
Anonymous Signatures Made Easy

Marc Fischlin�

Darmstadt University of Technology, Germany
marc.fischlin@gmail.com

www.fischlin.de

Abstract. At PKC 2006, Yang, Wong, Deng and Wang proposed the
notion of anonymous signature schemes where signatures do not reveal
the signer’s identity, as long as some parts of the message are unknown.
They also show how to modify the RSA scheme and the Schnorr scheme
to derive anonymous signatures in the random oracle model. Here we
present a general and yet very efficient approach to build such anony-
mous schemes from ordinary signature schemes. When instantiated in
the random oracle model, our solution is essentially as efficient as the
original scheme, whereas our construction also supports an almost as ef-
ficient instantiation in the standard model.

Keywords: Anonymity, perfectly one-way hash function, randomness
extractor, signature scheme.

1 Introduction

In an anonymous signature scheme, introduced by Yang et al. [9], a signature σ
to a message m should hide the identity of a signer. That is, one should not be
able to tell whether σ has been produced by the user with public key pk0 or by
the user with public key pk1. This holds as long there is some hidden residual
randomness in the signed message m, otherwise one can easily check the validity
of m and σ with respect to the public keys.

Yang et al. discuss several applications of anonymous signature schemes such
as authenticated key-transportation with client anonymity and anonymous paper
reviewing. Another example are anonymous auctions where bidders can publish
their bid and sign the bid prepended by some hidden random string, such that
the bidder’s identity remains secret and is only revealed if winning the auction.
Yang et al. also show that well-known signatures schemes like RSA and Schnorr
do not have the anonymity property, yet can be turned into anonymous ones (in
the random oracle model).

Our Results. Here we give a very simple and yet general construction method
for anonymous signatures from arbitrary signature schemes. Depending on the
instantiation of the underlying tools in our transformation we either get an
� This work was supported by the Emmy Noether Program Fi 940/2-1 of the German

Research Foundation (DFG).

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 31–42, 2007.
c© International Association for Cryptologic Research 2007

32 M. Fischlin

anonymous scheme in the random oracle model, which is essentially as efficient
as the original signature scheme, or we get a solution in the standard model with
a marginal loss in efficiency only (assuming the existence of regular collision-
intractable hash functions1).

For the underlying idea suppose for the moment that we have an unforgeable
but identity-revealing signature scheme producing signatures σ of length �. As-
sume further that the unknown message m is distributed uniformly over �-bit
strings. If we now define a modified signature scheme where we let σ′ = σ ⊕ m,
then the new scheme would clearly retain unforgeability. At the same time, sig-
natures should still look random to an attacker who is oblivious about m and
should thus provide anonymity. The fallacy in this argument —in addition to the
overly optimistic assumption about completely random and unknown messages—
is that the original signature value σ itself depends on m and thus σ′ may not
be uniformly distributed anymore.

The solution for the problem with arbitrary message distributions is to use
randomness extractors [6,5,8]. Such extractors gather a sufficient amount of
“smooth” randomness Ext(m) from an input m, as long as the input distribu-
tion has some intrinsic entropy. That is, if sufficiently large parts of the message
are unknown to an attacker, the extracted value Ext(m) still looks like a uni-
formly distributed variable.2 Hence, instead of using the message m to mask the
signature we now add the value Ext(m).

For the second problem, dependencies between the signature of the message
and the extracted randomness, we will introduce special randomness extractors
whose output Ext(m) looks random, even if one sees an additional (possibly
randomized) hash value H(m) of the message m. Given such a “good” hash
function and extractor combination we can compute the signature σ for the
hash value H(m), and then mask this signature with the extracted value Ext(m)
of the original message:

Sig′(sk, m) = Sig(sk, H(m)) ⊕ Ext(m).

We note that, if the hash function or the extractor are randomized, then the
signature will also include the (public) randomness used to evaluate the func-
tions. It is also worth noticing that signatures constructed as above actually
achieve the stronger notion of being pseudorandom, and that this even holds if
an attacker knows the secret signing key.

