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Preface

The 10th International Conference on Theory and Practice of Public-Key Cryp-
tography (PKC 2007) was held at Tsinghua University in Beijing, China, April
16–20, 2007. PKC is the premier international conference dedicated to cryptology
focusing on all aspects of public-key cryptography. The event is sponsored by the
International Association of Cryptologic Research (IACR), and this year it was
also sponsored by the National Natural Science Foundation of China (NSFC)
and Tsinghua University.

The conference received 118 submissions, and the Program Committee se-
lected 29 of these for presentation. The Program Committee worked very hard
to evaluate the papers with respect to quality, originality, and relevance to public-
key cryptography. Each paper was anonymously reviewed by at least three Pro-
gram Committee members.

Extended abstracts of the revised versions of the accepted papers are in
these proceedings. The program also included three invited lectures by Rafail
Ostrovsky with UCLA, USA, Shige Peng with Shandong University, China and
Adi Shamir with the Weizmann Institute of Science, Israel. Two papers regarding
the invited lectures are included in these proceedings. The PKC 2007 Program
Committee had the pleasure of awarding this year’s PKC best paper award to
Xavier Boyen and Brent Waters for their paper, entitled “Full-Domain Subgroup
Hiding and Constant-Size Group Signatures.”

We are extremely grateful to the Program Committee members for their
enormous investment of time and effort in the difficult and delicate process of
review and selection. We gratefully acknowledge the help of a large number of
external reviewers who reviewed submissions in their area of expertise. We also
thank the PKC Steering Committee for their support.

Electronic submissions were made possible by the Web Review system, iChair,
developed by Thomas Baignéres and Matthieu Finiasz at EPFL, LASEC. We
would like to thank Thomas Baignéres and Matthieu Finiasz for their great
support.

We deeply thank Andrew C. Yao, the General Chair, for his effort in orga-
nizing and making this conference possible. The great scientist was the source
of the success of PKC 2007.

We are grateful to all the Organizing Committee members for their volunteer
work. In addition, we would like to thank Wei Yu for his enormous support in
installing and operating the iChair system in the review process and editing of
these proceedings.

We wish to thank all the authors, for submitting papers, and the authors of
accepted papers for their cooperation.

February 2007 Tatsuaki Okamoto
Xiaoyun Wang
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Full-Domain Subgroup Hiding and

Constant-Size Group Signatures

Xavier Boyen1 and Brent Waters2,�

1 Voltage Inc., Palo Alto
xb@boyen.org

2 SRI International
bwaters@csl.sri.com

Abstract. We give a short constant-size group signature scheme, which
we prove fully secure under reasonable assumptions in bilinear groups, in
the standard model. We achieve this result by using a new NIZK proof
technique, related to the BGN cryptosystem and the GOS proof system,
but that allows us to hide integers from the full domain rather than
individual bits.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [19], allow any mem-
ber of a certain group to sign a message on behalf of the group, but the signer
remains anonymous within the group. However, in certain extenuating circum-
stances an authority will have the ability to revoke the anonymity of a signer
and trace the signature. One of the primary motivating use scenarios of group
signatures is in anonymous attestation, which has practical applications such
as in building Trusted Platform Modules (TPMs). Group signatures have also
attracted much attention in the research community where several constructions
have been proposed [1,2,3,5,6,9,12,13,14,15,16,25,27,29].

The most efficient group signature constructions given only have a proof of
security in the random oracles model and either are based on the Strong-RSA
assumption in Zn [2,3,16] or use bilinear groups [9,11,17]. Solutions in the stan-
dard model can be derived from general assumptions as first shown by Bellare
et. al. [5].

Recently, two efficient group signature schemes were respectively proposed
both by Boyen and Waters [13] and Ateniese et al. [1] that did not use random
oracles. The two solutions took different approaches and have different features.

The Boyen-Waters construction used a two-level hierarchical signature, where
the first level corresponds to the signer’s identity and the second level is the
message to be signed. The scheme hides the actual identity in the first level by
using bilinear groups of composite order and applying a mechanism from the
recent Non-Interactive Zero-Knowledge (NIZK) result of Groth, Ostrovsky, and
� Supported by NSF CNS-0524252 and the US Army Research Office under the Cy-

berTA Grant No. W911NF-06-1-0316.

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 1–15, 2007.
c© International Association for Cryptologic Research 2007



2 X. Boyen and B. Waters

Sahai [23]. The two drawbacks of the Boyen-Waters result are that the number
of group elements in the signature are logarithmic in the number of signers in the
group and that the anonymity property is only secure against chosen-plaintext
attacks, as opposed to chosen-ciphertext attacks. The need for a logarithmic
number of group elements results from the fact that a signer must prove that
the blinded first level identity was computed correctly. The authors needed to
use the model for CPA attacks because the tracing authority used the knowledge
of the factorization of the order to trace members.

The Ateniese et. al. scheme works in asymmetric bilinear groups. Their scheme
has signatures with a constant number of group elements and has chosen-
ciphertext security. However, its proofs of security rely on interactive assump-
tions where the adversary has access to an oracle; therefore, these assumptions
are inherently non-falsifiable [28]. In addition, the scheme has the drawback
that if a user’s private key is compromised then it can be used to revoke the
anonymity of that user’s past signatures. Although, it should be pointed out
that some schemes have used this property as an advantage in Verifier-Local
Group signatures [11].

Groth [21] also gave a recent group signature scheme that was proven CCA-
secure in the standard model under the decisional Linear assumption [9]. Signa-
tures in his scheme technically consist of a constant number of group elements,
however, as noted by the author the constant is too large for real systems and in
practice his constant will be much more than lg(n) for any reasonable number
of n signers. The result does though, give a feasibility result under a relatively
mild assumption.

In this paper we give a new construction of a group signature scheme that ad-
dresses some of the drawbacks of the Boyen-Waters [13] solution. Following their
scheme we use a two-level hierarchical signature as the basis for our signatures,
where the first level specifies the identity. However, we use a new signature on
the first level based off an assumption related to Strong Diffie-Hellman (SDH) [8]
that we call the Hidden Strong Diffie-Hellman, which like SDH and Strong-RSA
has the property that the adversary has flexibility in what he is allowed to return
to the challenger. The signature has the property that if the signer gives a signa-
ture on an arbitrary group element this can be used to break our assumption. We
provide efficient proofs of well-formmess that use techniques beyond those given
in [23], including proofs of encrypted Diffie-Hellman tuples. One disadvantage of
this approach is that it uses a stronger assumption for unforgeability than CDH,
which was used in the Boyen-Waters [13] scheme. However, we emphasize that
this assumption is falsifiable.

2 Preliminaries

We review a number of useful notions from the recent literature on pairing-based
cryptography, which we shall need in later sections. First, we briefly review the
properties that constitute a group signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the
word “group” by default assumes its algebraic meaning, except in contexts such
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as “group signature” and “group manager” where it designates a collection of
users. There should be no ambiguity from context.

2.1 Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

– A group setup algorithm, Setup, that takes as input a security parameter 1λ

(in unary) and the size of the group, 2k, and outputs a public key PK for
verifying signatures, a master key MK for enrolling group members, and a
tracing key TK for identifying signers.

– An enrollment algorithm, Enroll, that takes the master key MK and an
identity ID, and outputs a unique identifier sID and a private signing key KID

which is to be given to the user.
– A signing algorithm, Sign, that takes a group member’s private signing key

KID and a message M , and outputs a signature σ.
– A (usually deterministic) verification algorithm, Verify, that takes a message

M , a signature σ, and a group verification key PK, and outputs either valid
or invalid.

– A (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature σ and a tracing key TK, and outputs an identifier sID or the failure
symbol ⊥.

There are four types of entities one must consider:

– The group master, which sets up the group and issues private keys to the
users. Often, the group master is an ephemeral entity, and the master key
MK is destroyed once the group is set up. Alternatively, techniques from dis-
tributed cryptography can be used to realize the group master functionality
without any real party becoming in possession of the master key.

– The group manager, which is given the ability to identify signers using the
tracing key TK, but not to enroll users or create new signing keys.

– Regular member users, or signers, which are each given a distinct private
signing key KID.

– Outsiders, or verifiers, who can only verify signatures using the public key
PK.

We require the following correctness and security properties.
Consistency. The consistency requirements are such that, whenever, (for a group
of 2k users)

(PK, MK, TK) ← Setup(1λ, 2k),

(sID, KID) ← Enroll(MK, ID), σ ← Sign(KID, M),

we have, (except with negligible probability over the random bits used in Verify
and Trace)

Verify(M, σ, PK) = valid, and Trace(σ, TK) = sID.

The unique identifier sID can be used to assist in determining the user ID from
the transcript of the Enroll algorithm; sID may but need not be disclosed to the
user; it may be the same as ID.
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Security. Bellare, Micciancio, and Warinschi [5] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are:

Full Anonymity which requires that no PPT adversary be able to decide (with
non-negligible probability over one half) whether a challenge signature σ on
a message M emanates from user ID1 or ID2, where ID1, ID2, and M are
chosen by the adversary. In the original definition of [5], the adversary is given
access to a tracing oracle, which it may query before and after being given
the challenge σ, much in the fashion of IND-CCA2 security for encryption.

Boneh, Boyen, and Shacham [9] relax this definition by withholding access
to the tracing oracle, thus mirroring the notion of IND-CPA security for
encryption. We follow [9] and speak of CCA2-full anonymity and CPA-full
anonymity for the respective notions.

Full Traceability which requires that no coalition of users be able to generate,
in polynomial time, a signature that passes the Verify algorithm but fails to
trace to a member of the coalition under the Trace algorithm. According to
this notion, the adversary is allowed to ask for the private keys of any user
of its choice, adaptively, and is also given the secret key TK to be used for
tracing—but of course not the enrollment master key MK.

It is noted in [5] that this property implies that of exculpability [4], which
is the requirement that no party should be able to frame a honest group
member as the signer of a signature he did not make, not even the group
manager. However, the model of [5] does not consider the possibility of a
(long-lived) group master, which leaves it as a potential framer. To address
this problem and achieve the notion of strong exculpability, introduced in [2]
and formalized in [26,6], one would need an interactive enrollment protocol,
call Join, at the end of which only the user himself knows his full private
key; the same mechanism may also enable concurrent dynamic group enroll-
ment [6,27].

We refer the reader mainly to [5] for more precise definitions of these and related
notions.

2.2 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an empha-
sis on groups of composite order which will be used in most of our constructions.
We follow [10] in which composite order bilinear groups were first introduced in
cryptography.

Consider two finite cyclic groups G and GT having the same order n, in
which the respective group operation is efficiently computable and denoted
multiplicatively. Assume that there exists an efficiently computable function
e : G × G → GT , called a bilinear map or pairing, with the following properties:

– (Bilinearity) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product
in the exponent is defined modulo n;
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– (Non-degeneracy) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

If such a bilinear map can be computed efficiently, the group G is called a
bilinear group. We remark that the vast majority of cryptosystems based on
pairings assume for simplicity that bilinear groups have prime order. In our
case, it is important that the pairing be defined over a group G containing
|G| = n elements, where n = pq has a (ostensibly hidden) factorization in two
large primes, p �= q.

2.3 Complexity Assumptions

We make use of a few complexity assumptions: computational Diffie-Hellman
(CDH) in the prime-order bilinear subgroup Gp, Subgroup Decision in the group
G of composite order n = pq, and a new assumption in Gp related to Strong
Diffie-Hellman (SDH) that we call HSDH.

CDH in Bilinear Groups. The CDH assumption states that there is no proba-
bilistic polynomial time (PPT) algorithm that, given a triple (g, ga, gb) ∈ G3

p for
random exponents a, b ∈ Zp, computes gab ∈ Gp with non-negligible probability.
Because of the pairing, CDH in Gp implies a “Gap DH” assumption [24] and
should not be confused with the vanilla CDH assumption in usual non-pairing
groups. It is also subsumed by the HSDH assumption we describe later.

The Subgroup Decision Assumption. Our second tool is the Subgroup Decision
assumption introduced in [10]. It combines features of bilinear pairings with the
hardness of factoring, which is the reason for working with bilinear groups of
composite order.

Informally, the Subgroup Decision assumption posits that for a bilinear group
G of composite order n = pq, the uniform distribution on G is computationally
indistinguishable from the uniform distribution on a subgroup of G (say, Gq, the
subgroup of order q). The precise definition is based on the subgroup decision
problem, which we now define.

Consider an “instance generator” algorithm GG that, on input a security pa-
rameter 1λ, outputs a tuple (p, q, G, GT , e), in which p and q are independent
uniform random λ-bit primes, G and GT are cyclic groups of order n = pq with
efficiently computable group operations (over their respective elements, which
must have a polynomial size representation in λ), and e : G × G → GT is a
bilinear map. Let Gq ⊂ G denote the subgroup of G of order q. The subgroup
decision problem is:

On input a tuple (n = pq, G, GT , e) derived from a random execution of
GG(1λ), and an element w selected at random either from G or from Gq,
decide whether w ∈ Gq.

The advantage of an algorithm A solving the subgroup decision problem is de-
fined as A’s excess probability, beyond 1

2 , of outputting the correct solution. The
probability is defined over the random choice of instance and the random bits
used by A.
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The HSDH Assumption. Last, we need to introduce a new assumption we call
Hidden SDH by analogy to the SDH assumption [8] from which it descends. We
present it in the next section.

3 The Hidden Strong Diffie-Hellman Assumption

We introduce a new assumption in the prime-order bilinear group Gp. It is a
variant of the Strong Diffie-Hellman (SDH) assumption proposed in [8]. It is
slightly stronger, but retains the attributes of the original assumption of being
non-interactive, falsifiable, and provably true in the generic bilinear group model.

The Strong Diffie-Hellman assumption in bilinear groups states that there is
no probabilistic polynomial time (PPT) adversary that, given a (� + 1)-tuple
(g, gω, gω2

, . . . , gω�

) ∈ G�+1
p for a random exponent ω ∈ Z

∗
p, outputs a pair

(c, g1/(ω+c)) ∈ Z
∗
p × Gp with non-negligible probability. (The parameter � is

defined externally.) What makes the SDH assumption useful is that it implies
the hardness of the following problem:

On input two generators g, gω ∈ Gp, and �−1 distinct pairs (ci, g
1/(ω+ci))

∈ Z
∗
p × Gp, output an additional pair (c, g1/(ω+c)) ∈ Z

∗
p × Gp such that

c �= ci for all i = 1, . . . , � − 1.

This argument was used by Boneh and Boyen [8] as the basis of their secure signa-
ture constructions. In particular, Boneh and Boyen’s primordial “weakly secure
signature” on a message c is nothing more than the group element g1/(ω+c).
Much of their paper is concerned with securing these signatures against adaptive
chosen message attacks, but for our purposes this is unnecessary.

However, an inherent trait of the general notion of signature is that verification
requires knowledge of the message. Since in our group signature the first-level
“message” is the identity of the user, we would like to keep it as hidden as
possible, since at the end of the day we need to blind it. To facilitate this task,
we build a modified version of the Boneh-Boyen “weak signature” above that
does not require knowledge of c in order to verify. It is based on the Hidden
SDH assumption, a straightforward extension to the SDH assumption where the
“message” c is not given in the clear.

The Hidden Strong Diffie-Hellman Problem. We first define the �-HSDH problem
as follows:

On input three generators g, h, gω ∈ Gp, and � − 1 distinct triples
(g1/(ω+ci), gci, hci) ∈ G3

p where ci ∈ Zp, output another such triple
(g1/(ω+c), gc, hc) ∈ G3

p distinct of all the others.

Observe that the well-formedness of a triple (A, B, C) = (g1/(ω+c), gc, hc)
can be ascertained without knowing c by verifying that e(A, gωB) = e(g, g)
and that e(B, h) = e(C, g). In these verifications, the Diffie-Hellman relationship
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(g, h, gc, hc) serves as a discrete-log NIZK proof of knowledge of c. Notice that
contrary to the SDH problem statement [8], here we allow c or some ci to be
zero.

We define the advantage of an HSDH adversary A as its probability of out-
putting a valid triple. The probability is taken over the random choice of instance
and the random bits used by A.

Definition 1. We say that the �-HSDH assumption holds in a family of prime
order bilinear groups generated by GG, if there is no PPT algorithm that,
for sufficiently large λ ∈ N, solves the HSDH problem in the bilinear group
(p, Gp, e) ← GG(1λ) with non-negligible probability. Here, � may be either an
explicit parameter to the assumption, or some polynomially bounded function of
the security parameter λ.

It is easy to see that for any � ≥ 1, hardness of the �-HSDH problem implies
hardness of the �-SDH problem in the same group, which itself requires the CDH
problem to be hard in that group. To bolster our confidence in the new com-
plexity assumption, we can prove an Ω(

√
p/�) lower bound on the complexity

of solving the HSDH problem in generic bilinear groups, provided that � < 3
√

p.
Notice that HSDH does not rely on the composite order n, so the generic group
model can apply. The proof will appear in the full paper.

4 Anonymous Hierarchical Signatures

As our first step toward short group signatures, we build a hierarchical signature
with the signer identity at the first level and the message being signed at the
second level, such that the whole signature can be verified without revealing the
identity.

In a hierarchical signature, a message is a tuple comprising several atomic
message components. The crucial property is that a signature on a message
(m1, . . . , mi), also acts as a restricted private key that enables the signing of any
message extension (m1, . . . , mi, . . . , mj) of which the original message is a prefix.
In some schemes, the hierarchy has a maximum depth d, in which case we must
have i ≤ j ≤ d. Here, we shall only consider 2-level hierarchical signatures, in
which the first level is concerned with user identities, and the second level with
messages proper. Notice that 2-level hierarchical signatures and identity-based
signatures are equivalent notions: the identity-based key is just a fancy name for
a signature on a first-level atomic component.

We use the HSDH assumption to construct a short two-level hierarchical sig-
nature that can be verified without knowing the user identity at the first level.
Our construction makes a hybrid of two schemes, one at each level.

First Level. At the first level, we devise a variant of the “primary” determinis-
tic Boneh-Boyen signatures from [8, §3.2]. Recall that Boneh-Boyen signatures
are constructed in two stages, beginning with a primary “weak” deterministic
signature, which is subsequently hardened with a sprinkle of randomness. The
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primary signature is weaker for the reason that in the forgery game, the oppo-
nent must submit all the signing queries up front, rather than adaptively as in
the full Boneh-Boyen signature.

In the context of group signatures, this up-front attack model is perfectly ad-
equate for signatures on user identities, since, in group signatures, user identities
are not subject to adaptive attacks. Indeed, since there are only polynomially
users in a group, their identities can be assigned from a polynomially sized set
of integers. Furthermore, these unique identifiers can all be selected in advance
by the group manager, and assigned to the users as they enroll in the system.

We shall make one modification to the primary Boneh-Boyen signatures. The
modification will allow them to be verifiable without knowledge of the user iden-
tity. This is where our new HSDH assumption will come into play.

Second Level. At the second level, where the actual messages are signed, we can
work with any secure signature scheme that can be meshed into an upward hi-
erarchy. Hierarchical identity-based encryption schemes with “adaptive-identity
security” make good candidates, since we can turn them into signatures schemes
that are existentially unforgeable against adaptive chosen message attacks. We
shall use a signature based on Waters’ IBE scheme [30] for this purpose.

4.1 Hybrid Scheme

Let thus λ be the security parameter. User identities will be modeled as integers
taken from a (non-public) polynomially sized random set {s1, . . . , s2k} ⊂ Zp

where k = O(log(λ)). For convenience, we use sequential identifiers ID =
1, . . . , 2k to index the hidden identities sID, which are kept secret. Messages
will be taken as binary strings of fixed length m = O(λ). In the description that
follows, g is a generator of the prime order subgroup Gp; therefore all group
elements in the basic hierarchical signature scheme will have prime order p in G
and GT .

Setup(1λ): To setup the system, first, secret integers α, ω ∈ Zp are chosen
at random, from which the values Ω = gω and A = e(g, g)α are calculated.
Next, two integers y, z′ ∈ Zp and a vector z = (z1, . . . , zm) ∈ Z

m
p are selected

at random. The public parameters and master key are

PP =
(

g, Ω = gω, u = gy, v′ = gz′
, v1 = gz1 , . . . , vm = gzm , A = e(g, g)α

)

∈ Gm+5 × GT

MK =
(

ω, gα, s1 , . . . , s2k

)
∈ Zp × G × Z

2k

p

The public parameters, PP, also implicitly include k, m, and a description
of (p, G, GT , e). The master key, MK, is assumed to contain the secret list of
user identities, {s1, . . . , s2k} ⊂ Zp.

Extract(PP, MK, ID): To create a private key for the identity sID associated with
the user of index 1 ≤ ID ≤ 2k, return

KID =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3
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Sign(PP, KID, M): To sign a message represented as a bit string M = (μ1 . . . μm)
∈ {0, 1}m, using a private key KID = (K1, K2, K3) ∈ G3, select a random
s ∈ Zp, and output

S =
(

K1, K2, K3 · (v′
m∏

j=1

v
μj

j

)s
, g−s

)
∈ G4

Verify(PP, M, σ): To verify that a signature S = (S1, S2, S3, S4) ∈ G4 is valid
for a message M = (μ1 . . . μm) ∈ {0, 1}m, check whether

e
(

S1 , S2 Ω
) ?= A and e

(
S2 , u

) ?= e
(

S3 , g
) · e( S4 , v′

m∏

j=1

v
μj

j

)

It the equality holds, output valid; otherwise, output invalid.
Notice that in this case we did not verify the signer’s identity, ID, only

the message, M . However, signatures remain linkable because S2 and S3 are
invariant for the same user.

4.2 Existential Unforgeability

The hybrid scheme is existentially unforgeable against adaptive chosen message
attacks, and is anonymous at the first level. We shall now state and prove the
unforgeability property, which will be needed later on when building group sig-
natures.

Theorem 1. Consider an adversary A that existentially forges the hybrid two-
level signature scheme in an adaptive chosen message attack. Assume that A
makes no more that �−1  p signature queries and produces a successful forgery
with probability ε in time t. Then there exists an algorithm B that solves the �-
HSDH problem with probability ε̃ ≈ ε/(4m�2) in time t̃ ≈ t.

The proof of this theorem uses a two-prong strategy, one for each level. At the
first level, we give a reduction based on the �-HSDH assumption, where � = 2k

is the number of secret user identities in the master key list (or the number that
we have actually used). At the second level, we construct a reduction from the
CDH assumption in the bilinear group Gp, but since CDH is implied by HSDH,
we get a single reduction from HSDH for both levels at once. All reductions are
in the standard model.

Proof. The proof may be found in the full paper.

5 Constant-Size Group Signatures

We now describe the actual group signature scheme, based on the hierarchical
signature scheme above. It is obtained from by obfuscating the user identity, and
replacing it by a NIZK proof of it being well formed. We also need to incorporate
a tracing mechanism, which is achieved by using a trapdoor into the NIZK proof.
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5.1 Related Schemes

The group signature we describe invites comparison with two earlier schemes that
also feature compact signatures and provable security without random oracles.
One of the earlier schemes is due to Boyen and Waters [12,13], the other to
Ateniese et al. [1].

The key difference with the earlier Boyen-Waters group signature scheme
[12,13], is that the earlier scheme relied on an all-purpose bit hiding technique due
to Groth, Ostrovsky, and Sahai [23] to conceal the user identity. Unfortunately,
each bit had to supply its own NIZK proof in the final signature, which resulted
in a logarithmic-size group signature. The present scheme manages to give a sin-
gle short proof for the entire identity at once. This makes the resulting signature
much shorter, comprising only a small, constant number of group elements.

One of the main differences with the Ateniese et al. [1] scheme, is that the
latter relied on very strong, interactive complexity assumptions in order to im-
plement the corresponding NIZK proofs. The present scheme is simpler, and
arguably rests on firmer ground.

5.2 Core Construction

The group signature scheme is described by the following algorithms.

Setup(1λ): The input is a security parameter in unary, 1λ. Suppose we wish to
support up to 2k signers in the group, and sign messages in {0, 1}m, where
k = O(λ) and m = O(λ).

The setup algorithm first chooses n = pq where p and q are random
primes of bit size �log2 p�, �log2 q� = Θ(λ) > k. From this, it builds a cyclic
bilinear group G of order n. Denote by Gp and Gq the cyclic subgroups of
G of respective order p and q. The algorithm also selects a generator g of G
and a generator h of Gq. Next, the algorithm picks two random exponents
α, ω ∈ Zn, and defines A = e(g, g)α ∈ GT and Ω = gω ∈ G. Finally, it draws
m + 2 random generators, u, v′, v1, . . . , vm ∈ G.

The public information consists of the bilinear group, (n, G, GT , e), and
the public values,

PP =
(

g, h, u, v′, v1, . . . , vm, Ω = gω, A = e(g, g)α
)

∈ G × Gq × Gm+3 × GT

The master enrollment key, MK, and the group manager’s tracing key, TK,
are, respectively,

MK =
(

gα, ω
) ∈ G × Zn TK = q ∈ Z

Enroll(PP, MK, ID): Suppose we wish to create a signing key for user ID, where
0 ≤ ID < 2k < p. Upon enrollment in the group, the user is assigned a secret
unique value sID ∈ Zn, to be later used for tracing purposes. This value
must be chosen so that ω + sID lies in Z

×
n , the multiplicative group modulo
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n. Based on the hidden identity sID, the signing key to be given to the user
is constructed as,

KID = (K1, K2, K3) =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3

Here, K1 is essentially a deterministic Boneh-Boyen signature on sID, which
is not disclosed. Rather, K2 and K3 provide a NIZK proof of knowledge of
sID by the issuing authority. There is also a supplemental constant exponent
α that will matter at the second level. The newly enrolled user may verify
that the key is well formed by checking that (cfr. Section 4),

e(K1, K2 Ω) ?= A and e(K2, u) ?= e(K3, g).

Sign(PP, ID, KID, M): To sign a message M = (μ1 . . . μm) ∈ {0, 1}m, a user with
a signing key KID proceeds as follows.

First, KID is used to create a two-level hybrid signature with the message
M at the second level. To do so, the user chooses a random s ∈ Zn and
computes the (randomized but unblinded) hybrid signature,

θ = (θ1, θ2, θ3, θ4) =

(

K1, K2, K3 ·
(
v′

m∏

i=1

vμi

i

)s

, g−s

)

Notice that this initial signature satisfies the regular verification equations:
e(θ1, θ2 Ω) = A, and e(θ2, u) = e(θ3, g) · e(θ4, v

′ ∏m
i=1 vμi

i ).
Next, θ must be turned into a blinded signature that is both verifiable and

traceable, but remains unlinkable and anonymous to anyone who lacks the
tracing key. To proceed, the signer picks four random exponents t1, t2, t3, t4 ∈
Zn and sets,

σ1 = θ1 · ht1 , σ2 = θ2 · ht2 , σ3 = θ3 · ht3 , σ4 = θ4 · ht4 .

Additionally, it computes the two group elements,

π1 = ht1t2 · (θ1)t2 · (θ2 Ω
)t1

, π2 = ut2 · g−t3 ·
(
v′

m∏

i=1

vμi

i

)t4
.

The final signature is output as:

σ =
(
σ1, σ2, σ3, σ4, π1, π2

) ∈ G6.

Verify(PP, M, σ): To validate a group signature σ on a message M , the verifier
first calculates,

T1 = A−1 · e(σ1, σ2 Ω), T2 = e(σ2, u) · e(σ3, g)−1 · e(σ4, v
′

m∏

i=1

vμi

i )−1.

Then it checks whether,

T1
?= e(h, π1), T2

?= e(h, π2).
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If both equalities hold, the verifier outputs valid; otherwise, it outputs
invalid.

These tests show that (σ1, σ2, σ3, σ4) is a valid 2-level hybrid signature
once the random blinding factors are removed; the extra elements (π1, π2)
serve to convince the verifier that the blinding factors were affixed correctly.

Trace(PP, TK, σ): Let σ = (. . . , σ2, . . .) be a signature assumed to pass the
verification test for some message M , which will not be needed here. To
recover the identity of the signer, the tracing authority first calculates (σ2)q

using the tracing key TK. Then, for each auspicious identity IDi, it tests
whether,

(σ2)q ?= (gsIDi )q.

The tracer outputs the recovered identity, ID = IDi, upon satisfaction of the
above equation.

Remark that tracing can be done in constant time — the time to compute
(σ2)q — with the help of a lookup table of associations (gsIDi )q �→ IDi for all
users in the group. Since the value (gsIDi )q can be calculated once and for all
for each user IDi, for instance upon a user’s initial enrollment, the amortized
cost of tracing is indeed essentially constant.

Next we state the security properties of our constant-size group signature scheme.

5.3 Full Anonymity (Under CPA Attack)

We prove the security of our group signature scheme in the anonymity game
against chosen plaintext attacks. First, we show that an adversary cannot tell
whether h is a random generator of Gq or G. Next, we show that if h is chosen
from G then the identity of a signer is perfectly hidden, in the information
theoretic sense.

Theorem 2. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least εsd. Then for every t′-time adversary A where t′ ≈ t
we have that AdvA < 2 εsd.

Proof. We use a game switching argument where Γ0 is the real group signature
anonymity game, and Γ1 is a game in which the public parameters are the same
as in the original game except that h is chosen randomly from G instead of Gq.
We denote the adversary’s advantage in the original game by AdvA, and in the
modified game by AdvA,Γ1 .

First, in Lemma 1, we show that the two games are essentially indistinguish-
able, unless the Decision Subgroup assumption is easy. Second, in lemma 2, we
use an information-theoretic argument to prove that in the game Γ1 the adver-
sary’s advantage must be zero. The theorem follows from these results.

Lemma 1. For all t′-time adversaries as above, AdvA − AdvA,Γ1 < 2 εsd.
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Lemma 2. For any algorithm A, we have that AdvA,Γ1 = 0.

Proof. The proofs of these two lemmas are given in the full paper.

5.4 Full Traceability

We reduce the full traceability of the group signature scheme to the existential
unforgeability of the underlying hybrid signature construction of Section 4.

Theorem 3. If there is a (t, ε) adversary for the full traceability game against
the group signature scheme, then there exists a (t̃, ε) adaptive chosen message
existential unforgeability adversary against the two-level hybrid signature scheme,
where t ≈ t̃.

Proof. We prove this theorem in the full paper.

6 CCA-Security

In the introduction we stated that the two primary drawbacks of the scheme
of Boyen and Waters [12,13] are that the signature grew logarithmically with
the number of signers and that the scheme was not CCA secure. In this work
we addressed the first limitation (furthermore in a practical way), but left the
second one open. Here we explain some of the challenges in achieving CCA
security while using the subgroup paradigm for proofs.

In both this paper and the Boneh-Waters scheme the authority uses knowl-
edge of the factorization of the group order in order to trace. In order to
achieve CCA security we will clearly need to take a different approach since
all known CCA proof techniques depend upon a simulation knowing partial de-
cryption information (e.g. consider the two key paradigm of Dolev, Dwork and
Naor [20]).

One tempting direction is to provably encrypt (in a simulation sound man-
ner) the identity of the signer in a CCA-secure cryptosystems derived from one
of the recent bilinear map-based IBE systems of Boneh and Boyen [7] com-
bined with the techniques of Canetti, Halevi, and Katz [18]. Then we could
allow the tracer to have the decryption key for this system, but not know the
group’s factorization. However, there is one large problem with this technique.
The subgroup-based NIZK techniques only prove soundness in one subgroup. It
is easy to see that a corrupt signer can provably encrypt his identity and then
randomize the encryption in the other subgroup. Since the decryption authority
will not know the factorization, his view of the identity will be indistinguish-
able from random. Therefore, it seems more complex techniques are necessary
to achieve CCA-security will using subgroup based proofs. This might also be
an argument for basing future group signature schemes on proof systems [22]
derived from the decisional Linear assumption [9].



14 X. Boyen and B. Waters

References

1. Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Proceedings of
Crypto 2000, volume 1880 of Lecture Notes in Computer Science, pages 255–70.
Springer-Verlag, 2000.

3. Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient revocation of
group signatures. In Proceedings of Financial Cryptography 2002, 2002.

4. Giuseppe Ateniese and Gene Tsudik. Some open issues and directions in group
signatures. In Proceedings of Financial Cryptography 1999, volume 1648 of Lecture
Notes in Computer Science, pages 196–211. Springer-Verlag, 1999.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Advances in Cryptology—EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 614–29. Springer-Verlag, 2003.

6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Proceedings of CT-RSA 2005, Lecture Notes in
Computer Science, pages 136–153. Springer-Verlag, 2005.

7. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Advances in Cryptology—EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 223–38. Springer-Verlag,
2004.

8. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-
puter Science, pages 56–73. Springer-Verlag, 2004.

9. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Ad-
vances in Cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 41–55. Springer-Verlag, 2004.

10. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Proceedings of TCC 2005, Lecture Notes in Computer Science. Springer-
Verlag, 2005.

11. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Proceedings of ACM CCS 2004, pages 168–77. ACM Press, 2004.

12. Xavier Boyen and Brent Waters. Compact group signatures without random ora-
cles. Cryptology ePrint Archive, Report 2005/381, 2005.
http://eprint.iacr.org/.

13. Xavier Boyen and Brent Waters. Compact group signatures without random or-
acles. In Advances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture
Notes in Computer Science, pages 427–444. Springer-Verlag, 2006.

14. Jan Camenisch. Efficient and generalized group signatures. In Advances in
Cryptology—EUROCRYPT 1997, Lecture Notes in Computer Science, pages 465–
479. Springer-Verlag, 1997.

15. Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new the-
oretical aspects. In Proceedings of SCN 2004, pages 120–133, 2004.

16. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In Advances in Cryptology—
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 61–76.
Springer-Verlag, 2002.

http://eprint.iacr.org/
http://eprint.iacr.org/


Full-Domain Subgroup Hiding and Constant-Size Group Signatures 15

17. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology—CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

18. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Advances in Cryptology—EUROCRYPT 2004.
Springer-Verlag, 2004.

19. David Chaum and Eugène van Heyst. Group signatures. In Advances in
Cryptology—EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Sci-
ence, pages 257–65. Springer-Verlag, 1991.

20. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In Proceedings of STOC 1991, pages 542–552, 1991.

21. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In Proceedings of ASIACRYPT 2006, Lecture Notes in
Computer Science, pages 444–459. Springer-Verlag, 2006.

22. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new
techniques for NIZK. In Advances in Cryptology—CRYPTO 2006, Lecture Notes
in Computer Science. Springer-Verlag, 2006.

23. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in
Computer Science. Springer-Verlag, 2006.

24. Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from com-
putational Diffie-Hellman in cryptographic groups. Journal of Cryptology, 16(4),
2003.

25. Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor trac-
ing schemes. In Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in
Computer Science, pages 630–48. Springer-Verlag, 2003.

26. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, efficient
constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/.

27. Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In
Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science,
pages 198–214. Springer-Verlag, 2005.

28. Moni Naor. On cryptographic assumptions and challenges. In Advances in
Cryptology—CRYPTO 2003, Lecture Notes in Computer Science, pages 96–109.
Springer-Verlag, 2003.

29. Dawn Xiaodong Song. Practical forward secure group signature schemes. In ACM
Conference on Computer and Communications Security—CCS 2001, pages 225–
234, 2001.

30. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

http://eprint.iacr.org/


A Direct Anonymous Attestation Scheme for Embedded
Devices

He Ge1,� and Stephen R. Tate2

1 Microsoft Corporation, One Microsoft Way, Redmond 98005
hege@microsoft.com

2 Department of Computer Science and Engineering
University of North Texas, Denton, TX 76203

srt@cse.unt.edu

Abstract. Direct anonymous attestation (DAA) is an anonymous authentication
scheme adopted by the Trusted Computing Group in its specifications for trusted
computing platforms. This paper presents an efficient construction that imple-
ments all anonymous authentication features specified in DAA, including authen-
tication with total anonymity, authentication with variable anonymity, and rogue
TPM tagging. The current DAA construction is mainly targeted for powerful de-
vices such as personal computers, and their corresponding application areas, but
is not entirely suitable for embedded devices with limited computing capabili-
ties (e.g., cell phones or hand-held PDAs). We propose a new construction with
more efficient sign and verify protocols, making it more attractive for embedded
devices. We prove that the new construction is secure under the strong RSA as-
sumption and the decisional Diffie-Hellman assumption.

Keywords: Direct Anonymous Attestation, Group signature, Privacy, Authenti-
cation, Trusted Computing Platform, Cryptographic Protocol.

1 Introduction

In this paper, we present an efficient direct anonymous attestation scheme for embed-
ded devices. DAA is a group signature variant designed to protect the privacy of the
owner of a trust computing platform, and has been adopted by the Trusted Computing
Group, an industry consortium developing standards for “trusted computing platforms.”
A group signature is a privacy-preserving signature scheme introduced by Chaum and
Heyst [12]. In such a scheme, there are two basic types of entities: a group manager and
certain number of group members. The group manager issues a group membership cer-
tificate/credential for each group member. Later, based on its own group membership
certificate, a group member can sign a message on behalf of the group without revealing
its identity. That is, a third party can only verify that the signature was produced by a le-
gitimate group member without being able to find which particular one. Only the group
manager is able to open a signature and reveal its originator (in some cases this ability
is held by a separate party known as an “open authority”). In addition, signatures signed
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by the same group member cannot be identified as from the same source, i.e., “linked.”
Recently, the study of group signature schemes has attracted considerable attention, and
many solutions have been proposed in the literature (e.g., [1,4,5,7,8,9]).

1.1 Background

The Trusted Computing Group [21] (TCG) is an industry consortium formed to de-
velop standards for Trusted Computing Platforms. A trusted computing platform is a
computing device integrated with a cryptographic chip called a trusted platform mod-
ule (TPM), which is designed and manufactured in a way such that all parties can trust
cryptographic computing results from this TPM. Based on the TPM, a trusted comput-
ing platform can implement many security related features, such as secure boot, sealed
storage, and software integrity attestation. More information about TPMs and trusted
computing platforms can be found at the TCG website [21].

TPMs are tamper-resistant cryptographic chips. When a TPM is manufactured, a
unique RSA keypair, called the Endorsement Key (EK), is created and stored in the
protected area of the TPM. The EK might be generated inside a TPM, or imported
from an outside key generator. The public part of the EK is authenticated by the manu-
facturer, while the private part of the EK will never be revealed to the outside. A TPM
independently performs cryptographic computations inside itself, and even its manufac-
turer cannot obtain knowledge of these computations. TPMs are embedded into com-
puting devices by a device manufacturer, and these devices are called trusted computing
platforms when coupled with appropriate software. At the heart of trusted computing
platform is the assumption that TPMs should independently work as expected, and be
“trusted” by remote parties. Essentially, trusted computing platforms are based on trust
of TPMs.

The deployment and use of TPMs introduces privacy concerns. If the authentication
of a TPM is directly based on its EK, all transactions by the same TPM can be linked
through the public part of the EK. Furthermore, if the TPM is associated with a user’s
identity, the user may suffer a loss of privacy. To protect the privacy of a TPM owner,
two solutions have been proposed in the TPM specifications.

Privacy in the TPM v1.1 specification is based on a trusted third party, called a Pri-
vacy CA. A TPM generates a second RSA keypair called an Attestation Identity Key
(AIK). The TPM sends an AIK to the Privacy CA, applying for a certificate on the AIK.
After the TPM proves its ownership using a valid EK, the Privacy CA issues a certifi-
cate for this AIK. Later, the TPM sends the certificate for this AIK to a verifier, and
proves it owns this AIK. This way, the TPM hides its identity during the transaction.
Obviously, this is not a completely satisfactory solution, since each AIK creation needs
the involvement of the Privacy CA, and compromise of the Privacy CA (or a dishonest
Privacy CA) can destroy all privacy guarantees.

An alternate solution added in TPM v1.2 is called Direct Anonymous Attestation
(DAA), adopting techniques from group signatures: A TPM applies for a credential
from an issuer, and later the TPM generates a special signature using this creden-
tial. A remote verifier can verify the signature has been constructed from a valid cre-
dential without the ability to recover the underlying credential. Different signatures
based on the same credential might be linkable or unlinkable depending on a verifier’s
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requirements. If the method implements unlinkable authentication, it is called total
anonymity. It should be noted that the open operation defined in standard group sig-
nature schemes, which allows the group manager to learn the creator of a signature, is
not included in DAA for privacy protection.

Variable anonymity [22] is a conditionally linkable anonymous authentication, in
which the signatures signed by the same TPM in a certain time interval are linkable.
However, when the signing parameters change, the signatures across the different pe-
riods cannot be linked. When the time interval becomes short, the method works like
perfectly unlinkable authentication. When the period never expires, this leads to pseudo-
anonymity. A verifier can adjust the time interval to detect suspicious attestation. If too
many attestation requests come from the same TPM in a period of time, it is likely this
TPM has been compromised.

Rogue TPM tagging is about the revocation of the key of a corrupted TPM. When a
broken TPM is discovered and identified by its EK, its secrets will be published on the
revocation list. A verifier can identify and exclude any rogue TPM on the list, and an
issuer can refuse to issue new credentials to a TPM with a revoked EK.

The current solution for DAA is due to Brickell, Camenisch, and Chen [6], which
we refer to as the BCC scheme in this paper. The BCC scheme is designed mainly for
devices with powerful computing capabilities such as personal computers. The scheme
is quite complex with high computing overhead. To expedite the authentication process,
the computation has been distributed between a TPM and the host into which the TPM
is embedded. The TPM finishes the computation related to the signature generation,
while the host finishes the computation related to anonymity. The BCC scheme works
fine with personal computers. However, it would be an expensive solution for devices
with low computing capabilities, such as cell phones, hand-held PDA, etc.

1.2 Our Results

In this paper, we propose a new construction that can carry out all required features
in DAA (total anonymity, variable anonymity, and rouge TPM tagging), and has much
more efficient sign and verify protocols.

Our construction is built up from the group signature scheme due to Camenisch and
Michels [8], which we will refer to as the CM scheme. We directly adopt their join
protocol. However, our sign and verify protocols are totally different. We have devised
an efficient way to carry out anonymous authentication with much less computation.
So far we are not aware of any similar method being adopted in other cryptographic
constructions for anonymous authentication. Due to the simplicity and efficiency of
our method, the new construction is more appealing for embedded devices with low
computing capability. We will demonstrate this point in Section 4.6 when we present a
performance analysis.

However, we also need to point out that the join protocol, which we directly adopt
from the CM scheme, is not an efficient one. Furthermore, the security argument for the
join protocol assumes a static adversary, while the counterpart in the BCC scheme can
be proved secure under an adaptive adversary. However, we consider this to be a minor
issue in real applications. The join protocol is the way a TPM obtains its anonymous
certificate/credential. In practice, the join protocol normally is conducted in the system
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setup stage, and is run infrequently in later phases. Meanwhile, the join protocol gen-
erally should be completed in more strict environments with rigorous security require-
ments, so security under static attack should be reasonable and acceptable. Furthermore,
the join protocol may not be the only option for certificate generation. In some appli-
cations, certificates could be produced at manufacturing time, just as the endorsement
key (EK) is. In such a situation, the join protocol might not even be necessary.

The rest of this paper is organized as follows. The next section introduces the model
for our construction. Section 3 reviews some definitions, cryptographic assumptions,
and building blocks of our proposed scheme. Section 4 presents the proposed scheme.
Security properties are considered in Section 5. Finally, we summarize and give con-
clusions in Section 6.

2 The Model

This section introduces the model for direct anonymous attestation, which is a variant of
the group signature model [1]. Both these two models support procedures Setup, Join,
Sign, and Verify, while DAA further supports mechanism such as variable linkability
and rogue group member identification, i.e., rogue TPM tagging.

Definition 1. Direct anonymous attestation is a digital signature scheme with two types
of participants: the certificate issuer, and TPMs. It consists of the following procedures:

– Setup: For a given security parameter σ, the issuer produces system-wide public
parameters and a group master key for group membership certificate generation.

– Join: An interactive protocol between a TPM and the issuer. The TPM obtains a
group membership certificate to become a group member. The public certificate and
the TPM’s identity information are stored by the issuer in a database for future use.

– Sign: Using its group membership certificate and private key, the TPM creates an
anonymous group signature for a message.

– Verify: A signature is verified to make sure it originates from a legitimate TPM
without knowledge of which particular one.

– Rogue tagging: A rogue TPM can be identified and excluded for the group.

Similar to a group signature, DAA should satisfy the following properties:

– Correctness: Any valid signature can be correctly verified by the Verify protocol.
– Forgery-Resistance: A valid group membership certificate can only be created by

a TPM and the issuer through the Join protocol.
– Anonymity: It is infeasible to identify the real TPM of a signature unless this TPM

is on the revocation list.
– Unlinkability: It is infeasible to link two different signatures of the same TPM.
– Non-framing: No one (including the issuer) can sign a message in such a way that

it appears to come from another TPM.

3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions, and
building blocks that we will use in this paper.
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3.1 Number-Theoretic Assumption

Definition 2 (Special RSA Modulus). An RSA modulus n = pq is called special if
p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗
n be the multiplicative group

modulo n, which contains all positive integers less than n and relatively prime to n.
An element x ∈ Z∗

n is called a quadratic residue if there exists an a ∈ Z∗
n such that

a2 ≡ x (modn). The set of all quadratic residues of Z∗
n forms a cyclic subgroup of

Z∗
n, which we denote by QRn. If n is the product of two distinct primes, then |QRn| =

1
4 |Z∗

n|.
We list two properties about QRn which will be be used in the later security proof.

Property 1. If n is a special RSA modulus, with p, q, p′, and q′ as in Definition 2 above,
then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Property 2. If g is a generator of QRn, then ga mod n is a generator of QRn if and
only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following security assumptions which are
widely accepted in the cryptography literature. (see, for example, [1,2,9,10,15]).

Assumption 1 (Strong RSA Assumption). Let n be an RSA modulus. The Flexible
RSA Problem is the problem of taking a random element u ∈ Z∗

n and finding a pair
(v, e) such that e > 1 and ve = u (modn). The Strong RSA Assumption says that
no probabilistic polynomial time algorithm can solve the flexible RSA problem with
non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption for QRn). Let n be a special
RSA modulus, and let g be a generator of QRn. For two distributions (g, gx, gy, gxy),
(g, gx, gy, gz), x, y, x ∈R Zn, there is no probabilistic polynomial-time algorithm that
distinguishes them with non-negligible probability.

Kiayias et al. have investigated the Decisional Diffie-Hellman Assumption over a subset
of QRn in [17], i.e., x, y, z are randomly chosen from some subsets, truncation of QRn.
They showed that the Decisional Diffie-Hellman Assumption is still attainable over
subsets of QRn with the size down to at least |QRn|1/4.

3.2 Building Blocks

Our main building blocks are statistical honest-verifier zero knowledge proofs of knowl-
edge related to discrete logarithms over QRn [10,11,16]. They include protocols for
things such as knowledge of a discrete logarithm, knowledge of the equality of two
discrete logarithms, and knowledge of a discrete logarithm that lies in certain inter-
val, etc. We introduce one of them here. Readers may refer to the original papers for
more details.
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Definition 4 (Protocol 1). Let n be a special RSA modulus, QRn be the quadratic
residue group modulo n, and g be a generator of QRn. Let α, l, and lc be security
parameters that are all greater than 1, and let X be a constant number. In the following
protocol, Alice knows x, the discrete logarithm of T1 (so gx ≡ T1(modn)), where
x ∈ [X − 2l, X + 2l]. After the protocol is executed, Bob is convinced that Alice knows
the discrete log x of T1 such that x ∈ [X − 2α(l+lc)+1, X + 2α(l+lc)+1].

1. Alice picks a random t ∈ ±{0, 1}α(l+lc) and computes T2 = gt (mod n). Alice
sends (T1, T2) to a verifier Bob.

2. Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
3. Alice computes

w = t − c(x − X),

which she sends to Bob. Notice that an honest Alice knows a value of x ∈ [X −
2l, X + 2l], so given the range in which t and c were selected, an honest Alice
will produce a w that satisfies w ∈ [−2α(l+lc)+1, 2α(l+lc)+1] (actually in a slightly
smaller interval than this, but this is a sufficiently tight bound for our purposes).

4. Bob checks that w ∈ [−2α(l+lc)+1, 2α(l+lc)+1] and

gw−cXT c
1 ≡ T2 (mod n).

If both tests pass, then Bob is convinced that Alice knows the discrete logarithm of
T1 and that it lies in the range [X − 2α(l+lc)+1, X + 2α(l+lc)+1].

Remark 1. The parameter α > 1 is used since we do not know the size of the group
QRn, and determines the statistical closeness of our actual distribution to the ideal one.
In other words, α determines the statistical zero-knowledge property of this protocol.
For a more in-depth discussion and analysis, we refer the reader to [8].

Remark 2. Using the Fiat-Shamir heuristic [14], the protocol can be turned into a non-
interactive “signature of knowledge,” which is secure in the random oracle model [3].
We will introduce our new signature scheme in the manner of a “signature of knowl-
edge” in the next section.

4 The Direct Anonymous Attestation Scheme

In this section, we describe our method for implementing direct anonymous attestation.
As mentioned earlier, our construction is based on the same group certificate as the CM
scheme [8]. However, the sign and verify protocols are re-designed.

4.1 System Parameter Setting

The certificate issuer picks a security parameter σ, and generates the system parameters
as follows:

– n, g: n is a special RSA modulus such that n = pq, where p and q are each at least
σ bits long (so p, q > 2σ), and p = 2p′ + 1, and q = 2q′ + 1, with p′ and q′

both being prime. g is a random generator of the cyclic group QRn. n, g are public
values while p and q are kept secret by the group manager.
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– α, lc, ls, lb: Security parameters that are greater than 1.
– X, Y : constant integers. Y > 2α(lc+lb)+1, and X > 2Y + 2α(ls+lc)+2.
– Two strong collision-resistant hash functions: H1 : {0, 1}∗ → Z∗

n, and H2 :
{0, 1}∗ → {0, 1}lc.

An illustration of the system parameters is the setting of σ = 1024 (so n is 2048
bits), α = 9/8, X = 2792 (99 bytes), Y = 2520 (65 bytes), ls = 540, lb = 300, and
lc = 160.

4.2 Join Protocol

We adopt the same join protocol as in the CM group signature. A TPM obtains its group
membership certificate as a keypair (E, s), such that s is prime, s ∈ (X, X + 2ls), and

Es ≡ g (mod n).

s is the TPM’s private key and is kept secret by the TPM. For further details on how the
join protocol works, see [8].

4.3 Authentication with Total Anonymity

The idea of our method for implementing authentication with total anonymity is as
follows: the TPM picks a random blinding integer b < s, computes T1 = Eb =
gs−1b (mod n), T2 = gb (mod n). Then the TPM sends (T1, T2) to a verifier along
with a proof that (T1, T2) is constructed from a legitimate keypair. Thus, a TPM’s key-
pair is covered by this blinding integer b. The requirement for b < s is important, which
will be seen more clearly in the later security proof.

This method is very different from the one used in many group signature schemes
(e.g., [1,6,8]). In those schemes, a group member basically adopts the ElGamal encryp-
tion to hide its identity [13]. For instance, in the CM group signature, a group member
hide itself by computing

T1 = Eyb (mod n), T2 = gb (mod n),

where y is the group manager’s public key. Afterwards, the task for the group member
is to prove that (T1, T2) was constructed from a legitimate keypair, which is much less
efficient than our method.

Now, we introduce our sign protocol. For a message m, the TPM executes the fol-
lowing steps to complete the sign protocol:

1. Generate a random b ∈R [Y − 2lb , Y + 2lb ], t1 ∈R ±{0, 1}α(ls+lc), t2 ∈R

±{0, 1}α(lb+lc), and compute

T1 = Eb (mod n), T2 = gb (mod n); d1 = T t1
1 (mod n), d2 = gt2 (mod n); .

2. Compute:
c = H2(g||T1||T2||d1||d2||m);

w1 = t1 − c(s − X), w2 = t2 − c(b − Y ).
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3. Output (c, w1, w2, T1, T2).

To verify a signature, the verifier computes

c′ = H2(g||T1||T2||T w1−cX
1 T c

2 ||gw2−cY T c
2 ||m),

and accepts the signature if and only if c = c′, w1 ∈ ±{0, 1}α(ls+lc)+1, and w2 ∈
±{0, 1}α(lb+lc)+1.

4.4 Authentication with Variable Anonymity

To achieve variable anonymity, each signature will belong to a “linkability class” that
is identified using a “linkability class identifier,” or LCID. All signatures made by the
same TPM with the same LCID are linkable, and in an interactive authentication proto-
col the LCID can be negotiated and determined by the TPM and verifier. For example,
to link authentications to a single server over a single day, the LCID could simply be
the server name concatenated with the date. If the same LCID is always used with a
particular server (e.g., the server name), then the result is a pseudo-anonymity system.
If complete anonymity is desired, the signer can simply pick a random LCID (which is
possible if the server is not concerned with linkability and allows arbitrary LCIDs).

The TPM derives a generator j of QRn by hashing the LCID of this signature.

j = (H1(LCID))2 (mod n).

To implement variable anonymity, we add the following computations to the Sign
protocol:

T3 = js (mod n), d3 = jt1 (mod n),

c = H2(g||j||T1||T2||T3||d1||d2||d3||m);

and outputs (c, w1, w2, T1, T2, T3, m). The verifier then computes

c′ = H2(g||j||T1||T2||T3||T w1−cX
1 T c

2 ||gw2−cY T c
2 ||jw1−cXT c

3 ||m).

Since j will remain unchanged for a certain time interval, the same TPM will always
produce the same T3 during this interval. The frequency of T3 will be used by the
verifier to identify suspicious authentication, and may refuse to provide further services.
Since j changes in different periods of time, this ensures the unlinkability of the same
TPM between periods.

4.5 Rogue TPM Tagging

As described earlier, TPMs are manufactured to provide tamper-resistance. Otherwise,
the basic benefits of trusted computing platforms would become meaningless. However,
in extreme circumstances, a TPM may be compromised and its keypair exposed, so a
verifier should be able to identify the attestation request from rogue TPMs. To do so, the
secrets of a corrupted TPM (e.g., EK, E, and s) should be published on the revocation
list. For a keypair (E, s) on the revocation list, a verifier checks

T s
1 =? T2 (mod n).

If the equation holds, the request comes from a revoked TPM.
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4.6 Performance Analysis

We present a performance analysis of our scheme in the section. It can be observed
that the computation complexity in our scheme is dominated by the modular squaring
and multiplication operations. To estimate the computation cost, it is sufficient to count
total modular squarings and multiplications in the protocol. For simplicity, we estimate
the computation cost based on techniques for general exponentiation [19]. For a par-
ticular exponentiation operation, let m1 be the bit length of the exponent, and m2 be
the number of 1’s in the binary representation. Then the total computation cost can be
estimated as m1 squarings and m2 multiplications. For example, if y = gx (mod n),
and x ∈R {0, 1}160, then the expected number of 1’s in x is 80, so the total expected
computation includes 160 squarings and 80 multiplications.

Suppose we set σ = 1024, so n is 2048 bits (p, q are 1024 bits). We further choose
α = 9/8, lc = 160, ls = 540, lb = 300. We also set X = 2792 (99 bytes), Y =
2520 (65 bytes). This parameter setting conforms to the requirements of the decisional
Diffie-Hellman assumption over the subset of QRn. We can observe that most bits
of s, b are 0’s. The computation with exponent b has 520 squarings and 151 expected
multiplications. For authentication with total anonymity, a TPM needs 2352 (520×3+
792) squarings, and 958 (151 × 2 + 520/2 + 792/2) multiplications.

We have counted the total exponent bit-length in the BCC scheme, which is 25844
for authentication with total anonymity. However, due to the computation distribution
between the TPM and its host, efficient algorithm for mult-based exponentiation can
be used on the host part (Algorithm 15.2 in [18]). According to our counting result,
in the BCC scheme, the total exponent bit-length for the TPM is around 4088, and
12098 for the host. So the total exponent bit-length is 16186 (4088 + 12098), which
includes 16186 squarings and 8093 expected multiplications. If we assume the cost of
squaring is equal to that of multiplication (squaring can be at most two times faster
than multiplication), our scheme is about 7 (24279/3310) times faster than the BCC
scheme. Even if we only consider the computation inside the TPM, our scheme is al-
most 2 (6132/3310) times faster than the BCC scheme. For variable anonymity, our
scheme needs 5561 modular multiplications, which still can be carried out by the TPM
alone.

It should be noticed that the computation can also be distributed in our scheme.
T1, T2, d2, w2 can be calculated by the host, and T3, d1, d3, w1 must be computed inside
the TPM. Generally speaking, this should be unnecessary since all the computation can
be done by the TPM alone.

Without the distribution of computation, the system design can be greatly simpli-
fied. Thus, our method is more appropriate for mobile devices with low computing
capabilities.

5 Security Properties

We first propose a lemma that deals with the valid range of system parameters.

Lemma 1. If X > 2α(ls+lc)+2, α, ls, lc > 1, then (X−2α(ls+lc)+1)2 > X+2α(ls+lc)+1.
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Proof.

(X − 2α(ls+lc)+1)2 − (X + 2α(ls+lc)+1)

= X2 − X2α(ls+lc)+2 + 22α(ls+lc)+2 − X − 2α(ls+lc)+1

= X(X − 2α(ls+lc)+2 − 1) + 22α(ls+lc)+2 − 2α(ls+lc)+1

Since α, ls, lc > 1, and X > 2α(ls+lc)+2, the equation is greater than 0. ��
Next we introduce an extension version of the lemma due to Shamir [20].

Lemma 2. Let n be a special RSA number. Given values u, v ∈ QRn and x, y ∈ Z
such that GCD(x, y) = r < x, and vx ≡ uy (mod n), there is an efficient way to
compute a value z such that zk ≡ u (mod n), where k = x/r.

Proof. Since GCD(x, y) = r, r < x, using the extended Euclidean GCD algorithm,
we can obtain values α and β such that αx/r + βy/r = 1. Then we have

u ≡ uαx/r+βy/r ≡ uαx/ruyβ/r ≡ uαx/rvβx/r ≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ , we have zk ≡ u (mod n). ��
Based on this lemma, we can immediately obtain a corollary for later proof.

Corollary 1. Let n be a special RSA number. For given values u, v ∈ QRn and x, y ∈
Z such that x > y and vx = uy (mod n), there is an efficient way to compute values
(x, k) such that xk = u (mod n).

Proof. Since x > y, we have GCD(x, y) = r, 1 ≤ r ≤ y < x. Due to Lemma 2, we
can find a pair (x, k) such that

xk ≡ u (mod n),

where k = x/r. Therefore y ≤ k ≤ e. ��
Now, we start addressing the security of our scheme. We need to address the issue of
keypair forgery in case an attacker can obtain a set of legitimate keypairs. A successful
attack is one in which a new keypair is generated that is valid and different from current
keypairs. The following theorem shows that, assuming the strong RSA assumption, it
is intractable for an attacker to forge such a keypair. This analysis assumes a static
adversary, not an adaptive adversary who can adaptively obtain polynomial amount of
keypars at his own choice.

Theorem 1 (Forgery-resistance). If there exists a probabilistic polynomial time algo-
rithm which takes a list of valid keypairs, (E1, s1), (E2, s2), . . . , (Ek, sk) and with non-
negligible probability produces a new valid keypair (E, s) such that Es ≡ g (mod n)
and s �= si for 1 ≤ i ≤ k, then we can solve the flexible RSA problem with non-
negligible probability.
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Proof. Suppose there exists a probabilistic polynomial-time algorithm which computes
a new legitimate keypair based on the available keypairs, and succeeds with some non-
negligible probability p(σ). Then we construct an algorithm for solving the flexible
RSA problem, given a random input (u, n), as follows (the following makes sense as
long as u is a generator of QRn, which is true with non-negligible probability for ran-
dom instances — we consider this more carefully below when analyzing the success
probability of our constructed algorithm):

1. First, we check if GCD(u, n) = 1. If it’s not, then we have one of the factors of n,
and can easily calculate a solution to the flexible RSA problem. Therefore, in the
following we assume that GCD(u, n) = 1, so u ∈ Z∗

n.
2. We pick random prime numbers s1, s2, . . . , sk in the required range s ∈ [X −

2α(ls+lc)+1, X + 2α(ls+lc)+1], and compute

r = s1s2...sk,

g = ur = us1s2...sk (mod n).

Note that since the si values are primes strictly less than either p′ or q′, it must be
the case that GCD(r, |QRn|) = 1, so Property 2 says that g is a generator of QRn

if and only u is a generator of QRn.
3. Next, we create k group keypairs, using the si values and Ei values calculated as

follows:

E1 = us2...sk (mod n)
E2 = us1s3...sk (mod n)

...

Ek = us1s2...sk−1 (mod n)

Note that for all i = 1, . . . , k, raising Ei to the power si “completes the exponent”
in a sense, giving Esi

i = us1s2···sk = ur = g (mod n).
4. We use the assumed forgery algorithm for creating a new valid keypair (E, s),

where s ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], and Es = g = ur (mod n).
5. If the forgery algorithm succeeds, then s will be different from all the si’s. By

Lemma 1, s cannot be the product of si, sj , 1 ≤ i, j ≤ k. Therefore, either
GCD(s, s1s2 · · · sk) = 1, or GCD(s, s1s2 · · · sk) = si, 1 ≤ i ≤ k. In the first
case, due to Lemma 2, we can find a pair (y, s) such that

ys = u (mod n)

so the pair (y, s) is a solution to our flexible RSA problem instance. In the second
case, assume s = v × si, then v < X − 2α(ls+lc)+1, and GCD(v, s1s2 · · · sk) = 1
(or GCD(v, r) = 1). We then have

Es ≡ Evsi ≡ ur (mod n).

Again by Lemma 2, we can find a pair (y, v) such that

yv = u (mod n) ,

so the pair (y, v) is a solution to our flexible RSA problem instance.
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We now analyze the probability that the above algorithm for solving the flexible RSA
problem succeeds. The algorithm succeeds in Step 1 if GCD(u, n) �= 1, so let P1 repre-
sent the probability of this event, which is negligible. When GCD(u, n) = 1, the algo-
rithm succeeds when the following three conditions are satisfied: (1) u ∈ QRn, which
happens with probability 1

4 , (2) u is a generator of QRn, which fails for only a negligi-
ble fraction of elements of QRn, due to Property 1, and (3) the key forgery algorithm
succeeds, which happens with probability p(σ). Putting this together, the probability
that the constructed algorithm succeeds is P1 + (1 − P1)1

4 (1 − negl(σ)) p(σ), which
is non-negligible. ��
In step 5 of the proof about forgery resistance (Theorem 1), we can obtain a corollary
as follows.

Corollary 2. Under the strong RSA assumption, it is intractable to forge a keypair
(E, s) such that s lies in the interval (0, X − 2α(ls+lc)+1) or (X + 2α(ls+lc)+1, (X −
2α(ls+lc)+1)2), and Es = g (mod n).

Proof. In step 5 of the proof for Theorem 1, if s ∈ (0, X − 2α(ls+lc)+1), since all
si ∈ [X −2α(ls+lc)+1, X +2α(ls+lc)+1] are prime, then GCD(s, s1s2 · · · sk) = 1, and
we can solve a flexible RSA problem.

If s ∈ (X + 2α(ls+lc)+1, (X − 2α(ls+lc)+1)2), due to Lemma 1, s can not be the
product of any sisj , i, j < k. Thus the proof is as before to solve a flexible RSA
problem. Therefore, under the strong RSA assumption, we have the corollary as given
above. ��
Now we address the security of the sign and verify protocol.

Theorem 2. Under the strong RSA assumption, the interactive protocol underlying the
Sign and Verify protocol is a statistical zero-knowledge proof in honest-verifier mode
that the TPM holds a keypair (E, s) such that Es ≡ g ( mod n) and s lies in the correct
interval.

Proof. The proofs of completeness and statistical zero-knowledge property (simulator)
follow the standard method. Here we only outline the existence of the knowledge ex-
tractor.

In the sign protocol, the TPM provesT2 ≡gb ( mod n), and b ∈ [Y −2α(lc+lb)+1, Y+
2α(lc+lb)+1]. This is a statistical honest-verifier zero-knowledge protocol that is secure
under the strong RSA assumption. b can be recovered by a knowledge extractor follow-
ing the standard method.

We need to show a knowledge extractor is able to recover the legitimate keypair
once it has found two accepting tuples. Let (T1, T2, d1, c, w1), (T1, T2, d1, c

′, w′
1) be

two accepting tuples. Without loss of generality, we assume c > c′. Then we have

T w1−cX
1 T c

2 ≡ T
w′

1−c′X
1 T c′

2 ≡ d1 (mod n).

It follows that

T
(w′

1−w1)+(c−c′)X
1 ≡ T c−c′

2 ≡ gb(c−c′) (mod n). (1)
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By the system parameter settings, we require X > 2Y + 2α(ls+lc)+2, and Y >
2α(lc+lb)+1. Then we can have

(c − c′)X > (c − c′)(Y + 2α(lc+lb)+1 + 2α(ls+lc)+2).

Since we already have b < Y + 2α(lc+lb)+1, we further obtain

(c − c′)X > (c − c′)(b + 2α(ls+lc)+2).

Since w1, w
′
1 ∈ ±{0, 1}α(ls+lc)+1, w′

1 − w1 is at least −2α(ls+lc)+2. Since c − c′ is at
least 1, we finally have

(w′
1 − w1) + (c − c′)X > b(c − c′).

Due to Corollary 1, we can solve Equation 1 to obtain a pair (E, s) such Es ≡
g (mod n), s ≤ (w′

1 − w1) + (c − c′)X .
In our parameter settings, (w′

1 − w1) + (c − c′)X < (X − 2α(ls+lc)+1)2. Due to
Corollary 2, s must be a legitimate keypair in the correct interval. Therefore, (E, s) is
a valid keypair, which completes the proof. ��
For variable anonymity, (j, T3, d3; T1, T2, d1) are used to prove equality of the discrete
logarithms of T3 with base j, and T2 with base T1. This is also a statistical honest-
verifier zero-knowledge protocol which has been proved secure under the strong RSA
assumption.

Finally, we present a theorem for the unlinkability of a TPM’s signatures.

Theorem 3 (Unlinkability). Under the decisional Diffie-Hellman assumption over
subset of QRn, the protocol implements anonymous authentication such that it is in-
feasible to link the transactions by a TPM with different LCID.

Proof. To decide whether two transactions are linked to a TPM, one needs to decide
whether two equations are produced from the same E.

T1, T2 ≡ gb ≡ T s
1 (mod n)

T ′
1, T ′

2 ≡ gb′ ≡ (T ′
1)

s (mod n)

Since T1, T
′
1 are random generators of QRn, under the DDH assumption it is infea-

sible to decide whether or not there exist an s such that T s
1 ≡ T2, and (T ′

1)
s ≡ T ′

2. The
same argument can be applied to variable anonymity, in which case

T3 ≡ js (mod n), T ′
3 ≡ j′s (mod n)

where j, j′ are two random generators of QRn in different periods of time. ��

6 Conclusion

In this paper, we have presented an efficient direct anonymous attestation scheme for
Trusted Computing Platform. We adopt the same group certificate as the CM group
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signature scheme with new sign and verify protocols. Our construction supports au-
thentication with total anonymity, variable anonymity, and rogue TPM tagging.

Compared to the current construction for DAA (the BCC scheme), our scheme has
more efficient sign and verify protocols, thus all computation can be completed in
the TPM alone, making the computation distribution in the BCC scheme unnecessary.
Therefore, our scheme is more attractive for embedded devices, such as cell phone,
PDA, etc.

Finally, we proved our construction is secure under the strong RSA assumption and
the decisional Diffie-Hellman assumption.
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Abstract. At PKC 2006, Yang, Wong, Deng and Wang proposed the
notion of anonymous signature schemes where signatures do not reveal
the signer’s identity, as long as some parts of the message are unknown.
They also show how to modify the RSA scheme and the Schnorr scheme
to derive anonymous signatures in the random oracle model. Here we
present a general and yet very efficient approach to build such anony-
mous schemes from ordinary signature schemes. When instantiated in
the random oracle model, our solution is essentially as efficient as the
original scheme, whereas our construction also supports an almost as ef-
ficient instantiation in the standard model.

Keywords: Anonymity, perfectly one-way hash function, randomness
extractor, signature scheme.

1 Introduction

In an anonymous signature scheme, introduced by Yang et al. [9], a signature σ
to a message m should hide the identity of a signer. That is, one should not be
able to tell whether σ has been produced by the user with public key pk0 or by
the user with public key pk1. This holds as long there is some hidden residual
randomness in the signed message m, otherwise one can easily check the validity
of m and σ with respect to the public keys.

Yang et al. discuss several applications of anonymous signature schemes such
as authenticated key-transportation with client anonymity and anonymous paper
reviewing. Another example are anonymous auctions where bidders can publish
their bid and sign the bid prepended by some hidden random string, such that
the bidder’s identity remains secret and is only revealed if winning the auction.
Yang et al. also show that well-known signatures schemes like RSA and Schnorr
do not have the anonymity property, yet can be turned into anonymous ones (in
the random oracle model).

Our Results. Here we give a very simple and yet general construction method
for anonymous signatures from arbitrary signature schemes. Depending on the
instantiation of the underlying tools in our transformation we either get an
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anonymous scheme in the random oracle model, which is essentially as efficient
as the original signature scheme, or we get a solution in the standard model with
a marginal loss in efficiency only (assuming the existence of regular collision-
intractable hash functions1).

For the underlying idea suppose for the moment that we have an unforgeable
but identity-revealing signature scheme producing signatures σ of length �. As-
sume further that the unknown message m is distributed uniformly over �-bit
strings. If we now define a modified signature scheme where we let σ′ = σ ⊕ m,
then the new scheme would clearly retain unforgeability. At the same time, sig-
natures should still look random to an attacker who is oblivious about m and
should thus provide anonymity. The fallacy in this argument —in addition to the
overly optimistic assumption about completely random and unknown messages—
is that the original signature value σ itself depends on m and thus σ′ may not
be uniformly distributed anymore.

The solution for the problem with arbitrary message distributions is to use
randomness extractors [6,5,8]. Such extractors gather a sufficient amount of
“smooth” randomness Ext(m) from an input m, as long as the input distribu-
tion has some intrinsic entropy. That is, if sufficiently large parts of the message
are unknown to an attacker, the extracted value Ext(m) still looks like a uni-
formly distributed variable.2 Hence, instead of using the message m to mask the
signature we now add the value Ext(m).

For the second problem, dependencies between the signature of the message
and the extracted randomness, we will introduce special randomness extractors
whose output Ext(m) looks random, even if one sees an additional (possibly
randomized) hash value H(m) of the message m. Given such a “good” hash
function and extractor combination we can compute the signature σ for the
hash value H(m), and then mask this signature with the extracted value Ext(m)
of the original message:

Sig′(sk, m) = Sig(sk, H(m)) ⊕ Ext(m).

We note that, if the hash function or the extractor are randomized, then the
signature will also include the (public) randomness used to evaluate the func-
tions. It is also worth noticing that signatures constructed as above actually
achieve the stronger notion of being pseudorandom, and that this even holds if
an attacker knows the secret signing key.

Instantiations. It remains to specify how to build a “good” hash function and
randomness extractor pair. In the random oracle model this is very easy. Namely,
for a random function H simply define the hash function to be H(0, ·) and the
randomness extractor to be H(1, ·), such that both functions essentially yield

1 A function is regular if any image has the same number of pre-images.
2 In the literature randomness extractors are typically defined to produce an output

that is statistically close to the uniform distribution. Here we merely need the relax-
ation to computational indistinguishability where the output appears to be random
for efficient observers. We will use this algorithmic relaxation throughout the paper.
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independent outputs H(m) = H(0, m) and Ext(m) = H(1, m) for non-trivially
distributed messages m. Note that with this instantiation the derived signature
scheme is basically as efficient as the original scheme.

To get a solution in the standard model we deploy so-called perfectly one-way
hash functions [2,3] where it is infeasible to distinguish between randomized hash
values (H(x; r), H(x; r′)) of the same pre-image x, and hashes (H(x; r), H(x′; r′))
of independent values x, x′. Take the first part of such a pair (H(m; r), H(m; r′))
for our message m as the hash input to the signature scheme, and the second
part of the pair to be the output of our extractor (appropriately modified to
yield pseudorandom outputs). Then the values appear to come from independent
inputs m and m′ and we get the desired computational independence of the two
parts.

Very efficient instantiations of perfectly one-way hash function can de derived,
for example, from regular collision-intractable hash functions, together with uni-
versal hash functions [3]. Namely, the randomized hash evaluation H(m) is de-
scribed by picking an almost universal hash permutation π as public randomness
and outputting h(π(m)) for a regular collision-intractable hash function h. Ac-
cording to our approach this hash function also defines the basic steps of our
extractor, except that we have to produce a pseudorandom output. This addi-
tional property can be accomplished, for instance, by applying another almost
universal hash function ρ to the h(π(m)) portion and by stretching the out-
come with a pseudorandom generator G, i.e., the extractor’s output for public
randomness π, ρ equals Ext(m) = G(ρ(h(π(m)))).

We remark that the informal discussion above hides some technical nuisances.
For instance, if we use the suggested instantiation through the perfectly one-way
hash functions, then the fact that we apply universal hash functions twice and
stretch the final output with a pseudorandom generator, only yields a provably
secure solution if we start with enough hidden entropy in the message. This
entropy bound exceeds the one for the random-oracle based solution, but still
appears to be within reasonable bounds for most applications.

Relationship to Ring Signatures. Ring signatures [7] allow each user from
an “ad-hoc” group, the ring, to sign a message such that the signer’s identity
remains secret, yet everyone can verify that the message has been signed by
someone in the ring. In this sense, anonymous signatures are an attenuation of
ring signatures, because for anonymous schemes the signer’s identity only re-
mains undisclosed as long as the parts of the message are unknown. In fact,
this weaker requirement allows us to give a simple and yet general construction
of anonymous signatures, whereas ring signatures typically depend on specific
assumptions (e.g. [7,4]) or are rather feasibility constructions as in [1]. One ad-
vantage of anonymous signatures over ring signature schemes is that anonymity
is not bound to a certain group.

Our approach shows that there are anonymous signature schemes which are
not ring signatures. Given the complete message m one can easily “peel off” the
mask Ext(m) in our construction and figure out the signer’s identity by checking
the validity with respect to the keys. It remains an interesting open problem if
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there is a general and efficient transformation from anonymous signatures to ring
signatures (by that we refer to a transformation which does not involve general
non-interactive zero-knowledge proofs as in [1]).

Organization. In Section 2 we introduce the notions of unforgeability and
anonymity of signature schemes. In Section 3 we present the construction of the
hash function and extractor pairs. In Section 4 we prove our derived anonymous
signature scheme to be secure.

2 Preliminaries

For an algorithm A we write x ← A(y) for a (possibly random) output x of A
for input y. Likewise, x ← X for a set X denotes a uniformly chosen element x
from X , and with x ← X (y) we refer to x sampled according to distribution X
(parameterized by input y). To make the random coins in probabilistic processes
more specific we sometimes write x ← A(y; ω) for the output of algorithm A on
input y for random coins ω. We say that an algorithm or a distribution is efficient
if it runs in polynomial time in its input length (and, unless stated differently,
we assume that efficient algorithms are probabilistic).

Signature Schemes. A signature scheme S = (SKGen, Sig, SVf) consists of
efficient algorithms such that SKGen on input 1n generates a key pair (sk, pk) ←
SKGen(1n), algorithm Sig for input sk and a message m ∈ {0, 1}∗ outputs a
signature σ ← Sig(sk, m), and algorithm SVf for input pk, m and σ returns a
decision bit d ← SVf(pk, m, σ). Furthermore, for all security parameters n ∈ N,
all keys (sk, pk) ← SKGen(1n), all messages m ∈ {0, 1}∗ and all signatures σ ←
Sig(sk, m) it holds SVf(pk, m, σ) = 1.

A signature scheme S is existentially unforgeable under adaptively chosen-
message attacks (or, for short, unforgeable) if for any efficient algorithm A the
probability for (sk, pk) ← SKGen(1n) and (m∗, σ∗) ← ASig(sk,·)(pk) such that
SVf(pk, m∗, σ∗) = 1 and m∗ is not among the queries to oracle Sig(sk, ·), is
negligible (as a function of n). We say that S is strongly unforgeable if we relax the
requirement on the adversarial output (m∗, σ∗), such that SVf(pk, m∗, σ∗) = 1
and m∗ has never been answered with σ∗ by oracle Sig(sk, ·), i.e., the message m∗

may have been signed by Sig(sk, ·) previously but then the adversarial signature
σ∗ must be new.

Anonymous Signatures. For anonymity we adopt the strongest notion given
by Yang et al. [9], called anonymity under chosen-message attacks. This no-
tion basically says that no efficient algorithm D should be able to distinguish
whether a message m (generated secretly according to a distribution M) has
been signed with secret key sk0 or sk1. This should even hold if D gets to learn
other signatures for chosen messages. See [9] for a discussion of this notion.

In comparison to the original definition we consider here the most simple
case of two users and public keys, respectively, among which D must distinguish
(instead of polynomially many users). Security for the case of two users im-
plies anonymity for polynomially many users, because the two “target keys” can
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always be guessed among the polynomially many keys (with sufficiently large
probability).

In addition, as for ring signatures [1] we also consider the notion of anonymity
with respect to full key exposure where the signer’s identity cannot be determined
even if one knows the signing keys of the two users. This guarantees anonymity
even if the adversary corrupts the users and gets to know the secret key.

Definition 1. A signature scheme S is called signer anonymous under adaptive
chosen-message attacks (or simply anonymous) with respect to distribution M
if for any efficient algorithm D the random variables Expanon,b

S,M,D(n) for b = 0, 1
are computationally indistinguishable:

Experiment Expanon,b
S,M,D(n):

let (sk0, pk0) ← SKGen(1n) and (sk1, pk1) ← SKGen(1n)
sample m ← M(pkb) and compute σ ← Sig(skb, m)
let d ← DSig(sk0,·),Sig(sk1,·)(pk0, pk1, σ)
output d

The scheme is called anonymous with respect to full key exposure if the random
variables are still computationally indistinguishable, even if D gets the secret
keys sk0, sk1 as additional input.

The definition above considers anonymity with respect to designated distribu-
tions M, i.e., the signature scheme itself may depend on the distribution in
question. Such schemes may be sufficient in some settings, but it often seems be
desirable to have schemes which are anonymous with respect to any distributions
from a larger class CM, e.g., including all efficient distributions with non-trivial
entropy. The definition extends straightforwardly to this case by demanding
anonymity with respect to any distribution M from CM. For the constructions
we mostly focus on the case of designated distributions and briefly discuss how
our solutions extend to classes of distributions.

3 Constructing Hash-and-Extractor Combinations

Recall from the introduction that our goal is to design a (probabilistic) random-
ness extractor whose output still looks random, even if one sees an additional
hash value of the extractor’s input. We first recall the two required primitives,
hash functions and randomness extractors. Both algorithms will be randomized
in the sense that they get an auxiliary random input and compute the output
from the input and this random string, and the random string becomes part of
the output (public randomness).

Hash Functions and Extractors. A (probabilistic) hash function H =
(HKGen, H) consists of efficient algorithms such that HKGen on input 1n returns
a key K and H on input a key K and a string x ∈ {0, 1}i(n) picks a random
string r ← {0, 1}t(n) and outputs an image y ← H(K, x; r) (to which one appends
the randomness r). The hash function H is called collision-intractable if for any
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efficient algorithm C the probability that for K ← HKGen(1n) and (r, x, x′) ←
C(K) it holds x �= x′ but H(K, x; r) = H(K, x′; r), is negligible (as a function of
n). Note that we define such collisions x, x′ with respect to the same random
string r, as required for our applications.

We next define randomness extractors [6,5,8]. Recall that we want to combine
a hash function and an extractor and we therefore extend the basic definition of
extractors and allow the key generation algorithm of the extractor to depend on
hash function keys. Namely, a (strong3) extractor E = (EKGen, Ext) associated
to hash function H consists of two probabilistic algorithms such that EKGen for
input K ← HKGen(1n) returns a random key E ← EKGen(K), and algorithm
Ext for input E and x ∈ {0, 1}i(n) picks a random string u ← {0, 1}d(n) and
outputs an �(n)-bit string e ← Ext(E, x; u) (to which one appends again the
randomness u).

The extractor E (associated to H) is called pseudorandom for distribution X if
the following two random variables (one describing a hash value and the related
extractor output, and the other one a hash value and an independent random
output) are computationally indistinguishable:

– Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u ← {0, 1}d(n) and e ← Ext(E, x; u). Output the tuple (K, r||y, E, u||e).

– Let K ← HKGen(1n), x ← X (1n), y ← H(K, x; r), and E ← EKGen(K),
u ← {0, 1}d(n) and v ← {0, 1}�(n). Output the tuple (K, r||y, E, u||v).

In the literature it is usually assumed that the extractor’s output is sta-
tistically close to uniform. For our purpose it suffices that the output cannot
be efficiently distinguished from random. This also requires a form of non-
triviality of the distribution X , usually demanding that the min-entropy H∞(X )
= minx −(logProb[X (1n) = x]) of X is super-logarithmic (so called well-spread
distributions). We also note that we get the regular definition of extractors by
setting K = 1n and letting H(K, x; r) and r be the empty strings. In this case we
drop the addendum “associated to H” and simply speak of regular extractors.

Instantiations. As for the existence of such extractors we give two exam-
ples. Assume that we work in the random oracle model, for random function
H : {0, 1}∗ → {0, 1}�(n). Define H(0, ·) as the collision-intractable hash func-
tion. Then it is easy to see that Ext(·) = H(1, ·) is a (deterministic) extractor
(associated to H(0, ·)) which is pseudorandom for any fixed well-spread distri-
bution X . This is so because the super-logarithmic min-entropy of X prevents
a distinguisher to query H(0, ·) or H(1, ·) about a randomly sampled and secret
pre-image x, except with negligible probability, making the hash values indepen-
dent and uniformly distributed.

To get a solution in the standard model, which is only slightly less efficient,
assume that we have a 2-value perfectly one-way hash function (with public ran-
domness) [2,3], i.e., where hash value pairs (H(K, x; r), H(K, x; r′)) of the same
3 The term “strong” typically refers to extractors that give the auxiliary random input

as part of the output. Since this is always the case here we usually do not mention
this explicitly.
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pre-image x are indistinguishable from hash value pairs (H(K, x; r), H(K, x′; r′))
of independent pre-images x, x′. Formally, a perfectly one-way hash function
(with respect to distribution X ) is a probabilistic collision-resistant hash func-
tion H such that the following random variables are computationally indistin-
guishable:

– Let K ← HKGen(1n), x ← X (1n) and r, r′ ← {0, 1}t(n). Compute y ←
H(K, x; r) and y′ ← H(K, x; r′). Output the tuple (K, r, r′, y, y′).

– Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Compute y ←
H(K, x; r) and y′ ← H(K, x′; r′). Output the tuple (K, r, r′, y, y′).

Very efficient perfectly one-way hash functions (for any fixed well-spread distri-
bution X ) can be derived from any regular collision-resistant hash function [3].

The perfectly one-way hash function basically allows us to compute two hashes
of the same input but such the hash values appear to originate from independent
inputs. Hence, if we now take the first hash value for the signing process and
apply a regular extractor Ereg to the second hash value, the result will almost
look as if we have run both algorithms on independent inputs.

On a technical side, we note that the regular extractor Ereg (not associated
to a hash function) gets as input a hash value sampled according to the distri-
bution which picks x ← X (1n), K ← HKGen(1n) and r ← {0, 1}t(n) and which
returns H(K, x; r). We denote this distribution by H(X ), and we say that such
an extractor is pseudorandom with respect to H(X ) if the extractor’s output is
indistinguishable from random, even when given K and r in clear.

We remark that the distribution H(X ) “essentially preserves” the entropy of
the input distribution X . That is, if X is well-spread and efficient, then with over-
whelming probability over the choice K ← HKGen(1n) and r ← {0, 1}t(n), the
min-entropy of H(K, X (1n); r) remains super-logarithmically. Else, for a random
input key K, sampling r ← {0, 1}t(n) and x, x′ ← X (1n) would yield a non-trivial
collision with noticeable probability (i.e., because of the min-entropy of X the
values x, x′ will be different with overwhelming probability, whereas the hash
values collide with noticeable probability by presumption about the entropy loss
of H). The entropy of H(X ) can be determined explicitly in terms of the entropy
of X and the “entropy loss” of H. In particular, if we use the construction of H
via regular collision-resistant hash functions [3] then a (fixed) min-entropy λ(n)
of X yields a distribution H(X ) with min-entropy at least λ(n)/6 + 3.

Recall that we usually consider an extractor Ereg as the composition of a sta-
tistical randomness extractors, producing output which is statistically close to
the uniform distribution, and a cryptographically-secure pseudorandom genera-
tor G. Note that the pseudorandom generator G needs to be able to stretch the
short random input of, say, super-logarithmically many bits, into a pseudoran-
dom output of polynomially many bits. Whether G achieves such an expansion
factor or not depends on the concrete implementation. But we can safely assume
for any pseudorandom generator that, if G takes nc inputs bits (for some con-
stant c > 0), it can stretch this input to any output of polynomial size. Thus,
using the [3] perfectly one-way hash function, we get a secure construction if the
starting distribution has min-entropy Ω(nc). Below, however, we still state our
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result in its general form, assuming that we have a good extractor with respect
to the distribution H(X ).

Construction 1. Let H be a hash function and Ereg be a regular extractor
(for distribution H(X )). Define extractor E = (EKGen, Ext) associated to H as
follows:

– The key generator EKGen on input K generates Ereg ← EKGenreg(1n) and
outputs E ← (Ereg, K).

– The extraction procedure Ext on input E, x ∈ {0, 1}i(n) and u = r||ureg ∈
{0, 1}t(n)+d(n) computes e ← Extreg(Ereg, H(K, x; r); ureg) and outputs e.

We next prove that the derived extractor is pseudorandom:

Proposition 1. Let H be a perfectly one-way hash function (for distribution
X ) and Ereg be a pseudorandom extractor (for distribution H(X )). Then E in
Construction 1 is an extractor associated to H which is pseudorandom (with
respect to distribution X ).

Proof. Consider the random variable

Let K ← HKGen(1n), x ← X (1n) and r, r′ ← {0, 1}t(n). Let Ereg ←
EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r) and ereg ←
Extreg(Ereg, H(K, x; r′); ureg). Output (K, r||y, (K, Ereg), r′||ureg||ereg).

which describes the output of our extractor E for a random sample x (together
with the additional hash value). By the computational indistinguishability of the
perfectly one-way hash function this variable is indistinguishable from the follow-
ing random variable, where we pick an independent input x′ for the “extractor’s
hash value”:

Let K ← HKGen(1n), x, x′ ← X (1n) and r, r′ ← {0, 1}t(n). Let Ereg ←
EKGenreg(1n) and ureg ← {0, 1}d(n). Compute y ← H(K, x; r) as well as
ereg ← Extreg(Ereg, H(K, x′; r′); ureg).Output (K, r||y, (K, Ereg), r′||ureg||ereg).

It next follows from the pseudorandomness of the extractor Ereg that the previ-
ous random variable with independent inputs x, x′ is indistinguishable from the
following random variable, where we replace the extractor’s output by a random
value:

LetK ← HKGen(1n),x ← X (1n), r, r′ ← {0, 1}t(n) andEreg ← EKGenreg(1n).
Pickureg ← {0, 1}d(n) aswell as vreg ← {0, 1}�(n). Compute y ← H(K, x; r).
Output (K, r||y, (K, Ereg), r′||ureg||vreg).

The indistinguishability of this final variable from the starting case proves the
claim. ��
Our extractors so far work for specific distributions H(X ). In particular, they de-
pend (only) on the knowledge of the min-entropy of distribution H(X ). Hence,
such extractors also work with classes CH(X ) of distributions, as long as any
such distribution H(X ) ∈ CH(X ) obeys a fixed lower bound λ(n) on the
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min-entropy (e.g., λ(n) = ω(log n) if one assumes a strong pseudorandom genera-
tor G, or λ(n) = nc for some constant c > 0 if we assume standard pseudorandom
generators).

4 Constructing Anonymous Signatures

With the primitives of the previous section we can now give the formal descrip-
tion of our transformation from any regular signature scheme to an anonymous
one. We assume without loss of generality that the signature size is bounded by
some publicly known polynomial �(n) (such a bound exists by the limited running
time of the signature algorithms), and that the extractor Ext(E, m; u) produces
�(n)-bit outputs e. Below, if we mask the signature σ with e it is understood
that the signature is padded with zeros if necessary, i.e., σ ⊕ e = (σ||0�−|σ|) ⊕ e.

Note that our construction of the extractor (associated to a hash function)
requires that the message has some fixed input length i(n) (which nonetheless
can depend on the security parameter). We therefore assume that messages to
be signed have exactly i(n) bits, and that the distribution M itself is defined
over such bit strings. This requirement can be implemented by hashing longer
messages first with some collision-intractable hash function. Accordingly, we have
to consider the distribution of hashed messages then (which, by the collision-
intractability, is also well-spread if the original message distribution is).

Construction 2. Let S be a signature scheme, let H be a hash function and E
be an extractor (associated to H). Define the following signature scheme S′ =
(SKGen′, Sig′, SVf′):

– The key generation algorithm SKGen′(1n) runs SKGen(1n) to get a key pair
(sk, pk). It also runs HKGen(1n) to generate a key K for the hash function,
as well as a key E ← EKGen(K) for the extractor. It outputs sk′ ← (sk, K, E)
and pk′ ← (pk, K, E).

– The signing algorithm Sig′(sk, m) samples r ← {0, 1}t(n) and u ← {0, 1}d(n),
computes a signature σ ← Sig(sk, H(K, m; r)) as well as τ ← σ⊕Ext(E, m; u)
and finally outputs σ′ ← τ ||r||u.

– The verification algorithm SVf′(pk′, m, σ′) for σ′ = τ ||r||u first computes
σ ← τ ⊕ Ext(E, m; u) and then outputs SVf(pk, H(K, m; r), σ).

Proposition 2. Let S be an unforgeable signature scheme, let H be a collision-
intractable hash function and E be an extractor (associated to H). Then S′ in
Construction 2 is an unforgeable signature scheme.

Note that we do not need to assume that E is a good extractor for proving
unforgeability. This property will only be required for the anonymity proof.

Proof. We show that we can transform any forger A′ on the derived scheme
S′ into one on the original scheme, essentially preserving the running time and
success probability of A′. We assume without loss of generality that A′ always
outputs a new message m∗ in the forgery attempt (i.e., such that m∗ has never
been signed by the signing oracle before).
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For transforming the attacker A′ into one for the underlying signature scheme
we let ASig(sk,·)(pk) run a black-box simulation of A′ for input pk′ = (pk, K, E)
where keys K and E are generated by A by running HKGen(1n) and EKGen(K).
Then, A simulates the signing oracle Sig′ for A′ as follows:

Each time A′ submits a message m ∈ {0, 1}i(n) to its (putative) sign-
ing oracle attacker A first picks r ← {0, 1}t(n) and u ← {0, 1}d(n) and
forwards H(K, m; r) to its oracle Sig to get a signature σ. Algorithm A
next computes τ ← σ ⊕ Ext(E, m; u) and σ′ ← τ ||r||u and returns σ′ on
behalf of Sig′ to attacker A′.

When A′ eventually outputs a forgery attempt (m∗, τ∗||r∗||u∗) we let A compute
σ∗ ← τ∗ ⊕ Ext(E, m∗; u∗) and let it return (H(K, m∗; r∗), σ∗).

It is easy to see that the simulation above perfectly mimics an actual attack.
Hence, in the simulation above A′ outputs a successful forgery with the same
probability as in an attack on the derived scheme. By the collision-intractability
of H we can also conclude that, with overwhelming probability, H(K, m∗; r∗) is
different from all hash values that A has passed to its oracle Sig previously (else,
since m∗ is different from all previously signed messages, it would be straightfor-
ward to derive a successful collision-finder against the hash function). It follows
that, if A′ produces a successful forgery against the derived scheme with no-
ticeable probability, then so does A in the attack on the underlying signature
scheme. ��
Theorem 3. Let S be a signature scheme, let H be a hash function and E be an
extractor (associated to H) which is pseudorandom with respect to distribution
M. Then S′ in Construction 2 is an anonymous signature scheme (with respect
to M). It is even anonymous with respect to full key exposure.

Here we merely require that the extractor is pseudorandom; the original signa-
ture scheme and the hash function only need to be efficient. This fact also shows
anonymity against full key exposure.

Proof. Fix an arbitrary attacker D against the (basic) anonymity property and
some distribution M. We need to show that the outputs of the random variables
Expanon,b

S′,M,D(n) for b = 0, 1 are indistinguishable. In the sequel we also fix the
bit b.

In experiment Expanon,b
S′,M,D(n) we now change the way the challenge signature

for m ← M(pkb) is computed as follows. As before we sample r ← {0, 1}t(n)

and u ← {0, 1}d(n) and compute a signature σ ← Sig(sk, H(K, m; r)). But now
we let τ ← σ ⊕ v for an independent random value v, instead of computing
τ ← σ ⊕ Ext(E, m; u) as before. We output σ′ ← τ ||r||u for the modified value
τ . We denote this experiment by Expmod-anon,b

S′,M,D (n).
It follows from the pseudorandomness of the extractor (associated to H) that

the way we compute the signature in the modified experiment cannot change the
output behavior of experiment Expanon,b

S′,M,D(n) noticeably. Else it would be easy
to construct an algorithm Bb (with b hardwired into its description) which gets
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(K, r||y, E, u||v) for v = Ext(E, m; u) or random v as input, and which success-
fully distinguishes these two cases (by simulating D in experiment Expanon,b

S′,M,D(n)
for fixed bit b and using the given values to prepare the challenge signature).
Hence, Expanon,b

S′,M,D(n) and Expmod-anon,b
S′,M,D (n) are computationally indistinguish-

able for both b = 0, 1.
But in experiment Expmod-anon,b

S′,M,D (n) the signature τ ||r||u for τ ← σ⊕v is now
independently distributed of σ and it follows that the output Expmod-anon,b

S′,M,D (n)
for both b = 0, 1 is identical. In conclusion, the random variables Expanon,0

S′,M,D(n)
and Expanon,1

S′,M,D(n) must be computationally indistinguishable.
Note that the proof still works if D knows the signing keys since we merely

need the pseudorandomness of the extractor. This shows that the scheme remains
anonymous with respect to full key exposure. ��
Some remarks follow. First, note that our proof actually shows that signatures in
our scheme are pseudorandom, even when knowing the signing keys. Clearly, such
pseudorandom signatures imply anonymity (with respect to full key exposure),
because it is hard to tell such signatures apart from random strings.

Second, we can modify our signature scheme to get a strongly unforgeable
scheme, given that the starting scheme is strongly unforgeable. To this end we
let the signature algorithm sign H(K, m; r)||r||u instead of the hash value only.
It follows similarly to the unforgeability proof above that the scheme is strongly
unforgeable.

As a proof outline of the strong unforgeability of our modified scheme, as-
sume that the adversary outputs a valid forgery (m∗, τ∗||r∗||u∗) such that the
values (m∗, r∗, u∗) have never appeared before. Then this would contradict the
unforgeability of the original signature scheme. Assume, on the other hand, that
such values have appeared before (in which case there is a unique signature reply
τ ||r∗||u∗ in which they appear, with overwhelming probability over the random
choices of r, u in the signing process). This implies that the adversary has only
modified τ to a different τ∗. But then the validity of the forgery attempt would
imply that σ∗ ← τ∗⊕Ext(E, m∗; u∗) is different from σ in the original signature,
and that this value σ∗ together with “message” H(K, m∗; r∗)||r∗||u∗ contradicts
the strong unforgeability of the underlying scheme. And this modified scheme is
still anonymous with respect to full key exposure.

Third, we finally notice that our result extends to classes CM of message
distributions, if the underlying extractor is pseudorandom with respect to this
class. Hence, we get a provably secure construction assuming that CM only
contains distributions of min-entropy at least λ(n), where the fixed bound λ(n)
depends on the extractor in question (see Section 3).
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Abstract. For controlling the public verifiability of ordinary digital sig-
natures, designated confirmer signature (DCS) schemes were introduced
by Chaum at Eurocrypt 1994. In such schemes, a signature can be veri-
fied only with the help of a semi-trusted third party, called the designated
confirmer. The confirmer can further selectively convert individual des-
ignated confirmer signatures into ordinary signatures so that anybody
can check their validity. In the last decade, a number of DCS schemes
have been proposed. However, most of those schemes are either inefficient
or insecure. At Asiacrypt 2005, Gentry, Molnar and Ramzan presented
a generic transformation to convert any signature scheme into a DCS
scheme, and proved the scheme is secure in their security model. Their
DCS scheme not only has efficient instantiations but also gets rid of
both random oracles and general zero-knowledge proofs. In this paper,
we first show that their DCS transformation does not meet the desired
security requirements by identifying two security flaws. Then, we point
out the reasons that cause those flaws and further propose a secure im-
provement to fix the flaws. Finally, we present a new generic and efficient
DCS scheme without using any public key encryption and prove its se-
curity. To the best of our knowledge, this is the first secure DCS scheme
that does not require public key encryption.

Keywords: Designated Confirmer Signature, Digital Signature, Fair Ex-
change.

1 Introduction

As an important cryptographic primitive, digital signatures are employed to
achieve the integrity and authenticity of digital documents. In some scenarios,
however, the public verifiability of ordinary signatures is not desired, since the
signer may wish the recipient of a digital signature could not show the signature
to a third party at will. To control the public verifiability, Chaum and van
Antwerpen [12] introduced the concept of undeniable signatures. Different from
ordinary signatures, undeniable signatures cannot be verified without the help
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of the signer. Naturally, the signer can only confirm valid signatures or disavow
invalid signatures.

However, undeniable signatures will not be verifiable if the signer is unavail-
able or unwilling to help a verifier. To overcome this weakness, designated con-
firmer signature (DCS) schemes were suggested by Chaum at Eurocrypt 1994
[13]. In a DCS scheme, the ability of verifying signatures is delegated to a semi-
trusted third party, called the designated confirmer. If necessary, the confirmer
can further selectively convert individual designated confirmer signatures into
ordinary signatures in such a way that anybody can check their validity. In the
last decade, a number of DCS schemes [33,30,14,10,28,32,25] have been proposed.
However, most of those schemes are either inefficient or insecure.

Okamoto [33] presented the first formal model for DCS and proved that the
notion of DCS is in fact equivalent to that of public key encryption. But Michels
and Stadler [30] showed that in Okamoto’s concrete DCS schemes the confirmer
can forge valid signatures on behalf of the signer. Realizing this problem, they
further proposed a new security model and constructed efficient DCS schemes
secure in their model. However, Camenisch and Michels [10] identified an attack
against the DCS schemes proposed in [13,33,30] such that the validity of a DCS
issued by a signer S can be linked to that of a DCS issued by another signer
S′. Therefore, those schemes are insecure if multiple signers share the same con-
firmer, though this seems to be natural in e-commerce applications, such as fair
exchange of digital signatures [1,2,3,4], fair e-payment schemes [8,14], and fair
contract signing [22]. Based on this observation, a new model that covers this
kind of attacks was proposed in [10]. At the same time, Camenisch and Michels
also suggested a generic DCS scheme, which is realized by encrypting an ordi-
nary signature under the confirmer’s public key. This construction is provably
secure, but inefficient since proving the correctness of such an encryption usually
relies on general zero-knowledge proofs for NP statements. In [28], Goldwasser
and Waisbard proposed several DCS schemes without appealing to either ran-
dom oracles [5] or generic zero-knowledge proofs. They achieved this goal by
weakening the security requirements of Okamoto [33] and exploiting strong wit-
ness hiding proofs of knowledge, instead of zero-knowledge proof of knowledge.
But their Disavowal protocol (used to disavow an invalid DCS) is still inefficient
since it requires general ZK proofs. Monnerat and Vaudenay [32] naturally ex-
tended Chaum’s DCS scheme [13], but the resulting scheme is provably secure
only under non-adaptive chosen-message attack.

At Asiacrypt 2005, Gentry, Molnar and Ramzan [25] presented a generic trans-
formation to convert any secure signature scheme into a DCS scheme. Their ba-
sic idea is to add “a layer of indirection” in the signature generation procedure.
More precisely, in their scheme the signer generates a DCS by issuing an ordi-
nary signature on the commitment of a message and encrypting the randomness
used for commitment separately. They proved the DCS scheme constructed in
this manner is secure in their security model, which is an enhancement of the
model proposed in [28]. Their transformation is interesting, since it gives rise to
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an efficient and generic DCS scheme without appealing to both random oracles
and general zero-knowledge proofs.

In this paper, we first identify two security flaws in Gentry et al’s DCS trans-
formation [25] by showing that their scheme does not meet two essential security
requirements under their security model. Specifically, we present two attacks
against their DCS scheme, in which (a) the confirmer and the signer can collude
together to cheat a verifier by issuing a confirmable but invalid signature, and
(b) an adaptive attacker can check the validity of a DCS without directly asking
for the confirmer’s help on this signature. We then point out the reasons causing
those flaws and propose an improvement to fix the flaws. Finally, we propose a
new generic and efficient DCS scheme without using public key encryption and
prove its security. To the best of our knowledge, this is the first generic and
secure DCS scheme that does not rely on any public key encryption.

Table 1 gives a brief comparison between our DCS constructions and other ex-
isting efficient DCS schemes. Similar to the comparison made in [25], we also com-
pare those DCS schemes in three categories, i.e., whether the scheme relies on the
random oracle model [5], which kinds of the basic underlying signatures are used,
and how about the computational efficiency. Actually, most items are adopted
from [25]. A difference is that in Table 1, we also compare the efficiency of Con-
firmedSign protocols in those schemes, which is not discussed in [25]. In Table 1, we
list the estimated numbers of exponentiations needed in each interactive protocol.
Note that those numbers include the computational overheads introduced by the
transformation from a SHVSK protocol to a CZK protocol (See Section 2). In ad-
dition, as we shall see in Section 4.2, to achieve the soundness of Confirm protocol
both the GW [28] and GMR [25] schemes should be updated. Naturally, this will
introduce additional overheads. Due to this reason, an asterisk (*) is marked to
the corresponding Confirm protocols. From this comparison, we can see that both
of our improved GMR scheme and new DCS scheme have comparable efficiency
with the original GMR scheme. Especially, our new DCS scheme without using
public key encryption has a very efficient Disavowal protocol, though its security
relies on the random oracle. According to our analysis in Section 4.2, however, the
GMR scheme suffers two security weaknesses.

Table 1. Comparison of DCS Schemes

Random Underlying ConfirmedSign Confirm Disavowal
Oracle Signature Protocol Protocol Protocol

CM [10] Yes RSA-FDH - 24λ 60λ

GW [28] No CS [17] 5λ 2λ * generic ZK

GW [28] No GMR [27] 5λ 2λ * generic ZK

GW [28] No GHR [23] 5λ 2λ * generic ZK

GMR [25] No Any 20 10 * 41

Improved GMR No Any 15 25 60

Our New DCS yes Any 15 15 16
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The rest of this paper is organized as follows. In Section 2, we introduce
notations and some primitives. Section 3 describes the security model of a DCS
scheme. Section 4 reviews and analyzes Gentry et al.’s DCS scheme (called GMR
scheme for simplicity). We then improve the GMR scheme in Section 5 and
propose a new DCS scheme without any public key encryption in Section 6.

2 Preliminaries

Notations. Throughout the paper, λ denotes the security parameter, which is a
positive integer. We use negl(λ) to denote a negligible function in λ. For a positive
integer a, [a] is defined as the set of {0, 1, · · · , a−1}. For three integers a, b and c
with c > 0, a = b rem c denotes the balanced remainder of b modulo c. Namely,
a = b + kc ∈ [−c/2, c/2) for some integer k. If Alg(·, ·, · · ·) is a probabilistic
algorithm, then x ← Alg(x1, x2, · · ·) denotes the output x of algorithm Alg on
inputs x1, x2, · · ·, according to the probabilistic distribution determined by Alg’s
random choices.

Zero-Knowledge Proof. In the setting of DCS schemes, we usually need con-
current zero-knowledge (CZK) protocols rather than special honest-verifier zero-
knowledge (SHVZK) protocols [15]. The reason is that an adversary in DCS
schemes may act as an arbitrary cheating verifier during the execution of proto-
cols that confirm or disavow an alleged designated confirmer signature. Briefly
speaking, an interactive proof (P, V ) for a language L is a CZK protocol if (a)
There is a simulator that can simulate transcripts of interaction between Prover
P and Verifier V ; (b) There is a probabilistic polynomial-time (PPT) knowledge
extractor E who can extract a witness (knowledge) given oracle access to Prover
P , where E could be rewound if necessary; and (c) Prover P can execute the
protocol with one or multiple verifiers in any concurrent way.

Fortunately, there are well known approaches [26,18,19,24] that can efficiently
transform SHVZK protocols to CZK protocols. Specifically, Gennaro’s approach
[24] based on multi-trapdoor commitments has simple structure, while Cramer-
Damg̊ard-MacKenzie (CDM) approach [18] can be realized without introducing
additional intractability assumptions. In [25], the CDM approach is suggested
to use. In our constructions, we would like to select Gennaro’s approach due to
its simplicity in structure. In any case, the signer or the confirmer (in the GMR
scheme and our DCS constructions) will use such CZK protocols to convince a
verifier that an alleged message-signature pair is either valid or invalid. However,
the verifier (or a number of colluding verifiers) cannot convince the same fact
to a third party, even if he/she (or they) executes those verification protocols in
any concurrent way as many polynomial times as possible.

CS-Paillier Cryptosystem. An efficient instance of the GMR DCS scheme
[25] uses an adaptation of Paillier-based encryption scheme [34] proposed by
Camenisch and Shoup in [11]. For simplicity, we call this encryption scheme “CS-
Paillier cryptosystem”, which can be exploited to realize verifiable encryption of
discrete logarithms conveniently. The CCA2 security of this scheme relies on the
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decisional composite residuosity assumption (DCRA) in Z
∗
n2 , where n = pq is the

product of two Sophie-Germain primes p and q (i.e., there exist two primes p′

and q′ such that p = 2p′ + 1 and q = 2q′ + 1). Informally, the DCRA states that
it is infeasible to distinguish random elements from Z

∗
n2 and random elements

from the subgroup consisting of all n-th powers of elements in Z
∗
n2 .

Now, we briefly review this encryption scheme (refer to [11] for details). The
user generates a composite modulus n = pq as above. The user’s public key
includes a collision-resistant hash function H , h = 1 + n, a random g′ ∈ Z

∗
n2 ,

and values g = g′2n
, y1 = gx1 , y2 = gx2 , and y3 = gx3 , where x1, x2, x3 ∈R [n2/4]

constitute the private key. Define a function abs(·) : Zn2 → Zn2 as abs(a) = a if
0 ≤ a ≤ n2/2, or abs(a) = n2 − a mod n2 if n2/2 < a < n2.

To encrypt a value r ∈ [n] with a label L ∈ {0, 1}∗, the sender picks t ∈R [n/4]
and computes a triple (u, e, v) by u = gt, e = yt

1h
r, and v = abs((y2y

H(u,e,L)
3 )t).

The resulting ciphertext (u, e, v) with label L can be decrypted follows. First,
the user checks whether abs(v) ≡ v and u2(x2+H(u,e,L)·x3) ≡ v2. If any check
fails, output ⊥. Otherwise, the user computes r̂ = (e/ux1)2k for k = 2−1 mod n.
If r̂ is of form hr for some r ∈ [n] (i.e., r̂ − 1 is divisible by n), then output
r = (r̂ − 1)/n ∈ [n]. Otherwise, output ⊥.

3 Security Model and Definitions of DCS

We now review the security model and definitions of designated confirmer signa-
tures (DCS) following Gentry et al.’s exposition in [25]. Specifically, the syntax
of DCS is the same as given in [25], while the security definitions are improved
in some minor ways mainly for readability. A DCS scheme has three different
roles of parties: a signer S, a verifier V , and a designated confirmer C.

Definition 1 (Syntax). A designated confirmer signature (DCS) scheme
consists of a tuple of probabilistic polynomial-time (PPT) algorithms and inter-
active protocols, (DCGen, Sign, Verify, Extract, ConfirmedSign(S,V ), Confirm(C,V ),
Disavowal(C,V )), as described below.

– DCGen: As the key generation algorithm of DCS, it takes as input the security
parameter 1λ, and outputs two pairs of keys (skS , pkS) and (skC , pkC). Here,
(skS , pkS) are the signer S’s signing and verification keys respectively, while
(skC , pkC) the confirmer C’s private and public keys respectively1.

– Sign: takes as input a message m and a signing key skS , and outputs a basic
signature σ such that Verify(m, σ, pkS) = Accept.

– Verify: takes as input a triple (m, σ, pkS), and outputs Accept if σ is an output
of Sign(m, skS) or ⊥ otherwise.

– Extract: takes as input (m, σ′, skC , pkS), and outputs a string σ such that
Verify(m, σ, pkS) = Accept if σ is an output of Sign(m, skS), or ⊥ otherwise.

1 As pointed in [25], for simplicity DCGen is here denoted as a single algorithm. In a
real implementation, the signer S and confirmer C would generate their key pairs
separately, using two distinct algorithms SGen and CGen, so that C does not learn
skS and S does not learn skC .
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– ConfirmedSign(S,V ): an interactive protocol between the signer S (with pri-
vate input skS) and a verifier V with common input (m, pkS , pkC). The
output of V is a pair (b, σ′) where b ∈ {Accept, ⊥} and σ′ is S’s designated
confirmer signature on message m. For some verifier V , the ConfirmedSign
protocol should be complete and sound.

• Completeness: There is some signer S such that for any (valid) signer
and confirmer keys, any message m, the ConfirmedSign protocol outputs
(Accept, σ′), where Verify(m, Extract(m, σ′, skC , pkS), pkS) = Accept.

• Soundness: For any signer S′, if ConfirmedSign(S′,V )(m, pkS , pkC) =
(Accept, σ′), then

Pr[Verify(m, Extract(m, σ′, skC , pkS), pkS) = ⊥] < negl(λ). (1)

In other words, even a cheating signer S′ cannot convince an honest
verifier V that an “un-extractable” DCS σ′ is valid.

– Confirm(C,V ): an interactive protocol between the confirmer C and a verifier
V to confirm a valid DCS σ′. The common input is (m, σ′, pkS , pkC), and C’s
private input is skC , while the output is b ∈ {Accept, ⊥}. For some verifier
V , the Confirm protocol must be both complete and sound.

• Completeness: There is some C such that if Verify(m, Extract(m, σ′,
skC , pkS), pkS) = Accept then Confirm(C,V )(m, σ′, pkS , pkC) = Accept.

• Soundness: For any confirmer C′, if Verify(m, Extract(m, σ′, skC , pkS),
pkS) = ⊥, then

Pr[Confirm(C′,V )(m, σ′, pkS , pkC) = Accept] < negl(λ). (2)

That is, even a cheating confirmer C′ cannot convince an honest verifier
V that an “un-extractable” DCS σ′ is valid.

– Disavowal(C,V ): an interactive protocol between the confirmer C and a verifier
V to disavow an invalid DCS σ′. Given the common input (m, σ′, pkS , pkC)
and C’s private input skC , the Disavowal protocol outputs b ∈ {Accept, ⊥}.
For some verifier V , the protocol must be complete and sound.

• Completeness: There is a confirmer C such that if Verify(m, Extract(m,
σ′, skC , pkS), pkS) = ⊥, then Disavowal(C,V )(m, σ′, pkS , pkC) = Accept.

• Soundness: For any PPT confirmer C′, if Verify(m, Extract(m, σ′, skC ,
pkS), pkS) = Accept, then

Pr[Disavowal(C′,V )(m, σ′, pkS , pkC) = Accept] < negl(λ). (3)

In other words, even a cheating confirmer C′ cannot convince an honest
verifier V that an “extractable” DCS σ′ is invalid. �	

We consider three security requirements of a designated confirmer signature
scheme, each of which is from the view point of a different role in a DCS scheme.
More specifically, a DCS should be: (a) secure for verifiers, i.e., confirmed DCS
should be extractable and disavowed DCS should be un-extractable; (b) secure
for the signer, i.e., anybody else (including the confirmer) should be unable to
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forge a DCS on a new message unsigned by the signer; and (c) secure for the
confirmer, i.e., only the confirmer can confirm or disavow an alleged DCS.

For the purposes of the security model, a two-move protocol OutputDCS(S,V )
is also introduced, which is the stunted version of ConfirmedSign(S,V ) in which
V queries m and S outputs a DCS σ′ on m without confirming its correctness.
In the following, the adversary A is allowed to access a collection of oracles
O = {ConfirmedSign(S,A), Confirm(C,A), Disavowal(C,A), Extract} for: 1) receiving
a confirmed signature on a message of its choice (via the ConfirmedSign(S,A)
oracle); 2) executing the interactive Confirm(C,A) protocol in the verifier role;
3) executing the interactive protocol Disavowal(C,A) in the verifier role; and 4)
getting a basic signature from a designated confirmer signature via the Extract
oracle. Furthermore, since we consider the security of a DCS scheme with mul-
tiple signers, any adversary in the following definitions is allowed at any time
to generate additional signature pairs (skS′ , pkS′) (not necessary by running the
key generation algorithm DCGen) and to interact with the confirmer C with
respect to those keys.

Informally, security for verifiers requires that even if the adversary A compro-
mises the private keys of both the confirmer C and the signer S simultaneously,
it is still unable to create a pair (m, σ′) that will be confirmed (via either Con-
firmedSign or Confirm) even though (m, σ′) is un-extractable, or that will be dis-
avowed (via Disavowal) even though (m, σ′) is extractable. For simplicity, in the
following descriptions we use π to denote the public parameters (1λ, pkS , pkC).

Definition 2 (Unfoolability: Security for Verifiers). Formally, we say a
DCS scheme is secure for verifiers if for any PPT algorithm A involved in the
experiment Exp1-UnFoolVerifier, its advantage Advfool(A) := Pr[bfool = 1] <
negl(λ), where bfool is the one bit information returned by the experiment.

Exp1-UnfoolVerifier:
1. (skS , pkS , skC , pkC) ← DCGen(1λ)
2. (m, σ′, τ1, τ2, τ3) ← AO

0 (skS , skC , π)
3. (b1, σ

′) ← ConfirmedSign(A1(τ1),V )(m, π) in Case 1
4. b2 ← Confirm(A2(τ2),V )(m, σ′, π) in Case 1
5. b3 ← Disavowal(A3(τ3),V )(m, σ′, π) in Case 2
6. Return bfool = (b1 = Accept ∨ b2 = Accept ∨ b3 = Accept).

Note that here “Case 1” and “Case 2” refer to the restraint conditions on the
adversary’s output (m, σ′):

– Case 1: Verify(m, Extract(m, σ′, skC , pkS), pkS)=⊥, i.e., σ′ is un-extractable.
– Case 2: Verify(m, Extract(m, σ′, skC , pkS), pkS)=Accept, i.e., σ′ is extractable.

�	
Security for the signer informally requires that an adversary A (including the
confirmer C) must be unable to forge a valid DCS pair (m, σ′) for a new message
m, though it may be able to create an extractable or confirmable (via either
ConfirmedSign or Confirm) (m, σ′′) for a signed message m.
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For each DCS scheme, we can specify an efficiently computable equivalence re-
lation R, and say (m, σ′) and (m, σ′′) are equivalent if and only if R(m, σ′, σ′′) =
1. For example, if a DCS scheme is assumed to be strongly existentially unforge-
able, it may be appropriate to define R(m, σ′, σ′′) = 1 iff σ′ = σ′′. However,
the relation R depending on the concrete implementation may need not be so
restrictive.

Definition 3 (Unforgeability: Security for the Signer). We formally say
a DCS scheme is secure for the signer if for any PPT adversary A involved in
the following experiment Exp2-UnForge, its advantage Advforge(A) := Pr[bforge =
1] < negl(λ), where bforge is the one bit information returned by the experiment.
Note that in the experiment, Lsig denotes the list of all message-signature pairs
(mi, σ

′
i) output by the ConfirmedSign oracle in Step 2 and all (mi, σ

′′
i ) such that

R(mi, σ
′
i, σ

′′
i ) = 1.

Exp2-UnForge:
1. (skS , pkS , skC , pkC) ← DCGen(1λ)
2. (m, σ′) ← AO(π, skC)
3. b ← Verify(m, σ, pkS) for σ = Extract(m, σ′, skC , pkS)
4. Return bforge = (b = Accept ∧ (m, σ′) /∈ Lsig). �	

Security for the confirmer informally requires that the evidences of confirmation
or disavowal of a DCS σ′ should be non-transferable. Namely, the transcript
of a proof of knowledge in Confirm(C,V1)(m, σ′, pkS , pkC) or ConfirmedSign(C,V1)
(m, σ′, pkS , pkC) should not convince V2 (�= V1) that σ′ signs m, while the tran-
script of a proof of knowledge in Disavowal(C,V1)(m, σ′, pkS , pkC) should not con-
vince V2 (�= V1) that σ′ does not sign m. To guarantee that a DCS scheme satis-
fies non-transferability, i.e., the transcripts in those protocols are unconvincing,
we require that those transcripts be simulatable. In a DCS scheme with non-
transferability, even if verifier V1 already knew the validity of a message-signature
pair (m, σ′) (via interacting with the signer or the confirmer), it cannot convince
verifier V2 to believe this fact, since all the evidences provided by V1 could be
simulated, i.e., not true transcripts from real executions of the ConfirmedSign,
Confirm or Disavowal protocols.

In the following formal definition, algorithms A1, A2 and A′
1 represent verifier

V1, verifier V2 and a simulation algorithm, respectively. If A2 has only negligible
advantage to guess whether its input τ came from A1 or A′

1, this suggests that
A1’s potentially authentic transcript showing that m0 was signed is no more
convincing or informative than A′

1’s simulated transcript (falsely) showing that
m1 was signed. In the security proof, A′

1 will use A1 as a subroutine, and will
simulate correct answers to A1’s oracle queries.

Definition 4 (Transcript Simulatability: Security for the Confirmer).
Formally, we say a DCS scheme is secure for the confirmer if for any PPT adver-
sary A = (A0, A1, A2) involved in the following experiment Exp3-Transcript
Simulatability, there exists a PPT algorithm A′

1 such that A’s advantage
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respect to A′
1 is negligible in the security parameter. Namely, Advtrans(A, A′

1) :=
| Pr[btrans = 1] − 1/2| < negl(λ), where btrans is the one bit information returned
by the experiment. In the experiment, A0 with skS first outputs two messages
m0 and m1 and some state s. Then, a DCS σ′ on m0 or m1 is output randomly
by ConfirmedSign. After that, A1, A′

1 and A2 play a game in which A′
1 tries to

make its output (when m1 is signed) look indistinguishable from A1’s output
(when m0 is signed); A2 attempts to distinguish whether its input τ came from
A1 or A′

1. In the experiment, A1 gets oracle accesses O1, i.e., all oracles in O
under the restriction that (m0, σ

′), (m1, σ
′) /∈ Lext, where Lext is a list consisting

of each (mi, σ
′
i) that has been queried by A1 to the Extract oracle, as well all

(mi, σ
′′
i ) for which R(mi, σ

′
i, σ

′′
i ) = 12. On the other hand, A′

1 is given very
limited oracle accesses, i.e., it can make only q OutputDCS queries as long as
A1 makes at most q ConfirmedSign queries. A2 is given access to oracles in O2,
i.e., all oracles in O with the restriction that A2 cannot make any oracle query
on (m0, σ

′′) if R(m0, σ
′, σ′′) = 1 or on (m1, σ

′′) if R(m1, σ
′, σ′′) = 1 (Otherwise,

the distinguishing task of A2 will become trivial.). Finally, A2 outputs one bit
information b′ as its guess to the value of b, i.e., whether m0 or m1 is signed.

