Input: 

Training Set: },,2,1),{( , niyxTR ii L== , }1,1{, +−∈∈ i
m

i yRx  

L : number of SVM Components 
Num: Size of training subsets by which to generate SVM 
Component and it is smaller than the number of examples 
included in the original training set 

−+−−++ δδ ,,,,, baba rrrr : Parameters of subtractive clustering 

algorithm for positive and negative examples, these pa-
rameters are set by the user manually.  
Output: 

},,2,1,{ LiSvmSvm i L==  

Notation: 

iSvm :The support vector machine generated by subset 
B
iTR    

( )iSvm x : Classification result of x  by iSvm , its value 

is -1 or 1 
Procedure SVMECA 
Begin 

{ })(,),(),( 21 xTRxTRxTR p
+++ L =SubClustering(

++++ δ,,, ba rrTR ); 

{ })(,),(),( 21 xTRxTRxTR q
−−− L =SubClustering(

−−−− δ,,, ba rrTR ); 

for i=1: L               
  begin 

   φ=B
iTR ;    

     
⎥⎥
⎤

⎢⎢
⎡

+= )(' qp
numn ; 

     for j=1: p  

       for m=1: 'n  
       begin 

( )+= jTRrandr  ;   

// r  is a random integer between 1 and  +
jTR  

        }{ ++= r
B
i

B
i xTRTR ;   

// rx+
 is the rth  positive example in jTR+

 

       end 
     for j=1: q  
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       for m=1: 'n  
       begin 

( )jr rand TR−=  ;   

// r  is a random integer between 1 and  jTR−  

        { }B B
i i rTR TR x−= + ;   

// rx−
 is the rth   negative example in jTR−

 

      end 

    Training iSvm  on 
B
iTR  ; 

end   
end 

 For any input example x , the classification result is: 

        ⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

L

i
i xSvmsignxlabel

1

)()(  }R{|x m∈                                          (7) 

Here the samples in the training subsets are chosen from 

),,2,1)(( pixTRi L=+ and ),,2,1)(( qjxTR j L=− with equal probability, so they have 

some representative property and can reflect the actual distribution.  
Through constructing smaller training sets and combining different classifier com-

ponents, we can not only improve the generalization ability and classification accu-
racy, but also the time and space efficiency of the learning algorithms. Ref [14, 15] 
used the cluster centers to construct SVM instead of the whole training data set, 
through which the time and space complexities of the learning algorithm can be 
greatly decreased. However, this is obtained on the cost of the classification accuracy. 
Comparing to these methods, we think our algorithm has such two main advantages: 
1) SVMECA can improve the generalization ability through ensemble of different 
base classifiers; 2) The classifier components of ensemble are not constructed by the 
set of cluster centers but by the representative examples, so the ensemble’s accuracy 
is higher and its complexity is a tradeoff between the set of cluster centers and the 
whole training dataset. 

5   Experiments and Analysis 

In order to verify the effectiveness of the algorithm proposed in this paper, we do 
experiments on sonar, ionoshpere and handwritten digit recognition datasets from 
UCI machine learning repository.  Besides of our method, we also test Bagging, 
Adaboost and k-fold cross validation algorithms. Here the majority voting is used to 
aggregate the outputs of the base classifier. The experiments are carried out on PC 
machine with Pentium 2.0 CPU and 256M memory.  

Sonar, ionoshpere and handwritten digits recognition datasets from UCI machine 
learning repository [16] are used to verify our algorithms. Sonar dataset includes 208 
samples from two classes and each sample includes 60 features. One half of them are  
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Table 1. The statistical results of the different algorithms 

Accuracy(%) of different data sets  
Algorithm sonar 

data 
ionoshpere 

handwritten 
digits 

Single SVM Method 75.96 91.45 89.75 
Single SVM(with subtractive 

clustering centers as traing data) 
71.15 67.52     86.15 

Bagging method 83.65 94.02 92.80 
Adaboost method 77.88 93.16 93.35 

k-fold Cross Validation method 84.61 92.31 94.18 
SVMECA method 86.65 93.60 96.40 

randomly selected as training set, and the remainders are used as testing dataset.  
Ionosphere dataset includes 351 samples and each sample includes 34 features. Here 
2/3 of them are randomly chosen as training set, and the remainders are used as test-
ing dataset. Handwritten digits recognition dataset includes 3823 training samples and 
1797 testing samples from 10 classes with 64 features. And the samples of digits ‘6’ 
and ‘9’ including 750 training samples and 361 testing samples are used for experi-
ments. In the experiments, we take 9 individual SVM components to ensemble with 
Bagging, Adaboost, k-fold cross validation and out algorithm. For Bagging and 
Adaboost algorithms, the training subset size of sonar, ionoshpere and handwritten 
digits are 104, 200 and 600 respectively. While for SVMECA, they are only 50, 78 
and 200. The statistical results of classification accuracy are shown in table 1. It can 
be obviously found that the SVM ensembles generated by SVMECA has better per-
formance than Bagging, Adaboost and k-fold cross validation algorithms.  

6   Conclusion 

This paper presented a novel construction method for support vector machine ensem-
ble based on clustering analysis. The experiments results on synthetic and UCI data-
sets show that our method is effective for SVM ensemble. Comparing to existing 
algorithms, the superiority of SVMECA is that the instances distribution information 
is considered when generating training subsets by clustering analysis. So, the SVM 
ensemble generated in this way has better performance since the samples in the train-
ing subsets have good representative property.   
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Abstract. Keywords are viewed as the words that represent the topic and the 
content of the whole text. Keyword extraction is an important technology in 
many areas of document processing, such as text clustering, text summarization, 
and text retrieval. This paper provides a keyword extraction algorithm based on 
WordNet and PageRank. Firstly, a text is represented as a rough undirected 
weighted semantic graph with WordNet, which defines synsets as vertices and 
relations of vertices as edges, and assigns the weight of edges with the 
relatedness of connected synsets. Then we apply UW-PageRank in the rough 
graph to do word sense disambiguation, prune the graph, and finally apply UW-
PageRank again on the pruned graph to extract keywords. The experimental 
results show our algorithm is practical and effective. 

1   Introduction 

Keyword extraction is an important technology in many areas of document 
processing, such as text clustering [1], text summarization, and text retrieval [2,3]. 
Keywords are viewed as the words that represent the topic and the content of the 
whole text [4]. A most popular algorithm for keyword extraction is tfidf measure, 
which extracts keywords that appear frequently in a document while seldom in the 
remainder documents of the corpus [2]. But tfidf measure has two disadvantages: 
Sometimes, there is no corpus for computing idf. Synonym’s tf is viewed independent 
and may decrease the precision. 

This paper presents a new algorithm that represents the text as a semantic graph 
with synset from WordNet, disambiguates the words, and finally extracts keywords 
from the text based on UW-PageRank. It needs no corpus, has the ability to 
disambiguate all the words in the text, and extracts keywords by analyzing the 
semantic structure of the whole text. The experiment result shows that our algorithm 
is effective and practical. 

2   PageRank on Semantic Networks 

PageRank is an algorithm of deciding the importance of vertices in a graph. WordNet 
can be viewed as an undirected weighted graph, which defines synsets as vertices and 
relations of synsets as edges and assigns the weight of edges by the relatedness of 
connected synsets. For PageRank formula is defined for directed graph, a modified 
PageRank formula is applied to use on the undirected weighted graph from WordNet. 
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2.1   PageRank 

PageRank [5] which is widely used by search engines for ranking web pages based on 
the importance of the pages on the web is an algorithm essentially for deciding the 
importance of vertices within a graph. The main idea is that: in a directed graph, when 
one vertex links to another one, it is casting a vote for that other vertex. The more 
votes one vertex gets, the more important this vertex is. PageRank also takes account 
the voter: the more important the voter is, the more important the vote itself is. In one 
word, the score associated with a vertex is determined based on the votes that are cast 
for it, and the score of the vertex casting these votes. So this is the definition: 

Let G=(V,E) be a directed graph with the set of vertices V and set of edges E, when 
E is a subset of V×V. For a given vertex Vi, let In(Vi) be the set of vertices that point 
to it, and let Out(Vi) be the set of edges going out of vertex Vi. The PageRank score of 
vertex Vi is 

( )

( )
( ) (1 ) *

( )
i

j
i

j In V j

S V
S V d d

Out V∈

= − + ∑  
(1) 

d is a damping factor that can be set between 0 and 1,and usually set at 0.85 which is 
the value we use in this paper [5]. 

PageRank starts from arbitrary values assigned to each vertex in the graph, and 
ends when the convergence below a given threshold is achieved. Experiments proved 
that it usually stops computing within 30 iterations [6]. 

PageRank can be also applied on undirected graph, in which case the out-degree of 
a vertex is equal to the in-degree of the vertex. 

2.2   WordNet as Semantic Networks 

WordNet is an online lexical reference system. English nouns, verbs, adjectives and 
adverbs are organized into synonym sets or synsets related by defined relations such 
as hypernymy/ hyponymy and holonymy / meronymy. 

2.2.1   The Relatedness of Sense 
Glosses of synset meanings in WordNet and the networked arrangement of synsets 
are both utilized as sources to determine the relatedness of a pair of synsets. Lesk [7], 
Wilks [8], Banerjee and Pedersen [9][10] use the glosses of the words, while Rada 
[11], Wu & Palmer[12], Leacock & Chodorow [13] computed the relatedness of two 
senses based on the structure of WordNet. 

2.2.2   PageRank on WordNet 
WordNet can be represented as a graph, in which synsets are defined as vertices, and 
relations of synsets are defined as edges. The graph can be constructed as an 
undirected graph. The edges can be weighted by the “strength” of the connection 
between two vertices, i.e. synsets, and computed by the measures of semantic 
relatedness.  We applied PageRank on the undirected weighted graph from WordNet 
with a modified formula 
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= − + ∑  
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C(Vi)is the set of edges connecting with Vj, weight(Eij)is the weight of edge Eij 
connecting vertex Vi and Vj, and D(Vj) is the degree of Vj. This formula is named UW-
PageRank. 

3   Keyword Extraction Based on PageRank 

To extract keywords from the text, firstly the text is converted to an undirected 
weighted semantic graph based on WordNet. All the senses for all words defined in 
WordNet form the vertices of the graph and the relations are the edges of the graph. 
At that time, one word usually has more than one corresponding vertices in the graph, 
but only one is actually the real meaning while others are noise. So secondly, we 
disambiguate all the words in the text with UW-PageRank (Formula (2)). After that, 
by deleting all the other vertices and their connected edges, one word corresponds to 
one synset and its corresponding vertex is left in the graph. Finally, we use UW-
PageRank again to find the most important vertices in the graph and the 
corresponding words in the text are the keywords. 

3.1   Text Representation as a Graph 

To use PageRank algorithm to exact keyword of the text, a graph which represents the 
text and interconnects the words with meaningful relations should be build first. We 
made a hypothesis that “The same word in a text segment has the same sense”, which 
is proved to be acceptable in our experiments in Section 4. All the words in the text 
should be POS tagged first, and then find all the synsets pertaining to the word in 
WordNet with its POS. Synsets form the vertices of the graph. Edges are added 
between the vertices which have a relation in WordNet between them. The weights of 
the edges which represent the relatedness of two synsets can be computed by the 
algorithm of Pedersen introduced in Section 2.2.1. 

There is a special situation while building the graph, that co-lexical synsets which 
is defined as synsets that represent senses of the same word, have a relation defined in 
WordNet [14].  Co-lexical synsets are competing for one word. Therefore, only one of 
the co-lexical synsets is the “correct” one to be left and the others are all noise. So no 
edges would be added between co-lexical synsets.  

Assumed that a text containing “word1 word2 word3” is to be represented in a 
graph.Word1 has three synsets defined in WordNet which are S1, S2 and S3 
represented in graph; Word2 has one synset S4 and Word3 has two, S5 and S6. None 
co-lexical synsets are linked together with the weight of relatedness. For example, S1 
and S4 are connected with an edge weighted 0.2. The graph represented the text is in 
Fig.1(a). 
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Fig. 1. Text represented in graph 

3.2   Word Sense Disambiguation Based on PageRank 

The ambiguity problem is reflected in our model as extra senses pertaining to co-
lexical synsets. It is a great obstacle for the task of keyword extraction. So our first 
step is to do word sense disambiguation. And our goal is to find the one and only 
synset for each word, thus leave the vertices pertaining to the exclusive synset in the 
graph while deleting all the others. There are two disambiguation approaches: 
knowledge-based and corpus-based methods [15]. Knowledge-based method 
disambiguates words by matching context with information from a prescribed 
knowledge source, such as WordNet. Agirre and Figau [16] present a method for the 
resolution of the lexical ambiguity of nouns using the WordNet noun taxonomy and 
the notion of conceptual density. Magnini and Strapparava [17] explored the role of 
domain information in word sense disambiguation using WordNet. Mihealcea [14,18] 
use a PageRank-style algorithm applied on a WordNet-based concepts graph to do 
word sense disambiguation for free text. 

We use UW-PageRank (Formula (2)) to score all the vertices in synset graph built 
from the text based on WordNet. The higher score one vertex (synset) gets, the more 
important it is in the graph, therefore more likely the word tends to choose the vertex, 
i.e. synset. The UW-PageRank score of synsets in Fig.1 is as following. 

Table 1. UW-PageRank score of vertices in Fig.1 

vertex S1 S2 S3 S4 S5 S6 

UW-PageRank score 0.203 0.169 0.166 0.211 0.222 0.176 

Co-reference sense and the serial number of the sense defined in WordNet are also 
taken into consideration while assign a sense to a word as well as the UW-PageRank 
score. Co-reference sense is defined as the sense that pertaining to more than one 
words from the text (recall that different word shapes from the same word are viewed 
as exactly the same word). For example, “task” pertains 2 senses, and “job” pertains 
13. For job#2 and task#2 are the same sense “{00708623}—a specific piece of work 
repaired to be done as a duty or for a specific fee”. If word “task” and word “job” are 
both in the text, sense {00708623} is the co-reference sense of word “task” and “job”. 
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If other conditions of this sense and other sense pertaining to the word are the similar, 
this sense should have more chance to be assigned to the word “task” and “job”. Yet 
this aspect of the sense can not be reflected in the structure of the group, so additional 
priority should be taken into consider for this situation. 

WordNet makes a statistical comparison of different sense of the same word on a 
large sense-annotated corpus and the senses are ordered from most frequent to least. 
Therefore, words trend to choose more frequent sense as its correct sense. 

Our algorithm combines UW-PageRank score, co-reference sense priority and the 
frequency priority together, and gives an integrated evaluation to each sense. For each 
word in the text, it will choose the sense having the highest score as its correct synset. 
Words of graph in Fig.1 are disambiguated that Word1 has the sense of S1, Word2 has 
S4 and Word3 has S5. So the graph is pruned to Fig.1(b). 

3.3   Keyword Extraction Based on UW-PageRank 

Word sense disambiguation step assigns one sense to one word, and deletes all the 
“wrong” vertices bonding to the “wrong” sense and the edges connecting to them. 
Therefore, there are only vertices bonding to chosen sense and original edges between 
them in the graph. Consequently, the word, sense and the vertex forms a many-one-
one relation. Recall that the essential meaning of UW-PageRank algorithm is to judge 
the importance of vertices in a graph, so we use UW-PageRank on the pruned 
undirected weighted graph to measure all the vertices in the graph. The vertex that 
have higher UW-PageRank score is considered to be more important in the graph, so 
the sense bonding to the vertex is considered to be more important in the text. We can 
choose the top “n” words as keywords of the text or choose all the words above a 
defined threshold. Actually, UW-PageRank finds the most important sense of the text, 
however there may be more than one words bonding to the sense and these words are 
all synonymous words, so we just choose the most frequent one of them as the 
keyword. The UW-PageRank score of the synset vertices in Fig.2 is in Table 2. 

Table 2. UW-PageRank score of vertices in Fig.2 

vertex S1 S4 S5 
UW-PageRank Score 0.276 0.209 0.282 

From the result, we can see that S5 is the most important vertex while S4 is the 
least. The importance serial of the words in text is Word3, Word1 and Word2. 

4   Experiment and Evaluation 

Our task is to extract keywords from a single document without any training sets. 
There is an important procedure in our algorithm to disambiguate word sense for all 
the words in the document. The performance of word sense disambiguation is tested 
on SemCor 2.1, which contains 186 documents containing more than 2000 words for 
each document. Words in the documents are manually annotated with part-of-speech 
and corresponding senses in WordNet. 
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The hypothesis that “the same word in a text segment has the same sense” is tested 
with a definition of word-sense-uniform-ratio. 

     "  "
- - -

         

the number of word having the main sense
word sense uniform ratio

the total number of the word in the text segments
=  (3) 

“main sense” is defined as that for each word the most usually sense it choose in 
the text segment. We choose sentence, paragraph and whole text as the unit of text 
segment, and get the word-sense-uniform-ratio. 

Table 3. Word-sense-uniform-ratio 

Text segment unit sentence paragraph Whole text 
Word-sense-uniform-ratio 99.19% 96.60% 87.47% 

Word-sense-uniform-ratio gets lower while the text segment unit gets larger. But 
even the lowest ratio still could be accepted. So we can accept the hypothesis at any 
text segment unit from above. 

Our word sense disambiguation algorithm is tested on SemCor2.1. We choose 
sentence, paragraph and whole text as text segment units to build the semantic graph. 
Each word is POS tagged and found in WordNet2.1 to get all the senses. If one word 
can not be found in WordNet2.1, usually is a new word, we just have to discard it. All 
the senses form the vertices of the semantic graph and the weight of the edges are 
computed with the algorithm mentioned in section 2.2.1. We also tag all the words 
with the most frequent sense in WordNet and take this performance as the baseline. 

Table 4. Word sense disambiguation precision 

Text Segment unit Sentence paragraph whole text Baseline 
Precision 78.1% 80.2% 75.0% 76.7% 

Paragraph as text segment unit gets the highest precision, and “whole text” gets 
lowest. It is proved that the text segment unit should choose a reasonable size: if the 
unit is too large, there are too many irrelevant words and senses involved in the graph, 
which become noise for the disambiguation of other words. If the unit is too small, 
there are not enough words and senses to build a compact graph, therefore the 
computation of UW-PageRank is not reliable. From the result, we can see that the 
paragraph as a unit is just suitable for word sense disambiguation, for there are several 
sentences containing tens of words about an event or concept just able to build a 
suitable scale of semantic graph. 

Keywords are attached to the content of the text; however they are not defined in a 
consistent way. Therefore, we used author-based evaluation. Fifty technical papers 
about artificial intelligence of CISTR (Center of Intelligent Science and Technology 
Research) are involved in the experiments as test corpus for keyword extraction 
evaluation. We choose 5 of the keywords (just words, no phrase) assigned by the 
author for each paper as the results. Then, we use our algorithm to extract top 10 
words from the paper. As a comparison, tf is also used to extract keywords. 
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Elimination of stop words and stemming are processed ahead and 10 most frequent 
words of the text are extracted as keywords. Precision is the result of the number of 
correct keyword divided by the number of extracted words .Precision has a limitation 
of 0.5 for authors only assigned 5 while our algorithm extracts 10. Coverage is the 
result of the number of correct keyword divided by the number of keywords the 
author has assigned. 

Table 5. Keyword extraction comparison result 

 Coverage Precision 
tf without word sense disambiguation 0.49 0.24 

tf with word sense disambiguation 0.54 0.27 
UW-PageRank with word sense disambiguation 0.69 0.34 

Results are shown in Table 5. tf selects terms which appear frequently in a 
document, however there are many synonyms in the document and tf views these 
synonyms as different words, which weakens the performance of tf. After 
disambiguating each word, synonyms’ term frequencies are added together and the 
coverage and precision both increase, which proves that our algorithm for word sense 
disambiguation is necessary and effective. tf ignores semantic structure of a 
document, transforms the document form a string of characters into a sequence of 
words, and assumes the words is independent. While UW-PageRank represents a text 
as semantic graph with synset from WordNet, disambiguates all the words in the text, 
decides the importance of vertices within the semantic graph, and regards those top 
“n” important vertices as keywords. Therefore, UW-PageRank can detect some 
“hidden” keywords even if they do not appear frequently, which are not been 
extracted by tf. 

5   Conclusion 

Keywords are viewed as the words that represent the topic and the content of the 
whole text. This paper proposed a keyword extraction algorithm based on WordNet 
and PageRank. Firstly, a free text is represented as an undirected weighted semantic 
graph based on WordNet which defines synsets as vertices and relations of vertices as 
edges, and assigns the weight of edges with the relatedness of connected synsets. The 
second step is to disambiguate words referring to UW-PageRank score, co-reference 
sense priority and the frequency priority. Then, graph is pruned leaving only the 
“correct” synset vertices. Finally, UW-PageRank is used again to extract key synset 
vertices in the graph, and the corresponding words are assigned as the keywords. Our 
algorithm is tested on SemCor2.1 and corpus of CISTR, and the experiment results 
proves our algorithm to be practical and effective. 
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Abstract. Naive Bayes is often used in text classification applications
and experiments because of its simplicity and effectiveness. However,
many different versions of Bayes model consider only one aspect of a
particular word. In this paper we define an information criterion, Projec-
tive Information Gain, to decide which representation is appropriate for
a specific word. Based on this, the conditional independence assumption
is extended to make it more efficient and feasible and then we propose a
novel Bayes model, General Naive Bayes (GNB), which can handle two
representations concurrently. Experimental results and theoretical justi-
fication that demonstrate the feasibility of our approach are presented.

1 Introduction

With the ever-increasing growth of the on-line information and the permeation
of Internet into daily life, web document classification plays an important role
in natural language processing (such as E-mail filtering [1], news filtering [2],
prediction of user preferences [3]) and information retrieval applications from
the linguistic point of view. Because of the variety of languages, applications
and domains, machine learning techniques are commonly applied to infer a clas-
sification model from instance documents with known class labels. The inferred
model can then be used for web document classification, i.e. classification based
on text content.

Naive Bayes [4][5] has been found particularly attractive for the task of text
categorization because it performs surprisingly well in many application areas
despite its simplicity. Naive Bayes makes the strong assumption that the predic-
tive variables (”Features” or ”Words”) are conditionally independent given the
class. From the linguistic point of view, a document is made up of words, and
the semantics of the document is determined by the meaning of the words and
the linguistic structure of the document. The generative model underlying the
Naive Bayes can be characterized with respect to the amount of information it
captures about the words in a document. In information retrieval and text cat-
egorization, the most popular probabilistic models are: the multinomial model
[7][8] and the binary independence model [6].
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The binary independence model specifies that a document is represented by a
vector of binary features indicating which words occur and do not occur in the
document. It captures the information of which words are used in a document,
but not the number of times each words is used, nor the order of the words in the
document. This describes a distribution based on a multi-variate Bernoulli event
model. This approach is more appropriate for tasks that have a fixed number
of features. The multinomial model specifies that a document is represented
by the set of word occurrences from the document. And we call these words
multinomial features for clarity. This approach is more traditional in statistical
language modeling for speech recognition, where it would be called a ”unigram
language model.”

Before learning, the characteristic of an feature should be analyzed to decide
which kind of representation is appropriate. On the other hand, the multino-
mial model and the binary independence model can not handle a much more
complex situation, that is, both representations are required to appear in the
same model. In this paper, we extend the independence assumption to make it
more efficient and feasible and then propose General Naive Bayes (GNB) model,
which can handle both representations concurrently. The remainder of this paper
is organized as follows. Sect. 2 defines an information gain criterion to decide
which representation is appropriate for a given feature. Sect. 3 describes the ba-
sic idea of General Naive Bayes. Sect. 4 presents the corresponding experimental
results of compared performance with regarding to the multinomial model and
the binary independence model. Sect. 5 wraps up the discussion.

2 The Projective Information Gain PI(C; Vi)

In this discussion we use capital letters such as Vi, Vj to denote feature names,
and lower-case letters such as vi, vj to denote specific values taken by those
features. Let P (·) denote the probability, p(·) refer to the probability density
function. Here di denotes the ith training document and ci is the corresponding
category label of di. A document d is normally represented by a vector of n
features or words d = (v1, v2, · · · , vn).

Entropy is commonly used to characterize the impurity of an arbitrary col-
lection of instances. But Entropy has limitation when dealing with multinomial
representation. In the case of binary features, the set of possible values is a nu-
merable set. To compute the conditional probability we only need to maintain
a counter for each feature value and for each class. In the case of multinomial
features, the number of possible occurrences is infinite, thus make it impossible
to compute conditional entropy.

We begin by adding two implicit features Ĉ and C̃. Let Vi represent one of
the predictive features. According to Bayes theorem, if Vi is a binary feature,
there will be

P (c|vi) =
P (c)P (vi|c)

P (vi)
(1)
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Since P (vi) is the same for all classes, and does not affect the relative values
of their probabilities, it can be ignored. When some instances satisfy Vi = vi,
their class labels are most likely to be:

Ĉ = argmax
c∈C

P (c|vi) = arg max
c∈C

P (c)P (vi|c) (2)

Correspondingly, if Vi is a multinomial feature we will have

C̃ = arg max
c∈C

P (c|vi) = arg max
c∈C

P (c)p(vi|c)
p(vi)

= arg max
c∈C

P (c)p(vi|c) (3)

Then, the corresponding relationship between Vi, C, Ĉ and C̃ may be:

Table 1. The relationship between Vi, C, Ĉ and C̃

Vi C Ĉ C̃

vi1 c1 c1 c1

vi2 c2 c1 c2

· · · ·
· · · ·
· · · ·

viN c2 c2 c1

Accordingly, the conditional entropies of C are:

H(C|Ĉ) = −
∑

ĉ∈C

P (ĉ)
∑

C

P (c|ĉ) log P (c|ĉ)

and
H(C|C̃) = −

∑

c̃∈C

P (c̃)
∑

C

P (c|c̃) log P (c|c̃)

On the other hand, the entropy of C is

H(C) = −
∑

c∈C

P (c) log P (c) (4)

The Projective Information Gain PI(C; Vi) is defined as

PI(C; Vi) = arg max{I(C; Ĉ), I(C; C̃)}
= arg max{H(C) − H(C|Ĉ), H(C) − H(C|C̃)}

(5)

Where I(·) denotes the mutual information. I(C; Ĉ) and I(C; C̃) describe the
extent to which the model constructed by feature Vi fits class feature C when
Vi is treated as binary feature or multinomial feature, respectively. Then we
compare them to choose the right representation and that is what PI(C; Vi)
means.
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3 General Naive Bayes (GNB)

Naive Bayes is one of the most straightforward and widely used method for prob-
abilistic induction. This scheme represents each class with a single probabilistic
summary and is based on one assumption that predictive features V1, · · · , Vn are
conditionally independent given the category label C, which can be expressed
as:

P (v1, · · · , vn|c) =
n∏

i=1

P (vi|c) (6)

But if multinomial features are required to represent words, the situation is
different. Since the independence assumption described above is applicable to
binary features only, we should extend it to make it much more effective. For
simplicity, we first just consider two features: V1 (multinomial) and V2 (binary).
Suppose the word frequency values of V1 have been normalized and discretized,
then the independence assumption should be:

P (v1 ≤ V1 ≤ v1 + �, v2|c) = P (v1 ≤ V1 ≤ v1 + �|c)P (v2|c). (7)

where [v1, v1 + �] is arbitrary interval of the values of feature V1. This assump-
tion, which is the basis of GNB, supports very efficient algorithms for both
classification and learning. By the definition of a derivative,

P (c|v1 ≤ V1 ≤ v1 + �, v2) =
P (c)P (v1 ≤ V1 ≤ v1 + �|c)P (v2|c)

P (v1 ≤ V1 ≤ v1 + �|v2)P (v2)

=
P (c)p(ζ|c)�P (v2|c)

p(η|v2)�P (v2)

=
P (c)p(ζ|c)P (v2|c)

p(η|v2)P (v2)

(8)

where v1 ≤ ζ, η ≤ v1+�. When � → 0, P (c|v1 ≤ V1 ≤ v1+�, v2) → P (c|v1, v2)
and ζ, η → v1, hence

lim
�→0

P (c|v1 ≤ V1 ≤ v1 + �, v2) = P (c|v1, v2) =
P (c)p(v1|c)P (v2|c)

p(v1|v2)P (v2)
(9)

Suppose the first m of n features are multinomial and the remaining features
are binary. Similar to the induction process of (9), we will have

P (c|v1, · · · , vn) =
P (c)

∏m
i=1 p(vi|c)

∏n
j=m+1 P (vj |c)

p(v1, · · · , vm|vm+1, · · · , vn)P (vm+1, · · · , vn)
(10)

Based on Eq. (10), maximum a posterior (MAP) classifier can be constructed
by seeking the optimal category which maximizes the posterior P (c|d), then the
classification rule of GNB is:

C∗ = arg max
c∈C

P (c|v1, · · · , vn) = arg max
c∈C

P (c)
m∏

i=1

p(vi|c)
n∏

j=m+1

P (vj |c) (11)
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4 Experiments

We compare classification accuracy with and without word frequency informa-
tion on two datasets: 20 Newsgroups [9] and Reuters-21578 [10] collection. We
produce 20 train/test splits using stratified random sampling with 90% of the
data for training and 10% for testing. Experiments are done using 20 trials over
these splits and averaging the results. We carried the experiment to compare
the General Naive Bayes model, the binary independence model [11] and the
multinomial model [12] when different number of unlabelled test data are incor-
porated into the training set. Fig. 1 shows the average results on Reuters-21578
corpus, with various vocabulary sizes. The effectiveness of Bayes classifier was
measured by classification accuracy.

All the three models do best at the maximum vocabulary sizes. Multino-
mial model achieves 81% accuracy and the binary independence model achieves
68% accuracy. Using GNB improves performance by more than 3 percentage
points. The binary independence model is more sensitive to query length than
the multinomial model. The multinomial model treats each occurrence of a word
in a document independently of any other occurrence of the same word. It can
be argued that the binary statistics used in the binary independence model are
more robust than the ones used in the multinomial model. The violations of the
multinomial model’s independence assumption may be more detrimental than
the corresponding violations for the binary independence model. In particular,
there is one effect to which the multinomial model is subject which has no coun-
terpart in the binary independence model. It is likely that many terms, espe-
cially the kind that are likely to be good discriminators, are strongly dependent
on their own occurrence. Overall, however, the results show that performance of
the GNB model on this task is substantially better than that of the other two
Bayes models. We hypothesize that this is primarily due to the independence
assumption of the GNB model.
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Fig. 1. The Experimental Result on Dataset Reuters-21578 and 20 Newsgroup



870 L. Wang et al.

We conducted similar experiment on another dataset: 20-Newsgroups collec-
tion. we can also see similar improvement. Richer vocabulary and semantics,
which can give more positive information for classification, may be one reason.
On the other hand, the binary independence model and multinomial model rep-
resent only one aspect of a given word. But GNB can integrate them into one
model on text documents, this should be the main reason.

5 Conclusions

In this paper, we presented a novel web mining approach named General Naive
Bayes (GNB). By defining Projective Information Gain PI(C; Vi), GNB can
easily decide which representation is appropriate for a given word, thus overcome
the restrictiveness of the binary independence model and multinomial model.
Furthermore, the classification rule applied by GNB can directly handle both
representations concurrently while not suffering from the user’s bias. Our results
indicate that GNB constitutes a promising addition to the induction algorithms
from the viewpoint of classification performance.
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Abstract. DNA microarray experiments provide us with huge amount of gene 
expression data, which leads to a dimensional disaster for extracting features 
related to tumor. A wavelet package decomposition based feature extraction 
method for tumor classification was proposed, by which eigenvectors are 
extracted from gene expression profiles and used as the input of support vector 
machines classifier. Two well-known datasets are examined using the novel 
feature extraction method and support vector machines. Experiment results 
show that the 4-fold cross-validated accuracy of 100% is obtained for the 
leukemia dataset and 93.55% for the colon dataset. 

Keywords: gene expression profiles; tumor classification; feature extraction; 
support vector machines; wavelet package decomposition. 

1   Introduction 

High throughput gene expression techniques make it possible to measure the 
expression levels of thousands of genes simultaneously, so it is usually an effective 
tool for tumor research, because many or even all human diseases may be 
accompanied by specific changes in the expression levels of some genes. However, 
due to its characteristics such as high dimensionality and small sample size, how to 
select tumor-related genes and to extract integrated features to drastically reduce the 
dimensionality of gene expression data constitutes a challenging analytical problem.  

Many researchers have been studying many problems of tumor classification based 
on gene expression profiles. For example, unsupervised methods such as clustering [1] 
and self-organizing maps [2] and supervised methods such as artificial neural networks 
[3], support vector machines (SVM) [4, 5] and multi-layer perceptrons [6] have been 
successfully applied to classify tumor tissues. However, feature extraction plays a key 
role in the problem of tumor classification without doubt. 

The goal of feature extraction is to eliminate redundancies in gene expression 
profiles to obtain the integrated attributes which can correctly classify the tumor 
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dataset. For example, Xuewu Zhang et al [7] applied independent component analysis 
(ICA) to extract independent components (ICs) from gene expression data to be used 
as classification information. Wang X.H. et al [8] use stationary wavelet transform to 
denoise the microarray image before further image processing. In this paper we 
propose a novel feature extraction method which combines gene ranking and wavelet 
package decomposition (WPD) to extract tumor-related features which are used as the 
input of SVM classifier. 

2   The Tumor Classification Model 

2.1   Representation of Gene Expression Profiles 

Let },{ 1 nggG L= be a set of genes and },{ 1 mssS L= be a set of samples. The corresponding 

gene expression profiles can be represented as matrix
,( )i jX x= , 1 i m≤ ≤ , 1 j n≤ ≤ , 

where
jix ,
is the expression level of sample

is on gene
jg , and usually mn >> .  

  

Fig. 1. The gene expression levels of two leukemia samples: ALL(left) and AML(right) sample 

The matrix X is composed of m  row vectors n
is R∈ . Each vector 

is  can be viewed 

as a signal, so we can apply the signal processing method to treat gene expression 
data. The expression levels of two samples selected randomly in leukemia dataset are 
shown in Fig. 1 in which one is an ALL sample and another is an AML sample. 

2.2   The Algorithm Model 

Our task is to classify all samples into two types, which is a binary classification 
problem. To achieve this goal, the framework of classification algorithm is designed 
as follows, and then the detailed descriptions and rationale for each step are 
introduced in the following sections. 

Step 1. Gene selection: for each gene
ig G∈ , we firstly calculate its score according to 

the feature score criterion (FSC) [9] and the revised feature score criterion (RFSC) 
[10], and then rank all genes in their scores. After gene ranking, we simply take the 
top-ranked genes with the highest scores as the selected gene subset

topG , usually 

satisfying |||| GGtop << . 

Step 2. Applying three-layer WPD to the top-ranked gene subset 
topG  for every sample 

to extract its eigenvectors. 
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Step 3. Splitting the obtained eigenvector set into training set and testing set, and then 
training SVM classifier using training set to get a classification model for tumor 
classification. 
Step 4. Testing the obtained classification model using testing set to get the predictive 
accuracy of tumor classification. 

2.3   Gene Selection (Step 1) 

Gene selection is necessary for performing the tumor classification with gene 
expression profiles. In measuring the classification information of genes, Golub et al 
[9] proposed FSC as gene selection method. For each gene 

ig G∈ , the FSC method 

firstly calculate the mean +
iμ  (resp. −

iμ ) and standard deviation +
iσ  (resp. −

iσ ) which 

correspond to the gene 
ig  of samples labeled +1(-1), respectively, and then calculate 

its score with the FSC formula ( ) ( ) /( )i i i i iFSC g μ μ σ σ+ − + −= − + . All genes are ranked in their 

score values. However, when the mean values of gene 
ig  in normal and tumor tissues 

are equal, there is a fault in this formula because this gene 
ig  is removed as noise 

from informative gene subset due to 0)( =igF , so RFSC which is the revised FSC was 

proposed [10]. RFSC consists of two parts. The first part is the original FSC formula, 
and the second part concerns the classification performance of variance. 

2 2( ) 0.5 ( ) /( ) 0.5ln(( ) /(2 ))i i i i i i i i iRFSC g μ μ σ σ σ σ σ σ+ − + − + − + −= − + + +  (1) 

2.4   Wavelet Package Decomposition (Step 2) [11] 

Wavelet package decomposition decomposes not only low frequency, but also high 
frequency. Therefore, it is the more precise method than wavelet decomposition. As it 
does, wavelet package analysis is a more widespread wavelet method. It applies to 
various signals including signal decomposition. The procedure of the eigenvector 
extraction of a sample is described as follows. 

Step 2.1. Sample viewed as signal is decomposed into three-layer wavelet package to 
obtain eight signal characteristics of frequency composition from low frequency to 
high frequency in the third layer. The decomposition structure is shown as Fig. 2 in 
which node (i,j) denotes the j-th node in the i-th layer, where i=0,1,2,3 and j=0,1,…,7. 
Step 2.2. Wavelet package decomposition coefficients are reconstructed to obtain 
signals of various frequency scopes. 

30S denotes reconstruction signal of 

30X (corresponding to node (3,0)). 
31S  denotes reconstruction signal of 

31X (node (3,1)). 

Others are deduced similarly. If all nodes in the third layer are analyzed, the overall 
signal S  can be expressed as follows: 

3736353433323130 SSSSSSSSS +++++++= . 

Step 2.3. Calculating the overall energy of all frequency signals, and then 
constructing eigenvectors for each sample. Let 

jE3
be energy corresponding to

jS3
, 

then 2

1

2

33 ∑∫
=

==
n

k
jkjj xdtSE

, where 
jkx  denotes range value of 

jS3
 and 7,,1,0 L=j . An 

eigenvector F  can be constructed by means of energy as elements and shown as 
follows: ],,,,,,,[ 3736353433323130 EEEEEEEEF = . 
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Fig. 2. Three-layer WPD structure and the lowest frequency signal of a leukemia sample 

2.5   Support Vector Machines (Step 3) [12] 

SVM is a relatively new type of statistic learning theory, originally introduced by 
Vapnik. SVM builds up a hyper-plane as the decision surface to maximize the margin 
of separation between positive and negative samples. Given a labeled set of m  
training samples },2,1},1{),(|),{( 8 miRyFyFS iiii L=±×∈= , where }1{,8 ±∈∈ ii yRF  is a label 

of sample eigenvector
iF , and the discriminant hyper-plane is defined by formula (2). 

∑
=

+=
m

i
iii bxFKyxf

1

),()( α  
(2) 

where ),( xFK i
 is a kernel function and the sign of )(xf  determines which class the 

unknown sample eigenvector x  belongs to. Constructing an optimal hyper-plane is 
equivalent to finding all the support vectors 

iα  and a bias b . 

3   Experiments 

3.1   The Descriptions of Two Tumor Datasets 

We have experimented with two well-known datasets: the leukemia dataset [9] and 
the colon dataset [13]. The descriptions of the two datasets are shown in Table 1. 

Table 1. Descriptions of two tumor datasets in our experiments 

Tumor Dataset #Gene #Sample Subtype 1 Subtype 2 
Leukemia Dataset 7,129 72 47(ALL) 25(AML) 
Colon  Dataset 2,000 62 40(Tumor) 22(Normal) 

3.2   Experiment Methods 

For our tumor classification algorithm, extracting eigenvectors from gene expression 
data using WPD is implemented in MATLAB 7.1, and the corresponding source code 
is shown in Fig. 3. 
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MG=load('LeukemiaDataset.txt');         %load gene expression profiles from the text file 
s=zeros(72,8);                %initialize eigenvector for every leukemia sample 
for i=1:72;                      %compute eigenvector for every sample in leukemia dataset 
    %decompose a sample with wavelet db9 using three-layer wavelet package 
    t=wpdec(MG(i,:),3,'db9','shannon');  

s130=wprcoef(t,[3,0]); s131=wprcoef(t,[3,1]); %s130 denotes the reconstruction coefficient 
s132=wprcoef(t,[3,2]); s133=wprcoef(t,[3,3]);  
s134=wprcoef(t,[3,4]); s135=wprcoef(t,[3,5]); s136=wprcoef(t,[3,6]); s137=wprcoef(t,[3,7]); 

    s(i,1)=norm(s130); s(i,2)=norm(s131);   %compute variance of reconstruction coefficient 
s(i,3)=norm(s132); s(i,4)=norm(s133); s(i,5)=norm(s134); s(i,6)=norm(s135); 
s(i,7)=norm(s136); s(i,8)=norm(s137); 

end            %s(i,:) denotes the eigenvector of the i-th sample 
save('WaveletFeature.txt','s','-ascii','-double'); %save eigenvector of all sample into the file 

Fig. 3. MATLAB source code for extracting eigenvector from gene expression profiles 

We firstly apply FSC and RFSC to roughly select the top-ranked gene subset, 
respectively, and then apply the source code in Fig. 3 to the selected gene subset to 
extract eigenvectors which are used as the input of the SVM software LIBSVM [14] 
to classify the two tumor datasets. Training SVM requires specifying the type of 
kernel and the regularization parameter C . Generally, the recommended kernel for 
nonlinear problems is the Gaussian radial basis kernel )exp(),(

2
yxyxK −−= γ  that is 

also used in our experiments. However, finding the best combination for the 
parameter pair (C ,γ ) can be challenging when applied to real datasets. Notice that 

given the input data used by SVM are already normalized. Finally, the 4-fold cross-
validated (CV) accuracy can be used to measure the classification performance of 
SVM classifier. 

3.3   Experiment Results 

The CV accuracy of the same dataset is sensitive to different wavelet package and 
different gene selection methods. Experiments show that FSC is better than RFSC to 
the leukemia dataset in our classification method and in contrast RFSC is better than 
FSC to the colon dataset, which is obviously validated in Fig. 4. Table 2 partly shows  
 

Table 2. Comparison of the classification using different wavelets and 200 top-ranked genes 

Dataset(method) Wavelet CV Acc. Wavelet CV Acc. Wavelet CV Acc. 
db1 95.83% db8 98.61% db15 94.44% 
db2 94.44% db9 98.611% db16 94.44% 
db3 97.22% db10 97.22% db17 97.22% 
db4 95.83% db11 94.44% db18 95.83% 
db5 94.44% db12 93.06% bior1.1 95.83% 
db6 93.06% db13 93.06% bior2.8 95.83% 

Leukemia 
(FSC+WPD+SVM) 

db7 94.44% db14 93.06% rbio1.1 95.83% 
db1 79.03% db8 87.1% db15 80.65% 
db2 90.32% db9 91.94% db16 80.65% 
db3 85.48% db10 88.71% db17 83.87% 
db4 80.65% db11 85.48% db18 85.48% 
db5 83.87% db12 85.48% bior1.1 83.87% 
db6 80.65% db13 85.48% bior2.8 91.94% 

Colon 
(RFSC+WPD+SVM) 

db7 85.48% db14 82.26% rbio1.1 83.87% 
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the classification accuracy for the leukemia and colon datasets using different wavelet 
and 200 top-ranked genes which are selected with FSC to the leukemia dataset and 
RFSC to the colon dataset, respectively. It is obvious that the classification accuracy 
is different to different wavelets. From Table 2 we can conclude that wavelet db9 is 
relatively suitable for the two datasets simultaneously. 

The 4-fold CV accuracy of 94.44% can be achieved when extracting eigenvectors 
from raw leukemia samples using wavelet db9 without gene ranking, and 
correspondingly 82.26% for raw colon samples. Why the CV accuracy is not enough 
high results from gene redundancies. Fig. 4 shows the 4-fold CV accuracy of tumor 
classification when using wavelet db9 from 20 to 400 top-ranked genes. From Fig. 4 
we can see that the highest CV accuracy of 100% is achieved when using 375 top-
ranked genes for the leukemia dataset and 93.55% when using 35 top-ranked genes 
for the colon dataset. 

  

Fig. 4. Comparison of tumor classification using two gene ranking methods 

Table 3. The classification accuracy comparison among different classification approaches on 
the colon dataset and the leukemia dataset 

Feature  Extraction Classifier Dataset CV Acc. Reference 
Colon 90.30% Signal to noise ratio SVM 
Leukemia 94.10% 

[15] 

Colon 94.10% Genetic Algorithm (GA) k-nearest neighbor 
 (k-NN) Leukemia 84.60% 

[16] 

Colon 74.20% All genes, TNoM score SVM with quadratic 
kernel Leukemia 94.40% 

[17] 

Colon 87.10% Principal component 
analysis (PCA) 

Logistic discriminent 

Leukemia 94.20% 

[18] 

Colon 93.50% Logistic discriminant 
Leukemia 95.90% 

[18] 

Colon 91.90% 

Partial least square 
 

Quadratic discriminant 
analysis Leukemia 96.40% 

[18] 

Independent component 
analysis (ICA) 

Calculating the ratio of 
tumor and normal ICs 

Colon 91.90% [7] 

RFSC and WPD Colon 93.55% 
FSC and WPD 

SVM with RBF kernel 
Leukemia 100% 

This paper 
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3.4   Comparison of the Classification Accuracy 

Many feature extraction and machine learning approaches have been successfully 
applied to the tumor classification based on gene expression data. Comparison of the 
classification accuracy among different tumor classification approaches are shown in 
Table 3 from which we can conclude that our approach obtains almost the best results 
and the validity of our approach is also evaluated. In fact, among the published tumor 
datasets, classifying the colon dataset is more difficulty than doing others. 

4   Conclusions 

A novel feature extraction method to extract eigenvectors from high dimensional gene 
expression profiles using three-layer WPD is proposed, which deal with gene 
expression profiles from the view of signal processing. Our aim is to explore the 
feasibility of WPD in tumor classification based on gene expression profiles. Two 
well-known tumor datasets are examined to assess the classification performance, and 
the experiment results show that the 4-fold CV accuracy of 100% is obtained for the 
leukemia dataset and 93.55% for the colon dataset.  Experiments prove that our 
method can meet real-time application requirements in clinical domain because the 
feature extraction algorithm is computationally efficient and the eigenvector of a 
sample from patient can be extracted independently. 
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Abstract. Faced with the increasing growth of container throughput and more 
large ships in shorter time, a key factor of success is to generate the best 
resource allocation plan for the future. This paper discusses a heuristic GA-
ACO method which combines Genetic Algorithm and Ant Colony Optimization 
for resource allocation and scheduling problem in container terminals. In the 
first phase GA uses character string to represent chromosome for allocation 
plans and finds the best allocation by self-learning. In the second phase, an 
improved ACO algorithm is introduced to optimize the scheduling jobs based 
on the allocation plan from GA. We examine the performance of tugboat 
allocation optimization in container terminals and obtain satisfactory results. 

Keywords: Resource Allocation, Scheduling, Genetic Algorithm, Ant Colony 
Optimization, Container Terminal. 

1   Introduction 

Since containers have been introduced to the world trade over thirty years, the 
container transportation becomes the most important worldwide transportation. An 
increasing number of goods are put into containers, loaded and unloaded onto large 
ships to their respective destinations throughout the world. Container terminals are 
continuously facing the increasing growth of container throughput and more large 
ships in shorter time. This leads to the necessity of scheduling highly expensive 
terminal equipments as efficiently as possible. A key factor of success is to allocate 
these resources at the optimal level.  

Many researchers have developed allocation optimization approaches for container 
terminal logistics. Chan in [1] and Etsuko Nishimura in [2] adopted GA to determine 
a dynamic berth allocation in the public berth system. During the process of berth 
allocation, the berthing time and berthing position of a containership are determined. 
W.C.Ng in [3] discussed quay crane allocation problem and developed a dynamic 
programming-based heuristic to solve the scheduling problem.  

This paper discusses the allocation of another important resource tugboat. There 
are limited studies on tugboat allocation problem. Liu Zhixiong in [4] simulated 
tugboat operation, but didn’t optimize this problem. In this paper, we develop a new 
mixed heuristic algorithm GA-ACO combined with Genetic Algorithm and Ant 
Colony Optimization Algorithm. Our aim is to employ the satisfactory allocation plan 
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for the future from the former records, which would serve the increasing throughput 
and improve the productivity of container terminals. 

The rest of paper is organized as follows: in section 2, we present the tugboat 
allocation problem and illustrate why GA and ACO are used in this problem. In 
section 3, GA-ACO algorithm for allocation optimization is discussed. In section 4, 
we describe the experiment and analyze the results. Finally, we make conclusions and 
introduce the future work in section 5. 

2   Allocation Problem 

There are many factors such as the arriving time of vessels and the number of 
containers to be handled influencing the allocation decisions. When ships arrive, they 
can not enter into the berth directly and need to be tugged by the tugboats. Moreover, 
the moving and leaving of ships also need to be tugged. Tugboat operation is a 
stochastic, dynamic and discrete process because the arriving time of vessels is 
stochastic and discrete. Vessels with different sizes and types should schedule 
tugboats with different horsepower, avoiding big tugboat for small vessel and small 
tugboat for big vessel. If the number of tugboat allocation is low, the arriving vessels 
can not enter into the berth for operation in time so that long waiting time and waiting 
queue decrease the efficiency of ports. On the contrary, if the number of tugboat 
allocation is high, it will cause the low utilization rate and the waste of money 
because some tugboats leave unused. Proper allocation of tugboats can improve 
operation efficiency and economic benefits of container terminals. 

2.1   Allocation Model 

The allocation optimization process includes three models shown in Fig.1. The 
allocation of tugboat is influenced by the investment money, arriving vessels and 
other constraints. They are input into the allocation optimization module, which is 
responsible for generating allocation solutions and finding the best by Genetic 
Algorithm. In this process, the determination of fitness is based on three parameters: 
average utilization rate of tugboat, average waiting time of vessels and maximum 
length of waiting queue. Because of the discrete and dynamic characteristics of 
tugboat operation, it is difficult to formulate a mathematic function of fitness. These 
parameters must be attained by simulation. But only simulation technology can not 
get optimal scheduling results, the optimization method would be used to gain better 
solution. We have already studied the effectiveness of Ant Colony Optimization for 
scheduling problem in container terminals in [5]. Hence, ACO is applied to optimize 
the simulation of tugboat operation and outputs the three parameters for generating 
the fitness evaluation. The evaluation module uses Bayes Net method described in [6] 
to calculate the fitness for GA. 

2.2   Reasons for GA in Allocation Model and ACO in Scheduling Model 

Meta-heuristic methods are explored to resolve this complex allocation problem. 
Compared with other algorithms, Genetic Algorithm is robust, self-learning and can 
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Fig. 1. Tugboat Allocation Simulation And Optimization Model 

get preferable solutions. Moreover, the most important is tugboat allocation plan can 
be easily represented by chromosome and we can get satisfactory solution through 
self-learning mechanism. So GA is adopted for allocation model.  

ACO was first proposed for combinatorial optimization. The basic idea is inspired 
by the way ants explore the environments in search of food . It is expanded to resolve 
scheduling problem in [7], [8]. Jobs are defined as ants and resources are defined as 
nodes. We consider that the nodes and ants can change according to the different 
numbers of resources and jobs. So ACO is suitable for dynamic tugboat scheduling 
instead of GA, in which the changeable chromosome is difficultly represented. 

GA-ACO Algorithm is described as Fig.2.  

 

Fig. 2. GA-ACO Algorithm 
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3   GA-ACO for Allocation Optimization 

3.1   Genetic Algorithm  

In GA application, instead of using the classical binary bit string representation, the 
chromosomes are represented as character strings. The length of string represents how 
many types of tugboats and each character is the number of tugboats with different 
horsepower. We give one tugboat allocation of six types in Fig.3 including 1 tugboat 
with 1200ps, 6 tugboats with 2600ps, 2 tugboats with 3200ps, 3 tugboats with 3400ps 
and 2 tugboats with 4000ps. 

 

Fig. 3. Chromosome Representation 

The underlying fundamental mechanism of GA consists of three main operations: 

(1) Reproduction: Reproduction is a process in which individual chromosomes are 
copied according to their fitness values. The chromosomes with a higher fitness value 
would have more copies in the next generation.  

(2) Crossover: Crossover is performed to introduce new chromosomes by 
recombining current genes. We employ 2-point crossover operator shown in Fig. 4. 
First, two cutting sites i and j are randomly selected in parents, in this example i=2 
and j=4. Then, the substring between i and j of A is interchanged with B so that two 
children are formed.  

 

Fig. 4. Example of Crossover 

(3) Mutation: Mutation introduces random changes to the chromosomes by altering 
the value to gene. In Fig.5, the third character changes from 2 to 5. 

 

Fig. 5. Example of Mutation 

We describe the flowchart of GA in Fig.6. 
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Fig. 6. Genetic Algorithm Flowchart 

3.2   ACO Algorithm 

As scheduling optimization method, each ant is assigned to a job Ti and each node 
represents one tugboat Rj. Ti schedules tugboats, then ant ki deposits pheromone on 
the path. τij(t) is the pheromone of path lij,  which represents the cost of scheduling Rj 
after Ri.  

Different from basic ACO, we introduce a new path selecting method to avoid 
local optima. We consider that ants as a simply animal has its own consciousness. At 
the beginning of selecting process, the pheromones on paths are few and have little 
influence on selecting paths so that ants move at the individual level, selecting path 
randomly. With the pheromone accumulating, the communication among ants 
becomes more and more. Then ants move at the collective level and they will select 
the path with more pheromone. According to this feature, we introduce the concept of 
Pheromone Influence (PI). This method can add the path diversity of selecting and 
avoid fast convergence into the local best.  

The formulation of PI: n is the number of ants; (L1, L2, … , Lm) is m solutions found 
by ants randomly and for scheduling problem Li is the cost of scheduling solution; λ is 
the integer parameter usually 3 or 4. 

λ×
∑
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The node transition rule is as follows: when the average pheromone of all the paths 
is fewer than PI, ants select path randomly; otherwise, ants select path by pheromone. 
An ant k in Ri chooses Rj to move to following the rule: 
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Where q is a random variable distributed between [0,1], q0 is a tuneable parameter 
between [0,1]. For the selection of a resource the ant uses heuristic information as 

q≤q0 

q﹥q0 
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well as pheromone information. The pheromone information is denoted by τij and the 
heuristic information is denoted by ηij.  The heuristic value is defined as tugboat 
ability generated from the container terminal operations, which has been discussed  in 
[5]. With probability q0, the ant chooses Rj from the set of tugboats that have not been 
scheduled so far which maximizes ταij·ηβij, where α and β are constants that determine 
the relative influence of the pheromone values and the heuristic values on the decision 
of the ant. Otherwise the next tugboat is chosen according to the probability over S 
determined by pk

ij. 
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In ACO, all ants are allowed to deposit pheromone after completing their tours. The
 updating rule is as follows: 
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Where (i,j) is the best tour, ρ  is a parameter governing pheromone decay. The 

reason for ρ  is that old pheromone should not have a too strong influence on the 

future. Qmin is the minimal cost for task k, Qk is the real cost of completing task k. 
The algorithm stops when some stopping criterion is met, e.g. a certain number of 

generations have been done or the best found solution has not changed for several 
generations. 

4   Experiment Results 

In this section we describe a scenario of tugboat allocation problem at a Chinese 
container terminal. The old tugboat allocation is shown in Table.1. Because of the 
increasing throughput and more and more large ships, it is necessary to increase the 
number of present tugboats and add up new tugboat with 5000 horsepower. 

Table 1. The old distribution of tugboat  

Horsepower(PS) 1200 2600 3200 3400 4000 

Port 1 1 5 2 1 2 

 
We simulate about 2800 records of arriving vessels in the year of 2003. There are 

two constraints: (1) the available number of every type of tugboat is between [1,10]; 

j�allow k 

otherwise 

ant k select node i and node  j 

otherwise 
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(2) the maximum investment money. 
The parameters in GA-ACO Algorithm can be determined by experiments. For GA, 

the size of individual colony is 6, crossover rate is 0.8, mutation rate is 0.1 and the 
max generation (NCmax) is 100. For ACO, the number of ants is changed according to 
the number of jobs. Other parameters are: τ0 = 0.5，α = 1，β = 3，ρ = 
0.8，NCmax＝1000. 

The allocation fitness of generation 1, 20, 40 and 60 are given in Table.2. The 
evaluation results of scheduling of some allocations are shown in Table.3.  

Table 2. Allocation results of generations 

Initial Genes F(0) 1 F(1) 20 F(20) 40 F(40) 60 F(60) 
163342 0.924 162332 0.883 172322 0.872 163352 0.962 172342 0.879 
152421 0.852 155213 0.625 182221 0.653 154222 0.573 163343 0.948 
164222 0.876 163342 0.931 172223 0.894 163333 0.872 163352 0.967 
165123 0.722 172253 0.957 163342 0.936 172342 0.886 163352 0.967 
174211 0.673 152221 0.564 172342 0.862 173221 0.824 163352 0.967 
172342 0.901 172323 0.869 163352 0.951 163343 0.931 172342 0.879 

Table 3. Scheduling results of allocation 

Allocation Utilization Rate Average Waiting Time Max Waiting Queue 

152421 36.2% 2.2 m 6  vessels 

172322 42.8% 1.5 m 5  vessels 

163333 43.6% 1.1m  5  vessels 

172342 47.6% 0.9 m  4  vessels 

163342 48.2% 0.7 m 4  vessels 

163352 50.7% 0.6 m 4  vessels 

 
The GA algorithm converges after about 80 generations. The best allocation is 

shown in Table.4. The comparison of the two allocations is shown in Table.5.  

Table 4. The best allocation of tugboat 

Horsepower(PS) 1200 2600 3200 3400 4000 5000 

Port 1 1 6 3 3 5 2 

Table 5. The comparison results of  tugboat allocations 

Allocation Utilization Rate Average Waiting Time Max Waiting Queue 

Old 20.3% 4.8 m 9  vessels 

Best 50.7% 0.6 m 4  vessels 

 
Compared with the old plan, the new allocation plan can improve the utilization 

rate of tugboat, reduce the waiting time and waiting queue of vessels. Using the new 
allocation, container terminal can improve the efficiency of equipment and serve 
more ships and larger ships in the future. 
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5   Conclusions 

In this paper, we develop GA-ACO Algorithm for resource allocation problem in 
container terminals. GA is responsible for generating allocation plans and ACO is 
responsible for simulating the plans for scheduling. We examine the performance of 
optimization of tugboat allocation in container terminals and obtain satisfactory 
results.  

In the future, we will explore how to apply this method for other equipments or 
resources in container terminals, such as  quay cranes, trucks and so on. Moreover, we 
are prepared to improve this method deeply for the larger scale allocation problem 
and better performance. 
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Abstract. This paper presents a methodology for delineating densely packed 
aggregate particles based on aggregate image classification. There is no earlier 
work on segmentation of aggregate particles has exploited these two building 
blocks for making robust object delineation. The proposed method has been 
tested experimentally for different kinds of densely packed aggregate images, 
which are difficult to detect by a normal edge detector. As tested, the studied 
algorithm can be applied into other applications too. 

1   Introduction 

The size, shape and texture of aggregates are very important characteristics of the 
physical properties for the geology research and aggregate production industry and 
mining industry. In mining, the size and shape distributions of fragments affect not 
only rock blasting, but also the whole mining production sequence. In the quarry 
manufacture, the size, shape and texture of aggregate must fit the requirements of 
customers, such as high-way and rail way construction companies, the different com-
panies in the building industries, etc. In geology, the size, shape and texture of gravel 
and sedimentary deposits are often used for analyzing and describing local geological 
properties in a certain region. Hence, aggregate size, shape and texture are widely 
applied and studied in both industries and research organizations. 

The traditional way of determining size distributions of aggregate material is by 
sieving. Sieving has some problems. Think of elongated particles that may pass a 
sieve size smaller than their intermediate diameter. According to the thesis work [1] 
image analysis gives better information on the true size (and shape!) grading of ag-
gregate. In industry and the lab image analysis is increasingly used to measure size 
and shape of aggregate transported on container belts. The method is accurate, be-
cause many particles are being processed by the images (> 10.000 data are needed to 
obtain sufficient accuracy). 

Image interpretation is especially helpful when dealing with large size aggregates 
or rock blocks, those are not always easy to weigh or sieve. Image analysis is cur-
rently used to assess rock aggregates by blasting. Therefore, this research subject 
becomes a hot topic in the world during last thirty years. Today, a number of image 
systems have been developed for measuring aggregates in different application  
environments (Fig. 1) such as aggregates on/in gravitational flows, conveyor belts, 
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muckpiles, and laboratories. The research and development has been and is being 
carried out in many countries, the detailed information can be found in [2-5]. 

The common problem for the research and development is to delineate every rock 
aggregate, but in most industrial cases, rock aggregate images are difficult to segment 
due to rough surface, overlapping, and size variation etc. Hence, it is crucial to extract 
qualitative information about a rock aggregate image to characterize images before 
starting segmentation. In this paper, characterization of rock aggregate images have 
been thoroughly investigated by extensive tests on hundreds of images, using several 
packages of commercial software for image segmentation, and some previous image 
segmentation algorithms [6-10] coded by the author. 

Image classification was essential in segmentation of rock aggregates. Therefore, it 
was started by developing procedures for crude determination of number of rock 
aggregates in an image, the basic idea being that “edge density” is a rough measure of 
average size in images of densely packed aggregates. This work is an essential com-
ponent in the current segmentation process. The studied segmentation algorithm is 
based on grey value valleys which is a grey-value structure occurring more frequently 
than traditional step edges. However, without knowledge of scale (approximate size 
of rock aggregates in the image) such an approach would be hard to realize. In fact, 
this goes for any segmentation technique which normally “handles” the problem by 
adjustment of various smoothing parameters, thresholds etc. Since it needs an auto-
matic image segmentation process to perform “image classification” first, and to 
avoid making “smoothing parameters” crucial for good results. 

 
 (a)  (b)  (c)  (d) 

Fig. 1. Examples of aggregate images in engineering applications: (a) Muckpile; (b) Belt; (c) 
Falling flow; and (d) Road surface 

2   Aggregate Image Classification 

When an image analysis system is used for automatic monitoring of a fast moving 
conveyor belt, one important issue is the automatic grabbing of aggregate images. The 
quality of the image affects the result of the analysis. The automatic system should 
avoid interaction performed by an operator. Hence, when the system grabs one image 
frame, the system should judge if the image can be processed. If the image quality is 
poor, it is not possible or desirable to conduct analysis, and therefore the image 
should be omitted and the system should wait for the next image frame. So, the classi-
fication of aggregate images should be a first step of development. 
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Aggregate images taken from a fast moving conveyor belt vary so much that the 
quality of any two successive images are not the same, i.e. some images might include 
about 80% fine materials which is difficult to recognize by  the system; some images 
consist of only a few rocks which is of less interest to analyze; some images are very 
dark or very light with a poor contrast of gray values, which may be due to the illumi-
nation condition suddenly changed, in which case the wrong image information are 
obtained, the result of image analysis will be affected seriously; some images are 
quite blurry, caused by raining or the increase of the speed of conveyor belt, which 
can also be difficult to processing, etc. For an inspection task, the classification 
should be done in real time, and complex and time consuming texture analysis can not 
be used. Thus we exclude features for texture segmentation.  

If a frame of image is of a good quality, the edges of the aggregates are sharp, the 
contrast between the aggregate and background is acceptable and the number of the 
aggregates is in a certain level, In such a situation, the image is easy to process by the 
existing system.  

Based on the above discussion, we define classes of images as follows: 

Class 1: when contrast between edges and no-edges is lower than a specified value 
σ0, the image might be a blurred image with a certain degree, the image belongs in 
class 1. 
Class 2: when the density of edges is lower than a specified value λ,, and the image 

with a lower average gray-value, i.e. less than a specified value v0 . the image might 
include only few visual particles together with an empty conveyor belt, the image 
belongs in class 2. 
Class 3: when the density of edges is lower than a specified value λ,, and the image 

with a average gray-value, i.e. greater than a specified value v0 . the image might 
include only few visual particles together with fine material, the image belongs in 
class 3. 
Class 4: when contrast between edges and no-edges is greater than a specified value 
σ0 and the density of edges is greater than a specified value λ, the image is an ac-
cepted aggregate image. There is certain relationship between the density of edges 
and average size of aggregate or number of aggregate in a image. The class 4 can be 
sub-classified based on the average size of aggregate in an image. 

The question is how to determine the contrast and density, as usual, we see that 
gradient magnitude image includes some different noise, all these noises will affect 
the contrast and density, in order to minimum the noises and process in real time, 
image pre-processing has be applied. 

3   Aggregate Image Segmentation 

The most important, and the hard part of computer vision for aggregates, is segmenta-
tion. Segmentation can be divided into two steps, one is segmentation based on gray 
levels (called image binarization, sometimes) in which a gray level image is processed 
and converted into a binary image. Another is segmentation based on particle shapes 
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in a binary image, in which overlapping and touching particles will be split, and over-
segmented particles will be merged based on some prior knowledge such as shape and 
size etc. 

Segmentation algorithms for monochrome (gray level) images generally are based 
on one of two basic properties of gray-level values: similarity and discontinuity. The 
principal approaches in the first category are based on thresholding, region growing, 
and region splitting and merging. In the second category, the approach is to partition 
an image based on abrupt changes in gray level. The principal areas of interest within 
this category are detection of isolated points and detection of lines and edges in an 
image.  

The choice of segmentation of aggregate images based on similarity or discontinuity 
of the gray-level values depends on both developed sub-algorithms and applications. 

Aggregate images have their own characteristics compared to other particle images. 
Generally speaking, under the front-lighting illumination condition which is common 
case, aggregate images have the characteristics: (1) uneven background and fore-
ground for which a simple thresholding algorithm cannot be applied to segment the 
images; (2) each aggregate particle may possess a textured surface and multiple faces, 
which often causes an over-segmentation problem; (3) particles overlapping each 
other, which hides parts of a particle, or causes breaks of the boundaries of particles; 
(4) touching particles forming a large cluster; (5) rain, snow, or much fine material 
making aggregate images clump together.  

Aggregates may be densely packed or be separated mostly on a background. The 
former case is more difficult to process than the latter. As mentioned in Section 1.1, 
most systems for aggregate images were developed based on simple thresholding 
algorithms (some of them combined with morphological segmentation algorithm) and 
boundary detection algorithms. The segmentation algorithm designing is application 
(here, the type of aggregate images) dependent. In this section, I summarize my own 
segmentation approaches for aggregate images, they are: (1) an algorithm based on 
edge detection; (2) an algorithm based on region split-and-merge; (3) an adaptive 
thresholding algorithm; and (4) an algorithm for splitting touching particles in a bi-
nary image. 

The whole segmentation procedure consists of the two parts in this study: image 
classification, and aggregate delineation. Since the delineation algorithm needs thin 
edges of aggregates, the classification algorithm first classify image into different 
classes, then based on the classification results, the procedure shrink the image into a 
certain scale size, provided for aggregate particle delineation. After the delineation, the 
delineated image is converted to the original image size, re-mapping the contours of 
aggregates. The rock aggregate image classification algorithm was developed for gen-
eral-purpose of rock aggregate image segmentation. The algorithm evaluates image 
quality and produces image class labels, useful in subsequent image segmentation. 
Because of the large variation of rock aggregate patterns and quality, the image classi-
fication algorithm produces five different labels for the classes: (1) images in which 
most of the aggregates are of small size; (2) images in which most of the aggregates 
are of medium size; (3) images in which most of the aggregates are of relative large 
size; (4) images with mixed aggregates of different sizes; and (5) images with many 
void spaces. If most aggregates in an image are very small, the fine-detail information 
in the image is very important for image segmentation, and the segmentation algorithm 
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must avoid destroying the information. On the contrary, if aggregates are large, it is 
necessary to remove the detailed information on the rock aggregate surface, because it 
may cause image over-segmentation. If most aggregates are of relative large size (e.g. 
medium size), the segmentation algorithm should include a special image enhancement 
routine that can eliminate noise of rock aggregate surface, while keeping real edges 
from being destroyed. Since the delineation algorithm was developed for densely 
packed aggregates, the void spaces have to be removal. 

Assume that P is surrounded by strong negative and positive differences in the di-
agonal directions: 045 <∇ , and 045 >Δ , 0135 <∇ , and 0135 >Δ , whereas, 00 ≈∇ , and 

00 ≥Δ , 090 ≈∇ , and 090 ≈Δ . Where Δ are forward differences:  

( ) ( )jifjif ,1,145 −++=Δ , and  ∇  are backward differences: 

( ) ( )1,1,45 −−−=∇ jifjif , etc. for other directions. It uses ( )αα ∇−Δmax  as a 

measure of the strength of a valley point candidate. It should be noted that sampled 
grid coordinates are used, which are much more sparse than the pixel grid nx ≤≤0 , 

my ≤≤0 . f  is the original grey value image after weak smoothing.  
What should be stressed about the valley edge detector are: (a) It uses four instead 

of two directions; (b) It studies value differences of well separated points: the sparse 
1±i  corresponds to Lx ±  and 1±j  corresponds to Ly ± , where 1>>L , in our 

case, 73 ≤≤ L . In applications, if there are closely packed particles of area > 400 
pixels, images should be shrunk to be suitable for this choice of L. Section 3 deals 
with average size estimation, which can guide choice of L; (c) It is nonlinear: only the 
most valley-like directional response ( )αα ∇−Δ  is used. By valley-like, it means  

( )αα ∇−Δ  value. To manage valley detection in cases of broader valleys, there is a 

slight modification whereby weighted averages of ( )αα ∇−Δ - expressions are 

used. ( ) ( ) ( ) ( )ABAB PwPwPwPw αααα ∇−∇−Δ+Δ 1221
, where,

AP  and BP  are two end 

points in a section. For example, 21 =w  and 32 =w  are in our experiments; (d) It is 

one-pass edge detection algorithm (Fig. 2); the detected image is a binary image, no 
need for further thresholding; (e) Since each edge point is detected through four dif-
ferent directions, hence in the local part, edge width is one pixel wide (if average 
particle area is greater than 200 pixels, a thinning operation follows boundary detec-
tion operation); and (f) It is not sensitive to illumination variations.  

Without image classification, there is a substantial difficulty choosing an appropri-
ate L, the spacing between sampled points. Let L refer to spacing in an image of given 
resolution, where the given resolution may be a down sampling of the original image 
resolution. Since the image classification described earlier leads to an automatic 
down-sampling, the choice of L is not critical. 

After valley edge point detection, there are pieces of valley edges, and a valley 
edge tracing subroutine, filling gaps is needed (Some thinning is also needed). As a 
background process, there is a simple gray value thresholding sub-routine, which 
before classification creates a binary image with quite dark regions as the bellow-
threshold class. If this dark space covers more than a certain percentage of the image, 
and has few holes, background is separated from aggregates by a Canny edge detector 
along the between-class boundaries.  
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 (a)  (b)  (c)  (d) 

Fig. 2. Edge detection results: (a) original image, (b) Sobel edge detection result, (c) Canny 
edge detection result with a low threshold value, and (d) new algorithm detection result 

4   Experiments 

To test the segmentation algorithm, we have taken a number of different aggregate 
particle images from a laboratory, a muckpile, and a moving conveyor belt. It is often 
that there is a lot of noise on the surface of fragments, which gives problems for im-
age segmentation, over-segmentation and under-segmentation. Since surface noise 
and 3D geometry of rock fragments create step edges in most cases, and our new 
algorithm is studied based valley edge detection, it disregards step edges. Therefore it 
works not only for less surface noise image, and also works for the images of serious 
surface noise. Figs. 3-4 illustrated image segmentation results. 