Instantiations. It remains to specify how to build a “good” hash function and
randomness extractor pair. In the random oracle model this is very easy. Namely,
for a random function H simply define the hash function to be H(0, ·) and the
randomness extractor to be H(1, ·), such that both functions essentially yield

1 A function is regular if any image has the same number of pre-images.
2 In the literature randomness extractors are typically defined to produce an output

that is statistically close to the uniform distribution. Here we merely need the relax-
ation to computational indistinguishability where the output appears to be random
for efficient observers. We will use this algorithmic relaxation throughout the paper.

Anonymous Signatures Made Easy 33

independent outputs H(m) = H(0, m) and Ext(m) = H(1, m) for non-trivially
distributed messages m. Note that with this instantiation the derived signature
scheme is basically as efficient as the original scheme.

To get a solution in the standard model we deploy so-called perfectly one-way
hash functions [2,3] where it is infeasible to distinguish between randomized hash
values (H(x; r), H(x; r′)) of the same pre-image x, and hashes (H(x; r), H(x′; r′))
of independent values x, x′. Take the first part of such a pair (H(m; r), H(m; r′))
for our message m as the hash input to the signature scheme, and the second
part of the pair to be the output of our extractor (appropriately modified to
yield pseudorandom outputs). Then the values appear to come from independent
inputs m and m′ and we get the desired computational independence of the two
parts.

Very efficient instantiations of perfectly one-way hash function can de derived,
for example, from regular collision-intractable hash functions, together with uni-
versal hash functions [3]. Namely, the randomized hash evaluation H(m) is de-
scribed by picking an almost universal hash permutation π as public randomness
and outputting h(π(m)) for a regular collision-intractable hash function h. Ac-
cording to our approach this hash function also defines the basic steps of our
extractor, except that we have to produce a pseudorandom output. This addi-
tional property can be accomplished, for instance, by applying another almost
universal hash function ρ to the h(π(m)) portion and by stretching the out-
come with a pseudorandom generator G, i.e., the extractor’s output for public
randomness π, ρ equals Ext(m) = G(ρ(h(π(m)))).

We remark that the informal discussion above hides some technical nuisances.
For instance, if we use the suggested instantiation through the perfectly one-way
hash functions, then the fact that we apply universal hash functions twice and
stretch the final output with a pseudorandom generator, only yields a provably
secure solution if we start with enough hidden entropy in the message. This
entropy bound exceeds the one for the random-oracle based solution, but still
appears to be within reasonable bounds for most applications.

Relationship to Ring Signatures. Ring signatures [7] allow each user from
an “ad-hoc” group, the ring, to sign a message such that the signer’s identity
remains secret, yet everyone can verify that the message has been signed by
someone in the ring. In this sense, anonymous signatures are an attenuation of
ring signatures, because for anonymous schemes the signer’s identity only re-
mains undisclosed as long as the parts of the message are unknown. In fact,
this weaker requirement allows us to give a simple and yet general construction
of anonymous signatures, whereas ring signatures typically depend on specific
assumptions (e.g. [7,4]) or are rather feasibility constructions as in [1]. One ad-
vantage of anonymous signatures over ring signature schemes is that anonymity
is not bound to a certain group.

Our approach shows that there are anonymous signature schemes which are
not ring signatures. Given the complete message m one can easily “peel off” the
mask Ext(m) in our construction and figure out the signer’s identity by checking
the validity with respect to the keys. It remains an interesting open problem if

34 M. Fischlin

there is a general and efficient transformation from anonymous signatures to ring
signatures (by that we refer to a transformation which does not involve general
non-interactive zero-knowledge proofs as in [1]).

Organization. In Section 2 we introduce the notions of unforgeability and
anonymity of signature schemes. In Section 3 we present the construction of the
hash function and extractor pairs. In Section 4 we prove our derived anonymous
signature scheme to be secure.