Exp3-TranscriptSimulatability:
1. (skS , pkS , skC , pkC) ← DCGen(1λ)
2. (m0, m1, s) ← AO

0 (π, skS)
3. b ←R {0, 1}
4. (Accept, σ′) ← ConfirmedSign(π, mb)
5. If b = 0, τ ← AO1

1 (π, b, m0, m1, s, σ
′);

else, τ ← A′OutputDCS
1 (π, b, m0, m1, s, σ

′)
6 b′ ← AO2

2 (π, m0, m1, τ, σ
′)

7. Return btrans = ((b′ = b) ∧ ((m0, σ
′) /∈ Lext) ∧ ((m1, σ

′) /∈ Lext)). �	
Note that the above transcript simulatability is not the strongest requirement,
but it is strong enough, as pointed out in [25] and further explained below. On
the one hand, the transcript is not perfectly simulatable in the sense that σ′ may
convince verifier A2 that the signer indeed signed some message m, though A2
cannot tell which specific message (i.e. m0 or m1) was signed. So this security re-
quirement is weaker than that given in [33]. On the other hand, the above security
model actually prevents confirmer impersonation. Namely, even if an adversary
B controls skS it cannot impersonate the confirmer by executing Extract, Con-
firm, Disavowal, or ConfirmedSign associated to a pair (m, σ′) ∈ Lsig\Lext (See
the discussions provided in [25]).

Moreover, we would like to point out that the above transcript simulatabil-
ity also implies the property of invisibility, whose formal definition is given by
Camenisch and Michels in [10]3. Informally, invisibility requires that an adap-
tively chosen message attacker A cannot correctly guess a newly issued DCS σ′

2 Otherwise, A1 could trivially give A2 explicit proof that m0 was signed by revealing
the extraction of σ′.

3 Galbraith and Mao [21] formally specified another definition of invisibility, which is a
little stronger than the version given in [10]. For many real life applications, however,
it seems (weak) invisibility is enough.
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is for m0 or m1 with probability better than 1/2 non-negligibly. It is not difficult
to see that the corresponding experiment for invisibility can be obtained from
Exp3-TranscriptSimulatability by deleting algorithms A1 and A′

1 (i.e. Step
5), and deleting τ in the input of algorithm A2. From this observation, we know
that invisibility is implied by transcript simulatability. However, note that accord-
ing to the result in [10], the DCS schemes in [13,33,30] do not satisfy invisibility.

Definition 5 (Security of a DCS Scheme). We say a designated confirmer
signature scheme is secure, if it satisfies security for verifiers, the signer, and
the confirmer. That is, the DCS scheme meets the formal requirements given in
definitions 2, 3 and 4 simultaneously. �	

4 The GMR Scheme and Its Security

4.1 Review of the GMR Scheme

This section reviews the GMR scheme [25], which is a generic construction
that transforms any existentially unforgeable signature scheme [27] into a DCS
scheme. In this transformation, the following two primitives are required: an
IND-CCA2 secure encryption scheme PKE [20], and a statistically hiding com-
putationally binding commitment scheme Com(m, r). The basic idea is to issue a
DCS on a message m the signer signs on a commitment Com(m, r) instead of m
itself. To guarantee that the confirmer can open a commitment Com(m, r) with
respect to m, the randomness r used in commitment is encrypted under the con-
firmer’s public key and the resulting ciphertext c is attached as a component of
DCS. To prove the validity of such a DCS, the signer or the confirmer convinces
a verifier that ciphertext c is properly prepared by exploiting zero knowledge
proofs secure against cheating verifiers. The following is the high-level descrip-
tions of the GMR scheme.

– DCGen: The signer S uses a secure digital signature scheme DSS=(SGen, Sig,
Ver), and creates a key pair (skS , pkS) ← SGen(1λ). The confirmer C uses
an IND-CCA2 encryption scheme PKE=(CGen, Enc, Dec), and creates key
pair (skC , pkC) ← CGen(1λ). Note that C need not participate in any setup
other than creating and publishing a key pair.

– Sign: To sign a message m with auxiliary information c, the signer S cre-
ates a statistically hiding and computationally binding commitment ψ =
Com(m, r) to the message m by selecting randomness r and creates σ∗ =
Sig((ψ, c, pkS), skS). The basic signature is σ = (σ∗, c, r).

– Extract: On input σ′ = (σ∗, ψ, c) and m, it outputs r if σ∗ = Sig((ψ, c, pkS),
skS) and the confirmer C can derive r = Dec(skC , c) so that ψ = Com(m, r).
Otherwise, it outputs ⊥.

– ConfirmedSign: In addition to the above steps in the Sign procedure, the
signer S also computes the ciphertext c = Enc(pkC , r). The designated con-
firmer signature is σ′ = (σ∗, ψ, c), where σ∗ = Sig((ψ, c, pkS), skS). The
signer also performs a ZK proof of knowledge of a value r such that ψ =
Com(m, r) and c = Enc(pkC , r).
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– Confirm: The confirmer C first checks that (ψ, c, pkS) has been signed with
skS using the provided pkS , and aborts if the check fails. Then, C performs
a ZK proof of knowledge of a value r such that ψ = Com(m, r).

– Disavowal: To disavow a purported signature σ′ = (σ∗, ψ, c) on message m,
the confirmer C does the following. C first checks if c is a valid encryption
of some r. If not, it performs a ZK proof of knowledge that the string c is
not a well-formed encryption. Otherwise, C computes r′ = Dec(skC , c). If
ψ �= Com(m, r′), then C provides a ZK proof of knowledge that there is a
value r′ such that ψ �= Com(m, r′) and r′ = Dec(skC , c).

Gentry et al. pointed out that all the above statements involving ZK proofs
can be expressed as NP statements (with short witnesses). Therefore, in theory
the above generic DCS scheme can be implemented in polynomial time from any
suitably secure encryption scheme, commitment scheme, and signature scheme.
Since generic ZK proofs for NP-statements are not very practical, they suggested
that an efficient instantiation can be obtained by selecting the CS-Paillier en-
cryption scheme [11], and the Pedersen commitment scheme [35] over a prime
order group Γ . However, in [25] this instantiation was just given in a high-level
description without implementation details.

4.2 Security of the GMR Scheme

The GMR scheme reviewed above is an interesting designated signature scheme,
since it is a generic transformation with efficient implementations. In this section,
however, we shall identify two security flaws in the GMR scheme. Namely, it does
not satisfy the unfoolablility and the invisibility.

According to the definition of security for verifiers, an adversary A should
not be able to create confirmable but un-extractable DCS message-signature
pair (m, σ′) or disavowable but extractable pair (m, σ′), even if the adversary A
compromises both skS and skC , i.e. the private keys of the confirmer S and the
signer C. However, according to the specification of the GMR scheme, such an
adversary A can fool a verifier as follows. A first picks two random numbers r and
c (with proper lengths), then computes ψ = Com(m, r) for an arbitrary message
m and issues σ∗ = Sig((ψ, c, pkS), skS) using skS . The resulting DCS message-
signature pair is (m, σ′), where σ′ = (σ∗, ψ, c). Note that σ′ can be confirmed by
running the Confirm protocol, since σ∗ is S’s valid signature on (ψ, c, pkS) and
the adversary A with the randomness r can provide a ZK proof of knowledge
showing that there is a value r such that ψ = Com(m, r). In the experiment
UnFoolVerifier, this attack allows V to output b2 = 1 with probability 1.

In their security claim (Theorem 1 in [25]), Gentry et al. pointed out that se-
curity for verifiers follows the soundness of ConfirmedSign, Confirm and Disavowal
protocols. This is a correct reasoning, but in the context of their DCS scheme
the assumption is not true. Because their Confirm protocol is actually not sound,
as demonstrated by the above attack. Based on this observation, we can simply
get a sound Confirm protocol by requiring the confirmer C to prove in ZK that
it knows a value r such that ψ = Com(m, r) and r = Dec(skC , c).
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Remark 1. Note that a similar attack applies to the GW generic DCS scheme
proposed by Goldwasser and Waisbard in [28], since their Confirmation Protocol
does not satisfy the soundness too (For detail, please check the first paragraph
of page 91 [28]). That is, a verifier can be fooled by an un-extractable DCS
signature, if the signer and the confirmer collude together or their private keys
are compromised by an adversary. Naturally, we could repair the GW scheme as
suggested above. By doing so, however, the resulting Confirmation Protocol will
become less efficient than the original one.

Informally, invisibility means that an (adaptively chosen message) adversary A
cannot distinguish whether a DCS σ′ is on message m0 or message m1 with
non-negligible advantage better than 1/2, even if A is given the signer’s private
key skS . The formal definition of this version of invisibility can be found in [10].
Now, we present an attack that breaches invisibility and then breaks transcript
simulatability, since the latter implies the former, as we mentioned before.

Our attack is based on the observation that in the GMR DCS scheme, the
ciphertext c of randomness r could be re-used in different signatures. For simplic-
ity, let us demonstrate the attack in the scenario where Pedersen commitment
scheme [35] and Cramer-Shoup CCA2 secure encryption scheme [16] are used in
the GMR scheme. That is, we compute ψ = Com(m, r) := δmγr, where δ and γ
are two random generators of a group Γ with prime order ρ. Let σ′ = (σ∗, ψ, c) be
a valid DCS for message m0 or message m1 with exact probability 1/2. So, there
exists b ∈ {0, 1} and a value r such that σ∗ = Sig((ψ, c, pkS), skS), ψ = δmbγr,
and c = Enc(pkC , r). The goal of an adversary A is to tell whether the bit b
equals 1 or 0. To this end, the adversary A first picks an arbitrary message m′

(m′ �= m0 and m′ �= m1), and computes ψ′ = ψδm′
δ−m0 (= δm′+mb−m0γr).

Then, A asks the signing oracle of the underlying signature scheme to get a
signature σ∗∗ on (ψ′, c, pkS), i.e., σ∗∗ = Sig((ψ′, c, pkS), skS). After that, A asks
the Extract oracle by enquiring (m′, σ′′ = (σ∗∗, ψ′, c)). Finally, A outputs b = 0
if a value r is received from the Extract oracle; otherwise (i.e., the Extract oracle
reveals ⊥), A outputs b = 1. Note that to correctly guess the random bit b, A
can alternatively run Confirm or Disavowal protocol on the same pair (m′, σ′′)
with the confirmer. It is not difficult to see that A wins the above game with
probability 1.

Actually, in the setting of multiple signers, the above adversary A can also
check the validity of signer S’s DCS σ′ = (σ∗, ψ, c) on message m by interacting
with the confirmer C on another message-signature pair (m′, σ′′) from signer
S′’s (different from S). The reason is that A can collude with S′ so that S′

issues his DCS σ′′ on a new message m′ by re-using c similarly, i.e., σ∗∗ =
Sig((ψ′, c, pkS′), skS′), where ψ′ = ψδm′

δ−m.
In the scenarios of fair exchange, the above attacks may allow one party to

cheat the other. In addition, the above attack also implies that the signer is
coercible [10,32]. That is, even if the signer S erases the intermediate results (i.e.
randomness r etc.) after the computation of a DCS σ′, S may still be coerced
since a third party can prove the fact that S indeed issued σ′.
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5 Improved GMR Scheme

To enhance the transcript simulatability of the GMR scheme, we should let the
confirmer know the “context” of the ciphertext c meaning that c is created with
respect to which message m and which verification key pkS . We notice that this
can be achieved if the underlying IND-CCA2 secure encryption scheme supports
the use of labels. Namely, we can define a label L = m||pkS so that the confirmer
is aware of the context of c. In the following, we describe our improvement on
the GMR DCS scheme in the setting of exploiting CS-Paillier encryption scheme
[11] and Pedersen commitment [35]. Such a treatment could be helpful to readers
who want to know (and apply) a concrete DCS implementation with clearly
technical details. At the same time, note that this concrete DCS scheme can be
straightforwardly generalized by using any IND-CCA2 secure encryption with
labels and any perfectly hiding and computationally binding commitment.

To obtain a verifiable encryption scheme from the CS-Paillier cryptosystem,
we assume that there is an additional composite modulus n2 = p2q2, where
p2 = 2p′2+1 and q2 = 2q′2+1 are two safe primes, along with elements g2, h2 ∈ Z

∗
n2

of order p′2q
′
2. In addition, we select a third group Γ of prime order ρ, along with

two random generators δ and γ. In the group Γ , the discrete logarithm problem
is assumed to be hard. In our DCS scheme, a message digest m (the hashed value
of a real message) shall be committed by Com(m, r) = δmγr, where r ∈R [ρ]. We
require n2 �= n, ρ = |Γ | < n·2−k−k′−3, and 2k < min{p′, q′, p′2, q

′
2} for two further

security parameters k and k′. Actually, {0, 1}k defines the “challenge space” of
the verifier V , while k′ controls the quality of the ZK property [11]. In addition,
it is required that the prover (a signer S or the confirmer C) does not know the
factorization of n2. So, for simplicity, we just assume that (n2, g2, h2, Γ, γ, δ) are
generated by a trusted party and viewed as a common reference string.

– DCGen: The signer S generates a key pair (skS , pkS) ← SGen(1λ) for any se-
cure digital signature scheme DSS=(SGen, Sig, Ver). The confirmer C gener-
ates a key pair (skC , pkC) ← CGen(1λ) for the CS-Paillier encryption scheme.
Namely, we assume skC = (x1, x2, x3) and pkC = (n, g, h, y1, y2, y3, H).

– Sign: To sign a message m ∈ [ρ], the signer S first selects a random number
r ∈R [ρ], then computes ψ = Com(m, r) = δmγr and σ∗ = Sig((ψ, pkS), skS).
The basic signature for message m is σ = (σ∗, r).

– Verify: On input an extracted DCS signature σ = (σ∗, r) for a message m, it
returns the output of Ver((ψ, pkS), σ∗, pkS), where ψ = Com(m, r).

– Extract: On input σ′ = (σ∗, ψ, c) and message m, it outputs r if σ∗ =
Sig((ψ, pkS), skS) and the confirmer C can derive r = Dec(skC , c) w.r.t.
label L = m||pkS such that ψ = Com(m, r). Otherwise, it outputs ⊥.

– ConfirmedSign: In addition to the above steps in the Sign procedure, the
signer S also computes the ciphertext c := (u, e, v) = Enc(pkC , r) under the
label L = m||pkS (recall Section 2). The designated confirmer signature is
σ′ = (σ∗, ψ, c), where σ∗ = Sig((ψ, pkS), skS). Then, the signer runs a CZK
protocol with a verifier to show that c and ψ are properly prepared. That
is, the signer provides the following ZK proof of knowledge of values (t, r, s),
where s ∈R [n2/4] and α = ψδ−m:
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PK{(t, r, s) : u2 = g2t ∧ e2 = y2t
1 h2r ∧ v2 = (y2y

H(u,e,L)
3 )2t∧

α = γr ∧ � = gr
2h

s
2 ∧ −n/2 < r < n/2}.

(4)

– Confirm: Upon receiving a message-signature pair (m, σ′ = (σ∗, ψ, c)) with
respect to pkS , the confirmer C first checks whether σ∗ is S’s signature on
(ψ, pkS). C aborts if the check fails. Otherwise, C decrypts c = (u, e, v) using
label L = m||pkS to get a value r, and then checks that ψ ≡ Com(m, r). If any
step of this procedure fails, C performs the Disavowal protocol. Otherwise, C
needs to show that there is such an r in ZK. That is, the signer provides the
following ZK proof of knowledge of values (x1, x2, x3, r, s), where s ∈R [n2/4]
and α = ψδ−m:

PK{(x1, x2, x3, r, s) : y1 = gx1 ∧ y2 = gx2 ∧ y3 = gx3 ∧ e2 = u2x1h2r∧
v2 = u2x2u2H(u,e,L)x3 ∧ α = γr ∧ � = gr

2h
s
2 ∧ −n/2 < r < n/2}.

(5)

– Disavowal: To disavow a purported signature σ′ = (σ∗, ψ, c) on message m,
the confirmer C does the following. C first checks if c is a valid encryption
of some r. If not, it performs a ZK proof of knowledge that the string c is
not well-formed. Otherwise, C computes r = Dec(skC , c) and proves in ZK
that ψ �= Com(m, r). That is, the confirmer C provides a ZK proof for the
following statement:

[c is invalid w.r.t. L = m||pkS ] OR
[∃ r s.t. r = Dec(skC , c) AND ψ �= Com(m, r)]. (6)

Compared with the original GMR scheme, there are three main changes in
the above improvement. First, our basic signature is a pair (σ∗, r) instead of
a triple (σ∗, c, r) in GMR scheme, where c is treated as auxiliary information
in [25]. Our proposal not only becomes simpler, but also avoids the potential
question whether a proof should be provided to show that c indeed encrypts r.
We also remark that the algorithm Verify is not specified in the GMR scheme
[25]. Second, the Confirm protocol is enhanced to guarantee the soundness, as
we mentioned before. Third, we explicitly specify how to use labels in the DCS
scheme. In contrast, the authors of [25] claimed that any IND-CCA2 secure
encryption scheme [20] can be used by the confirmer without mentioning how to
use the labels in their instantiation, where CS-Paillier cryptosysem is exploited.

In addition, a practical implementation should guarantee that the Extract
algorithm is performed correctly. To this end, we can require that the confirmer
first runs Confirm or Disavowal protocol with a verifier, and then outputs a correct
value r or ⊥ respectively. Alternatively, the confirmer can provide some non-
interactive proof to show that it did this properly. For example, the confirmer
can perform the non-interactive version of Confirm or Disavowal protocol with
additional output r or ⊥ correspondingly.

The implementation details and the security proof of the improved GMR
scheme can be found in the full version [37]. The following theorem summarizes
the security result on this DCS scheme.
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Theorem 1. Let DSS = (SGen, Sig, Ver) be any signature scheme which is
existentially unforgeable against chosen message attack, and PKE = (CGen,
Enc, Dec) be any IND-CCA2 secure encryption scheme supporting labels,
and Com(m, r) be any statistically-hiding computationally-binding commitment
scheme. Then the improved GMR scheme is a secure designated confirmer sig-
nature scheme, i.e., it satisfies the security requirements for verifiers, the signer,
and the confirmer as specified in definitions 2, 3 and 4.

6 A New DCS Scheme Without Public Key Encryption

In this section, we propose a new generic DCS scheme, which is not only more
efficient but also does not rely on any public key encryption. The basic idea is to
exploit a confirmer commitment scheme, first introduced by Michels and Stadler
in [30]. The difficulty, however, lies in realizing the invisibility in this setting,
since Michels-Stadler DCS schemes were broken by Camenisch and Michels [10].
In our construction, we take a new approach to this problem by requiring the
signer to issue a partial proof showing that a confirmer commitment is delegated
to a specific signature and signer. To confirm or disavow an alleged signature,
we extensively exploit the zero-knowledge protocols proposed by Korusawa and
Heng [29] for their undeniable signatures.

Again, our scheme is just described for a short message digest m ∈ [ρ], where
ρ is a prime. To sign an arbitrary message M ∈ {0, 1}∗ we can exploit a collision-
free hash function H1 : {0, 1}∗ → [ρ] and then use H1(M) to replace m in the
following description.

– DCGen: The signer S generates a key pair (skS , pkS) ← SGen(1λ) for any se-
cure digital signature scheme DSS=(SGen, Sig, Ver). The confirmer C chooses
a group Γ of prime order ρ with a generator δ, and generates a key pair
(skC = x, pkC = γ = δx) by selecting a random number x ∈R [ρ].

– Sign: To sign a message m ∈ [ρ], the signer S first selects a random number
r ∈ [ρ], then computes d1 = δr, d2 = γr+m, and σ∗ = Sig(d1||d2||pkS ||pkC ,
skS). After that, S with randomness r provides a non-interactive proof π0
showing that (δ, d1, γ, d2γ

−m) is a Diffie-Hellman (DH) tuple. That is,

π0 =SPK{(r, x) : (d1 = δr∧d2γ
−m = γr)∨(γ = δx∧d2γ

−m = dx
1)}(pkS ||pkC).

The basic signature is σ = (σ∗, d1, d2, π0).
– Verify: On input a basic signature σ = (σ∗, d1, d2, π0) and a message m, it

outputs Accept if σ∗ is the signer’s valid signature on (d1, d2, pkS , pkC) and
π0 is a valid proof showing that (δ, γ, d1, d2γ

−m) is a DH-tuple. Otherwise,
it outputs ⊥.

– Extract: On input an alleged DCS message-signature pair (m, σ′ = (σ∗, d1, d2,
π1)) w.r.t. pkS and pkC , it outputs a non-interactive proof π0 using the
confirmer’s private key x, if (δ, γ, d1, d2γ

−m) is a DH-tuple. Otherwise, it
outputs ⊥.
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– ConfirmedSign: To generate a DCS σ′ = (σ∗, d1, d2, π1) for message m ∈ [ρ],
the signer first produces d1, d2 and σ∗ as in the Sign procedure by selecting
a random number r. Then, the signer S provides a non-interactive proof π1
showing that he or she knows the discrete logarithm of d1 to the base δ.
That is,

π1 = SPK{r : d1 = δr}(d2||pkS ||pkC).

We call (m, σ′ = (σ∗, d1, d2, π1)) is an alleged DCS message-signature pair
w.r.t. pkS and pkC , if σ∗ is a valid signature on d1||d2||pkS ||pkC w.r.t. public
key pkS , and π1 is a valid signature proof of knowledge (SPK) [9] for d1 = δr

w.r.t. message d2||pkS ||pkC . Finally, S performs the interactive version of π0
with a verifier V to show that (δ, d1, γ, , d2γ

−m) is a DH-tuple, i.e.,

π′
0 = PK{(r, x) : (d1 = δr ∧ d2γ

−m = γr) ∨ (γ = δx ∧ d2γ
−m = dx

1)}.

– Confirm: For an alleged DCS message-signature pair (m, σ′ = (σ∗, d1, d2, π1))
with respect to pkS and pkC , the confirmer C checks if (δ, d1, γ, , d2γ

−m) is
a DH-tuple. If not, C performs Disavowal protocol. If yes, using its private
key x the confirmer C runs the interactive protocol π′

0 (see above) with a
verifier V .

– Disavowal: To disavow an alleged DCS message-signature pair (m, σ′ = (σ∗,
d1, d2, π1)) w.r.t. pkS and pkC , where (δ, d1, γ, , d2γ

−m) is not a DH-tuple,
using its private key x the confirmer C performs the following interactive
protocol with a verifier V :

π′
2 = PK{(r, x) : (d1 = δr ∧ d2γ

−m �= γr) ∨ (γ = δx ∧ d2γ
−m �= dx

1)}.

Note that in the above specification, d2||pkS ||pkC is particularly embedded
in the partial proof π1. The purpose is to prevent another signer from re-using
(d1, d2, π1). Otherwise, invisibility may be compromised. The implementation
details and the security proof of the above DCS scheme can be found in the full
version of this paper [37]. The following theorem summarizes the security result
on this DCS scheme.

Theorem 2. Let DSS = (SGen, Sig, Ver) be any signature scheme which is
existentially unforgeable against chosen message attack, and Γ = 〈δ〉 be a group
in which the Decisional Diffie-Hellman (DDH ) problem is intractable. Then the
above DCS scheme without public key encryption is a secure designated confirmer
signature scheme, i.e., it satisfies the security requirements for verifiers, the
signer, and the confirmer as specified in definitions 2, 3 and 4.
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Abstract. We introduce a new approach for cryptanalysis of key agree-
ment protocols based on noncommutative groups. Our approach uses
functions that estimate the distance of a group element to a given sub-
group. We test it against the Shpilrain-Ushakov protocol, which is based
on Thompson’s group F , and show that it can break about half the keys
within a few seconds on a single PC.

Keywords: Key agreement, Cryptanalysis, Thompson’s group, Shpilrain-
Ushakov, Subgroup distance function.

1 Introduction

Key agreement protocols have been the subject of extensive studies in the past
30 years. Their main task is to allow two parties (in the sequel, Alice and Bob)
to agree on a common secret key over an insecure communication channel. The
best known example of such a protocol is the Diffie-Hellman protocol, which
uses a (commutative) cyclic group. Over the last few years, there was a lot of
interest in key agreement protocols based on noncommutative groups, and much
research was dedicated to analyzing these proposals and suggesting alternative
ones (see, e.g., [1,4,5,6,7,8,10,11,12], and references therein).

A possible approach for attacking such systems is the length-based cryptanal-
ysis, which was outlined in [6]. This approach relies on the existence of a good
length function on the underlying group, i.e., a function �(g) that tends to grow
as the number of generators multiplied to obtain g grows. Examples of groups
known to have such length functions are the braid group BN [2] and Thompson’s
group F [3]. For these groups, several practical realizations of length-based at-
tacks were demonstrated [4,5,9]. These attacks can achieve good success rates,
but usually only when we allow the algorithm to explore many suboptimal par-
tial solutions, which greatly increases both the time and space complexities (see
[5] for more details).

We introduce a novel approach to cryptanalysis of such key agreement pro-
tocols, which relies on the notion of subgroup distance functions, i.e., functions
that estimate, for an element g ∈ G and a subgroup H ≤ G, the distance from
g to H . The motivation for these distance-based attacks is the fact that several
families of public key agreement protocols suggest predefined pairs of subgroups
of the main group to be used for key generation, and their security depends on

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 61–75, 2007.
c© International Association for Cryptologic Research 2007
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the ability of the adversary to generate any elements in these subgroups, which
are in some way equivalent to the originals (see [9,11]). We construct the the-
oretical framework for distance-based attacks and demonstrate its applicability
using the Shpilrain-Ushakov protocol in Thompson’s group F [12] as an example.
Although it has recently been shown by Matucci [8] that the implementation of
the proposed protocol in F can be broken deterministically using a specialized
attack based on the structural properties of the group, it is still an interesting
test case for more generic attacks, such as the one proposed here.

The paper is organized as follows: in Section 2 we present the protocol in its
general form. We then introduce in Section 3 the notion of subgroup distance
function and a general attack scheme based on it. Section 4 describes the set-
ting for the protocol in Thompson’s group F . In Section 5 we introduce several
subgroup distance functions in F . Section 6 describes our experimental crypt-
analytic results.

2 The Shpilrain-Ushakov Key Agreement Protocol

The protocol below was suggested by Shpilrain and Ushakov in [12]. The authors
suggested to use Thompson’s group F for its implementation. Before we focus
on that example, we’ll discuss the general case.

(0) Alice and Bob agree (publicly) on a group G and subgroups A, B ≤ G, such
that ab = ba for each a ∈ A and each b ∈ B.

1. A public word z ∈ G is selected.
2. Alice selects privately at random elements a1 ∈ A and b1 ∈ B, computes

u1 = a1zb1, and sends u1 to Bob.
3. Bob selects privately at random elements a2 ∈ A and b2 ∈ B, computes

u2 = b2za2, and sends u2 to Alice.
4. Alice computes KA = a1u2b1 = a1b2za2b1, whereas Bob computes KB =

b2u1a2 = b2a1zb1a2.

As a1b2 = b2a1 and a2b1 = b1a2, KA = KB = K and so the parties share the
same group element, from which a secret key can be derived.

2.1 Breaking the Protocol

The goal of the adversary is to obtain the secret group element K from the
publicly known elements u1, u2 and z. For this it suffices to solve the following
problem:

Definition 1 (Decomposition problem). Given z ∈ G and u = azb where
a ∈ A and b ∈ B, find some elements ã ∈ A and b̃ ∈ B, such that ãzb̃ = azb.

Indeed, assume that the attacker, given u1 = a1zb1, finds ã1 ∈ A and b̃1 ∈ B,
such that ã1zb̃1 = a1zb1. Then, because u2 = b2za2 is known, the attacker can
compute

ã1u2b̃1 = ã1b2za2b̃1 = b2ã1zb̃1a2 = b2u1a2 = KB .
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Alternatively, the attacker can break the protocol by finding a valid decomposi-
tion of u2 = b2za2.

For any given ã ∈ A we can compute its complement b̃ = z−1ã−1u =
z−1ã−1(azb), which guarantees that ãzb̃ = azb. The pair ã, b̃ is a solution to
this problem if, and only if, b̃ ∈ B. A similar comment applies if we start with
b̃ ∈ B. This involves being able to solve the group membership problem, i.e., to
determine whether b̃ ∈ B (or ã ∈ A in the second case).

It should be stressed that solving the decomposition problem is sufficient,
but not necessary in order to cryptanalyze the system. All that is required in
practice is finding some pair ã, b̃ that succeeds in decrypting the information
passed between Alice and Bob. Any pair ã ∈ A and b̃ ∈ B will work, but there
can be other pairs, which are just as good. This observation can be useful in
cases where the group membership problem is difficult or in groups where the
centralizers of individual elements are considerably larger than the centralizers
of the subgroups (which is not the case in F , see [9]). For simplicity, in the sequel
we will restrict ourselves to solutions where ã ∈ A and b̃ ∈ B.

3 Subgroup Distance Functions

Definition 2 (Subgroup distance function). Let G be a group, H ≤ G a
subgroup. A function dH : G → R

+ is a subgroup distance function if it satisfies
the following two axioms:

1. Validity: dH(h) = 0 for all h ∈ H.
2. Non-triviality: dH(g) > 0 for all g �∈ H.

It is an invariant subgroup distance function if it also satisfies:

(3) Invariance: dH(gh) = dH(hg) = dH(g) for all g ∈ G and h ∈ H.

Clearly, if it is possible to evaluate a subgroup distance function dH on all ele-
ments of G, then the membership decision problem for H is solvable: g ∈ H ⇐⇒
dH(g) = 0. Conversely, if one can solve the membership decision problem, a triv-
ial distance function can be derived from it, e.g., dH(g) = 1 − χH(g), where χH

is the characteristic function of H .
Obviously, this trivial distance function is not a good example. For the sub-

group distance function to be useful, it has to somehow measure how close a
given element g is to H , that is, if dH(g1) < dH(g2), then g1 is closer to H
than g2. This concept of “closeness” can be hard to define, and even harder
to evaluate. The notion of what’s considered a good distance function may
vary, depending on the subgroups and on the presentation. In the sequel we
will discuss concrete examples of subgroup distance function in Thompson’s
group F .

Assuming the existence of such functions, consider the following algorithm for
solving the decomposition problem:
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Algorithm 1 (Subgroup distance attack)
We are given words z, xzy ∈ G, where x ∈ X and y ∈ Y , X, Y are commuting
subgroups of G and SX , SY are their respective (finite) generating sets. The goal
it to find some x̃ ∈ X and ỹ ∈ Y , such that xzy = x̃zỹ. The algorithm runs at
most a predefined number of iterations N .

1. Let x̃ ← 1.
2. For each gi ∈ S±1

X compute xi = x̃gi, its complement yi = z−1x−1
i xzy and

evaluate dY (yi). If dY (yi) = 0, let x̃ = xi, ỹ = yi and halt.
3. Let j be the index of the minimum dY (yi) (if several such j are possible,

choose one arbitrarily).
4. If the maximal number of iterations N has been reached, terminate. Other-

wise, let x̃ ← xj and return to step 2.

Observe that if the algorithm halts in step 2, then the pair x̃, ỹ is a solution of
the decomposition problem.

Algorithm 1 is very similar to the length-based attacks described in [4,9]. The
difference is that it uses the subgroup distance function, instead of the length
function to evaluate the quality of candidates. As such, any extensions applicable
to the length-based algorithms (such as memory, lookahead, etc.) can be used
with the distance-based attack as well. Refer to [5,9] for more information.

3.1 Attacking the Shpilrain-Ushakov Protocol

The adversary is given the common word z and the public elements u1, u2. These
can be translated into four equations in the group:

u1 = a1zb1
u2 = b2za2

u−1
1 = b−1

1 z−1a−1
1

u−1
2 = a−1

2 z−1b−1
2

(1)

Algorithm 1 (with or without possible extensions) can be applied to each of
the four equations separately, thus attacking each of the four private elements
a1, a2, b

−1
1 , b−1

2 . A single success out of the four attempts is sufficient to break
the cryptosystem (see Section 2.1).

4 Thompson’s Group

Thompson’s group F is the infinite noncommutative group defined by the fol-
lowing generators and relations:

F = 〈 x0, x1, x2, . . . | x−1
i xkxi = xk+1 (k > i) 〉 (2)

Remark 1. From Equation (2) it’s evident that the elements x0, x1 and their
inverses generate the entire group, because x±1

k = x1−k
0 x±1

1 xk−1
0 for every k ≥ 2.
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Definition 3. A basic generator x±1
i of F is called a letter. A generator xi is

a positive letter. An inverse x−1
i is a negative letter. A word in F is a sequence

of letters. We define |w| as the length of the word w , i.e., the number of letters
in it.

Definition 4. A word w ∈ F is said to be in normal form, if

w = xi1 · · · xirx
−1
jt

· · · x−1
j1

(3)

and the following two conditions hold:

(NF1) i1 ≤ · · · ≤ ir and j1 ≤ · · · ≤ jt

(NF2) If both xi, x
−1
i occur in w, then at least one of xi+1, x

−1
i+1 occurs too.

A word is said to be in seminormal form if only (NF1) holds.

While a seminormal form is not necessarily unique, a normal form is, i.e., two
words represent the same group element if and only if they have the same normal
form [3]. The following rewriting rules can be used to convert any word to its
seminormal form [12]:

For all non-negative integers i < k:

(R1) xkxi → xixk+1

(R2) x−1
k xi → xix

−1
k+1

(R3) x−1
i xk → xk+1x

−1
i

(R4) x−1
i x−1

k → x−1
k+1x

−1
i

For all non-negative integers i:

(R5) x−1
i xi → 1

The seminormal form can be subsequently converted to a normal form by
searching for pairs of indices violating (NF2), starting from the boundary be-
tween the positive and negative parts, and applying the inverses of rewriting
rules (R1) and (R4) to eliminate these pairs [12]:

Suppose that (xia , x−1
jb

) is a pair of letters violating (NF2) and that a and
b are maximal with this property (i.e., there exists no violating pair (xik

, x−1
jl

)
with k > a and l > b). Then ia = jb and all indices in xia+1 · · · xirx

−1
jt

· · ·x−1
jb+1

are higher than ia + 1 (by definition of (NF2)). Applying the inverse of (R1) to
xia and the inverse of (R4) to x−1

jb
we get:

w = xi1 · · · xia (xia+1 · · · xirx
−1
jt

· · · x−1
jb+1

)
︸ ︷︷ ︸

c

x−1
jb

· · · xj1

→ xi1 · · · xia+1−1 · · · xir−1 (xiax−1
jb

)
︸ ︷︷ ︸

cancel

x−1
jt−1 · · · x−1

jb+1−1 · · · xj1

→ xi1 · · · xia−1 (xia+1−1 · · · xir−1x
−1
jt−1 · · ·x−1

jb+1−1)
︸ ︷︷ ︸

c′

xjb−1 · · · xj1
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The violating pair (xia , x−1
jb

) is cancelled and the subword c′ obtained from c
by index shifting contains no violating pairs (by the assumption of maximality
on (a, b)). Thus, we can continue searching for bad pairs, starting from a−1 and
b − 1 down. Thus we are guaranteed to find and remove all the violating pairs
and reach the normal form.

Definition 5 (Normal form length). For w ∈ F , whose normal form is ŵ,
define the normal form length as �NF(w) = |ŵ|.
The following lemma shows the effect multiplication by a single letter has on the
normal form of the word. This result will be useful in the following sections.

Lemma 1. Let w ∈ F and x = x±1
t be a basic generator of F in the presentation

(2). Then �NF(xw) = �NF(w)±1 (and due to symmetry, �NF(wx) = �NF(w)±1).

Proof. We’ll concentrate on the product xw (obviously, the case of wx is similar)
and observe what happens to the normal form of w when it’s multiplied on the left
by the letter x. Without loss of generality, w = xi1 · · · xik

x−1
jl

· · · x−1
j1

is in normal
form. Denote the positive and negative parts of w by wp and wn respectively.

Assume that x = xt is a positive letter. Then bw is converted to a seminormal
form by moving x into its proper location, while updating its index, using repeated
applications of (R1). Assuming m applications of (R1) are necessary, the result
is of the form:

bw = xi1 · · · ximxt+mxim+1 · · ·xik
x−1

jl
· · · x−1

j1
,

where im < t + m − 1 and im+1 ≥ t + m.

Remark 2. Observe that it is not possible that im = t+m−1, because in order
to apply (R1): xt+m−1xim → ximxt+m, one must have im < t + m − 1.

Example 1. w = x3x7x11x
−1
9 x−1

4 , b = x8. bw = x8 · x3x7x11x
−1
9 x−1

4 is con-
verted to bw = x3x7x10x11x

−1
9 x−1

4 , by 2 applications of (R1).

Obviously, bw is a seminormal form and |bw| = |w| + 1. If bw is in normal
form (as in the above example), we’re done. The only situation where it’s not
in normal form, is if it contains pairs violating (NF2). Since xt+m is the only
letter introduced, the only violating pair can be (xt+m, x−1

t+m). This may occur,
if w contained x−1

t+m, but neither xt+m, nor x±1
t+m+1.

Example 2. w = x3x7x11x
−1
9 x−1

4 , b = x7. bw = x7 · x3x7x11x
−1
9 x−1

4 is con-
verted to bw = x3x7x9x11x

−1
9 x−1

4 . In this case (x9, x
−1
9 ) violates (NF2). The

inverse of (R1) is applied to rewrite x9x11 → x10x9, and x9x
−1
9 are canceled out,

yielding the (normal) word b̂w = x3x7x10x
−1
4 .

Whenever a situation occurs as described above, the pair (xt+m, x−1
t+m) is can-

celled, according to the procedure described in Section 4. This causes all indices
above t + m to be decreased by 1. The resulting word is

b̂w = xi1 · · ·ximxim+1−1 · · ·xik−1x
−1
jl−1 · · ·x−1

jn+1−1x
−1
jn

· · · x−1
j1

,



Cryptanalysis of Group-Based Key Agreement Protocols 67

where im < t + m − 1, im+1 ≥ t + m + 2, jn ≤ t + m and jn+1 ≥ t + m + 2.
We have |b̂w| = |w| − 1 and, in fact, b̂w is in normal form. Indeed, once the
pair (xt+m, x−1

t+m) is cancelled, the only new pair violating (NF2) that can be
introduced is (xt+m−1, x

−1
t+m−1), but this is not possible, because xt+m−1 does not

appear in b̂w, due to Remark 2. This completes the proof for positive letters.
Now, consider the case where x = x−1

t , a negative letter. bw is converted to a
seminormal form by moving x−1

t to the right, while updating its index, using the
different rewriting rules. There are two possible outcomes:

(1) After m applications of (R2) the resulting word is

bw = xi1 · · · ximx−1
t+mxim+1 · · ·xik

x−1
jl

· · · x−1
j1

,

where im+1 = t+m, and so the pair is cancelled by applying (R5). Now, because
im < t+m−1, the elimination of the pair (xt+m, x−1

t+m) does not introduce pairs
that violate (NF2), and so bw is in normal form and has |bw| = |w| − 1.

Example 3. w = x3x7x
−1
9 x−1

4 , b = x−1
6 . bw = x−1

6 x3x7x
−1
9 x−1

4 is converted to
x3x

−1
7 x7x−1

9 and the pair of inverses is cancelled out to obtain x−1
4 → x3x

−1
9 x−1

4 .

(2) x−1
t is moved to its proper place among the negative letters, updating its

index if necessary. This is completed through m applications of (R2), followed
by k − m applications of (R3) and finally, l − n applications of (R4), to obtain

bw = xi1 · · ·ximx−1
t+mxim+1+1 · · ·xik+1x

−1
jl+1 · · ·x−1

jn+1+1x
−1
t+mx−1

jn
· · ·x−1

j1
,

where im < t + m − 1, im+1 > t + m, jn+1 > t + m and jn ≤ t + m. Because
the letter xt+m is not present in bw (otherwise the previously described situa-
tion would occur), the newly introduced letter x−1

t+m cannot violate (NF2), and
therefore bw is in fact in normal form and |bw| = |w| + 1.

Example 4. w = x3x7x
−1
9 x−1

4 , b = x−1
5 . bw = x−1

5 x3x7x
−1
9 x−1

4 is rewritten as:
x−1

6 x7x
−1
9 x−1

4 → x3x8x
−1
6 x−1

9 x−1
4 → x3x8x

−1
10 x−1

6 x−1
4 .

This completes the proof for negative letters.
�

4.1 The Shpilrain-Ushakov Protocol in Thompson’s Group

For a natural number s ≥ 2 let SA = {x0x
−1
1 , . . . , x0x

−1
s }, SB = {xs+1, . . . , x2s}

and SW = {x0, . . . , xs+2}. SW generates F (see Remark 1). Denote by As and
Bs the subgroups of F generated by SA and SB, respectively.

All of the following facts are shown in [12]: As is exactly the set of elements
whose normal form is

xi1 · · · ximx−1
jm

· · · x−1
j1

,

i.e, has positive and negative parts of the same length m, and additionally sat-
isfies ik − k < s and jk − k < s for every k = 1, . . . , m. Bs is the set of all
elements of F whose normal form consists only of letters with indices ≥ s + 1.
Additionally, As and Bs commute elementwise, which makes them usable for
implementing the protocol in Section 2.
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Key generation. Let s ≥ 2 and L be positive integers. The words a1, a2 ∈ As,
b1, b2 ∈ Bs, and w ∈ F are all chosen of normal form length L, as follows: Let
X be A, B, or W . Start with the empty word, and multiply it on the right by a
generator (or inverse) selected uniformly at random from the set SX . Continue
this procedure until the normal form of the word has length L.

For practical and (hopefully) secure implementation of the protocol, it is sug-
gested in [12] to use s ∈ {3, 4, . . . , 8} and L ∈ {256, 258, . . . , 320}.

5 Subgroup Distance Functions in Thompson’s Group

In this section we’ll suggest several natural distance functions from the subgroups
As, Bs ≤ F defined in Section 4.1. These distance functions can be used to
implement the attack outlined by Algorithm 1.

5.1 Distance Functions from Bs

For w ∈ F define Pi(w) and Ni(w) as the number of occurrences of xi and x−1
i

in the normal form ŵ of w.

Definition 6 (Distance from Bs). Let s ≤ 2 be an integer. For w ∈ F the
distance from Bs is defined as

dBs(w) =
s∑

i=0

(Pi(w) + Ni(w))

Claim 1. dBs is a distance function.

Proof. This is immediate, since an element is in Bs if and only if its normal
form does not contain generators with indices below s + 1 (see Section 4.1). �
Claim 2. dBs is an invariant distance function.

Proof. It is enough to consider only the generators of Bs. Indeed, if multiplication
by a single generator of Bs does not change the distance of a word w, neither
does multiplication by a sequence of these generators.

Let w ∈ F . Let b = x±1
s+α, where α > 0. By Lemma 1, we know that b is either

moved to its proper position (and �NF(bw) = �NF(w) + 1) or it is cancelled with
its inverse, either by (R5) or as part of a pair violating (NF2), in which case
�NF(bw) = �NF(w)−1. The index of b is initially above s, and may only increase
when the rewriting rules are applied. Therefore, if b is cancelled at some point,
the index of its inverse is also above s. Furthermore, when pairs of elements are
rewritten, the lower-indexed element is not affected, so any letters with indices
≤ s will not be affected by moving b. Finally, if b is cancelled out due to violating
(NF2), the process again only affects letters with indices higher than b’s (see the
proof of Lemma 1). In all cases, the generators with indices ≤ s are not affected
at all, and so dBs(bw) = dBs(w).

�
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One can intuitively feel that dBs is a natural distance function, because it counts
the number of “bad” letters in w (letters that do not belong to the subgroup
Bs). Indeed, if w is in normal form, w = wpwcwn, where wp and wn are the
“bad” positive and negative subwords, respectively, then dBs(w) = |wp| + |wn|
and w−1

p ww−1
n ∈ B.

We now introduce another natural function that measures distance from Bs.

Definition 7 (Weighted distance from Bs). Let s ≤ 2 be an integer. For
w ∈ F the weighted distance from Bs is defined as

dBs(w) =
s∑

i=0

(s + 1 − i) (Pi(ŵ) + Ni(ŵ))

dBs does not only count the “bad” letters, but assigns a score for each letter,
depending on how far below s + 1 it is (in particular, dBs(w) ≤ dBs(w) for all
w ∈ F . The following claim is straightforward.

Claim 3. dBs is an invariant distance function.

Proof. The proof of Claim 2 shows that multiplication by b does not alter any
letters below s+1 in w. Therefore, the weight of each such letter is also preserved.

�
5.2 Distance Functions from As

We will now describe a number of natural distance functions from the subgroup
As. Recall (Section 4.1) that As is the set of all elements in F , whose normal
form is of the type xi1 · · · ximx−1

jm
· · ·x−1

j1
, i.e, has positive and negative parts of

the same length m, and additionally satisfies ik − k < s and jk − k < s for every
k = 1, . . . , m.

Definition 8 (Distance from As). Let s ≥ 2 be an integer. Let w ∈ F ,
such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. The distance from As is

defined as

dAs(w) = |{k : ik − k ≥ s}| + |{l : jl − l ≥ s}| + |p − n|
dAs(w) is the number of “bad” letters in ŵ, i.e., letters that violate the As

property, plus the difference between the lengths of the positive or negative
parts. dAs is clearly a distance function. However, it is not invariant, as shown
by the following example:

Similarly we can define a weighted distance function from As, which not only
counts the number of bad letters, but gives a score to each such letter, based on
the difference ik − k (or jk − k).

Definition 9 (Weighted distance from As). Let s ≥ 2 be an integer. Let
w ∈ F , such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. The weighted

distance from As is defined as

dAs(w) =
ik−k≥s∑

k=1...p

(ik − k − s + 1) +
jk−k≥s∑

k=1...n

(jk − k − s + 1) + |p − n|
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For each bad letter xik
or x−1

jk
, dAs adds a positive integer. As such, it’s a

distance function, which is again not invariant (the example above works here
too).

A somewhat different approach to defining distance from As arises from the
observation that the number of bad letters can be less important than the maxi-
mum value of the differences ik−k and jk−k across the word, which measures the
size of the violation. The difference between the two distance functions roughly
corresponds to the difference between the L1 and L∞ norms.

Let ŵ = xi1 · · · xipx−1
jn

· · · x−1
j1

. Suppose that for some integer k we have ik−k−
s+1 = mp > 0 and that mp is the maximum for all ik. By multiplying the word
by x

mp

0 we shift the position for all the original positive letters of w by mp, and so
all of the positive letters, including the first m x0’s have ik − k < s. Similarly, if
mn is the maximum violation in the negative subword, multiplication by x−mn

0 on
the right eliminates all violations among negative letters. However, this still does
not mean that the word is in As, because the positive and negative lengths may
differ. Let ŵ′ be the normal form obtained from ŵ through multiplication by x

mp

0
and x−mn

0 on the left and right, respectively. Let lp and ln be the corresponding
lengths of the positive and negative parts of ŵ′. If lp−ln > 0, then ŵ′xln−lp

0 ∈ As.
If lp − ln < 0, then x

ln−lp
0 ŵ′ ∈ As. Altogether, any word can be changed to a

word in As through multiplication by mp + mn + |lp + ln| indices (when lp and
ln are evaluated after multiplying by x

mp

0 and x−mn
0 ).

This observation suggests the following distance function:

Definition 10 (Maximum-based distance from As). Let s ≥ 2 be an inte-
ger. Let w ∈ F , such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. Let

mp = max ({0} ∪ {ik − k − s + 1 : k = 1 . . . p})

and
mn = max ({0} ∪ {jk − k − s + 1 : k = 1 . . . n}) .

The maximum-based distance from As is defined as

dm
As

(w) = mp + mn + |(p + mp) − (n + mn)|
For every w ∈ As mp, mn and |p−n| are 0 by definition, while for every w �∈ As

at least one of them has to be positive, so the dm
As

is a distance function. It
turns out that, unlike the two previously defined distance functions, dm

As
is also

invariant.

Claim 4. dm
As

is an invariant distance function.

Proof. As with Claim 2, it’s sufficient to prove that multiplication by a single
generator of As does not change the distance from any word w to As. We will
consider multiplications on the left by generators and their inverses. The multi-
plication on the right follows symmetrically.

Let w = xi1 · · · xipx−1
jn

· · · x−1
j1

, without loss of generality, in normal form.
Consider the generator x0x

−1
t , where 1 ≤ t ≤ s. Define w′ as the normal form
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of x0x
−1
t w. For the parameters p, n, mp, mn of w, denote by p′, n′, m′

p, m
′
n their

corresponding values in w′.
From Lemma 1 it follows that each of the letters x−1

t and x0 can either be
cancelled out with the appropriate inverse, decreasing the length by 1, or placed
in its appropriate location, increasing the length by 1. There is a total of 4 possible
options:

(1) x−1
t is cancelled out, but x0 is not: w′ = x0xi1 · · · ximxim+2 · · ·

xipx−1
jn

· · · x−1
j1

, where x−1
t+m is cancelled out with xim+1 after m applications

of (R2). It follows that p′ = p, n′ = n and m′
n = mn (because the negative

letters are unaffected). Observe also that there can be no bad letters among
the first m: indeed, (R2) is applied m times, for each k = 1 . . .m rewriting
x−1

t+k−1xik
→ xik

x−1
t+k, so necessarily ik < t + k − 1 for all k, or equivalently,

ik − k < t − 1 < s. The multiplication by x0 on the left only increases their
relative positions, thus decreasing ik − k. Now, any possible bad letters above im
are unchanged, and neither is their relative position, so m′

p = mp and overall
dm

As
(w′) = dm

As
(w).

(2) Both x−1
t and x0 are cancelled out: w′ = xi1−1 · · · xim−1xim+2−1 · · ·

xip−1x
−1
jn−1 · · · x−1

jq+1−1x
1−q
0 . Here p′ = p−1, n′ = n−1 and m′

n = mn because all
negative letters x−1

jk
with jk > 0 had both their indices and their relative positions

decreased by 1. The same thing applies to positive letters above im, which are the
only positive letters that may be bad. So again, m′

p = mp and dm
As

(w′) = dm
As

(w).
(3) Neither x−1

t , nor x0 are cancelled out: w′ = x0xi1 · · · ximxim+1+1 · · ·
xip+1x

−1
jn+1 · · ·x−1

jq+1+1x
−1
t+mx−1

jq
· · ·x−1

j1
. Here p′ = p + 1 and n′ = n + 1. Due

to the former observation, bad positive letters may only exist beyond the first m.
All these letters had their indices ik and their relative positions k increased by
1, so the difference is preserved and m′

p = mp. Among the negative letters, only
the letters whose indices increased, also had their relative position increased, so
jk −k is preserved for all the original letters of w. Hence, m′

n ≥ mn and the only
situation when it may actually increase is when the new maximum is attained at
the new letter, i.e., m′

n = (t + m) − (q + 1) − s + 1 > mn. Because t ≤ s, m ≤ p
and q ≤ n, we have m′

n ≤ p − q, from which it follows that

(p′ + m′
p) − (n′ + m′

n) = (p′ − n′) + (m′
p − m′

n) = (p + 1) − (n + 1) + mp − m′
n ≥

≥ mp + (p − n) − (p − q) = mp + q − n ≥ 0

Assuming m′
n > mn, it’s obvious that

(p − n) + (mp − mn) > (p′ − n′) + (m′
p − m′

n) ≥ 0 ,

and so if mn increases, |(p + mp) − (n + mn)| decreases by the same amount,
and overall dm

As
(w′) = dm

As
(w).

(4) x−1
t is not cancelled out, but x0 is: w′ = xi1−1 · · · xim−1xim+1 · · ·

xipx−1
jn

· · · x−1
jq+1

x−1
t+m−1x−1

jq−1 · · · x−1
jr+1−1x

1−r
0 , where p′ = p, n′ = n, m′

p = mp

(because the first m positive letters, whose indices have changed, contained no bad
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letters), and m′
n again may only increase, if it’s attained at x−1

t+m−1. Repeating
the same calculations shows that dm

As
(w′) = dm

As
(w) in this case too.

Now consider the inverse xtx
−1
0 and denote w′ = xtx

−1
0 w. The four possible

outcomes are:

(1) x−1
0 is cancelled out, but xt is not: x−1

0 can only be cancelled out if i1 = 0,
and the resulting word is: w′ = xi2 · · ·ximxt+m−1xim+1 · · ·xipx−1

jn
· · · x−1

j1
. Here

p′ = p, n′ = n, m′
n = mn (negative part is not affected) and m′

p = mp because
the letters xi2 to xim cannot be bad and the relative position of other positive
letters has not changed.

(2) Both x−1
0 and xt are cancelled out: Assuming xt is cancelled out

(due to violation of (NF2)) with x−1
jq

, w′ = xi2 · · · ximxim+1−1 · · · xip−1

x−1
jn−1 · · · x−1

jq+1−1x
−1
jq−1

· · · x−1
j1

. Here p′ = p − 1, n′ = n − 1, m′
p = mp, because

xi2 to xim cannot be bad and the relative position of other positive letters has
not changed, and m′

n = mn, because the letters whose positions shifted also had
their indices decreased.

(3) Neither x−1
0 , nor xt are cancelled out. w′ = xi1+2 · · · xim+2xt+m

xim+1+1 · · · xip+1x
−1
jn+1 · · · x−1

jq+1x
−q
0 . Here p′ = p + 1, n′ = n + 1, m′

p = mp,
because indices above im grew by 1, as did their positions, and indices i1, . . . , im
cannot be bad, and also m′

n = mn, because all letters whose indices increased (jq

and above) shifted in position accordingly.
(4) x−1

0 is not cancelled out, but xt is: w′ = xi1+2 · · · xim+2xim+1 · · · xip

x−1
jn

· · · x−1
jq+1

x−1
jq−1+1 · · · x−1

jr+1x
−r
0 , the cancelled pair being (xt+m, x−1

jq
), where

jq = t + m. In this case, any positive letters that can be bad kept their indices
and positions, the negative letters jr+1, . . . , jq−1 had their indices and positions
shifted, while the letters jq+1, . . . , jn kept their indices and positions. So m′

p = mp

and m′
n = mn and obviously p′ = p and n′ = n.

We see that in all the possible cases, dm
As

(w′) = dm
As

(w). This completes the
proof. �

6 Experimental Results

To test the applicability of the subgroup distance functions to cryptanalysis,
we tested Algorithm 1 against the Shpilrain-Ushakov protocol in the settings of
Thompson’s group. Initially, each of the five distance functions presented in the
previous section was tested separately: we generated a public element azb and
tried to recover a single private element a or b from it. For the recovery of a,
the functions dBs and dBs were used to assess the quality of the complements.
Similarly, for the recovery of b, we tried dAs , dAs and dm

As
.

For each distance function, the experiment was run at least 1000 times, each
time with new, randomly generated keys, with the minimum recommended pa-
rameters of s = 3, L = 256. The bound N = 2L was chosen on the number
of iterations, since preliminary experiments have shown that the success rates
do not increase beyond that. The results are summarized in Table 1. It can be
seen that the distance functions dBs and dm

As
noticeably outperform the other
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Table 1. Success rates for the different subgroup distance functions

dBs dBs dAs dAs dm
As

Recovery probability 11.7% 3.4% 3.7% 3.4% 23.3%

distance functions, in recovering a and b, respectively. The fact that dm
As

clearly
outperforms its counterparts suggests that the notion of invariance may be useful
for assessing the suitability of a given distance function.

Preliminary experiments have shown that, regardless of the settings, the suc-
cess probability of finding a1 given a1zb1 is similar to that of finding a−1

2 given
a−1
2 z−1b−1

2 . A similar assertion holds for b2 and b−1
1 . Therefore, in order to es-

timate the overall success rate against an actual instance of the cryptosystem,
it’s sufficient to try to recover one of the four a’s and b’s. If we denote by pa and
pb the probability of successfully recovering a and b, respectively, and assume
that all probabilities are independent, then, the expected total success rate is
roughly 1 − (1 − pa)2(1 − pb)2 (because each instance of the protocol contains
two elements of type a and two of type b).

When the success rates of the two best distance functions, dBs for a and
dm

As
for b, are combined, the expected overall success probability, according to

the above, is between 50% and 54%, which was experimentally verified. Note
that this attack is very efficient, since it involves no backtracking, no lookahead,
and no analysis of suboptimal partial results: it tries to peel off the generators
by a greedy algorithm, which considers only locally optimal steps. Attacking
each key required only a few seconds on a single PC, and it is very surprising
that such a simple attack succeeds about half the time. These results are much
better than those achieved by length-based attacks of similar complexity on this
cryptosystem (see [9]).

It is interesting to note that possible extensions of the attack, such as mem-
orizing many suboptimal partial solutions or using significant lookahead (which
require much higher time and space complexities) have different effects on length-
based and distance-based attacks. While it was shown in [9] that these extensions
greatly improve the success rates of the length-based attack, experiments with
the distance-based attack, with similar values of the memory and lookahead pa-
rameters, showed almost no improvement. However, the situation may be very
different for other cryptosystems and other subgroup distance functions.

To further test the performance of the distance functions, several experiments
were run with different values of the parameters (s, L). We used the combina-

Table 2. Success rates for different combinations of (s, L)

L = 128 L = 256 L = 320 L = 512 L = 640 L = 960

s = 3 51.7% 47.9% 55.5% 51.2% 50.4% 52.6%

s = 5 46.0% 47.1% 48.4% 51.1% 48.2% 48.3%

s = 8 36.2% 42.8% 41.3% 46.5% 42.4% 50.3%
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tion of dBs and dm
As

, which was established as the best in the former experiment.
Table 2 shows the overall success probability, for L ∈ {128, 256, 320, 512, 640, 960}
and s ∈ {3, 5, 8}. The success rates stay remarkably consistent across different
lengths for a given s, and even increasing s does not cause a significant drop.
The time complexity of the attack grows linearly with s and roughly quadrat-
ically with L, with most of the time being spent on computing normal forms
of elements in the group. For the largest parameters presented here, the attack
still required under a minute in most cases. This suggests that for the Shpilrain-
Ushakov cryptosystem the distance-based attack remains a viable threat, even
when the security parameters s and L are increased beyond the original recom-
mendations.

7 Conclusion

We introduced a novel form of heuristic attacks on public key cryptosystems that
are based on combinatorial group theory, using functions that estimate the dis-
tance of group elements to a given subgroup. Our results demonstrate that these
distance-based attacks can achieve significantly better success rates than previ-
ously suggested length-based attacks of similar complexity, and thus they are a
potential threat to any cryptosystem based on equations in a noncommutative
group, which takes its elements from specific subgroups. It will be interesting to
test this approach for other groups and other protocols.
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Abstract. The length based attack on Anshel-Anshel-Goldfeld commu-
tator key-exchange protocol [1] was initially proposed by Hughes and
Tannenbaum in [9]. Several attempts have been made to implement the
attack [6], but none of them had produced results convincing enough
to believe that attack works. In this paper we show that accurately de-
signed length based attack can successfully break a random instance of
the simultaneous conjugacy search problem for certain parameter values
and argue that the public/private information chosen uniformly random
leads to weak keys.

1 Introduction

Braid group cryptography has attracted a lot of attention recently due to several
suggested key exchange protocols (see [1], [10]) using braid groups as a platform.
We refer to [2], [5] for more information on braid groups.

In this paper we discuss the so-called Length Based Attack on the Anshel-
Anshel-Goldfeld key exchange protocol [1] (subsequently called the AAG proto-
col). The Length Based Attack, LBA for short, was first introduced by Hughes
and Tannenbaum in [9], however no actual experiments were performed and the
real threat of the attack has not been evaluated. Since then there were several
implementations of LBA published [6] but none of them produced a convinc-
ing evidence that LBA, indeed, breaks AAG. Finally, the authors of [6] make
conclusion that AAG protocol is invulnerable to LBA.

We need to mention here that successful attacks on AAG were proposed in
[7,11,14]. It is common believe now that AAG with original parameters is not
secure. However, the scalability of the attacks has not been completely realized.
This leads to speculations that AAG protocol may still be secure with a different
set of parameters such as longer private keys, for example.

In the paper we analyze the reasons behind the failure of the previous im-
plementations of LBA. We show that for slightly increased values of parameters
LBA can be modified so it breaks AAG protocol with a very high rate of suc-
cess. We also present an evidence that the keys generated uniformly randomly
are not secure and suggest that a more cautious approach in selecting private

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 76–88, 2007.
c© International Association for Cryptologic Research 2007
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information is necessary for AAG protocol to be immune to the length based
attack.

Here we start out by giving a brief description of the Anshel-Anshel-Goldfeld
key exchange protocol [1] (subsequently called the AAG protocol). Let Bn be
the group of braids on n strands and Xn = {x1, . . . , xn−1} the set of standard
generators. Thus,

Bn = 〈x1, . . . , xn−1; xixi+1xi = xi+1xixi+1, xixj = xjxi for |i − j| > 1〉.

Let N1, N2 ∈ N, 1 ≤ L1 ≤ L2, and L ∈ N be preset parameters. The AAG
protocol [1] is the following sequence of steps:

(1) Alice randomly generates an N1-tuple of braid words a = (a1, . . . aN1), each
of length between L1 and L2, such that each generator of Bn non-trivially occurs
in a. The tuple a is called Alice’s public set.
(2) Bob randomly generates an N2-tuple of braid words b = (b1, . . . bN2), each
of length between L1 and L2, such that each generator of Bn is non-trivially
involved in b. The tuple b is called Bob’s public set.
(3) Alice randomly generates a product A = aε1

s1
. . . aεL

sL
, where 0 < si < N1 and

εi = ±1 (for each 1 ≤ i ≤ L). The word A is called Alice’s private key.
(4) Bob randomly generates a product B = bδ1

t1 . . . bδL
tL

, where 0 < ti < N1 and
δi = ±1 (for each 1 ≤ i ≤ L). The word B is called Bob’s private key.
(5) Alice computes b′i = D(A−1biA) (1 ≤ i ≤ N2) and transmits them to Bob.
Here D(w) denotes Dehornoy handle free form of a braid word w (see [4] for the
definition of Dehornoy form of a braid).
(6) Bob computes a′

i = D(B−1aiB) (1 ≤ i ≤ N1) and transmits them to Alice.
(7) Alice computes KA = A−1a′ε1

s1
. . . a′εL

sL
. It is straightforward to see that KA =

A−1B−1AB in the group Bn.
(8) Bob computes KB = b′−δL

tL
. . . b′−δ1

t1 B. Again, it is easy to see that KB =
A−1B−1AB in the group Bn.

Thus, Alice and Bob obtain the same element K = KA = KB = A−1B−1AB of
the group Bn. This K is now their shared secret key.

In the steps (5) and (6) of the protocol the so-called Dehronoy form is used
do diffuse the public commutators. It is out of scope of this paper to define
the Dehornoy form in detail. Informally, the Dehornoy form is a reduced braid
word obtained as a result of a particular rewriting procedure. It is believed
that Dehornoy forms are linearly computable and it is computationally infeasi-
ble to reconstruct the original braid from its Dehornoy form. For more details
on the definition and the procedure to compute the Dehornoy form we refer
to [4].

Note that for an intruder to get the shared secret key K, it is sufficient to
find:

– an element A′ ∈ 〈a1, . . . , aN1〉 such that b
′
= A′−1bA′ in Bn;

– an element B′ ∈ 〈b1, . . . , nN2〉 such that a′ = B′−1aB′ in Bn.
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Such elements A′ and B′ successfully substitute Alice’s and Bob’s private
keys A and B, in particular, [A, B] = [A′, B′]. For more information see [16].
Finding an element A′ (and B′) is an instance of the subgroup-restricted simul-
taneous conjugacy search problem (abbreviated SR-SCSP) which is a variation
of simultaneous conjugacy search problem (SCSP) where it is required to find
any conjugator for two conjugated tuples.

Therefore, we say that the security of AAG protocol is partially based (but
not equivalent) on the assumption that SR-SCSP is hard. Below we describe
several types of attacks on variations of simultaneous conjugacy problem.

A. There is only one attack aiming to break SR-SCSP directly – the length-
based attack (initially proposed in [9]). It is a heuristic descend method for
solving SR-SCSP. We discuss it at length in Section 2.

B. All other attacks are aiming at SCSP:
1) Summit Set Attack [11]. This method starts by reducing conjugates to

the minimal level with respect to the canonical length (called the summit
set) and then performs the exhaustive search in that level.

2) Hofheinz-Stainwandt Attack [7] which has the same first step as in the
summit set attack and then uses a heuristic to obtain a solution in the
minimal level.

3) Linear Attack which uses presentations of braids by matrices, e.g., Burau
or Kramer presentations (see [8]). This attack produces a conjugator in
a matrix form and further lifting to braids is required.

A different type of heuristic attacks which is called the subgroup attack was
presented in [14]. It does not solve any variation of the conjugacy problem.
Instead it reduces the original problem to the one with shorter generators sim-
plifying the conjugacy problem. In particular, using the subgroup attack it was
shown that for parameters originally proposed by Anshel-Anshel-Goldfeld

– SCSP and SR-SCSP are equivalent for majority of random public sets;
– the majority of random public sets define the same subgroup which coincides

with the whole group;

which justifies the success of attacks B.1), B.2), and B.3) which perform well,
although with different success rates, on the original parameters suggested in [1]:

n = 80, N1 = N2 = 20, L1 = 5, L2 = 8, L = 100

It is well accepted now that these values of parameters do not provide good level
of security. In this paper we increase values of parameters L1 and L2 to

n = 80, N1 = N2 = 20, L1 = 20, 30, 40, L2 = L1 + 3, L = 50.

and show that accurately designed LBA can crack a random instance of the
SR-SCSP generated using these values of parameters. Notice that we increase
lengths of generators of the public sets but decrease lengths of decompositions



Length Based Attack and Braid Groups 79

of the private keys to keep the size of private keys A and B within practical
bounds. To be more precise we got the following results in our experiments:

L1, L2 10,13 20,23 30,33 40,43
Success rate 00% 51% 97% 96%

See Table 1 for more details.
The rest of the paper is organized as follows. In Section 2 we describe the

idea of the length based attack and its variations. We give examples of poten-
tially hard instances and explain what prevents LBA from being successful. We
conclude Section 2 by showing that it is unlikely that a private key taken at ran-
dom will be hard to break when values of L1 and L2 are sufficiently large. We
argue that a naive approach of increasing the size of the key will not guarantee
increase in the security of the protocol. In Section 3 we describe our version of
the generalized length based attack for breaking AAG and present experimental
results.

All the algorithms described in this paper are available at [3].

2 The Length Based Attack

The length based attack is a heuristic procedure for finding the Alice’s (sym-
metrically Bob’s) private key A (B). Following the notation of Section 1 let
a = {a1, . . . , aN1}, b = {b1, . . . , bN2}, A = aε1

s1
. . . aεL

sL
, and b

′
= {b′1, . . . , b

′
N2

},
where b′i = D(A−1biA). Essentially each b′i is a result of a sequence of conjuga-
tions of bi by the factors of A:

bi

↓
a−ε1

s1
bi aε1

s1↓
a−ε2

s2
a−ε1

s1
bi aε1

s1
aε2

s2↓
. . .
↓

b′i = a−εL
sL

. . . a−ε2
s2

a−ε1
s1

bi aε1
s1

aε2
s2

. . . aεL
sL

(1)

A conjugating sequence is the same for each bi and is defined by the private key
A. The main goal of the attack is to reverse the sequence (1) and going back
from the bottom to the top recover each conjugating factor. If successful the
procedure will result in the actual conjugator as a product of elements from a.

2.1 LBA as a Minimization Problem

To achieve the goal outlined above we need some efficiently computable function
whose values would guide us on the way from the bottom to the top of (1). The
most natural idea is to find a function l such that

for the majority of elements a, b ∈ Bn l(a−1ba) > l(b). (2)
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If such function exists then LBA can be set as a minimization problem and
solved using some heuristic optimization methods.

The choice of the function l is crucial for the success of the attack. In the
original paper [9] it was proposed to use a length function. There are several
length functions available for braids. In [9] the authors do not specify the function
explicitly, although their arguments are based on the work of Vershik et al. [17]
where the length defined as the geodesic length, i.e. the length of the shortest
path in the corresponding Cayley graph of a group.

Unfortunately there are no practically useful length functions are known in
braid groups which satisfy the criteria (2). The geodesic length of a braid denoted
by | · | seems to be the best candidate. However, there is no known efficient
algorithm for computing | · |. Moreover, it was shown in [15] that the set of
geodesic braids in B∞ is co-NP complete.

Some of length functions such as the canonical length of the Garside normal
form | · |Δ and the canonical length of the Birman-Ko-Lee normal form | · |δ are
efficiently computable but very crude, in a sense that many braids consisting of
many crossings have very small lengths. For instance, permutation braids contain
up to 1/2n(n − 1) crossings but have canonical length | · |Δ equal 1.

In this paper we use the method to approximate geodesic length proposed in
[14]. It does not guarantee the optimal result, although a series of experiments
show that for braids used in AAG the results of the approximation satisfy the
desired property given by the relation (2). From now on we denote by |·| the result
of the approximation function. The experiments suggest that our approximation
function | · | satisfies |a−1ba| > |b| for almost all a and b. Moreover, as the
length of a and b grows we have 2|a| + |b| − |a−1ba| significantly smaller than
2|a| which means that |a−1ba| > |b| and the difference is large. Figure 1 shows
the distribution of 2|a| + |b| − |a−1ba| in B80 for |b| = 400, |a| = 5, 10, 20, 30, 40.
In particular, for |a| = 5 we see that in 90% of the cases cancellation in |a−1ba|
is limited by 4 symbols which means that in 90% of the cases conjugation by
the element of length 5 increases the length by at least 6. The small fraction
of elements which do not satisfy |a−1ba| > 2|a| + |b| (negative values in the
distribution) are caused by the errors of the approximation.

2.2 Variations of LBA

In this section we discuss several heuristic approaches to be used with the length
function | · |. All the algorithms in this section have the following input/output:

• Input: Tuples a = (a1, . . . , aN1), b = (b1, . . . , bN2), and b
′

= (b′1, . . . , b′N2
)

such that b and b
′
are conjugate by an element from 〈a1, . . . , aN1〉.

• Output: An element x ∈ 〈a1, . . . , aN1〉 such that b
x

= b
′
or FAIL if algo-

rithm is unable to find such x.

For an arbitrary tuple of braids c = (c1, . . . , ck) denote by |c| its total length∑k
i=1 |ci|. Algorithm 1 (LBA with backtracking) enumerates all possible sequences

of conjugations decreasing the length of a tuple. We maintain set S which contains
tuples in work.
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Fig. 1. Distribution of 2|a| + |b| − |a−1ba| in B80 for |b| = 400, |a| = 5, 10, 20, 30, 40

Algorithm 1. (LBA with backtracking)

A. Initialize a set S = {(b
′
, e)}, where e is the identity of Bn.

B. If S = ∅ then output FAIL.
C. Choose a pair (c, x) ∈ S with a minimal |c|. Remove (c, x) from S.
D. For each i = 1, . . . , N1, ε = ±1 compute δi,ε = |c| − |caε

i |.
E. If δi,ε > 0 then add (caε

i , xaε
i ) into S.

F. If caε
i = a them output xaε

i .
G. Otherwise goto B.

Algorithm 2 (best descend LBA) is a version of a length based attack where
on each step we choose conjugator which gives the maximal decrease among
all currently available tuples. It is weaker than Algorithm 1 but works well for
certain parameter values as our experiments show. It has the same steps as
Algorithm 1, except that on step E we add only the tuple corresponding to the
maximal positive δi,ε to the set S. Thus at each time the set S contains at most
1 pair and no backtracking.

Algorithm 2. (Best Descend)

E. Choose the greatest positive δi,ε > 0 (if exists) and add (caε
i , xaε

i ) into S.

The next version of the length based attack is so called generalized LBA. This
is an LBA with backtracking in which we extend the set of elements in Bob’s
(respectively Alice’s) public sets. It was conjectured in [9] that generalized length
based attack can break the multiple conjugacy search problem for any parameter
values. We need to mention here that one has to be cautious about the choice
of the new elements as the complexity of each iteration of LBA depends on the
number of elements in the public set ā.
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Algorithm 3. (Generalized LBA)

A. Extend ā with products aε1
i1

. . . a
εj

ij
where j is limited by some constant.

B. Run Algorithms 1 or 2 with the obtained tuple ā and tuples b̄, b̄′.

Algorithms 1-3 always halt because only tuples of total lengths smaller than
the lengths of the public sets are considered. Note that all of the algorithms
above are heuristic in their nature and may halt without producing the solution.

2.3 Peaks

In this section we define the notion of a peak and show that condition (2) on the
length function in the platform group Bn is not enough for the success of LBA.
We give examples of instances of AAG invulnerable to the length based attacks
2 and 1.

Example 1. (Hard instance) Consider B80 and two braids

a1 = x−1
39 x12x7x

−1
3 x−1

1 x70x25x
−1
24

and
a2 = x42x

−1
56 x8x

−1
18 x19x73x

−1
33 x−1

22

which we think of as elements from Alice’s public set. It is easy to check that

a−1
1 a−1

2 a1 = x−1
7 · a−1

2 · x7 = x−1
7 x22x33x

−1
73 x−1

19 x18x
−1
8 x56x

−1
42 x7

and
a−1
1 a−1

2 a1a2 = x7x
−1
8 .

Hence |a1| = 8, |a−1
1 a−1

2 | = 16 , |a−1
1 a−1

2 a1| = 10, and |a−1
1 a−1

2 a1a2| = 2. Now
let b = (b1, . . . , bN ) be a random tuple of braids thought of as Bob’s public set.
As we saw, for the majority of braids conjugation increases the length by almost
twice the length of a conjugator. Hence, for generic tuple b the following length
growth would be expected:

b
↓

|a−ε1
s1

b aε1
s1

| ≈ |b| + 8N
↓

|a−ε2
s2

a−ε1
s1

b aε1
s1

aε2
s2

| ≈ |b| + 16N
↓

|a−ε3
s3

a−ε2
s2

a−ε1
s1

b aε1
s1

aε2
s2

aε3
s3

| ≈ |b| + 10N
↓

|a−ε4
s4

a−ε3
s3

a−ε2
s2

a−ε1
s1

b aε1
s1

aε2
s2

aε3
s3

aε4
s4

| ≈ |b| + 2N

(3)

Clearly, the length based attacks 2 and 1 fail for such element A because to
guess the first correct conjugator it is required to increase the length of the
tuple substantially (from |b| + 2N to |b| + 10N).
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The reason for the attack failure in the previous example is that Alice’s private
key [a1, a2] forms a peak (commutator-type peak):

Definition 1. (Peak) Let G = 〈X ; R〉, lG a length function on G, and H =
〈w1, . . . , wk〉. We say that a word w = wi1 . . . win is an n-peak in H relative to
lG if there is no 1 ≤ j ≤ n − 1 such that

lG(wi1 . . . win) ≥ lG(wi1 . . . wij ).

We say that w = wi1 . . . win is m-hard if there exist s ∈ {1, . . . , n} such that for
each j = 1, . . . , k

lG(wi1 . . . wis+k−1) ≥ lG(wi1 . . . wis+k−j
)

and m is maximal with such property.

Note that according to the definition of m-hardness each product wi1 . . . win is
at least 1-hard. To see the hardness of the word w = wi1 . . . win ∈ H (given
as a product of generators of H) it is often convenient to depict the function
k → lG(wi1 . . . wik

) for k = 0, . . . , n. See Figure 2 for the words from Example
1. The graphs explain the choice of term peak. On the other hand given w ∈ H
we do not know any way to compute its hardness other than to compute the
decomposition of w in a product of generators, which is a very hard problem for
some subgroups of a braid group.

After making lots of experiments we strongly believe that the computational
hardness of SR-SCSP in braid groups is not an intrinsic property of conjugation,
but comes from the structure of the corresponding subgroup. To defend against
LBA it is necessary to choose a public set and m-hard private keys, where m
is large compared to N1, N2. One can generate such keys using the Mihailova
construction [12].

However, generating keys that are immune just to LBA is not sufficient for
the security of the protocol. A generating procedure which provides keys secure
against all known attacks is a difficult task and is a current research objective.
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Fig. 3. Distribution of the number of peaks in private keys

2.4 Peaks in Randomly Chosen Private Keys

Even though it is not hard to construct instances invulnerable to LBA, such
instances are quite rare and it is very unlikely to generate one uniformly for
certain parameter values. Figure 3 shows the distribution of the number of peaks
in private keys for B80 and L1 = 5, 10, 20, 30, 40, L2 = L1 + 3. Figure 4 shows
the distribution of the maximal size of peaks in private keys for B80 and L1 =
5, 10, 20, 30, 40, L2 = L1 + 3. The distributions shown in Figures 3 and 4 are
obtained experimentally using the approximation of the geodesic length.

According to Figures 3 and 4 the greater the length of the generators the
shorter and rarer the peaks are. Intuitively, we can distinguish 3 types of distri-
bution of peaks depending on the parameter L1 (for B80):

1) Short generators (L1 ∈ [5, 20]). A random private key contains several peaks,
one or two of which are relatively long. The probability of a success of Al-
gorithm 1 in this case is very low. To make Algorithm 3 work it requires
extending the basis with a lot of elements, which suggests using subgroup
attack. Note that this case is in the ballpark of the parameters suggested in
[1]. LBA fails in this case.

2) Long generators (L1 > 40). With probability 90% random private key con-
tains no peaks. The LBA is expected to work smoothly.

3) Middle sized generators (L1 ∈ [20, 40]). A random private key with probabil-
ity 90% contains at most two short peaks. Experiments showed that almost
all peaks are conjugator-type peaks aε

ia
δ
ja

−ε
i (for some indices i, j and powers

ε, δ = ±1). Also there are a few commutator-type peaks aε
ia

δ
ja

−ε
i a−δ

j .

In other ranks experiments show similar behavior with different interval values
of L1.
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3 The Attack

Based on our observations from Section 2.4 on the structure of peaks we in-
troduce a modification of the generalized length based attack which breaks the
instances of AAG with middle to high lengths of generators.

The main idea behind the generalized LBA is to add elements from the corre-
sponding subgroup to “cut” the peaks inside the private key as in the following
example. Consider Alice’s public tuple (a1, a2) from Example 1 and choose her
private key to be a−1

1 a−1
2 a1. Extending (a1, a2) with the product a−1

2 a1 cuts the
peak in Figure 2.(2) making the descend possible. Obviously any peak in the
private key A can be cut by extending the tuple ā with all the products of the
length up to the length of the decomposition L. However, this is equivalent to
breaking the system by the brute force approach. The number of such products
depends exponentially on the product length L with respect to the rank of braid
group. With the parameters considered in this paper the number of all such
products is of order 2050. Our goal is to introduce a relatively small set of short
products which will eliminate most of the frequently occurring peaks.

As we discussed in Section 2.4 most of the peaks in a randomly generated
word are of lengths 2 and 3, and most of them are of conjugator-type. Indeed,
the expected number of conjugators E[CL], given that the factors are sampled
uniformly and independently, is estimated about 1/2N2(L − 2). For values L =
50 and N2 = 20 we have E[C50] ≈ 1.2, i.e. a conjugator is expected to occur at
least once. It is also easy to see that the probability of a long peak to occur in
a uniform random word is very small.

Hence, it is a natural idea to extend ā with all conjugators and commutators
of its elements (observe that this quadratically increases the size of the tuple).
In general the decision of extending the input tuple with a set of products is
based on the balancing of the tradeoff between the frequency of occurrences
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of corresponding peaks and the increase of complexity on each iteration. In our
implementation we choose to add only conjugators as they seem to be inevitable,
whereas commutators as well as other types of longer peaks are very rare in the
key generated uniformly randomly.

3.1 Most Significant Generator Heuristic

Adding all products of subgroup generators up to a certain length increases the
size of a generating set by a polynomial with respect to the subgroup rank (N1
or N2). Although theoretically feasible, this introduces practical problems even
in the case of small ranks. The following experimental observation can be used
as a heuristic which helps to reduce the number of operations on each iteration.

Let δk,εk
be the maximal length reduction obtained during an iteration I (see

step D of Algorithm 1):

δk,εk
= max{δi,ε | i = 1, . . . , N1}.

The corresponding generator aεk

k is called the most significant generator of the
iteration I. According to our experiments, the most significant generators almost
always are either the correct generators, or are contained in corresponding peaks.
The simple heuristic suggests to vary the tuple ā on each iteration and extend
it with elements which are the products containing the current most significant
generator. In this case the number of operations performed during one iteration
is still linear with respect to the subgroup rank N1.

3.2 Algorithms

Based on the heuristics given above we introduce two new attacks on AAG
protocol. Both procedures have the same input and output as described in
Section 2.2.

The first attack is a relatively straightforward implementation of the general-
ized length based attack where the set of generators ā is extended by adding all
conjugations of the original generators.

Algorithm 4. (Generalized LBA with conjugation)

A. Extend ā with all conjugators: ā = ā ∪ {xixjx
−1
i | xi, xj ∈ ā±1, i �= j}.

B. Run Algorithm 1 with the obtained tuple.

The second attack uses the dynamic extension set based on the products
containing the most significant generator. These products include conjugators
and products of two generators from ā. It is possible that none of the generators
ai cause length reduction on the step D of the LBA procedure 1. In such situation
we introduce all conjugators and two generator products, hoping to either cut a
peak or reduce the length function approximation error.
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Algorithm 5. (LBA with dynamic set)

A. Initialize a set S = {(b
′
, e)}, where e is the identity of Bn.

B. If S = ∅ then output FAIL.
C. Choose a pair (c, x) ∈ S with a minimal |c|. Remove (c, x) from S.
D. For each i = 1, . . . , N1, ε = ±1 compute δi,ε = |c| − |caε

i |.
E. If ∀i δi,ε ≤ 0 then define āext = ā ∪ {xixjx

−1
i , xixj , x

2
i | xi, xj ∈ ā±1, i �= j}

F. Else define āext = ā ∪ {xjxmx−1
j , xmxj , xjxm, x2

m | xj ∈ ā±1, m �= j}, where
xm s.t. δm = max{δi,ε | i = 1, . . . , N1}.

G. For all w ∈ āext compute δw = |c̄| − |c̄w|, if δw > 0 add (c̄, xw) to S.
H. If cw = b them output xw.
I. Otherwise goto B.

3.3 Experiments

We performed a series of experiments to test the heuristic approaches described
in the previous sections. The following parameters were chosen: Bn = B80,
N1 = N2 = 20, L = 50 and parameters L1, L2 were varied to demonstrate the
better success rate of the length based attack for instances with longer subgroup
generators. There were 100 problems generated for each set of parameters.

Table 1. Success rate of the length based attack (%)

L1, L2 10,13 20,23 30,33 40,43

Algorithm 2 00 05 45 60

Algorithm 4 00 51 80 64

Algorithm 5 00 30 97 96

The attack was considered unsuccessful if an algorithm stopped and produced
FAIL or it has not terminated after 24 hours of execution. Experiments were
performed on Dual 1 GHz Pentium III processors with 2GB of RAM.

The percentages of successful attacks are given in Table 1. According to the
experiments Algorithms 4 and 5 almost never produce FAIL indicating that the
success rate could be improved by using more powerful computing or extending
the termination time.

As expected, none of the attacks were successful on instances with short gener-
ators. However, keys obtained from long generators in many cases can be recon-
structed successfully even using the naive best descend procedure (see Algorithm
2). The heuristics described in Section 3.1 seem to work well in cutting peaks
contained in uniformly randomly generated keys, showing over 50% success rate
even for instances with middle length generators.

Acknowledgments. We are grateful to the Algebraic Cryptography Center at
Stevens Institute of Technology for support of our research. Also, we would like
to thank anonymous reviewers for their valuable comments and suggestions on
the paper.
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Abstract. We present new and efficient key-recovery chosen-ciphertext
attacks on NTRUencrypt. Our attacks are somewhat intermediate be-
tween chosen-ciphertext attacks on NTRUencrypt previously published
at CRYPTO ’00 and CRYPTO ’03. Namely, the attacks only work in the
presence of decryption failures; we only submit valid ciphertexts to the
decryption oracle, where the plaintexts are chosen uniformly at random;
and the number of oracle queries is small. Interestingly, our attacks can
also be interpreted from a provable security point of view: in practice,
if one had access to a NTRUencrypt decryption oracle such that the
parameter set allows decryption failures, then one could recover the se-
cret key. For instance, for the initial NTRU-1998 parameter sets, the
output of the decryption oracle on a single decryption failure is enough
to recover the secret key.

1 Introduction

NTRU [8] is one of the fastest public-key cryptosystems known, offering both en-
cryption (under the name NTRUencrypt) and digital signatures (under the
name NTRUSign [7]) using inexpensive operations on polynomials with small
coefficients. Besides efficiency, another interesting feature of NTRU compared to
traditional public-key cryptosystems based on factoring or discrete logarithm is
its potential resistance to quantum computers: no efficient quantum algorithm is
known for the NP-hard lattice problems related to the security ofNTRU. The secu-
rity and insecurity of NTRUprimitives has been an active researchtopic in the past
10 years, and NTRU is now being considered by the IEEE P1363.1 standards [12].

While cryptanalysis has been rather successful on NTRU signatures (the ba-
sic version of NTRUSign has recently been broken in [14], and all the versions
of its ancestor NSS were successfully attacked [4,5]), it can be argued that no
significant weakness has ever been found on NTRU encryption. To date, the
most dangerous attacks on NTRUencrypt are perhaps key-recovery chosen-
ciphertext attacks. The first key-recovery chosen-ciphertext attacks were found
by Jaulmes and Joux [13] at CRYPTO ’00, and used few oracle queries. However,
the attacks used invalid ciphertexts of very special shape, and do not seem to
work for all NTRU instantiations. In particular, they can easily be thwarted by
an appropriate padding scheme (as is often the case in public-key encryption),

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 89–106, 2007.
c© International Association for Cryptologic Research 2007
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which is anyway necessary to achieve strong security notions. At CRYPTO ’03,
Howgrave-Graham et al. [11] realized that an unusual property of NTRUen-

crypt known as decryption failure gave rise to much more powerful chosen-
ciphertext attacks. Until the publication of [11] (and even [10]), all parameter
sets proposed by NTRU allowed decryption failures: the ciphertext of a ran-
domly chosen message could fail to decrypt correctly when using the NTRU
decryption algorithm. Although the probability of decryption failures was small,
it was significant enough (ranging from 2−12 to 2−40) not to be ignored in prac-
tice: an attacker might realistically collect decryption failures. The most power-
ful chosen-ciphertext attack of [11] then allowed to attack any instantiation of
NTRU, independently of the padding scheme, and using only a weak decryption
oracle which asserts if a given (valid) ciphertext failed to decrypt or not. How-
ever, this attack required a large number of decryption failures (estimated to be
about a million by [11]), and had not been fully implemented. In particular, the
attack uses in the final stage a sophisticated algorithm by Gentry and Szydlo [5]
(designed to attack the NSS signature scheme), which is polynomial time, but
has to the best of our knowledge not been fully implemented.

Our results. In this paper, we present new and efficient chosen-ciphertext at-
tacks on NTRUencrypt. Our attacks are somewhat intermediate between the
attacks of Jaulmes and Joux [13], and those of Howgrave-Graham et al. [11].
Like [11], the attacks are based on decryption failures and only query the de-
cryption oracle on valid ciphertexts. However, unlike [11], we do not only ask
whether a given (valid) ciphertext fails to decrypt, we ask for the full output
of the NTRU decryption algorithm on that (valid) ciphertext, like in an usual
chosen-ciphertext attack: when there is a decryption failure, this will provide
additional information. As a result, the number of decryption failures required
to make the attack successful is much lower than in [11], which makes it possible
to fully implement the attack in practice and check its efficiency. For instance,
for the initial NTRU-1998 parameter sets, a decryption query on a single de-
cryption failure is enough to recover the private key. For more recent parameter
sets, the number of required decryption failures increases but is at most a few
hundreds. The efficiency of our attacks seems to confirm the importance of re-
moving decryption failures in NTRUencrypt, as was first suggested in [11]:
it should be noted that the latest version [10] of NTRUencrypt modifies the
NTRU parameters so that no decryption failure can ever occur. Furthermore,
because we query the decryption oracle on random ciphertexts of messages uni-
formly chosen at random, our attacks can also be interpreted from a security
point of view. If one could simulate the NTRU decryption algorithm, one would
be able to recover the NTRU secret key in practice.

Road map. The paper is organized as follows. In Section 2, we provide back-
ground on NTRUencrypt, and we introduce the model of our attacks. In
Section 3, we study the probability distributions of the coefficients of the poly-
nomials used during decryption, and we analyze the information obtained in the
presence of decryption failures. In Section 4, we derive a first chosen-ciphertext
attack against the initial instantiation NTRU-1998 of NTRUencrypt, which
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can recover the secret key using a single decryption failure. Finally, in Section 5,
we present a general chosen-ciphertext attack against all instantiations of NTRU
allowing decryption failures. It is perhaps worth noting that our attacks make
no use of lattices.

2 Background

2.1 Definitions and Notation

NTRUencrypt operations take place in the quotient ring of polynomials P =
Z[X ]/(XN − 1), where N is an integer. If f(X) is a polynomial in P , for all
k ∈ [0, N −1], fk denotes the coefficient of Xk and for all x ∈ C, f(x) represents
the evaluation of f at x. The convolution product h = f ∗g of two polynomials f
and g in P is given by hk =

∑
i+j≡k mod N fi · gj . Several different measures of

the size of a polynomial will be useful. We define the norm of a polynomial f
in the usual way, as the square root of the sum of the squares of its coefficients:

‖f‖ =
(∑N−1

i=0 f2
i

)1/2
. We also define the “standard deviation” of a polynomial

f as σ(f) =
(

∑N
i=1

(
fi − f(1)

N

)2
)1/2

. Note that ‖f‖ = σ(f) if the average value

f(1)
N of the coefficients of the polynomial is equal to zero.

2.2 The NTRU Encryption Scheme

The NTRU [8] cryptosystem has many possible instantiations. It uses a set of
parameters whose values will be given later:

– An integer N . This fundamental parameter in NTRUencrypt is taken to be
prime to prevent attacks due to Gentry [3], and sufficiently large to prevent
lattice attacks.

– Two relatively prime integers p and q, or alternatively the polynomial p =
X + 2 and a prime number q (which does not divide 2N + 1), so that the
elements p and q generate prime ideals in P . Standard practice is to take
q to be close to a power of 2 between N/2 and N , and p to be either the
integer 2, 3 or the polynomial 2 + X [1,2].

– Four subsets Lf , Lg, Lr, Lm of P used for key generation and encryption.
The polynomials in all these subsets have very small coefficients and may
further be sparse.

– A bijection ψ between Lm mod p and Lm. The set of plaintexts is Lm.

The key generation, encryption and decryption primitives are as follows:

Key generation
1: Choose f ∈ Lf and g ∈ Lg uniformly at random such that f is invertible in

P modulo q and modulo p.
2: Set Fq = f−1 mod q and Fp = f−1 mod p.
3: The private key is (f, Fp).
4: The public key is H = p · g ∗ Fq mod q.
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Note that in NTRUencrypt, the polynomial g is not necessary for decryption,
and therefore is not included in the private key. However, g could easily be
deduced from f thanks to H ∗ f = p · g mod q.

Encryption. The encryption algorithm E is probabilistic.

Input: A message m ∈ Lm, and a public key H .
Output: A ciphertext e ∈ E(m).
1: Select r ∈ Lr uniformly at random.
2: return e = r ∗ H + m mod q.

To achieve strong security notions, NTRU implementations additionally use
paddings: the message m is preprocessed and r might depend on m and hash
functions. In this paper, for any m ∈ Lm we denote by E(m) the set of all possi-
ble ciphertexts of the plaintext m, and by E(Lm) their union over all plaintexts
m. These sets take possible paddings into account, hence E(Lm) is also the set
of all validly generated ciphertexts.

Decryption. The decryption algorithm D provided by NTRU is very efficient,
but may not work correctly on all inputs, depending on the parameter set.

Input: A ciphertext e ∈ E(Lm) and a private key (f, Fp).
Output: A plaintext D(e) = m ∈ Lm.
1: Compute a mod q = e ∗ f mod q.
2: Using a centering procedure, try to recover the integer polynomial a = p · r ∗

g + f ∗ m ∈ P from a mod q.
3: Compute m mod p = a ∗ Fp mod p.
4: return The plaintext m = ψ(m mod p).

Note that the operations performed by the decryption algorithm could in theory
be applied to any polynomial in P mod q, not only ciphertexts in E(Lm), and
this would still output a polynomial in Lm. The chosen-ciphertext attacks of
[13] relied on this extra-functionality: they used invalid ciphertexts which do not
belong to E(Lm).

For all the NTRU parameter sets proposed until 2005 [10], the centering pro-
cedure used in Step 2 could fail to recover a. Thus, there may exist valid cipher-
texts e ∈ E(m) whose decryption D(e) is not equal to m. Such events have been
called decryption failures in [11]. Note that the decryption algorithm could also
perform additional checks: for instance, it can extract the random polynomial r
used by E from the formula r ∗ H = (e − D(e)) mod q, thanks to the notion of
pseudo-inverse (see [16]). Then, it can check whether r is really in Lr, or whether
the potential paddings requirements are met. In particular, we have a plaintext-
checking oracle: given a ciphertext and a plaintext, we can check whether the
ciphertext corresponds to the plaintext.

2.3 Instantiations of NTRU

One difficulty with analyzing NTRU is the significant number of variants. Dif-
ferent choices of parameters can completely transform the security of NTRU: an
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attack against a particular instantiation of NTRU may not work against other
instantiations. In this section, we recall the three main instantiations of NTRU
which have been proposed in the past eight years.

NTRU-1998. In the initial instantiation of NTRU [8], p is equal to 3 and q
is a power of 2 (for example q = 128). The subset Lm is the set of ternary
polynomials with coefficients in {−1, 0, 1}, and the bijection ψ between Lm mod p
and Lm is defined by selecting the representative −1, 0 or 1 of each coefficient
mod 3. The set Lf is defined as T (df , df − 1) where T (i, j) is the subset of
ternary polynomials containing exactly i times 1 and j times −1. Finally, Lg =
T (dg, dg) and Lr = T (dr, dr). Naturally, one drawback with this instantiation
is the conversion between binary messages and their ternary representation in
Lm. As an example, the parameters N = 263, q = 128, df = 50, dg = 24 and
dr = 16 were recommended for high security. Each parameter set in [8] leads to
a decryption failure every 215 encryptions of random messages, experimentally.

NTRU-2001. In the standards [1,2], a new instantiation is proposed, where p is
the polynomial X + 2 and q is a prime number. The subset Lm is the set of
binary polynomials with coefficients in {0, 1}, and Lf is the subset of polyno-
mials of the form 1 + p ∗ F with F ∈ B(dF ), where B(dF ) denotes the set of
binary polynomials with exactly dF coefficients equal to 1. The other subsets
are Lg = B(dg) and Lr = B(dr). The bijection ψ between a plaintext m and its
representative modulo X + 2 (which is the evaluation at X = −2) is non-trivial.
Mathematically, the function ψ computes the binary decomposition

∑N−1
i=0 νi2i

of m(−2), and identifies it with the polynomial
∑N−1

i=0 νiX
i ∈ Lm. More details

for an efficient implementation are given in [9]. The main advantage of having
the private key f of the form 1 + p ∗ F is that the inverse Fp modulo p is equal
to 1, so the final multiplication by Fp in the decryption process disappears. The
average number of encryptions of random messages leading to a decryption fail-
ure ranges from 212 to 225, depending on the parameter set [1,2]. (see [11] for
more information).

NTRU-2005. In the last standard [10], the polynomial p = X+2 disappears and is
replaced by the integer p = 2. Furthermore, the use of product-form polynomials
(introduced in [9]) is recommended as a replacement of binary polynomials: so
f has the form 1 + p · F with F ∈ X (df ), which means that F = f1 ∗ f2 + f3
with each f1, f2, f3 ∈ B(df). The other subsets are Lg = B(N/2), Lr = X (dr)
and Lm is the set of binary polynomials. Generally, dF and dr are equal and are
very small (e.g. between N/25 and N/20). More importantly, since it had been
discovered [11] that decryption failures could be a threat, the prime number q
has been multiplied by a factor of at least 2 so that no decryption failure can
ever happen: one drawback is that the resistance to lattice attacks is weakened.
But it is interesting to analyze what would happen if q had the same size as in
previous instantiations. In this case, the problem of finding the private key from
the public key seems as hard as in previous instantiations. But the proportion
of decryption failures would also be the same as in the previous instantiations.
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In this paper, we want to analyze attacks based on decryption failures, so when
we refer to NTRU-2005, we actually mean a modified version with a smaller q.

2.4 The Attack Model, and Comparison with Previous Attacks

In a chosen-ciphertext attack, a decryption oracle is given to an attacker. As
a precomputation, the attacker can submit as many ciphertexts as he wants
to the oracle. Then using the collected information, he must either recover a
private key or be able to decrypt a challenge ciphertext. For NTRU, the notion
of decryption oracle is ambiguous because of decryption failures. Here, like [11],
by decryption oracle, we do not mean an ideal algorithm which would extract
m from a ciphertext in E(m) without any failure, but the decryption algorithm
D provided by NTRU. In the following, we only consider key-recovery chosen-
ciphertext attacks.

The majority of previous chosen-ciphertext attacks against NTRU work by
running the algorithm D on special polynomials in P mod q, which are gener-
ally not valid ciphertexts in E(Lm). Following our terminology, these attacks
do not use decryption failures. For example, the article of Jaulmes and Joux
at CRYPTO’00 [13] presents two chosen-ciphertext attacks on NTRU-1998. By
sending roughly ten special polynomials to the oracle, an attacker recovers the
product of the key Fp and a low hamming-weight polynomial. After an exhaus-
tive search which takes a couple of minutes for the highest security parameters,
the attacker recovers Fp and deduces the private key f . Note that the bijection
between Fp and f only exists in the NTRU-1998 instantiation.

The second attack of [13] queries the decryption oracle N times on very close
inputs. Again, the input polynomials are in general not validly generated cipher-
texts in E(Lm). If f is binary or ternary, the output of the decryption oracle
then discloses the value and the position of many coefficients of f . Thus, with
less than a thousand calls to the decryption oracle, the private key f is fully
recovered. This attack can be rewritten and remains valid for NTRU-2001, but
fails on NTRU-2005, when f is in product form.

Other papers, like Han et al.’s paper [6], present chosen-ciphertext attacks
with the assumption that the user has power on m and r, which is not compatible
with the strongest paddings.

The first paper to introduce and use decryption failures in a chosen-ciphertext
attack is Howgrave-Graham et al.’s paper [11] at CRYPTO’03, where the authors
present (among others) a key-recovery chosen-ciphertext attack against NTRU-
2001 working with any padding scheme. The oracle is weak: it only accepts valid
ciphertexts in E(Lm) and only indicates whether or not there is a decryption
failure. The authors of [11] claim that if they are given a million decryption
failures, they can recover the polynomial XNf(X)f( 1

X ), and then recover the
private key thanks to an algorithm of Gentry and Szydlo [5], which was intro-
duced to break a former version of NTRU signatures. The main advantage of this
attack is that since all messages are validly generated, it is compatible with any
padding, including the very restrictive ones. However, the number 1,000,000 is
only a heuristic estimate, and the algorithm of Gentry and Szydlo [5] recovering
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f from XNf(X)f( 1
X ) is proved polynomial time, but has to our knowledge not

yet been fully implemented in practice.
In this paper, we also use decryption failures. Our attack model is interme-

diate between the restrictive chosen-ciphertext attack of Jaulmes and Joux [13],
and the realistic model in Howgrave-Graham et al.’s attack [11]. The oracle is
only queried during the search for decryption failures, which is performed by
Algorithm 1. With this description, we clearly see that the decryption oracle is

Algorithm 1. Find a random decryption failure
Input: A NTRU parameter set, a public key H and the decryption oracle D.
Output: A decryption failure as (m,r, m′) where D(m + r ∗ H) = m′ �= m.
1: repeat
2: Generate a random message m ∈ Lm and encrypt it with E to obtain a valid

ciphertext e.
3: Remember (or recover) the random polynomial r used by E.
4: Submit the ciphertext e to the decryption oracle D.
5: until there is a decryption failure (m′ = D(e) �= m)
6: return the triplet (m, r,m′).

only used on validly generated ciphertexts. Furthermore, these ciphertexts are
not even chosen by the attacker, but are randomly generated. For these reasons,
the attacker is less powerful than in Jaulmes and Joux’ attack [13]. However,
the attacker has access to the output m′, which gives more information than
in Howgrave-Graham et al.’s attack [11]. We will see in the next sections the
number of decryption failures which is necessary to recover the private key.

3 Analysis of Decryption Failures

3.1 The Decryption Process

In Section 2.2, we only gave a sketch of the decryption primitive. In this section,
we give a detailed implementation (see Algorithm 2), in order to explain decryp-
tion failures. In the first step of the decryption algorithm D, when calculating
a mod q = f ∗ e mod q, one actually computes

a mod q = f ∗ e = f ∗ (r ∗ h + m) = p · r ∗ g + f ∗ m mod q

The polynomials r, g, f and m have very small coefficients, so heuristically the
coefficients of the integer polynomial a = p · r ∗ g + f ∗ m satisfy:

∀i ∈ [0..N − 1], ai ∈
[
a(1)
N

− q

2
;
a(1)
N

+
q

2

[
. (1)

Note that all the parameter sets of NTRU given in Section 2.3 make it possible
to compute a(1)

N without knowing r or m. If Condition (1) holds, a may be
recovered exactly from a mod q in the ring P (using Step 9 of Algorithm 2).
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Algorithm 2. Decryption oracle D

Input: A validly generated ciphertext e and the instantiation of NTRU (and a hidden
private key (p, f, Fp)).

Output: The decryption of e (which might be incorrect).
1: compute a mod q = f ∗ e mod q.
2: if instantiation=NTRU-1998 then
3: Select the representative aest ∈ P of a mod q which has all its coefficients in

[− q
2 ; q

2 [.
4: else
5: Compute r1 = r(1),f1 = f(1), and g1 = g(1) using the definition of Lr,Lf and

Lg.
6: Compute m(1) mod q = e(1) − r1 ∗ H(1) mod q,
7: Choose m1 in [N

2 − q
2 ; N

2 + q
2 [ so that m1 ≡ m(1) mod q.

8: Compute a1 = p · r1 · g1 + f1 · m1.
9: Select the representative aest ∈ P of a mod q which has all its coefficients in

[a1
N

− q
2 ; a1

N
+ q

2 [
10: end if
11: Compute m′ = aest ∗ Fp mod p.
12: return ψ(m′).

In the NTRU-1998 instantiation, the mean value a(1)
N of the coefficients of a is

equal to m(1)
N , and is therefore between -1 and 1. For this reason, it is equivalent

to choose every coefficient of a in [− q
2 ; q

2 [ at Step 3. Finally a mod p is equal
to f ∗ m mod p and the multiplication by Fp at Step 11 recovers m mod p, and
therefore the plaintext m.

Decryption only works if the condition (1) is fulfilled. Unfortunately, this
condition does not always hold: depending on the choice of Lm and Lr , it
may happen for some rare m and r, that some coefficients of a lie outside the
centering range. In this case, the output m′ = D(e) will (almost always) differ
from the original plaintext m. These events are the so-called decryption failures
[11], which will be reused in this paper to construct key-recovery attacks on
NTRUencrypt.

We now analyze the probability distribution of the coefficients of a in the
particular case of a decryption failure. In order to simplify Condition (1), it is
possible to translate the polynomials so that the average value of their coefficients
is always zero. We say that a polynomial a is zero-centered if a(1) = 0, where a(1)
is the evaluation of the polynomial at 1, that is, the sum of the coefficients of a.
Given any polynomial in P or R, we can recenter this polynomial by subtracting
an appropriate multiple of the polynomial (1 + X + · · · + XN−1), as shown in
the following elementary lemma:

Lemma 1. The following function is an algebra homomorphism:

R[X ]/
(
XN − 1

) → R[X ]/
(
XN − 1

)

A → Ǎ = A − A(1)
N

(1 + X + · · · + XN−1)
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Then Condition (1) can be rewritten as: there is a decryption failure if and only
if the polynomial ǎ = p · ř ∗ ǧ + f̌ ∗ m̌ satisfy:

∃i ∈ [0..N − 1], |ǎi| >
q

2
. (2)

3.2 Probability Assumptions

In the following, we will often need to assume that certain objects are random.
More precisely, for any deterministic function ϕ from Lm×Lr (e.g. the encryption
function (m, r) → m+r∗H or the function (m, r) → p·r∗g+f ∗m implicitly used
in the decryption process), we say that a polynomial z = ϕ(m, r) is randomly
chosen in the image of ϕ if m and r are uniformly and independently chosen in
the finite subsets Lm and Lr. Here, we focus on the particular case of the centered
polynomials ǎ, which are computed from m and r with the deterministic formula
ǎ = p · ř ∗ ǧ + f̌ ∗ m̌. In order to analyze the distribution of their coefficients, we
need to make two simplifying assumptions:

Assumption 1. If z ∈ P is a binary or ternary polynomial uniformly chosen
at random, then the coefficients of the zero-centered polynomial ž are all inde-
pendent.

Assumption 2. If a and b are randomly and independently drawn from finite
sets of zero-centered polynomials and if their coefficients are all independent,
then the coefficients of the product c = a ∗ b are all independent.

These assumptions are rather strong. However, one can hope that it is not that
far from the reality, due to the following: the average value of the coefficients of
a zero-centered polynomial is constant and equal to zero, so when a coefficient
is bigger than expected, the others will tend to be smaller. For this reason, there
is a small anti-correlation between different coefficients: the paper [17] shows
a correlation Corr(ci, cj) = − 1

N−1 if i and j are distinct indexes. There is a
small inaccuracy due to this anti-correlation, but the effect is very small when
N grows. Furthermore, we will see that experimentally, if one coefficient has
not the expected size, then the others behave correctly. Thus the effect of the
anti-correlation is in fact very limited.

3.3 Shape of Decryption Failures

In the decryption algorithm D, since r and m are randomly chosen independently
of the keys f and g, the coefficients of the polynomial ǎ are assumed to be
independent by Assumptions 1 and 2. As we saw in Section 3.1, a decryption
failure only occurs if Condition (2) holds. In this case, at least one coefficient
of the polynomial ǎ = p · ǧř + f̌m̌ is outside the range [− q

2 ; q
2 [. Using these

assumptions, we deduce two heuristics:

Heuristic 1. In case of a decryption failure, then with extremely high probabil-
ity, there is exactly one coefficient ǎk of ǎ which is outside [− q

2 ; q
2 [
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Explanation. We denote by pe the probability to choose (r, m) leading to a de-
cryption failure. Because of the independence assumption, the probability for
one coefficient of ǎ to be outside the range [− q

2 ; q
2 [ is pa = 1− (1 − pe)

1
N ≈ 1

N pe.
The probability that exactly one coefficient of ǎ is too big, is pone =

(
N
1

) · pa(1−
pa)N−1 ≈ pe(1− N−1

N pe). Thus in case of a decryption error, the probability that
only one coefficient of ǎ is too big is pone/pe ≈ (1− N−1

N pe). Since the probability
of decryption failure pe is always very small, the last probability is almost equal
to 1. 	

When a decryption failure occurs, all the coefficients except one are in the correct
interval. The second heuristic guesses the value of this overflowing coefficient.

Heuristic 2. In case of a decryption failure, the overflowing coefficient of ǎk

defined by Condition (2) is very close to ± q
2 . More precisely, for standard NTRU

parameters, we expect that ǎk = ± (
q
2 + ε

)
where ε ≤ 5.

Explanation. The distribution of a coefficient ǎk should be a discrete hyperge-
ometric distribution whose mean is 0, and whose standard deviation is smaller
than q

4 . If so, it would decrease much faster than a geometric distribution for the
rare values greater than q

2 . Then the expectation of the value of the overflowing
coefficient of ǎ would be very close to q

2 . 	


3.4 Experiments

To check the validity of our heuristics, we performed experiments on the main
NTRU instantiations: NTRU-1998, NTRU-2001 and the slightly modified version
of NTRU-2005 seen in Section 2.3. We obtained approximately one decryption
failure every 25,000 messages, and we collected about 4,000 decryption failures
for each parameter set. For every decryption failure, we obtained exactly one
overflowing coefficient in ǎ, and in more than 90% of the cases, the absolute
value of this coefficient was lower than q

2 + 5. So the two heuristics seem to be
verified in practice.

However, in our experiments, the distribution of overflowing coefficients in
case of a decryption failure does not decrease as fast as was announced in the
explanation of Heuristic 2 (see Figure 1). Heuristic 2 is nevertheless true for
every parameter set tested, but this is only an experimental fact.

The two graphs in Figure 1 represent the experimental distribution of the
coefficients of a random polynomial ǎ = p · ř ∗ ǧ + f̌ ∗ m̌ satisfying Condition (2).
The black bars represent the distribution of the overflowing coefficient (whose
absolute value is greater than q

2 ), and the grey boxes represent the distribution
of the other coefficients. The two curves are based on the NTRU-2005 instanti-
ation, the first one with p = 2,q = 67,N = 127 and binary polynomials, and the
second one with p = 2,q = 67,N = 127 and product-form polynomials. When
the polynomial ǎ contains an overflowing coefficient, there exists a rotation of m̌
(resp. ř) which is either positively or negatively correlated with the key f̌ (resp.
p · ǧ), depending on whether the overflowing coefficient is positive or negative
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Fig. 1. Experimental densities

(see Section 5). In these two particular examples, there are more positive corre-
lations, but this is not the general case.

4 A New Chosen-Ciphertext Attack Against NTRU-1998

We will now describe chosen-ciphertext attacks on NTRU which only require few
decryption failures to recover the private key. In this section, we consider the
special case of NTRU-1998. The first attack uses the fact that a single decryption
failure is enough to recover Fp up to a shift. It turns out that in NTRU-1998, the
choice of p = 3 and f a ternary polynomial makes it possible to recover f from
f mod p or Fp mod p. Thus, one can recover a circular shift of the private key
f in the quotient ring P , which is enough to decrypt. The attack is summarized
in Algorithm 3.

Algorithm 3. A key-recovery chosen-ciphertext attack on NTRU-1998
Input: A public key H of NTRU-1998.
Output: A private key (f, Fp).
1: Find a decryption failure (m,r, m′) using Algorithm 1.
2: compute F ′

p ← (m′ − m) mod p where p = 3.
3: f ′ ← F −1

p mod p (chose the coefficients of f ′ in {−1, 0, 1}.
4: if g′ = (f ′ ∗ H ∗ p−1) mod q /∈ Lg restart;.
5: return (f ′, F ′

p).

4.1 Description of the Attack

The parameters sets of [8] give rise to a decryption failure every 25,000 encryp-
tions, independently of the security level. Thus, after say 50,000 calls to the
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decryption oracle, we may reasonably assume that we were able to find a mes-
sage m ∈ Lm and a blinding polynomial r ∈ Lr leading to a decryption failure,
and we know the polynomial m′ �= m returned by the decryption oracle. Then
if Heuristic 1 is satisfied, there is exactly one coefficient ak of a = prg + fm
which is not in the centering range. Thus, there exists an integer α ∈ Z such
that a − αqXk satisfies Condition (1), and it is precisely this polynomial which
is computed instead of a during the decryption algorithm. In the last step of the
decryption, a − αq · Xk is taken modulo p and multiplied by Fp, so the incorrect
plaintext returned is:

m′ = Fp ∗ (fm − αq · Xk) mod p = m − (αq mod p) · Xk ∗ Fp.

Since there was a decryption failure and since p = 3, we are sure that α′ =
αq mod p is equal to ±1. Therefore, by considering the difference m − m′, we
recover a rotation (up to a sign) F ′

p = α′Xk ∗ Fp of the polynomial Fp from the
private key. It is then easy to invert F ′

p mod p in order to find the second part
of the key f ′ = α′XN−k ∗ f . As we saw at the beginning of the section, the
computed polynomials (f ′, F ′

p) form a secret key equivalent to (f, Fp), so it is
not necessary to find the value of k.

4.2 Experiments

We have implemented the attack described by Algorithm 3. In practice, the first
decryption failure is found before 40,000 calls to the oracle D. As seen previously,
the probability for (f ′, F ′

p) computed in steps 2 and 3 to be a valid private key
is higher than 1 − pe ≈ 24999

25000 . In this case, the polynomial g′ computed in step
4 is a rotation of g, and the algorithm ends. We chose 4 keys at random in each
parameter set of [8], and we collected 50 decryption failures per key. Instead of
stopping the execution once a circular shift of the key had been found, we ran the
attack on all the decryption failures obtained on the NTRU-1998 instantiation.
Each one disclosed a rotation (up to a sign) of the private key, which is an
equivalent private key.

5 A General Attack Against All NTRU Instantiations

The attack on NTRU-1998 seen in the last section cannot be applied to more
recent instantiations of NTRU. Indeed, in the original implementation of NTRU,
the choice of p = 3 and a ternary key f made it possible to recover entirely f
from Fp . But in recent optimizations, the choice of f = 1 + p · F implies that
Fp is always equal to 1, and does not leak any information about f . However,
it is still possible to construct a key-recovery algorithm, using this time a few
hundreds of decryption failures. Our attack builds on [11], where it was noticed
that each decryption failure gave rise to an approximation of an (unknown) ro-
tation of f and g. Here, we further notice that the full output of the decryption
oracle enables us to find out which rotation it is. In other words, the output of
the oracle on each decryption failure discloses two polynomials, which have a
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majority of coefficients in common with the secret keys f and g (without any
rotation). Unfortunately, the approximation provided by the decryption oracle
does not reveal the exact position of the correct coefficients. In this attack, we
therefore average many approximations of f deduced from independent decryp-
tion failures, in order to compute a more accurate approximation, until f can
be recovered by rounding. The attack will be described with p being an integer.
However it works on every instantiation of NTRU, even if p is the polynomial
X + 2. In this case, the only difference is that we have to replace the multi-
plication p · g by the convolution product p ∗ g. The attack is summarized by
Algorithm 4.

Algorithm 4. A general key-recovery chosen-ciphertext attack
Input: A public key H .
Output: A secret key (f, Fp).
1: p ← 0; S ← 0.
2: estimate α ← 2

2
(
‖f̌‖2+‖p·ǧ‖2

) using NTRU parameters.

3: loop
4: Find a decryption failure (m,r, m′) using Algorithm 1.
5: Find the integer k such that mk �= m′

k.
6: V ← (mk, mk−1, . . . , m

k−N+1 mod N
, rk, rk−1, . . . , rk−N+1 mod N

).
7: ε ← sign(〈V , S〉) or +1 if 〈V , S〉 = 0.
8: S ← S + εV ; z ← z + 1.
9: let f =

∑N−1
i=0 round( 1

αz
S1 + f(1)

N
)Xi.

10: if f ∗ H ∗ p−1 mod q ∈ Lg, then return (f, f−1 mod p).

11: let f ′ =
∑N−1

i=0 round(− 1
αz

S1 + f(1)
N

)Xi.
12: if f ′ ∗ H ∗ p−1 mod q ∈ Lg, then return (f ′, f ′−1 mod p).
13: end loop.

5.1 Description of the Attack

Again, we assume that we were able to find m ∈ Lm and r ∈ Lr such that
the ciphertext m + rH is decrypted as m′ �= m. This time, m and r are not
zero-centered, so it is necessary to use the centering homomorphism in order
to use Condition (1). From Heuristic 1, we know that there exists ε = ±1 and
k ∈ [0, N − 1] such that p · ř ∗ ǧ + m̌ ∗ f̌ − εq · Xk has all its coefficients in
[− q

2 ; q
2 [. Thus, the output of the decryption algorithm is m′ = m + Xk mod p,

and k is therefore the only index where the coefficients m and m′ differ. Hence,
the value of k is disclosed and the kth coefficient is the overflowing coefficient, so:

∣
∣
∣
∣
∣∣

N−1∑

j=0

m̌k−j mod N f̌j +
N−1∑

j=0

řk−j modNpǧj

∣
∣
∣
∣
∣∣
≥ q

2

If we call V the vector (m̌(k−0) modN , . . . , m̌(k−N+1) modN , ř(k−0) modN , . . . ,

ř(k−N+1) modN ) and K the vector (f̌0, . . . , f̌N−1, p · ǧ0, . . . , p · ǧN−1) representing
the private key, the previous inequality can be rewritten as |〈V , K〉| ≥ q

2 . Thus,
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either V is very correlated with K or it is strongly anti-correlated. And K is in
one-to-one correspondence with the private key. Note that since the sum of the co-
efficients of V is equal to zero, the squared norm ‖V ‖2 is the sum of the variance of
m and r. It is a constant σ2 depending only on the NTRU parameter set. Likewise,
‖K‖2 is the sum of the variances of the keys f and g, and it depends only on the
parameter set. For instance, in NTRU-2005 with binary polynomials, the private
key f is equal to 1 + 2F where F is binary and contains exactly dF ones. There-
fore ‖f‖2 =

∑N−1
j=0 f2

j = 1 + 4dF . After centering the polynomial,
∥
∥f̌

∥
∥2

= ‖f‖2 −
1
N f2(1) where f(1) = 1+2dF , so

∥∥f̌
∥∥2

= 4·dF (N−dF−1)
N . Using the same kind of ar-

guments for ‖p · ǧ‖2, we show that ‖K‖2 = 4
N · (dF (N − dF − 1) + 2dg(N − dg))

in NTRU-2005.

hyperplane V · K = q
2

Sphere ‖ V ‖2= σ2

V (i)s

Key vector K

Expectation(V ) = V ·K
‖K‖2 · K

Fig. 2. Simplified case

Simplified case. In the simplified case, only positive correlations occur, and
Heuristic 2 suggests that the inequality |〈V , K〉| ≥ q

2 is in fact almost an equal-
ity. Then, as shown in Figure 2, such a vector V is located on the hypersphere
at the intersection of the sphere of equation ‖V ‖2 = σ2 and the hyperplane
of equation |〈V , K〉| = q

2 . If we gather many independent decryption failures,
we will obtain many V (i)’s in this hypersphere. Their expectation is the center
of the hypersphere, which is the multiple q

2||K||2 · K of the private key vector.
Therefore if we consider n vectors V (i)s coming from independent decryption
failures, then their mean value 1

n

∑n
i=1 V (i) shall converge to q

2||K||2 · K when n

grows. In practice, q
2||K||2 seems to be greater than 1

16 in every instantiation of
NTRU containing decryption failures. For this reason, if n is of the order of N ,
we expect to have enough accuracy to recover the full key K.