The image in Fig. 4(a) was taken from a laboratory with bad illumination; the sur-
faces of the fragments include a lot of texture and noise. The existing algorithms have 
been used for the segmentation of rock fragments; all of them produce over-
segmentation. By using the new segmentation algorithm, this image is classified into 
the class of medium fragment size (class 2): the segmentation algorithm reduces the 
scale of image two times, then delineates fragments, finally uses the original image to 
re-map delineation results. The resulting segmentation is satisfactory (Fig. 4(b)). 

When one acquires (or takes) rock fragment images in the field, the lightning is un-
controlled; therefore, it cannot be avoided having uneven illumination images. Un-
even illumination is a serious problem for image processing and image segmentation 
not only for rock fragments and also for other object. Uneven illumination correction 
is a hot topic in the research of image processing. In general, the regular shadows can 
be removed by using some standard filters, but for the random shadows, there is no 
standard filter or algorithm can be used for uneven illumination correction. 

Rock fragments are in field, lightning is from the natural sun (light strength varies 
from time to time), some natural objects (e.g. clouds, forest, mountains) and large 
man-made objects (e.g. trucks, trans) maybe nearby the area one wants to take im-
ages, which may create uneven illumination (i.e. shadows) on the images. Some 
times, in a fragment image, it includes high lightning area and dark shadows, which  
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 (a)  (b)  (c) 

Fig. 3. Aggregate delineation for image of less surface noise: (a) original image; (b) aggregate 
delineation result; and aggregate boundaries or contours 

 
 (a)  (b)  (c) 

Fig. 4. Aggregate delineation for image of serious surface noise: (a) original image; (b) 
boundaries or contours of aggregates; and (c) aggregate delineation result 

make image segmentation extremely difficult. It is not possible to use the segmenta-
tion algorithms based on grey level similarity. In the newly studied fragment delinea 
tion algorithm, since it uses valley edges as cues for object delineation, it is not af-
fected by uneven illumination much.  

5   In Conclusion  

In this paper, a methodology for image segmentation of densely packed aggregate 
particles is presented, studied and tested; Image classification is very important for 
aggregate particle delineation. The classification algorithm produces image class 
labels, useful in subsequent image segmentation. The aggregate delineation algorithm 
studied is actually based on both valley-edge detection and valley-edge tracing. The 
presented rock aggregate delineation algorithm seems robust for densely packed com-
plicated particles; it is also suitable for other similar applications in the areas of biol-
ogy, medicine and metal surface etc. 
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Abstract. A spatial co-orientation pattern refers to objects that frequently occur 
with the same spatial orientation, e.g. left, right, below, etc., among images. In 
this paper, we introduce temporal co-orientation pattern mining which is the 
problem of temporal aspects of spatial co-orientation patterns. A temporal co-
orientation pattern represents how spatial co-orientation patterns change over 
time. Temporal co-orientation pattern mining is useful for discovering tactics 
from play sequences of sports video data, because the most tactic patterns of 
basketball competition are constituted of such spatial co-orientation patterns in 
time order. We propose the three-stage approach, which transforms the problem 
into sequential pattern mining, for mining temporal co-orientation patterns. We 
experimentally evaluate the performance of the proposed algorithm and analysis 
the effect of these stages. 

1   Introduction 

Spatial data mining is an important task to discover interesting patterns from spatial or 
image datasets. There exist three basic types of spatial relationships: distance, 
topological, and directional relationship. Many works have focused on spatial co-
location pattern mining concerning with the distance relationship. While little 
attention has been paid on patterns concerning the directional relationship, we have 
proposed the spatial co-orientation pattern mining from a set of spatial images 
which discover the spatial objects that frequently occur and collocate with the same 
orientation among each other [6].  

Recently, some research extended from spatial patterns to spatio-temporal patterns 
[1,3,4,5,7]. In this paper, we extend the concept of spatial co-orientation patterns to 
temporal co-orientation patterns. For a spatio-temporal database consisting of 
sequences of images, temporal co-orientation patterns refer to the common patterns of 
changes of spatial co-orientation among sequences. For example, Fig. 1 shows a 
spatio-temporal database, and Fig. 2 is one of the temporal co-orientation patterns 
with occurrences no less than two. We propose three-stage algorithm, TCPMiner, for 
mining the temporal co-orientation patterns. 

One of the applications of temporal co-orientation patterns is sports video analysis. 
Sports video analysis aims to provide assistance for training. Much research has been 
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done on analyzing sports video. One of the important tasks in sports analysis is to 
summarize the play tactics from sports video. While regarding a video as an ordered 
sequence of images, tactics summarization of play tactics is, in fact, the problem of 
our proposed temporal co-orientation pattern mining.  

 

Fig. 1. A spatio-temporal database STDB 

 

Fig. 2. A temporal co-orientation pattern in Fig. 1 

2   Related Work 

Mobile group pattern miming is to discover group patterns of users, determined by 
distance threshold and minimum time duration [1,7]. The group members are 
physically close to one another and stay together for some meaningful duration when 
they act as a group. This research reveals the neighboring relation over time without 
relative direction over time and the change of spatial relation among objects over 
time. J. Wang et al. proposed some kinds of mining spatio-temporal patterns in spatio-
temporal databases. In [3], the work is discovering the topological patterns satisfying 
not only the spatial proximity relationships but also the temporal proximity 
relationships. Briefly, the topological patterns occur near in a region and near in time. 
The main idea of algorithm in [3] is to generate the projected database for mining 
topological patterns and this idea is similar to the pattern-growth approach. In [5], the 
work is to discover generalized spatio-temporal patterns which are intended to 
describe the repeated sequences of events occurring in small neighborhoods, and 
similarly does [4]. [4] and [5] utilize the concept of Apriori-like approach and pattern-
growth approach for mining generalized spatio-temporal patterns, respectively. But 
these works focus on neighboring relation over time without dealing with relative 
direction among objects over time. 
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3   Problem Definition 

Definition 1. Let a spatio-temporal database STDB={V1, V2, …, VN} be a set of image 
sequences. Each image sequence Vi is an ordered list of images, sorted by time in 
increasing order. We denote a sequence Vi by {fi,1, fi,2,…,fi,ni}, where fi,j is the j-th 
image of Vi and ni is the total number of images in Vi. Each image fi,j ={(O1, X1, Y1), 
(O2, X2, Y2),…, (Omk, Xmk, Ymk)} is a set of triples, where ∀h, 1≤h≤mk, Oh is an object 
type, and (Xh,Yh) is the location of an object Oh. 
Note that we regard each image of sequences as a symbolic picture [6]. In this paper, 
we shorten the notation Vi={fi,1, fi,2,…,fi,ni} to V={f1, f2,…,fni} if recognizing the 
different image sequences is not necessary. 

Definition 2. A symbolic picture g is said to be contained in a sequence of symbolic 
pictures V={f1, f2,…,fni} iff there exists an integer 1≤j≤ni such that g is a subpicture [6] 

of fnj, denoted as g⊆fnj.  

Definition 3. Given a spatio-temporal database STDB, the global support of a 
symbolic picture g is the percentage of sequences in STDB that contain the symbolic 
picture g. If the global support of a symbolic picture g is greater than or equal to a 
given minimum global support threshold, minGSup, g is a spatial co-orientation 
pattern of STDB. The size of the spatial co-orientation pattern g is the number of 
objects occurring in g. A spatial co-orientation pattern of size n is called a size-n 
spatial co-orientation pattern. A spatial co-orientation pattern g is maximal if g is 
not contained in any other spatial co-orientation pattern of STDB. 

Example 1. Fig. 1 shows a spatio-temporal database STDB of three symbolic picture 
sequences. If minGSup is 50%, some of the size-2, size-3, and size-4 spatial co-
orientation patterns are shown in Table 1. 

Table 1. Some of spatial co-orientation patterns of Fig. 1 

 Size-2 Size-3 Size-4 

Pattern 
,  ,… 

, ,… ,… 
GSup. 100% 67% 100% 100% 67% 

 
Definition 4. Let fs

1 and fs
2 be two sets of symbolic pictures. A set of symbolic 

pictures fs
1 is said to be contained in a set of symbolic pictures fs

2 , iff for each 
symbolic picture g∈fs

1, there exists a symbolic picture g’ ∈fs
2 such that g⊆g’. 

Definition 5. Let Fs
1={fs

1,1, f
s
1,2,…, fs

1,m} be a sequence of sets of symbolic pictures.  
That is, each element of Fs

1, f
s
1,j, 1 ≤ j ≤ m, is a set of symbolic pictures. A sequence 

Fs
1 is said to be contained in a sequence Fs

2={fs
2,1, fs

2,2,…, fs
2,n}, iff there exist 

integers 1≤ i1<i2<…<im≤ n such that for each j∈{1,…,m}, fs
1,j⊆fs

2,ij. 
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Example 2. Fig. 3 shows two sequences Fs
1={fs

1,1, f
s
1,2} and Fs

2={fs
2,1, f

s
2,2, f

s
2,3}. Fs

1 
is contained in Fs

2, because there exist integers 1≤i1<i2≤3, where i1=1 and i2=3, such 
that for each symbolic picture g in fs

1,1, there exists a symbolic picture g’ in fs
2,1 such 

that g⊆g’, and for each symbolic picture g in fs
1,2, there exists a symbolic picture g’ in 

fs
2,3 such that g⊆g’. 

 

Fig. 3. Example of two sequences of sets of symbolic pictures 

Definition 6. Given a spatio-temporal database STDB, let Fs={fs
1, fs

2,…, fs
m} be a 

sequence of sets of symbolic pictures. The global support of Fs is the percentage of 
sequences in STDB that contain Fs. Fs is the temporal co-orientation pattern of 
STDB if (1) ∀i∈{1,…,m}, each symbolic picture in fs

i is a spatial co-orientation 
pattern of STDB and the size of fs

i is greater than or equal to two, and (2) the global 
support of Fs is greater than or equal to a given minimum global support threshold, 
minGSup. 

Definition 7. Given a temporal co-orientation pattern Fs={fs
1, f

s
2,…, fs

n}, the length of 
the temporal co-orientation pattern Fs is the number of sets of symbolic pictures of Fs. 
A temporal co-orientation pattern of length n is called a length-n temporal co-
orientation pattern. A temporal co-orientation pattern Fs is called a maximal 
temporal co-orientation pattern if Fs is not contained in any other temporal co-
orientation pattern of STDB. 

For instance, Fig. 2 is a length-2 temporal co-orientation pattern. Note that a spatial 
co-orientation pattern is also a length-1 temporal co-orientation pattern if the size of 
this pattern is greater than or equal to two. 

4   Proposed Algorithm 

To solve the problem of mining temporal co-orientation patterns, we also employ the 
2D representation [6] to represent symbolic pictures. Given a spatio-temporal 
database of sequences of symbolic pictures, the problem of temporal co-orientation 
patter mining thus becomes the discovery of the frequent sequences of sets of 2D 
strings among a database of sequences of 2D strings. Each such frequent sequence of 
sets of 2D string is a temporal co-orientation pattern. 

We propose the three-stage algorithm, TCPMiner, to discover the temporal co-
orientation patterns. The proposed approach consists of three stages of processes. The 
first stage is discovering all size-2 spatial co-orientation patterns from a given spatio-
temporal database STDB. The second stage transforms the problem into that of 
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sequential pattern mining. The last stage reconstructs the symbolic pictures from the 
discovered patterns of the second stage. Fig. 4 shows the detail of TCPMiner 
algorithm for discovering temporal co-orientation patterns. 

In Fig. 4, at first, we preprocess the given spatio-temporal database STDB to 
transform each symbolic picture of sequences in STDB to a 2D string, and then 

 
Input: A spatio-temporal database STDB, and a minimum global support threshold minGSup 
Output: A set of temporal co-orientation patterns FP 
1. STDB2D=preprocess(STDB); //STDB2D: a set of sequences of sets of 2D strings 
2. // 1st stage  
3. Scan STDB2D to generate O1;//Ok: a set of size-k spatial co-orientation patterns 
4. CO2=GenCandidate(O1); 
5. For each c in CO2  //COk:a set of candidate size-k spatial co-orientation patterns 
6.   Scan STDB2D to count the global support of c; 
7.   If c is frequent then insert c to O2; 
8. // 2nd stage 
9. Pint=UID(O2); //Pint: a set of integers 
10. STDBint =TranI(STDB2D, Pint, O2); //STDBint: a database of sequences of sets of integers 
11. FPint=SeqMiner(STDBint); //FPint: a set of frequent sequences of sets of integers 
12. // 3rd stage 
13. FP=TranII(FPint, Pint, O2); 
14. Return FP; 

Fig. 4. TCPMiner algorithm 

STDB2D 
TID Sequence 

V1 
< (E<A=C<B, E<A=B<C) (A=D<B<C, B<D<C<A) (A<E<C<B, A<E<B<C) 
(C<A=D<B, C=D<B<A) (A<B<C=D, B=D<C<A) (A=D<B<C, D<B<C<A) > 

V2 
< (A=D<B<C, B<C=D<A) (E<C<B=A, A=E<B<C) (B=C<A=E, C<E<A=B) 
(A=D<B<C, D<B<C<A) (A=D<C<B, D<B<A=C) > 

V3 
< (A=E<B<C, B=E<C<A) (E<A=C<B, E<B<C<A) (A=D<B<C, D<B<C<A) 
(E<C<A=B, E<B<A=C) (A=B<E<D, A=D<E<B) (E<A=D<B, D<B<A=E) >  
Pint                           ↓UID 
UID Pattern UID Pattern UID Pattern UID Pattern 

1 (A<B,B<A) 2 (A=B,A<B) 3 (A<C,C<A) 4 (C<A,C<A) 
5 (A=D,D<A) 6 (A<E,A<E) 7 (A=E,E<A) 8 (E<A,A=E) 
9 (E<A,E<A) 10 (B<C,B<C) 11 (C<B,B<C) 12 (D<B,B<D) 

13 (D<B,D<B) 14 (B<E,E<B) 15 (E<B,E<B) 16 (D<C,D<C) 
17 (E<C,E<C)        

STDBint                    ↓TranI 
TID Sequence 
V1 <(9,11,15,17)(1,3,5,10,12,16)(6,11,15,17)(1,4,5,13)(1,3,10)(1,3,5,10,13,16)> 
V2 <(1,3,5,10,12)(2,8,11,15,17)(4,7,14)(1,3,5,10,13,16)(1,5,11,13,16)> 
V3 <(1,3,7,10,17)(1,9,11,15,17)(1,3,5,10,13,16)(9,11,15,17)(2,6,14)(1,5,8,13)>  

Fig. 5. Example of transformation in TCPMiner 
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generate the database STDB2D. The detail of GenCandidate function is shown in [6]. 
In step 9, each spatial co-orientation pattern in O2 is assigned a unique item number, 
and a hash table of item numbers Pint with respect to all patterns  in O2 is generated. 
According to Pint, we transform each sequence of STDB2D to a sequence of itemsets, 
that is, each symbolic picture is transformed into an itemset. For each symbolic 
picture, each size-2 spatial co-orientation pattern contained in it constitutes the 
transformed itemset. After the transformation, sequential pattern mining algorithm [2] 
is utilized to generate all frequent sequence of itemsets. For the patio-temproal 
database STDB in Fig. 1, Fig. 5 shows the outcome of TranI in TCPMiner if minGSup 
is 50%. 

The last stage generates the temporal co-orientation patterns by transforming each 
itemset into a set of symbolic pictures. Note that each item corresponds to a size-2 
symbolic picture. It seems straightforward to transform each itemset into a set of size-
2 symbolic pictures. However, the patterns what we wish are the maximal temporal 
co-orientation patterns. It is essential that the transformation should be performed 
such that the reconstructed symbolic picture is as maximal as possible. This stage 
proceeds similarly to the Apriori-based approach for frequent itemset mining. The 
detailed procedures of the function TranII is shown in Fig. 6. 

 
Input: A set of frequent sequences of itemsets FPint, a set of integers Pint, and a set of size-2 

spatial co-orientation patterns O2 
Output: A set of temporal co-orientation patterns FP 
1. Let Sint=< I1, I2,…, Im > where Ii is a set of integers; // Sint: a sequence of sets of integers 
2. Let S2D=< I’1, I’2,…, I’m > where I’i is a set of 2D strings;  
3. For each Sint in FPint 
4.   Generate S2D from Sint;  
5.   For each Ii in Sint 
6.     j=3; 
7.     While(|Ii|≥ (j)*(j-1)/2){ 
8.       L=GenCombination((j)*(j-1)/2, Ii); 
9.       For each l in L 
10.         Fj =GenFP(l, T); //T: a table 
11.         Insert Fj into I’i; //Fj: a size-j spatial co-orientation pattern 
12.       j++; } 
13.     Max(I’i); 
14. FP=∪S2D; 

Fig. 6. Algorithm of TranII function 

Example 3. Given the spatio-temporal database STDB in Fig. 1, FPint is generated 
from the database STDBint in Fig. 5 if minGSup=50%. For instance, 
Sint={I1}={(9,11,15,17)} is a pattern in FPint. In Fig. 6, the step 10 generates size-j 
spatial co-orientation pattern according to l in L. If j=3 and l=(11,15,17), we join size-
2 spatial co-orientation patterns 11 and 15 to generate size-3 spatial co-orientation 
pattern, UID=18(11,15,17):(E<C<B,E<B<C), and record it in T. Finally, 
Sint={(9,11,15,17)} is restored as {(E<A,E<A),(E<C<B,E<B<C)}. 
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5   Experiment 

We evaluate the performance of TCPMiner using synthetic datasets. Fig. 7 illustrates 
the flow of our experimental design and parameters. In order to simulate the sports 
games for a given team against others, we assume the objects (players) appearing in 

 

Symbol Description 
T Number of sequences 

D x D Size of an image 

F Average number of images per 
sequence

N Total number of objects 
O Number of objects per image 
G Minimum global support 

 

Fig. 7. Flow of experimental design and parameters 

(a-1) F80N60O10 (b-1) T1kN60O10 (c-1) T1kF100O10 

(a-2) F80N60O10G22% (b-2) T1kN60O10G26% (c-2) T1kF100O10G25%  

Fig. 8. (a) Runtime v.s. number of sequences. (b) Runtime v.s. average number of images per 
sequence. (c) Runtime v.s. total number of objects. 
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each video are selected from two distinct teams, the user-specified team α and the 
other team by choosing randomly from (N/m)-1 teams, where m is the number of 
players per team. We chose O objects while O/2 objects were selected from α and the 
others from the randomly selected team. Finally, we generate a sequence of images 
with the length of F×(1±r) images by random walk in uniform probability distribution. 
In our experiments, we generated all images by setting D=6, m=10, O=10, and r =0.2. 
The convention of T1kF250N60O10G22% means that the data set includes 1000 
sequences, average number of images per sequence is 250, total number of objects is 
60, average number of objects per image is 10, and minimum global support is 50%. 
We implement TCPMiner in C++. The experiments were performed on AMD 
Opteron, 2.39GHz, 3.93G main memory PC. 

We measure the efficiency of proposed algorithm as the function of other 
parameters. Moreover, we compare relative execution time between the stage of 
sequential pattern mining and the other stages (the first stage and the third stage 
denoted as SeqMiner and Other, respectively.) The execution times of TCPMiner 
scale up gradually with the number of sequences in (a-1). (a-2) illustrates that the 
effect of number of sequences of SeqMiner is more obvious than the effect of Other 
as the number of sequences increases. (b-1) demonstrates that the execution time of 
TCPMiner increases dramatically as the average number of per sequence increase. 
This is because that the size of database and the length of temporal co-orientation 
pattern increase. In (b-2), the execution time of SeqMiner increases more rapidly than 
Other as the number of images per sequence is increasing. As shown in (c-1), the 
effect of the total number of objects is not obvious while the total number of objects 
increases. (c-2) indicates that the effects of total number of objects are not obvious 
with respect to SeqMiner and Other. 

6   Conclusion and Future Work 

We proposed the temporal co-orientation pattern, and the algorithm, TCPMiner, for 
mining temporal co-orientation patterns. One of the core steps of the proposed 
algorithm is the sequential pattern mining. The experimental results showed that the 
step of sequential pattern mining dominates the execution time due to the 
characteristic of temporal co-orientation patterns. It is essential to develop algorithms 
for mining sequential patterns with respect to the characteristic of temporal co-
orientation patterns. Moreover, it is worth to explore the applications of the proposed 
temporal co-orientation pattern mining. 
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Abstract. How to acquire new knowledge from new added training data
while retaining the knowledge learned before is an important problem
for incremental learning. In order to handle this problem, we propose
a novel algorithm that enables support vector machines to accommo-
date new data, including samples that correspond to previously unseen
classes, while it retains previously acquired knowledge. Furthermore, our
new algorithm does not require access to previously used data during
subsequent incremental learning sessions. The proposed algorithm trains
a support vector machine that can output posterior probability informa-
tion once an incremental batch training data is acquired. The outputs of
all the resulting support vector machines are simply combined by averag-
ing. Experiments are carried out on three benchmark datasets as well as
a real world text categorization task. The experimental results indicate
that the proposed algorithm is superior to the traditional incremental
learning algorithm, Learn++. Due to the simplicity of the proposed al-
gorithm, it can be used more effectively in practice.

1 Introduction

The brain of human beings has powerful ability of incremental learning. There-
fore, how to develop brain-like computing model, how to implement incremental
learning is one challenge problem in machine learning research. In real world
applications, there are three scenarios need incremental learning: all training
data cannot be gathered at one time for the cost of collecting data. As a result
the data are acquired batch by batch; some real world applications need instant
learning once some training data obtained; all training data cannot be loaded
into the memory of computers if the training set is very large. According to
Jantke [1], incremental learning is to construct new hypothesis by using only the
hypothesis before and the recent information on hand. Zhou and Chen [2] distin-
guished three kinds of incremental learning tasks: Example-incremental learning
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(E-IL); Class-incremental learning (C-IL); and Attribute-incremental learning
(A-IL). However, C-IL and A-IL have not been received much attention so far.
Syed et al. [3] introduced two types of incremental learning methods: instance
learning, which uses one example at a time, and block by block learning, which
uses a suitable-size subset of samples at a time.

At present, however, the essence of the training algorithms of various kinds
of artificial learning systems is an optimization procedure that aims to ensure
the generalization ability based on the current learning environment. There-
fore, all the current machine learning algorithms don’t adapt for incremental
learning in nature. The non-adaption lies in that the computation model lacks
the ability to get new knowledge or cannot retain the knowledge learned be-
fore [4]. The training of artificial neural networks is a gradient descent process,
and therefore the modification of connection weights will damage the learned
knowledge. The training of SVMs is a global optimization based on all train-
ing data. As a result, new added training data will make support vectors
change [5].

Classifier combining is a useful method for machine learning [6] [7] [8]. Many
scholars have applied classifier combining techniques to incremental learning.
Polikar et al. proposed Learn++ based on AdaBoost algorithm [9]. Lu and
Ichikawa proposed an incremental learning model based on emergence theory
[10]. Macek proposed incremental learning algorithms based on bagging and
boosting and successfully applied them to EEG data classification [11]. Wang et
al. used weighted ensemble classifiers to mine concept-drifting data stream [12].
Like bagging, a model of incremental learning by classifier combining (ILbyCC)
is proposed in this paper.

2 Incremental Learning by Classifier Combining

2.1 Definition of Batch Incremental Learning

Definition 1. Given a sequence of training datasets S1, S2, ..., Sm, where Si =
{(xij , cij )|xij ∈ Rn, cij ∈ Li ⊆ {1, 2, ..., k}, 1 ≤ j ≤ ni}, 1 ≤ i ≤ m. Li indi-
cates the set of class label in training dataset Si. Lets E1 denotes the classifier
trained on S1, the batch incremental learning procedure IL can be illustrated as:
IL(Si, Ei−1) = Ei, 2 ≤ i ≤ m.

In this paper, we only consider the case where the number of class labels don’t
decrease, i.e., L1 ⊆ L2 ⊆ ... ⊆ Lm.

ILbyCC takes a frame of modular architecture. Modular architecture can make
classifier easy adapt to incremental learning. ILbyCC trains a new classifier on
an incremental batch and saves it. All the classifiers trained by far are combined
into one combined classifier. The training algorithm of ILbyCC can be illustrated
as: M(f1, f2, ..., fi−1, fi) = Ei, where M denotes the strategy for classifier com-
bining, and Ei denotes the current combined classifier.
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Table 1. The problem statistics and the parameters used in SVMs

Data set #attributes #training data #test data #class C γ

Optical Digits 1024 1200 4420 10 128 0.002

Vehicle Silhouette 18 630 216 4 1500 0.00001

Concentric Circle 2 1200 500 5 128 0.125

Yomiuri News Corpus 5000 424310 87268 9 64 0.125

2.2 Combining Classifiers by Averaged Bayes

Given m classifiers that can output posterior probability information, when a
test input x comes, the j-th classifier outputs the posterior probability of x
belonging to all the classes:

Pj(y = i|x), i ∈ {1, 2, ..., k}, j = 1, 2, ..., m (1)

According to Averaged Bayes, the combined classifier Em computes the pos-
terior probability of x belonging to all classes as follows:

PEm(y = i|x) =
1
m

m∑

j=1

Pj(y = i|x), i ∈ {1, 2, ..., k} (2)

According to Bayes rule, x can be classified as the i-th class:

i = arg maxi=k
i=1PEm(y = i|x) (3)

2.3 Incremental Learning Algorithm by Classifier Combining

ILbyCC algorithm is described as Fig.1.

3 Experiments

3.1 Datasets

In order to evaluate the performance of ILbyCC algorithm, experiments are run
on four data sets. The first three data sets, Optical Digits Database, Vehicle
Silhouette Database, and Concentric Circle Database, are took from Poliker’s
paper [9] and used as Poliker’s strategy. The fourth data set is a part of Yomiuri
News Corpus database. We select all the instances of nine classes, such as crime,
sport, Asian-Pacific, North-South-American, health, accident, by-time, society,
and finance, which will be called as class 1 through class 9. The training data set
is randomly divided into 9 incremental batches, S1 through S9, where S1 through
S3 have instances from classes 1, 2, and 3; S4 through S6 contain instances from
classes 1 through 6; and S7 to S9 have instances from classes 1 through 9. The
statistics of the tasks are illustrated in Table.1. The parameters used in SVMs
are selected by cross-validation.
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Algorithm: ILbyCC
Input: given two example-incremental learning sequences: List1 = {S1

1 , S2
1 , ..., Sm

1 }
and List2 = {S1

2 , S2
2 , ..., Sn

2 }, where L1
1 = L2

1 = ... = Lm
1 = L1, L1

2 = L2
2 =

... = Ln
2 = L2, L1 ⊂ L2. Let n = 0, if there is only one example-incremental

learning sequence.
Steps:

1. For t = 1, 2, ..., m
(a) Take cross-validation on St

1 to select the optimal parameters of training
algorithm and train a classifier f t

1 on the incremental batch St
1.

(b) Save classifier f t
1 and St

1 can be discarded.
2. For t = 1, 2, ..., n

(a) Take cross-validation on St
2 to select the optimal parameters of training

algorithm and train a classifier f t
2 on the incremental batch St

2.
(b) Save classifier f t

2 and St
2 can be discarded.

3. Testing:
(a) Import a test input x into each f t

2, 1 ≤ t ≤ n, and calculate the
posterior probability of x belonging to all classes: P j

t , 1 ≤ t ≤ n, j ∈ L2.
(b) Take the rule of classifier combining M to combine f t

2, 1 ≤ t ≤ n, and
get the combined classifier En = M(f1

2 , f2
2 , ..., fn

2 ), where En outputs
the posterior probability of x belonging to all classes: P j

En
, j ∈ L2.

4. If argmaxj∈L2P
j
En

∈ (L2 − L1), x can be classified by the value of

argmaxj∈(L2−L1)P
j
En

. The algorithm ends.

5. If argmaxj∈L2P
j
En

∈ L1, modify the outputs of En by setting P j
En

= 0, j ∈

(L2−L1) and P j
En

=
P

j
En

∑
j∈L1 P

j
En

, j ∈ L1, then take the classifier combining rule

M to combine classifiers {f1
1 , f2

1 , ..., fm
1 , En} and get the combined classifier E.

E outputs the posterior probability of x belonging to all classes: P j
E , j ∈ L1.

6. Classify the test input x by the value of argmaxj∈L1P
j
E .

7. The algorithm ends.

Fig. 1. Incremental learning algorithm by classifier combining

In order to test ILbyCC’s performance on incremental learning when differ-
ent incremental step takes different parameters. Optimal parameters in each
incremental step were chosen among 25 pairs of (C, γ) by 10-cross-validation.
25 pairs of (C, γ) were generated around the values of (C, γ) in Table.1 by a
product factor of 2.

In order to ensure the reliability of the experimental results, the first three
experiments were repeated 10 times and averaged results were presented. Only
the last experiment was run one time for its large size. In order to evaluate the
performance of ILbyCC , several exsiting algorithms were run for a compari-
son study. We adopted the algorithm of Syed [3] that was denoted as ILbySV
for convenience. In addition, the basic incremental learning algorithm is Batch-
training, i.e. when the i-th incremental batch comes, the classifiers trained before
are all discarded and S1

⋃
S2

⋃
...

⋃
Si is used to train a new classifier. Obvi-

ously, Batch-training should keep all training data gotten by far, and further,
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catastrophic forgetting takes place when new data comes. In order to compare
ILbyCC with Learn++, the paper directly quotes the experimental results of
Learn++ [9]. For convenience, when all the training sessions of ILbyCC uses
the same parameters, ILbyCC is denoted as ILbyCC1, when different session of
ILbyCC use different parameters, ILbyCC is denoted as ILbyCC2.

3.2 Results and Analysis

Both Fig. 2 and Fig. 4 show that ILbyCC was able to preserve the knowledge
learned before and acquire new information. Fig. 3 and Fig. 5 illustrate that
ILbyCC can incrementally learn successfully, ILbyCC1 and ILbyCC2 have nearly
the same generalization ability, and ILbyCC is slightly good then Learn++.
Because all incremental batches are not always in the same distribution, the
incremental learning performance of ILbySV fluctuates.

Fig.6 and Fig.8 show that the generalization performance of ILbyCC first
decreases slightly when new classes are introduced and increases when training
data with the same class labels are continuously added, indicating that ILbyCC
can preserve the learned knowledge. From Fig. 7 and Fig.9, it seems that a
large improvement on the performance is obtained after new classes that were
not available earlier are introduced, but only minor improvements in the perfor-
mance can be observed from the test accuracy curves when new classes are not
introduced, indicating that ILbyCC can learn from new introduced classes.

In Fig. 10, it can be seen that the training time of ILbyCC is far smaller than
the training time of Batch-training and ILbySV. The large speedup of ILbyCC
can compensate the slight decrease of its generalization performance compared
with Batch-training.

Why can ILbyCC work effectively? According to the theory of bias-variance
[13], decomposing training data will introduce bias and makes the generalization
ability of single classifier decrease, however, decomposing training data will in-
crease the variances between all classifiers and increase the generalization ability

Class1 Class2 Class3 Class4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
es

t a
cc

ur
ac

y

Step1
Step2
Step3

Fig. 2. The generalization performance
of ILbyCC1 on each class in Vehicle Sil-
houette database

1 2 3
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Incremental learning steps

T
es

t a
cc

ur
ac

y

ILbySV
Learn++
ILbyCC1
ILbyCC2
Batch−training

Fig. 3. Accuracy comparison of various
incremental learning algorithms on Ve-
hicle Silhouette database



Incremental Learning of Support Vector Machines by Classifier Combining 909

Class1 Class2 Class3 Class4 Class5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
es

t a
cc

ur
ac

y

Step1
Step2
Step3
Step4
Step5
Step6

Class6 Class7 Class8 Class9 Class10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
es

t a
cc

ur
ac

y

Step1
Step2
Step3
Step4
Step5
Step6

Fig. 4. The generalization performance of ILbyCC1 on each class of Optical digits
database
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Fig. 6. The generalization performance
of ILbyCC1 on each class of Concentric
Circle database

of the combined classifier, which compensates the decrease of the generalization
ability caused by decomposition. Therefore, ILbyCC has nearly the same test
accuracy with Batch-training. In addition, the combining rule (2) can automat-
ically invalidate the classifiers that is not much confident of its outputs, i.e.,
given Pj(y = 1|x) ≈ ... ≈ Pj(y = k|x), the result of the equation (3) will not be
influenced by the outputs of the j-th classifier. Therefore, Averaged Bayes can
automatically select the classifiers that is confident of its outputs to combine.

Note that the performance of ILbyCC1 and ILbyCC2 in all the simulations
are nearly the same, it is very interesting to observe that the time complexity
for selecting optimal parameters is decreased by training data decomposition.
It is not reasonable for incremental learning algorithm to wait for all training
data collected to select optimal parameters. It is also not reasonable to apply the
parameters, which is gotten from the first incremental batch, to the following
incremental steps. Therefore, ILbyCC not only decreases the time complexity of
parameter selection but also makes incremental learning possible.
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Fig. 8. The generalization performance
of ILbyCC1 on each class in Yomiuri
News Corpus database
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3.3 Discussions

Compared with Learn++, the proposed ILbyCC satisfies the criteria proposed by
Polikar [9] and has comparable incremental learning ability, but ILbyCC can be
implemented more simply. Learn++ is a kind of AdaBoost in essence, Learn++
should use more parameters and train more classifiers. Note that ILbyCC is a
bagging-like algorithm, ILbyCC can be parallized for training speedup, while
Learn++ can only be implemented in serial. In addition, ILbyCC needs no com-
munication between classifiers, it can well protect the privacy of data. The work
in this paper can prove the availability of the algorithm estimating the posterior
probabilistic of SVMs. To our best knowledge, ILbyCC is the first application
to apply posterior probabilistic SVMs to real problem.
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4 Conclusions

In this paper, we have proposed a novel incremental learning algorithm ILbyCC
that uses Averaged Bayes rule to combine classifiers. The experimental results
indicate that ILbyCC can not only preserve the knowledge learned before but
also can learn new knowledge from new added data and further new knowledge
from new introduced classes. Three main advantages of ILbyCC over existing
algorithms are simply implementing, small time complexity for parameter selec-
tion, and training time saving. In addition, the proposed algorithm is a general
framework of incremental learning and any machine learning algorithm that can
output posterior probabilistic can be integrated into ILbyCC.
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Abstract. This paper presents a new clustering technique which is ex-
tended from the technique of clustering based on frequent-itemsets. Clus-
tering based on frequent-itemsets has been used only in the domain of
text documents and it does not consider frequency levels, which are the
different levels of frequency of items in a data set. Our approach considers
frequency levels together with frequent-itemsets. This new technique was
applied in the domain of bio-informatics, specifically to obtain clusters
of genes of zebrafish (Danio rerio) based on Expressed Sequence Tags
(EST) that make up the genes. Since a particular EST is typically asso-
ciated with only one gene, ESTs were first classified in to a set of classes
based on their features. Then these EST classes were used in clustering
genes. Further, an attempt was made to verify the quality of the clusters
using gene ontology data. This paper presents the results of this appli-
cation of clustering based on frequent-itemsets and frequency levels and
discusses other domains in which it has potential uses.

1 Introduction

1.1 Clustering Based on Frequent-Itemsets

Clustering based on frequent-itemsets is recognized as a distinct technique and
is often categorized under frequent-pattern based clustering methods [10]. There
are many clustering techniques categorized under this theme and some of them
are not based on frequent-itemsets; they are generally based on the frequent pat-
terns observed in some of the dimensions in high-dimensional data. For instance,
the pClustering method [12] which performs clustering by pattern similarity in
microarray data analysis is generally identified as a frequent-pattern based clus-
tering technique. While all these clustering techniques clearly have something in
common in terms of discovering clusters based on frequent patterns, the patterns
involved are quite different in different clustering techniques. In techniques such
as pClustering these patterns refer to the patterns observed in the values of some
dimensions for a set of objects whereas in techniques based on frequent-itemsets
the patterns are the frequent-itemsets.
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Clustering techniques based on frequent-itemsets have been hitherto applied
almost exclusively in the domain of text documents. In a pioneering work in
this area presented by Beil et al. [9], two algorithms for discovering clusters
of documents based on frequent terms (a sequence of characters separated from
other terms by delimiters) they contain have been developed. The two algorithms
presented in this paper are based on the concept of assigning the objects that
have a frequent-itemset to a cluster. One of the main advantages of this method
is that it provides an inherent definition for the clusters, in terms of the frequent-
itemsets they have. Such a meaning is generally not provided by other clustering
techniques. However, the clusters defined in this manner can be overlapping
and non-exhaustive (not covering all the objects) and the algorithms mentioned
above are carefully designed to overcome these issues.

The clustering technique used in this work presents an improvement over the
basic frequent-itemset based clustering technique because it takes in to consid-
eration the frequency levels of items in a record or an object. Typically, the
relative frequency level of an item within a record or an object is not consid-
ered in identifying frequent-itemsets; frequent-itemsets are identified based on
the items that are observed in a number of objects or records higher than a pre-
defined threshold. For instance, in a data set consisting of 1000 purchase records
and with the use of a cut-off limit of 10% , frequent-itemsets are identified as
the items that appear in at least 100 records. While this is sufficient in most
situations, the frequency of items within a record is also important in some sit-
uations. For example, if each purchase record contains at least 100 units, the
quantity or the number of times an item appears in each record is also impor-
tant; in addition to identifying the itemset A,B,C as being frequent, identifying
that 30 units of A, 10 units of B and 5 units of C are frequent provides more
information. When using these frequent-itemsets for clustering, paying attention
to the relative frequencies of items within records in this manner provides more
insight in to common characteristics of the objects or records of the cluster. This
served as a basis in developing the clustering technique used here.

1.2 Genes and Expressed Sequence Tags (EST)

A gene can be uniquely described by its sequence of nucleotides, which can
be thousands of nucleotides long. There are several techniques that are used
to identify genes and the use of Expressed Sequence Tags (ESTs) is one such
technique. ESTs provide a snapshot of the DNA that is expressed in a given tissue
of a eukaryotic organism at a given time. This is in accordance with the Central
Dogma of Molecular Biology, which states that DNA first has to be converted
in to RNA through the process of transcription and then the RNA has to be
converted to proteins, which do the actual work of altering a cell’s chemistry,
through the process of translation. ESTs are typically short and restricted to
about 300 - 500 nucleotides. Since they indicate the regions of DNA that have
been transcribed to RNA, they can be used to identify genetic material that
are active in a particular situation. Further, contiguous blocks of DNA can be
assembled using ESTs and these blocks can be used to identify genes.
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Several organizations keep records of the genes and ESTs discovered by re-
searchers and make them publicly available through online databases. One such
organization is GenBank [2], which provides access to different types of genetic
data. UniGene [6], which is a part of GenBank, provides details on the genes that
have been identified based on ESTs and other techniques. Further, it is possible
to directly download the data that show how genes have been constructed using
ESTs, for each species as a single file. One such file is available for zebrafish. In
essence, it lists out the ESTs of each gene of zebrafish. The details of ESTs can
be obtained from GenBank, which provides a list of files that contain the details
of all the ESTs found in different species. Each record of a file provides compre-
hensive details on an EST including its nucleotide sequence and the tissue type
and/or development stage it was observed.

The main objective of the research was to identify groups of genes based on
the similarity of their EST makeup. Since the ESTs provide an idea of the active
genetic material in a particular tissue type at a particular development stage of
the organism, it is reasonable to assume that genes that have a highly similar
EST make up are active in the same tissue type and/or the same development
stage. This would probably indicate that such genes may have similar functions in
particular tissues or are involved in a common biological process. There have been
previous work on analyzing the EST makeup of genes. GEPIS [4] integrates EST
and tissue source information to compute gene expression patterns in normal and
tumor samples. EST miner [5] is another work in this area.

Any given EST is a part of one and only one gene since genes are identified
based on a contiguous sequence of nucleotides. An EST constitutes a section
of the nucleotide sequence of the DNA of an organism. As such the unique
identification numbers of ESTs can not be used in clustering genes since a given
identification number is found in only one gene. Hence the approach adopted
was to classify the ESTs in to a group of classes according to the tissue type
and the development stage they are found and then use these EST classes in
clustering genes.

2 Related Work

Although the concept of discovering clusters based on frequent-itemsets is
generic, it has clearly been associated with clustering of text documents. Beil
et al. [9] use the term “term set” to highlight the fact that the items in text
documents are terms and defines the technique as “frequent term-based cluster-
ing” instead of “frequent-itemset based clustering”. This name has been used
by others as well [10]. According to this technique, when a frequent-itemset is
identified the set of records or objects that have the frequent-itemset in con-
cern becomes a potential cluster. Different variations of this clustering tech-
nique such as Frequent-Term based Clustering (FTC) and Hierarchical Frequent
Term-Based Clustering (HFTC) described in [9] identify the final set of clusters
from these potential clusters in different ways. In its pure form, the potential
clusters identified using frequent-itemsets are overlapping and non-exhaustive.
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Some techniques such as FTC ensure that final clusters are not overlapping and
that they cover all the objects (records) making them more consistent with the
functionality of classical clustering techniques.

Our work demonstrates the use of a clustering technique based on this method
in a very different domain. This shows that this clustering technique is a more
generic technique. Further since our technique takes frequency levels into consid-
eration in addition to frequent-itemsets, it might be capable of discovering better
clusters. Previous work has shown that paying more attention to the structure
of documents would result in better clustering techniques. For instance, Li and
Chung [11] have implemented a text document clustering technique, which shows
a better performance, by considering frequent word sequences in documents. In
addition, this work can be related to other attempts to discover clusters using
some kind of summarization of frequent-patterns, such as the research in [13].

3 Our Approach

To identify groups of genes based on the similarity of their EST makeup, we
designed a new clustering algorithm based on frequent-itemsets and frequency
levels. It is presented below:

Algorithm 1. Clustering based on frequent-itemsets and frequency levels
1: Determine a cut-off frequency level for the data set.
2: Identify items to be used in frequent-itemset mining from the records of the data

set using the cut-off frequency level.
3: Determine a threshold to be used in frequent-itemset mining.
4: Identify frequent-itemsets using the apriori algorithm or the FP-growth technique.

5: Extract meaningful frequent-itemsets.
6: Identify the records that have the meaningful frequent-itemsets by scanning the

data set for each meaningful frequent-itemset.
7: Present the records that share a meaningful frequent-itemset as a cluster and define

the meaning of the cluster in terms of the frequent-itemset.

In steps 1 and 2 the concept of frequency levels is used to identify items
in records, to be used in frequent-itemset mining later. This requires a cut-off
frequency level as a parameter. For a particular item of an record, the number of
items to be used in frequent-itemset mining is determined by performing integer
division (or division followed by floor operation) on its frequency within the
record using the cut-off frequency level. This can be expressed as follows.

Let the total count of items in the record be n.
Let count of item i in the record be m. (m ≤ n)
Let cut-off frequency be c. (c < 1)

∴ number of items of i to be used in frequent-itemset mining = �(m/n)/c�
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A numbering scheme together with a special character is used to represent the
fact that the items identified in this manner relate to the same item in the actual
record. Assuming that the special character is $ the following would represent 4
items to be used in frequent-itemset mining, all based on item A.

A$1, A$2, A$3, A$4

In steps 3 and 4, a standard frequent-itemset mining technique is employed
on the items identified in the previous steps. This is based on discovering longer
frequent-itemsets using shorter frequent-itemsets. Both apriori algorithm and
FP-growth technique can be used here. The same method is used in Hierarchical
Frequent Term-Based Clustering (HFTC) technique described in [9].

Step 5 extracts the meaningful frequent-itemsets from the set of all frequent-
itemsets discovered in step 4. This is necessary because the number included
in an item according to the numbering scheme discussed above has a meaning.
For example, assuming that the cut-off frequency is 10%, A$2 represents the
second 10% step within the frequency of A in the record in concern. This makes
some frequent-itemsets meaningless. For instance, if a group of genes have 30%
of ESTs of class A, all the following are identified as frequent-itemsets, assuming
that a cut-off percentage of 10% is used.

{A$1},{A$2},{A$3},{A$1, A$2},{A$2, A$3},{A$1, A$3},{A$1, A$2, A$3}

Clearly, the itemsets {A$2, A$3} and {A$1, A$3} do not make sense, since
it is not meaningful to say that a group of genes share the second and third
or first and third steps of 10% of the EST class in concern. Such meaningless
itemsets can be excluded by considering only the itemsets that have $1 item for
each class and where all the numbers are in the consecutive order for each class.

In step 6, the entire data set is scanned again to identify the clusters to
which each record belongs. Here, it is checked whether a record has the frequent-
itemsets used in defining the clusters. This completes the clustering process and
step 7 is concerned with presenting the results.

As mentioned earlier, the resulting clusters may be overlapping and may not
be exhaustive. While classical clustering techniques ensure that the discovered
clusters are not overlapping, in many real world situations overlapping clusters
do exist and are useful. There have been some work on identifying overlapping
clusters, particularly in the domain of bio-informatics as presented by Banerjee
et al. [8]. The same can also be said about clusters which do not cover all the
objects of the data set. Therefore, the clusters discovered are left as is.

4 Clustering of Zebrafish Genes Based on Their EST
Makeup

4.1 Objective

We used our new clustering algorithm to identify clusters of genes based on the
ESTs. First, it was expected to classify the ESTs in to a set of classes based
on the tissue type and the development stage they are found. The possibility of
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employing the standard clustering techniques was also examined in this work. In
particular, partitioning methods and hierarchical methods were explored. One
main problem with these methods with regards to this data set is not presenting a
clear meaning for the clusters identified. In addition, dealing with a large number
of attributes (101, which is the number of EST classes) can also be problematic
with some implementations of these techniques.

It was also intended to test the quality of clusters discovered using gene on-
tology data. These data can be obtained from the Gene Ontology Project [3]. It
develops three ontologies to describe gene products in terms of their associated
biological processes, cellular components and molecular functions. Each descrip-
tion in one of these three categories is given a unique number known as a Gene
Ontology ID (GO-ID) and these GO-ID numbers can be used to describe gene
products without ambiguity. The similarity between two genes in terms of their
involvement in shared biological processes, presence in cellular components and
molecular functions can be obtained by counting the number of common GO-IDs
between the two genes.

4.2 Implementation

There are three independent data sets, as follows, and each of them required a
significant amount of data preprocessing.

1. The data regarding the ESTs of zebrafish genes obtained from UniGene (the
build of 16th July was used)

2. The data regarding ESTs of all species obtained from GenBank (the build
of 3rd August was used)

3. The gene ontology data of zebrafish genes available from the Gene Ontology
Project (the build of 15th August was used)

Regarding the second data set it was necessary to separate the ESTs of zebrafish
from the set of all records. It was also necessary to extract only the GenBank
accession number, which uniquely identifies each EST, and the tissue type and
the development stage of the EST, which were to be used in identifying classes
of ESTs from the records on zebrafish ESTs.

After extracting the accession number, tissue type and development stage of
zebrafish ESTs, all the different combinations of tissue types and development
stages were identified and each combination was recognized as an EST class.
Each EST class was also given a unique class identification number to be used in
the subsequent steps. Altogether 101 such classes were identified. Some of such
EST classes are shown in Table 1. Note that null values were allowed in one field
(tissue type or development stage).

From the first data set, the genes and their ESTs were extracted. Then the
IDs of ESTs were replaced by their respective EST classes. At the end of this
step, the records contained the EST classes of each gene. Then another program
was used to identify the EST classes that had a percentage higher than the cut-
off percentage and to list the items to be used in the clustering process based
on the concept of frequency levels. The cut-off percentage used was 10%. At the
end of this step, the data was ready to be clustered using frequent-itemsets.
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Table 1. Examples for EST classes

EST Class ID T issue Type Development Stage

1 myocardium, endocardium, vessel Adult
2 embryonic 6 - 48 hours post fertilization
28 olfactory epithelium null

In terms of Gene Ontology data, the first step was to separate the Gene ID
and their GO-IDs from the other data. Identifying the Gene IDs required an
additional step because the IDs used by Gene Ontology data were those defined
by Zebrafish Information Network [7]. It was also necessary to do some additional
processing regarding GO-IDs since in some records, their meaning was changed
by another field which added qualifiers such as “not” and “contributes to”.

We used a publicly available implementation of the apriori algorithm [1] to
discover frequent-itemsets. The minimum support level used for frequent-itemset
mining was 5%. Clusters of genes were identified from the entire set of genes.
In addition, the genes were divided in to groups based on the number of ESTs
found in the genes, and clusters of genes were identified from the genes of each
group. The rationale behind identify clusters in this manner is that genes having
a similar number of ESTs might have some similarity in behavior. The ranges
in the number of ESTs used in identifying groups of genes were based on similar
ranges identified in UniGene. 10 such groups were identified, which were named
G-0 to G-9. Genes of group G-0 are those listed as having no ESTs. These genes
are mainly defined based on entire RNA sequences rather than on ESTs. Such
genes do not play a major part here.

4.3 Results

Clusters of genes were identified from the entire set of genes as well as from
each group of genes other than Group 0, which was excluded from the clustering
process because genes of this group have no ESTs. Altogether 256 clusters were
identified. An attempt was also made to measure their similarity using gene
ontology data. A global similarity measure was calculated for all the genes with
gene ontology data. Then a similarity measure of each cluster was compared
with the global similarity measure. Table 2 summarizes the results.

We compared the similarity measure for genes of each cluster with the cal-
culated global similarity measure, which is 13.6042%. The details of one cluster
with a high similarity measure are presented below.

Cluster ID: G4-46 Group: G4 (5-8 ESTs) Common EST structure:
{Tissue Type = Embryo, Development Stage = 7 different stages} - 10%
{Tissue Type = null, Development Stage = myoblast} - 10%
Similarity Measure: 36.4416%
No of genes in the cluster: 345
No of genes with gene ontology data: 105
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Table 2. Clusters identified

Group # # of clusters # of interestinga clusters Highest similarity measure

All Genes 23 8 49.6712%
G-1 27 9 93.3756%
G-2 18 9 21.5147%
G-3 36 23 51.1322%
G-4 48 41 36.4416%
G-5 31 23 21.6830%
G-6 25 19 22.7529%
G-7 19 3 15.9517%
G-8 15 1 14.5355%
G-9 14 2 14.1515%

a These have a higher than normal similarity measure based on gene ontology data.

4.4 Discussion

The interestingness of the clusters of genes identified arises from the fact that
they are active in the same tissue type and the same development stage. If
the genes of a cluster that have gene ontology data exhibit a similarity in gene
ontology data, it would probably indicate that these genes have a higher level
of similarity. However, a higher similarity in gene ontology data can not be seen
as directly leading to the conclusion that the genes of that cluster have similar
behavior. It depends on several other factors also. The quality of the results
is affected by the manner in which the data regarding ESTs are presented in
GenBank. Currently, a consistent terminology is not used to describe tissue
types and development stages and therefore two terms might in fact mean the
same thing. A consistent terminology would lead to more accurate results.

This work demonstrates the use of the technique of clustering based on
frequent-itemsets and frequency levels. Since it is a generic technique, this can
be used in other domains as well. One obvious candidate for its application
is the domain of text documents, where clustering based on frequent-itemsets
have previously been used. The use of frequency levels together with frequent-
itemsets would result in better clusters here. In addition, it can be applied in
several other situations. One example would be to identify precincts or other
geographical areas whose populations show a similarity based on factors such as
ethnicity, religion or age.

5 Conclusion and Future Work

Our work shows that the technique of clustering based on frequent-itemsets and
frequency levels is capable of identifying clusters in an effective manner. More
research work is needed to ensure its applicability in different domains. It is
important to show that this clustering technique can be generic rather than
being restricted to a particular area. Such work would also be required to verify
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that the overlapping and non-exhaustive nature of the discovered clusters do not
seriously hamper their usefulness. It is also necessary to verify the usefulness of
the gene clusters discovered based on their EST makeup and to extract more
information from them. The work presented in GEPIS [4] and EST miner [5]
can be investigated more thoroughly as a part of such an exercise.
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Abstract. In this paper, we propose an accurate and efficient method
for approximate subsequence search in large DNA databases. The pro-
posed method basically adopts a binary trie as its primary structure
and stores all the window subsequences extracted from a DNA sequence.
For approximate subsequence search, it traverses the binary trie in a
breadth-first fashion and retrieves all the matched subsequences from
the traversed path within the trie by a dynamic programming technique.
However, the proposed method stores only window subsequences of the
pre-determined length, and thus suffers from large post-processing time
in case of long query sequences. To overcome this problem, we divide a
query sequence into shorter pieces, perform searching for those subse-
quences, and then merge their results.

Keywords: DNA database, approximate subsequence search, suffix
tree.

1 Introduction

Since the size of DNA databases is increasing considerably in these days, methods
of fast indexing and query processing are essential for efficient DNA subsequence
search. The suffix tree [4] has been known to be a good index structure for DNA
subsequence search. Recently, there have been many research efforts on efficient
construction and query processing with suffix trees [5][10][4]. The suffix tree still
has the following drawbacks due to its structural features [3][4][11]: (1) high
storage overhead, (2) poor locality in disk accesses, and (3) difficulty in seamless
integration with DBMS.

In this paper, we propose a novel index structure that supports DNA sub-
sequence search efficiently and also resolves the drawbacks of the suffix tree
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mentioned above. The proposed index structure basically adopts a trie [4] as
its primary conceptual structure and realizes the trie by pointerless binary bit-
string representation [13]. It extracts subsequences of the pre-determined length
from every possible position of a DNA sequence, and stores only those subse-
quences in the index. They are called window subsequences and their length is
usually much smaller than the average length of all the suffixes within a DNA
sequence. This method is devised based on the observation that the length of
longest common prefixes among suffixes in a DNA sequence is fairly small.

The DNA subsequence search with the proposed method uses the dynamic
programming technique [4] and finds all the similar subsequences that exist on
the paths of a binary trie. By traversing the trie index in a breadth-first fashion,
it accesses each related page within the index only once. However, the proposed
method stores only the window subsequences of the pre-determined length, and
thus suffers from large post-processing time in case of long query sequences.
To overcome this problem, we divide such a long query sequence into shorter
ones, and then perform subsequence search for each of them. This alleviates the
problem of performance degradation even with long query sequences.

2 Related Work

The performance of DNA subsequence search can be improved by exploiting
indexing mechanisms. The methods proposed in references [1][2][12] employ the
inverted index, which has been frequently applied in the area of information re-
trieval. They extract words , fixed length intervals overlapped with one another,
from every sequence, and build a posting list of <sequence number, offset> for
each word. The method proposed in reference [6] maps every subsequence into a
point in multidimensional space by the wavelet transform, and then constructs
a multidimensional index on those points. By using the index, it processes range
queries and nearest neighbor queries. This method enjoys nice search perfor-
mance owing to a relatively small size of the index.

The suffix tree [4] is an index in a form of a persistent tree, and has been
widely used in DNA subsequence search. Previously, it is not easy to construct a
disk-resident suffix tree whose size is larger than that of main memory. Recently,
reference [5] proposed a method for suffix tree construction by using the concept
of partitioned suffix trees. Also, reference [10] proposed a top-down disk-based
approach for efficient construction of suffix trees. Reference [7] proposed an ap-
proach for similar subsequence search that returns the results in the similarity
based order by using dynamic programming and the A*-algorithm. However, the
performance of approximate subsequence search with the suffix trees deteriorates
as the length of a query sequence or a tolerance increases. A query partition-
ing method was proposed to solve this problem [8]. It partitions a given long
sequence into shorter ones, and performs subsequence search for each of them
with a smaller tolerance. Then, it merges the results thus obtained from all the
subsequence searches.
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3 Indexing Method

The suffix tree, which is a compressed digital trie built on all the suffixes of given
sequences, has been known to be a good index structure for DNA subsequence
search [4]. The suffix tree can compress input data sequences substantially when
they have a lot of common prefixes. A DNA sequence can be considered as a string
from the alphabet

∑
= {A, C, G, T }. Since the size of the alphabet is very small

(which is 4), it is likely that there exist a considerable number of common prefixes
in the suffixes of input sequences. However, longest common prefixes(LCP ) in the
suffixes extracted from DNA sequences are commonly very short.
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Figure 1 shows distribution of lengths of LCPs in suffixes extracted from a DNA
sequence. We have used a 28.6Mbp DNA sequence in human chromosome 21 for
the analysis. We have observed that the average and maximum lengths of LCPs
in suffixes are 15 and 451, respectively, and that the number of suffixes that share
LCPs whose length is 13 is largest(about 7.2 millions). Also, most suffixes share
LCPs of a length 11 to 15, and 82.6% of LCPs have a length 1 to 15.

Based on this observation, we build an index not on all the suffixes extracted
from a DNA sequence but only on their prefixes with a pre-determined length.
That is, we place a sliding window of the length |W | at every possible position
of a DNA sequence, extract the subsequences covered by all the windows from
a DNA sequence, and then insert them into the trie. We call these subsequences
window subsequences . From our LCP analysis, we set the length |W | as 15. We
extract |S| window subsequences from a DNA sequence S. The indexing with
such window subsequences contributes to decrease the index size significantly
and also makes the search of a leaf node simplified.



924 J.-I. Won et al.

To represent all the symbols in the alphabet, we use the minimum number of
bits instead of using one byte, thereby achieving high compression ratio. Figure 2
shows binary codes to represent all the symbols in DNA sequences. Here, N, S,
and Y denote wild-card characters [12] and ‘$’ denotes a special character used
for padding to make all the window subsequences have a length of |W |. Given
sequence S = ‘ACGACT’, we extract window subsequences whose length is 4
from S, allocate 3 bits for each symbol as shown in Figure 2, and represent each
window subsequence into a corresponding binary bit-string as shown in Figure 3.
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Fig. 5. Internal representation of
the binary trie in Figure 4

In earlier work [13], we proposed a disk based index structure for efficient
DNA sequence matching, exploiting the basic concept of pointerless binary tries.
Pointerless binary tries require an alphabet to have only two symbols of 0 and 1.
This makes every node have at most two outgoing edges. In this representation,
the symbols on edges do not need to be stored explicitly if the following rules
are enforced: (1) the outgoing edge labeled with 0 is assumed to connect to the
left child node, and (2) the outgoing edge labeled with 1 is assumed to connect
to the right child node. Our index structure basically adopts the binary trie
as its primary conceptual structure. It consists of three parts: a binary trie, a
page table, and a leaf table. The binary trie is an index structure storing all the
window subsequences extracted from a DNA sequence. The page table stores
the link information for pages within the binary trie. The leaf table stores the
starting offsets of window subsequences within a DNA sequence. Figure 4 shows
a binary trie constructed from the window subsequences of Figure 3. Here, node
numbers in the trie are determined by the order of nodes being written into
a disk page. Figure 5 shows its internal representation. The node structure is
represented by a two-bit number and then is written into an appropriate page.
In Figures 4 and 5, the rectangles of dotted lines represent pages stored in disk.
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4 Query Processing Method

To discover all the subsequences similar to a query sequence Q, most similarity
search algorithms [5][7][8][4] based on a suffix tree traverse the tree in a depth-
first fashion and, during the traversal, they build a dynamic programming (DP)
table [4] using Q as its Y-axis and the sequence on the path from the root to the
node being visited currently as its X-axis. We could apply such similarity search
algorithms to binary tries. However, the proposed trie index contains only a two-
bit number of each node. As a result, pointers from parents to their children,
node levels, and subsequences on the paths from the root can not be extracted
directly from the proposed trie index. Therefore, we need to uncover this implicit
information whenever reading a new page during the traversal of the proposed
binary trie. In addition, our binary trie is a disk-based index structure where
the nodes on the same level are stored consecutively within a disk page. As a
consequence, when we traverse all paths of the binary trie, we may access the
same node multiple times within a single page and/or the same disk page more
than once.

To solve the problem of accessing the same nodes and/or same disk pages mul-
tiple times, we propose to traverse the binary trie in a breadth-first order. That
is, by visiting the nodes of the binary trie in a breadth-first fashion, our proposed
Search-Trie() shown in Algorithm 1 effectively finds all the subsequences whose
edit distances to a query sequence Q are not larger than a distance tolerance T .

Let us explain briefly how Search-Trie() operates. The algorithm employs two
queues, Qpagenumber for examining data pages sequentially and Qnode for visit-
ing the trie nodes of a current page one by one. The whole algorithm consists of
two ‘while’ loops, an outer loop for data pages and an inner loop for trie nodes
of a current page. For each child node CNi of a current node current Node, we
execute the following steps (Lines 7-19). First of all, we assign TRUE to vari-
able moreV isit which indicates whether or not we need to traverse the index
further downwards (Line 8). Function AppendBitString() creates CNi Path, the
path from the root to node CNi, by extending the path from the root to node
current Node into node CNi (Line 9). If the length of CNi Path becomes a mul-
tiple of 3, we compose a new symbol by aggregating the last 3 bits of CPi Path
and then call function AddColumn() (Line 11). Function AddColumn() adds a col-
umn for the new symbol to the DP table constructed so far (i.e., current DPT ),
which results in a new DP table DPT CNi.

Let dist be the value at the last row of the last column of DP table DPT CNi

(Line 12). If dist is not larger than distance tolerance T , all the subsequences
containing the sequence on path CNi Path as their prefixes should be included
in an answer set. Therefore, in such a case, we call function FindAnswers() where
all leaf nodes under node CNi are retrieved with their sequence and offset infor-
mation. After that, we assign FALSE to variable moreV isit in order to indicate
more extension of path CNi Path is unnecessary (Line 15).

On the contrary, if dist is larger than distance tolerance T , we call function
FurtherVisit() which determines whether or not we have to go down under CNi.
Lines 18 and 19 are executed only when variable moreV isit is TRUE. If node
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CNi is a leaf, we cannot decide if CNi is an actual answer and thus should
perform the post-processing of CNi by executing function FindCandidateAnswer()
(Line 18). This step is necessary for processing query sequences longer than
window subsequence W . If node CNi is not a leaf, we push node CNi onto
Qnode by calling function CheckpageAndPush() and continue the execution of
the algorithm. Note that, if the number of nodes already processed within a
current page reaches the maximum number of nodes (i.e., maxNode) that can
be stored within a single page, we locate the next data page by looking up page
table P and then push it onto Qpagenumber and its root node onto Qnode.

Since the binary trie has been built from a set of window subsequences of
a fixed length, function FindCandidateAnswer() has to be executed when query
sequences are longer than the window subsequences. However, in most cases,

Algorithm 1. Query processing algorithm Search-Trie

Input : binary trie I , query sequence Q, tolerance T , page table P , leaf table
L, maxNode M

Output: set of answers answerSet

1 push(Qpagenumber, Root pageNumber);
2 push(Qnode[Root pageNumber], RootNode);
3 while notEmpty(Qpagenumber) do

4 pageNumber = pop(Qpagenumber);
5 while notEmpty(Qnode[pageNumber]) do

6 current Node = pop(Qnode[pageNumber]);
7 for each child node CNi of the current Node do

8 moreVisit = TRUE;
9 AppendBitString(CNi Path, current Node, CNi);

10 if BitCount(CNi Path) mod 3 == 0 then

11 DPT CNi = AddColumn(current DPT , CNi Path);
12 Let dist be the last row value of the new added column;
13 if dist <= T then

14 answerSet = answerSet
⋃

FindAnswer(CNi, L);
15 moreVisit = FALSE;

16 else
moreVisit = FurtherVisit(DPT CNi);

17 if moreVisit then

18 if terminal Node(CNi) then
answerSet = answerSet

⋃
FindCandidateAnswer(CNi, L);

19 else
CheckpageAndPush(Qpagenumber, Qnode, CNi, P , M);



A Practical Method for Approximate Subsequence Search in DNA Databases 927

the number of candidate answers grows quickly as |Q| − |W | becomes larger.
In this paper, we propose to use a partition-based query processing [8] which
circumvents this situation by decomposing a long query sequence into multiple
pieces and then treating each piece as a separate query.

The proposed partition-based query processing algorithm is shown in Algo-
rithm 2. Function Search-Trie-By-SubQuery() partitions a query sequence Q into
p subqueries of appropriate lengths (Line 1). The number of subqueries and the
length of each subquery are determined by considering how the performance of
function Search-Trie() changes with respect to the length of a query sequence.
For each subquery SQi obtained in the previous step, we perform the similarity-
based searching by calling function Search-Trie() of Algorithm 1 (Lines 2-3). Note
that the distance tolerance of each subquery is adjusted to �T/p�. At last, we
construct a final answer set after executing function postProcessing() with a set
of candidate answers candidateSet (Line 4). When offset i is given as a candidate
answer, the post-processing step retrieves the corresponding data subsequence
S[i − |Q| − T , ..., i + |Q| + T ] and computes its distance to Q using dynamic
programming.

Algorithm 2. Query processing algorithm Search-Trie-By-SubQuery

Input : binary trie I , query sequence Q, tolerance T , page table P , leaf table
L, maxNode M

Output: set of answers answerSet

1 p = partitionQuery(Q, T );
2 for each subquery SQi do

3 candidateSet = candidateSet
⋃

Search-Trie(I , SQi, �T/p�, P , L, M);

4 answerSet = postProcessing(candidateSet, Q, T );
5 return answerSet;

5 Performance Evaluation

In this section, we show the effectiveness of our approach via performance eval-
uation with extensive experiments. We compared the performances of the three
approaches Search-Trie, Suffix, and SW: (1) Search-Trie represents our approach
that employs the pointerless binary trie as an index structure. Note that the win-
dow size is 15 (i.e., |W | = 15). (2) Suffix is an existing approach based on the suf-
fix tree. We implemented the suffix tree by utilizing the source code of the TDD
(Top-Down Disk-Based) technique [10] downloaded from http://www.eecs.umich.
edu/tdd. (3) SW is the Smith-Waterman algorithm [9] based on dynamic program-
ming. As a data set, we used two Homo sapiens chromosome sequences, chro-
mosome 21 (chr 21) of 28.6 Mbps and chromosome 19 (chr 19) of 56Mbps. The
hardware platform is the Pentium IV 3.2GHz PC equipped with 1 Gbytes main-
memory. The software platform is Redhat Linux 9 (Kernel Version 2.4.20).
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Fig. 6. Index sizes of the two approaches with increasing data set sizes

In Experiment 1, we compared Search-Trie with Suffix in the respect of an
index size. Figure 6 summarizes the size of each index component of the two
approaches with changing data sizes. From the experimental result, we observe
that the index size increases linearly in proportion to the data size in both ap-
proaches. However, in comparison with Suffix, the proposed Search-Trie saves
about 40% storage space.

In Experiment 2, we compared Search-Trie and Suffix in the respect of the
elapsed time for approximate subsequence search. The total elapsed time is the
time spent in finding all the subsequences whose edit distances to a query se-
quence are not larger than tolerance T . We also examined the total number of
hits returned by Search-Trie and Suffix.
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Figure 7 shows the elapsed times of approximate subsequence search by Suffix
and Search-Trie with various query sequence lengths. The distance tolerance T
is set to 10% of the length of the query sequence. Search-Trie outperforms Suffix
when query sequences are not so long. Search-Trie runs 4 to 9 times faster than
Suffix when query sequences are shorter than 40. However, the performance of
Search-trie deteriorates as query sequences get longer. This is because Search-
Trie generates many candidate answers, which result in much time being spent
for post-processing when |Q| � |W |. Next, Figure 8 shows the elapsed times of
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approximate subsequence search by Suffix and Search-Trie with various tolerance
values. The query sequence length is fixed to 30 in this experiment. Search-Trie
outperforms Suffix when tolerance values are not so large. Compared with Suf-
fix, Search-Trie is about 4 to 17 times faster when tolerance values are less than
4. However, the performance of Search-trie deteriorates as tolerance values get
larger. This results from the fact that the number of candidate answers increases
as tolerance values become larger.

On the other hand, Suffix shows better performance for long query sequences
or large tolerance values. For large DNA sequences, however, Suffix becomes
impractical when query sequences are too long or tolerance values exceed a
certain threshold. This is because, in such cases, Suffix has to traverse a huge
index structure in a depth-first order and therefore needs to access a large number
of index pages repeatedly. The experimental result reveals that Suffix on the data
sequence of 56 Mbps (i.e., chr 19) cannot handle the cases of either (|Q| = 60
and |T | = 6) or (|Q| = 30 and |T | = 6).

In Experiment 3, we compared the performance of Seach-Trie-By-SubQuery
with that of Search-Suffix-By-SubQuery. Seach-Trie-By-SubQuery denotes our ap-
proximate subsequence search approach based on Search-Trie and a query parti-
tioning method with optimal p values. Search-Suffix-By-SubQuery denotes another
approximate subsequence search approach based on Suffix, instead of Search-Trie,
with the same query partitioning method. We also included the traditional algo-
rithm SW in this experiment. When we apply the query partitioning method to
Suffix or Search-Trie, we determine optimal p values by considering both the per-
formance of index searching and the overhead of post-processing. To select optimal
p values, we utilized results of Experiment 2.

Figure 9 shows the total elapsed times of the three approximate subsequence
search approaches. The data sequences used in this experiment is chr 19 of
56Mbps. Also, the tolerance value T is set to 10% of the length of the query se-
quence. The query sequences are partitioned into subquery sequences of length
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25 in Seach-Trie-By-SubQuery. Also, the query sequences are properly partitioned
into subquery sequences of length 20 or 40 in Seach-Suffix-By-SubQuery. Accord-
ing to our experimental results, we see that our method performs better than the
other two methods and returns the answers very quickly even with large DNA
data sequences. Search-Trie-By-SubQuery shows good performance regardless of
the length of query sequences, and achieves 3 to 9 times speedup compared to
Search-Suffix-By-SubQuery and 75 to 200 times speedup compared to SW.

6 Conclusions

In this paper, we have proposed an index structure and a query processing algo-
rithm for approximate DNA subsequence search. The DNA subsequence search
with the proposed index uses the dynamic programming technique, and finds all
the similar subsequences stored on the paths of a binary trie. By traversing the
trie index in a breadth-first fashion, it accesses just the pertinent pages within
the index only once. In cases of a long sequence, it divides a query sequence
into a set of shorter subsequences and retrieves actually similar subsequences by
performing subsequence search for every shorter subsequence.
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Abstract. Models of document indexing and document retrieval are mainly 
based on statistical NLP method. Computation of meaning is mainly based on 
the semantics. The former makes it possible to construct a high performance IR 
system easily. However, the latter is one of the significant methods which can 
substantially make computer well understand the language. The goal of this 
paper is to find the conjoined point which can combine the advantages of both 
schemes, and thus to propose an IR approach. Consequently, a concept-based 
IR model is proposed. This model is composed of two kernel schemes: the first 
is a domain language model, which is derived from the traditional language 
model. Its basic idea is to compute the conditional probability )|( DQP . The 
concept extracting approach, which is the second kernel scheme of the proposed 
model, originates from the traditional linguistics. It can help to well extract the 
meaning of a term. Thus, we can take the concept (the formalized meaning), 
instead of the lexical term, as the processing object in the proposed model, and 
consequently resolve the word sense ambiguity. Experiments on the TREC6 
Chinese collection show that the proposed model outperforms the traditional 
TF-IDF methods, especially in the average precision and the overall search 
time. 

Keywords: Concept-based Information retrieval, Domain language model, 
Word concept, Sentence category, Clustering method. 