2 Preliminaries

For an algorithm A we write x ← A(y) for a (possibly random) output x of A
for input y. Likewise, x ← X for a set X denotes a uniformly chosen element x
from X , and with x ← X (y) we refer to x sampled according to distribution X
(parameterized by input y). To make the random coins in probabilistic processes
more specific we sometimes write x ← A(y; ω) for the output of algorithm A on
input y for random coins ω. We say that an algorithm or a distribution is efficient
if it runs in polynomial time in its input length (and, unless stated differently,
we assume that efficient algorithms are probabilistic).

Signature Schemes. A signature scheme S = (SKGen, Sig, SVf) consists of
efficient algorithms such that SKGen on input 1n generates a key pair (sk, pk) ←
SKGen(1n), algorithm Sig for input sk and a message m ∈ {0, 1}∗ outputs a
signature σ ← Sig(sk, m), and algorithm SVf for input pk, m and σ returns a
decision bit d ← SVf(pk, m, σ). Furthermore, for all security parameters n ∈ N,
all keys (sk, pk) ← SKGen(1n), all messages m ∈ {0, 1}∗ and all signatures σ ←
Sig(sk, m) it holds SVf(pk, m, σ) = 1.

A signature scheme S is existentially unforgeable under adaptively chosen-
message attacks (or, for short, unforgeable) if for any efficient algorithm A the
probability for (sk, pk) ← SKGen(1n) and (m∗, σ∗) ← ASig(sk,·)(pk) such that
SVf(pk, m∗, σ∗) = 1 and m∗ is not among the queries to oracle Sig(sk, ·), is
negligible (as a function of n). We say that S is strongly unforgeable if we relax the
requirement on the adversarial output (m∗, σ∗), such that SVf(pk, m∗, σ∗) = 1
and m∗ has never been answered with σ∗ by oracle Sig(sk, ·), i.e., the message m∗

may have been signed by Sig(sk, ·) previously but then the adversarial signature
σ∗ must be new.

Anonymous Signatures. For anonymity we adopt the strongest notion given
by Yang et al. [9], called anonymity under chosen-message attacks. This no-
tion basically says that no efficient algorithm D should be able to distinguish
whether a message m (generated secretly according to a distribution M) has
been signed with secret key sk0 or sk1. This should even hold if D gets to learn
other signatures for chosen messages. See [9] for a discussion of this notion.

In comparison to the original definition we consider here the most simple
case of two users and public keys, respectively, among which D must distinguish
(instead of polynomially many users). Security for the case of two users im-
plies anonymity for polynomially many users, because the two “target keys” can

Anonymous Signatures Made Easy 35

always be guessed among the polynomially many keys (with sufficiently large
probability).

In addition, as for ring signatures [1] we also consider the notion of anonymity
with respect to full key exposure where the signer’s identity cannot be determined
even if one knows the signing keys of the two users. This guarantees anonymity
even if the adversary corrupts the users and gets to know the secret key.

Definition 1. A signature scheme S is called signer anonymous under adaptive
chosen-message attacks (or simply anonymous) with respect to distribution M
if for any efficient algorithm D the random variables Expanon,b

S,M,D(n) for b = 0, 1
are computationally indistinguishable:

Experiment Expanon,b
S,M,D(n):

let (sk0, pk0) ← SKGen(1n) and (sk1, pk1) ← SKGen(1n)
sample m ← M(pkb) and compute σ ← Sig(skb, m)
let d ← DSig(sk0,·),Sig(sk1,·)(pk0, pk1, σ)
output d

The scheme is called anonymous with respect to full key exposure if the random
variables are still computationally indistinguishable, even if D gets the secret
keys sk0, sk1 as additional input.

The definition above considers anonymity with respect to designated distribu-
tions M, i.e., the signature scheme itself may depend on the distribution in
question. Such schemes may be sufficient in some settings, but it often seems be
desirable to have schemes which are anonymous with respect to any distributions
from a larger class CM, e.g., including all efficient distributions with non-trivial
entropy. The definition extends straightforwardly to this case by demanding
anonymity with respect to any distribution M from CM. For the constructions
we mostly focus on the case of designated distributions and briefly discuss how
our solutions extend to classes of distributions.