Real case. In reality, there may be both positive and negative correlations be-
tween V and K. Therefore, V is located on the union of two opposite hyper-
spheres ‖V ‖2 = σ2 ∩ 〈V , K〉 = ± q

2 (see Figure 3). Unfortunately, the pro-
portion of positive and negative correlations (which depends on the fractional
part of a(1)

N ) may be equal to 1
2 in the worst case. In this case, the expecta-

tion of V is zero. We must be able to decide whether the correlation between
V and K is positive or not. The best test would be to compute directly the
dot product 〈V , K〉, but we do not know K. Therefore, in our algorithm, we
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distribution of
εn+iV

(n+i)

approxn(V ) = 1
n

∑n
i=1 εiV

(i)

Half space 〈V , approxn(V )〉 ≥ 0

Hyperspheres ‖V ‖2 = σ2 and 〈V , K〉 = ± q
2

Key vector ±K

Fig. 3. Real case

try to guess for each V (i), a sign εi = ±1 such that 〈εiV
(i), K〉 ≥ q

2 for all i,
or 〈εiV

(i), K〉 ≤ − q
2 for all i. In order to do that, we arbitrarily set ε1 = 1,

and recursively set εn+1 = sign(〈V (n+1),
∑n

i=1 εi
iV 〉), hoping that

∑n
i=1 εiV

(i)

is not orthogonal to K (as shown in Figure 3). Then, as suggested on the figure,
the sum

∑n
i=1 εiV

(i) will slowly take the direction of K or −K, and like in the
simple case, the average vector 1

n

∑n
i=1 εiV

(i) will converge to ± q
2||K||2 · K.

5.2 Experiments

We have implemented the attack described by Algorithm 4. Both the encryption,
decryption algorithms and the attack were implemented using the NTL library
[15] without any running-time optimization. Indeed, since the attack only con-
sists of adding a few hundreds of vectors, its running time is negligible compared
to the time of collecting the required number of decryption failures. We refer to
[8,10,9] for the actual running time of an efficient implementation of the encryp-
tion and the decryption algorithm.

As shown in Table 1, the number of decryption failures needed in order to
fully recover the private key (even for highest parameters) is a few hundreds.
Recall that there is a decryption failure every 215 encryptions: this means that
the total number of calls to the decryption oracle is about 223, which takes less
than two days with an unoptimized version of the encryption and decryption
algorithms. As shown in Figure 4, the main idea of the algorithm is to build an
approximation of the private key vector. The more decryption failures we use, the
more accurate the approximation. Since the secret key has integer coefficients,
the approximation eventually reaches a precision level where a simple rounding
procedure is enough to fully recover the key.

These two graphs represent the distribution of the coefficients of the estima-
tion of the key (that is the vector S/z of Algorithm 4 line 9) for NTRU-2005
with product-form keys with N = 251, q = 113. The different levels of grey
represent the value of the corresponding key coefficient. The attack works only
if the different colors are well separated (by the dotted vertical lines). The first
graph is obtained after gathering 150 decryption failures, and the second after
250 decryption failures. In the first graph, there is only one black bar which is
misplaced (in the fi = 2 area, so after 150 decryption failures, we have recovered



104 N. Gama and P.Q. Nguyen

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

16

12

corresponds to fi = 0
corresponds to fi = 2
corresponds to fi = 4

8

4

0

corresponds to fi = 4
corresponds to fi = 2
corresponds to fi = 0

corresponds to fi = 5

-0.2 -0.1 0 0.1 0.2 0.3 0.4

12

8

4

0

Fig. 4. Coefficients of the estimation of the key in the algorithm

Table 1. Experiments

type NTRU N p q dF number of
decryption

failures used

number of digits
of f recovered

NTRU-1998 167 3 128 32 50 N-3
100 N (all)

NTRU-2001 251 X+2 127 40 80 N-1
140 N (all)

NTRU-2005 binary 251 2 127 64 80 N-2
(using a smaller q) 130 N (all)

NTRU-2005 product form 251 2 113 9 100 N-3
(using a smaller q) 150 N-1

250 N (all)

all bits of f with exactly 1 error. In the second graph, the colors are well sepa-
rated, so the private key is fully recovered.

5.3 Potential Improvements

Here, we discuss potential improvements which might further lower the number
of required decryption failures.

Exhaustive search. The number of errors in Table 1 between the private key and
the estimation is very small during the last half of the algorithm. If we assume
that there are less than three errors of at most one unit in our estimation, then
the number of possible keys is bounded by 8

(
N
2

)
+4

(
N
2

)
+2N . Even with N = 251,

it is possible to perform this exhaustive search in practice. In Table 1, the number
of decryption failures needed to recover the private key up to 3 errors is half of
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the number required to fully recover the key. Hence, exhaustive search would
divide the number of calls to the decryption oracle by a factor 2.

Lattice attack. Instead of performing an exhaustive search, we may use a lattice
reduction algorithm. Once we get a sufficiently accurate approximation of the
vector K = (f, p · g), the distance between this approximation of K and the
lattice generated by the NTRU public basis should be extremely small compared
to its shortest vector. In this case, we may hope that lattice reduction algorithms
can recover the whole private key from this approximation in practice.

Acknowledgements. Part of this work is supported by the Commission of the Eu-
ropean Communities through the IST program under contract IST-2002-507932
ECRYPT.
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Abstract. At PKC 2003 Paeng, Jung, and Ha proposed a lattice based
public key cryptosystem(PJH). It is originated from GGH, and designed
as a hybrid of GGH and NTRUEncrypt in order to reduce the key size.
They claimed that PJH is secure against all possible attacks, especially
against lattice attacks. However, in this paper, we present a key recovery
attack, based on lattice theory, against PJH. The running time of our
attack is drastically short. For example, we could recover all secret keys
within 10 minutes even for the system with n = 1001 on a single PC.
Unlike other lattice attacks against NTRUEncrypt and GGH, the attack
may be applied well to the system with much larger parameters. We
present some clues why we believe so. Based on this belief, we declare
that PJH should not be used in practice.

Keywords: Paeng-Jung-Ha cryptosystem, GGH, NTRUEncrypt, Lat-
tice attack.

1 Introduction

Since Ajtai’s seminal work [1], some lattice-based public-key cryptosystems
[2,4,5] have been suggested inspired by his work. Among them GGH [4] and
NTRU [5] attracted much attention because both systems seemed to be prac-
tical with fast encryption/decryption and reasonable key size. GGH is a lattice
version of the previously well-known code-based cryptosystems [9]. Though its
key size is somewhat large, the system is fast. The proposers claimed that the
system with practically usable parameters would be secure. A few years later,
however, Nguyen presented a powerful lattice attack against it [12]. In order for
GGH to be secure against Nguyen’s attack, its key size should be too large to be
practical. Thus, GGH has been regarded as a broken system since then. NTRU,
more precisely NTRUEncrypt, is another lattice-based system widely reviewed.
The system is very efficient and unbroken till now. From the lattice-theoretic
point of view, NTRUEncrypt is a special instance of GGH in the sense that the
� The second author was partially supported by KRF(2005-070-C00004).

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 107–117, 2007.
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former uses a circulant matrix for a public key while the latter uses a random
square matrix. As a result, the key size of NTRUEncrypt is O(n) while that of
GGH is O(n2), where n is the dimension of the matrix.

A few years after Nguyen’s attack, Paeng, Jung, and Ha proposed a variant
[18] of GGH, which we will call PJH in this paper. Motivations of developing
such a variant are as follows: Firstly, one-way function of GGH has still merits
since it is simple and faster than other systems using modular exponentiations.
Secondly, at the time that PJH was suggested, it seemed to be easier to design a
natural signature scheme based on GGH than on NTRUEncrypt, although both
signature schemes turned out to be insecure recently [13]. Thirdly, it seems to be
possible to overcome Nguyen’s attack by choosing lattices more carefully. With
these in mind, they designed PJH as a hybrid type of GGH and NTRUEncrypt:
PJH looks similar to GGH except that it takes a partially circulant matrix for a
public key. As a result, its key size reduces down to O(n), which is same as that
of NTRUEncrypt. Concerning the security of PJH, the proposers claimed that
it would be secure against all possible attacks with practical key sizes. Because
GGH was broken by a lattice attack, they presented extensive analysis on the
security against lattice attacks, and concluded that their system would be secure
on the basis of various simulation results.

However, in this paper, we present a key recovery attack against PJH with a
lattice technique. In order to recover the secret keys, we induce a linear equation
from the public information on key pairs. Then, we construct a lattice from
the equation and obtain some of the secret keys by applying lattice reduction
algorithms to the lattice. The remaining secret keys can be recovered simply by
solving a few linear equations. We could recover secret keys within 10 minutes
even for the system with n = 1001, where n is a system parameter which will be
described in the next section. Unlike other lattice attacks against NTRUEncrypt
and GGH, our attack may be applied well to the system of much larger n’s. We
present some clues why we believe so. Based on this belief, we declare that PJH
should not be used in practice.

The rest of this paper is organized as follows. In the next section, we briefly
introduce PJH and describe basic principles of general lattice attacks against
public key cryptosystems. In Section 3, we present our key recovery attack,
simulation results, and applicability of our attack against the system with much
larger parameters. Finally, we conclude in Section 4.

2 Preliminaries

2.1 Overview of PJH Cryptosystem

Notations and Parameters. Let n be a prime integer, and consider a poly-
nomial ring

R = Z[x]/〈xn − 1〉.
We identify a polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ R with a vector
(a0, a1, · · · , an−1) ∈ Z

n. We will denote both by f . Note that the multiplication
f · g of f and g is computed by the convolution product of them, that is,
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h = f · g , ck =
∑

i+j=k mod n

aibj ,

where g = b0 + b1x + · · · + bn−1x
n−1 and h = c0 + c1x + · · · + cn−1x

n−1. For
f = a0 + a1x + · · · + an−1x

n−1 ∈ R let Φ(f) be the n × n circulant matrix
⎛

⎜
⎜
⎜
⎝

a0 a1 · · · an−1
an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0

⎞

⎟
⎟
⎟
⎠

.

Then, it is easy to verify the following:

f · g = g · f = fΦ(g) = gΦ(f).

Finally, we remark that we will use row-oriented notations in matrix represen-
tations of lattices while PJH adopts column-oriented rotations in [18].

Key Generation. In order to generate a private key, PJH generates 4 polyno-
mials f1, f2, h1, h2 ∈ R which have the following properties:

– f1(x) = α0 +α1x
1 + · · ·+αn−1x

n−1 and f2(x) = β0 +β1x
1 + · · ·+βn−1x

n−1,
where |α0|, |β0| ≈ √

2n and the other coefficients are elements in {−1, 0, 1}.
– The coefficients of h1 and h2 are elements in {−1, 0, 1}.

The private key R is defined by

R :=
(

Φ(f1) Φ(h2)
Φ(h1) Φ(f2)

)
.

Let p be a positive integer. In [18] p is a 10-bit or 80-bit integer which need
not be prime. Proposers recommended that p is kept secret although it does not
affect the security. In order to generate public keys, PJH chooses g ∈ R with
coefficients in (−p/2, p/2] such that g is invertible in Zp[x]/〈xn − 1〉. Then there
exists gp with coefficients in (−p/2, p/2] and Q in R such that

g · gp − 1 = pQ ∈ R.

Now, four public polynomials P1, P2, P3, P4 ∈ R are defined as follows:

P1 := f1 · g + h1 · Q,

P2 := pf1 + h1 · gp,

P3 := h2 · g + f2 · Q,

P4 := ph2 + f2 · gp.

(1)

The public key B is defined by

B :=
(

Φ(P1) Φ(P3)
Φ(P2) Φ(P4)

)
.

The pair (R, B) constructed in this way have the same properties as that
in GGH. That is, R and B are different bases of a same lattice and have low
and high dual-orthogonality defects, respectively. For more details, we refer the
readers to [18].
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Table 1. Comparison of key sizes(KB) of PJH and GGH

rank of B PJH(10-bit p) PJH(80-bit p) GGH GGH(HNF)

200 0.85 4.4 330 32
300 1.4 6.6 990 75
400 1.8 8.8 2370 140
500 2.3 11

Encryption and Decryption. For a message m = (m1, m2) ∈ R2, the cipher-
text c is calculated by

c = (c1, c2) = mB + e ∈ (Q[x]/〈xn − 1〉)2

for an error vector e = (e1, e2) ∈ (Q[x]/〈xn − 1〉)2, where the coefficients of ei

are elements in {−1/2, 1/2}.
Let T be a matrix defined by

T :=
(

Φ(g) Φ(Q)
pI Φ(gp)

)−1

.

Then, c can be decrypted as follows:

m = (m1, m2) = �cR−1�T.

The decryption works similarly to that of GGH. Since we don’t have to under-
stand thoroughly how the decryption works in order to explain our attack, we
omit the details.

Efficiency and Security. Since the public matrix B is determined by four
polynomials in R, key size of PJH is O(n) while that of GGH is O(n2). The
comparison of key sizes of PJH with GGH in [18] is given in Table 1. The values
in the last column are the key size of GGH when it uses Micciancio’s HNF
expression [10].

Concerning the security of PJH, the proposers claimed that the system is
secure against all possible attacks even if the parameter p is disclosed. Because
GGH was broken by a lattice attack, they presented extensive analysis on the
security against lattice attacks. We briefly describe their analysis. Because the
equations in (1), which are the only public information on secret keys and pub-
lic keys, are quadratic of unknown variables in R, they expected that no key

Table 2. Running times to break PJH estimated by the proposers

n expected run time

211 1.46 ×109 seconds ≈ 46 years
257 1.45 ×1011 seconds ≈ 4.6 × 103 years
373 1.58 ×1016 seconds ≈ 5 × 108 years
503 5.18 ×1021 seconds ≈ 1.6 × 1014 years
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recovery attack using lattice techniques would be feasible. On the other hand,
a message recovery attack seems to be feasible. However, they claimed that the
reduction algorithm would work badly because they made expected-gaps, which
is defined in the next subsection, small. Running times to break PJH estimated
by the authors of [18] are given in Table 2.

2.2 Lattice Attacks

A Lattice L is defined to be a discrete subgroup of R
n. It consists of all integral

linear combinations of a set of some linearly independent vectors b1,b2, · · · ,bd ∈
R

n. Such a set of vectors is called a lattice basis. All the bases of a lattice have the
same number of elements, and this number is called the dimension of the lattice,
denoted by dim(L). There are infinitely many bases for L when dim(L) ≥ 2.
Any two bases of a lattice L are related to each other by some unimodular
matrix (integral matrix of determinant ±1), and therefore all the bases share
the same Gramian determinant det1≤i,j≤d〈bi,bj〉, where {b1,b2, . . . ,bd} is a
basis of L. The volume vol(L) of L is defined by the square root of the Gramian
determinant, which is the d-dimensional volume of the parallelepiped spanned
by the bi’s. Since a lattice is discrete, it has a shortest non-zero vector. The
Euclidean length of a shortest vector of L is called the first minimum, denoted
by λ1(L). More generally, for all 1 ≤ i ≤ dim(L), the i-th minimum λi(L)
is defined by the minimum of max1≤j≤i ‖vj‖, where {v1, · · · ,vi} runs over all
possible sets of linearly independent vectors v1, · · · ,vi ∈ L. The ratio λ2/λ1 is
called lattice gap, which is useful in estimating the feasibility of lattice attacks.

Given a basis for a lattice L, the problem of finding a shortest vector of L
is called the shortest vector problem (SVP). Another famous problem related
to lattices is the closest vector problem (CVP), the problem of finding a vector
v ∈ L which is closest to a given vector t ∈ R

n. The CVP in �p-norm is proved
to be NP-hard for all p, and the SVP is also believed to be hard [11]. Indeed,
there are no known polynomial time algorithms to solve even the approximated
versions of them, if approximation factors are polynomials in dim(L). However,
if the dimension of a lattice is less than a few hundreds, we can solve them in
practice using lattice reduction algorithms such as LLL [8] and its variants [19].

For a given latticebasis{b1, · · · ,bn}, LLLoutputs a reducedbasis{b∗
1, · · · ,b∗

n}
satisfying ‖b∗

1‖ ≤ 2(n−1)/2λ1(L) within O(n4 log B) integer arithmetic opera-
tions, where B is the maximum of ‖bi‖2’s. The fastest LLL variant known has
bit-complexity essentially O(n5 log2 B) [14]. However, the real performances of
LLL and its variants are more better than what are expected from the theory, both
in terms of the running time and the output quality [15]. Thus, we can find a gen-
uine shortest vector of a given lattice using the algorithms when the dimension
of the lattices are less than a few hundreds.

Lattices have been widely used in attacking public-key cryptosystems. Readers
are referred to [16] for well-written summary of the various results about them.
Here we briefly describe basic principles to attack systems using lattices. The
attacks are accomplished by reducing the problem of finding a secret information
in the system to a specific instance of SVP or CVP. We describe the SVP case
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here. First, one constructs a lattice from public information such as system
parameters and public keys. Then, one shows that a relatively short vector v of
the lattice includes the secret information we want to obtain, and finds such v
by solving SVP with lattice reduction algorithms. However, in most cases, one
cannot prove that v is a genuine shortest vector of the lattice. Instead, one can
infer that it is a shortest vector by using Gaussian heuristic: Given a random
lattice L of dimension n, the first minimum λ1(L) of L will be

√
n

2πe
vol(L)

1
n ≤ λ1(L) ≤

√
n

πe
vol(L)

1
n .

One use σ(L) as the estimation of λ1(L), where σ(L) (briefly σ) is defined by

σ(L) :=
√

n

2πe
vol(L)

1
n .

If ‖v‖ is less than σ, one may expect that v is a shortest vector. In practice,
the larger the ratio σ/‖v‖ is, the easier we can find v. We call this ratio an
expected-gap of L with respect to v.

3 Key Recovery Attack Against PJH

3.1 Volume of the Lattice Generated by Φ(P2)

For a polynomial f ∈ R, let’s define V (f) by the volume of the lattice generated
by the circulant matrix Φ(f). In our attack, V (P2) is used essentially: More
precisely, we need to estimate a reasonable lower bound of δn(P2), which is
defined for randomly chosen P2 by

δn(P2) := p−1

√
1

2πe
V (P2)

1
n+1 .

In this subsection we present a heuristic on the asymptotic estimation of δn(P2).
To our knowledge, it is difficult to understand asymptotic behavior of V (f)

theoretically. For simplicity, suppose that the lattice is of full rank. In that case,
V (f) is equal to the determinant of the circulant matrix Φ(f). So, we can infer
intuitively

V (f) = det(Φ(f)) =
‖f‖n

orth-defect(Φ(f))
∼ O(‖f‖n).

However, if there are no conditions on n and f , there are no known theoretical
results on asymptotic properties of V (f). Moreover, we could not find meaningful
characteristics even from simulations.

Now, turn to our attention to δn(P2) in PJH. Because PJH uses prime n
and P2 is obtained by special formulas, V (P2) and δn(P2) behave regularly as n
increases. We could verify this by simulations. We calculated δn(P2) in randomly
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Fig. 1. Experimental estimation of δn(P2) for 10-bit p(left) and 80-bit p(right)

constructed PJH for several n’s and for several 10-bit or 80-bit p’s. We tested
100 times for each n and p. The experimental results are shown in Figure 1.
The upper three curves in the figure show the simulated maximum, average,
and minimum values of δn(P2), respectively. They tend to increase linearly as n
increases. If the bit-size of p increases, the value of δn(P2) decreases a little bit.
However, as one can see in Figure 1, the slopes of δn(P2) do not change much
as the bit-size of p increases.

From our simulations, we estimate a lower bound of δn(P2) for large n and
for p ≤ 280 very conservatively as follows:

δn(P2) ≥ 0.02n for n ≥ 100. (2)

The lowest line in the figure shows the lower bound in (2). In the next subsections,
we will use this estimation for theoretical analysis of our attack against PJH.

3.2 A Linear Relation Between Key Pairs

Let’s recall some of equations in (1).

P1 = f1 · g + h1 · Q (3)

P2 = pf1 + h1 · gp (4)

By multiplying g to (4), we induce the following equation in R:

g · P2 = pf1 · g + h1 · gp · g

= pf1 · g + h1 · (1 + pQ)
= p(f1 · g + h1 · Q) + h1

= pP1 + h1.

(5)
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In (5), g, p and h1 are unknown variables. However, note that the equation is
linear while those in (1) are quadratic. Suppose we can recover h1 and p. Then, g
can be recovered by solving the linear equation (5). From g and p we can obtain
gp and Q easily. Then, (1) becomes a system of four linear equations of four
unknown variables so that the other secret keys can be recovered easily. Thus,
if we can find h1 and p, we can recover all secret keys of PJH. We will recover
them using a lattice technique in the following subsections.

Remark 1. PJH can be designed flexibly. In [18], the authors introduced another
scheme which uses the polynomial ring Z[x]/〈xn −x−1〉 instead of Z[x]/〈xn −1〉
in Section 4.4, and one more in the appendix. However, our attack can be applied
identically to the one in Section 4.4, and a modified attack, using the equation

g · P12 = pP11 + h1

instead of (5), can be applied to the one in the appendix.

3.3 Finding h1 with a Lattice Technique

The Case When p is not Secret. Consider a lattice L1 generated by rows
of the following (n + 1) × (n + 1) matrix L1:

L1 =
(

Φ(P2) 0n

pP1 1

)
,

where 0n is a column vector of dimension n whose entries are all 0. Then, a
vector

v1 = (h1, −1) = (g · P2 − pP1, −1) = (g, −1)L1

is contained in L1 and its length satisfies

‖v1‖ =
√

‖h1‖2 + 1 ≤ √
n + 1.

According to Gaussian heuristic we can expect

σ1 ∼
√

n + 1
2πe

vol(L1)
1

n+1 = δn(P2)p
√

n + 1,

where σ1 is the length of a shortest vector in L1. Using the approximation of
δn(P2) in (2), we can estimate σ1 as follows:

σ1 ≥ 0.02np
√

n + 1 for n ≥ 100.

Thus, the expected-gap of L1 with respect to v1 is bigger than or equal to 0.02np,
i.e.,

σ1

‖v1‖ ≥ 0.02np for n ≥ 100. (6)

Since this is very large in PJH parameters, where p is a 10-bit or 80-bit prime,
v1 will be a shortest vector of L1 with high probability. So, we can easily find
v1 (and hence h1) by using lattice reduction algorithms.
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Table 3. Breaking times (in seconds) of PJH for 80-bit public p

Dimension of lattice n =211 n =257 n =373 n =503 n = 1001

Time(Seconds) < 1 < 1 < 10 < 10 < 100

We simulated the above attack on a Pentium IV 3.2 GHz PC using the
floating-point variant of LLL algorithm (LLL FP) with default parameters im-
plemented in NTL package [17]. We tested our attack against PJH with different
n’s for 10-bit and 80-bit randomly selected p’s. For each n and p, 10 different
instances were tested against. We could obtain v for all instances. For 10-bit
p’s, the running times for lattice reduction were too short to be described. The
running times for 80-bit p’s are given in Table 3. Even for n = 1001, we could
find the solutions within 100 seconds.

The Case When p is Secret. If p is secret, we cannot construct the lattice
L1. Instead, we consider a lattice L2 generated by the following matrix L2:

L2 =
(

Φ(P2) 0n

P1 1

)
.

Then, a vector v2 = (h1, −p) is contained in L2 and its length is smaller than
or equal to

√
p2 + n2. The σ2 corresponding to L2 is equal to σ1, and hence

σ2 ≥ 0.02np
√

n + 1. Thus, we get

σ2

‖v2‖ ≥ 0.02np
√

n + 1
√

p2 + n2
∼ 0.02n

√
n. (7)

Although this value is smaller than the expected-gap when p is public, it is still
large (see Table 5). So, we can find v2 (and hence h1, and p) by using lattice
reduction algorithms.

We also simulated the above attack on the same machine using the same
algorithm as in the previous case. The results for 80-bit p’s are given in Table 4.
The running times for lattice reduction in this case were more longer than those
in case of public p. This was expected because the expected-gap of the former
is smaller than that of the latter. Still, we could find the solutions within 500
seconds even for n = 1001 .

Remark 2. We can use another lattice in our attack to get larger expected-gap.
Let dp be the bit-length of p, and consider a vector v3 = (2dph1, −p) and a
lattice L3 generated by the following matrix L3:

L3 =
(

2dpΦ(P2) 0n

2dpP1 1

)
.

Then, v3 is a short vector of L3 and the expected-gap of L3 with respect to v3
is about δn(P2)p. However, since the entries of L3 is larger than those of L2, it
takes more time in lattice reduction for L3 than for L2. Thus, using L2 is more
efficient in practice.
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Table 4. Breaking times (in seconds) of PJH for 80-bit secret p

Dimension of lattice n =211 n =257 n =373 n =503 n = 1001

Times(second) < 20 < 30 < 60 < 100 < 500

Table 5. Expected-gaps in attacks against NTRUEncrypt, GGH, and PJH

Dimension of the lattice 200 250 300 350 400 450 500

GGH [12] 9.7 9.4 9.5 9.4 9.6
NTRUEncrypt [7] 5.7 6.3 6.9 7.5 8.0 8.5 8.9

PJH(secret p) [From (7)] 56.6 79.1 103.9 131.0 160.0 190.9 223.6
PJH(public p) [From (6)] 4p 5p 6p 7p 8p 9p 10p

3.4 Attack Against PJH with Larger Parameters

In attack against GGH, expected-gaps are small and do not increase as the
lattice dimension n increases [12], and in attack against NTRUEncrypt, they
increase but are bounded by about 0.25

√
n [7]. On the other hand, the efficiency

of reduction algorithm becomes worse as n increases. These two facts cause
the difficulty in attacking GGH and NTRUEncrypt when n is sufficiently large
[3,6,12]. The attacks are not possible practically when n is more than 400 ∼ 500.

However, expected-gaps in our attack against PJH are much large and increase
very fast as n increases. The comparison of expected-gaps in attacks against
GGH, NTRUEncrypt, and PJH are given in Table 5. The large expected-gaps
explains why breaking times of PJH are shorter compared to other systems.
Moreover, the fact that the expected-gaps increases fast compensates the ineffi-
ciency of reduction algorithms for large n. Thus, we expect that we can break
PJH until n grows too large to be used practically.

4 Conclusion

We have shown that Paeng-Jung-Ha cryptosystem proposed at PKC 2003 is
not secure against a lattice attack contrary to proposer’s expectation. From the
relations between public keys and secret keys, we could induce a linear equation
useful for a lattice attack. Because the breaking times for suggested parameters
are drastically short and the feasibility of our attack against the system with
larger parameters is high, we may declare that the system should not be used
practically.

It seems to be hard to modify PJH to be secure against our attack without
worsening the efficiency. Our result shows that, although lattice-based cryp-
tosystems look attractive, it is difficult to design a practical system other than
NTRUEncrypt.

Acknowledgements. The authors would like to thank the anonymous referees
for pointing out some errors of this paper and giving valuable comments.
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Abstract. This paper addresses the security of optimistic fair exchange
in a multi-user setting. While the security of public key encryption and
public key signature schemes in a single-user setting guarantees the se-
curity in a multi-user setting, we show that the situation is different
in the optimistic fair exchange. First, we show how to break, in the
multi-user setting, an optimistic fair exchange scheme provably secure in
the single-user setting. This example separates the security of optimistic
fair exchange between the single-user setting and the multi-user setting.
We then define the formal security model of optimistic fair exchange
in the multi-user setting, which is the first complete security model of
optimistic fair exchange in the multi-user setting. We prove the exis-
tence of a generic construction meeting our multi-user security based on
one-way functions in the random oracle model and trapdoor one-way
permutations in the standard model. Finally, we revisit two well-known
methodologies of optimistic fair exchange, which are based on the veri-
fiably encrypted signature and the sequential two-party multisignature,
respectively. Our result shows that these paradigms remain valid in the
multi-user setting.

1 Introduction

Multi-User Security. In the early stage of modern cryptography, public
key cryptography was usually studied in the single-user setting and the security
model assumed only one public key [20,21]; one receiver in the public key encryp-
tion and one signer in the public key signature. However, there are many users in
the real world and the security in the single-user setting does not guard against
the attacks by colluding dishonest users. The security in the multi-user setting
was formally studied only recently [4,18]. Fortunately, these researches show that
the security of encryption schemes in the single-user setting is preserved in the
multi-user setting [4] and the same result holds good for signature schemes [18].
Therefore, we only have to deal with the single-user security and need not con-
sider the multi-user security in the public key encryption and signature schemes.
� The research of the second author and the third author was supported by the MIC of

Korea, under the ITRC support program (IITA-2006-C1090-0603-0026) and BK21.
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While the security of public key encryption and public key signature schemes in
the single-user setting guarantees the security in the multi-user setting, there are
other cryptosystems (e.g. identity-based encryption schemes) where the single-
user security is not enough.

Optimistic Fair Exchange. A fair exchange scheme is a protocol by which two
parties Alice and Bob swap items or services without allowing either party to gain
an advantage by quitting prematurely or otherwise misbehaving. For instance,
Alice signs some statement (e.g., e-cash) and Bob fulfills some obligation (e.g.,
delivery of goods). However, each party will play the role only if he (or she) is
sure that the other party will keep the appointment. Of course, one could use an
online trusted third party in every transaction to act as a mediator; each party
sends the item to the trusted third party, who upon verifying the correctness of
both items, forwards each item to the other party. A drawback of this approach
is that the trusted third party is always involved in the exchange even if both
parties are honest and no fault was occurred. In practice, sending messages via
a trusted third party can lead to performance problems.

A more desirable approach is that a semi-trusted arbitrator involves only in
cases where one party attempts to cheat or simply crashes. We call such a fair
exchange protocol optimistic. In this model, Alice first issues a verifiable “partial
signature” σ′ to Bob. Bob verifies the validity of the partial signature and fulfills
his obligation, after which Alice sends her “full signature” σ to complete the
transaction. Thus, if no problem occurs, the arbitrator does not participate in
the protocol. However, if Alice refuses to send her full signature σ at the end,
Bob will send σ′ (and proof of fulfilling his obligation) to the arbitrator who will
convert σ′ into σ, sending σ to Bob.

Optimistic fair exchange was introduced by Asokan et al. [1] and formally
studied in [2,3] where several solutions were presented based on verifiably en-
crypted signatures. The approach of [2,3] was later generalized by [9], but all
these schemes involve expensive and highly interactive zero-knowledge proofs
in the exchange phase. The first non-interactive verifiably encrypted signature
was built by Boneh et al. [8] under a form of the computational Diffie-Hellman
assumption over special elliptic curve groups.

A different approach for building non-interactive optimistic fair exchange
based on sequential two-party multisignatures was proposed by Park et al. [24],
which was broken and repaired by Dodis and Reyzin [14]. While the schemes in
[14] are very efficient, one important drawback of the approach based on the se-
quential two-party multisignature is that it is setup-driven [32]; the registration
is required between the user and the arbitrator.

Our Contribution. There have been attempts to formally define the security
of optimistic fair exchange. The first formal security model was proposed by
Asokan et al. [2,3] but was not complete as their model did not consider a
dishonest arbitrator. A more generalized and unified model for non-interactive
optimistic fair exchange was suggested by Dodis and Reyzin [14]. Their model,
called verifiably committed signatures, incorporates all aspects of non-interactive
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optimistic fair exchange but was defined in a single-user setting. If the security
of optimistic fair exchange in the single-user setting guarantees the multi-user
security, the model of [14] is satisfactory. Otherwise, we should extend the model
to the multi-user setting.

In this paper, we show that the single-user security of optimistic fair exchange
does not guarantee multi-user security. We present a simple counterexample
based on a signature scheme and a trapdoor permutation. We then define the
multi-user security model of optimistic fair exchange, extending the model of
[14]. While the single-user model of [14] is setup-driven, our multi-user model is
setup-free [32], which we feel is a more natural and advantageous realization of
“optimistic” fair exchange in the multi-user setting; (1) If every fair exchange is
performed normally (i.e., every user behaves honestly), it is desirable that users
need not contact the arbitrator even for the registration purpose. (2) The arbi-
trator in setup-driven schemes should be semi-online to respond to registration
requests, even when no dispute between users occurs. (3) If there are several
arbitrators, the user in setup-free schemes can decide on a particular arbitrator
in run-time.

After defining security notions, we address our attention to the basic theo-
retical question, namely whether or not a scheme satisfying the security notions
exists, and, if so, what are the minimal computational complexity assumptions
under which this existence can be proven. We answer this by providing a generic
setup-free construction which relies on one-way functions in the random ora-
cle model and trapdoor one-way permutations in the standard model. While
the construction in the standard model is of theoretic interest, some specific in-
stantiations in the random oracle model are efficient enough for practical use.
Finally, we revisit two well-known techniques of optimistic fair exchange; the ver-
ifiably encrypted signature and the sequential two-party signature. Fortunately,
our result shows that these paradigms remain valid in the multi-user setting
if the underlying primitives satisfy some security properties. Furthermore, the
construction based on the verifiably encrypted signature shows that trapdoor
permutations imply optimistic fair exchange schemes that are stand-alone as
well as setup-free; a fair exchange scheme is stand-alone if the full signature is
the same as it were produced by an ordinary signature scheme only [32].

2 Preliminaries

2.1 NP-Relations and Σ-Protocols

An NP-relation R is a subset of {0, 1}∗ × {0, 1}∗ for which there is an efficient
algorithm to decide whether (α, β) ∈ R or not in time polynomial in |α|. The
NP-language LR associated with R is the set of α for which there exists β such
that (α, β) ∈ R, i.e., LR = {α | ∃β [(α, β) ∈ R]}.

A Σ-protocol [12] for an NP-relation R is an efficient 3-move two-party pro-
tocol between the prover and the verifier on a common input α ∈ LR. Besides
α, a valid NP-witness β for α, meaning (α, β) ∈ R, is also given to the prover
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as a private input. The prover first sends a commitment message c to the re-
ceiver. After receiving the commitment message c, the verifier sends a challenge
message e to the prover. Finally, the prover sends a response message s to the
verifier who decides to output 1 (accept) or 0 (reject) based on the input α and
the transcript π = {c, e, s}. The transcript π is valid if the verifier outputs 1
(accept).

A Σ-protocol should satisfy three properties: correctness, special soundness,
and special (honest-verifier) zero-knowledge. Correctness property states that
for all α ∈ LR and all valid witnesses β for α, if the prover and the verifier fol-
low the protocol honestly, the verifier must output 1 (accept). Special soundness
property states that there is an efficient extraction algorithm (called a knowledge
extractor) that on input α ∈ LR and two valid transcripts π1, π2 with the same
commitment message c outputs β such that (α, β) ∈ R. Special zero-knowledge
property states that there is an efficient simulation algorithm (called a simulator)
that on input α ∈ LR and any challenge message e, outputs a valid transcript
π′ = {c′, e, s′}. Moreover, the distribution of (c′, s′) is computationally indistin-
guishable from the corresponding distribution on (c, s) produced by the prover
knowing a valid witness β for α and the verifier.

A function f : {0, 1}∗ → {0, 1}∗ is a one-way function, if there exists a poly-
nomial time algorithm which computes f(x) correctly for all x and the following
probability is negligible for all PPT algorithm A: Pr[f(x′) = y | x ← {0, 1}k; y =
f(x); x′ ← A(y, 1k)]. A one-way function f is called a trapdoor (one-way) per-
mutation, if f is a permutation (that is, every f(x) has a unique pre-image x)
and there exists a polynomial-length trapdoor td such that the inverse of f can
efficiently be computed with td. For simplicity, we let f−1 be an inverse algo-
rithm of f with the trapdoor td. It is known that any language in NP has a
Σ-protocol if one-way functions exist.

Theorem 1 ([15,19]). A Σ-protocol for any NP-relation can be constructed if
one-way functions exist.

While the Σ-protocol for any NP-relation can be constructed in generic ways
[15,19], there exist very efficient Σ-protocols for specific cases; for example, GQ
protocol [22] and Schnorr protocol [31].

A Σ-protocol can be transformed into a signature scheme by using the Fiat-
Shamir heuristic [17]. To sign a message m, the legal signer produces a valid
transcript π = {c, e, s} of the Σ-protocol, where e = H(c, m) and H(·) is a cryp-
tographic hash function modeled as a random function. The signature scheme
obtained by applying the Fiat-Shamir heuristic to the Σ-protocol is secure in
the random oracle model [5,26]. It is also known that the Fiat-Shamir heuristic
provides a non-interactive proof of knowledge in the random oracle model (i.e.,
the witness can be extracted by rewinding the adversary).

If there are two Σ-protocols, i.e., Σ1 for R1 and Σ2 for R2, we can con-
struct another Σ-protocol ΣOR (called OR-proof) [12] which allows the prover
to show that given two inputs x1, x2, he knows w such that either (x1, w) ∈ R1
or (x2, w) ∈ R2 without revealing which is the case (called the witness indis-
tinguishability property [16]). By applying the Fiat-Shamir heuristic to the
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OR-proof ΣOR, we obtain a signature scheme SOR (called the OR-signature)
secure in the random oracle model such that a valid signature can be gener-
ated by the signer who knows a valid witness w corresponding to either of the
two inputs x1, x2. It is known that the Fiat-Shamir heuristic does not affect the
witness indistinguishability property of the Σ-protocol.

2.2 Signatures

A signature scheme S consists of three efficient algorithms: S = (Sig-Gen, Sign,
Vrfy). We consider existential unforgeability under adaptive chosen message at-
tacks, denoted by UF-CMA [21]. The adversary A is given oracle access to the
signing oracle OSign. Naturally, A is considered successful only if it forges a valid
signature σ of a message m which has not been queried to OSign. Quantitatively,
we define

AdvSA(k) = Pr[Vrfyvk(m, σ) = 1 | (sk, vk) ← Sig-Gen(1k), (m, σ) ← AOSign(vk)]

where m should not be queried to the signing oracle OSign. An adversary A is
said to (t, qs, ε)-break S, if A runs in time at most t, makes at most qs signing
queries to OSign, and succeeds in forgery with probability at least ε. S is said
to be (t, qs, ε)-secure, if no adversary can (t, qs, ε)-break it. Asymptotically, S is
UF-CMA-secure if AdvSA(k) is negligible for any PPT adversary A.

2.3 Encryption

An encryption scheme E consists of three algorithms: E = (Enc-Gen, Enc, Dec).
We consider indistinguishability against adaptive chosen ciphertext attacks, de-
noted by IND-CCA [27]. For an efficient algorithm A, which runs in two stages
of find and guess, we define the adversary’s advantage CCA-AdvEA(k) as

∣
∣
∣
∣Pr

[
b = b̃

(ek, dk) ← Enc-Gen(1k), (m0, m1, α) ← AODec(ek, find),
b ← {0, 1}, cb ← Encek(mb), b̃ ← AODec(cb, α, guess)

]
− 1

2

∣
∣
∣
∣

where the challenge ciphertext cb should not be queried to the decryption oracle
in the guess stage. An adversary A is said to (t, qd, ε)-break E , if A runs in
time at most t, makes at most qd decryption queries to ODec, and succeeds in
distinguishing the challenge ciphertext with advantage at least ε. The encryption
scheme E is said to be (t, qd, ε)-secure, if no adversary can (t, qd, ε)-break it.
Asymptotically, E is CCA-secure if CCA-AdvEA(k) is negligible for any efficient
adversary A.

3 Optimistic Fair Exchange in a Single-User Setting

3.1 Definition

We review the single-user model of optimistic fair exchange [14].
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Definition 1. A non-interactive optimistic fair exchange involves the signer Al-
ice, the verifier Bob and the arbitrator Charlie, and is given by the following
efficient algorithms:

– Setup. This is a registration protocol between Alice and Charlie, by the end
of which Alice learns her secret signing key SK, Charlie learns his secret
arbitration key ASK, and they publish Alice’s public verification key PK and
Charlie’s partial verification key APK.

– Sig and Ver. These are similar to conventional signing and verification al-
gorithms of an ordinary digital signature scheme. Sig(m, SK, APK) — run
by Alice — outputs a signature σ on m, while Ver(m, σ, PK, APK) — run by
Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig
together with Res is functionally equivalent to Sig. PSig(m, SK, APK) — run
by Alice — outputs a partial signature σ′, while PVer(m, σ′, PK, APK) — run
by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

– Res. This is a resolution algorithm run by Charlie in case Alice refuses to
open her signature σ to Bob, who in turn possesses a valid partial signature
σ′ on m (and a proof that he fulfilled his obligation to Alice). In this case,
Res(m, σ′, ASK, PK) should output a legal signature σ on m.

Correctness property states that

– Ver(m, Sig(m, SK, APK), PK, APK)=1, PVer(m, PSig(m, SK, APK), PK, APK)
= 1, and Ver(m, Res(m, PSig(m, SK, APK), ASK, PK), PK, APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m, PSig(m, SK, APK), ASK, PK) is computa-
tionally indistinguishable from the “actual signature” Sig(m, SK, APK).

In a meaningful application, Charlie runs Res to produce a full signature σ
from σ′ only if Bob’s obligation to Alice has been fulfilled. The security of non-
interactive optimistic fair exchange consists of ensuring three aspects: security
against the signer, security against the verifier, and security against the arbitra-
tor. In the following, we denote by OPSig an oracle simulating the partial signing
procedure PSig, and by ORes an oracle simulating the resolution procedure Res.

Security against Alice. We require that any PPT adversary A succeeds
with at most negligible probability in the following experiment.

Setup∗(1k) → (SK∗, PK, ASK, APK)
(m, σ′) ← AORes(SK∗, PK, APK)

σ ← Res(m, σ′, ASK, PK)

success of A = [PVer(m, σ′, PK, APK) ?= 1 ∧ Ver(m, σ, PK, APK) ?= 0]

where Setup∗ denotes the run of Setup with dishonest Alice (run by A) and SK∗

is A’s state after this run. In other words, Alice should not be able to produce
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partial signature σ′, which looks good to Bob but cannot be transformed into
her full signature by honest Charlie.

Security against Bob. We require that any PPT adversary B succeeds with
at most negligible probability in the following experiment.

Setup(1k) → (SK, PK, ASK, APK)
(m, σ) ← BOPSig,ORes(PK, APK)

success of B = [Ver(m, σ, PK, APK) ?= 1 ∧ (m, · ) �∈ Query(B, ORes)]

where Query(B, ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m, σ′) such that PVer(m, σ′, PK, APK) = 1). In other words,
Bob should not be able to complete any partial signature σ′ that he received
from Alice into a complete signature σ, without explicitly asking Charlie to do
so. Note that there is no need to provide B with access to the signing oracle
OSig, since it could be simulated by OPSig and ORes. Finally, we remark that we
also want Bob to be unable to generate a valid partial signature σ′ which was
not produced by Alice (via a query to OPSig). However, this guarantee will follow
from a stronger security against Charlie, which is defined below.

Security against Charlie. We require that any PPT adversary C succeeds
with at most negligible probability in the following experiment.

Setup∗(1k) → (SK, PK, ASK∗, APK)
(m, σ) ← COPSig(ASK∗, PK, APK)

success of C = [Ver(m, σ, PK, APK) ?= 1 ∧ m �∈ Query(C, OPSig)]

where Setup∗ denotes the run of Setup with dishonest Charlie (run by C), ASK∗

is C’s state after this run, and Query(C, OPSig) is the set of queries of C asked
to the partial signing oracle OPSig. In other words, Charlie should not be able
to produce a valid signature on m without explicitly asking Alice to produce
a partial signature on m (which Charlie can complete into a full signature by
himself using ASK).

3.2 Single-User Security � Multi-user Security

We show that the single-user security of optimistic fair exchange does not imply
the multi-user security by presenting a counter-example.

Scheme. Let f(·) be a trapdoor permutation and S = (Sig-Gen, Sign, Vrfy) be
a signature scheme.

– Setup. Charlie generates a trapdoor permutation (f, f−1) and publishes
APK = f , while he keeps ASK = f−1 secret. Alice generates (sk, vk) ←
Sig-Gen(1k) and publishes PKA = vk and keeps SKA = sk secret.

– Sig and Ver. To sign a message m, Alice chooses a random number rA,
and computes yA = f(rA) and δA = Signsk(m‖yA). The signature of m is
σA = (rA, δA). To verify Alice’s signature σA = (rA, δA) of m, Bob computes
yA = f(rA) and checks Vrfyvk(m‖yA, δA) ?= 1.
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– PSig and PVer. To generate a partial signature, Alice chooses a random
number rA and computes yA = f(rA) and δA = Signsk(m‖yA). The partial
signature of m is σ′

A = (yA, δA). Bob verifies σ′
A = (yA, δA) by checking

Vrfyvk(m‖yA, δA) ?= 1.
– Res. Given a partial signature (m, yA, δA), the arbitrator Charlie first verifies

its validity by checking Vrfyvk(m‖yA, δA) ?= 1. If valid, he computes rA =
f−1(yA) and returns σA = (rA, δA).

The Single-User Security. The above scheme is secure in the single-user
setting, which can easily be shown following the proofs in [14].

Attack Scenario. We observe that yA can be re-used by a dishonest user
without knowing the corresponding rA, which causes the scheme to be insecure
in the multi-user setting. Dishonest users Bob and Eve attack Alice as follows:

1. Alice gives a partial signature (mA, yA, δA) to Bob, where yA = f(rA) and
δA = SignSKA

(mA‖yA).
2. Bob gives (mB, yB, δB) to his dishonest friend Eve, where mB �= mA, yB =

yA and δB = SignSKB
(mB‖yB).

3. Eve comes to the arbitrator with (mB, yB, δB) and claims that Bob refuses
to open his signature (and maybe gives a proof to the arbitrator that Eve
fulfilled her obligation to Bob).

4. The arbitrator does not suspect anything and completes this signature by
giving rA = f−1(yB) to Eve.

5. Eve gives rA to Bob, who now has completed the signature of Alice, (mA, rA,
δA), although Alice never intended to open this and Bob did not fulfill his
duty to Alice.

Therefore, the above optimistic fair exchange scheme is secure in the single-user
setting but insecure in the multi-user setting. This counterexample entails the
following theorem.

Theorem 2. The single-use security of optimistic fair exchange does not imply
the multi-user security.

4 Optimistic Fair Exchange in a Multi-user Setting

4.1 Definition

Instead of defining the syntax and security from scratch, we extend the model
of [14] to the multi-user setting. Firstly, we separate the Setup algorithm of
the single-user setting into two algorithms SetupTTP and SetupUser to model the
setup-free optimistic fair exchange. By running SetupUser, each user Ui generates
his own key pair (SKUi , PKUi).

Definition 2. A non-interactive optimistic fair exchange involves the users
(signers and verifiers) and the arbitrator, and is given by the following efficient
algorithms:
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– SetupTTP. The arbitrator setup algorithm takes as input a security parameter
and returns a secret arbitration key ASK and a public partial verification key
APK.

– SetupUser. The user setup algorithm takes as input a security parameter and
(optionally) APK. It returns a private signing key SK and a public verification
key PK.

– Sig and Ver. These are similar to conventional signing and verification algo-
rithms of an ordinary digital signature scheme. Sig(m, SKUi , APK) — run by
a signer Ui — outputs a signature σUi on m, while Ver(m, σUi , PKUi , APK)
— run by a verifier — outputs 1 (accept) or 0 (reject).

– PSig and PVer. These are partial signing and verification algorithms. PSig to-
gether with Res is functionally equivalent to Sig. PSig(m, SKUi , APK) — run
by a signer Ui — outputs a partial signature σ′

Ui
, while PVer(m, σ′

Ui
, PKUi ,

APK) — run by a verifier — outputs 1 (accept) or 0 (reject).
– Res. This is a resolution algorithm run by the arbitrator in case a signer Ui

refuses to open his signature σUi to a user Uj, who possesses a valid partial
signature σ′

Ui
on m (and a proof that Uj fulfilled his obligation to Ui). In

this case, Res(m, σ′
Ui

, ASK, PKUi) should output a legal signature σUi on m.

Correctness property states that

– Ver(m, Sig(m, SKUi , APK), PKUi , APK) = 1,
PVer(m, PSig(m, SKUi , APK), PKUi , APK) = 1, and
Ver(m, Res(m, PSig(m, SKUi , APK), ASK, PKUi), PKUi , APK) = 1.

Ambiguity property states that

– Any “resolved signature” Res(m, PSig(m, SKUi , APK), ASK, PKUi) is compu-
tationally indistinguishable from the “actual signature” Sig(m, SKUi , APK).

We do not deal with the subtle issue of timely termination addressed by [2,3].
We remark, however, that the technique of [2,3] can easily be added to our
solutions to resolve this problem. The security of non-interactive optimistic fair
exchange is composed of ensuring three aspects: security against signers, security
against verifiers, and security against the arbitrator. To clarify the identity of
the signer, we hereinafter assume that the message m (implicitly) includes the
identity of the signer. One simple and trivial solution is to include the signer’s
identity inside the message. If the included signer’s identity does not correspond
to the subject of the alleged signer’s public key, we consider the signature (or
the partial signature) is invalid. We also remark that it is a good practice to
include an enforcing resolution policy κ inside the message, as suggested in [3].

In order to consider the collusion attack of dishonest users, we modify the
resolution oracle ORes. In the single-user setting, the input to ORes is (m, σ′),
assuming that σ′ is the partial signature value of the single signer Alice and
the oracle checks the validity of σ′ by using Alice’s public key. In the multi-user
setting, we define the input to ORes as (m, σ′, PKUi) where PKUi is the public
key of the alleged signer Ui. As usual, we assume that the authenticity of public
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keys can be verified and each user should show his knowledge of the legitimate
private key in the public key registration stage to defend against key substitution
attacks.

For simplicity but without loss of generality, when we model either the dis-
honest verifier or the dishonest arbitrator, we suppose that the adversary attacks
an honest user Alice and the adversary can collude with all other (dishonest)
users. Therefore, the dishonest verifier or the dishonest arbitrator has access to
private keys of all users except Alice, and the partial signing oracle OPSig, taking
as input a message m, always returns Alice’s partial signature σ′

A on m.

Security against Signers. We require that any PPT adversary A, who
models the dishonest signer Alice, succeeds with at most negligible probability
in the following experiment.

SetupTTP(1k) → (ASK, APK)
(m, σ′, PKA) ← AORes(APK)

σ ← Res(m, σ′, ASK, PKA)

success of A = [PVer(m, σ′, PKA, APK) ?= 1 ∧ Ver(m, σ, PKA, APK) ?= 0]

In the single-user setting, the signer Alice wins if she comes up with a partial
signature (m, σ′) which is valid with respect to her public key but cannot be
transformed into her full signature by the honest arbitrator. In the multi-user
setting, Alice wins if she comes up with (m, σ′, PKA) where σ′ is a valid partial
signature with respect to PKA but cannot be completed to the full signature
(w.r.t. PKA) by the honest arbitrator. Note that there is no need to provide
A with access to any kind of the partial signing oracle, since she has access to
private keys of all users and can simulate all partial signing oracles by herself.

Security against Verifiers.We require that any PPT adversary B succeeds
with at most negligible probability in the following experiment.

SetupTTP(1k) → (ASK, APK)
SetupUser(1k) → (SKA, PKA)

(m, σ) ← BOPSig,ORes(PKA, APK)

success of B = [Ver(m, σ, PKA, APK) ?= 1 ∧ (m, · , PKA) �∈ Query(B, ORes)]

where Query(B, ORes) is the set of valid queries of B has asked to the resolution
oracle ORes (i.e., (m, σ′, PKUi) such that PVer(m, σ′, PKUi , APK) = 1). Even
though the adversary B is not allowed to ask a valid query (m, · , PKA) with the
target message m, it can freely ask (·, · , PKUi) to the resolution oracle ORes as
long as PKUi is not Alice’s public key. This very property was used to attack
the scheme of Section 3.2. Note that there is no need to provide B with access
to the signing oracle OSig, since it can be simulated by OPSig and ORes.

Security against the Arbitrator. We require that any PPT adversary C
succeeds with at most negligible probability in the following experiment.
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SetupTTP∗
(1k) → (ASK∗, APK)

SetupUser(1k) → (SKA, PKA)
(m, σ) ← COPSig(ASK∗, PKA, APK)

success of C = [Ver(m, σ, PKA, APK) ?= 1 ∧ m �∈ Query(C, OPSig)]

where SetupTTP∗ denotes the run of SetupTTP with the dishonest arbitrator (run
by C), ASK∗ is C’s state after this run, and Query(C, OPSig) is the set of queries
of C asked to the partial signing oracle OPSig.

4.2 Generic Construction

We present a generic construction of non-interactive setup-free1 optimistic fair
exchange based on the OR-proof where the signer has one witness and the ar-
bitrator has the other witness. We use the Fiat-Shamir heuristic in the random
oracle model and the non-interactive witness indistinguishable proof of knowl-
edge in the standard model.

Scheme. Let S = (Sig-Gen, Sign, Vrfy) be an ordinary signature scheme.

– SetupTTP. The arbitrator chooses (sk, vk) by running Sig-Gen(1k) and sets
(ASK, APK) = (sk, vk).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi , PKUi) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates an
ordinary signature s1 on “0||m” (i.e., s1 = Signski

(0||m)) and then generates
an OR-signature s2 on “1||m” for the knowledge of ski or Signsk(1||m).
Since the signer Ui knows ski, he can generate the valid OR-signature s2.
The signature value on m is σUi = (s1, s2).

– Ver. To verify the signature σUi = (s1, s2) on m, a verifier checks that (1)
Vrfyvki

(0||m, s1)
?= 1 and (2) s2 is a valid OR-signature on “1||m” for the

knowledge of ski or Signsk(1||m).
– PSig and PVer. The same as Sig and Ver except that the partial signature

σ′
Ui

on m is s1.
– Res. For the user Ui’s partial signature σ′

Ui
= s1 on m, the arbitrator first

checks that Vrfyvki
(0||m, s1)

?= 1 and then computes an OR-signature s2 on
“1||m” for the knowledge of ski or Signsk(1||m). Since the arbitrator knows
sk, he can compute an ordinary signature Signsk(1||m) and then the valid
OR-signature s2. The arbitrator outputs σUi = (s1, s2).

The correctness property of the scheme is obvious and the ambiguity property
follows from the witness indistinguishability of the OR-signature s2.

Theorem 3. The generic construction of the optimistic fair exchange is multi-
user secure in the random oracle model if the underlying signature is secure.
1 If we allow the registration between the signer and the arbitrator, there are trivial

setup-driven solutions.
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Proof. See [13].

Theorem 4. If there are one-way functions, we can build the setup-free opti-
mistic fair exchange schemes that are multi-user secure in the random oracle
model.

Proof. Secure signatures exist if and only if one-way functions exist [23,28]. To-
gether with Theorem 3, we obtain Theorem 4 .

The proof of Theorem 3 only requires two properties from the Fiat-Shamir
proofs: (1) witness indistinguishability and (2) proof of knowledge. Hence, we
can use the straight-line extractable witness indistinguishable proof [25] instead
of the Fiat-Shamir proof. Like the Fiat-Shamir heuristic, the construction of
the straight-line extractable witness indistinguishable proof starts with the Σ-
protocol but the length of the resulting proof is much longer. However, non-
programmable random oracle is used and better exact security can be obtained.

Instead of the Fiat-Shamir proof, we can also use the non-interactive witness
indistinguishable proofs of knowledge for ski or Signsk(m). In this case, we do not
need the random oracle and can instead use a common reference string (which
could be generated by the arbitrator).2 The construction of non-interactive wit-
ness indistinguishable proofs of knowledge requires the existence of trapdoor
permutations [30] and this observation leads to the following theorem.

Theorem 5. If there are trapdoor permutations, we can build the setup-free op-
timistic fair exchange schemes that are multi-user secure in the standard model.

Remark 1. While the construction using non-interactive witness indistinguish-
able proofs of knowledge in the standard model is mainly of theoretic interest,
the construction using the Fiat-Shamir heuristic in the random oracle is efficient
for specific cases, as there are efficient Σ-protocols for the knowledge of a signa-
ture value and for the knowledge of a secret key corresponding to a given public
key (e.g., [22,31,10,11,7]).

5 Previous Paradigms Revisited

5.1 Optimistic Fair Exchange from Verifiably Encrypted Signature

Suppose Alice wants to show Bob that she has signed a message. Alice first
encrypts her signature using the public encryption key of the arbitrator, and
sends the ciphertext to Bob with proof that she has given him a valid encryption
of her signature. Bob can verify that Alice has signed the message, but cannot
deduce any information on her signature. Later in the protocol, if Alice is unable
or unwilling to reveal her signature, Bob can ask the arbitrator to decrypt the
ciphertext of Alice’s signature.
2 We use a common “reference” string rather than a common “random” string. The

arbitrator can indeed publish the common reference string because in our particular
scheme cheating in OR-signature or NIZK does not help the arbitrator.
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Scheme. Let (P, V ) be a non-interactive zero-knowledge (NIZK) proof system
for the NP-language L = {(c, m, ek, vk) | ∃s [c = Encek(s) ∧ Vrfyvk(m, s) =
1]}, where E = (Enc-Gen, Enc, Dec) is an encryption scheme and S = (Sig-Gen,
Sign, Vrfy) is a signature scheme.3

– SetupTTP. The arbitrator chooses (dk, ek) by running Enc-Gen(1k) and sets
(ASK, APK) = (dk, ek).

– SetupUser. Each user Ui chooses (ski, vki) by running Sig-Gen(1k) and sets
(SKUi , PKUi) = (ski, vki).

– Sig. When a user Ui wants to sign a message m, the signer generates a
signature s = Signski

(m). The signature value of m is σUi = s.
– Ver. To verify the signature σUi = s of m, a verifier checks Vrfyvki

(m, s) ?= 1.
– PSig. When a user Ui wants to generate a partial signature of m, the signer

first computes a signature s = Signski
(m) and then encrypts s with APK,

i.e., c = Encek(s). The partial signature of m is σ′
Ui

= (c, π), where π is a
proof showing (c, m, ek, vki) ∈ L.

– PVer. To verify the partial signature σ′
Ui

= (c, π) of m, a verifier checks
that π is an accepting proof for the statement (c, m, ek, vki) ∈ L. If so, 1 is
returned and otherwise, 0 is returned.

– Res. For the user Ui’s partial signature σ′
Ui

= (c, π) of m, the arbitrator first
checks that π is an accepting proof for the statement (c, m, ek, vki) ∈ L and
then decrypts s = Decdk(c). The arbitrator outputs σUi = s.

Theorem 6. The optimistic fair exchange scheme based on a verifiably en-
crypted signature is secure if the underlying E is CCA-secure, S is UF-CMA-
secure, and (P, V ) is a simulation-sound NIZK proof system.

Proof. See [13].

We observe that the full signature σUi = s is a signature value of the underlying
ordinary signature scheme S, which means that the fair exchange scheme is
stand-alone. In addition, CCA-secure encryption E , UF-CMA-secure signature S,
and simulation-sound NIZK proof system (P, V ) can be built from trapdoor
permutations [29,23,28]. Hence, we obtain the following existence theorem of
setup-free and stand-alone fair exchange schemes.

Theorem 7. If there are trapdoor permutations, we can build the optimistic fair
exchange schemes that are setup-free and stand-alone.

5.2 Optimistic Fair Exchange from Sequential Two-Party
Multisignature

A multisignature scheme allows any subgroup of users to jointly sign a document
such that a verifier is convinced that each user of the subgroup participated in

3 For brevity’s sake, we omit the description of a common reference string, which could
be generated by the arbitrator.
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signing. To construct an optimistic fair exchange, we can use a simple type of
multisignature, which is called a sequential two-party multisignature.

A sequential two-party multisignature MS consists of five efficient algorithms:
MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy). Key generation algorithm Sig-Gen,
signing algorithm Sign, and verification algorithm Vrfy are similar to the con-
ventional algorithms of an ordinary signature scheme. MSign takes as input
(m, si, vki, skj) and returns a multisignature sij , where m ∈ M is a message, skj

is a signing key, si is a valid signature w.r.t. a verification key vki, and sij is a
multisignature w.r.t. verification keys vki and vkj . MVrfy takes (m, sij , vki, vkj)
as input and returns 1 (accept) or 0 (reject). Correctness property requires that
Vrfyvki

(m, Signski
(m)) = 1 and MVrfy(m, MSign(m, si, vki, skj), vki, vkj) = 1,

for any m ∈ M. A multisignature scheme is symmetric if sij and sji are com-
putationally indistinguishable.

For security consideration, we allow the adversary A, who tries to forge a
multisignature w.r.t. a given verification key, to have access to the signing oracle
OSign and the multi-signing oracle OMSign. A’s query to OSign is (m, vki) and OSign

returns Signski
(m). A’s query to OMSign is (m, si, vki, vkj) and OMSign returns sij

if Vrfyvki
(m, si) = 1. While the adversary A is allowed to create arbitrary keys

for corrupted users, we require A to prove knowledge of secret keys during the
public key registration. For simplicity, we follow the model of [6] which asks A
to output the public key and secret key of a corrupted user in the key registra-
tion stage. Let Query(A, OSign) and Query(A, OMSign) be the set of valid queries
of A to OSign and OMSign, respectively. We define A’s advantage AdvMS

A (k) of
attacking MS as follows.

Pr[MVrfy(m, s, vki, vkj) = 1 ∨ MVrfy(m, s, vkj , vki) = 1 |
(ski, vki) ← Sig-Gen(1k), (m, s, vkj) ← AOSign,OMSign(vki)]

Definition 3. Let MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy) be a sequential
two-party signature scheme. An adversary A is said to (t, qs, qms, ε)-break MS,
if A runs in time at most t, makes at most qs signing queries to OSign and qms

multi-signing queries to OMSign, and succeeds in forgery with probability at least
ε. MS is said to be (t, qs, qms, ε)-secure, if no adversary can (t, qs, qms, ε)-break
it. Asymptotically, MS is UF-CMA-secure if AdvMS

A (k) is negligible for any PPT
adversary A.

By relaxing the definition of optimistic fair exchange to allow interactive reg-
istration during setup (i.e., setup-driven), we can have much simpler (almost
trivial) schemes based on the sequential two-party multisignature. Each user Ui

generates four keys SKUi , PKUi , ASKUi , APKUi and sends PKUi , ASKUi , APKUi

to the arbitrator, who checks if the keys were properly generated. The arbitrator
will then store ASKUi and certify APKUi . A verifier will accept partial signatures
from Ui only if they are valid w.r.t. APKUi .

Scheme. Let MS = (Sig-Gen, Sign, Vrfy, MSign, MVrfy) be a sequential
two-party multisignature scheme.
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– SetupTTP and SetupUser. Each user Ui chooses (sk0
Ui

, vk0
Ui

) and (sk1
Ui

, vk1
Ui

)
by running Sig-Gen(1k) twice, and sends (vk0

Ui
, sk1

Ui
, vk1

Ui
) to the arbitrator.

After checking validity of the keys, the arbitrator stores sk1
Ui

and certifies
vk1

Ui
. If we use a simplified notation such as ski0 = sk0

Ui
, vki1 = vk1

Ui
, the

output is (SKUi , PKUi , ASKUi , APKUi) = ((ski0 , ski1), (vki0 , vki1 ), ski1 , vki0).
– Sig. When a user Ui wants to sign a message m, the signer computes si0 =

Signski0
(m) and a multisignature si0i1 = MSign(m, si0 , vki0 , ski1). The sig-

nature value of m is σUi = si0i1 .
– Ver. A verifier checks MVrfy(m, si0i1 , vki0 , vki1)

?= 1.
– PSig. When a user Ui wants to generate a partial signature of a message m,

the signer computes si0 = Signski0
(m). The partial signature is σ′

Ui
= si0 .

– PVer. To verify the partial signature σ′
Ui

= si0 of m w.r.t. PKUi , a verifier
checks Vrfyvki0

(m, si0)
?= 1. If so, 1 is returned and otherwise, 0 is returned.

– Res. For the user Ui’s partial signature σ′
Ui

= si0 of m, the arbitrator first
checks Vrfyvki0

(m, si0)
?= 1 and then generates a multisignature si0i1 =

MSign(m, si0 , vki0 , ski1 ). The arbitrator outputs σUi = s.

Remark 2. Specific instantiations could be very efficient by directly using the
combined signing key skUi = sk0

Ui

 sk1

Ui
to generate multisignatures and the

combined verification key pkUi = pk0
Ui

◦ pk1
Ui

to verify multisignatures.

Theorem 8. The setup-driven optimistic fair exchange scheme based on a se-
quential two-party multisignature is secure if the underlying multisignature is
UF-CMA-secure.

Proof. See [13].
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Abstract. In this paper, we first demonstrate a gap between the se-
curity of verifiably committed signatures in the two-party setting and
the security of verifiably committed signatures in the multi-party set-
ting. We then extend the state-of-the-art security model of verifiably
committed signatures in the two-party setting to that of multi-party
setting. Since there exists trivial setup-driven solutions to multi-party
verifiably committed signatures (e.g., two-signature based solutions, we
propose solutions to the multi-party stand-alone verifiably committed
signatures in the setup-free model, and show that our implementation is
provably secure under the joint assumption that the underlying Zhu’s sig-
nature scheme is secure against adaptive chosen-message attack, Fujisaki-
Okamoto’s commitment scheme is statistically hiding and computation-
ally binding and Paillier’s encryption is semantically secure and one-way
as well as the existence of collision-free one-way hash functions.

Keywords: multi-party, setup-free, stand-alone, verifiably committed
signatures.

1 Introduction

Optimistic fair-exchange protocols was first introduced by Asokan et al, in [1]
and formally studied in [2], [3] and [14] in the context of verifiably encrypted
signatures. Very recently, Dodis and Reyzin[11] have formalized a unified model
for fair-exchange protocols as a new cryptographic primitive called verifiably
committed signatures in the two-party setting. Zhu and Bao[20] have shown
that the existence of verifiably encrypted signatures implies the existence of
the verifiably committed signatures while the existence of verifiably committed
signatures does not imply the existence of verifiably encrypted signatures. As a
result, the notion of verifiably committed signatures is a general extension of the
notion of verifiably encrypted signatures.

A verifiably committed signature can be setup-driven or setup-free[19]. A ver-
ifiably committed signature is called setup-driven if an initial key setup protocol
between a primary signer and its trusted third party (TTP) must be involved

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 134–149, 2007.
c© International Association for Cryptologic Research 2007
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such that at the end of the key setup protocol, the primary signer and its TTP
share a prior auxiliary string. This shared auxiliary information enables TTP
to convert any valid partial signature into the corresponding full signature if
a conflict occurs between the primary signer and its verifier. A verifiably com-
mitted signature is called setup-free if an individual participant needs not to
contact his/her arbitrator(s) even for the registration purpose. Namely, no ini-
tial key setup procedure between a primary signer and his/her TTP is involved
except for one requirement that the primary signer can obtain and verify TTP’s
certificate and vice versa.

A verifiably committed signature can be stand-alone[19] or not[18]. A verifi-
ably committed signature is called stand-alone if on input a valid partial signa-
ture scheme, the distribution of outputs of a resolution algorithm is identical with
the distribution of signatures generated by a full signing algorithm. A verifiably
committed signature is called non-stand-alone if it is not stand-alone.

The state-of-the-art verifiably committed signatures are only considered in
the two-party setting (a primary signer and a verifier, together with an off-line
arbitrator). We are interested in studying stand-alone and setup-free verifiably
committed signatures in the multi-party setting throughout the paper by demon-
strating that the security of two-party setup-free verifiably committed signatures
does not guarantee the security of multi-party setup-free verifiably committed
signatures.

We stress that the existence of multi-party verifiably committed signatures in
the setup-driven model is obvious assuming that the underlying signatures are
secure in the sense of [13]. That is, suppose a primary signer’s public and secret
key pair (pk1, sk1) is the public key and secret key pair for the first signature
scheme, and at the same time the prime signer and its TTP share another pub-
lic/secret key (pk2, sk2) of the second signature scheme. By pk= (pk1, pk2) we
denote the public key of the entire signature scheme, and by sk=(sk1, sk2), we
denote the corresponding secret keys. Now given a message m, the primary signer
produces its partial signature σ1 on the message m. A full signature of the mes-
sage m is defined as σ =(σ1, σ2), where σ2 is the signature of m corresponding
the public/secret key pair (pk2, sk2). It is easy to verify that this two-signature
based solution is a multi-party verifiably committed signature scheme since the
security of public key signatures in the two-party setting is preserved in the
multi-party setting[6]. This leaves an interesting research problem: how to im-
plement multi-party stand-alone and setup-free verifiably committed signatures
in the standard complexity model?

The contribution of this paper is of three-fold. In the first fold, we demonstrate
that there is a gap between the security of two-party verifiably committed signa-
tures and multi-party verifiably committed signatures. In the second fold, we ex-
tend the state-of-the-art security definition of verifiably committed signatures in
the two-party setting to that of the multi-party case. In the third fold, we propose
an efficient implementation of multi-party stand-alone and setup-free verifiably
committed signatures. We are able to show that our implementation is provably
secure under the joint assumption that the underlying Zhu’s signature scheme is
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secure against adaptive chosen-message attack, Fujisaki-Okamoto’s commitment
scheme is statistically hiding and computationally binding and Paillier’s encryp-
tion is semantically secure and one-way as well as the existence of collision-free
one-way hash functions. To the best of our knowledge, this is the first imple-
mentation of stand-alone and setup-free verifiably committed signature scheme
which is provably secure in the multi-party setting.

The rest of this paper is organized as follows: in Section 2, a gap between
the security of two-party verifiably committed signatures and multi-party veri-
fiably committed signatures is demonstrated. In Section 3, syntax and security
definitions of stand-alone and setup-free verifiably committed signatures in the
multi-party setting are introduced and formalized. In Section 4, building blocks
on which our implementation is based are briefly sketched. An efficient implemen-
tation of multi-party stand-alone and setup-free verifiably committed signatures
is proposed in Section 5, and we conclude our work in Section 6.

2 A Gap Between Two-Party and Multi-party Verifiably
Committed Signatures

A stand-alone and setup-free verifiably committed signature in the two-party
setting based on Cramer and Shoup’s signature scheme has been presented in
[19]. We are about to demonstrate that although this scheme is provably secure
in the two-party setting, it is not secure in the multi-party setting. To show this
gap, we first sketch their scheme below:

– primary signer’s key generation algorithm KGA: on input kA, a primary
signer Alice runs KGA to generate two large safe primes pA and qA such that
pA −1 = 2p′A and qA −1 = 2q′A, where p′A, q′A are two l′-bit primes. KGA also
chooses two random elements xA and hB from QRnA , where nA = pAqA and
QRnA is the quadratic residue of Z∗

nA
. Finally, KGA outputs a description of

a group G of order s, and two random elements g1 and g2 of G with order
s. We stress that in the Cramer and Shoup’s signature scheme the choice of
group G is independent with nA (see [8] for more details).

The public key of Alice is (nA, hA, xA, g1, g2, H), along with an appro-
priate description of G including s, where H is a collision-free cryptographic
hash function with output length l-bit (say, l=160). The private key is
(pA, qA). The primary signer Alice now proves to her CA that all values
are correctly generated and then obtains her certificate CertA from her CA;

– arbitrator’s key generation algorithm KG: on input k′, an arbitrator runs KG
to generate a k′-bit RSA modulus N = pcqc, where pc, qc are two large safe
primes.

The public key of the arbitrator is APK=((1 + N), N). The private key
is ASK=(pc, qc). The arbitrator should prove to his CA that the public and
secret key pair is correctly generated and then obtains his certificate CertB

from his CA;
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– full signing algorithm Sig: To sign a message m, Alice runs Sig to choose
at random a (l + 1)-bit prime number e, a string t ∈ Zs. The equation

ye = xAhA
H(gt

1g
H(m)
2 ) modnA is solved for y. The corresponding signature σ

of the message m is (e, t, y).
– full verification algorithm Vf: given a putative triple (e, t, y), a verifier Bob

runs Vf to check whether e is an odd (l + 1)-bit number. If so, Bob further

checks the validation of the equation xA = yehA
−H(gt

1g
H(m)
2 )modnA. If the

equation is valid, then Bob accepts, otherwise, he rejects.
– partial signing algorithm PSig: on input a message m, Alice runs PSig to

choose a (l + 1)-bit prime e and a string t ∈ Zs. The equation ye =

xAhA
H(gt

1g
H(m)
2 ) modnA is solved for y.

Alice then computes u=gt
1 and c= (1 + N)trN modN2 together with a

proof pr that she knows that u contains the same number as the encryption
and t ∈ I using Boudot’s protocol [4]. The partial signature σ′ of message
m is defined by (e, y, u, c, pr).

– partial verification algorithm PVf:given a putative signature σ′=(e, y, u, c, pr),
Bob runs PVf to check whether e is an odd (l + 1)-bit number. Second PVf

checks the validity of the equation xA = yehA
−H(ug

H(m)
2 ) modnA. If the

equation is valid, then PVf further checks the validity of proof pr that u
contains the same number as the encryption, and then uses Boudot’s protocol
to verify that the encrypted value t ∈ I. If it is valid then the verifier accepts,
otherwise, it rejects.

– resolution algorithm Res: given σ′=(e, y, u, c, pr) and a proof that Bob ful-
filled his obligation to the primary signer. The arbitrator first checks validity
of the request message. If so, the arbitrator then runs Res to output a valid
full signature of (e, y, t) using his decryption key, otherwise, Res rejects the
request.

Suppose now an adversary Eve generates two large safe primes pE and qE

such that pE = 2p′E + 1 and qE = 2q′E + 1, where p′E , q′E are two l′-bit primes.
Eve also chooses two random elements xE , hE ∈ QRnE , where nE = pEqE and
QRnE is the quadratic residue of Z∗

nE
. Eve’s now reuses Alice’s partial public

key (G, s, g1, g2). We stress that the reuse of Alice’s partial public key is not a
problem since the public data (G, s, g1, g2, H) can be chosen independently with
the private key (nA, pA, qA). We now can show how the malicious verifier Bob
and Eve attack Alice below:

– Alice gives her partial signature (e, y, u, c, prA) to Bob, where prA is Alice’s
proof that u contains the same number as that of c and the encrypted value
t ∈ I;

– Bob gives his partial signature (e′, y′, u, c, prB) to the malicious Eve, where
prB ← prA. We stress that although the malicious Bob does not know the
exactly hiding value t ∈ I, he can provide a valid proof prB by copying Alice’s
prA.

– Eve asks TTP to open Bob’s signature by forwarding partial signature
(e′, y′, u, c, prB) and a proof that Eve fulfilled her obligation to Bob;
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– TTP opens t such that u = gt and c =E(t, r) if and only if (e′, y′, u, c, prB)
and a proof that Eve fulfilled her obligation to Bob are valid; Finally, TTP
sends t back to Eve;

– Eve gives t to Bob, who now has the full signature of Alice.

The counterexample shows that the security of verifiably committed signa-
tures in the single setting does not imply the security of verifiably committed
signatures in the multi-party setting. We stress that in the above counterexam-
ple, the common reference string (the description of G is shared between Alice
and Eve) is reused. This is possible since the description of G is independent
with APK.

3 Multi-party Stand-Alone and Setup-Free Verifiably
Committed Signatures: Syntax and Security Definitions

3.1 Syntax

We now extend (stand-alone and setup-free) two-party verifiably committed sig-
natures [11], [19] and [20] to the multi-party verifiably committed signatures
setting.

Definition 1. A multi-party stand-alone and setup-free verifiably committed
signature scheme consists of the following algorithms:

– arbitrator key generation algorithm KG: on input a security parameter k, it
returns a public key and secret key pair (pk, sk);

– individual key generation algorithms IKG: on input a security parameter ki,
it returns a public key and secret key pair (pki, ski).

– full signing and verification algorithms(Sig, Vf): these are conventional sign-
ing and verification algorithms. on input a message mj, pki and ski, Sig out-
puts a full signature σi,j on mj; on input a putative signature (mj , σi,j , pki),
Vf will output 1 (accept) or 0 (reject);

– partial signing and verification algorithms(PSig, PVf): these are partial sign-
ing and verification algorithms, which are similar to ordinary signing and
verification algorithms, except they can depend on the public arbitration key
pk. That is, on input a message (mj, ski, pki, pk), PSig outputs a partial
signature σ′

i,j; on input a putative partial signature (mj, σ′
i,j, pki, pk), PVf

outputs 1 (accept) or 0 (reject);
– resolution algorithm Res: this is a resolution algorithm run by the arbitrator

in case the primary signer pki refuses to open her signature σi,j to the ver-
ifier, who in turn possesses a valid partial signature σ′

i,j on mj and a proof
that he fulfilled his obligation to the primary signer1. In this case, Res(mj,
σ′

i,j , pki, sk, pk) should output a valid full signature σi,j of mj.

1 The definition does not deal with any specific question of how a verifier proves to
the arbitrator that he/she fulfilled his/her obligation to the primary signer.
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Correctness. The correctness property of a multi-party verifiably committed
signatures states that:

– Vf(mj ,Sig(mj, ski, pki)=1 (∀ j, ∀ i);
– PVf(mj , PSig(mj , ski, pki, pk), pki, pk)=1 (∀ j, ∀ i);
– Vf(mj , Res(PSig(mj , ski, pki, pk), sk, pk, pki), pki)=1 (∀ j, ∀ i).

3.2 The Definitions of Security

We extend the security definition of Dodis and Reyzin[11] in the two party
setting to the multi-party setting. The security definition of multi-party stand-
alone and setup-free verifiably committed signatures consists of the following
three aspects: security against any primary signer, security against any verifier
and security against any arbitrator/TTP.

Security against malicious primary signer: Intuitively, an individual pri-
mary signer should not provide a partial signature which is valid both from the
viewpoints of a verifier and an arbitrator but which will not be opened into the
primary signer’s full signature by the honest arbitrator. More precisely, By ki, we
denote the system security parameter of individual user i; By OPSig(pki,ski,···),
we denote an oracle of the partial signing procedure PSig(pki, ski, · · ·) and by
ORes(pki,pk,sk,···) an oracle of the resolution procedure Res(pki, pk, sk, · · ·). We
require that any probabilistic polynomial time Adv succeeds with at most negli-
gible probability in the following game.

– arbitrator key generation algorithm KG: on input a security parameter k, it
outputs (sk, pk);

– individual key generation algorithm IKG: on input a security parameter ki,
it outputs (sk∗

i , pki), where IKG∗(ki) denotes the run of key generator IKG
with the corrupted primary signer pki by the adversary, and sk∗

i denotes the
adversary’s states.

The honest primary signer j (j �= i) runs IKG on input kj and obtains a
public and secret key pair (pkj , skj). The adversary obtains (pkj , skj) and
pki but not sk∗

i (1 ≤ i, j ≤ t(k′) and j �= i).
– resolution oracle query ORes(pki,pk,sk,···): for each adaptively chosen message

mj , the adversary computes its partial signature σ′
i,j for mj and forwards

σ′
i,j

to the oracle ORes(pki,pk,sk,σ′
i,j

) to obtain full signature σi,j of message
mj , where 1 ≤ j ≤ t(ki), and t(·) is a polynomial.

– at the end of ORes(pki,pk,sk,···) oracle query, the adversary produces a message
and its full signature pair (m∗, σi,∗), i.e.,

(m∗, σ′
i,∗) ← AdvO

Res(pki,pk,sk,···)
(sk∗

i , pki, pk); m∗ �= mj , 1 ≤ j ≤ t(k′);

σi,∗ ← Adv(m∗, σ′
i,∗, sk

∗, pk, pki)

– success of succ=[PVf(m∗, σ′
i,∗, pk, pki) = 1 ∧ Vf(m∗, σi,∗, pki) = 0].
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Definition 2. A multi-party verifiably committed signature is secure against
malicious primary signer pki, if any probabilistic polynomial time adversary
Adv associated with resolution oracle, succeeds with at most negligible proba-
bility, where the probability takes over coin tosses in IKG∗(ki, ·), PSig(pki, ·) and
ORes(pki,pk,sk,···).

Security against malicious verifier: Suppose a primary signer pki and a
verifier v are trying to exchange signature in a fair way. The primary signer
pki wants to commit to the transaction by providing his/her partial signature.
Of course, it should be computationally infeasible for the verifier v to compute
the corresponding full signature from any partial signature2. More formally, we
require that any probabilistic polynomial time adversary Adv succeeds with at
most negligible probability in the following game:

– arbitrator key generation algorithm KG: on input a security parameter k, it
outputs (sk, pk);

– individual key generation IKG: on input a security parameter kj , it outputs
(skj , pkj), where IKG(kj) denotes the run of key generator IKG with the cor-
rupted primary signer pkj by the adversary, and skj denotes the adversary’s
states. The honest primary signer i (i �= j) runs IKG(ki), obtains a public
and secret key pair (pki, ski). The adversary obtains (pkj , skj) and pki but
not ski (1 ≤ i, j ≤ t(k′) and j �= i).

– OPSig(pki,ski,pk,·) and ORes(pki,sk,pk,···) oracle queries: for each adaptively
chosen message mj , the adversary obtains a partial signature σ′

i,j of mes-

sage mj by querying the partial signing oracle OPSig(i,mj). The adversary
forwards σ′

i,j to the resolution oracle ORes(pki,sk,pk,σ′
i,j ) to obtain the full

signature σi,j of message mj , where 1 ≤ j ≤ t(ki), and t(·) is a polynomial.
– at the end of oracle queries to OPSig(pki,ski,pk,···) and ORes(pki,sk,pk,···),

the adversary outputs a message-partial signature pair (m∗, σ′
i,∗). On in-

put (m∗, σ′
i,∗), the adversary further outputs a message-full signature pair

(m∗, σi,∗) ← AdvO
PSig(pki,ski,pk,σ′

i,∗ )
,ORes(pki,sk,pk,σ′

i,∗ )

.
– success of adversary succ: = [Vf(m∗, σi,∗, pki) = 1 ∧ m∗ /∈ Query (Adv,

ORes(pki,sk,pk,···))], where Query( Adv, ORes(pki,sk,pk,···)) is the set of valid
queries the adversary Adv asked to the resolution oracle ORes(pki,sk,pk,···),
i.e., (m∗, σ′

i,∗) such that Vf(m∗, σ′
i,∗) = 1.

Definition 3. A multi-party verifiably committed signature is secure against
a malicious verifier, if any probabilistic polynomial time adversary Adv which
is associated with a partial signing oracle OPSig(pki,ski,pk,···) and a resolution
oracle ORes(pki,sk,pk,···), succeeds with at most negligible probability, where the
probability takes over coin tosses in (pki, ski)← IKG(ki) and (pk, sk)← KG(k),
OPSig(pki,ski,pk,···) and ORes(pki,sk,pk,···).
2 The security preventing a malicious third party from forging valid partial signatures

is stated as security against any malicious arbitrator below as a malicious arbitrator
is the most powerful adversary in the security model.
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Security against semi-trusted arbitrator: Even though the arbitrator is
semi-trusted, a primary signer does not want this arbitrator to produce a valid
signature which the primary signer do not intend on producing. To achieve this
goal, we require that any probabilistic polynomial time adversary Adv associated
with partial signing oracle OPSig(pki,ski,pk,···), succeeds with at most negligible
probability in the following game:

– key generation algorithm KG∗: on input security parameter k, KG∗(k) out-
puts (sk∗, pk), where KG∗(k) is run by the dishonest arbitrator.

– individual key algorithm IKG: on input a security parameter kj , it outputs
(skj , pkj), where IKG(kj) denotes the run of key generator IKG with the cor-
rupted primary signer pkj by the adversary, and skj denotes the adversary’s
states. The honest primary signer i (i �= j) runs IKG(ki), obtains a public
and secret key pair (pki, ski). The adversary obtains (pkj , skj) and pki but
not ski (1 ≤ i, j ≤ t(k′) and j �= i).

– OPSig(pki,ski,pk,···) oracle query: for each adaptively chosen message mj ,
the adversary obtains the partial signature σ′

i,j for mj from the oracle

OPSig(pki,ski,pk,mj), where 1 ≤ j ≤ t(k′).
– at the end of the partial partial signing oracle query, the adversary produces

a message-full signature pair (m∗, σi,∗), i.e.,

(m∗, σi,∗) ← AdvO
PSig(pki,ski,pk,m∗)

(sk∗, pk, pki).

– success of adversary is defined as follows:

succ = [Vf(m, σ, pki) = 1 ∧ m∗ /∈ Query(Adv, OPSig(pki,ski,pk,···))]

where Query( Adv, OPSig(pki,ski,pk,···) is the set of valid queries Adv asked
to the partial oracle such that PVf(mj , σ

′
i,j) = 1.

Definition 4. A multi-party verifiably committed signature is secure against
malicious arbitrator, if any probabilistic polynomial time adversary Adv asso-
ciated with partial signing oracle P , succeeds with at most negligible proba-
bility, where the probability takes over coin tosses in (pki, ski)← IKG(ki) and
(pk, sk∗)← KG∗(k), OPSig(pki,ski,pk,···).

Definition 5. A multi-party verifiably committed signature is secure if it is se-
cure against any malicious primary signer, malicious verifier and malicious ar-
bitrator.

4 Building Blocks

Before we propose our implementation, we would like to sketch the following
building blocks on which our protocol is based.
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4.1 Paillier’s Cryptographic System

Paillier investigated a novel computational problem, called Composite Residuos-
ity Class Problem, and its applications to public key cryptography in [15]. Our
construction of multi-party verifiably committed signatures will heavily rely on
this probabilistic encryption scheme sketched below.

– the public key is a κ-bit RSA modulus N = PQ, where P , Q are two large
safe primes, where |P |=|Q| =2κ. the private key is (P, Q);

– the plain-text space is ZN and the cipher-text space is Z∗
N2 ;

– to encrypt α ∈ ZN , one chooses Ra ∈ Z∗
N uniformly at random and computes

the cipher-text as EPK(a, Ra) = (1 + N)aRN
a mod N2.

– given c =(1 + N)aRN
a mod N2, and trapdoor information (P, Q), one can

first computes c1 (=c mod N), and then compute Ra from the equation Ra

= c
N−1modφ(N)
1 modN ; Finally, one can compute a from the equation cR−N

a

modN2 =1 + aN .
– the encryption function is homomorphic, i.e., EPK(a1, R1) × EPK(a2, R2)

mod N2 = EPK(a1 + a2 mod N , R1 × R2 mod N).

4.2 Fujisaki-Okamoto Commitment Scheme

Let τ be a security parameter. The public key is a τ -bit RSA modulus n=pq,
where p, q are two large safe primes. We assume that neither a committer nor a
receiver knows factorization n. Let g1 be a generator of QRn and g2 be an element
of large order of the group generated by g1 such that both discrete logarithm of
g1 in base g2 and the discrete logarithm of g2 in base g1 are unknown by the
committer or the receiver. We denote C(a, ra) = ga

1gra
2 modn a commitment to a

in bases (g1, g2), where ra is randomly selected over {0, 2sn}, where s is a security
parameter. This commitment scheme first appeared in [12] and reconsidered by
Damg̊ard and Fujisaki [10] is statistically hiding and computationally binding,
i.e.,

– a committer is unable to commit itself to two values a1, a2 such that a1 �= a2
in Z by the same commitment unless the committed can factor n or solves
the discrete logarithm of g1 in base g2 or the the discrete logarithm of g2 in
base g1;

– C(a, ra) statistically reveals no information to the receiver, i.e., there is a
simulator which outputs simulated commitments to a which are statistically
indistinguishable from true ones.

– this commitment is homomorphic, i.e., C(a+b, ra+rb) = C(a, ra) × C(b, rb).

4.3 Boudot’s Protocol

With the help of Fujisaki-Okamoto commitment scheme, an efficient protocol
allows Alice to prove to Bob that a committed number x ∈ [a, b] belongs to the
desired interval [a, b] (0 < a ∈ Z and a < b ∈ Z), has been proposed by Boudot
[4]. The idea behind Boudot’s protocol is that to achieve a proof of membership
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without tolerance, the size of x is first enlarged, and then Alice proves to Bob that
the value 2T x lies in interval < 2T a−2T , 2T b+2T > with tolerance (a proof with
tolerance is easier than a proof without tolerance, we refer the reader to [4] for
further reference), and thus x ∈ [a, b]. Boudot’s protocol is zero-knowledge proof
of knowledge and it is sound assuming that the underlying Fujisaki-Okamoto
commitment scheme is statistically hiding and computationally binding.

4.4 Proof Equality of a Committed Number and an Encryption in
Different Moduli

An efficient implementation for proving the equality of a committed number and
an encryption has been proposed by Damg̊ard and Jurik[9]:

– let λ be maximum bit length of x. Let C be a commitment C(x, rx) =gx
1grx

2
modn computed from Fujisaki-Okamoto commitment scheme and E be a
cipher-text E(x, Rx)= (1 + N)xRx

N modN2 computed from Paillier’s en-
cryption scheme, a prover should provide a proof that C and E hide the
same value x.

– the prover chooses at random ω ∈ {0, 1}λ+2l, where l is a security para-
meter. The prover sends C′=gω

1 grω
2 and E′= E(ω, Rω) to the verifier. Here

we assume that the security parameter κ of Paillier’s system is larger than
(λ + 2l)

– the verifier chooses a l-bit challenge f ;
– the prover opens the encryptions C′Cf modn and E′Ef modN2, to reveal

in both cases the number z = ω + xf defined over the integer domain. The
verifier checks the opening were correct.

The protocol can be made non-interactive in the standard way using a hash func-
tion RO and the Fiat-Shamir technique. It is also statistically zero-knowledge
in the random oracle mode.

4.5 Proof Equality of a Committed Number and a Discrete
Logarithm in Different Moduli

Let l, t and s be three security parameters. Assume that a prover Alice holds a
secret value x ∈ {0, T }. We denote by E1 =gx

1gr
2 modn1, be a commitment com-

puted from Fujisaki-Okamoto commitment scheme and E2 =gx modn2 be a dis-
crete logarithm of QRn2 modulo n2, where n2 =p2q2, p2 = 2p′2 + 1, q2 = 2q′2 + 1
and QRn2 =< g >. A prover Alice wants to prove to a verifier Bob that she knows
x and r ∈ {−2sn1 + 1, 2sn1 − 1} such that E1 =gx

1gr
2 modn1 and E2 =gx modn2.

– Alice picks random strings ω ∈ {1, · · · , 2l+tT − 1} and ρ ∈ {1, · · · , 2l+t+sn −
1}. Alice then computes π1 =gω

1 gρ
2 modn1 and π2 =gω modn2; Finally, Alice

sends (π1, π2) to Bob;
– Bob sends f ∈ {0, 1}2t to Alice;
– Alice computes τ1 =ω + fx and τ2 =ρ + fr (over the integer domain Z);
– Bob checks whether gτ1

1 gτ2
2 =π1E

f
1 modn1 and gτ1 =π2 Ef

2 modn2.



144 H. Zhu, W. Susilo, and Y. Mu

This protocol originally appeared in [5] and independently in [7] is a zero-
knowledge proof of equality of a committed number and a discrete logarithm
in different moduli. Again, the protocol can be made non-interactive in the stan-
dard way using a hash function RO and the Fiat-Shamir technique. It is also
statistically zero-knowledge in the random oracle mode.

4.6 Zhu’s Signature Scheme

Our multi-party verifiably committed signatures is built on the top of Zhu’s
signature (see [16], [17] and [18] for more details).

– Key generation algorithm: Let p, q be two large safe primes (i.e., p − 1 =
2p′ and q − 1 = 2q′, where p′, q′ are two primes with length (l′ + 1)). Let
n = pq and QRn be the quadratic residue of Z∗

n. Let X, g, h ∈ QRn be three
generators chosen uniformly at random. The public key is (n, g, h, X, H),
where H is a collision free hash function with output length l. The private
key is (p, q).

– Signature algorithm: To sign a message m, a (l + 1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier checks
that e is an (l + 1)-bit odd number. Then it checks the validity of X =
yeg−th−H(m)modn. If the equation is valid, then the signature is valid. Oth-
erwise, it is rejected.

Zhu’s signature scheme is provably secure against adaptive chosen-message at-
tack under joint assumptions that the strong RSA problem is hard and the dis-
crete logarithm defined over QRn is hard as well as the underlying hash function
H is collision free.

5 Stand-Alone, Setup-Free Verifiably Committed
Signatures in Multi-party Setting

5.1 Implementation

With the help of these building blocks listed above, we can now describe our
implementation of multi-party stand-alone, setup-free verifiably committed sig-
natures below.

– arbitrary key generation algorithms (KGE , KGC): on input a security para-
meter κ, an arbitrary runs KGE (it is a key generator of Paillier’s encryption
algorithm) to generate κ-bit RSA modulus N = PQ, where P , Q are two large
safe primes. The plain-text space is ZN and the cipher-text space is Z∗

N2 .
On input τ , the arbitrator runs KGC (it is a key generator of Okamot-

Fujisaki’s commitment scheme) to generate τ -bit RSA modulus Nc=PcQc,
where Pc and Qc are two large prime numbers. KGC also outputs two random
elements g, h ∈ QRNc .
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The public key pk = (pkE , pkC), where pkE = (1 + N, N) and pkC =
(Nc, g, h). The secret keys sk = (skE , skC), where skE = (P, Q) and skC =
(Pc, Qc).

– individual key generation algorithm IKG: on input a security parameter
(ki, li, l

′
i), the ith user runs IKG (it is a key generation algorithm of Zhu’s sig-

nature scheme) to generate two large primes pi and qi such that pi −1 = 2p′i
and qi − 1 = 2q′i, where p′i, q

′
i are two (l′i + 1)-bit strings.

Let ni = piqi and QRni be the quadratic residue of Z∗
ni

. Let gi, hi be two
generators of QRni chosen uniformly at random. The public key is the ith

user is (ni, gi, hi, xi, Hi), where xi ∈ QRni and Hi is a collision free hash
function with output length li. The private key is (pi, qi).

– full signature algorithm Sig: to sign a message mj , a (li + 1)-bit prime
ei,j and a li bit string ti,j are chosen at random. The equation yi,j

ei,j

=xigi
ti,j hi

Hi(mj) modni is solved for yj . The corresponding signature σi,j of
the message mj is (ei,j , ti,j , yi,j).

– verification algorithm Vf: given a putative triple (ei,j , ti,j , yi,j), Vf first checks
that ei,j is an odd (li + 1)-bit number. Second it checks the validation that
xi = yi,j

ei,j g
−ti,j

i hi
−Hi(mj) modni. If the equation is valid, then Vf accepts,

otherwise, it rejects.
– partial signing algorithm PSig: on input a message mj, (li + 1)-bit prime ei,j

and a li string ti,j are chosen at random. The equation yi,j
ei,j =xigi

ti,j hi
Hi(mj)

modni is solved for yj . Then the ith user (say Alice) further performs the fol-
lowing computations:

• ui,j ← g
ti,j

i ;
• Ei,j ← E(pkE , ti,j), where E(pkE , ti,j) = (1 + N)ti,j RN

i,j modN2;
• Ci,j ← C(pkc, ti,j), where C(pkC , ti,j) = gti,j hri,j modNc;
• a proof pri,j that she knows that ui,j contains the same number as that

hidden by E(pkE , ti,j) as well as ti,j is a li-bit string. More precisely, the
proof pri,j consists of the following three statements:

∗ the prover runs the protocol specified in Section 4.4 and proves to
the verifier Bob the equality of the committed number by Ci,j and
the encrypted number by Ei,j ;

∗ the prover runs the protocol specified in Section 4.5 and proves to
the verifier Bob the equality of the committed number by Ci,j and
the discrete logarithm by ui,j on base gi;

∗ the prover runs the protocol specified in Section 4.3 and proves to the
verifier Bob that the committed number by Ci,j lies in the interval
{0, 2li − 1} .

The partial signature is denoted by σ′
i,j =(ei,j, yi,j , ui,j , ci,j , pri,j).

– The corresponding partial signature verification algorithm PVf: given a pu-
tative signature σ′

i,j =((ei,j , yi,j , ui,j, ci,j , pri,j)), the verifier Bob performs
the following checks:

• checking ei,j is an odd (li + 1)-bit number.
• checking the validity of the equation xi = yi,j

ei,j g
−ti,j

i hi
−Hi(mj) modni.

• checking the validity of proof pri,j ;
• if all checks are valid then the verifier accepts, otherwise, it rejects.
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– resolution algorithm Res: given σ′
i,j = ((ei,j , yi,j , ui,j , ci,j pri,j)), and a proof

that Bob fulfilled his obligation to the primary signer pki. If the verification
is passed, then the arbitrator outputs a valid full signature (ei,j , yi,j , ti,j)
using his decryption key skE , otherwise, it rejects.

This ends the description of our protocol. We stress that the technique presented
in this section can be easily extended to the case where the underlying signature
scheme is Cramer-Shoup’s hash signature such that individual group Gi is chosen
independently.

5.2 The Proof of Security

The proof of security follows that presented in [19]. We also stress that the tech-
nique presented in this section can be applied to the case where the underlying
signature scheme is Cramer-Shoup’s hash signature with the restriction that
individual group Gi is chosen independently and is never reused.

Lemma 1. The verifiably committed signature is secure against malicious pri-
mary signer in the multi-party setting.

Proof. Suppose the ith user Alice is able to provide a valid partial signature
σ′

i,j = (ei,j , yi,j , ui,j, Ei,j , Ci,j , pri,j) corresponding to a message mj , where the
valid proof pri,j means that she knows that ui,j contains the same number as
the encryption Ei,j and the encrypted value ti,j ∈ I, I = {0, 2li − 1}. Since σ′

i,j

is valid from the viewpoints of its verifier and TTP, by rewinding Alice, both
verifier and cosigner can extract ti,j ∈ I such that

ui,j = g
ti,j

1 , Ei,j = E(pkE , ti,j), y
ei,j

i,j = xig
ti,j

i h
Hi(mj)
i , ti,j ∈ I.

It follows that the designated TTP can always transform any valid partial
signature scheme into the correspondenting valid signature σi,j=(ei,j , yi,j , ti,j).

Lemma 2. Our construction is secure against malicious verifier under the joint
assumptions that Fujisaki-Okamoto’s commitment scheme is statistically hiding
and computationally binding and Paillier’s encryption scheme is semantically
secure and one-way.

Proof. We convert any attacker B that attacks our verifiably committed signa-
ture scheme into an inverter B′ of the underlying encryption scheme. That is,
given a random cipher-text Ei,j , B′ will obtain the corresponding plain-text mj

with non-negligible probability with the help of the attacker B. This can be done
as follows:

– B′ runs IKG to generate the ith primary signer’s public/secret key (pki, ski)
as that in the real verifiably committed signature scheme and obtains the
public and secret key pair (pki, ski).

– B′ then runs KG to generate the arbitrator’s public/secret key (pk, sk) as
that in the real verifiably committed signature scheme and obtains pk but
not sk from the arbitrator.
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Given the target cipher-text Ei,j , we first describe a simulator of the partial
signature oracle OPSig(pki,ski,pk,···) as follows:

Let qPSig be the total number of queries made by B, and let ι be a random
number chosen from {1, qPSig} by B′.

– If i ∈ {1, qPSig} and i �= ι, then B′ runs the partial signing oracle as the real
partial signature scheme;

– If i ∈ {1, qPSig} and i = ι, for the given target cipher-text Ei,j , B′ chooses
a random string fi,j, zi,j and ui,j in the correct interval specified in the
real protocol and then B′ computes E′

i,j from the equation E(pkE , z) = E′
i,j

E
fi,j

i,j . At the same time, it computes u′
i,j from the equation g

zi,j

i = u′
i,j u

fi,j

i,j .

– Given ui,j, B′ computes (ei,j , yi,j) from the equation y
ei,j

i,j = xiui,jh
Hi(mj)
i ,

this is possible since B′ knows the secret key ski (notice that B′ assigns fi,j

to be the hash value of the random oracle RO if the specified protocol in
Section 4.5 is non-interactive).

Similarly, for the given ui,j , there exists a simulator that can simulate
views for the following proofs:

• a proof of equality of the committed number Ci,j and the discrete loga-
rithm loggi

(ui,j), where Ci,j is a forgery commitment;
• a proof of equality of the committed number by Ci,j and the encrypted

number by Ei,j ;
• a proof that the committed number by Ci,j lies in the correct interval.

Such a simulator can be defined by the concatenation of individual sim-
ulators for the above zero-knowledge proof systems since Boudot’s proto-
col, Damg̊ard and Jurik’s protocol, as well as Boudot, and Camenisch and
Michels’ protocols are zero-knowledge proof systems (see Section 4.3, Sec-
tion 4.4 and Section 4.5 for more details). As a result, the existence of such
a simulator following the definition of the zero-knowledge proof system im-
mediately.

B′ simulates ORes(pki,sk,pk,···) oracle queries as follows:

– If (mj , σ
′
i,j) that is in the partial signature query list and if j �= ι, then

ORes(pki,sk,pk,···) outputs ti;
– If (mj , σ

′
i,j) that is in the partial signature query list and if j = ι, then

ORes(pki,sk,pk,···) outputs ⊥;
– If (mj , σ

′
i,j) that is not in the partial signaturequery list, thenORes(pki,sk,pk,···)

outputs ⊥.

Notice that the probability that the simulator outputs ⊥ is 1 − 1/qPSig for

the queries whose partial signatures are listed in the OPSig(pki,ski,pk,···) oracle
query. Thus when the adversary outputs a valid full signature (m∗, σ∗) whose
partial signature is in the list of OPSig(pki,ski,pk,···) oracle query, the probability
that B′ can invert the target cipher-text Ei,j with probability at least ε/qPSig,
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where ε stands for the probability that B can break our verifiably committed
signature scheme.

Lemma 3. Our construction is secure against malicious arbitrator under the
joint assumptions that the underlying Zhu’s signature scheme is secure against
adaptive chosen-message attack, Fujisaki-Okamoto’s commitment scheme is sta-
tistically hiding and computationally binding and Paillier’s encryption scheme
is semantically secure.

Proof. Suppose an arbitrator is able to forgery partial signature σ′
i,j with non-

negligible probability, then by rewinding the arbitrator, we can extract ti,j from
the valid proof pri,j . It follows that the arbitrator is able to output a valid
forgery signature from Zhu’s signature scheme with non-negligible probability.
Since the underlying Zhu’s signature scheme signature has proved to be secure
against adaptive chosen-message attack under joint assumptions of the strong
RSA problem as well as the existence of collision free hash function. It follows
that our construction is secure against semi-trusted arbitrator under joint as-
sumptions that the hardness of the strong-RSA problem and the existence of
collision free hash functions.

In summary, we have proved the main result below:

Theorem 1. The stand-alone, setup-free verifiably committed signature scheme
constructed above is provably secure under the joint assumption that the under-
lying Zhu’s signature scheme is secure against adaptive chosen-message attack,
Fujisaki-Okamoto’s commitment scheme is statistically hiding and computation-
ally binding and Paillier’s encryption is semantically secure and one-way.

6 Conclusion

In this paper, we have demonstrated a gap between the security of a two-party
verifiably committed signatures and the security of multi-party verifiably com-
mitted signatures. We also have extended Dodis and Leyzin’s security model for
the two-party verifiably committed signatures to the multi-party setting. Finally,
we have implemented an efficient stand-alone and setup-free verifiably commit-
ted signatures in the multi-party setting and shown that our implementation is
provably secure under the joint assumptions that the underlying Zhu’s signature
scheme is secure against adaptive chosen-message attack, Fujisaki-Okamoto’s
commitment scheme is statistically hiding and computationally binding and Pail-
lier’s encryption is semantically secure and one-way.
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Abstract. We prove in a non-black-box way that every bounded list and set com-
mitment scheme is knowledge-binding. This is a new and rather strong security
condition, which makes the security definitions for time-stamping much more
natural compared to the previous definitions, which assume unpredictability of
adversaries. As a direct consequence, list and set commitment schemes with par-
tial opening property are sufficient for secure time-stamping if the number of
elements has an explicit upper bound N . On the other hand, white-box reduc-
tions are in a sense strictly weaker than black-box reductions. Therefore, we also
extend and generalize the previously known reductions. The corresponding new
reductions are Θ(

√
N) times more efficient, which is important for global-scale

time-stamping schemes where N is very large.

1 Introduction

Commitment schemes are basic building blocks in numerous cryptographic protocols.
The most important properties of commitment schemes are binding and hiding. A com-
mitment is hiding if it reveals no information about the committed message and binding
if it is impossible to change the committed message afterwards without detection. First
such schemes for committing a single bit were proposed by Blum [4] and by Bras-
sard et al [5] and were proven secure under the hardness of factoring assumption. Later
works have significantly improved their efficiency and weakened the underlying com-
plexity theoretic assumptions, see [14,10] for further references. Here, we study the
so called partially releasable commitments, in which one can compute a commitment
(also called digest) for a list X = (x1, . . . , xN ) of bit-strings, so that it is possible to
partially open the commitment for every xi ∈ X without disclosing the other elements
of X. For opening xi it is sufficient to present a decommitment string si (also called
certificate). Achieving the hiding property is somewhat trivial, as one can always add
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another layer of commitments. Hence, our main emphasis is on the binding property.
List commitments [3,1,17] that are only binding are known as one-way accumulators.

In particular, we analyze the security of a time-stamping protocol, where clients send
their requests x1, . . . , xN to a Time-Stamping Server (TSS) who computes the commit-
ment c and sends the corresponding certificates s1, . . . , sN back to the clients. If c is
published in an authentic way then everybody can verify that xi was generated be-
fore c was published. This principle is used in practical time-stamping schemes [12]
where c is computed as the root of a hash tree. List commitment schemes were be-
lieved to be exactly what one needs for such kind of time-stamping. However, Buldas
et al [7] pointed out a flaw in the security proof of [12]. By giving a carefully crafted
oracle separation they showed that pure collision-resistance is insufficient to prove that
the hash tree time-stamping schemes [12] are secure. In other words, either there are
collision-resistant functions that are still insecure for time-stamping, or the security of
time-stamping schemes follows from currently unknown complexity-theoretic results.
The key point of this paradoxical result is that the number of committed elements is
potentially unbounded. In Sec. 4, we prove that all list and set commitments, where the
cardinality of X has an explicit bound |X| ≤ N , are suitable for time-stamping. The
proof is given in the exact security framework and is Θ(

√
N) times more efficient than

the previous reduction [7]. This improvement is especially valuable for global-scale
time-stamping schemes in which N is very large.

In Sec. 5, we show that all binding bounded list and set commitments are knowledge-
binding. This is a new and extremely strong security requirement inspired from the se-
curity of time-stamping schemes. Its strength is comparable to the plaintext awareness
property, which is defined for public key encryption. The knowledge-binding property
is also much more intuitive requirement for time-stamping schemes than the previous
ones [7,9], which use unpredictable probability distributions to model the stream of
“new documents” sent to a TSS. Roughly, the knowledge-binding property states that
for every efficient TSS, it is possible (by observing the commitment procedure) to effi-
ciently extract the list X of all documents that can be opened by the TSS in the future.
The dedicated extractor must know only the internal coin tosses of TSS and some pub-
lic parameters. Consequently, even if the TSS is malicious, it must know the whole list
X before the corresponding commitment is published. This allows to prove the security
in the classical ideal vs real world comparison framework [11, pp.622–631,697–700].

Moreover, the notion of knowledge-binding commitments can be useful in other
cryptographic protocols, because the ability to open a commitment does not change
in time and we may skip the proofs of knowledge in the commitment phase. On the
other hand, the corresponding security proofs are not black box. This means that once
we have an efficient adversary A that breaks the knowledge-binding condition we know
that there exists an efficient adversary A′ that breaks the binding property of the corre-
sponding commitment scheme. However, we may have no efficient ways to construct
A′. Therefore, in reality the knowledge-binding property can be violated but the com-
mitment scheme may still be practically binding—the efficient breaking procedure ex-
ists but is not known. Black-box security proofs in turn give an efficient procedure for
constructing A′ from A. In this sense, Theorems 1–4 give substantially stronger security
guarantees for a fixed hash function (e.g. SHA-1) than Theorems 5 and 6.
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In Sec. 6, we briefly discuss about other possible applications of knowledge-binding
such as distributed and fine-grained time-stamping.

Some of the details of this work have been omitted because of space limitations. The
missing details will be published in the IACR ePrint Archive.

2 Preliminaries and Notation

We use a non-uniform model of computations, where each algorithm A is specified as
an input of a universal multi-tape Turing machine U that first copies the code of A to
its working-tape and then starts to interpret it. A is a t-time algorithm if U performs at
most t elementary operations to interpret the code of A independent of the input of A.

By x ← D we mean that x is chosen randomly according to a distribution D.
In particular, if A is an algorithm, then x ← A(y) means that x is chosen accord-
ing to the output distribution of A on an input y. Finite sets are identified with the
corresponding uniform distributions, e.g., x ← {0, 1}� means that x is a uniformly
chosen �-bit string. If D1, . . . , Dm are distributions and F (x1, . . . , xm) is a predi-
cate, then Pr [x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability that
F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm.

By a cryptographic primitive P we mean a set of computable functions associated
with the advantage function AdvP(·), such that for every adversarial algorithm A, the
advantage AdvP(A) is a positive real number. Mostly, AdvP(A) is defined as the non-
trivial success (scaled probability) in certain game sec that captures the desired prop-
erties of P. A primitive P is said to be (t, ε)-secure in terms of sec if Advsec

P (A) ≤ ε
for every t-time adversary A. For example, by a (t, ε)-secure collision-resistant hash
function we mean a pair H = (Gen, h) of algorithms such that if pk ← Gen is an
arbitrary output of the generation function then h(pk, ·) = hpk(·) is a function of type
{0, 1}� → {0, 1}m where � > m; and for every t-time adversary A :

Advcoll
H (A) = Pr [pk←Gen, (x1, x2)←A(pk) : x1 �= x2 ∧ hpk(x1) = hpk(x2)] ≤ ε .

Time-success ratio. Quite often it is suitable for adversaries to find a trade-off between
plausible attacking-time t and the corresponding advantage ε(t) against P. If the min-
imum time-success ratio for P is αP, then ε(t) ≤ t

αP
by definition. Often, we cannot

estimate anything else about P than αP. Now, any black- or white-box reduction intro-
duces a change ratio γ = α1

α0
where α0 is the time-success ratio of the basic primitive

and α1 is the ratio of the derived primitive, i.e., we have established a new approximate
bound ε1(t) ≤ t

γα0
. Therefore, large values of γ provide better approximating bounds.

Sampling bounds. Our proofs use several standard statistical bounds. Let X1, . . . , Xm

be identically distributed independent zero-one random variables with μ = Pr [Xi = 1]
and let X =

∑m
i=1 Xi. Then for any 0 ≤ θ ≤ 1 the Chernoff bounds [13]

Pr [X ≤ (1 − θ)μm] ≤ e−θ2mμ/2 , and Pr [X ≥ (1 + θ)μm] ≤ e−θ2mμ/3 .

We also need a Birthday bound to determine the collision probability. Let Y1, . . . , Ym be
identically but arbitrarily distributed independent random variables with possible values

{1, . . . , N}. Then the probability p that all Yi-s are different satisfies p ≤ e−
m(m−1)

2N . In
particular, if m ≥ 1.5

√
N and N ≥ 9 then p ≤ 1

2 .
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3 Partially Releasable Commitment Schemes

Set and List Commitments. Most commitment schemes for �-bit strings facilitate
only complete disclosure of the committed input. In the context of time-stamping, the
complete input can be several gigabytes long whereas we actually need to disclose only
a few hundred bits. Therefore, we study commitment schemes that facilitate partial dis-
closure of inputs. List commitments are order-preserving: committed strings are ordered
tuples. Set commitments in turn do not provide any ordering. Like ordinary commit-
ment schemes, these commitments are specified by four basic algorithms: Gen, Com,
Cert and Ver. Initialization algorithm Gen generates public parameters pk. Elements
(m1, . . . , mn) are committed by computing (c, d) ← Compk(m1, . . . , mn), where the
commitment c is sent to the receiver and d is kept by the sender for later use. To prove
that mi was indeed used to compute the commitment c, the sender generates a certifi-
cate1 s ← Certpk(d, mi) the validity of which can be tested with the Ver algorithm.

The commitment scheme is functional if for any (c, d) ← Compk(m1, . . . , mn) and
s ← Certpk(d, mi), the verification result Verpk(c, n, mi, s) = true with overwhelming
probability. For list commitments, the certificate s contains also the exact location i of
the decommitted element, denoted as loc(s) = i. We explicitly assume that a decom-
mitment certificate for a set X = {x1, . . . , xr} is a union of the corresponding element
certificates s1, . . . , sr denoted by s1 ∪ . . . ∪ sr. Consequently, certificates can be freely
joined together and split into sub-certificates. For many commitment schemes such lists
can further be compressed but this is only an implementation detail.

We omit the formal definition of the hiding property, since we study only the fea-
tures related to the binding property. The binding property is different for set and list
commitments. For list commitments, the binding property is violated if an adversary
can open the i-th element in two different ways:

Advbind(A) = Pr

⎡

⎢
⎣

pk ← Gen, (c, n, x0, s0, x1, s1) ← A(pk) :
x0 �= x1 ∧ loc(s0) = loc(s1)
∧ Verpk(c, n, x0, s0) = Verpk(c, n, x1, s1) = true

⎤

⎥
⎦ , (1)

where the probability is taken over the coin tosses of all relevant algorithms. Since
certificates are closed under union and there is no ordering for set commitments, the
only way to misbehave is to exceed the size of X:

Advbind(A) = Pr

[
pk ← Gen, (c, n, X, s) ← A(pk) :
Verpk(c, n, X, s) = true ∧ |X| > n

]

, (2)

where Verpk(c, n, X, s) first splits X and s into components and then verifies each com-
ponent xi ∈ X separately by using the corresponding component-certificate si ∈ s.
We say that the commitment scheme is (τ, ε)-binding if for all τ -time adversaries
Advbind(A) ≤ ε. For unbounded adversaries, we speak about statistical ε-binding.

Note that set and list commitments must explicitly specify the number n of the com-
mitted elements. Indeed, if the certificates do not reveal the size of the commitment,

1 To be precise, Cert should return a vector of certificates for each location of mi in the list.
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a malicious adversary can just hide some committed elements and receivers can never
be sure if the commitment is fully opened. A commitment scheme is N -bounded if
Verpk(c, n, x, s) = false for all n > N .

List commitment schemes that satisfy only the binding properties are known as one-
way accumulators [1,3,17]. One-way accumulators that in addition to positive state-
ments x ∈ X also allow to (compactly) prove negative statements x �∈ X are called
undeniable attesters [6]. The commonly used binding requirement for one-way accu-
mulators is n-times collision-freeness [1], which is equivalent to the binding property
of set commitments.

Time-Stamping Schemes. Time-stamping protocols process documents in batches X1,
X2, X3, . . . that we call rounds. The rounds correspond to time periods of fixed duration
(one hour, one day, etc.) After the i-th period, a short commitment ci of the correspond-
ing batch Xi is published. A document x ∈ Xi precedes document y, if there is j > 0
such that y ∈ Xi+j . Obviously, for a fixed commitment ci there must be an efficient
way to prove that x ∈ Xi. However, for documents y �∈ Xi such proofs must be in-
feasible to create. Note that ci can be viewed as a classical set or list commitment to
the set Xi and the corresponding proof of x ∈ Xi as a certificate. Therefore, time-
stamping schemes share the same functionality and algorithmic description as the set
and list commitment schemes. Such a structural similarity is indeed remarkable. Still,
careful studies of the security requirements reveal considerable differences between
time-stamping and commitment schemes. Different security definitions exist for time-
stamping schemes [7,8,9,12]. In this paper, we adapt the strongest2 definition [9] for the
non-uniform precise security framework with minor modifications in notations.

Formal definitions of time-stamping schemes do not require that n is explicitly given
as an argument to the verification algorithm Ver, but negative results in [7] suggest
that time-stamping schemes (at least those without additional third parties) must be
bounded, i.e., n has to be at least implicitly specified.

Intuitively, time-stamping schemes must be secure against “back-dating” and this it-
self raises a subtle issue: How to model the future? Most works [7,8,9] have taken an ap-
proach based on computational entropy. Document generation is modeled as an efficient
randomized procedure and the security guarantees are given for document distributions
with high enough computational entropy. More formally, an adversary A = (A1, A2) is
(τ, δ)-unpredictable if for every τ -time predictor Π :

Advupr
A (Π) = Pr

[
ω1 ← Ω, pk ← Gen, x̂ ← Π(pk, ω1),
(c, n, φ) ← A1(pk; ω1), (x, s) ← A2(φ) : x̂ = x

]

≤ δ ,

where ω1 denotes the random coins of A1 and the probability is taken over the coin
tosses of all relevant algorithms. The second stage A2 of the adversary models an effi-
cient document generation (back-dating) procedure.

Definition 1 (Entropy based security). A time-stamping scheme is (t, τ, δ, ε)-secure
if for every (τ, δ)-unpredictable t-time A :

2 There exist stronger security definitions for time-stamping schemes with additional (auditing)
parties [8]. The main drawback of those schemes is a large amount of extra communication.
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Advts(A) = Pr

[
ω1 ← Ω, pk ← Gen, (c, n, φ) ← A1(pk; ω1),
(x, s) ← A2(φ) : Verpk(c, n, x, s) = true

]

≤ ε . (3)

Here, δ quantifies a trivial advantage. Indeed, consider the next adversary A = (A1, A2):

– A1(pk; ω1) computes (c, d) ← Compk(x̂) and the corresponding valid certificate
s ← Certpk(c, x̂) and outputs a tuple (c, 1, (x̂, s)).

– A2(x̂, s) generates a random x so that x = x̂ with probability δ, and outputs (x, s).

For every τ the adversary A is (τ, δ)-unpredictable. However, no matter how the time-
stamping scheme is defined, the advantage Advts(A) of A is at least δ. Hence, it is
reasonable to assume that δ � ε. Moreover, as log 1

δ is an upper bound for the compu-
tational Rényi entropy, we implicitly assume that the computational Shannon entropy
of the future documents is at least log 1

δ w.r.t. the time-bound τ .
The biggest drawback of the entropy based definition is non-uniformity. The secu-

rity definition is natural in the polynomial model but has some flaws when adapted
to the exact model. It only offers protection against (τ, δ)-unpredictable adversaries!
Hence, it does not exclude extremely successful adversaries that are just not quite so
unpredictable. In theory, a time-stamping scheme could be protected against (τ, δ)-
unpredictable adversaries but still be totally insecure against (τ, δ+δ100)-unpredictable
adversaries. This flaw can be fixed by requiring strong uniformity in the definition:

Definition 2 (Black-box security). A time-stamping scheme is (t, τ, ε)-secure if there
exists a τ -time black-box extractor machine K such that for every t-time A :

Advts(A) = Pr

⎡

⎢
⎣

ω1 ← Ω, pk ← Gen, X̂ ← KA(pk;ω1,·)(pk),
(c, n, φ) ← A1(pk; ω1), (x, s) ← A2(φ) :

(Verpk(c, n, x, s) = true ∧ x �∈ X̂) ∨ |X̂| > n

⎤

⎥
⎦ ≤ ε , (4)

where ω1 denotes random coins of A1 and K gets a black-box access to A1(pk; ω1) and
A2(φ; ·). The working time of KA(pk;ω1,·) includes the time needed to execute all oracle
calls. For list commitments, we treat X̂ as a list and write x ∈ X̂ iff x = X̂[loc(s)].

Intuitively, we state that malicious time-stamping servers cannot issue valid certificates
for unknown documents, as there exists a well known algorithm KA(pk;ω1,·) for effi-
ciently reconstructing the list of all valid documents X̂. This algorithm can be automat-
ically constructed for every t-time adversary.