1   Introduction 

Most of the former or existing IR methods are based on the occurrences of terms in a 
document (or TF) and do not attempt to resolve the meaning of the terms. As we all 
know, a word may have a lot of senses. A sense can also be represented by more than 
one word. So, we doubted whether using the formalized meaning of the word, instead 
of the word itself, as the processing object can improve the accuracy of the IR system. 
Meanwhile, some research teams have fully studied the semantic space [1-3] and 
employed a formalized symbolic system to represent the space [2-3]. This symbolic 
system provide an important foundation for us to represent the word sense. On the 
other hand, the meaning of a word is implicated by the context. Therefore, the main 
task for us is to propose an approach which can accurately draw the meaning of a 
word (namely concept) according to the context based on the symbolic system.  
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After the concept can be successfully extracted, a suitable model for IR is required. 
Statistical model becomes the preferred approach since we are still not able to 
measure the semantic relevance of a query against a document within a collection 
using linguistic or even semantic method. A number of researches have, recently, 
confirmed that the language model is an effective and promising approach for IR [7, 8]. 
Therefore, we attempt to construct a suitable statistical model and apply varying 
degrees of NLU(Nature Language Understanding) scheme to the basic retrieval 
model. Consequently, we propose a domain language model. The main idea of a 
domain language model is derived from the Aspect Model [10].  

2   Related Work 

A formalized symbolic system which is used to express the meaning has been 
designed and constructed according to the needs of the NLP engineering recently [2-4]. 
It can be classified into two parts: the basal member sub-system and the sentence 
category sub-system.  

The basal member sub-system is designed for describing the meaning of the terms. 
There are 108 concept trees within this sub-system. Each tree describes a category of 
the concepts. Each node of a tree, indexed by an exclusive character strings, 
represents a concept (namely, a meaning). The connotation of the child node 
represents a narrower sense than his father node, but more concrete. An algorithm for 
semantic relativity calculation based on the basal member sub-system is also 
addressed [9]. It can be used to measure the semantic relativity between two concepts.  

Sentence category sub-system is designed for describing the meaning of sentences. 
The fundamental of this sub-system is using the finite expressions to express the 
meanings of the infinite sentences. These finite expressions are designed in advance. 
Huang concluded 57 types of primitive sentence category expressions and 57*56 
compound ones [2, 3]. As a result, the meaning of sentences can be formalized. 

The details of the symbolic system follow the definition described by MIAO [4]. 
Language modeling has been applied successfully in information retrieval [5, 6]. 

Given a document d and a query q, the basic principle of this approach is to compute 
the maximum conditional probability )|( QDP  as follows. 

)()|(maxarg)|(maxarg DPDQPQDP DD =  

If nqqqQ ∧∧∧= ...21  and they are independent (This is a basic assumption).  

∏
=

=
n

m

i DqPDQP
1

)|()|( . In order to assign a non-zero probability to the unseen words 

and to improve the maximum likelihood estimation, smoothing is involved. Most of 
the language models use the collection model as the reference model to interpolate or 
smooth the document model. 

3   Word Concept Extracting Approach 

The extracting approach is based on the semantic and linguistic relationships among 
the sentence category expressions, the semantic chunks and the words.  



934 C. Wu and Q. Zhang 

Three knowledge bases are involved in the approach. They are TCK (Term 
Concept Knowledge base), SRK (Scheduler Rule Knowledge base) and SREK 
(Semantic Relativity Knowledge base). These knowledge bases stored all the useful 
knowledge refined in advance by an assistant system [9]. They are the foundations of 
functions, ()f  and ()g . 

TCK is the key knowledge base for the extracting approach. It is like a special 
vocabulary. It stores the terms and all their corresponding concept candidates. It also 
stores all the semantic and linguistic features of a term. These features will be the 
restrictions of selecting a concept candidate of a term in a certain context. The 
affiliation information between the terms and the sentence category expressions is 
also stored in TCK. It provides the information about which sentence category 
expression should be hypothesized and which character can be used to validate the 
hypothesis according to the given terms the computer reads. SRK determines which 
sentence category expression should be hypothesized first, which one second, 
according to the words in the sentence. SREK serves the concept relativity 
calculation. Relativity calculation can help to determine the term concepts within a 
local range. SREK was constructed based on the algorithm (called AlgZ)[7] for 
semantic relativity calculation. It is somewhat like the relation definition between two 
words in WordNet.  

The details of the three knowledge bases are described in [9]. 
Processing strategy focuses mainly on the processing logic which tells computer 

how to get the sentence category expressions and the term concepts through some 
specific procedures. The whole processing strategy is an iterative procedure of ()f  
and ()g . Due to the limitations of space, we only provide the block diagram here. The 
strategy is shown schematically in Fig. 1 

Pretreatment

Perception of chunks and 
hypothesis of sentence category 

Decision of sentence category 

Composition analysis of chunks

Term conceptsSentence category 
expression

Each sentence in a document 

 

Fig. 1. The diagram of the processing strategy 

The process can be divided into four sub-stages. The first sub-stage is called 
pretreatment. The assignments in this sub-stage depend on the language it processes. 
If Chinese is processed, the word segmentation will be performed. In the second sub-
stage, the semantic chunks in the sentence and their corresponding sentence category 
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expressions will be hypothesized according to the terms in the sentence and their 
concepts recorded in CE of the TCK. The possible sentence category expressions are 
also stored in the SCE of the TCK. In order to hypothesize the chunks, the relativity 
calculation will be involved. It is used to derive the modifier of a headword or locate 
the juxtaposition of terms even without the use of coordinating or subordinating 
conjunctions. In the third sub-stage, the hypothesis made in the second sub-stage will 
be tested according to the “CC” in the TCK. The right sentence category expression 
will be proved and obtained. Composition analysis of chunks is the last sub-stage. 
Through this sub-stage, we can get all components of the chunks. Components are 
expressed by the exact term concepts. After processing, sentence category expression 
and the concept expression of each term in the sentence can be obtained.  

4   Domain Language Model 

The basic idea of the domain language model approach is to estimate the domain 
language model for a document and then to compute the likelihood that the query 
would have been generated from the estimated model. Therefore, the key issue is how 
to estimate the domain language model for a document based on the observation of a 
collection of documents. Consequently, the idea of Aspect Model [10] is introduced 
into the new model. The domain in domain language model is similar to the 
unobserved class variable in Aspect Model. As a result we can translate the domain 
language model into a joint probability model shown as following. 

∑=
p

dpPptPdtP )|()|()|(                                                      (1) 

)|( dpP  is the probability of d belonging to the domain p. )|( ptP is the probability 
of domain p generating the concept t. 

In order to obtain the unobserved domain variable p, clustering method is 
introduced into the domain language model. As a result, )|( ptP 、 )|( dpP  can be 
estimated based on the distribution of the domain-based clusters: )|( dpP  is estimated 
according to the appearance probability of the cluster p. )|( ptP  is estimated 
according to the frequency of the concept t in the cluster p. 

In the proposed cluster generation method, K-Means is adopted for its ease of 
implementation. Profited from the concept trees defined in the basal member sub-
system, the proposed method, different from the traditional method, assigned the data 
points more purposefully. According to the definition of the concept trees, 24 of the 
108 concept trees have strong and discrete domain characters [3]. Therefore, we create 
24 data points as domain seeds manually according to the concept trees. Each data 
point is a gathering of the characteristic concepts in the corresponding concept tree. 
As a result, initial domain-based clusters are assigned. After that, we use two stage K-
means (which means the algorithm only alternates two times) to generate the clusters.  
When the clustering procedure is finished, we remove the seeds from the clusters.  

The proposed method uses Kullback-Liebler distance algorithm to measure the 
correlation between a document and a cluster. The objective function follows. 

||),(

||),(
log

||

),(
),(

cctn

ddtn

d

dtn
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i

∑
∈

=                                      (2) 
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where ),( cdKL  defines the degree of correlation between a document (or a collection 

of documents: cluster) d and a document (cluster) c; ),( xtn i  is the document-concept 

weight, which is a measure of the number of occurrences of concept it  in the 

document (cluster) x; || x  is the number of concepts in the document (cluster) x.  

The procedure for the clustering algorithm is simply described in Algorithm 1. 
Algorithm 1 (Clustering algorithm) 
Input: 24 clustering seeds and the document collection 
Output: 24 clusters and the K-L distance between each document and each cluster 
Procedure:  
1. Translate the documents in the collection into their conceptual form according to the 

concept extracting approach described in Section 3, and then load them into the clustering 
candidate array },,,{ 21 mk dddDd …=∈ . 

2. Assign 24 domain seeds (data points) to the 24 initial clusters. 
},,,{ 2421 pppPpk …=∈ . 

3. For (i=1; i<=m; i++) do 
4.  For (j=1; j<= 24; j++) do 
5.       Calculate KL( id , jp ) defined as Eq. (2); 

6. End for;  
7. Assigned id  to the cluster kp  whose KL( id , kp ) is minimum. 

8. End for; 
9. Repeat 3-8; 
10. Calculate each KL( id , kp ) and save the values to a file, where Ddq ∈  and 

Ppk ∈  

 
The proposed approach computes document query similarity in two stages.  
In stage 1. All the documents will be indexed into the concepts. In stage 2, the 

query will be translated into their conceptual form.  
To accomplish stage 1, we define the conditional probability )|( DCP  as the 

probability of using concept C as the domain for document D, which is given below. 

∏
∑

∈
+

+

=
Ct

P

ii

j

D

DpPptPDtn

DCP
μ

μ

||

)|()|(),(

)|(                                                 (3) 

As can be seen from Eq. (3), the domain language model ∑
P

i DpPptP )|()|(  plays 

the role of collection estimates to compute the probability of a concept term.  
),( Dtn i  is a measure of the number of occurrences of concept it  in document D . 

|| D  is the number of concepts in document D.  

∑ −

−
=

p

pDkl

pDkl
DpP

),(1

),(1
)|( , where ),( pDkl  is the KL distance between document D  

and cluster p . The distance has been calculated in Algorithm 1 of section 4.2.2. 
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)|( sjn PwP  is a measure of the frequency of the key concept jnw  in 

cluster sP .
||

),(
)|(

s

sjn
sjn P

Pwn
PwP = . 

In stage 2, the query should be translated into its conceptual form in order to match 
the conditional probability )|( DCP  in Eq. (3). The procedural steps for translation 
algorithms are simply described in Algorithm 2. This approach are based on the 
algorithm (called AlgZ) [10] for semantic relativity calculation. 

 
Algorithm 2 (Query Translating) 
Input: a set of query keys (query) 
Output: a set of concepts and its reliability 
Procedure:  
1. Read the query keys into the candidate array },...,,{ 21 nqqqQ = ; 

2. Select all the concept candidates ic  for iq  from TCK, and load them into a set of new 

arrays },...,,{ 21 ikiii cccc = , where, 1<=i<=n, k is the number of the concept candidates of iq ; 

3. If HasRelation( ixc , jyc ) defined in AlgZ, where iix cc ∈ , ji ≠  then 

4.      The relation value R( ixc , jyc ) =1; 

5. Else  R( ixc , jyc ) =0; 

7. End if; 
8. Get the optimized array },...,,{ 21 nzyx cccC =  which has the maximum sum of relation 

values between each other; 
9. If more than one array has the same maximum sum (more than one C is returned) then 

10.  Compute ∏
=

n

j

jjk qcP
1

),(  for each C as their reliability, Cc jk ∈ . Where ),( jjk qcP , 

obtained from TCK, is the probability of query key jq  translating to jkc . 

11.    For each C do 
12. Output C and its reliability; 
13.    End for each; 
14. Else  
15.    Output C and set its reliability =1 
16. End if. 
 

 
From Algorithm 2, we can see that sometimes the output is not one set of concepts. 

In this situation, we compute the concept document similarity for each set of 
concepts, and then multiply this similarity scoring by the reliability value as the last 
scoring of the similarity.  

5   Experimental Results 

We have implemented a research prototype retrieval engine (called HNCIR) to test 
our approach. We now provide experimental results to illustrate the behavior of 
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HNCIR. The Chinese test collections are chosen from TREC6. It was 170 Mb as raw 
texts. There were 26 topics (CH 29-54) constructed.  

The TF-IDF has shown its superior performance for document indexing [12]. 
Therefore, this scheme is used as a standard for comparison with HNCIR. Some 
modification was properly applied in order to enable it to implement the Chinese IR. 

We also try to improve our probability estimates since this should yield better 
retrieval performance. We called this model HNCIR-X. This improvement of the 
estimate is to translate the queries into their conceptual form manually, and then input 
them as the new queries to the system. This can greatly help to find out the effect that 
the query translation brings us and the estimate precision of the query translation.  

We measured the recall level precisions. The test results of these 3 approaches and 
the uninterpolated average precision over all relevant docs are given in Table 1. 

Table 1. Recall Level Precision 

Precision TF-IDF HNCIR HNCIR-X 
Recall    
0 0.8010 0.9217 0.9421 
0.1 0.6021 0.8416 0.8431 
0.2 0.5322 0.7624 0.7787 
0.3 0.4642 0.6862 0.7099 
0.4 0.3774 0.6515 0.6651 
0.5 0.3213 0.5872 0.6100 
0.6 0.3059 0.5661 0.5712 
0.7 0.2292 0.4728 0.4973 
0.8 0.1611 0.4021 0.4108 
0.9 0.1041 0.2639 0.2895 
1 0.0201 0.0541 0.0511 
AvgPre 0.3321 0.5647 0.5769 

The precision results show that the proposed system outperforms the TF-IDF method. 
HNCIR and HNCIR-X increased the precision of the traditional TF-IDF method by more 
than 20%. We can also see that the precision of HNCIR-X is similar to that of HNCIR. 
There are two possible conclusions can be made. One is that the sense ambiguities of the 
query keys are not serious. The second is that the AlgZ can well match the needs of the 
query translation. Considering all the test topics, we find the first reason effects more on 
producing such a result. It seems that the query translation does not contribute a lot to the 
improvement of the system performance in the case of the TREC6 test collection. 
Nevertheless, the AlgZ-based query translation has played an important role in CH37, 
CH41, CH42, Ch46 and CH47. It greatly helps the system to explicate the user’s 
intentions through analyzing the semantic relationship between the query keys. Certainly, 
it costs some additional time to complete the estimation.  

The cost of the computational time will be explicated in the following experiments. 
Table 3 shows the comparison between TF-IDF and HNCIR. It shows that the  
sub-total processing time for Chinese IR of HNCIR are more than 1.5 times than that 
of TF-IDF, but the retrieval time of the HNCIR are less longer. So we can conclude 
that on the time criterion, IR using HNCIR has advantages over IR using TF-IDF 
from the point of view of the information seekers, but has disadvantages from the 
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point of view of the document processing users (sometimes, the service providers). 
However, For a commercial system, the satisfaction of the searchers is the top goal of 
the service providers. Therefore, the overall time cost of HNCIR is not inferior to that 
of TF-IDF.  

Table 2. Time for IR 

 TF-IDF HNCIR 
Segmentation time 
(concept extracting time) 4 H 44 M 7 H 36 M 
Indexing time 1 H 25 M 2H 08 M 
Sub-total 6 H 09 M 9 H 44 M 
Retrieval time 7 M 5 M 

6   Conclusions 

In this paper, we have proposed an information retrieval model. In this model, we 
tend to apply the NLU schemes to the SNLP (Statistical NLP) methods. The goal of 
addressing this issue is to study a new approach, which can take advantage of both the 
NLU and the SNLP, to better serve the IR. The experiments in which the proposed 
approach was compared with the traditional TF-IDF method highlighted the better 
performance of the proposed scheme, especially with regard to the average precision. 
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Abstract. Incremental learning is of more and more importance in real world 
data mining scenarios. Memory cost and adaptation cost are two major concerns 
of incremental learning algorithms. In this paper we provide a novel incremental 
learning method, AttributeNets, which is efficient both in memory utilization and 
updating cost of current hypothesis. AttributeNets is designed for addressing 
incremental classification problem. Instead of memorizing every detail of his-
torical cases, the method only records statistical information of attribute values of 
learnt cases. For classification problem, AttributeNets could generate effective 
results interpretable to human beings. 

1   Introduction 

Incremental learning ability is vital to many real world machine learning problems [8]. 
The common characteristics of these problems are that either the training set is too large 
to learn in a batched fashion, or the training cases are available as a time sequence. We 
need machine learning methods updating their hypothesis only with the latest cases, i.e. 
in incremental fashion. Much work has been done to provide incremental learning 
ability for the classification problems. 

While most powerful classification methods suffer from the problem that their 
results are hard to understand (e.g. neural networks, support vector machine), others 
give interpretable, but usually less effective results. Among the latter ones are decision 
tree, rule induction methods, several graph based methods and rough set based 
methods. Decision tree is a widely used structure for classification. Utgoff proposed 
three incremental decision tree induction algorithms: ID5 [5], ID5R [5], and ITI [6]; 
rule induction methods are also efficient solutions of classification tasks and have been 
extended to solve incremental learning problems [9]; Galois (Concept) lattices and 
several extensions are data structures based on Hasse graph [1, 3] and are widely used 
in incremental classification and association rule induction; Rough set based methods 
produce a decision table of a sequence of rules for classification [9]. 

                                                           
  ∗ Support by National Nature Science Foundation of China(Grant Number 60372053). 
**  Corresponding author. 
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Recently, Enembreck proposed a data structure named Graph of Concepts (GC) [2] 
for incremental learning. GC is composed of several attribute layers each representing 
an attribute, and a classification layer representing the categories. The attribute layer is 
comprised of several attribute nodes mapping to the values of this attribute and the class 
layer is comprised of some classification nodes each mapping to a category. During the 
learning phase, it records all the cases by attaching the case sequence number to the 
corresponding node when the value of the attribute equals the node’s value for each 
attribute layer and the classification node that the case belongs to. Then they used an 
entropy based method named ELA to utilize the information stored in GC for 
classification. ELA tags a label to the unlabeled case the same as the most similar 
case(s). 

However, there are the following defects with these incremental methods: 

a) Bad memory utilization: many algorithms need to record historical cases for 
updating. This limits the scalability of these methods (decision tree, rule 
induction, ELA, Galois lattice, rough set based methods) 

b) Inefficiency of updating hypothesis (decision tree methods, rule induction, Galois 
lattice, rough set based methods) 

c) Vulnerable to screwed data or noisy data (decision tree methods, Galois lattice, 
ELA) 

To address these problems, we design a novel incremental learning algorithm which 
is based on the structure called AttributeNets. It outperforms most of incremental 
algorithms with our special concerns on the memory and adaptation computation costs, 
and the classification results are easy to understand. 

The rest of this paper is structured as follows: in Section 2 we give the definition of 
AttributeNets; the learning algorithm based on AttributeNets is given in Section 3 
while the classification algorithm is elaborated in Section 4; in Section 5, we give a case 
study to evaluate the performance of our method; finally, the conclusions and the future 
work are given in Section 6. 

2   AttributeNets Structure 

For each category, we construct an isomorphic structure named AttributeNet. With 
AttributeNets, we refer to the combination of these individual nets. Similar to GC, 
each AttributeNet is composed of several attribute layers comprising of attribute 
nodes (node for short). Likewise, each layer corresponds to a specific attribute of 
cases, and a node in the layer corresponds to a specific value of this attribute. 
However, there are two significant differences between GC and AttributeNet: first, 
AttributeNet does not have classification layer being that each AttributeNet simply 
refers to only one category; second, instead of attaching the case sequence number to 
each node, we only save the statistical information in AttributeNet. Each node keeps 
a counter (node degree) to record how many cases belong to this node; for any of two 
nodes, another counter (link degree) is kept recording how many cases belong to both 
nodes. 
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For explanation, we consider a simplified classification problem. There are three 
categories, and each case has 4 attributes that have the value of either 0 or 1. For each 
category, an AttributeNet is constructed, i.e. there are three isomorphic AttributeNets. 
One of them is illustrated in Fig. 1. 

Table 1. Node value of the AttributeNet in Fig. 1 

A11

A41

A20

A40

A31

A10

A30

A21

Layer Node Node Value 
A10 0Layer1
A11 1
A20 0Layer2
A21 1
A30 0Layer3
A31 1
A40 0Layer4
A41 1

 
Fig. 1. A 4-layer AttributeNet 

Definition 1 (Node). Node is the basic unit in AttributeNet. A node represents a 
specific value (node value) of an attribute and keeps a counter (node degree) counting 
the number of cases that has this value for the specific attribute. In Fig. 1, 

)10,41( ≤≤≤≤ jiAij
 are all nodes. We say that a node

ijA  is activated by a case if 

the ith attribute of the case has the node value of ijA . 

Definition 2 (Layer). Each layer represents a specific attribute of the cases. So a layer is 
composed of several nodes representing the corresponding values of this attribute. In 
Fig. 1, )41( ≤≤ iAi  are layers, each layer is composed of two nodes: 

0iA and
1iA .  

Definition 3 (Node Link). There are links between any two nodes of different layers. If 
a case belongs to both nodeand ijA node gfA , the link degree between these two nodes 

increases by 1. The initial link degree of any two nodes is 0. Note: the link degree 
between any two nodes of the same layer is always 0. 

Definition 4 (AttributeNet and AttributeNets). An AttributeNet is composed of several 
layers with each of which represents a specific attribute of cases. Each AttributeNet 
represents only one category in the classification problem. With AttributeNets, we refer 
to the combination of these nets.  

3   AttributeNets Learning Algorithm 

The learning process of AttributeNets is straightforward and efficient in time 
complexity which makes our method suitable for online learning. 

AttributeNets memorizes statistic information of attribute values and relationships 
between any two of values of different attributes, with consideration of cases of only 
the net’s own category. 
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Algorithm 1: (AttributeNets learning algorithm) 
Input: AttributeNets ( CategoriesiAttri ≤≤1, ) to be updated, new 

training case (Case)  
Output: Updated AttributeNets 
Step1: )(CasecategoryOfi =  

Step2: For Layersj ≤≤1  

++]][[_ kjdegreenode ]][[_( kjdegreenode is the 

degree of the nodejk which is one node of layer j of Attri and 
is activated by Case) 

Step3: For Layersj ≤≤1  

For Layersu ≤≤1  

    ++]][][][[ vukjelink_degre ]][][][[( vukjelink_degre is the 

degree of the node link between the activated nodes, i.e. 
nodejk of layer j and nodeuv of  layer u of Attri) 

Step4: End                                                                                                □ 

When a training case of category i comes, AttributeNeti is activated while other nets 
other than category i are simply ignored by this case. With AttributeNeti, for each 
attribute of the case, i.e. each layer of AttributeNeti, we increase the degree of node if 
this attribute has the value identical to the node value. For any two nodes of different 
layers, we increase the link degree between these two nodes by 1 if both nodes are 
activated by the case. 

Take the classification problem mentioned in Section 2 for example, in Table 2, 
there are 4 training cases of category 1, after training, the node degree and link degree 
of AttributeNet1 are illustrated in Table 3, while values of AttributeNeti of category 
other than 1 are not changed by these cases. 

Table 2. The training cases Table 3. Degree of nodes and links between nodes after 
training 

No. @1 @2 @3 @4 

1 0 1 0 1 

2 1 1 0 1 

3 0 1 1 0 

4 1 1 1 0 
 

 A10 A11 A20 A21 A30 A31 A40 A41 

A10 2 0 0 2 1 1 1 1 

A11 0 2 0 2 1 1 1 1 

A20 0 0 0 0 0 0 0 0 

A21 2 2 0 4 2 2 2 2 

A30 1 1 0 2 2 0 0 2 

A31 1 1 0 2 0 2 2 0 

A40 1 1 0 2 0 2 2 0 

A41 1 1 0 2 2 0 0 2 
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The AttributeNets is learnt case by case and the learning result is independent of the 
order in which cases are learnt. When new case comes, we only need to increase the 
node degree of the nodes and the link degree of node links it activates. The time and 
memory cost of learning process are ),( 2nO  where n is the number of nodes of 

AttriuteNets. 

4   AttributeNets Classification Algorithm 

The learning process and the classification process could be intertwined in 
AttributeNets method. This ability is favorable in online learning scenario. In this 
section, a classification algorithm is given based on AttributeNets. 

Algorithm 2: (AttributeNets classification algorithm) 
Input: AttributeNets ( CategoriesiAttri 1, ) been learnt, new case 

(Case) with its category unknown 
Output: Category c of Case 
Step1: For Categoriesi1

1ir
Step2: For Categoriesi1

For Layersj1

]][[_ jidegreenoderr ii ]][[_( jidegreenode is

the value of the activated node by Case in layer j of Attri,
is a small number preventing ri to be 0) 

Step3: For Categoriesi1

For Layersj1

For Layersk1

    )]][][[( kjielink_degrerr ii

is the value of the node link 

between the activated nodes of layer j and layer k of 
Attri, is a small adjustment preventing ri to be 0) 

]][][[( kjielink_degre

Step4: Return i which )( irMaximize  

The time complexity and space complexity of algorithm 2 are both ),( 2nmO ×  where 
m is the number of categories, n is the number of nodes in each AttriuteNet. 

Moreover if the node degree of active nodes and the link degree of active links 
between two nodes of AttributeNets are investigated, through comparing these values 
from different nets, not only we could find out which category the case belongs to,  
but also could we find out which value is vital for the classification decision.  
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The classification result is interpretable to human because there exists an injection 
between layers of AttributeNets and attributes of cases. 

5   Performance Evaluations 

The performance of AttributeNets is a significant improvement of its counterparts. In 
this section we give the comparison results of AttributeNets and the related 
algorithms on the MONK-3 [10] classification benchmark set for the performance 
verification. 

5.1   Performance and Robustness Evaluations of AttributeNets 

MONK-3 problem is a widely used benchmark data set for classification algorithms 
evaluation. There are two categories denoted by 0 and 1, and each case has six 
attributes. The valid values of each attribute are listed in Table 4. The case which 
satisfies )32@45(@)14@31(@ ≠∧≠∨=∧= belongs to category 1; otherwise it 

belongs to category 0. 

Table 4. Possible values of the attributes in MONK-3 

@ attribute1 {1,2, 3} @ attribute2 {1,2, 3} @ attribute3 {1,2} 
@ attribute4 {1,2, 3} @ attribute5 {1,2,3,4} @ attribute6 {1,2} 

For each category, an AttributeNet is constructed. Therefore, there are two nets 
representing category 0 and category 1, respectively. For training, 150 training cases 
are generated randomly, 5 percent of which are noisy cases, i.e. there are 8 mislabeled 
training cases. Then we generate randomly 100 test cases to be classified on three 
different platforms: AttributeNets, ELA, and ID5R [5]. The comparison results are 
shown in Table 5. AttributeNets outperforms other algorithms in both precision and 
time cost of learning and classification. 

Table 5. Performance comparison of AttributeNets, ELA and Decision trees on MONK-3 

 AttributeNets ELA Decision Tree(ID5R) 
Precision (%) 199 ±  1065 ±  392 ±  

Learning Time(ms.) 16 15 157 
Classification Time(ms.) 31 47 32 

Also we carry out robustness tests on AttributeNets to see its performance in the 
cases of the noisy training data and the scarcity of training cases. The basic settings are 
the same as the above. First we increase the number of training cases from 25 to 175 in 
order to investigate the influence of training set size. Then noisy data of the percentage 
varying from 5 to 50 are mixed in the training set. The classification results are shown 
in Fig. 2(a) and (b), respectively. 
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(a) Precision climbs as the size of
training data set grows
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(b) Precision declines as the percentage
of noisy data grows
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Fig. 2. Robustness test of AttributeNets with varying size of training set and noisy data  

We conclude that AttributeNets is robust with noisy data (as the percentage of noisy 
data runs up to 30%, the precision is still as high as 87%) and it works quite well with 
only a small size of training set available. 

5.2   Performance Discussion 

As Utgoff in [6] pointed out, there were 12 design principles that should be considered 
when designing an incremental learning classification system. We summarize them as 
the following: 

1) The update cost of the method must be small 
2) Input: the method should accept cases as input described by any mix of symbolic 

and numeric variables, sometimes continuous variables 
3) Output: the method should be capable to handle multiple classes as well as two 

classes 
4) Fault tolerance: the method should be strong enough to handle noisy data and 

inconsistent data 
5) Capable of handling screwed data: the method should take the possibility that the 

data between categories are unbalanced into consideration 
6) Capable of handling some problems with strong relationships among several 

attributes, like MONK-2 problem [10] 

Our method satisfies principle 1, 3, 4, 5; partly satisfies principle 2 because we have 
not taken continuous attribute into account. The limitation of our method is that it only 
considers the relationships between any two attributes, therefore, if there are 
relationships between more than two attributes, like MONK-2, our method does not 
generate results as good as Neural Networks. 

6   Conclusions and Future Work 

Incremental learning algorithms provide new opportunities for industry whilst put 
forward new challenges to researchers: (1) how to memorize the knowledge been learnt 
for further updating without recording every case learnt before; (2) how to avoid (or 
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keep) order effects in which cases have been leant; (3) how to design fast updating 
algorithm; (4) how to make learning results interpretable to human. Trying to solve 
these problems, we have designed a new data structure (AttributeNets) and algorithms 
for incremental learning and classification. The advantages of our algorithm are in four 
folds:  

1. It is in itself a multi-category classifier because of multi-nets structure 
2. It is outstanding in memory utilization and adaptation speed which is of vital 

importance for incremental learning, specially online learning  
3. The classification results are easy to understand 
4. It is robust with the noisy data and the scarcity of training cases 

Our future work includes: first, extensions could be made to enrich AttributeNets 
structure to improve classification precision; second, aside from the classification 
problems, AttributeNets could be naturally extended to induct association rules, which 
are also important data mining problems. 
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Abstract. Personalization services pose new challenges to interest mining on 
Portal. Capturing the surfing behaviors of users implicitly and mining interest 
navigation patterns are the top demanding tasks. Based on the analysis of 
mapping the personalization interest behaviors on Portal, a novel Portal-
independent mechanism of interest elicitation with privacy protection is 
proposed, which implements both the implicit extraction of diverse behaviors 
and their semantic analysis. Moreover, we present a hidden Markov model 
extension with personalization interest description of Portal to form interest 
navigation patterns for different users. Then experiments have been carried out 
in order to validate the proposed approaches. 

Keywords：Portal, interest behavior, implicit interest elicitation, hidden Markov 
Model (HMM), navigation patterns. 

1   Introduction 

With the upcoming era of Web2.0, the resource integration and personalization 
technologies on Portal platform are becoming well-developed. Portal offers many 
powerful functions to customize desktops for users, so as to enable the user interests 
more various. Consequently, discovering and extracting the personalization interests 
from Portal are the essential tasks performed with understanding the preferences and 
access patterns. The implicit interest elicitation method can analyze trace data from 
log histories to find the interest features and relevant degrees, reducing the noise due 
to user participation. So it is significant in practice with the benefits to interest 
representation and well modeling, especially to user privacy protection. Various 
implicit schemes have been proposed in the related literature, e.g., based on intelligent 
agent [1], frequent user traversal paths discovery[1-4], site organization learning[5] and 
re-classification[6]. However, these traditional approaches with the restriction of the 
behaviors extraction cannot address the issues of personalization interests mining in 
Portal. 

Furthermore, the existing web usage mining (WUM) techniques[1-4,6] lack the 
explanation on visit intentions and interest navigation trends. In general, navigation 
patterns can assist the designers of web site to understand the user access 
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characteristics, adjust the structure reassembling and carry out the advertisements. As 
well, it is a critical issue for the Portal organizers to improve the personalization 
service quality by mining interest navigation patterns adaptively. Shi[7] presents a 
novel method to deal with interest navigation problems based on the hidden Markov 
model in order to discover users’ interest navigation patterns, which seems some 
special association rules essentially and can be computed by an incremental 
algorithm. This approach is mainly processing uniform interest results of all users but 
lack of personalization descriptions, so it also leads to the need for its statement 
complement in Portal interest mining. 

In this paper, we explore the mapping of the personalization interest behaviors 
on Portal. Then we briefly present a novel Portal-independent mechanism of 
interest elicitation supporting privacy protection, with solutions to implement 
implicit extraction of diverse access behaviors and corresponding semantic 
analysis. Emphasizing the association effect of interest weights and the prediction 
on interest intentions, we extend the hidden Markov model with personalization 
interest description of Portal forming interest navigation patterns for different 
users. 

2   Mapping of the Personalization Interests on Portal 

2.1   Basic Definitions 

In this section, some definitions and assumptions are given as follows: 

Definition 1. Each interest content on Portal points the classified concept object 
which the user interests in or accesses on the personalization desktop. Let 

{ } { } { }{ }nml TabTabLinkLinkPortletPortletIC LLL ,,,,, 111=  be the finite Interest Content Set 

(abbr. IC). Given ( )U
c

x
x nmlcClusterIC

1

1
=

++≤≤=
, where Clusterx represents one kind of 

interest content clustering results, while it can be expressed by { }xσσ ,,1 L=∑ , where 

zσ  denotes the feature of corresponding cluster.   

Definition 2. Each interest behavior on Portal indicates certain potential typical 
visiting operation on IC. Let IB={SetMode, SetRecomTime, Switch, Maximize, 
Minimize, Close, Click, Layout, Add, Delete, Edit, Quote, Comment} be the finite 
Interest Behavior Set (abbr. IB). These interest behaviors may be classified into four 
categories shown in Table 1.  

Definition 3. Given an access transaction (abbr. at) representing a user’s interest 
behaviors on different interest contents occur during every session T, each at is 
defined as { } ( )Ttimeattimeatbehaviorattimeatcontentatuseratat kkkkk ≤−= −1...,.,.,. LL .Every 

user’s ats can be gathered into the Access Transaction Set (abbr. ATu) with temporal 
order as { }uiu ATiatAT ≤≤= 1| , where |ATu| denotes the total number of session T 

forming ATu. 
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2.2   Analysis of Mapping Interest Behaviors 

We put forward the detailed analysis of the operation semantic features of interest 
behaviors in Table 1. The listed mapping relationship offers a novel reference for 
eliciting the interest granularity and holding the priority. Besides, the noises caused 
by more details might be avoided considerably. 

Table 1. Mapping of the personalization interest behaviors on Portal 

Personalization interest 
behaviors on Portal 

Requests 
Attribute 
 (-Value) 

Similar interest 
behaviors in Web site 

and corresponding 
interest degree 

Effect factors Interest 
degree 

SetMode _mode / / 
The state of the 

window ④or② Custom 
configuration 

SetRecomTime _event / / Frequency ④ 

Switch _pageLabel Forward / Back ④ 
Access 

transaction Set ④ 

Maximize 
_state- 

maximized 

Open in a new 
window/ 

Drag stroll bar 
⑤ ⑤ 

Minimize 
_state- 

minimized 
Close _state- closed 

Exit ② 

The state of the 
window 

② 

Browse-click 

Click _URL Click hyperlink ④ 
Access 

transaction Set ④ 

Layout _windowLabel / / ⑤or② 

Add _windowLabel 
Add the 

bookmark ⑤ ⑤ Layout 

Delete _windowLabel 
Delete the 
bookmark ① 

Layout sequence 
& Access 

transaction Set 
① 

Edit _mode-edit Query ⑤ ⑤ 
Quote _event / / ④ 

Edit-
comment 

Comment _event Feedback rate ④ 

Access 
transaction Set 

④ 

Note: ①Strong negative; ②Negative; ③Weak positive; ④Positive; ⑤Strong positive 

To represent these interest behaviors on Portal more practically, we introduce 
fuzzy logic [9,10] to incorporate the context of feature factors in Table 1. 

Definition 4. Let FSat=Relation(ATu, IC∪IB) be a fuzzy relation set of access transaction 
on domain ( )IBICATu ∪× . The membership weight ( ) ]1,0[∈k

i
at contentW , on each item of 

ATu, can be given by:  
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(1) 

With the entire accessing duration ( )ki contentatd . , tw and 
TW  indicate a user’s local 

and global interests respectively. Where rx∈[1,5] is the interest degree of each 
accessing interest behavior ranked as Table 1. 

Definition 5. Let { }sequenceatS iu .=  be the layout sequence set about interest contents 

(i.e., Portlets) on personalization desktop, where each at.sequence records every 
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updated appearance with left-right top-bottom order. Let FSL=Relation(Su, IC∪IB)be a 
fuzzy relation set of layout sequence on domain ( )IBICSu ∪× . The membership weight 

( )kL contentW , on each item of ATu, can be defined as: 

( )
∑

∈=

=
u

uk

AT

SPi

i
k

u
kL

P

AT
contentW

,1

 

(2) 

Where Pk
i denotes the relative forward or backward transition offset in Su.  

Consequently, the particular interest weight of each user combining the effect of 
personalization interest behaviors on Portal can be denoted as follows: 

( ) ( ) ( )kLk

AT

i ICcontent

i
atk contentWcontentWcontentW

u

k

∑ ∑
= ∈

=
1

 (3) 

3   Implicit Interest Elicitation Mechanism 

We observe that custom configuration and layout behaviors could hardly be logged by 
Portal server essentially, even no more entries within the captured records about 
browse-click and edit-comment yet. Based on the preceding statement, a novel Portal-
independent mechanism of interest elicitation is proposed, which implements both the 
implicit extraction of diverse access behaviors and their semantic analysis. 

The following strategy is taken in the approaches according to the mentioned four 
categories of interest behaviors: (i)Custom configuration: We use open API of Portal 
platform to gather the target User Profile (UP). The valid data we observe are those 
predefined parameter pairs (i.e., constructed in Attribute-Value format) in the UP, 
which have represented the semantic information and without additional semantic 
analysis. To cope with the general-purpose goal, we develop a new adapter used to 
effect operative compatibility among different particular Portals’ interfaces[8]. 
(ii)Browse-click: We discuss based on the different possible operation objects. For 
the Portlets integrated with WSRP, to analyze the interaction requests at WSRP 
producer. For the normal web application requests, to capture the key requests using 
traditional means in WUM. And for the particular Portal applications, to call the 
special API to identify the behaviors related with the responses to these application 
events. Here, the captured results may be preprocessed into ATu. (iii)Layout: We use 
the similar method with (i) to capture user’s layout behaviors. Note that the captured 
results are the appropriate layout structures of different personalization desktops, 
which may contribute to form the Su. (iv)Edit-comment: The method is similar as 
that mentioned in (ii). 

We summarize the feature relationship of interest behavior semantics in Table 1 
and build a mapping list in XML format. There involves two steps: Filtering the 
redundancy requests, and matching the valid parameter features with the Attribute-
Value. The elicitation entry is defined as <user,timestamp,object,behavior,desktop>. 

During the implicit interest elicitation process, there requires supplementing legal 
and technical mechanism for access control as well as a balance on the relationship 
between personalization and privacy. Based on the idea in transportation safety 
administration[11], we adopt recently released National Information Exchange Model 
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(NIEM) to establish the accountable representation logic. We use the Notation 3[12] to 
convert the transactional data into serializing RDF, which contains the representation 
of interest-extended rule. This is a short statute for the processing of matching the 
request parameters, which supports the validity determination and centralized storage 
of private data in privacy protection. By such means, we can provide the legal 
transparent accountable interests in terms of the interest behavior entries implied with 
the rule.  

4   Mining the Interest Navigation Patterns 

The navigation relationship among the interests can describe the user’s next possible 
interest trends, and especially benefit the recommendation schema improvement in 
order of precedence whenever the prediction or resources presentation is proceeding.  
We attempt to seek the obtained ATus to represent the navigation patterns on 
particular interest contents. Therefore, the presented hidden Markov model extension 
differs from [7] mainly in two aspects. First, the mapping of personalization interests 
on Portal is complemented. Second, the formula process is according to every 
particular user’s personalization description instead of the entire user group. The 
HMM extension with the personalization interest of Portal is proposed as follows: 

(i) Let the interest content node on personal desktop denote as the state node 
ICqi ∈ in HMM. Given the virtual initial state q1, there is the relative interest concept 

mapping relationship as Σ∈i
ziq σa . And there must exist the transfer probability 

distribution ( )ji qqP → between any two nodes of ATu:  
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(ii) For each qj and its j
zσ , there exists the observing probability distribution 

( )j
j

z qP |σ . Given { }ICqICfqqQ fi ∈≤≤= ',1|','1 L  as a finite node set that user has 

accessed in ati, denote
jiQ ,
and 

zjiQ σ,,
 respectively as:  
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Denote ( )j
j

z qP |σ  as the ratio of the total number of posterior accessed nodes on j
zσ  

and the total number of posterior accessed nodes on all concepts:   
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(6) 

(iii) The HMM with personalization interest description of Portal is to represent a 
state sequence with the maximal observing probability on certain personalization 
interest content k

zσ , which can be defined as:  



 Mining Personalization Interest and Navigation Patterns on Portal 953 

( ) ( ) ( )∏
∈

+→=
ICq

k
k
zkk

k
z

k

qPqqPP |maxarg 1max σσ  
(7) 

We consider not only the effect of different personalization interest behaviors on 
Portal, but also the prediction on interest intention in order to achieve the objectivity 
and integrality. Hence, the interest navigation patterns of every user can be inferred 
easily from the discovered navigation relationship. With the increasing of the user 
visiting, it is also necessary to set a threshold during the interest navigation patterns 
discovery [7] to ensure the accuracy and availability. 

5   Experiments 

We built a certain prototype Portal with BEA Weblogic Platform 8.1 in which the 
experiments might be performed completely. The dataset consists of 50 random users, 
20 typical items forming IC, and 65,472 valid interest elicitation entries in 4,400 
sessions obtained by our elicitation approach successfully. 

5.1   Interest Elicitation Results and Analysis 

The first experiment focuses on observing the effectiveness and evaluating the 
performance of implicit interest elicitation mechanism. After constructing the ATus 
and Sus, we could compute the particular interest degree of each user with equation 
(3). Under this scenario, we observe the distribution of ( )kcontentW  varying with the 

number of sessions in ATu and the user as a kind of measure method. Fig.1(a) shows 
one random user’s interest distributions as the range of ATu increases. It is clear that 
the interest degrees lead to user’s personalization preference on IC when |ATu|=50, 
and till |ATu|=200, we could barely to detect the significant difference in flat region. 
Subsequently, we hold |ATu|=50 and observe the interest distributions varying with 
different users. The results are illustrated in Fig.1(b), which indicate the inherent 
personalization interest of each user expected as our previous discussion. 

 

  

Fig. 1. Distribution of interest degree Fig. 2. Comparison in the elicitation 
performance 
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In this experiment, we also analyze the performance effect to the Portal server of 
our mechanism. We compare the cost (i.e., measured by time (ms)) on loading the 
Portal desktop into client browser whether the interest elicitation does in Fig.5. 
Although there is a little improvement measured within 12ms, our schema works with 
desired performance.   

5.2   Mining Navigation Patterns Results and Analysis 

The second experiment consists in discovering the interest navigation patterns of 
different users, which can be performed with two basic steps: categorizing the interest 
concept and calculating the observing probability. We still mine the representative 
entries in ATu (|ATu|=100) in Fig.1(a), setting three rough interest concept sets named 

{ }1513521 ,,,' qqqq=σ , { }20191614121110764312 ,,,,,,,,,,,' qqqqqqqqqqqq=σ and { }1817983 ,,,' qqqq=σ respectively. 

Under this scenario, the relative transfer probability ( )ji qqP →  is shown in Fig.3. The 

observing probability ( )j
j

z qP |σ  may be computed with equation (4-6) and contribute to 

fulfill our extended HMM. Fig.4(a-c) plot the user’s entire possible interest navigation 
states on different interest concept sets measured by order. Hence, we could discover 
the interest navigation patterns with the maximal observing probability. 

 

Fig. 3. Distribution of transfer probability ( )ji qqP →  

 

Fig. 4. Distribution of interest navigation patterns on rough interest concept sets 

The results show that the HMM extension with personalization interest description 
of Portal has met the proposed interest elicitation mechanism sufficiently. Higher 
representation accuracy can be achieved, while helping us better to predict and 
understand the personalization interest navigation patterns and intentions of each user. 
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6   Conclusion 

Mining personalization interest and navigation patterns on Portal is significant for the 
interest mining tasks in Portal area. In this paper, we summarize the mapping of the 
personalization interest behaviors on Portal and propose a novel Portal-independent 
mechanism of interest elicitation with privacy protection. Furthermore, we present an 
HMM extension with personalization interest description of Portal to discover the 
interest navigation patterns. The improvement on representation accuracy and mining 
capability for the complex personalization interests on Portal is a feature that clearly 
distinguishes our approaches from traditional ones. Since no attempt has previously 
been made to apply the mining results to better serve the personalization 
recommendation on Portal and perfect the consideration of privacy protection 
consideration, we attempt to conduct such a study to proceed as a design guideline in 
future research. 
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Abstract. The ever-increasing numbers of Web-accessible documents
are available in languages other than English. The management of these
heterogeneous document collections has posed a challenge. This paper
proposes a novel model, called a domain alignment translation model,
to conduct cross-lingual document clustering. While most existing cross-
lingual document clustering methods make use of an expensive machine
translation system to fill the gap between two languages, our model
aims to effectively handle the cross-lingual document clustering by learn-
ing a cross-lingual domain alignment model and a domain-specific term
translation model in a collaborative way. Experimental results show our
method, i.e. C-TLS, without any resources other than a bilingual dictio-
nary can achieve comparable performance to the direct machine trans-
lation method via a machine translation system, e.g. Google language
tool. Also, our method is more efficient.

1 Introduction

The development of the World Wide Web has created the ever-increasing num-
bers of Web-accessible documents in languages other than English. The auto-
mated organization of these heterogeneous document collections has posed a
challenge. On the other hand, the literature about cross-lingual document clus-
tering is sparse. Typically, machine translation system is introduced to fill the
gap between different languages[2,3]. In this paper, we propose a novel model,
called domain alignment translation model, to effectively cluster the multi-
lingual documents. Our model is inspired by the observation that its translation
of a word greatly depends on the domain information of the context. In addition,
our method differs widely from existing methods in that instead of the process
of term translation and then clustering, the domain alignment translation model
conducts term translation and clustering simultaneously by learning a bilingual
domain alignment model and a domain-specific term translation model. This
occurs in a collaborative way with the help of a bilingual translation dictionary

� To whome correspondence should be addressed. This work was supported in part by
the National Natural Science Foundation of China under the grants NSFC 60375022
and NSFC 60473040, and the Microsoft Laboratory for Intelligent Computing and
Intelligent Systems of Shanghai Jiao Tong University.

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 956–963, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Cross-Lingual Document Clustering 957

after conducting monolingual document clustering on two document sets, re-
spectively. Experimental results show that the method based on the proposed
model can achieve a comparable performance with the direct machine transla-
tion method, and that in some cases, the method can even outperform the latter
one greatly.

The rest of this paper is organized as follows. In Section 2, we present re-
lated work on cross-lingual document clustering. In Section 3, we describe the
domain alignment translation model consisting of a cross-lingual domain align-
ment model and a domain-specific term translation model. A method based on
the proposed model is described in detail in Section 4. Experimental results with
the method on data collected from the Internet are shown in Section 5. Finally,
we conclude in Section 6.

2 Related Work

The literature about cross-lingual document clustering is sparse. Evans et al.
(2003, 2004) [2][3] used simple document translation for multilingual clustering
in their Columbia Newsblaster system. Although they developed a simple dic-
tionary lookup glossing system for Japanese and Russian, the system performed
less well than full translation. Mathieu et al. (2004)[1] proposed a cross-lingual
similarity measure for the documents, using bilingual dictionaries, employing a
Shared Nearest Neighbor approach by Ertoz et al. (2001)[6] to cluster cross-
lingual documents and achieving promising results. However, their method was
not compared with full-fledged translation and it was not practical since it took
eight hours for 3,000 documents to cluster in the cluster discovery phrase. Fur-
thermore, Evans and Mathieu noticed a common phenomenon that found docu-
ments from the same language tending to cluster more easily than from different
languages. Compared with the above two methods, Chen and Lin(2000)[4] pro-
posed a different cluster mapping approach for cross-lingual document clustering
in their multilingual news summarizer but did not conduct experiments for the
clustering performance, since their system is for multilingual news summarizer.
In their cross-lingual clustering, they select words with high frequency occurrence
in the target language as the translations of the words in the source language.

3 Domain Alignment Translation Model

3.1 Model Description

Before describing the model, the following notations are introduced.

• S denotes a set of source words to be translated. It can be further represented
as {wS

i }, i = 1 . . .M , where wS
i is the ith word in S.

• T denotes a set of translated words given S. It can be further represented
as {wT

i }, i = 1 . . .M , where wT
i is a translation of the ith word in S. wT

ij

denotes the jth candidate translation of the ith word in S.
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• GEN(S) is a set of candidate translations given S.
• C denotes some specific domain and ζ denotes domain sets. That is, C is an

element of ζ.

We use the term domain alignment translation model to refer to a mech-
anism that determine the probability P (T, C|S). We need to gather the heteroge-
neous documents, e.g. Chinese documents and English documents into different
groups. Compared with homogeneous documents, e.g. only Chinese document or
only English document, there exists a wide language gap among heterogeneous
documents. Meanwhile, it is our observation that a strong relationship between a
translation of a word and its domain exists. For example, there are varied trans-
lations in different domains in the case of , the translation of which is export
in business domain , is exit in transportation domain and is speak in politics
domain etc. Accordingly, it is reasonable to search for the translation of words
and the specific domain simultaneously. According to Bayes’s theorem, given a
set of source words S, the best T and C is the one that carry out maximization
as follows:

{T ∗, C∗} = arg max
T∈GEN(S),C∈ζ

P (T, C|S)

= arg max
T∈GEN(S),C∈ζ

P (C|S)P (T |C, S) (1)

where P (C|S) is called cross-lingual domain alignment model and P (T, C|S)is
called domain-specific term translation model. If we postulate that given a spe-
cific domain C and a set of source words S, its translation of each word in
S is generated conditionally independently. The second term in Equation (1)
can be reformulated as P (T |C, S) =

∏
iP (wT

i |wS
i , C). Equation (1) can then be

rewritten as

{T ∗, C∗} = arg max
T∈GEN(S),C∈ζ

P (C|S)
∏

i

P (wT
i |wS

i , C) (2)

3.2 Parameter Estimation

In the section, we describes how to estimate the probabilities P (wT
ij |wS

i , C) and
P (C|S). If we had available parallel corpus from some specific domain C, esti-
mating P (wT

ij |wS
i , C) could be the same as estimating the translation model in

IBM noisy channel model. However, it is usually non-trivial to explicitly define
what is the domain we need. On the other hand, it is also hard to acquire large
scale parallel corpus. Therefore, we try to obtain P (wT

ij |wS
i , C) from the corpus

in the target language. Applying the chain rule to P (wT
ij |wS

i , C) , we can deduce
Equation (3):

P (wT
ij |wS

i , C) =
P (wT

ij , C|wS
i )

P (C|wS
i )

(3)
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If we assume that the occurrence of its translation wT
ij in domain C is indepen-

dent of word wS
i , Equation (3) can be approximated through

P (wT
ij ,C)

P (C|wS
i ) . Then we

can obtain the following formula:

P (wT
ij |wS

i , C) =
P (wT

ij |C)
P (wS

i |C)
· P (wS

i ) (4)

Also, according to total probability formula, P (wS
i |C) =

∑
j P (wT

ij |C). There-
fore, Equation (4) can be written as:

P (wT
ij |wS

i , C) =
P (wT

ij |C)
∑

jP (wT
ij |C)

· P (wS
i ) (5)

The problem of estimating P (wT
ij |wS

i , C) now can be solved via estimating
P (wT

ij |C) and P (wS
i ). The probability of some translation wT

ij of a source word
wS

i in a specific domain, P (wT
ij), can be calculated by the relative frequency of

translation wT
ij in the domain, that is, P (wT

ij |C) = TF (wij ,C)
TF (w,C) , where TF (wij , C)

denotes the frequency of word wij in the domain C and TF (w, C) denotes the
frequency of all words in the given domain. As for P (wS

i ), it is actually the un-
igram model and thus can use the MLE estimation, smoothed by some known
techniques. However, it doesn’t really involve the resulting decision for optimal
C and T , since it is constant in the decision-making process.

4 An Algorithm Based on the Proposed Model

In section 3, we propose a domain alignment translation model. In this section,
we propose a algorithm based on the model. Simply speaking, the algorithm
comprises two steps: mono-lingual document clustering; two-level search, that
is, to search for term translation and the corresponding cluster that maximize
P (T, C|S). In the monolingual document clustering phrase, we cluster the docu-
ments in a language at an appropriate cluster number. In the search phrase, we
simultaneously search the aligned clusters and term translation.

The clustering algorithm based on näıve Bayes model has been shown to be
effective for high dimensional text clustering. Also, the clustering model has
the similar assumption as our proposed model, which each word is generated
independently in the given domain. Hence, we choose the algorithm to conduct
monolingual document clustering. One can be referred to [8] for details.

On the other hand, to obtain the optimal translations and domain of a set
of source words, we have to try all possible combination of their translations
and the domains. However, it is computationally prohibitive. Therefore, our
best option is to use a greedy algorithm toward this end. In our proposed two-
level search algorithm, we just choose the set of translations with most high
probability given some domain to avoid try too many candidate translations,
totally ignoring the other possible translation combinations. We refer to the two-
level search algorithm based on clusters as C-TLS. The algorithm is summarized
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Algorithm: C-TLS(D1, D2,K1,K2,Dic)
Input: D1: document collection in language L1;

D2: document collection in language L2;
K1: the number of clusters to be partitioned for D1

K2: the number of clusters to be partitioned for D2

Dic: the general-purpose bilingual dictionary from L2 to L1
Steps:

1. nbEM(D1, K1); nbEM(D2,K2); %% clustering algorithm based on NB model
2. Construct the corresponding centroid vi for each cluster ci of D2;
3. For each cluster ci for D2

4. For each cluster cj for D1

5. search the translation of each word with most probability for the centroid
vi in cj ;

6. Compute and record P (T, C|vi);
End For

7. Select < ci, c
∗
j > as a mapping relation if P (T, C|vi) is the highest among

the recorded scores.
End For

Output: a partition of the document data given by the cluster identity vector
C = {c1, c2, . . . , cN}, ci ∈ {1..K}, N = |D1| + |D2|

Fig. 1. Two-level search algorithm based on clusters

in Fig. 1. In this paper, we also investigate the extreme case of the algorithm,
called TLS. That is, it occurs when K2 equals to |D2| in C-TLS.

5 Experiments

5.1 Experimental Setup

The test data is collected via RSS reader1 . The test data comprises Chinese
Web pages and English Web pages from various Web sites. They consist of news
during December 2005, consisting of 6,462 English Web pages and 6,011 Chinese
Web pages. We should have collected data with seven topics. Unfortunately,
when we translate all Chinese Web pages into English Web pages via translation
tools provided by Google language tool, there are various errors for some Web
pages via Google translation tool2, so that we have to select five topics for
experimentation. They include business, education, entertainment, science and
sports. The category information is obtained by RSS reader. In addition, in the
experiments, we use a general-purpose Chinese-English bilingual dictionary with
about 292,000 entries.

In the paper, we use average purity and average entropy for our evaluation
metrics. Average entropy is used to measure mean status of how the various
classes of documents are distributed within each cluster.
1 http://www.rssreader.com/
2 http://www.google.com/language tools
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AverageEntropy =
1
k

k∑

j=1

Ej (6)

Ej = − 1
log q

q∑

i=1

nj
i

ni
∗ log(

nj
i

ni
) (7)

where q is the number of classes in the document collection, k is the number of
partitioned clusters, ni is the number of documents from cluster i, and nj

i is the
number of documents from cluster i assigned to category j.

The second measure is average purity that measures the average extent to
which each cluster contained documents from one primary class. The purity
measure is defined as follows:

AveragePurity =
1
k

k∑

j=1

Pj (8)

where Pj is the fraction of the overall cluster size that the largest class of docu-
ments assigned to that cluster represents.

5.2 Experimental Results and Discussion

In our experiments, Our main experimental results are shown in Fig. 2. All re-
sults are shown as average ± 1 standard deviation over 5 runs. The term Google,
Google(I2C) and Google(C2C) represent our three baselines. Specifically speak-
ing, Google refers to the method employing nbEM algorithm to all preprocessed
English web pages and translated Chinese web pages, while Google(I2C) de-
notes the method making a mapping from a translated Web page to clusters of
native English Web pages through nbEM and Google(C2C) denotes the method
relating clusters of the translated web page to clusters of the native English web
pages. In addition, En2Ch indicates that English is source language and Chinese
is target language, whereas Ch2En indicates the reverse case.

From Fig. 2, Fig. 3 and Table 1, we can summarize the results as follows:

• C-TLS have better performance than TLS and can achieve comparable per-
formance to Google(C2C) while Google(C2C) has to spend much time and
waste much storage space on the translated documents;

Table 1. Comparison of mean time of four methods spent over different numbers of
clusters

Time(sec.)
Methods

5 10 15 20 25

1 TSL(Ch2En) 114 182 255 678 1203
2 TSL(En2Ch) 100 154 206 268 310
3 C-TSL(Ch2En) 12 18 24 36 52
4 C-TSL(En2Ch) 13 21 29 43 61
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Fig. 2. Comparisons of different methods and baseline using direct machine translation.
Results of TLS, Google(I2C) and Google are shown in the first row and results of C-TLS,
Google(C2C) and Google are shown in the second row, where the number of clusters
of English web pages is the same as one of Chinese web pages each run.
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Fig. 3. Monolingual Clustering Results. Each column represents a set of results. Left-
side column denotes Chinese web page clustering; middle-side column denotes English
web page clustering; right-side column denotes the translated Chinese web page clus-
tering.

• C-TLS achieves substantial and significant(p-value<0.05) improvements over
Google method;

• Compared with Google, Google(I2C) and Google(C2C), TLS and C-TLS
is more efficient. It took about 8.3 hours for Google, Google(I2C) and
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Google(C2C) to just translate Chinese web pages into English web pages
and thus the time they spent on cross-lingual clustering is not listed in Ta-
ble 1. In contrast, the longest runtime in Table 1 is about 20 minutes on Intel
Pentium D 2.80GHz machine. This occurred when the number of clusters is
25 and TLS(Ch2En) method is used.

6 Conclusion

In this paper, we propose a novel domain alignment translation model to simul-
taneously conduct cross-lingual clustering and term translation. By learning a
cross-lingual domain alignment model and a domain-specific term translation
model in a collaborative way, we can cluster documents with a similar topic
in different languages. Experimental results show our method without any re-
sources other than a bilingual dictionary can achieve comparable performance
to the direct machine translation method via Google translation tool. In our
experiments, we only consider word, ignoring base phrase. We will incorporate
translation of base phrase into our system in the future. On the other hand, the
clustering in the source language and the clustering in the target language are
related highly and thus we will explore how to reinforce their clustering quality
interactively for future research.
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Abstract. In our previous studies, Genetic Programming (GP), Prob-
abilistic Incremental Program Evolution (PIPE) and Ant Programming
(AP) have been used to optimal design of Flexible Neural Tree (FNT).
In this paper Grammar Guided Genetic Programming (GGGP) was em-
ployed to optimize the architecture of FNT model. Based on the pre-
defined instruction sets, a flexible neural tree model can be created and
evolved. This framework allows input variables selection, over-layer con-
nections and different activation functions for the various nodes involved.
The free parameters embedded in the neural tree are optimized by par-
ticle swarm optimization algorithm. Empirical results on stock index
prediction problems indicate that the proposed method is better than
the neural network and genetic programming forecasting models.

1 Introduction

There has been growing interest in evolving architecture and parameters of a
higher order Sigma-Pi neural network based on a sparse neural tree encoding
[1]. Recently some approaches for evolving the neural tree model based on tree-
structure-based evolutionary algorithm and random search algorithm have been
proposed in [11][12][14].

Antonisse [15] used grammars firstly to constrain the generation of chromo-
some in his proposed system, which is called grammar-based GA. After then,
some grammars-based GP systems was proposed. Stefanski [16] proposed the
use of abstract syntax trees to set a declarative bias for GP. Robston [6] demon-
strated how a formal grammar might be used to specify constraints for GP in
the context of engineering design. Mizoguchi and Hemmi [7] suggested the use
of production rules to generate hardware language descriptions during the evo-
lutionary process.

Three typical grammar guided GP systems can be classified as: Whigham’s
CFG-GP system [8], Schultz’s grammar-based expert systems and Wong’s LO-
GENPRO system[10][5]. Grammar Guided Genetic Programming (GGGP) [3][4]
is a typical tree-structure-based genetic programming system. GGGP using a
grammar to constrain search space. The individual GP tree in GGGP must re-
spect the grammar. This overcomes the closure problem in GP and provides a
more formalized mechanism for typing (strongly-typed genetic programming).

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 964–971, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

Actually, the grammar model can do more than just constrain the search space.
In Whigham’s work [9], in addition to the normal GGGP search, the gram-
mar is slightly modified during the search. The updated grammar represents the
accumulated knowledge found in the process of search.

In this paper, GGGP is firstly employed to optimize the Flexible Neural Tree
(FNT). Based on a pre-defined instruction/operator sets, a flexible neural tree
model can be created and evolved. FNT allows input variables selection, over-
layer connections and different activation functions for different nodes. In our
previous work, the hierarchical structure of FNT was evolved using PIPE with
specific instructions [11][12]. In this research, the hierarchical structure is evolved
using the GGGP. The fine tuning of the parameters encoded in the structure
is accomplished using Particle Swarm Optimization (PSO) [20]. The novelty of
this paper is in the usage of GGGP for flexible neural tree optimization and for
selecting the important inputs in the modeling of stock index.

The rest of paper is organized as follows. A simple introduction of Grammar
Guided Genetic Programming is given in Section 2, and a hybrid-learning algo-
rithm for evolving the FNT is also presented in this Section. Some simulation
results for stock index prediction are given in Section 3. Finally, some conclusions
are given in Section 4.

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT
model are described as S = F

⋃
T = {+2, +3, . . . , +N}

⋃
{x1, . . . , xn}, where

+i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments.
x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments. The
output of a non-leaf node is calculated as a flexible neuron model (see Fig.1).
From this point of view, the instruction +i is also called a flexible neuron op-
erator with i inputs. In the creation process of neural tree, if a nonterminal
instruction, i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly
generated and used for representing the connection strength between the node



966 P. Wu and Y. Chen

+i and its children. In addition, two adjustable parameters ai and bi are ran-
domly created as flexible activation function parameters. For developing the fore-

casting model, the flexible activation function f(ai, bi, x) = e
−( x−ai

bi
)2 is used.

The total excitation of +n is netn =
∑n

j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n)
are the inputs to node +n. The output of the node +n is then calculated by
outn = f(an, bn, netn) = e−( netn−an

bn
)2 . The overall output of flexible neural tree

can be computed from left to right by depth-first method, recursively.

2.1 Tree Structure Optimization by GGGP

Grammar Guided Genetic Programming (GGGP) is one of the important ex-
tensions for GP [2]. The purpose of presented GGGP is mainly to overcome
the closure problem [2], the generation and preservation of valid programs in
GP system. For an object, some grammars are used to guide the generation of
programs in GP, and a chosen declaration of bias can be set on the space of
programs.

In this research, Context-free Grammar (CFG) [9] was chosen for FNT op-
timization. A CFG consists of 4 sets, G = {N, T, P, Σ}, Where N is a set of
non-terminal symbols, T is a set of terminal symbols, P is set of production
rules and Σ is set of start symbols, and N

⋂
T = ∅, Σ ∈ N . The production

rules have the format x → y, where x ∈ N , y ∈ N
⋃

T . The production rules
specify how the non-terminal symbols should be written into one of their deriva-
tions until the expression contains terminal symbols only. For an example (Fig.
2), a CFG for generation one variable simply arithmetic expression can be de-
scribed as follows,

s → exp
exp → exp op exp
exp → pre exp
exp → var
pre → sin|cos
op → +|−
var → x.

Although the components of GGGP are the same as GP, there are still some
distinct difference between GGGP and GP. In GGGP a tree-based program
is generated according to the context-free grammar. In crossover, two internal
nodes labeled with the same non-terminal symbol of the grammar are chosen
at random, and the two sub-derivation trees underneath them are exchanged.
In mutation, a new randomly generated sub-derivation tree rooted at the same
non-terminal symbol replaces the sub-derivation tree of the selected node. The
general evolutionary process in GGGP can be described as the same as GP. For
detailed description of GGGP algorithm, please refer to [3] and [4].

2.2 Parameter Optimization with PSO

The Particle Swarm Optimization (PSO) conducts searches using a population
of particles which correspond to individuals in evolutionary algorithm (EA). A
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Fig. 2. Derivation tree of expression of sin(x) + cos(x) − x

population of particles is randomly generated initially. Each particle represents
a potential solution and has a position represented by a position vector xi. A
swarm of particles moves through the problem space, with the moving velocity of
each particle represented by a velocity vector vi. At each time step, a function fi

representing a quality measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector pi. Furthermore, the best position among all the
particles obtained so far in the population is kept track of as pg. In addition
to this global version, another version of PSO keeps track of the best position
among all the topological neighbors of a particle. At each time step t, by using the
individual best position, pi, and the global best position, pg(t), a new velocity
for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t) − xi(t)) + c2φ2(pg(t) − xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

For detailed description of PSO algorithm, please refer to [20].

2.3 The General Learning Algorithm

The general learning algorithm for GGGP-FNT model can be described as follow:

1) Initialization. Set the initial value of parameters used in GGGP and PSO al-
gorithms. The initial population (flexible neural trees and the corresponding
parameters) is generated randomly.
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2) Structure optimization with GGGP algorithm, in which the fitness function
is calculated by root mean square error (RMSE).

3) If a better structure is found then go to step 4), otherwise go to step 2).
4) Parameters optimization with PSO algorithm. In this stage, the structure of

FNT is fixed and the best tree is taken from the end of run of the GGGP
search, and the fitness function is also calculated by RMSE.

5) If the maximum number of iterations of GGGP algorithm is reached, or no
better parameter vector is found for a significantly long time (100 steps)
then go to step 6); otherwise go to step 4).

6) If satisfactory solution is found, then stop; otherwise go to step 2).

3 Experimental Studies

3.1 Stock Index Modeling

Prediction of stocks is generally believed to be a very difficult task - it behaves
like a random walk process and time varying. The obvious complexity of the
problem paves the way for the importance of intelligent prediction paradigms
[17]. In this experiment, we analyze the seemingly chaotic behaviour of two well-
known stock indices namely the Nasdaq-100 index of NasdaqSM [18] and the
S&P CNX NIFTY stock index [19]. The Nasdaq-100 index reflects Nasdaq’s
largest companies across major industry groups, including computer hardware
and software, telecommunications, retail/wholesale trade and biotechnology. The
Nasdaq-100 index is a modified capitalization weighted index, designed to limit
domination of the Index by a few large stocks while generally retaining the cap-
italization ranking of companies. Through an invest-ment in Nasdaq-100 index
tracking stock, investors can participate in the collective performance of many of
the Nasdaq stocks that are often in the news or have become household names.
Similarly, S&P CNX NIFTY is a well-diversified 50 stock index accounting for 25
sectors of the economy. It is used for a variety of purposes such as benchmarking
fund portfolios, index-based derivatives and index funds. The CNX Indices are
computed using the market capitalization weighted method, wherein the level of
the Index reflects the total market value of all the stocks in the index relative to
a particular base period. The method also takes into account constituent changes
in the index and importantly corporate actions such as stock splits, rights, and
so on, without affecting the index value.

3.2 Experimental Setup and Results

In this experiment, we considered 7-year stock data for the Nasdaq-100 Index
and 4-year for the NIFTY index. Our research investigates the performance of
GGGP-FNT, GP and ANN for modeling the Nasdaq-100 and NIFTY stock mar-
ket indices [13]. We used the same training and test data sets to evaluate the
different models. The assessment of the prediction performance of the different
paradigms were done by quantifying the prediction obtained on an independent
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Fig. 3. Forecasting performances of the three models for the Nasdaq index (left) and
NIFTY index (right)

data set. The Root Mean Squared Error (RMSE) is used to performance evalu-
ation index.

The settings for GGGP-FNT are population size 100, cross rate 0.9, mute rate
0.1 and maximum depth 5. A FNT model was constructed using the training
data and then the model was used on the test data set. The instruction sets used
to create an optimal FNT forecaster are S = {+2, +3, x1, x2, x3} and S = {+2,
+3, x1, x2, x3, x4, x5} for Nasdaq-100 and NIFTY stock index, respectively.
Where xi(i = 1, 2, 3, 4, 5) denotes the 5 input variables of the forecasting model.

The grammars used for modeling the Nasdaq-100 index (left) and for model-
ing the NIFTY index (right) are shown as follow,

s → exp s → exp
exp → exp op exp exp → exp op exp
exp → thr exp exp exp exp → thr exp exp exp
exp → var exp → var
op → +2 op → +2
thr → +3 thr → +3
var → x1|x2|x3 var → x1|x2|x3|x4|x5

For comparison purpose, a GGGP was also implemented to forecast the stock
index. The settings for GGGP are population size 100, cross rate 0.9, mute rate
0.1, and maximum depth 15. The instruction sets S = {+, −, ∗, sin, cos, exp,
x1, x2, x3} and S = {+, −, ∗, sin, cos, exp, x1, x2, x3, x4, x5} are used for
modeling the Nasdaq-100 index and the NIFTY index, respectively. Training
was terminated after 3000 epochs on each dataset.

Two ANN models with architecture {3 − 10 − 1} and {5 − 10 − 1} trained by
PSO are also implemented for modeling the Nasdaq-100 index and the NIFTY
index, respectively. Training was terminated after 3000 epochs on each dataset.

Table 1 summarizes the training and test results achieved for the two stock
indices using the three different approaches. Figures 3 and 4 depict the test
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Table 1. Comparison of RMSE results for three learning methods (training)

GGGP-FNT GGGP ANN

Nasdaq-100 0.02582 0.02568 0.02573
NIFTY 0.01699 0.01658 0.01729

Table 2. Comparison of RMSE results for three learning methods (testing)

GGGP-FNT GGGP ANN

Nasdaq-100 0.01725 0.01993 0.01789
NIFTY 0.01291 0.01366 0.01426

results for the one-day ahead prediction of the Nasdaq-100 index and the NIFTY
index, respectively.

Comparing GGGP-FNT with GGGP and ANN, we found that GGGP-FNT
has better generalization ability and high accuracy than GGGP and ANN fore-
casting models.

4 Conclusions

In this paper, a GGGP and PSO based learning algorithms are employed to
optimal design of the FNT models. Simulation results on stock index forecasting
problems show the feasibility and effectiveness of the proposed method. For the
GGGP algorithm itself, the vital topic is a Context-free Grammar model (CFG).
The gammer and its self-turning should be further discussed in our future work.
It should be noted that other grammar model can also be used to guide the
GP and used to design of FNT, and therefore it is valuable to give a further
investigation.
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Data* 

Shu Wu1, Qingshan Jiang1,∗∗ , and Joshua Zhexue Huang2 

1 School of Software, Xiamen University, Xiamen 361005, China 
2 E-Business Technology Institute, The University of Hong Kong, Hong Kong 

james.wushu@gmail.com, qjiang@xmu.edu.cn, jhuang@eti.hku.hk 

Abstract. Performance of partitional clustering algorithms which converges to 
numerous local minima highly depends on initial cluster centers. This paper 
presents an initialization method which can be implemented to partitional clus-
tering algorithms for categorical data sets with minimizing the numerical objec-
tive function. Experimental results show that the new initialization method is 
more efficient and stabler than the traditional one and can be implemented to 
large data sets for its linear time complexity. 

Keywords: Data mining; Cluster analysis; Partitional clustering; Categorical at-
tribute; Initialization method. 