3 Constructing Hash-and-Extractor Combinations

Recall from the introduction that our goal is to design a (probabilistic) random-
ness extractor whose output still looks random, even if one sees an additional
hash value of the extractor’s input. We first recall the two required primitives,
hash functions and randomness extractors. Both algorithms will be randomized
in the sense that they get an auxiliary random input and compute the output
from the input and this random string, and the random string becomes part of
the output (public randomness).

Hash Functions and Extractors. A (probabilistic) hash function H =
(HKGen, H) consists of efficient algorithms such that HKGen on input 1n returns
a key K and H on input a key K and a string x ∈ {0, 1}i(n) picks a random
string r ← {0, 1}t(n) and outputs an image y ← H(K, x; r) (to which one appends
the randomness r). The hash function H is called collision-intractable if for any

36 M. Fischlin

efficient algorithm C the probability that for K ← HKGen(1n) and (r, x, x′) ←
C(K) it holds x �= x′ but H(K, x; r) = H(K, x′; r), is negligible (as a function of
n). Note that we define such collisions x, x′ with respect to the same random
string r, as required for our applications.

We next define randomness extractors [6,5,8]. Recall that we want to combine
a hash function and an extractor and we therefore extend the basic definition of
extractors and allow the key generation algorithm of the extractor to depend on
hash function keys. Namely, a (strong3) extractor E = (EKGen, Ext) associated
to hash function H consists of two probabilistic algorithms such that EKGen for
input K ← HKGen(1n) returns a random key E ← EKGen(K), and algorithm
Ext for input E and x ∈ {0, 1}i(n) picks a random string u ← {0, 1}d(n) and
outputs an �(n)-bit string e ← Ext(E, x; u) (to which one appends again the
randomness u).

The extractor E (associated to H) is called pseudorandom for distribution X if
the following two random variables (one describing a hash value and the related
extractor output, and the other one a hash value and an independent random
output) are computationally indistinguishable:

– Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u ← {0, 1}d(n) and e ← Ext(E, x; u). Output the tuple (K, r||y, E, u||e).

– Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u ← {0, 1}d(n) and v ← {0, 1}�(n). Output the tuple (K, r||y, E, u||v).

In the literature it is usually assumed that the extractor’s output is sta-
tistically close to uniform. For our purpose it suffices that the output cannot
be efficiently distinguished from random. This also requires a form of non-
triviality of the distribution X , usually demanding that the min-entropy H∞(X)
= minx −(logProb[X (1n) = x]) of X is super-logarithmic (so called well-spread
distributions). We also note that we get the regular definition of extractors by
setting K = 1n and letting H(K, x; r) and r be the empty strings. In this case we
drop the addendum “associated to H” and simply speak of regular extractors.

Instantiations. As for the existence of such extractors we give two exam-
ples. Assume that we work in the random oracle model, for random function
H : {0, 1}∗ → {0, 1}�(n). Define H(0, ·) as the collision-intractable hash func-
tion. Then it is easy to see that Ext(·) = H(1, ·) is a (deterministic) extractor
(associated to H(0, ·)) which is pseudorandom for any fixed well-spread distri-
bution X . This is so because the super-logarithmic min-entropy of X prevents
a distinguisher to query H(0, ·) or H(1, ·) about a randomly sampled and secret
pre-image x, except with negligible probability, making the hash values indepen-
dent and uniformly distributed.

To get a solution in the standard model, which is only slightly less efficient,
assume that we have a 2-value perfectly one-way hash function (with public ran-
domness) [2,3], i.e., where hash value pairs (H(K, x; r), H(K, x; r′)) of the same
3 The term “strong” typically refers to extractors that give the auxiliary random input

as part of the output. Since this is always the case here we usually do not mention
this explicitly.