It is straightforward to see that (t, τ, ε)-secure time-stamping scheme is always
(t, τ, δ, ε + Nδ) secure where N ≥| X |, as one can use K in prediction. In Sec. 4,
we prove that every binding N -bounded list commitment scheme is also a secure time-
stamping scheme. Still, there are quantitative differences between these two notions.

Practical constructions based on hash trees. Merkle trees [15] and count-certified
hash trees [16] (described below) constructed from collision-resistant hash functions
are binding but not hiding even if the hash function is modeled as a random oracle—a
release of an element (a leaf node) also reveals one neighboring element (the sibling
leaf node). Nevertheless, if we use Merkle trees to compute a short commitment from
hiding and binding commitments, we get binding and hiding list and set commitments.
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x1 x3x2 x4

x12

x14

x34h(x1x2) →

h(x12x34) →

h(x3x4) →

x1 x2

x12 x3

1

12

1

h(1x1x21) →

h(2x12x31) → x13

Fig. 1. Merkle hash tree for {x1, x2, x3, x4} and a count-certified hash tree for {x1, x2, x3}

A Merkle hash tree for a list X is a binary tree the leaves of which are the elements of
X and each non-leaf node is a hash of its two children (Fig. 1, left). Nodes with a single
child can be avoided. Hence, every non-leaf node is assumed to have two children.

A count-certified hash tree (Fig. 1, right) is a binary tree which is similar to a Merkle
tree, except that its arcs are labeled with counters each of which equal to the number of
leaves in the corresponding subtree. Each non-leaf vertex v is a hash h(nLxLxRnR),
where nL and nR are the counters of the left- and the right subtree respectively. The
counter c of the unique outgoing arc of v is the sum nv = nL + nR.

Each hash tree can be represented as a commitment function (c, X) ← Compk(X),
where c is the root hash value of the corresponding tree and pk denotes the public
parameters associated with the collision-resistant hash function h. By the certificate
Certpk(X, xi) for xi ∈ X we mean the smallest amount of data needed to recompute the
root hash value. For example, in the Merkle hash tree (Fig. 1, left) the certificate s2 for
x2 is s2 = ((x1, ), ( , x34)) which represents a sequence of hashing steps starting from
the leaf x2 and ending with the root hash value, whereas denotes an empty slot which
during the verification is filled with the hash of the previous pair. Similarly, in the count-
certified hash tree (Fig. 1, right) the certificate for x2 is s2 = ((1, x1, , 1), (2, , x3, 1)).
The verification function Verpk(c, n, x, s) simply recomputes the root hash value by us-
ing s and compares it with c. It also checks whether n ≤ N . The verification algorithm
for count-certified trees also recomputes the intermediate counter values to verify the
certificate s, in particular if the counter of the root vertex is n.

Collision-Extraction Property. For hash trees with a fixed shape and count-certified
hash trees there is a straight and precise reduction of the binding property to the
collision-resistance of h because of the following property: If x0 �= x1, Verpk

(c, n, x0, s0) = Verpk(c, n, x1, s1) = true, and loc(s0) = loc(s1), then the internal
h-calls of these two verifications comprise a collision for h. Moreover, if the tree is
balanced, then the collision can be extracted in O(|s0| + |s1|) = O(log2 N) time.

4 Bounded Commitments Are Sufficient for Time-Stamping

In this section, we prove that bounded commitment schemes with partial opening are
sufficient to construct secure time-stamping schemes. The new security reductions use
a simple black-box certificate extractor (Fig. 2) and in the proofs we just show that a
big enough set of valid decommitments V allows to break the binding property.



Knowledge-Binding Commitments with Applications in Time-Stamping 157

1. Execute A1 in a black-box way and store (c, n, φ) ← A1(pk; ω1).
2. Generate m independent samples (x1, s1) ← A2(φ), . . . , (xm, sm) ← A2(φ).
3. Output (c, n) and a set of valid pairs V = {(xi, si) : Verpk(c, n, xi, si) = true}.

Fig. 2. Black-box certificate extractor KA
cert(m)

Our proofs do not only generalize the existing ones [7] but are also more efficient.
Presented theorems together with the previous separation results [7,9] provide a clear
border between the well studied classical binding properties like collision-freeness and
the properties needed for time-stamping. For bounded commitment schemes the binding
property implies time-stamping security. Otherwise, these notions are independent—
binding properties are not necessary [9] nor sufficient [7].

To clarify the presentation, we have omitted a small O(N log N +t) term that counts
the computational effort needed to manage the list V of valid decommitments, as the
contribution to the total working time is irrelevant for all reasonable values of ε. To
be absolutely precise, one has to increase the time-bounds for the binding property by
O(N log N + t) in Theorems 1–4.

Theorem 1 (Entropy based security). Every
( 6t

√
N

ε , ε
8

)
-binding and N -bounded list

commitment scheme is also a
(
t, t, ε3

432·N , ε
)
-secure time-stamping scheme for N ≥ 9.

Proof. Let A = (A1, A2) be a t-time adversary that violates
(
t, t, ε3

432·N , ε
)
-security

promise, i.e., Advts(A) ≥ ε and A2 is sufficiently unpredictable (even for itself):

Pr [Coll] := Pr

[
pk ← Gen, (c, n, φ) ← A1(pk; ω),
(x0, s0) ← A2(φ), (x1, s1) ← A2(φ) : x0 = x1

]

≤ ε3

432N
.

If m = 6
√

N
ε then the black-box certificate extractor KA

cert(m) runs in time 6t
√

N
ε and

provides enough certificates to reveal a double opening. Let Coll∗ denote that two equal
messages xi = xj are produced internally by KA

cert(m). Then by the union bound

Pr [Coll∗] ≤
∑

pk,ω1

Pr [pk, ω1] · m(m − 1)
2

· Pr [Coll|pk, ω1]

≤ m(m − 1)
2

· Pr [Coll] ≤ m2

2
· ε3

432N
≤ ε

24
.

Next, we estimate the number of valid document-certificate pairs created by KA
cert(m).

Let εpk,ω1 = Advts(A|pk, ω1) denote the probability that A is successful for fixed pk
and ω1. As Pr

[
pk ← Gen, ω1 ← Ω : εpk,ω1 ≥ ε

2

] ≥ ε
2 , we apply the Chernoff bound

for these (pk, ω1) pairs with θ = 1
2 and Xi indicating (xi, si) ∈ V, and get

Pr [|V| ≤ 1.5
√

N |εpk,ω1 ≥ ε
2 ] ≤ e−

3
√

N
8 < 1/3 .

Since V consists of identically distributed independent variables, we apply the Birthday
bound. If |V| ≥ 1.5

√
N then loc(si) = loc(sj) for some i, j with probability > 1

2 . Let
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C be an adversary that runs KA
cert(m) and then tries to find a double opening in V. Then

Advbind(C) ≥ ε

2
·
(
1 − e−

3
√

N
8

)
· 1
2

− Pr [Coll∗] >
ε

6
− ε

24
=

ε

8

for N ≥ 9 and we have obtained a desired contradiction. �
Theorem 2 (Entropy based security). Every

( 4Nt
ε , ε

8

)
-binding and N -bounded set

commitment scheme is a
(
t, t, ε3

64N2 , ε
)
-secure time-stamping scheme for N ≥ 6.

Proof. Similarly to the previous proof, let A = (A1, A2) be a t-time adversary that
violates a

(
t, t, ε3

64N2 , ε
)
-time-stamping security promise. In other words, Advts(A) ≥

ε and Pr [Coll] ≤ ε3

64(N+1)2 . Fix m = 4N
ε . Then the black-box certificate extractor

C := KA
cert(m) then runs in time 4Nt

ε . The Chernoff bound with θ = 1
2 yields

Pr
[|V| ≤ N |εpk,ω1 ≥ ε

2

] ≤ e−
N
4 < 1/2 .

Again, Pr
[
pk ← Gen, ω1 ← Ω : εpk;ω ≥ ε

2

] ≥ ε
2 and we have obtained a contradic-

tion: Advbind(C) ≥ ε
2 ·

(
1 − e−

N
4

)
− Pr [Coll∗] > ε

4 − m2

2 · ε3

64N2 = ε
8 . �

Theorem 3 (Uniform security). Every (2Nt
ε , ε

2 )-binding and N -bounded list commit-
ment scheme is also (t, 2Nt

ε , ε)-black-box secure time-stamping scheme.

Proof. For the proof we have to fix a canonical black-box extractor machine KA:

1. First run A1 and store (c, n, φ) ← A1(pk; ω1) and set X̂[i] = ⊥ for i ∈ {1, . . . , n}.
2. Fix m = 2N

ε and for k ∈ {1, . . . , m} do
– Compute an independent sample (xk, sk) ← A2(φ).
– If Verpk(c, n, xk, sk) = true and X̂[loc(sk)] = ⊥ then set X̂[loc(sk)] = xk.

3. Output the last snapshot of X̂.

Clearly, for every t-time adversary A = (A1, A2), the extraction algorithm KA runs in
time 2Nt

ε and the extractor K is valid for the definition.
For the sake of contradiction, assume that a t-time adversary A = (A1, A2) violates

the security promise (4) w.r.t. K. Let a pair (xk, sk) be revealing if xk �= X̂[loc(sk)] in
Step 2 of KA. Then the probability that (xk, sk) is revealing must be larger than ε for
every k ∈ {1, . . . , m}, since the previous state of X̂ can be viewed as a partial output of
KA. Let Xk be the corresponding zero-one indicator variable, i.e., Xk = 1 if (xk, sk)
is revealing. Then εk = E[Xk] > ε and the average of Sm =

∑m
k=1 Xk is

E[Sm] = E [X1 + · · · + Xm] = ε1 + · · · εm > mε = 2N .

On the other hand, E[Sm] ≤ N + Pr [Sm > N ] · 2N
ε and thus Pr [Sm > N ] > ε

2 .
Therefore, with probability strictly more than ε

2 there are N +1 revealing pairs (xk, sk)
computed by KA. As the commitment scheme is N -bounded, revealing pairs exist only
if n ≤ N . Hence, at least one slot must be overwritten if there are N +1 revealing pairs
and we have found a double opening with probability strictly more than ε

2 . �
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Theorem 4 (Uniform security guarantee). Every (2Nt
ε , ε

2 )-binding N -bounded set
commitment scheme is also (t, 2Nt

ε , ε)-black-box secure time-stamping scheme.

Proof. The construction given above is also valid for set commitments. �
Comparison with previous results. Our reductions are not completely novel. A similar
proof with a different reduction was given in [7] for hash trees. Therefore, we compare
the time-success ratios. Recall that the minimal time-success ratio α implies ε(t) ≤ t

α
and hence large ratios γ = α1

α0
lead to better security bounds.

In Thm. 1 we constructed a double opener with running time t0 ≈ 6t
√

N
ε and with

advantage ε0 ≈ ε
8 , based on a back-dating adversary with running time t and advan-

tage ε. Thus the change ratio is γ ≈ ε
48

√
N

for our reduction. If we adapt the reduction
presented in [7] for the exact security model we obtain a ratio γ ≈ ε

2N , which is sig-
nificantly smaller for N ≥ 600. In global-scale time-stamping services, N can be very
large (say millions or even billions) and our new reduction by far supersedes the previ-
ous one [7].

Similarly, one can verify that γ ≈ ε
4N for Thm. 3 and Thm. 4 but the security guar-

antees are much stronger. To break the black-box security an adversary can produce
valid document-certificate pairs with low computational Rényi entropy, which makes it
impossible to use the birthday paradox. It is easy to see that the extractor must work in
time Θ(Nt

ε ) and
√

N in the denominator is not achievable.

5 All Bounded Commitment Schemes Are Knowledge-Binding

Both security definitions for time-stamping (Def. 1,2) are based on heuristic assump-
tions. Namely, the future is modeled as a computationally efficient stochastic process.
Such an assumption has two major drawbacks. Firstly, it is philosophically questionable
and causes practical problems in the classical framework of secure computations [11]:
due to the non-uniform nature of such model, future documents may have arbitrary dis-
tributions. Secondly, the success of back-dating adversaries is computed as an average
over the distribution of future documents and it might still be easy to “backdate” a fixed
document. To overcome these problems, we propose a new security notion where the
future is modeled as an advice string that is independent of pk. The independence as-
sumption is essential. Otherwise, no computationally binding commitment scheme can
be secure, since the advice may contain explicit double-openings.

Definition 3. A commitment scheme is (t, τ, ε)-knowledge-binding if for every t-time
adversary A = (A1, A2) there exist a dedicated τ -time extractor machine KA such that

Advk-bind(A) = max
adv

Pr

⎡

⎢
⎣

pk ← Gen, ω1 ← Ω, X̂ ← KA(pk; ω1),
(c, n, φ) ← A1(pk; ω1), (x, s) ← A2(φ, adv) :

(Verpk(c, n, x, s) = true ∧ x �∈ X̂) ∨ |X̂| > n

⎤

⎥
⎦≤ ε ,

where adv varies over all advices of length t and the probability is taken over the coins
of Gen, A1 and A2. For list commitments, X̂ is a list and write x ∈ X̂ iff x = X̂[loc(s)].
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The new definition explicitly states that there exists an efficient extraction strategy
KA that is able (by observing the internal computations of the committing algorithm A1)
to predict any bit-string x that is later ”back-dated” by A2. I.e, in some sense x already
existed before the commitment and no real back-dating attacks were performed.

But there is an even more intuitive interpretation. When an adversary publishes a
commitment c, he implicitly fixes his level of knowledge about the commitment and
no future actions can change it. As the level of knowledge does not change in time, a
successful opening “proves” that the adversary already “knew” the committed element
when the commitment was created. Hence, we can omit proofs of knowledge at the
commitment stage and reduce the number of rounds in various protocols. Thus, the new
notion is very similar to plaintext-awareness of public-key encryption schemes.

Finally, note that knowledge-binding is a necessary condition for the multi-party
security of time-stamping schemes. In the ideal implementation, TSS gives a list X to a
trusted party who will later serve partial release queries x ∈ X? Hence, there must be
an efficient way to extract all documents that TSS can potentially open as a response
for any future message that is independent of pk, i.e., the extractor machine KA must
exist. To get multi-party security in the malicious model, we must also protect a honest
TSS against malicious clients. This can be done in an obvious way by using digital
signatures, but due to the space limitations we defer the discussion to follow-up articles.

Clearly, the knowledge-binding property can be established only by using white-box
reductions. In other words, we cannot efficiently construct the code of KA given only
the code of A, although KA itself is an efficient algorithm. Such reductions provide
substantially weaker security guarantees for fixed hash functions like SHA-1, since we
know a priori that efficient collision finders must exist for SHA-1. Therefore, the claims
of existence without efficient construction strategies provide no new information. As a
result, we can only talk about the security of hash function families, i.e., we have to
consider SHA-1 as a “typical” representative of a collision-free hash function family.

The proofs consist of two main steps. First we analyze the behavior of A and con-
struct a dedicated knowledge extractor KA. Next we show that KA is efficient and
Advk-bind(A) is sufficiently small. To construct KA, we run A on all possible inputs and
find suitable triggering messages adv that force A to reveal most of the valid certificates.
Next, we construct KA from A and the triggering messages. As the knowledge-binding
condition only requires the existence of KA, the construction time is not an issue.

Theorem 5. For every t > 0 and δ > 0, there exists τ = (N
δ +1) ·O(t) such that every

(τ, ε)-binding list commitment scheme is (t, τ, ε + δ)-knowledge binding.

Proof. Fix a t-time adversary A and consider a giant status matrix W[pk, ω1; adv, ω2]
the rows of which are indexed by public keys pk and random coins ω1 of A1, whereas
the columns are indexed by t-bit advices adv and random coins ω2 of A2. Define

W[pk, ω1; adv, ω2] =

{
0, if Verpk(c, n, x, s) = false ,

loc(s), if Verpk(c, n, x, s) = true ,

where (c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Note that few columns
of W cover most of the rows containing non-zero elements. Namely, Lemma 1 from
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App. A assures the existence of I =
{
(adv1, ω

1
2), . . . , (advk, ωk

2 )
}

such that |I| ≤ N
δ

and for any fixed advice-randomness pair (adv, ω2):

Pr [(pk, ω1) : 0 �= W[pk, ω1; adv, ω2] �∈ L[pk, ω1] ∧ |L[pk, ω1]| < N ] ≤ δ , (5)

where L[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed locations.
Now the construction3 of KA is evident:

1. Given (pk, ω1) store (c, n, φ) ← A1(pk; ω1) and set X̂[i] = ⊥ for i ∈ {1, . . . , n}.
2. For each (adv, ω2) ∈ I do

– Compute (x, s) ← A2(φ, adv; ω2).
– If Verpk(c, n, x, s) = true then set X̂[loc(s)] ← x.

3. Output the last snapshot of X̂.

To analyze the advantage of KA, we fix a pair (adv, ω2). Let (c, n, φ) ← A1(pk; ω1)
and (x, s) ← A2(φ, adv; ω2) as before. For valid decommitment value s, the entry
X̂[loc(s)] = ⊥ only if |L[pk, ω1]| < N and thus the inequality (5) given above yields
Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ X̂[loc(s)] = ⊥] ≤ δ. Alternatively, KA can fail
if Verpk(c, n, x, s) = true but X̂[loc(s)] �= x. However, we can naturally combine
A1, A2 and KA into an adversary B that outputs these double openings and performs
(N

δ + 1) · O(t) elementary operations. Consequently, Advbind(B) ≤ ε and thus

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x �= X̂[loc(s)] �= ⊥] ≤ ε .

As a result, we have obtained that for any pair (adv, ω2):

Pr [(pk, ω1) : Verpk(c, n, x, s) = true ∧ x �= X̂[loc(s)]] ≤ δ + ε

and the claim follows. �
Theorem 6. For every t > 0 and δ > 0, there exists τ = (N

δ +1) ·O(t) such that every
(τ, ε)-binding set commitment scheme is (t, τ, ε + δ)-knowledge-binding.

Proof. Fix a t-time adversary A and consider a status matrix W[pk, ω1; adv, ω2] that is
indexed identically to the previous proof but the entries are defined differently:

W[pk, ω1; adv, ω2] =

{
0, if Verpk(c, n, x, s) = false ,

x, if Verpk(c, n, x, s) = true ,

where (c, n, φ) ← A1(pk; ω1) and (x, s) ← A2(φ, adv; ω2). Then Lemma 1 from
App. A assures the existence of I =

{
(adv1, ω

1
2), . . . , (advk, ωk

2 )
}

such that |I| ≤ N
δ

and for every fixed advice-randomness pair (adv, ω2):

Pr [(pk, ω1) : 0 �= W[pk, ω1; adv, ω2] �∈ L[pk, ω1] ∧ |L[pk, ω1]| < N ] ≤ δ , (6)

where L[pk, ω1] = {W[pk, ω1; adv, ω2] : (adv, ω2) ∈ I} is a set of revealed elements.
Now the construction of KA is straightforward:

3 Note that all elements of the set I are hardwired as explicit constants into the code of KA, i.e.,
KA does not compute I. As KA runs on a universal Turing machine, it must rewind the code
of A2 and thus KA performs at most O(t) extra steps to complete the loop of Step 2.
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1. Given (pk, ω1) store (c, n, φ) ← A1(pk; ω1) and set X̂ ← ∅.
2. For each (adv, ω2) ∈ I do

– Compute (x, s) ← A2(φ, adv; ω2).
– If Verpk(c, n, x, s) = true then add x to X̂.

3. Output the last snapshot of X̂.

To analyze the advantage of KA, fix (adv, ω2). Let (c, n, φ) ← A1(pk; ω1) and (x, s) ←
A2(φ, adv, ω2) as before. As X̂[pk, ω1] = L[pk, ω1] by the construction (see Lemma 1),
the inequality (6) yields Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| < n ≤ N ] ≤ δ.
The extractor KA can also fail when Verpk(c, n, x, s) = true but x /∈ X̂ and |X̂| ≥ n.
Again, we can naturally combine A1, A2 and KA into an adversary B with running-time
(N

δ +1)·O(t) that runs all algorithms and extracts all valid openings. Consequently, the
restriction Advbind(B) ≤ ε yields Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂ ∧ |X̂| ≥ n] ≤ ε
and we have obtained that for any pair (adv, ω2):

Pr [Verpk(c, n, x, s) = true ∧ x /∈ X̂] ≤ δ + ε

and the claim follows. �

Efficiency of the New Reduction. Again, we compute time-success ratios to compare
the efficiency of the new white-box reduction to the previous black-box ones. To have
a fair comparison we take δ ≈ ε. Then Theorems 5 and 6 provide attacks against the
binding property with parameters t0 ≈ (N

δ + 1)t and ε0 = ε, provided that there
exist a t-time adversary achieving ε + δ success. As a result, we obtain a change ratio
γ = α1

α0
≈ (N

δ + 1)−1 · ε
ε+δ ≈ ε

2N , which is better than the change ratio γ ≈ ε
4N

provided by Thm. 3 and Thm. 4. The difference is not essential rather it comes from
slightly loose success bounds in Thm. 3 and Thm. 4.

6 Applications of Knowledge-Binding Commitments

Here, we briefly describe how knowledge-binding count-certified hash trees can be used
and why knowledge-binding property is important. Knowledge-binding property can be
viewed as an indifference against outside advices. Similar to the plaintext-awareness,
the knowledge-binding property allows one to combine commitments with other cryp-
tographic primitives without a fear of unwanted interference. Such interference often
makes it hard or impossible to prove the security of new constructions. If the secret or
public parameters of other primitives are independent of the commitment parameters
pk, then the rest of the protocol can be interpreted as an external advice. Hence, one can
use the standard hybrid argument technique even if the primitives are used concurrently.

Distributed and fine-grain time-stamping. Knowledge-binding commitments give
rise to a secure time-stamping service where a central time-stamping authority (TSS)
computes and publishes the round commitment (c, n) and distributes the respective cer-
tificates si to the clients. But such service is susceptible to denial-of-service attacks.
Hence, it is more natural to consider a distributed service where k independent servers
compute sub-commitments (ci, ni) and at the end of the round the master commitment
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(c, n) is compiled. Therefore, it is advantageous to use knowledge-binding commit-
ments that facilitate fast merging of sub-commitments and mostly local certificate com-
putations. Count-certified hash trees have the following important property: every root
node (ci, ni) of a hash subtree forms a correct commitment. Moreover, given two root
nodes (cL, nL) and (cR, nR) it is straightforward to compute the commitment of the
merged tree and update the corresponding certificates.

In a way, a set commitment scheme provides a really coarse-grain time-stamping ser-
vice. It is impossible to order the events inside the round X. List commitment provides
only a partial solution, as clients have to trust that the TSS orders documents correctly
in a single round. Tree-shaped list commitments that preserve knowledge-binding w.r.t.
the root of each subtree allow also fine-grained time-stamping even if the TSS acts ma-
liciously. Essentially, TSS has to send to a Client all root commitments (ci, ni) of all
preceding computations, then the Client has strong guarantees that after submitting his
query the TSS cannot insert any messages in the prefix of the list without getting caught.
Hence, count-certified hash trees could be used for fine-grain time-stamping.

Non-malleable partially releasable commitments. To show that knowledge-binding
commitments have other applications outside of the domain of time-stamping, we give
a construction of partially releasable non-malleable commitments form non-malleable
string commitments and knowledge-binding commitments. It is just an informal exam-
ple, we do not formalize the claim due to the lack of space.

Recall that a commitment scheme is non-malleable if given a commitment c it is
infeasible to construct a new commitment c′ �= c such that after seeing a certificate
s for x it is infeasible to output a valid certificate s′ for x′ such that x and x′ are re-
lated. Let L = {c1, . . . , cn} be a list of non-malleable commitments for x1, . . . , xn and
(C, D) ← Compk(L) is computed by using a knowledge-binding commitment scheme.
Then the resulting commitment scheme is non-malleable. From the knowledge-binding
property it follows that after seeing a proof that ci was computed by using xi, ad-
versary’s ability to output certificates (c, s) such that Pr [Ver(C, n, c, s) = true] does
not increase. Hence, the adversary knows all valid commitment-certificate pairs (ci, si)
essentially before any commitment is opened. Therefore, non-malleability directly fol-
lows from the non-malleability of the lower-level commitment.
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1. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes with-
out trees. In Proc. of EUROCRYPT’97, LNCS 1233, pages 480–494, 1997.

2. D. Bayer, S. Haber, and W.-S. Stornetta. Improving the efficiency and reliability of digital
time-stamping. In Sequences II: Methods in Communication, Security, and Computer Sci-
ence, pages 329-334, Springer-Verlag, New York 1993.

3. J. Benaloh and M. de Mare. One-way accumulators: a decentralized alternative to digital
signatures. In Proc. of EUROCRYPT’93, LNCS 765, pages 274–285, 1994.

4. M. Blum. Coin flipping by telephone: a protocol for solving impossible problems. In Proc.
of CompCon, pages 133–137, 1982.
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A Combinatorial Extraction Lemma

Consider a finite matrix W[r; c] the rows of which are indexed by r ∈ R and the
columns are indexed by c ∈ C. Moreover, assume that a certain probability measure
Pr [·] is defined over the row indices R. Then it is straightforward to state and prove a
combinatorial lemma that we used for proving the knowledge-binding property.

Lemma 1. For any δ > 0 and N ∈ N, there exist a set of column indices ∅ ⊆ I ⊆ C
such that 0 ≤ |I| ≤ N

δ and for every column c ∈ C :

Pr [r ← R : W[r; c] �= 0 ∧ W[r; c] /∈ L[r] ∧ |L[r]| < N ] ≤ δ ,

where L[r] = {W[r, c] : c ∈ I} \ {0} is the set of nonzero elements revealed by I.

Proof. Consider following iterative procedure:

1. Set I = ∅ and initialise row counters cnt[r] = N for r ∈ R.
2. While exists c ∈ C such that Pr [r : W[r; c] �= 0] ≥ δ do

(a) Choose c such that Pr [r : W[r; c] �= 0] ≥ δ and insert c into I.
(b) For each row r ∈ R such that W[r; c] �= 0 do

– Store w ← W[r; c].
– Remove w entries from the row.

If W[r; c′] = w then W[r, c′] ← 0 for c′ ∈ C.
– Decrease counter cnt[r] ← cnt[r] − 1.

(c) Zero all rows where cnt[r] = 0.
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– If cnt[r] = 0, set W[r; c′] ← 0 for c′ ∈ C.

Let N = {r : ∃W[r; c] �= 0} denote nonzero rows and Nold, Nnew denote the value of
N before and after update at Step 2. Let

μ[N ] =
∑

r∈N
Pr [r] cnt[r]

be the average counter value. Then by the construction μ[Nnew ] ≤ μ[Nold] − δ after a
single iteration of Step 2. As initially μ[N ] ≤ N , then after �N/δ� iterations Pr [N ] ≤
μ[N ] < δ. Note that the algorithm nullifies the elements W[r, c′] only if they already
belong to L[r] or |L[r]| ≥ N . In the end, each column c contains at most a δ-fraction
of elements that satisfy the predicate W[r; c] �= 0 ∧ W[r; c] /∈ L[r] ∧ |L[r]| < N and
the claim follows. Note that I can be empty. �

I = ∅ L I = {1} L I = {1, 3} L I = {1, 3} L
1 2 0 1 1 ∅
1 0 3 0 2 ∅
2 0 1 2 3 ∅
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 3 0 2 {1}
0 0 1 0 3 {2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

⇒

0 2 0 0 0 {1}
0 0 0 0 0 {1, 3}
0 0 0 0 0 {2, 1}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

1 2 0 1 1 {1}
1 0 3 0 2 {1, 3}
2 0 1 2 3 {1, 2}
0 0 0 1 0 ∅
0 0 0 0 2 ∅

Fig. 3. Illustration of Lemma 1. The first three sub-figures show how the columns are selected
for the uniform distribution over the rows and for parameter values N = 2, δ = 0.3, boldface
symbols denote the changed values. The last sub-figure shows the final result. Boldface symbols
denote the revealed entries. Underlined symbols denote the entries that satisfy the predicate.
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Abstract. We describe the first efficient ring signature scheme secure,
without random oracles, based on standard assumptions. Our ring signa-
tures are based in bilinear groups. For l members of a ring our signatures
consist of 2l + 2 group elements and require 2l + 3 pairings to verify. We
prove our scheme secure in the strongest security model proposed by
Bender, Katz, and Morselli: namely, we show our scheme to be anony-
mous against full key exposure and unforgeable with respect to insider
corruption. A shortcoming of our approach is that all the users’ keys
must be defined in the same group.

1 Introduction

Ring signatures were introduced by Rivest, Shamir, and Tauman [18, 19]. Each
user in the system generates and publishes a public key. (This key can be, for
example, the description of an RSA permutation.) In generating a ring signature,
a user can choose, arbitrarily, some other users to implicate in the signature. The
public keys of these implicated users, along with the signer’s public key, are said
to form the ring for that signature. A verifier is convinced that someone in the
ring is responsible for the signature, but cannot tell who.

In this paper we present the first efficient ring signature scheme secure, with-
out random oracles, based on standard assumptions. Our scheme gives O(l)
signatures, with no a priori bound on ring size. Our ring signatures are based in
bilinear groups. In particular, for l members of a ring our signatures consist of
2l + 2 group elements and require 2l + 3 pairings to verify. We now outline our
approach.

In our ring signature scheme each user generates her own public-private key-
pair from the Waters [21] signature scheme defined over a group G of a composite
order n, where the group is set up by a trusted authority. When a user wants to
sign a message M on a ring R she first creates a ciphertext C, which is a BGN [9]
encryption of her public signing key. Next, she proves that C is an encryption
� Supported by a Koshland Scholars Program fellowship.
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of exactly one of the public keys in the the ring R. We use proofs similar to that
of Groth, Ostrovsky, and Sahai [16] to do this efficiently. Finally, she gives an
encrypted signature of the message M using her private signing key and proves
that the signature verifies under the encrypted key.

A shortcoming of our approach is that all the users’ keys must be defined
in the group G. This is unlike the generic construction of Bender, Katz, and
Morselli [4], which does not place restrictions on the user keys, and also un-
like some of the random-oracle–based schemes (discussed below) that allow for
independently generated RSA user keys. In compensation, however, we obtain
an efficient scheme provably secure, without random oracles, in the strongest
security model proposed by Bender, Katz, and Morselli [4]: namely, we show our
scheme to be anonymous against full key exposure and unforgeable with respect
to insider corruption.

Related Work. The construction of Rivest, Shamir, and Tauman, requires that
the users’ public keys be for trapdoor-permutation–based schemes, i.e., include
descriptions of a trapdoor permutation. Subsequently, ring signature construc-
tions were presented where the underlying keys are discrete-log–based [17], dis-
crete-log–based in the bilinear map setting [8], factoring-based [15], or a mix of
trapdoor-permutation–type and discrete-log–type [1].

Ring signatures are also related to group signatures, which were introduced by
Chaum and Van Heyst [13] and are themselves the subject of much subsequent
research. The two concepts differ in two main ways. First, the ring is determined
by the signer and can be different for each signatures; in a group signature, group
membership is controlled by a group manager and, at any given time, is fixed.1

Second, no one can determine which member of a ring generated a signature; in
a group signature, a tracing party possesses a special trapdoor that allows it to
determine which group member is responsible for a signature.

Applications. The canonical application for ring signatures is secret leaking: A
signature by the ring of all cabinet ministers on a leaked memo is credible, but
doesn’t incriminate any particular minister for the leak. Other applications have
been proposed [4, 19].

Ring Signatures in the Standard Model. The security of the ring signatures pro-
posed by Rivest, Shamir, and Tauman and in most subsequent papers holds
in the random oracle model [2].2 Some recent papers have considered how to
construct ring signatures that are provably secure in the standard model.

Xu, Zhang, and Feng [22] describe a ring signature secure in the standard
model, but the proof presented is not rigorous and is apparently flawed [4, n. 1].
Chow et al. [14] give a ring signature scheme with proof in the standard model,
1 Dodis et al. [15, Sect. 6.3] describe ad-hoc group signatures, a primitive for which

this difference is less pronounced.
2 More precisely, Rivest, Shamir, and Tauman analyzed their construction in the ideal-

cipher model; Bresson, Stern, and Szydlo [11] later showed that random oracles
suffice for proving its security.
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but based on a strong new assumption. Bender, Katz, and Morselli present a
ring signature secure in the standard model assuming trapdoor permutations
exist, but the scheme uses generic ZAPs for NP as a building block, and is
thus impractical. In addition, they give two ring signature schemes secure in the
standard model but which allow only two-signer rings: one based on the Waters
signature [21], a second based on the Camenisch-Lysyanskaya signature [12].

Our ring signature scheme is related to a recent group signature secure without
random oracles due to Boyen and Waters [10]. One important difference is that
in their group signature paper the master public key, which belongs to the group
manager, is in the clear and the first level message, which corresponds to the user’s
identity, is encrypted and then proved to be well formed. In our scheme, on the
other hand, the message to be signed is public, but the verification key – which
belongs to the user who generated the signature – is encrypted and then a proof is
given that it is well formed. (In our case, “well-formed” means “in the ring.”) The
Boyen-Waters group signature is itself based on two lines of research: the identity-
based encryption scheme in the standard model due to Waters [21], which follows
up on earlier schemes by Boneh and Boyen [5, 6]; and the perfect non-interactive
zero knowledge proofs of Groth, Ostrovsky, and Sahai [16], which are based on the
homomorphic encryption scheme proposed by Boneh, Goh, and Nissim [9].

2 Mathematical Setting

Like Boyen and Waters, we make use of bilinear groups of composite order.
These were introduced by Boneh, Goh, and Nissim [9]. Let n be a composite
with factorization n = pq. We have:

– G is a multiplicative cyclic group of order n;
– Gp is its cyclic order-p subgroup, and Gq is its cyclic order-q subgroup;
– g is a generator of G, while h is a generator of Gq;
– GT is a multiplicative group of order n;
– e : G × G → GT is an efficiently computable map with the following proper-

ties:
• Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
• Non-degenerate: 〈e(g, g)〉 = GT whenever 〈g〉 = G;

– GT,p and GT,q are the GT -subgroups of order p and q, respectively;
– the group operations on G and GT can be performed efficiently; and
– bitstrings corresponding to elements of G (and of GT ) can be recognized

efficiently.

In our ring signature scheme, the description of such a group G, including the
generators g and h, is given in the common reference string generated by the
setup authority.

2.1 Complexity Assumptions

For our ring signature, we assume that two problems are difficult to solve in the
setting described above: computational Diffie-Hellman in Gp and the Subgroup
Decision Problem.
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Computational Diffie-Hellman in Gp. Given the tuple (η, ηa, ηb), with η
R←

Gp and a, b
R← Zp, compute and output ηab. In the composite setting one

is additionally given the description of the larger group G, including the
factorization (p, q) of its order n.

Subgroup Decision. Given w selected at random either from G (with proba-
bility 1/2) or from Gq (with probability 1/2), decide whether w is in Gq. For
this problem one is given the description of G, but not given the factorization
of n.

The assumptions are formalized by measuring an adversary’s success probability
for computational Diffie-Hellman and an adversary’s guessing advantage for the
subgroup decision problem. Note that if CDH in Gp as we have formulated it is
hard then so is CDH in G. The assumption that the subgroup decision problem
is hard is called the Subgroup Hiding (SGH) assumption, and was introduced
by Boneh, Goh, and Nissim [9].

3 Underlying Signature

The underlying signature scheme is the Waters signature [21]. This signature
was adapted for composite order groups by Boyen and Waters [10]. The variant
we describe differs from theirs in retaining the original Waters formulation for
the public key: g1, g2 ∈ G rather than e(g1, g2) ∈ GT .

Suppose that messages to be signed are encoded as elements of {0, 1}k for
some k. (For example, as the output of a k-bit collision-resistant hash function.)
In addition to the system parameters of Sect. 2 above, the Waters scheme makes
use of random generators u′, u1, u2, . . . , uk in G.

The scheme is as follows.

WC.Kg. Pick random α, β
R← Zn and set g1 ← gα and g2 ← gβ . The public

key pk is (g1, g2) ∈ G2. The private key sk is (α, β).
WC.Sig(sk, M). Parse the user’s private key sk as (α, β) ∈ Z

∗
n and the mes-

sage M as a bitstring (m1, . . . , mk) ∈ {0, 1}k. Pick a random r
R← Zn and

compute

S1 ← gαβ · (
u′

k∏

i=1

umi

i

)r and S2 ← gr .

The signature is σ = (S1, S2) ∈ G2.
WC.Vf(pk, M, σ). Parse the user’s public key pk as (g1, g2) ∈ G2, the message M

as a bitstring (m1, . . . , mk) ∈ {0, 1}k, and the signature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e
(
S−1

2 , u′
k∏

i=1

umi

i

)
?= e(g1, g2) (1)

holds; if so, output valid; if not, output invalid.

This signature is existentially unforgeable if computational Diffie-Hellman
holds on G.
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The Waters Signature in Gp. One can also restrict the Waters signature to the
subgroup Gp, obtaining a signature scheme to which we refer as WP . In this
case, the generator g is replaced by a generator η of Gp, and exponents are drawn
from Zp rather than Zn. In particular, the verification equation is

e(Ŝ1, η) · e
(
Ŝ−1

2 , û′
k∏

i=1

ûmi

i

)
?= e(η1, η2) . (2)

This variant is secure assuming CDH is hard in Gp, and is used in our reductions.

4 Ring Signature Definitions

Informally, a ring signature scheme should satisfy two security properties. First,
it should be anonymous: an adversary should not be able to determine which
member of a ring generated a signature. Second, it should be unforgeable: an
adversary should be able to construct a valid signature on a ring of public keys
only if he knows the secret key corresponding to one of them. Formalizing this
intuition is tricky. Rivest, Shamir, and Tauman [18] gave a formalization which
has been used in much subsequent work. Recently, Bender, Katz, and Morselli [4]
described several possible stronger formulations of each notion.

Below, we show our scheme to be anonymous against full key exposure and
unforgeable with respect to insider corruption. For both anonymity and un-
forgeability these are the strongest formulations considered by Bender, Katz,
and Morselli. We now recall these formulations; see [4] for additional details and
motivation.

RS.Kg. This randomized algorithm outputs a public verification key pk and a
private signing key sk.

RS.Sig(pk, sk, R, M). This algorithm takes as input a keypair (pk, sk) and a set
of public keys R that constitutes the ring, along with a message M in some
message space to be signed. It is required that pk ∈ R hold. The algorithm
returns a signature σ on M for the ring R.

RS.Vf(R, M, σ). The verification algorithm takes as input a set of public keys R
that constitutes the ring and a purported signature σ on a message M . It
returns either valid or invalid.

Anonymity. Anonymity against full key exposure for a ring signature scheme RS
is defined using the following game between a challenger and an adversary A:

Setup. The challenger runs algorithm Kg l times to obtain public-private
keypairs (pk1, sk1), . . . , (pkl, skl). In addition, the challenger records the
random coins {ωi} used in generating each keypair. Here l is a game
parameter. The adversary A is given the public keys {pki}.

Signing Queries. Algorithm A is allowed to make ring signing queries of
the form (s, R, M). Here M is the message to be signed, R is a set of
public keys, and s is an index such that pks ∈ R holds. (The other keys
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in R need not be keys in the set {pki}.) The challenger responds with
σ = Sig(pks, sks, R, M).

Challenge. Algorithm A requests a challenge by sending to the challenger
the values (i0, i1, R, M). Here M is to be signed with respect to the
ring R, and i0 and i1 are indices such that pki0 , pki1 ∈ R. (The other
keys in R need not be keys in the set {pki}.) The challenger chooses a bit
b

R← {0, 1}, computes the challenge signature σ ← Sig(pkib
, skib

, R, M),
and provides A with σ. In addition, the challenger provides A with the
coins {ωi} used to generate the keys; from these, A can recompute {ski}.

Output. Algorithm A finally outputs its guess b′ for b, and wins if b = b′.

We define Advrsig-anon-ke
RS,A to be the advantage over 1/2 of A in the above game.

Unforgeability. Unforgeability with respect to insider corruption for a ring sig-
nature scheme RS is defined using the following game between a challenger and
an adversary A:

Setup. The challenger runs algorithm Kg l times to obtain public-private
keypairs (pk1, sk1), . . . , (pkl, skl). Here l is a game parameter. The ad-
versary A is given the public keys {pki}. The challenger also initializes
the set C of corrupted users as C ← ∅.

Queries. Algorithm A is allowed to make ring signing queries and corrup-
tion queries. A ring signing query is of the form (s, R, M). Here M is
the message to be signed, R is a set of public keys, and s is an index
such that pks ∈ R holds. (The other keys in R need not be keys in the
set {pki}.) The challenger responds with σ = Sig(pks, sks, R, M). A cor-
ruption query is of the form s, where s is again an index. The challenger
provides sks to A and adds pks to C.

Output. Eventually, A outputs a tuple (R∗, M∗, σ∗) and wins the game if
(1) it never made a ring signing query (s, R∗, M∗) for any s; (2) R∗ ⊆
{pki} \ C; and (3) Vf(R∗, M∗, σ∗) = valid.

We define Advrsig-uf-ic
RS,A to be the probability that A wins in the above game.

Trusted Setup. In our model we allow for a trusted global setup by an authority.
This is a stronger setup assumption than what was used in previous results.
However, this setup allows us to realize the benefits of an efficient scheme prov-
ably secure in the standard model. In practice the authority role can be split
amongst several parties. For example, using techniques like those of Boneh and
Franklin [7] several parties could generate a shared modulus n and group de-
scription efficiently for our scheme.

5 On Bender, Katz, and Morselli’s Two-User Ring
Signatures

Bender, Katz, and Morselli propose a ring signature secure without random or-
acles based on the Waters signature. This ring signature allows only two-signer
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rings, but this suffices for some applications of ring signatures, in particular
designated-verifier signatures. Unlike the scheme we present, the BKM ring sig-
nature is proven unforgeable only against chosen-subring attacks. In this section,
we recall the BKM ring signature and show that it is, in fact, insecure with re-
spect to insider corruption.

We stress that Bender, Katz, and Morselli do not claim that their scheme is
secure with respect to insider corruption. They prove security against chosen-
subring attacks, a weaker notion, and this proof is correct. Our contribution in
this section is to demonstrate a practical attack against the scheme in the more
general model.

Consider a group G of prime order p, together with a bilinear map e : G×G →
GT , where GT is also of size p. (This is unlike the composite-order setup of our
paper.) Each user has a private key α ∈ Zp and a public key that includes
g1 = gα and her own Waters hash generators u′, u1, . . . , uk ∈ G. Now, if Alice
wishes to sign a message M = (m1, . . . , mk) in a ring that comprises her and
Bob, whose public key is (ḡ1, ū′, ū1, . . . , ūk), she picks r

R← Zp and computes

S1 ← (ḡ1)α · (u′ ∏k

i=1
umi

i

)r · (ū′ ∏k

i=1
ūmi

i

)r and S2 ← gr .

For any two users, the values (g1, ḡ1) act like the Waters public key (g1, g2); the
value gαᾱ acts as a shared signing key. Since either user is capable of computing
this value, anonymity is unconditional. Unforgeability against chosen-subring
attacks follows from the security of the underlying Waters signature.

This scheme has the advantage that it requires no shared setup beyond the
group description. This justifies making each signer generate and publish her
own Waters hash generators, since a third party trusted with generating them
for all users could use its knowledge of their discrete logs to recover the shared
signing key gαᾱ from any signature.

The unforgeability condition under which Bender, Katz, and Morselli prove
their scheme secure does not allow for adversarially generated keys. We show
that the scheme is in fact insecure against such attacks, which, for a two-user
ring signature, have the following form: Alice and Bob publish their public keys.
Then Veronica publishes her key and tricks Alice into signing a message for the
Alice-Veronica ring; what she learns from this signature allows her to forge an
Alice-Bob ring signature.

Suppose Alice’s public key is (g1, u′, u1, . . . , uk) and Bob’s public key is (ḡ1,

ū′, ū1, . . . , ūk). In our attack, Veronica picks s, t′, t1, . . . , tk
R← Zp and sets

ĝ1 ← ḡ1 · gs and û′ ← gt′
/u′ and ûi ← gti/ui 1 ≤ i ≤ k .

Now when Alice generates an Alice-Veronica ring signature on a message M =
(m1, . . . , mk) we will have

S1 = (ĝ1)α · (u′û′ ∏k

i=1
(uiûi)mi

)r = (ḡ1)α(gs)α(gt)r

where t = t′ +
∑k

i=1 miti, and Veronica recovers the shared Alice-Bob signing
key gαᾱ as S1/(gs

1S
t
2).
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Note that Veronica need not know the discrete logarithms of all her Waters
generators. It suffices for her to pick û′ specially while letting the rest be glob-
ally specified. In this variant, Veronica picks ahead of time a message M∗ =
(m∗

1, . . . , m
∗
k) that she thinks she can trick Alice into signing. She then chooses

s, t′ R← Zp, and computes

ĝ1 ← ḡ1 · gs · and û′ ← gt′ / (
u′ ∏k

i=1
(uiûi)m∗

i
)

.

Now, when Alice generates an Alice-Veronica ring signature on M∗, we have
S1 = (ḡ1)α(gs)α(gt′

)r, from which Veronica can recover gαᾱ.
The attack described above is prevented if all users share the same Waters

generators (u′, u1, . . . , uk); but even in this case Veronica can still obtain from
Alice an Alice-Bob ring signature when Alice thinks she is generating an Alice-
Veronica ring signature. To achieve this, Veronica chooses s

R← Zp and sets
ĝ1 ← (ḡ1)s. Now an Alice-Veronica ring signature on M = (m1, . . . , mk) will
have the form

S2 = gr and S1 = (ĝ1)α · (
u′ ∏k

i=1
umi

i

)r = (ḡα
1 )s · (

u′ ∏k

i=1
umi

i

)r
,

and therefore (S1/s
1 , S

1/s
2 ) is an Alice-Bob ring signature on M with randomness

r/s.

Attack on the Camenisch-Lysyanskaya–Based Scheme. In the full version of their
paper [3], Bender, Katz, and Morselli also give a two-user ring signature based
on Camenisch-Lysyanskaya signatures [12]. As with their Waters-based scheme,
they claim and prove security against chosen-subring attacks. Here, we show an
attack on this ring signature similar to the attack above, again with respect to
insider corruption. We stress once more that Bender, Katz, and Morselli do not
claim security in this stronger model.

Suppose that Alice and Bob have respective secret keys x and y, and pub-
lic keys X = gx and Y = gy. Their ring signature on a message m ∈ Zp is
(a, ay, ax+mxy), where a is random in G. If a = gr with r ∈ Zp then Alice com-
putes the ring signature as (a, Y r, axY mxr) and Bob as (a, ay, Xr+mry). If Veron-
ica plays the part of Alice, she publishes as her key X̂ = Xs for s

R← Zp. Bob
then generates the Veronica-Bob signature (S1, S2, S3) = (a, ay, asx+msxy), from
which Veronica can produce an Alice-Bob ring signature on m as (S1, S2, S

1/s
3 ). If

Veronica plays the part of Bob, she publishes as her key Ŷ = Y s for s
R← Zp. Al-

ice then generates the Alice-Veronica signature (S1, S2, S3) = (a, asy, ax+mxsy),
from which Veronica can produce an Alice-Bob ring signature on m′ = ms as
(S1, S

1/s
2 , S3).

Implications for Designated-Verifier Signatures. The attack described above
demonstrates a trade-off between our Waters-based ring signature and the BKM
one. Our scheme requires a trusted setup, but achieves security even in the pres-
ence of adversarially generated keys. This is important for designated-verifier



174 H. Shacham and B. Waters

signatures, the main proposed application for two-user ring signatures, since
there is no reason that Alice will only wish to designate as verifiers users whose
keys she trusts to have been properly generated.

6 Our Ring Signature Construction

In this section, we describe our ring signature scheme. As noted in the introduc-
tion, in our ring signature all the users’ keys must be defined in a group G of
composite order. That group must be set up by a trusted authority, since the
factorization of its order n must be kept secret. In addition to setting up the
group G, the setup authority must also set up some additional parameters, using
a global setup algorithm we now describe.

Global Setup. The trusted ring signing setup algorithm first constructs a group G
of composite order n = pq as described in Sect. 2 above. It then chooses expo-
nents a, b0

R← Zn and sets

A ← ga and B0 ← gb0 and Â ← ha .

Let H : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. The setup
algorithm picks Waters hash generators

u′, u1, u2, . . . , uk
R← G .

The published common reference string includes a description of the group G
and of the collision-resistant hash H , along with (A, B0, Â) and (u′, u1, . . . , uk).
The factorization of n is not revealed. Note that anyone can use the pairing to
verify that the pair (A, Â) is properly formed.

The Scheme. Individual users now use the public parameters published by the
setup algorithm in generating their keys, signing, and verifying. The algorithms
they use are as follows.

LRS.Kg. Choose a random exponent b
R← Zn; set pk ← gb ∈ G and sk ← Ab ∈

G.
Recall that in the variant of the Water’s signature scheme that we use

a public key is a pair of group elements in G. Here, one of the two group
elements for a user’s key is always the global setup value A. In effect the
user’s public key is like the Water’s public key A, gb. However, all users
share the element A.

LRS.Sig(pk, sk, R, M). The signing algorithm takes as input a message M ∈
{0, 1}∗, a ring R of public keys, and a keypair (pk, sk) ∈ G2. No key may
appear twice in R, and R must include pk.

Compute (m1, . . . , mk) ← H(M, R). Let l = |R|; parse the elements of R
as vi ∈ G, 1 ≤ i ≤ l. Let i∗ be the index such that vi∗ = pk. Define {fi}l

i=1
as

fi =

{
1 if i = i∗,
0 otherwise.
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Now for each i, 1 ≤ i ≤ l, choose a random exponent ti
R← Zn and set

Ci ← (vi/B0)fihti and πi ← (
(vi/B0)2fi−1hti

)ti
.

As in the papers of Groth, Ostrovsky, and Sahai [16] and Boyen and Wa-
ters [10], the value πi acts as a proof that Ci is well-formed – here, specif-
ically, that fi ∈ {0, 1}. Let C ← ∏l

i=1 Ci and t ← ∑l
i=1 ti. Observe that,

when there is exactly one non-zero value amongst {fi}, viz., fi∗ , we have
B0C = (vi∗)(ht), so C serves as an encryption of the user’s public key. (The
role of B0 is discussed below.) Finally, choose r

R← Zn and compute

S1 ← sk · (u′ ∏k

j=1
u

mj

j

)r · Ât and S2 ← gr

The signature is output as σ =
(
(S1, S2), {(Ci, πi)}l

i=1

) ∈ G2l+2.
LRS.Vf(R, M, σ). Compute (m1, . . . , mk) ← H(M, R). Let l = |R|; parse the

elements of R as vi ∈ G, 1 ≤ i ≤ l. Verify that no element is repeated in R
and reject otherwise. Parse the signature σ as

(
(S1, S2), {(Ci, πi)}l

i=1

) ∈
G2l+2. (If this parse fails, reject.) Check first that the proofs {πi} are valid:
for each i, 1 ≤ i ≤ l, that

e
(
Ci, Ci/(vi/B0)

) ?= e(h, πi) (3)

holds. If any of the proofs is invalid, reject. Otherwise, set C ← ∏l
i=1 Ci.

Accept if the following equation is satisfied:

e(A, B0C) ?= e(S1, g) · e(S−1
2 , u′ ∏k

j=1
u

mj

j

)
. (4)

Discussion. As outlined in the introduction, in our ring signature scheme we
wish to prove that the value C which is computed by multiplying all Ci values
together contains an encryption of exactly one key from the ring. This can be
done by both using GOS proofs to show that each Ci is either an encryption of
the proper public key or the identity element and that exactly one of these is
not the identity element. (If every Ci were an encryption of the identity element
everywhere, the public key encrypted in C would be the identity element and
trivial for the adversary to forge under.)

Instead of directly proving this, which would require larger – though still
O(l)-sized3 – proofs, we have the user prove that each Ci is an encryption of
the identity element or the i-th public key in the ring times some group element
B0 given by the setup algorithm. Thus, C will be an encryption of a public key
times B0. Now a signer will instead prove that the signature verifies under the
encrypted key divided by B0, which is the signers original public key.. In this
way if a forger attempts to forge by letting all Ci be encryptions of the identity
element, he will need to forge under the public key B0.
3 A possible circuit is as follows. Let {fi} be the indicator variables. Let c1

0 = c2
0 = 0,

and for i ≥ 1 compute c1
i and c2

i as c1
i ← c1

i−1 ∨fi and c2
i ← c2

i−1 ∨(fi ∧c1
i−1). Finally,

prove that c1
l = 1 and c2

l = 0.
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7 Security

We now prove that our ring signature scheme is anonymous against full key
exposure and unforgeable with respect to insider corruption.

7.1 Anonymity

The anonymity proof closely follows that given by Boyen and Waters for their
group signature [10].

Theorem 1. Our ring signature scheme is anonymous against full key exposure
if SGH is hard.

Proof. The proof proceeds in games. We define Games 0 and 1 as follows. In
Game 0, h is chosen uniformly from Gq; in Game 1, h is chosen uniformly
from G.

Games 0 and 1. Algorithm B is given: the group order n (but not its factor-
ization); the description of the group G, together with generators g of G and
h; in Game 0, h is chosen from Gq; in Game 1, h is chosen from all of G. Al-
gorithm B chooses a collision resistant hash function H : {0, 1}∗ → {0, 1}k. It
follows the setup algorithm above to obtain system parameters (A, B0, Â) and
(u′, u1, . . . , uk). Algorithm B then runs Kg l times to obtain public-private key-
pairs {(pki, ski)}l

i=1, recording in addition the randomnesses {bi} used in each
run.

Algorithm B runs A, providing to it the following: the description of the
group G, including its order n and the generators g and h; the common pa-
rameters (A, B0, Â) and (u′, u1, . . . , uk), along with the description of the hash
function H ; and the challenge public keys {pki}l

i=1. When A makes a signing
query of the form (s, R, M), A responds with σ = Sig(pks, sks, R, M). Finally,
A requests a challenge with the values (i0, i1, R, M). Algorithm B chooses a bit
b

R← {0, 1}, computes the challenge signature σ ← Sig(pkib
, skib

, R, M), and pro-
vides A with σ. In addition, the challenger provides A with the random coins {bi}
used to generate the private keys. Algorithm A finally outputs its guess b′ for b;
B outputs 1 if b = b′, 0 otherwise.

Discussion. Denote by Advgame-0
B the advantage B has over 1/2 in Game 0, and

by Advgame-1
B the advantage over 1/2 it has in Game 1. Clearly, we have

Advgame-0
B = Advrsig-anon-ke

LRS,A , (5)

since in Game 0 A’s environment is exactly as specified in the anonymity game.
Moreover, suppose that Bś output were different in the two games. Then we
could use B, with A as a subroutine, to solve SGH: given generators (g, h) to
test, we provide them to B and output 1 if B does. This gives a new algorithm C
for which we have
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Advsgh
C =

∣∣
∣Pr

[B = 1 | h
R← Gp

] − Pr
[B = 1 | h

R← G
]∣∣
∣

=
1
2

∣
∣
∣
(
2 Pr

[B = 1 | h
R← Gp

] − 1
) − (

2 Pr
[B = 1 | h

R← G
] − 1

)∣∣
∣

=
1
2

∣
∣Advgame-0

B − Advgame-1
B

∣
∣ . (6)

But now, we argue that Advgame-1
B = 0, even if A is computationally unbounded.

Consider the distinguishing challenge
(
(S1, S2), {(Ci, πi)}l′

i=1
) ∈ G2l′+2. For

each i, we have Ci = (vi/B0)fihti with fi ∈ {0, 1} and ti ∈ Zn. But when
h is a generator of G there exist τi0, τi1 ∈ Zn such that Ci = (vi/B0)hτi1 = hτi0

and, moreover, denoting by (πi | fi = b) the value which πi is assigned if fi is
set to b ∈ {0, 1}, we have

(πi | fi = 1) = ((vi/B0)1hτi1)τi1 = (hτi0)τi1 = (hτi1)τi0

= ((vi/B0)−1hτi0)τi0 = (πi | fi = 0) ,

so for each i the pair (Ci, πi) is consistent with either fi = 0 or fi = 1, and A
can gain no information from this part of the signature. The value S2 = gr is
unrelated to the choice of signer. Thus if A can gain information, it is only from
S1. But, having fixed S2 and {(Ci, πi)}, S1 is the unique value satisfying (4).
Specifically, letting A = ga, S2 = gr, and C/B0 = gc (all of which a computa-
tionally unbounded adversary can calculate), we have S1 = gac · (u′ ∏k

j=1 u
mj

j

)r.
Thus this value gives no information about whether ski0 or ski1 was used to
generate the challenge signature, and A can do no better than guess b. This
establishes

Advgame-1
B = 0 (7)

Putting equations (5), (6), and (7) together, we see that

Advrsig-anon-ke
LRS,A ≤ 2Advsgh

C .

To interpret this result concretely, we note that the algorithm B used in the re-
duction took O(1) operations to set up and obtain the result, and O(1) time to
answer each of A’s queries. To interpret it asymptotically, we introduce the secu-
rity parameter that we have suppressed, note that the reduction is polynomial-
time in that parameter, and observe that if Advrsig-anon-ke

LRS,A is non-negligible, then
so is Advsgh

C . Either interpretation implies the result stated informally in the
theorem.

7.2 Unforgeability

We show that our ring signature scheme is unforgeable. We present a proof sketch
here, with the proof relegated to the full version of the paper [20].

Theorem 2. Our ring signature scheme is unforgeable with respect to insider
corruption if H is collision resistant and CDH is hard in Gp.
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Proof (sketch). The algorithm that makes the reduction is given the factoriza-
tion of n. Using this and standard Chinese Remaindering techniques, it can
decompose an element of G into its Gp and Gq constituents. This allows it to
undo BGN blinding with ht terms, and to recover from a signature the values
fi used in generating it. Each of these must be in the set {0, 1} by the perfect
soundness of GOS proofs.

First, we ensure that any forgery (M∗, R∗) is such that H(M∗, R∗) is not
equal to H(M, R) for any previous signing query (M, R) made by the adversary.
This is easy: an adversary for which this is not true would break the collision
resistance of H .

Having disposed of this possibility, we distinguish between two types of ad-
versaries. Consider the values {fi} that we recover from the forgery. For the first
type of adversary, the number of i’s such that fi = 0 is either 0 or more than 1.
For the second type, exactly one fi equals 1.

For the first type of adversary, we note that each Ci such that fi = 1 con-
tributes a (vi/B0) term to the encrypted Waters key C =

∏
Ci. Thus the Waters

key under which the encrypted signature (S1, S2) is verified, B0C, will include
a B1−f

0 term, where f =
∑

fi 
= 1 for this type of adversary. Thus if we em-
bed a CDH challenge in A and B0, but construct the Waters hash generators
(u′, u1, . . . , uk) and user keys {vi} so that we know their discrete logarithms,
we will obtain from the forgery values (S1, S2) such that e(A, B1−f

0 · ηr) =
e(S1, η) · e(S−1

2 , ηx), where r and x are numbers we compute. From this we eas-
ily obtain the CDH solution. (Because we must project into Gp to recover the
fi’s, we obtain a CDH solution in Gp rather than G, which is why the generator
η of Gp has replaced g in the verification equation above.)

For the second type of adversary, we obtain a Waters signature forgery. Given
the challenge Waters public key (η1, η2), which again is in Gp, and the Waters
hash generators (û′, û1, . . . , ûk), we place η1 in A, adding a random Gq com-
ponent so that A spans G, and pick B0 arbitrarily. We similarly extend the
challenge waters hash generators to G. We pick all the user keys arbitrarily ex-
cept one, which we instantiate using η2, properly extended to G. Now we can
handle corruption queries for every user except the special one. Signing queries
we can answer directly for the normal users, and can answer for the special user
using our Waters signing oracle. This oracle returns a signature (Ŝ1, Ŝ2) ∈ G2

p;
extending this to a properly-blinded signature in G takes a bit of work, but isn’t
terribly difficult. The index of the special user is kept hidden from the adversary,
so with probability 1/l he doesn’t make a corruption query for that user but then
does make his forgery for that user. (Recall that this type of adversary always
has exactly one user for which fi = 1.) We convert the adversary’s forgery to a
Waters signature forgery in Gp. Because H(M∗, R∗) is different for this forgery
than for previous signing queries, the forgery is nontrivial.

Thus we obtain from a ring signature forging adversary a break of either
the collision resistance of H or the CDH hardness of Gp or (with a 1/l loss of
advantage) to the unforgeability of the Waters signature in Gp. However, the
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Waters signature in Gp is unforgeable if CDH is hard in Gp, and the theorem
statement follows.

8 Conclusions and Open Problems

We presented the first efficient ring signatures that are provably secure without
random oracles under standard assumptions. Signatures in our scheme are of
size 2l + 2 group elements for l members in a ring. We showed our signatures to
be secure for the strongest definitions of security. Two interesting open problems
remain: to obtain a ring signature secure without random oracles where (1) user
keys need not be generated in a particular shared group; or (2) signature length
is independent of the number of signers implicated in the ring.
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Abstract. The ring signature allows a signer to leak secrets anony-
mously, without the risk of identity escrow. At the same time, the ring
signature provides great flexibility: No group manager, no special setup,
and the dynamics of group choice. The ring signature is, however, vulner-
able to malicious or irresponsible signers in some applications, because
of its anonymity. In this paper, we propose a traceable ring signature
scheme. A traceable ring scheme is a ring signature except that it can re-
strict “excessive” anonymity. The traceable ring signature has a tag that
consists of a list of ring members and an issue that refers to, for instance,
a social affair or an election. A ring member can make any signed but
anonymous opinion regarding the issue, but only once (per tag). If the
member submits another signed opinion, possibly pretending to be an-
other person who supports the first opinion, the identity of the member
is immediately revealed. If the member submits the same opinion, for
instance, voting “yes” regarding the same issue twice, everyone can see
that these two are linked. The traceable ring signature can suit to many
applications, such as an anonymous voting on a BBS. We formalize the
security definitions for this primitive and show an efficient and simple
construction in the random oracle model.

1 Introduction

A ring signature scheme allows a signer to sign a message while preserving
anonymity behind a group, called a “ring,” which is selected by the signer. A
verifier can check the validity of the signature, but cannot know who generated
it among all possible ring members. In addition, two signatures generated by
the same singer are unlinkable. Namely, it is infeasible for the verifier to deter-
mine whether the signatures are generated by the same signer. This notion was
first formally introduced by Rivest, Shamir, and Tauman [24], and since then,
this topic has been studied extensively in [19,6,1,17,16,4], for instance. The ring
signature is related to the notion of group signature, due to [10]. In the group
signature, however, there is a group manager that has the power to revoke the
anonymity of any signer if necessary. The group manager must also establish
a special type of key assignment to create a group, and hence it is difficult to
change the group dynamically. Some people say that the group manager is too
strong because he can even revoke the anonymity of a honest signer. On the
other hand, a ring signature scheme has no group manager, no special setup,

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 181–200, 2007.
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and allows ad-hoc group formation. In addition, a ring signature scheme is free
from the risk of identity escrow.

Anonymity is not always good, however. While the group signature has too
strong a traceability characteristic, an ordinary ring signature scheme has noth-
ing at all to restrict anonymity. In this paper, we consider a ring signature
scheme with a “gentle” anonymity restriction, which only prohibits “excessive”
anonymity in some applications. Informally, we consider “one-more unforgeabil-
ity” and “double-spending traceability” in the context of a ring signature.

Initially, these two notions appeared in the context of a blind signature scheme
and a restricted blind signature scheme, as in [7] and [9], respectively. In the blind
signature scheme, a user interacts with a signer a number of times and has the
signer sign a blind message (In this stage, the signer may know the identity of the
user, but not know the contents of the message). After the user transformed it to
a “blind” signature, it cannot be traced to the user even by the signer. However,
the user who obtained the blind signature from the signer cannot generate a
“one-more” new signature. This property is called one-more unforgeability. The
restricted blind signature has an additional property called double-spending, so
that if a user “spends” a signature twice, he can be traced later [9,22,5]. Such a
property can be used in the “off-line” anonymous e-cash systems. Note that the
identity of a honest user is not threatened, even by the signer.

We incorporate these properties into the ring signature by introducing formal
security requirements.

1.1 Our Contribution: Formalization and Construction

In this paper, we introduce the concept of a traceable ring signature. It preserves
the flexibility of the ring signature: No group manager, no special setup for
sharing secrets among members in a group, and the dynamics of group choice.
It implies that the identity of a signer is never escrowed by a special person or
group. A traceable ring signature has a tag L = (issue, pkN ), where pkN is the
set of public keys of the ring members and issue refers to, fo r instance, an id of
an election or some social issue. A ring member can sign a message using his own
secret key and the verifier can verify the signature on the message with respect
to tag L, but cannot know who generated the signature among all the possible
ring members in L. If the signer signed the same message again with the same
tag, everyone can see that the two signatures are linked, whereas if he signed
a different message with the same tag, then not only is it evident that they
are linked, but the anonymity of the signer is revoked. Informally, the security
requirements we provide for this primitive are as follows:

– Public Traceability - Anyone who creates two signatures for different
messages with respect to the same tag can be traced, where the trace can
be done only with pairs of message/signature pairs and the tag.

– Tag-Linkability (One-more unforgeability) - Every two signatures gen-
erated by the same signer with respect to the same tag are linked, that is, the
total number of signatureswith respect to the same tag cannot exceed the total
number of ring members in the tag, if every any two signatures are not linked.



Traceable Ring Signature 183

– Anonymity - As long as a signer does not sign on two different messages
with respect to the same tag, the identity of the signer is indistinguishable
from any of the possible ring members. In addition, any two signatures gen-
erated with respect to two distinct tags are always unlinkable. Namely, it is
infeasible for anyone to determine whether they are generated by the same
signer.

– Exculpability - A honest ring member cannot be accused of signing twice
with respect the same tag — Namely, an adversary cannot produce a trace-
able ring signature such that, along with one generated by the target, it
can designate the target member in the presence of the publicly traceable
mechanism. This should be infeasible even after the attacker has corrupted
all ring members but the target.

The above security goals must be preserved under the so-called adversarially-
chosen key and sub-ring attack, which Bender, Katz, and Morselli have formally
addressed in [4]. In addition, our security model follows [4] in the sense that
the role of PKI is minimal, namely it only maintains the global public-key list
properly, which implies that malicious PKI can’t harm a honest signer.

On one hand, our security goals are related to those of the group signature [3].
We stress that the standard unforgeability requirement (as in an ordinary ring
signature) is unnecessary for the traceable ring signature because the combined
requirements for tag-linkability and exculpability imply unforgeability. We dis-
cuss this issue later.

We show how to construct an efficient and conceptually-simple traceable ring
signature scheme on an ordinary Abelian group, on which the DDH and discrete
logarithm problems are hard, by using the Fiat-Shamir transformation.

1.2 Applications

There are several applications for the traceable ring signature.
An anonymous voting on a BBS - Suppose that some group of people is

discussing some issue on a bulletin board via the Internet and wish to vote
anonymously among themselves on that issue. They could write to the bulletin
board anonymously; however, they do not want to engage a trusted party or
establish a heavy setup protocol just for this vote. In addition, it is expected
that some people in the group won’t vote. An ordinary ring signature cannot be
used here because it cannot restrict a member to only one vote. A traceable ring
signature however can be applied to this case 1.

1 We are aware of the fact that public traceability makes any anonymous signature
primitive lose the deniability property as discussed in Sec. 2.3. However, it is some-
times more problematic to establish a trusted authority in some realistic situation.
In case of pursuiting deniability, we can incorporate the technique of a receipt-free
voting scheme [21] into a traceable ring signature scheme. In that case, a trusted
party is necessary but only for the receipt-freeness. The other security properties
of the traceable ring signature mentioned above hold true even against a dishonest
trusted party.
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An unclonable group identification “without the group manager” - Recently,
Damg̊ard, Dupont, and Pedersen proposed the notion of the unclonable group
identification [12]. The traceable ring signature can be applied to this application.
The original unclonable group identification requires a group manager, but the
traceable ring signature does not.

A traceable ring signature scheme is “functionally” related to a restricted blind
signature. Hence, it can be applied to a very primitive “off-line” anonymous e-
cash system.

Another possible application is, for instance, k-times anonymous authentica-
tion [25]. Any traceable ring signature scheme can be efficiently transformed into
a traceable ring signature scheme with k-times anonymity defined as in [25], but
see also Sec. 6.2.

1.3 Related Works

Linkable ring signatures [17,27,18,26,2] are closely related to the traceable ring
signature. A linkable ring signature scheme is a ring signature scheme with the
property that two signatures generated by the same signer with respect to the
same ring can be linked, although it doesn’t need satisfy the anonymity revo-
cation property. The earlier papers about linkable ring signatures [17,18] didn’t
consider a realistic threat that a dishonest signer makes a honest signer accused
of “double-spending” (The schemes in [17,18] are vulnerable to the attack. See
Sec. 3, where our first-step protocol is substantially the same as the schemes in
[17,18]). The recent papers [27,2] take care of this problem, which makes the
security conditions more complicated. Our security definitions of the traceable
ring signature works also on the linkable ring signature, if the tracing algorithm
is appropriately modified, which implies that the unforgeability requirement is
unnecessary also for a linkable ring signature scheme2. Recently, Tsang and Wei
proposed a short linkable ring signature [26], based on a short group identifi-
cation from [13], which allows for a shorter length of communication than our
proposed scheme as the number of the ring members grows huge. Their scheme
is, however, not a ring signature in our sense, because a trusted party must set
up the parameter of an accumulator and the scheme is vulnerable to a dishonest
trusted party3. In addition, it doesn’t seem to provide public traceability. To our
knowledge, only the proposal in [27] seems to be able to incorporate into itself
the anonymity revocation property, but our scheme is simpler and more efficient
than that scheme.

The restricted blind signature [9,22,5,20], including its variant [25], is func-
tionally related to the traceable ring signature. In the restricted blind signature,
however, the user must interact with the signer (corresponding to the group
manager) to obtain a blind signature, which corresponds to a special setup with
the group manager. This setup may seem somehow similar to the registration

2 In [2], this implication has been suggested.
3 The accumulater used in [26] is based on factoring where an RSA modulus n is a

system parameter, while the factoring should be kept secret.
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to PKI. In particular, the k-times anonymous authentication [25] is closer, be-
cause it allows a user to use the “blind signature” permanently (similar to a
public-key), once he obtained it from the signer. However, the (restricted) blind
signature, including the k-times anonymous authentication, cannot allow ad-hoc
group formation. After the signer issues the blind signatures to the user, an ar-
bitrary subgroup including the user cannot be selected as a ring and the services
cannot be exclusively restricted to the subgroup.

Recently, Damg̊ard, Dupont, and Pedersen proposed unclonable group iden-
tification [12]. It is functionally very close to the k-times anonymous authentica-
tion in the sense that after a user obtains a “coin” from the group manager, he
can utilize it permanently. However, it does not allow for ad-hoc group formation,
either.

A traceable signature scheme [15] is a group signature scheme with traceability
(in particular, from a signature to a user), but it requires a group manager.

2 Traceable Ring Signature: Definitions

2.1 Notations and Syntax

For probabilistic algorithm A, we write y ← A(x1, . . . , xn) to denote the ex-
periment of running A for given (x1, . . . , xn), selecting r uniformly from an
appropriate domain, and assigning the result of this experiment to the vari-
able y, i.e., y := A(x1, . . . , xn; r). For probability spaces, X1, . . . , Xk, and k-
ary predicate φ, we write Pr[x1 ← X1; x2 ← X2; · · · : φ(x1, . . . , xk)] to denote
the probability that the predicate φ(x1, . . . , xk) is true after the experiments,
“x1 ← X1; x2 ← X2; · · · ”, are executed in that order. Let ε, τ : N → [0, 1](⊂ R)
be positive [0, 1]-valued functions. We say that ε(k) is negligible in k if, for any
constant c > 0, there exists a constant, k0 ∈ N, such that ε(k) < (1/k)c for any
k > k0. We say that τ(k) is overwhelming in k if ε(k) � 1 − τ(k) is negligible in
k. For ordered finite set S, we denote by aS vector (ai)i∈S . For n ∈ N, we often
write N to denote an ordered set (1, . . . , n).

We refer to an ordered public key set pkN = (pk1, . . . , pkn) as a ring. We
define a traceable ring signature scheme as indicated below.

Syntax. A traceable ring signature scheme is a tuple of algorithms, Σ =
(Gen,Sig,Ver,Trace), such that, for k ∈ N, the following is true.

– Gen: A probabilistic polynomial-time (in k) algorithm that takes security
parameter k ∈ N and outputs a public/secret-key pair (pk, sk).

– Sig: A probabilistic polynomial-time (in k) algorithm that takes a secret
key, ski, where i ∈ N , tag L = (issue, pkN ), and message m ∈ {0, 1}∗, and
that outputs signature σ.

– Ver: A deterministic polynomial-time (in k) algorithm that takes tag L =
(issue, pkN), message m ∈ {0, 1}∗, and signature σ, and outputs a bit.
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– Trace: A deterministic polynomial-time (in k) algorithm that takes tag L =
(issue, pkN), and two message/signature pairs, {(m, σ), (m′, σ′)}, and out-
puts one of the following strings: “indep,” “linked,” or pk, where pk ∈ pkN .

For simplicity, we often write (pkN , skN ) ← Gen(1k) to denote the ex-
periment of (pki, ski) ← Gen(1k) for i ∈ N and assigning (pkN , skN ) :=
(pki, ski)i∈N .

As an ordinary signature scheme, a traceable ring signature scheme must
satisfy the following correctness conditions: For every k ∈ N, every n ∈ N,
every i ∈ N := {1, . . . , n}, every issue ∈ {0, 1}∗, and every m ∈ {0, 1}∗, if
(pkN , skN ) ← Gen(1k), and σ ← Sigski

(L, m), where L = (issue, pkN), it holds
with an overwhelming probability (in k) that Ver(L, m, σ) = 1.

Public Traceability - A traceable ring signature scheme requires that the
following condition must hold: For every k ∈ N, every n ∈ N, every i, i′ ∈ N :=
{1, . . . , n}, every issue ∈ {0, 1}∗, and every m, m′ ∈ {0, 1}∗, if (pkN , skN ) ←
Gen(1k), σ ← Sigski

(L, m), where L = (issue, pkN ), and σ′ ← Sigski′ (L, m′),
it holds with an overwhelming probability (in k) that

Trace(L, m, σ, m′, σ′) =

⎧
⎨

⎩

“indep” if i �= i′,
“linked” else if m = m′,

pki otherwise .

In addition, if m �= m′, Trace never output “linked.” Public traceability is a cor-
rectness condition, that is, it does not assure that the opposite holds. However, if
a traceable signature scheme has tag-linkability (along with public traceability),
Trace(L, m, σ, m′, σ′) = “indep” implies that these two signatures are generated
by different signers. If it has exculpability, Trace(L, m, σ, m′, σ′) = pki implies
that they are signed by the same signer i. Note that Trace(L, m, σ, m, σ′) =
“linked” doesn’t mean that they are always generated by the same signer (be-
cause anyone can make a “dead” copy of any signature).

2.2 Security Definitions

In this section, we describe the formal security definitions for the traceable ring
signature. We give three requirements: tag-linkability, anonymity, and exculpa-
bility. As mentioned earlier, the “standard unforgeability” requirement is unnec-
essary for the traceable ring signature. We discuss this issue later in Sec. 2.3.

The tag-linkability is significantly different from the other two requirements
in the sense that it is to defend the system, not the users. Hence, we assume all
users (signers) are potential cheaters, which leads to the model that a central
adversary generates all the public/secret keys for the users. On the other hand,
anonymity and exculpability are to protect user(s) from the rest of players,
including the system provider and the adversarial users. In these settings, an
adversary is given the target public key(s) and allowed to append a polynomial
number (in total) of new public keys to the global public-key list in any timing.
Possibly, these public-keys can be related to the given target key(s). We assume
that the global public-key list is maintained properly: A public-key should be
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referred to only one user and vice versa. The adversary is basically allowed to
choose an arbitrary subring in the global public-key list, when it accesses the
signing oracle(s) with respect to the target user(s). We call such an attack the
adversarially-chosen-key-and-sub-ring attack, which Bender, Katz, and Morselli
have formally addressed in [4]. In our security model, as in [4], the role of PKI
is minimal, namely it only maintains the global public-key list properly, which
implies that security requirements hold true against malicious PKI.

We give the formal definitions of the security requirements as follows.

Tag-Linkability - Let F be an adversary modeled as a probabilistic algorithm.
It takes security parameter k ∈ N and outputs L = (issue, pkN ) and (n +
1) message/signature pairs, {(m(1),σ(1)), . . ., (m(n+1),σ(n+1))}, where pkN =
(pk1, . . . , pkn). We define the advantage of F against Σ to be

Advforge
Σ (F )(k) � Pr[ExptF (k) = 1]

where ExptF (k) are:

1.
(
L, {(m(1),σ(1)), . . ., (m(n+1),σ(n+1))}

)
← F (1k);

2. Return 1 iff
– Ver(L, m(i), σ(i)) = 1 for all i ∈ {1, . . . , n + 1}, and
– Trace(L, m(i), σ(i), m(j), σ(j)) = “indep” for all i, j ∈ {1, . . . , n + 1},

where i �= j.

Definition 1. We say that Σ is tag-linkable if for any probabilistic polynomial-
time (in k) algorithm F , Advforge

Σ (F )(k) is negligible in k.

Anonymity - Let D be an adversary modeled as a probabilistic algorithm.
Let (pk0, pk1) be the two target public keys, where (pk0, sk0) and (pk1, sk1) are
generated by Gen(1k). Let b ∈ {0, 1} be a random hidden bit. D starts the
game with target (pk0, pk1). D may do the following things polynomial number
of times in an arbitrary order: D may append new public keys to the global
public-key list and may access three signing oracles, Sigskb

, Sigsk0
, and Sigsk1

,
where

– Sigskb
is the challenge signing oracle with respect to skb for signing (L, m),

and
– Sigsk0

(resp. Sigsk1
) is the signing oracle with respect to sk0 (resp. sk1) for

signing (L, m).

Here we assume that L should include both pk0, pk1; that is, pk0, pk1 ∈ pkN for
L = (issue, pkN ). In addition, the following condition must hold:

– If (L, m) and (L, m′) are two queries of D to the challenge signing oracle
Sigskb

, then m = m′.
– If (L, m) is a query of D to Sigskb

and (L̃, m̃) is a query of D to Sigsk0
or

Sigsk1
, then L �= L̃.
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Finally, D outputs a bit b′. We define the advantage of D against Σ as

Advanon
Σ (D)(k) � Pr

⎡

⎣
(pk0, sk0), (pk1, sk1) ← Gen(1k);
b ← {0, 1};
b′ ← DSigskb

,Sigsk0
,Sigsk1 (pk0, pk1)

: b = b′

⎤

⎦ − 1
2
.

Definition 2. We say that Σ is anonymous if, for every probabilistic polynomial-
time (in k) adversary D, the advantage Advanon

Σ (D)(k) is negligible in k.

Remark 1. Our anonymity definition corresponds to Definition 3 in [4], which
is not the strongest among their three definitions. It is, however, impossible
for a traceable ring signature scheme to satisfy the strongest definition in [4],
because the strongest definition requires that an adversary cannot distinguish
which target generated the signature even when the adversary is given one of
the target secrets; namely, all but one secret key in the ring is exposed. This
condition and the public traceability cannot hold simultaneously.

Exculpability - Let A be a probabilistic algorithm as an adversary. Let pk
be the target public key where (pk, sk) is generated by Gen(1k). A starts the
game with the target pk. A may do the following things a polynomial number
of times in an arbitrary order. A may append new public keys to the global
public-key list and may ask the signing oracle with respect to sk, Sigsk, to sign
any (L̃, m̃), where L̃ = ( ˜issue, pkÑ ), only with the restriction that pk ∈ pkÑ .
Finally, A outputs two pairs, (L, m, σ) and (L, m′, σ′), where L = (issue, pkN).
Here they should satisfy pk ∈ pkN , Ver(L, m, σ) = 1, and Ver(L, m′, σ′) = 1.
In addition, it must hold that at least one of (L, m, σ) or (L, m′, σ′) is not linked
to any (L, m̂, σ̂) in the query/answer list between A and Sigsk

4. It is, however,
allowed that one of them is linked to one in the query/answer list.

We say that A entraps a player with respect to pk if Trace(L, m, σ, m′, σ′) =
pk. We define the advantage of A against Σ, to be Adventrap

Σ (A)(k) �

Pr

⎡

⎣ (pk, sk) ← Gen(1k);
(L, m, σ), (L, m′, σ′) ← ASigsk(pk) : Trace(L, m, σ, m′, σ′) = pk

⎤

⎦ .

Definition 3. We say that Σ is exculpable if, for any probabilistic polynomial-
time adversary A, Adventrap

Σ (A)(k) is negligible in k.

Remark 2. In relation to the adaptively-chosen insider corruption at-
tack: One might think that the exculpability definition could be stronger when
there are not only one but polynomially-many targets and the adversary can
adaptively request the corruption of the target signers and finally attack one
of the remaining uncorrupted targets. However, it is obvious that if an trace-
able ring signature satisfies this version of exculpability, then it also satisfies

4 It implies two-fold. Our definition doesn’t care for strong unforgeability. In addition,
A is allowed to output a signature originally forged by himself with a copy (or linked
one) from the query/answer list.
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the improved definition, because the number of the ring members are at most
polynomial (in security parameter k).

2.3 Discussion

As mentioned earlier, the standard unforgeability requirement (as defined in an
ordinary ring signature) is inessential for a traceable ring signature scheme. We
define unforgeability as the inability of an adversary that takes all public-key pkN

and, after having access to the signing oracle with (L, m, i), outputs (L′, m′, σ′),
L′ = (issue ′, pkN ′) and N ′ ⊂ N , such that (L′, m′) never asked to the signing
oracle. Here, for query (L, m, i), where L = (issue, pkN ) and i ∈ N ⊂ N , the
signing oracle returns Sigski

(L, m). We then have the following result.

Theorem 1. If a traceable ring signature scheme is tag-linkable and exculpable,
then it is unforgeable.

Proof. Suppose for contradiction that there is an adversary A′ against unforge-
ability. Let (L, m, σ) be the output of A′, where L = (issue, pkN ). Then, consider
n independent pairs {(L, m(1),σ(1)), . . ., (L, m(n),σ(n))}, such that m(i) �= m
and Ver(L, m(i), σ(i)) = 1 for all i ∈ {1, . . . , n}. If every n + 1 pairs are inde-
pendent, then it contradicts tag-linkability. Therefore, there is an i ∈ {1, . . . , n}
such that Trace(L, m, σ, m(i), σ(i)) = pk ∈ pkN , because m(i) �= m (Remem-
ber that Trace never outputs “linked” if m(i) �= m). This case, however, con-
tradicts the exculpability requirement, because we can construct adversary A
against exculpability, by using A′ as a black box oracle as follows. For sim-
plicity, we assume, without loss of generality, that A takes all public-keys as
the targets, as discussed in Remark 2. A feeds all public-keys to A′. For any
query of A′, A asks the signing oracle the answer and returns it to A′. A′ finally
outputs (L, m, σ), where L = (issue, pkN ). Then, A asks for n queries and ob-
tains (L, m(1),σ(1)), . . ., (L, m(n),σ(n)), where m(i) �= m for all i. Since there is
an i such that Trace(L, m, σ, m(i), σ(i)) = pk ∈ pkN , A outputs (L, m, σ) and
(L, m(i), σ(i)), which contradicts exculpability. ��
We note that a traceable ring signature always provides efficient confirmation
and disavowal protocols (where we don’t assume that these protocol are zero-
knowledge). If a member of the ring wants to prove that a signature has been
generated by himself, he can make another signature for a different message
with the same tag, which would reveal his identity. Similarly, if a member of
the ring wants to prove that a signature has not been generated by himself,
he can submit another signature for an arbitrary message with the same tag,
which shows that the second one is independent of the previous one. In some
application it is undesirable, but any anonymous authentication primitive with
public traceability (or linkability) cannot avoid this property.

3 Towards Our Scheme

Although our proposal is not very complicated, we construct our scheme step by
step to understand more easily the concept behind our design.
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Let us keep in mind the undeniable signature scheme proposed by Chaum [8]:
Letting yi = gxi ∈ G be a public key of player i, the Chaum’s undeniable
signature on message M is σi = H(M)xi ∈ G, where H denotes a hash function.
Now let M = issue||pkN where pkN = (pk1, . . . , pkn) are a vector of n public-
keys. Pick up at random (n − 1) elements, σj ’s, from G, where j �= i. Then, set
a NP-language

L � {(yN , h, σN )) | ∃ i ∈ N such that logg(yi) = logh(σi).},

where h = H(issue||yN ) and σN = (σ1, . . . , σn).
Then, consider a zero-knowledge based signature (using secret xi) on this

language. It is well-known that such a signature can be constructed by applying
the technique of Cramer et al. [11] (one-out-of n honest-verifier zero-knowledge)
to the Fiat-Shamir technique. The signature on m is then (σN , p), where p =
(c, z) is a (non-interactive) proof on L and c = H(σN , a, m), where a is computed
by p. We call this our first-step construction.

Suppose now that this scheme is applied to anonymous voting on BBS, where
each user can write on BBS anonymously. Let L = (issue, pkN ), where issue
denotes the vote id number and pkN corresponds to the authorized voters. Each
voter simply sends message “yes” or “no” along with signature (σN , p) to a
bulletin board via a sender-anonymous channel (such as the Internet in practice).
If proof p is sound, a cheating player, say i, could not vote twice because it turns
out σi = σ′

i = hxi , which takes the risk of revealing his identity.
However, this construction does not work well when an adversary is one of the

voters. The problem is that an adversarial player, say j, can entrap an innocent
player, say i, or at least void the first vote, with a significant probability. Player
j waits for someone to send the first vote, say (“yes,′′ (σN , p)), to the bulletin
board. After seeing this signature, he generate a valid signature (σ′

N , p′) on
message “no,” using secret key xj , following a valid signing procedure, except
that he sets σ′

i = σi and σ′
k �= σk for all k �= i. He then sends (“no,′′ σ′

N , p′) to the
board. If the first vote is really generated by player i, player i cannot deny the
second vote, because the second vote is a valid signature potentially generated
by player i. At least, player i would lose his first vote, because he cannot prove
which of two votes are valid.

Our solution is to make signer i fix every σj , j �= i, depending on (L, m) and
σi. More precisely, each point (j, logh(σj)) is forced to be on the line defined by
(i, logh(σi)) and (0, logh(H(L, m))). Intuitively, to generate a signature that will
pass verification, player i must set σi = hxi , while to entrap player j, he must
set at the same time that (j, logh(σj)) lies on the line defined by (i, logh(σi))
and (0, logh(H(L, m))), which seems intractable. On the other hand, suppose
that signer i generates two signatures, σN and σ′

N , on m and m′, m �= m′,
with respect to the same tag L. Every (j, logh (σj)) derived from the first σN

lies on the line defined by (i, logh (σi)) and (0, logh(H(L, m))), whereas every
(j, logh (σ′

j)) derived from the second σ′
N does on the line defined by (i, logh (σi))

and (0, logh(H(L, m′))). Since the first line intersects with the second line at
(i, logh(σi)) and these are not the same line (because H(L, m) �= H(L, m′)), it
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holds that σi = σ′
i and σj �= σ′

j for all j �= i, which implies that the identity
of the cheating player is traced. We formally prove in Sec. 5 that this approach
successfully works. Interestingly, this scheme is more efficient than the first-step
construction described above in terms of communication traffic.

4 An Efficient Traceable Ring Signature Scheme

In this section, we describe our proposal.
Let G be a multiplicative group of prime order q and let g be a generator of

G. Let H : {0, 1}∗ → G, H ′ : {0, 1}∗ → G, and H ′′ : {0, 1}∗ → Zq be distinct
hash functions (modeled as random oracles in the security statements below).
These above are public parameters. The key generation for player i is as follows:
Player i picks up random element xi in Zq and computes yi = gxi. The public
key of i is pki = {g, yi, G} and the corresponding secret key is ski = {pki, xi}.
The player i registers his public-key to PKI. We denote by N = {1, . . . , n} an
ordered list of n players. We let pkN = (pk1, . . . , pkn) be an ordered public-key
list for set N . Let issue be an arbitrary string in {0, 1}∗.

Signing protocol: To sign message m ∈ {0, 1}∗ with respect to tag L =
(issue, pkN ), using the secret-key ski, proceed as follows:

1. Compute h = H(L) and σi = hxi , using xi ∈ Zq.

2. Set A0 = H ′(L, m) and A1 =
(

σi

A0

)1/i

.

3. For all j �= i, compute σj = A0A
j
1 ∈ G. Notice that every (j, logh(σj)) is on

the line defined by (0, logh(A0)) and (i, xi), where xi = logh(σi).
4. Generate signature (cN , zN) on (L, m), based on a (non-interactive) zero-

knowledge proof of knowledge for the relation derived from language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

where σN = (σ1, . . . , σn), as follows:
(a) Pick up random wi ← Zq and set ai = gwi , bi = hwi ∈ G.
(b) Pick up at random zj, cj ← Zq, and set aj = gzjy

cj

i , bj = hzjσ
cj

j ∈ G for
every j �= i.

(c) Set c=H ′′(L, A0, A1, aN , bN )whereaN=(a1, . . . , an) and bN=(b1, . . . , bn).
(d) Set ci = c − ∑

j �=i cj (mod q) and zi = wi − cixi (mod q). Return
(cN , zN ), where cN = (c1, . . . , cn) and zN = (z1, . . . , zn), as a proof
of L.

5. Output σ = (A1, cN , zN) as the signature on (L, m).

Verification protocol: To verify signature σ = (A1, cN , zN ) on message m
with respect to tag L, check the following:

1. Parse L as (issue, pkN ). Check g, A1 ∈ G, ci, zi ∈ Zq and yi ∈ G for all
i ∈ N . Set h = H(L) and A0 = H ′(L, m), and compute σi = A0A

i
1 ∈ G for

all i ∈ N .
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2. Compute ai = gziyci

i and bi = hziσci

i for all i ∈ N .
3. Check that H ′′(L, m, A0, A1, aN , bN) ≡ ∑

i∈N ci (mod q), where aN =
(a1, . . . , an) and bN = (b1, . . . , bn).

4. If all the above checks are successfully completed, accept, otherwise reject.

Tracing protocol: To check the relation between (m, σ) and (m′, σ′), with
respect to the same tag L where σ = (A1, cN , zN) and σ′ = (A′

1, c
′
N , z′N ), check

the following:

1. Parse L as (issue, pkN ). Set h = H(L) and A0 = H ′(L, m), and compute
σi = A0A

i
1 ∈ G for all i ∈ N . Do the same thing for σ′ and retrieve σ′

i, for
all i ∈ N .

2. For all i ∈ N , if σi = σ′
i, store pki in TList, where TList is initially an

empty list.
3. Output pk if pk is the only entry in TList; “linked” else if TList = pkN ;

“indep” otherwise (i.e., TList = ∅ or 1 < #TList < n).

5 Security

In this section, we give security proofs for our traceable ring signature scheme.
Before proving tag-linkability for our scheme, we prove the following useful

lemmas. We consider adversary A against our signature scheme above. A is given
1k and allowed to access the random oracles, H ′ and H ′′, at most qH′ and qH′′

times, respectively. Here it is not necessary that A is polynomial-time bounded.
Then, we have the following lemmas.

Lemma 1. Suppose that A outputs valid pair (L, m, σ).

1. The probability that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′
q ,

whereas
2. The probability that #{i ∈ N | logh(σi) = logg(yi)} > 1 is at most qH′

q ,

where the probability is taken over the choices of H ′, H ′′ and the inner coin tosses
of A.

Proof. Case 1 (#{i ∈ N | logh(σi) = logg(yi)} < 1): Ver(L, m, σ) = 1 implies
that ai = gziyci

i ∈ G and bi = hziσci

i ∈ G for i ∈ N , which means that
logg(ai) = zi + ci · logg(yi) and logh(bi) = zi + ci · logh(σi) for i ∈ N . Note
that if logg(yi) �= logh(σi), ci is determined. Hence, Case 1 implies that all
ci’s, where i ∈ N , are uniquely determined. Since H ′′ is a random oracle, for
any given (L, m, A0, A1, aN , bN ), the probability that H ′′(L, m, A0, A1, aN , bN)
=

∑
i∈N ci (mod q), is at most q−1. Therefore, for any A with at most qH′′

queries to random oracle H ′′, the probability of Case 1 is at most qH′′
q .

Case 2 (#{i ∈ N | logh(σi) = logg(yi)} > 1): Since σi = A0A
i
1 ∈ G for

i ∈ N , every point (i, logh(σi)), i ∈ N , is on line y = logh(A1)x + logh(A0).
Case 2 implies that at least two points, (i, logg(yi))’s, are on the line, which
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means, when pkN are fixed, the line is determined, so logh(A0) and logh(A1)
are determined. However, we also need logh(A0) = logh(H ′(L(issue, pkN ), m)),
where H ′(L, m) is determined independently of the above line, because H ′ is a
random oracle. Actually, the probability that logh(H ′(L, m)) = logh(A0) is at
most q−1 for given (L, m). Hence, for any adversary A with at most qH′ number
of queries to random oracle H ′, the probability of Case 2 is at most qH′

q . ��
Lemma 2. Suppose A is defined above and it outputs (L, m(1), σ(1)) and
(L, m(2), σ(2)), such that Trace(L, m(1), σ(1), m(2), σ(2)) = “indep”. Let TList
be the list defined above in our tracing protocol. Then, the probability that 1 <

#TList is q2
H′
2q , where the probability is taken over the choices of H ′ and the

inner coin tosses of A.

Proof. By 1 < #TList, the line defined by σ(1) intersects with the line defined
by σ(2) at least at two points, which means that the two lines coincide. Hence,
A

(1)
0 = H ′(L, m(1)) and A

(2)
0 = H ′(L, m(2)), because logh A

(1)
0 = logh A

(2)
0 where

h = H(L). Therefore, the advantage of A is bounded by the probability that A

can find a collision of outputs of H ′, which is q2
H′
2q . ��

Theorem 2 (Tag-Linkability). Our proposed scheme is tag-linkable in the
random oracle model.

Proof. Suppose for contradiction that there is adversary F that takes 1k and suc-
cessfully outputs tag L = (issue, pkN ) and {(m(1), σ(1)), . . . , (m(n+1), σ(n+1))}.

Based on lemma 2, Trace(L, m(i), σ(i), m(j), σ(j)) = “indep,” for all i, j, means

that, (with an overwhelming (i.e., 1 − q2
H′
2q ) probability), σ

(i)
k �= σ

(j)
k holds, for

all i, j, k, where 1 ≤ i, j ≤ n + 1, i �= j, and 1 ≤ k ≤ n. On the contrary, by
Case 1 of Lemma 1, for every i, where 1 ≤ i ≤ n+1, there exist k ∈ N such that
logg(yk) = logh(σ(i)

k ) (with at least (1− (n+1)qH′′
q ) probability). Since 1 ≤ k ≤ n,

there exist i, j, k such that σ
(i)
k = σ

(j)
k , which contradicts the assumption (if the

advantage of F exceeds max( q2
H′
2q , (n+1)qH′′

q )).
Therefore, the probability that F can forge the proposed scheme above is at

most max( q2
H′
2q , (n+1)qH′′

q ), where qH′ and qH′′ denotes the number of queries of
F to random oracles, H ′ and H ′′, respectively. ��
Before proceeding other theorems, we define a protocol, commonly used in some
of the following proofs.

Procedure of SimNIZK.
On input: (L, m, h, A0, A1).
Output: (cN , zN ).

1. For all i ∈ N , pick up at random zi, ci ←U Zq, and set ai = gziyci

i , bi =
hziσci

i ∈ G, where σi = A0A
i
1.

2. Set H ′′(L, m, A0, A1, aN , bN ) as c :=
∑

i∈N ci, where aN = (a1, . . . , an) and
bN = (b1, . . . , bn). If H ′′(L, m, A0, A1, aN , bN ) has been already booked as a
different value in query/answer list QH′′ , then output “failure,” otherwise
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3. Output (cN , zN ), where cN = (c1, . . . , cn) and zN = (z1, . . . , zn).

We now show the following theorem.

Theorem 3 (Anonymity). Our proposed scheme is anonymous under the de-
cisional Diffie-Hellman assumption in the random oracle model.

Proof. Suppose that there is an adversary D with advantage ε, which means that,
by definition, D can correctly guess b with probability ε + 1

2 . We now construct
an algorithm A to solve the decisional Diffie-Hellman problem. Let (g1, g2, u, v)
be a given instance, where g1, g2, u, v ∈ G. When (g1, g2, u, v) is a DDH tuple,
logg1

(u) = logg2
(v) holds. We construct A as follows:

1. A is given instance (g1, g2, u, v).
2. A picks up at random b ← {0, 1}.
3. A sets g := g1, yb := u and, picking up at random t ∈ Zq, y1−b := ybg

t.
4. A feeds y0, y1 to D.
5. In case D submits a fresh query to random oracles, H ′ and H ′′, A picks up

random elements in G and Zq respectively, to reply with. Then, A stores the
query/answer pairs in the lists, QH′ and QH′′ , respectively.

6. In case D submits a fresh query to random oracle H , A picks up at random
r1, r2 ← Zq and returns g1

r1g2
r2 . Then, A stores the value as well as (r1, r2)

in query/answer list QH .
In this simulation, if A picks up the same gr1

1 gr2
2 again, namely, H(L) =

H(L′) happens for L �= L′, A aborts. However, such an event happens at
most qH

q , which is negligible in k, where qH denotes the total number of
queries of D to H .

7. In case D submits a query (L, m) to Sigskb
, A sets gr1

1 g2
r2 as h := H(L) and

σb := ur1vr2 , picking up at random r1, r2 ∈ Zq. Then, A picks up a random
element A0 as H ′(L, m). If H(L) and H ′(L, m) have been already stored in
QH and QH′ , respectively, A uses these stored values. A sets A1 and σN , by
using A0 and σb. Then, A simulates a NIZK proof on language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described above to get (cN , zN ), where cN =
(c1, . . . , cn) and zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ =
(A1, cN , zN) to D, otherwise A halts.

8. In case D submits a query (L, m) to Sigsk0
, if b = 0 do the same thing as in

Step 7. Otherwise, A sets gr1
1 g2

r2 as h := H(L) and σ0 := ur1vr2(gr1
1 gr2

2 )t,
picking up at random r1, r2 ∈ Zq. Then, A picks up a random element A0 as
H ′(L, m). If H(L) and H ′(L, m) have been already stored in QH and QH′ ,
respectively, A uses these stored values. A sets A1 and σN , by using A0 and
σ0. Then, A simulates a NIZK proof on language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described below to get (cN , zN ), where cN =
(c1, . . . , cn) and zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ =
(A1, cN , zN) to D, otherwise A halts.
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9. In case D submits a query (L, m) to Sigsk1
, do the same thing as in Step 8.

10. Finally, D outputs b′. If b = b′, A output 1, otherwise A flips a coin b′′ ∈ {0, 1}
to output.

The advantage of A against the DDH problem is defined as

Pr[A(g1, g2, u, v) = 1 | (g1, g2, u, v) ∈ DDH] − Pr[A(g1, g2, u, v)
= 1 | (g1, g2, u, v) �∈ DDH].

We say that A succeeds in simulation if no collision happens in simulating
random oracle H and SimNIZK succeeds in simulating proofs for all queries
of D to the signing oracles. SimNIZK fails in generating a proof with at most
probability qH′′

q , where qH′′ denotes the total number of queries of D to H ′′.
Hence, the probability that SimNIZK fails at least once in this game is bounded
by qSig·qH′′

q , where qSig denotes the total number of queries of D to the signing
oracles.

We evaluate the following probabilities on the condition that A succeeds in
simulation.

Notice that if (g1, g2, u, v) is a DDH tuple and a reply of the signing oracles,
Sigskb

, Sigsk0
, and Sigsk1

, is identical to the real signature using skb, sk0, and
sk1, respectively (on the condition that SimNIZK succeeds in simulating a
proof).

On the other hand, if it is a random tuple, hidden bit b is perfectly independent
of the adversary’s view.

Hence, we have Pr[b = b′|(g1, g2, u, v) ∈ DDH] = ε + 1
2 by assumption and

Pr[b = b′|(g1, g2, u, v) �∈ DDH] = 1
2 .

Therefore, Pr[A(g1, g2.u, v) = 1|(g1, g2, u, v) ∈ DDH] = Pr[b = b′|(g1, g2, u, v)
∈ DDH] + Pr[b �= b′|(g1, g2, u, v) ∈ DDH] · Pr[b′′ = 1|(g1, g2, u, v) ∈ DDH ∧ b �=
b′] =

(
ε + 1

2

)
+

(
1 −

(
ε + 1

2

))
· 12 = ε

2 + 3
4 .

On the other hand, Pr[A(g1, g2, u, v) = 1|(g1, g2, u, v) �∈ DDH] = Pr[b =
b′|(g1, g2, u, v) �∈ DDH] + Pr[b �= b′|(g1, g2, u, v) �∈ DDH] · Pr[b′′ = 1|(g1, g2, u, v)
�∈ DDH ∧ b �= b′] = 1

2 + 1
2 · 1

2 = 3
4 .

Based on this estimation, the advantage of A is 1
2 ·ε, if A succeeds in simulation.

Therefore, the advantage of A is bounded by

1
2

· ε − qH

q
− qSig · qH′′

q
.

To suppress the advantage of A to be negligible in k, ε must be negligible
in k. ��
Before proceeding to the exculpability statement, we prove the following lemma.
Let A be an adversary against exculpability for our scheme. Let qH′ , qH′′ denote
the total number of queries to the random oracles, H ′, H ′′, respectively. Here it is
not necessary that A is polynomial-time bounded. Then, we have the following.

Lemma 3. When A entraps player i, the probability that logh(σi) �= logg(yi) is

at most (n−1)(n−2)q2
H′

2q + qH′′
q . The probability is taken over the choices of H ′, H ′′

and the inner coin tosses of A.
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Proof. Assume that logh(σi) �= logg(yi). Based on lemma 1, if Ver(L, m, σ) = 1,
the probability that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′

q . Hence, for
σ and σ′ that A outputs, there are j, k ∈ N , with an overwhelming probability,
such that logh(σj) = logg(yj) and logh(σ′

k) = logg(yk), which implies that

logh(yj) = logh(A1) · j + logh(A0) (1)
logh(yk) = logh(A′

1) · k + logh(A′
0). (2)

Since logh(σi) �= logg(yi), it holds that j, k �= i.
By assumption, line y = logh(A1) · x + logh(A0) intersects with line y =

logh(A′
1) · x + logh(A′

0) at x = i. Hence, we have

logh(A1) · i + logh(A0) = logh(A′
1) · i + logh(A′

0). (3)

By (1), (2), and (3), we have

A · logh(A0) + B · logh(A′
0) = C, (4)

where A, B, C are fixed when i, j, k, logg(yj) and logg(yk) are fixed. Remember
that A0 = H ′(L, m) and A′

0 = H ′(L, m′) must hold, where L = (issue, pkN).
Note that H ′(L, m), H ′(L, m′) are fixed after i, j, k, logg(yj) and logg(yk) are

fixed. Hence, the probability that A0 and A′
0 satisfy (4) is at most q2

H′
2q , because

H ′ is a random oracle.
The probability that A0, A

′
0 satisfy (4) is the same in every j, k ∈ N −{i}, j �=

k; Hence, the probability that logh(σi) �= logg(yi) is at most (n−1)(n−2)q2
H′

2q + qH′′
q .

��
When adversary A entraps player i, there are two possibilities: One is the case
that A really forges the signature of player i (possibly, after seeing her/his real
signature). Namely, it is the case that logh(σi) = logh(σ′

i) = logg(yi). The other
case logh(σi) = logh(σ′

i) �= logg(yi), means that A does not forge the signatures
of player i but, letting σ, σ′ be generated by A, the i-th entries of them, σi and σ′

i,
are the same. This lemma implies that if A entraps player i, it is the case, with an
overwhelming probability, that A has really forged a signature of player i.

Theorem 4 (Exculpability). Our proposed scheme is exculpable under the
discrete logarithm assumption in the random oracle model.

A very rough strategy for proving the theorem is as follows: Based on lemma 3,
we know that if an adversary A against exculpability for our scheme can entraps
the target player i, then it is the case with an overwhelming probability that A
has actually forged a signature of player i, i.e., logh σi = logg yi. In addition, by
lemma 1, we realize that that it is “never” a potential signature of any other
player at the same time, i.e., logh σj �= logg yj, for j �= i (with an overwhelming
probability). This implies that by the standard rewinding, we have ci �= c′′i for
the target i, which breaks the discrete log of the target yi and leads to the
contradiction.
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Proof. Suppose that there is adversary A that takes pk and entraps the player
with respect to pk. Then, we can construct algorithm A′ that solves the dis-
crete logarithm problem. Let g, Y ∈ G be a given instance of discrete logarithm
problem. The goal of A′ is to output logg Y . We construct A′ as follows.

Without loss of generality, we assume that the id number of the target player
is i. Hence, A′ sets yi := Y and feeds pki = {yi, g} to adversary A.

A may access the random oracles, H, H ′, H ′′, and the signing oracle, at most
qH , qH′ , qH′′ and qSig times, respectively. In case A submits a fresh query to ran-
dom oracles, H ′ and H ′′, A′ picks up random elements in G and Zq respectively,
to use as a reply, maintaining the query/answer lists, QH′ and QH′′ , respectively.
In case A submits a fresh query to random oracle H , A′ picks up random v ∈ Zq

and return gv to A, maintaining query/answer list QH . In case A submits query
(L̃, m̃), to the signing oracle, A′ returns σ as follows.

1. Pick up random v ∈ Zq, to set value h̃ := H(L̃) as gv. Pick up random Ã0 as
H ′(L̃, m̃). If H(L̃) and H ′(L̃, m̃) have been already booked in QH and QH′ ,
respectively, use these stored values. Set σ̃i := yv

i .
2. Compute Ã1 and σ̃N . Then use SimNIZK on input (L̃, m̃, h̃, Ã0, Ã1).

SimNIZK returns (c̃N , z̃N) except for a negligible probability qH′′
q . If

SimNIZK fails in simulating a proof, then A′ aborts.
The probability that SimNIZK fails at least once in this game is bounded

by qSig·qH′′
q .

3. Return σ̃ = (Ã1, c̃N , z̃N ) and store the query/answer pair in the list QSig.

Finally, A outputs (L, m, σ) and (L, m′, σ′). A entraps player i with probabil-
ity ε, which is the advantage of A. Then, A′ works as follows. Since at least one of
(L, m, σ) and (L, m′, σ′) is not an entry in QSig, A′ renames the value (L, m, σ)
and rename the other (L, m′, σ′) (If both are not an entry in QSig, A′ swaps the
names at random). Then, A′ picks up a new random element c′′ ∈ Zq, where if c′′

is identical to the first H ′′(L, m, A0, A1, aN , bN), A′ halts. However, this occurs
only with probability q−1. Then, A′ runs A again on the same random coins
except that c′′ := H ′′(L, m, A0, A1, aN , bN). There is some probability that A fi-
nally outputs (L, m, σ′′) (and another pair (L, ., .)) such that σ′′ = (A1, c

′′
N , z′′N).

As studied in [23], such an event happens with probability 1
qH′′

ε, on the condi-
tion that A succeeds in the first run. Then, A′ checks that ci �= c′′i . If ci = c′′i , A′

halts, otherwise output z′′
i −zi

ci−c′′
i
, which implies that A′ outputs logg(Y ) on input

(g, Y, G), because ai = gziyci

i = gz′′
i y

c′′
i

i and yi = Y .
We now claim that the probability that ci �= c′′i is overwhelming in k: By

lemma 3, if adversary A entraps player i, it is the case with an overwhelming
probability that A has really forged the signature of player i; namely, logh(σi) =
logg(yi). On one hand, since c �= c′′, there is at least a t ∈ N , such that ct �= c′′t .
By lemma 1, however, the possibility that #{i ∈ N | logh(σi) = logg(yi)} > 1 is
at most qH′

q . Therefore, we conclude t = i because at least, logh(σi) = logg(yi).
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To sum up, the success probability of A′ is bounded by

ε2

qH′′
− 1

q
− qSigqH′′

q
− (n − 1)(n − 2)q2

H′

2q
− qH′′

q
− qH′

q
.

To suppress the advantage of A′ to be negligible in k, ε, the advantage of A,
must be negligible in k. ��
Remark 3 (On-Line Extractor). The standard rewinding strategy works well on
our scheme in the game of exculpability but it only provides a loose security
reduction. Actually, for adversary A that runs in time T with advantage ε, we
construct algorithm A′ breaking the discrete-log problem in time T ′ ≈ 2T with
probability ε′ ≈ ε2

q′′
H

in the proof of Theorem 4. Based on Fischlin’s technique [14],
we can replace, at a small efficiency cost, our non-interactive zero-knowledge part
in the signing protocol with one for which there is an on-line extractor; that is,
one can extract the secret witness from the adversary without rewinding. Here,
if A attacks the new scheme in time T with advantage ε, then there is algorithm
A′ breaking the discrete-log problem in time T ′ = O(T ) with probability ε′ ≈ ε.

6 Some Other Remarks

6.1 Threshold Version of Traceable Ring Signature

The extension of our proposal to a t-out-of-n traceable ring signature is straight-
forward. Let S be the set of t signers. First of all, each signer in S makes signature
his own σi = hxi , where h = H(L), and distributes σi to the other signers. Then,
each signer in S computes every other signature σi, i �∈ S, as point (i, logh σi) lies
on a polynomial curve of degree t, y = α(x), uniquely defined from (t+1) points,
(0, logh A0), (k1, xk1), . . . , (kt, xkt), where A0 = H ′(L, m) and S = {k1, ..., kt}.
Actually, each signer in S can locally compute σi, i �∈ S, as σi =

∏t
j=0(Aj)ij ∈ G

for all i �∈ S, where A0 = H(L, m) ∈ G, and Aj =
∏

k∈S(σk/A0)mj,k ∈ G for
j = 1, ..., t, where

⎛

⎜
⎝

m1,k1 · · · m1,kt

...
. . .

...
mt,k1 · · · mt,kt

⎞

⎟
⎠ =

⎛

⎜
⎝

k1
1 · · · k1

t

...
. . .

...
kt

1 · · · kt
t

⎞

⎟
⎠

−1

is the inverse matrix of van der Monde matrix. Notice that there exists a polyno-
mial of degree t, α(x) ∈ Zq[x], such that A0 = hα(0) ∈ G and σi = hα(i) ∈ G for
every i. Then they collaborate and generate a NIZK based signature on (L, m),
p, by applying the technique of [11], with respect to the language

L � {(L, h, σN)) | ∃ S ⊂ N such that #S ≥ t and logg(yi)=logh(σi) for i ∈ S}.

Finally, the signers output signature σ = (A1, . . . , At, p), where p = (β(x), zN )
and β(x) is a polynomial of degree (n − t) in Zq[x].
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6.2 k-Times Anonymity on the Same Tag

Any traceable ring signature scheme can be efficiently transformed into a trace-
able ring signature scheme with k-times anonymity in the sense of [25], where the
k-times anonymity means that a signer is allowed to sign messages with respect
to the same tag at most k times without being traced. It is simply obtained by
regarding (i,Sigsk((L, i), m)) as a signature on m, with respect to tag L, where
the verifier checks if Ver((L, i), m) = 1 and 1 ≤ i ≤ k (Here the signer need not
publish i in order). It is obvious that the identity of a signer is not revealed if the
signer is enough careful not to issue the same index twice on the same tag. We,
however, remark that this implementation has a weakness in the unlinkability
property, while it satisfies the condition of the k-time anonymity defined in [25],
because whether or not the two signatures have been generated by the different
signers can be easily determined, if the two signatures have the same tag and
index. The scheme appeared in [25], too, substantially has the same problem.
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Abstract. We provide a positive result about the Fiat-Shamir (FS)
transform in the standard model, showing how to use it to convert three-
move identification protocols into two-tier signature schemes with a proof
of security that makes a standard assumption on the hash function rather
than modeling it as a random oracle. The result requires security of the
starting protocol against concurrent attacks. We can show that numerous
protocols have the required properties and so obtain numerous efficient
two-tier schemes. Our first application is a two-tier scheme based trans-
form of any unforgeable signature scheme into a strongly unforgeable one.
(This extends Boneh, Shen and Waters [8] whose transform only applies
to a limited class of schemes.) The second application is new one-time
signature schemes that, compared to one-way function based ones of the
same computational cost, have smaller key and signature sizes.

1 Introduction

Recall that the Fiat-Shamir (FS) transform [18] is a way to obtain a signature
scheme from a three-move identification protocol by “collapsing” the interaction
via a hash function. (Briefly, the signature consists of the two prover moves cor-
responding to a verifier challenge set to be the hash of the first prover move and
the message being signed.) There are lots of protocols to which the transform
can be applied, and the resulting signature schemes include some of the most ef-
ficient known (eg. [35,24,23]). Furthermore, due to their algebraic properties, FS-
transform-derived signature schemes lend themselves nicely to extensions such
as to blind [33], multi [28] or group [7] signatures to name just a few. For these
reasons, the transform is popular and widely used.

Naturally, one would like that the constructed signature scheme meets the
standard notion of unforgeability under chosen-message attack (uf-cma) of [22].
Results of [33,30,1] say this is true in the random oracle (RO) model (meaning,
if the hash function is a random oracle) as long as the starting protocol is itself
secure (we will discuss in what sense later). However, Goldwasser and Tauman-
Kalai [21] show the existence of a protocol that, under the FS transform, yields a

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 201–216, 2007.
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signature scheme that is uf-cma secure when the hash function is a RO but is not
uf-cma secure for any “real” implementation of the hash function. This means
that the transform (at least in general) does not yield uf-cma secure schemes in
the standard model.

The question we ask is whether the FS transform can, however, yield weaker-
than-uf-cma but still useful types of signature schemes in the standard model.
We answer this in the affirmative. We show how the FS transform yields two-
tier signature schemes which are secure assuming only that the hash function is
collision-resistant and the starting protocol is secure. We exhibit some applica-
tions of two-tier signatures in general and FS-derived ones in particular, namely
for an efficient and general transform of uf-cma to strongly unforgeable (suf-cma)
signature schemes and to implement one-time signatures that are much shorter
than conventional ones of the same computational cost. Let us now look at all
this in more detail.

Two-tier schemes. In a two-tier scheme, a signer has a primary public key
and matching primary secret key. Each time it wants to sign, it generates a
fresh pair of secondary public and secret keys and produces the signature as
a function of these, the primary keys and the message. Verification requires
not only the primary public key but also the secondary one associated to the
message. Security requires that it be computationally infeasible to forge relative
to the primary public key and any secondary public key that was generated by
the signer, even under a chosen-message attack.

As the reader might rightfully note, two-tier signatures are not well suited for
direct signing in the standard PKI, because not just the primary but also the
secondary public keys would need to be certified. However, we do not propose
to use them in this direct way. Instead what we will see is that they are useful
tools in building other primitives.

Building two-tier signatures via FS. We adapt the FS transform in a nat-
ural way to convert a three-move identification protocol into a two-tier signature
scheme. (Briefly, the first prover move, rather than being in the signature, is now
the secondary public key. See Section 4 for details.) We show (cf. Theorem 2)
that the constructed two-tier scheme is secure assuming the protocol is secure
(we will see exactly what this means below) and the hash function is collision-
resistant. So security of FS-based two-tier signatures is guaranteed in the stan-
dard model unlike security of FS-based regular signatures which is guaranteed
only in the RO model.

Both the security of regular FS-based signatures (in the RO model) [30,1]
and the security of our FS-based two-tier signatures (in the standard model) are
based on some security assumption about the starting protocol. (Naturally, since
otherwise there is no reason for the constructs to be secure.) There is, however,
a difference in the two cases. Recall that security of this class of protocols can
be considered under three different types of attack: passive, where the adver-
sary merely observes interactions between the prover and honest verifier; active
[18,16], where the adversary plays a cheating verifier and engages in sequen-
tial interactions with the honest prover; or concurrent [4], where, as a cheating
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verifier, the adversary can interact concurrently with different prover clones. For
(uf-cma) security of FS-based regular signatures in the RO model, it suffices that
the protocol be secure against passive (i.e. eavesdropping) attack [30,1]. Our re-
sult showing security of FS-based two-tier signatures requires however that the
protocol be secure against concurrent attack. Thus, part of what makes it pos-
sible to dispense with random oracles is to start from protocols with a stronger
property. However, we show that the property is in fact possessed by the bulk
of example protocols, so that we lose very little in terms of actual constructions.
Specifically it is easy to show appropriate security under concurrent attack for
the Schnorr [35], Okamoto [31], and GQ [24,23] protocols as well as others, using
techniques from the original papers and more recent analyses [4,2]. Thereby we
obtain numerous specific and efficient constructions of two-tier signatures via
the FS transform.

We think this is an interesting application of concurrent security of protocols.
The latter is usually motivated as being important for certain communication
environments such as the Internet, while we are saying it is relevant to the
security of a protocol-based signature.

From uf-cma to suf-cma. Returning again to regular (rather than two-tier)
signatures, recall that strong unforgeability (suf-cma) is a stronger requirement
than the usual uf-cma of [22], requiring not only that the adversary can’t produce
a signature of a new message but also that it can’t produce a new signature of
an old message (i.e. one whose signature it has already obtained via its chosen-
message attack). The problem we are interested in is to convert a uf-cma scheme
into a suf-cma one without using random oracles. Our work is motivated by
Boneh, Shen and Waters [8] who turn Waters’ uf-cma scheme [38] into an suf-
cma one via a transform that applies to a subclass of signature schemes that
they call partitioned. Unfortunately, there seem to be hardly any schemes in
this class besides Waters’, so their transform is of limited utility. We, instead,
provide a general transform that applies to any uf-cma scheme. The transform
uses as a tool any two-tier scheme. Instantiating the latter with a FS-based
two-tier scheme we obtain efficient, standard model transforms. For example,
using the Schnorr scheme, our transform confers suf-cma while adding just one
exponentiation to the signing time and increasing the signature size by only
two group elements. Briefly, the idea of the transform is to have two signatures,
one from the original uf-cma scheme and the other from the two-tier scheme,
mutually authenticate each other. This application exploits the fact that our FS-
based two-tier signatures are themselves strongly unforgeable due to properties
of the starting protocols. (That is, if the adversary has seen the signature of m
relative to a secondary public key, it can produce neither a different signature
of m nor a signature of some m′ �= m relative to the same secondary key.)