1   Introduction 

Partitioning a set of objects with multiple attributes into homogeneous clusters is one 
of the most fundamental operations in data mining. Object is divided into a series of 
sub-objects or clusters so that data points are more ‘similar’ to data points in the same 
cluster than data points in the other clusters. Many algorithms have been developed 
for clustering datasets. The FCM [1] algorithm proposed by Bezdek is broadly con-
cerned, since it induces the concept of fuzzy set and can efficiently cluster large data 
sets. However, since the aim of FCM algorithm is to attain the minimum of its nu-
merical objective function, it could only be applied to numerical data sets. Recently 
lots of researchers have carried on research on clustering method of categorical data 
sets, and have proposed many different algorithms such as fuzzy k -modes [2], ROCK 
[3] and COOLCAT [4]. Constructed in the framework of FCM , fuzzy k -modes algo-
rithm is as effective as FCM algorithm in clustering large data sets. 

In partitional clustering algorithms the procedure adopted for choosing initial clus-
ter centers is extremely important as it has a direct influence on the formation of final 
clusters. Frequently, random centers may induce a cluster process to terminate in a lo-
cal optimal result, while centers that well reflect data distribution probably serve to 
the global optimal clusters or comparatively good ones. 

Several attempts, which primarily concentrated on clustering numerical data, have 
been reported to solve the initialization problem. Forgy adopted the random method in 
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1965 [5], Duda and Hart proposed a recursive method [6], Kaufman and Rousseeuw 
[7] introduced a method based on density, and Bradley and Fayyad [8] proposed a re-
fining procedure. However, few researches are concerned with initializing categorical 
data. Ying Sun [9] introduced an initialization method which is based on the frame-
work of refining. This method presents a study on applying Bradley’s algorithm [8] to 
the k -modes, but its time cost is high and the parameters of this method are plenty. 

To solve these problems, we propose a new initialization method which limits the 
process in a sub-sampled data set and uses a refining framework. It defines the point’s 
density and the probability of a point to be a center in the sub-sample step. The new 
method can be implemented to all partitional clustering algorithms for categorical 
data set, though it is only applied in fuzzy k -modes [2] method in this paper. The pa-
per is organized as follows. Section 2 explains our new initialization method. Section 
3 presents and analyzes experimental result. Section 4 concludes the presentation. 

2   The New Initialization Method 

We propose a new initialization method and implement it in fuzzy k -modes [2]. 

2.1   Some Concepts About Categorical Data 

Suppose 1 2{ , , ... }
n

X x x x= is a categorical data set, where n is the number of ob-

jects， and (1 )
j

x j n≤ ≤ is the set of categorical dimension as 1 2[ , , ..., ]
p

A A A . The
l

A is a 

value determined by ( )(1) (2)[ , ,..., ]ln
l l la a a (1 l p≤ ≤ ) and ln indicates the number of val-

ues in attribute
l

A . jx can be denoted through the form of 1 2| , ,..., |j j jpx x x . 

1 2( , ,..., )cV v v v= is the set of all cluster centers, and cluster center iv is expressed 

by 1 2[ , ,..., ]i i ipv v v , where c is the number of cluster. In fuzzy k -modes [2], the distance 

is defined as follow: 

1
( , ) ( , ),

p

j i jl ill
d x v x vδ

=
=∑  where ( , )

il jl

jl il
il jl

if v x
x v

if v x
δ

  1     =⎧⎪= ⎨  0     ≠⎪⎩
. 

2.2   Fundamental Initialization Steps 

Firstly, we induce the definition of point’s density for categorical objects. Take the 
numerical data as an example, Fig.1 illustrates the distribution of a numerical data set. 

 
Fig. 1. Numerical data set with 3 classes 

We extend the concept of density to categorical data sets on the assumption that 
categorical data sets also have this trait of distribution as numerical data sets. 
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Definition 1 [Point’s density]. The density of a point is defined as follows: 

1
( ) 1/ ( , )

n

i i jj
Dens x d x x

=
= ∑  (1) 

The maximum value of a categorical data, if it can be expressed in a graph, is related 
with the densest point, which is most probability to be a cluster center. 

When searching for a new center, if distances between the point and the already ex-
isting cluster centers are the only factors considered, it is possible that an outlier is 
taken as a new one. Meanwhile if only density is taken into consideration, it is most 
possible that many cluster centers locate in the surrounding of one center. They are 
unreliable initial points which could lead to bad partitions after the clustering process. 
In order to avoid these potential problems, we propose the probability of a point to be 
a cluster center, integrating the distance and the density measurements together. 

Definition 2 [Probability to be a cluster center]. The probability of point ix to be a 

cluster center is defined as follows: 

( ) ( ) min( ( , ) )i i k iProbability x Dens x d v xα β= ×   (2) 

where {1/ max{ ( )}r
n

Dens xα = and {1/ max{min ( , )}k j
c

d v xβ = . 

The fundamental steps for choosing iv (the i th cluster center) are listed as follows: 

Step 1. Calculate the densities of points we choose from a data set (Equation 1); 
Step 2. Set the densest point as the first initial cluster center; 
Step 3. Compute the probabilities of points and save it to set P (Equation 2); 
Step 4. Choose the point with the maximum in P as ( 2)iv i ≥ and weed it out; 

Step 5. If i c≥ , iteration terminate, go to step 6; or else, order 1i i= + , go to step 4; 
Step 6. Output cluster center set 1( )c

i iV V v== U . 

The time complexity of the above process is 2( )O n which is higher than the cluster-

ing process. Therefore it is limited in clustering a small data set. In the next part, we 
induce a sub-sample method and refining framework, extending it to a large data set. 

2.3   The New Initialization Method 

The data set [10] described in Fig. 2 is a gauss data set with two attributes. After ran-
dom sampling, a squared number of the whole data set was chosen and illustrated in 
Fig. 3. Its distribution approximately reflects that of the whole data set. 

                   

Fig. 2. Distribution of a data set with two dimensions  Fig. 3. Distribution after sub-sampled 
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Extending experiential principle to categorical data, the new method is defined below: 

Step 1: Sub-sample Initialization 
1.1 CS = φ  

1.2 For 1,...,i c=  
1.2.1 Randomly choose the squared number of points isp as a sub-sample; 

1.2.2 Choose cluster centers using the fundamental steps in section 2.2; 
1.2.3 Calculate distance and belonging matrix, compute new centers ics ; 

1.2.4 Save new cluster centers ics to CS ( 1
c
i iCS cs== U ). 

Step 2: Refinement 
2.1 FCS = φ  
2.2 For 1,...,i c=  

2.2.1 Cluster on CS , using ics as initial points; 

2.2.2 Save final cluster centers ifcs attained from clustering process to FCS ; 

Step 3: Evaluation 
3.1 For 1,...,i c=  

3.11 Compute isse value of ifcs ; ( isse will be explained below) 

3.2 Choose the minimum isse , and set ifcs as initial points. 

The new initialization method contains three major steps. In the first step, small 
sub-samples ( 1... )isp i c= are randomly chosen from the whole data set. The number of 

isp is the squared number of the whole data set. We use fundamental initialization 

steps to choose initial points from isp . The set ics is the result of one time clustering. 

In the second step, CS is treated as a data set, and is clustered c times using ics as 

initial points. The final centers ( 1,... )ifcs i c= are saved in the set FCS . 

In evaluation step, we introduce the index SSE [11], which means the sum of 
square-error between data points and their cluster center and is defined 

as ( )1
( , )

n

i c ii
SSE d x v

=
=∑ , where ( )c iv means the cluster center that a sample point ix be-

longs to. The minimum of SSE is selected, and the ifcs , which is related with the 

minimum of SSE , are set as initial points. Let SSE be the union of isse , 1
c
i iSSE sse== U . 

Time complexity of the whole process is 2( ( | |))O c c c , where 2| |c c means the time 

complexity that clustering data sets with 2c instances to get c clusters. Bezdek [11] ad-

vises that the number of cluster should be chosen between min 2c =  and maxc n= . 

Therefore the time complexity of whole process is less than the time complexity 

( )| |O c n in clustering categorical data set. 

3   Experimental Result and Discussion 

Since there are no universally accepted methods for selecting initial cluster centers as 
reported by Meila and Heckerman [12], we compare the new method with the tradi-
tional random one. We have used many data sets to test the new method, while in this 
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paper some public data sets implemented for analysis are attained from the UCI [13]. 
Missing attribute values are treated as special ones and numerical attribute values are 
treated as categorical ones. Description of experimental data sets is listed in table 1. 

Table 1. Description of experimental data sets 

Data set No. instance No. attribute No. cluster Missing Value 
credit 690 16 2 some 

hepatitis 155 20 2 some 
mushroom 8124 22 2 some 

spect 267 23 2 none 
voting-records 435 17 2 some 

monks problems 432 8 2 none 
lung-cancer 32 57 3 some 
molecular 3190 62 3 none 

car 1728 6 4 none 
soybean 47 21 4 none 

zoo 101 17 7 none  

In our experiments, we implement our method in fuzzy k -modes [2] and set fuzzy 
coefficient m＝2 and terminative condition ε ＝10-5. All data sets are clustered with 
both random and new initialization method. The results in the table are the means 
of SSE in ten times computation. We use decreased percent to reflect the decrease. It is 
defined as: Decreased Percent = (Rand Init SSE - New Init SSE ) / Rand Init SSE . 

3.1   Capability Test and Analysis 

The tables below show that the results obtained from the new algorithm are better 
than the random one with different numbers of cluster centers. 

Table 2. Clustering with pre-requisite cluster number 

Data set No. Clusters Rand. Init. SSE New. Init. SSE Decreased Percent 
credit 2 6460 5448 15.67% 

hepatitis 2 1599 1366 14.57% 
mushroom 2 98716 68005 31.11% 

spect 2 1791 1263 29.48% 
voting-records 2 3814 1921 49.63% 

monks 2 1803 1458 19.13% 
lung-cancer 3 742 623 16.04% 
molecular 3 141930 128414 9.52% 

car 4 7827 5725 26.86% 
soybean 4 428 285 33.41% 

zoo 7 522 211 59.58% 
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We can observe from the table 2 that new method is prone to get a better result 
than the random one when clustering with a pre-requisite cluster number. The de-
creased percents of SSE are all above 10%, and the highest one nears 60%. The results 
of new method are evidently easier to approach the optimal distribution of clusters. 

Table 3. Clustering with 8 cluster centers  

Data set Rand. Init. SSE  New. Init. SSE  Decreased Percent 
credit 6492 4948 23.78% 

hepatitis 1466 1158 21.01% 
mushroom 76900 51461 33.08% 

spect 1635 982.5 39.91% 
voting-records 3674 1676 54.38% 

monks problems 1567 981 37.40% 
molecular biology 137890 124297 9.86% 

car 7500 4857 35.24% 
zoo 497 216 56.54% 

Since soybean and lung-cancer data sets can no more meet our condition c2<n, they 
are eliminated from the initialization process. The decreased percents in table 3 indi-
cate that new method can attain a better result, and are closer to optimal distribution. 

Table 4. Clustering with 16 cluster centers 

Data set Rand. Init. SSE  New. Init. SSE  Decreased Percent 
credit 6236 4550 27.04% 

mushroom 88884 49052 44.81% 
spect 1701 929 45.39% 

voting-records 3453 1323 61.69% 
monks problems 1373 798 41.88% 

molecular 137222 119287 13.07% 
car 6820 4120 39.59% 

Table 5. Clustering with 32 cluster centers 

Data set Rand. Init. SSE  New. Init. SSE  Decreased Percent 
mushroom 70874 34017 52.00% 
molecular 137477 126643 7.88% 

car 6381 3635 43.03% 

Since cluster number is set as 16 in Table 4, hepatitis and zoo data sets are elimi-
nated. In Table 5, only three data sets satisfy the condition c2<n. The comparisons 
of SSE values in two tables indicate that the new method is a more efficient one. 



978 S. Wu, Q. Jiang, and J.Z. Huang 

3.2   Stability Test and Analysis 

In the stability test, we implement the two distinct initialization methods in all data 
sets we mentioned above with pre-requisite clusters number. They have been tested 
for ten times and the standard deviations (SD) of SSE are listed below. 

Table 6. Standard deviation of SSE in ten times 

Data set Method SD  Dataset Method SD 
Random 270 Random 69 

Credit 
New 139 

Lung Cancer 
New 23 

Random 134 Random 1834 
Hepatitis 

New 76 
Molecular 

New 375 
Random 7023 Random 360 

Mushroom 
New 3451 

Car 
New 67 

Random 169 Random 76 
Spect 

New 65 
Soybean 

New 26 
Random 148 Random 44 Voting re-

cords New 126 

 

Zoo 
New 37 

It can be observed from table 6 that the standard deviations of the new method are 
smaller than those of the random one. It reflects that the SSE values of the new method 
are stable and vary little in clustering different data sets.  

3.3   Time Consumption Test and Analysis 

Through the two experiments, we know that the new initialization method is efficient 
and stable. If the time cost of our method exponentially not linearly increases with the 
volume of data sets, the new method should be limited within the scope of small data 
sets. In order to demonstrate the trend of variety, connect-4 data set in UCI [13] is 
implemented in this test. 

      

Fig. 4. Time consumption with 3 clusters    Fig. 5. Time consumption with 8 clusters 
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In Fig. 4, we set the cluster number 3 which was provided by the data sets dona-
tors. With the number of points increasing from 10,000 to 67,520, time consumptions 
of the random method and new one both are linearly increased. The time consumption 
of the random method in our method is also linear, since it includes SSE computing 
step besides random choice. The time cost of new method still linearly increases with 
the volume of data set when cluster numbers are 8 in Fig. 5. The experiment results 
show that the new initialization method can be implemented to cluster large date sets. 

4   Conclusions 

In this paper, we propose a new initialization method for categorical data clustering 
and implement it on fuzzy k -modes algorithm. Firstly, the new method reduces time 
cost though random sample process. Then we define point’s density and point’s prob-
ability to be a center in order to find the most potential centers. In order to avoid an 
unstable situation, the new method sub-sample many times. To attain more reliable 
initial centers, refinement method clusters in some choosing centers, thus no need to 
cluster the whole data set. The experiment result also indicates that new initialization 
method is efficient to attain more effective and stabler results than the random one. 
Increasing with the volume of data set, time consumption increases linearly. 

There are some issues that need to be explored in order to enhance the performance 
of the new initialization method. We plan to propose a more effective way to compute 
the probability of point to be a center. We also plan to extend this method to textual 
data set, mixed data set and numerical data set, after changing the concept of density. 
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Abstract. L2 and L1 constrained regression methods, such as ridge regression
and Lasso, have been generally known for their fitting ability. Recently, L0-
constrained classifications have been used for feature selection and classifier con-
struction. This paper proposes an L0 constrained regression method, which aims
to minimize both the epsilon-insensitive fitting errors and L0 constraints on re-
gression coefficients. Our L0-constrained regression can be efficiently approxi-
mated by successive linearization algorithm, and shows the favorable properties
of selecting a compact set of fitting coefficients and tolerating small fitting er-
rors. To make our L0 constrained regression generally applicable, the extension
to nonlinear regression is also addressed in this paper.

1 Introduction

In dealing with a usual regression task, we have a data matrix X = {xi}n
i=1 in size

n × d, where n is the number of points (observations), and d is the dimension of each
data vector. Correspondingly, we have a response vector Y = {yi}n

i=1 in length n. A
linear regression can be regarded as learning a coefficient vector w in length d and an
offset constant b, such that

Xw − be ≈ Y.

The ordinary least squares (OLS) learns the coefficient vector w by minimizing the
residual squared loss

min ||Xw − be − Y||22,

where e is a vector of ones.
However, OLS may not be accurate and robust enough. As a technique for improving

OLS, ridge regression adds the L2 norm of the coefficient vector into the OLS objective
function, hereby sets up an L2 constrained regression:

min ||Xw − be − Y||2 + λ||w||22.

To obtain better prediction accuracy and interpretation [1], Lasso (least absolute
shrinkage and selection operator) has been developed, which in terms of objective func-
tion substitutes the L2 norm of the coefficient vector in ridge regression for L1 norm:

min ||Xw − be − Y||2 + λ||w||11,

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 981–988, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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where the L1 norm of w can be calculated by summing up the absolute values of the
entries of w: ||w||11 =

∑d
i=1 |wi|. More generally, the Lp norm ||w||pp, p > 0, rep-

resented by
∑d

i=1 |wj |p, is mentioned in [2, 1, 3, 4], Among different norms, when
p → 0, the ||w||00 is defined as the cardinality of nonzero elements of the coefficient
vector w [4], and corresponds to selecting a subset of coefficients [1]. Generally speak-
ing, the rationale of using a small p,e.g p ≤ 1 is coefficient shrinkage and selection, but
due to the computational difficulty, the cases of p < 1 for regression has seldom been
implemented in practice.

Other than constraining coefficients, a new class of regression algorithms aim to
incorporate alternative loss functions. For instance, support vector regression [5], in-
stead of employing the squared loss in OLS, lasso and ridge regression, suggests the
ε-insensitive loss (ε ≥ 0) for each point xi

(|xiw − b − yi| − ε)+ = max{0, |xiw − b − yi| − ε}.

The ε-insensitive loss does not count any loss below ε, that is, whenever the absolute
prediction loss for the i−th point xi is smaller than ε, the loss is neglected and replaced
by a zero value during total loss calculation.

This paper is motivated by seeking the set-up of p → 0 in constraining regression
coefficients, so as to select a good subset of coefficients and to obtain an easily in-
terpretable regression model. Intrinsically the L0-constrained regression is companied
with computational difficulties, but thanks to the study on L0-constrained classifica-
tion [3, 6] and support vector regression, we can devise a type of regression algorithm
to enforce L0-constraints upon coefficients and ε−insensitive loss for prediction, which
can be efficiently approximated by successive linear programming.

This paper is organized as follows. In section 2, we explain our L0-constrained
ε−insensitive regression and demonstrate how it relates to other works in literatures.
And section 3 shows how to approximate the solution through Successive Linearization
Algorithm. In section 4, the properties of L0-constrained regression is studied through
experimenting on the prostate cancer data. Section 6 intends to discuss the extension
of L0 constraints to nonlinear regression, together with simulation. Section 7 presents
summaries and concludes the paper with future works.

2 L0-Constrained ε-Insensitive Regression

This section shows the formulation of our L0 constrained ε−insensitive regression. It
considers the ε−insensitive loss seen in support vector regression, with the L0 norm of
coefficients in linear models taken into account too. These two parts can be integrated
into a single objective function, which is expected to be simultaneously minimized:

min : eT (|Xw − be − Y| − εe)+ + λ||w||00.

In [6] the L0 constraints ||w||00 is approximated in the following way,

||w||00 ≈ eT (e − e−α|w|), α > 0,
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Fig. 1. Lp (p = 0, 1, 2) and the approximation to L0, with a single element in w

where α is a positive tuning parameter and a larger α makes a closer approximation.
And |w| converts the coefficients in w to their absolute values. Fig 1 shows how the
||w||00 is approximated, and also how the L0 norm is different from L1 or L2 criteria.
Through this approximation, and let |w| = v, vi ≥ 0, ∀i, the part of objective ||w||00 is
approximated by

||w||00 ≈ eT (e − e−αv)
subject to w ≤ v, −w ≤ v

v ≥ 0

On the other hand, as a standard technique in support vector regression, the ε−
insensitive loss can be converted into the following form through introducing nonnega-
tive vectors ε and ε∗,.

eT (|Xw − be − Y| − εe)+ ≡ (ε + ε∗)
subject to Xw − be − Y ≤ εe + ε

−(Xw − be − Y) ≤ εe + ε∗

ε, ε∗ ≥ 0

Hereby the combination of these two parts has the following form

min : eT (ε + ε∗) + λeT (e − e−αv)
subject to Xw − be − Y ≤ εe + ε

−(Xw − be − Y) ≤ εe + ε∗

w ≤ v, −w ≤ v
ε, ε∗,v ≥ 0
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3 Algorithm

In [6], L0 constrained linear support vector classification is proposed, and then succes-
sive linearization algorithm (SLA) is used to approximate the solution.

Our L0 constrained regression adopts ε-insensitive loss, rather than the hinge loss
typical in classification, hereby leads to a different objective function. However, the
converted objective form with linear constraints still makes the utilization of SLA pos-
sible. We summarize the algorithm for our L0 constrained regression using SLA as
follows.

Algorithm: start with vi, i = 0 (e.g. via randomization), solve the following linear
programming, hereby determine (wi+1, bi+1, εi+1, ε∗(i+1),vi+1):

min eT (ε + ε∗) + λα(e−αvi

)T (v − vi)
subject to Xw − be − Y ≤ εe + ε

−(Xw − be − Y) ≤ εe + ε∗

w ≤ v, −w ≤ v

ε, ε∗,v ≥ 0

After obtaining vi+1, keep solving the above linear programming till the maximum
number of iterations is reached or the following stopping condition is satisfied:

|eT (ε + ε∗ − εi − ε∗(i)) + λα(e−αvi

)T (v − vi)| ≤ tol,

where tol is a very small constant.

4 Experiment on Prostate Cancer Example

We test the L0 constrained regression on the prostate data, which has been used in [1].
It has 97 samples, each is formed by eight features: log(cancer volume):lcavol, log
(prostate weight):lweight, age, log(benign prostatic hyperplasia amount):lbph, semi-
nal vesicle invasion:svi, log( capsular penetration): lcp, Gleanson score:gleason and
percentage Gleason scores 4 or 5:pgg45. The aim is to regress them into log(prostate
specific antigen) (lpsa). Following the preprocessing procedures in [1], each feature is
normalized to be with zero mean and unit standard deviation, and the responses are also
set to be with zero mean.

Fig 2 shows how the coefficients change along with the tuning parameter λ. As
shown in the figure, when λ is larger than 2, the lcp, gleanson and pgg45 starts fad-
ing out of the regression model. Later the age and lbph features are dropped out too.
Though our L0 regression has not been verified to possess exact piecewise solution
paths as lasso does, the figure shows the shrinkage of coefficients as the tuning param-
eter λ increases. Useful features are likely retained for a long time, such as the lcavol,
lweight and svi features. Particularly the lcavol feature presents a strong contribution to
the regression model.

Table 1 lists several related regression approaches together for this prostate task.
Both the least square and linear support vector regression build the regression model
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Fig. 2. L0 constrained regression on prostate data: each subplot shows the change of a regression
coefficient when λ in L0 set-up changes from 0 to 8. (tol = 1e − 5, α = 5, ε = 0.1).

upon all of the eight features. The L0 regression exerting a small constraint (λ = 1)
on coefficients also leads to a model using all features. The least square regression
undoubtedly minimizes the mean squared error, but support vector regression and L0
regression win with smaller absolute errors since by setup they intend to minimize
absolute errors. As shown in the lower part of the table, Lasso following the parameter
setting in [1] selects three features (lcavol, lweight,svi). Same features are selected by
our L0 regression approach, with different coefficients and slightly better errors.

Table 1. Prostate cancer example

Method mean-squared error mean-absolute error no. of non-zero coefficients
Least squares 0.4553 0.5176 8
Support vector regression 0.4671 0.5074 8
L0 regression (λ = 1) 0.4669 0.5068 8
Lasso (s = 0.44 [1]) 0.5604 0.5847 3(lcavol, lweight,svi)
L0 regression (λ = 5) 0.5214 0.5659 3(lcavol, lweight,svi)

5 Extension to Nonlinear Regression

It has been believed that linear regression models might not suffice for tasks character-
ized with nonlinearity. Our L0 constrained regression mentioned above is developed for
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linear models, by obtaining an explicit coefficient vector w for data points X in the in-
put space. However, it can also be extended to the case of nonlinear regression. Inspired
by kernel methods, here we present a type of L0 constrained nonlinear regression.

Assuming the (implicit) data representation now is X = {φ(xi)}n
i=1, where φ(·)

comprises a nonlinear mapping. Explicitly we have a kernel matrix induced from the
inner product of data matrix, that is, K = XXT . Upon building a regression model
Xw − be, we assume the coefficient vector w comes from a linear combination of data
points, that is,

w = XT β,

where β is vector in length n. Hereby the linear model is equivalent to Xw − be =
Kβ − be.

Hereby we can propose the following L0 constrained regression,

min : eT (|Kβ − be − Y| − εe)+ + λ||β||00.

The constraints now affect β rather than w. The switch of consideration is because
w in feature space may be too long to be explicitly emulated, hereby controllably en-
forcing entries in w to be zero can hardly be done. Instead, restricting the L0 norm of β
may lead to a small set of points that are then linearly combined into w, hereby achieves
the effect of introducing a compact model. This approach is also suggested in [7, 8],
though they adopt L1 restriction on β.

Similarly, this L0-constrained nonlinear regression can be further rewritten into the
following form, which can also be approximated by SLA too.:

min : eT (ε + ε∗) + λeT (e − e−αv)
subject to Kβ − be − Y ≤ εe + ε

−(Kβ − be − Y) ≤ εe + ε∗

β ≤ v

−β ≤ v
ε, ε∗,v ≥ 0

To verify our new nonlinear L0-constrained regression, we apply it to a synthetical
data set originated from [7]. The response is a nonlinear function of the one-dimensional
data point x: yi = cos(x)·(sin(5x)+sin(4x))+1+σν, where ν is normally distributed
random variable, with standard deviation σ = 0.01. The kernel used is Gaussian RBF,
with γ = 5. Figure 3 shows the results by support vector regression and nonlinear L0
regression. Both build a nonlinear regression model by only utilizing a portion of data
points as highlighted by square symbols. Our nonlinear L0 regression has the advantage
of leading to a smaller number of non-zero β coefficients (They are called support
vectors in SVR).

Table 2 tests this synthetic tasks under a series of parameter settings for 20 repeats,
which further confirms the compactness of L0 regression models. In addition, it can be
noticed that the linear kernel based ridge regression performs significantly worse than
all of the three RBF kernel-based nonlinear regression methods. As the λ decreases (or
equivalently increasing the C in SVR), the MSE drops gradually. When the SVR con-
verges to a stable model of 6.6 support vectors on average, the L0 still keeps refining its
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Fig. 3. SVR and L0 constrained regression on nonlinear synthetical data: λ = 0.05 (where C in
SVR is equivalently set to 1

λ
= 20), and ε = 0.2. training:testing = 50 : 250.

Table 2. Nonlinear L0 regression (ε = 0.1)

Kernel Ridge Regression L0 regression SVR
λ(1/C) MSE (Linear Kernel) MSE (RBF) MSE no. of nonzero β MSE no. of SVs

4.0 0.1137 0.0809 0.0595 1.3 0.0247 10.4
3.0 0.1106 0.0576 0.0332 2.6 0.0236 9.3
2.0 0.1073 0.0354 0.0179 3.8 0.0225 7.8
1.0 0.1043 0.0153 0.0118 4.5 0.0213 6.6
0.9 0.1040 0.0135 0.0103 4.9 0.0213 6.6
0.8 0.1038 0.0117 0.0103 4.9 0.0213 6.6
0.7 0.1036 0.0100 0.0091 4.9 0.0213 6.6
0.6 0.1034 0.0083 0.0076 5.3 0.0213 6.6

regression models. The RBF kernel ridge regression also keeps improving performance,
but it unlike the SVR or L0 regression usually cannot result in a sparse model.

6 Summary and Future Work

This paper presents a new regression algorithm, which considers both the ε−insensitive
loss and the number of regression coefficients. The integrated objective can be approx-
imated by successive linearization algorithm. Experimental investigation shows it has
the ability of selecting a small set of coefficients, so as to reduce the model size and
often bring accuracy gain.

To make our L0 more generally applicable to nonlinear regression, we introduce
the kernel trick into the L0 set-up, with deduction it also leads to a task to be handled
by SLA. Experiments show that the nonlinear L0 regression usually gives a smaller
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nonlinear model than support vector regression. When the parameter λ is small, it can
even achieve more accurate models.

The linear programming is the main step of SLA. Although current computers can
handle a moderately large size linear programming, and the number of succession steps
in our SLA are often less than ten, more efforts should be put for quicker and more
stable numerical methods.
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Abstract. Hybrid pattern recognition was put forward to discriminate paddy 
seeds of four different storage periods based on visible/near infrared reflec-
tance spectroscopy (Vis/NIRS). The hybrid pattern recognition included ex-
tracting feature and building classifier. A total of 210 samples of paddy seeds, 
which belonged to four classes, were used for collecting Vis/NIR spectra (325-
1075 nm) using a field spectroradiometer. The hybrid pattern recognition was 
integrated with wavelet transform (WT), principal component analysis (PCA) 
and artificial neural networks (ANN) models. WT was used to eliminate noises 
and extract characteristic information from spectral data. The characteristic in-
formation could be visualized in principal components (PCs) space, in which 
the structures correlative with the storage periods could be discovered. The 
first eight PCs, which accounted for 99.94% of the raw spectral data variance, 
were used as input of the ANN mode, and the model yielded high discrimina-
tion accuracy rates of 100%, 100%, 100% and 90% for four classes’ samples 
respectively.   

1   Introduction 

Paddy sustains two-thirds of the world’s population, so the paddy quality is very 
important. During the storage, a number of physicochemical and physiological 
changes occur, which is usually termed aging. These changes that include pasting 
properties, colour, flavour, and composition affect rice quality directly [1]. So a 
quick, accurate and nondestructive way is needed to classify the paddy seeds of dif-
ferent storage periods. Near infrared spectroscopy is the electro-magnetic wave from 
780 to 2526 nanometers. The analytical capabilities of NIRS rely on the broad and 
repetitive absorption bands of carbon-hydrogen, oxygen-hydrogen, and nitrogen-
hydrogen bands. It reflects the information of the structure, composition and state 
information of molecule. The overlapping of absorption bands makes direct interpre-
tation of absorption spectra difficultly. So pattern recognition will play a more  
important role in the Vis/NIR technique development. Coffee varieties [2], melon 
genotypes [3], apple varieties [4], waxberry varieties [5], were classified using pat-
tern recognition tools based on near infrared spectroscopy technique. However, few 
researches focused on discriminating the paddy seeds of different storage periods 
based on Vis/NIR spectroscopy technique.      
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NIR spectroscopy technique has been effectively combined with pattern recogni-
tion tools, such as multiple partial least squares (MPLS), principal component analy-
sis [6][7] and discriminant analysis for classification, discrimination and authentica-
tion purposes. Linear discriminant analysis (LDA) [8] [9] failed with many variables, 
common solutions are to reduce the dimension of the predictor matrix by using data 
compressed arithmetic and then apply LDA. Wavelet transform is a very effective 
way to extract the useful information from mass spectral data [10] [11]. PCA can 
visualize the variability in a dataset, which can lead to the discovery of unknown 
structures [6][7]. In qualitative and quantitative analysis, artificial neural networks are 
more and more widely applied during the past several years [12]. Compared with 
SIMCA, PLS, DPLS, QDA and LDA et al method, the advantage of ANN is its anti-
jamming, anti-noise and robust nonlinear transfer ability [12] [13]. But the shortcom-
ing of ANN is difficult to be convergent when the input data are too mass. So the 
spectral data must be compressed as low-dimension data before ANN. 

Inspired by this, we presented a novel pattern recognition tool for differentiating 
the paddy seeds of different storage periods by integrating wavelet transform, princi-
pal component analysis, and artificial neural network models. The wavelet transform 
was used to eliminate noises and extract features from the spectra, and the features 
were visualized in PCs space by principal component analysis, then the PCs which 
were closely correlative with the classes of these samples were used as the input of an 
ANN model for discriminating the classes of samples with different storage periods.  

2   Materials and Methods 

2.1   Materials 

A total of 210 samples of paddy seeds were prepared for this experiment, they were 
obtained from Grain Supply Center of Hangzhou, Zhejiang province, China. These 
samples were harvested in four consecutive years from 2002 to 2005. The correspond-
ing samples have been stored for one year (OYS), two year (TWYS), three year 
(THYS) and four year (FYS) (Table 1). All these samples were stored without any 
chemical or biological preservative treatment.  

Table 1.  Detail of the samples in the research 

Storage  Variety Producing area Storage area No. 

One year early-indica type rice Jiangxi,China Hangzhou,China 54 
Two year early-indica type rice Jiangxi,China Hangzhou,China 51 

Three year early-indica type rice Jiangxi,China Hangzhou,China 52 
Four year early-indica type rice Jiangxi,China Hangzhou,China 53 

2.2   Vis/NIR Spectra Collection 

A Vis/NIR spectroradiometer (Handheld FieldSpec) was used to collect spectra from 
325 to 1075 nm at 3.5 nm bandwidth. Then all data were interpolated to 1-nm inter-
vals. The uniform glass vessel (diameter: d=60mm, height: h=14mm) was used to 
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load the paddy seeds, and the vessel was filled with samples. The spectroradiometer 
was fixed at 120 mm above the surface of the sample with the field of view (FOV) of 
25º. The light source of a Lowell pro-lam 14.5 V Bulb tungsten halogen that could be 
used both in the visible and near infrared region was placed 100 mm above the sample 
surface. The angle between the incident light and the spectroradiometer detector was 
about 45o.    

A 100 mm2 thick Teflon® disk was used as the optical reference standard for the 
system. A reflectance (R) was calculated by comparing spectral energy reflected from 
the sample with the standard reference. In order to reduce the operating error, for each 
sample, three reflection spectra were taken at three equidistant rotation positions of 
approximately 120o around the center of the sample. For each reflection spectrum the 
scan number was 10 at exactly the same position, a total scan for each example was 
30. Due to the imperfection in the own system, a big scattering affected the accuracy 
of measurement could be observed at the beginning and the end of the spectral data, 
so the first 75 and the last 75 wavelengths data were excluded in all analysis, all the 
considerations were based on this range of wavelengths. The absorbance spectra of 
the four classes can be seen in fig. 1.  

2.3   Pattern Recognition Tools 

The wavelet transform (WT) enables the signal (spectrum) to be analyzed as a sum of 
functions (wavelets) with different spatial and frequency properties [11]. The gener-
ated waveforms are analyzed with wavelet multiresolution analysis to extract sub-
band information from the spectral signal. Principal component analysis (PCA) is a 
very effective data reduction technique for spectral data. It summarizes data by form-
ing new variables, which are linear composites of the original variables [18]. In the 
study, the spectral data was analyzed by principal component analysis (PCA) and 
defective information was eliminated. Artificial neural networks (ANN) are known as 
useful tools for pattern recognition, identification, and classification. A neural net-
work model can determine the input-output relationships for a complicated system. 
And such a model can provide data approximation and signal-filtering functions be-
yond optimal linear techniques [14].  

PCA was performed using the Unscrambler 9.5 software (CAMO). The matlab 
Wavelet Toolbox was used to perform the standard wavelet transform using the pre-
defined wavelet filters. The matlab Neural Networks Toolbox was used to build the 
back-propagation neural network model. 

3   Results and Discussion 

Fig.1 shows the average absorbance spectra of samples of four different storage peri-
ods: (a) paddy seeds of one year storage (OYS) (b) paddy seeds of two year storage 
(TWYS) (c) paddy seeds of three year storage (THYS) and (d) paddy seeds of four 
year storage (FYS). Seemingly, there isn't a remarkable difference among these  
four classes in these spectral range. After comparing in detail, some differences can 
be detected from 600 nm to 700 nm, which makes it possible to discriminate the sam-
ples with difference aging. The differences may be caused by the different internal  
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Fig. 1. Absorbance spectra of four classes’ samples, OYS--paddy seeds of one year storage, 
TWYS--paddy seeds of two year storage, THYS--paddy seeds of three year storage,  
FYS--paddy seeds of four year storage 

attribute of these samples, such as the starch and protein. The baseline drift in the 
spectra (shown in fig.1.) is mostly due to system noise, which can be eliminated by 
wavelet transform. 

3.1   Noises Removal and Dimension Reduction by Wavelet Transform  

In this research, the wavelet transform was used to eliminate noises and select fea-
tures from the raw spectra. The WT was implemented using a dyadic filter tree. After 
trying, daubechies2 (db2) wavelet was selected as the suitable function to decompose 
the spectral signal. Then the spectral data, which have 210 rows and 601 columns, 
were decomposed at third level by db2 wavelet. To see the effect of WT, the signal 
was reconstructed with low-frequency coefficient (cA3) and high-frequency coeffi-
cient (cD1, cD2, cD3). The reconstructed signal based on wavelet coefficients at third 
level decomposition can be seen in fig.2. The first layer plot X is a raw spectra. The 
second layer plot cA3' is the reconstructed signal based on low-frequency coefficient 
(cA3). The third layer plot cD3’ is the reconstructed signal based on high-frequency 
coefficient (cD3). The fourth layer plot cD2' is the reconstructed signal based on high-
frequency coefficient (cD2). The fifth layer plot cD1' is the reconstructed signal based 
on high-frequency coefficient (cD1). It can be seen that the signals cD3', cD2' and cD1' 
contain mass high-frequency noise, especially at the beginning and end of this curve. 
The high-frequency coefficients contain mass noise and repeated information; it can 
barely give any help to classify the samples of different storage periods [15]. The 
signal cA3' reconstructed by low-frequency coefficient (cA3) is very similar with the 
raw signal X. So the low-frequency coefficient (cA3) (77-dimension) was used to 
replace the spectra.   
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Fig. 2.  Reconstruction signal based on wavelet coefficients at third level decomposition 

3.2   Data Visualization by Principal Components Analysis 

The principal component analysis aimed to mapping the wavelet coefficients in PCs 
space with the largest variability. PCA was performed on the 77-wavelet components 
of each sample, the dimensionality of the wavelet components was reduced from 77 
to 20 by PCA, and hence 20 principal components could be achieved. If the scores of 
a principal component were organized according to the number of the sample, a new 
image could be created. The new image was then called ‘PCA scores image’. The 
advantage of using principal components scores image was that it could display the 
clustering information of classes from multiple variables. 

The scatter image of PC1 (variability, 84.4%) vs. PC2 (variability, 9.7%) vs. PC3 
(variability, 4.2%) scores is shown in fig.3. The cumulative reliabilities of the first 
three principal components were 98.3%( seen in Table 2). In other words, the 
PC1,PC2 and PC3 accounted for 98.3% of the data variance. The image gives distrib-
uting information of four classes samples. In this scatter image, the four classes sam-
ples are closely clustered in strap shape respectively and the samples of four classes 
are composed as four well-defined groups. The differences among OYS samples, 
TWYS samples, THYS samples and FYS samples are pronounced. While, the 
boundaries of samples of four classes aren’t clear in fig.1. It means that spectral diag-
nostic information can be showed clearer in PCs space than in raw spectral absorb-
ance image. It can be concluded that the spectral diagnostic information can be ex-
tracted from raw spectra by WT and PCA. The extracted diagnostic information is 
strong correlation with storage period. But the TWYS and FYS samples are over-
lapped in the image. A more accuracy and clear separation need to be made. So, an 
artificial neural network algorithm was applied to classify the four classes with digital  
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Fig. 3.  Scatter plot of PC1vs PC2 vs PC3 scores of all samples 

discriminative result. PCA shows that the cumulative reliabilities of the first 8 princi-
pal components are 99.9%. It means these components can explain 99.9% of the data 
variances, and the rest components don't give more useful information for detecting 
the classes. 

3.3   Discriminating Samples by ANN 

The design process of this BP neural network model consists of neural network topo-
logical architecture design, training data collection, neural network training and vali-
dation. A typical topological structure for a BP network consists of an input layer, at 
least one hidden layer and an output layer. For a BP network, a very important theo-
rem is that a BP network with one hidden layer can approach any consecutive func-
tion in closed interval. The whole samples were separated randomly into two parts, 
the randomly selected 170 samples were used as calibration samples, and the remains 
40 were used as prediction samples. 

The first eight principal components from PCA were used as input vector. So the 
node of input layer was 8. As there were samples of four different classes, the output 
vectors of ANN were assumed to be binary system vectors of four bits. The node of 
output layer was 4. The transfer function of hidden layer was tansig function. The 
transfer function of output layer was logsig function. The train function was trainlm. 
The goal error was set as 0.001.  The maximum time of training was set as 2000. The 
threshold value of error was 0.1. The number of neurons in hidden layers was opti-
mized by "trial-and-error" method. It can be found that there was a smaller error and 
fewer training cycles when the node number of hidden layer was set as 8. A BP neural 
network model with three-layers was built. The optimal topology structure was 8-8-4 
for three-layer neural network. 

The discrimination results of calibration sample set and prediction sample set are 
summarized in table 2. The neural network yielded a very high discrimination accu-
racy, all of the OYS, TWYS and THYS samples were correctly classified for the  
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Table 2. Discrimination result of calibration sample set and prediction sample set of this model 

 Classification Prediction 
Classes No. FNo. Ar No. FNo. Ar 

OYS 44 0 100% 10 0 100% 
TWYS 41 0 100% 10 0 100% 
THYS 42 0 100% 10 0 100% 
FYS 43 0 100% 10 1 90% 
Total 170 0 100% 40 1 97.5% 

Note: OYS: paddy seeds of one year storage, TWYS: paddy seeds of two year stor-
age, THYS: paddy seeds of three year storage, FYS: paddy seeds of four year storage, 
No.: number, FNo.: fault No., Ar: accuracy rate. 

calibration and prediction sample sets respectively. The FYS paddy seeds were more 
difficult to classify in prediction. However, 90% of FYS samples were correctly clas-
sified in the prediction set. The total accuracy rate was 97.5% for all the four classes. 

4   Conclusion 

The hybrid pattern recognition obtained wonderful performance for discriminating 
paddy seeds of four different storage periods based on Vis/NIRS technique. The reali-
zation of hybrid pattern recognition needed two steps, the first step was noise removal 
and feature extraction, which was implemented by wavelet transform and principal 
component analysis. Subsequently, the characteristic spectral information was used as 
input of an ANN model. This model achieved a very good result for discriminating 
the four classes, which meant Vis/NIR spectroscopy could be used to classify paddy 
seeds of different storage periods non-destructively. In short, the hybrid pattern rec-
ognition has substantial potential for mining information from spectral data and dis-
criminating different classes.  
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Abstract. We present two new density-based algorithms for clustering
data points in lower dimensions (dimensions ≤ 10). Both our algorithms
compute density-based clusters and noises in O(n) CPU time, space,
and I/O cost, under some reasonable assumptions, where n is the num-
ber of input points. Besides packing the data structure into buckets and
using block access techniques to reduce the I/O cost, our algorithms ap-
ply space-filling curve techniques to reduce the disk access operations.
Our first algorithm (Algorithm A) focuses on handling not highly clus-
tered input data, while the second algorithm (Algorithm B) focuses on
highly clustered input data. We implemented our algorithms, evaluated
the effects of various space-filling curves, identified the best space-filling
curve for our approaches, and conducted extensive performance evalua-
tion. The experiments show the high performance of our algorithms. We
believe that our algorithms are of considerable practical value.

Keywords: Density-based clustering, secondary memory management,
space-filling curves, multi-attribute hashing.

1 Introduction

Data clustering is a fundamental problem arising in many practical applications.
In this paper, we consider the density-based data clustering problem on spatial
data, defined as follows [7,3]. We are given a set S of n points in the d-D space
R

d (d ≥ 2 is a constant integer) and two parameters δ > 0 and τ > 1. For any
point p in R

d, we denote by Nδ(p) the sphere in R
d centered at p with radius δ

(based on a given distance function such as an Lc metric). The sphere Nδ(p) is
called the δ-neighborhood of p.

1. For a point p ∈ S, if there are at least τ points of S (including p) contained
in the sphere Nδ(p), i.e., |S ∩Nδ(p)| ≥ τ , then all points of S ∩Nδ(p) belong
to the same cluster of S.

2. For two subsets C1 and C2 of S, if each of C1 and C2 belongs to a cluster
and if C1 ∩ C2 �= ∅, then C1 ∪ C2 belongs to the same cluster.

3. A cluster of S is a maximal set satisfying the two conditions above. All points
of S that do not belong to any cluster are called noise.
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The density-based clustering (DBC) problem is to identify all clusters of S and
all noise of S. Let Sδ(p) denote the point set S ∩ Nδ(p) for any point p in R

d.
A point p ∈ S is called a dense point if |Sδ(p)| ≥ τ ; otherwise, p ∈ S is a sparse
point.

Considerable work on solving the DBC problem has been done. One of the
most well known DBC algorithms is (G)DBSCAN [7]. (G)DBSCAN uses a spa-
tial data structure, R∗-tree, to identify points within a distance δ from the
dense points of the clusters. A heuristic algorithm for determining the param-
eters δ and τ was given in [7]. OPTICS [1] creates an augmented ordering of
the database based on the local densities. DBCLASD [9] defines clusters based
on the expected distribution of the distances to the nearest neighbors; hence
no parameters are needed in the cluster search. FDC [10] defines clusters by
an equivalence relationship on the objects in the database using a cell-based
method. DENCLUE [5] models the overall point density analytically as the sum
of the influence functions of the data points.

With the rapid increase in data volumes today, data sets are often too large
to entirely fit in a computer’s internal memory (i.e., the main memory), and
instead must be stored in external storage devices (e.g., disks). In this paper, we
consider using disk (or interchangeably, secondary memory or external memory,
and they all mean the same thing) for data storage. A major performance bot-
tleneck in this setting is the cost of input/output (I/O) communication between
the external and internal memories, since such I/O operations are very time-
consuming. One promising approach for dealing with this I/O difficulty is to
design algorithms and data structures that bypass the virtual memory system
and explicitly manage their own I/O. Vitter [8] considered this problem, and
referred to such algorithms and data structures as external memory algorithms
and data structures (see [8] for more details).

In this paper, we present the following results:

1. We developed two algorithms (called Algorithms A and B) that compute
density-based clusters and noises in O(n) CPU time, space, and I/O cost,
under some reasonable assumptions, where n is the number of input points.

2. Besides packing data structures into buckets and using block access tech-
niques to reduce the I/O cost as other commonly-used DBC algorithms, our
algorithms apply space-filling curve techniques to further reduce the disk
access operations. Both our algorithms are scalable to large data sets.

3. We evaluated the effects of various space-filling curves and identified the
best space-filling curve for our algorithms based on both theoretical and
experimental studies.

4. We implemented our algorithms and conducted extensive performance eval-
uation. We compared our two algorithms with DBSCAN [7], one of the
current fastest DBC algorithms. Our experimental results showed that our
algorithms are much more efficient when the dimension is no higher than
10. Since there are numerous important applications with lower dimension
data sets, such as satellite images, molecular biology, and astronomy, our
algorithms are expected to be of considerable practical value.
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Like many other geometric algorithms, the CPU time and I/O bounds of
Algorithms A and B have a constant factor of 3d in the cluster search. Algorithms
A and B are efficient for d ≤ 10. Algorithm A focuses on handling not highly
clustered input data, while Algorithm B focuses on highly clustered input data.

2 External Data Structures

We use hashing-based external data structures for both Algorithms A and B.
There are three reasons for our choices of the external data structures: (1) They
are cheap to construct; (2) they have low I/O cost for searching operations; (3)
we can further reduce the I/O cost by applying space-filling curve techniques
to these external data structures. Compared to using the general high dimen-
sion indexing methods based on space-filling curves to solve the density-based
clustering, the external data structures and the cluster search algorithm in our
algorithms are more tightly integrated to achieve high efficiency in both CPU
time and I/O cost, and this is done at the cost of significant loss of generality of
our external data structures.

2.1 Decomposing the Space

Given a set S of n points in R
d and parameters δ > 0 and τ > 1, we partition

the space containing S into a set of cells, called the basic cells, so that for any
point p of S in a basic cell c, we need to search only c’s 3d neighboring basic
cells for the point set Sδ(p). The length of a basic cell in any dimension is 2δ.

To save disk space and reduce disk access operations, we need to store in
one page the data points in many basic cells. Thus, we combine as many basic
cells as possible into a larger cell, called new cell, such that the average number
of points in each new cell is no bigger than θ, where θ is the capacity of one
page. The decomposition of the space produces the smallest hypercube C that
contains S, and the edge length of a new cell.

2.2 The Sequence Numbers of New Cells

We store all input points in each new cell as a collection. Clearly, we need to
decide the order in which the new cells are to be stored. A space-filling curve
helps create a mapping of the new cells from a d-D space to a single dimension
(thus defining an order). It is desirable that the new cells that are close together
in the d-D space be also close together in the mapped 1-D space [6]. Each new
cell is mapped to a unique new cell sequence number, and we store input points
based on this new cell sequence number.

We consider six space-filling curves [4,6]: Row-wise, snake row-wise, Z-ordering,
Z-ordering with Gray code, Gray ordering, and Hilbert curve. We need to deter-
mine which curve is most suitable for our DBC algorithms. Due to the page limit,
we refer to [4,6] for the details of these six space-filling curves.

Both our algorithms efficiently search the clusters by gradually “expanding”
the clusters instead of “jumping” everywhere. Thus, we need to use a space-filling
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curve which helps “expand” the clusters efficiently. The Hilbert curve has the
least “jumps” comparing to other space-filling curves [6], and is the best choice
for our cluster search algorithms, as shown by our experimental results.

The mapping from each new cell to its new cell sequence number based on any
of the six space-filling curves mentioned above takes O(1) CPU time. Thus, the
overhead of this mapping is very small comparing to the savings in I/O costs.

2.3 External Data Structure of Algorithm A

Suppose there are totally N new cells. The first N data pages as shown in
Figure 1(b) correspond to the N new cells, in the ascending order of the new
cell sequence numbers. We call these N pages the starting pages because if one
page cannot hold all input points in one new cell, we will allocate one or more
extra pages for this new cell, and these N pages are always the starting pages
for finding the extra pages. There are K extra pages in Figure 1(b). As shown in
Figure 1(a), each data page contains the information of the row-wise sequence
number of the corresponding new cell (say, c), the number of points in c, the
points in c and their cluster IDs, and the pointer to c’s next extra page.

We omit the construction of the external data structure of Algorithm A due
to the page limit, and summarize it in the following lemma.

(a) (b)

Fig. 1. Algorithm A: (a) The structure of one data page; (b) the data pages

Lemma 1. Suppose we are given a set S of n points in the d-D space R
d (for

any constant integer d ≥ 2) and two parameters δ > 0 and τ > 1. By scanning
the input data twice, we can create the data file for Algorithm A in O(n) CPU
time, space, and I/Os if there are O(n) new cells and each new cell contains a
constant number of points.

2.4 External Data Structure of Algorithm B

The external data structure of Algorithm B has directory pages and data pages.
The address of a new cell in the data pages can be located by consulting the
directory.
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(a) (b) (c)

Fig. 2. Algorithm B: (a) A directory page, (b) a data page, and (c) directory pages
and data pages

Figure 2(a) shows a directory page. Each new cell has an entry (called a
directory node or D-Node) in directory. Each D-Node contains information
of the row-wise sequence number of the corresponding new cell (say, c), the
number of points in c, the pointer to the data page, and the offset in the data
page. Figure 2(b) shows the structure of a data page. Figure 2(c) shows the
external data structure of Algorithm B. New cells are saved consecutively along
the ascending order of the new cell sequence numbers in the both directory pages
and data pages. The space utilization is 100%, i.e., there are no useless directory
and data pages.

We omit the construction of the external data structure of Algorithm B due
to the page limit, and summarize it in the following lemma.

Lemma 2. Suppose we are given a set S of n points in the d-D space R
d (for any

constant integer d ≥ 2) and two parameters δ > 0 and τ > 1. By scanning the
input data three times, we can create the external data structure for Algorithm
B in O(n) CPU time, space, and I/Os if there are O(n) new cells.

3 Searching for Clusters

Below is the main procedure for cluster search in Algorithms A and B.

Input: External data structure F , and parameters δ and τ .
Output: External data structure F with cluster IDs assigned.
1. For each new cell c along the new cell number sequence, do the following:

(a) Read c’s 3d neighboring new cells in R
d, H , into the main memory.

(b) Partition H into basic cells.
(c) For each point p ∈ c, do the following:

i. If p is a dense point then assign a cluster ID to all points in Nδ(p),
and record the equivalent cluster IDs.

2. Eliminate the equivalent cluster IDs.
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We search for clusters along the new cell sequence numbers in ascending order.
In this way, we can reduce the swaps of data pages between the main memory and
the disk, and operate on more consecutive pages. Given the new cell sequence
number s of a new cell c, we can calculate the new cell sequence numbers of its
neighboring new cells in R

d easily since we keep the row-wise sequence number
of c in the external data structures of Algorithms A and B.

We use a “first-in-first-out” queue Q to record the new cells that are in the
main memory, with the corresponding cell sequence numbers as keys. Q has
a prescribed maximum length L. If we have more main memory, we can set L
bigger to reduce the swap between the main memory and the secondary memory.
When we read new cells into the main memory, we add new cells to Q. For those
new cells that need to be read into the main memory, we first sort their new
cell sequence numbers in ascending order, and then read them along this order.
In this way, we can save much I/O cost by reading consecutive pages. When Q
exceeds the length limit L, the new cells which came earlier will be removed,
and these removed new cells will be written back to the secondary memory. We
also use the ascending order of the new cell sequence to write back these new
cells for reducing I/O cost.

We only need to search a point p’s 3d neighboring basic cells to find the point
set Sδ(p). If p is a dense point, we need to assign all points in Nδ(p) to a same
cluster. But, some of the points in Nδ(p) may have already been assigned different
cluster IDs, while these points in fact should belong to the same cluster. We call
different cluster IDs which are actually for the same cluster the equivalent cluster
IDs [10]. We reduce the number of equivalent cluster IDs by doing the following.
For a dense point p, if there is a point in Nδ(p) already having a cluster ID, we
just use this ID (instead of creating a new ID) to label the points in Nδ(p). In
this way, we can reduce a great deal of equivalent cluster IDs. We formulate the
problem of eliminating equivalent cluster IDs as one of computing the connected
components to completely eliminate any equivalent cluster IDs.

We have the following theorem as the summary of Algorithms A and B.

Theorem 1. Given n points in R
d (for any constant d ≥ 2) and parameters

δ > 0 and τ > 1, Algorithms A and B can compute all density-based clusters
and noises in O(n) CPU time, space, and I/Os if there are O(n) new cells and
each new cell contains a constant number of data points.

For an input data set, if we like to use different values of δ, Algorithms A and
B need to reconstruct the external data structures. This overhead actually does
not have a significant impact on the overall efficiency of Algorithms A and B
since the time for constructing the external data structures is much less than
the time for searching clusters, especially on large data sets.

4 Experimental Results

We conducted extensive experiments on our two DBC algorithms, using an Intel
Pentium 4 (1.4 GHZ with 512M main memory, running MS Windows 2000).
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For each data set, we apply the heuristic algorithm [7] to determine the pa-
rameters δ and τ . Note that in specific applications, we can adjust the values
of δ and τ to find the types of clusters interesting to us, such as low density
sparse clusters. The experiments have shown that our algorithms find the same
clusters as DBSCAN when using the same values of δ and τ on input data sets.
We used the library ANN [2] to generate the synthetic data sets in the following
way: 15 “core” points were first chosen from the uniform distribution (on the
interval [0, 1]) in the unit hypercube, and then many points based on a Gaussian
distribution with standard deviation σ centered around each core point were
generated in the unit hypercube. In the experiments below, we use two σ values
to create two kinds of data sets: We use σ = 0.05 to create data sets that repre-
sent not highly clustered data, and σ = 0.005 to create data sets that represent
highly clustered data. Due to the page limit, we omit the experiments with real
data sets and big data sets, and those about relation between the execution time
and dimension, etc.

For all the experiments below, the execution time of Algorithms A and B
includes the time of both the external data structure construction and cluster
search, since we need to reconstruct the external data structures when δ changes.
The execution time of DBSCAN only includes the cluster search time.

4.1 Random Disk Access Operations and Space-Filling Curves

We use six different space-filling curves and record the total random disk access
operations for cluster search. When several disk accesses are on consecutive data
pages, we count them as one random disk access. This is because consecutive
I/Os is much faster than the discrete I/Os. We use random disk accesses instead
of disk accesses to better reflect the real I/O costs in cluster search.

In Figure 3, we use 2-D data sets of sizes from 10M to 40M with σ = 0.005.
We can see that the random disk access operations in cluster search with the
Hilbert space-filling curve are the smallest for all data sizes. When data size is
40M, other space-filling curves, Gray code, row-wise, snake row-wise, Z-ordering,
and Z-ordering with Gray code, are 1.5, 1.1, 1.0, 0.7, and 0.6 times bigger than
Hilbert, respectively.
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Based on many experiments with data sets of different sizes, dimensions, and
σ values, we conclude that the Hilbert curve is the best choice for Algorithms A
and B on reducing the I/O costs. We use the Hilbert curve in all the experiments
below.

4.2 Experiments with Different σ Values

Figure 4 shows the relation between the execution time and data size with dif-
ferent σ values. In Figure 4(a), the input data is not highly clustered (σ = 0.05).
For data sizes of 1M, 2M, 3M, and 4M, DBSCAN uses 2.9, 4.5, 8.9, and 15.7
times as much time as Algorithm A, 1.4, 2.5, 4.9, and 9.3 times as much time as
Algorithm B, respectively. For the data set of size 4M, DBSCAN needs 87,962
seconds (i.e., over 1 day) for the cluster search, while Algorithms A and B use
1.3 and 1.6 hours of execution time, respectively. Algorithms B uses around 1.8
times as much time as Algorithm A for the data sizes.

In Figure 4(b), the input data is highly clustered (σ = 0.005). For data sizes
of 1M, 2M, 3M, and 4M, DBSCAN uses 1.7, 3.0, 5.9, and 11.1 times as much
time as Algorithm A, 2.0, 3.6, 7.1, and 13.3 times as much time as Algorithm B,
respectively. For the data set of size 4M, DBSCAN needs 89,543 seconds (i.e.,
over 1 day) for the cluster search, while Algorithms A and B use 2.2 and 1.8
hours of execution time, respectively. Algorithms A uses around 1.2 times as
much time as Algorithm B for the data sizes.
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Abstract. The embedded linear transformation is a popular technique which 
integrates both transformation and diagonal-covariance Gaussian mixture into a 
unified framework to improve the performance of speaker recognition. 
However, the mixture number of GMM must be given in model training. The 
cluster expectation-maximization (EM) algorithm is a well-known technique in 
which the mixture number is regarded as an estimated parameter. This paper 
presents a new model that integrates an improved cluster algorithm into the 
estimating process of GMM with the embedded transformation. In the 
approach, the transformation matrix, the mixture number and other traditional 
model parameters are simultaneously estimated according to a maximum 
likelihood criterion. The proposed method is demonstrated on a database of 
three data sessions for text independent speaker identification. The experiments 
show that this method outperforms the traditional GMM with cluster EM 
algorithm. 

Keywords: Gaussian mixture model (GMM); Improved cluster algorithm; 
Linear transformation; Expectation-maximization (EM) algorithm. 

1   Introduction 

Gaussian mixture speaker model (GMM) statistically represents the underlying 
sounds or vocal tract configurations that characterize a person’s voice, and it has been 
proven very effective for speaker recognition [1,2]. Usually, Gaussian mixture density 
functions use diagonal covariance matrices. The advantage is that the model is simple 
and easy for computation [3,4,5]. However this also reduces the likelihood of the data. 
In order to compensate the losing likelihood, many approaches have presented in 
recent years. Ljolje has demonstrated that explicitly modeling the correlation between 
feature elements can improve the performance of recognition [6]. The drawback of 
this method is that the orthonormal transformation is outside of the statistical 
framework and is not optimized together with GMM parameters. Kuo-Hwei [3] 
integrated the orthonormal transformation into the statistical structure. In this 
approach, the transformation matrix is regarded as a set of statistical parameters. 
Chih-chien [7] proposed a classification scheme that incorporates Karhunen-Loeve 
transform (KLT) [8] and GMM for text-independent speaker identification. 
Transformation based method is also applied in speaker adaptation algorithm [9].  
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However, the mixture number of GMM must be given beforehand in all these 
approaches. Charles A. B [10] advanced a cluster approach of parameter estimation 
for GMM with EM algorithm, in which the mixture number was regarded as an 
estimated parameter as the same as the other parameters such as the mean vectors and 
the covariance matrices. Thus the parameters estimated by the cluster approach are 
more accurately to depict the distribution of feature than the ordinary EM algorithm. 

This paper presents a new approach to estimate the GMM parameters. We integrate 
an improved cluster algorithm into the estimating process of GMM with the 
embedded transformation. Fig. 1 illustrates the conceptual block diagram. The 
approach is referred as transformed cluster GMM (TC-GMM), and we refer to GMM 
with embedded transformation as TE-GMM and GMM with cluster EM algorithm as 
CE-GMM. In the new approach, the mixture number, together with other parameters 
of GMM i.e. the weights, the mean vectors and the diagonal covariance matrices 
would be estimated by the improved cluster EM algorithm. In the experiment, we 
investigate the performance of the TC-GMM and the other two methods. 

Speech

Feature
Extraction

Embedded
Transformation

GMM with
diagonal

covariance

Modeling with improved clustering EM algorithm

 

Fig. 1. Improved cluster EM algorithm and embedded transformation used in GMM estimation 

2   Cluster and Transformation Technique for GMM 

2.1   Transformation Embedded GMM with Diagonal Covariance Matrices 

In the research of linear transformation with diagonal covariance matrices, two 
methods are usually used. In the early approach, the transformation matrix and 
diagonal-covariance Gaussian mixture parameters are modeled separately. In this 
paper, we apply another approach, that is, the transformation matrix and the diagonal-
covariance Gaussian mixture are combined into a uniform statistical model [3]. 

In order to estimate the parameters of Gaussian mixtures, it is necessary to 
determine the number of mixtures. In the section, let us assume that this model has K 
mixtures and the number K is fixed. Specifically, let y be an M dimensional random 
vector to be modeled using a Gaussian mixture distribution. Then the parameters are 
required to completely specify the kth mixture. kπ is the mixture weight. kμ is the M 

dimensional mean vector for mixture k. kR is the covariance matrix for mixture k. 

Then we use the notation π , μ and R to denote the parameter sets K
kk 1}{ =π , K

kk 1}{ =μ , 

and K
kkR 1}{ = . So the complete set of parameters are then given by K and ),,( Rμπθ = . 
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Now let },,,{ 21 NyyyY L= be N speaker feature vectors for speaker model training. 

Then the Gaussian mixture density function is given by 

⎭
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⎧ −−−= −
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Where each covariance matrix kR can be explicitly decomposed into eigenvalue 

matrix kΛ and eigenvector matrix Ω , that is T
kkR ΩΩΛ= .The Ω is tied across all 

Gaussian components while each kΛ is a component-specific matrix. The parameters 

of the statistical model are denoted as },,1,,,{ Kkkkk L=ΛΩ= μπθ . 

The ML estimation of the setθ is obtained by maximizing the likelihood function,  
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Because θ couldn’t be solved directly, the EM algorithm is used. Starting from an 

initial modelθ , the new model θ
)

 is estimated by maximizing the auxiliary function. 
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Where ),( θnykp is the posteriori probability and ),( θ
)

kyp n is the priori probability. 

In addition, two constraints can help to obtain the re-estimated formulas, that 

is 1
1

=∑
=

K

k
kπ) and M

t I=ΩΩ
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.Where MI denotes a MM × identity matrix. 

The re-estimated formulas of weights kπ) and mean vectors kμ) are easily derived, 

i.e. 
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Since the derivation of the formulas for Ω
)

and kΛ
)

’s is very complicated, we define 

Ω
)

by its column vectors as ],,[ 1 Mξξ
)

L
))

=Ω and the diagonal matrices kΛ
)

by their 

diagonal elements, i.e., 

],,[ ,1, Mkkk diag ρρ )
L

))
=Λ ,  k = 1, … , K. (6) 
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Then the column vector mς) and diagonal elements mk ,ρ) must be simultaneously 

solved from the following nonlinear equations: 

mk
t

mmk S ξξρ
)))) =, ,  k = 1, … , K,  m = 1, … , M. (7) 
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The nonlinear equations (7) and (8) can be solved by the FG algorithm. The details 
are shown in literature [3]. Thus the embedded GMM parameters 

},,1,,,{ Kkkkk L=ΛΩ= μπθ  could be computed iteratively, while the diagonal 

covariance matrix is applied in the computation of Gaussian mixture density function. 

2.2   Improved Cluster EM Algorithm with Diagonal Covariance Matrices 

In section 2.1, the number of mixture K is fixed. Therefore, before modeling the 
speech feature distribution using transformation embedded GMM, the number K must 
be determined without any priori information. The number K would not be fitted with 
the actual feature distribution in most cases. In order to search the better parameters, 
the cluster EM algorithm [10] is applied. In the algorithm, the number of mixture K is 
also regard as a GMM parameter. The complete set of parameters are given by the 
number K and θ . Also the number K must be an integer greater than 0, 

M
t I=ΩΩ

))
and∑ = =K

k k1
1π . The set of admissibleθ for K mixtures model is denoted 

by )(KΓ . The log of the probability of the entire training sequence is then given by 
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k
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In the same way, the maximum likelihood (ML) estimate is used to estimate the 
parameter K and },,1,,,{ Kkkkk L=ΛΩ= μπθ . It is given by  

),(logmaxarg
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θθ
θ

Kyp
K

ML
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. (11) 

However, the ML estimate of K is not well defined because the likelihood may 
always be made better by choosing a large number of mixtures. The addition of a 
penalty term in the log likelihood of account for the over-fitting of high order models 
is generally adopted to estimate the model order. In this paper, the minimum 
description length (MDL) estimator [11] is used and the expression of minimization is 
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Where N is the length of the feature vectors, M is the dimension of a vector and L is  
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The new estimates of weights kπ) and mean vectors kμ) are computed by equations 

(4) and (5) with EM algorithm. Using functions (7) and (8) can estimate 

the Ω
)

and kΛ
)

.  

The four re-estimated formulas show how to update the parameterθ , they do not 
show how to change the model order K. That is, how to decrement the number of 
mixtures from K to K-1 is the remaining question. In the paper, we reduce the number 
of K by merging two mixtures to form a single mixture. With the idea, two pivotal 
problems must to be solved. One problem is determining which two mixtures should 
to be merged and the rule of determination. After the two mixtures are fixed, how to 
compute the values of the parameters of the new mixture is another problem. The two 
problems would be discussed in blending each other. Suppose two mixtures, l and m, 
may be effectively merge in a single mixture, then 
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Where ),( mlπ , ),( mlμ , ),( mlΛ denote the weight, mean vector and diagonal covariance 

matrix of the new mixture. Using (15) and (16), a distance function is defined as 
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With the function (13), it is now possible to search over the set of all pairs, (l, m), 
to find the pair which minimizes d(l, m), i.e. 

),(minarg),(
),(

** mldml
ml

= . (18) 

These two mixtures are then merged. The resulting parameter set *
),( mlθ is used as a 

initial condition for EM optimization with K-1 mixtures. Unfortunately, if the order of 
model is 0K , cluster EM algorithm must do 0K ordinary EM processes, which take a 
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long time. In this paper, the two step estimation algorithm is advanced. In the 
approach, we change the step length to n (n>1) so that it will improve the training 

efficiency for about several times. After determining the best value *
)(nK , we then 

accurately re-search the parameters which minimize the value of MDL with the order 

of model ranging from 1*
)( +− nK n to 1*

)( −+ nK n in which the step length is 1. 

The final cluster EM algorithm is given in the following steps.  

1. Initialize the order of model with a large number 0K . 

2. Initialize },,1,,,{ 0Kkkkk L=ΛΩ= μπθ using k-means cluster algorithm. 

3. Apply the EM algorithm to compute the parameters of the new estimate θ
)

. 
Specifically, using (4) and (5) to compute weight kπ) and mean vectors kμ) and Using 

(7) and (8) to re-estimate Ω
)

and kΛ
)

. 

4. Set θθ
)

= and repeat Step 3 until convergence. 

5. Record the final parameter )(Kθ , and compute the value ),( )(KKMDL θ . 

6. If the number of mixtures is greater than n, apply equation (18) to reduce the 
number of mixtures with n step length, set nKK −← , and go back to step 3. 

7. Choose the value *
)(nK and parameters

)( *
)(nKθ which minimize the value of MDL. 

8. Re-initialize the order of model with 1*
)( +− nK n , then repeat step 2 to 3 until the 

last number of order is 1*
)( −+ nK n in which the step length is 1. 

9. Finally find the value *K and parameters
)( *Kθ which minimize the value of 

),( )(KKMDL θ . 

3   Experiments 

3.1   Database and Feature 

The database used in the speaker identification experiments was collected under the 
environment of the ordinary laboratory with 8 kHz sampling rate and finally 8-bit A-
law coding quantization. It consist 30 speakers (16 males and 14 females). The whole 
database is recorded in Chinese Mandarin and every speaker has his (her) own dialect 
more or less. Each utterance contains about 3 minutes speech. There are 3 sessions for 
each target speaker with 3 different contents. Each speaker pronounces 10 sequences 
of 4 connected digits about 30 seconds in session 1 which we called digital session. In 
session 2, the speaker pronounces The wind and the sun of Aesop's fable in Chinese 
edition. This session is called fixed content session and about 1 minute. The 3rd 
session is named free speech session in which the speaker is asked to describe his 
environment or tell what he has done during the day or something else. Anyway, 
speakers were kindly suggested not to say the same thing from speaker to speaker and 
suggested to speak randomly and colloquially. This session is limited in 1 minute.  
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In the experiments, the speech data of session 2 is chose to train the models 
involved in the paper. Then we use session 1 and 3 to test the performance of these 
models. The speech data were processed into frames of 256 samples, with a frame 
advance of 128 samples. Each frame was represented by a 24 component feature 
vector consisting of 12 MFCCs plus their first order derivatives. 

3.2   Results 

First, we examine the process of the two step estimation algorithm described in 
session 2.2. Suppose the first step length n is 5. The training data of two random 
speakers is examined. Fig. 2 shows the first estimation process of the two speakers in 
which the step length is 5. The initial number of mixtures is 120. The minimum of 
MDL values of the two speakers occurs at K=25 and K=30 in the rough. Fig. 3 shows the 
second estimation process with the step length = 1 which is based on the first estimation shown 
in Fig. 2. The final minimum of MDL value occurs at K=23 and K=31.  
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Fig. 2. First estimation process with step 
length = 5. Notice that the minimum of MDL 
values respectively occur at K=25 and K=30 
with the two speakers in the rough 

Fig. 3. Second estimation with step length = 1 
on the basis of the process shown in Fig 2. 
Notice that the minimum of MDL value
precisely occurs at K=23 and K=31 

The second set of experiments compares the performance of the proposed TC-
GMM with TE-GMM and CE-GMM. TC-GMM and CE-GMM have the same 
underlying structure and they both can achieve a best set of parameters including the 

mixture number *K , but model the covariance matrices in different way. The 
performance is compared in terms of the average error rates and computational 
complexity. The results are shown in Table 1. Let the initial number of mixtures 
be 0K , Then the computational numbers in various mixture numbers of TC-GMM and 

CE-GMM are ⎣ ⎦ )22(1/0 −++ nnK and 0K , respectively. Where ⎣ ⎦⋅ is the greatest 

smaller integer function. The listed computational time is for processing one input 
utterance. The results show that TC-GMM is about 50% time saved than CE-GMM. 
TC-GMM has a better performance than CE-GMM and the error rates with TC-GMM 
decrease 2.1% compared with CE-GMM on average. The improvement of 
performance is because of applying embedded transformation matrices.  
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Table 1. The identification error rates for various testing data sets and average computational 
time of CE-GMM and TC-GMM 

Testing data sets (Error recognition rates (%))  Time (s) 
Digital session Free speech session Average 

CE-GMM 36.5 7.2 12.8 10.0 
TC-GMM 18.4 6.1 9.8 7.9 

TC-GMM and TE-GMM have the same way in modeling the covariance matrices, 
but the different structures are applied. Table 2 shows the performance of in terms of 
the error rates for various testing data sets. These error rates decrease as the mixture 
number increases when the number of mixture is below 32, while the error rates have 
a little change up and down when the number is greater than 32. The performance 
becomes saturation when the mixture number is around 32. The error rates directly 
reach the point of saturation by using the proposed model in two testing data sets. On 
the point, the error rates and computational complexity are balanced. Also, the error 
rates are smaller in the digital session than in the free speech session since the context 
in this session is random and completely independent with the training data set. 