Anonymous Signatures Made Easy 37

pre-image x are indistinguishable from hash value pairs (H(K, x; r), H(K, x′; r′))
of independent pre-images x, x′. Formally, a perfectly one-way hash function
(with respect to distribution X) is a probabilistic collision-resistant hash func-
tion H such that the following random variables are computationally indistin-
guishable:

– Let K ← HKGen(1n), x ← X (1n) and r, r′ ← {0, 1}t(n). Compute y ←
H(K, x; r) and y′ ← H(K, x; r′). Output the tuple (K, r, r′, y, y′).

– Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Compute y ←
H(K, x; r) and y′ ← H(K, x′; r′). Output the tuple (K, r, r′, y, y′).

Very efficient perfectly one-way hash functions (for any fixed well-spread distri-
bution X) can be derived from any regular collision-resistant hash function [3].

The perfectly one-way hash function basically allows us to compute two hashes
of the same input but such the hash values appear to originate from independent
inputs. Hence, if we now take the first hash value for the signing process and
apply a regular extractor Ereg to the second hash value, the result will almost
look as if we have run both algorithms on independent inputs.

On a technical side, we note that the regular extractor Ereg (not associated
to a hash function) gets as input a hash value sampled according to the distri-
bution which picks x ← X (1n), K ← HKGen(1n) and r ← {0, 1}t(n) and which
returns H(K, x; r). We denote this distribution by H(X), and we say that such
an extractor is pseudorandom with respect to H(X) if the extractor’s output is
indistinguishable from random, even when given K and r in clear.

We remark that the distribution H(X) “essentially preserves” the entropy of
the input distribution X . That is, if X is well-spread and efficient, then with over-
whelming probability over the choice K ← HKGen(1n) and r ← {0, 1}t(n), the
min-entropy of H(K, X (1n); r) remains super-logarithmically. Else, for a random
input key K, sampling r ← {0, 1}t(n) and x, x′ ← X (1n) would yield a non-trivial
collision with noticeable probability (i.e., because of the min-entropy of X the
values x, x′ will be different with overwhelming probability, whereas the hash
values collide with noticeable probability by presumption about the entropy loss
of H). The entropy of H(X) can be determined explicitly in terms of the entropy
of X and the “entropy loss” of H. In particular, if we use the construction of H
via regular collision-resistant hash functions [3] then a (fixed) min-entropy λ(n)
of X yields a distribution H(X) with min-entropy at least λ(n)/6 + 3.

Recall that we usually consider an extractor Ereg as the composition of a sta-
tistical randomness extractors, producing output which is statistically close to
the uniform distribution, and a cryptographically-secure pseudorandom genera-
tor G. Note that the pseudorandom generator G needs to be able to stretch the
short random input of, say, super-logarithmically many bits, into a pseudoran-
dom output of polynomially many bits. Whether G achieves such an expansion
factor or not depends on the concrete implementation. But we can safely assume
for any pseudorandom generator that, if G takes nc inputs bits (for some con-
stant c > 0), it can stretch this input to any output of polynomial size. Thus,
using the [3] perfectly one-way hash function, we get a secure construction if the
starting distribution has min-entropy Ω(nc). Below, however, we still state our

38 M. Fischlin

result in its general form, assuming that we have a good extractor with respect
to the distribution H(X).

Construction 1. Let H be a hash function and Ereg be a regular extractor
(for distribution H(X)). Define extractor E = (EKGen, Ext) associated to H as
follows:

– The key generator EKGen on input K generates Ereg ← EKGenreg(1n) and
outputs E ← (Ereg, K).

– The extraction procedure Ext on input E, x ∈ {0, 1}i(n) and u = r||ureg ∈
{0, 1}t(n)+d(n) computes e ← Extreg(Ereg, H(K, x; r); ureg) and outputs e.

We next prove that the derived extractor is pseudorandom:

Proposition 1. Let H be a perfectly one-way hash function (for distribution
X) and Ereg be a pseudorandom extractor (for distribution H(X)). Then E in
Construction 1 is an extractor associated to H which is pseudorandom (with
respect to distribution X).