New one-time signatures. A two-tier signature scheme yields a one-time
signature scheme as a special case. (Restrict to a single secondary key.) Thus
we obtain FS-based strongly unforgeable one-time signatures. These turn out
to be interesting because they have smaller key and signature sizes than con-
ventional one-way function based one-time schemes of the same computational
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cost. Specifically, say we are signing a 160-bit message (which is the hash of the
real message). Our Schnorr-instantiated FS-based one-time scheme implemented
over a 160-bit elliptic curve group has key size 480 bits, signature size 160 bits,
key-generation time 2 exponentiations, signing time 1 multiplication, and veri-
fying time 1 exponentiation. Let us contrast this with what is achieved by the
best one-way function based one-time signature schemes, namely those of [15,6].
Unforgeability is proved by [15] under the assumption that the one-way function
is quasi-one-way. We observe that the scheme is strongly unforgeable under the
additional assumption that the function is collision-resistant. So, let us use SHA-
1 as the one-way function. The resulting schemes exhibit the following size to
computation tradeoff. For any positive integer t dividing 160, there is a one time
scheme with key and signature size (1 + 160/t) · 160 and key-generation, sign-
ing and verifying time (160/t) · 2t hash computations. An implementation with
the crypto++ library [12] indicates that an exponentiation in a 160-bit group
costs about 3, 300 hashes. To match the key-generation time of 2 exponentia-
tions (which is the largest of the computation times in our algebraic scheme)
we thus want to choose t such that (160/t) · 2t ≈ 6, 600. Let us (generously)
set t = 10. The key and signature size now becomes 2, 720 bits, which is much
more than in our scheme. (And at this point, while key-generation time in the
one-way function scheme is essentially the same as in our scheme, signing time
is much more.) Note we would get the same efficiency gains using the standard
Schnorr [35] scheme instead of our scheme, but the proof of the former uses
random oracles [32].

Our new one-time signature scheme is interesting for applications like the
DDN and Lindell constructions of IND-CCA public-key encryption schemes
[14,27], the IBE-based constructions of IND-CCA schemes of [9], and the compo-
sition of encryption schemes [13]. All of these make use of strongly unforgeable
one-time signatures, and the reduced key size of the latter results in reduced
ciphertext size for the encryption schemes they build.

Alternative two-tier schemes and their implications. We noted above
that two-tier schemes yield (strongly unforgeable) one-time ones as a special
case. Conversely, however, one can also construct a two-tier scheme from any
strongly unforgeable one-time scheme. (Set the primary keys to empty, and use
a new instance of the one-time scheme for each secondary key. See [5] for details.)

One implication of this observation is that we can obtain one-way function
based constructions of the primitives we have been discussing, thereby answering
the main foundational question about their existence. Specifically, as we discuss
in more detail in [5], it is easy to build UOWHF [29] based strongly unforgeable
one-time schemes. Since UOWHFs exist given any one-way function [34], we ob-
tain one-way function based two-tier schemes. We also obtain a one-way function
based transform of uf-cma signature schemes into suf-cma ones. This yields a
somewhat simpler construction of a one-way function based suf-cma signature
scheme than given by Goldreich in [19].

However, the above observation (that strongly unforgeable one-time schemes
yield two-tier schemes) also raises some questions. The first of these is, what is
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the point of FS-based two-tier schemes given that there are other ways to build
two-tier schemes? However, the same question can be asked about the use of the
FS transform to build regular signatures, for of course regular signatures can be
built in other ways too. In both cases the point is that FS-based constructs have
efficiency or other properties not provided by other constructs. (Specifically,
FS-based two-tier schemes have smaller key and signature sizes than two-tier
schemes of the same computational cost built from any known strongly unforge-
able one-time schemes.) One might also ask what is the point of introducing
two-tier schemes at all. Indeed, we could have based our transform (of uf-cma
schemes into suf-cma ones) on strongly unforgeable one-time schemes rather
than on two-tier schemes, and we could have built FS-based strongly unforge-
able one-time schemes directly rather than building two-tier schemes. Two-tier
schemes however have the advantage over using one-time schemes that any key
information that is long-lived across multiple instances of a one-time scheme can
be re-used, resulting in shorter keys. This results in shorter signatures for the
suf-cma schemes built by our transform. Another advantage is improved concrete
security: the reduction from suf-cma signatures to two-tier and uf-cma signatures
is tight, whereas if we had used one-time signatures, we would incur a factor of
the number of signing queries. Furthermore our reductions from identification
protocols to two-tier schemes derived via the FS transform are tight too. Overall
it seemed simple and worthwhile enough to make the optimization (meaning to
introduce and use two-tier signatures) and hence we have done so.

Related work. Cramer and Damg̊ard [11] present a non-RO transform of pro-
tocols with certain properties into signature schemes. Their transform is not the
FS one (it is more complex and less efficient) but they obtain regular unforgeable
signature schemes while we obtain only two-tier schemes.

Independently of our work, others have extended [8] to provide general trans-
forms of unforgeable signature schemes into strongly unforgeable ones. The
transform of Huang, Wong and Zhao [26] is similar to the special case of ours
with a two-tier signature scheme built from a collision-resistant hash function
based one-time signature scheme. However, this yields large signatures. Teran-
ishi, Oyama and Ogata [37] present a discrete log, chameleon commitment based
transform that is very efficient.

2 Definitions

Notation and conventions. We denote by a1‖ · · · ‖an a string encoding of
a1, . . . , an from which the constituent objects are uniquely recoverable. We de-
note the empty string by ε. Unless otherwise indicated, an algorithm may be
randomized. A collision for a function h is a pair x, y of distinct points in its do-
main such that h(x) = h(y). If A is a randomized algorithm then y

$← A(x1, . . .)
denotes the operation of running A with fresh coins on inputs x1, . . . and letting
y denote the output. If S is a (finite) set then s

$← S denotes the operation of
picking s uniformly at random from S.
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Signatures. A (digital) signature scheme DS = (KG, SGN, VF) is specified as
usual by three algorithms. Via (PK, SK) $← KG a prospective signer can generate
its public and associated secret key. Via σ

$← SGN(SK , M) the signer can produce
a signature σ on a message M ∈ {0, 1}∗. Via d ← VF(PK , M, σ), a verifier can
run the deterministic verification algorithm to get a decision bit d ∈ {0, 1}. We
require perfect consistency, meaning that

Pr
[

VF(PK, M, σ) = 1 : (PK , SK) $← KG ; σ
$← SGN(SK , M)

]
= 1

for all messages M . To define security consider the following game involving an
adversary A:

(PK, SK) $← KG ; (M, σ) $← ASGN(SK,·)(PK) .

The adversary is given a signing oracle and the public key, and outputs a message
and candidate signature. Let M1, . . . , Mq denote the messages queried by A to
its oracle in its chosen-message attack, and let σ1, . . . , σq denote the signatures
returned by the oracle, respectively. We say that A forges if VF(PK , M, σ) = 1
and M �∈ {M1, . . . , Mq}. We say that A strongly forges if VF(PK, M, σ) = 1 and
(M, σ) �∈ {(M1, σ1), . . . , (Mq, σq)}. We let Advuf-cma

DS (A) and Advsuf-cma
DS (A)

denote, respectively, the probability that A forges and the probability that it
strongly forges. The first measure represents the standard uf-cma notion of [22],
while the second represents strong unforgeability (suf-cma).

Syntax of two-tier signature schemes. A two-tier signature scheme ds =
(pkg, skg, sgn, vf) is specified by four algorithms. They are called the primary
key-generation, secondary key-generation, signing and verifying algorithms, re-
spectively, and the last is deterministic. Via (ppk, psk) $← pkg, a prospective
signer generates a primary public key ppk and associated primary secret key
psk. Think of these as the keys at the first tier of the two-tier scheme. The
signer may then at any time generate a secondary public key spk and associated
secondary secret key ssk via (spk, ssk) $← skg(ppk, psk). These will be the second
tier keys, and there can be many of them. Via s

$← sgn(psk, ssk, m) the signer
can generate a signature of a message m. Via d ← vf(ppk, spk, m, s), a verifier
can produce a decision bit d ∈ {0, 1} indicating whether or not s is a valid sig-
nature of m relative to ppk, spk. We require perfect consistency, meaning that
for all messages m, vf(ppk, spk, m, s) = 1 with probability 1 in the following
experiment:

(ppk, psk) $← pkg ; (spk, ssk) $← skg(ppk, psk) ; s
$← sgn(psk, ssk, m) .

In usage, a signer will have a single primary key pair. It will, however, use
a fresh secondary key pair for each message, meaning the secondary key pairs
are one-time. Since generation of a secondary key pair does not require knowing
the message, this generation can either be done when the message to be signed
arrives, or off-line, in advance.

Security of two-tier signature schemes. To define security, consider the
following game. We let (ppk, psk) $← pkg, initialize a set U to ∅ and initialize
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Oracle spkO()
i ← i + 1

(spki, sski)
$← skg(ppk, psk)

Return spki

Oracle SignO(j, m)
If j > i OR j ∈ U then return ⊥
U ← U ∪ {j} ; mj ← m

sj
$← sgn(psk, sskj , mj)

Return sj

Fig. 1. Oracles for adversary attacking two-tier scheme ds = (pkg, skg, sgn, vf)

a counter i to 0. We then run an adversary A on input ppk with access to the
oracles shown in Figure 1. A can obtain a fresh secondary public key at any time
by calling its secondary public-key oracle spkO. A can obtain a signature of a
message m of its choice under an already generated secondary public key spkj

by calling the signing oracle SignO on inputs j, m, where j ≥ 1. However, A
cannot obtain more than one signature under a particular secondary public key.
(This restriction is enforced by the oracle via the set U .) Finally A outputs a
forgery, which must be a triple of the form (l, m, s). Let (j1, m1), . . . , (jq, mq)
denote the queries made by A to its SignO oracle in its chosen-message attack,
and let s1, . . . , sq denote the signatures returned by the oracle, respectively.
We say that A wins if vf(ppk, spkl, m, s) = 1 and 1 ≤ l ≤ i but (l, m, s) �∈
{(j1, m1, s1), . . . , (jq, mq, sq)}. Here i is the final value of the counter, meaning
the number of queries A made to spkO. The probability that A wins is denoted
Advsuf-cma

ds (A).
Notice that this definition is of strong unforgeability, meaning this has been

built in as a requirement. We do this because it is what the applications need
and also what the FS-based constructs naturally provide.

Discussion. Two-tier schemes are hybrids of regular and one-time schemes. If
the secondary keys are empty, we have a regular scheme. If the primary keys are
empty, we have multiple instances of a one-time scheme.

3 From uf-cma to suf-cma

Suppose we are given a uf-cma signature scheme DS and want to transform
it into a suf-cma signature scheme DS, efficiently and without random oracles.
This problem was recently considered by [8] who provided a transform that
works under the assumption that the starting uf-cma scheme is what they call
“partitioned.” However, there are few examples of partitioned schemes. In this
section, we provide a general transform, namely one that applies to any starting
uf-cma scheme. It uses an arbitrary two-tier scheme as an auxiliary tool. The
transform does not use random oracles, and, when instantiated with appropriate
FS-based two-tier schemes, matches that of [8] in computational overhead while
providing signatures that are longer by only one group element.

The Transform. Let DS = (KG, SGN, VF) be the given uf-cma scheme. Let
ds = (pkg, skg, sgn, vf) be a (any) given two-tier scheme. We associate to these
the signature scheme DS = (KG, SGN, VF) defined as follows. The key-generation
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algorithm KG runs KG to get (PK , SK), runs pkg to get (ppk, psk), and returns
PK = PK‖ppk as the public key and SK = SK‖psk as the secret key. The new
signing and verifying algorithms are as follows:

Algorithm SGN(SK , M)
Parse SK as SK‖psk
(spk, ssk) $← skg(ppk, psk)
M ← spk‖M

S
$← SGN(SK , M)

s
$← sgn(psk, ssk, S)

S ← S‖spk‖s

Return S

Algorithm VF(PK, M, S)
Parse PK as PK‖ppk
Parse S as S‖spk‖s
M ← spk‖M
If VF(PK, M, S) = 0 then return 0
If vf(ppk, spk, S, s) = 0 then return 0
Return 1

The following implies that the constructed scheme DS is strongly unforgeable if
DS is unforgeable and the two-tier scheme ds is strongly unforgeable. The proof
may be found in [5].

Theorem 1. Let DS be the signature scheme associated to signature scheme
DS and two-tier signature scheme ds as described above. Let F be an adversary
attacking the strong unforgeability of DS and making at most q signing queries.
Then there exist adversaries F, f attacking the unforgeability of DS and the strong
unforgeability of ds, respectively, such that

Advsuf-cma
DS (F ) ≤ Advuf-cma

DS (F ) + Advsuf-cma
ds (f) .

Furthermore F and f make at most q signing queries, and their running times
are that of F plus an overhead that is linear in q.

4 Constructions of Two-Tier Schemes

Canonical identification protocols. The FS transform applies to a class
of protocols we call canonical identification protocols [1]. We need to have a
general syntax for these protocols since the transform and its proof will refer
to this. The protocol can be described as a tuple ID = (K, P, ChSet, V ). Via
(pk, sk) $← K, the (honest) prover generates its public and secret keys. Now the
public key pk is viewed as an input for the verifier, while sk is a private input
to the honest prover. The prover can now convince the verifier of its identity
via a three move interaction as depicted in Figure 2. We refer to the moves as
commitment, challenge, and response. The (honest) prover maintains a state St
whose initial value is its secret key sk. In its first move, it applies P to the current
conversation (which is ε) and current state (St = sk) to get a commitment Cm

and an updated state St. The former is sent to the verifier, who now draws its
challenge Ch at random from ChSet and sends this to the prover. The (honest)
prover now lets Rp

$← P (Cm‖Ch, St) and sends Rp back to the verifier. The
latter applies the deterministic function V to pk and the transcript Cm‖Ch‖Rp

to output the decision Dec ∈ {0, 1}. We require perfect completeness, meaning
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Prover
Input: sk
(Cm, St)

$← P (ε, sk)

Rp
$← P (Cm‖Ch, St)

Cm �
Ch�
Rp �

Verifier
Input: pk

Ch
$← ChSet

Dec ← V (pk,Cm‖Ch‖Rp)

Fig. 2. Canonical Protocol. Keys pk and sk are produced using key generation
algorithm K.

that for all (pk, sk) that can be output by K we have V (pk,Cm‖Ch‖Rp) = 1
with probability 1 in the following experiment:

(Cm, St) $← P (ε, sk) ; Ch
$← ChSet ; Rp

$← P (Cm‖Ch, St) . (1)

Examples of canonical identification protocols include the Schnorr protocol [35]
illustrated in Figure 3 and the Okamoto protocol [31] illustrated in Figure 4.

Security notions. The “master” property of protocols in this domain is special
soundness. We will consider it under different forms of attack, namely passive,
active and concurrent. (We only use the last in our results but for discussions it
is useful to see them all.) To define these consider the following game involving
an attacker I. The game begins by picking keys via (pk, sk) $← K. Then there are
two phases. In the first phase, adversary I gets to mount its attack on the honest
prover. In a passive attack, it gets an oracle that upon being invoked (with no
arguments) returns a random transcript of an interaction between the honest
prover (given input sk) and the verifier (given input pk). In an active or concur-
rent attack, I gets to play the role of verifier and interact with “clones” of the
honest prover. We can imagine a sequence Pj (j ≥ 1) of potential clones. Each
clone maintains a state Stj and has its own random coins. The game maintains
a counter a, initially 0, and a set A of clones that are activated, initially empty.
Adversary I can ask for a new clone to be activated, in which case the game
increments a, computes (Cma, Sta) $← P (ε, sk), and returns Cma to I. If the
attack is concurrent, it adds a to A, but if the attack is active, it replaces A by
{a}, meaning that only one clone can be activated at any time. If j ∈ A then I
can send clone Pj a message Chj representing the verifier move. Adversary I can
pick this value any way it wishes, in particular not necessarily at random like the
honest verifier. The game computes Rpj

$← P (Cmj‖Chj , Stj), returns Rpj to I,
and removes j from A. (Which means no further interaction with Pj is possible.)
Note that the difference between an active and concurrent attack is that in the
former, the adversary is allowed to have only one clone (namely Pa) activated at
any time, corresponding to sequential interactions with the honest prover, while
in a concurrent attack, any number of clones may simultaneously be activated,
and I can choose a challenge sent to one of them as a function of all communica-
tions it has received from all clones so far. Note that in either case, the adversary
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does not see or control the internal state of a prover clone. In no case can it reset
or backup a clone. After it has completed its attack (of whatever form), we enter
the second phase. The adversary outputs a pair (Cm,Ch1,Rp1), (Cm,Ch2,Rp2)
of transcripts where the commitment is the same. It wins if these transcripts are
accepting but (Ch1,Rp1) �= (Ch2,Rp2). The probability that it wins is denoted
Advss-atk

ID (I), where atk = pa if the attack is passive; atk = aa if the attack is
active; and atk = ca if the attack is concurrent.

Discussion. The typical formulation of special soundness is that given a pair
(Cm,Ch1,Rp1), (Cm,Ch2,Rp2) of accepting transcripts where the commitment
is the same but Ch1 �= Ch2, one can easily find a matching secret key sk. This
implies in particular that the protocol is a proof of knowledge of the secret key
which in turn is crucial to proving security against impersonation under passive,
active or concurrent attack. (Impersonation means that after its attack, meaning
in the second phase, rather than outputting a pair of transcripts, the adversary
plays the role of prover in an interaction with the honest verifier and wins if it
can convice the latter to accept.) For our purposes, however, we work directly
with special soundness rather than any of its derivative properties. We directly
require that the probability of finding transcripts of the appropriate type is
negligible rather than relating this to finding the secret key. This is similar to
the security requirement used in [11], though they apply it to a different protocol-
based transform. Note we weaken the condition under which the adversary wins
from Ch1 �= Ch2 to (Ch1,Rp1) �= (Ch2,Rp2). We will have to prove that the
resulting stronger security requirement is met by the constructs.

A Σ protocol is one that has special soundness and honest-verifier zero-
knowledge. We do not explicitly require the latter as part of special soundness,
although in establishing special soundness of particular protocols we might use
it. Note none of the example protocols in this domain are full (i.e. even against
cheating verifiers) zero-knowledge. Indeed, this is ruled out under blackbox sim-
ulation [20].

Special soundness is usually considered as a stand-alone property, but it is
natural to consider it under the three forms of attack that exist for identification
protocols as we have done.

For our particular transform, we require special soundness under concurrent
attack, rather than active or passive. This is necessary for our proof due to the
nature of two-tier signatures and our security definition. In our transform, each
request for a new secondary key will require the instantiation of a new clone.
Each clone will be required for a signature using its corresponding key, and since
the adversary is not required to sign on a key immediately after acquiring it, it
is necessary to have multiple clones active at a time. For this reason, we require
security under concurrent attack.

The transform. We now describe how to turn a canonical identification proto-
col ID = (K, P, ChSet, V ) into a two-tier signature scheme ds = (pkg, skg, sgn, vf)
via the Fiat-Shamir transform. We do not use a random oracle but instead a
family H : {0, 1}k × {0, 1}∗ → ChSet of collision-resistant (CR) hash functions
where each k-bit key K specifies a particular hash function H(K, ·) with range
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the challenge set ChSet. (The keys will be random but public.) The primary
key generation algorithm pkg lets K

$← {0, 1}k and (pk, sk) $← K, and returns
(ppk, psk) ← (K‖pk, K‖sk). The skg, sgn, and vf algorithms are as follows:

skg(ppk, psk)
Parse ppk as K‖pk
Parse psk as K‖sk
(Cm, St) $← P (ε, sk)
spk ← Cm

ssk ← Cm‖St
Return (spk, ssk)

sgn(psk, ssk, m)
Parse psk as K‖sk
Parse ssk as Cm‖St
Ch ← H(K,Cm‖m)
Rp

$← P (Cm‖Ch, St)
s ← Rp

Return s

vf(ppk, spk, m, s)
Parse ppk as K‖pk
Cm ← spk
Ch ← H(K,Cm‖m)
Rp ← s
Dec ← V (pk,Cm‖Ch‖Rp)
Return Dec

Note that in generating s, algorithm P will be executed with a challenge that,
unlike the one the honest prover expects to receive, is not random. The im-
plications for security are dealt with by the theorem that follows, but at this
point we need to first check that it does not lead to a violation of the perfect
consistency requirement of two-tier schemes. This is true because the protocol
has perfect completeness as per Equation (1), which means for all values of the
verifier challenge, the prover returns a response that leads the verifier to accept.

Security of the transform. Recall that the cr-advantage of an adversary
F attacking H is Advcr

H(F ), defined as follows:

Pr
[

H(K, x1) = H(K, x2) ∧ x1 �= x2 : K
$← {0, 1}k ; (x1, x2)

$← F (K)
]

.

The following says that if H is CR and ID is secure against concurrent attack
then the two-tier scheme derived via the FS transform is secure. The proof may
be found in [5].

Theorem 2. Let ds = (pkg, skg, sgn, vf) be the two-tier signature scheme asso-
ciated to canonical identification protocol ID = (K, P, ChSet, V ) and hash func-
tion H : {0, 1}k × {0, 1}∗ → ChSet via the Fiat-Shamir transform as described
above. Let f be an adversary attacking the strong unforgeability of ds and mak-
ing at most q signing queries. Then there exists an adversary I attacking the
special soundness of ID under concurrent attack, and an adversary F attacking
the collision-resistance of H, such that

Advsuf-cma
ds (f) ≤ Advss−ca

ID (I) + Advcr
H(F ) .

Furthermore I initiates at most q + 1 prover clones, and the running time of I
and F is that of f plus a constant amount of overhead.

To instantiate the above we now seek efficient protocols for which we can prove
special soundness under concurrent attack. There are actually several such pro-
tocols. We illustrate by looking at a pair of examples that are representative due
to the proof techniques.

Definitions. In what follows, G denotes a group whose order p is a prime.
(For example an appropriate elliptic curve group, or a subgroup of the group of
integers modulo some prime q such that p divides q − 1.) Let G∗ = G − {1} be
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Algorithm K
g

$← G∗

x
$← Zp

X ← gx

pk ← (g,X)
sk ← (g, x)
Return (pk, sk)

Prover
Input: sk = (g, x)

y
$← Zp

Y ← gy

z ← y + cx mod p

Y �
c�
z �

Verifier
Input: pk = (g,X)

c
$← Zp

If gz = Y Xc then Dec ← 1
else Dec ← 0

Return Dec

Fig. 3. Schnorr Protocol. Above, G is a group of prime order p, and ChSet = Zp.

the set of generators of G, where 1 is the identity element of G. We let DLogg(h)
denote the discrete logarithm of h ∈ G to base a generator g ∈ G∗. We assume
G, p are fixed and known to all parties. Let

Advdl
G(A) = Pr

[
x′ = x : g

$← G∗ ; x
$← Zp ; x′ $← A(g, gx)

]

denote the advantage of an adversary A in attacking the discrete logarithm (dl)
problem. An adversary A for the one more dl (omdl) problem [3] is given input
a generator g ∈ G∗ and has access to two oracles. The first is a challenge oracle
chO() that takes no inputs and, every time it is invoked, returns a random
element of G. The second is a dl oracle DLogg(·) that, given any W ∈ G, returns
DLogg(W ). Let W1, . . . , Wq denote the responses to A’s queries to its challenge
oracle. A’s goal is to compute the discrete logarithms of all challenges, meaning
output w1, . . . , wq ∈ Zp satisfying gwi = Wi for all 1 ≤ i ≤ q. Of course this is
easy because it has a DLogg(·) oracle. To make the task non-trivial, however,
we restrict A to make strictly less queries to its DLogG(·) oracle than it does to
its challenge oracle. Let Advomdl

G (A) be the probability that A wins.

Schnorr identification protocol. The Schnorr identification protocol [35]
shown in Figure 3 is probably the most “canonical” example of a canonical
identification protocol. It is secure against impersonation under passive attack
under the dl assumption [35]. Security against impersonation under active (and
concurrent) attack, however, remained an open question for a while. Indeed,
it does not seem possible to prove this under the dl assumption. Eventually,
however, security against impersonation under active and concurrent attack was
proved by [4] under the one more dl (omdl) assumption. However, we need special
soundness rather than security under impersonation. Also, we need to show that
our strong form of special soundness holds, namely that the adversary not only
cannot find a pair of accepting transcripts (Cm,Ch1,Rp1), (Cm,Ch2,Rp2) with
Ch1 �= Ch2 but cannot even find such transcripts with Ch1 = Ch2 as long as
Rp1 �= Rp2. We revisit the proof to establish these things. We make use of the
fact that the protocol has a “unique answer” property. The proof of the following
may be found in [5].
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Algorithm K
g1, g2

$← G∗

s1, s2
$← Zp

v ← g−s1
1 g−s2

2
pk ← (g1, g2, v)
sk ← (g1, g2, s1, s2)
Return (pk, sk)

Prover
Input: sk = (g1, g2, s1, s2)

r1, r2
$← Zp

R ← gr1
1 gr2

2

y1 ← r1 + es1 mod p
y2 ← r2 + es2 mod p

R �
e�

(y1, y2) �

Verifier
Input: pk = (g1, g2, v)

e
$← Zp

If R = gy1
1 gy2

2 ve

then Dec ← 1
else Dec ← 0

Return Dec

Fig. 4. Okamoto Protocol. Above, G is a group of prime order p, and ChSet = Zp.

Proposition 1. Let ID = (K, P, ChSet, V ) be the Schnorr identification protocol
described in Figure 3. Let I be an adversary against the special soundness of ID
under concurrent attack. Then there exists an omdl adversary A such that

Advss−ca
ID (I) ≤ Advomdl

G (A) .

Furthermore the running time of A is that of I plus some overhead to compute
an inverse and product modulo p, and if I activates q clones, then A makes q+1
challenge queries.

We remark that the reduction is tight. In contrast, in the reductions showing
security against impersonation [4], Advomdl

G (A) is proportional to the square of
the probability that I succeeds in impersonation. This is an advantage to working
directly with special soundness rather than with impersonation. We now sketch
a proof based on the ideas of [4].

The two-tier scheme resulting from our FS-based transform instantiated with
the Schnorr protocol is very efficient. Generating a secondary key pair takes just
one group exponentiation, while signing only requires a multiplication modulo
p. In the context of our uf-cma to suf-cma transform of Section 3, this means
that the computational overhead for signing (added cost of signing in the suf-
cma scheme versus the uf-cma scheme) is just one group exponentiation and
the bandwidth overhead (added length of a signature in the suf-cma scheme
compared to that in the uf-cma scheme) is one group element and one integer
modulo p.

Okamoto Identification Protocol. Okamoto’s protocol [31] is illustrated
in Figure 4. Its advantage is that security can be proved under the standard dl
assumption rather than the omdl assumption. (Yet in fact the efficiency is not
much different as we will see below.) The idea is that there are many secret keys
corresponding to a single public key and witness-indistinguishability [17] can be
used in the simulation. The protocol was proved in [31] to be secure against
impersonation under active attack assuming hardness of the dl problem, and the
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proof extends to concurrent attacks. However, again, we need special soundness
rather than security under impersonation, and in our new, strong form. The
Okamoto protocol, however, does not have the unique answer property. But we
can still prove the security we need. We now state the result. The proof may be
found in [5].

Proposition 2. Let ID = (K, P, ChSet, V ) be the Okamoto identification proto-
col described in Figure 4. Let I be an adversary against the special soundness of
ID under concurrent attack. Then there exists a dl adversary A such that

Advss−ca
ID (I) ≤ 1

p
+ Advdl

G(A) .

Furthermore the running time of A is that of I plus the time to compute three
inverses and three products modulo p.

Again, the reduction is essentially tight due to working with special soundness,
whereas the reduction of [31] to establish security against impersonation incurs
the square loss we discussed in the context of Schnorr.

In the two-tier scheme resulting from our FS-transform instantiated with the
Okamoto protocol, generating a secondary key pair takes one group exponenti-
ation. (It is a multi-exponentiation, which has the same cost as a single one.)
Signing requires a couple of multiplications modulo p. So the computational cost
is the same as for Schnorr although security relies only on dl rather than omdl.
In the context of our uf-cma to suf-cma transform of Section 3, this means that
the computational overhead for signing is again just one group exponentiation.
But the bandwidth overhead is one group element and two integers modulo p,
slightly more than when we used the Schnorr scheme.

Additional Protocols. Above we have discussed two protocols that meet
our ss-ca security requirement. We have however identified several more with
the property in question. We omit proofs since they are similar to the ones given
here, and instead provide a brief discussion. We exclude the Fiat-Shamir protocol
from this discussion, as it does not seem to meet our requirements.

The GQ protocol [24] was proved secure against impersonation under concur-
rent attack in [4] under the assumption that RSA is secure against one more
inversion [3]. We can extend this proof to show it is ss-ca under the same as-
sumption in the same way that we extended the proof of the Schnorr scheme.
This protocol has Fiat-Shamir like efficiency yet has small key sizes.

Shamir presented an identity-based identification scheme in [36]. A corre-
sponding standard (i.e. not identity-based) version was presented in [2], along
with a variant they called Sh∗ and proved secure against impersonation under
concurrent attack assuming security of RSA under one more inversion. This too
can be proved ss-ca under the same assumption. The protocol is however a mirror
image of GQ and has the same efficiency attributes as the latter.

Then there are pairings-based schemes. Both Hs-SI [2] and ChCh-SI [2] are
ss-ca secure under the one more computational Diffie-Hellman assumption.
These schemes were presented in [2] and are based upon existing identity-based
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signature schemes, namely those of Hess [25] and Cha and Cheon [10]. Again,
the proof of ss-ca extends the proofs of security against impersonation of [2].
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Abstract. At PKC 2006 Crutchfield, Molnar, Turner and Wagner pro-
posed a generic threshold version of on-line/off-line signature schemes
based on the “hash-sign-switch” paradigm introduced by Shamir and
Tauman. Such a paradigm strongly relies on chameleon hash functions
which are collision-resistant functions, with a secret trapdoor which actu-
ally allows to find arbitrary collisions efficiently. The “hash-sign-switch”
paradigm works as follows. In the off-line phase, the signer hashes and
signs a random message s. When, during the on-line phase, he is given a
message m to sign the signer uses its knowledge of the hash trapdoor to
find a second preimage and “switches” m with the random s. As shown by
Crutchfield et al. adapting this paradigm to the threshold setting is not
trivial. The solution they propose introduces additional computational
assumptions which turn out to be implied by the so-called one-more
discrete logarithm assumption.

In this paper we present an alternative solution to the problem. As
in the previous result by Crutchfield et al., our construction is generic
and can be based on any threshold signature scheme, combined with a
chameleon hash function based on discrete log. However we show that,
by appropriately modifying the chameleon function, our scheme can be
proven secure based only on the traditional discrete logarithm assump-
tion. While this produces a slight increase in the cost of the off-line phase,
the efficiency of the on-line stage (the most important when optimizing
signature computation) is unchanged. In other words the efficiency is
essentially preserved. Finally, we show how to achieve robustness for our
scheme. Compared to the work by Crutchfield et al., our main solution
tolerates at most �n/4� (arbitrarily) malicious players instead of �n/3�
however we stress that we do not rely on random oracles in our proofs.
Moreover we briefly present a variant which can achieve robustness in
the presence of �n/3� malicious players.
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1 Introduction

In a threshold signature scheme [6], digital signatures can be produced by a group
of n players (rather than by one party) who hold the secret key in a shared form
among them. In order to produce a valid signature on a given message m, the
individual players engage in a communication protocol that has the signature
as its output: a simplified way to think about this is that each player produces
a partial signature on the message, and then the players combine them into a
full signature on m. A threshold signature scheme achieves threshold t < n,
if no coalition of t (or less) players can produce a new valid signature, even
after the system has produced many signatures on different messages. Threshold
signatures are mainly motivated by the need to protect signature keys from
the attack of internal and external adversaries: by keeping these keys shared,
the adversary must compromise at least t+1 servers to learn the private signing
key. Threshold signatures have found many practical applications, not only in the
area of protecting high-security keys (such as the signature key of a certification
authority), but also as a tool implementing secure distributed protocols, such as
large-scale distributed data storage systems [17,19].

The most serious obstacle in the practical deployment of threshold signatures
is the time needed to compute signatures, since the “normal” costs of public-
key operations required by a “centralized” digital signature are magnified by
the communication and computations required by the distributed protocol that
computes threshold signatures. As pointed out in [4], Pond (a prototype for
OceanStore a large-scaled distributed data storage system [17]) spends 86% of
its time computing threshold signatures. Thus it is important to look for ways
of speeding up signature computation, without compromising security.

The idea proposed in [4] (the inspiration for our work) is to use on-line/off-line
signatures (introduced in [8]). In these signatures the signing process is divided
in two parts: a computationally intensive part which is done off-line, i.e. before
the message being signed is known. This off-line part produces some tempo-
rary data which is stored and then used at the time the message to be signed is
known. At that point, the computation of the actual signature requires very little
effort. Such signatures can be constructed starting from any regular digital signa-
ture, via combination with one-time signatures (as in [8]) or chameleon hashing
([15,21]). It is also worth pointing out that some digital signature schemes (e.g.
the Digital Signature Standard [16]) are intrinsically on-line/off-line.

What we need then, is an on-line/off-line threshold digital signature. We
should point out that the threshold DSS signatures presented in [12] is an ex-
ample of such signature. What we are interested however is a generic solution:
a way to convert any threshold signature into an on-line/off-line one. The work
by Crutchfield et al. in [4] is the first example of that. They showed how to com-
bine any threshold signature with a threshold version of a specific chameleon
hash function based on the discrete logarithm problem (the well known Peder-
sen commitment [18]). The final result is a reasonably efficient scheme whose
security holds under the security of the original signature scheme together with
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the one-more discrete-log assumption (recalled below), which is stronger than the
traditional assumption of computational infeasibility of the discrete log function.

Our Results. We present a new and improved generic on-line/off-line thresh-
old signature scheme. As in [4] we combine any threshold signature scheme, with
a chameleon hash function based on discrete log. However our scheme can be
proven secure based only on the traditional discrete log assumption. The price
to pay is a slight increase in the cost of the off-line signature computation com-
ponent, but the efficiency of the on-line part remains unchanged with respect
to [4]. Thus we present a scheme that without compromising the overall level of
efficiency improves [4] on the security assumption.

1.1 The Approach in a Nutshell

First we describe the so-called “hash-sign-switch” paradigm as introduced by
Shamir-Tauman [21], that uses chameleon hashing [15] to construct on-line/off-
line signatures. Then we discuss the threshold version in [4] and finally our
improvement on it.

A chameleon hash function is defined by a public key CH (we use the public
key to denote the actual function) and a secret trapdoor T . It takes two argu-
ments a message m and a random string r. The function is collision-resistant,
unless one knows the trapdoor T . But knowledge of T allows to find arbitrary
collisions, i.e. given c = CH(m, r) and an arbitrary message m′, the holder
of the trapdoor can find r′ such that c = CH(m′, r′). For many chameleon
hash functions, this collision-finding procedure is very efficient, requiring only a
single modular multiplication. The Shamir-Tauman [21] idea is to construct on-
line/off-line signatures as follows. The off-line part would consists of computing
c = CH(a, r′) for some arbitrary a, r′ and then computes s the signature of c
under an ordinary signature scheme. On input the actual message m the signer
(who knows the trapdoor T as part of the signing key) computes r such that
c = CH(m, r) and outputs r, s. The verifier computes c and verifies s on it.

The contribution of Crutchfield et al. is to build a way to compute the values
c and r distributively, i.e. by servers who hold T in a shared form. They use
Pedersen’s commitment [18] as the chameleon hash function: CH(m, r) = grhm

in a cyclic group of prime order. To “thresholdize” CH they use techniques
developed in the context of discrete-log based threshold cryptography (e.g. [12]).
The proof of their scheme has, however, a subtle issue. The proof of security of
the threshold scheme in [4] is carried out via simulation: an adversary forging the
threshold scheme is transformed via a simulation of the distributed environment
into a forger for the centralized scheme, or a collision-finder for CH . In the [4]
protocol the value c is revealed to the adversary (who may have corrupted up to
t of the signing servers) before the final signature is computed (as opposed to the
centralized Shamir-Tauman solution where the adversary sees c only after the
signature is issued). This in turns means that the simulation of the on-line phase
is constrained to use a specific c generated in a simulation performed before m
was known. This is why the proof in [4] must use the stronger one-more discrete
log assumption.
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Our contribution is an alternative way to get around the above problem,
so that we do not require this stronger assumption. The basic idea is to use
a variation of Pedersen’s commitment for the chameleon hashing. We define
CH(m, r, s) = gmhr

1h
s
2. The crucial property of this chameleon hash function is

that it has two “independent” trapdoors (logg h1 and logg h2), and we can give
a random one to the simulator to help in performing the simulation1. On the
other hand if the adversary finds a collision for CH , with probability 1/2 this
collision will reveal the other trapdoor, thus allowing us to solve the discrete log
problem.

On the difference between the assumptions. Our proof relies on the
standard discrete log assumption: given a cyclic group G of prime order q, a
generator g, and a random value y ∈ G, find z ∈ Zq such that y = gx. This
assumption has been widely used and it’s the basis of many of the cryptographic
schemes used in practice. The assumption used in [4] is stronger since the ad-
versary is given access to an oracle that computes discrete logs: on input y the
oracle returns x such that y = gx. The task is then: given k random values in
G, y1, y2, . . . , yk, find all the discrete logs xi s.t. yi = gxi , while being allowed
to query the oracle at most k − 1 times. This assumption is newer and not as
established as the traditional discrete log assumption.

On the robustness guarantees. It is desirable in a distributed environment
to be able to guarantee robustness. Informally, this means that, even if up to t
players behave dishonestly, the remaining honest ones are still able to perform the
computation correctly. The scheme proposed in [4] enables such property, either
in the random oracle model, or by using a technique pointed out by Damg̊ard
and Dupont [5], and provided that n > 3t + 1. As a comparison, our technique
allows to deal with up to n/3 players that can be either halting at any time,
or arbitrarily malicious except during the on-line signing phase. If we want to
tolerate malicious players at any step of the protocol, we have to2 restrict the
threshold to t < n/4.

1.2 Related Work

As we pointed out, Even et al. introduced the notion of on-line/off-line signatures
in [8] and constructed them combining regular signatures with efficient one-time
signatures. However the length of the signatures is an issue in this approach.
Shorter signatures can be obtained by using chameleon hashing [15] combined
with regular signatures as pointed out by Shamir and Tauman [21].

1 The idea of using two independent trapdoors to construct a secure digital signature
scheme is not new, as it goes back to the seminal paper of Goldwasser, Micali and
Rivest [14].

2 More precisely, it would be possible to tolerate one third of the players behaving
maliciously at any time, by using general techniques such as non-interactive zero-
knowledge proofs in order to enhance every protocol step with robustness. However,
the obtained scheme would have become highly inefficient; we decided to maintain
practicability rather than optimizing threshold.
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Threshold signature schemes were introduced by Desmedt and Frankel [6]. We
point out that threshold DSS signatures (constructed in [12]) are intrinsically
on-line/off-line and do not require the extra steps described in this paper or [4].
On the other hand the techniques in this paper allow the underlying signature
to be any desired scheme. RSA-based threshold signatures (which can be used
as the underlying scheme in our construction) are presented in [11,22].

2 Definitions and Notation

A function f : N → R is said to be negligible if for any c > 0, there exists an
index kc ∈ N such that f(k) < k−c for all k > kc. PPT stands for Probabilistic
Polynomial-Time. In several points in this paper we make use of a cyclic subgroup
of prime order in a finite field Zp. To fix the notations, we denote by p and q
two prime numbers such that q|p − 1 and q is sufficiently large. Moreover, we
will denote by G a subgroup of Z

�
p with order q and by g a generator of G.

Definition 1 (Discrete logarithm assumption). Let k = |q| be a security
parameter. The Discrete Logarithm (DLOG) Assumption in G states that for
any PPT algorithm A, the probability that A outputs x on input (p, q, g, gx) is
negligible in k (the probability space is on the random choice of p, q, g and x ∈ Zq

and the internal coins tosses of A).

For lack of space we omit the definition of digital signature schemes.

Definition 2 (On-line/off-line signature scheme). An on-line/off-line sig-
nature scheme Σon,off = (KeyGen, Sign, Ver) is a signature scheme in which the
signing algorithm Sign can be divided into two phases:

– Off-line phase: an algorithm Signoff that takes as input the private key and
generates a signature token σoff ,

– On-line phase: an algorithm Signon which on input a message m and a sig-
nature token σoff , together with the private signing key, produces a signature
σ on m.

For this definition to be of practical interest, it is required that the cost of the
on-line phase is as small as possible.

Definition 3 (Threshold signature scheme). A threshold signature scheme
T-Σ consists of the following PPT algorithms (T-KeyGen, T-Sign, Ver):

– the key generation algorithm T-KeyGen(1�) is a distributed key generation
algorithm that generates a public key pk and provides each party with a share
ski of the secret key sk;

– the threshold signing protocol T-Sign runs in two phases:
• the signature share generation T-Signshare(m, {ski}) is run interactively

so that each party obtains a share σi of a signature on the message m,
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• the signature reconstruction T-Signcombine({σi}) builds the full signature
σ given the generated signature shares σi;

– the verification algorithm Ver(pk, m, σ) is unchanged.

It is required that such scheme is simulatable, in the sense of [10]. Also it is worth
noticing that the notion is independent of the on-line/off-line feature. Here, we
are going to consider “threshold” on-line/off-line signatures. In this case, the
signature share generation coincides with the off-line phase of the scheme: the
obtained “shares” are generated without knowing the message to be signed; and
the signature reconstruction coincides with the on-line phase. For completeness,
we provide below a formal definition for such scenario.

Definition 4 (On-line/off-line threshold signature). An on-line/off-line
threshold signature T-Σon,off is made of the following components:

– T-KeyGen(1�) is the distributed key generation algorithm that generates pk
and provides each party with a share ski;

– T-Signshare,off is the off-line signature share generation that generates a sig-
nature token σoff and provides each party with a signature share σi;

– T-Signcombine,on is the on-line reconstruction phase that, given the message
m to be signed, produces the final signature σ from the token σoff and the
private signature shares σi;

– Ver is the verification algorithm (unchanged).

Security of a threshold signature scheme can be defined in several ways, but
the strongest definition (see [12]) requires the protocols to be simulatable, which
guarantees that the threshold signature scheme is as secure as its centralized
version. If the protocol is secure even in the presence of t arbitrarily malicious
players, then the protocol is called robust.

3 Building Blocks

In this section we briefly discuss some basic protocols that are going to be useful
in the sequel. In the following we will denote by n the number of players involved
in the protocol (in particular we assume n � q). We assume that the players are
connected through point-to-point private channels and by a broadcast channel.
We model failures on the network by allowing the existence of an adversary who
is allowed to corrupt up to t < n/3 players3. The adversary is assumed to be
static, meaning that the set of corrupted players is chosen at the beginning of
the protocol.

All the basic protocols presented in this section require O(1) rounds of commu-
nication. We assume that all secrets are shared through a secret sharing scheme
à la Shamir [20], using polynomials of degree t and, throughout this section, we
assume that t < n/3. We remark that, for these choices of parameters, all the
3 For the protocols described in the next section, however, we will require t < n/4 to

guarantee robustness.



Improved On-Line/Off-Line Threshold Signatures 223

following protocols already provide robustness (or they can easily be modified
to do so using very standard techniques).

Multiplying two shared secrets. For this task we adopt the well known
protocol by Ben-Or et al. [2]. In what follows we denote MUL[ai, bi] → [ci] an
execution of this protocol, where ai and bi are the original shares held by player
Pi and ci is the share obtained after the additional communication round.

We stress that it is well known [2], how to modify the above protocols in
order to achieve robustness against a static adversary controlling up to t < n/3
players.

Pedersen’s VSS. Pedersen’s Verifiable Secret Sharing protocol [18], extends
Shamir secret sharing scheme [20] in order to tolerate a malicious adversary
corrupting up to n/2 players, including the dealer. Moreover the scheme preserves
the security of the secret in a strong information theoretic sense. In a nutshell the
scheme goes as follows. Let h be another generator of G, such that the discrete
logarithm of h in base g is unknown and assumed to be hard to compute. In
the sharing phase, the dealer D starts the protocol by choosing two (random)
polynomials f(·) and g(·) of degree t, such that f(0) = a, where a is the secret
being shared. Next, it gives the values (ai, ri) = (f(i), g(i)) to each participants
Pi. Moreover it broadcasts the verification values Vj = gαj hβj mod p where αj

(resp. βj) is the j-th coefficient of f(·) (resp. g(·)). By these positions, each
player is allowed to verify the validity of the received shares by simply checking
that gaihri =

∏t
j=0 V ij

j mod p.
If some player holds shares that do not satisfy the equation above, he broad-

casts a complain against the dealer. If more than t players do so, the dealer is
disqualified. Otherwise the dealer publishes the values f(i), g(i) matching the
equation above for each complaining party Pi.

In the reconstruction phase each player Pi is required to reveal both f(i)
and g(i). This is to make sure that players provide the (correct) shares they
originally received. Notice that a dishonest player can provide incorrect shares
that are consistent with the equation above if and only if it can compute the
discrete logarithm of h in base g. Thus, Pedersen’s VSS guarantees soundness
only with respect to polynomially bounded adversaries.

We denote by Ped-VSS[a, r](g, h, p, q, t, n) → [ai, ri](V ) an execution of Peder-
sen’s VSS protocol where the dealer distributes a secret a, using the additional
random value r, with public parameters (g, h, p, q, t, n). Moreover, ai, ri denote
the local (secret) shares received by player Pi at the end of the distribution
phase. V = {Vj} denotes the set of commitments broadcasted by the dealer
during the execution of the protocol.

Joint Pedersen’s VSS. The sharing phase of Pedersen’s VSS can be easily
generalized to the case where no special dealer is required and where the players
jointly generate a random shared secret. We denote with Joint-RPed-VSS(g, h, p,
q, t, n) → [ai, ri, TS, a](V, Q) the execution of the protocol with public parameters
g, h, p, q, t, n and where each player Pi gets as local output the shares ai, ri,
with ai referring to the final secret a. Q denotes the subset of {1, . . . , n} of the
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indexes of the players that have not been disqualified during the execution of the
protocol. Finally TS denotes the transcript produced by the n VSS’s executed
by the players.

Computing shares of the inverse of a shared secret. Let a be an
invertible element in Zq. Assume that a is shared among the players and denote
with ai the share held by player Pi. The following protocol, due to Bar-Ilan and
Beaver [1], allows to compute shares of b, such that ab ≡ 1 mod q from shares
of a. The basic idea is as follows. First the players jointly generate a shared
random value r (using the protocol described above), then they multiply the
two shared secrets a and r by means of the (full) multiplication protocol. To
conclude this phase, the players reveal the shares obtained after the execution of
the multiplication protocol and they jointly reconstruct the value u ≡ ar mod q.
If u ≡ 0 mod q the protocol is restarted. Otherwise u is invertible modulo q
and every player can locally compute his share of a−1 mod q by setting bi =
ri · u−1 mod q. We denote this protocol by INV[ai] → [bi].

Shared Exponentiation of Secrets [7]. This allows to compute gahb
1h

c
2

when a, b, c are shared secrets. For lack of space the description of this protocol
is omitted. The interested reader can find full details in [7]. In the following we
will refer to this protocol as Share-Exp(g, h1, h2) → (gahb

1h
c
2).

Discrete Log-based Distributed Key Generation [10]. This protocol
allows a set of user to securely generate private keys for discrete log based en-
cryption schemes (see [10] for details). In the following we will refer to this
protocol as DL-DKG(g, h, p, q, t, n) → [xi](y, V, Q).

4 The New Scheme

We now describe our generic on-line/off-line threshold signature scheme. This
scheme can be based on any threshold signature T-Σ = (T-KGen, T-Sig, Ver).
We will focus on an optimistic version of it where, instead of verifying correctness
each time a new signature is generated, verification occurs only if a signature
happens to be invalid.

Recall that a generic threshold on-line/off-line signature scheme T-Σoff,on is
composed of the following algorithms

T-Σoff,on = (T-KeyGen, T-Signshare,off , T-Signcombine,on, Ver)

In what follows we assume that t < n/4.

Key Generation. This protocol is performed only once. The full description
is given in Figure 1. We assume that the primes p, q and two generators g, g1
of a subgroup G of order q in Z

∗
p are given as public parameters to the players.

Note that such an assumption can be relaxed using standard techniques: for
example it is possible to consider a more general key generation protocol where
the parties jointly choose the primes p and q as well as the generators g and g1.
However we believe that such a formulation would only make the presentation
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On-line/Off-line Threshold Key Generation Protocol

Public Parameters: a set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p − 1 and |q| = k, two elements g, g1 of order q in Z

�
p, a

threshold parameter t < n/4 and a threshold signature scheme T-Σ. We denote
by G the subgroup of Z

∗
p generated by g;

Common Output: the public key of the scheme;
Private Output (for player Pj): a share of the signing secret key.

1. The players jointly run the T-KGen algorithm, on input 1k. This produces a
public verification key vk. Moreover each player privately receives a share ski

of the corresponding signing key.
2. The players jointly run the DL-DKG(g, g1, p, q, t, n) algorithm twice (with para-

meters g, p, q) in order to obtain two public values h1, h2. We denote with yi

and zi the shares of the two secret keys y, z (such that gy = h1 and gz = h2)
held by player Pi.

3. The players run the INV(yi) protocol to get shares Yi of the inverse Y of y.
4. The public key is set as PK = (g, p, q, g1, vk, h1, h2), while each player Pi

retains the quadruple SKi = (ski, yi, zi, Yi) as its own local secret key.

Fig. 1. The Key Generation Protocol for our On-line/off-line Threshold Signature
Scheme

more intricate, thus distracting the reader from the focus of this paper, which
are the protocols for threshold on-line/off-line threshold signatures.

Off-line Signing. The signing protocol for the off-line phase is described in
Figure 3. We remark here that every time the Joint-RPed-VSS protocol is exe-
cuted, the sharing polynomial is tacitly assumed to have degree t.

On-line Signing. The signing protocol for the on-line phase is described in
Figure 2. We remark here that no signature share verification is explicitly re-
quired by the protocol. This is because we decided to follow an optimistic ap-
proach (in general it is reasonable to assume that the signature shares are going
to be correct almost all the time). Still, in order to guarantee robustness, we need
to make sure that, even if some players sent incorrect shares, honest participants
should be able to reconstruct a valid signature. Later we describe how to achieve
that for the case n > 4t.

Verification. Given a purported signature (Com, ρ, r, s) on a message m, one
accepts it as valid if the following relation is true

Ver(vk, Com, ρ) ?= 1 ∧ Com
?= gmhr

1h
s
2

Achieving Robustness. If the verification procedure Ver(vk, Com, ρ) fails, then
some of the participants are providing incorrect shares. In principle, one can
always reconstruct the correct signature as our assumption that n > 4t assures
us enough points to correctly interpolate s′ and r′. The trivial approach of trying
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On-line Threshold Signing Protocol

Public Parameters: A set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p − 1 and |q| = k, two generators g, g1 of G, a threshold
parameter t < n/4 and a threshold signature scheme T-Σ;

Public Input: a message m′ to be signed;
Private Input (for player Pj): the signing key SKj = (skj , yj , zj , Yj), together

with the signature token σoff = (Com, ρ) and the signature share σi = (ωi, τi, s
′
i)

produced during the off-line stage;
Public Output: a signature σ for m′

1. Each player broadcasts the share s′
i. This allows the player to locally interpolate

the value s′.
2. Each player Pi locally computes the following share

r′
i = (τi − m′ − s′ · zi) · Yi + ωi mod q

3. Finally the players broadcast their shares r′
i, in order to reconstruct r′.

4. The signature for m′ is given by

σ = (Com, ρ, r′, s′)

Fig. 2. The signing algorithm for the on-line stage

all the possible subsets of 2t + 1 shares, however, does not work, as the number
of such subsets is in general exponential (in n). Here we suggest the following
two-phases approach.

First Phase: In the first phase, the correctness of the s′i’s is verified. This is
done though the commitment materials produced during round 6 of the
off-line threshold signing protocol. If t shares turn out to be incorrect, this
allow us to identify and remove all the dishonest players immediately (and
then there is no need to proceed to phase two).

Second Phase: If less than t incorrect shares have been identified in phase one,
in round 3 of the on-line phase, the players interpolate the correct r′ using
the Berlekamp-Welch decoder [3]. The correctness of this approach follows
from the error correcting capabilities of polynomial interpolation. Since we
are interpolating a polynomial of degree d = 2t and we have up to f = t
erroneous points, using the Berlekamp-Welch bound we get that the number
of points needed to correctly interpolate is d + 2f + 1, which, in our case,
means, 2t + 2t + 1 = 4t + 1 (this is why we required n > 4t).

Remark 1. We stress that, the key generation and the off-line signing protocols,
can achieve robustness even with respect to an adversary controlling up to n/3−1
players (rather than the more restrictive setting t < n/4). This is because, as
observed in Section 3, all the protocols we are using as building blocks (i.e. those
described in Section 3) are already robust against such kind of adversaries, or
they can easily be modified to achieve robustness. By contrast, the on-line signing
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Off-line Threshold Signing Protocol

Public Parameters: a set of n players P1, . . . , Pn, a security parameter k, two
primes p, q such that q|p − 1, |q| = k, two generators g, g1 of G, a threshold
parameter t < n/4 and a threshold signature scheme T-Σ;

Private Input (for player Pj): the local signing key SKj = (skj , yj , zj , Yj);
Private Output (for player Pj): a signature token σoff and a signature share

σj .

1. The players jointly run the Joint-RPed-VSS(g, g1, p, q, t, n) protocol three times
to produce three shared random values m,r, s. Let mi, ri, si be the shares ob-
tained by player Pi after participating to the three Joint-RPed-VSS.

2. The players execute the Share-Exp protocol, each holding local inputs mi, ri, si.
Let Com = gmhr

1h
s
2 be the public output.

3. The players run the (entire) T-Sig algorithm to compute a signature ρ on the
message Com.

4. The players run (a simplified version of) the Joint-RPed-VSS algorithm (with
parameters g, p, q) to generate shares ωi of a 2t-degree (random) polynomial
p0, such that p0(0) = 0.

5. The players run the full multiplication protocol MUL twice to compute shares of
the products r · y and s · z. Finally they (non interactively) compute shares of
the quantity m + r · y + s · z. Let τi be the share held by player Pi.

6. The players jointly run the Joint-RPed-VSS(g, g1, p, q, t, n) protocol in order to
produce a shared random value s′. Let s′

i be the share obtained by player Pi

as a local output.
7. The output signature token is σoff = (Com, ρ) while the signature share for Pi

is σi = (ωi, τi, s
′
i)

Fig. 3. The signing algorithm for the off-line stage

protocol makes use of a reconstruction phase for values that are shared over 2t-
degree polynomials and thus, requires the threshold to be bounded by n/4.

5 Security Proof

Theorem 1. Assuming that T-Σ = (T-KGen, T-Sig, Ver) is a threshold sig-
nature scheme secure against adaptive chosen message attack and the discrete
logarithm assumption holds, the On-Line/Off-line Threshold Signature scheme
presented above is existentially unforgeable against an adaptive chosen message
attack, mounted by a static adversary controlling up to one fourth of the n
participants.

Proof (Sketch). The proof goes by contradiction, we assume that there exists an
adversary A that breaks the existential unforgeability of the proposed scheme
and we show how to exploit it to break either the unforgeability of the underlying
signature scheme T-Σ or the discrete logarithm assumption. In other words, we
build an efficient algorithm B that, using A as a black box, succeeds in the above
mentioned tasks.



228 E. Bresson, D. Catalano, and R. Gennaro

Notice that, any valid forgery must be of one of the following types

– Type I: (Com, ρ, s′, r′) on a message m′ such that Com �= Comi for all previ-
ously issued signatures (Comi, ρi, s

′
i, r

′
i) on messages m′

i,
– Type II: (Com, ρ, s′, r′) on m′ such that Com = Comi for some previously

issued signature (Comi, ρi, s
′
i, r

′
i) on a message m′

i, but at least two of the
following conditions must hold
1. m′ �= m′

i

2. s′ �= s′i
3. r′ �= r′i

It is easy to get convinced that the above (mutually exclusive) conditions
cover the entire spectrum of possibilities.

Type I forgeries. We show how to build an algorithm B against the existential
unforgeability of T-Σ using an adversary A that produces this type of forgeries
with non-negligible probability. To do so we start with B receiving as input,
in a preliminary phase, the public key material of a secure threshold signature
scheme T-Σ = (T-KGen, T-Sig, Ver). His goal is to use the forgery produced by A
to contradict the existential unforgeability of T-Σ. This means that, after having
received a number of signatures Sigi for messages Mi of its own choice, B should
be able to produce a couple (M, Sig) such that Sig is a valid signature for the
message M with respect to the given public key (and, of course, (M, Sig) �=
(Mi, Sigi) for all i’s).

First note that, being T-Σ a secure threshold signature scheme scheme we re-
quire that it is simulatable, in the sense of [10]. In particular this means (see [10])
that:

1. The algorithm T-KGen is simulatable, meaning with this that there exists
a simulator S1 that, on input the verification key and the public output
generated by an execution of T-KGen, can simulate the view of the adversary
on that execution.

2. The protocol T-Sig is simulatable, meaning with this that there exists a
simulator S2 that, on input the public input of T-Sig, t shares, and the
produced signature σ, can simulate the view of the adversary on an execution
of T-Sig that outputs σ.

With this in mind we show how to simulate the three protocols presented in
the previous section.

On-line/Off-line Threshold Key Generation: B performs rounds 2, 3 and
4 exactly as in the real game, meaning with this that it plays the role of each
honest player exactly as prescribed by the protocol.

Round 1 is done by running the simulator S1 on input the relevant values
B has received in the preliminary phase.

Thus, by the simulatability property of T-KGen, the entire simulation of
T-KeyGen is indistinguishable from a real execution of the protocol.
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Off-line Threshold Signing Protocol: B executes the following variant of
the T-Signshare,off protocol.

Steps 1, 2, 4, 5 and 6 are done exactly as in the original protocol, thus we
focus on step 3. At that point B queries his signing oracle (which is relative to
T-Sig) in order to get a signature ρi on the computed Comi. Then B executes
the simulator S2 on input the public parameters, the shares of the controlled
players and the value of ρi in order to produce the corresponding view. By
the simulatability of T-Sig this is indistinguishable from a real execution.

On-line Threshold Signing Protocol: Whenever A asks the i-th signature
query on a message m′

i, B executes the protocol exactly as prescribed in the
previous section.

Now assume that, once A is done with its signing queries, it produces a forgery
of type I (ρ, Com, s′, r′) on a message m′. Type I forgery means that Com differs
from all Comi and thus was never queried by B to its signing oracle. Then B
produces its own forgery against T-Σ by setting M = Com and Sig = ρ.

Type II forgeries. We show how to build an algorithm B that breaks the
discrete logarithm assumption using an adversary A that produces this type of
forgeries with non-negligible probability. To do so we start with B receiving as
input, in a preliminary phase, a couple (g, h) ∈ G2. His goal is to use the forgery
produced by A to determine the discrete log of h in base g.

We assume that B is allowed to program the common parameters g, g1, in the
sense that it is allowed to set g as the g received in the preliminary phase and to
choose g1 according to a distribution that is perfectly indistinguishable from the
distribution according to which g1 has to be chosen. In particular, notice that
this allows B to choose g1 in a way such that it knows the discrete log of g1 in
base4 g. In what follows we assume, for simplicity, that m′ �= m′

i always holds.
It is straightforward to extend the proof to the more general case where m′ (the
forged message) may be equal to m′

i (the message queried for signing).
First, B flips a coin β. If β = 0 it bets on the fact that A will provide a forgery

of type II where conditions 1 and 3 above hold true, that is m′ �= m′
i and r′ �= r′i.

If β = 1 B bets on the fact that the forgery will satisfy m′ �= m′
i and s′ �= s′i.

Informally the proof goes in two stages. In the first one B will simulate a real
execution of the protocol, playing the role of non-corrupted parties. In this phase
we have to make sure that the simulated protocol is perfectly indistinguishable
from the real one. In the second part of the proof, we show how B can exploit
the provided forgery to solve the received discrete logarithm challenge.

As for the first part of the proof, we describe in detail the simulation of the
three protocols, described in the previous section.

On-line/Off-line Threshold Key Generation: B performs steps 1 and 4 ex-
actly as in the real game, meaning with this that it plays the role of each
honest player exactly as prescribed by the protocol.

4 Formally this is equivalent to assume that all the public parameters are part of a
shared random string, that the simulator is allowed to ”program” in the proof.
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Step 2 is done as follows. The first execution of the DL-DKG protocol (i.e.
the one leading to the generation of h1) is replaced by a execution of the
simulator S for DL-DKG, as given in [10], on input (g, h). As a result, this
produces the public value h1 = h and properly distributed values for the
parties controlled by A. In particular the simulation looks to A perfectly in-
distinguishable from the real execution of the protocol, however the players
will share some secret value ŷ that does not correspond to the actual discrete
log of h1 in base g. The second execution of the DL-DKG protocol is done as
in the real game.

Step 3. B runs an execution of the INV protocol, but with each of the
honest players holding a share ŷi of ŷ. Notice that such an execution looks
perfectly indistinguishable (with respect to the real one) to A, as the latter
is static and controls only up to t < n/4 players.

Hence the simulation provides the adversary with a view (public outputs
+ controlled players’ private outputs) which is perfectly indistinguishable
from a real execution.

Off-line Threshold Signing Protocol: Steps 1, 2, 3, 4 and 6 are done exactly
as in the real game, thus we focus on step 5. Here the only difference with
respect to the real protocol is that the (full) multiplication protocol MUL used
to compute r · y is run by B using the shares ŷi for the honest players. Once
again, this results in a protocol which looks perfectly indistinguishable to
the real one, from A’s perspective.

On-line Threshold Signing Protocol: B first recovers the value s′ shared
during the off-line phase. Notice that it can do this as it controls n − t >
3n/4 > t parties. Next, once m′ is known, it sets r′ = r and and computes
a value ŝ′ such that r′ = (m + rŷ + sz − m′ − ŝ′z)Ŷ mod q, where Ŷ is the
(known) inverse computed in the key generation protocol. Notice that this
means that ŝ′ = (m − m′)z−1 + s mod q. We stress that, since B controls
more than 2t players it can easily compute all the values above. Next, B
uses its knowledge of the discrete log of g1 in base g to cheat and interpolate
s′ as ŝ′ (in a way that remains consistent with the previously broadcasted
commitments). The rest of the protocol is done as in the real execution.

Note that the simulation is perfectly indistinguishable from the real one. This
means that the adversary cannot know if the simulator knows both the values
y and z or only z, as in our case. Thus if the adversary produces a forgery of
type II such that m′

i �= m′ and r′i �= r′ one can easily break the received discrete
logarithm challenge. Indeed, since Com′ = Comi we have that

gm′
i+zs′

ih
r′

i
1 = gm′+zs′

hr′

1

and thus the required value is ((m′
i − m′) + z(s′i − s′))(r′ − r′i)

−1 mod q.

If β = 1 B bets on the fact that A will provide a forgery of type II where
conditions 1 and 2 hold, that is, m′ �= m′

i and s′ �= s′i. Again, we describe the
simulation of the three protocols, focusing on the differences with the case β = 0.
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On-line/Off-line Threshold Key Generation: This time, the simulation of
DL-DKG is used to generate h2 and thus B knows y and a value ẑ that differs
from logg h2.

Note, this change influences step 3, which, this time, is done exactly as
in a real execution of the protocol (with B controlling the honest players).

Off-line Threshold Signing Protocol: Everything is done as before, by just
switching the roles of z and y.

On-line Threshold Signing Protocol: In this simulation B uses its knowl-
edge of the discrete logarithm of g1 in base g to interpolate s′ as the value
s shared in round 1 of Off-line Threshold Signing Protocol. The rest of the
protocol is done exactly as in the real game.

Again, note that the simulation is perfectly indistinguishable from the real
one. Thus if the adversary produces a forgery of type II on a message m′ such
that m′

i �= m′ and s′i �= s′ one can easily break the received discrete logarithm
challenge in a way that is basically identical to what described for the case β = 0.

Remark 2 (Achieving robustness for up to t < n/3 faults). Notice that the pro-
tocol presented in previous section can be modified in order to tolerate up to
t < n/3 malicious players. The modification is as follows. The key generation al-
gorithm remains more or less unchanged: we add one additional round on which
the players compute shares λi = Yi · zi. In the off-line signing algorithm we add
one additional execution of the (full) multiplication to create shares μi of the
product τ · Y . Finally, in the on-line signing algorithm, step 2 is modified by
setting r′i = μi − m′Yi − s′λi + ωi mod q.

It is easy to check that the proof goes through in basically the same way.
Notice that this modified protocol is less efficient than the proposed one, but
the efficiency loss involves the off/line components only (i.e. key generation and
off-line signing).
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Abstract. In the CT-track of the 2006 RSA conference, a new multi-
variate public key cryptosystem, which is called the Medium Field Equa-
tion (MFE) multivariate public key cryptosystem, is proposed by Wang,
Yang, Hu and Lai. We use the second order linearization equation attack
method by Patarin to break MFE. Given a ciphertext, we can derive the
plaintext within 223

F216 -multiplications, after performing once for any
given public key a computation of complexity less than 252. We also pro-
pose a high order linearization equation (HOLE) attack on multivariate
public key cryptosystems, which is a further generalization of the (first
and second order) linearization equation (LE). This method can be used
to attack extensions of the current MFE.

Keywords: multivariate public key cryptosystem, quadratic polynomial,
algebraic cryptanalysis, high order linearization equation.

1 Introduction

For the last three decades, public key cryptosystems, as a revolutionary break-
through in cryptography, have developed into an indispensable element of our
modern communication system. For RSA and other number theory based cryp-
tosystems, their security depends on the assumption about the difficulty of cer-
tain number theory problems, such as the Integer Prime Factorization Problem
or the Discrete Logarithm Problem. However, due to the quantum computer at-
tack by Shor [Sho99] and the demand for more efficient cryptosystems for small
devices, there is a great challenge to build new public key cryptosystems, in par-
ticular ones that could survive future attacks utilizing quantum computers [PQ].
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One such research direction utilizes a set of multivariate polynomials over a
finite field, in particular, quadratic polynomials, as the public key of the cipher,
which are called multivariate public key cryptosystems (MPKC). This method
is based on the proven theorem that solving a set of multivariate quadratic poly-
nomial equations over a finite field generally is an NP-complete problem. Note,
however, this does not guarantee that these new cryptosystems are secure. In the
last decade, there has been tremendous amount of work devoted to this area. In
2004, one such cryptosystem, Sflash [ACDG03] [PCG01a], was accepted as one
of the final selections in the New European Schemes for Signatures, Integrity,
and Encryption: IST-1999-12324. A more efficient family of Rainbow signature
schemes was also proposed in the last years [DS05] [YC05] [WHLCY05].

In the development of MPKC, one particular interesting and important new
area is the development of the so-called algebraic attack. This new attack method
started from the linearization equation (LE) attack by Patarin [Pat95], which
is used to break Matsumoto-Imai cryptosystems. A linearization equation is an
equation in the form:

∑
aijuivj +

∑
biui +

∑
cjvj + d = 0, where the ui are

components of the plaintext and the vj are components of the ciphertext.
Later, Patarin, Courtois, Shamir, and Kipnis generalized this method by mul-

tiplying high order terms uα1
1 · · · uαn

n of the plaintext variables but using only lin-
ear terms of ciphertext variables (vj), which is called the XL method [CKPS00].
The method is closely related to the new Gröbner basis method by Faugere
[Fau99] [AFIKS04]. Furthermore, this new algebraic method was used to at-
tack symmetric ciphers like AES and others [CPi02]. One can see that algebraic
attacks are becoming increasingly important in cryptography.

Another generalization of LE also by Patarin [Pat96, PCG01a, C00], which is
not as well-known, is the type of equations in the form:

∑
aijkuivjvk +

∑
bijuivj +

∑
ciui +

∑
djkvjvk +

∑
ejvj + f = 0.

As a further extension, we propose to call the equations that use high order
terms of the ciphertext variables (vj) while using only linear terms of plaintext
variables (ui), high order linearization equations (HOLE). The total degree of the
highest order of the ciphertext variables (vj) is called the order of the HOLE and
the equation above is thus called a second order linearization equation (SOLE).
For any MPKC, if we can derive such equations, then for any given ciphertext,
we can insert it into the HOLEs, producing linear equations satisfied by the
plaintext and these equations can be used to attack the system.

It turns out that the SOLEs can be used efficiently to break the Medium
Field Equation (MFE) multivariate public key cryptosystem proposed by Wang,
Yang, Hu and Lai in the CT-track of the 2006 RSA conference [WYH06].

MFE is an encryption scheme. Many encryption schemes of MPKC have been
proposed, and many of them have been broken, for example, the TTM cryptosys-
tem family [Moh99] [GC00] [CM01] [DS03a] [DS03b] [MCY04]. A very different
direction goes along the idea started by Matsumoto and Imai [MI88], which can
be generally called the ”Big Field” idea.
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Given a multivariate public key cryptosystem, the public key is defined as a
map over the vector space K

n, where K is a small finite field with q elements.
However from the theory of finite fields, K

n can also be identified with a ”big”
finite field E, which is a degree n extension of K. That is, there is a standard
K-linear vector space isomorphism that identifies E with K

n. The idea of the
”Big Field” is that we can find a map, say φ2, that is easy to invert on E. Under
the isomorphism we can build a map φ̃2: K

n → K
n as:

φ̃2(u1, ..., un) �→ (g1(u1, ..., un), · · · , gn(u1, ..., xn)).

Then we use φ1 and φ3, two randomly chosen invertible affine linear maps over
K

n which are the key part of the private key to ”hide” φ2. The public key is
given by

φ̄2(u1, ..., un) = φ3 ◦ φ̃2 ◦ φ1(u1, ..., un)
= (h1(u1, ..., un), h2(u1, ..., un), · · · , hn(u1, ..., un)).

The Matsumoto-Imai (MI) cryptosystem was broken by Patarin [Pat95], and
later Patarin developed the HFE cryptosystem [Pat96]. The only difference be-
tween HFE and the MI is that they choose different φ2. Currently the more
promising cryptosystems are new variants of the MI and the HFE through
Oil-Vinegar constructions and internal perturbations [Din04a] [FGS05] [DG05]
[DS04a]. The idea to put several ”big fields” together to build a cryptosystem is
also used [MI88] [Pat96]. The new MFE cryptosystem [WYH06] uses what the
designers call ”Medium Field Encryption”. The non-linear critical part of the
public key is a function over an extension of the base field K of degree smaller
than what would be called the ”big field”. Another key difference between MFE
and HFE is that MFE uses functions derived from a matrix structure while the
MI and the HFE use only polynomials of a single variable.

In the attack on MFE, we first use second order linearization equations
(SOLEs), which we derive from the special algebraic structure of the crucial
nonlinear map in MFE. This is the most essential step in our attack. Any given
ciphertext can be inserted into the SOLEs to produce a set of equations linear in
the plaintext variables. Solutions to these equations are finally plugged back into
the original public key polynomial equations, providing a set of new quadratic
equations that could be easily solved. The complexity of our break is less than
252 one-time multiplications over K for any given public key, and the practical
complexity of recovering a ciphertext is less than 223

K-operations.
The current MFE is based on matrices of size 2 × 2 and one may extend it

to a construction using matrices of bigger size. The HOLEs of higher order can
be extended to attack such an extension of the current MFE and the order of
HOLE corresponds exactly to the size of the matrices.

We organize the paper as follows. We introduce the MFE cryptosystem in
Section 2, and present our attack in Section 3. In Section 4, we discuss the
connection of HOLE with the XL method. In the final section, we present the
conclusion.
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2 MFE Public Key Cryptosystem

Let K be a finite field, generally F216 . Let L be its degree r extension field; L is
considered the ”Medium Field”. In MFE, we always identify L with K

r by a
K-linear isomorphism π : L → K

r. Namely we take a basis of L over K,
{θ1, · · · , θr}, and define π by π(a1θ1+· · ·+arθr) = (a1, · · · , ar) for any a1, · · · , ar

∈ K. It is natural to extend π to two K-linear isomorphisms π1 : L
12 → K

12r

and π2 : L
15 → K

15r.
A private key of MFE consists of two invertible affine transformations φ1 and

φ3; and φ1 is defined on K
12r, and φ3 on K

15r. Let φ2 : L
12 → L

15 be the central
nonlinear quadratic map of MFE. Note φ2 is fixed except for the three compo-
nents Q1, Q2, and Q3, which have randomly chosen coefficients. The correspond-
ing public key is 15r quadratic polynomials h1(u1, ..., u12r), h2(u1, ..., u12r), · · · ,
and h15r(u1, ..., u12r) given by

(h1(u1, ..., u12r), · · · , h15r(u1, ..., u12r)) = φ3 ◦π2 ◦φ2 ◦π−1
1 ◦φ1(u1, ..., u12r). (1)

Let φ2(X1, · · · , X12) = (Y1, · · · , Y15). The expressions of the Yi are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X9 + X7X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12.

(2)

Here Q1, Q2, and Q3 form a triple (Q1, Q2, Q3) which is a triangular map from
K

3r to itself as follows. Let π(X1) = (x1, · · · , xr), π(X2) = (xr+1, · · · , x2r),
π(X3) = (x2r+1, · · · , x3r), and let qi ∈ K[x1, · · · , xi−1] for 2 ≤ i ≤ 3r. Then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q1(X1) =
r∑

i=2
qi(x1, · · · , xi−1)θi,

Q2(X1, X2) =
2r∑

i=r+1
qi(x1, · · · , xi−1)θi−r,

Q3(X1, X2, X3) =
3r∑

i=2r+1
qi(x1, · · · , xi−1)θi−2r .

The qi can be any randomly chosen quadratic polynomials. A specific ”tower”-
structural choice for them is given in §5 of [WYH06].

The encryption of MFE is the evaluation of public key polynomials, namely
given a plaintext (u1, · · · , u12r), its ciphertext is

(v1, · · · , v15r) = (h1(u1, · · · , u12r), · · · , h15r(u1, · · · , u12r)).
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Given a valid ciphertext (v1, · · · , v15r), the decryption of MFE is to calculate
in turn φ−1

1 ◦ π1 ◦ φ−1
2 ◦ π−1

2 ◦ φ−1
3 (v1, · · · , v15r). Here the point is how to in-

vert φ2, its basic idea is to use the triangular structure of φ2. Relating to our
cryptanalysis, the method of computing φ−1

2 is listed as follows, see §4.2 and
Appendix B of [WYH06].

Write X1, · · · , X12, Y4, · · · , Y15 as six 2 × 2 matrices:

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
, M3 =

(
X9 X10
X11 X12

)
,

Z3 = M1M2 =
(

Y4 Y5
Y6 Y7

)
, Z2 = M1M3 =

(
Y8 Y9
Y10 Y11

)
,

Z1 = MT
2 M3 =

(
Y12 Y13
Y14 Y15

)
.

(3)

Then ⎧
⎨

⎩

det(M1) · det(M2) = det(Z3),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).

When M1, M2, and M3 are all invertible, we can get values of det(M1), det(M2),
and det(M3) fromdet(Z1), det(Z2), and det(Z3), for instance, det(M1)=

(
det(Z2)·

det(Z3)/det(Z1)
)1/2

. The square root operation is easy to handle over a field of
characteristic 2.

With values of det(M1), det(M2), and det(M3), we solve the following trian-
gular map over K

3r

⎧
⎨

⎩

Y1 = X1 + Q1 + det(M2)
Y2 = X2 + Q2 + det(M3)
Y3 = X3 + Q3 + det(M1)

(4)

to get in turn x1, · · · , xr, xr+1, · · · , x2r, x2r+1, · · · , and x3r . Thus, we recover
X1, X2, and X3. From X1X4+X2X3 = det(M1) we then get X4 provided X1 �= 0.
The X5, · · · , X12 are consequently solved from the 4th to 11th equations of (2).
Appendix B of [WYH06] presents a method of computing the Xi in the case
when X1 = 0. It is slightly easier than the case of X1 �= 0.

If there is a non-invertible matrix among M1, M2, and M3, then the decryption
mentioned above will not work. This decryption failure exists in MFE [WYH06].
We call a plaintext singular if its corresponding M1, M2, and M3 are not all
invertible, otherwise it is called nonsingular. The ciphertext of a nonsingular
plaintext is called a nonsingular ciphertext.

It is easy to prove that the ratio of singular plaintexts to all possible plaintexts
is at most 4|L|−1; when L = F264 , the ratio is at most 2−62, which is quite small.
In the next section we only consider how to recover nonsingular ciphertext.

There are two typical instances of MFE proposed by the designers of MFE.

1) MFE-1, where K = F216 and r = 4. The public key has 60 polynomials
with 48 variables.
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2) MFE-1′, where K = F216 and r = 5. The public key has 75 polynomials
and 60 variables.

There is also a mini-version of MFE (MFE-0) using K = F28 and r = 4, which
has the same number of polynomials and variables as MFE-1.

3 Cryptanalysis on MFE

The designers of MFE noted they should avoid the linearization attack of Patarin
(§6.2 of [WYH06]), and this is indeed the case. In the design of MFE, the last
equations of (2) in MFE are defined such that Z1 = MT

2 M3 (see (2)), instead
of Z1 = M2M3. Otherwise we would have Z3M3 = M1Z1 (= M1M2M3); this
would have produced linearization equations for the cryptosystem. However we
can use the HOLE, in particular the SOLE, to attack this cryptosystem.

3.1 Second Order Linearization Equations

First, we will show algebraically why the MFE has second order linearization
equations. Denote by M∗ the associated matrix of a square matrix; for M =(

a b
c d

)
, its associated matrix is M∗ =

(
d −b

−c a

)
. From (3), we have

Z3 = M1M2, Z2 = M1M3. (5)

From these, we can derive

M3M
∗
3 M∗

1 M1M2 = M3(M1M3)∗(M1M2) = M3Z
∗
2Z3,

M3M
∗
3 M∗

1 M1M2 = (M3M
∗
3 )(M1M

∗
1 )M2 = det(M3)det(M1)M2 = det(Z2)M2,

and hence,
M3Z

∗
2Z3 = det(Z2)M2, (6)

that is,
(

X9 X10
X11 X12

)(
Y11 −Y9

−Y10 Y8

) (
Y4 Y5
Y6 Y7

)
= (Y8Y11 − Y9Y10)

(
X5 X6
X7 X8

)
. (7)

Expanding (7), we get four equations of the form
∑

a′
ijkXiYjYk = 0, (8)

which hold for any corresponding pair (X1, · · · , X12, Y1, · · · , Y15). For any non-
singular plaintext, if we substitute all the Yi by its corresponding value in the
four equations of the form (8) derived from (7), we would get four linear equa-
tions with Xi as its . These four equations are linearly independent, since the

matrices
(

Y11 Y9
Y10 Y8

)
and

(
Y4 Y5
Y6 Y7

)
are invertible.
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Substituting (X1, · · · , X12) = π−1
1 ◦φ1(u1, · · · , u12r) and (Y1, · · · , Y15) = π−1

2 ◦
φ−1

3 (v1, · · · , v15r) into (8), we get 4r equations of the form

∑

i

ui

⎛

⎝
∑

j≤k

aijkvjvk +
∑

j

bijvj + ci

⎞

⎠ +
∑

j≤k

djkvjvk +
∑

j

ejvj + f = 0, (9)

where the coefficients aijk, bij , ci, djk, ej, f ∈ K, and the summations are respec-
tively over 1 ≤ i ≤ 12r, 1 ≤ j ≤ k ≤ 15r and 1 ≤ j ≤ 15r. These equations,
which are linear in plaintext components ui and quadratic in ciphertext compo-
nents vj , are second order linearization equations (SOLEs). It is easy to
show that when all the vj are substituted by any nonsingular ciphertext, the 4r
SOLEs derived from (9) become linearly independent linear equations in ui.

Similarly to (6), we can deduce from (5) another equation

M2Z
∗
3Z2 = det(Z3)M3, (10)

or in its matrix form,
(

X5 X6
X7 X8

) (
Y7 −Y5

−Y6 Y4

) (
Y8 Y9
Y10 Y11

)
= (Y4Y7 − Y5Y6)

(
X9 X10
X11 X12

)
. (11)

The 4r SOLEs resulted from (11) are clearly different from the ones correspond-
ing to (9). Furthermore, we can show that the 8r SOLEs obtained from (9) and
(11) are all linearly independent. However, we note that when the vi in these
8r SOLEs derived from (7) and (11) are assigned any nonsingular ciphertext,
we will get only 4r linearly independent linear equations in ui. In other words,
once the values of vi are given, as linear equations in Xi, (10) is completely
equivalent to (6), and one can deduce (10) directly from (6) and vice versa. One
can see this by the fact that multiplying from the right the both sides of (6)
by Z∗

3Z2/det(Z2) (this is a constant invertible matrix if the yi values are given)
gives (10).

Now, it is obvious that there are more SOLEs. We apply the above trick that
results (6) and (10) from (5) to obtain

M2(ZT
1 )∗ZT

2 = det(Z1)MT
1 , (12)

MT
1 (ZT

2 )∗ZT
1 = det(Z2)M2, (13)

from Z2 = M1M3 and Z1 = MT
2 M3. We can also obtain

MT
1 (ZT

3 )∗Z1 = det(Z3)M3, (14)

M3(Z1)∗ZT
3 = det(Z1)MT

1 , (15)

from Z3 = M1M2 and Z1 = MT
2 M3. It is not hard to check that the polynomial

equations derived from (6), (10), and (12)-(15) in terms of Xi and Yj are all
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linearly independent. Thus, we get at least 24r linearly independent SOLEs in
ui and vi over K.

To find all SOLEs, we need to evaluate sufficiently many plain/cipher-texts
in (9) to get a system of linear equations on the aijk, bij , · · · , f . Let s be the
dimension of its solution space and (a(l)

ijk, b
(l)
ij , · · · , f (l)), 1 ≤ l ≤ s, be its s

linearly independent solutions. As mentioned above, we know s ≥ 24r. For attack
purposes, we only need to do the computation to get all the SOLEs once for any
given public key.

Similarly to the relation between (6) and (10), as linear equations in Xi, (12)
is equivalent to (13), and (14) is equivalent to (15) provided that the Yi are
assigned a nonsingular ciphertext value.

In addition, we can show that if we are given the values of vi of a nonsingular
ciphertext, from the 24r linearly independent SOLEs we derived above, we will
produce only 8r linearly independent linear equations in ui. Write (12) in its
matrix form:

(
X5 X6
X7 X8

) (
Y15 −Y14

−Y13 Y12

) (
Y8 Y10
Y9 Y11

)
= (Y12Y15 − Y13Y14)

(
X1 X3
X2 X4

)
, (16)

which results in 4r SOLEs. Given the values of Yi of a nonsingular ciphertext,
the eight linear equations in Xi derived from (16) and (7) are linearly inde-
pendent, because the coefficient matrix corresponding to the set of eight linear
equations, with the four equations from (16) as the first four ones, is in the form(

I ∗ 0
0 I ∗

)
, where each row is scaled by a factor Y8Y11 −Y9Y10 or Y12Y15 −Y13Y14

correspondingly, and I and 0 are respectively the identity matrix and the zero
matrix of order 4. This matrix is clearly of rank 8. This shows that the s′ in-
troduced in the next subsection is at least 8r. The reason that the other SOLEs
will not produce any new linear equations on ui for any given values of vi of a
nonsingular ciphertext is that when the Yi are assigned a nonsingular value, (14)
can be easily deduced from (6) and (12).

3.2 Ciphertext-Only Attack

Now assume we have found a basis of the linear space of all SOLEs.
Given a ciphertext (v′1, · · · , v′15r), our aim is to recover its plaintext (u′

1, · · · , u′
12r).

We plug the values of ciphertext (v′1, · · · , v′15r) into the basis SOLEs:
⎧
⎪⎨

⎪⎩

∑

i

ui

(
∑

j≤k

a
(l)
ijkv′jv

′
k +

∑

j

b
(l)
ij v′j + c

(l)
i

)

+
∑

j≤k

d
(l)
jk v′jv

′
k +

∑

j

e
(l)
j v′j + f (l) = 0

1 ≤ l ≤ s
(17)

giving us a linear system on u1, · · · , u12r. Assume it has s′ linearly independent
solutions. From the previous subsection, we know 8r ≤ s′ ≤ 12r. We can repre-
sent s′ of the variables u1, · · · , u12r by linear affine expressions of the remaining
t := 12r − s′. Let w1, · · · , wt be these t variables.
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Substitute these s′ linear expressions into the original public key polynomi-
als to get 15r new quadratic polynomials h̃1(w1, ..., wt), h̃2(w1, ..., wt), · · · , and
h̃15r(w1, ..., wt).

Let S be the solution space of (17). Let Y ′
i and Z ′

i be components and matrices
corresponding to the given (v′1, · · · , v′15r), namely

(Y ′
1 , · · · , Y ′

15) = π−1
2 ◦ φ−1

3 (v′1, · · · , v′15r),

Z ′
3 =

(
Y ′

4 Y ′
5

Y ′
6 Y ′

7

)
, Z ′

2 =
(

Y ′
8 Y ′

9
Y ′

10 Y ′
11

)
, Z ′

1 =
(

Y ′
12 Y ′

13
Y ′

14 Y ′
15

)
.

We have found a basis of all SOLEs and each SOLE is a linear combination of
this basis. This fact holds when the variables vi in the equations are substituted
by v′i. Applying this fact to (7), we know the four resulting equations in ui from

M3(Z ′
2)

∗ · Z ′
3 = det(Z ′

2)M2 (18)

are all linear combinations of the equations in (17). In other words, (18) holds
on S. Let P23 = det(Z ′

2) ((Z ′
2)

∗ · Z ′
3)

−1; then M3 = M2P23. P23 is a constant
matrix dependent only on the ciphertext.

Now we have that MT
2 M3 = Z1 always holds on K

12r; therefore, we have that
MT

3 M3 = MT
3 M2P23 = Z1P23 holds on S. That is,

(
X2

9 + X2
11 X9X10 + X11X12

X9X10 + X11X12 X2
10 + X2

12

)
=

(
Y12 Y13
Y14 Y15

)
P23 (19)

holds on S. Comparing the diagonal entries of the matrices in both sides of (19),
we find X2

9 + X2
11 and X2

10 + X2
12 are linear combinations of the Yi. Applying

φ1 and φ3 to these combinations and utilizing the fact that squaring is a lin-
ear operation on a field of characteristic 2, we have, on S, the 2r expressions
corresponding to X2

9 + X2
11 and X2

10 + X2
12 are of the form

∑
a′

iu
2
i + b′ and K-

linear combinations of h1(u1, ..., u12r), h2(u1, ..., u12r), · · · , h15r(u1, ..., u12r) and
1 (constant).

Thus, of linear combinations of h̃1(w1, ..., wt), · · · , h̃15r(w1, ..., wt) and 1, there
must exist 2r which contain only squaring terms and a constant term and cor-
respond to X2

9 + X2
11 and X2

10 + X2
12.

It is easy to solve the following linear system on the ãi and b̃j :
⎧
⎨

⎩

15r∑

i=1
ãih̃i(w1, ..., wt) +

t∑

j=1
b̃jw

2
j + c̃ = 0

∀w1, ..., wt ∈ K

(20)

Essentially, this is to solve a linear equation system whose coefficients are the
coefficients of the cross-terms and linear terms of the h̃i(w1, ..., wt).

Let (ã1
(l), · · · , ã15r

(l)
, b̃1

(l)
, · · · , b̃t

(l)
), 1 ≤ l ≤ p, be a basis of the solutions of

(20). Set ⎧
⎪⎨

⎪⎩

t∑

j=1

(
b̃j

(l)
)1/2

wj +
(

15r∑

i=1
ãi

(l)v′i + c̃(l)
)1/2

= 0.

1 ≤ l ≤ p

(21)
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For each (u1, ..., u12r) ∈ S, its corresponding (w1, ..., wt) satisfies (21). From
(21) we can represent p of the variables w1, ..., wt by the remaining t−p linearly.
Totally, s′ + p components of the plaintext vector (u′

1, ..., u
′
12r) are represented

linearly by the remaining 12r − s′ − p.
Note that we surely have s′ + p ≥ 10r, since the matrix of the coefficients on

X1, X2, · · · , X12 of ten expansions in (16), (7), (X2
9 +X2

11)
1/2, and (X2

10+X2
12)

1/2

is

⎛

⎝
I ∗ 0
0 I ∗
0 0 A

⎞

⎠ , where A =
(

1 0 1 0
0 1 0 1

)
, and the matrix is obviously of rank 10. In

other words, solving two systems (17) and (21) eliminates at least 10r variables
of the plaintext components. If p = 0, i.e., there is no nonzero linear combination
of the h̃i(w1, ..., wt) being of the form

∑
a′

iw
2
i + b′, then we must have s′ ≥ 10r

and after the first elimination (i.e., via (17)), the expressions corresponding to
X2

9 + X2
11 and X2

10 + X2
12 are constants.

3.3 Finding the Plaintext

We substitute these linear expressions that result from solving (21), into
h̃1(w1, ..., wt), · · · , h̃15r(w1, ..., wt) to get 15r new quadratic polynomials on 12r−
s′ − p (≤ 2r) variables. Denote them by ĥ1, · · · , ĥ15r. Since 12r − s′ − p is very
small (at most 8 and 10 for MFE-1 and MFE-1′, respectively), in principle, we
can use the Gröbner basis method to solve the system

ĥi = v′i, ∀ i = 1, · · · , 15r (22)

very easily to find the plaintext finally.
However, we know here that we start from 15r equations; therefore we expect

to get many more than 2r (the number of variables) equations. This means we can
solve it easily, for example, using the XL method [CKPS00]. In our experiments,
this set of equations does turn out to be very easy to solve.

3.4 A Practical Attack Procedure, Its Complexity and Experimental
Verification

Our attack can be divided into the following four steps:

Step 1 of the attack: Find a basis of the linear space of the coefficient
vectors (aijk, bij , · · · , f) of all SOLEs.

As mentioned in §3.1, this is solving a system of linear equations obtained by
evaluating sufficiently many plain/cipher-texts in (9). There are

(12r+1
1

)(15r+2
2

)

monomials of the form uα
i vβ

j vγ
k on ui and vj (α, β, γ = 0 or 1). This number is

92659 and 178486 for r = 4 and 5, respectively, and is somewhat large. Choosing
a number of plain/cipher-text pairs slightly more than the number of unknowns,
say 1000, we can completely find the solution space in general. The complexity
is respectively 1

2 · 926593 ≈ 248.5 < 249 and 1
2 · 1784863 ≈ 251.34 < 252

F216 -
multiplications using a naive Gaussian elimination.
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This step is an one-time computation for any given public key. Let (a(l)
ijk, b

(l)
ij ,

· · · , f (l)), 1 ≤ l ≤ s, be a basis of the equation system.
Our computer experiments confirm that the dimension of SOLE is exactly

24r, which is performed on the level of the Medium field L not on the small
field K.

Step 2 of the attack: Given a valid ciphertext (v′1, · · · , v′15r), we plug it into
(17) and solve the system of linear equations to obtain linear expressions of the
remaining 12r−s′ in terms of the other s′ variables of the plaintext components.

The complexity of this step is 15rs2 < (15r)3, and is less than 219.
Substitute these linear expressions into the original public key polynomials to

get new quadratic polynomials h̃1(w1, ..., wt), · · · , and h̃15r(w1, ..., wt).
Step 3 of the attack: Solve the system (20) and obtain its solution basis

(ã1
(l), · · · , ã15r

(l)
, b̃1

(l)
, · · · , b̃t

(l)
), 1 ≤ l ≤ p. Then solve the system (21) to find

expression of the p components of the plaintext by the remaining 12r − s′ − p
linearly.

The complexity of solving (20) is (15r + t)3 < (30r)3 < 222, and that for (21)
is pt2 < (15r)3 < 219.

Our computer experiments show that s′ is indeed 8r and p is 2r.
Step 4 of the attack: Derive new public key polynomials (ĥ1, · · · , ĥ15r) from

the solutions of (21), solve the system (22) and finally obtain the value of p com-
ponents of the plaintext by using a Gröbner base or a linearization method. Then
we use the linear expressions on the remaining plaintext components derived in
steps 2 and 3 to find the eliminated components.

In 1000 experimental samples we have done, we find that after Step 3, the
number of linearly independent quadratic equations are actually 20 for MFE-1.
We solve them by finding a set of 2r linearly independent linear equations inside
the space spanned by these equations. It takes almost no time.

Therefore the total attack complexity is less than 252. The complexity of the
attack recovering the plaintext (steps 2, 3 and 4) is less than 223.

3.5 Experimental Results

We chose 10 different pairs of φ1 and φ3, for each of which we chose 100 dif-
ferent valid ciphertext for experiments. For all chosen ciphertexts, the attack
successively found their corresponding plaintexts.

The time-consuming step of our attack is the first step. In our experiments, we
randomly selected 92800 plain/cipher-text pairs and substituted them into the
public key. Then the main work we will do is a Gaussian elimination on a 92800×
92659 matrix on F216 . The complexity of this process is less than 252. We estimate
the time to do this Gaussian elimination will be about two years on a standard PC.

So, we performed our experiment on a DELL PowerEdge 7250, a mincom with
4 Itanium2 CPU and 32GB ECC fully buffered DIMM memory. The operating
system we used was 64-bit Windows Server2003. We programmed the attack
using VC++. Multiple threads can improve the efficiency of programs on a
computer with multiple CPU. In our experiments, we used four threads to deal



244 J. Ding et al.

with Gaussian elimination. And we designed a method which will be patented
to speed up the multiplication on F216 .

Our experiments showed that 282 hours and 6 minutes (11 days and 18 hours
and 6 minutes) were required for the first step, which is an one time computation
for any given public key. Only about 2 seconds were needed to execute the
remaining steps.

For MFE-1, our experiments confirm that we can find 96 linearly independent
SOLEs for a given valid public key in step 1. And we can eliminate 32 plaintext
variables in step 2 and 8 plaintext variables in step 3, namely, s′ = 32 and p = 8.

One more important point of our experiments is the fact that we actually used
parallel computation (4 Itanium2 CPU) to speed up and accomplish the com-
putation in a reasonable time, which, we thought, was impossible at the very
beginning. This demonstrated that parallel computation, in particular, large
scale parallel computation, could extend much further the limit of our computa-
tion capacity. We believe this is a direction that deserves serious consideration
especially in practical attacks.

3.6 Extension of MFE and High Order Linearization Attack

The construction of MFE relies on the multiplicative structure of 2 × 2 matrices
and it is not difficult to see that one can extend this construction in a straight-
forward way by using matrices of larger sizes m×m, for example, 3× 3 or 4× 4,
to build new MFE cryptosystems. For any such an construction using matrix of
m × m, it is not difficult to see that the m-th order LE can be applied to attack
the cryptosystem. The fundamental reason behind is the formula that for any
matrix Q of size m × m, we know that

Q−1 =
1

det(Q)
Q∗,

where Q∗ is the associated matrix of Q. In terms of algebraic formulas for det(Q)
and Q∗, we know that det(Q) can be expressed as a degree m polynomial of the
components Qij of Q and each component of Q∗ can be expressed in terms
of a degree (m − 1) polynomial of the components Qij of Q. With this and the
formulas (6) and (10) and other similar formulas, we can see that, for such a case,
the order m linearization equations exists and they can be used to attack such a
system. Therefore the current design of MFE needs to increase m substantially
to avoid such an attack.

4 The Connection of HOLE with XL

One important point we want to make is that the HOLE method is closely related
to the XL method [CKPS00]. In particular one may also explore the possibility of
combining these two algebraic methods together to develop additional techniques.

Assume we are given a system of equations fi(u1, · · · , un) = v′i, 1 ≤ i ≤ m.
Let U = (u1, · · · , un) and gi(U) = fi(U)−v′i. For any nonnegative integral vector
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α = (α1, · · · , αn), denote uα1
1 · · · uαn

n by Uα. Similarly, for β = (β1, · · · , βm),
denote fβ1

1 · · · fβm
m by F β and gβ1

1 · · · gβm
m by Gβ .

A variant of the XL method first translates the equation system above into
another system of equations of the form:

∑
aα,iU

αgi(U) = 0, where 1 ≤ i ≤
m and α are nonnegative integral vectors with small component sum (upper-
bounded by some small integer D). Then define all terms UαUγ as new unknowns
and solve the resulting linear equation system.

On the other hand, the HOLE method attempts to solve a system of equations
of the form:

∑

i,β

ai,βuiG
β = 0, where 1 ≤ i ≤ n and β are chosen small vectors.

Since the fi(U) are equivalent to the gi(U) under affine transformations, the
above system is equivalent to the form:

∑

i,β

bi,βuiF
β = 0. Our attack presented

in the previous section actually finds identical equations with the form above,
and hence we can substitute F β by v′β1

1 · · · v′βm
m and get a linear system that the

plaintext satisfies.
As a comparison, we find that if a HOLE with order D could be used to

successfully attack a system by finding linear equations, then one should expect
that the XL method should work as well. But the order of XL should be of degree
2D − 1 (the total degree is 2D + 1), because the vi in general are of degree 2.
From this consideration, we conclude that though HOLE definitely cannot be a
replacement for the XL method. Yet there could be cases that the HOLE method
would be much more efficient than XL. In one case we consider polynomials of
degree D+1 (HOLE), while in the other case, we consider polynomials of degree
2D +1 (XL). Another critical point is that when we use the HOLE method, the
computation of HOLEs is performed only once for a given public key, then the
HOLEs are used for any ciphertext; while the general XL algorithm needs to run
its main part each time for different values of ciphertext. Thus one should think
HOLE as a possibly more efficient alternative to XL, if it can work; and there
would be cases that HOLE can work practically while the XL cannot.

More importantly, one may consider unifying the XL and HOLE methods.
We may expect to efficiently solve the system of equations of the form:

∑

α,β

aα,βUαGβ = 0. (23)

From the point view of algebraic geometry, this definitely makes sense. But
at this moment, we have not yet found any example where such a method could
indeed be more efficient in an attack. Furthermore, one can expect that this
method may be useful to attack other cryptosystems, such as symmetric ciphers.

5 Conclusion

In this paper, we use an extension of the linearization equation attack method of
Patarin, which we call the high order linearization equation method, to break the
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MFE multivariate public key cryptosystem in CT-RSA 2006. This shows that
the high order linearization equation method is indeed an important algebraic
attack method. For any multivariate public key cryptosystem, one should take
into account this new method.

References

[ACDG03] Mehdi-Laurent Akkar, Nicolas T. Courtois, Romain Duteuil, and Louis
Goubin. A fast and secure implementation of Sflash. In PKC-2003,
LNCS, volume 2567, pages 267–278. Springer, 2003.
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Abstract. Multivariate Cryptography has been an active line of re-
search for almost twenty years. While most multivariate cryptosystems
have been under attack, variations of the basic schemes came up as poten-
tial repairs. In this paper, we study the Internal Perturbation variation
of HFE recently proposed by Ding and Schmidt. Although several results
indicate that HFE is vulnerable against algebraic attacks for moderate
size parameters, Ding and Schmidt claim that the cryptosystem with
internal perturbation should be immune against them. However in this
paper, we apply the recently discovered method of differential analy-
sis to the Internal Perturbation of HFE and we find a subtle property
which allows to disclose the kernel of the perturbation. Once this has
been achieved, the public key can be inverted by attacking the underly-
ing HFE provided the parameters were taken low enough to make the
perturbed scheme of competitive performance.

Keywords: multivariate cryptography, HFE, internal perturbation, dif-
ferential cryptanalysis, binary vector spaces.

1 Introduction

Multivariate Cryptography has been an active line of research for almost twenty
years. Initiated independently in the early 80’s by Matsumoto-Imai and Fell-
Diffie [11,7], the field was revived by the work of Patarin and Shamir [14,17,15].
The interest for multivariate primitives can be explained in several ways. First,
these schemes are not related to factorization or discrete logarithm problems.
They rely on the intractability of solving systems of multivariate quadratic equa-
tions over a finite field. This problem is proved NP-hard [12] and moreover no
quantum polynomial algorithm has been found to solve it. Next, these schemes
benefit from several nice properties such as providing very short or very fast
signatures, as well as a very particular flexibility: from all basic trapdoors can
be derived a number of generic variations. These variations are often considered
to thwart structural attacks against the original cryptosystems.

Today most basic trapdoors have been under attack. Among the most pro-
mising, HFE was introduced by Patarin as a repair of the Matsumoto-Imai
� This work is supported in part by the French government through X-Crypt, in part
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cryptosystem [15]. The scheme was quickly subject to a cryptanalytic attack
by Kipnis and Shamir [9], and further attacked by Courtois [1], but the first
successful cryptanalysis of HFE was only provided by Faugère and Joux, eight
years after its invention [6]. The latter attack made use of a general Gröbner bases
algorithm and its success can only be explained by some inherent algebraic prop-
erties allowing a peculiarly fast computation of the algorithm. These algebraic
properties were recently mathematically explained by Granboulan-Joux-Stern
[10] and a rather clear picture of how to choose parameters to withstand attacks
is emerging.

On the other hand, very few studies are dedicated to the security of varia-
tions, and the respective effects of the many variations remain unclear in terms
of security. However variations are powerful and can have a crucial impact on
security: as an example, the SFlash signature algorithm chosen by the NESSIE
European consortium is a variation of the broken Matsumoto-Imai cryptosys-
tem [13]. Also, most attacks against the basic cryptosystems do not extend to
variations. The gain on security brought by variations has to be understood to
determine whether they result in secure schemes.

Our results. In this paper, we consider a variation of HFE called the Internally
Perturbed HFE. This variation was recently proposed by Ding and Schmidt [4].
It was designed to counter Kipnis-Shamir’s attack, and is expected to withstand
Gröbner bases attack as well. A simpler internal variation had been previously
proposed based on the Matsumoto-Imai cryptosystem [2] and had already been
asserted to provide immunity against algebraic attacks [3]. Unfortunately, the
Matsumoto-Imai cryptosystem has a very specific structure and the internal per-
turbation could actually be removed using the recently introduced differential
technique [8]. In this work, we consider the enhanced internal perturbation vari-
ation as applied to HFE and defined in [4]. We show that the original internal
perturbation variation applied to HFE still suffers from the drawback exhibited
in [8], while the enhanced version has indeed a much subtler differential visibility.
However, a differential bias can still be captured and exploited to disclose the
kernel of the perturbation. Once this has been achieved, the public key can be
inverted by attacking the underlying HFE provided the parameters were taken
low enough to make the perturbed scheme of competitive performance. Precise
complexity estimates for the attack are provided.

Organization of the paper. In section 2, we recall the construction of HFE and
its Internal Perturbation variation. Next, in section 3, we recall the basics of
differential analysis for multivariate schemes and its application to the inter-
nally Perturbed Matsumoto-Imai. In section 4, we analyze the differential of the
Internally Perturbed HFE and we exhibit a provable distinguisher of elements
cancelling the perturbation. In section 5, we turn this distinguisher into an al-
gorithm to find the kernel of the perturbation. In section 6, we show that the
public key can be easily inverted once this kernel is known. The method being
quite technical in character, all proofs could not be included; the full paper is
available from the authors.
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2 The Internally Perturbed HFE Cryptosystem

2.1 Notations

We denote by F2 the finite field with two elements and by F2n the degree n exten-
sion field of F2. F2n is an F2-vector space of dimension n isomorphic to F

n
2 . The

squaring operation x �→ x2 is F2-linear (or additive) in F2n . As a consequence,
sums of monomials of the form ax2i

where a is an element of F2n and i is an
integer in [0, n−1], are the F2-linear maps over F2n . Polynomials of this type will
be therefore called F2-linear polynomials. Given an F2-linear polynomial, the set
of its cancelling elements is a linear subspace of F2n that will be referred to as
its kernel. F2-linear polynomials are isomorphic to (multivariate) linear maps of
F

n
2 by an extension of the isomorphism between F2n and F

n
2 . Similarly, sums of

monomials of the form ax2i+2j

where a is an element of F2n and i, j are integers
in [0, n − 1], will be called F2-quadratic polynomials. F2-quadratic polynomials
translate through the isomorphism between F2n and F

n
2 into quadratic maps of

F
n
2 , defined by n polynomials of degree 2 in n variables.

2.2 The Original HFE Setting

Informally speaking, the generic construction of multivariate schemes consists
in disguising an easily solvable system of multivariate quadratic equations as
random, by a secret transformation. In most schemes, the secret transformation
is the composition by two randomly chosen invertible affine maps S, T ; one is
applied on the variables and the other one on the equations. The way to generate
an easily solvable quadratic system P defines each scheme. The public key P is
given by:

P = T ◦ P ◦ S

An encrypted message P (a) is decrypted by solving the quadratic system P (x) =
P (a). Solving this system is intractable except for the legitimate user which can
invert T and S and solve the easy internal system. In Matsumoto-Imai and HFE,
the easily solvable system P exploits the isomorphism between F2n and F

n
2 . In

Matsumoto-Imai, the internal function P is the multivariate expression of an F2-
quadratic monomial x2i+2j

, where i, j are suitably chosen so that it is invertible.
In HFE, the internal polynomial is the multivariate expression of an F2-quadratic
polynomial which has low degree to allow decryption by a root-finding algorithm.

Different cryptanalytic approaches [9,6,1] made clear that the low degree of
the internal polynomial in HFE makes the system vulnerable to algebraic at-
tacks. In particular, Faugère and Joux demonstrated that systems of quadratic
equations coming from HFE public keys allow much easier Gröbner basis com-
putations than random systems of the same size [6] - the first challenge of HFE
of parameters n = 80 and degree 96 was broken in a hundred hours. Now the
question is : how to enhance the security of HFE?
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2.3 The Internally Perturbed HFE

To withstand low degree attacks, the internal polynomial should be modified so
that it no more has low degree while still allowing decryption. An interesting
idea to realize this, was presented by Ding and Schmidt [4] and is known as the
Internally Perturbed HFE. The suggested modification consists in “noising” the
low degree internal polynomial by a few terms of high degree which can only be
removed by the legitimate user. We next recall this scheme in detail.

For a given degree parameter D, the user chooses a bivariate polynomial
P̈ (x, y) as the sum of three basic components:

– a univariate F2-quadratic polynomial P (x) in variable x of low degree under
2D+1, that will be called the HFE-part of P̈ .

– a bivariate F2-bilinear polynomial M(x, y) in variables x, y of low degree 2D

in x, that will be called the the mixing part of P̈ .
– a univariate F2-quadratic polynomial P̄ (y) in variable y, that will called the

pure perturbation part of P̈ .

In addition, the user randomly selects an F2-linear polynomial Z(x) of low rank
r. The F2-quadratic polynomial P̃ (x) = P̈ (x, Z(x)) has very high degree in
general, nevertheless its roots can be found indirectly: the image of Z, that we
note Im(Z), has only 2r elements and for any b of them, one can find the roots of
P̈ (x, b) since it has small degree. P̃ (x) consists in the internal polynomial in the
Internally Perturbed HFE, and the public key is P̃ = T ◦ P̃ ◦S, as in HFE. One
can observe that the decryption process is 2r times slower than for an HFE of the
same degree parameter. The prescribed parameters are n = 89, D = 3, r = 2 [4].
It can be noticed that in our definition of the internal polynomial P̃ , all linear
and constant terms of the definition of [4] were omitted. Indeed in the sequel,
we will only be interested in the differential of P̃ , and as we will see, linear and
constant terms disappear when taking the differential.

3 Internal Perturbation and Differential Analysis

We let Z to be the composition of Z with the linear part of S. As a basic
observation, an Internally Perturbed HFE public key is just an HFE public
key on any affine subspace parallel to the kernel of Z. Indeed, this is required
by the decryption process: for any element b, P̃ (x) coincides with the small
degree polynomial P̈ (x, b) over the affine subspace b + kerZ. Therefore, if we
could discover the kernel of Z, we could invert the public key by attacking the
underlying HFEs with Gröbner bases, as shown by Faugère and Joux [6]. Hence,
the Internally Perturbed scheme would be broken by the ability to recover the
kernel of the perturbation.

Differential Analysis is a generic tool of analysis of multivariate schemes which
can allow learning information about the hidden structure. It was in particular
used to discover the kernel of the perturbation of a former internally perturbed
scheme, the Perturbed Matsumoto-Imai cryptosystem. We next recall the ba-
sics of differential analysis for multivariate schemes and its application to the
Perturbed Matsumoto-Imai.
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3.1 Basic Properties of the Differential of a Quadratic Function

For any quadratic function P and any element a, the difference P (x+ a)− P (x)
is an affine function in x of constant term P (a) − P (0). Its linear part is called
the differential of P at a and will be denoted DPa in the sequel.

DPa(x) = P (a + x) − P (x) − P (a) + P (0)

In multivariate schemes, we have two quadratic functions P and P which are
related by two bijective affine transforms S and T following P = T ◦ P ◦ S.
Denoting S and T the linear parts of S and T , the differential of P and P are
related the following way:

DPa = T ◦ DPS(a) ◦ S

Therefore, S and T being invertible, the distribution of the kernel-dimension of
the differential for a random a is the same for the public key as for the internal
function. This was first noticed in [8] to attack the Perturbed Matsumoto-Imai.

3.2 Application to the Perturbed Matsumoto-Imai

The Matsumoto-Imai scheme uses an internal polynomial P of the form x2i+2j

.
Ding proposed an internal perturbation with no mixing part (i.e. M(x, y) = 0)
[2]. Considering the differential of P̃ at a,

DP̃a(x) = DPa(x) + DP̄Z(a)(Z(x)) (1)

it was observed in [8] that the differential at points in the kernel of Z is exactly the
differential of the original Matsumoto-Imai function at these points. Besides, the
differential of the Matsumoto-Imai internal function x2i+2j

has kernel-dimension
gcd(n, i − j) at any non-zero point. On the other side, when taken at a point
which is not in the kernel of Z, the perturbation part interferes and may cause
the differential to have a larger of smaller kernel. This provides an easy criteria
to detect elements which are not in the kernel of Z, and with sufficiently many
such points, the kernel can be recovered.

As a remark, observe that the internal perturbation without mixing terms
applied on HFE yields the same drawback. Again the differential of P̃ at a
point of the kernel of Z is the differential of the HFE internal polynomial. The
differential of an HFE internal polynomial of degree under 2D+1 has degree at
most 2D, and therefore, as a linear map, its kernel has dimension at most D [5].
On the other side, when the perturbation interferes, the differential may have a
larger kernel.

4 A Differential Bias of the Internally Perturbed HFE

In this section, we prove the spinal cord of our attack: whether the perturbation
vanishes or not yields a differential bias. First, we characterize the form of the
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differential in both cases, in terms of sums of linear maps of two kinds. Sec-
ond, we compute the distribution of the kernel-dimensions in both cases, using
combinatorics in binary vector spaces. Third, we define a distinguisher of kernel
elements whose advantage can be exactly computed for a random secret key.

4.1 Differential Structure of the Perturbed Internal Polynomial

From now on, the kernel of Z will be denoted K. Depending on the membership
of a to K, the differential at a is:

a /∈ K, DP̃a(x) = DPa(x) +M(x, Z(a)) +M(a, Z(x)) +DP̄Z(a)(Z(x))
a ∈ K, DP̃a(x) = DPa(x) +M(a, Z(x))

As we can see, the differential of the perturbed internal at points where the per-
turbation vanishes is not the differential of the non-perturbed internal as it was
for PMI. In particular, the kernel-dimension of the differential will be more than
D for some elements in K while this could never happen with a PMI-like pertur-
bation. In fact, we will next show that the differential reaches the same kernel
dimensions in both cases. Therefore, it will not be possible to use the “cut-off”
based strategy as for PMI to detect the effectiveness of the perturbation. A more
elaborate analysis of the differential is therefore required.

As a first step, we can observe that the structure of the differential is very
similar in both cases. In both cases, this is the sum of an F2-linear polynomial
of degree 2D and a linear map of rank r which take the same value at a. What
differs is: the common value is 0 when a is in K and non-zero when it is not.
This actually captures the structure of this differential, as stated by the following
theorem.

Theorem 1. Let a be a non-zero element of F
n
2 . A random instance (P, M, P̄ , Z)

of Internally Perturbed HFE with parameters (D, r) has an internal polynomial
denoted P̃ . We denote by LD a random F2-linear polynomial of degree 2D and by
lr a random linear map of rank r. Then, for a proportion 1− εn,r of all instances
(P, M, P̄ , Z) of the cryptosystem, we have:

Pr
[
dim kerDP̃a = t | a ∈ K

]
= Pr [dim ker(LD + lr) = t | LD(a) = lr(a) = 0]

and

Pr
[
dim kerDP̃a = t | a /∈ K

]
= Pr [dim ker(LD + lr) = t | LD(a) = lr(a) �= 0]

where εn,r = 2−(n−r) + O(2−2n).

A proof of the theorem can be found in the full paper available from the au-
thors. It will be clear from the sequel that, for the suggested parameters, εn,r

is negligible compared to the probabilities of interest. Accordingly, the kernel
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dimensions of the differential at points inside and outside K respectively follow
the distributions of probability denoted π+ and π− defined by:

π+(t) = Pr(LD,lr) [dim ker(LD + lr) = t | LD(a) = lr(a) = 0]
π−(t) = Pr(LD,lr) [dim ker(LD + lr) = t | LD(a) = lr(a) �= 0]

We next study both distributions in detail.

4.2 Distribution of the Kernel-Dimension of the Differential
Depending on the Position of the Point

Distributions π+ and π− can be exactly computed using combinatorics in binary
vector spaces, which are of independent interest. We will not recall these combi-
natorics here since they are not the subject of this paper, however all details are
provided in Appendix A. We nevertheless describe the three steps that we follow
to determine the distribution of the kernel-dimension of the sum of a random
F2-linear polynomial of degree 2D and a random linear map of rank r:

– first, we compute the distribution of the kernel-dimension of F2-linear poly-
nomials of degree 2D. The kernel-dimension of such polynomials is at most
D, and the vanishing of one such polynomial over a subspace of dimension
d with d ≤ D can be expressed in d independent linear constraints over the
D + 1 coefficients defining this F2-linear polynomial.

– fixing an F2-linear polynomial L of kernel-dimension d, we can compute the
probability that a random subspace of dimension n − r has intersection of
dimension i with the kernel of L.

– fixing a subspace G of dimension n − r which intersects the kernel of L with
dimension i, we can enumerate the number of linear maps l of kernel G such
that ker(L + l) has dimension t. Observe that in characteristic 2, ker(L + l)
is the subspace where L and l are equal.

The overall probability for the dimension t requires to sum over all possible
values of d and i; unfortunately, we could not find a closed formula (if any) for
this probability. Nevertheless the sum itself is enough for all practical purposes.

Finding the laws π+ and π− consists in redoing the previous enumeration
while taking into account the constraint at a. For any d and i, we can extract
the correction factors coming from the constraint at a in either case. This leads
to the following proposition.

Proposition 1. Let πd,r,i(t) be the probability that the sum LD + lr of a random
F2-linear polynomial LD of degree 2D and kernel-dimension d and a random
linear map lr of rank r with kernels intersecting with dimension i, has kernel
dimension t. Formally,

πd,r,i(t) = Pr(LD ,lr)

[
dim ker(LD + lr) = t ;

{
dim kerLD = d
dim(kerLD ∩ ker lr) = i

]
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For a prescribed non-zero element a, we denote

− π+
d,r,i(t) for the probability of the same event knowing LD(a) = lr(a) = 0

− π−
d,r,i(t) for the probability of the same event knowing LD(a) = lr(a) �= 0

We have:

π+
d,r,i(t) = 2r (2i − 1) πd,r,i(t) (1 + 2−(n−r) + O(2−2(n−r)))

π−
d,r,i(t) = 2r

2r−1 (2t − 2i) πd,r,i(t)

on average over a.

Again, a proof can be found in the full paper. Neglecting terms of order 2−(n−r),
we obtain for π+ and π−:

π+(t) = 2r
∑D

d=0
∑d

i=0

(
2i − 1

)
πd,r,i(t)

π−(t) = 2r

2r−1

∑D
d=0

∑d
i=0

(
2t − 2i

)
πd,r,i(t)

Though these probabilities are not provided under a closed form, they can be
computed for any choice of the parameters. For example, for the suggested pa-
rameters (n, D, r) = (89, 3, 2) their values are given in the table below:

dimension t π+ π−(t) sign(π+ − π−)
1 	 0.57764 	 0.57756 +
2 	 0.38495 	 0.38507 −
3 	 0.036718 	 0.036662 +
4 	 0.00069427 	 0.00070045 −
5 	 0.0000025431 	 0.0000029064 −

The kernel-dimension of the differential at some point a is now fully under-
stood: it can follow two well determined distributions depending on the mem-
bership to K of a. We next compare these two distributions and show that the
kernel-dimension of the differential at a yields some information about its mem-
bership or non-membership to K.

4.3 Distinguishing Kernel Elements

Definition of our Distinguisher. Let P̃ be a public key associated to a given
instance (P, M, P̄ , Z) of the cryptosystem, and let K be the subspace isomorphic
to K through the linear masking. Our distinguisher is built on the differential bias
exhibited in the preceding section. For a random non-zero element a, we compute
the kernel dimension of the differential of P̃ at a and obtain the dimension t. If
for this dimension t we have π+(t) ≥ π−(t) then the hypothesis that a is in K is
more favorable and our decision will therefore follow this way. Put in a formal
way, we define the function

T :
{

T (a) = 1 when dim kerDP̃a = t with π+(t) ≥ π−(t)
T (a) = 0 when dim kerDP̃a = t with π+(t) ≤ π−(t)

T is our distinguisher of kernel elements. We next compute its advantage.
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Advantage of the Distinguisher. The advantage of T for a random instance
of the cryptosystem and a random a is by definition

|Pr [T (a) = 1 | a ∈ K] − Pr [T (a) = 1 | a /∈ K]|
The inner difference values to

∑

t:π+(t)≥π−(t)

Pr
[
dim kerDP̃a = t | a ∈ K

]
− Pr

[
dim kerDP̃a = t | a /∈ K

]

The summand of the above is π+(t) − π−(t) and is therefore positive for the
prescribed values of t. Hence, the expected advantage of the distinguisher for a
random instance of the cryptosystem, denoted Adv, is

Adv =
∑

t:π+(t)≥π−(t)

π+(t) − π−(t)

We summarize in the table below the values of Adv for some parameters.

(n, D, r) Adv
(89, 2, 2) 2−7.49

(89, 3, 2) 2−12.95

(89, 3, 3) 2−16.17

(89, 4, 4) 2−27.97

In the above table, the second line corresponds to the preferred parameters in [4].

5 Recovering the Kernel of the Internal Perturbation

In the previous section, we designed a distinguisher T which can be seen as a
two-sided error test of membership to K. In this section, we aim at turning the
test T into an algorithm for finding elements of K.

5.1 Behaviour of the Test with Respect to Linearity

The set K benefits from a property that its complement does not share: it is
closed under addition. Accordingly, when x is a member of K then any y and
x + y must be both members of both non-members of K, while it can happen
differently when x is not in K. Analogously, the probability for a random y
that both y and x + y are detected inside or outside K by the test should be
higher on average over the elements x of K than over those not in K. We next
show that this intuition is correct and compute the distance between these two
probabilities.

Given an element y, we denote by μ+
y the probability that T (x + y) = T (y)

when x is in K, and by μ−
y the same probability when x is outside K.

μ+
y = Prx[ T (x + y) = T (y) | x ∈ K ]

μ−
y = Prx[ T (x + y) = T (y) | x /∈ K ]
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The mean values of μ+
y and μ−

y over the y are denoted μ+ and μ−.