Table 2. The identification error rates of TE-GMM and TC-GMM for various testing data sets 

Mixture number K Error recognition rates (%) 
4 8 16 32 64 128 

TE-GMM 12.5 8.9 6.5 6.0 5.9 5.9 Digital session 
TC-GMM 6.1 
TE-GMM 16.2 12.0 10.5 9.9 9.8 9.7 

T
es

tin
g 

da
ta

 s
et

s 

Free speech session 
TC-GMM 9.8 

4   Conclusion 

In this paper, TC-GMM is developed to integrate the improved cluster algorithm into 
the estimating process of Gaussian mixture models with the embedded 
transformation. The transformation matrix, the mixture number and other traditional 
model parameters are simultaneously estimated according to a maximum likelihood 
criterion. The experiments conducted on a speaker identification task show that this 
new method outperforms the traditional GMM with cluster EM algorithm. Moreover, 
compared with the transformation embedded GMM, the experiments show that TC-
GMM can directly achieve the best point of saturation with the right mixture number 
in which the error rates and computational complexity are balanced. 
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Abstract. In the paper, we present an exploration of using social annotations 
provided by the Web 2.0 sites (such as Del.icio.us) in helping web search. More 
specifically, we consider using the social annotations as an additional resource to 
strengthen existing smoothing methods for the language model for IR. The social 
annotations can benefit the smoothing of language model in two aspects: 1) the 
annotations themselves can serve as the summaries of the web pages given by the 
users; 2) the annotations can be seen as the links of the web pages sharing the 
same annotations. We propose three smoothing methods, addressing the two 
aspects and their combination, respectively. We call the new language model of 
using the proposed smoothing methods ‘Language Annotation Model (LAM). 
Preliminary experimental results show that LAM significantly outperforms the 
traditional language models. 

1   Introduction 

Language modeling approaches to Information Retrieval (In the rest of this paper we 
take “Traditional Language Model” or the abbreviation “TLM” to represent the original 
language modeling approaches to Information Retrieval) have been approved to be 
very efficient [1, 2, 3]. The basic idea of this model is to estimate a language model for 
each document and then to rank documents by the likelihood of the query according to 
the estimated language model. One of the central problems of TLM is data sparseness. 
Many smoothing methods are studied trying to resolve this problem [2]. These classic 
smoothing methods are very efficient but one restriction: They all use only collection 
smoothing to compensate for data sparseness. 

With the boosting of web 2.0 technologies, more and more web resources are an-
notated by the web users manually. Annotations are metadata of their owner webpage. 
With this extra data, is there some way to combine them into IR and improve IR effi-
ciency? To answer this question, we first analyzed the characteristics of social anno-
tations and then propose a novel model in three forms by integrating annotations in 
three manners: 1) the annotations are summaries of webpages in users’ perspective; 2) 
an annotation is somewhat a cluster of the webpages sharing it; 3) their combination. 
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We call the three Forms of LAM Language Annotation Model with Annotation 
Smoothing (LAM-AS), Language Annotation Model with Cluster Smoothing 
(LAM-CS), Language Annotation Model with both Annotation and Cluster Smoothing 
(LAM-ACS) respectively.  

To evaluate our new models, we constructed a new test bed consisting of 1,736,268 
web pages with 269,566 different tags from Del.icio.us1. 80 queries are collected and 
labeled by a group of CS students. The experimental results show that the three new 
models outperform both Vector Space Model (VSM) and TLM significantly. 

In the rest of the paper, we first survey related work in Section 2, and then present 
three forms of the LAM in Section 3, later give experimental results in Section 4, fi-
nally make concluding remarks and give some future work in Section. 5. 

2   Related Work 

2.1   Language Model 

For many years, the primary consumers of statistical language models were speech 
recognition systems [4]. In 1998, Ponte and Croft [1] proposed a smoothed version of 
the document unigram language model. Since then, there emerged a great amount of 
research work related to language model. Most of them tried to solve the following two 
problems: term dependency and data sparseness. Plenty of work has been done to 
model the proper dependencies between the query terms [5, 6]. This paper mainly fo-
cused on how to utilize annotation information to lighten the data sparseness problem 
and simply ignore the term dependency problem by assuming all terms were generated 
independently. In order to resolve the data sparseness problem, many smoothing 
methods were suggested to reevaluate the probabilities of generating the query terms 
that did not appear in the document. Song and Croft proposed the good-turing 
smoothing based on terms’ power law distribution [3]. Zhai et al proposed the 
two-stage smoothing for language model [2]. In addition, cluster based smoothing 
methods were proposed and achieved significant improvement [7, 8]. 

2.2   Social Annotation Analysis 

During the recent several years, many websites have been constructed to provide social 
annotation services (or collaborative tagging, folksonomy, social bookmarking). 

Though much research work has been done on social annotation, little of them focus 
on integrating annotations to IR process. In [9], the authors give a very detail analysis 
of the social annotation data from Del.icio.us. In [10], the authors find the relationships 
among tags based on their co-occurrences with users or resources. However the above 
work didn’t mention the integration of annotations and IR. [11] uses a probabilistic 
generative model to obtain the emergent semantics hidden behind the co-occurrences of 
web resources, tags and users and implements semantic search based on the emergent 

                                                           
1 http://del.icio.us 
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semantics. In [12], the authors implement an annotation tool within enterprise envi-
ronment and developed a method to improve search efficiency by utilizing annotations. 
Different from their work, this paper integrates annotations with TLM and proposes a 
new Language Annotation Model. 

3   Language Annotation Model 

The social annotations can benefit the smoothing of language model in two aspects: 1) 
the annotations themselves can serve as the summaries of the web pages given by the 
users; 2) the annotations can be seen as the links of the web pages sharing the same 
annotations. We propose three smoothing methods, addressing the two aspects and 
their combination, respectively.  

In the first method, we consider using the combination of all the tags associated to a 
web page as a summary of the web page. More specifically, we concatenate all the tags 
to form a pseudo document which is used to smooth the language model from the 
original document. In the second method, we consider using the cluster of the docu-
ments linked to a given document by the annotations to smooth the language model 
from the given document. In the third method, we take into considerations the two 
aspects at the same time. The three methods lead to three new language models: Lan-
guage Annotation Model with Annotation Smoothing (LAM-AS), Language Annota-
tion Model with Cluster Smoothing (LAM-CS) and Language Annotation Model with 
both Annotation and Cluster Smoothing (LAM-ACS) respectively. 

3.1   Language Annotation Model with Annotation Smoothing (LAM-AS) 

In LAM-AS, we concatenate a web page’s all annotations to create a pseudo document. 

The web page and the pseudo document are two data sources of one document.  
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Where P(wi|d), P(wi|C), P(wi|da) and P(wi|Ca) means the probability of generating the 

ith query term from web page content, the whole web page collection, the pseudo 

document and the whole pseudo document collection respectively. 

3.2   Language Annotation Model with Cluster Smoothing (LAM-CS) 

In LAM-CS, we extend the idea of the cluster-based smoothing [7]. We consider two 
kinds of strategies in using social annotations for building clustering. 

− The documents within a cluster are linked by a social annotation tag. The tag is 
actually extra information other than the documents themselves. Since a document 
can potentially have unlimited amount of annotations, one document can be 
smoothed by a number of other documents linking to it via the tags. 
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− The social annotation tags can be semantically related since a single semantic sense 
can be articulated in different words by different users. Thus, one document can also 
be smoothed by the documents whose social annotation tags are semantically close 
to the tag of the document. 

For the first strategy, we calculate the arithmetic average of the smoothing scores of all 
the clusters containing the document. For the second strategy, we proposed to use “tag 
similarity” sim(taga,tagb) to quantify the semantic similarity between two tags taga and 
tagb. Finally we get the cluster smoothing model: 
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Where P(wi|TagCluj) is the probability of generating the ith query term from the jth tag 

cluster. Count(tag) is the amount of tags given to the document. sim(tagj,wi) is the si-

milarity from the jth tag to the ith query term.  

3.3   Language Annotation Model with Both Annotation and Cluster Smoothing 

(LAM-ACS) 

The LAM-ACS is the integrating of LAM-AS and LAM-CS. 
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4   System Evaluation and Analysis 

4.1   Delicious Data 

For the experiment, we crawled webpages and social annotations from Del.icio.us. The 
dataset consists of 1,736,268 webpages with 269,566 different tags. We conducted two 
steps of preprocessing on the raw dataset as listed in the following. 

Firstly, though the tags of Del.icio.us are easy for human to read and understand, 
they are not designed for machine. For the limitation of the Del.icio.us service, a tag 
cannot have a space. Users may concatenate several words together to form a tag like 
‘javaprogramming’ or ’java/programming’. We split/tokenize this kind of tags with the 
help of WordNet. In [9], social annotation tags are grouped into 7 categories. We found 
Category 4, 6 and 7 too user-specific (e.g. tobuy, toread, myprefer etc.). Tags falling 
into these categories are of little value for generic IR so we filter them out. 
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Secondly, we define Del.icio.us tag similarity according to two intuitions: 1) the tag 
A and tag B may semantically related to each other if their frequencies in a certain 
document are very close. The closer the more similar. 2) The similarity may be 
asymmetrical. For example, sim(Ubuntu,Linux) may be 0.6 while sim(Linux,Ubuntu) 
may be only 0.06. Because Linux is a superset of Ubuntu. Equation (4) illustrates the 
intuitions, 

∑ ∑
=

=−+−×+
=

aD

j

aD
i diai

bjajbjaj

CC
CCCC0

0ba
10091

1
)tag,sim(tag  (4) 

where Caj and Cbj means how many times taga and tagb are used on the jth document, 

respectively. Cdi is the total tag amount of the ith document. Here is some sample: en-

gine-google: 0.0710; engine-game: 0.0569; google-engine: 0.1018; 

4.2   Experiment Setup 

In order to evaluate the LAM’s performance, we asked for a group of CS students to 
help us collect 80 queries, such as image search engine, Beijing Olympic 2008, hy-
drogen fuel cell, Beatles music. The queries contain 497 relevant documents in all.  

All the models are based on Lucene 2.0. We implemented BM25 [13] as the VSM 
baseline of our experiment: k1, k3 and b are set 1, 1 and 0.5 respectively (It’s Xapian’s 
default weighting scheme2). In the following experiment, MAP and Recall are used to 
evaluate the retrieval performance. 

4.3   Evaluation of Language Annotation Model 

In order to make the evaluation fair, in BM25 we merge each web page’s annotations 
into its content to keep the five models’ data source the same amount. The parameter γ 
in Equation (1) and (3) is selected to roughly make the score following γ and the score 
following (1-γ) equal. 

As we can see from Table 2 and Fig 1, the three forms of LAM all outperform BM25 
and TLM. To understand whether the improvement is significant, we also performed 
t-tests on MAP. The p-value between LAM-ACS and TLM is 0.032, indicating sig-
nificant improvement. However, compare to TLM, the Recall of the three LAMs are  
 

Table 2. Evaluation of BM25, TLM, LAM-AS, LAM-CS, LAM-ACS 

Model Map/Recall Value Compare to BM25 
BM25(baseline) 0.4157 / 430  

TLM 0.4654 / 474  +12.0% / +10.2% 
LAM-AS 0.5092 / 458 +22.5% / +6.5%  
LAM-CS 0.4751 / 451 +14.3% / +4.9% 

LAM-ACS 0.5188 / 452 +24.8% / +5.1% 

                                                           
2 http://www.xapian.org/docs/bm25.html 
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Fig. 1. 11-point precision/recall curves for TLM, LAM-AS, LAM-CS, LAM-ACS, BM25 

much lower. We analyzed this phenomenon and find that the occurrence of a term in an 
annotation will bring more impact to the result P(q|d) score than that in the web page 
content since most annotations are much shorter than web page contents. For those 
queries which have some stopword-like terms like ‘software’, the smoothing scores 
may be too great and even contribute more than the web page.  

5   Conclusion and Future Work 

In this paper we study the problem of integrating social annotations into language 
model. The main contribution can be concluded as follows: 1) Propose to use social 
annotations to lighten the data sparseness within language model for IR; 2) Propose a 
novel Language Annotation Model to utilize social annotations. Three forms of LAM 
are studied. 3) The evaluation of the LAM using the Del.icio.us data, experimental 
results show that the LAM outperforms both the TLM and VSM significantly.  

It’s just a start to integrate social annotations into language model. In future, we will 
explore more sophisticated smoothing methods for language model and integrate social 
annotations into other retrieval models. 
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Abstract. Although Data Field Clustering method has a lot of advantages, 
clustering result depends severely on affection factor that is selected in Data 
Field function. The purpose of the paper is to find an optimum affection factor 
that may not only reflect nature characteristic of clustering data sample, but also 
reduce influence caused by sample deviation to minimum. In this paper, an 
affection interval concept is defined at first. Then an optimum objective 
function for reducing influence of sample deviation is constructed and an 
approximate solution is given of optimum affection factor. In the end, a 
standard data set offered in the MATLAB is used to test the availability of the 
optimum affection factor, the result is satisfactory. 

Keywords: data field clustering, affection interval, optimum affection factor, 
sample deviation. 

1   Introduction 

Date Field concept was derived from Field concept in physics and it supposed that 
there was a virtual field around data in sample space. This concept was firstly applied 
in Computer Graphics. In 1995, Deyi Li[1] introduced Data Field concept to 
Knowledge Discovery in Space Database. In 2002, WANG Shu-Liang[2] discussed 
the characteristic of Data Field in details. In 2006, a hierarchical clustering method 
based on data field [3] was released. 

Data Field Clustering is much different from conventional clustering methods[4][5]. 
Conventional clustering methods use directly distances among objects as measurement 
of similarity. Data Field Clustering transforms distances into potential value. If the 
potential value of a point in sample space is low, it indicates that the point is surrounded 
by few objects or it is far from them. If the potential value of a point is high, it indicates 
that the point is surrounded by many objects or it is near from them. 

Data Field Clustering has a lot of advantages, for example, 1) model is clear and is 
convenient to analyze, 2) it can complete arbitrary shape clustering, 3) it can reflect 
hierarchical relations of clustering result etc. But clustering result depends severely on 
selected affection factor that determine Data Field influential extension. If affection 
factor is smaller, clustering numbers are more. If affection factor is larger, clustering 
numbers are less. How to find an optimum affection factor has became a key problem 
in using Data Field Clustering method. The optimum affection factor must satisfy two 
conditions: 1) it must reflect natural clustering result of sample, 2) it must keep 
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clustering result stability when sample has some deviations. The purpose of the paper 
is to research a method that can find an optimum affection factor satisfying two 
conditions above. 

The rest of this paper is organized as follows. In section 2, data field and affection 
factor are defined. In section 3, affection interval is defined. In section 4, an optimum 
objective function is constructed and an approximate affection factor is given. In 
section 5, experiments are provided to test this solution.  

2   Data Field and Affection Factor 

2.1   Data Field 

Not any function may be used as Data Field. Data Field function must satisfy some 
conditions. 

Definition 1 (Data Field). Suppose that an object 0x  has a virtual field around it in 

sample space pR∈Ω , its function is ( )xg  . If follow conditions are satisfied: 

(1) ( )xg  is a continuous, smooth, limited function 

(2) ( )xg  is an Isotropic function 

(3) ( )xg  is an decreasing function of distance between any point Ω∈x  and field 

point 0x . When the distance is equal to 0, ( )xg  has a maximum value. When the 

distance is equal to +∞ , ( )xg  is equal to 0. 

Then, ( )xg  is called as Data Field of the object(point) 0x . The parameter that 

determined Data Field influential extension is called affection factor. 
Although Data Field may be described by a vector function or a scalar function, a 

scalar function is usually used in Data Field because of its simple. 
According to definition of the Data Field, any function that satisfies the three 

conditions can be used in Data Field. As we know, Gauss Function not only satisfies 
the three conditions, but also it is simple. So Gauss Function becomes first selection 
of scalar function used in Data Field Clustering. If not assert, Gauss Function is 
always used in the paper. 

The formula of Gauss Function used in the paper is as follow: 

( )
2

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

= σ
xx

exg  
(1) 

Where, 0xx− is a distance between any point x and data point 0x , ( )+∞∈ ,0σ  is a 

affection factor that determine Data Field influential extension. 
Based on definition of Data Field of an object, a potential function of sample space 

is defined as follow: 

Definition 2 (Potential Function of Sample Space). Given n objects set 

{ } p
ni RxxxxX ∈Ω∈= KK ,,,, 21 , if Xxi ∈∀  has a data field ( )xgi , then potential 

value of Ω∈∀x  is as follow formula: 



1024 H. Yang, J. Liu, and Z. Li 
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2.2   Affection Factor 

According to principle and process of Data Field Clustering, it is easily found that 
there is one-to-one correspondence of clustering number and maximum value number 
of formula(2). When sample is given, maximum value number of formula(2) depend 
on affection factorσ . If affection factor is small, formula (2) has many Maximum 
value, that is to say, sample clustering number is many. If affection factor is large, 
formula (2) has few Maximum value, that is to say, sample clustering number is few. 
So, if maximum value number can be obtained, clustering number is obtained too.  
1- order derivative of formula (2) is: 

x

G
Gx ∂

∂=∇  (3) 

Let formula (3) equal 0, can acquire maximum value. Let N  is maximum value set  

{ }0=∇= xGxN  (4) 

Let N  denote element number in set N , when affection factor is changing, N  is 

correspondingly changing with affection factor σ . So, N  is also signed by ( )σN . 

3   Affection Interval 

3.1   Affection Interval 

Simply spoken, affection interval is real interval of affection factor in which 
clustering number retain invariant. 

Definition 3 (Affection Interval). Given ( ) RkkK ⊂= 21 , , 

1)  if K∈∀ 1σ , K∈∀ 2σ , then )()( 21 σσ NN =  

2)  if K∈∀ 1σ , K∉∀ 2σ , then )()( 21 σσ NN ≠  

Then K  is called an affection interval. 1k  is called lower borderline . 2k  is called 

upper borderline.  

3.1   Satisfactory Affection Interval 

In Hierarchical Clustering, there is an inconsistency coefficient[6][7] in clustering 
tree. Commonly, natural clustering result of sample can be found by means of a larger 
inconsistency coefficient. When affection factor is increasing from a smaller value, 
Data Field Clustering process is similar to Hierarchical Clustering. So, natural 
clustering result can also be found in a larger affection interval. The larger affection 
interval is called satisfactory affection interval.  
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So far, the first condition finding optimum affection factor is satisfied. The natural 
clustering result of sample is in satisfactory affection interval. The second condition is 
to select an affection factor in the satisfactory affection interval. 

4   Affection Factor Optimization 

After finding satisfactory affection interval, any affection factor in the interval can 
reflect natural clustering result of sample. But, as is well known, all of samples have 

deviations. Obviously, those affection factors closing with 1k  or 2k  are sensitive to 

deviations. How to selecting an optimum affection factor is the purpose of this section. 
According to affection interval border value, the potential border value may be 

acquired: 
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Correspondingly, when potential value in interval ( ))(),(
21

xGxG kk , the clustering 

result retain invariant too.  
Suppose sample will change, deviation { }ni ddddD KK ,,,, 21= , when ( )21,kkk ∈ , 

the potential is: 
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If )(xGk  satisfies : 

( ) ( )xGxGxG kkk 21
)( <<  (8) 

Then sample deviation does not deconstruct clustering result. 
Obviously, formula(8) is not hold. Suppose Ω⊂∈∀ xSx  be not satisfactory with 

formula(8).  
Objective function of k optimization is: 

( )kSxmin  (9) 

s.t.  
( ) ( )
( ) ( )

x

kk

kk

Sx

xGxG

xGxG

∈

<

>

1

2

 (10) 
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The k that is satisfactory with objective function is the optimum affection factor. 
Commonly, the solution is not acquired.  

Using one-dimension and one data sample, objective function may be solvated. Let 

0=
∂
∂

k

S
 , acquire optimum affection factor: 

21kkk =  (11) 

As usually, the solution may be approximate answer of objective function(9). 

5   Experiments 

5.1   Experiment Date 

Fcmdata is a data set used in MATLAB to test how Fuzzy Clustering Method 
clustering works. It is a two-dimensional data set. The number of data is 140. It is 
very appropriate to research Data Field Clustering method. 

5.2   Satisfactory Affection Interval 

At first, satisfactory affection interval needed to be found. An improved Blocking 
Search algorithm is used to find satisfactory affection interval. To show relation of 
affection factor and clustering result, different affection factor and corresponding 
clustering result is listed in table 1. 

The first row and the third row is affection factor. The second row and the forth 
row is corresponding clustering number. It is clearly that clustering number two is 
most natural. And corresponding affection interval is: 

K=[0.13 0.22] 

Table 1.  Affection factor and corresponding clustering  

A.F. 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.16 

C 1 1 2 2 2 2 2 2 2 

A.F. 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 

C 2 2 2 3 3 4 6 7 7 

A.F. denotes Affection Factor. C denotes Clustering number. 

This result is same as Fuzzy Clustering result. Clustering result figure using 
affection factor 0.15 is as follow:  

5.2   Deviation Effect 

To check the validity of the approximate solution, some steps should be as follows. 
First, clustering result of original sample should be obtained. In this experiment,  
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Fig. 1. The points in the figure are sample data. The curves are contour of potential value. It is 
obviously showed that there are two clustering results in affection factor 0.15.  

affection interval is obtained above, their clustering result is 2. Second, some data are 
selected randomly to add random deviation. Third, clustering result is calculated again 
using same affection factor as first step. Forth, compare clustering result with the first, 
and check whether change the clustering number. All of steps should be executed 
many times, and different random deviation is added on sample data. The statistical 
result of the change of clustering number is more convictive.  

Some notices of experiment have: 1) deviation value is not larger or smaller. In 
paper, every point is added different bound uniform distribution random value. The 
bound dose not exceed border of sample normalized, 2) deviation number is not less 
or more. Less number is not effect, and more number will cancel reciprocally. In this 
experiment, 70 objects are added deviation, 3) in the paper, 50 times repetition 
calculations are executed. Larger the invariant clustering result is, more robust the 
affection factor is. The result is as follow: 

Table 2.  Statistical number of invariant clustering result in 50 time calculation  

A.F. 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.13 

65t 16 22 21 21 29 30 31 32 31 24 

70t 15 22 25 24 25 32 33 31 27 20 

75t 18 22 23 28 27 28 29 29 29 24 

A.F. denotes affection factor. 65t, 70t, 75t denotes number of data deviation.  

The first row is affection factors keeping clustering number tow in the sample. The first 
list is date number which is disturbed by uniform distribution. The data across of rows and 
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lists are statistical number that clustering number is tow. It is observed that maximum rate 
is probably in 0.17 or 0.16. The value is according to formula (11) that is: 

1691.013.0*22.021 === kkk  

5   Conclusion 

Data Field Clustering is much different from conventional clustering methods. Up to 
now, the research of Data Field Clustering is infrequent and insufficient. Because of a 
lot of advantages, the method is valuable to research. The paper research thoroughly 
mechanism of Data Field Clustering and influence of affection factor in clustering 
result. Considering sample deviation, an aim function of affection factor optimization 
is proposed and an approximate solution is given. Test result indicates that the 
solution is satisfactory. 

As a next work of the research, the availability of objective function and 
approximation solution need to be checked up in actual application. In addition, time 
expenditure problem of Data Field Clustering need to be solved. 
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Abstract. Computation of a minimum attribute reduct of a decision ta-
ble, which is known as an NP-hard nonlinearly constrained optimization
problem, is equivalently transformed in this paper into an unconstrained
binary optimization problem. An improved binary particle swarm opti-
mization algorithm combined with some immunity mechanism is then
proposed to solve the transformed optimization problem. Vaccination
based on the discernibility matrix of the decision table is introduced for
accelerating the search process in the algorithm. Experimental results on
a number of data sets show that the proposed algorithm remarkably out-
performs some recent global optimization techniques based algorithms
for minimum attribute reduction in both quality of solution and compu-
tational complexity.

1 Introduction

Attribute reduction of a decision table based on the theory of rough sets has
proved to be a very useful approach for knowledge discovery [1][2]. Finding just
a reduct is usually not a difficult task and there have been many heuristic algo-
rithms available in the literature for this purpose [3]-[6]. Computing a minimum
attribute reduct that contains the least number of attributes is however more
difficult and has been proved to be an NP-hard problem by Wong and Ziarko
[7]. It turns out that the above mentioned algorithms are generally not effective
since there is no guarantee for them to get a minimum reduct.

Formally, the minimum attribute reduction problem is a nonlinearly con-
strained combinatorial optimization problem. Hence, global optimization meth-
ods could be used to solve it. As a matter of fact, several algorithms along this
direction have been investigated. For instance, Wroblewski [8] and Li [9] dis-
cussed in different ways the application of genetic algorithms(GAs) to the min-
imum attribute reduction problem and some interesting results were reported.
More recently, the authors [10] and Dai [11] independently applied the binary
swarm optimization algorithm due to Kennedy and Eberhart to deal with the
problem and the results seemed to be encouraging. However, these algorithms
are not quite effective in the sense that the probability for them to find a min-
imum reduct appears to be low. For some data sets, the algorithms may even
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perform much worse than Hu and Cercone’s heuristic reduction algorithm [3].
One reason is that the fitness functions used in these algorithms are not suitable
enough for ensuring the optimality of the final results computed. This is due to
kind of inappropriate use of the penalty function method in defining the fitness
functions. Actually, a suitable fitness function is crucial to a successful applica-
tion of evolutionary computation methods like genetic algorithms and particle
swarm optimization algorithms. In this paper, the problem of minimum attribute
reduction is transformed into an unconstrained binary optimization problem. A
suitable fitness function is defined and the equivalence of optimality between the
original problem and the transformed one is proved. An improved binary parti-
cle swarm optimization algorithm combined with some vaccination mechanism
is then presented to solve the transformed problem. Experimental results on a
number of data sets obtained from the UCI machine learning repository show
that the proposed algorithm has a higher possibility of finding a minimum reduc-
tion and remarkably outperforms some existing algorithms specifically designed
for minimum attribute reduction in both quality of solution and computational
complexity.

The rest of the paper is organized as follows. Section 2 presents some back-
ground information on the attribute reduction problem. Section 3 describes how
to equivalently transform the minimum attribute reduction problem into an un-
constrained binary optimization problem by defining a suitable fitness function.
In section 4, we give an improved binary swarm optimization algorithm for solv-
ing the transformed problem. In section 5, we present some experimental results
and finally, in section 6, we conclude.

2 Minimum Attribute Reduction Problem

A decision table can be represented as a quadruple L = {U, A, V, f} [1], where
U = {x1, · · · , xn} is a non-empty finite set of objects called universe of discourse,
A is a union of condition attributes set C and decision attributes set D, V is the
domains of attributes belonging to A, and f : U × A �−→ V is an information
function assigning attribute values to objects belonging to U . Assume that C
contains m condition attributes a1, · · · , am and without loss of generality that
D contains only one decision attribute which takes k(> 1) distinct values. For
a subset P ⊆ A, IND(P ) represents the indiscernible relation induced by the
attributes belonging to P and there should be no confusion if we use U to
represent either a set of attributes or the relation IND(P ). A subset X ⊆ U
represents a concept and the partition induced by IND(P ) is called a knowledge
base and denoted by U/IND(P ). In particular, U/IND(D) = {Y1, · · · , Yk} is
the knowledge base of decision classes.

Let X ⊆ U and R ⊆ C. The R–lower approximation of X is defined as
RX = {x ∈ U : [x]R ⊆ X}, where [x]R refers to an equivalence class of IND(R)
determined by element x. The R–approximation quality with respect to decisions
is given by γR =

∑k
i=1

|RYi|
|U| , where |·| denotes the cardinality of a set. We restrict

ourself to the classic reduction as defined in the following.
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Definition 1. Let R ⊆ C. If R is a minimal set satisfying γR = γC , then R
is said to be a relative reduct of C or simply a reduct. The intersection of all
reducts is called the attribute core of C and denoted as Core(C).

A minimum reduct is a reduct that contains the least number of attributes.
Usually, there can be more than one minimum reduct. By definition, finding a
minimum attribute reduction can be formulated as a nonlinearly constrained
combinatorial optimization problem as follows:

min |P |

s.t.

⎧
⎨

⎩

P ⊆ C
γP = γC

∀q ∈ P, γP\{q} < γP .
(1)

Let {0, 1}m be the m-dimensional Boolean space and ξ be a mapping from
{0, 1}m to the power set 2C such that:

xi = 1 ⇔ ai ∈ ξ(x), i = 1, · · · , m, ai ∈ C.

Then, the minimum reduction problem (1) can be reformulated as the following
constrained binary optimization problem:

min S(x)

s.t.

⎧
⎨

⎩

x ∈ {0, 1}m

γξ(x) = γC

∀q ∈ ξ(x), γξ(x)\{q} < γξ(x)

(2)

where 0 ≤ S(x) =
∑m

i=1 xi ≤ m.
Given a vector x ∈ {0, 1}m, if it is a feasible solution to Problem (2), then

its corresponding subset of attributes ξ(x) is a reduct. Furthermore, if it is an
optimal solution to Problem (2), then ξ(x) is a minimum reduct.

The first PSO algorithm was introduced in 1995 by Kennedy and Eberhart
[12] for continuous optimization problems and since then many improved ver-
sions of it have been presented [13][14]. It is a population-based optimization
algorithm inspired by the social behavior of birds and, like other algorithms of
its kind, it is initialized with a population of possible solutions (called particles)
randomly located in a d-dimensional solution space. A fitness function deter-
mines the quality of a particle’s position. A particle at time step t has a position
vector and a velocity vector. The algorithm iterates updating the trajectories of
the swarm through the solution space on the basis of information about each
particle’s previous best performance and the best previous performance of its
neighbors until a stopping criterion is met. In 1997, Kennedy and Eberhart [15]
developed a binary version of PSO for solving combinatorial optimization prob-
lems.

Usually, PSO algorithms can be directly applied to solve an unconstrained
optimization problem since the fitness function can be defined in a straight-
forward way. However, when dealing with a constrained optimization problem,
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things become a bit complicated. The most commonly used approach is to trans-
form the constrained problem into an unconstrained one via the penalty function
method. This amounts to defining a fitness function by enforcing the constraints
into the objective function. However, if the penalty is not properly imposed on
the fitness function, the transformation will not assure the equivalence of op-
timality between the two problems. Thus, it is important to define a suitable
fitness function for ensuring a better performance of a PSO algorithm.

3 Transformation of the Minimum Reduction Problem

We shall discuss in this section how to equivalently transform Problem (2) into
an unconstrained binary optimization problem that could be directly solved by
a binary particle swarm optimization method.

Let us consider the following unconstrained binary optimization problem:

max
x∈{0,1}m

F (x) (3)

where the fitness function is given by

F (x) =
{

m − S(x) + γξ(x), γξ(x) < γC ;
γC + 2m − S(x), γξ(x) = γC .

We have the following main results concerning the equivalence between Prob-
lem (2) and Problem (3).

Theorem 1. If x∗ is an optimal solution to Problem (2), then x∗ is also an
optimal solution to Problem (3).

Proof. Let P = ξ(x∗). By hypothesis, we have γP = γC and hence F (x∗) =
γC + 2m − S(x∗) ≥ γC + m. For any x ∈ {0, 1}m, let R = ξ(x). If γR < γC ,
then by definition, F (x) = m − s(x) + γR < m + γC ≤ F (x∗). If γR = γC

and R is a reduct, then by the optimality of x∗ and the definition of F , we
have S(x∗) ≤ S(x) and F (x∗) = γC + 2m − S(x∗) ≥ γC + 2m − S(x) = F (x).
If γR = γC and R is not a reduct, then it means that R contains a reduct
R1 = ξ(x′). Hence, S(x′) < S(x), yielding by definition F (x′) > F (x). Since R1
is now a reduct, we have F (x∗) ≥ F (x′) and so F (x∗) > F (x). The proof is thus
complete.

Theorem 2. Suppose that x∗ is an optimal solution to Problem (3). Let P =
ξ(x∗). Then, x∗ is also an optimal solution to Problem (2), or P is a minimum
reduct.

Proof. First, we show that γP = γC . We use proof by contradiction. Assume
that γP < γC . Then, by definition, F (x∗) = m − s(x∗) + γP < m + γC . Let
y = (1, 1, · · · , 1)T ∈ {0, 1}m. We have ξ(y) = C and S(y) = m. By definition,
F (y) = γC + 2m − m > F (x∗), contradicting the optimality of x∗. Thus, γP =
γC . Next, assume that there exists Q, a subset of P , such that γQ = γC . Let
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Q = ξ(x′), then, S(x′) < S(x∗) and by definition, F (x′) = γC + 2m − S(x′) >
γC + 2m − S(x∗) = F (x∗), again contradicting the optimality of x∗. We have
thus shown that x∗ is a feasible solution of Problem (2).

Now, for any feasible solution x̂ of Problem (2), we have γR = γC with R =
ξ(x̂). By definition, F (x̂) = γC + 2m − S(x̂). Since x∗ is a maximum of F by
hypothesis, we have γC +2m−S(x∗) = F (x∗) ≥ F (x̂), leading to S(x∗) ≤ S(x̂).
This implies that x∗ is also an optimal solution to Problem (2). The proof is
thus done.

4 An Improved Binary PSO Algorithm with Vaccination

We present in this section an improved binary PSO algorithm with some vacci-
nation mechanism for solving Problem (3). We choose to use Skowron’s discerni-
bility matrix of a decision table [16] as a criterion for preparing vaccines. The
basic steps of our algorithm is as follows:

Step 1. Initialization. {0, 1}m is the particle space; the size of the swarm is N;
the maximum number of iterations is set to T; the velocity along each dimension
is bounded by vmax.

Initialize the swarm as P (0) = {x1(0), · · · , xN (0)} and the corresponding ve-
locity vectors as vi(0), i = 1, · · · , N . Initialize the ith particle’s previous best
performance position pbi(0) as xi(0) and then identify the best previous perfor-
mance position of the swarm as gb(0). Set t = 0.

Step 2. Calculate the discernibility matrix M and Core(C) [17]. If Core(C) =
{ai1 , · · · , aiq} 
= ∅, then set IC = {i1, · · · , iq}. For each attribute a ∈ C\Core(C),
denote by frq(a) the frequency of its occurrence in matrix M and set

h(a) = 0.8 × frq(a) − fmin

fmax − fmin
+ 0.1

where fmax and fmin are respectively the maximum and minimum of all these
frequencies.

Compute the vaccination pattern HC = {h(aj) : j ∈ {1, · · · , m}\IC}.
Step 3. Update the positions and velocity of particles according to the fol-

lowing equations:

vi
j(t + 1) = w(t)vi

j(t) + c1r1j(t)(pbi
j(t) − xi

j(t)) + c2r2j(t)(gbj(t) − xi
j(t)),

xi
j(t + 1) =

{
1, randi < sig(vi

j(t + 1));
0, randi ≥ sig(vi

j(t + 1)),

i = 1, · · · , N, j ∈ {1, · · · , m}\IC

where pbi(t) is the previous best performance position of particle i and gb(t) is
the best previous performance position of the whole swarm; w(t) = T−t

T is the
inertia weight; sig(x) = 1

1+e−x is the sigmoid function; c1 and c2 are the learning
coefficients; r1j(t), r2j(t) and randi are all uniformly randomized numbers in the
interval [0,1].



1034 D. Ye, Z. Chen, and J. Liao

Step 4. Vaccination. Randomly select a subset of particles and inject to them
the vaccine pattern HC according to the following rule:

If ith particle is chosen for vaccination, then its position after vaccination,
denoted by yi(t), is computed as follows:

boundj =
{

h(aj) − 0.1, xi
j(t) = 0;

h(aj) + 0.1, xi
j(t) = 1.

yi
j(t) =

{
0, boundj ≤ rand;
1, boundj > rand.

j ∈ {1, · · · , m}\IC

where rand is a uniformly randomized number in the interval [0,1].
An immune selection is then performed in such a way that if the vaccination

increases the fitness value of a particle, then the particle is replaced by the
vaccinated one.

Step 5. If some stopping criterion is met or t >T, then stop and output the
subset of attributes ξ(gb(t)). Otherwise, set t = t + 1, repeat Step 3.

5 Experiments

To evaluate its performance, the proposed algorithm IPSO was implemented on
a 2.8GHz machine running Windows XP with 512 MB of main memory and then
tested on 5 real data sets obtained from the UCI machine learning repository.
These data sets were chosen because Hu’s reduction algorithm [3] fails to get
a minimum reduct for each of them. For comparison, three minimum reduction
algorithms, denoted by GA1 [9], PSO1 [10] and PSO2 [11] respectively, were also
tested. Due to page limitation, we report here only the results corresponding to
a specific setting of parameters. These parameters were as follows: T = 500, N
= 20, the learning coefficients c1 = c2 = 2 for all PSO based algorithms, the
crossover probability pc = 0.7 and mutation probability pm = 0.01 in algorithm
GA1. In order to test how fast an algorithm can find a solution, a minimum
reduct for each of these data sets was calculated beforehand via an exhaustive
search and was then used to define the optimality stopping criterion. If an al-
gorithm terminates with a solution satisfying the stopping criterion within the
allowed iterations, then the solution corresponds to a minimum reduct and we say
that this run of the algorithm is successful. Each algorithm was independently
run 20 times in the experiments and three values were reported, including the
number of attributes contained in the best solution found during the 20 runs,
the ratio of successful runs and the mean computational time. The results are
respectively listed in Tables 1, 2 and 3. For each test data set, the information
on the number of attributes of a minimum reduct is also included in Table 1
under the column label Known Best.

Table 1 shows the best results picked up from among the 20 output solutions
of the 20 runs of each algorithm. We see that our proposed algorithm could find a



A New Algorithm for Minimum Attribute Reduction 1035

Table 1. Best results found by the algorithms

dataset Known Best GA1 PSO1 PSO2 IPSO

zoo 5 5 5 5 5
house 4 4 4 4 4

lymphography 8 10 9 9 8
Soybean 9 12 10 10 9

Lung cancer 4 6 5 5 4

Table 2. Ratio of successful runs

dataset GA1 PSO1 PSO2 IPSO

zoo 3/20 3/20 4/20 13/20
house 2/20 2/20 3/20 12/20

lymphography 0 0 0 9/20
Soybean 0 0 0 11/20

Lung cancer 0 0 0 10/20

minimum reduct for all test data sets, while none of the other algorithms could
achieve this goal within the allowed iterations. Actually, the other algorithms
could obtain a minimum reduct only for the first two data sets.

Table 2 shows how frequently an algorithm could find a minimum reduct
during the 20 runs. It can be seen that for each test data set, the proposed
algorithm had a high ratio of successful runs or a high probability of getting a
minimum reduct, whereas the other algorithms rarely had successful runs.

Table 3. Average computational time (second)

dataset GA1 PSO1 PSO2 IPSO

zoo 43 36 31 18
house 102 93 90 61

lymphography 697 582 567 429
Soybean 996 895 854 597

Lung cancer 933 751 768 512

Table 3 shows the experimental results on the average computational time
of each algorithm. Obviously, the proposed algorithm performs better than the
others.

6 Conclusion

We have studied in this paper the problem of how to effectively compute a mini-
mum reduct of a decision table based on PSO algorithms. By defining a suitable
fitness function for the evaluation of a particle’s quality, we developed an im-
proved binary PSO algorithm that outperforms some recent global optimization
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techniques based algorithms for minimum attribute reduction. This suggests that
binary PSO based algorithms could be promising and even competent in solving
the minimum attribute reduction problem.
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References

1. Pawlak Z., Slowinski R., Rough set approach to multi-attribute decision analysis.
European J. of Operational Research, 72(1994) 443–459

2. Wang G.Y., Rough set and knowledge aquisition, Xian Jiaotong Unversity Press,
2001

3. Hu X.H., Cercone N., Learning in relational databases: a Rough Set approach,
Computational Intelligence, 11(1995)323–338

4. Jelonek J., et al, Rough set reduction of attributes and their domains for neural
networks, Computational Intelligence, 11(1995) 339–347

5. Wang J., Wang R., Miao D.Q., Data enrichment based on rough set theory, Chinese
J. of Computers, 21(1998) 393–400

6. Ye D.Y., An improvement to Jelonek’s attribute reduction algorithm, Acta Elec-
tronica Sinica, 28(2000) 81-82

7. Wong S. K. M., Ziarko W., On optimal decision rules in decision tables, Bulletin
of Polish Academy of Science, 33(1985) 693–696

8. Wroblewski J., Finding mininmal reducts using genetic algorithm. ICS Research
Report 16/95. Warsaw university of Technology, 1995

9. Li D.F., et al, Genetic reduction algorithm based on feasible region, Mini-Micro
Systems, 27(2006) 312–315

10. Ye D.Y., Liao J.K., A particle swarm optimization algorithm for minimum attribute
reduction, Advances of AI in China 2005, Beijing Post and Telecommunication
University Press, (2005) 728–732

11. Dai J.H., et al., Particle swarm algorithm for minimal attribute reduction of de-
cision data tables, Proceedings of IMSCCS 2006, IEEE Computer Society Press,
(2006) 12–18

12. Kennedy J., Eberhart R.C., Particle swarm optimization, IEEE International Conf.
on Neural Networks, Piscataway, NJ: IEEE Service Center, (1995)1942–1948

13. Shi Y.H., Eberhart R.C., A modified particle swarm optimizer, IEEE International
Conf. on Evolutionary Computation, Piscataway, NJ: IEEE Press, (1998) 69–73

14. Clerc M., Discrete Particle Swarm Optimization, New Optimization Techniques in
Engineering, Heidelberg, Germany: Springer-Verlag, 2004

15. Kennedy J., Eberhart R.C., A discrete binary version of the particle swarm algo-
rithm. In: Proceedings of the International Conf. on Systems, Man and Cybernetics,
Piscataway: IEEE Press, (1997) 4104–4109

16. Skowron A., Rauszer C., The discernibility matricesand functions in information
systems, Slowinski I. edited, Intelligent Decision Support-Handbook of Applica-
tions and Advances of the Rough Sets Theory. Dordrecht: Kluwer, (1991) 331–362

17. Ye D.Y., Chen Z.J., A new discernibility matrix and the computation of a core,
Acta Eletronica Sinica, 30(2002) 1086–1088



Graph Nodes Clustering Based on the

Commute-Time Kernel

Luh Yen1, Francois Fouss1, Christine Decaestecker2,
Pascal Francq3, and Marco Saerens1
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3 Université libre de Bruxelles, STIC, Bruxelles, Belgium
pfrancq@ulb.ac.be

Abstract. This work presents a kernel method for clustering the nodes
of a weighted, undirected, graph. The algorithm is based on a two-step
procedure. First, the sigmoid commute-time kernel (KCT), providing a
similarity measure between any couple of nodes by taking the indirect
links into account, is computed from the adjacency matrix of the graph.
Then, the nodes of the graph are clustered by performing a kernel k-
means or fuzzy k-means on this CT kernel matrix. For this purpose,
a new, simple, version of the kernel k-means and the kernel fuzzy k-
means is introduced. The joint use of the CT kernel matrix and kernel
clustering appears to be quite successful. Indeed, it provides good results
on a document clustering problem involving the newsgroups database.

1 Introduction

This work presents a general methodology for clustering the nodes of a weighted,
undirected, graph. Graph nodes clustering is an important issue that has been
the subject of much recent work; see for instance [4], [5], [7], [11], [17] and [19].

On the other hand, kernel-based algorithms are characterized by two proper-
ties: they allow (i) to compute implicitly similarities in a high-dimensional space
where the data are more likely to be well-separated and (ii) to compute similari-
ties between structured objects that cannot be naturally represented by a simple
set of features. In this paper we propose a new kernel matrix on a weighted,
undirected, graph, which defines similarities between the nodes. These similar-
ities take both direct and indirect links into account; they therefore take the
indirect paths between the nodes into consideration. Two nodes are considered
as similar if there are many short paths connecting them.

Based on this kernel matrix, nodes are clustered thanks to a kernel clustering.
The kernel clustering algorithms proposed in this paper differ from existing ones
([2], [9], [10], [20], [22] and [23]) by the fact that a prototype vector is explicitly
defined for each cluster. This is more natural since it allows to mimic the iterative
update rules reminiscent from k-means and fuzzy k-means in the sample space,

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 1037–1045, 2007.
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instead of the feature space. In addition to be very similar to the original feature-
based algorithms, this sample-based method can easily be extended to variable-
metric or multi-prototype kernel k-means, in the same way as the original k-
means and fuzzy k-means [6]. In addition to this, the resulting algorithm is very
simple and natural.

The performances are evaluated on the problem of clustering newsgroups
documents, and compared to the popular spherical k-means algorithm, which
is especially designed for document clustering [3], as well as a classic spectral
clustering method [12]. The collection of documents is viewed as a graph and
the basic problem is to cluster the documents in order to eventually retrieve
the newsgroups. The results indicate that the introduced algorithms perform
well in comparison with the spherical k-means and the spectral clustering, with
significant improvement.

The paper is organized as follows. Section 2 introduces the sigmoid commute-
time kernel (KCT) on a graph that will be used as similarity measure for clus-
tering the nodes. Section 3 derives our version of the kernel k-means and kernel
fuzzy k-means, while Section 4 shows the results obtained on the newsgroups
database. Section 5 is the conclusion.

2 The Sigmoid Commute-Time Kernel on a Graph

Let us consider that we are given a weighted, undirected, graph, G, with symmet-
ric weights wij > 0 on the edges connecting pairs of nodes i, j. The elements aij of
the adjacency matrix A of the graph are defined in a standard way as aij = wij if
node i is connected to node j and 0 otherwise. Based on the adjacency matrix, the
Laplacian matrix L of the graph is defined by L = D−A, where D = Diag(ai.)
is the degree matrix, with diagonal entries dii = [D]ii = ai. =

∑n
j=1aij . We

suppose that the graph has a single connected component; that is, any node can
be reached from any other node of the graph. In this case, L has rank n − 1,
where n is the number of nodes. Moreover, it can be shown that L is symmetric
and positive semidefinite (see for instance [8]).

The “commute time” kernel [14], [8] takes its name from the average com-
mute time, n(i, j), which is defined as the average number of steps a random
walker, starting in node i �= j, will take before entering a node j for the first
time, and go back to i. Indeed, we associate a Markov chain to the graph in
the following obvious manner. A state is associated to every node (n in total),
and the transition probabilities are given by pij = aij/ai. where ai. =

∑n
j=1aij .

One can show [14], [8] that, in this case, the average commute time can be
computed thanks to n(i, j) = VG (ei − ej)TL+(ei − ej) where every node i of
the graph is represented by a basis vector, ei (the i-th column of the identity
matrix I), in the Euclidean space �n and VG = a.. is the volume of the graph.
L+ is the Moore-Penrose pseudoinverse of the Laplacian matrix of the graph
and is positive semidefinite. Thus, n(i, j) is a Mahalanobis distance between
the nodes of the graph and is referred to as the “commute time distance” or the
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“resistance distance” because of a close analogy with the effective resistance in
electrical networks [8].

One can further show that L+ is the matrix containing the inner products of
the node vectors in the Euclidean space where these node vectors are exactly
separated by commute time distances. In other words, the entries of L+ can
be viewed as similarities between nodes and L+ can be considered as a kernel
matrix:

K = L+ (1)

The sigmoid commute time kernel KCT is obtained by applying a sigmoid
transform [15] on K. In other words, each element of the kernel matrix is given
by the formula

[KCT]ij = 1/(1 + exp[a l+ij/σ]) (2)

where l+ij = [L+]ij and σ is a normalizing factor, corresponding to the standard
deviation of the elements of L+. The parameter a will be set to a constant
value determined by informal preliminary tests. The sigmoid function aims to
normalize the range of the similarities in the interval [0, 1] [15]. Notice, however,
that the resulting matrix is not necessarily positive semi-definite so that, strictly
speaking, it is not a kernel matrix.

3 Kernel k-Means and Fuzzy k-Means

We now introduce our kernel, prototype-based, version of the k-means and fuzzy
k-means clustering algorithms.

3.1 Kernel k-Means

The goal is to design an iterative algorithm aiming to minimize a cost function
which, in the case of a standard k-means, can be defined, in the feature space,
as the total within-cluster inertia:

J(g1, . . . ,gm) =
m∑

k=1

∑

i∈Ck

||xi − gk||2 (3)

where the first sum is taken on the m clusters, while the second sum is taken
on the nodes i belonging to cluster k, i ∈ Ck. In Equation (3), xi is the feature
vector corresponding to node i, gk is a prototype vector of cluster k in the
feature space and ||xi −gk|| is the Euclidean distance between the node vector
and the cluster prototype it belongs to. The number of clusters, m, is provided
a priori by the user.

We denote by X the data matrix containing the transposed node vectors as
rows, that is, X = [x1,x2, . . . ,xn]T. Let us now define the following change of
parameter:

gk → XThk (4)

corresponding to the “kernel trick” (see [16]). It aims to express the prototype
vectors, gk, as a linear combination of the node vectors, xi (the columns of
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XT). The hk will be called the prototype vectors in the n-dimensional sample
space. Now, recompute the within-class inertia in terms of the hk and the inner
products:

J(h1, . . . ,hm) =
m∑

k=1

∑

i∈Ck

(xi − gk)T(xi − gk)

=
m∑

k=1

∑

i∈Ck

(kii − 2kT
i hk + hT

k Khk)

=
m∑

k=1

∑

i∈Ck

(ei − hk)TK(ei − hk) (5)

where K = XXT, kii = [K]ii = xT
i xi, ki = Xxi = coli(K).

The k-means iteratively minimizes J by proceeding in two steps, (1) re-
allocation of the node vectors while keeping the prototype vectors fixed, and
(2) re-computation of the prototype vectors, hk, while maintaining the cluster
labels of the nodes fixed. Clearly, the re-allocation step minimizing J is

li = arg min
k

{
(ei − hk)TK(ei − hk)

}
(6)

where li contains the cluster label of node i.
For the computation of the prototype vector, by taking the gradient of J with

respect to hk and setting the result equal to 0, we obtain Khk = 1
nk

∑
i∈Ck

ki =
K 1

nk

∑
i∈Ck

ei where nk is the number of nodes belonging to cluster k. By looking
carefully, we immediately observe from the left-hand side of the equation that
Khk is a linear combination of the ki, while the right-hand side is also a linear
combination of the ki. Therefore, one solution to this linear system of equations
is simply the following:

hk =
1
nk

∑

i∈Ck

ei (7)

In other words, hk contains 1/nk if i ∈ Ck and 0 otherwise. This two-step
procedure (equations (6) and (7))is iterated until convergence.

3.2 Kernel Fuzzy k-Means

We now apply the same procedure for deriving a kernel fuzzy k-means. This
time, the cost function is

J(g1, . . . ,gm;U) =
m∑

k=1

n∑

i=1

uik||xi − gk||2 with
m∑

k=1

u
1/q
ik = 1 for all i (8)

where the uik define the degree of membership of node i to cluster Ck. The pa-
rameter q > 1 is controlling the degree of fuzzyness of the membership functions.
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As for the kernel k-means, we perform the change of parameter (4), leading to
the following update formula for the membership function.

uik =

⎡

⎢
⎢
⎢
⎢
⎣

(
(ei − hk)TK(ei − hk)

)−1/(q−1)

m∑

l=1

((ei − hl)TK(ei − hl))
−1/(q−1)

⎤

⎥
⎥
⎥
⎥
⎦

q

(9)

and the re-computation of the prototype vectors is simply,

hki = [hk]i =
uik

n∑

j=1

ujk

(10)

4 Experiments

4.1 Data Set

In order to test the performances of the KCT k-means and the KCT fuzzy
k-means, both algorithms will be assessed on a real data set and compared
to classical clustering algorithms. The idea is to assess both algorithms on
graph data set where only the information on relation between nodes is given.
The tested graphs are extracted from the newsgroups data set (Available from
http://people.csail.mit.edu/jrennie/20Newsgroups/); it is composed of 20,000
unstructured documents, taken from 20 discussion groups (newsgroups) of the
Usernet diffusion list. As the data set is composed of documents, the clustering
performances of both methods will be compared to the spherical k-means [3],
which is a reference in text mining; and to Ng’s spectral clustering [12], which
presents some similarities with our approach.

For our experiment, 9 subsets including different topics are extracted from
the original database, as listed in figure 1. More precisely, for each subset, 200
documents are sampled from different newsgroups. Thus, the three first subsets
(G-2cl-A, G-2cl-B, G-2cl-C) contain 400 documents sampled from two news-
groups topics, the next three subsets (G-3cl-A, G-3cl-B, G-3cl-C) contain 600
documents sampled from three topics and the last three subsets (G-5cl-A, G-
5cl-B, G-5cl-C) contain 1000 documents sampled from five topics. The selected
topics can be related such as politics/mideast and politics/guns in subset G-
5cl-A. Both the classification rate (obtained by comparing the clustering to the
real newsgroups and performing an optimal assignment) and the adjusted Rand
index (with values scaled in [0, 1]) will be reported.

4.2 Graph Definition

The newsgroups data set can be seen as a large bipartite graph between docu-
ments and terms. Each document node is connected to terms nodes contained
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G-2cl-A politics/general, sport/baseball

G-2cl-B computer/graphics, motor/motorcycles

G-2cl-C space/general, politics/mideast

G-3cl-A sport/baseball, space/general, politics/mideast

G-3cl-B computer/windows, motor/autos, religion/general

G-3cl-C sport/hockey, religion/atheism, medicine/general

G-5cl-A computer/windowsx, cryptography/general, politics/mideast, politics/guns,

religion/christian

G-5cl-B computer/graphics, computer/pchardware, motor/autos, religion/atheism,

politics/mideast

G-5cl-C computer/machardware, sport/hockey, medicine/general, religion/general, forsale/general

Fig. 1. Document subsets used in our experiments. Nine subsets are selected from
the Newsgroups data set, with 2, 3 or 5 topics. For each subset, 200 documents are
randomly selected from each topic.

in the document, each edge being weighted by the tf.idf factor [18]. After some
preprocessing steps (see below) aiming to reduce the number of terms, a graph
involving only documents is computed from this bipartite graph in the following
way: the link between two documents is given by the sum of all document-term-
document paths connecting them and passing through the terms they have in
common. In other words, if W represents the term-document matrix contain-
ing the tf.idf factors, the adjacency matrix of the resulting document-document
graph is provided by A = WTW.

4.3 Preprocessing Steps

In order to reduce the high dimensionality of the feature space (terms), the
following standard preprocessing steps are performed on the data set before the
clustering experiment.

1. Stopwords without useful information are eliminated.
2. Porter’s stemming algorithm [13] is applied so that each word is reduced to

its “root ”.
3. Words that occur too few times (< 3) or in too few documents (< 2) are

considered as no content-bearing and are eliminated.
4. The mutual information between terms and documents is computed. For a

word y, the mutual information with the documents of the data set [21] is
given by

I(y) =
∑

x

log p(x, y)/p(x)p(y), (11)

where x represents the documents of the data set. Words with a small value
of mutual information (fixed at 20% of I(y)’s median) are eliminated.

5. The term-document matrix W is constructed with the remaining words and
documents. Element [W]ij of the matrix contains the value of tf.idf factor
between the term i and the document j.

6. Each row of the term-document matrix W is normalized to 1.
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Finally, the adjacency matrix of the documents graph A is given by the
document-document matrix WTW. Based on A, KCT is computed by Equation
(2). For example, the subset G-2cl-A is composed of 400 documents, and 2898
terms with stopwords already eliminated. After preprocessing, only 1490 terms
are kept. Thus, the clustering algorithm will be run on a 400×400 document-
document matrix, instead of a 1490×400 term-document matrix for a standard
feature-based algorithm.

4.4 Experimental Settings

Suppose we have a graph of n nodes to be partitioned into m clusters. First,
the prototype vectors hi (i = 1, ..., m) are initialized by randomly selecting m
columns of the identity matrix I. Then, each algorithm is run 30 times (30
runs), and the classification rate as well as the adjusted Rand index, aver-
aged on the 30 runs, are computed. The KCT k-means, KCT fuzzy k-means
and Ng’s spectral clustering are run on the document-document matrix A,
while the spherical k-means is run on the term-document matrix W after
preprocessing.

Each run consists in 50 trials: the clustering algorithm is launched 50 times and
the best solution among the 50 trials, having the minimal within-class inertia,
is sent back as the solution.

Two parameters need to be tuned. The first one is the parameter a for comput-
ing the sigmoid transform of the KCT (see Equation (2)). The second one is the
parameter q which controls the degree of fuzzyness for the kernel fuzzy k-means
(see Equation (9)). Based on preliminary informal experiment, the parameters
a and q were set to 7 and 1.2 respectively, for all experiments.

4.5 Experimental Results and Discussion

The results (the classification rate as well as the adjusted Rand index, each
averaged on 30 runs) of the four clustering algorithms (KCT k-means, KCT fuzzy
k-means, spherical k-means and Ng’s spectral clustering) on the nine document
subsets are reported in Table 1.

We observe that the KCT k-means and the KCT fuzzy k-means outperform
the spherical k-means on the nine subsets. Ng’s spectral clustering presents good
results on the 2-classes and 3-classes data sets, but degrades when the number
of clusters increases. Moreover, the KCT fuzzy k-means provides slightly better
results than the two other methods. This can be partly explained by the fact that
the newsgroups data set is fuzzy itself, as discussed in [1]. It is hard to define clear
boundaries between the different topics: a discussion within a specific newsgroup
can also be related to other domains. A close examination of the data set shows
that several discussions can even be out of subject or are simply empty of useful
information.
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Table 1. Comparison of the clustering performances (classification rate in % and
adjusted Rand index with value scaled in [0, 1]) for the KCT k-means, KCT fuzzy
k-means, spherical k-means and Ng’s spectral clustering

KCT k-means KCT fuzzy k-means Sph. k-means Ng spec. clus.

class. rate adj. Rand class. rate adj. Rand class. rate adj. Rand class. rate adj. Rand

G-2cl-A 97.5 % 0.95 97.8 % 0.96 91.8 % 0.85 94.5 % 0.90

G-2cl-B 90.6 % 0.83 91.5 % 0.84 81.5 % 0.70 93.0 % 0.87

G-2cl-C 95.5 % 0.91 96.0 % 0.92 94.8 % 0.90 95.7 % 0.92

G-3cl-A 93.9 % 0.91 94.5 % 0.92 89.2 % 0.85 92.7 % 0.90

G-3cl-B 93.6 % 0.91 93.5 % 0.91 86.7 % 0.82 92.0 % 0.89

G-3cl-C 93.9 % 0.91 92.8 % 0.90 87.4 % 0.83 81.7 % 0.78

G-5cl-A 83.0 % 0.80 85.4 % 0.83 80.4 % 0.79 76.7 % 0.78

G-5cl-B 74.8 % 0.77 78.4 % 0.79 64.4 % 0.69 67.7 % 0.72

G-5cl-C 76.4 % 0.75 80.1 % 0.79 64.9 % 0.69 64.0 % 0.72

5 Conclusions and Further Work

We introduced a new method allowing to cluster the nodes of a weighted graph
by exploiting the links between them. It is based on a recently introduced kernel
on a graph, the commute-time kernel, combined with a kernel clustering. The
obtained results are promising since the proposed methodology outperforms the
standard spherical k-means as well as spectral clustering on a difficult graph
clustering problem. Further work will be devoted to (1) additional experiments
on other text databases, and (2) developing kernel versions of the Gaussian
mixture, the entropy-based fuzzy clustering, Ward’s hierarchical clustering, and
assessing their performances.
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Abstract. The complexity of a biological system provides a great di-
versity of correlations among genes/gene clusters, including synchronous
and asynchronous co-regulations, each of which can be further divided
into two categories: activation and inhibition. Most existing methods
can only identify the synchronous activation patterns, such as shifting,
scaling and shifting-and-scaling, however, few focuses on capturing both
synchronous and asynchronous co-regulations. In this paper, we pro-
pose a coding scheme, where two genes with the same code must be
co-regulated. Based on the coding scheme, an efficient clustering algo-
rithm is devised to simultaneously capture all known co-regulated re-
lationships (synchronous and asynchronous) among genes/gene clusters.
Furthermore, the detailed and complete co-regulation information, which
facilitates the study of genetic regulatory networks, can be easily derived
from the resulting clusters. Experiments from both real and synthetic
microarray datasets prove the effectiveness and efficiency of our method.

1 Introduction

The complexity of biological systems provides a great diversity of correlations
among genes/gene clusters. Analysis of these regulatory relationships can provide
insights into the interactions of genes/gene clusters, which facilitates the study
of genetic regulatory networks.

Table 1(a) shows an example of microarray dataset, D, consisting of a set of
rows and a set of columns, where the rows denote genes, G = {g1, g2..., gm},
and the columns denote different time points, T = {t1, t2..., tn}. Note that the
expression value of a gene, gi, on a certain time point, tj , is denoted by di,j . For
simplicity, certain cells have been left blank in the table. We assume that these
are filled by some random expression values. Table 1(b) is a transposed version
of the running example in Table 1(a) after some row permutations, where two
different regulation groups emerge. The first one, shadowed and enveloped by a
solid polygon, is plotted in Figure 1(a) against every gene’s expression profile
within it. Similarly, Figure 1(b) corresponds to the second one not shadowed
but enveloped by a dashed rectangle. Note: any pair of genes within a regula-
tion group must have one of known regulatory relationships. For example, when
T={t1, t2, t4, t5}, in Figure 1(a), genes 1 and 4 present the shifting pattern [1,2]

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 1046–1054, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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since d1,T =d4,T +25. In Figure 1(b), where T ′ = {t1, t3, t5, t6, t7}, genes 3 and 6
present the scaling pattern [3] since d6,T ′=3 × d3,T ′ , and genes 3 and 8 present
the shifting-and-scaling pattern [3,4] since d8,T ′=4×d3,T ′ +5. All co-regulations
shown in Figure 1(b) are synchronous since the products of a gene immedi-
ately affect other genes’ expression. Moreover, all synchronous co-regulations [5]
can be generalized into two categories: activation and inhibition. In the acti-
vation process, an increase (resp. decrease) in certain genes’ expression levels
will increase (resp. decrease) some other genes’ expression levels, such as the
simultaneous pattern [6] between genes 1 and 4 in Figure 1(a), but during the
inhibition process, the case is just the reverse, such as the inverted pattern [6]
between genes 1 and 5.

Table 1. A Matrix for a Simple Microarray Dataset

(a) Example Microarray Dataset.

t1 t2 t3 t4 t5 t6 t7

g1 86.9 100 151.5 104

g2 55.4 27 11 78

g3 3.5 28.6 16.65 20.5 24.125

g4 61.9 75 126.5 79

g5 76.6 65.9 23.0 70.0

g6 10.5 85.8 49.95 61.5 72.37

g7 32 64.6 83.1 62.8 72.37

g8 19 119.4 71.6 87 101.5

g9 48.5 18.2 35.35 31.5 27.875

(b) Some Clusters.

t1 t2 t3 t4 t5 t6 t7

g1 86.9 100 151.5 104

g4 61.9 75 126.5 79

g5 76.6 65.9 23 70

g7 32 64.6 83.1 62.8

g2 55.4 27 11 78

g3 3.5 28.6 16.65 20.5 24.125

g6 10.5 85.8 49.95 61.5 72.375

g8 19 119.4 71.6 87 101.5

g9 48.5 18.2 35.35 31.5 27.875

In fact, from time-series gene expression data, it is apparent that most genes
do not co-regulate each other simultaneously but after a certain time lag [7],
which we call asynchronous co-regulation as shown in Figure 1(a). Also, it is
divided into activation, such as time-shifting pattern between genes 1 and 7,
and inhibition, such as inverted-time-shifting pattern between genes 1 and 2.

Existing methods used for identifying regulatory relationships from microar-
ray data fall into two major categories: the pattern/tendency-based subspace
clustering [8,9] and the ‘two genes, one relationship per alignment’ approach [6].
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(b) The second regulation group.

Fig. 1. Two regulation groups
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However, the former usually considers gene expression levels for pure shift-
ing [2, 1] or pure scaling [3] patterns under the same subset of conditions, and
does not take any synchronous relationships into consideration. So it ignores
many additional relationships implicit in expression time-course. The process of
the latter can be characterized as ‘two genes, one relationship per alignment’,
which means that each alignment can decide only one relationship between two
genes. Such an approach in some ways is not very computationally efficient.
Moreover, since this approach evaluates the expression profile similarity of genes
over all conditions, it is not sensitive to the case where a small but interesting
part of the genes is co-regulated while there is no distinct relationship between
the remaining parts.

The main contributions of this work are: (1) We propose a new cluster-
ing model, namely Reg-Cluster, to capture all synchronous and asynchronous
co-regulation patterns in a holistic manner, which is a generalization of the
pattern/tendency-based subspace clustering. (2) We propose a new coding-based
approach with which two genes are co-regulated if they have the same gcode,
and propose a new tree-based clustering algorithm, i.e. FBLD, with some prun-
ing rules, to efficiently find all significant reg-clusters. (3) Based on the proposed
coding schema, the more detailed co-regulation information can be easily derived
from the resulting clusters, such as activation or inhibition and how many time
points lagged between activated or inhibited genes. (4) We conducted extensive
experimental studies on both real data sets and synthetic data sets to confirm
the effectiveness and efficiency of our algorithm.

The remainder of this paper is organized as follows: Section 2 presents the
Reg-Cluster model and the problem statement. Section 3 gives the FBLD al-
gorithm in detail. Experimental results and analysis are shown in Section 4.
Finally, Section 5 concludes this paper.

2 The Reg-Cluster Model

Let G ={g1, g2, ..., gm} be a set of m genes, and T = {t1, t2, ..., tn} be a set of n
experimental time points. A two dimensional microarray time series dataset is
a real-valued m×n matrix D = G × T = {dij}, where i ∈ [1, m], j ∈ [1, n], two
dimensions of which correspond to genes and times respectively. Each entry dij

records the expression value of gene gi at time point tj .

Definition 1. l-segment. Suppose the original time sequence T =<t1, t2, ..., tn>
and its subsequence T ′=< ti1 ,ti2 ,· · · ,til+1>. There are l neighboring prototypal
subsequence of length 2 in T ′, i.e. <ti1 , ti2>, <ti2 , ti3>, · · · , <tl, tl+1>. We call
T ′ to be an l-segment regarding the number of prototypal subsequence of length
2, because a prototypal subsequence of length 2 is a basic regulation unit. The
number of elements in T ′, denoted |T ′|, is called the length of T ′.

Definition 2. Significant Regulation. Given a gene, ga, and a 1-segment,
<tij ,tik

>, we say the regulation of gene ga from time point tij to tik
is sig-

nificant. A significant regulation is up-regulated when da,ik
− da,ij > δ, denoted

Reg(ga,(<tij , tik
>)) = ‘↗’, and down-regulated when da,ik

−da,ij < δ, denoted
Reg(ga,(<tij , tik

>)) = ‘↘’.
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Definition 3. gCode. Given a gene, ga, and an l-segment, Tl = <ti1 ,
ti2 ,· · · , til+1>, the sequence generated in such a way that orderly connects
all results of O(tik

, tik+1 , tik+2) for k=1 to l-1 is called the gCode of
gene ga on the l-segment Tl, denoted gCode(ga, Tl), where O(<tij , tik

,
til

>)=O(Reg(<tij ,tik
>),Reg(<tik

, til
>)) and O-operation has the following

properties:
(1) O(↗, ↗) = 1; O(↘, ↘) = 1;
(2) O(↗, ↘) = 0; O(↘, ↗) = 0;

Definition 4. Synchronous Co-regulation. For two given genes, ga and gb,
if there exists an l-segment, Tl=< ti1 ,ti2 ,· · · ,til+1>, such that gCode(ga,
Tl)=gCode(gb, Tl), then we say ga and gb to be synchronous co-regulated each
other on Tl. Furthermore, if Reg(ga, <tik

, tik+1>)=Reg(gb,<tik
, tik+1>), where

k ∈ [1, l], the synchronous co-regulation between ga and gb is activation. Oth-
erwise, if Reg(ga, <tik

, tik+1>)=−Reg(gb,<tik
, tik+1>), the synchronous co-

regulation between ga and gb is inhibition.

Definition 5. Asynchronous Co-regulation. Given two genes, ga and gb, if ex-
ists two l-segments, Tl=<ti1 ,ti2 ,· · · ,til+1> and T ′l =<t′i1 ,t

′
i2

,· · · ,t′il+1
>, such that

gCode(ga, Tl)=gCode(gb, T ′l ) and t′i1−ti1=t′i2−ti2=· · ·=t′il+1
−til+1=d, where

d(>0) is a constant time-lag, then we say ga and gb to be asynchronous co-
regulated on Tl and T ′l . Further, if Reg(ga, <tik

, tik+1>)=Reg(gb,<t′ik
, t′ik+1

>),
where k ∈ [1, l], we say ga asynchronous activation co-regulate gb after d
time-lags. Otherwise, if Reg(ga, <tik

, tik+1>)=−Reg(gb,<t′ik
, t′ik+1

>), we say
ga asynchronous inhibition co-regulate gb after d time-lags.

Definition 6. Reg-Cluster. Let C =
⋃r

i=1 Gi ×Ti, where Gi is a subset of genes
(Gi ⊆ G), and Ti is a prototypal subsequence (Ti ⊆ T ), then C is a reg-cluster
if and only if: (1) ∀Ti, Tj, 1 ≤ i ≤ j ≤ r, |Ti| = |Tj|, and (2) ∀ga ∈ Gi,
∀gb ∈ Gj, 1 ≤ i ≤ j ≤ r, the condition gCode(ga, Ti) = gCode(gb, Tj) holds,
and tj1 − ti1=tj2 − ti2=· · ·=tjk

− tik
, where suppose Ti=<ti1 , ti2 , · · · , tik

> and
Tj=<tj1 , tj2 , · · · , tjk

>.

Problem Statement. Given: (1) D, a microarray data matrix, (2) δ, a user-
specified maximum regulation threshold, (3) mint, a minimal number of time
points, and (4) ming, a minimal number of genes, the task of mining is to find
all maximal reg-clusters that satisfy all the given thresholds.

3 Algorithm

The Reg-Cluster algorithm has two main steps: (1) Construct initial Reg-tree.
The preliminary reg-clusters on 1-segments are preserved in this step, (2) Develop
initial Reg-tree recursively to find all maximal reg-clusters. Unlike the previous
algorithms, we take a “first breadth-first and last depth-first” searching strategy
to make the algorithm more efficient while the pruning rules special for breadth-
first and depth-first are applied respectively.
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3.1 Construct Initial Reg-Tree

We first look at the appearance of the initial Reg-tree, and then describe how it
is developed recursively.