Proof. Consider the random variable

Let K ← HKGen(1n), x ← X (1n) and r, r′ ← {0, 1}t(n). Let Ereg ←
EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r) and ereg ←
Extreg(Ereg, H(K, x; r′); ureg). Output (K, r||y, (K, Ereg), r′||ureg||ereg).

which describes the output of our extractor E for a random sample x (together
with the additional hash value). By the computational indistinguishability of the
perfectly one-way hash function this variable is indistinguishable from the follow-
ing random variable, where we pick an independent input x′ for the “extractor’s
hash value”:

Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Let Ereg ←
EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r) as well as
ereg ← Extreg(Ereg, H(K, x′; r′); ureg).Output (K, r||y, (K, Ereg), r′||ureg||ereg).

It next follows from the pseudorandomness of the extractor Ereg that the previ-
ous random variable with independent inputs x, x′ is indistinguishable from the
following random variable, where we replace the extractor’s output by a random
value:

LetK ← HKGen(1n),x ← X (1n), r, r′ ← {0, 1}t(n) andEreg ← EKGenreg(1n).
Pickureg ← {0, 1}d(n) aswell as vreg ← {0, 1}�(n). Compute y ← H(K, x; r).
Output (K, r||y, (K, Ereg), r′||ureg||vreg).

The indistinguishability of this final variable from the starting case proves the
claim. ��

Our extractors so far work for specific distributions H(X). In particular, they de-
pend (only) on the knowledge of the min-entropy of distribution H(X). Hence,
such extractors also work with classes CH(X) of distributions, as long as any
such distribution H(X) ∈ CH(X) obeys a fixed lower bound λ(n) on the

Anonymous Signatures Made Easy 39

min-entropy (e.g., λ(n) = ω(log n) if one assumes a strong pseudorandom genera-
tor G, or λ(n) = nc for some constant c > 0 if we assume standard pseudorandom
generators).

4 Constructing Anonymous Signatures

With the primitives of the previous section we can now give the formal descrip-
tion of our transformation from any regular signature scheme to an anonymous
one. We assume without loss of generality that the signature size is bounded by
some publicly known polynomial �(n) (such a bound exists by the limited running
time of the signature algorithms), and that the extractor Ext(E, m; u) produces
�(n)-bit outputs e. Below, if we mask the signature σ with e it is understood
that the signature is padded with zeros if necessary, i.e., σ ⊕ e = (σ||0�−|σ|) ⊕ e.

Note that our construction of the extractor (associated to a hash function)
requires that the message has some fixed input length i(n) (which nonetheless
can depend on the security parameter). We therefore assume that messages to
be signed have exactly i(n) bits, and that the distribution M itself is defined
over such bit strings. This requirement can be implemented by hashing longer
messages first with some collision-intractable hash function. Accordingly, we have
to consider the distribution of hashed messages then (which, by the collision-
intractability, is also well-spread if the original message distribution is).

Construction 2. Let S be a signature scheme, let H be a hash function and E
be an extractor (associated to H). Define the following signature scheme S′ =
(SKGen′, Sig′, SVf′):

– The key generation algorithm SKGen′(1n) runs SKGen(1n) to get a key pair
(sk, pk). It also runs HKGen(1n) to generate a key K for the hash function,
as well as a key E ← EKGen(K) for the extractor. It outputs sk′ ← (sk, K, E)
and pk′ ← (pk, K, E).

– The signing algorithm Sig′(sk, m) samples r ← {0, 1}t(n) and u ← {0, 1}d(n),
computes a signature σ ← Sig(sk, H(K, m; r)) as well as τ ← σ⊕Ext(E, m; u)
and finally outputs σ′ ← τ ||r||u.

– The verification algorithm SVf′(pk′, m, σ′) for σ′ = τ ||r||u first computes
σ ← τ ⊕ Ext(E, m; u) and then outputs SVf(pk, H(K, m; r), σ).

Proposition 2. Let S be an unforgeable signature scheme, let H be a collision-
intractable hash function and E be an extractor (associated to H). Then S′ in
Construction 2 is an unforgeable signature scheme.

Note that we do not need to assume that E is a good extractor for proving
unforgeability. This property will only be required for the anonymity proof.