μ+ = Prx,y[ T (x + y) = T (y) | x ∈ K ]
μ− = Prx,y[ T (x + y) = T (y) | x /∈ K ]

Probabilities μ+ and μ− can be computed for a random instance of the cryp-
tosystem; their distance denoted Δμ is

Δμ = μ+ − μ− = 2.
Adv2

2r
(2)

The details of these computations can be found in the full paper.
Given an element y, we define the random variable δy which values 1 at x

whenever T (x + y) = T (y) and 0 otherwise. The mean value of δy over K is
μ+

y , and is μ−
y over the complement of K. In the sequel, we will consider a large

assembly of random variables δyi for some fixed yi. The idea is that, whenever
δyi(x) is 1 for many i, x should belong to K with high probability.

5.2 Building a Reliable Test of Membership

Definition of the Test. For any N non-zero distinct elements y1, . . . , yN , we
define the random variable

SN (x) =
N∑

i=1

δyi(x)

For any such random variable SN , a test of membership can be defined as follows.
Given an element x, we compute SN (x); whenever SN (x) ≥ Nμ+, the test
answers yes, and no otherwise.

The intention behind the test is the following. Since δyi(x) is more likely to
be 1 when x is in K than when x is not in K, we expect SN (x) to be higher
when x is in K than when x is not in K. When N increases, we expect the
intersection between the values of SN over K and the values of SN outside K
to become smaller. Finally, for N large enough, we expect the probability that
SN (x) ≥ Nμ+ to be large when x is in K and very small when x is not in K.

Analysis of the Test. Let us first consider SN over K. For any yi, the mean
value of δyi over K is μ+

yi
. This latter value is not known, however we know that it

follows a distribution of mean value μ+. Likewise, the mean value of SN over K,
denoted A+

N , follows a distribution over the N -tuples (y1, . . . , yN ) of mean value
Nμ+. Hence, for half the choices of a N -tuple (y1, . . . , yN ), we have A+

N ≥ Nμ+.
When this is the case, we have :

Prx

[
SN (x) ≥ Nμ+ | x ∈ K

] ≥ Prx

[
SN (x) ≥ A+

N | x ∈ K
]

=
1
2

Therefore, in at least half the cases, more than the half of the elements of K will
pass our test of membership, whatever is the value of N .
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Now we consider SN over the complement of K. We want to find some N
so that the probability for the elements of the complement of K to pass the
test is very small. We can notice as before, that the mean value of SN over the
complement of K, denoted A−

N , follows a distribution of mean value Nμ−. Hence,
for half the choices of a N -tuple (y1, . . . , yN), we have A−

N ≤ Nμ−. When this
is the case, we have :

Prx

[
SN (x) ≥ Nμ+ | x /∈ K

] ≤ Prx

[
SN (x) − A−

N ≥ NΔμ | x /∈ K
]

(3)

and our task is now to find an upper-bound of the right-hand probability.
We observe that, when the yi are independently chosen, the random variables

δyi are independent. Sequences of independent non-identically distributed binary
random variables are known as Poisson trials in the litterature. Applying the
Chernoff bound [16]:

Prx

[
SN (x) − A−

N ≥ NΔμ | x /∈ K
] ≤ exp(−1

4
N2Δμ2

A−
N

)

Besides, we have A−
N ≤ Nμ− and μ− ≤ μ where μ is the probability to have

T (x + y) = T (y) for random x and y. Therefore, using (3), we finally obtain:

Prx

[
SN (x) ≥ Nμ+ | x /∈ K

] ≤ exp(−N

4
Δμ2

μ
)

We now estimate the value of μ. When x and y are random, x + y and y are
independent and therefore μ = α2 + (1 − α)2 where α = Pr [T = 1]. Probability
α can be computed for a random instance of the cryptosystem from

α =
∑

t:π+(t)≥π−(t)

(2−r)π+(t) + (1 − 2−r)π−(t) 	
∑

t:π+(t)≥π−(t)

π−(t)

Using the table 1, we see that α 	 0.6 and μ 	 0.5.
Finally, to make the probability to have a false-positive under ε, we can take

N =
2

Δμ2 ln
(

1
ε

)
=

22r−1

Adv4 ln
(

1
ε

)
(4)

Complexity for Recovering K. A random element x is in K with probability
1
2r and is detected in K by the test with probability 1

2 . Computing all the δyi(x)
values is achieved by computing the differentials at x + yi and at yi, and then
computing their ranks. The complexity for computing a differential or a rank is
n3, the same as for evaluating the public key. Recovering K requires to discover
about n of its elements. Therefore, the complexity for recovering K is 2r+1Nn
evaluations of the public key. When taking N as given by Formula 4, recovering
K amounts to

n23r

Adv4 ln
(

1
ε

)
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evaluations of the public key. This is given by the table below for practical
parameters and ε = 0.001. It should be remarked that Formula 4 gives us an
upper-bound on the value of N to be chosen. In practice, taking a smaller N
might allow the attack as well.

(n, D, r) Recovering K
(89, 2, 1) 232.26

(89, 2, 2) 245.20

(89, 3, 2) 267.03

(89, 3, 3) 282.92

In the above table, the third line corresponds to the preferred parameters in [4].

6 Invertion of the Public Key

At this point, we assume that K has been retrieved using the preceding tech-
niques. We next show how the public key of the Internally Perturbed HFE can
be inverted using the attack of Faugère-Joux against HFE.

Let l1, . . . , lr to be r independent linear forms orthogonal to K; an element
(x1, . . . , xn) lies in K if and only if lk(x1, . . . , xn) = 0 for all k in [1, r]. As already
pointed, the public key of an Internally Perturbed HFE is just an HFE public key
on any affine subspace parallel to K. Fixing one such subspace, we call p1, . . . , pn

the multivariate quadratic forms of the perturbed public key, and p′1, . . . , p
′
n the

multivariate quadratic forms of its equivalent HFE public key on this affine
subspace. All linear forms lk are constant on this subspace; for instance they
all value to 0 (the affine subspace considered is K). For any point (b1, . . . , bn),
the multivariate quadratic systems {pi = bi, i ∈ [1, n]} ∩ {lk = 0, k ∈ [1, r]} and
{p′i = bi, i ∈ [1, n]} ∩ {lk = 0, k ∈ [1, r]} have the same solutions. Equivalently,
the ideal generated by p1 − b1, . . . , pn − bn together with l1, . . . , lr is the same
as the ideal generated by p′1 − b1, . . . , p

′
n − bn together with l1, . . . , lr in the ring

R = F2[x1, . . . , xn]/{x2
1 − x1, . . . , x

2
n − xn}. We call I this ideal, and J the ideal

generated by p′1 − b1, . . . , p
′
n − bn without the kernel linear forms.

The ideal J is generated by quadratic equations coming from an HFE cryp-
tosystem; computing a Gröbner basis for such ideals was shown much easier than
in the general case by Faugère and Joux [6]. In particular, Faugère could break
an HFE with parameters n = 80 and D = 6 in a hundred hours, while HFE
arising in practical realizations of the perturbed HFE scheme have suggested
parameters n = 89 and D = 3 only [4]. Now the key point is: computing a Gröb-
ner basis of I cannot be harder than computing a Gröbner basis of J . Indeed I
and J only differ by generators of degree 1, and computing a Gröbner basis of
these generators is achieved by simple Gaussian elimination. Rather, they will
help in the reduction of higher degree polynomials occurring in the computa-
tion. This is experimentally checked, as it could be done in about 2h10 when
feeding with public and kernel equations and about 2h45 for the corresponding
HFE, for any tested instance of the cryptosystem with (n, D, r) = (60, 3, 2), us-
ing Magma’s implementation of the F4 algorithm [18] on a standard machine.
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Of course, in practice, b1, . . . , bn are made variables and the Gröbner basis com-
putation is made only once. It outputs a set of polynomials g1, . . . , gL with the
shape, gl = fl(x1, . . . , xil

) −hl(b1, . . . , bn) where fl is only in the il first xi. This
Gröbner basis allows to solve the system {p1 = b1, . . . , pn = bn} for any values
b1, . . . , bn by sequentially solving the equations fl(x1, . . . , xil

) = hl(b1, . . . , bn) in
increasing order of il.

7 Conclusion

The Internally Perturbed HFE cryptosystem is a variation of HFE, designed
to fix the potential vulnerability of HFE against algebraic attacks. It is one of
the rare candidates liable to enhance HFE as a cryptosystem. A major security
element of the cryptosystem is the kernel of the perturbation, since the knowledge
of this subspace allows to view the public key as a small set of HFE public keys,
which can be inverted for the suggested parameters. However, in this work, we
show that some correlation exists between the membership to the kernel of the
perturbation and the kernel-dimension of the differential of the public key. This
correlation can be accurately measured for any parameters, using sophisticated
methods based on combinatorics in binary vector spaces. It yields a distinguisher
which can be turned into an algorithm for finding elements of the kernel of the
perturbation. For the preferred parameters in [4], recovering the kernel of the
perturbation amounts to at most 267 evaluations of the public key, which is well
below the usual 280 barrier. Although the designers of the scheme believed that
the best attack might be exhaustive search in the space of messages [4], our attack
is at least 222 times faster and recovers an equivalent secret key. Accordingly, the
elements presented in this work shed a new light on the security of the scheme
presented by Ding and Schmidt. It should be emphasized that these elements
could not be perceived without the advanced combinatorial methods provided
in this paper, which are of independent interest.
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A The Kernel-Dimension of the Sum of a Random
F2-Linear Polynomial and a Random Linear Map of
Rank r

In characteristic 2, the kernel of the sum of two linear maps is the subspace where
they coincide. We denote LD the set of F2-linear polynomials of degree 2D and
Lr the set of linear maps of rank r. We aim at determining the distribution of
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probability of the dimension of the subspace where L and l coincide, denoted
{L = l}, when L is a random element of LD and l is a random element of Lr.

We recall that the number S(n, s) of linearly independent sequences of length
s in a space of dimension n is

S(n, s) =
s−1∏

i=0

(2n − 2i)

Each such sequence generates a subspace of dimension s which is also generated
by S(s, s) other linearly independent sequences of length s. Therefore the number
E(n, s) of subspaces of dimension s in a space of dimension n is S(n, s)/S(s, s).

An F2-linear polynomial of degree 2D has at most 2D roots as a polynomial.
Its roots are the elements of its kernel as a linear map. Therefore the dimension
of this kernel cannot exceed D and the probability that it has kernel dimension
d is given by the following lemma:

Lemma 1. The probabilities (pD(0), . . . , pD(D)) that a random element of LD

has kernel dimension respectively 0, . . . , D satisfy the following invertible trian-
gular system:

d ∈ [0, D], E(n, d)2−nd =
D∑

m=d

E(m, d)pD(m)

Proof. The number of F2-linear polynomials of degree 2D is (2n−1)2nD and those
which vanish at a are 2n times less numerous. Given a subspace of dimension d
with d in [0, D], the vanishing of an F2-linear polynomial of degree 2D results in
d linear constraints over its D + 1 coefficients. It implies that for each subspace
of dimension d, there are exactly (2n − 1)2n(D−d)

F2-linear polynomials which
vanish on it. In the product E(n, d)(2n − 1)2n(D−d), the F2-linear polynomials
whose kernel has dimension m with m ≥ d are counted E(m, d) times. Therefore,
the proportions pD(d) of F2-linear polynomials of degree 2D which have kernel
dimension d satisfy the above invertible triangular system. ��

We now suppose given an F2-linear polynomial L of degree 2D and kernel-
dimension d. The subspace on which L and a randomly chosen linear map of
rank r coincide at least contains the intersection of the two kernels. We there-
fore should fix this dimension of intersection as a new parameter.

Lemma 2. Given a subspace of dimension d, the probability pd,r(i) that a ran-
dom subspace of dimension n − r intersects this subspace with dimension i is

S(d, i)S(n, d + n − r − i)S(n − r, i)
S(n, d)S(i, i)S(n, n − r)

Proof. Let call F the prescribed subspace of dimension d. The number of possible
intersection subspaces is E(d, i). For each of them I, the number of linearly
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independent sequences of length n−r whose generating subspace has intersection
with F exactly I is the number of linearly independent sequences outside F :

(2n − 2d) . . . (2n − 2d+n−r−i−1) = S(n, d + n − r − i)/S(n, d)

This generating subspace G is also generated by as many linearly independent
sequences of length n − r as the number of linearly independent sequences of
length n − r − i of G outside I; this is likewise S(n − r, n − r)/S(n − r, i).

The number of subspaces of dimension n−r which intersect F with dimension
i is therefore

E(d, i)
S(n, d + n − r − i)

S(n, d)
S(n − r, i)

S(n − r, n − r)

and the expected proportion is obtained by dividing by E(n, n − r). ��
We now suppose given both an F2-linear polynomial L of degree 2D and kernel
F of dimension d and a subspace G of dimension n − r which has intersection of
dimension i with F . A map of kernel G coincides with L on a subspace H such
that H ∩ F = H ∩ G = F ∩ G. We now enumerate the number of subspaces of
dimension t satisfying this condition.

Lemma 3. Given a subspace F of dimension d and a subspace G of dimension
n − r whose intersection has dimension i, the number of subspaces of dimension
t such that H ∩ F = H ∩ G = F ∩ G is

t∑

j=i

S(d − i, j − i)S(n − r − i, j − i)
S(j − i, j − i)

S(n, d + n − r − i + t − j)
S(n, d + n − r − i)

S(t, j)
S(t, t)

Proof. This enumeration comes in two steps: first we count the number of sub-
spaces J of F + G which have dimension j and satisfy the condition, second
we count for each such J the number of subspaces H of dimension t whose
intersection with F + G is J .

The subspaces of F +G of dimension j containing F ∩G are in bijection with
the subspaces of dimension j − i in the quotient space (F + G)/(F ∩ G). Let
x̄ denote the class modulo F ∩ G of the element x. The number of subspaces
J such that F ∩ J = G ∩ J = F ∩ G is the number of subspaces J̄ such that
F ∩ J̄ = Ḡ ∩ J̄ = {0̄} in the quotient space. Now notice that the set of linearly
independent sequences of length j − i in F + Ḡ generating a subspace of zero
intersection with both F and Ḡ is in bijection with the Cartesian product of lin.
indep. sequences of length j − i in F and lin. indep. sequences of length j − i in
Ḡ. Besides each such sequence generates a subspace which is also generated by
S(j − i, j − i) others. The number of subspaces J of F + G of dimension j such
that J∩F = J∩G = F ∩G is therefore S(d−i, j−i)S(n−r−i, j−i)/S(j−i, j−i).

The number of subspaces of dimension t whose intersection with F + G has
dimension j is enumerated as given by Lemma 2. ��
It now only remains to determine the proportion of linear maps of kernel G
which coincide with L on a subspace of dimension t.
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Lemma 4. Let L a linear map of kernel F of dimension d, G a subspace of
dimension n − r which has intersection of dimension i with F and Ed,r,i(t) the
number of subspaces H of dimension t such that H ∩ F = H ∩ G = F ∩ G.
The proportions pd,r,i(t) of linear maps of kernel G which coincide with L on a
subspace of dimension t for t in [i, r+i] satisfy the following invertible triangular
system:

t ∈ [i, r + i],
Ed,r,i(t)

S(n, t − i)
=

r+i∑

m=t

E(m, t)
S(t, i)
S(m, i)

pd,r,i(m)

Proof. For each subspace H of dimension t such that H ∩ F = H ∩ G = F ∩ G,
we construct a linear map of kernel G which equal L on H by choosing for its
image on the remaining dimension r − t + i a linearly independent sequence
outside the image of H by L which has dimension t − i. The number of such
maps is thus S(n, r)/S(n, t − i), and their proportion over all maps of kernel
G is 1/S(n, t − i). Now, making the product of the number of subspaces H of
dimension t and satisfying H ∩ F = H ∩ G = F ∩ G by the number of linear
maps l of kernel G which coincide with L on H , we see that the linear maps of
kernel G which coincide with L on a subspace of dimension m ≥ t are counted
as many as the number of subspaces of dimension t containing F ∩ G in this
subspace. This number is E(m, t)S(t, i)/S(m, i) as it can be easily checked. ��
Putting all this together, we obtain that the probability that a random F2-linear
polynomial L of degree 2D and kernel F of dimension d coincides on a subspace
of dimension t with a linear map l of rank r whose kernel has intersection of
dimension i with F is

πd,r,i(t) = pD(d)pd,r(i)pd,r,i(t)

Of course the probability in term of the sole parameter t comes by summing over
all possible values for d and i.
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1 Introducing MQ Public Key Cryptosystems

�
x = (x1, . . . , xn)

�
private: S

x′

�
private: P ′

y′

�
private: T

output y ∈ F
m �

public:
(p1, . . . , pm)

We work over a finite field F of q elements (the base
field). P ′ ∈ MQ(Fn, F

m) is a system of m quadratic
polynomials in n variables in F, called the central map
and its components central polynomials. Composition
with the affine maps S, T masks the structure of P ′

and gives the public map:

P = (p1, . . . , pm) := T ◦ P ′ ◦ S (1)

We usually write, for 1 ≤ i ≤ m, 1 ≤ j ≤ k ≤ n,

pi(x1, . . . , xn) :=
P

1≤j≤k≤n γi,j,kxjxk+
Pn

j=1 βi,jxj+αi

where αi is usually normalized to zero. The Public key
comprise the mn(n + 3)/2 coefficients γijk, βij ∈ F.

Fig. 1. Illustration of Terminology and Notation for a modern MQ-trapdoor

Multivariate Quadratic (MQ) public-key cryptography first appeared in the
English literature in the mid ’80s [FD85, IM85] as alternatives to traditional
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PKCs. A common excuse given to study them is “for ecological diversity”, in-
evitably mentioning Quantum Computers that will easily break factoring and
discrete-log-based PKCs (Shor’s algorithm [Sho97]). However, we hope to show
that there is independent interest in studying MQ PKCs below.

To construct a PKC, we need to be able to invert P ′ efficiently. A simple
method to build P ′ for consequent inversion is a basic trapdoor, which can
be combined or modified slightly to create variants. Using the terminology of
[WP05b], we have a handful of systemic ways to create new central maps, which
we call “Modifiers”, from the following four previously known basic trapdoors:

Mixed-Field (or “Big Field”): Operates over an extension field E = F
k.

MIA: Matsumoto-Imai Scheme A or C∗ ([IM85], Imai-Matsumoto).
HFE: Hidden Field Equations ([Pat96], Patarin), a generalization of MIA.

Single-Field (or “True”): Works on the individual components of x′ and y′.
UOV: Unbalanced Oil and Vinegar ([Pat97, KPG99], Patarin et al).
STS: Stepwise Triangular System (lectures in Japanese from ’85 – [TKI+86],

Tsujii; in English, [Sha93]). Generalized later to its present form [GC00,
WBP04].

Some primitives are composite, e.g., Medium Field Encryption (triangular stages
[WYHL06]) or enTTS/TRMS/Rainbow [DS05b, WHL+05, YC05] (UOV stages).

Outline. In the next section, we introduce our new trapdoor and discuss its ba-
sic properties. In particular, we show that certain instances can be inverted very
quickly. Section 3 give cryptanalytic properties of this basic trapdoor and enu-
merates possible attacks. Section 4 discusses counter-measures to these attacks,
i.e., modifiers. We give the practical instances in Section 5. These we verify to
withstand known attacks. The main text of the paper concludes with Section 6.

2 �-Invertible Cycles (�IC)

In this section, we will introduce a new basic way to construct central maps
for MQ public key cryptography that does not fit into the above taxonomy
and hence can be considered a new basic trapdoor with properties in between
that of MIA and STS. It runs much faster than MIA, and hence has practical
value especially in resource-limited environments (e.g. smart cards). Due to its
structure, we call it “�-Invertible Cycles” (�IC). We will motivate this name later.

2.1 Basic Trapdoor

A Cremona Transformation is a map on the projective plane that is quadratic in
the homogeneous coordinates [Ful89]. A standard example is the map (A1, A2, A3)
→ (A2A3, A3A1, A1A2) which easily checks to be well-defined. The map is
uniquely and efficiently invertible when A1A2A3 �= 0.

We extend this idea below to any integral cycle length � ≥ 2; we illustrate
with the case � = 3 since (unfortunately) the case � = 2 is a bit more technical.
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�
�

�
�
�

�
��

�
�

�
�

�
�

��

A2 A3

A1

Aqλ2
2 A3

Aqλ1
1 A2 Aqλ3

3 A1

Fig. 2. Graphical Representation of 3-Invertible Cycles

Note that we write N for the non-negative integers, i.e., we have N := Z
+∪{0}.

To express properly the successor in {1, . . . , �} we define

μ : {1, . . . , �} → {1, . . . , �} : μ(i) :=
{

1 for i = �
i + 1 otherwise (2)

Definition 1. Fix an integer � ≥ 2 as the length of the cycle. Let F be the base
field with q := |F| elements and E :=GF(qk) its kth-degree extension for some
k ∈ Z

+. Computations in E are modulo the irreducible polynomial π(t) ∈ F[t].
We denote Q := |E| = qk and have m = n = �k for the number of variables and
equations over the ground field F, respectively. In addition, let S, T ∈ Aff−1(Fn)
be two invertible affine mappings and the vector Λ := (λ1, . . . , λ�) ∈ {0, . . . , k −
1}�. We now have the following mapping:

P : E
� → E

� : (A1, . . . , A�) → (Aqλ1

1 A2, . . . , A
qλ�−1

�−1 A�, A
qλ�

� A1) (3)

Identifying the corresponding coefficients in the vector spaces F
n and E

�, we get
a canonical bijection

φ : F
n → E

� : (x1, . . . , xn) → (x′
1 + x′

2t + . . . x′
ktk−1, . . . , x′

n−k+1 + x′
n−k+2t + x′

ntk−1)
(4)

and its inverse φ−1. The public key is computed as the composition

P : F
n → F

m : P := T ◦ φ−1 ◦ P ◦ φ ◦ S . (5)

We then call such a Multivariate Quadratic public key system of the �IC-type.

The name “invertible cycle” is due to that the variables A1, . . . , A� can be drawn
in the form of a cycle (cf. Fig. 2 for � = 3). The variables A1,A2,A3 are the
nodes while each edge stands for a product Aqλi

i Aμ(i) with i = 1, 2, 3.
Note that the use of the canonical bijection φ is similar for the Matsumoto-

Imai Scheme A (MIA) and Hidden Field Equations (HFE). However, we have
� = 1 here, and also a different form of the central mapping P ∈ E[X ]. In the
sequel, we denote the output of P by B1, . . . , B�, where

B1 := Aqλ1

1 A2, . . . , B�−1 := Aqλ�−1

�−1 A�, B� := Aqλ�

� A1
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Remark 1. The mapping Aqλi

i is linear over the ground field F. Hence, the central
equation P can be expressed as quadratic polynomials over F.

Remark 2. Replacing Aqλi

i Aμ(i) by Aqλi

i Aqκi

μ(i) for 1 ≤ i ≤ � and some κi ∈ N

does not increase the security of �IC: we can always reduce the second expres-
sion to Aqλi−κi (mod k)

i Aμ(i) by using Frobenius transformations. In a nutshell,
we exploit that Frobenius transformations are invertible linear mappings over
the vector spaces F

n and F
k, respectively, and can hence be “absorbed” into the

mappings S, T ∈ Aff−1(Fn). For Multivariate Quadratic systems, this idea has
been introduced under the name Frobenius sustainers [WP05a].

2.2 Singularities

To use �IC in as an encryption or as a signature scheme, we need to invert the
central map P , i.e., we need to find a solution (A1, . . . , A�) ∈ E

� for given input
(B1, . . . , B�) ∈ E

�. Unfortunately, this is not possible in all cases; due to its form
�IC has the following singularities:

{ (A1, . . . , A�) ∈ E
� | A1 = 0 ∨ . . . ∨ A� = 0}

Having Q := |E| and exploiting that Q in comparison with � is usually “big”
for practical and secure schemes we can approximate the probability that a
singularity occurs by (

�∑

i=1

(Q − 1)�−1

)

/Q� ≈ �

Q

In the Matsumoto-Imai Scheme A, we do not have this problem as MIA forms
a bijection. In comparison, Hidden Field Equations does not allow to compute
an inverse in about 40% of all cases for a practical choice of parameters [Pat96,
CGP01, WP04]. Our new trapdoor �IC is hence between these two extreme cases.
Practical values for Q will be discussed in Sec. 5.

2.3 Inversion

As we have as many free variables Ai as conditions Bi for 1 ≤ i ≤ �, we may
expect one solution on average when inverting P . Alas, this is not always true,
as shown by the obvious counterexample:

(B1, B2) := P (A1, A2) := (A1A2, A2A1) ∈ E
2.

So some instances of �IC that cannot be inverted usefully. For practical use, we
construct below a sequence of specific �IC instances which allows easy inversion.

Lemma 1. For a fixed � ≥ 2, let our �IC central map P : (A1, . . . , A�) �→
(B1, . . . , B�) be

B1 :=
{

A1A2 for � odd and
Aq

1A2 for � even , Bi := AiAμ(i) for 2 ≤ i ≤ � .
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Then the inverse image of (B1 . . . B�), where Bi ∈ E
∗ := E\{0}, ∀i is given by

A1 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
�(�−1)/2

i=0 B2i+1
�(�−1)/2

i=1 B2i

for � odd and

q−1

√
��/2−1

i=0 B2i+1
��/2

i=1 B2i

for � even

Ai :=
Bi

Aμ(i)
for i = 2, . . . , �.

Proof. Case � = 3: We have B1 := A1A2, B2 := A2A3, B3 := A3A1. Simple
computations yield A1 :=

√
B1B3/B2, A3 := B3/A1, A2 := B2/A3.

Case � odd, � > 3: We use induction to extend the result from � = 3 to all odd
� > 3. Therefore we observe that the structure of the central mapping P
allows us to write equations of the form Ai = Aμ(μ(i))

Bi

Bi+1
for 1 < i < � by

eliminating the variable Aμ(i). Hence, the fraction Bi

Bi+1
can be inserted in

the inversion formula for A1 in the case (� − 2).
Case � even: The proof for this case is analogous. We start our induction

with � = 2 and have B1 := Aq
1A2, B2 := A2A1 and its inverse A1 :=

q−1
√

B1/B2, A2 := B2/A1.

Bijectivity. For � odd or F of characteristic 2, the above mapping is a bijection
in (E∗)�. For � even, the situation is more difficult as (q − 1) | (qa − 1) for any
a ∈ Z

+, and we loose bijectivity for any q > 2. However, for q = 2, we obtain a
bijection. Moreover, inversion now only costs two divisions in the extension field
E and we need not solve any nontrivial equations.

Special instances. When � = 2 we say it is a Binary Invertible Cycle (2IC) and
when � = 3 a Delta Invertible Cycle (3IC) (see Fig. 2).

3 Cryptanalytic Properties of �IC

We herein discuss some basic cryptanalytic properties of the new trapdoor. This
serves a dual purpose: We find an easy cryptanalysis for �IC in its basic form.
Simultaneously, we effectively put �IC through the same screening process as
other MQ trapdoors, particularly Matsumoto Imai Scheme A. This points us
toward ways to build practical, more resilient �IC-based schemes.

One attack is left to a later section because we only heard of it succeeding,
and do not even have any details.

3.1 Patarin Relations

We start with an extension of the Patarin relations used to cryptanalyse MIA
[Pat95]. This was used by Fouque, Granboulan, and Stern to cryptanalyse the
internally perturbed MIA encryption scheme (PMI/MIAi) [FGS05]. As is more
customarily employed against symmetric cryptosystems, we examine this multi-
variate differential :

P (A1, . . . , A�) − P (A1 − δ1, . . . , A� − δ�) + P (δ1, . . . , δ�)

= (Aqλ1

1 δ2 + A2δ
qλ1

1 , . . . , Aqλ�

� δ1 + A1δ
qλ�

� )
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We observe that the above equations are linear in the unknowns Ai ∈ E for any
given values δi ∈ E and 1 ≤ i ≤ �. Now we simply pick δi at random and compute
many differentials of the public key. Soon we recover enough linear relations to
invert the public map. This effectively finds an equivalent private key. It may be
estimated that the number of linearization equations for F = GF(2) is 4�, which
we do not have space to describe here.

This resembles MIA and HFE in that the Patarin attack is very efficient
against the former, and an extended version of the attack defeats the latter if
bijective central maps are used [Pat95, Pat96].

3.2 Rank Attacks

In a rank attack, the quadratic parts central and public polynomials of a given
Multivariate Quadratic public key system are written as symmetric matri-
ces. We try to recover the private key by finding linear combinations of the
public matrices with certain specific ranks. Their initial cryptographical use
was by Coppersmith-Stern-Vaudenay to break Birational Permutations [CSV93].
Goubin and Courtois [GC00] have the most straightforward exposition of rank
attacks. Later extensions and analysis can be seen in [WBP04, YC05].

There are two distinct types: In one the cryptanalyst randomly tries to hit
kernel vectors of a linear combination of the public matrices with the lowest
rank R. The running time is proportional to qR�m/n�. In the other random linear
combinations are taken, hoping to locate a precipitous fall in rank. This takes
time ∝ qu, where u counts the central equations whose coefficients must vanish.

For �IC, we want to write matrices in blocks corresponding to pairs of variables
in the larger field E. Express central matrices as H1, . . . , H� ∈ E

�×� and their
E-blocks as ηi,j,k ∈ E for 1 ≤ i, j, k ≤ �.

ηi,j,k :=

⎧
⎨

⎩

Mλi if i = j, k = μ(i),
MT

λi
if i = k, j = μ(i),

0 otherwise,

where Mr is the matrix in F
k×k that correspond to the Frobenius map A �→ Aqr

.
Note that these matrices are symmetric. In the case of 3IC, i.e., � = 3, they
effectively specialize to

H1 :=

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , H2 :=

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , H3 :=

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ .

All these matrices have essentially rank 2 over the extension field E. For the
actual attack, we would need to transfer M ∈ E

�×� to F
n×n. However the overall

attack complexity is not affected by this change of vector space. Just as in other
schemes using extension fields (e.g. cf. Medium Field Encryption [WYHL06]),
when performed in F we have a rank of 2k for all these matrices. We may see
that the running time of the both the above algorithms are Q2 = q2k times some
polynomial factor in n and m, which is cubic in the practical range.
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Note that there are instances in which one or the other rank attack simply
fails to work. One example is the case of 2IC, i.e., for � = 2. Here rank attacks
will not apply as any nontrivial linear combination of the private polynomials
(matrices) has the maximum rank n = 2k. The above discussion of rank attacks
are in line with results of tests on �IC and modified �IC schemes with blocks of
24 and 32 bits (which are admittedly very small).

3.3 Gröbner Basis Computations

Another important type of attack are Gröbner attacks as in the cryptanalysis
of HFE [FJ03]. The most powerful algorithms known are of the Faugère-Lazard
type. These essentially run eliminations on an extended Macaulay matrix, and
include F4/F5 and what is known as XL [CKPS00, Fau99, Fau02] plus variations.

We know from the cryptanalysis of MIA and HFE that their easy algebraic
structure leads to a low running time of the corresponding Gröbner bases al-
gorithm. Due to the very easy structure of �IC, we expect a similar behaviour
here. This is in line small scale experiments using Magma [MAG], so we must
disrupt the regular structure. In general, when the structure of the system is
sufficiently perturbed, the behavior is as in generic systems studied by Bardet,
Faugère et al [BFS04, BFSY05, YC04b, YC04a]. E.g., we tested 3IC– systems
with MAGMA v2.12-8 on a 2GB machine using E = (GF(256))4 or (GF(256))5.
If we removed at least least two components, the resulting system resolved in
exactly the amount of time as a generic one (including segfaulting on 13-variable
systems). With only one component removed, it resolved nearly instantly.

3.4 Separation of Oil and Vinegar

In the original 3IC, we see that variables corresponding to the components of
A1 are only multiplied with those of A2 and A3. This makes for a UOV type
of attack [KPG99] which has a complexity roughly proportional to n4qd, where
d is the difference between the size of the oil and vinegar sets. We can proceed
similarly for other choices of �. We see that the UOV attack has time complexity
∼ Q for odd � and very small complexity for even �. Since the minus modifier
does not change the complexity of the UOV attack, 3IC– as a signature scheme
is ok if we use large enough Q. The plus modifier disrupts the UOV attack so
the 2ICi+ that we will investigate later is not susceptible.

3.5 Further Attacks

There is a special attack from Felke [Fel04] to defeat the technique called “branch-
ing” as used in the original C∗. We have investigated this matter and concluded
that the attacks against branching do not apply against �IC.

A different class from XL are algorithms from [CGMT02] which deal with
the case n � m. As we usually have m = n, or n ≈ m for the embedding
modification (cf Sec. 4.3), these algorithms are not applicable to our setting.
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4 Modified Versions

Due to the effectiveness of the attacks considered above, we need to apply mod-
ifiers [WP05b, Sec. 4] to the basic trapdoor to obtain secure schemes. This is
the same situation as for MIA and HFE. To the best of our knowledge every
published attack against a system of this type is covered by this paper.

4.1 �-Invertible Cycles Minus (�IC-)

The first modification is the so-called “minus” modification. Here, Let R be the
projection from F

n �→ F
m that simply discards the final parameters. r := n − m

as “reduction parameter”. The public key is now P := R ◦ T ◦φ−1 ◦P ◦φ ◦S . In
contrast to (5), we have inserted the reduction R after the affine transformation
T . When inverting �IC, we assign random values to these missing r coordinates
over F. Hence, we have qr possible inputs for each message y ∈ F

m.
As for MIA and HFE, the minus modifier increases the complexity of the

Patarin attack (Sec. 3.1) by a factor of qr, since instead of one possible solution,
the attacker is now faced with an r-dimensional vector space over F of possi-
ble solutions. To our current knowledge, picking the right one requires brute
force and hence at least qr operations. In addition, the attack complexity of the
Faugère-Joux attack [FJ03] also increases by at least qr.

Like with MIA, we cannot use �IC- for encryption, only for signature schemes:
as there are r equations missing, the legitimate user must work equally hard
to recover the correct solution x ∈ F

n. As our security assumption is that qr

computations are not possible, we reached a contradiction if we assume that
the legitimate user can obtain the message x while the attacker cannot. As for
Stepwise-Triangular, rank attacks are unaffected by the minus modification.

4.2 �-Invertible Cycles Internally Perturbed Plus (�ICi+)

The generic plus modifier adds a ∈ Z
+ random equations in n input variables

each to the private key. This is applicable to encryption only, as the extra equa-
tions (without trapdoor) slow down signature generation by qa — it takes that
many tries to find one output of the �IC mapping P to meet those conditions.

Patarin relations and Gröbner attacks are not affected by the plus modifi-
cation. However, it is still useful to build an encryption scheme. In the case of
MIA because the “plus” helps to overcome some attacks against the internally
perturbated modification. Here, it also prevents a UOV attack.

Internal perturbation has been introduced for MIA and HFE as PMI (“Per-
turbated Matsumoto-Imai”) and ipHFE respectively [Din04, DS05a]. We can
also call them MIAi and HFEi. As PMI/MIAi has been broken in [FGS05], a
new variant PMI+/MIAi+ has been proposed [DG06]. Due to space limitations
we do not go into details, but we believe PMI+ unaffected by the attack from
[FGS05]. Hence, combining the two modifications internal perturbation and plus
allows the construction of an efficient encryption scheme. However, the central
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mapping P ′ and all its components need to have full rank. In our setting, this
means that we cannot use any other cycle length but � = 2, i.e., 2IC.

After talking about the impact of the internal perturbation modification, we
now properly introduce it: Let w ∈ Z

+ for w < n be the perturbation dimension,
P i ∈R MQ(Fw, Fn) a uniformly randomly chosen system in w input variables
and n equations, and Si ∈ Aff−1(Fn, Fw) the so-called “perturbation space”. Note
that the perturbation space has the same input variables x1, . . . , xn as the affine
transformation S ∈ Aff−1(Fn). However, it has only dimension w. Hence we can
write (z′1, . . . , z

′
w) := Si(x1, . . . , xn) for the perturbation variables z′1, . . . , z

′
w. As

for the plus modification, we denote with P∗ := φ−1 ◦ P ◦ φ the �IC mapping
over the ground field F.

The public key for �ICi is now composed as

P := T ◦ [(P∗ ◦ S) + (P i ◦ Si)] ,

i.e., we add the perturbation polynomials to the original �IC-polynomials. To
invert this modified trapdoor, i.e., to compute x ∈ F

n for given y ∈ F
m, we need

to guess correctly the values of the perturbation variables (z′1, . . . , z
′
w) ∈ F

w —
which translates to a workload proportional to qw. As the number of equations
and the number of variables matches, we expect one solution on average for any
given input y ∈ F

m. However, when used as an encryption scheme, there is at
least one valid output x ∈ F

n. We know that the i modifier by itself is not
secure, and it must be combined with the + modifier as shown by the Fouque-
Granboulan-Stern differential attack [FGS05].

4.3 �-Invertible Cycles Embedded (�IC↗) Without Singularities

Here we introduce the new modifier embedding (↗), motivated by the practical
need to avoid singularities in trapdoors of the �IC-type.

With the minus modification, singularities are of no concern: they are too
few and we can always change the input in the missing equations to obtain a
possible signature. However, when �IC is used in the context of an encryption
scheme, its singularities pose a problem as they lead to decryption failures. The
modification described in this section can also be used in other schemes which
suffer from a decryption failure such as [WYHL06]. In fact, it is a new generic
modifier and can be used in any Multivariate Quadratic construction.

For our new embedding modifier we embedding the following translation from
F

k−1 → F
k that takes (x1, . . . , xk−1) to (x1, . . . , xk−1, 1). In effect, we have

eliminated the zero-point from the vector space F
k. As we used the canonical

bijection φ between the vector space F
k and the extension field E, the zero of

E cannot be reached anymore for any given input (x1, . . . , xk−1) ∈ F. The price
we pay are fewer input variables, i.e., we now obtain an overdetermined system
of polynomials. We can do the same to all � variables A1, . . . , A� ∈ E. Calling
the corresponding transformation ν : F

n → F
n−� and setting k := (n − �)/� for

k ∈ N we obtain the following construction for the public key

P = T ◦ φ−1 ◦ P ◦ ν ◦ S . (6)
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To do signing, the “inverse” transformation ν−1 : (y1, . . . , yk−1, 1) → (y1, . . . , yk−1)
needs to be inserted between the affine transformation T and the �IC mapping P .
To the same effect, we could have used the construction of (6). However, this would
have slowed down signature generation by a factor of q� as we have � additional
equations over F to satisfy for any given input B1, . . . , B� ∈ E.

5 Practical Instances

We use the previous section to develop practical instances of �IC. Main purpose
is to see how variations on �IC scales up for different security levels.

5.1 Signature

To obtain a secure signature scheme, we use �IC–, in particular 3IC–, as this
seems the most suitable modification for our purpose. In particular, the secu-
rity of the minus modification is well understood; we are therefore able to give
instances of �IC– for several security levels. Different choice of parameters are
possible, 3IC– with q = 256 seems most suitable(cf. Sec. 3), and still allows
efficient implementation on 8-bit microprocessors which are still dominant in
low-end smart cards. We summarize optimal choices in Table 1. Preliminary
tests show that �IC- is orders of magnitude faster than MIA-; further data will
be posted if we can avoid the differential attack on �IC-.

Table 1. �IC- over GF(256) with Different Security Levels for Signing

Claimed Input Output Parameters Attack Complexity Key Size [kBytes]
Security [bits] [bits] n m � k r Gröbner Rank/UOV Public Private

280 160 240 30 20 3 10 20 280 285 9.92 1.86
296 192 288 36 24 3 12 24 296 2104 16.8 2.59

2128 256 384 48 32 3 16 32 2130 2137 39.20 4.70

5.2 More on Differential Attacks

[FGS05] was a differential attack in the classical sense – take differentials and try
to find a distinguisher. It was announced at the rump session of Asiacrypt 2006
that SFLASH (MIA-) was finally broken on the extension of such an attack. This
is so far an unpublished attack, because the details are very sketchy. However,
due to the extreme similarity between MIA and �IC, if SFLASH (MIA-) cannot
be patched, �IC- will likely suffer the same fate, so now we do not recommend
�IC- unless this can be circumvented.

5.3 Encryption

We base our proposed encryption scheme on 2ICi+↗, i.e., 2-Invertible Cycles
with internal perturbation, added equations, and embedding (to avoid decryption
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errors). With this choice of scheme, we suggest the following parameters: q =
2, n = 132, m = 146, � = 2, k = 67, w = 6, a = 12. This leads to a public
key of 160.2 kBytes and a private key of 5.7 kBytes, respectively. The claimed
security level is 280. Our choice of parameters is based on [DG06]. Due to space
limitations in this paper we do not repeat their arguments but point to [DG06].
However, we want to stress that at present, our understanding of the security
of the internal perturbation modification is limited although there some results
on Gröbner bases in [DGS+05]. This means in particular that we do not have
precise security estimations for higher security levels.

5.4 Implementation and Speed

A good overview on implementing finite field operations can be found in [LD00].
Computing direct division in finite fields is given in [FW02]. Counting operations
for the inversion formula in Lemma 1 over E =GF(qk), we see that we need �
divisions, (� − 2) multiplications, and one root. Note that the operations do not
take place in a big field GF(qn) but in a much smaller extension field GF(qk). It
is difficult to give a closed formula for the speed of basic arithmetic operations as
they largely depend on the model used, e.g., hardware vs. software, operations
on bits vs. operations on processor words. Nevertheless, when counting our costs
in operations in the ground field F, we can roughly say that we have O(a2)
for squaring/multiplying and O(a3) for division/exponentiation. Here we have
l ∈ Z

+ the extension degree of the corresponding field E = GF(qa) over the
ground field F = GF(q). We have to keep this in mind when comparing �IC with
the other two mixed field schemes MIA and HFE.

Comparison with MIA and HFE. Inverting the mixed field scheme MIA costs
one exponentiation with large exponent [CGP02]. In a nutshell, this translates to
n squaring operations and 1/2n multiplications in GF(qn). Therefore, we obtain
an overall workload of O(n3). Tricks to speed this operation up can be found in
[ACDG03]. In the case of HFE, the situation is even worse as we need to execute
a complete root finding algorithm to invert the central mapping [CGP01]. Its
running time is estimated to be in O(n3d2 + n2d3) for d the total degree of the
central mapping [Pat96]. In practice, we have d = 129, . . . , 257.

We can summarize our results for the three maps MIA, HFE, and �IC as
follows: the first needs O(n3) operations in the ground field F for n the extension
degree as it needs to compute Y h for given Y ∈ GF(qn) and h ∈ Z

+, i.e.,
an exponentiation. The second needs to solve a univariate polynomial equation
P (X) = Y for P being a polynomial of fixed degree d ∈ Z

+. The corresponding
running time is about O(n3d2 + n2d3) operations in the ground field F. Finally,
�IC needs O(�k3 + �k2) operations over the ground field F.

A choice for MIA is SFLASHv2 with q = 128, n = 37 [CGP02]. For HFE, we
have q = 2, n = 103 in Quartz [CGP01]. Choices for �IC are given in Sec. 5.3
and Table 1, respectively. Both trapdoors have a claimed security level of 280

3DES computations as required in NESSIE [NES]. Note that Quartz uses the
underlying trapdoor four times to achieve very short signatures of 128 bit. This



�-Invertible Cycles for MQ Public Key Cryptography 277

special construction is called a “Chained Patarin Construction” (CPC). We sum-
marize our comparison in Table 2. Preliminary runs to sign with m = 24, n = 36
matches the speed enTTS [YC05] which means it is much faster than SFLASH.

Further Speed up. �IC is amenable to parallelizing on multiple arithmetic units.

�IC i+ implementations. We compare simple runs of �IC i+ on a 10MHz 8052
simulator with q = 2, n = 134, m = 146, � = 2, k = 67, w = 6, a = 12 (public key
160.2 kBytes, private key 5.7 kBytes), and per transmission time 1.4 seconds.
Our PMI+ program has n = 84, m = 96, q = 2, and a transmission time of 2.5
seconds per block. �IC i+ is clearly quite a bit faster.

6 Conclusions

In this article, we have constructed a new basic Multivariate Quadratic trapdoor
called �-invertible cycles (�IC). It is the first time since nearly a decade that a
basic trapdoor has been found. The main motivation for this new trapdoor is
speed: instead of computing operations in the big finite field E = GF(qn) for
q := |F| and n the number of variables, we compute in the much smaller extension
field E = GF(qk) for n = �k for some cycle length �. Typical choices of � are 2
and 3. Depending on the architecture, finite field arithmetic costs up to O(n3).
Hence, decreasing the size of the extension field E results in a significant speed-
up in practice. In particular, our implementation is expected to outperform the
previously fastest trapdoor Matsumoto-Imai Scheme A (MIA). In addition, we
have formally introduced the new embedding modifier (↗). It is motivated by
the practical need to achieve �IC-type schemes without decryption failure. Apart
from �IC, constructions like [WYHL06] suffer from this problem.

Table 2 shows the different complexities, parameters and public key sizes for
trapdoors of the mixed field types with a claimed security level of 280. Unfor-
tunately, we do not have exact estimations on their inherent complexity but
asymptotic ones. Nevertheless, we see that �IC for a similar security level is ex-
pected to perform significantly better than the two other basic trapdoors HFE
(using parameters from Quartz) and MIA (parameters from SFLASHv2). Apart
from this, we have shown that �IC can be used both in signature schemes of
various security levels as well as in an encryption scheme. We want to stress

Table 2. Mixed Field Trapdoors with Claimed Security Level 280

Complexity to Key Size [kBytes]
Trapdoor Invert Trapdoor Parameters Public Private

HFE (Quartz) O(n3d2 + n2d3) q = 2, n = 103, d = 129 71 3
MIA (Sflash) O(n3) q = 128 n = 37 15.4 2.45

�IC, � = 3 O(�k3 + �k2) q = 256, k = 10 9.92 1.86
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here that trapdoors from the single field class, i.e., Unbalanced Oil and Vine-
gar (UOV) and Stepwise-Triangular Schemes (STS) do not allow constructions
leading to encryption schemes.

So as an overall conclusion, we have presented a new trapdoor which is both
interesting from a theoretical point of view and also has advantages over previ-
ously known schemes. At present we have to leave it as an open question exactly
which forms of �IC than these given in Lemma 1 allow efficient inversion.

We stress that it is still an original sin that no list of possible attacks can be
exhaustive. Multivariate Quadratic schemes are still in need of some provable
security results. But we hope to have shown that the variety available in the
genre keeps it in play and interesting.
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Abstract. We propose a practical key encapsulation mechanism with a
simple and intuitive design concept. Security against chosen-ciphertext
attacks can be proved in the standard model under a new assumption, the
Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction
is tight and simple.

Secure key encapsulation, combined with an appropriately secure sym-
metric encryption scheme, yields a hybrid public-key encryption scheme
which is secure against chosen-ciphertext attacks. The implied encryp-
tion scheme is very efficient: compared to the previously most efficient
scheme by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter
ciphertexts, between 25-50% shorter public/secret keys, and it is slightly
more efficient in terms of encryption/decryption speed. Furthermore, our
scheme enjoys (the option of) public verifiability of the ciphertexts and
it inherits all practical advantages of secure hybrid encryption.

1 Introduction

One of the main fields of interest in cryptography is the design and the analysis
of the security of encryption schemes in the public-key setting (PKE schemes).
In this work our goal is to provide schemes for which we can provide theoretical
proofs of security (without relying on heuristics such as the random oracle), but
which are also efficient and practical.

Key Encapsulation. Instead of providing the full functionality of a public-key
encryption scheme, in many applications it is sufficient to let sender and receiver
agree on a common random session key. This can be accomplished with a key
encapsulation mechanism (KEM) as formalized by Cramer and Shoup [11]. In
this protocol a sender (knowing the receivers public key) runs an encapsula-
tion algorithm to produce a random session key together with a corresponding
ciphertext. This ciphertext is sent (over a potentially insecure channel) to the
receiver, who (using his secret key) can uniquely reconstruct the session key us-
ing a decapsulation algorithm. In the end both parties share a common random
session key. A strong notion of security (security against chosen-ciphertext at-
tacks [23]) requires that, roughly, not even an active eavesdropper (interacting
with a decapsulation oracle that allows him to obtain session keys corresponding
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to ciphertexts of his choosing) can learn any information about the random ses-
sion key corresponding to a given ciphertext. After the execution of the protocol
the random session key may now be used for arbitrary symmetric-key operations
such as a symmetric encryption scheme. If both, the KEM and the symmetric
primitive, are secure against chosen-ciphertext attacks then composition theo-
rems are used to obtain the same security guarantees for the hybrid encryption
protocol.

In this work we are interested in designing key encapsulation mechanisms that
are both efficient and provably secure with respect to a reasonable intractabil-
ity assumption. To motivate our approach we start with some history on key
encapsulation.

Diffie-Hellman Key Encapsulation. In the Diffie-Hellman key encapsula-
tion mechanism [12] the receiver’s public key consists of the group element gx

(we assume a commutative cyclic group of prime order and generator g to be
given), the secret key of the random index x. Key encapsulation is done by com-
puting the ciphertext as gy for random y; the corresponding session key is the
group element gxy = (gx)y (and therefore called Diffie-Hellman Key). This key
is recovered from the ciphertext by the possessor of the secret key x by comput-
ing gxy as (gy)x. In practice one mostly requires the session key to be a binary
string rather of fixed length than a group element. This is overcome by feeding
the Diffie-Hellman key gxy to a hash function H with binary image to obtain
a session key H(gxy). This simple key encapsulation scheme can be proved se-
cure against chosen-plaintext attacks under the Hashed Diffie-Hellman (HDH)
assumption, as formalized in [1]. The HDH assumption (relative to a hash func-
tion H) states, roughly, that the two distributions (gx, gy, H(gxy)) and (gx, gy, R)
for random indices x, y and a random bit-string R (of appropriate length) are
computational indistinguishable. Under the HDH assumption, Hashed Diffie-
Hellman can be proven secure against chosen-plaintext attacks (IND-CPA).

For various reasons, the stronger notion of chosen-ciphertext (IND-CCA) se-
curity [23] has emerged as the “right” notion of security for key encapsulation
and encryption. Hashed Diffie-Hellman will be our starting point and the goal
will be to modify the scheme in order to obtain security against chosen-ciphertext
attacks under a reasonable intractability assumption.

Our Construction. We modify the Hashed Diffie-Hellman key encapsulation
in order to obtain a KEM that is provably secure against chosen-ciphertext at-
tacks under the Gap Hashed Diffie-Hellman assumption (to be introduced later).
Our main idea is to add some redundant information to the ciphertext of the
Hashed Diffie-Hellman key encapsulation. This information is used to check if
a given ciphertext was properly generated by the encapsulation algorithm (and
hence is “consistent”); if the ciphertext is consistent then decapsulation returns
the session key, otherwise it simply rejects. Our scheme’s security relies on the
Gap Hashed Diffie-Hellman (GHDH) assumption which states that, roughly, the
two distributions (gx, gy, H(gxy)) and (gx, gy, R) are hard to distinguish even rel-
ative to a “Diffie-Hellman oracle” that efficiently distinguishes (gx, gy, gxy) from
(gx, gy, gz). Here the term “gap” stems from the fact that there is a gap between
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the Decisional and the Computational version of the Diffie-Hellman problem: the
computational problem is hard to solve even though the corresponding decisional
problem is easy.

Main Results. Our main result shows that our key encapsulation mechanism is
secure against chosen-ciphertext attacks assuming the GHDH assumption holds.
The scheme has very short ciphertexts (2 groups elements or approximately 512
bits for 128 bits security) and its security reduction is tight. When our scheme
gets instantiated in gap-groups [20] a given ciphertext can get checked for consis-
tency solely based on the knowledge of the public key. This feature (sometimes
called “public verifiability of the ciphertext”) has proved very useful, e.g. for
building a chosen-ciphertext secure threshold encapsulation scheme [9]. Further-
more, we show that our framework extends to building KEMs based on the Gap
Hashed Multi Diffie-Hellman (GHMDH) assumption, a natural generalization of
GHDH with potentially stronger security properties. The GHMDH assumption
states that given many independent Diffie-Hellman instances (gi, hi, g

ri

i )1≤i≤�,
evaluating the �2 possible (hidden) Diffie-Hellman keys (hi)rj (1 ≤ i, j ≤ �) on a
fixed public predicate H : G

�×� → G yields an element that is indistinguishable
from a random one, even relative to a DDH oracle. The GHMDH assumption
in particular includes (a paring-free variant of) the Gap Linear Diffie-Hellman
(GLDH) assumption [6].

Related Work. Cramer and Shoup [10,11] proposed the first practical public-
key encryption scheme in the standard model. More recently, Kurosawa and
Desmedt came up with a direct hybrid encryption scheme [19] improving the
performance of the original CS scheme both in computational efficiency and in
ciphertext length. In their hybrid construction the symmetric scheme has to be
secure in the sense of authenticated encryption [2] which is a strictly stronger
security requirement than in the standard KEM/DEM hybrid paradigm [11],
and in particular it necessarily adds 128 bits of redundancy to the symmetric
ciphertext. The KD-KEM (i.e. the KEM part of the Kurosawa Desmedt hybrid
encryption scheme) is similar to our KEM construction. In fact, the KD-KEM
can be obtained from our KEM by (roughly) switching the symmetric key with
one element from the ciphertext. Our scheme can be proved chosen-ciphertext
secure whereas there exists a simple chosen-ciphertext attack against the KD-
KEM [14]. We think that this is really a surprising fact since a small difference
in the constellation of the ciphertexts seems to turn the scale when it comes to
security of the two schemes.

An alternative group of schemes (“IBE-based schemes”) is based on recent
results [7,16] observing that identity-based encryption (IBE) implies chosen-
ciphertext secure encryption. The recent approach taken by Boyen, Mei, and
Waters [9] was to improve efficiency of one particular instantiation [5] (based on
the BDH assumption) obtained by the above IBE transformation. Similar re-
sults were also obtained independently by Kiltz [16]. All the encryption schemes
constructed this way, however, so far remained less efficient than the reference
scheme from Kurosawa-Desmedt. Our KEM constructions based on GHDH and
GHMDH are related (and generalize) the KEMs obtained in [9,16] and therefore
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fits best into the latter class of IBE-based [7,16] schemes (even though they are
not derived from any IBE scheme).

Discussion and Comparison. Our porposed hybrid PKE scheme based on
GHDH is more efficient than the “reference scheme” by Kurosawa and
Desmedt [19]: it has “one MAC” shorter ciphertexts (by combining it with
redundancy-free symmetric encryption [21]), between 25-50% shorter public/
secret keys, and it is slightly more efficient in terms of encryption/decryption.
However, an arguable disadvantage of our scheme is that security can only be
proven on the new GHDH assumption, whereas security of the KD scheme prov-
ably relies on the well-established and purely algebraic DDH assumption. An
extensive comparison with all known KEM/PKE schemes in the standard model
is done in Table 1 (Section 5).

Recent Results. Recently, building on this work, Hofheinz and Kiltz [15]
combined a variation of our scheme with symmetric authenticated encryption
(and hence adding 128 bits redundancy to the ciphertexts) to obtain public-key
encryption secure under the DDH assumption. Their technique also extends to
the more general class of (Hashed) Multi Diffie-Hellman assumptions which can
be seen as the “DDH-oracle free” variant of HGMDH.

Full Version. A full version of this extended abstract is available on the
Cryptology ePrint archive [18].

2 Public Key Encapsulation Mechanisms

A public-key encapsulation (KEM) scheme KEM = (Kg, Enc, Dec) with key-
space KeySp(k) consists of three polynomial-time algorithms. Via (pk , sk) $←
Kg(1k ) the randomized key-generation algorithm produces keys for security pa-
rameter k ∈ N; via (K,C ) $← Enc(1k , pk ) a key K ∈ KeySp(k) together with
a ciphertext C is created; via K ← Dec(sk ,C ) the possessor of secret key sk
decrypts ciphertext C to get back a key. For consistency, we require that for all
k ∈ N, and all (K,C ) $← Enc(1k , pk ) we have Pr [ Dec(C ) = K ] = 1, where the
probability is taken over the choice of (pk , sk) $← Kg(1k ), and the coins of all the
algorithms in the expression above.

We require the KEM to be secure against chosen-ciphertext attacks. Formally,
we associate to an adversary A the following experiment:

Experiment Expkem-cca
KEM ,A (k)

(pk , sk) $← Kg(1k) ; K∗
0

$← KeySp(k) ; (K∗
1 ,C ∗) $← Enc(pk )

δ
$← {0, 1} ; δ′ $← ADecO(sk ,·)(pk , K∗

δ ,C ∗)
If δ �= δ′ then return 0 else return 1

where the oracle DecO(sk , ·) queried on C returns K ← Dec(sk ,C ) with the
restriction that A is not allowed to query DecO(sk , ·) on the target ciphertext
C ∗. We define the advantage of A in the left experiment as
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Advkem-cca
KEM ,A (k) =

∣
∣
∣∣Pr

[
Expkem-cca

KEM ,A (k) = 1
]

− 1
2

∣
∣
∣∣ .

A key encapsulation mechanism KEM is said to be indistinguishable against
chosen-ciphertext attacks (IND-CCA) if the advantage function Advkem-cca

KEM ,A (k)
is a negligible function in k for all polynomial-time adversaries A.

Note that in contrast to the original definition given by Cramer and Shoup [11]
we consider a simplified (but equivalent) security experiment without a “find-
stage”.

3 Complexity Assumptions

3.1 Standard Diffie-Hellman Assumptions

We first start with the following well known standard assumptions which we
review for completeness. The Computational Diffie-Hellman assumption (CDH)
states, that given the input (g, gx, gy) where x, y are drawn at random from Zp

(g is a generator of a group G of prime order p), it should be computationally in-
feasible to compute gxy. However, under the CDH assumption it might be as well
possible to efficiently compute some information about gxy, say a single bit of the
binary representation or even all but super-logarithmically many bits. A stronger
assumption that has been gaining popularity is the Decisional Diffie-Hellman
assumption (DDH). It states, roughly, that the distributions (g, gx, gy, gxy) and
(g, gx, gy, gz) are computationally indistinguishable when x, y, z are drawn at
random from Zp. Another variant of the Diffie-Hellman assumption is the Gap
Diffie-Hellman assumption (GDH). It states that the CDH assumption is still
hard even though an adversary has additional access to an oracle that solves the
DDH problem.

3.2 The Gap Hashed Diffie-Hellman Assumption

As indicated above, semantic security requires that we will be able to get some
number of hard-core bits from the Diffie-Hellman key (i.e. bits that cannot be
distinguished from random bits). We will be using a gap-assumption relative to
a DDH oracle, so clearly we are not allowed to take the whole Diffie-Hellman
key. Our assumption is that applying a suitable hash function H (for example,
a cryptographic hash function like SHA-1) to gxy will yield such bits. The as-
sumption we make, called the Gap Hashed Diffie-Hellman assumption (GHDH)
is a “composite one”; it concerns the interaction between a hash function H and
the group G. The GHDH is an extension of the HDH assumption formalized by
Abdalla, Bellare, Rogaway [1].

Our schemes will be parameterized by a parameter generator. This is a
polynomial-time algorithm Gen that on input 1k returns the description of a
multiplicative cyclic group G of prime order p, where 2k < p < 2k+1, and a
random generator g of G. Gen furthermore outputs the description of a random
hash function H : G → {0, 1}l(k) that outputs l(k) bits for a fixed polynomial l(·).
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Throughout the paper we use HG = (G, g, p, H) as shorthand for the description
of the hash group obtained by running Gen.

The GHDH assumption relative to Gen states that the two distributions
(gx, gy, H(gxy)) and (gx, gy, R) are computationally indistinguishable when x, y
are drawn at random from Zp and R is drawn at random from {0, 1}l(k). This
assumption should hold relative to an oracle that efficiently solves the DDH prob-
lem. More formally, to an adversary B we associate the following experiment.

Experiment Expghdh
Gen,H,B(1k)

HG $← Gen(1k) ; x, y
$← Z

∗
p ; W0

$← {0, 1}l(k) ; W1 ← H(gxy)
γ

$← {0, 1} ; γ′ $← BDDHsolveG(·,·,·,·)(1k, HG , gx, gy, Wγ)
If γ �= γ′ then return 0 else return 1

Here the oracle DDHsolveG(g, ga, gb, gc) returns 1 iff ab = c mod p. We define
the advantage of B in the above experiment as

Advghdh
Gen,B(k) =

∣
∣∣
∣Pr

[
Expghdh

Gen,B(1k) = 1
]

− 1
2

∣
∣∣
∣ .

We say that the Gap Hashed Diffie-Hellman (GHDH) assumption relative to
group generator Gen holds if Advghdh

Gen,B is a negligible function in k for all
polynomial-time adversaries B.

We remark that in so called gap-groups, i.e. in groups where the Decisional
Diffie-Hellman (DDH) problem is easy on every input while the computational
Diffie-Hellman (CDH) problem CDH problem is hard [20], the GHDH assump-
tion is equivalent to the HDH assumption. A possible implementation of gap-
groups is given by the Weil/Tate bilinear pairing allowing to efficiently compute
a bilinear pairing which can be used to solve DDH [8].

At first glance one may argue that assuming the hashed key H(gxy) to be in-
distinguishable from a random string even though we can efficiently distinguish
gxy from a random group element sounds quite unreasonable and that, in a sense,
hardness falls back on “random-oracle-like” properties of the hash function. How-
ever, this intuition is not true. We can show that in generic groups [24] GHDH
holds (unconditionally) assuming the hash function H is “weakly one-way”. The
latter result basically means that the GHDH assumption depends on the hard-
ness of computing the Diffie-Hellman key plus the fact that given only H(gxy)
it is hard to recover sufficient information on the Diffie-Hellman key gxy. This
should in particular hold for cryptographic hash functions like SHA-1. Also, the
well known and often employed Bilinear Diffie-Hellman (BDH) assumption [8]
can in fact be seen as a special (algebraic) instantiation of the GHDH assump-
tion. More precisely, using the specific algebraic hash function H(X) := êZ(X),
where êZ(X) := ê(X, Z) is a bilinear mapping for fixed Z = gz (but chosen
uniformly at setup), we get H(gxy) = ê(gxy, gz) = ê(g, g)xyz and GHDH actually
gets BDH (here the output of H is a group element, not a binary string). In this
context, GHDH instantiated with a cryptographic hash function appears not to
be a less reasonable assumption than the “standard” BDH assumption.
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More details are given in the full version [18]. There we also propose various
candidates for Gen (i.e., for the prime-order group G and the hash function H)
and provide a detailed security analysis of the GHDH assumption. In practice
however, we recommend using a cryptographic hash function like MD5 or SHA-1.

4 Key Encapsulation Based on GHDH

4.1 The Key Encapsulation Mechanism

Let HG = (G, g, p, H) be random parameters obtained by running the parameter
algorithm Gen(1k), where H : G → {0, 1}l(k) is a random instance of a hash
function such that the GHDH assumptions holds relative to Gen. Let INJ : G →
Zp be an efficiently computable injective encoding.1 We build a key encapsulation
mechanism KEM = (Kg, Enc, Dec) as follows.

Kg(1k)
x, y

$← Z
∗
p

u ← gx ; v ← gy

pk ← (u, v)
sk ← (x, y)
Return (pk , sk)

Enc(pk )
r

$← Z
∗
p ; c ← gr

t ← INJ(c) ; π ← (utv)r

K ← H(ur) ∈ {0, 1}l(k)

C ← (c, π) ∈ G
2

Return (C , K)

Dec(sk ,C )
Parse C as (c, π)
t ← INJ(c)
If cxt+y �= π then ⊥
Else K ← H(cx)
Return K

Decapsulation also has to perform one subgroup-membership test, i.e. it checks if
c ∈ G, and returns ⊥ (reject) otherwise. Note that cxt+y = π then automatically
also implies π ∈ G.

Efficiency. The public key contains two group elements, the secret key of two
elements from Zp. A ciphertext C consists of two group elements, the key K is
a binary string of length l(k). Ignoring all “symmetric operations”, encapsula-
tion needs three regular exponentiations, whereas decapsulation can be carried
out in two exponentiation. Using the concept sequential/multi-exponentiations2

(see, e.g., [22,4]) a considerable (and practical) speed-up can be obtained: en-
capsulation needs two regular exponentiations (to compute c and K) plus one
multi-exponentiation (to compute π = utrvr), whereas decapsulation can be
carried out in one single sequential exponentiation (to compute cxt+y and cx).

Correctness. Fix a pair of keys (pk , sk). We call a ciphertext C = (c, π) ∈ G
2

consistent if cxt+y = π for t = INJ(c). For a correctly generated ciphertext

1 Actually, an “almost injective” encoding is sufficient for our purpose, see [9]. Most
interesting groups allow for such an encoding [11,9,13]. If such an encoding is not
available one can also use a target collission resistant hash function TCR : G → Zp,
see [18] for more details.

2 One multi-exponentiaion computes the group element gahb and one sequential ex-
ponentiation computes the two group elements ga and gb in one single step (for the
same fixed base g). Both concepts are related and (using Pippenger’s algorithm [22])
can be carried out in about (1 + 2/ log log p) log p multiplications over G [4] which
we will count as ≈ 1.2 exponentiations.
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C = (c, π) = (gr, utrvr) we have cxt+y = (gxt+y)r = (utv)r = π and hence C
is consistent. In that case decapsulation reconstructs the session key as K =
H(cx) = H((gr)x) = H(ur), as the key in encapsulation.

Public Verifiability in Gap-Groups. Let C = (c, π) ∈ G
2 be a ciphertext

with c = gr for some value r ∈ Zp. Then (g, utv = gxt+y, c = gr, π) is a Diffie-
Hellman-tuple if and only if g(xt+y)·r = π what is equivalent to cxt+y = π.
Therefore in gap-groups consistency of a ciphertext can be publicly checked
using one call to the Diffie-Hellman oracle, i.e. by verifying if DDHsolveG(g, utv =
gxt+y, c = gr, π) returns true. This property is denoted as public verifiability of
the ciphertext and it give rise to a public-key threshold KEM [9].

4.2 Security

Our main theorem can be stated as follows:

Theorem 1. Under the Gap Hashed Diffie-Hellman assumption relative to gen-
erator Gen, the key encapsulation mechanism from Section 4.1 is secure against
chosen-ciphertext attacks. In particular, for any adversary A against the KEM
running for time TimeA(k), there exist an adversary B with Advghdh

Gen,B(k) ≥
Advkem-cca

KEM ,A (k) and TimeB(k) = TimeA(k) + O(q · TimeG(k)), where q is an
upper bound on the number of decapsulation queries made by adversary A and
TimeG(k) is the time for a standard operation in G.

We want to stress that the key encapsulation mechanism does not make use of the
Decision Diffie-Hellman oracle DDHsolve. Its existence is part of the assumption
and solely needed for the proof of security.

The proof is quite simple. An intuitive way to understand it is as follows:
first consider a modified KEM that is obtained by abandoning the hash function
H from the construction in Section 4.1, i.e. the symmetric key is now com-
puted as K = ur. What we can prove is that this modified KEM is one-way
chosen-ciphertext secure under the gap Diffie-Hellman (GDH) assumption. In
the security reduction the DDH oracle provided by the GDH assumption is used
to reject (as in the original scheme) every invalid ciphertext submitted by the
adversary to the decryption oracle. The key idea of the reduction is based on
an algebraic technique from [5] that was also used in [9,16] in the context of
KEMs. An attacker B against the GDH problem can setup the public-key for
the adversary attacking the security of the KEM in a way that (i) adversary B
(without knowing the secret key) can decapsulate every ciphertexts except the
challenge ciphertext; (ii) decapsulating the challenge ciphertext is equivalent to
solving GDH. If the adversary against the KEM is successfull (i.e. it decapsu-
lates the challenge ciphertext) so this adversary can be used to break the GDH
problem using the above simulation.

More details. Adversary B inputs a GDH instance (g, u, ga) and it’s goal is to
compute T = ua (recall that we are attacking one-way chosen-ciphertext secu-
rity). He picks a random value d and defines the (thereby correctly distributed)
public key as pk = (u, v = u−t∗

gd), where t∗ = INJ(ga). Note that this way a
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consistent ciphertext (c, π) properly created by the encapsulation algorithm has
the form

c = gr, π = (utv)r = (ur)t−t∗
cd , (1)

for some t ∈ Zp. Hence, in order to decapsulate the challenge ciphertext C ∗ =
(c∗, π∗) defined as c∗ := ga, π∗ := (ga)d = (ua)t∗−t∗

cd (i.e., a ciphertext com-
puted with unknown randomness a from the GDH instance, where t∗ = INJ(c∗)),
adversary A (which is run on pk and C ∗) has to compute the target key K∗ = ua

what is equivalent to breaking GDH. On the other hand, for a decapsulation
query for ciphertext (c, π), B first checks for consistency using the DDH ora-
cle DDHsolve provided by the GDH assumption. If the ciphertext is inconsis-
tent it gets rejected. Otherwise, by injectivity of INJ, we have t = INJ(c) �=
INJ(c∗) = t∗ and the correct key K = ur can be reconstructed by Eqn. (1) as
K = (π/cd)1/(t−t∗).

The step to full security (i.e., indistinguishability compared to one-wayness)
now can be intuitively understood by the fact that (in terms of the assumption)
we move from GDH to GHDH, i.e. under GHDH the hash function H hides all
information about the Diffie-Hellman key ur. A more formal proof is given in
Appendix A.

4.3 KEM/DEM: From KEM to Full Encryption

A KEM and a symmetric encryption scheme (aka DEM) can be used to obtain a
hybrid public-key encryption scheme. It is well known that if both the KEM and
the DEM are chosen-ciphertext secure, then the resulting hybrid encryption is
also chosen-ciphertext secure [11, Sec. 7]. The security reduction is tight. A DEM
secure against chosen-ciphertext attacks can be built from relatively weak prim-
itives, i.e. from any one-time symmetric encryption scheme by essentially adding
a MAC. Phan and Pointcheval [21] showed that strong pseudorandomn permuta-
tions directly imply redundancy-free chosen-ciphertext secure DEMs that avoid
the usual overhead due to the MAC. It seems reasonable to believe that known
block-ciphers (auch as AES) are strong PRPs.

In the full version [18] we also sketch how to obtain a direct PKE scheme that
may be usefull to non-interactive chosen-ciphertext secure threshold encryption
scheme [9].

4.4 Relation to Other Encryption Schemes

The KEMs based on “identity-based techniques” [9,16,17] are very similar to our
construction. In fact, (a slight variation of) the KEM from [9] (which itself is
based on the first IBE scheme Boneh and Boyen [5]) can be obtained from our
KEM by instantiating the hash function H with a bilinear map, i.e. by defining
H(X) = ê(gz, X) (further simplifications in the decapsulation algorithm must
be applied). As we already sketched in Section 3.2, security of the KEM then
can be proved relative to the BDH assumption (just as in [9]). However, since it
involves computing bilinear maps, the BWM-KEM is considerably less efficient
than our proposal when H is a cryptographic hash function.
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Surprisingly, the KEM part (KD-KEM) of the Kurosawa-Desmedt public-key
encryption scheme [19] looks quite similar to our construction. Indeed, the KD-
KEM encapsulates by computing the ciphertext as (c1, c2) = (gr, ĝr) and the
corresponding symmetric key is defined as K = (utv)r, where g, ĝ, u = gxĝx̂, v =
gyĝŷ are elements from the public key and t is computed as t = TCR(c1, c2).
In comparison (and ignoring the hash function) our scheme basically swaps the
elements c2 and K, i.e. the ciphertexts of our scheme are given by (gr, (utv)r)
(t now only depends on gr), where the corresponding key is H(ur).

In contrast our KEM is provably secure under a well-defined number-theoretic
assumption whereas the KD-KEM was recently shown to be not even one-way
chosen-ciphertext secure [14]. One could possible remark that the stronger se-
curity properties of our KEM inherently rely on the stronger assumption, i.e.,
the hash function H and the DDH oracle in the GHDH assumption (the gap-
property). However, this is not true as we will explain now; security rather seems
to depend on the particular constellation of the ciphertexts of our KEM. First,
the attack from [14] aganst the KD-KEM is still valid if the two elements in
the KD-KEM ciphertext get checked for consistency before decapsulating the
key, i.e. the attack does not rely on “inconsistent ciphertext queries”. In other
words it is not the “gap”-property of the GHDH assumptions that makes the
difference in the (in-)security of the two KEMs. Second, chosen-ciphertext secu-
rity of our KEM does also not depend on the hash function H since without H
our KEM is still one-way chosen-ciphertext secure under the gap computational
Diffie-Hellman assumption. As pointed out earlier the hash function H is only
responsible to provide indistinguishability (rather than one-wayness).

4.5 Key-Encapsulation Based on GHMDH

In this section we sketch a usefull generalization of our KEM construction to
build schemes based on the general class of GHMDH assumptions which we now
introduce.

For an integer � ≥ 1 let D ∈ G
�×� be a matrix with entries Di,j ∈ G

(1 ≤ i, j ≤ �). Let H : G
�×� → K be a hash-function that maps �2 group el-

ements into a key-space K. Informally, the Gap Hashed Multi Diffie-Hellman
(GHMDH) assumption (realtive to hash function H and group G) states that,
given g1, . . . , g�, h1, . . . , h�, g

r1
1 , . . . , gr�

� and access to a DDH oracle, it is com-
putationally infeasible to distinguish H(D) from a random element in K, where
the (hidden) entries of matrix D contain all �2 possible combinations of Diffie-
Hellman keys, i.e. Di,j = h

rj

i . Intuitively, the hash function H can be viewed as
a hard predicate of the �2 different Diffie-Hellman keys. Clearly, for � = 1 and
K = {0, 1}l(k) this simplifies to the GHDH assumption but in this section we
focus mostly on algebraic candidates of the form H : G

�×� → G, for � ≥ 2.
As one illustrating example of the much general class of GHMDH assumptions,

the Gap Decision Linear Diffie-Hellman (GLDH) assumption [6] is obtained by
setting � = 2 and defining H : G

2×2 → G as H(D) = D1,1 · D1,2. More precisely,
the GLDH assumption states that, given g1, g2, g

r1
1 , gr2

2 , h1, W , destinguishing
W = hr1+r2

1 from a uniform W ∈ G is computational infeasible, even relative
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to a DDH oracle. Originally, the GLDH assumption was defined over bilinear
maps [6] (called Decision Linear Diffie-Hellman assumption), whereas here we
only require the assumption to hold relative to a DDH oracle. This, in particilar,
makes it possible to define (and apply) it relative to any cyclic group [16].

More generally, for any polynomial � = �(k) ≥ 2, one can also define the class
of �-GLDH assumptions for arbitrary � = �(k) = poly(k) by defining H : G

�×� →
G as H(D) =

∏�
i=1 D1,i. (Note that the 1-GLDH assumption states that DDH

is hard relative to a DDH oracle which is clearly insecure without applying any
further hash function to the Diffie-Hellman key.) The �-GLDH assumptions form
a strict hierarchy of security assumptions with 2-GLDH = GLDH and, the larger
the �, the weaker the �-GLDH assumption. More precisely, for any � ≥ 2 we have
that �-GLDH implies �+1-GLDH. On the other hand (extending [6]) we can
show that in the generic group model [24], the �+1-GLDH assumption holds,
even relative to an �-GLDH oracle.

We now (extending Section 4.1) build a key encapsulation mechanism KEM =
(Kg, Enc, Dec) based on the HGMDH assumption. We define SH as the subset
of indices (i, j) ∈ {1, . . . , �}2 such that the hash function H(D) depends on
entry Di,j . (For example, for �-GLDH we have SH = {(1, 1), . . . , (1, �)}.) Let
TCR : G

� → Zp be a target collision-resistant hash function.
Key generation Kg(1k) generates random group elements g1, . . . , g�, h1, . . . , h�

and indices xi,j ((i, j) ∈ SH) such that hi = g
xi,j

j . Furthermore it defines
ui,j = g

yi,j

j , for random yi,j ((i, j) ∈ SH). The public key contains the elements
(gi)1≤i≤�, (hi)1≤i≤�, and (ui,j)(i,j)∈SH , and the secret key contains all correspond-
ing indices.

Enc(pk)
For j ∈ {1, . . . , �}: rj

$← Z
∗
p ; cj ← g

rj

j

t ← TCR(c1, . . . , c�)
For (i, j) ∈ SH:

πi,j ← (ht
iui,j)rj ; Ki,j ← h

rj

i

K ← H(K) ; C ← (c1, . . . , c�, (πi,j)(i,j)∈SH)
Return (C , K)

Dec(sk ,C )
t ← TCR(c1, . . . , c�)
For each (i, j) ∈ SH:

if c
xi,jt+yi,j

j �= πi,j ⊥
Ki,j ← c

xi,j

j

Return K ← H(K)

The ciphertexts of this KEM contain �+ |SH| group elements, public/secret keys
2�+ |SH| elements. The above scheme instantiated with the 2-GLDH assumption
reproduces the KEM from [16] which, for any polynomial � ≥ 2, generalizes to the
class of �-GLDH schemes. Using simiar techniques as for the proof of Theorem 1,
the above scheme can be proved secure under the GHMDH assumption, see [18]
for details.

5 Comparison

The usual efficiency comparison with all previously known chosen-ciphertext se-
cure KEMs/encryption schemes in the standard model is assembled in Table 1.
Here KD is the hybrid encryption scheme from Kurosawa and Desmedt [19] and
CS refers to the Cramer-Shoup encryption scheme [10] which we compare in its
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Table 1. Efficiency comparison for chosen-ciphertext secure hybrid encryption
schemes. Some figures are borrowed from [9,16]. For efficiency we count the number
of pairings + [multi exponentiations, regular exponentiations] used for encryption and
decryption. All “symmetric” operations are ignored. Ciphertext overhead represents
the difference (in bits) between ciphertext and plaintext length. For concreteness the
expected ciphertext overhead for an 128-bit implementation is also given. The keysize
is measured in two parameters: the size of the system parameters (which are fixed for
every public-key) plus the size of the public key pk , and the size of the secret key sk .
Here we only take into account the number of group elements for params plus pk , and
the number of elements in Z

∗
p for sk . A “

√
” in the “Publ. Vfy” column means that

the scheme supports public verifiability. A “
√

” in the “Any group?” column means
that the scheme can be implemented in any prime-order group, whereas a “—” means
that the scheme has to be implemented in pairing groups. For comparison we mention
that relative timings for the various operations are as follows: bilinear pairing ≈ 3 − 5,
multi(=sequential)-exponentiation ≈ 1.2 [4], and regular exponentiation = 1.

Scheme Security Cipher Enc Dec Keysize Publ Any
Assmptn Overhead #pair+#[mult,reg]-exp (pk/sk) Vfy? group?

KD DDH 2|p| 640 0 + [1, 2] 0 + [1, 0] 4/4 —
√

CS DDH 3|p| 768 0 + [1, 3] 0 + [1, 1] 5/5 —
√

BMW BDH 2|p| 512 0 + [1, 2] 1 + [0, 1] 4/3
√

—
Ours §4.1 GHDH 2|p| 512 0 + [1, 2] 0 + [1, 0] 3/2

√∗ √

Ours §4.5 �-GLDH 2�|p| 512� 0 + [�, 2�] 0 + [�, 0] 2� + 1/2�
√∗ √

∗In gap and pairing groups only.

hybrid variant from [11]. BMW is the KEM from Boyen, Mei, and Waters [9].
Our first scheme is the GHDH-based KEM from Section 4.1 instantiated with
an efficient cryptographic hash function H : G → {0, 1}l(k). Our second scheme
refers to the �-GLDH-based scheme from Section 4.5 which, for the case � = 2,
simplifies to the GLDH-based KEM from [16]. All KEMs are assumed to be in-
statiated using a redundancy-free chosen-ciphertext secure symmetric scheme to
obtain a full hybrid PKE scheme. The KD encryption scheme can only be proved
secure in combination with an authenticated symmetric encryption scheme [2]
which inherently adds “one MAC” overhead to the ciphertext size.

Even though our scheme shares the same number of exponentiations for en-
cryption/decryption with the KD scheme, it has some practical advantages which
makes a more efficient implementation possible. First, it is possible to use a bi-
jective encoding INJ : G→Zp and does not have to rely on expensive number-
theoretic constructions of provably secure TCR functions. Second, one only needs
one subgroup membership test for decryption, whereas the KD-scheme needs
two. Depending on the underlying group such subgroup membership tests may
be as expensive as one exponentiation. Third, the class of symmetric encryption
schemes our KEM can be securely instantiated with is larger since we do not
require authenticated encryption. This in particular makes it possible to rely on
free redundancy-free “one-pass” symmetric techniques (which process the mes-
sage to be encrypted only once). For authenticated encryption there are only



294 E. Kiltz

less efficient two-pass schemes freely available since all one-pass techniques are
covered by patents [3].
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A Proof of Theorem 1

Suppose there exists a polynomial time adversary A that breaks the chosen-
ciphertext security of the encapsulation scheme with (non-negligible) advantage
Advkem-cca

KEM ,A (k) and makes at most q decapsulation queries.
We show that there exists an adversary B that runs in time TimeB(k) =

TimeA(k) + O(q · TimeG(k)), (where TimeG(k) is the time to perform a basic
operation in G) and runs adversary A as a subroutine to solve a random instance
of the GHDH problem with advantage

Advghdh
Gen,B(k) ≥ Advkem-cca

KEM ,A (k) . (2)

Now Eqn. (2) proves the Theorem.
We now give the description of adversary B. Adversary B inputs an instance

of the GHDH problem, i.e. B inputs the values (1k, HG , H, g, u = ga, gb, W ). B’s
goal is to determine whether W = H(ub) or W ∈ {0, 1}l is a random bit string.

http://eprint.iacr.org/
http://eprint.iacr.org/
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Adversary B runs adversary A simulating its view as in the original KEM security
experiment as follows:

Key Generation & Challenge. Initially adversary B picks a random value
d ∈ Z

∗
p and defines the target ciphertext

C ∗ = (c∗, π∗) ← (gb, (gb)d) . (3)

and the challenge key as K∗ = W . We denote t∗ = INJ(c∗) as the target
tag (associated with the target ciphertext). The value v from the public key
pk = (u, v) is defined as

v ← u−t∗ · gd . (4)

Note that the public key is identically distributed as in the original KEM.
With each ciphertext C = (c, π) we associate a tag t = INJ(c). Recall that

we call a ciphertext consistent if π = (utv)r, where r = logg c. Note that the
way the keys are setup for a consistent ciphertext we have

π = (utv)r = (utu−t∗
gd)r = (ur)t−t∗ · cd . (5)

Given a consistent ciphertext C = (c, π) with associated tag t �= t∗ the
session key K = H(cx) can alternatively be computed by Eqn. (5) as

K = H((π/cd)(t−t∗)−1
) . (6)

By Eqn. (5) and since t∗ = INJ(c∗) the challenge ciphertext C ∗ = (c∗, π∗) =
(gb, (gb)d) = (c∗, (c∗)d) is a correctly generated ciphertext for randomness b.
If W = H(ub) then it follows by Eqn. (4) that C ∗ = (gb, (gb)d) is a correct
ciphertext of key K∗ = W = H(ub), distributed as in the original experiment.
On the other hand, when W is uniform and independent in {0, 1}l then C ∗

is independent of K∗ = W in the adversary’s view.
Adversary B runs A on input (pk , K∗,C ∗) answering to its queries as follows:

Decryption queries. The KEM decapsulation queries are simulated by B as
follows: Let C = (c, π) be an arbitrary ciphertext submitted to the de-
capsulation oracle DecO(sk , ·). First B performs a consistency check of the
ciphertext, i.e. it checks (using the Diffie-Hellman oracle DDHsolveG(·, ·, ·, ·))
if (g, utv, c, π) is a valid Diffie-Hellman tuple.3

We remark that this is the only case where the simulation depends on
the existence of the DDH oracle DDHsolve. If C is not consistent then B
returns ⊥. Otherwise, if the ciphertext is consistent B computes t = INJ(c)
and distinguishes the following three cases:
Case 1: t = t∗ and c = c∗: adversary B rejects the query. In this case

consistency (Eqn. (5)) implies π = cd = (c∗)d = π∗ and hence C = C ∗

and the query made by A is illegal. Therefore it may be rejected by B.
3 At this point the existence of a weak DDH oracle DDHsolveg,u(·, ·) for fixed

u is sufficient. This is since (g, utv, c, π) is a valid Diffie-Hellman tuple iff

(g, u, c, (π/cd)(t−t∗)−1)) is a valid Diffie-Hellman tuple. So to verify consistency of

the KEM ciphertext, B equivalently queries DDHsolveg,u(c, (π/cd)(t−t∗)−1
).
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Case 2: t = t∗ and c �= c∗: this is not possible since INJ : G → Zp is an
injection. (If more generally we use a TCR function then at this point
adversary B found a collision c �= c∗ in TCR with TCR(c) = TCR(c∗).)

Case 3: t �= t∗: adversary B computes the correct session key by Eqn. (6)
as K ← H((π/cd)(t−t∗)−1

).
This completes the description of the decapsulation oracle.

We have shown that the simulation of the decapsulation oracle is always
perfect, i.e. the output of the simulated decapsulation oracle is identically
distributed as the output of Dec(sk ,C ).

Guess. Eventually, A outputs a guess δ′ ∈ {0, 1} where δ′ = 1 means that K∗ is
the correct key. Algorithm B concludes its own game by outputting γ′ := δ′

where γ′ = 1 means that W = H(gab) (i.e. γ = 1) and γ′ = 0 means that W
is random (γ = 0).

This completes the description of adversary B.

Analysis. Define ”F” to be the event that B wins its GHDH game, i.e. it outputs
δ′ = 1 if W = H(gab) and δ′ = 0 if W is random. On the one hand, if W is uniform
and independent in {0, 1}l then the challenge ciphertext C ∗ is independent of
K∗ = W in the adversary’s view. In that case we have Pr [F ] = Pr [ δ′ = 0 ] = 1

2 .
On the other hand, when W = H(gab) then C ∗ is a correct ciphertext of the chal-
lenge key K∗, distributed as in the original experiment. Then, by our assumption,
A must make a correct guess δ′ = 1 with advantage at least Advkem-cca

KEM ,A (k) and
we have |Pr [F ] − 1

2 | = |Pr [ δ′ = 1 ] − 1
2 | ≥ Advkem-cca

KEM ,A (k).
Therefore, adversary B’s advantage in the GHDH game is Advghdh

Gen,B(k) ≥
Advkem-cca

KEM ,A (k) which proves Eqn. (2) and completes the proof of the theorem.
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Abstract. Key-insulated cryptography is a crucial technique for pro-
tecting private keys. To strengthen the security of key-insulated proto-
cols, Hanaoka, Hanaoka and Imai recently introduced the idea of parallel
key-insulated encryption (PKIE) where distinct physically-secure devices
(called helpers) are independently used in key updates. Their motivation
was to reduce the risk of exposure for helpers by decreasing the frequency
of their connections to insecure environments. Hanaoka et al. showed
that it was non-trivial to achieve a PKIE scheme fitting their model and
proposed a construction based on the Boneh-Franklin identity-based en-
cryption (IBE) scheme. The security of their system was only analyzed
in the idealized random oracle model. In this paper, we provide a fairly
efficient scheme which is secure in the standard model (i.e. without ran-
dom oracles). To do so, we first show the existence of a relation between
PKIE and the notion of aggregate signatures (AS) suggested by Boneh et
al. We then describe our random oracle-free construction using bilinear
maps. Thus, our contributions are both on the concrete side, namely the
first realization of parallel key-insulated encryption without the random
oracle idealization, and on the conceptual side revealing the relationships
between two seemingly unrelated primitives.

Keywords: parallel key-insulated encryption, standard model, pairings.

1 Introduction

Nowadays, protecting cryptographic keys is an issue of huge importance. Hazards
of key exposure are indeed ever-increasing due the growing use of mobile devices
allowing remote unprotected access. This problem has been major concern to
the research community for a decade. It is certainly a more serious threat for
security customers than algorithms attempting to solve number theoretic prob-
lems by brute force.

To mitigate its potential damages, key-evolving protocols were studied in
various flavors: forward-security [1,3,14], intrusion-resilience [27,19] and key-
insulation [20,21]. The latter paradigm was introduced in 2002 by Dodis, Katz,
� Work done during a visit at the CS Dept. of the Columbia University. This author
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Xu and Yung [20]. It was motivated by the upcoming setting of “Ubiquitous
Computing” where each user will possess more than one computer (e.g. a com-
puter at the office and a mobile phone which is also a computer) where not
all computers have the same availability and/or security. The general idea of
key-insulated security was to store long-term keys in a physically-secure but
computationally-limited device called base or helper. Short-term secret keys are
kept by users on a powerful but insecure device where cryptographic computa-
tions take place. Short term secrets are then refreshed at discrete time periods
via interaction between the user and the base while the public key remains un-
changed throughout the lifetime of the system. For a total of N time periods,
such a mechanism is said to be (t, N)-key-insulated if a compromise of up to t
periods leaves the remaining N − t time periods unharmed. A scheme is addi-
tionally said strongly key-insulated when adversaries corrupting the base remain
unable to perform private key operations on behalf of the user.

An increased tolerance against key exposures is thus allowed by frequent up-
dates of private keys. This unfortunately implies frequent connections between
the helper device and the network and thereby an increased risk of helper key ex-
posure. A theft of the helper’s base key is quite damaging as it typically requires
to restart the system with a new public key. It even jeopardizes strongly key-
insulated protocols where the additional exposure of a single time period at the
user definitely crashes the system. This recently motivated Hanaoka, Hanaoka
and Imai [26] to make a significant step forward and introduce the concept of
parallel key-insulated encryption (PKIE for short) where distinct independent
helpers are alternatively used in key update operations. As argued in [26], the
involvement of two helpers may simultaneously increase the security of helpers
and users by allowing for frequent updates without incurring a higher risk of
helper exposure. In [26], Hanaoka et al. provided a PKIE constuction which will
be referred to as the HHI scheme in this paper. It was obtained from the Boneh-
Franklin identity-based encryption (IBE) scheme [8] and provably fits properly
defined security requirements in the random oracle model [4]. However, a proof
in the random oracle model can only serve as a heuristic argument as it is known
(see e.g. [13]) not to imply the security in the real world.

It is natural to wonder if secure PKIE schemes exist in the standard model
and if they can be generically built from IBE. Indeed, equivalence relations
are known [5,20] between (N − 1, N)-key-insulated systems and identity-based
schemes [36], hierarchical extensions of which [24,6,7] also allowed for the design
of other key-evolving protocols [29,14,19,16,38,7].

To answer those questions, we first point out an intuitive relation between
PKIE and IBE systems that involve a signature scheme supporting aggregation
as in the aggregate signing (AS) protocol put forth by Boneh et al. [9]. We then
describe a PKIE scheme which, although non-generic, is demonstrably secure
in the sense of [26] without resorting to the random oracle methodology. Our
construction uses a selective-ID secure IBE due to Boneh and Boyen [6] as a
building block. It is fairly efficient and enjoys a security resting on the (by now
well-studied) Decisional Bilinear Diffie-Hellman assumption.
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In the upcoming sections, we first recall functional definitions and security
notions for PKIE schemes. Section 3 discusses necessary conditions for building
such a primitive from identity-based protocols. Our system and its security are
respectively analyzed in sections 4 and 5. Section 6 then explains how to further
secure our protocol against chosen-ciphertext attacks.

2 Preliminaries

2.1 Model and Security Notions

A PKIE scheme over N stages consists of the following five algorithms.

Key generation: takes a security parameter λ and returns helpers’ private
keys mst1, mst2, a user’s private key usk0 and a public key pk.

Helper-Update: takes as input helper j’s private key mstj and a period num-
ber i to return an update key hski if i = j mod 2 and ⊥ otherwise.

User-Update: is given user’s private key uski−1 for period i−1, an update key
hski and computes the private key uski for period i.

Encrypt: is given a message m, a public key pk and a period number i ∈
{1, . . . , N} and returns a ciphertext σ.

Decrypt: given a ciphertext σ, a period number i and the matching private key
uski, returns either a plaintext m or ⊥.

The usual completeness requirement imposes Decrypt(pk, uski, σ) = m when-
ever σ = Encrypt(m, i, pk) for any i ∈ {1, . . . , N}.

In the basic (i.e. non-strong) key-insulation security, if no helper is compro-
mised, the exposure of any short-term secret leaves other periods safe as in
[20,21]. Besides, if a single helper is broken into while some stage i is exposed,
only one other stage adjacent to i is also exposed (recall that even strongly
key-insulated traditional schemes collapse in this scenario).

Definition 1. A PKIE scheme is (t, ε)-secure against chosen-ciphertext attacks
if no adversary has better advantage than ε in the following game within running
time t.
1. The challenger C runs the key generation algorithm, hands pk to the adver-

sary A and keeps mst0, mst1 and uks0 to itself.
2. A adaptively issues queries which are either:

- Exposure queries 〈j, class〉: if class = “user”, C runs helper and user
update algorithms to generate uskj and send it to A. If class = “helper”,
A obtains mstj.

- Decryption queries 〈j, σ〉: C responds by generating uskj (via calls to
update algorithms) to decrypt σ and pass the result to A.

3. At some point, A comes up with messages M0, M1 and a period number
j� ∈ {1, . . . , N}. She obtains a challenge σ� = Encrypt(Mb� , j�, pk) for a
random bit b� R← {0, 1} selected by C.
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4. A issues new queries as in stage 2. She finally outputs b ∈ {0, 1} and wins
if b = b� provided

- 〈j�, σ�〉 does not appear in the list of decryption queries,
- 〈j�, “user”〉 is not in the list of exposure queries,
- 〈j� − 1, “user”〉 and 〈2 − (j� mod 2), “helper”〉 do not simultaneously

appear in the list of exposure queries and neither does the pair 〈j� +
1, “user”〉, 〈(j� mod 2) + 1, “helper”〉,

- 〈1, “helper”〉 and 〈2, “helper”〉 were not both queried.

As usual, A’s advantage is measured by AdvPKIE(A) = |Pr[b = b�] − 1/2|.
This definition considers two kinds of adversaries: Type I attackers do not corrupt
helpers during the game. In contrast, Type II adversaries corrupt exactly one
helper without requesting a private key that would trivially expose the target
period j�. For example, if j� is odd, A may not obtain uskj�−1 if she ever learns
mst1 as the latter is involved in all updates from even to odd time periods.
Besides, she is disallowed to query uskj�+1 if she also receives mst2 since uskj�

could be trivially retrieved from uskj�+1 and the helper’s key that allowed the
update from period j� to j� + 1.

According to [20,21], a parallel key-insulated scheme is said strongly key-
insulated if breaking into all helpers does not help the adversary as long as she
does not also obtain any user secret for any period. Unlike [26], we follow [20,21]
and address this problem in a separate game where A is provided with both base
keys and may not request uski for any i.

2.2 Bilinear Maps and Related Problems

Groups (G, GT ) of prime order p are called bilinear map groups if there is a
mapping e : G × G → GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) �= 1GT whenever g, h �= 1G.

We require the intractability of these problems in bilinear map groups.

Definition 2. Let (G, GT ) be bilinear map groups of order p and g ∈ G.

1. the Bilinear Diffie-Hellman Problem (BDH) [28,8] is to compute
e(g, g)abc ∈ GT given (ga, gb, gc);

2. the Decision Bilinear Diffie-Hellman Problem (DBDH) is to distin-
guish the distributions (ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z). A dis-
tinguisher B (t, ε)-solves it if it runs in time at most t and

∣
∣Pr[B(ga, gb, gc, e(g, g)abc) = 1|a, b, c R← Z

∗
p]

− Pr[B(ga, gb, gc, e(g, g)z) = 1|a, b, c, z R← Z
∗
p]

∣∣ ≥ ε.
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3 On Obtaining PKIE from IBE

The HHI scheme [26] (recalled in appendix A) uses the Boneh-Franklin IBE [8] as
a building block. It is pointed out in [26] that constructing parallel key-insulated
schemes from identity-based ones is non-trivial. For instance, one cannot settle
for simply combining two IBE schemes by letting two Private Key Generators
(PKGs) alternatively act as helpers for even and odd time periods. This naive
approach indeed leaves half of the stages exposed after the compromise of only
one helper. Another idea that falls short is to doubly encrypt (using the tech-
niques of [22]) messages for period i under identities i and i − 1 and let private
key uski consist of IBE private keys for identities i and i − 1. Unfortunately, the
key uski� may be exposed by merely corrupting periods i� − 1 and i� + 1.

Nevertheless, the HHI construction stems from a careful double application of
the Boneh-Franklin IBE. Although it was not explicitly mentioned in [26], the
key idea is to let a private key for period i be an aggregation of identity-based
private keys for periods i and i − 1. We recall that identity-based cryptosystems
traditionally involve private keys that are authorities’ signatures on identities. As
noted in [9], the signature algorithm [11] that derives private keys from identifiers
in [8] is compatible with a signature aggregation. This means that n signatures
generated by distinct signers on possibly distinct messages may be merged into a
single signature in such a way that verifiers can still ensure that all signers each
signed their original message. In [26], a private key for period i is the aggregation
of both helpers’ signatures on messages i and i − 1. The security in the sense of
definition 1 relies on the intractability of extracting individual signatures from
an aggregate of even only two signatures. In Boneh et al.’s scheme [9], this prob-
lem was shown equivalent to the Diffie-Hellman problem in [17].

An intuitive connection thus turns out to exist between parallel key-insulated
cryptosystems and identity-based encryption schemes extracting private keys
using a signature scheme supporting aggregation. The infeasibility of extract-
ing individual signatures from a 2-aggregate appears as a necessary condition
for the underlying AS to provide a secure PKIE system. In the next section,
we take advantage of this connection to devise a PKIE in the standard model.
Our construction uses the selective-ID secure1 [14] scheme of Boneh-Boyen [6]
as a starting point. As previously mentioned by Canetti, Halevi and Katz [14],
selective-ID secure schemes are sufficient as building blocks for key-evolving pro-
tocols. Indeed, in security proofs, simulators have to guess in advance which time
period will be the prey of attacks. This degrades security bounds by a factor that
remains acceptable for any realistic number of time periods (such as N ≤ 230).
We emphasize that constructing a PKIE scheme using Waters’s fully secure IBE
[37] would be overkill and would not yield a tighter reduction here2.

In the selective-ID secure IBE of [6], private keys are computed using a sig-
nature scheme which bears similarities with Waters’s signature [37] but is only
1 i.e. Secure in a model where attackers are required to announce the identity they

intend to attack ahead of time, even before seeing the system parameters.
2 Indeed, the condition for the simulator of [37] not to abort in the challenge phase

would have to be satisfied for both “identities” i and i − 1.
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selective-message secure against chosen-message attacks. Unlike a recent variant
[33] where signatures are sequentially computed, it only supports a limited ag-
gregation as the size of an aggregate remains linear in the number of signers (as
in a similar method suggested in [34]). However, this scheme is sufficient for the
pursued goal here as, in our construction, private keys are aggregates of only 2
individual signatures.

4 A Scheme with Chosen-Plaintext Security

As in [26], private keys stored by users at period i are 2-aggregate signatures
computed by helpers on “messages” i and i − 1.

Key generation: given a security parameter λ ∈ N, this algorithm

1. chooses bilinear map groups (G, GT ) of order p > 2λ, a generator g ∈ G,
a collision-resistant hash function H : N → Z

∗
p and a pseudorandom

function f : {0, 1}1+log2 p × N → Z
∗
p,

2. picks α1, α2
R← Z

∗
p and computes g1 = gα1 , g2 = gα2 ,

3. selects elements h, g′1, g
′
2

R← G and defines functions F1, F2 : N → G as
F1(i) = gIi

1 g′1 and F2(i) = gIi
2 g′2 where Ii = H(i) ∈ Z

∗
p,

4. initializes the user’s private key to

usk0 =
(
hα1+α2F1(−1)r−1F2(0)r0 , gr0 , gr−1

)

where r−1 = f(sd1, −1) and r0 = f(sd2, 0) are respectively derived from
randomly chosen seeds sd1, sd2 ∈ {0, 1}1+log2 p,

6. Helpers’ private keys are set to mst1 = sd1 and mst2 = sd2 and the public
key is pk := {p, G, GT , e, g, g1, g2, h, g′1, g

′
2, H, f}.

Elements α1, α2 are erased.
Helper-Update: given mstj = sdj and a period number i ∈ {1, 2, . . . , N},

helper j ∈ {1, 2}
1. returns ⊥ if i �= j mod 2,
2. computes ri−2 = f(sdj , i − 2), ri = f(sdj , i)
3. outputs an update key hski =

(
Fj(i)ri/Fj(i − 2)ri−2 , gri−ri−2

)

User-Update: given uski−1, hski and i,
1. parse hski into (hi, h

′
i) and uski−1 into (ui−1,0, ui−1,1, ui−1,2),

2. set uski = (ui−1,0 · hi, ui−1,2 · h′
i, ui−1,1),

3. return uski, discard uski−1 and hski.
At time period i, user’s private key is always set to

uski =
(
hα1+α2Fj(i)riFj−1(i − 1)ri−1 , gri , gri−1

)
,

with j = 2 − (i mod 2) and for uniformly distributed exponents
ri = f(sdj , i), ri−1 = f(sdj−1, i − 1) ∈ Z

∗
p determined by helpers.
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Encrypt: given pk, i ∈ N, a message m ∈ GT is encrypted into

σ =
(
m · e(h, g1g2)s, gs, Fj(i)s, Fj−1(i − 1)s

)

where s R← Z
∗
p is randomly chosen and j = 2 − (i mod 2).

Decrypt: given σ = (A, B, C, D) and uski = (ui,0, ui,1, ui,2), compute

m = A · e(C, ui,1) · e(D, ui,2)
e(B, ui,0)

The completeness is checked by noting that uski = (ui,0, ui,1, ui,2) satisfies

e(ui,0, g) = e(h, g1g2) · e (Fj(i), ui,1) · e (Fj−1(i − 1), ui,2)

and raising both members of this equality to the power s.
The function f plays the crucial role of a “memory function” seeded by sdj

for j = 2 − (i mod 2) and allowing helpers to remember the exponent ri−2 of
their latest update. Those exponents must be unpredictable without the seed
sdj as an adversary obtaining uski−1 could trivially compute a private key for
period i without knowing hski if she could find out ri−2.

5 Security

Theorem 1. If no algorithm (t, ε)-breaks the Decision Bilinear Diffie-Hellman
assumption, the scheme is (t′, 4Nε)-secure against chosen-plaintext attacks for
t′ < t−O(Nτexp) where N is the number of time periods and τexp stands for the
cost of an exponentiation in G.

Proof. We construct an algorithm B that solves the DBDH problem in (G, GT )
using an adversary A against the IND-CPA security of our scheme. The input
of B is a tuple (ga, gb, gc, T ) ∈ G

3 × GT and it aims at deciding whether T =
e(g, g)abc thanks to its interaction with A. As explained in section 2.1, two kinds
of adversaries are distinguished:

Type I adversaries: do not corrupt helpers during the game.
Type II adversaries: corrupt exactly one helper without exposing a private

key that would trivially compromise the attacked period i�.

At the outset of the simulation, B tosses a coin COIN R← {0, 1} to guess which
kind of attack A will produce. If COIN = 0, it expects to face a Type I adversary.
If COIN = 1, it forecasts a Type II behaviour from A. Our simulator B also
chooses an index � R← {1, . . . , N} as a guess for the time period to be attacked
by A. W.l.o.g., we shall assume that � is odd as the case of an even � can be
handled in a completely similar manner. In all cases, B generates the public
key as follows. It selects γ R← Z

∗
p, and defines g1 = ga, g2 = gγ

1 = (ga)γ and
h = gb. It also computes I� = H(�) and I�−1 = H(� − 1) and sets g′1 = g−I�

1 gt1 ,
g′2 = g

−I�−1
2 gt2 for randomly chosen t1, t2

R← Z
∗
p and thereby implicitly defines

functions
F1(i) = gIi−I�

1 gt1 , F2(i) = g
Ii−I�−1
2 gt2 .
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A is initialized on input of (g, g1, g2, h, g′1, g
′
2) and issues exposure queries that

are handled differently when COIN = 0 and COIN = 1. Informally, B uses
the fact that A has no information on exponents ri (i ∈ {1, . . . , N}) unless she
breaks into helper j = 2− (i mod 2). When dealing with exposure queries, these
exponents may be freely chosen for both even and odd stages when facing Type
I attacks. In Type II attacks, they are constrained for either odd or even stages
and B has to guess in advance the parity of constrained indexes.

• COIN = 0: B aborts if A issues a query 〈i, class〉 with class = “helper”
or with i = �. Otherwise, it can answer the query as private keys uski are
computable for i �= �. To do so, B selects r0

R← Z
∗
p. For i = 1, 2, . . . , (� − 1)/2, it

picks r2i−1, r2i
R← Z

∗
p and computes

usk2i =
(
h
− (1+γ)t1

I2i−1−I� F1(2i − 1)r2i−1F2(2i)r2i , h
− 1+γ

I2i−1−I� gr2i−1 , gr2i

)
, (1)

usk2i−1 =
(
h
− (1+γ)t1

I2i−1−I� F1(2i − 1)r2i−1F2(2i − 2)r2i−2 , gr2i−2 , h
− 1+γ

I2i−1−I� gr2i

)
(2)

where I2i−1 = H(2i − 1). We observe that usk1, . . . , usk�−1 have the correct
shape. If we define r̃2i−1 = r2i−1 − b(1 + γ)/(I2i−1 − I�), we have

h
− (1+γ)t1

I2i−1−I� F1(2i − 1)r2i−1 = h
− (1+γ)t1

I2i−1−I�

(
g

I2i−1−I�

1 gt1
)r̃2i−1+ b(1+γ)

I2i−1−I� (3)

= g1
b(1+γ)(gI2i−1−I�

1 gt1)r̃2i−1 (4)

= g(aγ+a)bF1(2i − 1)r̃2i−1 (5)
= hα1+α2F1(2i − 1)r̃2i−1 (6)

and h
− 1+γ

I2i−1−I� gr2i−1 = g
− b(1+γ)

I2i−1−I� gr2i−1 = gr̃2i−1 for i = 1, . . . , (� − 1)/2.
Next, B repeats a similar procedure to generate usk�+1, . . . , uskN . It picks

r�
R← Z

∗
p. For i = (� − 1)/2 + 1, . . . , N/2 (we assume that N is even), it chooses

r2i, r2i+1
R← Z

∗
p and computes

usk2i =
(
h
− (1+γ−1)t2

I2i−I�−1 F2(2i)r2iF1(2i − 1)r2i−1 , h
− 1+γ−1

I2i−I�−1 gr2i , gr2i−1

)
, (7)

usk2i+1 =
(
h
− (1+γ−1)t2

I2i−I�−1 F2(2i)r2iF1(2i + 1)r2i+1 , gr2i+1 , h
− 1+γ−1

I2i−I�−1 gr2i

)
(8)

where I2i = H(2i). We check that usk�+1, . . . , uskN are correct keys as, if we
define r̃2i = r2i − b(1 + γ−1)/(I2i − I�−1) for i = (� − 1)/2 + 1, . . . , N/2,

h
− (1+γ−1)t2

I2i−I�−1 F2(2i)r2i = h
− (1+γ−1)t2

I2i−I�−1
(
g

I2i−I�−1
2 gt2

)r̃2i+
b(1+γ−1)
I2i−I�−1 (9)

= g2
b(1+γ−1)(gI2i−I�−1

2 gt2)r̃2i (10)

= g(aγ+a)bF2(2i)r̃2i = hα1+α2F2(2i)r̃2i (11)

and h
− 1+γ−1

I2i−I�−1 gr2i = g
− b(1+γ−1)

I2i−I�−1 gr2i = gr̃2i .
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• COIN = 1: B expects A to corrupt either mst1 = sd1 or mst2 = sd2. It picks
random values b R← {1, 2} and sdb

R← {0, 1}1+log2 p and bets on an exposure
query involving mstb = sdb. As � is odd, if A indeed attacks stage �, she is
restricted not to request usk�−1 (resp. usk�+1) if b = 1 (resp. b = 2). When A
issues a query 〈i, class〉, B returns sdb if class = “helper” and i = b. It aborts
if class = “helper” with i = b (where b = 2 if b = 1 and vice versa). When
class = “user”, it also aborts if i = �, if i = � − 1 while b = 1 and if i = � + 1
while b = 2. Otherwise, two cases are distinguished:

b = 1: we have i �= � − 1, �. For all i = 1, . . . , N/2, exponents r2i−1 are imposed
by the relation r2i−1 = f(sd1, 2i− 1) but exponents r2i can be freely chosen.
For i = 0, . . . , (� + 1)/2 − 2, (� + 1)/2, . . . , N/2, B chooses r2i

R← Z
∗
p and

generates usk2i, usk2i+1 following equations (7)-(11). Therefore, it obtains all
private keys but usk�−1, usk� (though usk0 and uskN+1 are never requested
by the adversary, they are computable). Those private keys have the correct
shape for uniformly distributed (unknown) elements r̃2i ∈ Z

∗
p.

b = 2: B has to compute private keys uski with i �= �, � + 1 as A is assumed
not to request usk�+1. This time, exponents of even time periods have to
comply with the constraint r2i = f(sd2, 2i) for all i but exponents r2i−1 are
free. For i = 1, . . . , (� − 1)/2, (� − 1)/2 + 2, . . . , N/2, B chooses r2i−1

R← Z
∗
p

and computes usk2i, usk2i−1 according to equations (1)-(6) and thereby ob-
tains well-formed usk1, . . . , usk�−1, usk�+2, . . . , uskN for random (unknown)
implicitly defined r̃2i−1.

Challenge: when A decides that phase 1 is over, she comes up with messages
M0, M1 and a target time period i�, B halts and reports “failure” if i� �= �.
Otherwise, it flips a fair coin b� R← {0, 1} a returns the challenge

σ� =
(
Mb� · T 1+γ, gc, (gc)t1 , (gc)t2

)
.

Since F1(�) = gt1 and F2(� − 1) = gt2 , σ� has the same distribution as the
output of the encryption algorithm if T = e(g, g)abc. In contrast, if T is random
in GT , σ� is independent of b� and A cannot guess b� with a higher probability
than 1/2. Hence, B deduces that T = e(g, g)abc if A’s final output equals b�.
Otherwise, it bets that T ∈R GT .

When assessing B’s success probability, we note that it may fail to provide A
with a consistent view because of the following events:

E1 : a key exposure is made for period �
E2 : a helper key exposure occurs and COIN = 0
E3 : helper b’s private key is exposed while COIN = 1
E4 : a key exposure on usk�−1 occurs while b = 1 and COIN = 1
E5 : a key exposure on usk�+1 occurs while b = 2 and COIN = 1

We also consider the following events:

H0 : B correctly guesses i� = �
H1 : B successfully foresees the kind of attack produced by A
H2 : B luckily predicts which helper’s key is exposed when COIN = 1
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Clearly Pr[H0] = 1/N and Pr[H1] = 1/2. Also, we have H0 ⇒ ¬E1, H1 ⇒ ¬E2,
H2 ⇒ ¬E3 and H2 ∧ H0 ⇒ ¬E4 ∧ ¬E5. The conjunction of events H0, H1 and
H2 is readily seen to occur with probability greater than 1/4N and it suffices to
prevent a failure of the simulation. �

6 Chosen-Ciphertext Security

Chosen-ciphertext security in the standard model can be achieved using ideas
from [15,10] but it is more directly obtained following the techniques of Boyen,
Mei and Waters [12] which require to turn our scheme into a key-encapsulation
mechanism (KEM) [35].

A KEM [35] is a public key algorithm that, instead of encrypting messages
as a regular public key cryptosystem, takes only a public key as input and
returns pairs (K, σ) made of a randomly distributed key K and an encapsu-
lation σ of it. The reverse operation is achieved by a decapsulation algorithm
which, on input of a private key and an encapsulation σ, either outputs a key
K or a rejection message ⊥. It is well-known [35] that a KEM immediately pro-
vides a public key encryption scheme when combined with a suitable symmetric
cryptosystem.

The methods of [12] involve a piece of ciphertext acting as a checksum treated
as part of an identity-based system by the simulator handling decryption queries.

In order to optimize the decapsulation algorithm, we use a trick suggested in
[30,32] to minimize the number of pairing calculations and render the consistency
checking implicit in the computation of the key.

Key generation: is unchanged except that it additionally chooses a function
H ′ : G → Zp which is either a collision-resistant hash function or a suitable
injective encoding (see [12] for details on how to define such an encoding).
The algorithm also picks another element g′ R← G to define the “checksum
function” F3 : Zp → G : x → F3(x) = (g1g2)xg′.

pk := {p, G, GT , e, g, g1, g2, h, g′1, g
′
2, g

′, H, H ′, f}.

Helper-Update and User-Update do not change. At period i, user’s private
key is still

uski =
(
hα1+α2Fj(i)riFj−1(i − 1)ri−1 , gri , gri−1

)
,

with j = 2 − (i mod 2) and ri = f(sdj , i), ri−1 = f(sdj−1, i − 1) ∈ Z
∗
p.

Encapsulate: given i and pk, let j = 2 − (i mod 2), pick s R← Z
∗
p and compute

A = gs, ω = H ′(gs) ∈ Zp. Set B = Fj(i)s, C = Fj−1(i−1)s and D = F3(ω)s

to get
σ = (A, B, C, D) =

(
gs, Fj(i)s, Fj−1(i − 1)s, F3(ω)s

)

which encapsulates the key K = e(h, g1g2)s.
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Decapsulate: given σ = (A, B, C, D) and uski = (ui,0, ui,1, ui,2), the receiver
sets ω = H ′(A) ∈ Zp, picks z1, z2, z3

R← Z
∗
p and computes

K =
e
(
A, ui,0 Fj(i)z1Fj−1(i − 1)z2F3(ω)z3

)

e(B, ui,1 gz1) · e(C, ui,2 gz2) · e(D, gz3)
(12)

To explain the decapsulation mechanism, we note that any properly formed
encapsulation satisfies the (publicly verifiable) conditions

τ1 =
e(A, Fj(i))

e(B, g)
= 1, τ2 =

e(A, Fj−1(i − 1))
e(C, g)

= 1, τ3 =
e(A, F3(ω))

e(D, g)
= 1GT .

The naive approach is to return K = e(A, ui,0)/(e(B, ui,1) · e(C, ui,2)) if they
hold and ⊥ (or a random K R← GT from the key space) otherwise. This approach
is perfectly equivalent to choose z1, z2, z3

R← Z
∗
p and return

K = τz1
1 · τz2

2 · τz3
3 · e(A, ui,0)

e(B, ui,1) · e(C, ui,2)

which is the actual decapsulated key if the encapsulation was correct and a ran-
dom key otherwise. This alternative decapsulation mechanism is easily seen to
be exactly the one suggested by relation (12).

Overall, the cost of the decapsulation operation amounts to a product of four
pairings (which is much faster to compute than a naive evaluation of four pair-
ings as discussed in [25]) plus a few exponentiations in G.

In appendix B, we formally define the KEM counterpart of parallel key-
insulated security. We then prove theorem 2 which claims the chosen-ciphertext
security of our key-insulated KEM under the Decision BDH assumption.

Borrowing ideas from [31], we can construct a CCA-secure KEM with as short
ciphertexts and almost as efficient decryption as in section 4. As in [31], this is
obtained at the expense of longer private keys and a security resting on a slightly
stronger assumption.

We also mention that a regular CCA-secure PKIE scheme can be directly
achieved (without using the KEM-DEM framework) by implementing the check-
sum function F3 using Waters’s “hashing” technique [37], much in the fashion of
the cryptosystem described in section 3 of [12]. It unfortunately entails a much
longer public key and a looser reduction.

7 Strong Key-Insulation

The scheme inherently provides strong key-insulation thanks to the erasure of
discrete logarithms α1, α2 of g1, g2 after generation of the initial key usk0. Indeed,
base keys sd1, sd2 (that uniquely determine r1, . . . , rN ) are useless to adversaries
as long as they do not additionally obtain any local secret uski for any period.

To formally prove this fact (in a distinct game from the one of definition 1),
we proceed as in the proof of theorem 1 with the sole difference that no key
exposure query has to be tackled with. Hence, it does not matter if A knows
exponents ri.
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8 Key-Insulated Encryption with Auxiliary Helper

In [2], Anh et al. generalized the notion of PKIE into a new primitive called
key-insulated public key encryption with auxiliary helper. Such a scheme also in-
volves two independent helpers but one of them is auxiliary and used in updates
much less frequently (say every � time periods) than the main helper. In prac-
tice, the latter can be a laptop performing updates every day while the auxiliary
helper (e.g. a smart card) can be kept in a much safer location most of the time
in order to decrease the chance of compromise of both helpers.

This results in noticeable enhancements since, when the main helper is com-
promised, another exposure at the user only harms � time periods: the next
update carried out by the auxiliary helper restores the security. Furthermore,
simultaneous break-ins at the user and the auxiliary helper compromise at most
two adjacent periods as long as the main helper is not also exposed.

In [2], the HHI system [26] was extended into a key-insulated scheme with aux-
iliary helper (implicitly using aggregate signatures). Our constructions can be
similarly extended to fit security definitions of [2] without using random oracles.

9 Conclusion

We pinpointed connections between the concept of parallel key-insulated en-
cryption and certain identity-based cryptosystems using signatures supporting
aggregation. This observation allowed for the design of a secure system in the
standard model.

This motivates the open problem (with or without random oracles) of in-
creasing the number of helpers without paying an important loss of efficiency.
Our scheme and the one of [26] can both be extended to involve more than two
helpers but this entails a significant computational penalty.

References

1. R. Anderson. Two Remarks on Public Key Cryptology. Invited lecture, ACM
Conference on Computer and Communications Security, 1997.

2. P.T.L. Anh, Y. Hanaoka, G. Hanaoka, K. Matsuura, H. Imai. Reducing the Spread
of Damage of Key Exposures in Key-Insulated Encryption. In Vietcrypt’06, to
appear in LNCS series.

3. M. Bellare, S. Miner. A Forward-Secure Digital Signature Scheme. In Crypto’99,
LNCS 1666, pp. 431–448. Springer, 1999.

4. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, ACM Press, 1993.

5. M. Bellare, A. Palacio. Protecting against Key Exposure: Strongly Key-Insulated
Encryption with Optimal Threshold. Cryptology ePrint Archive: Report 2002/064,
2002.

6. D. Boneh, X. Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Eurocrypt’04, LNCS 3027, pp. 223–238. Springer, 2004.



310 B. Libert, J.-J. Quisquater, and M. Yung

7. D. Boneh, X. Boyen, E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In Eurocrypt’05, LNCS 3494, pp. 440–456. Springer,
2005.

8. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. In
Crypto’01, LNCS 2139, pp. 213–229. Springer, 2001.

9. D. Boneh, C. Gentry, B. Lynn, H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eurocrypt’03, volume 2656 of LNCS, pages 416–
432. Springer, 2003.

10. D. Boneh, J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built Using
Identity-Based Encryption. In CT-RSA’05, volume 3376 of LNCS, pages 87–103.
Springer, 2005.