Figure 2 (a) shows the initial Reg-tree constructed from Table 1, which con-
tains the reg-clusters on 1-segments according to Definition 6. There are two
branches under each leaf node. One, with ‘↗’, represents all genes under it are
significantly up-regulated, and the other, with ‘↘’, represents all genes under it
are significantly down-regulated. Each reg-cluster C =

⋃r
i=1 Gi ×Ti is composed

of a set of numbered buckets. We call the buckets with number ‘0’ baseline buck-
ets since the prototypal subsequence, T1, of a baseline bucket is composed of the
time points in the path from the root to the node that the reg-cluster C linked
to. The number within each bucket denotes the time intervals that Ti is lagged
behind T1. For example, in Figure 2 (a), the leftmost reg-cluster under t1t3 is
composed of five buckets. The prototypal subsequence of the baseline bucket,
i.e. T1, is <t1, t3>, and thus the prototypal subsequence of the second bucket is
<t2, t4> since the bucket’s number is 1. Similarly, the prototypal subsequence
of the third bucket is <t3, t5>, and so on.
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Fig. 2. Reg-tree

3.2 Reg-Tree for 2-Segments

In this subsection, we construct a Reg-tree with height 2 for all 2-segments,
based on the initial Reg-tree with height 1 for all 1-segments.

In a Reg-tree with height 2, a 2-segment, T2=<ti, tj , tk>, is generated by
concatenating <ti, tj> and <tj, tk> in the initial Reg-tree for 1-segments.
There are two clusters for every 2-segment, T2, in a leaf node. For convenience,
we denote the two clusters as L-cluster and R-cluster respectively. The L-cluster
maintains all genes if their <ti, tj> and <tj , tk> have the same regulations (both
up or both down), i.e. the gCodes of genes in the L-cluster are all 1. Similarly,
the R-cluster maintains all genes if their <ti, tj> and <tj, tk> have different
regulations (up/down or down/up), i.e. the gCodes of genes in the R-cluster are
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all 0. It is important to know that all co-regulated genes are clustered into either
L-cluster or R-cluster.

Next, we explain the Reg-tree construction for 2-segments below using an
example. Consider the Reg-tree for 1-segments in Figure 2 (a). There are two
baseline buckets for the 1-segment <t1, t2>. One, with ‘↗’, contains {g1, g4},
and the other, with ‘↘’, contains {g5}. Also, there are two baseline buckets for
the 1-segment <t2, t4>. One, with ‘↗’, contains {g1, g4}, and the other, with
‘↘’, contains {g5}. In the Reg-tree for 2-segments in Figure 2 (b), the 2-segment,
<t1, t2, t4>, has two clusters, L-cluster and R-cluster, each of which consists of
a set of sub-clusters with different time-lag d. They are constructed as follows.

– Every sub-cluster with time-lag d within the L-cluster of <t1, t2, t4> is the
union of all genes in the intersection of both ↗-cluster with time-lag d for
<t1, t2> and <t2, t4> and the intersection of both ↘-cluster with time-lag
d for <t1, t2> and <t2, t4>. For example, the first sub-cluster, where d=0,
is ({g1, g4} ∩ {g1, g4})∪({g5} ∩ {g5})={g1, g4, g5}, and so on.

– Every sub-cluster with time-lag d within the R-cluster of <t1, t2, t4> is the
union of all genes in the intersection of ↗-cluster with time-lag d for <t1, t2>
and ↘-cluster with time-lag d for <t2, t4> and the intersection of ↘-cluster
with time-lag d for <t1, t2> and ↗-cluster with time-lag d for <t2, t4>.
For example, the first sub-cluster, where d=0, is ({g1, g4} ∩ {g5})∪({g5} ∩
{g1, g4})=∅, and so on.

3.3 Reg-Tree for l-Segments(l > 2)

Hereafter, we start to develop the Reg-tree recursively. Unlike the previous al-
gorithms, we propose a “first breadth-first and last depth-first” searching strat-
egy to make the reg-cluster algorithm more efficient. As its name implies, the
development consists of two phases, i.e. the first phase, BFD(“breadth-first de-
velopment”), and the second phase, DFD(“depth-first development”).

In BFD phase, different from previous work [3], there is no need to grow Reg-
tree level by level until Reg-tree is with height mint−1. We can skip several
levels of Reg-tree based on the following mint-based jumping pruning rule.

Pruning Rule 1. mint-based jumping. Given a k-segment <ti1 , ti2 , ..., tik+1>
and an l-segment <tj1 , tj2 , ..., tjl+1>, we can directly obtain a MIN(mint, (k +
l))-segment, jumping over (k + 1)-segment∼MIN(mint, (k + l − 1))-segment, if
and only if tik+1 = tjl+1 .

Once the height of Reg-tree grows up to mint − 1, the development switches to
the next phase, DFD. DFD allows a special pruning:

Pruning Rule 2. Given two pathes X and Y of a Reg-tree, where X corre-
sponds the segment <ti1 , ti2 , tim> and Y corresponds the segment <tj1 , tj2 , tjn>.
If X ⊆ Y and the reg-clusters under X is the same as those under Y , then the
reg-clusters on <ci1 , ci2 , cim> are not maximal and all searches down the path
ti1 , ti2 , tim can be pruned because they are guaranteed not to contain any maximal
reg-cluster.
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FBLD is a hybrid of BFD and DFD. It first develops Reg-tree in a breadth-
first way. Once the height of Reg-tree grows up to mint − 1, the development
switches to the next phase, i.e. DFD. Pruning rule 1 and pruning rule 2 can
be used in FBLD successively, so it outperforms single BFD or single DFD in
performance. Limited by space, our complete pseudocode of FBLD is omit.

4 Experiments

We implemented our approaches in C++. For simplicity, the basic breadth-first
approach is called BBFS, the basic depth-first approach is called BDFS, and the
first breadth-first and last depth-first approach is called FBLD. Since no other
work to our best knowledge can discover the reg-clusters in the same manner, we
only compare the efficiency and the effectiveness of the three approaches on a
2.4-GHz DELL PC with 512 MB main memory running Windows XP. For the
real dataset we use Spellman’s yeast dataset(downloaded from http://genome-
www.stanford.edu/cellcycle/data/rawdata/), which contains 6178 genes at 35
time points. The synthetic datasets can be obtained by a data generator algo-
rithm [10] with three input parameters: number of genes (#gene), number of
conditions (#sample), and number of embedded clusters (#cluster).

4.1 Efficiency

We first evaluate the performance of the three approaches, i.e. BBFS, BDFS and
FBLD, on synthetic data sets as we increase the number of genes and the number
of time points in the data sets. The average run times of the three algorithms
are illustrated in Figure 3 respectively, where we vary the parameters invoked
with ming=30, mint=5, and δ=0.01 .

1K 2K 3K 4K 5K 6K 7K
0

50

100

150

200

250

genes

ru
n 

tim
es

(s
)

BBFS

BDFS

FBLD

(a) Scalability w.r.t
# of genes

10 15 20 25 30 35 40
0

20

40

60

80

100

120

time points

ru
n 

tim
es

(s
)

BBFS
BDFS
FBLD

(b) Scalability w.r.t
# of times

Fig. 3. Evaluation of efficiency

30 40 50 60 70 80
0

20

40

60

80

100

120

min
g

R
es

po
ns

e 
tim

e(
s)

BBFS
BDFS
FBLD

(a) Response time
vs. ming

5 8 11 14 17 20
0

10

20

30

40

50

60

70

min
t

R
es

po
ns

e 
tim

e(
s)

BBFS
BDFS
FBLD

(b) Response time
vs. mint

Fig. 4. Response time

Figure 3(a) shows the scalability for three approaches under different number
of genes, when the number of time points is fixed to 6. Figure 3(b) shows the
scalability for three approaches under different number of time points, when the
number of genes is fixed to 30. FBLD cuts down the search space significantly,
so it spends the least response time. BBFS need to decide which buckets(reg-
clusters) can be joined with a given bucket during the development of Reg-tree,
however, BDFS need not. So BBFS will spend more time than BDFS.



Identifying Synchronous and Asynchronous Co-regulations 1053

Next, we study the impact of the parameters(ming and mint) towards the
response time on the real datasets. The results are shown in Figure 4. As ming

and mint increase, the response time shortened.
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t1-t7

t1-t35

t29-t35

t2-t8 t2-t8

.....

t2-t8

Fig. 5. One example of reg-cluster result

4.2 Effectiveness

Every reg-cluster can provide a further insight into the concrete relationships
between co-regulated genes. Figure 5 delivers a hierarchical structure of the reg-
cluster 18 discovered from Spellman’s dataset. The root node summarizes all
expression profiles of 179 genes on 35 time points, which corresponds to the whole
reg-cluster 18. We first derive a set of sub-clusters, based on the time-lag d, at
the second level to identify the synchronous/asynchronous co-regulation. Genes
taken from the same sub-cluster of level 2 must synchronous co-regulate each
other, either activation or inhibition. Genes taken from different sub-clusters of
level 2 must asynchronous co-regulate each other, either activation or inhibition,
and the accuracy value of time-lag can be inferred by the difference of starting
time point of the two different sub-clusters. For more details, i.e. activation
or inhibition, we drill down to level 3. Genes from the same sub-cluster must
synchronous activation co-regulate each other; Genes from different sub-clusters
but with the same parent node, must synchronous inhibition co-regulate each
other; Genes from different sub-clusters and with different parent nodes must
asynchronous co-regulate. If they are all the left(right) children, the relationship
is activation. If some are the left children and some are the right children, the
relationship is inhibition.

5 Conclusions

In this paper, we have proposed a new maximal subspace co-regulated gene
clustering model, Reg-Cluster, for simultaneously identifying all synchronous and
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asynchronous co-regulations from time series gene expression data. Based on a
proposed coding schema, i.e. gCode, genes with any of the known co-regulation
relationships, i.e. synchronous activation, synchronous inhibition, asynchronous
activation and asynchronous inhibition, are grouped together. A “first breadth-
first and last depth-first” searching strategy with several useful pruning rules is
also devised to make the maximal reg-clusters mining more efficient. Further,
the detailed and complete co-regulation information, which facilitates the study
of genetic regulatory networks, can be easily derived from the resulting clusters.
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Abstract. Computing the expected statistics is the main bottleneck in learning 
Bayesian networks in large-scale problem domains. This paper presents a 
parallel learning algorithm, PL-SEM, for learning Bayesian networks, based on 
an existing structural EM algorithm (SEM). Since the computation of the 
expected statistics is in the parametric learning part of the SEM algorithm, PL-
SEM exploits a parallel EM algorithm to compute the expected statistics. The 
parallel EM algorithm parallelizes the E-step and M-step. At the E-step, PL-
SEM parallel computes the expected statistics of each sample; and at the M-
step, with the conditional independence of Bayesian networks and the expected 
statistics computed at the E-step, PL-SEM exploits the decomposition property 
of the likelihood function under the completed data to parallel estimate each 
local likelihood function. PL-SEM effectively computes the expected statistics, 
and greatly reduces the time complexity of learning Bayesian networks. 

Keywords: Bayesian networks, structural EM, parallel processing, MPI library, 
parallel EM. 

1   Introduction 

Bayesian networks[1] (BN) are a graphical representation for probability distributions. 
They are a popular framework in AI and uncertainty processing. Eliciting BN from 
domain experts can be a laborious and expensive process in large-scale applications, 
and sometimes it is simply not possible. Therefore, in recent years there has been a 
growing interest in learning BN from data. 

A BN consists of a graph structure and a set of local probability distributions. 
Learning BN can be decomposed into two parts: discovering the graph structure and 
then the parameters for the graph structure. Current methods are effective in learning 
both the graph structure and parameters when data are complete, and can learn the 
parameters from incomplete data when the BN structure is known. However, learning 
BN structure from incomplete data is still a challenging problem. 

Current techniques for learning BN are mostly based on a scoring approach which 
is characterized by devising a score metric for a candidate network structure and 
searching the space of network structures for the best-scoring structure. Most of the 
commonly used metrics can be decomposed into independent terms each of which 
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corresponds to one variable, such as the BIC, BDe or MDL metric[5]. When data are 
incomplete, we can no longer decompose the scoring function in BN construction. As 
a consequence, we are unable to perform local search for the network – in other 
words, a local change in one part of the network can affect the evaluation of a change 
in another part of the network. On the other hand, because some statistics are 
unknown, we cannot compute the scores of the network directly. There have been 
some methods proposed to solve those problems. Heckerman et al. presented some 
methods for the latter problem[2]. Those methods first use either EM (expectation-
maximization) or gradient ascent (a gradient-based optimization) to compute the 
MAP parameters, then use either Laplace approximation or Bayesian information 
criterion (BIC)[3]  to compute the approximate scores of the network using larger 
samples and approximation methods. Unfortunately, because of the large search space 
of the network and the errors produced by the approximate scores, the efficiency of 
learning BN is very low and the learned BN do not have enough confidence[4]. 

Friedman improved the methods presented by Heckerman et al. and proposed a 
structural EM (SEM) algorithm to learn BN from incomplete data[5]. The SEM 
algorithm consists of two parts: learning parameters and searching for the structure. In 
fact, the parametric learning part in SEM is a parametric EM algorithm that mainly 
computes the expected statistics of missing data. When searching for the BN 
structure, the SEM algorithm uses expected statistics instead of sufficient statistics 
that are unknown to make the scoring function have a closed form under certain 
assumptions. It can improve the expected score of the learned network at each 
iteration and make the structures converge at an optimal structure. Although able to 
improve the learning efficiency to some extent, SEM always stops at local optima. 

Besides halting at local optima, Friedman also pointed out that the computation of 
the expected statistics is the main bottleneck in applying this technique to large-scale 
domains. Aiming at the problem of local optima, various researchers have presented 
several variants of SEM[6-8]. Unfortunately, those variants don’t take into account the 
complexity of the time. When computing the expected statistics, we need to use an 
inference procedure of BN. But with the increase of the samples and missing data, the 
computation of the expected statistics is very huge[5]. Heckerman has proved that 
large-sample learning of Bayesian networks is NP-Hard[9]. Therefore, how to reduce 
the computation of the expected statistics is crucial for applying SEM or its variants 
to learning complex BN. So far there is little research on the problem. 

Recently, parallel processing has become a useful technique for scaling up huge 
computations[10], and there has been some work on parallel learning BN[11-13]. Chu and 
Xiang presented a technique for using parallelism to speed up leaning decomposable 
Markov networks[11]. Lately, W. Lam et al. explored parallel algorithms for BN 
construction based on the K2 algorithm[12-13]. Although those algorithms can speed up 
learning BN, they have relied on the assumption that data are complete. This 
assumption is not very realistic, since most real world situations involve incomplete 
information. To the best of our knowledge, there is little work in the literature on 
using parallel learning algorithm for BN to deal with incomplete data. 

In this paper, a parallel learning algorithm, called Parallel Learning using 
Structural EM (PL-SEM), is proposed to learn BN with incomplete data. PL-SEM 
adopts a parallel parametric EM algorithm to parallelize the parametric learning part 
of SEM. The parallel EM algorithm parallelizes the E-step and M-step of the SEM 
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algorithm to compute expected statistics. PL-SEM uses a parallel algorithm to 
compute the expected statistics and the parameters of the candidate network. It 
effectively computes the expected statistics, and greatly reduces the time complexity 
of learning BN. 

The rest of the paper is organized as follows. Section 2 briefly reviews the 
framework for learning BN based on the EM algorithm. In Section 3, we present the 
parallel SEM algorithm for learning BN, called PL-SEM. Section 4 provides our 
experimental results and an analysis. Finally, Section 5 gives a summary. 

2   Learning BN Structure Using EM Algorithm 

Learning BN structure uses a training set D={x1 ,…, xn}and possible prior 
information to find a network that fits the database D as much as possible. 

With the complete data, we can decompose the scoring function that evaluates the 
candidate network into a summation of terms, where each term consists of local 
family structures (a variable and its parents), and a local change in one part of the 
network doesn’t affect the evaluation of a change in another part of the network —
that is, the scoring function only needs to compute the scores of local structures that 
are changed. 

For example, let BN=(G,θ) be a Bayesian network, and a finite set U={Xi , 1≤i≤n} 
be discrete random variables. Suppose D={x1 ,…, xn} is a training set where each xi 
has a value for some (or all) variables in U, and NX(x) is the number of instances in D. 
Note that NX(.) is well-defined only for complete datasets. Given a training data set D, 
we use the Bayesian Information Criterion (BIC)[3] to rank candidate network 
structures, using the BIC score of each candidate BN, written Score (BN : D), by the 
following equation: 
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We can further decompose the Score (BN : D) as follows. 
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Where n is the size of the dataset and i is the node in the graph in Eq.(2). Dim[G] is 
the number of independent parameters in the graph G, and 

∏∏=∏ iiixi xxix
NxN )(/),(ˆ

|
θ  (3) 



1058 K. Yu, H. Wang, and X. Wu 

∑ ∑ ∈
−×=

i
XPap ip

i
XXGDim

)(
)1|||(|][

 
(4) 

When the data are incomplete, we can no longer decompose the likelihood function 
because some sufficient statistics NX(.) are unknown. Then we are no longer able to 
perform local search for the network - that is, a local change in one part of the 
network can affect the evaluation of a change in another part of the network. In order 
to be able to learn BN with incomplete data, Friedman presented an algorithm to learn 
BN structure from incomplete data based on a framework of EM, called the Structural 
EM algorithm (SEM). The basic idea of SEM is as follows. 

Let O∈U be a set of observable variables and H=U-O be a set of hidden variables. 
We assume that we have a class of models G={M0,…,Mn} such that each model  
M∈G is parameterized by a vector θM where each (legal) choice of values of θM 
defines a probability distribution Pr(.: Mh, θM ) over possible data sets, where Mh 
denotes the hypothesis that the underlying distribution is in the model M. From now 
on, we use θ* as a shorthand for θM when the model M is clear from the context.  
Pa(Xi) denotes the parents of Xi. 

Given M* and a set of observed data of O, to find the parameters θ* of M* is 
equivalent to find the choice of (θ* : M*, D) that maximizes the following scoring 
function. 
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Then with fixed θ* and D, the SEM algorithm tries to find the choice of (M: θ* , D) 
that maximizes the scoring function of the structure, i.e. searching for the space of the 
models for a model (or models) that maximizes Eq. (1) or Eq. (2). Therefore, the SEM 
algorithm consists of two steps: learning parameters and the structure. 

Step 1 (referred to as the E-step). The SEM algorithm exploits the current model 
and parameters to compute expected statistics using a parametric EM algorithm, and 
then uses them to complete the incomplete data and re-evaluate the parameters of the 
current model. 

Step 2 (referred to as the M-step). With the completed data, the scoring function 
has the decomposition property. The SEM algorithm performs a local change on the 
candidate network until it finds a network that most fits the completed data. Go to 
Step 1 until it stops at local optima. 

According to the above-mentioned algorithm, it’s at Step 1 that SEM exploits a 
parametric EM algorithm to learn the parameters of the current network. It’s also the 
most expensive step because of the computation of the expected statistics. 
Fortunately, Step 2 is a local search procedure that changes one arc at each move and 
can efficiently evaluate the gains by adding or removing an arc. Such a procedure can 
also re-use the computations performed in the previous stages to evaluate changes to 
the parents of all variables that have not been changed in the last move. Therefore, 
how to reduce the computations of Step 1 is crucial for reducing the time complexity 
of SEM. 



 A Parallel Algorithm for Learning Bayesian Networks 1059 

Based on the above observations, starting with a parallelized procedure for Step 1 
to compute the expected statistics, our parallel SEM algorithm is proposed in this 
paper to reduce the time complexity of learning BN structure.  

3   PL-SEM: A Parallel SEM Algorithm 

At Step 1, most of the time of SEM algorithm is spent on choosing the optimal 
parameters for Mi using the EM algorithm. Therefore, PL-SEM uses a parallel 
parameter learning algorithm for SEM. PL-SEM reduces the computations in this step 
by parallel computing the expected statistics and the parameters of the underlying BN, 
so it improves the efficiency of learning BN. 

3.1   Parallel Computing of the Expected Statistics 

When learning the current network parameters using the EM algorithm with missing 
data or hidden variables, at the E-step, EM uses expected statistics instead of 
sufficient statistics to complete missing data. Computing the expected statistics needs 
to compute  
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where N is the number of samples and y is the missing data or hidden variables. A 
simple example is shown in Figure 1. 
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Fig. 1. Computation of expected statistics 

According to Figure 1, we can conclude that the E-step consists of two 
components: 1) constructing a proper inference engine; and 2) computing the 
expected statistics.  

If the parameters θ are the joint probability distribution of the network and are 
available for each processor, the same operation can be performed on each sample 
simultaneously. We parallelize the loop by evenly distributing the samples across 
parallel processors. If we partition the N samples into P blocks, each processor 
handles roughly N/P samples. The j’th processor is given a responsibility for samples 
Ni, where i=(j)(N/P)+1, …, (j+1)(N/P).  

Data parallelization means that the same operation can be performed on different 
data items simultaneously. The E-step also repeats computing Eq.(6) on each sample 
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at the same time. Therefore, the E-step is inherently data parallel. From Figure 1, the 
computation of Eq.(6) for each sample is independent. Therefore, the E-step avoids 
the cost of communication between different processors and makes it up to maximal 
parallelism because of data parallelization. It is an important property of data 
parallelization that the data parallelism will arise with the increase of the scale of 
samples. Therefore, we can exploit more processors to improve the learning 
efficiency of PL-SEM. 

3.2   Parallel Computing of BN Parameters   

With complete data, it is easy to compute sufficient statistics at the E-step. Then the 
M-step uses the sufficient statistics to learn the MLE (Maximum Likelihood 
Estimation) parameters for the current network.  With the complete data, the M-step 
can decompose the likelihood function L(θ:D) by exploiting the inherent conditional 
independence of BN. Let X={X1,X2,…Xn}be the random variables of BN, xi[m] be a 
instance of Xi in the m’th sample, Pai[m] be the instances of the parents of Xi, and the 
parameters θ be ready to be evaluated, Then L(θ:D) is as follows. 
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Therefore the likelihood function is decomposed into n independent local 
likelihood functions. With the sufficient statistics, we can further decompose Li (θi:D). 
Let N(Xi,Pai) be the sufficient statistics of Xi. 
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Unfortunately, with incomplete data, the sufficient statistics can’t be computed 
from samples directly, and the likelihood function L(θ:D) no longer has the property 
of decomposition.  

But the good news is that the M-step can exploit the expected statistics computed 
at the E-step instead of the sufficient statistics to make the likelihood function have 
the decomposition property. Therefore, the M-step can also be parallelized.  

Assuming θL and θG are the local and global parameters of the current BN model, 
respectively, in the training process, a processor P0 first gets a random structure of the 
BN and learns parameters θG from it and the data D. Then, P0 distributes these 
parameters to other available processors by using MPI_Bcast, which is one of the 
basic functions of the MPI (Message-Passing Interface) library[14] and all other nodes 
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must also call to receive the data. Next, each processor Pj uses the current global 
parameters θG to compute the expected statistics for its partition. Thirdly, each 
processor Pj needs to exchange its expected statistics with others using MPI_Bcast to 
compute the local parameters θL. At last, according to the number of random 
variables, we again assign the available processors to calculate each local parameter 
θL and call MPI_Allreduce[14] to sum up the local parameters θL to obtain the new 
global parameters θG. MPI_Allreduce is also a MPI function which combines values 
from all the other nodes to the root node and distribute the results back to all 
processors.  Since each processor has the same global parameters θG, it can 
independently decide when it should exit the loop. Unfortunately, each processor 
needs to communicate with others at the M-step, and this leads to some time cost.  

3.3   Outline of the PL-SEM Algorithm  

According to the above analysis, the outline of PL-SEM is as follows. 

Step 1. Input the training data D; i=1; initiate the structure of BN and θG at P0; and 
distribute it to all available processors by using MPI_Bcast. 
Step 2. Assign the samples to processor Pj. 

Step 3. Parallel compute the optimal parameters of the current network. 
Parallel E-step: according to θG, Pj first constructs the inference engine, then 
computes Eq.(6) for its partitions.  
Parallel M-step: each processor Pj exchanges its expected statistics using 

MPI_Bcast. According to the number of random variables, PL-SEM assigns the 
available processors to calculate each local parameter θL and calls MPI_Allreduce to 
sum up the local parameters θL to obtain the new global parameters θG. 

Step 4. With the completed data, PL-SEM performs a local change on the structure 
of the candidate network until it finds a network that most fits the data. 

Step 5. i=i+1. 
Step 6. If i<Maxitetaion or θG has not converged, goto step 3; otherwise return. 

4   Experimental Results and an Analysis 

We have developed our parallel source code on a high performance computing cluster 
that has the following configurations: (Xeon 3.0G(2M)*2, 1G DDR400*2, SCSI 
73G)*9, which means that there is a master node and 17 computing nodes, Linux OS, 
OSCAR cluster management system and the cluster is connected by Gigabit Ethernet. 
The processors communicate with each other by using MPI. 

We have chosen two Bayesian networks on the Web [15]: Asian and Alarm. Asian 
network is a popular Bayesian Network with 8 discrete nodes/valuables taking 2 
values, which could be used to diagnose patients arriving at a chest clinic. The Alarm 
network was constructed from expert knowledge as a medical diagnostic alarm 
message system for patient monitoring. The domain has 37 discrete nodes/valuables 
taking between 2 and 4 values, connected by 46 directed arcs. 

Fig.2 shows the execution time of PL-SEM for the Asia network with 10% and 
30% missing data and 1000, 2000 and 3000 samples, respectively. From this figure, 
we can see that the execution time of PL-SEM correlates with the missing rate, and  
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Fig. 2. The execution time for the PL-SEM algorithm with missing rates 10% and 30% 

that the increase of the samples also augments the complexity of time. But with the 
increase of the processors, especially the number of the processors up to 12, the 
difference in the execution time is minimal between 1000 and 3000 samples when the 
missing date are 30%. 

Fig.3 depicts the execution time of PL-SEM on the Alarm network which is far 
more complex than the Asia network. With 10% missing data and 1000 samples, the 
execution time at one processor is more than 1800 seconds. With the increase of 
processors, especially when the number of the processors is up to 16, the execution 
time is reduced to around 100 seconds. With 5000 samples and 20 % missing data, the 
time reaches 58080 seconds (about 16 hours). Fortunately, PL-SEM reduces it to 
2000 seconds or so (about 0.6 hours) and the speed-up also arrives at 20 when the 
number of processors is up to 16. Therefore, PL-SEM effectively reduces the 
execution time. (Note that all missing data of the samples are produced at random.) 

   

Fig. 3. The execution time of the PL-SEM algorithm with 10% and 20% missing data 

Due to data parallelization at the E-step, PL-SEM effectively avoids the cost of 
communication with the increase of the processors. Unfortunately, at the M-step the 
processors need to communicate with each other. The time cost of communication 
will ascend with the increase of the processors. This affects the performance of PL-
SEM to some extent. 
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5   Conclusion 

Learning Bayesian networks with incomplete data is currently a hot research topic. 
Existing research efforts lay a heavy emphasis on how to avoid stopping at local 
optima. There is little research on improving the time complexity. With the increases 
of missing data and hidden variables, the computation is very huge. Therefore, many 
algorithms for learning Bayesian networks (with missing data) can’t effectively learn 
from large-scale samples. In this paper, the PL-SEM algorithm has been presented 
based on the EM framework, and it exploits a parallel algorithm to reduce the 
computation of the expected statistics. PL-SEM does not take into account the 
problem of local optima. Fortunately, at Step 4, PL-SEM can choose another 
stochastic simulation such as the genetic algorithm, simulated annealing or MCMC 
(Monte Carlo Markov Chain) to perform local search to avoid local optima. 
Therefore, PL-SEM has provided a framework for parallel structure learning. 
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Abstract. This paper proposes a new method of incorporating prior domain
knowledge into a kernel based feature selection algorithm. The proposed feature
selection algorithm combines the Fast Correlation-Based Filter (FCBF) and the
kernel methods in order to uncover an optimal subset of features for the support
vector regression. In the proposed algorithm, the Kernel Canonical Correlation
Analysis (KCCA) is employed as a measurement of mutual information between
feature candidates. Domain knowledge in forms of constraints is used to guide
the tuning of the KCCA. In the second experiments, the audit quality research
carried by Yang Li and Donald Stokes [1] provides the domain knowledge, and
the result extends the original subset of features.

1 Introduction

In the machine learning community, there is a popular belief that an increasing amount
of features will enhance the performance of learning machineries, where the feature
selection always reduces the information contained by the resultant models. Some re-
search shows that irrelevant features do not increase the information, but introduce
additional noise that eventually harms the performance of the resultant models. Peter
Cheeseman suggests that all effects that have not been modelled add to the noise term
[2]. Irrelevant features introduce noise into the learning process, also degrading the
performance. Too many features cause the curse of dimensionality, which is always a
negative result in machine learning. Simultaneously, the loss of strong relevant features
degrades the performance of the resultant model too.

Many of existing feature selection algorithms emphasizes the discovery of the
relevant features but ignore the elimination of redundant features. They suffer from
quadratic, or even higher complexity about N , such that it is difficult to scale up high
dimensionality. This paper proposes an approach to construct an optimal subset of
features for a given machine learning algorithm. The optimal subset of features con-
tains the majority of relevant information with less redundancy. Mark Hall defined
feature selection as ”successful if the dimensionality of the data is reduced and the
accuracy of a learning algorithm improves or remains the same” [3]. Daphne Koller
el at formally defined the purpose of feature selection: let μ and σ be two distri-
butions over some probability space Ω. The cross-entropy of μ to σ is defined as
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D(μ, σ) =
∑

x∈Ω μ(x)log μ(x)
σ(x) , and then δG(f) = D(Pr(C|f), P r(C|fG)). The op-

timal subset is a feature set G for which ΔG =
∑

f Pr(f)δG(f) is reasonably small
[4]. It is quite difficult to measure the difference, ΔG, especially in case of continuous
data. Thus in practice some alternative ways to measure the difference ΔG are required
to define the optimal subset.

The second section introduces some basic concepts of feature relevance and feature
redundancy. The third section introduces the method of mutual information measure-
ments and ML and MP constraints. The fourth section presents the algorithm and the
fifth section follows by experiments. The sixth section concludes the whole paper.

2 Feature Relevance and Feature Redundancy

Before discussing the proposed method, it is necessary to define the related concepts.
Considering supervised learning, the task of the induction algorithm is to induce a struc-
ture (a decision tree or SVM) such that, given a new instance, it is possible to accu-
rately predict the target Y . George John et al defined two concepts about relevance:
Strong Relevance: A feature Xi is relevant iff there exists some xi, y and si for which
p(Y = y|Xi = xi, Si = si) �= p(Y = y|Si = si). Weak Relevance: A feature Xi

is weakly relevant iff it is not strongly relevant, and there exists a subset of features
S′i of Si for which there exists some xi, y, s′i with p(Y = y|S′i = s′i) > 0 such that
p(Y = y|Xi = xi, S

′
i = s′i) �= p(Y = y|S′i = s′i) [5]. The weak relevance implies that

the feature can sometimes contribute to prediction accuracy, but the strong relevance
indicates that the feature is crucial and not replaceable with respect to the given task.
It is obvious that an optimal subset of features must include strong relevant features.
But in term of weak relevant features, so far there is no principle indicating which weak
relevant features are included.

Thus in order to extract the optimal subset of features, it is necessary to introduce
two other concepts: Markov blanket and redundant features. Given a feature Fi ∈ F ,
let M ⊂ F be a set of features that does not contain Fi. We say that a set of features
M is a Markov blanket for Fi if and only if Fi is conditionally independent of a subset
of features that does not contain the M and feature Fi, F − M − Fi, given M , P (F −
M − Fi|Fi, Mi) = P (F − M − Fi|Mi) [4]. If M is a Markov Blanket of Fi, denoted
as MB(Fi) = M , then it is also the case that class C is conditionally independent of
the feature Fi given M: p(Y = y|M = m, Fi = fi) = p(Y = y|M = m), that is
ΔM = ΔM+Fi . Redundant feature: Let G be the current set of features, a feature is
redundant and hence should be removed from G iff it is weakly relevant and has a
Markov Blanket Mi within G [5].

It is worthwhile highlighting that the optimal set of features is approximately equiv-
alent to the Markov Blanket, which contains the majority of the direct or most in-
fluential features with respect to the target y. Consider two very simple examples,
where the two structures seem very similar only from the data set (see Figure 1). In
the figure 1a, two strong relevant features directly impact the target with the proba-
bility P (T |f1) = 0.12 and P (T |f2) = 0.6 respectively. In the figure 1b, the two
features are weak relevance and can replace each other. It is clear that the feature f1
impacts the target T through the feature f2. But if mutual information between the
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Fig. 1. {f1, f2} are relevant features, but the structures of influence are different. T stands for the
target (or dependent variable) and {f1, f2} is a set consisting of two features.

target T and {f1, f2} is measured, it is exactly the same as the previous example:
P (T |f1) = P (f2|f1)P (T |f2) = 0.2 · 0.6 = 0.12. Without considering the interre-
lationship between two features, it is impossible to distinguish these two graphs, so that
the resultant subset of features will be the same, {f2}. It is not optimal in the first case
where the information loss occurs.

Classical backwards feature selection, such as Recursive Feature Elimination (RFE)
proposed by Guyon et al, implicitly removes the redundant features, and might not
uncover the optimal set [6]. For example, a backward feature selection with a high
threshold, say greater than 0.12, does not construct the optimal subset of features by
excluding the feature f1 in the first case (Figure 1a). But in the second case, it functions
well. Contrary to the classical backwards feature selection, if the feature selection is
based on these two graphs, the resultant optimal subsets are explicitly correct. At the
same time, the backwards feature selection is very time-consuming. Some researchers
suggests that for computational reasons it is more efficient to remove several features at
a time at the expense of possible classification performance degradation [6]. Therefore
another issue rises: how does one partition features and reduce the negative impacts on
the classification performance.

3 Mutual Information Measurement

In order to eliminate redundant features from the candidates, it is important to measure
the mutual information between a pair of features. In classical statistics and information
theory, the correlation coefficient and cross entropy are two often-used measurements of
the influence between features. However, in some practical application, especially the
continuous data set, these two methods require discretisation as a pre-process. This is
due to the fact that the cross entropy only works in case of discrete data set. The quality
of the discretisation relies heavily on a users’ setting as during the process, and the
important information might be lost. At the same time, regular correlation analysis only
measures linear correlation coefficients. Therefore both of them are unable to measure
the nonlinear correlation coefficients within the continuous data sets. The core idea
of the proposed method is to convert a nonlinear problem into a linear problem via
kernel mapping. Within the resultant feature space, the regular canonical correlation
is employed to measure the impact between mapped features. As a result, canonical
correlation is kernalized and extended into a nonlinear problem.

The kernalization of canonical correlation is not a completely new idea, and some
unsupervised kernel methods already implement it. Canonical correlation analysis is
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a multivariate extension of correlation analysis, and is employed by the Independent
Component Analysis (ICA) as a contrast function to measure the independence between
resultant latent variables. Beyond the linear Canonical Correlation Analysis (CCA),
the kernelized version of CCA works in a feature space. It utilizes extra information
from a higher order element of moment function than the second order in the linear
canonical correlation. The contrast function used in the kernel ICA developed by Bach
and Jordan is employed as an approximation of mutual information between two fea-
tures (or variables) [7]. The mutual information between two features can be written as:
I(x1, x2) = − 1

2

∑p
i=1 log(1 − ρ2

i ), where ρi are the canonical correlations, and this
method is employed in the Kernel-based ICA algorithms.

3.1 ML and MP Constraints

It is important to highlight that the Kernel CCA (KCCA) is an approximation to the
real mutual information between features. The accuracy of the approximation relies on
the users’ tuning, as with other kernel methods. To some degree, domain knowledge
such as known relevant features, usefully helps to tune and reduce the approximation
error. In this part, known related features in the formats of constraints are introduced
into the training process of the Kernel CCA, such as a grid search, to get optimal values
of parameters. In some domains, a significant amount of relevant features are known.
For example, in the research of audit quality, a linear formula is available and provides
sets of features, clearly demonstrating their influences to the target.

Ian Davidson proposed must-link as a constraint for clustering. The Must-Link (ML)
requires two instances to be part of the same cluster [8]. In this feature se-
lection problem, the must-link constraints are slightly different from the concept de-
fined by Davidson. The new ML requires that the results from the KCCA must show
the higher correlation between known feature and the target than a given number:
ML : ∀Fi ∈ Sknown, Corr(Fi, T ) > μ. For example, the below equation has been
known and verified by the current research of audit quality: LnAF = β1 +β2LnTA+
β3LnSub + β4DE + β5Quick + β6Foreign + β7CATA + β8ROI + β9Loss +
β10Opinion + β11Y E + β12Intangible + β13InverseMillsRatios + e [1], and
then the ML can be defined as ∀Fi ∈ {LnTA, LnSub, . . . , InverseMillsRatios},
(Corr(Fi , LnAF ) > μ).

Another constraint represents the order of influence with each known relevant fea-
ture to the target. This is the Must-Precede (MP): {Fi, Fj} ⊆ Sknown,(Corr(Fi, T ) ≥
Corr(Fj , T )) ⇒ MP : {Fi, Fj}. The feature Fi must precede Fj , if the correlation be-
tween Fi and the target is larger than the correlation between Fj and the target. Consid-
ering the previous example, if the correlation between the feature LnTA and the target
LnAF is bigger than the correlation between the feature LnSub and the target LnAF :
{LnTA, LnSub} ⊆ Sknown,(Corr(LnTA, LnAF ) ≥ Corr(LnSub, LnAF )) ⇒
MP : {LnTA, LnSub}.

In this proposed feature selection method, the domain knowledge in the format of
ML and MP constraints guides the tuning process of the KCCA to measure the nonlin-
ear correlation coefficient between features. By overcoming the difficulty of measuring
the nonlinear correlation coefficients, one gains more insight into the interrelationship
between features.
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4 Algorithms

The proposed algorithm assembles the previous discussion and consists of three major
steps. The first step is a grid search which repeats the KCCA between feature candidates
until the results are consistent with the ML and MP constraints. The second step consists
of a feature ranking by using a Recursive Feature Elimination (RFE) SVM proposed by
Guyon et al [6]. The RFE is a kernel-based backwards feature selection method. With
every iteration, it eliminates one or multiple features, testing the impact of elimination
on the model coefficients learned by the SVM. If the impact of one removal feature
is minimal among the candidates, it has the least influence in the resultant model. The
output of the RFE is a list of ordered features. The order is determined by the influence
of the features. For example, in the descending list, the most influent feature is the first
one in the list. The third step follows Lei Yu and Huan Liu’s Fast Correlation-Based
Filter (FCBF) to remove the redundant features based on the results from the previous
two steps [9]. In the case of a descending list, a search starts from the beginning of
the list. Suppose a feature Fj precedes another feature Fi; if the correlation coefficient
SUi,j between Fj and Fi is greater than the correlation coefficient Ri,c between Fi and
the target T , the feature Fi is removed from the list (see Figure 2). The search carries
on until the end of the list, the result being an optimal subset of features. The pseudo
code of the algorithm is outlined below:

Algorithm 1. Feature Selection Algorithm

1: procedure FEATURESELECTION(S(F1, F2, ..., FN , T ), ML, MP, δ)
� S is a training data set; δ is a predefined threshold; ML: the set of

must-link constraints; MP : the set of must-precede constraint.
2: S′list=FeatureRanking(S)
3: while (∀SUi ∈ SU)SUi � {ML, MP} do
4: SU= GridSearch(KCCA(S, Sknown))
5: end while
6: Fj = getFirstElement(S′list)
7: while Fj �= NULL do
8: Fi = getNextElement(S′list, Fj )
9: while Fi �= NULL do

10: if SUi,j > Ri,c then
11: remove Fi from S′list

12: end if
13: Fi=getNextElement(S′list, Fi)
14: end while
15: Fj=getNextElement(S′list ,Fj)
16: end while
17: Sbest=S′list

18: return Sbest

19: end procedure
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Fig. 2. The measurements in the FCBF algorithm proposed by Lei Yu and Huan Liu [9]

In this algorithm, prior knowledge in the format of known relevant features is rep-
resented as two types of constraints: 1) a set of must-link constraints ML(Fi, T )
between the target T and each of known relevant features Fi ∈ Sknown, and 2) a
set of must-precede constraints MP (Fi, Fj) between known relevant features, where
Corr(Fi, T ) ≥ Corr(Fj , T ) and Fi, Fj ∈ Sknown. These constraints play a crucial
role in directly determining the accuracy of the measurement of KCCA. For example,
if the RBF is employed as the kernel functions, the grid search aims to detect the opti-
mal value of the coefficient γ in the RBF k(xi, xj) = e−γ‖xi−xj‖2 . The coefficient γ
determines mapping between the input space and the feature space.

5 Experiments

First, the author modifies a data generation provided by Leo Breiman [10] to produce
an artificial data set. The artificial data set consists of 30 features and 60 pairs of obser-
vations. The modification is: within ten features, assign the 0.2 time of the value of fifth
feature to the forth feature, F4 = 0.2F5, F14 = 0.2F15 and F24 = 0.2F25. Thus, among
the thirty features of this artificial data set, there are six weak relevant features, three
strong relevant features and twenty-one irrelevant features. The index of weak relevant
features is 4, 14, 24, 5, 15, 25 and the index of strong relevant features is 6, 16, 26.
The Recursive Feature Elimination (RFE) SVM produces a list of ranked features and
the values of R-square while eliminating one feature every iteration (See Figure 3). The
resultant list of ranked features is {2, 1, 18, 30, 29, 13, 20, 19, 11, 12, 8, 23, 21, 7, 10, 3,
9, 22, 17, 6, 14, 4, 24, 28, 27, 26, 5, 16, 25, 15}. In the Figure 3, at the flat top part of the
curve, the weak relevant features and strong relevant features mix with a few irrelevant
features. It is difficult for the backward sequential feature selection to discover the re-
dundant features from the weak redundant features and then uncover the optimal subset
of features. By taking account of the mutual information between feature candidates,
the proposed feature selection discovers the strong correlation between feature candi-
dates. At the same time, the correlation between the 5th feature and the target is larger
than the correlation between the 4th feature and the target. Therefore the optimal subset
of feature produced by the proposed feature selection algorithm includes the features
{6, 28, 27, 26, 5, 16, 25, 15}. The mean R-square of 10 times cross-validation of a SVR
with the same hyper-parameter as the previous SVRs is 0.689527. That is close to the
best R-square value of the previous backwards sequential feature selection.
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Secondly, a real-world data set is employed to test the proposed feature selection
algorithm. The data set is collected from the auditing and accounting reports from listed
companies in the Australian Stock Exchange (ASX) in 2003. To ensure an appropriate
data set for the experiments, we first need to exam whether the data set contains both
relevant and redundant features. The RFE SVM produces an ascending list of 39 ranked
features (more important features are close to the end): {35, 30, 29, 34, 33, 32, 17, 1,
18, 4, 8, 31, 14, 36, 37, 10, 13, 15, 3, 25, 12, 28, 24, 26, 22, 27, 16, 20, 21,11, 2, 23,
38, 7, 9, 6, 19, 5, 39}. The same as previous experiment, Figure 3 demonstrates the test
result of nonlinear Radial Basis Function Support Vector Regression (RBF SVR), with
each iteration removing one feature. The order of feature removal follows the order
of feature-ranking list. The flat middle part of the curve indicates that the eliminated
features do not have strong impacts on the test accuracy of the resultant model, and this
result indicates the existence of redundant features.
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Fig. 3. The test accuracy of models constructed by a SVR while eliminating one feature every
iteration. The x-axis is the index of feature in the ascending list, and the y-axis is the R-square.
The first figure is for the first experiment, and the second figure is for the second experiment.

According to the proposed algorithm, the Kernel CCA is employed to measure the
correlation coefficients between features. If the correlation coefficient between features
is greater than 0.05 (KCCA > 0.05), the coefficient is retained in the final KCCA
table. Otherwise, this experiment sets two of the corresponding features as irrelevant.
In the final KCCA table, the index of the features without strong correlations to the
known relevant features is (10, 14, 25, 29-32, 36-37). Based on these results, the pro-
posed algorithm generates an optimal subset of features consisting of 16 features: {Loss
Indicator (1), YE (8), OFOA (31), Current Liabilities (14), 12 Months (36), Currency
(37), Current Assets (10), DE (3), QUICK (2), AF/EBIT (38), CATA (7), FOREIGN
(9), LnSUB(6), Partner Code (19), LnTA (5), AF/TA (39)}. Using the SVR with 100
random sampling 80% of the original data set as the training data, the average test
result (R-square) is 0.8033 with the standard deviation 0.0398. This result is slightly
higher than 0.774, the best test result (R-square) using the SVR with the same hype-
parameters but the subset of features produced by the backwards feature sequential
selection.
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6 Conclusion

This research expands Lei Yu and Huan Liu’s Fast Correlation-Based Filter (FCBF)
[9]. It does so primarily in that it implements the redundancy measurement in feature
selection for the non-linear regression. As domain knowledge, known relevant features
are included in the process to guide the process of the KCCA, under the condition
that a sufficient amount of known relevant features is available. Considering the human
involvement, it is worth ensuring whether the KCCA produces an appropriate approx-
imation to the real mutual information. In this research, however, domain knowledge
from experts is utilized to guide tuning of the parameters of selected kernels.

The results of these experiments show that the optimal set of features increases the
accuracy to a relatively high level with relatively small optimal subset of features. Sim-
ilar idea can be found in Carlos Soares’s meta-learning methods to select kernel width
in SVR [11]. Their meta-learning methodology exploits information about past exper-
iments to set the width of the Gaussian kernel. In the feature selection experiment,
domain knowledge collected from domain experts’ past experiments is included to set
the width of the kernel. At this stage, the result still relies heavily on the given domain
knowledge with the assumption that the given domain knowledge is perfect. The most
pertinent area for further investigation is the negative impacts of given domain knowl-
edge on the resultant subset of features. It is still not clear that known related features
will become redundancy when other features are included. The desired optimal set of
features may contain all or a subset of known features. It is still an open question.
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Abstract. In many geography-related problems, clustering technologies
are widely required to identify significant areas containing spatial objects,
particularly, the object with non-spatial attributes. At most of times, the
resultant geographic areas should satisfy the geographic non-overlapping
constraint. That is, the areas should not be overlapped with other areas.
If without non-spatial attributes, most spatial clustering approaches can
obtain such results. But in the presence of non-spatial attributes, many
clustering methods can not guarantee this condition, since the clustering
results may be dominated in non-spatial attribute domain which can not
reflect the geographic constraint. In this paper, a new spatial distance
measure called penalized spatial distance (PSD) is presented, and it is
proofed to satisfy the condition which can guarantee the constraint. PSD
achieves this by well adjusting the spatial distance between two points
according to the non-spatial attribute values between them. The clus-
tering effectiveness of PSD incorporated with CLARANS is evaluated
on both artificial data sets and a real banking analysis case. It demon-
strates that PSD can effectively discover the non-spatial knowledge and
contribute more reasonably to spatial clustering problem solving.

1 Introduction

Spatial clustering technologies are widely used in geography-related analysis to
identify significant areas for business decision making, especially in advanced
analysis based on Geographic Information Systems (GIS). Beyond those tradi-
tional spatial clustering problems of only considering object positions [1,2,5,7],
many extended algorithms [4,9] have been proposed to deal with the non-spatial
attributes. Meanwhile, several algorithms [3, 6, 10] were improved in order to
handle the clustering problem in the presence of obstacles, which can be a kind
of geographic constraint.

In many applications, clustering methods are utilized to discover the geo-
graphic areas containing spatial points. We often have to face one kind of geo-
graphic constraint: the discovered geographic areas should not be overlapped and
each area should be connected. If an area is not connected, it must be truncated
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Fig. 2. Euclid distance with non-spatial at-
tribute

by other areas. This case also can be treated as that this joint area is overlapped
with other areas. (In the following paragraphs, we will not mention that an area
should be connected.) For example, Given the household distribution with their
income in a district, the task is to partition the area into two sub areas: one
mainly contains low income people and the other contains high income people,
so that each sub area can take different policies. In this case, it requires that
the two sub areas should not be overlapped. If else, the mutual area will not be
clear to make decision.

Many approaches have been proposed for the spatial clustering problem with
non-spatial attributes, but they may not keep the geographic non-overlapping
constraint. In [4], the approach applies CLARANS to spatial attributes and
DBLEARN to non-spatial attributes separately. In [9], DBRS is designed to
handle non-spatial attributes. Beyond using ”density” for spatial attributes, it
introduces ”purity” and ”purity-density-reachable” for non-spatial attributes.
The mechanism that DBRS handles non-spatial attributes can be interpreted
as a two-step process. At the first step, it splits the whole data set into several
groups by their non-spatial attributes, and each group corresponds one value
of non-spatial attribute. At the second step, it processes each group by normal
DBRS approaches without non-spatial attribute and obtains final clusters. The
difference in this step is that the new density (the density of data points with
same non-spatial attributes) threshold is dynamically decided by local density
(the density of all data points). Both above methods can be treated as two-step
approaches, which process the non-spatial attributes in non-spatial attributes
domain and spatial attributes in spatial attributes domain. The processing in
non-spatial attributes domain can not consider the geographic constraints which
should be reflected in spatial domain. Thus, the above approaches may obtain
overlapped cluster areas. Another direct clustering method is to consider non-
spatial attributes as extra dimensions of data points, and leverage a general
multi-dimension clustering algorithm (using Euclid or other common distance
measures). It treats the spatial attributes and non-spatial attributes homoge-
nously, and brings the similar problem that the data points may be dominant in
non-spatial attribute domain and loses geographic constraint in spatial domain.

In this paper, a new spatial distance measure is proposed to work with com-
mon spatial clustering algorithms (e.g. CLARANS) to solve the above geo-spatial
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clustering problem with non-spatial attributes and geographic non-overlapping
constraint. It properly adjusts (or penalizes) the distance of two spatial points
by the differences of their non-spatial attributes, and it can be proved that this
distance working with CLARANS can satisfy the non-overlapping constraint.

This paper is organized as follows. Section 2 illustrates the motivation and core
idea of our approach. Section 3 describes the detailed implementation of our dis-
tance measure. In section 4, the distance measure is embedded with CLARANS
to deal with both testing data sets and real banking data. The final section 5
concludes our work.

2 Motivation

Pure spatial clustering approaches (without non-spatial attributes) seldom ob-
tain such overlapped clusters, where Euclid distance (ED) is usually used to
measure the distances of spatial points, and ED obviously has the following
character:

– For every triple of points {a, b, c} on one line in spatial domain, if b is in
the middle of ac, then D(a, b) < D(a, c).

If the above condition can be satisfied, the resultant clusters will not be over-
lapped. As shown in Figure 1, a is the medoid of a cluster A. Since D(a, b) <
D(a, c), if c belongs to cluster A, then b will be assigned to cluster A. Thus, the
points in the middle of a and c will be in the same cluster of A, so ac will not be
truncated by other clusters. That is, cluster A will not be overlapped with other
cluster in the direction ac. Because the condition is for every triple of points on
one line, so A will not be overlapped in any direction.

Considering the non-spatial attribute as the third dimension and using 3D
Euclid distance, the above condition will not be kept if non-spatial attribute
is dominant. As in Figure 2, a∗, b∗, c∗ are three spatial points on one line, and
a, b, c are their non-spatial attribute values respectively. b∗ is in the middle of
a∗c∗, but the 3D-Euclid distances are D(a, b) > D(a, c). Thus, b∗ may be in a
different cluster from a∗ and c∗. In geo-spatial plane, the cluster of a∗ and c∗

may be overlapped with the cluster of b∗.
The feasible distance measure should both satisfy the above condition and

reflect the effect of non-spatial attributes. We present a new distance measure
termed penalized spatial distance (PSD), which well adjusts the spatial distance
between two points by the change of the non-spatial attribute values between
them. If the non-spatial attribute values between two points change larger, the
PSD will be penalized (increased) larger. If else, the distance will be penalized
less. Our distance measure has the character: if a, b, and c are on one line in
spatial domain, and b is in the middle of ac, then DPSD(ac) = DPSD(ab) +
DPSD(bc). Because DPSD(bc) > 0, DPSD(ac) > DPSD(ab) can be always kept.
So that this distance measure can satisfy the above condition.
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3 Penalized Spatial Distance

Following the above idea, it is important to find the non-spatial attribute value
series between two points. Since there is probably no point exactly on the line,
a possible way is to construct the ”surface” of non-spatial attribute values and
extract the surface values on the line as the value series between the two points.
Figure 3(b) is the constructed surface of 3(a), and curve ab is the series of
non-spatial attribute values between spatial point a and b. The next task is to
adjust the distance according to the non-spatial attribute value series. As the
non-spatial attribute values in neighbor geographic area should not change too
large because of the geographic continuity character, e.g. the income of people
in a same area will not vary a lot, it is reasonable to construct this non-spatial
value surface. The whole process consists of two steps below.

3.1 Construct Non-spatial Attribute Surface and Find Value Series
Between Two Points

Many elaborate surface approximation approaches can be leveraged to recon-
struct surface from points. Since it does not mean to compute an exact surface,
but only adjust the distance between two points by the changing of non-spatial
attribute values, we here choose the commonly used kernel based interpolation
approach.

The grid length L decides how well the surface matches the discrete points. It
should be selected to make a majority of grids have points in them. L could be
chosen to satisfy: #{Pi|di>L}

N = kL. N is the number of points. kL controls the
number of points that can be assigned in separate grids, and can be empirically
selected around 0.2 − 0.3. di indicates the minimum distance from one point Pi

to its k neighbor points. To be more resilient, it can be set as the mean distance
from this point to its k nearest points.

The values of a part of mesh grids can be assigned directly as the mean
values of the point values in them. For each unassigned grid (a, b), its value is
set according to its nearest assigned grids: S(a, b) = K(x,y)(a − x, a − y), where
K(x,y) is usually a RBF kernel, e.g. gaussian function. After the interpolation
processing, a smoothing operation can be performed to reduce the noises.
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Suppose the mesh surface is S(·, ·). Two points a and b are in grid Ga(xa, ya)
and Gb(xb, yb) separately. We should find the grids Pab on the direct path
connecting Ga and Gb in 2D spatial plane. The value series of Pab is: Vab =
{S(gi)|gi ∈ Pab}. In Figure 3(b), the series of black triangle points are Vab.

3.2 Adjust Spatial Distance by Value Series

Suppose the value series is Vab = {S(g0), S(g1), S(g2),· · ·, S(gn)} =
{s0, s1, s2,· · ·, s3}, where si = S(gi). g0 is the start point, and gn is the end
point. Considering the i-th value and the (i + 1)-th value, if the difference be-
tween si+1 and s0 (denoted as si+1 − s0) is larger than si − s0, the distance will
be penalized more. If else, the distance will be penalized less. By starting from
the first value in Vab and processing each value one by one, the total PSD can
be formulated in Equation 1.

DPSD(a, b) =
∑

si∈Vab

Dgeo(gi+1, gi) ∗ p(si+1, si) ∗ kd (1)

where, kd is a control factor, which describes how much the non-spatial attribute
values influence the distance. Larger kd will make larger effect of penalty. As gi+1
and gi are neighbors, Dgeo(gi+1, gi) may be 1∗L or

√
2∗L. The penalizing factor

p(si+1, si) depends on si+1 and si by Equation 2.

p(si+1, si)

=

⎧
⎨

⎩

φ
(
|si+1−s0|−|si−s0|

T

)
, if (si+1 − s0)(si − s0) ≥ 0

si+1−s0
si+1−si

φ
(
|si+1−s0|

T

)
+ s0−si

si+1−si
φ

(
− |si−s0|

T

)
, if (si+1 − s0)(si − s0) < 0

(i = 0, 1, 2, . . . , n − 1) (2)

where, T is the maximum difference between the values of arbitrary two neighbor
grids. The function φ(·) is define as Fig. 4. As T is the maximum difference value,
so the input range of φ is [−1, 1]. It is noted that φ(−1) is less than φ(1), which
ensures that the PSD value of changing backward is less than that of changing
forward. It is obvious that PSD is symmetrical according to Equation 1 and 2.

The above description can be directly extended to multiple non-spatial at-
tributes. A surface should be constructed for each attribute. The spatial distance
is adjusted by the total change of every non-spatial attribute. Suppose there are

−1 0 1
0

0.5

1

1.5

2

x

φ(
x) φ(x) =

{
0.5x + 1, −1 ≤ x < 0
x + 1, 0 ≤ x ≤ 1

Fig. 4. The figure and formula of φ(x)



Geo-spatial Clustering with Non-spatial Attributes 1077

Q non-attributes and kq is the weight for p-th non-attribute, Equation 1 can be
extended as Equation 3.

DPSD(a, b) =
∑

gi∈Pab

⎧
⎨

⎩
Dgeo(gi+1, gi) ∗

∑

q∈Q

{kq ∗ p (Sq(gi+1), Sq(gi))}

⎫
⎬

⎭
(3)

4 Experiment Evaluation

In our experiments, the penalized spatial distance is embedded in CLARANS [2]
to deal with the clustering of points with non-spatial attributes. We first compare
the the penalized spatial distance with Euclid distance by an artificial data set,
then we show the result of PSD based clustering in a real banking analysis case.

4.1 Penalized Spatial Distance vs. Euclid Distance

Three distance measures are compared in this test:

1. PSD: CLARANS with PSD.
2. Euclid2: Only spatial attributes (x and y) are considered regardless of non-

spatial attribute. The distance measure is 2-dimension Euclid.
3. Euclid3: Spatial attributes and non-spatial attribute are treated homoge-

nously. The distance measure is 3-dimension Euclid.

50 data sets are automatically generated, and each of themcontains 500points.The
spatial positions of them are selected in a 1 × 1 square following uniform distribu-
tion. The non-spatial values are generated from three gaussian functions with their
random center points ci, i = 1, 2, 3. Each point vj can be assigned with three val-
ues from the three kernel functions by s(vj ,ci) = 10 ∗ exp

{
−D2

Euclid(vj , ci)/σi

}
,

where σi is randomly generated in [0.1, 0.3]. The non-spatial value of this point vj

is the maximum one in {s(vj ,c1), s(vj ,c2), s(vj ,c3)}. Three CLARANS parameters:
the cluster number k, the maximum number of neighbors examined and the num-
ber of local minima obtained are set as 3, 300, 150 respectively. According to the
generation of non-spatial values, points can be assigned into three clusters (corre-
sponding to the three kernels), which are considered as the reference clusters. The
number of the mis-clusteredpoints (denoted asE) is used to evaluate the clustering
results. Smaller mis-clusterd point number means better clustering result. We can
see PSD performs better than Eulid2 and Euclid3 in Figure 5. Euclid3 almost can
not obtain well clustering results as the dominant non-spatial attributes. In theory,
2-dimension Euclid distance results can not reflect non-spatial attribute distribu-
tion. In some test cases, e.g. the 7th, 15th, and 47th test samples, Euclid2 works as
well as PSD. The reason is that the non-spatial attribute distribution luckily meets
the spatial distribution of points.

4.2 A Real Banking Analysis Case

In banking market study, it is often required to identify the areas with similar
attributes to help further business analysis. Fig.6(a) shows the residential points



1078 B. Zhang et al.

0 5 10 15 20 25 30 35 40 45 50

50

100

150

200

250

300

350

400

E
PSD

E
Euclid2

E
Euclid3

Fig. 5. Mis-clustered numbers by PSD, 2-D Euclid and 3-D Eculid

in Baton Rouge, Louisiana, USA. It contains about 2000 residential points with
their population numbers, which are represented by gradual colors, where red
color means high population. The task is to discover the areas which have similar
population number. Assuming there are 10 clusters, we use CLARANS to cluster
the points. Fig.6(b) and 6(c) show the clustering results by PSD and Euclid2.

The significant advantage is that PSD clustering can reflect a certain nat-
ural or geographic features. We select five significant differences between two
clustering results, labeled by A to E. In Fig.6(b), Cluster A, B, C are properly
separated by highway 110. A and D are divided by a long straight driveway
named Foster. While in the result by Euclid distance (Fig.6(c)), those features
can not be exhibited. The cluster C in PSD result has a salient in its right part.
In the map Figure 6(a), it is found that this salient area is extended from its left
aggregated part (the major part of C) by several horizontal roads and streets,
such as Claycut, and Goodwood. While the cluster C in Euclid result has not
such characters. The upper boundary of Cluster E by PSD is actually formed
by highway 190, while Euclid distance can not character this.

4.3 Complexity

ThecomplexitymainlydependsontheclusteringalgorithmincorporatedwithPSD
and the size of non-spatial attribute surface. As surface construction runs only one
time, its time cost is not so consuming if we select the given interpolation algorithm
or other efficient ones. If there are m grids from point a to b, PSDab can be finished
in m iterations. Suppose the surface size is S, which mainly depends on the spatial
distributionofpoints, and there are totallyN points.Theaverage “griddistance” of

(a) Residential points (b) PSD Result (c) 2D Euclid Result

Fig. 6. The residential points distribution in Baton Rouge, Louisiana, USA
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eachpair ofpoints is approximately
√

2S/N . Ifweuse the sameclusteringalgorithm
with both PSD and Euclid, the complexity of PSD is approximately C =

√
2S/N

times of that of Euclid. In our experiments, S = 80 ∗ 80 = 6400, N = 500, so
PSD’s theoretically costs C =

√
2S/N = 5.06 times of Euclid. Actually, the PSD

CLARANS averagely cost 5.3 times of Euclid CLARANS in the experiments.

5 Conclusion

In this paper, we present the geographic non-overlapping constraint which may
commonly exist in real geography-related analysis works. Many existing cluster-
ing approaches with non-spatial attributes may not guarantee this requirement.
It is also discussed that why this constraint can not be kept when non-spatial
attributes exist, and we present the condition which can assure a distance mea-
sure to obtain the non-overlapping cluster areas. Then, a new spatial distance
measure (PSD) is proposed and proofed to satisfy the condition. PSD adjusts
the spatial distance by all non-spatial attribute values between the two points,
and it can reflect the changing process of non-spatial attribute values from one
point to another. PSD can be incorporated with CLARANS or other spatial
clustering algorithm to solve knowledge discovery tasks. In the experiments, it
performs better on artificial data sets and discovers the knowledge which meets
the actual geographical characters in the real banking analysis case.
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Abstract. Missing data imputation is an actual and challenging issue in 
machine learning and data mining. This is because missing values in a dataset 
can generate bias that affects the quality of the learned patterns or the 
classification performances. To deal with this issue, this paper proposes a 
Grey-Based K-NN Iteration Imputation method, called GBKII, for imputing 
missing values. GBKII is an instance-based imputation method, which is 
referred to a non-parametric regression method in statistics. It is also efficient 
for handling with categorical attributes. We experimentally evaluate our 
approach and demonstrate that GBKII is much more efficient than the k-NN 
and mean-substitution methods.  

1   Introduction 

In supervised learning, a learning system is given a training set of labeled instances, 
where each instance consists of a feature vector (conditional attributes) and an output 
value (class label). In real world applications, however, the training set often contains 
missing values that can generate bias that affects the quality of the supervised learning 
process or the performance of classification. However, most learning (or mining) 
algorithms are based on the assumption without missing values.  

This paper proposes a new imputation algorithm to handle missing attributes 
values, called GBKII (Grey-Based KNN Iteration Imputation), which is an instance-
based imputation method and be referred to a non-parametric method in statistics. It is 
also efficient for dealing with categorical attributes. Specifically, this approach uses a 
grey relational grade (denoted as GRG) to substitute for Minkowski distance or other 
alternative similarity measures during the process of searching for the nearest 
neighbor under the assumption which requires the instance i to have a same class 
label as the instance j when calculating GRG(i, j). This can efficiently reduce the time 
complexity. In addition, this approach can get over the slow convergence rate of EM 
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algorithm through an EM-like iteration imputation method and makes an optimal use 
of all observed values including those instances with missing values. We evaluate the 
performance of our method using several UCI datasets. The experimental results 
show that our approach is superior to k-NN and mean substitution methods. 

The rest of this paper is organized as follows. Section 2 briefly recalls related 
work. In Section 3, we design our GBKII algorithm. Section 4 describes our 
experiments on UCI dataset [1]. We conclude this paper in Section 5. 

2   Related Work 

Currently, there are two mainstream directions for dealing with the missing values. 
One of these is based on machine learning. However, the methods based on machine 
learning perhaps destroy the original distribution of dataset during the process of 
imputing. Moreover, some methods (such as C4.5) usually only handled the discrete 
values. The other is based on statistics. These methods are usually targeted handling 
continuous attributes with missing values in class label. Our GBKII can handle with 
missing values occurring in categorical attributes and continuous ones. 

Multiple Imputation fills in missing values with repeating independently M times [3]. 
EM algorithm [4] repeatedly alternates depend on parametric models. Our GBKII is an 
EM-like iteration imputation method. However, GBKII is different from the MI and EM 
algorithms. In the first iteration imputation, we use the mean (or mode) values of all the 
observed attribute values to fill in the missing values in order to make the best use of the 
all information. From the second imputation process, iteration imputation is based on the 
result of the last imputation. This procedure won’t stop until the average change of 
imputed values is approximately stabilization, or satisfies a given user requirement. On 
the other hand, the nonparametric imputation [5] is efficient when the model of data is 
unknown a priori. In fact, we have usually not any priori knowledge about the data. Our 
GBKII algorithm is a non-parametric method that is different from EM algorithm in 
which both the E and M steps depend on parametric models. 

3   The GBKII Algorithm   

3.1   The Nearest Neighbor Imputation Method 

Usually, calculating the nearest neighbor instance is based on the Minkowski distance or 
other distance measures. However, Caruana [2] deemed that it is sometimes difficult to 
devise a distance metric that combines distances measured between symbolic and 
numeric variables. Generally, Minkowski distances or other metrics are mainly suitable 
for some application domains, such as domains with numeric attributes. Caruana 
demonstrated grey relational analysis, which is more appropriate to determine the 
‘nearness’ (or relationship) between two instances than Minkowski distances or others do 
[6], can deal with categorical attributes1 and numeric attributes. Our algorithm uses 

                                                           
1 Whose domain is totally ordered are called numeric, whereas attributes whose domain is not 

ordered are called categorical, the categorical attributes include symbolic attributes and 
discrete attributes. 
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GRG instead of Minkowski distances (or other distance metrics) during the process of 
searching for the similarities between instances.  

3.2   The Grey Relational Analysis 

Grey Relational Analysis (GRA), which is founded upon measuring the similarity of 
emerging trends among instances, is a method of GST. Consider a set of observations 

0 1 2{ , , , , }nx x x xK , where 0x  is the reference instance and 1 2, , , nx x xK are the 

compared instances. Each instance ix  has m conditional attributes and is referred to 

( (1), (2), , ( )),  i=0,1,2, nx x x x mi i i i= K K  and a class label Di.  The grey relational coefficient 

(GRC) is defined as: 

min min ( ) ( ) max max ( ) ( )0 0
( ( ), ( ))0 ( ) ( ) max max ( ) ( )0 0

x k x k x k x kj k j j k j
GRC x p x pi x p x p x k x ki j k j

ρ

ρ

− + −∀ ∀ ∀ ∀
=

− + −∀ ∀
       (1) 

where [0,1]ρ ∈ ( ρ is a distinguishing coefficient, normally, let ρ =0.5), 

1, 2, , ,i j n= = K  and k= p =1, 2, , .mK . The grey relational grade(GRG) is referred to 
as follow: 

1
( , ) ( ( ), ( )),  i=1,2, ,n.0 01

m
GRG x x GRC x k x ki im k

∑=
=

K                  (2) 

If GRG(x0, x1) is greater than  GRG(x0, x2), then the difference between x0 and x1 is 
smaller than that between x0 and x2; otherwise the former is larger than the latter. 

3.3   GBKII Algorithm 

Previous work, such as kernel method, imputes the missing values utilizing the 
instances without missing value as the reference instances. It may possibly ignore two 
facts: (1) There are less observed data in database. In practice, most of industrial 
databases have a more serious problem about values missing especially in industrial 
database, such as in [7], of the 4383 records in this database, none of the records were 

 
The GBKII algorithm is presented as follows: 

The First Iteration 
1.0 // t-th iteration  

Repeat 
2.0.1  Compute GRG(i,j) base on Equation (2) 
2.0.2  Get k Nearest Instances  
2.0.3  Imputation Ming Values 
2.0.4    t - -;               // t is the iteration time 
Until (convergence or t<=0) 

 
Fig. 1. The Pseudo-code of GBKII algorithm 



 GBKII: An Imputation Method for Missing Values 1083 

complete and only 33 variables out of 82 have more than 50% of the records 
complete. (2) An incomplete instance may already contain enough information for 
model construction, even though it still contains missing values. In Table 1, the value 
in 5-th attribute are missing and their class label are ‘1’, that will be wrong if we 
compute GRG(a, i) (i is the instance without missing values, such as instance d and e) 
because the class label is different from the missing instance. So it is reasonable for us 
to impute missing values with all observed values including those instances that 
contain some missing values based on the above analysis.  

However, we cannot impute missing values with all the information of the 
observed values before the missing values have not yet been patched up. For example, 
we cannot compute the GRG(a,b) as the 2nd attribute in instance b(denoted as 
MV(b,2)) is missing and only one value in the 2nd attribute (denoted as V(a,2) )is 
observed in Table 1. In GBKII, we apply the first imputation strategy to make the best 
use of all the information of observed values; and the (t+1)-th (t>1) iteration 
imputation is based on the imputation results of the t-th imputation until convergence 
or satisfying the demand of users. We compute the mean (or the mode if the attribute 
is categorical) for each continuous-attributed observed values whose class labels are 
the same, i.e., we use the mean (or mode) as the initial imputed value of the missing 
value. Imputation with mean (or mode) is a popular and reasonable imputation 
method in machine learning and statistics. However, [8] thought to impute with the 
mean (or mode) is valid if and only if the dataset is chosen from a population with a 
normal distribution. However, in real world application, we cannot know really the 
real distribution of the dataset in advance. So running the extra iteration imputations 
is reasonable based on the first imputation for dealing with the missing values. 

In the second iteration imputation, for example in Table 1, we assume all the 
values are all observed (the missing values have got in the first iteration imputation by 
the mean or the mode) except the value of MV(a,1) if we want to impute the missing 
value in attribute C1 in instance a. We calculate GRG(a,i) (i is b or c in Table 1) 
among these instances whose class label are ‘1’as same as the missing instance a, then 
we impute MV(a,1) based on method in Figure 1 through the step 2.0. We regard the 
attribute C3 in instance a as missing when we have imputed the value in attribute C1 in 
instance a and want to impute MV(a,3) in second iteration, in this case we regard the 
value in attribute C1, C4, C5 in instance a are observed. Then we impute the C4 and C5 
in instance a by turn utilizing the same method after imputing C3 in second iteration. 
 

Table 1. ‘-’denotes observed values and ‘?’denotes missing values in a relation database 

 C1 C2 C3 C4 C5 D 

a ? - ? ? ? 1 
b - ? - - ? 1 
c ? - - - ? 1 
d - - - - - 0 
e - - - - - 0 
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And so forth, we can impute all missing values in the dataset. During the third 
iteration imputation or the next ones, we can repeat the second iteration imputation 
until the imputation results satisfy the demand of users or the algorithm reaches 
convergence.  

At last, we present in detail how the proposed approach is extended to deal with 
symbolic attributes. Similar to the methods used in [6], if x0 and xi have the same 
values for symbolic attribute p, GRC(x0(p), xi (p)) =1 (i.e., the similarity between 
x0(p) and xi (p) is maximal). By contrast, if x0 and xi have different values for 
symbolic attribute p, GRC(x0(p), xi (p)) =0 (i.e., the similarity between x0(p) and xi (p) 
is minimal). Thus, the proposed approach can be applied to numeric and categorical 
attributes with missing values.   