Proof. We show that we can transform any forger A′ on the derived scheme
S′ into one on the original scheme, essentially preserving the running time and
success probability of A′. We assume without loss of generality that A′ always
outputs a new message m∗ in the forgery attempt (i.e., such that m∗ has never
been signed by the signing oracle before).

40 M. Fischlin

For transforming the attacker A′ into one for the underlying signature scheme
we let ASig(sk,·)(pk) run a black-box simulation of A′ for input pk′ = (pk, K, E)
where keys K and E are generated by A by running HKGen(1n) and EKGen(K).
Then, A simulates the signing oracle Sig′ for A′ as follows:

Each time A′ submits a message m ∈ {0, 1}i(n) to its (putative) sign-
ing oracle attacker A first picks r ← {0, 1}t(n) and u ← {0, 1}d(n) and
forwards H(K, m; r) to its oracle Sig to get a signature σ. Algorithm A
next computes τ ← σ ⊕ Ext(E, m; u) and σ′ ← τ ||r||u and returns σ′ on
behalf of Sig′ to attacker A′.

When A′ eventually outputs a forgery attempt (m∗, τ∗||r∗||u∗) we let A compute
σ∗ ← τ∗ ⊕ Ext(E, m∗; u∗) and let it return (H(K, m∗; r∗), σ∗).

It is easy to see that the simulation above perfectly mimics an actual attack.
Hence, in the simulation above A′ outputs a successful forgery with the same
probability as in an attack on the derived scheme. By the collision-intractability
of H we can also conclude that, with overwhelming probability, H(K, m∗; r∗) is
different from all hash values that A has passed to its oracle Sig previously (else,
since m∗ is different from all previously signed messages, it would be straightfor-
ward to derive a successful collision-finder against the hash function). It follows
that, if A′ produces a successful forgery against the derived scheme with no-
ticeable probability, then so does A in the attack on the underlying signature
scheme. ��

Theorem 3. Let S be a signature scheme, let H be a hash function and E be an
extractor (associated to H) which is pseudorandom with respect to distribution
M. Then S′ in Construction 2 is an anonymous signature scheme (with respect
to M). It is even anonymous with respect to full key exposure.

Here we merely require that the extractor is pseudorandom; the original signa-
ture scheme and the hash function only need to be efficient. This fact also shows
anonymity against full key exposure.

Proof. Fix an arbitrary attacker D against the (basic) anonymity property and
some distribution M. We need to show that the outputs of the random variables
Expanon,b

S′,M,D(n) for b = 0, 1 are indistinguishable. In the sequel we also fix the
bit b.

In experiment Expanon,b
S′,M,D(n) we now change the way the challenge signature

for m ← M(pkb) is computed as follows. As before we sample r ← {0, 1}t(n)

and u ← {0, 1}d(n) and compute a signature σ ← Sig(sk, H(K, m; r)). But now
we let τ ← σ ⊕ v for an independent random value v, instead of computing
τ ← σ ⊕ Ext(E, m; u) as before. We output σ′ ← τ ||r||u for the modified value
τ . We denote this experiment by Expmod-anon,b

S′,M,D (n).
It follows from the pseudorandomness of the extractor (associated to H) that

the way we compute the signature in the modified experiment cannot change the
output behavior of experiment Expanon,b

S′,M,D(n) noticeably. Else it would be easy
to construct an algorithm Bb (with b hardwired into its description) which gets

Anonymous Signatures Made Easy 41

(K, r||y, E, u||v) for v = Ext(E, m; u) or random v as input, and which success-
fully distinguishes these two cases (by simulating D in experiment Expanon,b

S′,M,D(n)
for fixed bit b and using the given values to prepare the challenge signature).
Hence, Expanon,b

S′,M,D(n) and Expmod-anon,b
S′,M,D (n) are computationally indistinguish-

able for both b = 0, 1.
But in experiment Expmod-anon,b

S′,M,D (n) the signature τ ||r||u for τ ← σ⊕v is now
independently distributed of σ and it follows that the output Expmod-anon,b