11. D. Boneh, B. Lynn, H. Shacham. Short signatures from the Weil pairing. In
Asiacrypt’01, volume 2248 of LNCS, pages 514–532. Springer, 2002.

12. X. Boyen, Q. Mei, B. Waters. Direct Chosen Ciphertext Security from Identity-
Based Techniques. in ACM CCS’05, ACM Press, pages 320–329, 2005.

13. R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

14. R. Canetti, S. Halevi, J. Katz. A forward secure public key encryption scheme. In
Eurocrypt’03, volume 2656 of LNCS, pages 254–271. Springer, 2003.

15. R. Canetti, S. Halevi, J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt’04, volume 3027 of LNCS, pages 207–222. Springer, 2004.

16. S. S. Chow, L. C. Kwong Hui, S. M. Yiu, K. P. Chow. Secure Hierarchical Identity
Based Signature and Its Application. In ICICS’04, volume 3269 of LNCS, pages
480–494, Springer, 2004.

17. J. S. Coron, D. Naccache. Boneh et al.’s k-Element Aggregate Extraction Assump-
tion Is Equivalent to the Diffie-Hellman Assumption. In Asiacrypt’03, volume 2894
of LNCS, pages 392–397. Springer, 2003.

18. R. Cramer, V. Shoup, Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack, in SIAM Journal of Com-
puting 33, pages 167–226, 2003.

19. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, M. Yung. Intrusion-Resilient Public-Key
Encryption. In CT-RSA’03, volume 2612 of LNCS, pages 19–32. Springer, 2003.

20. Y. Dodis, J. Katz, S. Xu, M. Yung. Key-Insulated Public Key Cryptosystems. In
Eurocrypt’02, volume 2332 of LNCS, pages 65–82. Springer, 2002.

21. Y. Dodis, J. Katz, S. Xu, M. Yung. Strong key-insulated signature schemes. In
PKC’03, volume 2567 of LNCS, pages 130–144. Springer, 2003.

22. Y. Dodis, J. Katz. Chosen-Ciphertext Security of Multiple Encryption. In TCC’05,
volume 3378 of LNCS, pages 188–209, Springer, 2005.

23. E. Fujisaki, T. Okamoto. How to enhance the security of public-key encryption at
minimum cost. In PKC’99, LNCS 1560, pp. 53–68. Springer, 1999.

24. C. Gentry, A. Silverberg. Hierarchical ID-based cryptography. In Asiacrypt’02,
volume 2501 of LNCS, pages 548–566. Springer, 2002.

25. R. Granger, N. P. Smart. On Computing Products of Pairings. Cryptology ePrint
Archive: Report 2006/172, 2006.

26. G. Hanaoka, Y. Hanaoka, H. Imai. Parallel Key-Insulated Public Key Encryption.
In PKC’06, volume 3958 of LNCS, pages 105–122, Springer, 2006.

27. G. Itkis, L. Reyzin. SiBIR: Signer-Base Intrusion-Resilient Signatures. In
Crypto’02, volume 2442 of LNCS, pages 499–514, Springer, 2002.

28. A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In ANTS’00, volume
1838 of LNCS, pages 385–394, Springer, 2000.



Parallel Key-Insulated Public Key Encryption Without Random Oracles 311

29. J. Katz. A Forward-Secure Public-Key Encryption Scheme. Cryptology ePrint
Archive: Report 2002/060, 2002.

30. E. Kiltz. On the Limitations of the Spread of an IBE-to-PKE Transformation. In
PKC’06, LNCS 3958, pp. 274–289, Springer, 2006.

31. E. Kiltz. Chosen-Ciphertext Secure Identity-Based Encryption in the Standard
Model with short Ciphertexts. Cryptology ePrint Archive: Report 2006/122, 2006.

32. E. Kiltz, D. Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation without Random Oracles. In ACISP’06, volume 4058 of LNCS, pages
336–347 Springer, 2006.

33. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters. Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In Eurocrypt’06, volume
4004 of LNCS, pages 465–485, Springer, 2006.

34. K. G. Paterson, J. C. N. Schuldt. Efficient Identity-based Signatures Secure in the
Standard Model. In ACISP’06, volume 4058 of LNCS, pages 207–222, Springer,
2006.

35. V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In Eurocrypt’00, volume 1807 of LNCS, pages 275–288, Springer, 2000.

36. A. Shamir. Identity based cryptosystems and signature schemes. In Crypto’84,
volume 196 of LNCS, pages 47–53. Springer, 1984.

37. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt’05, volume 3494 of LNCS, pages 114–127. Springer 2005.

38. D. Yao, N. Fazio, Y. Dodis, A. Lysyanskaya. ID-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In
ACM CCS’04, ACM Press, pages 354–363, 2004.

A The HHI Construction

The original PKIE system proposed by Hanaoka, Hanaoka and Imai [26] is re-
called below. In some sense, it can be thought of as a double application of a
key-insulated scheme obtained from the Boneh-Franklin IBE [8] using two dis-
tinct Private Key Generators (PKGs) as helpers. To ensure the security in the
sense of definition 1, a private key for period i consists of an aggregation of
private keys for identities i and i − 1.

Key generation: given a security paramter λ ∈ N, this algorithm
1. chooses bilinear map groups (G, GT ) of order p > 2λ, a generator g ∈ G,

hash functions H : {0, 1}∗ → G, G : GT → {0, 1}n (modeled as random
oracles in the security analysis),

2. picks α1, α2
R← Z

∗
p and computes g1 = gα1 , g2 = gα2 ,

3. computes u−1 = H(−1), u0 = H(0),
4. computes d−1 = uα1

−1, d0 = uα2
0 ,

5. initializes the user’s private key to usk0 = d−1d0 ∈ G,
6. Helpers’ private keys are set to mst1 = α1 and mst2 = α2 while the

public key is pk := {p, G, GT , e, g, g1, g2, H, G}.
Helper-Update: given mstj = αj and a period number i ∈ {1, 2, . . . , N},

helper j ∈ {1, 2}
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1. returns ⊥ if i �= j mod 2,
2. computes di−2 = H(i − 2)αj , di = H(i)αj ,
3. outputs an update key hski = di/di−2 ∈ G

User-Update: given uski−1, hski and i,
1. set uski = uski−1 · hski ∈ G,
3. return uski and discard uski−1, hski.

At time period i, user’s private key is always set to

uski = didi−1 = H(i)αj H(i − 1)αj−1 ∈ G

with j = 2 − (i mod 2).
Encrypt: given pk, i ∈ N, a message m ∈ {0, 1}n is encrypted into

σ =
(
gs, m ⊕ G(W )

)

for a random s R← Z
∗
p and W =

(
e(gj , H(i)) · e(gj−1, H(i − 1))

)s with j =
2 − (i mod 2).

Decrypt: given σ = (A, B) and uski, compute

m = B ⊕ G(e(A, uski))

The above version of the scheme is only secure against chosen-plaintext attacks.
The authors of [26] obtain the CCA-security in the random oracle model through
the Fujisaki-Okamoto conversion [23].

B Security Proof for the Parallel Key-Insulated KEM

Chosen-ciphertext security is defined as follows for parallel key-insulated KEMs.

Definition 3. A parallel key-insulated KEM is secure against chosen-ciphertext
attacks if no PPT adversary has non-negligible advantage in the following game:

1. The challenger C runs the key generation algorithm, gives pk to the adversary
A and keeps mst0, mst1 and uks0 to itself.

2. A adaptively issues a series of queries which are either:
- Key Exposure queries as in definition 1
- Decapsulation queries 〈j, σ〉: C responds by generating uskj to run the

decapsulation algorithm on σ and pass the result to A.
3. When A is ready to be challenged, she chooses period number j� ∈ {1, . . . , N}.

The challenger C runs algorithm Encapsulate(j�, pk) to produce a ran-
dom key K† along with its encapsulation σ�. At this point, C tosses a coin
b� R← {0, 1}. If b� = 1, C defines K� = K†. Otherwise, it sets K� R← K as
a randomly chosen element from the key space K. The pair (K�, σ�) is sent
as a challenge to A.

4. A issues new queries as in stage 2.
5. She eventually outputs b ∈ {0, 1} and wins if b = b� provided similar restric-

tions to those of definition 1 are respected.
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As shown in [18], a chosen-ciphertext secure KEM immediately gives rise to an
IND-CCA2 public key cryptosystem when combined with a suitable symmetric
encryption scheme. Although the present setting slightly differs from the tradi-
tional public key setting, it is straightforward to extend the proof of theorem 5
in [18] to our context.

The next theorem now states the security of our parallel key-insulated KEM
in the sense of definition 3 and under the DBDH assumption.

Theorem 2. If no algorithm (t, ε)-breaks the DBDH assumption, our parallel
key-insulated KEM is (t′, 4N(1−qd/p)ε)-secure against chosen-ciphertext attacks
for t′ < t − O(Nτexp + qdτp) where N is the number of time periods, qd denotes
the number of decapsulation queries and τexp, τp respectively stand for the time
complexity of an exponentiation in G and a pairing evaluation.

Proof. We outline an algorithm B receiving as input a tuple (ga, gb, gc, T ) ran-
domly sampled from either Dbdh ={(ga, gb, gc, e(g, g)abc)|a, b, c R← Z

∗
p} or Drand =

{(ga, gb, gc, e(g, g)z)|a, b, c, z R← Z
∗
p} and uses the adversary A to tell which dis-

tribution it was taken from.
The simulator B generates public key components h, g1, g2, g

′
1, g

′
2 as in the

proof of theorem 1. Namely, it sets h = gb, g1 = ga, g2 = gγ
1 for some ran-

domly chosen γ R← Z
∗
p while g′1 and g′2 are chosen to properly handle key

exposure queries as in the proof of theorem 1. In addition, B publishes the
description of a collision-resistant hash function H : N → Z

∗
p and some injec-

tive encoding function H ′ : G → Zp (we refer to [12] for details on how to
obtain such an encoding). Next, B computes ω� = H ′(gc) ∈ Zp and defines
the group element g′ = (g1g2)−ω�

gt3 for a random t3
R← Z

∗
p. The function F3

is implicitly defined as F3(x) = (g1g2)x−ω�

gt3 . The adversary is started with
{p, G, GT , g, g1, g2, h, g′1, g

′
2, g

′, H, H ′} as input. She then issues a series of key
exposure queries which are handled exactly as in the proof of theorem 1. Other
queries are treated as follows.

Decapsulation queries: When A issues a pair 〈i, σ〉 containing a ciphertext
σ = (A, B, C, D) and a period i, B computes ω = H ′(A) ∈ Zp. If ω = ω�,
it aborts. Assuming that H ′ is injective, this implies that A = gc. Since
the DBDH instance was randomly distributed, such a situation only hap-
pens with probability qd/p throughout all queries. If ω �= ω�, B determines
whether σ is valid by checking if

e(A, Fj(i))
e(B, g)

=
e(A, Fj−1(i − 1))

e(C, g)
=

e(A, F3(ω))
e(D, g)

= 1GT .

If the above checking fails, B returns a random element K R← GT from the
key space. Otherwise, it knows that

σ = (A, B, C, D) = (gs, Fj(i)s, Fj−1(i − 1)s, F3(ω)s) ,

where D = (g1g2)s(ω−ω∗)gst3 , for some unknown s ∈ Z
∗
p. Algorithm B then

computes gs
1g

s
2 =

(
D/At3

)1/ω−ω∗

which yields the key K = e(h, g1g2)s.
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Challenge: when A produces her challenge request, the returned ciphertext is

σ� =
(
gc, (gc)t1 , (gc)t2 , (gc)t3

)

while the challenge key is K� = T 1+γ . As F1(�) = gt1 , F2(� − 1) = gt2 (we
still assume that � is odd) and F3(ω�) = gt3 , σ� is a valid encapsulation of
K� if T = e(g, g)abc. If T is random in GT , so is K� and the result follows.

�



Multi-bit Cryptosystems Based on Lattice

Problems

Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan

{kawachi,keisuke,xagawa5}@is.titech.ac.jp

Abstract. We propose multi-bit versions of several single-bit cryptosys-
tems based on lattice problems, the error-free version of the Ajtai-Dwork
cryptosystem by Goldreich, Goldwasser, and Halevi [CRYPTO ’97], the
Regev cryptosystems [JACM 2004 and STOC 2005], and the Ajtai cryp-
tosystem [STOC 2005]. We develop a universal technique derived from a
general structure behind them for constructing their multi-bit versions
without increase in the size of ciphertexts. By evaluating the trade-off
between the decryption errors and the hardness of underlying lattice
problems, it is shown that our multi-bit versions encrypt O(log n)-bit
plaintexts into ciphertexts of the same length as the original ones with
reasonable sacrifices of the hardness of the underlying lattice problems.
Our technique also reveals an algebraic property, named pseudohomo-
morphism, of the lattice-based cryptosystems.

1 Introduction

Lattice-Based Cryptosystems. The lattice-based cryptosystems have been well-
studied since Ajtai’s seminal result [1] on a one-way function based on the
worst-case hardness of lattice problems, which initiated the cryptographic use of
lattice problems. Ajtai and Dwork first succeeded to construct public-key cryp-
tosystems [2] based on the unique shortest vector problem (uSVP). After their
results, a number of lattice-based cryptosystems have been proposed in the last
decade by using cryptographic advantages of lattice problems [3,4,5,6].

We can roughly classify the lattice-based cryptosystems into two types:
(A) those who are efficient on the size of their keys and ciphertexts and the
speed of encryption/decryption procedures, but have no security proofs based
on the hardness of well-known lattice problems, and (B) those who have security
proofs based on the lattice problems but are inefficient.

For example, the GGH cryptosystem [7], NTRU [8] and their improve-
ments [9,10,11] belong to the type A. These are efficient multi-bit cryptosys-
tems related to lattices, but it is unknown whether their security is based on
the hardness of well-known lattice problems. Actually, a few papers reported
security issues of cryptosystems in this type [12,13].

On the other hand, those in the type B have security proofs based on well-
known lattice problems such as uSVP, the shortest vector problem (SVP) and
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the shortest linearly independent vectors problem (SIVP) [2,4,6]. In particular,
the security of these cryptosystems can be guaranteed by the worst-case hardness
of the lattice problems, i.e., breaking the cryptosystems on average is at least as
hard as solving the lattice problems in the worst case. This attractive property of
the average-case/worst-case connection has been also studied from a theoretical
point of view [1,14,15,16].

Aside from the interesting property, such cryptosystems generally have longer
keys and ciphertexts than those of the cryptosystems in the type A. To set
their size practically reasonable, their security parameters must be small, which
possibly makes the cryptosystems insecure in a practical sense [17]. Therefore,
it is important to improve their efficiency for secure lattice-based cryptosystems
in the type B.

In recent years, several researchers actually considered more efficient lattice-
based cryptosystems with security proofs. For example, Regev constructed an
efficient lattice-based cryptosystem with shorter keys [6]. The security is based
on the worst-case quantum hardness of certain approximation versions of SVP
and SIVP, that is, his cryptosystem is secure if we have no polynomial-time
quantum algorithm that solves the lattice problems in the worst case. Ajtai also
constructed an efficient lattice-based cryptosystem with shorter keys by using a
compact representation of special instances of uSVP [5], whose security is based
on a certain Diophantine approximation problem.

Our Contributions. We continue to study efficient lattice-based cryptosystems
with security proofs based on well-known lattice problems or other secure cryp-
tosystems. In particular, we focus on the size of plaintexts encrypted by the
cryptosystems in the type B. To the best of the authors’ knowledge, all those
in this type are single-bit cryptosystems. We therefore obtain more efficient
lattice-based cryptosystems with security proofs if we succeed to construct their
multi-bit versions without increase in the size of ciphertexts.

In this paper, we consider multi-bit versions of the improved Ajtai-Dwork
cryptosystem proposed by Goldreich, Goldwasser, and Halevi [3], the Regev
cryptosystems given in [4] and in [6], and the Ajtai cryptosystem [5]. We de-
velop a universal technique derived from a general structure behind them for
constructing their multi-bit versions without increase in the size of ciphertexts.

Our technique requires precise evaluation of trade-offs between decryption
errors and hardness of underlying lattice problems in the original lattice-based
cryptosystems. We firstly give precise evaluation for the trade-offs to apply our
technique to constructions of the multi-bit versions. This precise evaluation also
clarifies a quantitative relationship between the security levels and the decryption
errors in the lattice-based cryptosystems, which may be useful to improve the
cryptosystems beyond our results.

Due to this evaluation of the cryptosystems, it is shown that our multi-bit
versions encrypt O(log n)-bit plaintexts into ciphertexts of the same length as
the original ones with reasonable sacrifices of the hardness of the underlying
lattice problems.



Multi-bit Cryptosystems Based on Lattice Problems 317

Table 1. summary.(ε is any positive constant and Õ (f(n)) means O (f(n) poly(log n)).)

Ajtai-Dwork Regev’04

cryptosystem ADGGH [3] mADGGH R04 [4] mR04

security O(n11)-uSVP O(n11+ε)-uSVP Õ(n1.5)-uSVP Õ(n1.5+ε)-uSVP
size of public key O(n5 log n) O(n5 log n) O(n4) O(n4)
size of private key O(n2) O(n2) O(n2) O(n2)
size of plaintext 1 O(log n) 1 O(log n)
size of ciphertext O(n2 log n) O(n2 log n) O(n2) O(n2)

rounding precision 2−n 2−n 2−8n2
2−8n2

Regev’05 Ajtai

cryptosystem R05 [6] mR05 A05 [5] mA05

security SVPÕ(n1.5) SVPÕ(n1.5+ε) DA′ A05

size of public key O(n2 log2 n) O(n2 log2 n) O(n2 log n) O(n2 log n)
size of private key O(n log n) O(n log n) O(n log n) O(n log n)
size of plaintext 1 O(log n) 1 O(log n)
size of ciphertext O(n log n) O(n log n) O(n log n) O(n log n)
rounding precision 2−n 2−n 1/n 1/n

The ciphertexts of our multi-bit version are distributed in the same cipher-
text space, theoretically represented with real numbers, as the original crypto-
system. To represent the real numbers in their ciphertexts, we have to round
their fractional parts with certain precision. The size of ciphertexts then in-
creases if we process the numbers with high precision. We stress that our tech-
nique does not need higher precision than that of the original cryptosystems,
i.e., we take the same precision in our multi-bit versions as that of the original
ones.

See Table 1 for the cryptosystems studied in this paper. We call the crypto-
systems proposed in [3,4,6,5] ADGGH, R04, R05, and A05, respectively. We also
call the corresponding multi-bit versions mADGGH, mR04, mR05, and mA05.

The problems in the security fields are deeply related to lattice problems.
The shortest vector problem within approximation factor γ (SVPγ) is generally
considered as a hard problem for polynomial factor of γ, which is defined as
follows. Given a lattice L, the problem is to find a shortest non-zero vector
u ∈ L within approximation factor γ.

The unique shortest vector problem (uSVP) is also well known as a hard
lattice problem applicable to cryptographic constructions. We say the shortest
vector u of a lattice L is f -unique if for any non-zero vector v ∈ L which is not
parallel to u, f ‖u‖ ≤ ‖v‖. Given a lattice L whose shortest vector is f -unique,
the problem is to find a non-zero vector u ∈ L such that for any non-zero vector
v ∈ L which is not parallel to u, f ‖u‖ ≤ ‖v‖.

While the security of ADGGH, R04, and R05 is based on the above two lattice
problems, that of A05 is on a variant of Diophantine approximation problem
(DA′). See [5] for the definition of this problem.
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We also focus on the algebraic property we call pseudohomomorphism of the
lattice-based cryptosystems. The homomorphism of ciphertexts is quite useful
for many cryptographic applications. (See, e.g., [18].) In fact, the single-bit cryp-
tosystems ADGGH, R04, R05 and A05 implicitly have a similar property to the
homomorphism. Let E(x1) and E(x2) be ciphertexts of x1 and x2 ∈ {0, 1}, re-
spectively. Then, E(x1)+E(x2) becomes a variant of E(x1 ⊕x2). More precisely,
E(x1)+E(x2) does not obey the distribution of the ciphertexts, but we can guar-
antee the same security level as that of the original cryptosystem and decrypt
E(x1) + E(x2) to x1 ⊕ x2 by the original private key with a small decryption
error. We refer to this property as the pseudohomomorphism. Goldwasser and
Kharchenko actually made use of a similar property to construct the plaintext
knowledge proof system for the Ajtai-Dwork cryptosystem [19].

Unfortunately, it is only over Z2 (and direct product groups of Z2 by con-
catenating the ciphertexts) that we can operate the addition of the plaintexts
in the single-bit cryptosystems. It is unlikely that we can naively simulate the
addition over large cyclic groups by concatenating ciphertexts in such single-bit
cryptosystems.

In this paper, we present the pseudohomomorphic property of mADGGH over
larger cyclic groups. The property of mR04, mR05, and (a slightly modified
version of) mA05 can be shown similarly, whose proof will be given in the full
paper. We believe that this property extends the possibility of the cryptographic
applications of the lattice-based cryptosystems.

Main Idea for Multi-Bit Constructions and Their Security. We can actually find
the following general structure behind the single-bit cryptosystems ADGGH, R04,
R05, and A05: Their ciphertexts of 0 are basically distributed according to a pe-
riodic Gaussian distribution and those of 1 are also distributed according to
another periodic Gaussian distribution whose peaks are shifted to the middle of
the period. We thus embed two periodic Gaussian distributions into the cipher-
text space such that their peaks appear alternatively and regularly. (See the left
side of Figure 1.)

Our technique is based on a generalization of this structure. More precisely,
we regularly embed multiple periodic Gaussian distributions into the ciphertext
space rather than only two ones. (See the right side of Figure 1.) Embedding
p periodic Gaussian distributions as shown in this figure, the ciphertexts for a
plaintext i ∈ {0, . . . , p − 1} are distributed according the i-th periodic Gaussian
distribution. This cyclic structure enables us not only to improve the efficiency
of the cryptosystems but also to guarantee their security.

If we embed too many periodic Gaussian distributions, the decryption errors
increase due to the overlaps of the distributions. We can then decrease the de-
cryption errors by reducing their variance. However, it is known that smaller
variance generally makes such cryptosystems less secure, as commented in [3].
We therefore have to evaluate the trade-offs in our multi-bit versions between
the decryption errors and their security, which depend on their own structures
of the cryptosystems.
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Fig. 1. the embedding of periodic Gaussian distributions

Once we evaluate their trade-offs, we can apply a general strategy based on the
cyclic structure to the security proofs. The security of the original cryptosystems
basically depends on the indistinguishability between a certain periodic Gaussian
distribution Φ and a uniform distribution U since it is shown in their security
proofs that we can construct an efficient algorithm for a certain hard lattice
problem by employing an efficient distinguisher between Φ and U . The goal
is thus to construct the distinguisher from an adversary against the multi-bit
version.

We first assume that there exists an efficient adversary for distinguishing be-
tween two Gaussian distributions corresponding two kinds of ciphertexts in our
multi-bit version with its public key. By the hybrid argument, the adversary
can distinguish either between Φi and U or between Φj and U . We now sup-
pose that it can distinguish between Φi and U . Note that we can slide Φi to
Φ0 corresponding to ciphertexts of 0 even if we do not know the private key by
the cyclic property of the ciphertexts. Thus, we obtain an efficient distinguisher
between Φ0 and U . Φ0 is in fact a variance-reduced version of the periodic Gauss-
ian distribution Φ used in the original cryptosystem. We can guarantee the in-
distinguishability between such a version Φ0 and U is based on the hardness
of another lattice problem slightly easier than the original one. We can there-
fore guarantee the security of our multi-bit versions similarly to the original
ones.

Encryption and Decryption in Multi-Bit Versions. We also exploit this cyclic
structure for the correctness of encryption and decryption procedures. In the
original cryptosystems except for R05, the private key is the period d of the
periodic Gaussian distribution, and the public key consists of the information
for generating the periodic Gaussian distribution corresponding to 0 and the
information for shifting the distribution to the other distribution corresponding
to 1. The latter information for the shift essentially is k(d/2) for a random
odd number k. Then, if we want to encrypt a plaintext 0, we generate the periodic
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Gaussian distribution corresponding to 0. Also, if we want to encrypt 1, we
generate the distribution corresponding to 0 and then shift it using the latter
information.

The private and public keys in our multi-bit versions are slightly different
from those of the original ones. The major difference is the information for
shifting the distribution. If the size of the plaintext space is p, the information
for the shift is essentially k(d/p), where the number k must be a coprime to p for
unique decryption. We then interpret the number k as a generator of the group
of periodic Gaussian distributions. We adopt a prime as the size of the plaintext
space p for efficient public key generation in our constructions. The private key
also contains this number k other than the period d. Therefore, we can construct
correct encryption and decryption procedures using this information k.

In the cases of R05 and mR05, it is not necessary for keys to contain the infor-
mation for the shift. We can actually obtain such information due to their own
structures even if it is not given from the public key. Thus, p is not necessarily
a prime in mR05.

Pseudohomomorphism in Multi-Bit Versions. The regular embedding of the pe-
riodic Gaussian distributions also gives our multi-bit cryptosystems the algebraic
property named pseudohomomorphism. Recall that a Gaussian distribution has
the following reproducing property: For two random variables X1 and X2 ac-
cording to N(m1, s

2
1) and N(m2, s

2
2), where N(m, s2) is a Gaussian distribution

with mean m and standard deviation s, the distribution of X1 + X2 is equal
to N(m1 + m2, s

2
1 + s2

2). This property implies that the sum of two ciphertexts
(i.e., the sum of two periodic Gaussian distributions) becomes a variant of a
ciphertext (i.e., a periodic Gaussian distribution with larger variance). This sum
can be moreover decrypted into the sum of two plaintexts with the private key
of the multi-bit version, and has the indistinguishability based on the security of
the multi-bit version. By precise analysis of our multi-bit versions, we estimate
the upper bound of the number of the ciphertexts which can be summed without
the change of the security and the decryption errors.

Organization. The rest of this paper is organized as follows. We describe basic no-
tions and notations for lattice-based cryptosystems in Section 2. In Section 3, we
first review the improved Ajtai-Dwork cryptosystem ADGGH and then describe
the corresponding multi-bit version mADGGH in detail. We omit the description
of the other multi-bit versions mR04, mR05, and mA05 since the main idea of
their constructions are based on the same universal technique and the difference
among them is mainly the evaluation of the trade-offs in each of cryptosystems.
They will appear in the full paper. We also give concluding remarks in Section 4.

2 Basic Notions and Notations

The length of a vector x = t(x1, . . . , xn) ∈ R
n, denoted by ‖x‖, is (

∑n
i=1 x2

i )
1/2,

where tx is the transpose of x. The inner product of two vectors x =
t(x1, . . . , xn) ∈ R

n and y = t(y1, . . . , yn) ∈ R
n, denoted by 〈x, y〉, is

∑n
i=1 xiyi.
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The security parameter n of lattice-based cryptosystems is given by dimension
of a lattice in the lattice problems on which security of the cryptosystems are
based. Let �x	 be the closest integer to x ∈ R (if there are two such integers, we
choose the smaller.) and frc (x) = |x − �x	| for x ∈ R, i.e., frc (x) is the distance
from x to the closest integer.

A function f(n) is called negligible for sufficiently large n if limn→∞ ncf(n) =
0 for any constant c > 0. We similarly call f(n) a non-negligible function if
there exists a constant c > 0 such that f(n) > n−c for sufficiently large n. We
call probability p exponentially close to 1 if p = 1 − 2−Ω(n). We represent a
real number by rounding its fractional part. If the fractional part of x ∈ R is
represented in m bits, the rounded number x̄ has the precision of 1/2m, i.e., we
have |x − x̄| ≤ 1/2m.

We say that an algorithm distinguishes between two distributions if the gap
between the acceptance probability for their samples is non-negligible.

Lattices. An n-dimensional lattice in R
n is the set L(b1, . . . , bn) = {∑n

i=1 αibi :
αi ∈ Z} of all integral combinations of n linearly independent vectors b1, . . . , bn.
The sequence of vectors b1, . . . , bn is called a basis of the lattice L. For clarity
of notations, we represent a basis by the matrix B = (b1, . . . , bn) ∈ R

n×n. For
any basis B, we define the fundamental parallelepiped P(B) = {∑n

i=1 αibi : 0 ≤
αi < 1}. The vector x ∈ R

n reduced modulo the parallelepiped P(B), denoted
by x mod P(B), is the unique vector y ∈ P(B) such that y − x ∈ L(B). The
dual lattice L∗ of a lattice L is the set L∗ = {x ∈ R

n : 〈x, y〉 ∈ Z for all y ∈ L}.
If L is generated by basis B, then (tB)−1 is a basis for the dual lattice, where
tB is the transpose of B.

For more details on lattices, see the textbook by Micciancio and Gold-
wasser [20].

3 A Multi-bit Version of the Improved Ajtai-Dwork
Cryptosystem

On behalf of four cryptosystems ADGGH, R04, R05, and A05, we discuss the
improved Ajtai-Dwork cryptosystem ADGGH given by Goldreich, Goldwasser,
and Halevi [3] in detail and apply our technique to construction of its multi-bit
version mADGGH in this section.

3.1 The Improved Ajtai-Dwork Cryptosystem and Its Multi-bit
Version

For understanding our construction intuitively, we first overview the protocol of
ADGGH. Let N = nn = 2n log n. We define an n-dimensional hypercube C and
an n-dimensional ball Br as C = {x ∈ R

n : 0 ≤ xi < N, i = 1, . . . , n} and
Br = {x ∈ R

n : ‖x‖ ≤ n−r/4} for any constant r ≥ 7, respectively. For u ∈ R
n

and an integer i we define a hyperplane Hi as Hi = {x ∈ R
n : 〈x, u〉 = i}.
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Fig. 2. ciphertexts of 0 in ADGGH Fig. 3. ciphertexts of 1 in ADGGH

Roughly speaking, ADGGH encrypts 0 into a vector distributed closely around
hidden (n − 1)-dimensional parallel hyperplanes H0, H1, H2, . . . for a normal
vector u of H0, and encrypts 1 into a vector distributed closely around their
intermediate parallel hyperplanes H0 + u/(2 ‖u‖2), H1 + u/(2 ‖u‖2), . . . . (See
Figure 2 and Figure 3.) Then, the private key is the normal vector u. These
distributions of ciphertexts can be obtained from its public key, which consists
of vectors on the hidden hyperplanes and information i1 for shifting a vector
on the hyperplanes to another vector on the intermediate hyperplanes. If we
know the normal vector, we can reduce the n-dimensional distribution to on the
1-dimensional one along the normal vector. Then, we can easily find whether a
ciphertext distributed around the hidden hyperplanes or the intermediate ones.

We now describe the protocol of ADGGH as follows. Our description slightly
generalizes the original one by introducing a parameter r, which controls the
variance of the distributions since we need to estimate a trade-off between the
security and the size of plaintexts in our multi-bit version.

Preparation: All the participants agree with the security parameter n, the
variance-controlling parameter r, and the precision 2−n for rounding real
numbers.

Key Generation: We choose u uniformly at random from the n-dimensional
unit ball. Let m = n3. Repeating the following procedure m times, we sam-
ple m vectors v1, . . . , vm: (1) We choose ai from {x ∈ C : 〈x, u〉 ∈ Z}
uniformly at random, (2) choose b1, . . . , bn from Br uniformly at ran-
dom, (3) and output vi = ai +

∑n
j=1 bj as a sample. We then take the

minimum index i0 satisfying that the width of P(vi0+1, . . . , vi0+n) is at
least n−2N , where width of a parallelepiped P(x1, . . .xn) is defined as
mini=1,...,n Dist(xi, span(x1, . . . , xi−1, xi+1, . . . , xn)) for a distance function
Dist(·, ·) between a vector and an (n − 1)-dimensional hyperplane.

Now let wj = vi0+j for every j ∈ {1, . . . , n}, V = (v1, . . . , vm), and
W = (w1, . . . , wn). We also choose an index i1 uniformly at random from
{i : 〈ai, u〉 is odd}, where ai is the vector appeared in the sampling pro-
cedure for vi. Note that there are such indices i0 and i1 with probability
1 − o(1). If such indices do not exist, we perform this procedure again. To
guarantee the security, ‖u‖ should be in [1/2, 1). The probability of this
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event is exponentially close to 1. If the condition is not satisfied, we sample
the vector u again. Then, the private key is u and the public key is (V, W, i1).

Encryption: Let S be a uniformly random subset of {1, 2, . . . , m}. We encrypt
a plaintext σ ∈ {0, 1} to x = σ

2 vi1 +
∑

i∈S vi mod P(W ).
Decryption: Let x ∈ P(W ) be a received ciphertext. We decrypt x to 0 if

frc (〈x, u〉) ≤ 1/4 and to 1 otherwise.

Carefully reading the results in [2,3], we obtain the following theorem on the
cryptosystem ADGGH.

Theorem 1 ([3]). The cryptosystem ADGGH encrypts a 1-bit plaintext into an
n�n(log n+1)	-bit ciphertext with no decryption errors. The security of ADGGH
is based on the worst case of O(nr+5)-uSVP for r ≥ 7. The size of the public key
is O(n5 log n) and the size of the private key is O(n2).

As commented in [21], we can actually improve the security of ADGGH by a
result in [21]. We will give the proof in the full paper.

Theorem 2. The security of ADGGH is based on the worst case of O(nr+4)-
uSVP for r ≥ 7.

We next describe the multi-bit version mADGGH of ADGGH. Let p be a prime
such that 2 ≤ p ≤ nr−7, where the parameter r controls a trade-off between the
size of the plaintext space and the hardness of underlying lattice problems. In
mADGGH, we can encrypt a plaintext of log p bits into a ciphertext of the same
size as ADGGH. The strategy of our construction basically follows the argument
in Section 1. Note that the parameter r is chosen to keep our version error-free.

Preparation: All the participants agree with the parameters n, r and the pre-
cision 2−n similarly to ADGGH, and additionally the size p of the plaintext
space.

Key Generation: The key generation procedure is almost the same as that of
ADGGH. We choose an index i′1 uniformly at random from {i : 〈ai, u〉 �≡
0 mod p} instead of i1 in the original key generation procedure. We set de-
cryption information k ≡ 〈ai′

1
, u〉 mod p. Note that there is such a k with

probability 1 − (1/p)m = 1 − o(1). Then, the private key is (u, k) and the
public key is (V, W, i′1).

Encryption: Let S be a uniformly random subset of {0, 1}m. We encrypt σ ∈
{0, . . . , p − 1} to x = σ

p vi′
1
+

∑
i∈S vi mod P(W ).

Decryption: We decrypt a received ciphertext x ∈ P(W ) to �p 〈x, u〉	 k−1 mod
p, where k−1 is the inverse of k in Zp.

Before evaluating the performance of mADGGH precisely, we give the summary
of the results as follows.

Theorem 3 (security and decryption errors). Let r ≥ 7 be any constant
and let p(n) be a prime such that 2 ≤ p(n) ≤ nr−7. The cryptosystem mADGGH
encrypts a �log p(n)�-bit plaintext into an n�n(logn + 1)	-bit ciphertext without
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the decryption errors. The security of mADGGH is based on the worst case of
O(nr+4)-uSVP. The size of the public key is the same as that of the original
one. The size of the private key is �log p(n)	 plus that of the original one.

Theorem 4 (pseudohomomorphism). Let r ≥ 7 be any constant. Also, let p
be a prime and let κ be an integer such that κp ≤ nr−7. Let Em be the encryption
function of mADGGH. For any κ plaintexts σ1, . . . , σκ (0 ≤ σi ≤ p − 1), we can
decrypt the sum of κ ciphertexts

∑κ
i=1 Em(σi) mod P(W ) into

∑κ
i=1 σi mod p

without decryption error. Moreover, if there exist two sequences of plaintexts
(σ1, . . . , σκ) and (σ′

1, . . . , σ
′
κ), and a polynomial-time algorithm that distinguishes

between
∑κ

i=1 Em(σi) mod P(W ) and
∑κ

i=1 Em(σ′
i) mod P(W ) with its public

key, then there exists a polynomial-time algorithm that solves O(nr+4)-uSVP in
the worst case with non-negligible probability.

In what follows, we demonstrate the performance of mADGGH stated in the
above theorems.

3.2 Decryption Errors of mADGGH

We first evaluate the decryption error probability in mADGGH. The following
theorem can be proven by a similar argument to the analysis of [2,3]. Since we
generalize this theorem for analysis of the pseudohomomorphism in mADGGH
(Theorem 7), we here give a precise proof.

Theorem 5. The cryptosystem mADGGH makes no decryption errors.

Proof. Since the decryption error probability for any ciphertext can be estimated
by sliding the distribution to that of the ciphertext of 0, we first estimate the
decryption error probability for the ciphertext of 0.

Let H := {x ∈ R
n : 〈x, u〉 ∈ Z}. From the definition, Dist(vi, H) ≤

n · n−r/4 for 1 ≤ i ≤ m. Thus, we can obtain frc (〈vi, u〉) ≤ n1−r/4 and
frc

(〈∑
i∈S vi, u

〉) ≤ n4−r/4. Next, we estimate an inner product between∑
i∈S vi mod P(W ) and u. Let

∑
i∈S vi = r +

∑n
j=1 qjwj , where r ∈ P(W ).

Since ‖wj‖ ≥ n−2N and p ≤ nr−7, we have |qj | ≤ n5 and

frc (〈r, u〉) ≤ n · n5 · 1
4
n1−r +

1
4
n4−r ≤ 5

16
n7−r ≤ 1

2p
.

Therefore, we decrypt a ciphertext of 0 into 0 without decryption errors.
Now let ρ be a ciphertext of σ. Let Z ± a := {x ∈ R : frc (x) ≤ a} for a ≥ 0

and Z + a ± b := {x ∈ R : frc (x − a) ≤ b} for a, b ≥ 0. By a property of the key
generation, we have

〈
vi′

1
/p, u

〉 ∈ Z + k/p ± n1−r/4p and

〈ρ, u〉 ∈ Z +
k

p
σ ± 5

16
n7−r ± 1

4p
n1−rσ ± 1

4
n4−r ⊂ Z +

k

p
σ ± 3

8
n7−r.

Therefore, we obtain 〈ρ, u〉 ∈ Z + kσ/p ± 1/(2p) and decrypt ρ into σ without
decryption errors. ��
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3.3 Security of mADGGH

We next prove the security of mADGGH. Let UP(W ) be a uniform distribution on
P(W ). We denote the encryption function of ADGGH by E defined as a random
variable E(σ, (V, W, i1)) for a plaintext σ and a public key (V, W, i1). If the public
key is obvious, we abbreviate E(σ, (V, W, i1)) to E(σ). Similarly, the encryption
function Em is defined for mADGGH.

First, we show that the indistinguishability between two certain distributions
is based on the worst-case hardness of uSVP. The following lemma can be ob-
tained by combining Theorem 2 and the results in [2] and [3] with our general-
ization.

Lemma 1 ([2,3]). If there exists a polynomial-time distinguisher between
(E(0), (V, W, i1)) and (UP(W ), (V, W, i1)), there exists a polynomial-time algo-
rithm for the worst case of O(nr+4)-uSVP for r ≥ 7.

We next present the indistinguishability between the ciphertexts of 0 in
mADGGH and UP(W ).

Lemma 2. If there exists a polynomial-time algorithm D1 that distin-
guishes between (Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)), there exists a
polynomial-time algorithm D2 that distinguishes between (E(0), (V, W, i1)) and
(UP(W ), (V, W, i1)).

Proof. We denote by ε(n) the non-negligible gap of the acceptance probability
of D1 between Em(0) and UP(W ) with its public key. We will construct the
distinguisher D2 from the given algorithm D1. To run D1 correctly, we first find
the index i′1 by estimating the gap of acceptance probability between Em(0)
and UP(W ) with the public key. If we can find i′1, we output the result of D1
using i′1 with the public key. Otherwise, we output a uniformly random bit.
For random inputs of ciphertexts and public keys, the above procedure can
distinguish between them.

We now describe the details of D2 as follows. We denote by x and (V, W, i1)
a ciphertext and a public key of ADGGH given as an input for D2, respectively.
Also, let p0 = Pr[D1(Em(0), (V, W, j)) = 1] and pU = Pr[D1(UP(W ), (V, W, j)) =
1], where the probability p0 is taken over the inner random bits of the encryption
procedure and pU is taken over UP(W ).

(D1) For every j ∈ {1, . . . , m}, we run D1(Em(0), (V, W, j)) and
D1(UP(W ), (V, W, j)) T = n/ε2 times. Let x0(j) and xU (j) be the number of
1 in the outputs of D1 for the ciphertexts of 0 and the uniform distribution
with the index j, respectively.

(D2) If there exists the index j′ such that |x0(j′) − xU (j′)|/T > ε/2, we take
j′ as the component of the public key.

(D3) We output D1(x, (V, W, j′)) if we find j′. Otherwise, we output a uniformly
random bit.
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Note that we have |p0 − x0(j′)/T | ≤ ε/4 and |pU − xU (j′)/T | ≤ ε/4 with prob-
ability exponentially close to 1 by the Hoeffding bound [22]. Therefore, we suc-
ceed to choose the index j′ with which D1 can distinguish between the target
distributions with probability exponentially close to 1 if j′ exists. By the above
argument, D1 works correctly for a non-negligible fraction of all the inputs. ��

The next lemma can be proven by the hybrid argument.

Lemma 3. If there exist σ1, σ2 ∈ {0, . . . , p−1} and a polynomial-time algorithm
D3 that distinguishes between (Em(σ1), (V, W, i′1)) and (Em(σ2), (V, W, i′1)),
there exists a polynomial-time algorithm D4 that distinguishes between
(Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)).

Proof. By the hybrid argument, the distinguisher D3 can distinguish between
Em(σ1) and UP(W ) or between Em(σ2) and UP(W ) with its public key. With-
out loss of generality, we can assume that D3 can distinguish between Em(σ1)
and UP(W ) with its public key. Note that we have Em(σ1, (V, W, i′1)) =
Em(0, (V, W, i′1)) + σ1

p vi′
1

mod P(W ) by the definition of Em. Then, we
can transform a given x from Em(0, (V, W, i′1)) to another sample y from
Em(σ1, (V, W, i′1)). We can therefore obtain the polynomial-time algorithm D4
that distinguishes between (Em(0), (V, W, i′1)) and (UP(W ), (V, W, i′1)). ��

By the above three lemmas, we obtain the security proof for our multi-bit version
mADGGH.

Theorem 6. If there exist plaintexts σ1, σ2 ∈ {0, . . . , p − 1} and a polynomial-
time algorithm that distinguishes between the ciphertexts of σ1 and σ2 of
mADGGH with its public key, there exists a polynomial-time algorithm for the
worst-case of O(nr+4)-uSVP for r ≥ 7.

3.4 Pseudohomomorphism of mADGGH

As stated in Theorem 4, mADGGH has the pseudohomomorphic property. To
demonstrate this property, we have to evaluate the decryption errors for sum of
ciphertexts and prove its security.

Decryption Errors for Sum of Ciphertexts. First, we evaluate the decryption
errors when we apply the decryption procedure to the sum of ciphertexts in
mADGGH. Recall that Z ± a := {x ∈ R : frc (x) ≤ a} for a ≥ 0 and Z + a ± b :=
{x ∈ R : frc (x − a) ≤ b} for a, b ≥ 0.

Theorem 7. Let r ≥ 7 be any constant. Also let p be a prime and κ be an integer
such that κp ≤ nr−7. For any κ plaintexts σ1, . . . , σκ (0 ≤ σi ≤ p − 1), we can
decrypt the sum of κ ciphertexts

∑κ
i=1 Em(σi) mod P(W ) into

∑κ
i=1 σi mod p

without the decryption errors.
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Proof. We define ρ1, . . . , ρκ as ciphertexts of σ1, . . . , σκ, respectively. We will
show that we can decrypt ρ :=

∑κ
i=1 ρi mod P(W ) into

∑κ
i=1 σi mod p. From

the proof of Theorem 5, we have

〈ρi, u〉 ∈ Z +
k

p
σi ± 3

8
n7−r.

Hence, we obtain
〈

κ∑

i=1

ρi, u

〉

∈ Z +
k

p

κ∑

i=1

σi ± 3
8
κn7−r.

Combining with the fact ρi ∈ P(W ) and κp ≤ nr−7, we have

〈ρ, u〉 ∈ Z +
k

p

κ∑

i=1

σi ± 3
8
κn7−r ± 1

4
κn2−r

⊂ Z +
k

p

κ∑

i=1

σi ± 1
2
κn7−r

⊂ Z +
k

p

κ∑

i=1

σi ± 1
2p

.

Therefore, we correctly decrypt ρ into
∑κ

i=1 σi mod p. ��

Security for Sum of Ciphertexts. We can also give the security proof for the
sum of ciphertexts in mADGGH. The security proof obeys so general framework
that we can apply the same argument to the security of sum of ciphertexts in
the other multi-bit versions mR04, mR05, and mA05′. For convenience of the
other multi-bit versions, we here present an abstract security proof for sum of
ciphertexts. We denote the encryption function of our multi-bit cryptosystems
by Em, also regarded as a random variable Em(σ, pk) for a plaintext σ and a
public key pk. If the public key is obvious, we abbreviate Em(σ, pk) to Em(σ).
Let C be the ciphertext space and UC be the uniform distribution on C.

We first show that it is hard to distinguish between the sum of ciphertexts
and the uniform distribution if it is hard to distinguish between κ samples from
Em(0) and those from UC.

Lemma 4. If there exist two sequences of plaintexts (σ1, . . . , σκ) and
(σ′

1, . . . , σ
′
κ) and a polynomial-time algorithm D1 that distinguishes between

(
∑κ

i=1 Em(σi), pk) and (
∑κ

i=1 Em(σ′
i), pk), then there exists a polynomial-time

algorithm D2 that distinguishes between κ ciphertexts and its public key
(Em(0, pk), . . . , Em(0, pk), pk) and uniformly random κ ciphertexts and the pub-
lic key (UC , . . . , UC , pk).

Proof. By the hybrid argument, the distinguisher D1 can distinguish be-
tween

∑κ
i=1 Em(σi) and UC or between

∑κ
i=1 Em(σ′

i) and UC with its pub-
lic key. Without loss of generality, we can assume that D1 can distinguish
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between (
∑κ

i=1 Em(σi), pk) and (UC , pk). By (σ1, . . . , σκ), we can transform
(Em(σ1), . . . , Em(σκ), pk) into (

∑κ
i=1 Em(σi), pk). This shows the polynomial-

time distinguisher D2. ��
As already stated in Section 1 (and Lemma 2 in the case of ADGGH), the orig-
inal security proofs of ADGGH, R04, R05 and A05 show that we have efficient
algorithms for certain lattice problems if there is an efficient distinguisher be-
tween Em(0) and UC with its public key. By the similar argument to that in
original proofs, we also have such algorithms from efficient distinguisher D2 be-
tween (Em(0), . . . , Em(0), pk) and (UC , . . . , UC , pk). Thus, we obtain from D2 in
Lemma 4 a probabilistic polynomial-time algorithm A that solve the worst case
of O(nr+4)-uSVP in the case of mADGGH.

By combining the above discussion with Lemma 4, we guarantee the security
of the sum of ciphertexts in mADGGH.

Theorem 8. If there exist two sequences of plaintext (σ1, . . . , σκ) and
(σ′

1, . . . , σ
′
κ) and a polynomial-time algorithm D1 that distinguishes between

(
∑κ

i=1 Em(σi), pk) and (
∑κ

i=1 Em(σ′
i), pk), then there exists a probabilistic

polynomial-time algorithm A that solves the worst case of O(nr+4)-uSVP in
the case of mADGGH.

4 Concluding Remarks

We have developed a universal technique for constructing multi-bit versions of
lattice-based cryptosystems using periodic Gaussian distributions and revealed
their pseudohomomorphism. In particular, we have showed the details of the
multi-bit version of the improved Ajtai-Dwork cryptosystem in Section 3.

Although our technique achieved only logarithmic improvements on the length
of plaintexts, we also obtained precise evaluation of the trade-offs between de-
cryption errors and the hardness of underlying lattice problems in the single-bit
cryptosystems. We believe that our evaluation is useful for further improvements
of such single-bit cryptosystems.

Another direction of research on lattice-based cryptosystems is to find in-
teresting cryptographic applications by their algebraic properties such as the
pseudohomomorphism. Number-theoretic cryptosystems can provide a number
of applications due to their algebraic structures, whereas lattice-based ones have
few applications currently. For demonstration of the cryptographic advantages
of lattice problems, it is important to develop the algebraic properties and their
applications such as [19].
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Abstract. Yao’s classical millionaires’ problem is about securely deter-
mining whether x > y, given two input values x, y, which are held as
private inputs by two parties, respectively. The output x > y becomes
known to both parties.

In this paper, we consider a variant of Yao’s problem in which the in-
puts x, y as well as the output bit x > y are encrypted. Referring to the
framework of secure n-party computation based on threshold homomor-
phic cryptosystems as put forth by Cramer, Damg̊ard, and Nielsen at
Eurocrypt 2001, we develop solutions for integer comparison, which take
as input two lists of encrypted bits representing x and y, respectively,
and produce an encrypted bit indicating whether x > y as output. Se-
cure integer comparison is an important building block for applications
such as secure auctions.

In this paper, our focus is on the two-party case, although most of
our results extend to the multi-party case. We propose new logarithmic-
round and constant-round protocols for this setting, which achieve si-
multaneously very low communication and computational complexities.
We analyze the protocols in detail and show that our solutions compare
favorably to other known solutions.

Keywords: Millionaires’ problem; secure multi-party computation;
homomorphic encryption.

1 Introduction

The millionaires’ problem, introduced by Yao [Yao82], involves two parties who
want to compare their riches: they wish to know who is richer but do not want to
disclose any other information about their riches to each other. More formally,
the problem is to find a two-party protocol for the secure evaluation of the
function f(x, y) = [x > y] where the bracket notation [B], for a condition B,
is defined by [B] = 1 if B holds and [B] = 0 otherwise (this is called Iverson’s
convention; see [Knu97]).
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Rather than requiring that the inputs x and y are actually known as pri-
vate inputs to the parties, we will work in the more general setting where the
inputs are not necessarily known to the parties running the protocol. Instead,
the inputs to the protocol may be given as encrypted values only, and the out-
put will also be made available in encrypted form. Note that the inputs to our
protocols will actually be encryptions of the individual bits, representing the
integers to be compared. For these encryptions we will use a threshold homo-
morphic cryptosystem, as in the framework of secure n-party computation based
on threshold homomorphic cryptosystems put forth by Cramer, Damg̊ard, and
Nielsen [CDN01]. In line with this, we consider the case of an active, static
adversary1, i.e., we consider the malicious case.

Requiring (i) that the inputs are given in encrypted form (without anyone
knowing these inputs) and (ii) that the output bit [x > y] also be encrypted
(without anyone learning its value) sets our problem setting apart from the
setting of Yao’s paper [Yao82] and much of the follow-up literature. Indeed,
consider computing [x = y] in the case of encrypted inputs but public output,
where the following well-known solution works. Let [[M ]] denote a (probabilistic)
encryption of a message M in a threshold homomorphic cryptosystem. Given
encryptions [[x]] and [[y]], the encryption [[x − y]] is publicly computed. Further-
more, the parties jointly compute an encryption [[r]] for a (jointly) random r.
Using one invocation of a secure multiplication protocol, the parties then pro-
duce encryption [[(x − y)r]], which is jointly decrypted. If the result is 0, then
x = y; otherwise, x �= y, and the result is a random number. In contrast, when
the output is required in encrypted form, such simple solutions are not known
and typically protocols (including ours) work over the encrypted values of the
binary representation of the inputs x and y.

Furthermore, unlike many publications on the millionaires’ problem, we con-
sider the malicious case rather than the semi-honest (or honest-but-curious)
case.

1.1 Our Contributions

The contributions of this paper are as follows:

– A logarithmic-round protocol for secure integer comparison, which is based
on an elegant Boolean circuit for integer comparison of depth log2 m for m-bit
integers. In addition, the size of the circuit is only 3m (counting the number
of secure multiplication gates). The circuit can be readily used as a drop-in
replacement for the O(1)-depth circuit for integer comparison in [DFK+06],
which is only of theoretical interest as it uses 19 rounds and 22m secure
multiplications. Note that the depth of our log-depth circuit exceeds their
constant-depth circuit for integer comparison only if the inputs consist of
integers of bit length m = 220 or longer.)

1 In principle, the case of adaptive adversaries could be handled at the expense of
additional tools (e.g., [DN00, DN03, GMY03]); in this paper we focus on the static
(and stand-alone) case.
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– A constant-round protocol for secure integer comparison for which the num-
ber of rounds is a small constant and the number of secure multiplications is
a small multiple of m. Our constant-round solution is restricted to the case of
two parties (or, rather, any constant number of parties). Our protocol builds
on a protocol by Blake and Kolesnikov [BK04] for integer comparison for a
different setting. In particular, we provide an efficient technique for securely
returning the output bit in an encrypted form.

We like to stress that application of our log-depth circuit is not restricted to
the framework of [CDN01]: the circuit can be used in any framework for se-
cure n-party computation that assumes that the function to be computed is
given as a circuit. In particular, the log-depth circuit can be used for secure
computation based on verifiable secret sharing, thus yielding solutions which are
unconditionally secure—rather than computationally secure, as described in this
paper.

Furthermore, the proof of security of our constant-round protocol is interesting
in its own right. Theorem 1, as explained below, essentially captures the security
of the protocol in a modular way. Here, we have adopted the approach suggested
recently in [ST06], and we show how the required simulator can be built even
though our protocol is of a much different nature than the ones in [ST06].

1.2 Related Work

There appear to be only a few publications in the literature which consider
encrypted inputs and outputs for integer comparison. Above we have already
mentioned the work of Damg̊ard et al. [DFK+06]. The main difference is that
they work in an unconditional setting, reflected by the use of sharings for an
underlying linear secret sharing scheme, while we work in the cryptographic
model where we use encryptions for an underlying threshold homomorphic
cryptosystem.

Together with a secure multiplication protocol for a homomorphic thresh-
old ElGamal scheme, Schoenmakers and Tuyls [ST04] also present a solution
for secure integer comparison for encrypted inputs and outputs. Their solution,
however, requires a linear (O(m)) number of rounds and secure multiplication
gates. With more relaxed requirements than ours, Brandt [Bra06] presents a
solution where the inputs are encrypted but the output is in the clear for both
participants, and furthermore, it is not 0 or 1 but instead 0 or ‘random,’ which
limits its applicability.

A different approach to solve the integer comparison problem is when one of
the parties acts as a server. In this setting, say, Alice knows the private keys to
open encryptions and Bob works over his input bits and Alice’s encrypted input
bits to produce some information that allows Alice to know the output of the
function being evaluated. Examples of these approaches to integer comparison
are presented in [DiC00, Fis01, BK04, LT05]. In contrast to our solutions, these
solutions do not provide encrypted output and the actual encrypted inputs are
known to the parties running the protocols.
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1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we introduce the main
building blocks used by our protocols and we give some background on threshold
homomorphic cryptosystems. In Section 3 we present our two new protocols for
integer comparison, together with their proof of security (specifically, of the sec-
ond protocol, as the proof of the first protocol follows directly from the security
guarantees provided by the [CDN01] setting). We conclude in Section 4 with a
brief performance analysis and comparison to existing results.

2 Preliminaries

Our results apply to any threshold homomorphic cryptosystem, such as those
based on ElGamal or Paillier. It is assumed that a secure multiplication proto-
col is available, as in [CDN01, ST04]. Since we only need secure multiplication
of binary values, we use the conditional gate of [ST04], which allows for an
efficient implementation based on threshold homomorphic ElGamal—which in
turn allows for the use of elliptic curves, hence yielding compact and efficient
implementations.

We write [[x]] for a (probabilistic) encryption of the value x, using the public
key of the underlying threshold homomorphic ElGamal cryptosystem. Further,
let Zq denote the message space, for a large prime q (of, say, size 160 bits). The
cyclic group G used for ElGamal is also of order q, and we assume that elements
of G are represented using |q| bits only (which is the case for elliptic curves).
Thus, an ElGamal encryption consisting of two group elements is of size 2|q|.

In order to withstand active attacks, we use Σ-protocols [CDS94], a standard
type of zero-knowledge proofs/arguments. Assuming the random oracle model,
all proofs can be converted into non-interactive ones and can be simulated easily.

As mentioned above, we make use of secure multiplication gates which on
input [[x]] and [[y]] allows two or more parties (who share the private key of the
underlying threshold homomorphic cryptosystem) to jointly compute an encryp-
tion [[xy]]. Secure multiplication gates can be implemented in a constant number
of rounds [CDN01], using the Paillier cryptosystem. Using a number of rounds
linear in the number of parties (which is constant in case of two-party com-
putation), the conditional gate [ST04] can be used instead, in case one of the
multiplicands is from a two-valued domain (e.g., if x ∈ {0, 1}).

Furthermore, in case one of inputs, say, x is private to one of the parties, a
simplified multiplication protocol can be used with no interaction between the
parties. The protocol consists in letting the party knowing the private value x
broadcast a re-encryption of [[xy]] = [[y]]x using the homomorphic properties of
the scheme, and generate a Σ-proof showing that [[xy]] was correctly computed
with respect to [[x]] and [[y]]. Following [ST04], we will refer to this protocol as
the private-multiplier gate.

For the performance comparisons presented at the end of this paper, we will
assume a setup using a (2,2)-threshold homomorphic ElGamal cryptosystem.
We note that in this case a conditional gate requires about 50 exponentiations
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and 34|q| bits of communication, per invocation. Similarly, a private-multiplier
gate requires about 10 exponentiations and 6|q| bits of communication, per in-
vocation. In the same setting, a threshold decryption requires 6 exponentiations
and 6|q| bits of communication.

A final tool that we will use are verifiable mixes [SK95], a tool for verifi-
ably mixing lists of ciphertexts. More formally, a verifiable mix takes as input
a list of encryptions [[x1]], . . . , [[xm]], and produces another list of encryptions
[[x′

1]], . . . , [[x′
m]] as output such that [[x′

π(1)]] = [[x1]] ∗ [[0]], . . . , [[x′
π(m)]] = [[xm]] ∗ [[0]]

for some random permutation π of {1, . . . , m}. Here, each occurrence of [[0]] de-
notes a probabilistic encryption of 0.

A verifiable mix also outputs a non-interactive zero-knowledge proof (for
which we assume the random-oracle model throughout). For concreteness, we
assume Groth’s efficient proof [Gro03], which for our setting requires about 14m
exponentiations and is of size 6m|q| bits.

We are now ready to describe our protocols for integer comparison.

3 New Solutions to the Integer Comparison Problem

In this section we present two new protocols for integer comparison following
different approaches. In both cases, the inputs x and y are given as sequences
of encrypted bits, [[xm−1]], . . . , [[x0]] and [[ym−1]], . . . , [[y0]], with x =

∑m−1
i=0 xi2i,

y =
∑m−1

i=0 yi2i. The output is [[[x > y]]]. Hence, both inputs and output are
available in encrypted form only.

As a starting point and for later comparison, we first the linear-depth circuit
of [ST04] for computing x > y, using simple arithmetic gates only (addition, sub-
traction, conditional gates). The circuit (or, oblivious program) is fully described
by the following recurrence:

t0 = 0, ti+1 = (1 − (xi − yi)2)ti + xi(1 − yi),

where tm is the output bit (hence tm = [x > y]). Rather than starting from
the most significant bit, this circuit computes [x > y] starting from the least
significant bit. Although somewhat counterintuitive, the advantage of this ap-
proach is that the circuit contains 2m − 1 conditional gates only (compared
to about 3m conditional gates when starting from the most significant bit,
see [ST04]).

A disadvantage is that the depth of the circuit is m, hence inducing a critical
path of m sequential secure multiplications (the terms [[x1y1]],. . . ,[[xmym]] can be
computed in parallel, but the computation of t1, . . . , tm must be done sequential).
The computational complexity and communication complexity of a protocol for
integer comparison based on this circuit is thus determined by the work required
for the conditional gates. For later comparison, in the two-party case, we have
about 100m exponentiations and 68m|q| bits of communication—and a linear
number of rounds.
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3.1 Logarithmic Round Complexity with Low Computational
Complexity

The result in this section shows how to reduce the depth of the circuit to O(log m)
without increasing its size beyond O(m). The idea relies on the following simple
but crucial property of integer comparison. Write x = X1X0 and y = Y1Y0 as
bit strings, where 0 ≤ |X1| = |Y1| ≤ m and 0 ≤ |X0| = |Y0| ≤ m. Then,

[x > y] =
{

[X1 > Y1], X1 �= Y1;
[X0 > Y0], X1 = Y1,

which may be “arithmetized” as

[x > y] = [X1 > Y1] + [X1 = Y1][X0 > Y0].

This property suggests a protocol that would first split the bit strings x and y
in about equally long parts, compare these parts recursively, and then combine
these to produce the final output. To evaluate the expression for [x > y] using
simple arithmetic gates, we introduce the following auxiliary function:

z(x, y) = [x = y] = 1 − (x − y)2

Let ti,j stand for the value of > when applied to the substrings xi+j−1, . . . ,
xi+1, xi and yi+j−1, . . . , yi+1, yi. Expressed explicitly in terms of the bits of x
and y, a full solution for [x > y] is obtained by evaluating t0,m from (using
l = �j/2�)2:

ti,j =
{

xi − xiyi, j = 1;
ti+l,j−l + zi+l,j−lti,l, j > 1.

zi,j =
{

1 − xi + 2xiyi − yi, j = 1;
zi+l,j−lzi,l, j > 1.

Correctness of the computation should be immediate, and its security fol-
lows from the security guarantees provided by the framework we are consider-
ing [CDN01], assuming secure arithmetic gates.

Regarding overhead, the number of conditional gates required for zi,j is 2j−1.
The number of conditional gates for ti,j is j − 1, not counting the conditional
gates for z. Thus, the total number of conditional gates for t0,m is bounded above
by 3m − 2. About log2 m conditional gates can be saved by observing that some
z-values are not needed for the evaluation of t.

The computational and communication complexities are dominated by the
number of conditional gates. In the worst case, 3m − 2 conditional gates are
required, resulting in about 150m exponentiations and 102m|q| broadcast bits.

2 Any value l, 0 < l < j, actually works, but only l ≈ j/2 gives logarithmic depth. The
msb-to-lsb and lsb-to-msb circuits in [ST04] are special cases, obtained respectively
by setting l = 1 and l = j − 1.
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The depth of the circuit is exactly �log2 m	, hence O(log m) with hidden constant
equal to 1 for the base-2 logarithm.

As a further remark we note that this log-depth circuit allows for the com-
putation of sgn(x − y) at virtually no extra cost. Here, sgn(z) is the signum
function, which is equal to the sign of z (which is equal to −1 if z < 0, 0 if z = 0,
and 1 if z > 0). This follows form the fact that the circuit also computes [x = y],
next to [x > y], hence one obtains sgn(x − y) = 2[x > y] − 1 + [x = y] as well.

3.2 Constant Round Complexity with Low Computational
Complexity

In this section we seek to reduce the round complexity to O(1), adopting an ap-
proach quite different from the one above. We consider the problem of computing
[[[x > y]]] in the two-party case, and we wish to achieve a low, constant-round
complexity while keeping the size of the circuit small as well.

First, we note that the O(1)-depth and O(m)-size circuit for integer compar-
ison of [DFK+06] is only of theoretical interest to us: the depth of the circuit is
actually 19, and its size is 22m (only counting secure multiplication gates). For a
result that possibly competes with our logarithmic solution we take the protocol
for conditional oblivious transfer of Blake and Kolesnikov [BK04] (where the con-
dition is also an integer comparison) as a starting point. The main idea in that
protocol is to calculate the first position where the bits of x and y differ, starting
from the most-significant bit. Let i∗ be that position; then xi∗ − yi∗ ∈ {−1, 1}
indicates whether x > y or not. Jumping ahead a little, the position i∗ will be
determined as the unique index satisfying γi∗ = 1 (which is guaranteed to exist
if we assume x �= y; see below). Of course, the value of i∗ must remain hidden,
which is achieved by the parties randomly permuting (i.e., mixing) the relevant
sequences.

The protocol is described in detail below. As said above, our starting point is
the protocol in [BK04] for the passive adversary setting. New ingredients include
the fact that we allow for encrypted inputs [[x]] and [[y]], rather than private
inputs x and y. Accordingly, we use a (2,2)-threshold homomorphic cryptosystem
instead of just a homomorphic cryptosystem, and we use secure multiplication
(conditional gates). Furthermore, we use a specific kind of blinding at the end
of the protocol in order to extract the outcome of the integer comparison in
encrypted form. Finally, as an important difference, we can actually use other
homomorphic cryptosystems, such as ElGamal, whereas [BK04] makes essential
use of Paillier.

Constant-round protocol. The protocol consists of the following steps:

1. Using m conditional gates, parties A and B jointly compute [[fi]] = [[[xi �=
yi]]]. Then they publicly compute the γ-sequence: [[γm]] = [[0]]; [[γi]] = [[2γi+1+
fi]], for i = m − 1, . . . , 0.

2. For i = m − 1, . . . , 0, party A broadcasts [[rA
i ]] for random rA

i ∈R Zq and
produces sequence [[uA

i ]] = [[rA
i (γi − 1)]] using a private-multiplier gate.
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3. Party B does the same with [[rB
i ]] producing sequence [[uB

i ]] = [[rB
i (γi − 1)]],

where rB
i ∈R Zq. Now they publicly produce sequence [[ui]] = [[uA

i ]][[uB
i ]]

[[xi − yi]] = [[(rA
i + rB

i )(γi − 1) + (xi − yi)]].
4. Party A verifiably mixes sequence [[ui]] producing sequence [[u′

i]].
5. Party B verifiably mixes sequence [[u′

i]] producing sequence [[vi]].
Now, parties A and B take turns to multiply this last sequence by a randomly
selected number in {−1, 1}:

6. Party A broadcasts [[sA]], sA ∈R {−1, 1}, and uses a private-multiplier gate
to produce sequence [[v′i]] = [[sAvi]]. A proof that [[sA]] is an encryption of
either −1 or 1 is also given.

7. Party B does the same, broadcasting [[sB]], sB ∈R {−1, 1}, and producing
sequence [[wi]] = [[sBv′i]] along with the required proofs.

8. Finally, parties A and B proceed to decrypt the sequence [[wi]] until they
find the unique index i∗ satisfying wi∗ ∈ {−1, 1}. The output is defined as
[[(vi∗ + 1)/2]].

The value vi∗ is either −1 or 1, hence (vi∗ + 1)/2 is either 0 or 1. This linear
transformation can be done for free because of homomorphic properties.

The above protocol assumes that x �= y, in order that index i∗ is well defined.
If x = y, then no entry in the w-sequence will be equal to −1 or 1. One can put
“sentinels” to resolve possible equality, by setting f−1 = 1 and u−1 = (rA

−1 +
rB
−1)(γ − 1) + 1. The rest of the protocol is adapted accordingly.

In case the output need not be encrypted, steps 6 and 7 are omitted, and the
participants directly open the sequence v to find the position i∗ where vi∗ is in
{−1, 1}, where −1 means that x is less than or equal to y, and 1 means x is
greater than y.

For the complexities, the number of rounds for the protocol is small: at most
9 rounds (two rounds for the conditional gates in step 1, and one round for each
of the subsequent steps). For the number of exponentiations, we have 50m for
the conditional gates (step 1), 40m for the multiplication gates (steps 2, 3, 6,
and 7), 28m for the verifiable mixes, and 3m for the decryption (m/2 expected
decryptions), which amounts to 124m exponentiations in total. Similarly, 77m|q|
is the number of bits of communication. We have omitted further optimizations
for clarity of exposition.

The protocol easily extends to the multiparty case, but since the mixing is
done sequentially, constant round complexity is not achieved (note that secure
multiplication gates can be constant-round even in the multi-party case if Paillier
encryption is used, as in [CDN01]).

Proof of security. For the proof of security, we want to be able to simulate this
protocol assuming that one of the participants is corrupted. The idea is to give
the simulator the inputs [[xi]] and [[yi]] in such a way that a consistent view of
the protocol can be constructed without making use of the private information
of the honest participant.

We first review the simulation requirements for the building blocks. In order
to simulate a conditional gate, encryptions [[x]] and [[y]] are required, as well
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as one encryption of [[xy]] with the requirement that x ∈ {−1, 1} (or, any other
two-value domain) and the contents of the encryptions are consistent. The actual
values x,y and xy need not be known. The same holds for the private multiplier
gate, where in this case the proof of knowledge of, say, x is simulated. For a
threshold decryption, we need to provide both [[x]] and x to the corresponding
simulator.

We now turn to the overall simulation strategy. We note that one problem
already arises at the first step of the protocol: in order to simulate the conditional
gate invocations in Step 1, the simulator has to produce [[xiyi]] only given [[xi]]
and [[yi]], which is impossible! We circumvent such problems by adopting the
approach recently introduced in [ST06], in which it is explained that simulation
for input/output pairs of a special form (see Theorem 1 below) suffice to ensure
integration with the framework of [CDN01]. This is a consequence of the fact
that the security proof in [CDN01] centers around the construction of a so-called
YADb distribution, which is defined as a function of an encrypted bit [[b]].

The structure of the security proof [CDN01] follows an ideal-model/real-model
approach. The YAD0 distribution is identical to the distribution of the ideal
case, whereas the YAD1 distribution is statistically indistinguishable from the
distribution in the real case. Therefore, if an adversary can distinguish between
the ideal/real cases, it implies that the adversary can distinguish the YAD0

distribution from the YAD1 distribution. But as the choice between these two
distributions is determined by the value of the encrypted bit b, it follows that
the distinguisher for the ideal/real cases is a distinguisher for the underlying
encryption scheme. And this is done in tight way, i.e., without loss in the success
probability for the distinguisher. (See [CDN01, ST06] for more details.)

Thus, it is sufficient to show a simulation for inputs of a special form, namely,
[[x̃]] = [[(1 − b)x(0) + bx(1)]], where x(0) and x(1) are given in the clear to the
simulator, but b is only given in encrypted form [[b]]. The values x(0) and x(1)

correspond to the values arising in the YAD0 and YAD1 cases, respectively.

Theorem 1. Given input values x
(0)
i , y

(0)
i , x

(1)
i and y

(1)
i and an encryption [[b]]

with b ∈ {0, 1} the above protocol can be simulated statistically indistinguishably
for inputs [[x̃i]] = [[(1 − b)x(0)

i + bx
(1)
i ]] and [[ỹi]] = [[(1 − b)y(0)

i + by
(1)
i ]].

Proof. Let x
(0)
i , y

(0)
i , x

(1)
i and y

(1)
i and encryption [[b]] with b ∈ {0, 1} be given.

Assuming that party A is corrupted, the simulation works as follows:

1. For Step 1, we rely on the simulator for the conditional gates, which we
need to provide with the inputs [[x̃i]] and [[ỹi]] and the corresponding output
[[f̃i]] = [[x̃iỹi]]. The latter values are computed as [[(1 − b)x(0)

i y
(0)
i + bx

(1)
i y

(1)
i ]],

using [[b]] and the homomorphic properties of the cryptosystem.
Similarly, the simulator also computes [[γ̃i]] = [[(1 − b)γ(0)

i + bγ
(1)
i ]]. Let i0

and i1 denote the indices such that γ
(0)
i0

= γ
(1)
i1

= 1 as these values are known
to the simulator.

2. Next, we let party A do her work. She will broadcast [[r̃A
i ]] and [[ũA

i ]], for all
i. The values r̃A

i can be extracted by rewinding the proof of knowledge of
the private-multiplier invocation.
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3. The idea of this step is to generate values r
B(j)
i such that the simulator may

put equal values (up to sign) in the u-sequences, which will later decrypt to
the same value independently of b. For this the simulator does the following.
First, he selects s

(0)
B ∈R {−1, 1}. The value of s

(1)
B depends on the result of

the comparison of x(0) against y(0), and x(1) against y(1). If both comparisons
have the same result, then s

(1)
B = s

(0)
B , otherwise s

(1)
B = −s

(0)
B .

Now the simulator selects r
B(0)
i , r

B(1)
i in such a way that u

(0)
i and u

(1)
i

satisfy the following:
(a) u

(0)
i s

(0)
B = u

(1)
i s

(1)
B , for i �∈ {i0, i1};

(b) u
(1)
i0

s
(1)
B = u

(0)
i1

s
(0)
B ;

(c) u
(0)
i0

s
(0)
B = u

(1)
i1

s
(1)
B .

First, we note that, for j = 0, 1:

u
(j)
i = (r̃A

i + r
B(j)
i )(γ(j)

i − 1) + (x(j)
i − y

(j)
i ).

For case (a) we essentially need that s
(0)
B s

(1)
B u

(0)
i = u

(1)
i , which means that

s
(0)
B s

(1)
B

(
(r̃A

i +r
B(0)
i )(γ(0)

i −1)+(x(0)
i −y

(0)
i )

)
=(r̃A

i +r
B(1)
i )(γ(1)

i −1)+(x(1)
i −y

(1)
i ),

where i �∈ {i0, i1}.
This can be achieved by first selecting r

B(0)
i at random, and then isolating

and obtaining r
B(1)
i (which in turn is random in each selection of b).

Similarly, in case (b), we require that s
(1)
B s

(0)
B u

(1)
i0

= u
(0)
i1

, which is equivalent
to

s
(1)
B s

(0)
B

(
(r̃A

i0+r
B(1)
i0

)(γ(1)
i0

−1)+(x(1)
i0

−y
(1)
i0

)
)
=(r̃A

i1+r
B(0)
i1

)(γ(0)
i1

−1)+(x(0)
i1

−y
(0)
i1

),

and it is solved as in case (a).
For case (c), just taking r

B(0)
i0

and r
B(1)
i1

at random is enough: in those
positions the γ-sequences take the value 1 and the randomization is “lost”
when considering u-sequences.

The simulator now prepares [[r̃B
i ]] as [[(1 − b)rB(0)

i + br
B(1)
i ]] and [[ũB

i ]] as
[[r̃B

i (γ̃i−1)]], for all i. These encrypted values are broadcast, and the simulator
for the private-multiplier gate is invoked, with multiplicands [[r̃B

i ]] and [[γ̃i]],
and result [[(1 − b)rB(0)

i γ
(0)
i + br

B(1)
i γ

(1)
i ]].

The sequence [[ũi]] is constructed as in the protocol:

[[ũi]] = [[ũA
i ]][[ũB

i ]][[x̃i − ỹi]].

By construction, it follows that [[ũi]] = [[(1 − b)u(0)
i + bu

(1)
i ]], for all i.

4. The simulator lets party A mix the sequence [[ũi]], producing a new sequence
[[ũ′

i]]. The simulator can also extract the permutation πA that links both
sequences.

5. Now the simulator randomly selects two indices, call them ĩ∗ and ĩ∗∗, and
constructs two permutations π

(0)
B and π

(1)
B as follows:
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– π
(0)
B (πA(i0)) = π

(1)
B (πA(i1)) = ĩ∗;

– π
(0)
B (πA(i1)) = π

(1)
B (πA(i0)) = ĩ∗∗;

– for the remaining positions the permutations are randomly defined under
the condition that π

(0)
B (πA(i)) = π

(1)
B (πA(i)), i �∈ {i0, i1}.

The next step is to call the simulator of the mix proof depending on [[b]],
because the simulator will never know which permutation, π

(0)
B or π

(1)
B , is

actually used. For this, he constructs the sequences v
(j)
i = u

(j)

π−1
A (π(j)

B

−1
(i))

, for

j = 0, 1, and then defines the sequence [[ṽi]] = [[(1 − b)v(0)
i + bv

(1)
i ]], for all

i. With the mixed sequence broadcast by party A in the previous step and
this last sequence, the simulator now calls the simulator for the mix proof.

6. Party A multiplies the entire sequence [[ṽi]] by a number s̃A (which is ex-
tracted from the corresponding private-multiplier proof for [[s̃A]]), resulting
in sequence [[ṽ′i]].

7. Now the simulator has almost all the work already done. At this stage he
constructs [[s̃B]] = [[(1− b)s(0)

B + bs
(1)
B ]], and broadcasts it. Then he constructs

the sequence [[w̃i]] = [[(1 − b)v(0)
i s̃As

(0)
B + bv

(1)
i s̃As

(1)
B ]]. Note that ṽ′i = ṽis̃A.

The private-multiplier simulator is now invoked on inputs [[s̃B ]] and [[ṽ′i]], and
output [[w̃i]].

8. To simulate the last step, the simulator can link back the plaintext of en-
cryptions [[w̃i]] by using permutation πA ◦ π

(j)
B , for j = 0, 1; note that the

sign of these values is affected by the factor s̃A. Thus,

w
(j)
i = s̃As

(j)
B u

(j)

π−1
A (π(j)

B

−1
(i))

,

for all i, due to the construction at step 5.
Moreover, the plaintexts in [[w(0)

i ]] and [[w(1)
i ]] are equal, as a result of

the work of the simulator at step 3. It also follows that w
(0)
i = w

(1)
i = w̃i,

independently of [[b]]. Hence, the simulator for the threshold decryption is
called, for instance, over inputs [[w̃i]] and s̃As

(0)
B u

(0)

π−1
A (π(0)

B

−1
(i))

.

The values generated in this way by the simulator are consistent, and therefore
an adversary cannot statistically distinguish them from the ones resulting in a
real execution. The case when party B is corrupted is similar with some minor
differences, due to the order in which tasks are executed. This completes the
proof. ��

4 Conclusions

In this paper we have presented two new solutions to the integer compari-
son problem. Our first solution achieves a logarithmic round complexity of ex-
actly �log2 m	 rounds for m-bit integers, whereas the second solution achieves a
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Table 1. Comparison of different secure solutions for [x > y]

Integer Comparison Solution No. Exponentiations Broadcast Bits
Linear-depth circuit [ST04] 100m 68m|q|
Logarithmic-depth circuit 150m 102m|q|
Constant-round protocol (two-party) 124m 77m|q|

constant number of rounds (in the two-party case). In Table 1 we show a compar-
ison between the different solutions presented in this paper and the linear-depth
circuit of [ST04].

Evidently, going below O(m) rounds comes at the cost of an increase in com-
putational and communication complexity. For the constant round solution, the
additional costs are smaller than for the logarithmic round solution; however,
the logarithmic round solution also applies to the multi-party case.

From a practical point of view, our multi-party logarithmic-depth solution
is very good compared to the known results so far: communication and com-
putation are are only 50% worse than for a linear-depth solution. Even though
O(1)-round is not achieved this way, the number of rounds is very low when
considering integers x and y of practical size, e.g., m = 32 or m = 64, in which
cases the depth is only 5 and 6, respectively.
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Abstract. Damg̊ard et al. [11] showed a novel technique to convert
a polynomial sharing of secret a into the sharings of the bits of a in
constant rounds, which is called the bit-decomposition protocol. The
bit-decomposition protocol is a very powerful tool because it enables bit-
oriented operations even if shared secrets are given as elements in the
field. However, the bit-decomposition protocol is relatively expensive.

In this paper, we present a simplified bit-decomposition protocol by
analyzing the original protocol. Moreover, we construct more efficient
protocols for a comparison, interval test and equality test of shared se-
crets without relying on the bit-decomposition protocol though it seems
essential to such bit-oriented operations. The key idea is that we do com-
putation on secret a with c and r where c = a + r, c is a revealed value,
and r is a random bitwise-shared secret. The outputs of these protocols
are also shared without being revealed.

The realized protocols as well as the original protocol are constant-
round and run with less communication rounds and less data communica-
tion than those of [11]. For example, the round complexities are reduced
by a factor of approximately 3 to 10.

Keywords: Multiparty Computation, Secret Sharing, Bitwise Sharing.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful parties
to jointly compute an agreed function of their inputs in such a way that the
correctness of the output and the privacy of the parties’ inputs are guaranteed.
That is, when a function is represented as (y1, . . . , yn) = f(x1, . . . , xn), each
party with its private input xi obtains only the output yi but nothing else.

A great deal of work (e.g., [3,17,7,25]) has been done in this research field.
By using generic circuit based protocols, it is shown that any function can be
computed securely [3,17]. However, the general protocols tend to be inefficient;
hence the main aim of our research is to construct efficient protocols for specific
functions.

When we are interested in integer arithmetic, there are two choices to repre-
sent a function: an arithmetic circuit over a prime field Zp and a Boolean circuit.

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 343–360, 2007.
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Inputs (and outputs) in the arithmetic circuit are represented as elements in Zp

(or a ring), while inputs in the Boolean circuit are represented as bits. The in-
put encoding has an influence on the efficiency of computation. Addition and
multiplication of shared secrets can be performed efficiently in the arithmetic
circuit, whereas not in the Boolean circuit. On the other hand, bit-oriented op-
erations like interval tests, equality tests, and comparisons of shared secrets are
easy in the Boolean circuit, whereas they are non-trivial tasks in the arithmetic
circuit.

To bridge the gap between arithmetic circuits and Boolean circuits, Damg̊ard
et al. [11] have proposed the MPC protocol called bit-decomposition in the secret
sharing setting (e.g., [3,16]). Also, Schoenmakers and Tuyls [21] have proposed a
similar protocol for MPC [10,13] based on threshold homomorphic cryptosystems
(THC) [12,14]. In the bit-decomposition protocol, a sharing of an element in the
field (or an encryption of an element in the ring in the threshold homomorphic
setting) is converted into sharings (encryptions) of bits.

The bit-decomposition protocol is very useful and has many applications be-
cause it enables bit-oriented operations to be performed in the arithmetic circuit
without performing the entire computation bitwise. For example, when comput-
ing ab by using the techniques in [1,11], or the Hamming distance between a
and b where shared secrets a and b are elements in Zp, the bit-decomposition
protocol is essential because we need the bitwise sharings of the shared secrets.
Other important applications are comparisons, interval tests and equality tests
of shared secrets. For example, in the comparison protocol, a single shared bit is
computed such that it indicates the result of a comparison between two shared
secrets. In the Boolean circuit, it is relatively easy to compare two shared secrets
because the bits of the secrets are shared. That is, in the comparison protocol
based on the Boolean circuit (which we call the bitwise less-than protocol in
Section 3.3 as in [11]), we can check the secrets bit by bit privately and compare
the two shared secrets even without revealing the bit position that determines
the comparison result. Therefore, even if inputs are given as sharings of elements
in the field, the comparison can be performed easily with the bit-decomposition
protocol.

Thus the bit-decomposition protocol is a very powerful tool because chang-
ing the representations of shared secrets enables us to gain the benefits of both
Boolean circuits and arithmetic circuits. However, the bit-decomposition proto-
col involves expensive computation in terms of round and communication com-
plexities.

In this paper, we present a simplified bit-decomposition protocol by analyz-
ing the original protocol. Moreover, we construct more efficient protocols for the
main applications of the bit-decomposition protocol, which are interval tests,
equality tests, and comparisons, without relying on the bit-decomposition pro-
tocol though it seemed essential. For example, the equality test protocol is an
important subprotocol in [8,20], so it will be meaningful to construct efficient
protocols for these applications without relying on the bit-decomposition proto-
col if possible. For the equality test, we present deterministic and probabilistic
protocols.
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In our constructions, the outputs of the protocols are also shared without
being revealed, so they can be secret inputs for the subsequent computation.
Therefore, our protocols can be used as building blocks in the more complex
computation.

Our Results. We construct constant-round protocols for bit-decomposition,
interval test, comparison, and equality test, building on the subprotocols in [11].
The proposed bit-decomposition protocol runs with less communication rounds
and less data communication than the original protocol [11]. Therefore, the in-
terval test, comparison and equality test protocols are also improved inevitably
by using the proposed bit-decomposition protocol. However, we present new pro-
tocols dedicated to them without relying on the bit-decomposition protocol. By
using our protocols, given shared secrets as elements in Zp, we can perform the
interval tests, equality tests, and comparisons of the shared secrets more effi-
ciently than the bit-decomposition based protocols. For the equality test, we
propose two kinds of protocols. One (Proposed1) is a deterministic protocol and
the other (Proposed2) is a probabilistic protocol with a negligible error probabil-
ity and a much smaller round complexity. The key idea is that we do computation
on secret a with c and r where c = a+ r, c is a revealed value, and r is a random
bitwise-shared secret.

In Table 1, we summarize the results of the round and communication (comm.)
complexities of each protocol where � is the bit length of prime p of the underlying
field for linear secret sharing schemes and k must be chosen such that the error
probability

( 1
2

)k is negligible. Here “BD-based” means that the protocol is based
on the proposed bit-decomposition protocol. As shown in Table 1, we can see
that these bit-oritented operations can be realized with smaller complexities than
those of the bit-decomposition based protocols by constructing them without the
bit-decomposition protocol. For example, the round complexities are reduced by
a factor of approximately 3 to 10.

Our protocols (except the probabilistic equality test protocol which is only
applicable to the secret sharing setting) are applicable to both the secret sharing
setting [11] and the threshold homomorphic setting [21] though we describe our
constructions based on the secret sharing setting.

Related Work. Damg̊ard et al. [11] have shown a novel technique to convert a
polynomial sharing of an element in Zp into sharings of bits in constant rounds.
Also Shoenmakers and Tuyls [21] have shown a similar conversion technique for
multiparty computation based on threshold homomorphic cryptosystems [10,13].
These protocols are the first to bridge the gap between arithmetic circuits and
Boolean circuits.

Toft [24] has proposed another version of a probabilistic equality test protocol
independently of and concurrently with our probabilistic equality test protocol.
Both the protocols use the property of quadratic residues in a probabilistic way.

Recently, as a practical approach (rather than theoretical constant-round pro-
tocols), in [4,15,23], the implementation for multiparty integer computation,
including the bit-decomposition and comparison, is described with non-constant-
round protocols where shared secrets are assumed to be sufficiently small
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Table 1. Comparison of Round / Communication Complexities

Protocol Round Comm.

Bit-Decomposition [11] 38 93� + 94� log2 �
Proposed 25 93� + 47� log2 �

Interval Test [11] 44 127� + 94� log2 � + 1
BD-based 31 127� + 47� log2 � + 1
Proposed 13 110� + 1

Comparison [11] 44 205� + 188� log2 �
BD-based 31 205� + 94� log2 �
Proposed 15 279� + 5

Equality Test [11] 39 98� + 94� log2 �
BD-based 26 98� + 47� log2 �
Proposed1 8 81�
Proposed2 4 12k

compared with prime p of the underlying secret sharing scheme, whereas we do
not assume that shared secrets are upper bounded by a certain value as in [11].
We mention this aspect in Section 7.

2 Preliminaries

We assume that n parties P1, . . . , Pn are mutually connected by secure and
authenticated channels in a synchronous network and the index i for each Pi is
public among the parties. Let p be an odd prime and � be the bit length of p.
Zp is a prime field. When we write a ∈ Zp, it means that a ∈ {0, 1, . . . , p − 1}.
We use [a]p to denote a polynomial sharing [22] of secret a ∈ Zp. That is, [a]p
means that a is shared among the parties where fa is a random polynomial
fa(x) = a + a1x + a2x

2 + · · · + atx
t mod p with randomly chosen ai ∈ Zp for

1 ≤ i ≤ t, t < n
2 , and fa(i) is the Pi’s share of a. An adversary can corrupt

up to t parties. We describe our protocols in the so-called “honest-but-curious”
model, but standard techniques will be applicable to make our protocols robust.

Let C be a Boolean test. When we write [C]p, it means that C ∈ {0, 1} and
C = 1 iff C is true. For example, we use [a < b]p to denote the output of the
comparison protocol.

Because the multiplication protocol is a dominant factor of the complexity, as
in [11], we measure the round complexity of a protocol by the number of rounds
of parallel invocations of the multiplication protocol [16] and we also measure the
communication complexity by the number of invocations of the multiplication
protocol. The round complexity relates to the time required for a protocol to
be completed and the communication complexity relates to the amount of data
communicated among the parties during a protocol run. Though our measure-
ment of complexities basically follows that of [11], the complexity analysis in [11]
is rough. In this paper, we reevaluate the round and communication complexities
of the protocols in [11] to compare our protocols with those of [11] based on the
same measurement.
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3 Building Blocks

3.1 Distributed Computation with Shared Secrets for Addition and
Multiplication

Let’s assume now that n parties have two shared secrets a and b as [a]p =
{fa(1), . . . , fa(n)} and [b]p = {fb(1), . . . , fb(n)}. Then the parties can obtain
[c+a mod p]p, [ca mod p]p, and [a+b mod p]p easily where c is a public constant
as follows: To compute [c+a mod p]p, [ca mod p]p, and [a+b mod p]p, each Pi has
only to locally compute c + fa(i) mod p, cfa(i) mod p, and fa(i) + fb(i) mod p
respectively. Therefore, these can be done efficiently without communication
among n parties. When we write [c + a]p = c + [a]p, [ca]p = c[a]p, and [a + b]p =
[a]p + [b]p, these mean that the parties perform these operations. We also use∑

, for example, like
∑3

i=1[ai]p to denote [a1]p + [a2]p + [a3]p.
Multiplication to obtain [ab mod p]p is a bit more complex and it requires the

parties to communicate with each other. We assume that the parties perform
the multiplication protocol in [16]. When we write [ab]p = [a]p × [b]p, it means
that the parties perform the multiplication protocol to compute [ab mod p]p.

We will evaluate the round complexity of a protocol by performing the mul-
tiplication protocol in parallel as much as possible.

3.2 Bitwise Sharing

The concept of bitwise sharing is to share a ∈ Zp(= {0, 1, . . . , p−1}) in the form
of {[a�−1]p, . . . , [a0]p} such that a =

∑�−1
i=0 2iai where ai ∈ {0, 1}. We use [a]B to

denote {[a�−1]p, . . . , [a1]p, [a0]p}.

3.3 Subprotocols

We describe several subprotocols in [2,11] necessary for our constructions. All
these subprotocols run in a constant number of rounds. By combining these
subprotocols, we will construct our interval test, equality test, comparison, and
bit-decomposition protocols that also run in a constant number of rounds.

Joint Random Number Sharing. The parties can share a uniformly ran-
dom, unknown number r [2] as follows: Each Pi picks up r i ∈ Zp at random
and shares it by a sharing [r i]p = {fi(1), . . . , fi(n)} where fi(0) = r i and fi

is a random polynomial. That is, Pi distributes fi(j)’s to other Pj ’s. From each
[r i]p, the parties compute [r]p =

∑n
i=1[r i]p. We assume that the complexity for

this is almost the same as the complexity of 1 invocation of the multiplication
protocol. We denote this subprotocol as [r ∈R Zp]p.

Joint Random Bit Sharing. The parties can share a uniformly random
a ∈ {0, 1} as follows: The parties compute [r ∈R Zp]p, perform the multiplication
protocol to obtain [r2]p and reveal r2. If r2 = 0, the parties retry. If r2 �= 0, the
parties compute r′ =

√
r2 such that 0 < r′ < p

2 . This can be done in polynomial
time because p is an odd prime. Then the parties set [a]p = 2−1(r′−1[r]p + 1). It
is clear that r′−1r ∈ {−1, 1}; hence a ∈ {0, 1}. The total complexity is 2 rounds
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and 2 invocations. We denote this subprotocol as [a ∈R {0, 1}]p. In the setting
[10,13], this can be computed as a = ⊕n

i=1bi where bi ∈R {0, 1} is generated by
Pi (see [21] for the details).

Unbounded Fan-In Or. Given [a�−1]p, . . . , [a0]p where ai ∈ {0, 1}, the parties
can compute [∨�−1

i=0ai]p in a constant number of rounds. For this, as in [11], we
can use the same technique to evaluate symmetric Boolean functions as follows:

The parties compute [A]p = 1 +
∑�−1

i=0 [ai]p. Note that 1 ≤ A ≤ � + 1.
Next, the parties define a �-degree polynomial f�(x) such that f�(1) = 0 and
f�(2) = f�(3) = · · · = f�(� + 1) = 1. f�(x) can be determined by using La-
grange interpolation. Note that f�(A) = ∨�−1

i=0ai. Then the parties try to obtain
[∨�−1

i=0ai]p by computing [f�(A)]p from [A]p and f�(x). This can be done in a
constant number of rounds by using an unbounded fan-in multiplication and the
inversion protocol [2] as follows:

Let’s assume that f�(x) is represented as f�(x) = α0 +α1x+ · · ·+α�x
� mod p.

To obtain [f�(A)]p, the parties compute [A]p, [A2]p, . . . , [A�]p because [f�(A)]p =
α0 +

∑�
i=1 αi[Ai]p.

For 1 ≤ i ≤ �, the parties generate [bi ∈R Zp]p and [b′i ∈R Zp]p in parallel,
compute [Bi]p = [bi]p × [b′i]p, and reveal Bi. Note that [b−1

i ]p can be computed
as [b−1

i ]p = B−1
i [b′i]p at the same time (inversion protocol).

Next, the parties compute in parallel

[c1]p = [A]p × [b−1
1 ]p

[c2]p = [A]p × [b1]p × [b−1
2 ]p

...
[c�−1]p = [A]p × [b�−2]p × [b−1

�−1]p
[c�]p = [A]p × [b�−1]p × [b−1

� ]p

and reveal all ci’s.
Then the parties can compute [Ai]p = (

∏i
k=1 ck)[bi]p.

If A = 0, information about A is leaked. That is why we used [A]p = 1 +
∑�−1

i=0 [ai]p to guarantee that A is not zero.
The complexity of computing each component is as follows: 2 rounds and 3�

invocations for [bi]p’s, [b′i]p’s, and Bi’s and 2 rounds and 2� invocations for ci’s.
[bi]p × [b−1

i+1]p for 1 ≤ i ≤ �−1 can be precomputed as [bi]p × [b′i+1]p in the second
round in parallel with [bi]p × [b′i]p. Therefore, the total complexity is 3 rounds
(including 2 rounds for random value generation) and 5� invocations.

Note that we can compute unbounded fan-in And and Xor similarly because
a symmetric Boolean function depends only on the number of 1’s in its inputs.
Also note that the random values necessary for this protocol can be generated
in advance rather than on demand when this subprotocol is used as a building
block in the larger protocol, thus reducing the round complexity. Actually all
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the random value generation (for bits and numbers) can be done in the first 2
rounds (3 rounds in the setting [21] by using an unbounded fan-in Xor).

Prefix-Or. Given [a1]p, . . . , [a�]p where ai ∈ {0, 1}, the parties can compute the
Prefix-Or [b1]p, . . . , [b�]p such that bi = ∨i

j=1aj in a constand number of rounds.
As in [11], this can be done by using the technique from [5] as follows:

For notational convenience, let’s assume that � = λ2 for an integer λ and index
the bits ak as ai,j = aλ(i−1)+j for i, j = 1, . . . , λ. Other cases can be adapted
quite straightforwardly.

First the parties compute [xi]p = ∨λ
j=1[ai,j ]p for i = 1, . . . , λ in parallel by

using unbounded fan-in Or where the size of problems is λ instead of �. Then
the parties compute similarly [yi]p = ∨i

k=1[xk]p for i = 1, . . . , λ in parallel. Now
we can notice that yi = 1 iff some block {ai′,1, . . . , ai′,λ} with i′ ≤ i contains a
ai′,j = 1.

Next, the parties set [f1]p = [x1]p, and for i = 2, . . . , λ, set [fi]p = [yi]p −
[yi−1]p. Now we can notice that fi = 1 iff {ai,1, . . . , ai,λ} is the first block
containing a ai,j = 1. Let i0 be such that fi0 = 1. The parties can compute
{[ai0,1]p, . . . , [ai0,λ]p} by [ai0,j]p =

∑λ
i=1[fi]p × [ai,j ]p in parallel without reveal-

ing i0.
Next, the parties compute {[bi0,1]p, . . . , [bi0,λ]p} where bi0,j = ∨j

k=1ai0,k by
using unbounded fan-in Or in parallel.

Finally, the parties set [si]p = [yi]p − [fi]p. Then si = 1 iff i > i0. If we index
the bits of Prefix-Or bk as bi,j = bλ(i−1)+j as we did for ak, the Prefix-Or can
be computed as [bk]p = [bλ(i−1)+j ]p = [bi,j ]p = [fi]p × [bi0,j]p + [si]p in the end.

When we use several invocations of unbounded fan-in Or, all the necessary
random values in unbounded fan-in Or can be generated in the first 2 rounds.
Therefore, the total complexity is 7 rounds (including 2 rounds for random value
generation) and 17� invocations. 1 Similarly the Prefix-And can also be computed
by using the same technique.

Bitwise Less-Than. Given two bitwise sharings [a]B and [b]B, the parties can
compute [a < b]p without revealing (a < b) itself. The basic idea is the same as
the circuit for the millionaire’s problem. We will give an outline of this subpro-
tocol based on the description in [11].

For 0 ≤ i ≤ � − 1, the parties compute [ci]p = [ai ⊕ bi]p = [ai] + [bi]p −
2[aibi]p in parallel and then compute [di]p = ∨�−1

j=i [cj ]p by using Prefix-Or, and
set [ei]p = [di − di+1]p where [e�−1]p = [d�−1]p. Finally, the parties compute
[a < b]p =

∑�−1
i=0 ([ei]p × [bi]p) in parallel.

The complexity of computing each component is as follows: 1 round and �
invocations for ci’s, 7 rounds and 17� invocations for the Prefix-Or, and 1 round
and � invocations for

∑�−1
i=0 ([ei]p×[bi]p). Because ci’s can be computed in parallel

with random value generation in the Prefix-Or, the total complexity is 8 rounds
(including 2 rounds for random value generation) and 19� invocations. We use

1 The evaluation in [11] is 17 rounds and 20� invocations by generating random values
on demand.
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[a <B b]p in order to stress that a and b are bitwise-shared. Note that if b is
known, the complexity is 7 rounds (including 2 rounds for random value genera-
tion) and 17� invocations by saving the invocations for ci’s and

∑�−1
i=0 ([ei]p×[bi]p).

Joint Random Number Bitwise-Sharing. The parties can bitwise-share a
uniformly random, unknown number r such that 0 ≤ r =

∑�−1
i=0 2iri < p as

follows: The parties generate each bit, [ri ∈R {0, 1}]p for 0 ≤ i ≤ � − 1 in
parallel, compute [r <B p]p by using the bitwise less-than protocol and reveal
(r < p). If r ≥ p, the parties retry.

The complexity of computing each component is as follows: 2 rounds and 2�
invocations for ri’s and 7 rounds and 17� invocations for the bitwise less-than
protocol (note that p is known). Because ri’s can be generated in parallel with
random value generation in the Prefix-Or of the bitwise less-than protocol, the
complexity is 7 rounds and 19� invocations. As in [11], we assume that at least
one of four generated candidates is less than p and the amortized complexity is
7 rounds (including 2 rounds for random value generation) and 76� invocations.
We denote this subprotocol as [r ∈R Zp]B.

Bitwise Sum. Given two bitwise sharings [a]B = {[a�−1]p, . . . , [a0]p} and [b]B =
{[b�−1]p, . . . , [b0]p}, the parties can compute the bitwise sharing [d]B = {[d�]p,
. . . , [d0]p} such that d = a + b over the integers (not mod p). By using the
method of [6], the bitwise sum protocol can be performed in constant rounds
(see [11] for the details). The total complexity based on the complexity analy-
sis in this paper is 15 rounds (including 2 rounds for random value generation)
and 47� log2 � invocations. 2 See Appendix A for the details. We denote this
subprotocol as [d]B = [a]B + [b]B.

4 Existing Protocols [11,21]

Damg̊ard et al. [11] have shown a novel technique to convert [a]p into [a]B.
This technique is called the bit-decomposition protocol (Fig. 1). Note that we
can obtain [a]p from [a]B easily by computing [a]p =

∑�−1
i=0 2i[ai]p mod p. Also,

Schoenmakers and Tuyls [21] have proposed a similar bit-decomposition protocol
(called BITREP gate) in the context of multiparty computation [10,13] based
on threshold additively-homomorphic cryptosystems.

The complexity of computing each component in [11] is as follows: 7 rounds
(including 2 rounds for random value generation) and 76� invocations for [r ∈R

Zp]B, 13 rounds and 47� log2 � invocations for [d]B (bitwise sum), 5 rounds and
17� invocations for [q]p, that is, [d <B p]p, and 13 rounds and 47� log2 � invo-
cations for [h]B (bitwise sum). The total complexity is 38 rounds (including 2
rounds for random value generation) and 93� + 94� log2 � invocations.

By using the bit-decomposition protocol, any bit-oriented operation can be
performed in arithmetic circuits where inputs are given as polynomial sharings
(rather than bitwise sharings) of elements in Zp.

2 The evaluation in [11] is 37 rounds and 55� log2 � invocations by generating random
values on demand.
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The parties convert [a]p into [a]B .

1. The parties generate [r]B and obtain [r]p eventually.
2. The parties compute [c]p = [a]p−[r]p and reveal c = a−r mod p ∈ {0, 1, . . . , p−1}.
3. The parties compute [d]B = [r]B + [c]B = {[d�]p, . . . , [d0]p}.
4. Note that d can be represented as d = a + qp where q ∈ {0, 1}. The parties can

compute the bit q as [q]p = [p ≤ d]p = 1 − [d <B p]p.
5. Consider g = (2� − qp) mod 2� and its bitwise sharing [g]B = {[g�−1]p, . . . , [g0]p}.

Let (f�−1, . . . , f0)2 be the bit representation of 2� −p such that 2� −p =
P�−1

i=0 2ifi

and fi ∈ {0, 1}. Then the parties can compute [g]B by [gi]p = fi[q]p for 0 ≤ i ≤ �−1
because g = 0 if q = 0 and g = 2� − p if q = 1.

6. The parties now have the two following bitwise sharings, [d]B = [a + qp]B and
[g]B = [(2� − qp) mod 2�]B . Therefore, the parties can compute [h]B = [d]B + [g]B
where h = a + q2�.

7. By discarding the sharing [h�]p from [h]B , they can obtain [a]B .

Fig. 1. Bit-Decomposition [11]

However, the bit-decomposition protocol is not cheap, so we try to con-
struct a simplified bit-decomposition protocol and construct more efficient pro-
tocols for interval tests, equality tests, and comparisons without relying on the
bit-decomposition protocol.

5 Simplified Bit-Decomposition Protocol

In the original bit-decomposition protocol, we need 2 invocations of the bitwise
sum protocol (in Steps 3 and 6 in Fig. 1). We can notice that the first invocation
for [d]B can be eliminated by changing the way in which we compute [q]p based
on the following observation.

In Step 4 of the original protocol, the parties compute [q]p = 1 − [d <B p]p
where d = r + c, c is public, and r is bitwise-shared. Therefore, the condition,
(d < p) can be changed into (r < p−c). The parties have [r]B and p−c is public,
so (r < p − c) can be computed by using the bitwise less-than protocol without
computing [d]B = [r]B +[c]B, thus eliminating one invocation of the bitwise sum
protocol.

Since we have eliminated [d]B , we need to specify how to compute [a]B in the
rest of the protocol. Fortunately, we can use [r]B itself to compute [a]B by using
the bitwise sum protocol. The simplified bit-decomposition protocol is given in
Fig. 2.

Complexity of Bit-Decomposition Protocol. The complexity of computing
each component is as follows: 7 rounds (including 2 rounds for random value
generation) and 76� invocations for [r ∈R Zp]B, 5 rounds and 17� invocations for
[q]p, that is, [r <B p−c]p, and 13 rounds and 47� log2 � invocations for [h]B. The
total complexity is 25 rounds (including 2 rounds for random value generation)
and 93� + 47� log2 � invocations.
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The parties convert [a]p into [a]B .

1. The parties generate [r]B and obtain [r]p eventually.
2. The parties compute [c]p = [a]p−[r]p and reveal c = a−r mod p ∈ {0, 1, . . . , p−1}.

If c = 0, the parties are successfully done because [r]B is equal to [a]B by a
coincidence.

3. If c �= 0, next, the parties compute the bit q, [q]p = [p ≤ r + c]p = 1− [r <B p− c]p
by using the bitwise less-than protocol.

4. Note that a can be represented as a = c+r−qp over the integers where q ∈ {0, 1}.
Therefore, we also have 2� + a = 2� + c − qp + r over the integers. Consider
eg = (2� + c − qp) mod 2� and its bitwise sharing [eg]B = {[eg�−1]p, . . . , [eg0]p}. Let

( ef�−1, . . . , ef0)2 be the bit representation of 2�+c−p such that 2�+c−p =
P�−1

i=0 2i efi

and efi ∈ {0, 1}. Also, let ( ef ′
�−1, . . . , ef ′

0)2 be the bit representation of c such that

c =
P�−1

i=0 2i ef ′
i and ef ′

i ∈ {0, 1}. Then the parties can compute [eg]B by [egi]p =

( efi − ef ′
i)[q]p + ef ′

i for 0 ≤ i ≤ �−1 because eg = c if q = 0 and eg = 2� + c−p if q = 1.
5. The parties now have the two following bitwise sharings, [r]B and [eg]B = [(2� +

c − qp) mod 2�]B . Therefore, the parties can compute [h]B = [r]B + [eg]B where
h = a + q2�.

6. By discarding the sharing [h�]p from [h]B , they can obtain [a]B .

Fig. 2. Simplified Bit-Decomposition

6 Proposed Protocols Without Bit-Decomposition

6.1 Interval Test Protocol

In the interval test protocol, given public constants c1, c2 ∈ Zp (where c1 < c2)
and shared secret a ∈ Zp, the parties compute [c1 < a < c2]p without revealing
(c1 < a < c2) itself.

If the parties use the bit-decomposition protocol, the parties compute [a]B
from [a]p and compute [c1 < a < c2]p = [c1 <B a]p × [a <B c2]p.

The basic idea of our construction is as follows: We randomize a by c = a + r
and reveal c where r is a bitwise-shared random secret. We obtain an appropriate
interval [rlow, rhigh] from c, c1, and c2. Then computing [c1 < a < c2]p is reduced
to checking whether r exists in the appropriate interval rlow < r < rhigh (for
example, see Fig. 3) by the bitwise less-than protocol.

Procedure. The parties generate [r ∈R Zp]B and obtain [r]p eventually. Next,
the parties compute [c]p = [a]p+[r]p and reveal c = a+r mod p ∈ {0, 1, . . . , p−1}.
At this point, no information about a is leaked from c because r is uniformly
random and unknown to the parties. Now we can think that a ∈ {−(p − c −
1), . . . , −1, 0, 1, . . . , c − 1, c} because r ∈ {0, 1, . . . , p − 1}.

First, we consider the case where c1 < c < c2 does not hold. When c2 ≤ c (see
Fig. 3), obviously, we have (c1 < a < c2) = 1 if (rlow =)c − c2 < r < c − c1(=
rhigh). Similarly, when c ≤ c1 (see Fig. 4), if (rlow =)c+p−c2 < r < c+p−c1(=
rhigh), we have −(p − c1) < a < −(p − c2). This means that (c1 < a < c2) = 1.
Therefore, the parties compute, by using the bitwise less-than protocol,

[c1 < a < c2]p = [rlow <B r]p × [r <B rhigh]p.



Multiparty Computation for Interval, Equality, and Comparison 353

Fig. 3. Case of c2 ≤ c

Fig. 4. Case of c ≤ c1

Next, we consider the case where c1 < c < c2 holds (see Fig. 5). In this case,
if (rlow =)c − c1 − 1 < r < c + p − c2 + 1(= rhigh), we have −(p − c2) ≤ a ≤ c1.
This means that (c1 < a < c2) = 0. Therefore, the parties compute

[rlow < r < rhigh]p = [c − c1 − 1 <B r]p × [r <B c + p − c2 + 1]p

by using the bitwise less-than protocol and set

[c1 < a < c2]p = 1 − [rlow < r < rhigh]p.

Complexity of Interval Test Protocol. If we use the bit-decomposition
protocol straightforwardly, the complexity of computing each component is as
follows: 38 rounds (including 2 rounds for random value generation) and 93� +
94� log2 � invocations for [a]B, 5 rounds and (17� × 2) invocations for [c1 <B a]p
and [a <B c2]p, and 1 round and 1 invocation for [c1 <B a]p × [a <B c2]p. The
total complexity is 44 rounds (including 2 rounds for random value generation)
and 127� + 94� log2 � + 1 invocations.

On the other hand, in our construction, the complexity of computing each
component is as follows: 7 rounds (including 2 rounds for random value gen-
eration) and 76� invocations for [r ∈R Zp]B, 5 rounds and (17� × 2) invoca-
tions for [rlow <B r]p and [r <B rhigh]p, and 1 round and 1 invocation for
[rlow <B r]p × [r <B rhigh]p. The total complexity is 13 rounds (including 2
rounds for random value generation) and 110� + 1 invocations.

Fig. 5. Case of c1 < c < c2
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6.2 LSB Protocol for Special Case of Interval Test Protocol

In order to construct our comparison protocol later, we consider computing
[a < p

2 ]p. Though it is possible for us to use the technique in Section 6.1, we
compute [a < p

2 ]p more efficiently by using special properties of p
2 and apply

this subprotocol (called the LSB protocol here) to our comparison protocol. By
a simple observation, we can notice that a ∈ {0, 1, . . . , p−1

2 } ⇔ (2a mod p)0 = 0,

and that a ∈ { p−1
2 + 1, . . . , p − 1} ⇔ (2a mod p)0 = 1 where (x)0 is the least

significant bit (LSB) of x ∈ {0, 1, . . . , p − 1}. That is, if a < p
2 , no wrap-around

modulo p occurs when 2a mod p is computed and 2a mod p is even. On the other
hand, if a > p

2 , a wrap-around modulo p occurs when 2a mod p is computed and
2a mod p is odd. Therefore, if we can compute [(x)0]p from [x]p, we can use it
to compute [a < p

2 ]p.
To compute [(x)0]p from [x]p, we randomize x by c = x+ r and reveal c where

r is a bitwise-shared random secret. Then we can obtain [(x)0]p from (c)0 and
[(r)0]p.

Procedure. The parties want to compute [(x)0]p from [x]p. The parties generate
[r ∈R Zp]B and obtain [r]p eventually. Next, the parties compute [c]p = [x]p+[r]p
and reveal c = x+r mod p ∈ {0, 1, . . . , p−1}. If no wrap-around modulo p occurs
when c is computed, we have (x)0 = (c)0 ⊕ (r)0 and if a wrap-around modulo p
occurs when c is computed, we have (x)0 = 1 − {(c)0 ⊕ (r)0}. Furthermore, we
can use (c < r) to know whether or not a wrap-around modulo p occurred when
c was computed. That is, if (c < r) = 0, it means that no wrap-around modulo
p occurred, and if (c < r) = 1, it means that a wrap-around modulo p occurred
because r ∈ {0, 1, . . . , p − 1}.

From these facts, the parties can compute [(x)0]p as

[(x)0]p = [c <B r]p × (1 − {(c)0 ⊕ [(r)0]p}) + (1 − [c <B r]p) × {(c)0 ⊕ [(r)0]p}
= [c <B r]p + {(c)0 ⊕ [(r)0]p} − 2[c <B r]p × {(c)0 ⊕ [(r)0]p}. (1)

The interpretation of Eq. (1) is that if (c <B r) = 1, we have (1−{(c)0⊕[(r)0]p})
and otherwise we have {(c)0⊕[(r)0]p}. Because c is public, note that (c)0⊕[(r)0]p
can be computed as

(c)0 ⊕ [(r)0]p =
{

[(r)0]p if (c)0 = 0
1 − [(r)0]p if (c)0 = 1.

Also note that the parties already have [(r)0]p because r is generated by [r ∈R

Zp]B.
By using the LSB protocol, the parties can compute [a < p

2 ]p from [a]p as
[a < p

2 ]p = 1 − [(2a)0]p.

Complexity of LSB Protocol. The complexity of computing each component
is as follows: 7 rounds (including 2 rounds for random value generation) and
76� invocations for [r ∈R Zp]B, 5 rounds and 17� invocations for [c <B r]p, and
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Table 2. Truth Table for (a < b)

w = (a < p/2) x = (b < p/2) y = (a − b mod p < p/2) z = (a < b)

1 0 * 1
0 1 * 0
0 0 0 1
0 0 1 0
1 1 0 1
1 1 1 0

1 round and 1 invocation for [c <B r]p×[(r)0]p. The total complexity is 13 rounds
(including 2 rounds for random value generation) and 93� + 1 invocations.

6.3 Comparison Protocol

In the comparison protocol, given two shared secrets a, b ∈ Zp, the parties com-
pute [a < b]p without revealing (a < b) itself. For example, we can compute
[max(a, b)]p = [a]p + [a < b]p × [b − a]p by using the comparison protocol.

If the parties use the bit-decomposition protocol, the parties compute [a]B
and [b]B from [a]p and [b]p and compute [a <B b]p as in [11].

It seems difficult for us to compare a and b directly without using the bit-
decomposition protocol. Therefore, we compare a and b indirectly via the value
of p

2 by computing [a < p
2 ]p, [b < p

2 ]p, and [a − b mod p < p
2 ]p.

Procedure. By a simple observation, we can notice that (a < b) is determined
from (a < p

2 ), (b < p
2 ), and (a−b mod p < p

2 ). This observation can be confirmed
by the truth table (Table 2).

When we denote (a < p
2 ), (b < p

2 ), (a − b mod p < p
2 ), and (a < b) as w, x, y,

and z respectively, then z is represented as

z = wx̄ ∨ w̄x̄ȳ ∨ wxȳ

= w(1 − x) + (1 − w)(1 − x)(1 − y) + wx(1 − y)
= w(x + y − 2xy) + 1 − y − x + xy. (2)

Therefore, if the parties can compute [a < p
2 ]p, [b < p

2 ]p, and [a − b mod p < p
2 ]p,

they can compute [a < b]p from Eq. (2) by using addition and the multipli-
cation protocol. We can use the LSB protocol to compute all three of these
values.

Complexity of Comparison Protocol. If we use the bit-decomposition pro-
tocol straightforwardly, the complexity of computing each component is as fol-
lows: 38 rounds (including 2 rounds for random value generation) and 2× (93�+
94� log2 �) invocations for [a]B and [b]B and 6 rounds and 19� invocations for
[a <B b]p. The total complexity is 44 rounds (including 2 rounds for random
value generation) and 205� + 188� log2 � invocations.
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On the other hand, in our construction, the complexity of computing each
component is as follows: 13 rounds (including 2 rounds for random value genera-
tion) and 3× (93�+1) invocations for [a < p

2 ]p, [b < p
2 ]p, and [a− b mod p < p

2 ]p
and 2 rounds and 2 invocations for Eq. (2). The total complexity is 15 rounds
(including 2 rounds for random value generation) and 279� + 5 invocations.

6.4 Equality Test Protocol

In the equality test protocol, given two shared secrets a, b ∈ Zp, the parties
compute [a = b]p without revealing (a = b) itself.

Because [a = b]p can be computed by [a − b = 0]p, we focus on computing
[a = 0]p.

If the parties use the bit-decomposition protocol, the parties compute [d]B
from [d]p = [a − b]p and compute [∧�−1

i=0 (1 − di)]p by using an unbounded fan-in
And as in [11].

In our construction, we use a very simple observation that the randomization
c(= d + r) of d is equal to r if d is zero.

Procedure. First the parties generate [r ∈R Zp]B and obtain [r]p eventually.
Next, the parties compute [c]p = [a]p + [r]p and reveal c = a + r mod p ∈
{0, 1, . . . , p − 1}. We can note that c = r iff a = 0. Therefore, the parties com-
pute whether all bits of c are the same as [r]B . Let (c�−1, . . . , c0)2 be the bit
representation of c. Then the parties compute [c′i]p for 0 ≤ i ≤ � − 1 as

[c′i]p =
{

[ri]p if ci = 1
1 − [ri]p if ci = 0.

We can note that c′i ∈ {0, 1} and that c′i = 1 iff ci = ri. Finally, the parties
compute [a = 0]p as [∧�−1

i=0c′i]p by using an unbounded fan-in And.

Complexity of Equality Test Protocol. If we use the bit-decomposition
protocol straightforwardly, the complexity of computing each component is as
follows: 38 rounds (including 2 rounds for random value generation) and 93� +
94� log2 � invocations for [d]B and 1 rounds and 5� invocations for [∧�−1

i=0 (1 −
di)]p. The total complexity is 39 rounds (including 2 rounds for random value
generation) and 98� + 94� log2 � invocations.

On the other hand, in our construction, the complexity of computing each
component is as follows: 7 rounds (including 2 rounds for random value genera-
tion) and 76� invocations for [r]B and 1 rounds and 5� invocations for [∧�−1

i=0 c′i]p.
The total complexity is 8 rounds (including 2 rounds for random value genera-
tion) and 81� invocations.

6.5 Probabilistic Equality Test Protocol

We consider another version of the equality test protocol with a very small
round complexity. We focus on computing [a = 0]p again. In our construction,
we assume that p = 3 mod 4 or p = 5 mod 8. These imply that Legendre symbol
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(
−1
p

)
= −1 if p = 3 mod 4 and that

(
2
p

)
= −1 if p = 5 mod 8. The basic idea is

based on the property of quadratic residues as follows: If a is a zero, we always
have

(
c
p

)
=

(
r
p

)
where c = a + r, r is a random secret and c is a revealed

value. If a is not a zero, we have
(

c
p

)
�=

(
r
p

)
with non-negligible probability.

By checking whether
(

c
p

)
=

(
r
p

)
secretly with sufficiently many trials, we can

perform the equality test on a in a probabilistic way. Here note that we need to
generate random secret r in a special way to compute

(
r
p

)
secretly.

Procedure. First we describe the case of p = 3 mod 4. The case of p = 5 mod 8
can be obtained quite straightforwardly as we mention later.

The parties generate [bj ∈R {−1, 1}]p, [rj ∈R Zp]p, and [r′j ∈R Zp]p for

1 ≤ j ≤ k in parallel where k is chosen such that the error probability
( 1

2

)k is
negligible. The value bj can be generated by a joint random bit sharing. Next,
the parties compute for 1 ≤ j ≤ k in parallel,

[cj ]p = [a]p × [rj ]p + [bj ]p × [r′j ]p × [r′j ]p

and reveal all the cj ’s. Note that bjr
′2
j is uniformly random and unknown to the

parties, so no information about a is leaked from cj . Actually we can confirm
that Pr[bjr

′2
j = 0] = Pr[r′j = 0] = 1

p , that Pr[bjr
′2
j = y] = Pr[bj = 1] × Pr[r′j =

±√
y] = 1

2 × 2
p = 1

p if y is a quadratic residue , and that Pr[bjr
′2
j = y] = Pr[bj =

−1] × Pr[r′j = ±√−y] = 1
2 × 2

p = 1
p if y is a quadratic nonresidue.

Also note that if a = 0, arj is always a zero and that if a �= 0, arj is uniformly
random.

If cj is a zero, the parties discard the cj and retry. The probability that cj

happens to be a zero is 1
p and negligible in the practical setting (e.g., p > 232).

Assuming that cj is not a zero, we can notice that a = 0 ⇒
(

cj

p

)
=

(
bjr′2

j

p

)
=

bj with prob. 1, and that a �= 0 ⇒
(

cj

p

)
= bj with prob. 1

2 . The case of a = 0
is obvious. When a �= 0, cj is uniformly random whether bj is −1 or 1 because

arj is uniformly random, so the probability that
(

cj

p

)
= bj is 1

2 .
Then the parties compute for 1 ≤ j ≤ k,

[xj ]p =

⎧
⎨

⎩

2−1([bj ]p + 1) if
(

cj

p

)
= 1

−2−1([bj ]p − 1) if
(

cj

p

)
= −1.