3.4   Convergence of the Imputed Values 

In our algorithm, the first iteration, which uses the mean (or mode) as the initial filled-
in value of the missing values under the assumption of same class label, is obviously 
convergence in statistics, but in the process of the other iterations, we are not able to 
make similar proof for the non-parametric method. The reason is that there are few 
theoretical results regarding the validity of k-NN in the literature due to the difficulty 
of building a mathematical proof. In this section we empirically show the 
convergence of the GBKII method on UCI datasets. 

Note that in this paper, the algorithm of iteration imputation with grey based k-NN 
method is denoted as ‘Noclassified’; the algorithm of iteration imputation based 
Euclidean distance k-NN method under the same class label between the missing 
instance and its nearest neighbor is denoted as ‘k-NN’; the algorithm which filled in 
missing attribute values based mean or mode under the same class label is denoted as 
‘MeanMode’. 
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Fig. 2. Mean change in filled-in values for “the Hepatitis Diagnosis Problem” (left) and 
“Water-Treatment Domain”(right) data set for successive iteration 

The imputation method converges when the “mean change in filled-in values” 
reaches to zero. The meaning of “mean change in filled-in values” is the distance 
between the mean of all imputed in last iteration imputation and the mean of all 
imputed in the current. Caruana [8] thinks that the “mean change in filled-in values” 
usually does not drop all the way to zero and only approximate to a value that is as 



 GBKII: An Imputation Method for Missing Values 1085 

close as possible to zero in the non-parametric model  (such as k-NN, kernel method) 
in practice. Figure 2 shows that the “mean change in filled-in values” moves to zero 
in the successive iteration imputations when the algorithm is applied to the hepatitis 
diagnosis data set and water-treatment domain data set respectively. The results show 
that all the three algorithms are convergence because the “mean change in filled in 
values” remains stable after some iterations. However, our algorithm ‘GBKII’ is the 
fastest with respect to convergence among these three algorithms for the hepatitis 
dataset and water-treatment dataset. The “mean change in imputed values” of our 
GBKII is the smallest among the three algorithms when running the two UCI datasets. 

4   Experimental Studies 

4.1   Experimental Evaluation on Prediction Accuracy 

First, the GBKII approach is evaluated on Iris dataset and the Pima dataset in order to 
demonstrate the approach’s effectiveness. There are no missing values in the datasets 
and the attribute data are missing at random and the missing rate are fixed to 5%. As 
we had no prior information about the optimal k for a specified application, the 
optimal value of k will be obtained by experimental tests in our algorithm, i.e. k, 
varied from 1 to 30. We iterate imputation 20 times based on the analysis of Figure 2. 
The accuracy of prediction was measured using the Root Mean Square Error (RMSE) 
as follows: 

2

1

1
( )

m

i i
i

RMSE e e
m =

= −∑ %                                 (3) 

where ei is the original attribute value; ie%  is the estimated attribute value, and m is the 

total number of missing values. The larger the RMSE is, the worse the prediction 
accuracy is. 
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Fig. 3. Experimental result on the Iris dataset (left) and Pima dataset (right) for four algorithms 
(the missing rate is 5%, the number of iteration time is 20) 

From Figure 3, we can see that the RMSE for grey base k-NN iteration imputation 
algorithm (including ‘Noclassified’ and GBKII) is smaller than the Euclidean based  



1086 C. Zhang et al. 

k-NN iteration imputation algorithm and mean algorithm regardless of the varied k 
(the number of the nearest neighbors), the performance of RMSE for GBKII is better 
than the ‘Noclassified’ between the grey based methods. 

4.2   Experimental Evaluation on Classification Error Rate 

Two UCI datasets (i.e., Hepatitis Diagnosis Problem dataset and Water-Treatment 
Domain dataset) are applied to compare the performances of the five algorithms. At 
first, we get the classification accuracy on original dataset (denoted as ‘Origin’ in 
Table 2) which is an incomplete dataset and hasn’t filled up with any imputation 
methods by C5.0 (available at www.rulequest.com), then we get four completed 
datasets by four imputation methods, for example ‘Noclassified’, GBKII, k-NN, and 
‘MeanMode’’. We present the results of classification Error Rate of these four 
algorithms. 

Table 2. The Classification Error Rate of four imputation methods and the Classification Error 
Rate of incomplete dataset for Hepatitis and Water-Treatment dataset 

 Origin MeanMode kNN Noclassified GBKII 

Hepatitis 0.348 0.324 0.269 0.224 0.203 

Water-Treatment 0.529 0.553 0.365 0.334 0.258 

From Table 2, the results of the four imputation methods are significantly well than 
the method no imputing, this show we maybe impute the missing values rather than 
no imputing it. The classification error rate for grey base k-NN iteration imputation 
algorithm (including ‘Noclassified’ and GBKII) obviously outperforms the Euclidean 
based k-NN iteration imputation algorithm and mean algorithm in classification error 
rate. For the grey-based methods, the classification error rate of GBKII is less than 
‘Noclassified’ method. 

4.3   Experimental Evaluation on Single Imputation and Iteration Imputation 

In this subsection, we compare the performances of our algorithm with the single 
imputation method (the single imputation method imputes missing values by using the 
grey based k-NN method, but it searches the nearest neighbors within instances that 
have same class label). The results in Figure 4 show that it is reasonable for us to 
adopt the iteration imputation method to deal with missing attributes. 

 Iris Pima 
Single 0.24596 28.452

Iteration 0.16542 14.8889

 Hepatitis Water 
Single 0.291 0.463 

Iteration 0.203 0.258  

Fig. 4. Experimental result on the RMSE (left) and Classification Error Rate (right) for single 
imputation and GBKII (the number of all iterations is 8) 
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5   Conclusions and Future Work 

As we have seen, GBKII is an instance-based imputation method and a nonparametric 
method in statistics. Different from existing imputation methods, GBKII is able to 
deal with categorical attributes with missing values. In this approach, the grey 
relational analysis, which is more appropriate to determine the ‘nearness’ (or 
relationship) between two instances than Minkowski distance does, has been used to 
describe the relational structure of all instances and can accelerate the convergence 
rate of iteration imputation. On the other hand, GBKII searches for the nearest 
neighbor instance with the same class label between the instance and the missing 
instance, which can reduce the time complexity, and improves the prediction errors. 
In particular, this EM-like iteration imputation method can get over the problem of 
the slow convergence rate of EM algorithm and make the best use of all the 
information of observed values including the values with missing values. 
Experimental results of four UCI datasets have showed that our method is superior to 
k-NN and mean (or mode) substitution in convergence rate, RMSE for prediction 
accuracy and classification error rate.  
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Abstract. Selecting a small number of discriminative genes from thousands of 
genes in microarray data is very important for accurate classification of diseases 
or phenotypes. In this paper, we provide more elaborate and complete definitions 
of feature relevance and develop a novel feature selection method, which is based 
on relevance analysis and discernibility matrix to select small enough genes and 
improve the classification accuracy. The extensive experimental study using 
microarray data shows the proposed approach is very effective in selecting genes 
and improving classification accuracy. 

Keywords: gene selection, relevance analysis, discernibility matrix. 

1   Introduction 

Recent advanced technologies in DNA microarray analysis are intensively applied in 
disease classification, especially for cancer classification [1], [2]. However, 
classification based on microarray data is very different from previous classification 
problems in that the number of genes (typically tens of thousands) greatly exceeds the 
number of samples (typically less than one hundred), which result in the known 
problem of “curse of dimensionality” and over-fitting of the training data [2]. It is thus 
important for successful cancer classification to select a small number of discriminative 
genes from thousands of genes [1], [3].   

Recently, Feature selection, an effective dimensionality reduction technology in 
machine learning and data mining, has been extensively applying to gene selection for 
cancer classification. Feature selection algorithms can broadly fall into the filter model 
and the wrapper model [4]. The filter model relies on general characteristics of the data 
to evaluate and select gene subsets without involving any mining algorithm. The 
wrapper model requires one predetermined mining algorithm and uses its performance 
as the evaluation criterion. It is computationally expensive for data with a large number 
of features [4]. For this reason filter model is widely used in gene selection. 

Among filter-based gene selection methods, earlier methods are gene ranking. They 
usually evaluate each gene individually by assigning a discriminative score to each 
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gene, then rank genes by their scores and select the top ranked ones [1],[5],[6]. These 
methods are efficient for high-dimensional data due to linear time complexity in terms 
of dimensionality. However they cannot handle redundancy among genes, and require 
user to determine the threshold for the number of selected genes. 

Many latest methods handle redundancy by considering the correlation between 
genes. These methods can be classified into three categories. One category is based on 
clustering, which firstly group similar genes into clusters, genes in the same cluster are 
considered to be high correlated, and then select the most relevant genes from each 
cluster to represent this cluster [7], [8]. Another category integrates the metric for 
measuring the gene-class relevance and that for measuring the gene-gene redundancy 
into a single criterion function and then selects genes so that the criterion function is 
optimized [9], [10]. The above categories of methods can remove redundant genes to 
certain extent but are all time consuming. The third category uses a new framework that 
decouples relevance analysis and redundancy analysis. They usually measure the 
gene-class relevance to obtain relevant genes, and then use a methodology called 
redundant cover to remove redundancy. Methods in this category have been proved to 
be effective and efficient on many high dimensional data sets [3], [11].  

In this paper, we develop a novel gene selection approach based on relevance 
analysis and discernibility matrix, which can select genes and improve the 
classification accuracy more effectively. The remainder of this paper is organized as 
follows. In section 2, we provide more elaborate definitions of relevance. In section 3 
we describe the proposed method. Section 4 evaluates the performance of our method 
via extensive experiments. Section 5 concludes this work. 

2   Feature Relevance 

Let F be a full set of features, C the class label and S ⊆ F. In general, the goal of feature 
selection can be formalized as selecting a minimum subset S such that P(C|S) is equal 
or as close as possible to P(C|F), where P(C|S) is the probability distribution of 
different classes given the feature values in S and P(C|F) is the original distribution 
given the feature values in F [12]. Such a minimum subset is usually called an optimal 
subset. Kohavi and Sommerfield [13] show that an optimal feature subset must be from 
relevant features. 

But what features are relevant? About this problem, there are many contributions 
[4], [14]. The definitions identify a feature as either relevant or irrelevant to a concept 
or task. John and Kohavi [4] show that these definitions give unexpected results, and 
that the dichotomy of relevance vs irrelevance is not enough. An alternative definition 
of relevance is then proposed which distinguishes between strong relevance and weak 
relevance. The distinction of strong relevance and weak relevance has the advantage of 
flexibility: using this distinction, we can select either strongly relevant features or 
weakly relevant features to satisfy different learning requirements [13]. Taking this one 
step further, it is then reasonable to expect a finer distinction of relevance. 

We here propose a finer distinction of relevance based on the influence of a feature 
on classification performance. The presence of a feature has three influences on 
classification performance: improvement, deterioration and no change. Therefore we 
divide feature relevance into positive relevance, negative relevance and irrelevance. 
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Positive (negative) relevance implies that a feature has a positive (negative) effect on 
classification performance, while irrelevance means that a feature has no effect on 
classification performance. In addition, if the influence of a feature on classification 
performance is independent of any other feature, we call such influence strong 
relevance, weak relevance otherwise. 

Based on the above analysis, we classify feature relevance into six categories: strong 
positive relevance, strong negative relevance, strong irrelevance, weak positive 
relevance, weak negative relevance and weak irrelevance. Let

if be a feature, 

}{ ii fFS −= .These categories of relevance can be formalized as follows. 

Definition 1 (Strong positive relevance): a feature if is strongly positive relevant iff 

)|(),|(, iiiii SCPSfCPSS ′>′⊆′∀  

Definition 2 (Strong negative relevance): a feature if is strongly negative relevant iff 

)|(),|(, iiiii SCPSfCPSS ′<′⊆′∀  

Definition 3 (Strong irrelevance): a feature if is strongly irrelevant iff 

)|(),|(, iiiii SCPSfCPSS ′=′⊆′∀  

Definition 4 (Weak positive relevance): a feature if is weakly positive relevant iff   

)|(),|(, iiiii SCPSfCPSS ′>′⊆′∃ and ¬ )|(),|(, iiiii SCPSfCPSS ′>′⊆′∀  

Definition 5 (Weak negative relevance): a feature if is weakly negative relevant iff 

)|(),|(, iiiii SCPSfCPSS ′<′⊆′∃ and ¬ )|(),|(, iiiii SCPSfCPSS ′<′⊆′∀  

Definition 6 (Weak irrelevance): a feature if is weakly irrelevant iff 

)|(),|(, iiiii SCPSfCPSS ′=′⊆′∃ and ¬ )|(),|(, iiiii SCPSfCPSS ′=′⊆′∀  

Definition 7 (Strongly positive relevant feature subset): a feature subset S⊆F is a 
strongly positive relevant feature subset, if 

ii fSf ,∈∀ is strongly positive relevant. 

Strong relevance means an absolute or unconditional relationship between a feature and 
class. A strongly positive relevant feature is absolutely beneficial to classification and 
its removal will result in performance deterioration. Reversely a strongly negative 
relevant feature is completely harmful to classification and its presence will result in 
performance deterioration. A strongly irrelevant feature is completely irrelevant with 
classification. Weak relevance implies a relative or conditional relationship between a 
feature and class. A weakly relevant feature may be multi-role, since two or three of the 
following conditions may hold simultaneously for different

iS ′ : 

)|(),|(, iiiii SCPSfCPSS ′>′⊆′∃ , )|(),|(, iiiii SCPSfCPSS ′<′⊆′∃ and 

)|(),|(, iiiii SCPSfCPSS ′=′⊆′∃ . Whether a weakly relevant feature is beneficial to 

classification depends on the other features already selected and on the evaluation 
measure that has been chosen. Once the current selected features and the evaluation 
measure are both given, we can decide whether a weakly relevant feature is weakly 
positive relevant. If it is weakly positive relevant, then it is beneficial to classification, 
otherwise harmful or useless. 
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4   Methodology 

In this section we are ready to develop a simple and effective gene selection method. 
Based on the above definitions and analysis, only strongly positive relevant and weakly 
positive relevant features are beneficial to classification. The feature subset selected by 
our method should only include all strongly positive relevant and weakly positive 
relevant features. Therefore our method must solve the following two questions: (1) 
how to identify strongly positive relevant features, and (2) how to decide whether a 
feature is weakly positive relevant. 

The answer to the first question can be using discernibility matrix from rough set 
theory [15]. Given a data set S, feature set F={

1f ,
2f ,…, 

nf }, class attribute is C, 

sample set U={ 1x , 2x ,…, mx }, let )( ji xf denote the value of the sample jx for the 

feature
if , then the discernibility matrix of data set S is a symmetric |U|×|U| matrix 

with entries ijc defined as )}()(|{ jkikk xfxfFf ≠∈ if )()( ji xCxC ≠ , ∅ otherwise. 

According to the definition of discernibility matrix, if there is only one element in an 
entry ijc , it must be a strongly positive relevant feature because it is the only feature 

that can differentiate sample ix and jx . Based on this observation, we can examine 

each entry in the discernibility matrix to obtain all the strongly positive relevant 
features. It is possible that no entry contains only one feature, so the strongly positive 
relevant feature subset may be an empty set.  

The answer to the second question is more complicated, because whether or not a 
feature is weakly positive relevant depends on the current selected features and the 
evaluation measure. Among existing evaluation measures, the correlation measure has 
been widely used and shown effective [11]. We here adopt the correlation measure to 
evaluate the goodness of a feature subset.  

We denote the correlation value of a feature
if and the class C as ),( CfCorr i

, and let 

FFS ⊆ be a feature subset, then we can use ),( CfCorr i
to define the correlation 

between
SF and class C as follows: 

)),((
||

1
),( ∑

∈

=
Si Ff

i
S

S CfCorr
F

CFCorr
 

(1) 

Given
SF is the current selected feature subset, E is the selected correlation measure. 

Based on the previous analysis, a feature
if )( Si Ff ∉ is weakly positive relevant and 

should be included iff ),(),}({ CFCorrCFfCorr SESiE >∪ . 

Besides the above two questions, we must also decide the search starting point and 
search strategy for the process of feature selection. Because strongly positive feature 
subset is absolutely necessary, we start search with it to prevent losing some strongly 
positive features in the successive process of search. If the strongly positive feature 
subset is an empty set, search will start with an empty set. It is important for high 
dimensional microarray data to search feature space quickly. We therefore rank 
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features according to the selected correlation measure E and adopt sequential forward 
search strategy, which is simple to implement and fast.  

Based on the above analysis, we can easily obtain a deterministic procedure that can 
effectively identify discriminative genes in microarray data set. Our method can be 
summarized by an algorithm FRADM (Filter based on Relevance Analysis and 
Discernibility Matrix) shown in Figure 1. As in Figure 1, given a microarray data set S 
with n genes, m samples and a class C, the algorithm consists of three parts. In the first 
part (line 1-2), it constructs a discernibility matrix from the input data set, finds the 
strongly positive gene subset based on the discernibility matrix. In the second part (line 
3-4), it calculates the correlation between the starting set and the class C and ranks 
genes using the predefined correlation measure E. In the third part (line 5-6), it 
iteratively adds genes from the ranked list R. The iteration starts from the first element 
in the ranked list R and continues as follows. 

Input: S (F, C)-training data;  

F-original feature set; E-measure

Output: Fbest -best feature subset 

1. Let Fbest= . And construct discernibility matrix DM
for S.

2. For each entry ijc in DM, If ijc contains only one 

feature, then add the feature into Fbest.

3. If Fbest=  then 0),( CFCorr bestE ; else calculate 

),( CFCorr bestE according to formula 1. 

4. For each feature
if in F-Fbest, calculate ),( CfCorr iE and 

rank them in descending ),( CfCorr iE
value, form the 

ranked list R.

5. Get next feature 
if  from the list R, if 

),(),}({ CFCorrCFfCorr bestEbestiE
then add

if into Fbest.

6. Repeat 5 until the end of the list R.

 

Fig. 1. Filter based on Relevance Analysis and Discernibility Matrix  

5   Experiments and Results 

In this section, we evaluate our approach in terms of degree of dimensionality and 
classification accuracy on selected genes. For gene selection in sample classification, it 
is perfect to select small enough genes which can lead to high enough classification 
accuracy. 
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We perform extensive experiments using ten microarray data sets 1 . The main 
characteristic of these data sets is the great number of genes and the relatively small 
number of samples. The details of these data sets are summarized in Table 1. 

Table 1. Summary of data set 

Title #genes # samples #class 
colonTumor 2000 62 2 
breastCancer 24481 97 2 
lungCancer harvard 12533 181 2 
MLL_Leukemia 12582 72 3 
DLBCLTumor 7129 77 2 
DLBCLOutcome 7129 58 2 
prostate_outcome 12600 21 2 
prostate_tumorVSNormal 12600 136 2 
centralNervousSystem 7129 60 2 
Stjude_Leukemia(BCR-ABL) 12558 15 2 

 
Three representative filter algorithms are chosen in comparison with FRADM. One 

algorithm representing feature ranking methods is ReliefF [6], which searches for 
nearest neighbors of instances of different classes and ranks features according to their 
importance in differentiating instances of different classes. Another algorithm is a 
variation of CFS [10], denoted by CFS-SF (Sequential Forward), which used some 
correlation measure and sequential forward search to obtain optimal subset. A third one 
is FCBF [11], which used the correlation measure symmetrical uncertainty to obtain 
relevant genes and to remove redundancy. In addition, two widely used classification 
algorithms, C4.5 and NaiveBayes, are adopted to evaluate the predictive accuracy of 
the selected genes. The experiments are conducted using WEKA’s implementation of 
all these existing algorithms and our algorithm is also implemented in the WEKA 
environment [16]. 

Table 2. Number of genes selected by each feature selection algorithm 

Title Full set FRADM FCBF ReliefF CFS-SF 
colonTumor 2000 5 14 5 26 
breastCancer 24481 7 90 7 N/A 
lungCancer harvard2 12533 7 128 7 N/A 
MLL_Leukemia 12582 5 97 5 N/A 
DLBCLTumor 7129 5 73 5 N/A 
DLBCLOutcome 7129 5 27 5 N/A  
prostate_outcome 12600 4 27 4 N/A 
prostate_tumorVSNormal 12600 6 38 6 N/A 
centralNervousSystem 7129 4 28 4 N/A 
Stjude_Leukemia(BCR-ABL) 12558 5 89 5 N/A 

 

                                                           
1 http://sdmc.lit.org.sg/GEDatasets/Datasets.html 
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For each data set, we first run all the feature selection algorithms, and obtain the 
selected genes for each algorithm. Note that in FRADM, the evaluation measure is set 
to symmetrical uncertainty. For ReliefF, we use 5 neighbors and 30 instances 
throughout the experiments, and to compare the performance of ReliefF and FRADM, 
the number of genes selected by ReliefF is set to be the same as that of FRADM. We 
then apply C4.5 and NaiveBayes respectively on each original data set and each newly 
obtained data set only containing the selected genes, and obtain the overall 
classification accuracy by leave-one-out cross-validation. 

Table 3. Leave-one-out cross-validation accuracy of C4.5 on selected genes for each feature 
selection method (%) 

Title Full set FRADM FCBF ReliefF CFS-SF 
colonTumor 80.65 85.48 88.71 82.26 87.10 
breastCancer 57.73 78.35 67.01 58.76 N/A 
lungCancer harvard2 96.13 97.24 98.90 98.90 N/A 
MLL_Leukemia 86.11 90.28 93.06 86.11 N/A 
DLBCLTumor 80.52 90.91 85.71 84.42 N/A 
DLBCLOutcome 37.93 65.52 46.55 48.28 N/A 
prostate_outcome 23.81 85.71 33.33 38.10 N/A 
prostate_tumorVSNormal 77.94 93.38 83.82 82.35 N/A 
centralNervousSystem 50 75 66.67 50 N/A 
Stjude_Leukemia(BCR-ABL) 92.97 97.55 93.27 96.33 N/A 

Table 4. Leave-one-out cross-validation accuracy of NaiveBayes on selected genes for each 
feature selection method(%) 

 Full set FRADM FCBF ReliefF CFS-SF 
colonTumor 75.81 90.32 77.42 82.26 80.65 
breastCancer 71.13 90.72 55.67 69.07 N/A 
lungCancer harvard2 98.34 100 99.45 98.34 N/A 
MLL_Leukemia 91.67 95.83 94.44 87.5 N/A 
DLBCLTumor 85.71 92.21 92.21 85.71 N/A 
DLBCLOutcome 51.72 91.38 53.45 51.72 N/A 
prostate_outcome 33.33 95.24 33.33 61.90 N/A 
prostate_tumorVSNormal 63.97 88.97 65.44 61.76 N/A 
centralNervousSystem 65 80 56.67 66.67 N/A 
Stjude_Leukemia(BCR-ABL) 98.47 97.86 95.11 93.88 N/A 

 
Table 2 records the number of genes selected by each feature selection algorithm. 

We can see that FRADM on average selects the smallest number of features. Table 3-4 
reports the leave-one-out accuracy by C4.5 and NaiveBayes respectively. For most of 
the data sets, we can observe that, (1) CFS-SF is not available due to its O(n2) 
complexity in terms of the number of genes n. (2) FRADM can increase or maintain the 
accuracy of C4.5 and NaiveBayes; and (3) none of other three algorithms can enhance 
the accuracy of C4.5 and NaiveBayes to the same level as FRADM does. In summary, 
the above experimental results suggest that FRADM is effective in gene selection and 
is practical for use in sample classification of high dimensional microarray data. 
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6   Conclusions 

In this work, we have provided more elaborate definitions of feature relevance and 
proposed a novel filter method that is based on relevance analysis and discernibility 
matrix to select small enough number of genes and improve the classification accuracy. 
Extensive experiments on microarray data have demonstrated the superior performance 
of FRADM.  
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Abstract. We address the protection of private information in data clustering.
Previous work focuses on protecting the privacy of data being mined. We find
that the cluster labels of individual data points can also be sensitive to data own-
ers. Thus, we propose a privacy-preserving data clustering scheme that extracts
accurate clustering rules from private data while protecting the privacy of both
original data and individual cluster labels. We derive theoretical bounds on the
performance of our scheme, and evaluate it experimentally with real-world data.

1 Introduction

Data clustering is the process of grouping data tuples into different clusters, such that
tuples within one cluster are similar with each other but are dissimilar to tuples in other
clusters. It is an important problem in data mining, and has been successfully used in
various domains such as image processing, market research, and bioinformatics [2]. In
many cases, it is important to conduct data clustering on private data without violating
the privacy of data owners.

In this paper, we address the privacy protection problem for a distributed system in
which data being mined are stored across multiple autonomous entities. In our previous
work [7], we classified such distributed systems into two categories based on their in-
frastructures, namely Server-to-Server (S2S) and Client-to-Server (C2S), respectively.
An S2S system consists of several servers, each of which holds a private database. The
servers collaborate to perform data mining across their databases without disclosing
private information to each other. A C2S system consists of one data miner (server)
and multiple data providers (clients), each of which holds a private data tuple. The data
miner is supposed to collect data from the data providers and perform data mining on
the collected data. Online survey is a typical example of a C2S system, as there is one
survey analyzer (data miner) and numerous survey respondents (data providers).

Both C2S and S2S systems have a broad range of applications. Nevertheless, we
focus on C2S systems in this paper. Most previous work in C2S systems aims to pro-
tect (only) the values of the original private data (i.e., the data being mined) in such
systems [5]. While this is an important task, we find that in many cases, the data own-
ers have privacy concerns on not only the original data, but also the cluster labels of
their individual data. For example, a customer may be willing to provide (the privacy-
protected version of) his/her purchase record for a company to analyze its customer
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c© Springer-Verlag Berlin Heidelberg 2007



Towards Comprehensive Privacy Protection in Data Clustering 1097

bases and thereby reduce advertisement cost. Nonetheless, the customer may not want
the company to label him/her in a special group (e.g., gamer, new-product enthusiast,
or deal hunter).

In order to provide comprehensive privacy protection in data clustering systems, a
privacy-preserving mechanism must simultaneously prevent the disclosure of original
data as well as the labels of such data. In particular, the data miner should not learn
which data tuples belong to the same cluster. Ideally speaking, the only information
that the data miner can learn from the collected data should be the clustering rules that
can accurately classify different clusters. For example, if k-means clustering algorithm
is used, the data miner should learn the accurate center point of each cluster, and nothing
else, after the data collection and clustering process.

In this paper, we propose an algebraic-approach-based scheme that protects the pri-
vacy of both the original data and their cluster labels, while allowing the data miner to
generate accurate clustering rules. We will show that our new scheme has the following
important features that distinguish it from previous approaches:

– Up to our knowledge, this paper is the first to address the protection of both original
private data and individual cluster labels in C2S data clustering systems.

– Our scheme allows each data provider to choose a different level of privacy disclo-
sure based on his/her individual privacy concern.

– Our scheme is transparent to the clustering algorithm used and can be readily inte-
grated into existing systems as middle-ware.

The algebraic-techniques-based approach was first proposed in our previous work
for other data mining problems (e.g., data classification [7]). There are significant dif-
ferences between the work presented in this paper and our previous work which include:

– The data mining problem is different: we are dealing with data clustering problem
instead of association rule mining and data classification problems.

– The private information is different: we are preserving not only the privacy of orig-
inal data (as in [7]), but also the privacy of individual cluster labels.

The rest of the paper is organized as follows. We introduce the system model and
problem definition in Section 2. In Section 3, we present the baseline architecture of
our new scheme. We introduce the basic components of our scheme in Section 4. In
Section 5, we evaluate the performance of our scheme theoretically and derive bounds
on privacy and accuracy measures. We experimentally evaluate the performance of our
scheme on real data set in Section 6, and conclude with final remarks in Section 7.

2 System Model and Problem Definition

Let there be one data miner S and m data providers P1, . . ., Pm in the system. Each data
provider Pi holds a data tuple ti (i ∈ [1, m]) with n attributes a1, . . . , an. The clustering
process is consisted of two steps. In this first step, the data miner collects data from the
data providers. As in an online survey system where each survey respondent joins the
system at a different time, we consider this step to be iteratively carried out by a group
of independent processes, within each of which a data provider transmits its data to the
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data miner. In a system with privacy concerns, a data provider may perturb its data first
and transmit (only) the perturbed data to the data miner.

Let T be the set of all m original data tuples. Let d(ti, tj) be the distance function be-
tween two data tuples ti and tj . Suppose there are k clusters within T . As is commonly
assumed, both the data miner and the data providers know k as pre-knowledge. We
use f(ti) ∈ [1, k] to denote the cluster label of ti. The objective of clustering without
privacy concern is for the data miner to obtain f(ti) for all i ∈ [1, m].

As we mentioned in Section 1, in order to provide comprehensive privacy protection
in data clustering systems, our objective is to achieve the following three goals:

– (Value Privacy) Minimize the amount of private information disclosed about ti.
– (Label Privacy) Minimize the amount of private information disclosed about f(ti).
– (Accuracy) Enable the data miner to generate a clustering function fR(·) : t →

[1, k], such that for all possible values of ti, fR(ti) = f(ti).

Note that the accuracy goal does not contradict the label privacy goal. Although the data
miner can generate the clustering function fR(·), it cannot derive f(ti) because due to
value privacy, the data miner does not know the value of ti.

3 Our New Scheme

In this section, we introduce our new scheme that protects both value and label pri-
vacy while maintaining the accuracy of clustering rules. Figure 1 depicts the baseline
architecture of our new scheme.

Note that due to sociological survey results, different people have different levels of
privacy concern on their data [3]. Thus, we introduce a important parameter for each
data provider Pi called the maximum acceptable disclosure level, denoted by li. The
maximum acceptable disclosure level measures the level of privacy concerns of each
data provider. Generally speaking, if we consider the original data tuples as random
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vectors, then li is the degree of freedom of the perturbed vector R(ti), which in most
cases is much smaller than the degree of freedom of the original data tuple ti. The rela-
tionship between li and the level of privacy disclosure is further analyzed in Section 5.

When a data provider joins the system, it first inquires the data miner about the cur-
rent system disclosure level l∗, which is minimum disclosure level (currently) required
by the data miner to maintain an accurate estimation of the clustering rules. The compu-
tation of l∗ is presented in Section 4. If the data provider cannot accept l∗ (i.e., l∗ > li),
it can wait for a certain amount of time and try again. As we demonstrate in Section 6,
the value of l∗ decreases rapidly when the data miner receives more data tuples. Since
li varies among different data providers, the system disclosure level will soon be ac-
ceptable to most data providers.

If a data provider accepts l∗, the data provider then inquires the data miner about the
current perturbation guidance G∗. Basically speaking, G∗ tells the data provider how to
project its original data tuple t into an l∗-dimensional subspace, such that 1) the cluster
label information is removed from the projected data, and 2) the private information
retained in the subspace is the minimum necessary to generate clustering rules. The
computation of G∗ is presented in Section 4. After receiving G∗, the data provider first
checks the validity of G∗, and then compute the perturbed data R(t) based on t and G∗.
Details of the validation and perturbation process are also presented in Section 4. The
data provider then transmits R(t) to the data miner.

After the data miner receives all data tuples, it can directly use the collected data
as input (to any clustering algorithm) to generate clustering rules. As we can see, our
scheme is transparent to the clustering algorithm used, and can be integrated into exist-
ing systems as middle-ware. There are two key components in our scheme: perturbation
guidance of the data miner and perturbation of the data providers. We introduce these
two components in detail in the next section.

4 Basic Components

The basic components of our scheme are 1) the perturbation guidance component of the
data miner, which generates the current system disclosure level l∗ and the perturbation
guidance G∗; and 2) the perturbation component of the data providers, which validates
the received G∗ and computes R(t) based on t and G∗. In this section, we first introduce
some basic notions, and then introduce the design of these two components respectively.

4.1 Basic Notions

Recall that there are m data providers in the system, each of which holds a private data
tuple ti with n attributes a1, . . . , an. We assume that all attributes are categorical. If an
attribute is continuous, it can be discretized first. Let di be the number of distinct values
of ai. Without loss of generality, we assume that ai ∈ {1, . . . , di}. We can denote a
data tuple ti by a (d1 + · · · + dn)-dimensional vector as follows.

ti =

d1 bits for a1
︷ ︸︸ ︷
0, . . . , 1, . . . , 0, . . . ,

dn bits for an
︷ ︸︸ ︷
0, . . . , 1, . . . , 0 (1)
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Within the di bits assigned for ai, the j-th bit is 1 if and only if ai = j. All other bits
are 0. For example, a binary attribute ai = 0 has two corresponding bits as 1, 0.

Let there be n0 = d1 + · · · + dn. Each data tuple ti can be represented by an n0-
dimensional vector. As such, we can represent the set of all data tuples by an m × n0
matrix T = [t1; . . . ; tm]. The i-row of T is the corresponding vector of ti. We use 〈T 〉ij

to denote the element of T with indices i and j (i.e., the j-th bit of ti). We denote the
transpose of T by T ′.

4.2 Perturbation Guidance

As we are considering systems where the data tuples are iteratively fed to the data miner,
the data miner needs to maintain a copy of all received (perturbed) data tuples. Let T ∗

the current matrix of such received data tuples. When a new (perturbed) data tuple is
received, it is directly appended to T ∗. Our scheme computes l∗ and G∗ based on T ∗.
In order to compute them for the first-come data provider, we assume that the initial
value of T ∗ is an m0 ×n0 matrix (m0 ≥ k ·n0), which is consisted of either data tuples
collected from privacy-unconcerned data providers or randomly generated data tuples,
or a combination of them.

When a new data provider joins the system, the computation of l∗ and G∗ is consisted
of two steps1. In the first step, the data miner groups the received (perturbed) data tuples
in T ∗ into k clusters T ∗1 , . . . , T ∗k . Let the current clustering function be f∗(·). Let the
number of data tuples in T ∗i be m∗i . Then, the data miner computes the singular value
decomposition (SVD) of each cluster as follows.

T ∗i = UiΣiV
′
i , (2)

where Ui is an m∗i × n0 unitary matrix (i.e., U ′iUi = I where I is the n0 × n0 identity
matrix), Σi = diag(σ∗i1, . . . , σ

∗
in0

) is an n0 × n0 diagonal matrix with singular values
of T ∗i : σ∗i1 ≥ · · · ≥ σ∗in0

, and Vi = [v∗i1, . . . , v
∗
in0

] is an n0 × n0 unitary matrix that
contains the right singular vectors of T ∗i . Note that when m is large, it is always possible
to incrementally compute the SVD of T ∗i when new data tuples are received.

In the second step, the data miner computes l∗ and G∗ based on Σ∗i and V ∗i . In
particular, l∗ is the minimum integer in [1, n0] that satisfies ∀i ∈ [1, k],

σ∗i(l∗+1) ≤ μσ∗i1, (3)

where μ ∈ [0, 1] is a parameter pre-determined by the data miner. A data miner that can
tolerate a relatively lower level of accuracy can choose a large μ to reduce l∗. A data
miner that requires a higher level of accuracy can maintain a small μ to ensure accurate
clustering rules. In order to choose a cut-off μ that reduces l∗ rapidly while maintaining
accurate clustering rules, a textbook heuristic is to set μ = 0.15.

Given l∗, the perturbation guidance G∗ is a set that contains: 1) the clustering func-
tion f∗(·), 2) l∗-dimensional vectors s∗1, . . . , s

∗
k, and 3) n0 × l∗ matrices V ∗1 , . . . , V ∗k . If

k-means clustering algorithm is used by the data miner, the clustering function f∗(·) is

1 Note that due to efficiency concern, such computation may only take place (i.e., l∗ and G∗ be
updated) once several data tuples are received.
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consisted of the center points of the k clusters. Each vector s∗i (i ∈ [1, k]) is consisted
of the largest l∗ singular values of T ∗i . Each matrix V ∗i (i ∈ [1, k]) is consisted of the
first k right singular vectors of T ∗i (i.e., the first l∗ columns of Vi). That is,

s∗i = [σ∗i1, . . . , σ
∗
il∗ ]. (4)

V ∗i = [v∗i1, . . . , v
∗
il∗ ]. (5)

After computing s∗i and V ∗i , the data miner transmits G = 〈f∗, s∗1, . . . , s∗k, V ∗1 , . . . , V ∗k 〉
to the data provider.

4.3 Perturbation

After accepting l∗ and receiving G∗, a data provider needs to 1) check the validity of
G∗, and 2) compute the perturbed data tuple R(t). The validation process is simple:
Pi only needs to check if every received V ∗i in G∗ is a n0 × l∗ matrix that satisfies
V ∗′i V ∗i = I , where I is the l∗ × l∗ identity matrix. If so, then the received G∗ is valid.

After the validation process, the data provider computes R(t) as follows. First, the
data provider determines the cluster label of its data by computing f∗(t). After that,
it computes k (l∗ × l∗) diagonal matrices Λi for i ∈ [1, k], such that ∀j ∈ [1, l∗],
〈Λi〉jj = 〈s∗i 〉j . Based on Λ1, . . . , Λk and V ∗1 , . . . , V ∗k , the data provider computes an
intermediate (perturbed) vector t̃ as follows.

t̃ =

⎧
⎨

⎩

tV ∗f∗(t)Λ
−1
f∗(t)Λ1V

∗′
1 , with probability of 1/k,

. . . , . . . ,
tV ∗f∗(t)Λ

−1
f∗(t)ΛkV ∗′k , with probability of 1/k,

(6)

where Λ−1
f∗(t) is the inverse matrix of Λf∗(t). Note that since for all i ∈ [1, k], Λi is

always a diagonal matrix, the inverse of Λi always exists. Also note that the inverse of
V ∗i does not exist because all V ∗i (i ∈ [1, k]) are rank-l∗ matrices with l∗ < n0. Thus,
it is impossible to recover t from t̃.

As we can see, the elements in t̃ are real values. Thus, we need an additional step to
transform t̃ to a binary vector. In particular, for every j ∈ [1, n0], we have

〈R(t)〉j =
{

1, if r ≤ 〈t̃〉2j ,
0, otherwise.

(7)

where 〈t̃〉j is the j-th element of t̃, and r is generated uniformly at random from [0, 1].

5 Theoretical Analysis

We now analyze the performance of our scheme. We define performance measures on
1) the amount of disclosure on value privacy (i.e., the disclosure of original data tu-
ples), 2) the amount of disclosure on label privacy (i.e., the disclosure of individual
cluster labels), and 3) the error of clustering rules built on the perturbed data. We derive
bounds on these measures, in order to provide guidelines for system administrators to
set parameters in practical systems.
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5.1 Value Privacy

Recall that our scheme allows each data provider Pi to choose its individual maximum
acceptable disclosure level li. Thus, we define the level of value-privacy disclosure
based on li of individual data providers. Note that we need to consider all possible G∗

that can pass the validity test. In particular, we use a information-theoretic measure.
Let H(ti) be the information entropy of ti (i.e., the amount of information in ti) and
I(ti; R(ti)) be the mutual information between ti and R(ti) (i.e., the amount of infor-
mation about ti that can be disclosed by R(ti)). Please refer to [1] for the details of
information theory.

Definition 1. The degree of value-privacy disclosure Pv(li) is the maximum expected
percentage of information disclosed by R(ti) when Pi computes R(ti) based on a sys-
tem disclosure level l∗ ≤ li and an arbitrary perturbation guidance G∗ that passes the
validity test. That is,

Pv(li) = max
G∗,l∗≤li

I(ti; R(ti))
H(ti)

. (8)

As we can see from the definition, the larger Pv(li) is, the more value-privacy-related
information about Pi is disclosed to the data miner. We derive an upper bound on Pv(li)
as follows.

Theorem 1. When m is sufficiently large, we have

Pv(li) ≤
ρ2
1 + · · · + ρ2

li

kmn
, (9)

where ρj is the j-th singular value of T .

Due to space limit, please refer to [6] for the proof of this theorem.

5.2 Label Privacy

Definition 2. The degree of label-privacy disclosure Pc is the probability that R(ti)
and R(tj) belong to the same cluster given ti and tj in the same cluster. That is,

Pc = Pr{fR(R(ti)) = fR(R(tj))|f(ti) = f(tj)}. (10)

For the sake of simplicity, we consider the problem in a 2-dimensional setting. That
is, we consider the cases where the clustering algorithm groups data tuples based on
two (optimal) attributes (chosen from the n attributes) that have the most discrepancy
between different clusters. We use Pc(2) to denote the value of Pc in this 2-dimensional
setting.

Theorem 2. When m is sufficiently large, we have Pc(2) = 1/k.

Please refer to [6] for the proof of this theorem.
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5.3 Accuracy

Recall that fR(·) is the clustering function generated from the perturbed data. For every
possible value tS, we measure the error on the mined clustering rules about tS as

E(tS) = P (tS) · Pr(fR(tS) 	= f(tS)). (11)

Definition 3. The degree of error E is defined as the maximum of E(tS) on all possible
values of tS.

Theorem 3. When m is sufficiently large, we have

E ≤ max
j∈[1,k]

2μσj1

m
, (12)

where σj1 is the largest singular value of Tj .

Please refer to [6] for the proof of this theorem.

6 Experimental Evaluation

We conduct our experiments on the congressional voting records database from the UCI
machine learning repository [4]. The data set includes 16 key votes (0-no or 1-yes) for
each of the 435 United Stated House Representatives in 1984. The task is to cluster
the records into two clusters: republicans and democrats. There are 61.38% democrats
and 38.62% republications in the data set. The data set contains 392 missing votes,
which we fill with values generated uniformly at random from {0, 1}. We use k-means
clustering algorithm in our evaluation.

Since each data tuple contains 16 binary elements, we represent each data tuple by a
32-dimensional binary vector. We apply our scheme on the data set when μ varies from
0.1 to 0.9. The initial value of T ∗ is consisted of 32 uniformly generated tuples and 32
tuples randomly chosen from T . The data miner updates the perturbation guidance once
every 40 data tuples are received.

Figure 2 shows the performance of our scheme on value privacy, label privacy, and
accuracy. We evaluate the level of value privacy and label privacy by the disclosure
measures defined in Section 5. In order to demonstrate the accuracy of our scheme
intuitively, we measure accuracy by the percentage of original data tuples that can be
correctly clustered by the clustering rules generated from the perturbed data.

As we can see from the results, our scheme can achieve fairly high level of accuracy
(over 90% when μ ≤ 0.6) while maintaining a low level of disclosure on both value
privacy (less than 0.45 when μ ≥ 0.3) and label privacy (less than 0.65 when μ ≥ 0.3).
Note that since there are 61.38% democrats in the data set, the lowest possible level of
label disclosure is 0.6138. As we can see, the disclosure level of our scheme is very
close to this lower bound when μ ≥ 0.3.

In order to demonstrate the change of l∗ when the data miner receives more (per-
turbed) data tuples, we show the change of l∗ with |T ∗| in Figure 3 when μ = 0.15.
As we can see, the value of l∗ decreases fairly quickly (e.g., reduced to 7 when 50 data
tuples are received) when the data miner receives more data tuples.
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7 Final Remarks

In this paper, we address the comprehensive protection of privacy in data clustering.
Compared with previous work, we identify a new privacy concern in data clustering
which is the privacy of individual cluster labels. In order to achieve comprehensive pri-
vacy protection, we propose a privacy-preserving clustering scheme that can simultane-
ously protect the privacy of original data and individual cluster labels. In particular, our
scheme allows each data provider to choose a different level of maximum acceptable
privacy disclosure level that reflects its individual privacy concern. Our scheme also al-
lows the data miner to distribute perturbation guidance to the data providers. Using this
intelligence, the data providers perturb their data tuples and transmit the perturbed tu-
ples to the data miner. As a result, our scheme can achieve both value and label privacy
while maintaining the accuracy of clustering rules. We demonstrate the performance of
our scheme by theoretical bounds and experimental evaluation.

Our work is preliminary and many extensions can be made. We are currently in-
vestigating privacy concerns beyond original data being mined in other data mining
problems. We would also like to investigate the integration of our scheme with crypto-
graphic approach in Server-to-Server (S2S) systems.
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Xueping Zhang 1, 2, 3, Jiayao Wang 2, Mingguang Wu 2, and Yi Cheng2 

1 School of Information Science and Engineering, Henan University of Technology, Zhengzhou 
450052, China 

2 School of Surveying and Mapping, PLA Information Engineering University, Zhengzhou 
450052, China 

3 Geomatics and Applications Laboratory, Liaoning Technical University, Fuxin 123000,  
China 

zhang_xpcn@yahoo.com.cn 

Abstract. In this paper, we discuss the problem of spatial clustering with 
obstacles constraints and propose a novel spatial clustering method based on 
PSO and K-Medoids, called PKSCOC, which aims to cluster spatial data with 
obstacles constraints. The PKSCOC algorithm can not only give attention to 
higher local constringency speed and stronger global optimum search, but also 
get down to the obstacles constraints and practicalities of spatial clustering. The 
results on real datasets show that the PKSCOC algorithm performs better than 
the IKSCOC algorithm in terms of quantization error.  

Keywords: Spatial Clustering, Particle Swarm Optimization, K-Medoids 
Algorithm, Obstacles Constraints.  

1   Introduction 

Spatial clustering with constraints is an important topic in Spatial Data Mining 
(SDM). Spatial clustering with constraints has two kinds of forms [1]. One kind is 
Spatial Clustering with Obstacles Constraints (SCOC).An obstacle is a physical object 
that obstructs the reach ability among the data objects, such as bridge, river, and 
highway etc. whose impact on the result should be considered in the clustering 
process of large spatial data. As an example, Fig.1 shows clustering data objects in 
relation to their neighbors as well as the physical obstacle constraints. Ignoring the 
constraints leads to incorrect interpretation of the correlation among data points. The 
other kind is spatial clustering with handling operational constraints [2], it consider 
some operation limiting conditions in the clustering process. In this paper, we mainly 
discuss SCOC. Handling these obstacles constraints can lead to effective and fruitful 
data mining by capturing application semantics [3-8]. 

Since K.H.Tung put forward a clustering question COE (Clustering with Obstacles 
Entities) [3] in 2000, a new studying direction in the field of clustering research have 
been opened up. To the best of our knowledge, only three clustering algorithms for 
clustering spatial data with obstacles constraints have been proposed very recently:  
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      (a) Data objects and constraints                           (b) Clusters ignoring constraints  

Fig. 1. Clustering data objects with obstacles constraints 

COD-CLARANS [3] based on the Partitioning approach of CLARANS, 
AUTOCLUST+ [4] based on the Graph partitioning method of AUTOCLUST, and 
DBCluC [5]-[8] based on the Density-based algorithm. Although these algorithms can 
deal with some obstacles in the clustering process, many questions exist in them. 
COD-CLARANS algorithm inherits the shortcoming of CLARANS algorithm, which 
only gives attention to local constringency. AUTOCLUST+ algorithm inherits the 
limitation of AUTOCLUST algorithm, which builds a Delaunay structure to cluster 
data points with obstacles costly and is unfit for a large number of data. DBCluC 
inherits the shortcoming of DBSCAN algorithm, which cannot run in large high 
dimensional data sets etc. We proposed GKSCOC (Genetic K-Medoids Spatial 
Clustering with Obstacles Constraints) based on Genetic algorithms (GAs) and 
IKSCOC (Improved K-Medoids Spatial Clustering with Obstacles Constraints) in the 
literature [9]. The results of the experiments on real datasets show that it is better than 
IKSCOC. But the drawback of GKSCOC is a comparatively slower speed in 
clustering. 

Recently, Particle Swarm Optimization (PSO) has been applied to data clustering 
[10-13]. This paper explores the applicability of PSO to cluster spatial data with 
obstacles constraints. We develop a novel Spatial Clustering with Obstacles 
Constraints based on PSO and K-Medoids, called PKSCOC. The PKSCOC can not 
only give attention to higher local constringency speed and stronger global optimum 
search, but also get down to the obstacles constraints and practicalities of spatial 
clustering. The results on real datasets show that the PKSCOC algorithm performs 
better than the IKSCOC algorithm in terms of quantization error. 

The remainder of the paper is organized as follows. SCOC based on K-Medoids, 
called KSCOC, is discussed in Section 2. Section 3 introduces PSO. Section 4 
presents SCOC based on PSO and K-Medoids, called PKSCOC. The performances of 
PKSCOC on datasets in comparison with the IKSCOC are showed in Section 5, and 
Section 6 concludes the paper. 

2   SCOC Based on K-Medoids 

Partitioning-base algorithm divides n objects into ( )k k n< parts, and each part 

represents one cluster. There are three typical types of partitioning-based algorithm: 
K-Means, K-Medoids and CLARANS. K-Means takes the average value of a cluster 
as the cluster centre. While adopting this algorithm, a cluster center possibly just falls 
on the obstacle (Fig.2), and it cannot be implemented in reality. On the other hand,  
K-Medoids takes the most central object of a cluster as the cluster centre, and the  
 



 A Novel Spatial Clustering with Obstacles Constraints 1107 

K-Means               K-Medoids   

Fig. 2. K-Means vs. K-Medoids  

cluster center cannot fall on the obstacle. In view of this, K-Medoids algorithm is adopted 
in this paper. CLARANS algorithm can be adopted to handle large number of data sets.  

2.1   Motivating Concepts 

To derive a more efficient algorithm for SCOC, the following definitions are first 
introduced. 

Definition 1 ( Visibility graph).  Given a set of m obstacle, 1 2( , , , )mO o o o= K ,the 

visibility graph is a graph ( , )VG V E=  such that each vertex of the obstacles has a 

corresponding node in V , and two nodes 1v and 2v  in V are joined by an edge in E if 

and only if the corresponding vertices they represent are visible to each other. 

To generate VG , we use VPIA (VGRAPH Point Incorporation Algorithm) as 
presented in [14]. 
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Fig. 3.  Visibility graph and Obstructed distance 

Definition 2 (Obstructed distance).  Given point p and point q , the obstructed 

distance ( , )od p q is defined as the length of the shortest Euclidean path between two 

points p and q  without cutting through any obstacles. 

We can use Dijkstra Algorithm to compute obstructed distance. The simulation result 
is in Fig.3 and the red solid line represents the obstructed distance we got. 

2.2   Improved SCOC Based on K-Medoids 

K-Medoids algorithm selects the most central object of a cluster as the cluster centre. 
The clustering quality is estimated by an object function. Square-error function is 
adopted here, and its definition can be defined as: 

                                          2( ( , ))
1

Nc
E d p m j

j p C j

= ∑ ∑
= ∈

                                             (1) 
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where N c is the number of cluster C j , m
j

is the cluster centre of cluster C j , ( , )d p q  

is the direct Euclidean distance between the two points p and q . 

To handle obstacles constraints, accordingly, criterion function for estimating the 
quality of spatial clustering with obstacles constraints can be revised as: 

                                       2( ( , ))
1

o o

N
c

E d p m
j

j p C
j

= ∑ ∑
= ∈

                                   (2) 

where ( , )od p q is the obstructed distance between point p and point q , which is 

defined by the shortest distance between the two points p and q which cannot be cut 

off by any obstacle. 
As we know, the cost of computing obstructed distance is much more than direct 

Euclidean distance’s, so computing oE  is much more costly than computing E . In 

order to improve the efficiency of whole algorithm, the method of Improved KSCOC 
(IKSCOC) is adopted as follows [9]. 

1. Select N c objects to be cluster centers at random;  

2. Distribute remain objects to the nearest cluster center; 
3. Calculate oE according to equation (2); 

4. Do {let current oE E= ;  

5. Select a not centering point to replace the cluster center m
j

 randomly;  

6. Distribute objects to the nearest center; 
7. Calculate E according to equation (1); 
8. If E > current E , go to 5;  
9. Calculate oE ; 

10. If oE < current E , form new cluster centers;  

11.} While ( oE changed). 

While IKSCOC still inherits two shortcomings because it is based on standard 
partitioning algorithm. One shortcoming is that selecting initial value randomly may 
cause different results of the spatial clustering and even have no solution. The other is 
that it only gives attention to local constringency and is sensitive to an outlier.   

3   Particle Swarm Optimization  

The Particle Swarm Optimization (PSO) is a population-based optimization method 
first proposed by Kennedy and Eberhart [15, 16]. In order to find an optimal or near-
optimal solution to the problem, PSO updates the current generation of particles (each 
particle is a candidate solution to the problem) using the information about the best 
solution obtained by each particle and the entire population. In the context of PSO, a 
swarm refers to a number of potential solutions to the optimization problem, where 
each potential solution is referred to as a particle. The aim of the PSO is to find the 
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particle position that results in the best evaluation of a given fitness (objective) 
function. Each particle has a set of attributes: current velocity, current position, the 
best position discovered by the particle so far and, the best position discovered by the 
particle and its neighbors so far. The user can define the size of the neighborhood. 
There is one version of PSO called global PSO in which all the particles are 
considered to be neighbors of each other. All particles start with randomly initialized 
velocities and positions. Then the thn  component of the new velocity and the new 

position for the thi  particle are updated by using the following equations: 

    ( ) ( ) ( ) ( ) ( ) ( )
1 2

1 *  * ()*( - ) + * ()*( - ) , ,, , ,t w t rand t t rand t tV V c G c lX Xi n i ni n i n i i n+ = +    (3) 

                                          ( ) ( ) ( )1    1   , , ,t t tVX Xi n i n i n+ = + +                                      (4) 

where w  is the inertia weight, 
1

c and 
2

c are positive constant parameters, and 

()Rand  is a random function with the range [0, 1], iG  is the best particle found so far 

within the neighbors and ,l i n  is the best position discovered so far by the 

corresponding particle. Velocity magnitudes are often clipped to a predetermined 
maximum value, maxV .The PSO is usually executed with repeated application of 

equations (3) and (4) until the specified number of iterations haves been exceeded. 
Alternatively, the algorithm can be terminated when the velocity updates are close to 
zero over a number of iterations. 

PSO is effective in nonlinear optimization problems and it is easy to implement. In 
addition, only few input parameters need to be adjusted in PSO. Because the update 
process in PSO is based on simple equations, PSO can be efficiently used on large 
data sets. A disadvantage of the global PSO is that it tends to be trapped in a local 
optimum under some initialization conditions [17]. 

4   Spatial Clustering with Obstacles Constraints Based on PSO 
and K-Medoids 

In order to overcome the disadvantage of partitioning approach which only gives 
attention to local constringency, and keep the advantage of PSO which has stronger 
global optimum search at the same time [10], we propose a novel Spatial Clustering 
with Obstacles Constraints based on PSO and K-Medoids (PKSCOC).  

This section first introduces the PSO Clustering in section 4.1，and then presents 
the PKSCOC algorithm in section 4.2. 

4.1   PSO Clustering  

In the context of clustering, single particle represents the N c cluster centroid. That is, 

each particle xi  is constructed as follows: 

                                          1( ,..., ,..., )
di i ij iNx m m m=                                                     (5) 
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where 
dN  refers to the input dimension, ijm refers to the thj cluster centroid of the thi  

particle in cluster ijC . Therefore, a swarm represents a number of candidate 

c1usterings for the current spatial data. 
The objective function is used to assign a fitness value to each individual in the 

population. Therefore, it needs to be designed so that an individual with a high fitness 
represents a better solution to the problem than an individual with a lower fitness. 
Here, objective function is defined as follows: 

                                                 
1

( )i
i

f x
J

=                                                                   (6) 

                                       ( , )
1

c

j o j

ij

N
J d p m

j p C
= ∑ ∑

= ∈
                                                  (7) 

4.2   Spatial Clustering with Obstacles Constraints Based on PSO and  
K-Medoids 

Using the standard gbest PSO, Spatial Clustering with Obstacles Constraints based on 
PSO and K-Medoids (PKSCOC), which is similar to the K-means PSO hybrid as 
presented in [11],is adopted as follows. 

1.  Execute the IKSCOC algorithm to initialize one particle to contain N C  

selected cluster centroids; 
2.  Initialize the other particles of the swarm to contain N c  selected cluster 

centroids at random; 
3.  For 1t =  to maxt do { 

4.    For each particle i  do { 
5.       For each object p do { 

6.          Calculate ( , )o ijd p m ;  

7.   Assign object p  to cluster ijC  such that { }( , ) ( , )min 1,...,o ij o icd
d p m d p mc N= ∀ =  ; 

8.          Calculate the fitness according to equation (6) ;}} 
9.   Update gBest and ipBest ; 

10.  Update the cluster centroids according to equation (3) and equation (4); 
11   If ||v|| ε≤ , terminate;  

12.  Optimize new individuals using the IKSCOC algorithm ;} 

where maxt is the maximum number of iteration, ε  is the minimum velocity. STEP 1 

is to overcome the disadvantage of the global PSO which tends to be trapped in a 
local optimum under some initialization conditions. STEP 12 is to improve the local 
constringency speed of the global PSO. 

The population-based search of the PKSCOC algorithm reduces the effect that 
initial conditions has，as opposed to the IKSCOC algorithm; the search starts from 
multiple positions in parallel. Section 5 shows that the PKSCOC algorithm performs 
better than the IKSCOC algorithm in terms of quantization error. 
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5   Results and Discussion  

This section presents experimental results on synthetic and real datasets. All 
experiments were run on a 2.4GHz PC with 512M memory. We have made 
experiments separately by K-Medoids, IKSCOC and PKSCOC. The number of 
particles 1 2 max max50, 0.72, 2, 0.4, 100, 0.001.n w c c V t ω= = = = = = =   

Fig.4 shows the results on synthetic Dataset1. Fig.4 (a) shows the original data 
with simple obstacles. Fig.4 (b) shows the results of 4 clusters found by K-Medoids 
without considering obstacles constraints. Fig.4(c) shows 4 clusters found by 
IKSCOC. Fig.4 (d) shows 4 clusters found by PKSCOC. Obviously, the results of the 
clustering illustrated in Fig.4(c) and Fig.4 (d) both have better practicalities than that 
in Fig.4 (b), and the one in Fig.4 (d) is superior to the one in Fig.4 (c).  

Fig.5 shows the results on synthetic Dataset2. Fig.5 (a) shows the original data 
with various obstacles. Fig.5 (b) shows 4 clusters found by K-Medoids. Fig.5 (c) 
shows 4 clusters found by PKSCOC. Obviously, the result of the clustering illustrated 
in Fig.5(c) has better practicalities than the one in Fig.5 (b). 

Fig.6 shows the results on real Dataset3. Fig.6 (a) shows the original real data with 
obstacles. Fig.6 (b) shows 4 clusters found by K-Medoids. Fig.6 (c) shows 4 clusters 
found by PKSCOC. The one in Fig.6 (c) is superior to the one in Fig.6 (b), obviously. 

Fig.7 is the value of J showed in every experiment on Dataset1. It is showed that 
IKSCOC is sensitive to initial value and it constringes in different extremely local 
optimum points by starting at different initial value while PKSCOC constringes 
nearly in the same optimum points each time. Therefore, we can draw the conclusion 
that PKSCOC has stronger global constringent ability comparing with IKSCOC; and 
PKSCOC has not only considered high local constringent speed but also kept good 
global constringent characteristic. 
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Fig. 4.  Clustering dataset Dataset1  
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Fig. 5. Clustering dataset Dataset2  
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     (a)                                                     (b)                                                         (c)      

Fig. 6. Clustering dataset Dataset3 

 

Fig. 7. PKSCOC vs. IKSCOC  

6    Conclusions 

Spatial clustering has been an active research area in the data mining community. 
Classic clustering algorithms have ignored the fact that many constraints exit in the 
real world and could affect the effectiveness of clustering result. In this paper, we 
discussed the problem of spatial clustering with obstacles constraints and propose a 
novel PKSCOC based on PSO and K-Medoids. The comparison proves that our 
method can not only give attention to higher local constringency speed and stronger 
global optimum search, but also get down to the obstacles constraints and 
practicalities of spatial clustering. The results of the experiments on real datasets 
show that it is better than IKSCOC. And its achievements will have more practical 
value and extensive application prospect. 
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Online Rare Events Detection 
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Abstract. Rare events detection is regarded as an imbalanced classification 
problem, which attempts to detect the events with high impact but low 
probability. Rare events detection has many applications such as network 
intrusion detection and credit fraud detection. In this paper we propose a novel 
online algorithm for rare events detection. Different from traditional accuracy-
oriented approaches, our approach employs a number of hypothesis tests to 
perform the cost/benefit analysis. Our approach can handle online data with 
unbounded data volume by setting up a proper moving-window size and a 
forgetting factor. A comprehensive theoretical proof of our algorithm is given. 
We also conduct the experiments that achieve significant improvements 
compared with the most relevant algorithms based on publicly available real-
world datasets.  

1   Introduction 

Rare events detection is a challenging problem frequently encountered in data mining 
research. It can be characterized as an imbalanced classification problem. Many 
important real-world problems fall into this category, such as network intrusion 
detection [1], and price spike forecasting in electricity markets [2]. These problems 
are usually of severe class imbalance, i.e. the occurrence frequency or probability of 
one class label is significantly higher than the others. Classification algorithms 
usually show a strong bias against rare events. This makes rare events very difficult to 
predict, although they are highly important. 

Detecting rare events on online data has two major requirements: (i) the algorithm 
should not have any bias against the rare event. Accurate classification of the rare 
event is the major objective. (ii) The algorithm should be an online algorithm which 
requires only a single pass over data. This is critical for the algorithm to handle 
potentially unlimited data volume. Unfortunately, there is no method satisfying both 
of these requirements according to our knowledge.  

In this paper, we propose a novel online algorithm, which is able to classify rare 
events on online data. Our approach is a cost/benefit sensitive algorithm. Cost 
sensitive analysis is widely accepted as a reasonable approach to evaluate imbalanced 
classifiers in many real-world applications [3]. The proposed approach can accurately 
estimate statistical distributions and calculate the expected benefit of each class label. 
Our approach chooses the class label with the highest expected benefit, therefore 
guarantees to obtain the maximum classification benefit with the highest probability. 
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A size-varying moving window and a forgetting factor to smoothly remove old 
training data are introduced. The window size is dynamically adjusted and we have 
proven that it theoretically guarantees the accurate density estimation. Our approach 
is an online algorithm. The experiments on real-world datasets have shown that our 
approach has consistently outperformed other well-known cost-insensitive online 
algorithms such as CVFDT [4], online Naïve Bayes [5], Ensemble classifier [6], and 
Winnow [7].  

The rest of this paper is organized as follows: In Section 2, the work related to our 
research is summarized. In Section 3, the problem of rare event detection is 
formulated. Evaluation criteria are introduced as well. Section 4 presents theoretical 
foundation of our approach. In Section 5, extensive tests are conducted on real-world 
datasets. Section 6 concludes the paper.  

2   Related Work 

The class imbalance problem [8] has been extensively studied in the context of data 
mining. The most common evaluation criterion, accuracy/error, is not suitable for a 
class imbalance situation [8]. Several alternative evaluation criteria and frameworks 
are therefore introduced, including precision/recall [8] and ROC analysis [9]. These 
methods do not place more emphasis on common classes, therefore show no bias 
against rare classes. Different from above methods, cost-sensitive analysis [3] relaxes 
the assumption that all classification errors have the same cost, and gives more weight 
to rare classes. Therefore, it is able to evaluate the classifier performance effectively 
and set a proper classification objective. The absolute/relative lack of data is another 
primary difficulty of the class imbalance problem. Some sampling methods [10] are 
proposed to rebalance the class distribution to solve this problem.  

There are a few well-known online algorithms currently available: CVFDT [4], 
Online Naïve Bayes [5], ensemble classifier [6] and Winnow [7]. They update the 
model by incorporating new data continuously from the data source, and revise the 
classifier without referring to old data.   

3   Problem Formulation 

3.1   Basic Problem Formulation 

Given a dataset ),),...(,)...(,( 11 nntt yXyXyXS = , nt ≤≤1 , where t represents a time 

point. ),...,( 21 tmttt xxxX = is a m-dimensional vector and }...,{ 21 wt cccy ∈  is the class 

label assigned to
tX . We assume that an unknown function dependency yXf →:  

exists. The objective of classification is to build a model of function dependency 
'f between observation vector 

tX and class label
ty to approximate the underlying 

relationship f , and to classify the unseen data with the model. In this paper, we focus 

on binary classification. Given that the occurring probability of one class label is p 
times higher than the other, a dataset is usually considered having class imbalance 
when 10≥p . The class label with smaller probability is called the target event (or 
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positive class), while its counterpart is called the common event (negative class). The 

positive class and negative class are denoted as 1c and 0c respectively. In rare events 

detection, the data volume can be potentially infinite.  

3.2   Evaluation Criteria 

A proper evaluation criterion needs to be defined to guide the training process. Here 
we start with four preliminary definitions: 

True positive:    TP = observations_correctly_classified_as_positive,  
False positive:   FP=observations_incorrectly_classified_as_positive, 
True negative:   TN=observations_correctly_classified_as_negative, 
False negative:  FN=observations_incorrectly_classified_as_negative, 

Assuming the cost of misclassifying positive observation is ),( NPC  and the cost of 

misclassifying negative observation is ),( PNC respectively, the total cost of 

classification is defined as [3], 

                                      FPPNCFNNPCCtotal ×+×= ),(),(                                                (1) 

In the context of cost sensitive analysis, the classifier should be designed to 
minimize

totalC . The cost metric (1) is a widely used criterion in traditional cost-

sensitive learning [3]. However, a slight modification is made to metric (1) in our 
approach. Let the benefit of correctly classifying positive observation and negative 
observation be ),( PPB  and ),( NNB  respectively. The total benefit of classification is 

defined as, 

                           TNNNBTPPPBBtotal ×+×= ),(),(                                                (2) 
                                               FPPNCFNNPC ×−×− ),(),(   

The total benefit defined above is actually identical to the cost metric discussed in 
[11]. This metric is introduced since the commonly used cost-sensitive analysis only 
considers the cost of the classification error, while ),( PPB  and ),( NNB  are assumed 

to be zero. Our approach is designed to maximize the total benefit
totalB  rather than 

minimizing the cost
totalC . Note that total benefit (2) is a generalization of the cost 

metric (1). By setting 0),( =PPB and 0),( =NNB , the total benefit (2) will be the same 

as the cost metric (1). Therefore, the proposed method can also work well with the 
traditional cost metric (1), which only considers classification costs. This will be 
justified in the experiments.                    

4   Statistical Online Cost Sensitive Classification 

The proposed algorithm is namely STOCS (STatistical Online Cost Sensitive 
classification). It consists of a few hypothesis tests over the Bernoulli distribution. 
Cost/benefit analysis is incorporated into the decision procedure to determine a proper 
decision rule. We conduct a theoretical analysis to show that the point estimate of the  
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Fig. 1. Calculating the expected benefit 

occurring probability of rare events is insufficient for accurate classification. Instead, 
STOCS employs a confidence interval for density estimation. A size-varying moving 
window and a forgetting factor are used to make STOCS an online algorithm which 
only requires a single pass over data.  

4.1   Fundamentals of STOCS Approach 

Given an observation ),...,( 21 tmttt xxxX = and a class label },{ 10 ccy ∈ , the posterior 

probability of the target event 1c  can be calculated using Equation (3) [5]. 

                    
)()......()(

)()|()......|(
),......,|(

21

1111
11

tmtt

tmt
tmt xpxpxp

cpcxpcxp
xxcp =                                 (3) 

Assuming that each attribute domain is divided into several intervals and
tjx falls into 

interval
jI , then )()......( 1 tmt xpxp  and )|()......|( 111 cxpcxp tmt

 can be replaced by   

)()......( 1 mIpIp  and )|()......|( 111 cIpcIp m
, which are unknown parameters of the underly- 

ing distributions )( tXF and )|( tXyF . From Equation (3), obviously ),......,|( 11 tmt xxcp can 

be replaced by ),......,|( 11 mIIcp , which is still an unknown parameter and defined as target 

probability.             
As discussed in [3], the cost/benefit analysis should be incorporated into the 

classifier to handle rare classes. We assume that the benefits of true positive and true 
negative are ),( PPB and ),( NNB , while the costs of false positive and false negative 

are denoted as ),( PNC and ),( NPC . Given an observation
tX and its Euclidean 

region ),...,( 21 mIII , we assume corresponding target probability 

),......,|( 11 mIIcpp = and sample proportion ),......,,|( 211 mIIIcpp
)) =  calculated from 

training data. Now the question is that if we know the exact value of p , how should 

we determine the class label for
tX ? If we classify

tX as 1c , the expected benefit of 

classification can be calculated as, 

                                 ),()1(),(1 PNCpPPBpB ×−−×=                                          (4) 
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Similarly, the expected benefit of classifying tX as 0c is: 

                       ),(),()1(0 NPCpNNBpB ×−×−=                                                 (5) 

tX should be classified as 1c when 01 BB > , since 01 BB > means that classifying 

as 1c has a greater probability to achieve a larger benefit, and vice versa.   

Table 1. STOCS algorithm 

Inputs: S is the a sequence of observations and their 
class labels  
             d is the number of intervals the continuous 
attributes should be divided 
          ),( PPB , ),( NNB , ),( NPC , ),( PNC  are 

the classification benefits and costs 
            α is the confidence level 

            
wn is the number of Euclidean regions  should 

be checked  
Outputs: Class labels of the unlabeled data 
Function STOCS  
Initialization;  
Discretization; 
For each observation 

tX in S  

      If  ( sample size 0>w ) then 
          Calculate p

)
according to Equation (3); 

         =ty  Classify ( );  

     End if 
     Remove the observation

wtX
−

from the training     

     data, by reducing 1 from the corresponding   
     frequency arrays; 
     Update the corresponding frequency arrays  
     of

tX ; 

     Set tw =  if the window size is large enough;  

Record the Euclidean region ),...( 1 mII of
tX ,    

and update corresponding frequency arrays; 
End for     

Inputs: p
)

is the sample proportion 

            α is the confidence level 
            ),( PPB , ),( NNB , ),( NPC , ),( PNC are 

the classification benefits and costs 
            )( jIn is the number of observations whose jth 

attribute falling into interval
jI

           w is the size of training data 

           
tX is the observation to be classified 

Output: Class label y
Function Classify
Calculate 

1B and
0B according to Equation (6) and (7); 

If (
01 BB ≥ ) then 

     Return 
1c ; 

Else 
     Return 

0c ; 

End if 
    

 

In real-world applications it is usually impossible to know the true value of p , 

however, we know that p distributes within the z-interval with a probability of α−1 . 

Therefore, we will have a very accurate estimation of p , by choosing a very smallα , 

e.g. 0.01. The expected benefit
1B and

0B over z-interval of p can be expressed as: 

∫
−−

××−−×=
up

lp

p

dpePNCpPPBpB
2

2

2

)(

1
2

1
)],()1(),([ σ

μ

πσ
                         (6) 

and   

∫
−

−
××−×−=

up

lp

p

dpeNPCpNNBpB
2

2

2

)(

0
2

1
)],(),()1[( σ

μ

πσ
                   (7) 
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where 
n

qp
zpup

))
)

2/α+= , 
n

qp
zplp

))
)

2/α−= , pu
)=  and

n

qp
))

=2σ . 

     
Calculation of expected benefit is demonstrated in Fig.1. The expected benefit can be 

calculated by integration over the z-interval ],[ 2/2/ n

qp
zp

n

qp
zp

))
)

))
)

αα +− . It actually 

equals the positive area pA minus the negative area nA in Fig.1.  

5   Experiments and Analysis 

5.1   Algorithms Selected for Comparison 

The performance of STOCS is compared with several well-known online algorithms, 
including CVFDT [4], online Naïve Bayesian classifier [5], Ensemble classifier [6] 
and Winnow [7]. Two real-world datasets, Australia electricity price dataset [12] and 
KDD Cup 99 dataset [13] are used as the benchmarking datasets.  