S′,M,D (n)
for both b = 0, 1 is identical. In conclusion, the random variables Expanon,0

S′,M,D(n)
and Expanon,1

S′,M,D(n) must be computationally indistinguishable.
Note that the proof still works if D knows the signing keys since we merely

need the pseudorandomness of the extractor. This shows that the scheme remains
anonymous with respect to full key exposure. ��

Some remarks follow. First, note that our proof actually shows that signatures in
our scheme are pseudorandom, even when knowing the signing keys. Clearly, such
pseudorandom signatures imply anonymity (with respect to full key exposure),
because it is hard to tell such signatures apart from random strings.

Second, we can modify our signature scheme to get a strongly unforgeable
scheme, given that the starting scheme is strongly unforgeable. To this end we
let the signature algorithm sign H(K, m; r)||r||u instead of the hash value only.
It follows similarly to the unforgeability proof above that the scheme is strongly
unforgeable.

As a proof outline of the strong unforgeability of our modified scheme, as-
sume that the adversary outputs a valid forgery (m∗, τ∗||r∗||u∗) such that the
values (m∗, r∗, u∗) have never appeared before. Then this would contradict the
unforgeability of the original signature scheme. Assume, on the other hand, that
such values have appeared before (in which case there is a unique signature reply
τ ||r∗||u∗ in which they appear, with overwhelming probability over the random
choices of r, u in the signing process). This implies that the adversary has only
modified τ to a different τ∗. But then the validity of the forgery attempt would
imply that σ∗ ← τ∗⊕Ext(E, m∗; u∗) is different from σ in the original signature,
and that this value σ∗ together with “message” H(K, m∗; r∗)||r∗||u∗ contradicts
the strong unforgeability of the underlying scheme. And this modified scheme is
still anonymous with respect to full key exposure.

Third, we finally notice that our result extends to classes CM of message
distributions, if the underlying extractor is pseudorandom with respect to this
class. Hence, we get a provably secure construction assuming that CM only
contains distributions of min-entropy at least λ(n), where the fixed bound λ(n)
depends on the extractor in question (see Section 3).

References

1. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures: Stronger
Definitions, and Constructions Without Random Oracles. Theory of Cryptography
Conference (TCC) 2006, Volume 3876 of Lecture Notes in Computer Science, pages
60–79. Springer-Verlag, 2006.

42 M. Fischlin

2. Ran Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All
Partial Information. Advances in Cryptology — Crypto’97, Volume 1294 of Lecture
Notes in Computer Science, pages 455–469. Springer-Verlag, 1997.

3. Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly One-Way Proba-
bilistic Hash Functions. Proceedings of the Annual Symposium on the Theory of
Computing (STOC)’98, pages 131–140. ACM Press, 1998.

4. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
Identification in Ad Hoc Groups. Advances in Cryptology — Eurocrypt 2004, Vol-
ume 3027 of Lecture Notes in Computer Science, pages 609–626. Springer-Verlag,
2004.

5. Noam Nisan and Amnon Ta-Shma. Extracting Randomness: A Survey and New
Constructions. Journal of Computer and System Science, 58(1):148–173, 1999.

6. Noam Nisan and David Zuckerman. Randomness is Linear in Space. Journal of
Computer and System Science, 52(1):43–52, 1996.

7. Ronald Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. Advances in
Cryptology — Asiacrypt 2001, Volume 2248 of Lecture Notes in Computer Science,
pages 552–565. Springer-Verlag, 2001.

8. Ronen Shaltiel. Recent Developments in Extractors — a Survey. Bulletin of the
European Association for Theoretical Computer Science, 77:67–95, 2002.

9. Guomin Yang, Duncan Wong, Xiaotie Deng, and Huaxiong Wang. Anonymous
Signature Schemes. Public-Key Cryptography (PKC) 2006, Volume 3958 of Lecture
Notes in Computer Science, pages 347–363. Springer-Verlag, 2006.

	Introduction
	Preliminaries
	Constructing Hash-and-Extractor Combinations
	Constructing Anonymous Signatures