5.2   Experiments on Real-World Datasets 

STOCS is tested on two real-world datasets. The first one is the price data of the 
Australian National Electricity Market (NEM). In the electricity market, the abnormal 
high electricity price is called price spike. The price spikes have very high influence 
(they can be hundreds of times greater than normal prices), hence are of high interest 
to the market participants. In our experiment, we consider the prices greater than 
75$/MWh as price spikes, which is proven to be appropriate by a statistical method 
[2]. The price spike forecasting problem is a typical rare events detection problem on 
online data. Firstly, the new market price data is continuously generated every 5 
minutes. Hence a fast algorithm is required to do training and classification. Secondly, 
price spikes have a small occurrence probability (<2%). Therefore, the electricity 
price data is suitable to be a benchmark dataset for our algorithm. The price data used 
in our experiment are downloaded from the website of NEM [12]. 

In the experiments, parameters of STOCS are set as: 5000,01.0,20 === wnd α . 

In price spike forecasting, true negative is usually considered having no benefit while 
false negative is considered having no cost. Therefore, in this experiment we only 
consider the benefit of true positive and cost of false positive. The total benefits of 
STOCS and other online algorithms are plotted in Fig. 2. As observed, the total 
benefits of STOCS and other online-algorithms increase as ),(/),( PNCPPB increases. 

The proposed STOCS consistently outperforms all its rivals. Moreover, the 
performance of STOCS is significantly better than its alternatives when 

),(/),( PNCPPB  is large. Because a larger ),(/),( PNCPPB  implies that correctly 

classifying rare events will lead to larger benefit, i.e. the rare events are more 
important to the users. Therefore, the results of Fig. 2 demonstrate that STOCS is 
superior to other methods in dealing with rare events detection. 
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Fig. 2. Performance of STOCS and other online 
algorithms on the electricity price dataset 

Fig. 3. Performance of STOCS and other online 
algorithms on KDD Cup 99 dataset 

The second real-world dataset used in our experiment is from the well-known data 
mining competition, KDD Cup 99 [13]. This dataset contains data of network 
intrusion detection, which shows a typical case of high-speed online data. In our 
experiment, the class label “snmpgetattack” is regarded as the rare event

1c , while all 

other class labels are considered as common event
0c . The experiment results are 

shown in Fig. 3.  
As mentioned in section 3, STOCS is also applicable when traditional cost metric 

(1) is selected as the objective function. We set 0),( =PPB  and 0),( =NNB  in the 

experiment on KDD Cup 99 data. Then the evaluation criterion of our algorithm is 
actually the same as the cost metric (1) discussed in [3]. The total benefits in Fig. 3 
are negative because only the costs are calculated in the algorithm.  

According to Fig. 3, STOCS again achieves consistently better performance than 
other algorithms on KDD Cup 99 dataset. The results clearly indicate that STOCS is 
highly effective in predicting rare events. Moreover, it is proven in the experiment 
that STOCS is also applicable if applying a traditional cost metric and ignoring 
classification benefits.    

To demonstrate the time effectiveness of STOCS, the cumulative processing time 
of STOCS on two benchmark datasets are shown in Figs 4-5. As discussed in Section 
4.4, STOCS processes data in two stages. In the first stage, STOCS stores incoming 
data and waits for the window size condition to be satisfied. In the second stage, the 
window size has been determined and STOCS starts to detect rare events. As seen in 
Figs 4-5, the cumulative processing time is approximately a linear function of the 
number of observations in both two stages. This is a clear proof of our claim that,  
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Fig. 4. Cumulative processing time of STOCS 
on the electricity price dataset 

Fig. 5. Cumulative processing time of STOCS 
on the KDD Cup dataset 
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STOCS has a linear time complexity and therefore is a highly efficient algorithm for 
handling high-speed online data.  

6   Conclusions 

In this paper, a novel approach, namely STOCS (STatistical Online Cost Sensitive 
classifier) is proposed to predict rare events over online data. STOCS consists of 
several hypothesis tests over Bernoulli distributions. Hence, the probabilities of 
positive and negative classes in a given Euclidean region can be estimated with 
normal distribution, according to the Central Limit Theory (CLT). With these 
probabilities, the observations can be classified by evaluating the expecting benefits.  

Two important contributions of this paper are that: (i) By considering the class 
posterior probability as a density function rather than a point estimate, the proposed 
algorithm can obtain a better estimate of classification benefit/cost. Our approach 
therefore demonstrates a significant improvement on predicting rare events over 
online data. (ii) A size-adjustable moving window and forgetting-factor method are 
introduced to incrementally revise the classifier with new data.  
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Abstract. In this paper, we propose an approach for structural learning
of independence graphs from multiple databases or prior knowledge of
conditional independencies. In our approach, we first learn a local graph
from each database separately, and then we combine these local graphs
together to construct a global graph over all variables. This approach
can also be used in structural learning to utilize the prior knowledge of
conditional independencies.

Keywords: Graphical models, Structural learning, Independence graphs,
Multiple databases.

1 Introduction

Graphical models including independence graphs, directed acyclic graphs (DAG)
and Bayesian networks have been applied widely to many fields, such as data
mining, pattern recognition, artificial intelligence and causal discovery [4, 8, 9,
10]. Graphical models can be used to cope with uncertainty for a large system
with a great number of variables. Structural learning of graphical models from
data is an important and difficult problem, and has been discussed by many
authors [4, 5, 8, 9, 10, 11]. There are two main kinds of structural learning
methods. One is constraint-based learning and the other is score-based learn-
ing. Most of structural learning approaches deal with only one database with
completely observed data. With the development and popularity of computers,
various databases have been built, which may contain different sets of variables
and overlap each other. For example, in medical research, a researcher collects
data of these variables, another researcher may collect data of other variables,
and they have some common variables.

In this paper, we discuss how to learn the structures of independence graphs
from multiple databases with different and overlapped variables. In our approach,
we first learn a local subgraph from each database separately, and then we com-
bine these subgraphs together to construct a global graph over all variables.
Several theoretical results are shown for the validity of our algorithm. Our ap-
proach can validly discover independence graphs from multiple databases. The
advantage of our local discovery approach is that each independence test is per-
formed conditionally on a small set of variables rather than on all other variables
� Corresponding author.
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so that the tests become more powerful and less computational complex. This
approach can also utilize the prior knowledge of conditional independencies to
reduce the number of variables in each conditional set.

Section 2 gives notation and definitions. In Section 3, we show how to con-
struct the independence graph with multiple databases. We give an example
in Section 4 to illustrate our approach for recovering an independence graph.
Finally Section 5 discusses the advantages and complexity of the proposed algo-
rithm.

2 Notation and Definitions

A graph is a pair G = (V, E) where V = {x1, x2, . . . , xn} is a finite set of vertices
and E is a subset V × V of distinct vertices, called the set of edges. An edge is
directed pointing from x to y if < x, y >∈ E. If < x, y >∈ E and < y, x >∈ E,
an edge between vertices x and y is undirected, denoted by (x, y) and depicted by
a line in the graph. A graph is undirected if it contains only undirected edges. In
this paper, we concentrate only on undirected graphs. For an undirected graph
G, vertices x and y are adjacent if there is an undirected edges between x and y.
Let ne(x) denotes all the vertices that are adjacent with x, called the neighbor
set of x. The neighbor set of a vertex set A is defined as ne(A) = [∪x∈Ane(x)]\A.
An undirected graph is called complete if each pair of vertices are connected by
an edge in the graph.

The vertex set V in a graph G is used to denote an n-dimensional vector
of random variables. An independence graph, or more precisely a conditional
independence graph, for the variable set V is an undirected graph G = (V, E)
in which (x, y) /∈ E if and only if x and y are independent conditionally on all
other variables, denoted by x y|V \ {x, y} [12].

A hypergraph is a collection of vertex sets [2, 3]. Multiple databases C =
{C1, . . . , CH} are depicted as a hypergraph where a hyperedge Ch is an observed
variable set in a database, and ∪H

h=1Ch = V [6, 11]. A database with an observed
variable set Ch is treated as a sample from a marginal distribution of the variable
set Ch. Let Dh = Ch ∩ (∪k �=hCk), which is the intersection of Ch and the other
sets. Given a collection of databases C, the graphical model with the edge set
E = ∪hEh is the saturated graphical model where Eh = Ch ×Ch is the edge set
of the complete graph over the vertex set Ch since there is no information on
higher interactions over different databases. For the saturated graphical model,
we have the conditional independencies (Ch \Dh) (V \Ch)|Dh. The hypergraph
can also be used to depict the prior knowledge of conditional independencies [11].

Example 1. Let C = {C1 = {1, 2, 3, 4}, C2 = {1, 3, 5, 6}, C3 = {4, 6, 7}} be
a hypergraph, as shown in Fig. 1 (a). We can get that D1 = {1, 3, 4}, D2 =
{1, 3, 6} and D3 = {4, 6}. The saturated graphical model corresponding to C
is shown in Fig. 1 (b). From the saturated graphical model, we can see that
(C1 \ D1) (V \ C1)|D1, i.e. {2} {5, 6, 7}|{1, 3, 4}.
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For multiple databases C = {C1, . . . , CH}, it should be noted that there is no
information on the association among variables that are never observed together,
and thus parameters that relate to the association are inestimable without other
assumptions. The condition to make our algorithm correct for structural learn-
ing from multiple databases C is that C must contain sufficient data such that
parameters of the underlying independence graph are estimable. For an inde-
pendence graph, its parameters are estimable if, for each clique gi, there is a
database Ch in C which contains gi. Thus multiple databases C have sufficient
data for correct structural learning if there is a database Ch in C for each clique gi

such that Ch contains gi in the underlying independence graph. Every database
Ch can be seen as a maximum complete undirected graph to depict possible
association among variables in Ch. We assume that all independencies inferred
from multiple databases are true for the underlying independence graph.

(a) A hypergraph C.
(b) The saturated graphical model

corresponding to C.

Fig. 1. A hypergraph

3 Structural Learning of Independence Graphs

In this section, we propose an approach for structural learning of independence
graphs. In our approach, we first learn a subgraph from each database, and
then we combine these subgraphs together to construct a global graph over all
variables. Below we give the theoretical results which ensures the correctness
of this approach. By definition of an independence graph, the existence of an
edge between x and y can be determined by testing conditional independence
x y|V \ {x, y}. Usually all databases are needed to calculate the statistics for
testing this independence. In the following theorems, we show that this may not
be needed for some edges. First we give a lemma to be used in proofs of theorems.

Lemma 1. Properties of conditional independence:

1. (X Y |Z) ⇒ (Y X |Z);
2. (X Y W |Z) ⇒ (X Y |Z);
3. (X Y W |Z) ⇒ (X Y |ZW );
4. (X Y |Z)&(X W |ZY ) ⇒ (X Y W |Z);
5. (X W |ZY )&(X Y |ZW ) ⇒ (X Y W |Z).

Proof. See page 11 of [9] for the proof.
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Theorem 1. Let A, B and C be a partition of all variables in V , and variables
x and y be contained in A. Suppose that A B|C. Then x y|V \ {x, y} if and
only if x y|(A ∪ C) \ {x, y}.

Proof. We first prove the sufficiency. Because A B|C, we can get from the
third property of Lemma 1

P (x|A \ {x}, B, C) = P (x|A \ {x}, C).

From the sufficient condition, the right hand side of the above formula can be
rewritten as

P (x|A \ {x, y}, C) =
P (x, A \ {x, y}|C)
P (A \ {x, y}|C)

=
P (x, A \ {x, y}|C)P (B|C)
P (A \ {x, y}|C)P (B|C)

=
P (x, A \ {x, y}, B|C)
P (A \ {x, y}, B|C)

= P (x|A \ {x, y}, B, C).

Thus we proved the sufficiency.
Next we prove the necessity. Because A B|C, we can get from the third

property of Lemma 1

P (x|A \ {x}, C) = P (x|A \ {x}, B, C).

Because x y|(A \ {x, y}, B, C), the right of the above formula is equal to

P (x|A \ {x, y}, B, C) =
P (x, A \ {x, y}, B|C)
P (A \ {x, y}, B|C)

=
P (x, A \ {x, y}|C)P (B|C)
P (A \ {x, y}|C)P (B|C)

=
P (x, A \ {x, y}|C)
P (A \ {x, y}|C)

= P (x|A \ {x, y}, C).

Thus we proved Theorem 1.
Let A = Ch \ Dh, which is a vertex set that only appears in the database

Ch. According to Theorem 1, we can see that the existence of an edge whose
two vertices fall into only one database can be determined validly by using the
database Ch only.

Theorem 2. Let A, B and C be a partition of all variables in V , and variables
x and y be contained in A and C respectively. Suppose A B|C. Then x y|V \
{x, y} if and only if x y|(A ∪ C) \ {x, y}.
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Proof. Because A B|C, we can get from the third property of Lemma 1 that
x B|(A\ {x}, C). We first prove the sufficiency. Because x y|(A\ {x}, C \ {y})
and x B|(y, A \ {x}, C \ {y}), we can get from the fourth property of Lemma 1
that x (y, B)|(A \ {x}, C \ {y}). From the third property of Lemma 1, we can
get x y|(A \ {x}, B, C \ {y}). Thus we proved the sufficiency.

Next we prove the necessity. Because x y|(A\{x}, B, C\{y}) and x B|(y, A\
{x}, C \ {y}), we can get from the fifth property of Lemma 1 that x (y, B)|(A\
{x}, C\{y}). From the second property of Lemma 1, we can get x y|(A\{x}, C\
{y}). Thus we proved Theorem 2.

According to Theorem 2, the existence of an edge whose one of two vertices
is contained only by one database can also be determined validly by using the
database only.

From the above two Theorems, we know that an edge whose at least one of
two vertices is contained only by one database Ch can be determined by using
the marginal distribution of Ch without requirement of the other databases.

Now we consider how to determine an edge (x, y) both of whose vertices
are contained by at least two databases. Let Cxy = ∪{h:x∈Chor y∈Ch}Ch. From
Theorems 1 and 2, it can be shown that the existence of edge (x, y) can be
determined by testing whether x and y are independent conditionally on Cxy \
{x, y}. But the union set Cxy may contain a large number of variables. Below
we discuss how to reduce variables from Cxy.

For a database Ch, suppose that both x and y are contained in Dh, where
Dh = Ch ∩ (∪k �=hCk). Let NEh denote the neighbor set of Dh in Gh which is
the independence graph obtained by using database Ch. From Theorems 1 and
2 we can get that NEh is contained in ne(Dh) of G which is the independence
graph for the whole variable set V . Let C′xy = ∪{h:x∈Chor y∈Ch}(NEh ∪ Dh).
From the property of multiple databases, we have that ∪{h:x∈Chor y∈Ch}Dh is
independent of V \ C′xy conditionally on ∪{h:x∈Chor y∈Ch}NEh and that neither
x nor y is contained in ∪{h:x∈Chor y∈Ch}NEh. Thus from Theorem 1, we can
determine the existence of edge (x, y) by the marginal distribution of C′xy, which
is a subset of Cxy.

Now we give the algorithm for structural learning of independence graphical
models.

Algorithm: Construct an independence graph from multiple databases

1. Input: Multiple databases C = {C1, . . . , CH}.
2. Construct a local independence graph Gh from database Ch separately for

each h:
– Initialize Gh as a complete undirected graph;
– For x and y are not both contained in Dh, then delete edge (x, y) from

Gh if x y|Ch \ {x, y}.
3. Construct the global independence graph GV :

– Initialize the edge set E of GV as the union of all edge sets of Gh for
h = 1, . . . , H;
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– For a pair of variables x and y contained in some Dh, determine the
existence of edge (x, y) by testing x y|C′xy \ {x, y}.

4. Output: the independence graph GV .

According to Theorems 1 and 2, the independence graph constructed by the
above algorithm is validly, and the statistical inference is more efficient than the
traditional approach in which each edge (x, y) is determined by testing x y|V \
{x, y} since the conditional set V \ {x, y} for independence tests is much larger
than Ch \ {x, y} and C′xy \ {x, y}.

Step 3 in the algorithm becomes much simpler if we assume that the condi-
tional independence x y|A implies x y|B for all A ⊆ B. The assumption is
similar to the faithfulness assumption for DAGs [10]. Under this assumption, we
ensure that edges are deleted validly at Step 2, and thus an edge between x and
y should be absent in GV if it is absent in any subgraph Gh.

4 Illustration of Structural Learning

In this section, we illustrate our algorithm using the ALARM network in Fig.
2 that is often used to evaluate structural learning algorithms [1, 7, 10]. The
ALARM network in Fig. 2 describes associations among 37 variables in a medical
diagnostic system for patient monitoring. Using the network, some researchers
generate continuous data from normal distributions and others generate discrete
data from multinomial distributions [7, 10]. Our approach is applicable for both
continuous and discrete data. Since the validity of our algorithm can be en-
sured by Theorems 1 and 2, the algorithm is illustrated by using conditional
independencies from the underlying independence graph in Fig. 2 rather than
conditional independence tests from simulated data.

Suppose that we have three databases as depicted by the hypergraph in Fig. 2.
Database C1 contains variables {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 27, 28,

Fig. 2. The ALARM network and multiple databases
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(a) The independence graph from database C1

(b) The independence graph from
database C2

(c) The independence graph from database
C3

Fig. 3. Local independence graphs for all databases

Fig. 4. The initial graph obtained by combining all local graphs

29, 30, 31, 32, 33}, database C2 contains variables {12, 13, 15, 16, 17, 19, 21, 34},
and database C3 contains variables {13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 35,
36, 37}. Thus D1 = {12, 13, 14, 15}, D2 ={12, 13, 15, 16, 19} and D3 ={13, 14, 15,
16, 19}. At Step 2, the local independence graphs are obtained separately from
the three databases, as shown in Fig. 3 (a), (b) and (c) respectively. From Fig. 3,
we can get that NE1 = {9, 10}, NE2 = {17, 21} and NE3 = {18, 20, 22, 23, 24,
25, 26}.
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Fig. 5. The independence graph constructed from multiple databases

At Step 3, we first initialize the edge set E of the global graph GV as the union
of all edge sets of Gh for h = 1, 2, 3, as shown in Fig. 4. For any pairs of vari-
ables contained in every Dh, we must redetermine the existence of corresponding
edges. For example, for variables 13 and 19 contained in D2 = {12, 13, 15, 16, 19},
C′13,19 = ∪{h:13∈Chor19∈Ch}(NEh ∪ Dh) = {9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26}. we should delete edge (13, 19) because 13 19|C′13,19 \ {13,
19}. Finally we get the global independence graph GV showed in Fig. 5, which
is the same as the underlying graph in Fig. 2.

5 Advantages and Complexity

There are several obvious advantages of our approach for structural learning.
Firstly, independence tests are performed only conditionally on smaller sets con-
tained in a database Ch or C′xy rather than on the full set of all other variables.
Thus our algorithm has higher power for statistical tests.

Secondly, the theoretical results proposed in this paper can be applied to
scheme design of multiple databases. Without loss of information on structural
learning of independence graphs, a joint data set can be replaced by a group of
incomplete data set based on the prior knowledge of conditional independencies
among variables.

Thirdly, for complexity, our approach tests as many times of conditional in-
dependence as the ordinary approaches. However, for the ordinary approaches,
each test is performed conditionally on n−2 variables. For a large n, an indepen-
dence test conditionally on such a large set of discrete variables is impractical. In
our approach, these tests are taken conditionally only on smaller sets of variables
such that they become more practical. On the other hand, the EM algorithm
over all n variables is required for each test in the ordinary approaches, which
makes computation more complex. In our approach, only those conditional in-
dependence tests for edges falling in separators requires the EM algorithm over
a smaller variable set. Thus our approach is less computational complex than
the ordinary approaches.
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Finally, we discuss the validity of the decomposition approach proposed in
this paper. For a given collection of databases C, the decomposition approach
can obtain the same independence graph as that obtained by using the ordinary
approaches if there were no errors of independence tests. In the decomposition
approach, observed data are collapsed into marginal data, and thus indepen-
dence tests are more efficient. If each clique gi of the underlying independence
graph is contained by some database Ch in C, then the joint distribution can
be identified from these marginal distributions of observed variables, and thus
the decomposition approach is valid for recovering the correct structure of the
underlying independence graph.
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Abstract. This paper explores the way in which natural adjacency relation, 
spatial database are closely integrated through the spatial index for spatial data 
querying and mining. A Delaunay triangulation approach for constructing 
spatial index is proposed, which overcomes the conflict between line-
intersection computation and natural adjacency isn’t satisfying constrained 
condition of Euclidean distance. Based on this approach, a spatial index 
prototype for discrete areal objects-Quad GridFile is designed and 
implemented by using Java extending Oracle Spatial. It demonstrates 
foundational information extraction ability for geospatial database. 

1   Introduction 

Sibson (1980) firstly introduced the concept of natural adjacency in the interpolation 
method. He defined two spatial objects, which had shared Voronoi boundary as the 
natural neighborhoods, that is to say, there is a natural adjacency relationship between 
the two spatial objects. The ability for efficiently computing natural adjacency 
relationship has become more and more important in an increasing number of 
applications including spatial data mining [6], spatial query language [1], and 
mapping generalization [7]. Over the past decades, many scholars mainly have been 
study for adjacency computation with Voronoi diagram method. Gold (1992) 
represented the natural adjacency relationship extracted from the Voronoi diagram as 
a VAG (Voronoi adjacency graph) structure. In this graph, the spatial object is 
expressed as a node. If there is the natural adjacency relationship between the two 
spatial objects, the relationship is expressed as an edge. In this way, the extraction of 
the natural adjacency relationship is translated into the graph structure. Okabe et al. 
(1992) adopted the Winged-Edge structure which can definitely represented the 
relationships among Voronoi nodes, Voronoi edges and Voronoi areas. Extracting the 
natural adjacency relationship based on Winged-Edge has simple querying process 
and doesn’t need extra computation. However, the Winged-Edge structure is a 
topology structure, which need maintain the node table, edge table and area table. So, 
due to the bad ability to locally updating of Voronoi diagram, the whole Voronoi 
diagram of all spatial objects and the Winged-Edge structure has to be reconstructed 
even if there is a small change of spatial object [3].  

The main property of natural adjacency relation is that it isn’t satisfying Euclidean 
distance restriction. The conventional line intersection method isn’t competent for 
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computing the natural adjacency relationship among discrete objects in spatial 
database [1]. Therefore, the property results in candidate set aren’t complete with 
current spatial index methods. This paper is organized as follows. In Section 2, we put 
forward a new structure-UnitsDelaunay and its constructing algorithm for describing 
the natural adjacency relationship based on Delaunay triangulation. Section 3 presents 
a Quad GridFile spatial index integrated the UnitsDelaunay for the filter process in 
spatial database. The experimental design and analysis are presented in Section 4. 
Finally, Section 5 concludes the paper and points out future work. 

2   Natural Adjacency Describing with Delaunay Triangulation 

In Euclidean space R2, firstly seek the complement (R2\Q) of the areal objects set Q 
based on the Delaunay triangulation, then classify, merge and represent these 
complement over again by conditions of adjacent to the triangle, consequently form 
the UnitsDelauany which is the combo of spatial objects and the natural adjacency 
relationship regions.  

2.1   Classification of Delaunay Triangles and UnitsDelaunay Structure 

For Q, the Delaunay structure is a constraint structure, which is generated based on 
boundary nodes set P. A triangle is made up of three edges and it is a simplex. If the 
edge is queried by points, the function f in definition 1 can be established in order to 
classify the edges.  

Definition 1. pm, pn are individually the boundaries of Qm, Qn(Qm, Qn∈Q), ∀t∈D(P), 
p1, p2 and p3 are the three vertices of t, if the condition of pi, pj (i≠j, i, j=1, 2, 3)∧ 
pi∈pm∧pj∈pn is true, then f(pi, pj)=0; if the condition of pi, p j(i≠j, i, j=1, 2, 3)∧(pi, 
pj∈pm∨pi, pj∈pn) is tenable, then f(pi, pj)=1; if the condition of pi, p j(i=j, i, j=1, 2, 3) is 
tenable, then f(pi, pj)=2. 

For ∀t∈D(P), we can classify the triangle as three kinds if we reference the types of 
the three edges of the triangle. By absolute value of the formula (1) 

                                      1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

f p p f p p f p p

f p p f p p f p p

f p p f p p f p p

=C
,                                              (1) 

we can get 5 kinds of expression for t,  

1

2 1 1

1 2 1

1 1 2

C =
    

2

2 0 0

0 2 0

0 0 2

C =
    

3

2 1 0

1 2 0

0 0 2

C =
    

4

2 0 1

0 2 0

1 0 2

C =
    

5

2 0 0

0 2 1

0 1 2

C =
 

Definition 2. For ∀t∈D(P), if |C|=4, then the three edges come from the same spatial 
object (type α); if |C|=6, the two of the three edges come from two different spatial 
objects, the other one of the three edges comes from a spatial object (type β); if |C|=8, 
the three edges come from three different spatial objects (type γ). 
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Theorem 1. Triangle of type α doesn’t completely exist in areal object interior. 

Proof. According to the natural D2 of Delaunay introduced in [10], the triangulation 
composed by the boundary points p of the convex polygon Q is d(p)={t1, …, tn, 
n∈N}, and the external Delaunay boundary of d(p) is the convex hull of d(p), i.e. 

1

n

ii
t

=U = CH(p), ∵Q is convex, ∴CH(p)= ∂Q. If Q is concave polygon, then CH(p) 

must contain the ∂Q, ∵∀ti∈d(p), i∈N, the vertices of ti all come from Q, ∴type of ti 
is α, ∴theorem 1 is tenable.                                                                                          □ 
 

According to the theorem 1, the type α of triangles should be progressively classified. 
For every triangle t of type α in the Delaunay triangulation, point b is its barycenter, 
the three vertices of the triangle come from polygon Q. The Contain(Q, b) is boolean 
operator, which is used to judge whether Q contains b, then we can define:  

Definition 3. For ∀t∈D(P), if contain(Q, b) is true, then t’s type is δ; if contain(Q, b) 
is false, then t’s type is α. 

Theorem 2. The space scope of Q is equal to the set Tα of all triangles of type α. 

Proof. If Q is convex polygon, then p has the unique partial result, i.e. d(p)= Tα, if Q 
is concave polygon, then it can generate limited convex partition and every convex 
partition is a convex polygon. So, theorem 2 is tenable.                                               □ 
 

Corollary 1. In the R2, the complement of Q can be represented by the set of triangles 
of type β, γ and δ.  

Proof. According to theorem 2, Tα=Q, ∵R2=Tα∪Tβ∪Tγ∪Tδ, the complement of Q 
can be expressed as R2\Q= D(P)\Tα={Tβ∪Tγ∪Tδ}, so, the corollary 1 is tenable.       □ 
 

Corollary 2. The natural adjacency relationship can only exist in {Tβ∪Tγ∪Tδ}. 

Proof. Assuming q is a querying point in R2, if q∩Tα=¬∅, according to theorem 2, 
there is q∩Q=¬∅ i.e. q intersects with some spatial objects.The natural adjacency 
relationship only exists among the discrete spatial objects. Corollary 2 is tenable.      □ 
 

After a new point was inserted, the Delaunay triangulation as the Voronoi dual also 
had corresponding changes [2], [9]. The three vertices of each triangle are the natural 
adjacency of the inserted point, i.e., every vertex all has natural adjacent spatial 
relations with the inserted point. 

Definition 4. For ∀t∈D(P), if t∈Tβ, assuming the vertices of t come from M, N(M, 
N∈Q),  then M and N have adjacency relationship, denoted as adj(M, N). For 
∀t∈D(P), if t∈Tγ, assuming the vertices of t come from M, N and V(M, N, V∈Q), 
then there are adj(M, N), adj(M, V), adj(N, V). 

Theorem 4. If M and N have adjacency relationship, then the querying point q which 

drops into the region {
1
( \ )

n

k ijk
t p

=U , tk∈TMN ∧ f(pi, pj)=1} only has adjacency 

relationships with the spatial object M and N. 
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Proof. The querying point drops into D(P)\{
1
( \ )

n

k ijk
t p

=U , tk∈TMN ∧ f(pi, pj)=1}, if 

q∩Tα=¬∅, according to the theorem 2, then there isn’t spatial objects adjacent to the 
querying point. If q∩Tα＝∅, the spatial objects adjacent to the point isn’t only the M 
and N.  

The querying point drops into {
1

n

kk
t

=U , tk∈TMN}, if q∩pipj=¬∅ (pipj∈tk), i.e. 

q∩Tα=¬∅, there still isn’t spatial objects adjacent to the querying point. So the 
theorem 4 is tenable.                                                                                                      □ 
 

The region {
1
( \ )

n

k ijk
t p

=U , tk∈TMN ∧ f(pi, pj)=1} generated by M and N (M, N∈Q) 

is called unit. Theorem 4 is the same as the units composed by the triangles of  
type Tγ. 

Definition 5. In D(P), the set of all units is called as the UnitsDelaunay structure, i.e. 

1
unit

n

ii=U , denoted as U(P). 

In UnitsDelaunay, every unit is made up of the set of TMN (M, N∈Q) or TKMN (K, M, 
N∈Q), which is denoted as unit2 or unit3. The unit represents the unique of the 
adjacent spatial object. For the type TMN, we can confirm: 

unit2⇒{adj(M, N)},                                           (2) 

PQ(q, unit2)∧q∩unit2=¬∅⇒{adj(q, M), adj(q, N)}.                  (3) 

For the type TKMN, we can confirm: 

unit3⇒{adj(K, M), adj(K, N), adj(M, N)},                                (4) 

PQ(q, unit3)∧q∩unit3=¬∅⇒{adj(q, K), adj(q, M), adj(q, N)}.           (5) 

 

 

 

 

(a) Discrete areal objects set Q                                            (b) Q and D(P) 

 

 

 

 

(c) Q ≡ Tα                                                               (d) R2\Q 
 
 
 
 
 

(e) Tβ, Tγ and Tδ                                           (f) UnitsDelaunay structure of Q 

Fig. 1. Computing based on classifying triangles 
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2.2   Construction Algorithm for UnitsDelaunay Structure 

When the units of the triangles of type β, γ were generated, the triangles of type δ 
which have shared boundaries must be considered in order to ensure completeness of 
the result. The construction algorithm of UnitsDelaunay structure: input the arrays Tβ, 
Tγ and Tδ, output UnitsDelaunay ={unit1, …, unitn}. 

Step 1: Seek the boundary nodes of arbitrary unit. 
(1) for t∈Tβ, respectively add the vertices of t into arr1 and arr2 according to the 
different fid. For t∈Tγ, deal in step 3; (2) in Tδ, if t'(t'∈Tδ) and t have the common 
boundary relationship, add the vertices of t' into arr1 or arr2, t←t', repeat (2); (3) in 
Tβ, if t''

 (t''∈Tβ) and t have the same source, respectively add the vertices of t'' into arr1 
and arr2 according to the different fid, and then perform step 2 with parameter t''. 

Step 2: Generate the units based on boundary nodes. 
(1) sort the arr1 with the descend pid, if the pid every node in the arr1 is all not equal 
to 0, then the process is over and goes to (4); (2) if there is a node in the arr1 which 
it’s pid is equal to 0, then judge whether the arr1 is continuous in Z or not, if the arr1 
is continuous, then process is over; (3) if arr1 isn’t continuous, seek the broken point 
and evaluate the pid of the point with pid'. Find the points which pid is less than pid' 
in arr1, sort by descendible pid and append the sorted result into arr1; (4) deal with 
arr2 according to (1)~(3); (5) append arr2 into arr1; (6) construct the unit with arr1, 
ended. 

Step 3: Build the unit of triangle t of type γ.  
(1) store the 3 vertices of t into array arr; (2) in Tδ, if pipj(t'∈Tδ, pipj∈t') is equal to 
edge hmhn of t, insert pk(k≠i, j) into arr at the position between hm and hn, repeat (2); 
(3) construct arr, ended. 

Assuming that the point set P is composed by v spatial objects, array Tβ, Tγ, Tδ 
respectively contain n, m, k elements. The time complexity of step 3 is O(mk), step 2 
is O((n+m+k)/v*log((n+m+k)/v)), and step 1 is O(n2+mn). Generally, m«n and k«n, 
the time complexity of the algorithm is O(n3). 

3   Quad GridFile Spatial Index 

In spatial database, the spatial selection method is of performance for two computing 
levels: filter and refinement. The filter level, which is commonly supported by spatial 
index, is the precondition and base of quick computation. By combining the 
UnitsDelaunay structure with the spatial index, the relations between spatial selection 
and spatial object can be built. Thus, the line intersection computation can be applied 
to compute the natural adjacency relationship. 

3.1   Spatial Approximation for Unit2 and Unit3 

The key idea of the approximation of spatial objects is to regard the bounding 
geometry object of a spatial object as an operated object. Approximation policy is the 
approximation method in spatial index for unit2 and unit3. 
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Theorem 5. q is a querying point, if q∩C(tβ) =¬∅∧q∩C(tγ) =¬∅∧(tβ and tγ have 
shared boundary), then PQ(q, tβ)∪PQ(q, tγ)≡PQ(q, tγ). 

Proof. ∃tγ∈unit3, ∃tβ∈unit2, by formula (4) and (6), they satisfy PQ(q, tβ)⊂PQ(q, tγ). 
So, the theorem 5 is tenable.                                                                                          □ 
 

Definition 6. The repository of all binary relationships for querying point q is called 
as the closure of q, recorded as q+. 

Theorem 6. q+ is complete. 

Proof. For the querying point q, the completeness of the q+ means that q+ includes all 
the binary relationships with q in U(P).Assuming there is a binary relationship R<M, 
N>, which has natural adjacency relationship with q, but R∉q+. According to the 
definition 4 and theorem 4, the R does not exist. So, the theorem 6 is tenable.            □ 
 

The unit3 is composed by a triangle of type γ. According to theorem 5 and theorem 6, 
in order to confirm the complete candidate set of the natural adjacency, the MBR of 
minimum boundary circle (MBC) is adopted as the approximate geometry object. For 
the unit2, the MBR is adopted.  

3.2   Basic Structure of Quad GridFile 

Quad partition is a regular level partition structure. It is a divide-conquer method 
based on two aspects: Firstly, the Quad GridFile can be built based on the Quad 
GridFile of the cell. This can effectively use the memory and balance the CPU task; 
secondly, updating index structure can be completed by reconstructing GridFile 
structure of correlative cell region. 

The GridFile spatial index structure divides the embedded 2-Dimension space by 
multi-attribute index. Use its objective is to realize the principles of secondary 
diskettes visit: first visit gets the directory items; another visit actually buckets to 
obtain the actual records. Each grid directory points a catalogue data bucket, which 
stored in the actual data tuple structure.  

 
 
 
 
 
 
 
 

Fig. 2. Basic composition of Quad GridFile 

4   Experiment 

Experiment of proposed structure and method was carried out under Oracle 9.2.1 and 
Eclipse 3.1 with JDK 1.5. The progress of creating GridFile includes three parts:  

quad tree

grid file 

linear scale

grid directory

bucket file 

memory disk 
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(1) generating Delaunay triangular irregular network; (2) generating unitsDelaunay 
structure; (3) creating GridFile spatial files. The relation between number of areal 
object boundary nodes and time for creating GridFile as shown in Fig.3.  

There is the linear increasing relation between time for creating GridFile (t) and 
number of areal object boundary nodes (n), and it is represented as  

t = k⋅n + b,                                                        (6) 

while the inserting, deleting and modifying operators are happen, updating operation 
for Quad GridFile is required. We replace whole Quad GridFile index updating with 
one reconstructing progress of GridFile, which is pointed by Quad one leaf node. 
Assuming the maximum required time is tmax (ms) for reconstructing progress, the 
number of boundary nodes is N, the number of Quad level is l, there is  

tmax ≥ k⋅n + b,                                                     (7) 

where k, b are constant and  n is  

n = N / 4l,                                                       (8) 

the relation of l and N is  

l ≥
4

max

N
log

k

t -b

⎡ ⎤⋅⎢ ⎥
⎢ ⎥⎢ ⎥

.                                                 (9) 

The fitted equation is t = 0.3773n + 1576.8, which is got by Fig.3. If the tmax is 
4000(ms) and N is 50000, upon fitted equation substitution to (9), we can get the l = 
2, i.e. every GridFile includes 3125 boundary nodes, thus, the reconstructing about 
time of GridFile is 2756(ms). In order to test capability of Quad GridFile spatial 
index, we analyzed test data, which got by moved point query in fixed grid form. For 
seven random query points, test data are shown in Table 1. 
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Fig. 3. Relation curve between number of boundary nodes and time of generated GridFile 

From Table 1 we can see that, 2.42 binary relationships are stored in a bucket and 
4.428 candidate geometries are searched in every time. The average time of reading 
geometry from Oracle is 11 (ms), and final shooting rate of GridFile is 74.18%.  
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Table 1. Capability of fixed grid 50×50 

ID Row Column RBS NC Time NR 
1 15 29 32 4 44 3 
2 19 21 32 4 44 3 
3 22 28 32 3 33 3 
4 36 15 32 4 44 4 
5 22 27 64 7 77 2 
6 25 21 48 5 55 4 
7 37 22 32 4 44 4 
∑/n    4.428  3.285 
*BRS-reading bytes from disk; NC-number of candidate set; Time1-time of getting 

candidate set from Oracle; NR-number of refinement set. 

 
 

(a)Delaunay triangulation and Classification              (c) UnitsDelaunay spatial approximate 

Fig. 4. Partial experimental Results 

5   Conclusions 

In this paper, we proposed a new data structure UnitsDelaunay and integrated it into 
Quad Gridfile spatial index to calculate the natural adjacency relations in spatial 
database. Reviewing this paper, we think that the following two areas are to be 
strengthened in future: (1) The spatial approximation of unit2. The MBR of the spatial 
object is regarded as approximate geometry object. However, in practice we found its 
scope too large to cause large candidate set and increase the size of index file. The 
performance of spatial query processing can be improved by decomposing a complex 
object into a small number of simple components. We will consider decomposing 
complex unit structure with Delaunay triangulation method. (2) We also note that, the 
natural adjacency relationship can be got from Delaunay structure. Can the others 
relationship and the new model of topological relation calculation based on Delaunay 
be got? If these can, we will calculate spatial relationship on the TIN, which will be 
an interesting and meaningful work. 
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Abstract. The K-modes and K-prototypes algorithms both apply the frequency-
based update method for centroids, regarding attribute values with the highest 
frequency but neglecting other attribute values, which affects the accuracy of 
clustering results. To solve this problem, the K-centers clustering algorithm is 
proposed to handle mixed type data. As the extension to the K-prototypes 
algorithms, hard and fuzzy K-centers algorithm, focusing on effects of attribute 
values with different frequencies on clustering accuracy, a new update method 
for centroids is proposed in this paper. Experiments on many UCI machine-
learning databases show that the K-centers algorithm can cluster categorical and 
mixed-type data more efficiently and effectively than the K-modes and K-
prototypes algorithms. 

Keywords: Cluster analysis, K-centers algorithm, centroid, mixed type data.  

1   Introduction 

As a well-known data mining method, cluster analysis plays an important role in 
many applications. Clustering can be used to discover clusters of data sets and has 
been applied to a variety of fields. 

The basic K-means algorithm, using the centroid (mean) of objects with numeric 
values in the same group to represent a cluster, is proposed by Macqueen [1]. Since 
then, many clustering algorithms have been proposed to improve cluster analysis from 
different perspectives. Bezdek et al developed a fuzzy version of the K-means 
algorithm[2]. The K-means algorithm is widely used for clustering not only because 
of its simplicity and efficiency but also its ability to clustering large data sets. 
However, working on only numeric data limits the use of the K-means algorithm 
when much categorical data is frequently dealt with. The K-modes algorithm, using a 
new dissimilarity measure and frequency-based method to update modes, can then 
cluster categorical data[3]. The K-prototypes algorithm then integrates the K-means 
and K-modes algorithms to allow for clustering mixed numeric and categorical valued 
data sets[4,5]. Moreover, the fuzzy K-modes and fuzzy K-prototypes algorithms are 
developed based on fuzzy set theory[6,7], and they have built up clustering for mixed 
numeric and categorical valued data. However, both of the K-modes and K-prototypes 
algorithms use the frequency-based update method, that is, they both select attribute 
values which appear most frequently as centroids (cluster centers), but they fail to 
take into consideration the effect of other attribute values with low frequency on 
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centroids, which leads to the instability of these algorithms and decreases clustering 
accuracy. 

A new similarity measure is put forward in this paper, which considers the 
influence of attribute values with different frequencies on centroids. The new 
algorithm based on the K-prototypes algorithm can also cluster data of mixed nature 
(numeric and categorical). 

2   Basic Concepts 

Definition 1. Let A1, A2 ,…, Am be a set of attributes in a mixed numeric and 
categorical valued data set D in which A1, A2,…, Ap are numeric attributes and Ap+1, 
Ap+2,…, Am are categorical attributes. The domain of Aj is denoted by Dom(Aj). The 
domain of Aj for categorical attributes is denoted by ( )(1) ( 2 ){ , , ..., }jn

j j ja a a , where nj is 

the number of categorical attribute Aj. An object DXi ∈  can be represented as an m-

dimension vector
1 2( , , ..., )i i imx x x , where )( jij ADomx ∈ . It is obvious that p 

satisfies mp ≤≤0 . Specifically, when 0=p  all the attributes are categorical and 

when mp = all attributes are numeric, while attributes are of mixed type 

when mp <<0 . 

Definition 2. Let
lZ be a centroid (clustering centers), denoted by ),...,,( 21 lmlll zzzZ = . 

ljz is used to represent the mean of attribute
jA  for pj ≤≤0 . For mjp ≤≤+1 , 

ljz  is a 

jn dimensional vector represented as ),...,,( )()2()1( jn
ljljlj zzz , where )(r

ljz  denotes the 

similarity between the centroid Zlj
* and attribute value )(r

ja which satisfies 

10 )( ≤≤ r
ljz . )(r

ljn is used to represent the number of attribute values )(r
ja . If attribute 

value )(r
ja  doesn’t exist in a cluster, that is 0)( =r

ljn , then 0)( =r
ljz . The sum of all 

these similarities )(r
ljz  equals 1 if all attribute values appear in the cluster.

 
For example, if categorical attribute 

jA  has 3 possible values and the centroid Zlj
* 

is )2.0,3.0,5.0( , then the similarity between )1(
lja  and the centroid is 0.5. 

Definition 3. The dissimilarity (distance) ( , )i ld X Z between object iX and centroid 

lZ  is composed of two parts: numeric dissimilarity and categorical dissimilarity. 

2 2

1 1

( , ) ( , ) ( , ) ( ) [1 ( , )]
p m

i l r i l c i l ij lj ij lj
j j p

d X Z d X Z d X Z x z f x zβ γ β γ
= = +

= + = − + −∑ ∑  

where }{),( )()( r
ljij

r
ljljij axzzxf == .   

In definition 3, Euclidian distance is used for numeric attributes, while the categorical 
dissimilarity is derived from the similarity between corresponding categorical 
attributes. The determination of weight parameters β andγ are relatively complicated. 



1142 W.-D. Zhao, W.-H. Dai, and C.-B. Tang 

 

If 0p = , which means data is categorical type, then 1,0 == γβ ; if mp = , which 

means data is numeric type,then 0,1 == γβ . However, if mp <<0 , which means 
data is mixed type, it is difficult to choose the right weight parameters. Generally, we 
set 1=β  and choose a greater weight parameter for γ if we give emphasis to 
categorical valued attributes or a smaller value forγ otherwise.  

3   K-Centers Algorithm 

The K-centers clustering technique, using the objective function similar to that of the 
basic K-means algorithm, redefines centroids and the dissimilarity of categorical 
objects and produces several clusters after a number of iterations. The aim is to 

minimize the objective function ∑∑
= =

=
k

l

n

i
lili ZXdwZWF

1 1

),(),( α , Subject to  

0 1liw≤ ≤  

1

1
k

li
l

w
=

=∑
 

1

0 ,
n

l i
i

w n
=

< <∑ ∑
=

=
jn

r

r
ljz

1

)( 1
 

where 1α ≥ is the fuzzy parameter. When 1α = , it is hard clustering, and when 1α ≥ , it 
is fuzzy clustering. W is a k-by-n membership matrix, implying belonging of each 
object to a cluster to some degree. So an object belongs to only one cluster when 

1α = , but may belong to several clusters indefinitely when 1α > . 
Similar to the K-means algorithm, minimizing the objective function F is a 

nonlinear programming problem. The K-centers algorithm focuses on a incremental 
optimization: first initialize centroids Z , find the proper membership matrix W to 
minimize the objective function F , and then regulate W and minimize objective 
function F to get new centroids Z. The steps will be iterated until F cannot be 
optimized further. 

 Theorem 1. Let centroids *Z  be fixed， then the objective function F is minimized if 
and only if W satisfies:  

  when 1=α ，

⎩
⎨
⎧ ≤≤≤

=
.    ,0

,1),,(),(    ,1 **
*

otherwise

khZXdZXd
w hili

li
 

*

* *

*
1 /( 1)

*
1

1,      ,

1 0,      , ,

( , )
1 [ ] ,  .

( , )

i l

li h

k
i l

h i h

if X Z

when w if Xi Z h l

d X Z
otherwise

d X Z
α

α

−

=

⎧
⎪ =
⎪⎪> = = ≠⎨
⎪
⎪
⎪⎩

∑

，

 

When 1=α , the objective function F is linear programming problem and when 
1>α , F is a convex function. The minimum value of this nonlinear function can be 

computed using the Lagrange Multiplier. 
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Theorem 2. Let membership matrix *W  be fixed, then the objective function F 
reaches the minimum value if and only if centroids Z is assigned as follows: for 
numeric attribute 

jA （ pj ≤≤1 ） ,  

1 1

( ) /
n n

lj li ij li
i i

z w x wα α

= =

= ∑ ∑                                                    (1) 

For categorical attribute
jA , mjp ≤≤+1 ,  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈
−

−
= ∑

∈

.    ,0

,    ,
1

1
)1|(|

1

)(

)(

)(

otherwise

Nr

n

n
N

z lj

Nt
t

lj

r
lj

lj

r
lj

lj

                                   (2) 

Where )(r
ljn  represents the number of attribute value )(r

ja , that is 

∑
=

==
n

i

r
ljijli

r
lj axwn

1

)()( )|{ α ,
ljN  is a value set of )(r

ja which have ever appeared in data 

sets. }0|{ )( >= r
ljlj nrN  and || ijN  is the number of elements in 

ljN . 

The equation (2) can be transformed as followings: 

∑

∑

∑
∈

∈

∈

−+
=

−
−=

lj

lj

lj Nt
t

lj

Nt
r

lj
t

lj
r

lj

Nt
t

lj

r
lj

lj

r
lj

n

nnn

n

n
N

z

)(

)()()(

)(

)(
)(

1

)
11

(
1

1

1
)1|(|

1
 

It is more reasonable that for categorical data sets, the K-centers algorithm can 
derive centroids by computing the percentage of the reciprocal of attribute values, 
considering the effect of attribute values with different frequencies.  

The following properties of the K-centers algorithm are intuitive:  

Property 1. If 1||
1

)(
)( −<∑

∈
lj

Nt
t

lj

r
lj N

n
n

lj

， then 0)( <r
ljz  

This is inconsistent with the definition 0)( ≥r
ljz . Meanwhile, it indicates that 

0)( >r
ljn . However, it can be neglected because of low frequency. Thus the centroid 

for 
jA  should be computed again. 

Property 2. For an attribute 
jA ， it is impossible to neglect all attribute values. 

Property 3. if )()( t
lj

r
lj nn > ， then )()( t

lj
r

lj zz > . 

Property 4. Let },max{ )()(
lj

p
lj

r
lj Npnn ∈= , },min{ )()(

lj
p

lj
s

lj Npnn ∈= ,then 

')()( ][ r
lj

r
lj zz ≥ , ')()( ][ s

lj
s

lj zz ≤ ,where ( ) ' ( ) ( )

1

[ ] /
jn

r r t
lj lj lj

t

z n n
=

= ∑ which emphasizes the 

percentage of different categorical attribute values.   
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Property 3 and 4 indicate that the K-centers algorithm assigns higher similarity to 
attribute values that occupies higher percentage and lower similarity to those, which 
occupy lower percentage. 

The K-centers algorithm, both hard and fuzzy clustering, can be described as 
follows:  

(1) Choose initial centroids )1(Z  and a parameter ξ  to decide whether to 

terminate the iteration or not. 
(2) Determine )1(W  that minimizes ),( )1(ZWF , Set 1=t .  

(3) Determine )1( +tZ  that minimizes ),( )( ZWF t . If  

ξ<−+ |),(),(| )()()1()( tttt ZWFZWF , then stop; 

(4) Determine )1( +tW that minimizes ),( )1( +tZWF . If 

ξ<− +++ |),(),(| )1()()1()1( tttt ZWFZWF ,then stop;otherwise,set 1+= tt and 

go to step (3). 

It can be proved that the iteration of the K-centers algorithm, the fuzzy parameter 
α  and the convergence of the objective function satisfy theorem 3. 

Theorem 3. If the fuzzy parameterα is large enough, the membership matrix cannot 
determine definitely which cluster the data belong to. So the fuzzy parameter α  
cannot be assigned to too large a value in the K-centers algorithm, otherwise 
clustering results may be unsatisfactory. 

Generally speaking, the K-centers algorithm is relatively simple. Its time complexity 
is )(tkmnO , where t is the number the algorithm iterates. In most cases, nmkt <<,,  

and thus the time complexity is approximately )(nO , which indicates that the 

relationship between the size of data sets and computation complexity is linear. So the 
K-centers algorithm is an efficient clustering algorithm, and can process large data 
sets effectively. However, the K-centers algorithm also needs to be improved. For 
example, the algorithm is more efficient for convex or spherical shape data sets; it 
also predefines a user-specified number k  and cannot deal with outliers effectively. 

4   Experimental Results 

To evaluate the performance of the K-centers algorithm, experiments have been 
performed on several data sets and then the impact of different parameters on the 
algorithm is discussed. The data for the experiments are from UCI machine learning 
repository, including categorical databases soybean and voting, mixed type databases 
credit and cleve. Usually, numeric data are measured in different units. To deal with 
this problem, the transformation is necessary before clustering in order to map all the 
numeric data to the range [0, 1]. Then, according to experiment results, we make 
comparisons between the K-centers, K-modes and K-prototypes algorithms. 

When data are clustered by hard K-centers clustering algorithm, an object is only 
partitioned to one cluster; when data are clustered by fuzzy K-centers clustering 
algorithm, an object may be assigned to multiple clusters indefinitely. Although the 
membership matrix describes belongings of each object to different clusters, it fails to 
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clearly indicate which cluster one object belongs to. In practice, one object is assigned 
to the cluster l to which it has the maximum membership degree, that is 

},...,2,1|{ ktwww tjljlj =≥=
.

 

Experiment results can be analyzed using the accuracy 
1

( ) /
k

ll
r a n

=
= ∑ , where 

la  

is the number of objects shared by the cluster l and its original data set, n  is the size 
of data sets.  

As Fig. 1 shows, for categorical data, the accuracy of hard K-centers algorithm is 
close to that of hard K-modes algorithm, but the accuracy of fuzzy K-centers 
algorithm is higher than that of fuzzy K-modes algorithm. On the other hand, as the 
fuzzy parameter α increases, the accuracy of the K-centers algorithm improves 
rapidly, but that of the K-modes algorithm decreases slightly. It is obvious that the K-
centers algorithm is more accurate than the K-modes algorithm when applied to 
soybean database. Similarly, the accuracy of the K-centers and K-modes algorithms 
on voting database can also be compared in Fig. 2. In general, when the fuzzy 
parameter increases, the clustering accuracy is relatively stable no matter it is the K-
centers or K-modes algorithm, that is, there is not notable improvement, which means 
the K-centers and K-modes algorithms can result in rather accurate results. But the K-
centers algorithm remains superior to the K-modes algorithm. Furthermore, we also 
find that the results are stable using the fuzzy K-centers algorithm. The algorithm will 
produce the same result on voting database no matter how initial centroids are chosen. 
But for the fuzzy K-modes algorithm, results vary with different initial centroids. 

a a

 

Fig. 1. K-centers and K-modes on soybean      Fig. 2. K-centers and K-modes on voting 

The impact of weight parameterγ used in clustering data with mixed numeric and 

categorical values cannot be neglected, because improperγ will have great influence on 

the effectiveness of clustering. Usually, the selection of γ requires professional 
knowledge. In most cases, if categorical data is dealt with, we may choose a larger value 
forγ ; otherwise we choose a smaller value. Similarly, the K-prototypes algorithm has 
difficulty with how to identify the value ofγ . Therefore, different values ofγ are tried in 
the experiments. Since initial centroids may have different effect on clustering results, 
each of the two algorithms is run 100 times. Fig. 3 shows the average accuracy of 
clustering results with respect to variant fuzzy parameters. The average accuracy of 
clustering results first reaches a peak point as the fuzzy parameterα increases, and then 
begins to decrease. Through further analysis, we find that when the fuzzy parameterα is 
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larger than 1.1, the accuracy remains unchanged no matter whatever the initial 
centroids are, but when the fuzzy parameterα is 1.2, clustering accuracy reaches the 
peak. Given the same fuzzy parameter α , the best γ is shown to be 0.1 when the 
accuracy is the highest. Fig. 3 also shows the clustering accuracy of the K-prototypes 
algorithm with varying fuzzy parameters. In general, with different fuzzy parameters, 
the difference in accuracy seems to be slight, and the best accuracy is 0.76. The 
results also show that the selection of initial centroids for K-prototype has obvious 
impact on the clustering accuracy. As shown in Fig. 3, the accuracy of K-centers can 
exceed 0.82, which indicates that the K-centers algorithm excel the K-prototypes 
algorithm in clustering credit database.  

a
a

 

Fig. 3. Clustering accuracy for K-centers and K-prototypes applied to credit 

Fig. 4 shows how K-centers and K-prototypes behave when applied to cleve 
database with different weightγ . The accuracy of the K-centers algorithm improves 

as the fuzzy parameter increases. It reaches the peak when the fuzzy parameter is 2, 
but the accuracy of the K-prototypes algorithm decreases slightly. After careful 
analysis of clustering results, we also find that the results of fuzzy K-prototypes 
algorithm are not stable when initial centroids differ. As for fuzzy K-centers 
algorithm, the results are stable, which means that the algorithm is not sensitive to the 
change of initial centroids. The better weight value for the K-centers algorithm is 0.3. 
The clustering accuracy reaches 0.84 whenα is 2. But the accuracy of K-prototypes 
algorithm is less than 0.78, which seems that the K-centers algorithm is more 
effective than K-prototypes applied to cleve database. 
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Fig. 4. Clustering accuracy of K-centers and K-prototypes algorithm on cleve 

K-Centers  K-Prototypes 
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For space limit, not all experimental curves or graphs are given above and the 
results are also observed as for many other data sets. Domains that regularly produce 
data of mixed nature will be benefited although it is needed to provide further 
justification for these results.  

In conclusion, the fuzzy K-centers algorithm gives more accurate clustering results 
than the corresponding hard one, and can produce more stable results with different 
initial centroids. Compared with the K-prototypes algorithm, the K-centers algorithm 
produces more effective results. 

5   Conclusion 

As the extension to the K-prototypes algorithm, the K-centers algorithm can 
cluster mixed type data more effectively. In hard and fuzzy K-centers algorithm, 
we propose a new update method for centroids. Unlike the K-modes and K-
prototypes algorithms, which only focus on attribute values with the highest 
frequency, the proposed algorithm considers attribute values with various 
frequencies. The K-centers algorithm is illustrated to be able to perform 
clustering better in most cases. The experiments on UCI machine learning 
database also show that the K-centers algorithm produce more accurate results 
than the K-modes and K-prototypes algorithms. Nevertheless, further 
improvements still can be made on the K-centers algorithm. For example, we can 
combine the K-centers algorithm with genetic algorithm so as to overcome local 
optimum. How to provide general guideline for users to choose appropriate 
parameterα , γ  is also worth further research.  
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Abstract. Over the last years, the wide use of the P2P application has lead to 
the rapid growth of network traffic. Thus, the accurate classification of P2P 
traffic becomes a challenging problem. This paper proposes some new funda-
mental characteristics of TCP traffic to achieve its discrimination. To prove the 
universality of the values of our proposed features, we also present some ana-
lytic estimates of them using Pareto as the distribution of user lifetime in real 
P2P systems. Finally, we apply SVM to the discrimination of these features in 
order to automate the processing of the discrimination, and its accuracy is dem-
onstrated as a result of some experiments.  

1   Introduction 

A significant trend has emerged in recent years whereby use of the Internet for Peer-
to-Peer file sharing. The leading content shared in the P2P systems, such as audio and 
video files, tend to be large in size[1]. So, the wide use of the P2P application has lead 
to the rapid growth of network traffic in addition to the illegal file sharing. Thus, it 
has become an urgent requirement to discriminate the users of P2P file sharing appli-
cation from other users.  

In this paper, we first propose some univeral features of file-sharing P2P traffic de-
rived. Then, we present some analytic estimates of them to prove the value gained 
from our experiment of the proposed feature. Our methodology can discriminates the 
P2P users based on flow connection patterns of P2P traffic, and without relying on 
packet payload. Finally, we will demonstrate the effectiveness of the proposed  
discrimination.  

2   Previous Work for Discriminating P2P Traffic and Problems 

The most P2P traffic researches have used the data collected from routers across some 
large ISP’s backbone and performs systematic characterization of P2P traffic, such as 
distribution and workload, often motivated by the dominance of that protocol in a 
particular provider’s infrastructure or during a specific time period [2] [3] [4] [5] [6]. 
And more importantly, the analysis using aggregated data could cover some real spe-
cialties of P2P traffic. For example,in [2] the authors find “newly initiating connec-
tion rate ” is totally different between P2P and traditional traffic .After analyzing 
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many traffic of single host  in CERNET including both P2P and tradition, we find this  
conclusion isn’t suitable for all kinds of P2P traffic because a P2P host can make 
several TCP connections with an other P2P peer and with the same destination port 
and different source port within a download process. From the discussions above, 
there is a strong requirement for a new discrimination technique based on some uni-
versal features of the P2P traffic. 

3   Proposal of Features for Discriminating P2P Traffic  

We focus on the P2P traffic observed at a single host, and use tens of seconds as the 
time granularity of analysis, not an hour like in the relative work before. The nature of 
the P2P traffic lies in the fact every P2P host services as both server and client, con-
ducing to the highly decentralized, self-organizing systems, and the large number of 
hosts involved and the transient peer membership. These hosts may differ in many 
aspects, especially the rate of random departure decisions of end-users. Any changes 
of these aspects can make the connectivity of P2P networks very different at any 
moment [7]. To keep it’s download speed not to decrease, a P2P host can continually 
initiate TCP connections with others which could be online in a very low probability 
due to the dynamics of P2P systems.P2P hosts should have a small success rate of 
initiating connections, and a common (not P2P) host would connect with all kinds of 
servers in the Internet at a much higher success rate. It is because all the servers must 
keep their service always acquirable in any client/server systems while peers in P2P 
system are personal computers: and not always operational and stable. We think the 
low success rate of TCP connections of peers is the common character of all P2P 
systems. Based on it, we propose some traffic features for P2P discrimination tech-
nique. The main focuses of the proposed features are SYN and SYN/ACK packets, 
since these packets are used for the establishment of TCP connections of P2P applica-
tion without exception. 

a = number of different destination IPs of transmitted SYN packets  
b = number of different soucre IPs of recieved SYN/ACK packets  
From the above attributes we derived the following features: 
(1) connection responsed success rate 

abrc =  (1) 

(2) percentage of the  instantaneous responsed rate whose value is equal to 1 and 
calculated every 30 seconds 

We proposes rc as the universal feature for discriminating P2P traffic from other 
traffic. A key reason for choosing this feature is the large difference in its values of 
P2P traffic between other traffic, which will be demonstrated in detail in the follow-
ing sections. 

4   Methodology 

We focuse on two P2P protocols:BitTorrent and eMule which are used most popu-
larly in CERNET(China Education and Research Netwrok). From the analysis of the 



1150 L.-J. Zhou, Z.-T. Li, and H. Tu 

protocols[10], we can get the conclusion the most used transfer layer protocol of con-
nections established between P2P peers is TCP[11].We prepared two kinds of traffic 
data set:one is P2P traffic generated by eMule or BitTorrent;the other is the traffic 
without P2P communication, such as traffic of email/DNS server and common clients, 
even a port scanning application superscan. Using the prepared traffic data sets, we 
firstly calculated the connection responsed success rate rc of one hour traffic. Figure 1 
shows the distribution of rc of two kind of traffic. 

From Fig. 1,we can see that the tradition traffic has very high value in rc  as our ex-
pectation , and the P2P traffic has the value in the range [0.2,0.65] . There is a part of 
P2P traffic generated by eMule also has high value of rc, so we can see a little overlap. 
After analyzing the communicating process of eMule [9],we find that eMule peer 
would periodically send UDP messages which are used to find out whether it can start 
download the file. This mechanism leads to the high responsed rate of TCP connect-
ing request at the cost of very low success rate of UDP response. At the bottom of 
Fig. 1,there are a few points which generated by Superscan .This kind traffic has a 
very low responsed rate which is even much smaller than P2P traffic because of its 
totally randomly behavior. We think the responsed connection rate of P2P traffic in a 
short time piece between two peers can’t be always high(=1), while it can be easy for 
normal tradition traffic. So, we next calculated the percentage of rc=1 every 30 sec-
onds for all data sets. We think 30 seconds is felicitous to be chosen due to the data 
retransfer mechanism of many applications.Fig.2 shows the distinct difference be-
tween the proportion of rc=1 of P2P and traditional traffic. The P2P plots are in area 
between 0 and 0.2, while the tradition traffic has the value mostly in [0.5,0.9]. The 
superscan still has very low value in this feature as we expected. 

 

Fig. 1. Connection Responsed Success Rate       Fig. 2. Percentage of Responsed Rate=1 

From Fig.2,we can see although some P2P traffic which have a high value in total 
responsed rate of an hour get a very low percentage of rc=1. The reason is the P2P 
applications try to connect with other peers as many as they can even within a very 
short time to keep a certain download speed. In tradition network behavior model, 
connecting with different hosts in high frequency is unnormal. Form Figs. 1 and 2, 
neither connection responsed rate of an hour nor the distribution of rc=1 can be used 
to discriminate P2P traffic as a single traffic feature. But they can be combined to-
gether to get an accurate identification of P2P traffic. 
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Fig. 3. Identification of P2P traffic Through Two Features Combined 

From Fig. 3 ,we can find all the traffic are plot out three parts clearly: normal tradi-
tion,P2P and unnormal tradition traffic from top to bottom. As we described above, 
our proposed traffic features can be useful for accurate traffic discrimination. 

In the two following sections, We will prove the usability of our proposed features 
both from theoretical and experimental ways. 

5   Theoretical Evaluation 

In this section we present some analytic estimates of the universality of the values of 
our proposed features based on the distribution of user lifetime in real P2P systems. 

5.1   Lifetime Model of Real P2P Systems 

In our model, each arriving user is assigned a random lifetime Li drawn from some 
distribution F(x), which reflects the behavior of the user and represents the duration of 
his/her services to the P2P community. It has been observed that the distribution of 
user lifetimes in real P2P systems is often heavy-tailed (i.e., Pareto)[8],[9], where 
most users spend minutes per day browsing the network while a handful of other 
peers exhibit server-like behavior and keep their computers logged in for weeks at a 
time. To allow arbitrarily small lifetimes, we use a shifted Pareto distribution (3) to 
represent heavy-tailed user lifetimes, where scale parameter β > 0 .Note that the mean 
of this distribution(4) is finite only if α > 1, which we assume holds in the rest of the 
paper. 

( ) ( ) 1,0,11 >>+−=≤ − αβ α xxxLiF  (2) 

[ ] ( )1−= αβLiE  (3) 

There have been a number of studies reporting on experimental data collected from 
currently deployed P2P systems. From them we find that it may appear that E[Li] = 1 
hour(the mean online stay is 1 hour) is rather large for current P2P systems. If we set 
Pareto lifetimes with α = 3 and E[Li] = 1 hour, we can get β = 2 by (3)and then by (2) 
can calculate that 51% of the users depart within 30 minutes of their arrival which 
accords with the fact of BitTorrent-like system, but in eMule-like system users will 
stay more longer. 
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5.2   Reason for Considering Surviving Rate of Peers 

As mentioned above, the P2P traffic features we proposed are different from the tradi-
tional traffic because the dynamics of P2P system: users voluntarily decide to leave 
the system based on their attention span and/or browsing habits, so that even a user 
announced its existence to you at some time before, you could still fail when you 
touch with it just after a short time. In the following, we will answer the question :“if 
we know some peers are online at time T1 in a real P2P system, how many peers are 
still online when passing a time t ”,in other words, what is the surviving rate of these 
peers after certain time t? 

In BitTorrent system, during the download process the tracker periodically sends 
updated information about new download locations which are collected through the 
announcement of all clients. In the eMule network, a client connects to an eMule 
server for getting information about desired files and available clients [11].According 
to the statement above about the communication mechanism of centralized file-
sharing P2P systems, the feature “connection responsed success rate ” of one peer 
must be determined by the surviving rate of all those clients contacted ,and we even 
think they should be in some kind directly related if the systems are large enough and 
steady. Next, we will infer the expression of the surviving rate of P2P peers. 

5.3   Derivation of Surviving Rate  

To keep the derivations tractable, we impose serveral restrictions on the system we 
study. We first assume that users join a network that has evolved sufficiently long so as 
to overcome any transient effects. This assumption is usually satisfied in practice since 
P2P systems continuously evolve for hundreds of days or weeks before being restarted 
(if ever) and the average lifetime E[Li] is negligible compared to the age of the whole 
system when any given peer joins it. Our second assumption requires certain stationar-
ity of lifetime Li. This means that users joining the system at different times of the day 
or month have their lifetimes drawn from the same distribution F(x). Finally, we 
should note that these stationarity assumptions do not apply to the number of nodes n 
as long as n >> 1 stays sufficiently large. In the following, we give a precise descrip-
tion of the question we need to study. It includes three statements as below: 

Statement 1. In P2P systems, if NT1 is the number of online peers at moment T1 ,after 
time t, the surviving rate of  these peers (defined as SR) is (4).  

Statement 2. When a user contacts with a group of peers whose locations got from 
trackers or index servers constantly, the intervals of these peers announce themselves 
to trackers and the time when the user gets the locations from servers are various 
according to the time successively. We assume the probability distrubiton of the sum 
of announcing peers is average at any moment and at one moment the probability of 
peers is also mean for various lifetimes. So, the connection responsed success rate 
could be simply represented as the mean value of all SR within some time T whose 
length is decided by the practical mechanism of the system as (5). 

1

1

T

tT
t N

N
SR +=  (4) 
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Statement 3. If the system are large and steady enough ,the SR is only correlative 
with the length of passing time t. 

dtSR
T

Rc
T

t∫≈
02

1
 (5) 

Assuming that N is large and the system has reached stationarity, the PDF of Li is 
given by: 

)'()( xLiFxLif ≤==  (6) 

Applying the formula (2) to (6),we get : 

1,0,)1()( 1 >>+== −− αβ
β
α α xxxLif  (7) 

The probability density function (PDF) f(x) serves to represent a probability distri-
bution in terms of user lifetime at arbitrary moment in the system. For example, the 
percentage of user who have existed in system for 10 minutes at any time could be 
represented by f(10). We must notice an important understanding that is at one mo-
ment the peers alive in the system maybe have already survived for any potential 
amount of time from 0→﹢∞.Then,we have the following result: 

Theorem 1. From time T1 to time T1+t, the SRt of peers for Patero lifetimes with F(x) 
= 1 − (1 + x/β)−α, α > 1 is given by: 

[ ]∫
+∞

+−−=
0

)'()'(1 dxtxFxFSRt  (8) 

The part of integral in (8) represents the probability of those peers departing from 
the system midway. According (6) and (7),re-write (8): 

[ ]dxtxxSRt
11

0

))(1()1(1 −−−−
+∞

++−+−= ∫ αα ββ
β
α

 (9) 

The final expression we get through mathematic operations is as follows: 

( ) αβ −+= tSRt 1  (10) 

This result gives a proof to our statement 3.Substituting (10) into (5),we get: 

dtt
T

Rc
T

∫ −+≈
0

)1(
2

1 αβ  (11) 

Next setting α=3, β=2 and T=0.5/1/1.2 hour, we compute Rc0.5,Rc1 and Rc1.2.We 
choose these three time pieces as the intervals of time T, because the very busy track-
ers in BitTorrent system always set the announcment interval of client as 1.2 hour or 



1154 L.-J. Zhou, Z.-T. Li, and H. Tu 

more longer while the general trackers choose 0.5 hour ,and 1 hour is the mean life-
time. The results are :Rc0.5 = 0.36,Rc1 = 0.28,Rc1.2 = 0.25.The conclusions above are 
based on the assumption that the trackers or index servers always ensure all offline 
peers are not in the list given to the client. So, we can see that the theoretical results 
are consistent with what we obtained through our experimentations before. 

6   Experimental Evaluation 

In this section we evaluate the accuracy of our methodology by using the SVM 
method to discriminate P2P traffic with our proposed traffic features. Indeed, to 
minimize false positives in P2P traffic identification, we can firstly filter P2P traffic 
by some well-known ports. We took an SVM package LibSVM-2.82 using default 
parameters except the parameter g(gamma) must be set to bigger than 2.We choose 
100 examples from the data sets used in the previous section as a training set to  
determine a separating hyperplane. We gathered 10 traffic data sets of another P2P 
application named PPLive which is a famous P2P application [12], 5 traffic data sets 
generated by nmap , another popular scanning application , and 10 data sets of  sev-
eral common hosts when no P2P or scanning applications run on them. All these 25 
traffic data are put in one file used for testing sets. We built three training file: 
train1,train2, train3: the first one only using the total responsed rate of one hour as the 
training attribute, the second one using the percentage of responsed rate which is 
equal to 1 counted every 30 seconds and the third one using both of them. The accu-
racy values of the predictions of SVM using three training file respectively and a 
same testing data sets are compared in Table 1. 

Table 1. Comparison of Accuracy of three training file The feature1 and feature2 below im-
plies “reponsed rate” and “percentage of reponsed rate =1” respectively  

attri. 
file           

Feature1 Feature2 Accuracy 

Train1 √  48% 
Train2  √ 80% 

Train3 √ √ 100% 

Only using responsed rate as training attribute like in train1,the 8 sets of 10 traffic 
of PPLive are classified to normal tradition traffic and  all 5 sets of nmap traffic are 
labeled as P2P traffic. Similarly, when percentage of responsed rate =1 used for train-
ing attribute, all nmap data sets are considered as P2P traffic. From Table 1, the one 
feature case shows bad results compared to two features case, and the accuracy can 
get at 100% when two features combined. 

7   Conclusion  

This paper firstly propose some universal features of file-sharing P2P traffic, and 
present some analytic and experimental estimates of our proposed feature. The char-
acteristics of P2P traffic are distinct from other traffic which is confirmed both by the 
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result of our theoretical analysis and the effective data mining of SVM. Future study 
will also be needed to adapt our algorithm for active real-time monitoring of P2P 
traffic and to cover P2P applications other than eMule and BitTorrent. 
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