Note that xj ∈ {0, 1} and that xj = 1 iff
(

cj

p

)
= bj. Finally, the parties compute

[a = 0]p = [∧k
j=1xj ]p by using an unbounded fan-in And, assuming that at least

one of xj ’s is 0 if a �= 0 with sufficiently large k.
The error probability that (a = 0) = 1 when a �= 0 is

( 1
2

)k and it can be
negligible if we use sufficiently large k.
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Similarly, when p = 5 mod 8, the parties compute and reveal for 1 ≤ j ≤ k

cj = arj + b′jr
′2
j mod p

instead of cj = arj + bjr
′2
j mod p where b′j = −2−1(bj − 3).

Note that b′j ∈R {2, 1} because bj ∈R {−1, 1}. Therefore, noting that
(

2
p

)
=

−1, we can notice that a = 0 ⇒
(

cj

p

)
=

(
b′

jr′2
j

p

)
= bj with prob. 1, and that

a �= 0 ⇒
(

cj

p

)
= bj with prob. 1

2 . The rest of computation can be done as we
did for p = 3 mod 4.

Though we assumed, for simplicity, that p = 3 mod 4 or that p = 5 mod 8,
actually we can extend the idea to arbitrary primes if we generate bj ∈R {y, 1}
such that

(
y
p

)
= −1.

Quadratic Residuosity Test Protocol. Incidentally, by using the random
secret bjr

2
j in Section 6.5, we can also construct a quadratic residuosity test

protocol where, given [a ∈ Z
∗
p]p, the parties can compute [

(
a
p

)
]p as follows:

Here we assume that p = 3 mod 4 for simplicity. The parties generate [br2]p
in the same way as bjr

2
j is generated in Sect. 6.5, and reveal c = br2a. If c

is a zero, the parties retry. The parties can compute [
(

a
p

)
]p as

(
c
p

)
[b]p since

(
c
p

)
=

(
b
p

)(
a
p

)
= b

(
a
p

)
.

Complexity of Probabilistic Equality Test Protocol. The complexity of
computing each component is as follows: 3 rounds (including 2 rounds for random
value generation) and 7k invocations for [cj ]p’s and 1 rounds and 5k invocations
for [∧k

j=1xj ]p. The total complexity is 4 rounds (including 2 rounds for random
value generation) and 12k invocations.

7 Implementation

In the real implementation, we can use (odd-even) parallel prefix computation
[19,18] based on carry propagation and generation for the bitwise less-than and
bitwise sum protocols as in [4,15,23] where the complexity of bitwise less-than is
roughly 2+log2(�) rounds and 3�−1 invocations (2�−1 invocations if one of the
two operands is known) and the complexity of bitwise sum is roughly 2 log2(�)−1
rounds and 5� − 2 log2(�) − 4 invocations (4� − 2 log2(�) − 4 invocations if one
of the two operands is known). Also, instead of joint random number sharing,
we can use non-interactive pseudo-random secret sharing by Cramer, Damg̊ard
and Ishai [9] in the secret sharing setting in order to reduce the round and com-
munication complexities. In Table 3, we summarize the number of invocations
of main subprotocols in each protocol. Whether we use constant-round subpro-
tocols or non-constant-round subprotocols as building blocks, our constructions
are more efficient according to Table 3. Though, in the comparison protocol, we
need 3 invocations of joint random number bitwise-sharing compared with 2 in
[11], this can be done in advance and our protocol seems more advantageous.
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Table 3. Number of Invocations of Subprotocols

Protocol Random Bitwise-Sharing Bitwise Less-Than Bitwise Sum

Bit-Decomposition [11] 1 1 2
Proposed 1 1 1

Interval Test [11] 1 3 2
Proposed 1 2 0

Comparison [11] 2 3 4
Proposed 3 3 0

Equality Test [11] 1 1 2
Proposed1 1 0 0
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Abstract. We present the first identity-based traitor tracing scheme.
The scheme is shown to be secure in the standard model, assuming the
bilinear decision Diffie-Hellman (DBDH) is hard in the asymmetric bi-
linear pairing setting, and that the DDH assumption holds in the group
defining the first coordinate of the asymmetric pairing. Our traitor trac-
ing system allows adaptive pirates to be traced. The scheme makes use
of a two level identity-based encryption scheme with wildcards (WIBE)
based on Waters’ identity-based encryption scheme.1

1 Introduction

In 1984 Shamir proposed the concept of identity-based cryptography [15]. How-
ever, it took nearly twenty years for the problem of designing an efficient method
to implement identity-based encryption (IBE) to be solved. In 2000 and 2001
respectively Sakai, Ohgishi and Kasahara [13] and Boneh and Franklin [6] pro-
posed IBE schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed
a system based on the quadratic residuosity problem [10].
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particular purpose. The user thereof uses the information at its sole risk and liability.
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Identity-based encryption is often justified as a useful technology by its pos-
sible use in an e-mail application. However, many people, whilst having a small
set of e-mail identities, often belong to a larger set of e-mail groups. An e-mail
group, or shared address, is an e-mail address which allows the sender to send
a message to a large number of individual e-mail addresses without needing to
know the actual individual addresses. Using existing identity-based encryption
techniques one can easily implement such a scheme by giving each member of
the e-mail group the same ID-private key. Thus all members of the group will
share the same private key.

A common business model in PKI world is that the certificate authority
charges for each certificate, or block of certificates, issued. In the ID-based world
this model corresponds to the trust authority charging for each private key, or
block of private keys. However, in our group e-mail example this would mean
that the trust authority would only be able to charge for one private key for the
whole group, since as soon as one person had the private key they could share
it with the other members of the group. What is needed is a disincentive for the
group members to collaborate in this manner.

A similar situation occurs in the traditional symmetric or public key setting in
broadcast encryption. Here one solves the associated problem by using a traitor
tracing scheme, which allows any person (or set of colluding people) who creates
a new decryption device, or key, to be traced. Thus combining the above ideas
together we see that there is a possible need for an identity-based traitor tracing
scheme.

Surprisingly since the invention of identity-based cryptography by Shamir
[15] in 1984, no one seems to have considered this issue. Thus in this paper we
present the first identity-based traitor tracing scheme. Our scheme is based on
the Waters’ WIBE from [1], which is based on Waters’ identity-based encryption
scheme [17]. A WIBE is a variant of a hierarchical IBE (HIBE) scheme in that it
encrypts to an identity string which is defined on various layers. However, unlike
a HIBE, which allows only a single recipient, a WIBE allows one to encrypt
to a string which is “wildcarded” on a given set of levels. A WIBE allows one
to target a ciphertext at a given group of users by applying the appropriate
wildcards.

Our construction is relatively simple: we use a two level WIBE in which the
first level represents the name of the group and the second level represents the
unique index of a user. This allows e-mails to be addressed to the entire group
via the use of a wildcard in the second level. Group membership is ‘policed’ by
the trust authority, which only releases a decryption key to a user if the user
is entitled to decrypt messages sent to a particular group. The subtlety of our
construction is in the construction of a traitor tracing algorithm.

We prove that our scheme protects the confidentiality of encrypted messages
against passive attackers in the standard model, and show that it allows traitor
tracing against an adaptive traitor.

Unfortunately, our scheme is not practical due to the combination of Waters’
IBE and collusion secure codes [8], which results in infeasibly large public key
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and ciphertext sizes. Thus we leave the construction of a truly efficient identity-
based traitor tracing scheme, even in the random oracle model [3], as an open
problem. In addition we leave as open the problem of creating a scheme which
allows a greater number of key extraction queries by the pirate than ours allows.
Furthermore, our scheme does not protect against pirate decoder manufacturers
mounting chosen-ciphertext attacks, however this later stronger pirate has not
been considered in the public-key setting either.

2 Preliminaries

2.1 Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers and {0, 1}∗ the set of all bit
strings. If k ∈ N then {0, 1}k is the set of bit strings of length k and 1k is the
string of k ones. If A is a randomized algorithm, then y

$← AO(x) denotes the
assignment to y of the output of A when run on input x with fresh random coins
and with access to oracle O; we write y ← AO(x) if A is deterministic. If S is a
finite set, then x

$← S denotes the random generation of an element x ∈ S using
the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for
all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc. It is said to
be non-negligible if there exists a c ∈ N such that ν(k) > k−c for all k ∈ N.

2.2 Computational Assumptions

Our scheme employs asymmetric pairings, which we now recall. Let G1, G2 and
GT denote three finite multiplicative abelian groups of prime order p > 2k. Let
g and h be generators of G1 and G2, respectively, and let ψ : G2 → G1 be
an efficiently computable isomorphism such that ψ(h) = g. We assume that
there exists an admissible bilinear map ê : G1 × G2 → GT, meaning that for
all a, b ∈ Zp (1) ê(ga, hb) = ê(g, h)ab, (2) ê(ga, hb) = 1 iff a = 0 or b = 0, and
(3) ê(ga, hb) is efficiently computable.

The advantage of an algorithm A in solving the computational bilinear Diffie–
Hellman (CBDH) problem in G2 is defined as

Advcbdh
A,G2

(k) = Pr
[
Z = ê(g, h)xyz : x, y, z

$← Zp ; Z
$← A(hx, hy, hz)

]
.

The advantage of A in solving the decisional variant of this problem, called the
decisional bilinear Diffie–Hellman (DBDH) problem in G2, is

Advdbdh
A,G2

(k) =
∣
∣
∣∣ Pr

[
A(hx, hy, hz, Z) = 1 : x, y, z

$← Zp ; Z ← ê(g, h)xyz
]

− Pr
[
A(hx, hy, hz, Z) = 1 : x, y, z

$← Zp ; Z
$← GT

] ∣∣
∣
∣ .

We say that the CBDH and DBDH problems in G2 are hard if the respective
advantages are negligible functions in k for all algorithms A with running time
polynomial in k.
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We also require that the DDH problem in G1 is hard, namely we require that
for all algorithms A, with running time polynomial in k, the following advantage
is a negligible function in k,

Advxddh
A,G1

(k) =
∣
∣
∣∣ Pr

[
A(gx, gy, Z) = 1 : x, y

$← Zp ; Z ← gxy
]

− Pr
[
A(gx, gy, Z) = 1 : x, y

$← Zp ; Z
$← G1

] ∣∣
∣
∣ .

Note that if the DDH problem in G1 is hard, then there cannot exist a com-
putable isomorphism from G1 to G2 and thus we must be working in the asym-
metric pairing setting. The assumption that the DDH problem is hard in G1 is
referred to as the external DDH problem (XDDH) and has been used before in
[2,4,14].

3 Identity-Based Traitor Tracing

3.1 Syntax

In this section we will describe the general model for an identity-based traitor
tracing scheme. Broadcast groups are referred to by an identity string ID ∈
{0, 1}∗, individual users are referred to by an index i ∈ N. To make user i
member of the group ID , the trusted key distribution centre provides it with
a personal decryption key dID,i. Anyone can encrypt a message to the general
group ID such that all individual users belonging to the group can recover the
message.

Formally, an identity-based traitor tracing scheme IBT T consists of five
polynomial-time algorithms:

– A randomised key generation algorithm G(1k) taking as input the security
parameter k. This algorithm generates a set of domain parameters consisting
of a master public key mpk and a master secret key msk .

– A key extraction algorithm X (msk , ID , i) which given the master secret key
msk , a group identity ID ∈ {0, 1}∗ and a user index i generates a user secret
key dID,i. This algorithm could be probabilistic.

– A probabilistic encryption algorithm E(mpk , ID , m) which on input of the
master public key mpk , a group identity ID and a message m outputs a
ciphertext C.

– A decryption algorithm D(dID ,i, C) which on input of a user secret key dID,i

and a ciphertext C outputs a plaintext message m, or ⊥ to indicate a de-
cryption error.

– A traitor tracing algorithm T D(msk , ID) which has oracle access to a “pi-
rate” decryption box D. The tracing algorithm takes as input the master
secret key msk and a group identity ID , and outputs a set of user identifiers
(called “traitors”) T ⊂ N.
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An identity-based traitor tracing scheme whose tracing algorithm takes as input
mpk instead of msk is said to be publicly-traceable, since then anyone can exe-
cute the tracing algorithm. We shall assume that all “pirate” decryption boxes
are resettable [11], meaning that they retain no state between decryptions. In
particular, pirate boxes cannot self-destruct.

For correctness we require that D(d, E(mpk , ID , m)) = m with probability
one for all k ∈ N, ID , m ∈ {0, 1}∗, i ∈ N, (mpk ,msk) $← G(1k) and d

$←
X (msk , ID , i).

3.2 Secrecy

We require that our ID-based traitor tracing scheme is semantically secure in the
presence of adaptive adversaries who have access to a key extraction oracle and,
in a chosen-ciphertext attack, a decryption oracle. These are standard notions
in ID-based cryptography first introduced in [6]. The extension to the setting we
have here is immediate, but for completeness we clarify it here.

Secrecy is defined by a two-stage game. The challenger first runs the key
generation algorithm to generate a master key pair (mpk ,msk) $← G(1k). The
master public key mpk is passed to the adversary. In the first stage of the game
the adversary has access to a key extraction oracle X (msk , ·, ·), which it can
query on arbitrary pairs (ID , i) of group identities ID and user indices i. In a
chosen-ciphertext attack, the adversary can also has access to a decryption oracle
D(X (msk , ·, ·), ·) from which it can obtain the decryption of any ciphertext C
using the key to any pair (ID , i). The first stage ends when the adversary outputs
two messages of equal length m0 and m1, plus a challenge group identity ID∗.

The challenger then selects a bit b and encrypts mb under the group identity
ID∗ to form the challenge ciphertext C∗ ← E(mpk , ID∗, mb). The challenge
ciphertext is returned to the adversary for the second stage of the game. In
this second stage the adversary can perform further queries to its oracles. At
the end of the second stage the adversary outputs its guess b′ as to the bit b.
The adversary wins the game if b = b′, if ID∗ never appeared in any of the key
extraction oracle queries, and, in a chosen-ciphertext attack, if C∗ was never
submitted to the decryption oracle with group identity ID∗.

The advantage Advind-id-cpa
A,IBT T (k), respectively Advind-id-cca

A,IBT T (k), of an adver-
sary A in breaking the indistinguishability of scheme IBT T is defined as the
probability of A winning the corresponding game minus one-half. We say that
the traitor tracing scheme is IND-ID-CPA, respectively IND-ID-CCA secure, if
this advantage is a negligible function in k for any adversary A with running
time polynomial in k.

3.3 Traceability

We extend the notion of traceability defined for the public key setting in [7]
to the identity-based setting. We provide definitions for both chosen-plaintext
and chosen-ciphertext attack; our scheme however is only proved secure in the



366 M. Abdalla et al.

chosen-plaintext setting. We note that to our knowledge there is no public-key
traitor tracing system which has been considered in the presence of (the natural
analogue of) chosen-ciphertext attacks against the traceability property.

Let k, c ∈ N be two security parameters associated to the experiment. The
challenger first generates a master key pair (mpk ,msk) $← G(1k) and gives mpk
to the adversary. The adversary has access to a key extraction oracle X (msk , ·, ·)
to which it can submit pairs (ID , i) of its choosing. In a chosen-ciphertext attack,
it can also perform queries to a decryption oracle D(X (msk , ·, ·), ·) specifying a
group identity ID , a user index i and an arbitrary ciphertext C as in the above
secrecy game. The adversary terminates by outputting a group identity ID∗

and a pirate decoder D, which is the description of a probabilistic circuit that
takes as input ciphertexts and outputs messages. The challenger then runs the
tracing algorithm with black-box access to D to obtain a set of user identifiers
S

$← T D(msk , ID∗).
By modelling the pirate decoder as a probabilistic circuit, we assume that

the decoder is resettable or stateless [11] in that it does not retain information
from previous decryptions, and in particular that it cannot self-destruct. Thus,
when being subjected to a series of tracing queries, the pirate decoder responds
to each query as if it were the first.

If we let T denote the set of user indices i that the adversary submitted to
the key extraction oracle in combination with the group identity ID∗, then we
say that the adversary wins the game if the following conditions hold:

– The decryption box decrypts a non-negligible fraction of random ciphertexts
encrypted under the group identity ID∗, i.e. for random messages m we
have that Pr[D(E(mpk , ID∗, m)) = m] ≥ δ(k) where δ(k) is a non-negligible
function and where the probability is taken over the random choice of m and
over the random coins of the encryption algorithm E and the pirate box D.

– Either S = ∅ or S 	⊆ T .
– A queried the key extraction oracle for at most c different user indices i.

We do not restrict the number of different group identities ID for which A
can obtain keys for each of these users (apart from being polynomial in k of
course). This reflects that colluding users can use all their decryption keys
to construct the pirate box, not just the key corresponding to ID∗. It also
means that the number of different groups a single user subscribes to is not
limited by c.

– In the chosen-ciphertext variant there are no restrictions on A’s queries to
the decryption oracle.

The advantage Advtra-id-cpa[c]
A,IBT T (k), respectively Advtra-id-cca[c]

A,IBT T (k), of A in break-
ing the traceability of the scheme IBT T is defined as its probability of winning
the above game. We say that IBT T is c-TRA-ID-CPA, respectively c-TRA-ID-
CCA secure, if this advantage is a negligible function in k for all adversaries A
with running time polynomial in k.

The above definition is essentially a full access model. One can, following [5]
and [7], define a minimal access model in which the oracle available to the tracing
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algorithm only outputs whether the decoder successfully decrypted the input
ciphertext or not, but does not give it the resulting plaintext.

4 The Scheme

Our scheme makes use of the two-level WIBE scheme [1] based on Waters’ HIBE
scheme [17]. We assume that group identities ID are given by strings of length n1.
As user identifiers we associate to each user an element of a code. The mapping
between individual users, their indices and their codewords is maintained by the
trust authority. In practice the code will be a (c, N, ε)-collusion secure code [8],
where N is the maximum number users in the system, c is the maximum number
of colluders our tracing algorithm can tolerate, and ε is the probability of error
that a colluder is not traced. A (c, N, ε) collusion secure code can be produced
using codewords of size � = O(c2(log(N) + log(1/ε))) over an alphabet of size
s = 2 [16]. Our use of collusion secure codes will result in a scheme which is not
publicly traceable, since the tracing algorithm for collusion secure codes requires
secret randomness.

Before giving a more precise definition of collusion-secure codes, we need to
introduce some additional notation. Let Σ be a symbol alphabet of size |Σ| = s.
If x = x1 . . . x� ∈ Σ� is a string of � symbols and I = {1 ≤ i1 < . . . < in ≤ �} is a
set of indices, then x|I is the substring xi1 . . . xin containing only those symbols
of x at positions in I. Let W = {w1, . . . , wc ∈ Σ�} be a set of symbol strings,
and let I be the set of all positions where all strings in W are equal, i.e. I is
the maximal set such that w1|I = w2|I = . . . = wc|I . Then the feasible set
of W is defined as the set of all strings that are equal to w1, . . . , wc at positions
in I, i.e.

FS(W ) = {x ∈ Σ� : x|I = w1|I = . . . = wc|I} .

A (c, N, ε) collusion-secure code of length � over alphabet Σ consists of a set C,
called the codebook, of indexed codewords w

(i)
r for 1 ≤ i ≤ N and r ∈ {0, 1}ρ,

and a tracing algorithm TC. These are such that for all collusions C ⊆ {1, . . . , N}
of size at most c, W = {w

(i)
r : i ∈ C}, and for all (unbounded) algorithms A it

holds that

Pr
[
TC(x, r) ∈ C | x ∈ FS(W ); x

$← A(W ); r
$← {0, 1}ρ

]
> 1 − ε ,

where the probability is taken over the choice of r and the random coins of
TC and A. Our scheme uses codewords as “identity strings”. This presents a
small problem: the definition insists that the set C is chosen before A’s exe-
cution; whereas, we will allow the adversary to chose the set C adaptively via
key extraction queries. We solve this problem by introducing a randomly chosen
permutation on {1, 2, . . . , N}, denoted π

$← Perm(N) (or if it is desired for effi-
ciency a pseudo-random permutation). We associate the codeword w

(π(i))
r with

the i-th user. It is therefore sufficient that

Pr

[

TC(x, r) ∈ C
∣
∣∣

x ∈ FS(W ); x
$← A(W )

C
$← P(C, c, r); r

$← {0, 1}ρ

]

> 1 − ε ,
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where P(C, c, r) is the set of subsets of {wr ∈ C} of size c.

For non-binary alphabets, we use the natural encoding of symbols as bit
strings of length �log2 s, so that codewords are represented by bit strings of
length n2 = �log2 s · �.

To set up the scheme we define two sets V1 and V2 of random elements in G2,
denoted by Vi = (vi,0, vi,1, . . . , vi,ni). We let ui,j ← ψ(vi,j) and let Ui denote the
image of the set Vi under the isomorphism ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni). For
a bit string B of length ni we use these sets to define the so-called Waters’ hash
functions

Hi(B) ← vi,0

∏

j∈B

vi,j ,

where the product is computed over all values of j for which the j-th bit of B is
one. To simplify notation we define

Gi(B) ← ui,0

∏

j∈B

ui,j = ψ(Hi(B)).

Note that Gi(B) can be computed either from the set Vi using the isomorphism
ψ, or from the set Ui directly. Also note that vi,j = hκi,j and ui,j = gκi,j for
some, unknown, values κi,j ∈ Zp.

Our ID-based traitor tracing scheme can now be defined via the following
algorithms:

Setup G(1k) : The key distribution centre generates a set of pairing groups
G1, G2 as above at the security level k, along with the sets Vi

$← (G∗
2)ni for

i = 1, 2. A random value α
$← Zp is selected, and one sets g1 ← gα ∈ G1 and

h1 ← hα ∈ G2. We require a second random element h2
$← G

∗
2 and we let

g2 ← ψ(h2). Finally, the secret random permutation π
$← Perm(N) and the

secret randomness r
$← {0, 1}ρ for the code C is chosen. The master public key

is defined to be mpk = (g, g1, h2, U1, U2) and the master secret key is msk =
(h, hα

2 , V1, V2, π, r).

Key Extraction X (msk , ID , i) : Let id be the codeword corresponding to index
i, i.e. the bit string of length n2 = �log2 s · � that is the binary encoding of
codeword w

(π(i))
r . The key distribution centre first select random values r1, r2

$←
Zp and then define the private key as

dID,i = (id , a0, a1, a2) ← (id , hα
2 H1(ID)r1H2(id)r2 , hr1 , hr2)

Encryption E(mpk , ID , m) : A message is defined as an element in GT. The
sender first chooses a t

$← Zp and then computes the ciphertext C = (C1, C2, C3,
C4) ∈ G1 × G1 × GT × G

n2+1
1 as

C1 ← gt , C2 ← G1(ID)t , C3 ← m · ê(g1, h2)t , C4 ← (ut
2,j)j=0,...,n2 .
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Decryption D(dID,i, C) : Decryption works as follows, on input of C we first
compute

C′
2 ← C

(0)
4 ·

∏

j∈id

C
(j)
4 = G2(id)t ,

where the last equality follows since C
(j)
4 = ut

2,j. Then we compute

C3 · ê(C2, a1) · ê(C′
2, a2)

ê(C1, a0)
= m · ê(g1, h2)t · ê(G1(ID)t, hr1) · ê(G2(id)t, hr2)

ê(gt, hα
2 H1(ID)r1H2(id)r2)

= m · ê(g1, h2)t · ê(G1(ID)r1 , ht) · ê(G2(id)r2 , ht)
ê(gt, hα

2 ) · ê(gt, H1(ID)r1H2(id)r2)

= m · ê(gα, h2)t

ê(gt, hα
2 )

· ê (gσ, ht)
ê (gt, hσ)

where σ = r1(κ1,0 +
∑

j∈ID

κ1,j) + r2(κ2,0 +
∑

j∈id

κ2,j)

= m · ê(gα, h2)t

ê(gt, hα
2 )

= m.

Traitor Tracing Algorithm T D(msk , ID) : Since we use a collusion-secure
code, the tracing step requires the secret randomness r, so tracing can only
be done by the key distribution centre. The tracing algorithm has access to a
pirate box D that correctly decrypts ciphertexts for ID with probability δ(k).
For convenience, we let C

(i,j)
4 denote the (�log2 s(i − 1) + j)-th element of C4.

For each 1 ≤ i ≤ � and 1 ≤ j ≤ �log2 s, initialise counter ctr i,j ← 0 and run
the following test n = 16k/δ(k) times:

1. Choose a random message m.
2. Encrypt m under the group identity ID to form a ciphertext

C ← (C1, C2, C3, C4).

3. Replace C
(i,j)
4 with a random element from G1.

4. Query the pirate decoder D on the altered ciphertext C.
5. If the decoder outputs the message m (or a valid ciphertext in the case of

minimal access) then increase ctr i,j .

After these iterations, reconstruct the bit string id ′ of length n2 as follows. Let
id ′

i,j denote the bit of id ′ at position �log2 s(i−1)+j. Set id ′
i,j ← 1 if ctr i,j < 4k,

or set id ′
i,j ← 0 otherwise. Next, decode the bit string id ′ as a symbol string x

of length �, choosing any symbol if the corresponding bit string is not a valid
encoding of a symbol in Σ. Finally, use the tracing algorithm of the code to
compute S

$← TC(x, r) and return the set of traitors π−1(S).
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5 Security Results

The IND-ID-CPA security of our scheme under the DBDH assumption follows
from the security of the Waters’ HIBE from [17] and an analogue of Theorem 6
of [1]. As one notices that the scheme is simply the Waters WIBE from [1]
specialised to the 2-level case. In Appendix A we outline the asymmetric version
of Waters’ HIBE scheme that we are using.

The scheme as it stands is only secure against adversaries who do not make
decryption oracle queries. However, extending to chosen-ciphertext security can
be done using the techniques described in [1] based on the techniques of Canetti,
Halevi and Katz [9]. This extension will not affect our traitor tracing algorithm
given above.

We now turn to showing that our tracing algorithm works. Intuitively, for
the TC algorithm to work (with error probability ε), we need the reconstructed
symbol string x to fall within the feasible set of the codewords corresponding
to the collusion. This means that on those positions where all the codewords
in the collusion are the same, the symbols of x have to be the same as well.
We prove that if the ciphertext component C

(i,j)
4 that is being “tampered” with

corresponds to a bit position where all traitors’ codewords have a zero, then the
pirate box decrypts correctly, unless it can solve the DDH problem in G1. We
also prove that if the tampered component corresponds to an all-one position,
then the pirate box is unable to decrypt correctly, unless it can solve the CBDH
problem. The 8k/δ(k) iterations are needed because the pirate box only decrypts
correctly with probability δ(k); we use a Chernoff bound to analyse the overall
success probability of our tracing algorithm.

Theorem 1. The IBT T scheme described above is c-TRA-ID-CPA secure un-
der the assumptions that the underlying code is (c, N, ε) collusion-secure code of
length � over an alphabet of size s, that the DDH problem in G1 is hard, and
that the CBDH problem in G2 is hard. More specifically, the advantage of any
polynomial-time adversary A in building an untraceable decoder that correctly
decrypts a fraction δ(k) of ciphertexts using the keys of a collusion of at most c
users is at most

Advtra-id-cpa[c]
A,IBT T (k) ≤ ε + ��log2 s · (

Advcbdh
B2,G2

(k) + e−k
)

whenever δ(k) ≥ 2 · Advxddh
B1,G1

(k) where B1, B2 are polynomial-time algorithms
depending on A and e is the base of the natural logarithm.

Proof. Let A be an attacker against the tracing property of the encryption
scheme; i.e. A takes as input mpk and outputs a pirate decryption box D. We
use A to define an attacker A′ against the tracing property of the collusion-
secure code; i.e. A′ will take as input a collection of c random codewords W =
{w1, . . . , wc} and output a value x. We will prove that if A successfully avoids
being traced, then, with high probability, A′ will successfully output a codeword
x that cannot be traced. This will provide the required contradiction.
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A′ runs as follows. It chooses random unique indices i1, . . . , ic ∈ {1, . . . , N}
and mounts the following attack for the collusion C = {i1, . . . , ic}. On input
codewords W = {w

(ij)
r : j = 1, . . . , c}, it first generates a public key mpk ←

(g, g1, h2, U1, U2) as described in the setup algorithm G of the identity-based
traitor tracing scheme. A′ then runs A. A may query a key extraction oracle for
identities (ID, i) for at most c values of i. A′ responds to the j-th such query as
normal using the codeword w

(ij)
r . Since W contains codewords corresponding to

a random collusion C, and π is meant to be a random permutation, this response
is identically distributed to the response of a correct key extraction algorithm.
A terminates by outputting a pirate decryption box D.

A′ then applies the identity-based traitor tracing scheme’s tracing algorithm
T D to D, halting after T D determines the value of the symbol string x. A′ outputs
the value x. We prove that the symbol string x ∈ Σ� reconstructed by our tracing
algorithm falls outside the feasible set FS(W ) with probability at most

Pr [x 	∈ FS(W )] ≤ ��log2 s · (Advcbdh
B2,G2

(k) + e−k
)

.

The theorem statement then directly follows from the properties of the (c, N, ε)
collusion-secure code’s tracing algorithm TC.

Let I ⊆ {1, . . . , �} be the maximal set of symbol positions such that w
(i)
r |I =

w
(j)
r |I for all i, j ∈ C. For positions of x not in I there is nothing to prove,

because they do not affect membership of FS(W ). So we focus on the symbols
xi of x at positions i ∈ I. Let id i,j for i ∈ I and 1 ≤ j ≤ �log2 s be the bits
in the binary representation of codewords corresponding to symbols at positions
i ∈ I. Because of the way we defined I, these bits are the same for all users in
the coalition. For a single iteration in the tracing algorithm at position (i, j), the
following lemmas upper-bound the probability that the decryption box correctly
decrypts m in case id i,j = 0 and that it does not correctly decrypt m in case
id i,j = 1. Hence, we can distinguish between bit positions which are all zeros and
all ones. This means we can recover the symbols which are the same in all the
codewords for which the attacker has the keys. If the bits in a given bit position
are different in the attacker’s codewords, then the attacker can detect the tracing
attempt and may output whatever they like. However, this does not matter as
we only need to recover the symbols which are the same for all codewords in
order to apply the code’s tracing algorithm. We postpone the proofs of these
lemmas until after the proof of the theorem.

Lemma 1. If id i,j = 0 in the codewords of all users in the collusion C, then D

correctly decrypts a random ciphertext that has been tampered with at position
(i, j) with probability

p0 ≥ δ(k) − Advxddh
B1,G1

(k) .

Lemma 2. If id i,j = 1 in the codewords of all users in the collusion C, then D

correctly decrypts a random ciphertext that has been tampered with at position
(i, j) with probability

p1 ≤ Advcbdh
B2,G2

(k) .
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We also use the following adaptation of the Chernoff bound from [12].

Lemma 3. Let X1, . . . , Xn be independent, 0/1 valued random variables with
expected value p. Let X = X1 + . . . + Xn, let μ = E[X ] = np and let 0 ≤ α ≤ 1
be a real number. Then we have

Pr [X < (1 − α)μ] < e−μα2/2 .

We want to upper-bound the probability that xi 	= wi. For a position i, j where
id i,j = 0, we can see the final value of ctr i,j as the outcome of the sum of
n = 16k/δ(k) independent 0/1 random variables with expected value p = p0.
The expected value of ctr i,j is μ = np0. From Lemma 1 and the assumption that
Advxddh

B1,G1
(k) ≤ δ(k)/2, we know that

μ = np0 ≥ n
(
δ(k) − Advxddh

B1,G1
(k)

) ≥ nδ(k)
2

= 8k .

We can then apply the Chernoff bound of Lemma 3 with α = 1/2 to upper-bound
the probability that the tracing algorithm incorrectly decides that id ′

i,j = 1 by

Pr [ctr i,j < 4k] ≤ Pr [ctr i,j < μ/2]

< e−μ/8

≤ e−k .

On the other hand, for a position i, j where id i,j = 1, the probability that the
tracing algorithm incorrectly decides that id ′

i,j = 0 can be upper-bounded by

Pr [ctr i,j ≥ 4k] ≤ Pr [ctr i,j ≥ 1] = p1 ≤ Advcbdh
B2,G2

(k) .

The probability that xi 	= wi is upper-bounded by the probability that the
tracing algorithm makes an incorrect decision at any of the bit positions. Since
there are �log2 s bits in the encoding of xi, we have that

Pr [xi 	= wi] ≤ �log2 s · (Advcbdh
B2,G2

(k) + e−k
)

,

so that the overall probability that the symbol string x reconstructed by the
tracing algorithm is not within the feasible set of W is

Pr [x 	∈ FS(W )] ≤ ��log2 s · (Advcbdh
B2,G2

(k) + e−k
)

,

from which the theorem follows. ��
We have left to prove the two lemmas that we used above.

Proof (Lemma 1). For the sake of contradiction, let A denote an adversary
against the traitor tracing scheme that produces a decryption box that correctly
decrypts random ciphertexts with probability δ(k), but that correctly decrypts
ciphertexts that have been tampered with at position (i′, j′) with probability
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p0 ≤ δ(k) − γ for some γ > 0. We will construct an algorithm B1 which uses A
to gain an advantage γ in solving the DDH problem in G1.

Let (gx, gy, Z) denote the input to our DDH algorithm B1 and let k′ = s(i′ −
1) + j′ − 1. It constructs the master public keys of the ID-based by choosing
random exponents α, κi,j

$← Z
∗
p for a = 1, 2 and b = 0, . . . , na and a random

element h2
$← G

∗
2. It sets g1 ← gα, h1 ← hα, ui,j ← gκi,j , vi,j ← hκi,j , except

for u2,k′ and v2,k′ which it sets to u2,k′ ← gx and v2,k′ ← ⊥, respectively. It also
chooses secret randomness r

$← {0, 1}ρ for the collusion-secure code.
B1 runs A on input mpk = (g, g1, h2, U1 = (u1,0, . . . , u1,n1), U2 = (u2,0, . . . ,

u2,n2)), responding to its key extraction queries (ID , i) as follows. Let id be the
encoding of the codeword w

(i)
r . We know from the preconditions of the lemma

that idk′ = 0. B1 chooses r1, r2
$← Zp and computes the secret key dID,i =

(id , a0, a1, a2) = (id , hα
2 H1(ID)r1H2(id)r2 , hr1 , hr2). Note that because idk′ =

0, B1 can compute H2(id), even though it does not know v2,k′ .
At the end of this stage A will output a pirate decoder D with respect to a

group identity ID of its choice.
All the identities used to create the box D will have the k′-th bit of their

binary code word id set to zero. Algorithm B then generates a random message
m and forms the ciphertext

C1 ← gy , C2 ← (gy)κ1,0 · ∏
i∈ID (gy)κ1,i ,

C3 ← m · ê(gy, h2)α , C
(i)
4 ←

{
(gy)κ2,i for 0 ≤ i ≤ n2, i 	= k′ ,

Z for i = k′ .

This ciphertext is then passed to the decoder D. Algorithm B1 outputs 1 if the
decoder correctly decrypts m, or outputs 0 otherwise.

If Z = gxy, then the ciphertext C is a correctly-formed random ciphertext, so
D will correctly decrypt it with probability δ(k). If Z is random, then C looks
exactly like a ciphertext that has been tampered with at position (i′, j′), so D

will correctly decrypt it with probability at most δ(k) − γ. The advantage of
an algorithm in solving the DDH problem is defined as the difference of the
probability that it outputs 1 if Z = gxy and if Z is random, so for our algorithm
B1 we have that

Advxddh
B1,G1

(k) ≥ δ(k) − (δ(k) − γ) = γ ,

from which the lemma follows. ��
Proof (Lemma 2). For the sake of contradiction, let A denote an adversary
against the traitor tracing scheme that will produce a decryption box D that
correctly decrypts ciphertexts that have been tampered with at position (i′, j′)
with probability p1. We will construct an algorithm B2 which uses A as a sub-
routine to solve the bilinear computational Diffie–Hellman problem.

Let hx, hy, hz, be B2’s input for the CBDH problem. Algorithm B2 chooses
random integers κi,j

$← Zp for i = 1, 2 and 0 ≤ j ≤ ni. Let k′ = s(i′ −1)+ j′−1.
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It sets
g1 ← ψ(hx) h2 = hz

vi,j ← hκi,j and ui,j ← gκi,j for i = 1, 2 and 0 ≤ j ≤ ni

except for u2,k′ and v2,k′ which it sets to

v2,k′ ← hκ2,k′ /hx = hκ2,k′−x u2,k′ ← ψ(v2,k′ ) = gκ2,k′−x .

It also chooses secret randomness r
$← {0, 1}ρ for the collusion-secure code. It

then runs A on input mpk = (g, g1, h2, (u1,0, . . . , u1,n1), (u2,0, . . . , u2,n2)).
Algorithm A will make c key extraction queries (ID , i). Let id be the codeword

corresponding to user i; we know from the preconditions of the lemma that
idk′ = 1 for all users in the collusion. The decryption key dID ,i = (id , a0, a1, a2)
is generated by choosing r1, r2

$← Zp at random and computing

a0 ← (hz)κ2,k′ · (hx)−r2 · hκ2,k′r2 · H1(ID)r1 · (hz · hr2)κ2,0 ·
∏

i∈id ,i�=k′

(hz · hr2)κ2,i

= hzκ2,k′−xr2+κ2,k′ r2 · H1(ID)r1 ·
(

hκ2,0
∏

i∈id ,i�=k′

hκ2,i

)z+r2

= hxz−xz+zκ2,k′−xr2+κ2,k′r2 · H1(ID)r1 ·
(

v2,0

∏

i∈id ,i�=k′

v2,i

)z+r2

= hxz · H1(ID)r1 · H2(id)z+r2

a1 ← hr1 ,

a2 ← hz · hr2 = hz+r2

At the end of this stage A will output a pirate decoder D with respect to a group
identity ID of its choice. Algorithm B2 then generates the challenge ciphertext
with

C1 ← ψ(hy) , C2 ← ψ(hy)κ1,0
∏

i∈ID ψ(hy)κ1,i ,

C3
$← GT , C

(i)
4 ←

{
ψ(hy)κ2,i for 0 ≤ i ≤ n2, i 	= k′ ,

Z where Z
$← G1 for i = k′ .

By our assumption on the pirate decoder D with this ciphertext will output, with
probability p1, the corresponding plaintext m as if C

(k′)
4 were chosen correctly

as uy
2,k′ . In this case B2 can recover ê(g, h)xyz by computing C3/m. Algorithm

B2 then returns this value as its solution to the bilinear computational Diffie–
Hellman problem, giving it an advantage

Advcbdh
B2,G2

(k) ≥ p1 ,

from which the lemma follows. ��
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A Waters’ HIBE with Asymmetric Pairings
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A.1 Scheme Description

Suppose that we want a scheme of depth L. We define L sets V1, . . . , VL of
random elements in G2, with elements denoted Vi = (vi,0, vi,1, . . . , vi,ni). We let
ui,j = ψ(vi,j) and let Ui denote the image of the set Vi under the isomorphism
ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni).

Just as in our traitor tracing scheme for a bit string B of length ni we use
these sets to define the Waters’ hash functions:

Hi(B) = vi,0

∏

j∈B

vi,j ,

where the products are over all the set bits in B. To simplify notation we define

Gi(B) = ui,0

∏

j∈B

ui,j = ψ(Hi(B)).

Note that ψ(Hi(B)) = Gi(B) can be computed either from the set Vi using
the isomorphism ψ, or from the set Ui directly. Also note that vi,j = hκi,j and
ui,j = gκi,j for some, unknown, values κi,j ∈ Zp.

Using the entities above, the various algorithms that make up Waters’ HIBE
scheme are as follows. We assume that id is a tuple (id1, . . . , id l) where l ≤ L
and id i is a bit string of length ni, applying a collision resistant hash function
if necessary.

Setup G(1k) : We generate a set of pairing groups as above at the security level
k, along with the sets V1, . . . , VL and U1, . . . , UL. We require a random element
h

$← G2 and let g ← ψ(h) ∈ G1. A random value α
$← Zp is selected, and we set

g1 ← gα and h1 ← hα. We require a second random element h2 ∈ G2 and we let
g2 ← ψ(h2). The master public key is defined to be mpk = {g, g1, h2, U1, . . . , UL}
and the master secret key is msk = {h, hα

2 , V1, . . . , VL}.

Key Extraction X (id ,msk) : We first select random values r1, . . . , rl ← Zp

and then define the private key as

did = (a0, a1, . . . , al) ←
(

hα
2

l∏

i=1

Hi(id i)ri , hr1 , . . . , hrl

)

∈ G
l+1
2 .

Encryption E(id ,mpk , m) : A message is defined as an element in GT . The
sender first choose a t ← Zp and then computes the ciphertext

C = (C1, C2, C3) ∈ G1 × G
l
1 × GT

as
C1 ← gt, C2 ← (

C2,i = Gi(id i)t
)l

i=1 , C3 ← m · ê(g1, h2)t.

Decryption D(C, did ) : Compute

C3 ·
∏l

i=1 ê(C2,i, ai)
ê(C1, a0)

= m.
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Abstract. A shuffle is a permutation and rerandomization of a set of cipher-
texts. Among other things, it can be used to construct mix-nets that are used in
anonymization protocols and voting schemes. While shuffling is easy, it is hard
for an outsider to verify that a shuffle has been performed correctly. We suggest
two efficient honest verifier zero-knowledge (HVZK) arguments for correctness
of a shuffle. Our goal is to minimize round-complexity and at the same time have
low communicational and computational complexity.

The two schemes we suggest are both 3-move HVZK arguments for correct-
ness of a shuffle. We first suggest a HVZK argument based on homomorphic
integer commitments, and improve both on round complexity, communication
complexity and computational complexity in comparison with state of the art.
The second HVZK argument is based on homomorphic commitments over finite
fields. Here we improve on the computational complexity and communication
complexity when shuffling large ciphertexts.

Keywords: Shuffle, homomorphic commitment, homomorphic encryption,
mix-net, honest verifier zero-knowledge.

1 Introduction

The main motivating example for shuffling is mix-nets. Parties can encrypt messages
and send them to the mix-net; the mix-net then permutes, decrypts and outputs the
messages. This allows parties to submit messages anonymously, which for instance is
very useful in voting.

One approach to construct a mix-net is the following. The authorities, one by one,
permute and rerandomize the ciphertexts. When all authorities have done this, they run
a threshold decryption protocol to get out the messages. The central operation here is
the permutation and rerandomization of a set of ciphertexts, a shuffle.

Obviously, it may be problematic if a dishonest authority replaces some of the ci-
phertexts, or cheats in some other way. If the cryptosystem is semantically secure, we
cannot detect the cheating directly. We therefore need to add verifiability to the shuffle.
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One option is to request the shuffling authority to create a zero-knowledge argument
for correctness of the shuffle. The goal of this paper is to present new honest verifier
zero-knowledge arguments for correctness of a shuffle.

RELATED WORK. Due to the direct applicability of proofs for the correctness of a shuf-
fle, several researchers have investigated the problem and suggested schemes. Proving
the correctness of a shuffle is a complicated matter, and as a consequence the most ef-
ficient schemes are also very complex. We will mention the more recent and efficient
schemes here.

Abe and Hoshino [Abe99, AH01] proposed a 3-move proof for correctness of a shuf-
fle of size O(kn log n) bits, where k is the security parameter and n is the number of
ciphertexts. Neff [Nef01] suggested an honest verifier zero-knowledge proof for cor-
rectness of a n ElGamal ciphertext shuffle based on the invariance of polynomials under
permutation of the roots. While giving an efficient proof of size O(kn) bits, the draw-
back of this scheme is that it is a 7-move proof. Groth [Gro03, Gro05b] generalized
Neff’s scheme to work with a large class of homomorphic cryptosystems.

Furukawa and Sako [FS01], later improved by Furukawa [Fur05], proposed a 3-move
argument for correctness of a shuffle. This method is based on committing to a permu-
tation matrix and proving that the ciphertexts have been shuffled according to this per-
mutation. They focus on the verifiability of an ElGamal ciphertext shuffle. Subsequent
work by Nguyen et al. [NSNK04, NSNK05] and Onodera and Tanaka [OT04] have used
the permutation matrix approach to construct correctness arguments for shuffles of Pail-
lier ciphertexts. Peng at al. [PBD05] also investigate shuffling of Paillier ciphertexts, but
use different techniques.

Yet another method for proving the correctness of a shuffle has been suggested by
Wikström [Wik05a] based on unique factorization of integers. Unlike the other schemes
that use commitments over Zq for a prime q, he uses a homomorphic integer commit-
ment scheme as a central building block. In some instances, this is actually desirable,
for instance in [WG06]. One drawback of this scheme is that it uses 5 rounds.

OUR CONTRIBUTION. We suggest honest verifier zero-knowledge arguments for cor-
rectness of a shuffle. Since shuffles are typically used for anonymization, and since
anonymization works best when individuals or groups can hide among a large set of
other people, it is possible that we need to shuffle a huge number of ciphertexts. As an
example, a voting scheme may have thousands or even millions of voters casting ballots.
This implies that communication complexity and computational complexity are both of
high importance. Furthermore, in a mix-net the authorities shuffle the ciphertexts one at
a time and cooperate to generate the challenges for the honest verifier zero-knowledge
argument. In order to minimize this work, we want to have as low round complexity as
possible.

Our first scheme uses homomorphic integer commitments as the central building
block. By working with integers, instead of working over Zq as [FS01, Fur05], we show
a much simpler way to demonstrate that indeed we have committed to a permutation
matrix. The relevant comparison for this scheme is Wikström’s argument for correctness
of a shuffle [Wik05b] that is also based on integer commitments. Our scheme is better
on all performance parameters, a detailed comparison can be found in Section 5.
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Our second scheme uses homomorphic commitments over a message space Zq for
a prime q, just like [FS01, Fur05]. We combine Furukawa’s [Fur05] scheme with tech-
niques from [Gro05b] to obtain a 3-move argument for correctness of a shuffle. This
generalization of Furukawa’s scheme permits shuffling of almost any homomorphic
cryptosystem. If we look at the case of shuffling ElGamal ciphertexts, with the plain-
texts belonging to a subgroup of relatively small order, our scheme is almost identi-
cal to Furukawa’s scheme. However, a scenario with a large message space is perhaps
more realistic. For instance, if we are looking at a voting scheme, we may want to per-
mit write-in votes. If we are looking at a scheme for anonymous broadcast, senders
may want to post large messages. For this setting, the most relevant comparison of our
scheme is with the papers dealing with a shuffle of Paillier ciphertexts. Our scheme, has
the same round complexity and is better on the other performance parameters. We refer
to Section 5 for a detailed comparison with these schemes.

2 Preliminaries

We shuffle homomorphic ciphertexts and we use homomorphic commitments to shuffle
them. For completeness, we will describe them here. We also recap the notion of an
honest verifier zero-knowledge argument.

SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE (SHVZK) ARGUMENT. We will de-
scribe 3-move public-coin arguments of knowledge with the special honest verifier
zero-knowledge [CDS94] property. To explain this, consider a prover and a verifier.
They both have access to a common reference string, in the paper it will consist of a
public key for the commitment scheme and a public key for the cryptosystem. They
also both have access to a statement x. In our case, this statement will consist of two
sets of ciphertexts and a claim that one set is a shuffle of the other set. The prover sends
an initial message a, the verifier selects a random challenge t, and the prover provides
an answer z. The verifier can now evaluate (a, t, z) and decide whether to accept the
truth of the statement.

That the protocol is public coin simply means that the challenge t is a random string.
In the present paper the challenge will actually be n strings of bit-length �t. A possible
choice is �t = 80. If we wish to make the argument non-interactive, i.e., let the prover
compute the challenges as a hash-value of x, a, then �t = 160 would be suitable to
account for the adversary being able to search many combinations of initial messages
and hash-values offline.

The protocol must be complete, i.e., given a witness for the statement it should be
easy for the prover to convince an honest verifier. It must be sound, i.e., it is infeasible
to convince an honest verifier about a false statement. Moreover, the protocol will be an
argument of knowledge in the following sense. If an adversary can produce a statement x
and has non-negligible1 probability ε of convincing the verifier, then with overwhelming
probability it should be possible to extract a witness in expected polynomial time divided
by ε. Finally, the protocols we present will have special honest verifier zero-knowledge
(SHVZK). Given an arbitrary challenge t, we can simulate the argument (a, t, z).

1 A non-negligible function is the inverse of some polynomial of the security parameter.



380 J. Groth and S. Lu

Well-known examples of 3-move public coin SHVZK arguments of knowledge are
Schnorr’s [Sch91] and Guillou-Quisquater’s [GQ88] identification protocols.

HOMOMORPHIC ENCRYPTION. The public key of our cryptosystem specifies a mes-
sage space, a randomizer space, and a ciphertext space that are abelian groups. The
encryption algorithm E takes as input a message and a randomizer and outputs a ci-
phertext. The homomorphic property is

E(m ⊕ m′; r � r′) = E(m; r) ⊗ E(m′; r′),

where ⊕, �, ⊗ are the binary operations for messages, randomizers and ciphertexts
respectively. For notational convenience, we will in the rest of the paper use + for the
messages and randomizers, and · for the ciphertexts.

For the purpose of proving knowledge we assume the cryptosystem has the following
root extraction property: Suppose an adversary produces a ciphertext E, an exponent
e that is coprime with the order of the message space, and a message and randomizer
so Ee = E(M ; R). Then we can efficiently extract m, r so E = E(m; r). Examples
of homomorphic cryptosystems with the root extraction property are ElGamal [ElG84],
Okamoto-Uchiyama [OU98] and Paillier [Pai99].

We need an order of the message space that does not have any prime factors smaller
than 2�t . When specifying the protocols we will for simplicity assume that the ran-
domizer space is Z, and we encrypt M by choosing R ← {0, 1}�R and setting E =
E(M ; R). This choice is purely out of notational convenience, the protocols work just
as fine with other types of randomizer spaces.

HOMOMORPHIC COMMITMENT. The public key of the commitment scheme specifies
a randomizer space and a commitment space that are abelian groups or abelian semi-
groups. We allow commitment to multiple elements at once. The homomorphic property
is

com(m1 ⊕m′
1, . . . , mn ⊕m′

n; r�r′) = com(m1, . . . , mn; r)⊗com(m′
1, . . . , m

′
n; r′).

Again, for notational convenience we will in the rest of the paper use + for the messages
and randomizers, and · for the commitments.

In addition, the commitment scheme has a root extraction property which will be
used for proving soundness. If an adversary produces a commitment c, and exponent
e �= 0 and a randomizer R and messages M1, . . . , Mn so ce = com(M1, . . . , Mn; R),
then we can find m1, . . . , mn, r so c = com(m1, . . . , mn; r).

The two shuffles we will propose make use of two different types of commitments:
one will make use of integer commitments and the other will make use of commitments
over a finite field Zq .

An example of a homomorphic commitment scheme over Zq is the following vari-
ant of the Pedersen commitment [Ped91]. The public key consists of primes q, p with
q|p− 1, and random generators g1, . . . , gn, h of the order-q subgroup of Z

∗
p. To commit

to n messages m1, . . . , mn using randomness (u, r) ∈ Z
∗
p × Zq so u

p−1
q = 1 mod p,

we compute the commitment c = ugm1
1 · · · gmn

n hr mod p. Typically, we pick random-
ness u = 1 and r ← Zq uniformly at random. Observe, any 0 < c < p is a valid
commitment, so it is straightforward to check that a commitment is well-formed. Note
also that the commitment scheme is perfectly hiding.
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Examples of homomorphic integer commitment schemes can be found in [FO97],
later revised in [DF02], and [Gro05a]. We present the latter homomorphic integer com-
mitment scheme that is the most efficient one. The public key consists of an RSA mod-
ulus N = pq, where p = 2p′rp + 1, q = 2q′rq + 1 and p′, q′ are primes. We work in
the unique subgroup G of order p′q′. Let g1, . . . , gn, h be randomly chosen generators
of G. To commit to a set of integers m1, . . . , mk using randomness (u, e > 0, r) so
ue = 1 mod n, we use

c = com(m1, . . . , mk; (u, e, r)) = ugm1
1 · · · gmk

k hr mod N.

To open it we reveal m1, . . . , mk, (u, e, r). When selecting the randomness the usual
choice is u = 1, e = 1, r ← {0, 1}�r+�s , where �r = |G| and �s is a small security
parameter. It is of course straightforward to test whether c is a valid commitment, we
simply test c ∈ Z

∗
N . This commitment scheme is statistically hiding.

3 Verifiable Secret Shuffle Based on Integer Commitment

A shuffle of input ciphertexts e1, . . . , en consists of output ciphertexts E1, . . . , En so
there exists a permutation π and randomizers R1, . . . , Rn so Ek = eπ(k)E(0; Rk). Ei

is then the encryption of message Mi = mπ(i). In this section, we suggest a SHVZK
argument of knowledge of correctness of a shuffle based on homomorphic integer
commitments.

The permutation defines a permutation matrix in the following way. Let A have
entries aπ(i)i = 1 and all other entries 0. We can visualize relating the messages
(m1, . . . , mn) with the permuted ones (M1, . . . , Mn) = (mπ(1), . . . , mπ(n)) by a mul-
tiplication by the permutation matrix A:

⎛

⎜⎜
⎜
⎝

m1
m2

...
mn

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

mπ(1)
mπ(2)

...
mπ(n)

⎞

⎟⎟
⎟
⎠

The idea in the shuffle argument is the following. We commit to the rows of A,
ci ← com(ai1, . . . , ain) for i = 1, . . . , n. The verifier selects random challenges
t1, . . . , tn ← {0, 1}�t and we argue knowledge of the contents of

∏n
i=1 cti

i . As we shall
see this implies knowledge of the contents of each commitment ci, i.e., knowledge of
the matrix A.

The content of
∏n

i=1 cti

i is (
∑n

i=1 ai1ti, . . . ,
∑n

i=1 ainti). We will show that∑n
j=1(

∑n
i=1 aijti) =

∑n
i=1 ti for randomly chosen ti’s. Looking at each coefficient of

the multi-variate polynomial, this means that with overwhelming probability we have∑n
j=1 aij = 1 for i = 1, . . . , n. In other words, each row of A sums to 1.
We also show that

∑n
k=1(

∑n
i=1 aikti)2 =

∑n
i=1 t2i for randomly chosen ti’s. This

gives us

0 =
n∑

k=1

(
n∑

i=1

aikti

)2

−
n∑

i=1

t2i =
n∑

k=1

n∑

i=1

n∑

j=1

aiktiajktj −
n∑

i=1

n∑

j=1

δiktitj
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=
n∑

i=1

n∑

j=1

[(
n∑

k=1

aikajk

)

− δij

]

titj .

Looking at coefficients of each pair titj we see that
∑n

k=1 aikajk = δij , where δij = 1
if i = j and 0 if i �= j. I.e., the rows are orthogonal and have norm 1, so AAT = I .
Lemma 1 now shows that A is a permutation matrix defining some permutation π.

Finally, we have to connect the matrix A with the ciphertexts. We use the values∑n
i=1 aijti = tπ(j) that we have from the commitments. We show that

n∏

i=1

E
tπ(i)
i =

n∏

i=1

eti

i E

(

0;
n∑

i=1

tπ(i)Ri

)

,

which implies
n∏

i=1

(Eie
−1
π(i))

tπ(i) = E

(

0;
n∑

i=1

tπ(i)Ri

)

.

Since the ti’s are chosen at random this shows that with overwhelming probability Ei

and eπ(i) have the same message for any i. We shall see later that for cryptosystems
with the root extraction property, we obtain a proof of knowledge, where we can extract
randomizers Ri so Ei = eπ(i)E(0; Ri).

These are the main ideas for obtaining soundness. What remains, is the problem of
achieving zero-knowledge. We add some disguising values dj to the sums we get out,
i.e., we work with dj +

∑n
i=1 aijti, where the dj’s are large random numbers. More

precisely, dj ← {0, 1}�t+�s , where �s is a small security parameter, for instance �s =
80. This way the actual value of

∑n
i=1 aijti is hidden throughout the argument. This

modification entails a few other modifications to the protocol. The resulting argument
is described in Figure 1.

Lemma 1. Consider an n × n integer matrix A with entries aij . If AAT = I and
n∑

j=1

aij = 1 for all i then A is a permutation matrix.

Proof. The condition AAT = I shows us that all rows have norm 1. In other words, each
row has n−1 entries that are 0, and one single entry that is ±1. Then

∑n
j=1 aij = 1 for

all i shows us that these entries must be +1. Since A is invertible, the n 1-entries must
be spread over all columns and all rows. In other words, A is a permutation matrix. �

Theorem 1. The protocol in Figure 1 is a 3-move public coin SHVZK argument of
knowledge of a correct shuffle. If the commitment scheme is statistically hiding, then
the argument is statistical SHVZK.

Proof. Completeness follows from direct algebraic manipulations. Left is to argue
SHVZK and soundness and knowledge.

SHVZK. Given arbitrary challenges t1, . . . , tn ∈ {0, 1}�t we have to simulate an ar-
gument. The simulation will mimic the real argument and we will highlight the main
differences with a bar over the variable.
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Shuffle Argument SHUFZ

Common input: Ciphertexts e1, . . . , en, E1, . . . , En and public keys.
Prover’s input: Permutation π ∈ Σn and randomizers R1, . . . , Rn so Ei = eπ(i)E(0; Ri).

Initial message (P −→ V): Choose randomness ri ← {0, 1}�r , rd ←
{0, 1}�r+log n+�t+�s , dj ← {0, 1}�t+�s , RR ← {0, 1}�R+log n+�t+�s and set
dn := −

�n−1
j=1 dj . Set ER := E(0; −RR)

�n
i=1 Edi

i . Generate commitments

c1 ← com( 0 1π−1(1) 0 . . . 0, 2dπ−1(1) ; r1)
c2 ← com( 0 0 0 . . . 1π−1(2), 2dπ−1(2) ; r2)
...

cn ← com( 0 . . . 0 1π−1(n) 0, 2dπ−1(n) ; rn)
and
cd ← com( d1, d2, . . . , dn−1, dn,

�n
j=1 d2

j ; rd)

Send (c1, . . . , cn, cd, ER) to the verifier.
Challenge (P ←− V): t1, . . . , tn ← {0, 1}�t .
Answer (P −→ V): Set fj := tπ(j) + dj , z :=

�n
i=1 tiri + rd and

Z := RR +
�n

i=1 tπ(i)Ri.
Send (f1, . . . , fn, z, Z) to the verifier.

Verification: Check that c1, . . . , cn, cd are valid commitments and ER is a valid ciphertext.
Set fΔ :=

�n
j=1 f2

j −
�n

i=1 t2i . Verify

�n
j=1 fj

?
=
�n

i=1 ti

cd

�n
i=1 cti

i
?
= com(f1, . . . , fn, fΔ; z)

�n
i=1 Efi

i
?
= E(0; Z)ER

�n
i=1 eti

i

Fig. 1. SHVZK Argument of Correct Shuffle Based on Integer Commitment

Initial message: Choose randomness ri, rd Choose random fj so that
∑n

j=1 fj =
∑n

i=1 ti and set fΔ :=
∑n

j=1 fj
2 − ∑n

i=1 t2i . Set ci ← com(0, . . . , 0). Choose

random z and set cd ← com(f1, . . . , fn, fΔ; z)
∏n

i=1 c−ti

i . Choose random Z and

set ER := E(0; −Z)
∏n

i=1 Efi

i e−ti

i

Write (c1, . . . , cn, cd, ER) to the transcript.
Challenge: Write the t1, . . . , tn received as input to the transcript.
Answer: Send (f1, . . . , fn, z, Z) to the verifier.

The simulated argument is (c1, . . . , cn, cd, ER, t1, . . . , tn, f1, . . . , fn, z, Z).
To see that this is a good simulation, consider the following hybrid argument. We

proceed exactly as in the simulation except when forming c1, . . . , cn. Here we set dj :=
fj − tπ(j). We set ci ← com(0, . . . , 1π−1(i), . . . , 0, 2dπ−1(i)). Proceed with the rest of
simulation as described above.

The hybrid argument is statistically indistinguishable from a real argument as the
randomness chosen in the hybrid is linearly related to the randomness in the real argu-
ment, thus it retains the same distribution. On the other hand, the only thing that differs
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from the simulation is the way we form the ci’s. The hiding property of the commit-
ment scheme therefore gives us indistinguishability between the hybrid argument and
the simulated argument. If the commitment scheme is statistically hiding, then we have
statistical indistinguishability between the hybrid argument and the simulated argument.

SOUNDNESS AND KNOWLEDGE. Consider an adversary that has already sent the ini-
tial message (c1, . . . , cn, cd, ER) to the verifier and has non-negligible probability ε of
answering the challenge. We store the state of this prover and now wish to extract a
witness for correctness of the shuffle.

We select at random challenges t1, . . . , tn and run the adversarial prover until we
have n + 1 acceptable answers. We use an expected number of (n + 1)/ε tries to

do this. Call the challenges t
(j)
1 , . . . , t

(j)
n for j = 0, . . . , n and the corresponding an-

swers f
(j)
1 , . . . , f

(j)
n , z(j), Z(j). Since cd

∏n
i=1 c

t
(j)
i

i = com(f (j)
1 , . . . , f

(j)
n , f

(j)
Δ ; z(j))

we have
n∏

i=1

c
t
(0)
i −t

(j)
i

i = com(f (0)
1 − f

(j)
1 , . . . , f (0)

n − f (j)
n , f

(0)
Δ − f

(j)
Δ ; z(0) − z(j)).

Consider the n × n matrix T with entries tij = t
(0)
i − t

(j)
i . With overwhelming

probability over the choices of t
(j)
i the columns are linearly independent. We can in

polynomial time find the transpose of the cofactor matrix CT so TCT = |T |I , where
|T | is the determinant of T .

Call the entries of CT as vjk , then we have |T | =
∑n

j=1 tkjvjk and 0 =
∑n

j=1 tijvjk

for k �= i. So

c
|T |
k = c

�n
j=1 tkjvjk

k =
n∏

i=1

c
�n

j=1 tijvjk

i =
n∏

i=1

n∏

j=1

c
tijvjk

i =
n∏

j=1

(
n∏

i=1

c
t
(0)
i −t

(j)
i

i

)vjk

.

This means

c
|T |
k = com

⎛

⎝
n∑

j=1

vjk(f (0)
1 − f

(j)
1 ), . . . ,

n∑

j=1

vjk(f (0)
n − f (j)

n ),
n∑

j=1

vjk(f (0)
Δ − f

(j)
Δ );

n∑

j=1

vjk(z(0) − z(j))

⎞

⎠ .

By the root extraction property, we can open ck. We call the opening (ak1, . . . , akn,

akΔ, rk). Since cd = com(f (0)
1 , . . . , f

(0)
n , f

(0)
Δ ; z(0))

∏n
i=1 c

−t
(0)
i

i , having openings of
c1, . . . , cn means that we can find an opening (d1, . . . , dn, dΔ, rd) of cd.

The adversary, having noticeable probability of answering the challenge t1, . . . , tn,
is forced to use fj = dj +

∑n
i=1 aijti and fΔ = dΔ +

∑n
i=1 aiΔti. The equation

fΔ =
∑n

j=1 f2
j − ∑n

i=1 t2i implies

n∑

i=1

aiΔti + dΔ =
n∑

j=1

(
n∑

i=1

aijti + dj

)2

−
n∑

i=1

t2i

=
n∑

j=1

(
n∑

i=1

n∑

k=1

aijakjtitk + 2dj

n∑

i=1

aijti + d2
j

)

−
n∑

i=1

n∑

k=1

δiktitk
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=
n∑

i=1

n∑

k=1

⎛

⎝
n∑

j=1

aijakj − δik

⎞

⎠ titk +
n∑

i=1

⎛

⎝2
n∑

j=1

djaij

⎞

⎠ ti +
n∑

j=1

d2
j .

With overwhelming probability over t1, . . . , tn this can only happen if
∑n

j=1 aijakj =
δik for all i, k. Let A be the matrix with entries aij . Then the equation corresponds to
saying AAT = I .

We also have

0 =
n∑

j=1

fj−
n∑

i=1

ti =
n∑

j=1

(
n∑

i=1

aijti + dj

)

−
n∑

i=1

ti =
n∑

i=1

⎛

⎝
n∑

j=1

aij − 1

⎞

⎠ ti+
n∑

j=1

dj .

With overwhelming probability over the ti’s this can only be the case if
∑n

j=1 aij = 1
for all i.

Lemma 1 tells us that A is a permutation matrix. This means, there exists a permu-
tation π so aπ(i)i = 1 and all other entries are 0.

Look now at the ciphertext equations,
∏n

i=1 E
f
(j)
i

i = ERE(0; Z(j))
∏n

i=1 e
t
(j)
i

i giv-
ing us

n∏

i=1

E
t
(0)
π(i)−t

(j)
π(i)

i =
n∏

i=1

E
f
(0)
i −f

(j)
i

i = E(0; Z(0) − Z(j))
n∏

i=1

e
t
(0)
i −t

(j)
i

i .

Since
∑n

j=1 tijvjk = |T |δik we have

(Eke−1
π(k))

|T | = (Eke−1
π(k))

Pn
j=1 tπ(k)jvjπ(k) =

n∏

i=1

(Eie
−1
π(i))

Pn
j=1 tπ(i)jvjπ(k)

=
n∏

j=1

(
n∏

i=1

(Eie
−1
π(i))

t
(0)
π(i)−t

(j)
π(i)

)vjπ(k)

=
n∏

j=1

(
n∏

i=1

E
t
(0)
π(i)−t

(j)
π(i)

i

n∏

i=1

e
t
(0)
i −t

(j)
i

i

)vjπ(k)

= E

⎛

⎝0;
n∑

j=1

vjπ(k)(Z(0) − Z(j))

⎞

⎠ .

By the root extraction property we can find an opening (0, Rk) of Eke−1
π(k). Doing so

for k = 1, . . . , n means we have found openings R1, . . . , Rn so E1 = eπ(1)E(0; R1),
. . . , En = eπ(n)E(0; Rn). �

4 Verifiable Secret Shuffle Based on Commitments over Zq

The ideas presented above also apply to the case of homomorphic commitment schemes
over Zq . In this section, we suggest a SHVZK argument of knowledge of correctness of
a shuffle based on homomorphic commitments in Zq where q ≡ 2 mod 3. This shuffle
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will be a slight modification of the one in the previous section to accommodate the
fact that Lemma 1 no longer applies in Zq . The scheme is more complicated, but the
advantage is that it may be easier to set up a scheme with prime order groups instead of
using composite order groups. In case of ElGamal encryption with the message space
being a small subgroup, the scheme is almost identical to Furukawa’s scheme [Fur05].
However, for large message spaces or large ciphertexts we gain much in comparison
with the state of the art.

The idea in the shuffle argument is similar to the preceding section. Let A have en-
tries aπ(i)i = 1 in Zq and all other entries 0. We commit to the rows of A, ci ←
com(ai1, . . . , ain) for i = 1, . . . , n. The verifier selects random challenges t1, . . . , tn
and we argue knowledge of the contents of

∏n
i=1c

ti

i . Just as before, we shall see
this implies knowledge of the contents of each commitment ci, i.e., knowledge of the
matrix A.

In the case of commitments in Zq we have a similar lemma (Theorem 2 [Fur05]) to
identify when a matrix is a permutation matrix. We show that

∑n
h=1(

∑n
i=1aihti)3 =∑n

i=1t
3
i . This gives us

0 =
n∑

h=1

(
n∑

i=1

aihti)3 −
n∑

i=1

t3i =
n∑

h=1

n∑

i=1

n∑

j=1

n∑

k=1

aihtiajhtjakhtk −
n∑

i=1

n∑

j=1

n∑

k=1

δijktitjtk

=
n∑

i=1

n∑

j=1

n∑

k=1

[(
n∑

h=1

aihajhakh

)

− δijk

]

titjtk.

Looking at coefficients of each triple titjtk we see that
∑n

h=1aihajhakh = δijk , where
δijk = 1 if i = j = k and 0 otherwise. Lemma 2 now shows that A is a permutation
matrix defining some permutation π.

Finally, we have to connect the matrix A with the ciphertexts. We use the values∑n
i=1aijti = tπ(j) that we have from the commitments. We show that

∏n
i=1E

tπ(i)
i =∏n

i=1e
ti

i E(0;
∑n

i=1tπ(i)Ri), i.e.,
∏n

i=1(Eie
−1
π(i))

tπ(i) = E(0;
∑n

i=1tπ(i)Ri). Since the
ti’s are chosen at random this indicates that Ei and eπ(i) have the same message for
any i. Just as before, we add blinding factors to these values to ensure zero-knowledge.
The resulting argument is described in Figure 2. If we let �s be an additional security
parameter, we need to choose the di’s from {0, 1}�t+�s . Because we are working with
large ciphertexts, yet are performing all of the operations modulo q, to ensure the check
on the ciphertexts still holds true we need to ensure that the equations fj = tπj + dj do
not overflow. For this reason we require that �t + �s < |q|. The remaining random vari-
ables are only for verifying the commitments modulo q. Therefore, all of the prover’s
random variables may be reduced modulo q.

Lemma 2 (Theorem 2 [Fur05]). Consider an n × n integer matrix A with entries aij

in Zq where q ≡ 2 mod 3. We have that

n∑

h=1

aihajhakh = δijk for all i, j, k (1)

if and only if A is a permutation matrix.
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Proof. (⇐) is trivial.
(⇒): Let Ri denote the i-th row vector of A. First we show the matrix A has full

rank, i.e. the rows form a basis for Z
n
q . If there is a linear combination 0 =

∑n
i=1biRi

we have that 0 =
∑n

i=1biaih for all h. Observe now that for any choice of j, we may
multiply ajhajh to each of these equations, so 0 =

∑n
i=1biaihajhajh. Summing over

all h we obtain 0 =
∑n

h=1
∑n

i=1biaihajhajh =
∑n

i=1bi

∑n
h=1aihajhajh which by

assumption is equal to
∑n

i=1biδijj = bj and hence bj = 0. This shows that the rows
are linearly independent in Z

n
q and hence form a basis for Z

n
q . Next, we show that there

is at most one non-zero entry in each column.
If v = (v1, . . . , vn) and w = (w1, . . . , wn) are vectors in Z

n
q , define 〈v, w〉 =∑n

i=1viwi to be the dot product of v and w and define v � w = (v1w1, . . . , vnwn)
to be a vector resulting in the component-wise multiplication of v and w. Notice that
〈Ri � Rj , Rk〉 =

∑n
h=1aihajhakh which is equal to δijk by assumption. Observe that

if i �= j then 〈Ri � Rj , Rk〉 = 0 for all k, and since the Rk’s span all of Z
n
q , we have

that Ri � Rj = 0. Since the choice of i, j was arbitrary, this means between each pair
of entries in a column, at most one of them is non-zero; therefore at most one entry is
non-zero. The matrix is of full rank, so indeed there is exactly one non-zero entry in each
column (and hence in each row). This entry must be a cube root of 1, and q = 2 mod 3
implies there is a unique cube root, namely 1. Thus A is a permutation matrix over Zq .�

Theorem 2. The protocol in Figure 2 is a 3-move public coin SHVZK argument of
knowledge of a correct shuffle. If the commitment scheme is statistically hiding, then
the argument is statistical SHVZK.

Proof. Completeness follows from direct algebraic manipulations. Left is to argue
SHVZK and soundness.

SHVZK. Given challenges t1, . . . , tn ∈ {0, 1}�t we have to simulate an argument.
The simulation will mimic the real argument and we will highlight the main differ-
ences with a bar over the variable. Simulation input: Challenges t1, . . . , tn. Ciphertexts
e1, . . . , en, E1, . . . , En and public keys.

Initial message: Pick r1, . . . , rn, f1, . . . , fn, F1, . . . , Fn, rd, rD, yd, yD, Z and fd

at random. Set fD :=
∑n

j=1 fj
3 − ∑n

i=1 t3i − fd. Using the challenges, com-
pute zd :=

∑n
j=1tjrj + rd and zD :=

∑n
j=1t

2
jrj + rD . Generate commitments

ci ← com(0, . . . , 0; ri) and cd ← com(f1, . . . , fn, yd, fd; zd)
∏n

i=1c
−ti

i and cD ←
com(F1, . . . , Fn, fD, yD; zD)

∏n
i=1c

−t2i
i .

Set ER := E(0; −Z)
∏n

i=1 Efi

i e−ti

i .
Write (c1, . . . , cn, cd, cD, ER) to the transcript.

Challenge: Write the t1, . . . , tn received as input to the transcript.

Answer: Everything we need has already computed in an earlier phase. Thus we can
immediately write (f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z) to the transcript.

The simulated argument is

(c1, . . . , cn, cd, cD, ER, t1, . . . , tn, f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z)
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Shuffle Argument SHUFZq

Common input: Ciphertexts e1, . . . , en, E1, . . . , En and public keys.
Prover’s input: Permutation π ∈ Σn and randomizers R1, . . . , Rn so Ei = eπ(i)E(0; Ri).

Initial message (P −→ V): Choose randomness d1, . . . , dn ← {0, 1}�t+�s and r1, . . . , rn,
D1, . . . , Dn, rd, rD , sd, sD , Δ ← Zq . Choose randomness
RR ← {0, 1}�R+log n+�t+�s . Set ER := E(0; −RR)

Qn
i=1E

di
i . Generate commitments

c1 ← com( 0 1π−1(1) 0 . . . 0, 3dπ−1(1), 3d2
π−1(1) ; r1)

c2 ← com( 0 0 0 . . . 1π−1(2), 3dπ−1(2), 3d2
π−1(2) ; r2)

...
cn ← com( 0 . . . 0 1π−1(n) 0, 3dπ−1(n), 3d2

π−1(n) ; rn)

and
cd ← com( d1, d2, . . . , dn−1, dn, sd,

Pn
j=1d

3
j − Δ ; rd)

cD ← com( D1, D2, . . . , Dn−1, Dn, Δ, sD ; rD)

Send (c1, . . . , cn, cd, cD, ER) to the verifier.
Challenge (P ←− V): t1, . . . , tn ← {0, 1}�t .
Answer (P −→ V): Set fj := tπ(j) + dj and Fj := t2π(j) + Dj for j = 1, . . . , n. Also set

fd := 3
Pn

j=1tjd
2
π−1(j) +

Pn
j=1d

3
j − Δ

yd := 3
Pn

j=1tjdπ−1(j) + sd and yD := 3
Pn

j=1t
2
jd

2
π−1(j) + sD

zd :=
Pn

j=1tjrj + rd and zD :=
Pn

j=1t
2
jrj + rD

Set Z := RR +
Pn

i=1tπ(i)Ri.
Send (f1, . . . , fn, fd, yd, zd, F1, . . . , Fn, yD, zD, Z) to the verifier.

Verification: Check that c1, . . . , cn, cd, cD are valid commitments and ER is a valid
ciphertext and fj > 2�t for j = 1, . . . , n. Set fD :=

Pn
j=1f

3
j −

Pn
i=1t

3
i − fd. Verify

cd

Qn
i=1c

ti
i

?
= com(f1, . . . , fn, yd, fd; zd)

cD

Qn
i=1c

t2i
i

?
= com(F1, . . . , Fn, fD, yD; zD)

Qn
i=1E

fi
i

?
= E(0; Z)ER

Qn
i=1e

ti
i

Fig. 2. SHVZK Argument of Correct Shuffle Based on Commitment over Zq

To see that this is a good simulation, consider the following hybrid argument. We
proceed exactly as in the simulation except when forming c1, . . . , cn. Here we solve for
the valid d1, . . . , dn, i.e. set dj := fj − tπ(j). We similarly set the variables that dif-
fer between the simulation and the real argument, namely the appropriate D1, . . . , Dn,
sd, sD , RR and Δ. Observe that the relationship between the variables generated ran-
domly in the simulation and the variables generated randomly in the real argument are
governed by linear equations; hence this endows the hybrid argument with the same dis-
tribution of variables as a real argument. We generate ci ← com(0, . . . , 0, 1π−1(i), 0,
. . . , 0, 3dπ−1(i), 3d2

π−1(i); ri). Proceed with the rest of simulation as described above.
The hybrid argument is statistically indistinguishable from a real argument. On the

other hand, the only thing that differs from the simulation is the way we form the ci’s.
The hiding property of the commitment scheme therefore gives us indistinguishability
between the hybrid argument and the simulated argument. If the commitment scheme
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is statistically hiding, then we have statistical indistinguishability between the hybrid
argument and the simulated argument.

SOUNDNESS AND KNOWLEDGE. Consider an adversary that has already sent the initial
message (c1, . . . , cn, cd, cD, ER) to the verifier and has non-negligible probability ε of
answering the challenge. We store the state of this prover and now wish to extract a
witness for correctness of the shuffle.

We select at random challenges t1, . . . , tn and run the adversarial prover un-
til we have n + 1 acceptable answers. We use an expected number of (n + 1)/ε

tries to do this. Call the challenges t
(j)
1 , . . . , t

(j)
n for j = 0, . . . , n and the corre-

sponding answers f
(j)
1 , . . . , f

(j)
n , f

(j)
d , y

(j)
d , z

(j)
d , F

(j)
1 , . . . , F

(j)
n , y

(j)
D , z

(j)
D , Z(j). Since

cd

∏n
i=1c

t
(j)
i

i = com(f (j)
1 , . . . , f

(j)
n , y

(j)
d , f

(j)
d ; z(j)

d ) we have

n∏

i=1

c
t
(0)
i −t
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Consider the n × n matrix T with entries tij = t
(0)
i − t

(j)
i . With overwhelming

probability over the choices of t
(j)
i the columns are linearly independent. We can in

polynomial time find the inverse matrix T−1 so TT−1 = I .
Call the entries of T−1 as vjk, then we have

∑n
j=1tijvjk = δik. So
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This means
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n∑

j=1

vjk(f (0)
1 − f

(j)
1 ), . . . ,
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By the root extraction property, we can open ck. We call the opening (ak1, . . . , akn,

akD, akd, rk). Since cd = com(f (0)
1 , . . . , f

(0)
n , y

(0)
d , f

(0)
d ; z(0)

d )
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−t

(0)
i

i , having
openings of c1, . . . , cn means that we can find an opening (d1, . . . , dn, sd, Δd, rd) of
cd. Similarly, we can find an opening (D1, . . . , Dn, sD, ΔD, rD) of cD.

The adversary, having noticeable probability of answering the challenge t1, . . . , tn,
is forced to use fj = dj +

∑n
i=1 aijti and fd = Δd +

∑n
i=1aidti and fD = ΔD +∑n

i=1aiDti. The equation fD =
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3
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3
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aijti)3 −
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t3i − Δd −
n∑

i=1

aidti − ΔD −
n∑

i=1

aiDti
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With overwhelming probability over t1, . . . , tn this can only happen if every coefficient
is zero (considering this as a multivariate polynomial in the ti’s). Indeed, the coefficient
for titjtk is

∑n
h=1aihajhakh − δijk for all i, j, k. Then lemma 2 tells us that A is a

permutation matrix. This means, there exists a permutation π so aπ(i)i = 1 and all
other entries are 0.

For the ciphertext equations, we make use of a cofactor matrix as in the proof of
the integer scheme. Because the fj’s are greater than 2�t , we know an overflow did
not occur modq and thus the equations fj = tπ(j) + dj hold over Z. Then the proof
proceeds the same way as in the integer case, and then by the root extraction property
we can find an opening (0, Rk) of Eke−1

π(k). Doing so for k = 1, . . . , n means we have
found openings R1, . . . , Rn so E1 = eπ(1)E(0; R1), . . . , En = eπ(n)E(0; Rn). �

5 Comparison

As we mentioned in the introduction, there are many efficient shuffle arguments on dif-
ferent encryption schemes. While our shuffle argument can be used with many different
homomorphic cryptosystems, its main advantage is when we look at cryptosystems
with large message spaces or large ciphertexts. It is therefore natural to compare it to
the shuffle arguments that have been proposed for Paillier encryption.

We compare the efficiency of our shuffle arguments with integer commitments
(SHUFZ) and with commitments over Zq (SHUFZq ) to those of Nguyen et. al.
[NSNK05], Peng et. al. [PBD05], and Wikström (Appendix G) [Wik05b]. We con-
sider all schemes running on a 1024-bit Paillier modulus (giving ciphertexts of size
|N2| = 2048 bits) and 80-bit challenges. The reader may download a spreadsheet
[GL07] to see compare the schemes for other parameter choices.

For the homomorphic integer commitment, we use a 1024-bit safe prime RSA-
modulus as in [DF02], which corresponds to the choice in [Wik05a]. Both his and our
scheme become faster if one uses the homomorphic integer commitment from [Gro05a].
Our choice of parameters for [Wik05b] (Appendix G) is K1 = 240, K2 = 1024, K3 =
K4 = K5 = 80, whereas for our scheme it is �t = 80, �s = 80, �r = 1024.

For our shuffle over Zq , we use Pedersen commitments with |q| = 240, |p| = 1024,
giving us parameters �t = 80, �s = 80, �r = 240.

For [NSNK05] we chose �η = 1022, �N = 1024, |N | = 1024, |M | = 592 in their
setup. This corresponds to working with a safe prime Paillier modulus. We do point out
that their scheme can also be used for a variant of Paillier encryption that uses a smaller
randomizer space. Both their scheme and our schemes are more efficient when used
with this variant of Paillier encryption.

The argument in [PBD05] (Protocol 1) relies on a non-standard assumption, the lin-
ear ignorance assumption. They have a less efficient protocol 2 that does not rely on
this assumption. Other than that their scheme just relies on the semantic security of
Paillier encryption, and as in the other schemes we measure its performance on 80-bit
challenges (L=80).

The table 1 list the number of exponentiations required for the prover and the verifier,
the communication bits, the number of rounds, and the security assumptions. The expo-
nentiations listed are the number of full-length (2048-bit modulus, 1024-bit exponent)
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exponentiations where we scale for a factor of 3 for doubling the length of the modu-
lus and a factor of 2 for doubling the length of the exponent. We compare all schemes
without using multi-exponentiation techniques, since it is situation dependent which
techniques work best. Also, we compare all schemes for a deterministic verifier. Using
batching techniques it is possible to speed up the verification process in all schemes.
The table contains the cost of making the shuffle arguments, it does not include the cost
of the shuffle itself.

Table 1. Comparison of shuffle arguments with Paillier encryption

[NSNK05] [PBD05]2 SHUFZq [Wik05b] SHUFZ

Prover (expo.) 3.4n 5.5n 0.5n 2.3n 0.6n
Verifier (expo.) 5.4n 4.3n 0.4n 1.5n 0.3n
Communication (bits) 9376n 9376n 1504n 6080n 1264n
Rounds 3 4 3 5 3
Privacy Perm. Hiding Perm. Hiding SHVZK SHVZK SHVZK
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Abstract. In this paper we survey the notion of Single-Database Private Infor-
mation Retrieval (PIR). The first Single-Database PIR was constructed in 1997 by
Kushilevitz and Ostrovsky and since then Single-Database PIR has emerged as an
important cryptographic primitive. For example, Single-Database PIR turned out
to be intimately connected to collision-resistant hash functions, oblivious trans-
fer and public-key encryptions with additional properties. In this survey, we give
an overview of many of the constructions for Single-Database PIR (including an
abstract construction based upon homomorphic encryption) and describe some of
the connections of PIR to other primitives.

1 Introduction

A Single-Database Private Information Retrieval (PIR) scheme is a game between two
players: a user and a database. The database holds some public data (for concreteness,
an n-bit string). The user wishes to retrieve some item from the database (such as the i-
th bit) without revealing to the database which item was queried (i.e., i remains hidden).
We stress that in this model the database data is public (such as stock quotes) but cen-
trally located; the user, without a local copy, must send a request to retrieve some part
of the central data1. A naive solution is to have the user download the entire database,
which of course preserves privacy. However, the total communication complexity in this
solution, measured as the number of bits transmitted between the user and the database
is n. Private Information Retrieval protocols allow the user to retrieve data from a public
database with communication strictly smaller than n, i.e., with smaller communication
then just downloading the entire database.

� Supported in part by IBM Faculty Award, Xerox Innovation Group Award, NSF Cybertrust
grant no. 0430254 and U.C. MICRO grant.

�� Supported in part by NSF grant no. 0430254, and U.C. Presidential Fellowship.
1 PIR should not be confused with a private-key searching on encrypted data problem, where

user uploads his own encrypted data to a remote database and wants to privately search over
that encrypted data without reveling any information to the database. For this model, see the
discussion in [9,18] and references therein.
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1.1 Single-Database PIR

PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [8] in 1995 in the set-
ting where there are many copies of the same database and none of the copies are
allowed to communicate with each other. In the same paper, Chor at. al. [8] showed that
single-database PIR does not exist (in the information-theoretic sense.) Nevertheless,
two years later, (assuming a certain secure public-key encryption) Kushilevitz and Os-
trovsky [23] presented a method for constructing single-database PIR. The communica-
tion complexity of their solution is O(2

√
log n log log N ) which for any ε > 0 is less then

O(nε). Their result relies on the algebraic properties Goldwasser-Micali Public-Key
encryption scheme [17]. In 1999, Cachin, Micali and Stadler [7] demonstrated the first
single database PIR with polylogarithmic communication, under the so-called φ-hiding
number-theoretic assumption. Chang [6], and Lipmaa [25] showed O(log2 n) commu-
nication complexity PIR protocol (with a multiplicative security parameter factor), us-
ing a construction similar to the original [23] but replacing the Goldwasser-Micali ho-
momorphic encryption with the Damgård, M. Jurik variant of the Pailler homomorphic
encryption [10]. Gentry and Ramzan [15] also showed the current best bound for com-
munication complexity of O(log2 n) with an additional benefit that if one considers
retrieving more then one bit, and in particular many consecutive bits (which we call
blocks) then ratio of block size to communication is only a small constant. The scheme
of Lipmaa [25] has the property that when acting on blocks the ratio of block size to
communication actually approaches 1, yet the parameters must be quite large before
this scheme becomes an advantage over that of [15]. In general, the issue of amortizing
the cost of PIR protocol for many queries has received a lot of attention. We discuss it
separately in the next subsection.

All the works mentioned above exploit some sort of algebraic properties, often com-
ing from homomorphic public-key encryptions. In [24] work, Kushilevitz and Ostro-
vsky have shown how to construct Single Database PIR without the use of any algebraic
assumptions, and instead relying on the existence of one-way trapdoor permutations.
However, the use of the more general assumption comes with a performance cost: they
show how to achieve (n − O(n

k − k2)) communication complexity, and additionally,
the protocol requires more than one round of interaction.

In this survey, we give the main techniques and ideas behind all these constructions
(and in fact, show a generic construction from any homomorphic encryption scheme
with certain properties) and attempt to do so in a unified manner.

1.2 Amortizing Database Work in PIR

Instead of asking to retrieve blocks, one can ask what happens if one wants to retrieve k
out of n bits of the database (not necessarily consecutive). Indeed, this was considered
by Ishai, Kushilevitz, Ostrovsky and Sahai [20]. In this setting, in addition to communi-
cation complexity (of retrieving k out of n bits) there is another important consideration:
the total amount of computation needed to be performed by the database to compute all
k PIR answers. (Observe that for a single PIR query the amount of computation required
by the database must be linear: if this is not the case, the database will not touch at least
one bit, and hence the database can safely deduce that the ”untouched” bits are not the
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ones being retrieved, violating user’s privacy.) Now, what is the total computation re-
quired to retrieve k different bits? A naive solution is to just run one of the PIR solutions
k times. It is easy to see that using hashing one can do better: The user, with indices
i1, . . . , ik, picks at random a hash function h that sends all n entries of the database to
k buckets and where the selection of h is made independently from i1, . . . , ik. The user
sends h to the database. Note that the expected size of each bucket is about n/k. The
database partitions its database into buckets according to h (that is gets from the user),
and treats every bucket as a new “tiny” database. For an appropriate choice of a hash
family, this ensures that with probability 1−2−Ω(σ), the number of items hashed to any
particular bucket is at most σ log k. Now the user can apply the standard PIR protocol
σ log k times to each bucket. Except for 2−Ω(σ) error probability, the user will be able
get all k items. Note that the cost is much smaller then the naive solution. In particular,
counting the length of all PIR invocations the total size of all databases on which we
run standard PIR is σ log k · n, instead of naive kn. This idea is developed further, and
in fact the error-probability is removed, and better performance is derived via explicit
batch codes [20] instead of hashing.

Note however, that this approach requires that it is the same user that is interested
in all k queries. What happens if the users are different? In this case, assuming the
existence of anonymous communication, nearly-optimal PIR in all parameters can be
achieved in the multi-user case [21].

1.3 Connections: Single Database PIR and OT

Single-database PIR has a close connection to the notion of Oblivious Transfer (OT),
introduced by Rabin [35]. A different variant of Oblivious Transfer, called 1-out-of-2
OT, was introduced by Even, Goldreich and Lempel [14] and, more generally, 1-out-
of-n OT was considered in Brassard, Crepeau and Robert [3]. Informally, 1-out-of-n
OT is a protocol for two players: A sender who initially has n secrets x1, . . . , xn and
a receiver who initially holds an index 1 ≤ i ≤ n. At the end of the protocol the
receiver knows xi but has no information about the other secrets, while the sender has
no information about the index i. Note that OT is different from PIR in that there is no
communication complexity requirement (beyond being polynomially bounded) but, on
the other hand, “secrecy” is required for both players, while for the PIR it is required
only for the user. All Oblivious Transfer definitions are shown to be equivalent [5]. As
mentioned, communication-efficient implementation of 1-out-of-n OT can be viewed as
a single-server PIR protocol with an additional guarantee that only one (out of n) secrets
is learned by the user and the remaining n−1 remain hidden. In [23], it is noted that their
protocol can also be made into a 1-out-of-n OT protocol2, showing the first 1-out-of-n
OT with sublinear communication complexity. Naor and Pinkas [27] have subsequently
shown how to turn any PIR protocol into 1-out-of-n protocol with one invocation of a
Single-Database PIR protocol and logarithmic number of invocations of 1-out-of-2 OT.

2 1-out-of-n OT in the setting of multiple copies of the database where none of the copies are
allowed to talk to each other was treated in [16] and renamed Symmetric Private Information
Retrieval (SPIR), though for Single-dabatase PIR, the defitnion SPIR is identical to the more
established notion of 1-out-of-n OT.
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DiCresenzo, Malkin and Ostrovsky [12] showed that any single database PIR protocol
implies OT. In fact, their result holds even if PIR protocol allows the communcation
from database to the user to be as big as n − 1. Thus, [12] combined with [27] tells
us that any Single-Database PIR implies 1-out-of-n OT. In [24], it is shown how to
build 1-out-of-n OT based on any one-way trapdoor permutation with communication
complexity strictly less than n.

1.4 Connections: PIR and Collision-Resistant Hashing

Ishai, Kushilevitz and Ostrovsky [19] showed that any one-round Single-Databe PIR
protocol is also a collision-resistant hash function. Simply pick an index i for the PIR
query at random, and generate a PIR query. Such a PIR query is the description of the
hash function. The database contents serves as the input to the hash function and the
evaluation of the PIR query on the database is the output of the hash function. It is
easy to see that the PIR function is both length-decreasing and collision-resistant. It is
length-decreasing by the non-triviality of PIR protocol, since it must return the answer
with length which is less then the size of the database. Is it collision resistant since if the
adversary can find two different databases that produce the same PIR answer, then these
two databases must differ in at least one position, say j. Finding such a position tells us
that j �= i, hence it reveals information about i. This violates the PIR requirement that
no information about i should be revealed.

1.5 Connections: PIR and Function-Hiding PKE

A classic view of a Public-Key Encryption/Decryption paradigm is that of an identity
map: it takes a plaintext message m and creates a ciphertext which can be decrypted
back to m. However, in many applications, instead of an identity map, there is a need for
a Public-Key Encryption to perform some secret computation during encryption. That
is, the key-generation algorithm takes as an additional input a function specification
f(·) ∈ F from some class F of functions and produces a Public Key. The resulting
Public-Key is not much bigger then the description of a typical f ′ ∈ F , yet the public-
key should not reveal which f from F have been used during the key-generation phase.
The encryption/decryption maps m to f(m). The definition becomes nontrivial (in the
sense that one can not push all the work of computing f(·) to the decryption phase)
when for all f ∈ F it holds that |f(m)| < |m|, and we insist that the cyphertext size
must be smaller than the size of m.

Any single-round PIR can be used to achieve this notion for the class of Encryption
functions that encrypt a single bit out of the message, hiding which bit they encrypt:
simply publish in your public key both the PIR query and an additional Public-Key En-
cryption (with small ciphertext expansion, compared to the plaintext, such as [34,10]).
When encrypting the message, first compute PIR answer, and then encrypt the resulting
answer with the Public-Key Encryption. (Some specific PIR constructions do not need
this additional layer of encryption).

What makes the Function-Hiding PKE notion interesting, is that there are many ex-
amples of functions beyond PIR-based projection map. For example, as was shown by
Ostrovsky and Skeith [31] that one can construct an encryption scheme which takes
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multiple documents, and encrypts only a subset of these documents – only those that
contain a set of hidden keywords, where the public-key encryption function does not
reveal which keywords are used as selectors of the subset.

1.6 Connections: PIR and Complexity Theory

Dziembowski and Maurer have shown the danger of mixing computational and
information-theoretic assumptions in the bounded-storage model. The key tool to
demonstrate an attack was a computationally-private PIR protocol [13]. The compress-
ibility of NP languages was shown by Harnick and Naor to be intimately connected to
computational PIR [22]. In particular, what they show that if certain NP language is
compressible, then one can construct a single-database PIR protocol (and a collision-
resistant hash function) that can be built (in a non-black-box way) based on any one-
way function. Naor and Nissim [28] have shown how to use computational PIR (and
Oblivious RAMs [18]) to construct communication-efficient secure function evaluation
protocols.

There is an interesting connection between zero-knowledge arguments and Single-
Database PIR. In particular, Tauman-Kalai and Raz have shown (for a certain restricted
class) an extremely efficient zero-knowledge argument (with pre-processing) assuming
Single-Database PIR protocols [36].

Another framework of constructing efficient PIR protocols is with the help of addi-
tional servers, such that even if some of the servers leak information to the database,
the overall privacy is maintained [11]. The technique of [11] is also used to achieve PIR
combiners [26], where given several PIR implementations, if some are faulty, they can
still be combined into one non-faulty PIR.

1.7 Public-Key Encryption That Supports PIR Read and Write

Consider the following problem: Alice wishes to maintain her email using a storage-
provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a public key
for a semantically-secure public-key Encryption scheme, and asks all people to send
their e-mails encrypted under her Public Key to the intermediary Bob. Bob (i.e. the
storage-provider) should allow Alice to collect, retrieve, search and delete emails at her
leisure. In known implementations of such services, either the content of the emails is
known to the storage-provider Bob (and then the privacy of both Alice and the senders
is lost) or the senders can encrypt their messages to Alice, in which case privacy is
maintained, but sophisticated services (such as search by keyword, and deletion) can-
not be easily performed by Bob. Recently, Boneh, Kushilevitz, Ostrovsky and Skeith
[2] (solving the open problem of [1]) have shown how to create a public key that allows
arbitrary senders to send Bob encrypted e-mail messages that support PIR queries over
these messages and the ability to modify (i.e. to do PIR writing) Bob’s database, both
with small communication complexity (approximately O(

√
n)). It may be interesting

to note, however, that manipulating the algebraic structures of currently available ho-
momorphic encryption schemes cannot achieve PIR writing with communication better
than Ω(

√
n), as shown in the recent work of Ostrovsky and Skeith [32].



398 R. Ostrovsky and W.E. Skeith III

1.8 Organization of the Rest of the Paper

In the rest of the paper we give an overview of the basic techniques of single database
PIR. It is by no means a complete account of all of the literature, but we hope that
it rather serves as an introduction, and a clear exposition of the techniques that have
proved themselves most useful. We begin with what we feel are the most natural and
intuitive settings, which are based upon homomorphic encryption, and we attempt to
give a fairly unified and clear account of this variety of PIR protocols. We then move
to PIR based on the Φ-Hiding assumption, and to a construction based upon one-way
trapdoor permutations. Throughout, our focus is primarily on the intuition behind these
schemes; for complete technical details, one can of course follow the references.

1.9 Balancing the Communication Between Sender and Receiver

Virtually every computationally private information retrieval protocol is somewhat
comparable to every other in that they all:

– Adhere to a strict definition of privacy
– Necessarily have Ω(n) computational complexity (where n is the size of the data-

base).3

As such, it is the case that the primary metric of value or quality for a PIR protocol is the
total amount of communication required for its execution. Therefore, it may be useful to
examine a somewhat general technique for minimizing communication complexity in
certain types of protocols, which we’ll be able to apply to computational PIR. Suppose
that a protocol P is executed between a user U and a database DB, in which U should
privately learn some function f(X) where X ∈ {0, 1}n is the collection of data held by
DB. By “privately”, we mean that DB should not gain information regarding certain
details of f . Let g(n) represent the communication from U to DB and h(n) be the
communication from DB to U involved in the execution of P . So, g, h : Z

+ −→ Z
+.

As a simplifying assumption to illustrate the idea, suppose that:

1. The function of the database f(X) that U wishes to compute via the protocol de-
pends only on a single bit of X .

2. g, h can be represented, or at least estimated by polynomial (or rational) functions
in n.

If all of these conditions are satisfied, then we’ll often have a convenient way to
take the protocol P , and derive a protocol P ′ with lower communication which will
just execute P as a subroutine. The idea is as follows: since the function of X we
are computing is highly local (it depends only on a single bit of X) we can define P ′

to be a protocol that breaks down the database X into y smaller pieces (of size n/y)
and executes P on each smaller piece. Then, the desired output will be obtained in
one of the y executions of P . Such a protocol will have total communication Tn(y) =
g(n/y) + yh(n/y). It may be the case that this will increase the communication of
U or DB, but will reduce the total communication involved. If indeed all functions

3 In order to preserve privacy, the database’s computation must involve every database element.
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are differentiable as we’ve assumed, then we can use standard calculus techniques to
minimize this function (for any positive n) with respect to y. For example, suppose that
the user’s communication is linear, and the database’s communication is constant. For
example, let g(n) = rn + s and h(n) = c, so that Tn(y) = yc + s + rn

y . Solving the

equation d
dyTn(y) = 0 on (0, ∞) gives

y =
√

crn

c

This value of y is easily verified to be a local minimum, and we see that by executing
the protocol O(

√
n) times on pieces of size O(

√
n) we can minimize the total commu-

nication.
More generally, similar techniques can of course be applied when the function f

depends on more than one bit of X , as long as there is a uniform way (independent of f )
to break down the database X into pieces that contain the relevant bits. These techniques
can be applied to more general situations still, in which the function depends on many
database locations; however, in this case one will need a method of reconstructing the
output from the multiple protocol returns (in our simple example, the method is just
selecting the appropriate value from all the returns). Also, for this technique to be of
value in such a situation, it will generally be necessary to have a uniform way to describe
the problem on smaller database pieces.

2 PIR Based on Group-Homomorphic Encryption

The original work on computational PIR by Kushilevitz and Ostrovsky [23] presented a
private information retrieval protocol based upon homomorphic encryption. Such tech-
niques are often very natural ways to construct a variety of privacy-preserving proto-
cols. It is often the case with such protocols based upon homomorphic encryption, that
although the protocol is designed with a specific cryptosystem, there is a more funda-
mental, underlying design that could be instantiated with many different cryptosystems
in place of the original, and furthermore this choice of cryptosystem can have a very
non-trivial impact on performance. For example, the work of [23] used the homomor-
phic cryptosystem of Goldwasser and Micali [17] to create a PIR protocol, and in the
following years, many other similar protocols were developed based upon other cryp-
tosystems, e.g., the work of Chang [6] which is based upon the cryptosystem of Paillier
[34], and also the work of Lipmaa [25]. However, the method of [23] was actually quite
generic, although it was not originally stated in generality. In this section, we’ll present
an abstract construction based upon any group homomorphic encryption scheme which
has [23] and [6] as special cases, as well as capturing the work of [25]. Hopefully, this
section will provide the reader with general intuition regarding private information re-
trieval, as well as a pleasant way to understand the basics of a moderate amount of the
literature in computational PIR.

2.1 Homomorphic Encryption Schemes

Let (K, E , D) be a cryptosystem, the symbols representing the key generation, encryp-
tion, and decryption algorithms respectively. Generally, we say that such a cryptosystem
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is secure if it is secure against a chosen plaintext attack, i.e., if E produces distri-
butions that are computationally indistinguishable, regardless of the input. Roughly
speaking, this means that it is not feasible to extract any information from the out-
put of E . For example, even if a (computationally bounded) adversary knows that
there are only two possible messages a and b, he still cannot tell E(a) apart from
E(b), even if he repeatedly executes the (randomized) algorithm E on inputs of his
choice.

To construct our PIR protocol, we only need a secure cryptosystem that is homomor-
phic over an abelian group, G. I.e., if the cryptosystem (K, E , D) has plaintext set G,
and ciphertext set G′, where G, G′ are groups, then we have that

D(E(a) � E(b)) = a ∗ b

where a, b ∈ G, and ∗, � represent the group operations of G, G′ respectively. So,
the cryptosystem allows for oblivious distributed computation of the group operation
of G. (Note that we reduce the equivalence to hold modulo decryption since the en-
cryption algorithm E must be probabilistic in order to satisfy our requirements for
security.)

For such a cryptosystem to be of any conceivable use, we of course have that |G| >
1. Hence, there is at least one element g ∈ G of order greater than 1. Suppose that
ord(g) = m. If the discrete log problem4 in G is easy (as will often be the case e.g.,
when G is an additive group of integers) then we can represent our database as X =
{xi}n

i=1 where each xi ∈ {0, ..., m − 1}. Otherwise, we will just restrict the values
of our database to be binary, which is the traditional setting for PIR. I.e., xi ∈ {0, 1}
for all i ∈ [n]. As it turns out, a homomorphic encryption protocol alone is enough to
create a PIR protocol.

2.2 Basic Protocols from Homomorphic Encryption

In what follows, we will provide a sequence of examples of PIR from homomorphic
encryption, each becoming slightly more refined and efficient. Let us suppose that the
i∗ position of the database is desired by a user U . Keeping the notation established
above, let G, G′ be groups which correspond to the plaintext and ciphertext of our
homomorphic cryptosystem (resp.) and let g ∈ G be a non-identity element. As a first
attempt at a PIR protocol, a user U could send queries of the form Q = {qi}n

i=1 where
each qi ∈ G′ such that

D(qi) =
{

g if i = i∗

idG otherwise

Then, the database can respond with

R =
n∑

i=1

xi · qi

4 We will refer to the problem of inverting the Z-module action on an abelian group G as the
“discrete log problem in G”.
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using additive notation for the operation of G′ (and of G from this point forward) and
using · to represent the Z-module action. Now U can recover the desired database bit as
follows, computing

D(R) = D
(

n∑

i=1

xi · qi

)

=
n∑

i=1

xi · D(qi) = xi∗ · D(qi∗) = xi∗ · g

and hence U determines xi∗ = 1 if and only if D(R) = g. Or, in the case where the
discrete log is easy in G, U would compute xi∗ as the log of D(R) to the base g (just by
division, in the case of an additive group of integers). This protocol is clearly correct,
but it is also easily seen to be private. The only information received by DB during the
protocol was an array of ciphertexts, which by our assumptions on the cryptosystem,
each come from (computationally) indistinguishable distributions, and hence contain
no information that can be efficiently extracted. For a formal proof, one can apply a
standard hybrid argument.

However, although our protocol is both correct and private, it unfortunately requires
the communication of information proportional in size to the entire database in order to
retrieve a single database element. This could have just as easily been done by sending
the entire database to the user, which would also maintain the user’s privacy. Setting k =
log |G′| as a security parameter, the user must communicate O(nk) bits. Fortunately,
this can be modified into a more communication-efficient protocol without much effort.

To begin, one can organize the database as a square, X = {xij}
√

n
i,j=1, and if the (i∗, j∗)

position of the database is desired, the user can send a query of the form Q = {qi}
√

n
i=1

defined just as before (we will ignore the j∗ index for reasons that will become clear
shortly). Then, the database can compute Rj =

∑√
n

i=1 xij · qi for each j and send

{Rj}
√

n
j=1 back to the user as the query response. Now as we’ve seen, from D(Rj), U can

recover {xi∗j}
√

n
j=1 just as before. In particular, U can compute xi∗j∗ (even though much

more information is actually received). Note that the total communication involved in
the protocol has now become non-trivially small: it is now proportional to

√
n for each

party as opposed to the O(n) communication required by our original proposal and the
trivial solution of communicating the entire database to U .

However, we can make further improvements still. Let

φ : G′ ↪→ Z
l

be an injective map such that for all y ∈ G′, each component of φ(y) is less than
ord(g). I.e., one can think of the map as φ : G′ ↪→ Z

l
ord(g). Any such map with do-

we only require that both φ and φ−1 are efficiently, publicly computable. Note that in
general, we will always have l > 1 since ord(g) ≤ |G| and |G| < |G′|, the latter in-
equality following from the fact that the encryption scheme is always probabilistic (D
is never injective, but of course is always surjective). Again, note that we do not ask for
any algebraic conditions from the map φ; it can be any easily computed injective set
map. (For example, we could just break down a binary representation of elements of G′

into sufficiently small blocks of bits to obtain the map φ.) Now, we can refine our query,
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and send Q =
[
{qi}

√
n

i=1, {pj}
√

n
j=1

]
where qi∗ and pj∗ are set to encryptions of g, but all

others encrypt idG. Then, the database will initially proceed as before, computing

Rj =

√
n∑

i=1

xij · qi

but then further computing

Rt =
n∑

j=1

φ(Rj)t · pj

where φ(Rj)t represents the t-th component of φ(Rj). This is sent as the query re-
sponse to U . To recover the desired data, U computes for every t ∈ [l]

D(Rt) = φ(Rj∗)t · g

from which φ(Rj∗) can be computed. Then since φ−1 is efficiently computable, U can

recover Rj∗ =
∑√

n
i=1 xij∗ · qi, and as we have seen xi∗j∗ is easily recovered from

D(Rj∗).
So now what amount of communication is required by the parties? The database

sends O(l log(|G′|)) = O(lk) bits of information, meanwhile the user U sends
O(2k

√
n) bits of information which will generally be a large improvement on the

database side. We can naturally extend this idea to higher dimensional analogs. Rep-
resenting the database as a d-dimensional cube (we have just seen the construction for
d = 1, 2), we accomplish the following communication complexity: O(kd d

√
n) for the

user’s query, and O(ld−1k) communication for the database’s response.
The preceding construction is essentially that of [23] and of [6]. Both are simply

special cases of what has been described above:
The work of [23] is based upon the cryptosystem of [17], which is homomorphic

over the group Z2, having ciphertext group ZN for a large composite N . In this case,
it is simply the binary representation of a group element that plays the role of the map
φ : G ↪→ Z

l. I.e., we have l = k, the security parameter, and φ : ZN ↪→ Z
k takes an

element h ∈ ZN and maps it to a sequence of k integers, each in {0, 1} corresponding
to a binary representation of h.

The work of [6] is also a special case of this construction. Here, the protocol is based
upon the cryptosystem of [34], and we have G = ZN and G′ = Z

∗
N2 , hence we can

greatly reduce the parameter l in comparison to the work of [23]. In this case, it is easy to
see that we only need l = 2, which is in fact minimal, as we have discussed before. The
author of [6] uses the map φ : Z

∗
N2 ↪→ ZN defined by the division algorithm, dividing

by N to obtain a quotient and remainder of appropriate size. Roughly speaking, (and
using C-programming notation) he uses the map x 	→ (x/N, x%N). However, as we
have seen before, this is not necessary- any map could have been used (appropriately
partitioning bits, etc.). Note also that since the discrete log in G is not hard (as we have
defined it) we do not need to restrict our database to storing bits. Database elements
could be any numbers in ZN .

These quite generic methods also capture the work of [25], as long as the appropriate
cryptosystem is in place.
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Consider a “length-flexible” cryptosystem, for example, that of Damgård and Jurik
[10]. Such a cryptosystem has the property that given a message of arbitrary length, and
given a fixed public key, one can choose a cryptosystem from a family of systems based
on that key, so that the message fits in one ciphertext block regardless of the key and the
message length. Using this, we can further reduce the database’s communication in our
PIR protocol, using essentially the very same generic technique described above. We’ll
demonstrate the following:

Theorem 1. For all d ∈ Z
+ there exists a PIR protocol based on the homomorphic cryp-

tosystem of Damgård and Jurik with user communication of O(kd2 d
√

n) and
database communication of O(kd) where k is a security parameter and n is the database
size.

What the Damgård and Jurik system affords us is the following: instead of having
only one plaintext and ciphertext group G, G′, we now have a countable family at our
disposal:

{Gi, G
′
i}∞i=1

all of which correspond to a single public key. These groups are realized by Gi 

ZNi , G′

i 
 Z
∗
Ni+1 , and hence we have natural inclusion maps of G′

i ↪→ Gi+1. This,
along with the observation that Gi is cyclic for all i, are essentially the only important
facts regarding this system that we’ll utilize. So, Gi is always cyclic, and we have a
natural (although not algebraic) map

ψi : G′
i ↪→ Gi+1

This is all we need to modify our generic method. We will just replace the map φ with
the maps ψi, and accordingly, we will modify our query so that the vector for the i-th
dimension encrypts idGi in all positions except for the index of interest, which will en-
crypt a generator of Gi. With only these minor substitutions to the abstract construction,
the protocol will follow exactly as before. This will give us a protocol with communi-
cation complexity for the user U of

d∑

i=1

ik d
√

n = O(kd2 d
√

n)

and for the database, we require only

O(kd)

as opposed to the previous exponential dependence on the dimension d of the cube
used! Optimizing the parameters, setting d = log(n)

2 , we have O(k log2(n)) communi-
cation for the user and O(k log(n)) for the database. So, as one can see, even a com-
pletely generic method can be quite useful, producing a near optimal, poly-logarithmic
protocol.



404 R. Ostrovsky and W.E. Skeith III

3 PIR Based on the Φ-Hiding Assumption

Cachin, Micali, and Stadler recently developed a new cryptographic assumption called
the Φ-Hiding Assumption, and successfully used this assumption to build a PIR pro-
tocol with logarithmic communication. Roughly, this assumption states that given two
primes p0, p1 and a composite m = pq such that either p0|φ(m) or p1|φ(m), it is hard
to distinguish between the two primes. (Here, φ(m) is the Euler-φ function, so that
φ(m) = (p−1)(q−1).) The assumption also of course states that given a small prime p,
it is computationally feasible to find a composite m such that p|φ(m). Such an m is said
to φ-hide p. A query for the i-th bit of the database essentially contains input to a prime
sequence generator, a composite m that φ-hides pi (the i-th prime in the sequence) and
a random r ∈ Z

∗
m. The database algorithm returns a value R ∈ Z

∗
m such that with very

high probability, R has pi-th roots if and only if the database bit at location i was 1.

3.1 Preliminaries

To understand the protocol, let us start with some very basic algebraic observations. Let
G be a finite abelian group, and let k ∈ Z

+. Consider the following map:

ϕk : G → G defined by x 	→ xk

Since G is abelian, it is clear that ϕk is a homomorphism for all k ∈ Z
+. What is ϕk(G)?

Clearly it is precisely the set of all elements in G that posses a k-th root in G. I.e.,

Im(ϕk) = {x ∈ G | ∃y ∈ G � x = yk}
We will denote this set by Hk = Im(ϕk). Clearly it is a subgroup since it is the

homomorphic image of a group. The size of this subgroup of course depends on k
and G. If, for example, (k, |G|) = 1, then it is easy to see that ϕk(G) = G, since
if Ker(ϕk) �= {e} then there are non-identity elements of order dividing k, which is
clearly impossible. In the case that (k, |G|) > 1, how big is Ker(ϕk)? It is at least as
big as the largest prime divisor of (k, |G|) > 1, by Cauchy’s theorem if you like. For
example, if k is a prime such that k | |G|, then the map ϕk is at least a k to 1 map.

Finally, let’s take a look at the subgroups Hk = ϕk(G) = Im(ϕk). We will just need
the following observation:

∀k ∈ Z Hk �� G

Here the symbol Hk �� G signifies that Hk is a characteristic subgroup of G, which
is to say that the subgroups Hk are fixed by every automorphism of G. (Compare with
normal subgroups which are those fixed by every inner automorphism of G.) Note that
for any finite G, if H �� G and ϕ ∈ Aut(G) then ϕ(x) ∈ H ⇐⇒ x ∈ H for all
x ∈ G.

Let us summarize the few facts that will be of importance to us, and also narrow our
view to correspond more directly to what we will need. Suppose that p ∈ Z is a prime,
and define the maps ϕp as before. Then,

1. ϕp ∈ Aut(G) ⇐⇒ p � |G|
2. ϕp is at least a p to 1 map if p | |G|.
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3. ∀p, Hp �� G (although this is trivial in the case that p � |G| and hence Hp = G).
So for any ϕ ∈ Aut(G) and x ∈ G we have ϕ(x) ∈ Hp ⇐⇒ x ∈ Hp.

3.2 A Brief Description of the Protocol

We now have enough information for a basic understanding of how and why the PIR
protocol of [7] works. First, we will begin with the “how”. Continuing with our preced-
ing notation, suppose that X = {xi}n

i=1 is our database, with each xi ∈ {0, 1}, and
again, suppose that the index of interest to U is i∗. The protocol executes the following
steps, involving a database DB and a user U .

1. U sends a random seed for a publicly known prime sequence generator to DB, the
primes being of intermediate size5.

2. U computes pi∗ , the i∗-th prime in the sequence based on the random seed.
3. U finds a composite number m that φ-hides pi∗ , and sends m to DB. In particular,

we have that pi∗ | φ(m). Recall that φ(m) = |Z∗
m|.

4. DB selects r ∈ Z
∗
m at random, and computes R ∈ Z

∗
m as follows:

R = ϕpxn
n

◦ ϕp
xn−1
n−1

◦ · · · ◦ ϕp
x1
1

(r)

= r
∏ n

i=1 p
xi
i mod m

5. U receives R from DB as the response, and determines that xi∗ = 1 if and only if
R ∈ Hpi∗ .

These steps are essentially the entire protocol at a high level. However, it may not be
immediately obvious that the statement R ∈ Hpi∗ has much to do with the statement
xi∗ = 1. But using the 3 facts we established early on, it isn’t too hard to see that these
are in fact equivalent with very high probability.

From our first fact, we know that ϕpi ∈ Aut(G) whenever i �= i∗ with overwhelming
probability, since the only way for this to not be the case is if pi | φ(m). However,
due to the fact that there are at most only a logarithmic number of prime divisors of
φ(m) out of many choices, this event will be extremely unlikely6. So, all of the ϕpi are
automorphisms, except for ϕpi∗ .

From our next fact, we know that with very high probability r �∈ Hpi∗ , where r ∈ Z
∗
m

was the element randomly chosen by DB. Since the map is at least pi∗ to 1, the entire
group is at least pi∗ times the size of Hpi∗ . So, if we were to pick an element at random
from Z

∗
m, there is at best a 1

pi∗ chance that it will be in Hpi∗ . So, in the length of our
primes pi, there is an exponentially small probability that a random r will be in Hpi∗ .

Finally, we noted that the subgroups Hpi are characteristic subgroups, and hence
our fixed by every automorphism of Z

∗
m. In particular, Hpi∗ �� Z

∗
m. So, all of the

5 Revealing a large prime dividing φ(m), (p > 4
√

m) enables one to factor m, so the primes
must be chosen to be small.

6 According to the prime number theorem, there are approximately N
2 log N

primes of bit length
equal to that of N . Our chances of picking m such that another pi inadvertently divides φ(m)

are approximately polylog(m)
m

which is negligibly small as the length of m in bits (i.e., log m,
the security parameter) increases.
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automorphisms {ϕpi}i�=i∗ will preserve this group: things outside will stay outside, and
things inside will stay inside, and of course ϕpi∗ moves every element into Hpi∗ . I.e.,

ϕpi∗ (x) ∈ Hpi∗ ∀x

and if i �= i∗, then
ϕpi(x) ∈ Hpi∗ ⇐⇒ x ∈ Hpi∗

We can trace the path that r takes to become R and see what happens: We have that
the element r begins outside of the subgroup Hpi∗ and then r is moved by many maps,
all of which come from the set

{ϕ1, ...ϕi∗−1} ∪ {Id}

depending on whether or not xi = 1. But what is important is that all of these maps
are automorphisms, which therefore fix Hpi∗ . So, no matter what the configuration of
the first i∗ − 1 elements of the database, r will have not moved into Hpi∗ at this point.
Next, we conditionally apply the map ϕpi∗ depending on whether or not xi∗ = 1, which
conditionally moves our element into Hpi∗ . This is followed by the application of more
automorphisms, which as we have seen have no effect on whether or not the response
R will be in Hpi∗ . So, since Hpi∗ is fixed by every automorphism, the only chance that
r has to move from outside Hpi∗ to inside Hpi∗ is if the map ϕpi∗ is applied, which
happens if and only if xi∗ = 1. Hence, we have that (with overwhelming probability)
R ∈ Hpi∗ if and only if xi∗ = 1.

The privacy this protocol can be proved directly from the Φ-Hiding assumption, al-
though it may be more pleasant to think of this in terms of the indistinguishability of
the subgroup Hpi to a party not knowing the factorization of m. Now, let us take a
look back and examine the communication to see why this was useful. The challenge
of creating PIR protocols is usually to minimize the amount of communication. A PIR
protocol with linear communication is quite trivial to construct: just transfer the entire
database. This is of course not very useful. The PIR protocol we have described above,
however, has nearly optimal communication. The database’s response is a single ele-
ment R ∈ Z

∗
m which has size proportional to the security parameter alone (which must

be at least logarithmic in n), and the user’s query has the size of the security parameter,
and the random input to a prime sequence generator, which could also be as small as
logarithmic in n. So, we have constructed a PIR protocol with only logarithmic commu-
nication, which is of course optimal: If DB wants to avoid sending information propor-
tional to the size of the database, then U must somehow communicate information about
what index is desired, which requires at least a logarithmic amount of communication.
However, with the recommended parameters for security, the total communication is
approximately O(log8 n).

3.3 Generalizations: Smooth Subgroups

More recently, Gentry and Ramzan [15] have generalized some of the fundamental
ideas behind these methods, creating protocols based on smooth subgroups, which are
those that have many small primes dividing their order. Somewhat similar to CMS [7],
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a list of primes is chosen corresponding to the positions of the database, and a query
for position i essentially consists of a description of a group G such that |G| is divisible
by pi. However, the work of [15] is designed to retrieve blocks of data at a single time
(CMS [7] must be repeatedly executed to accomplish this functionality). Rather than
repeatedly exponentiating by all of the primes, the database is represented as an integer
e such that when reduced mod pi, the value is the i-th block of the database (such an
integer always exists of course by the Chinese Remainder Theorem). Now to recover
the data (which is just e mod pi), a discrete log computation can be made in the (small)
subgroup of order pi.

4 PIR from Any Trapdoor Permutation

In 2000, Kushilevitz and Ostrovsky [24] demonstrated that the existence of one-way
trapdoor permutations suffices to create a non-trivial PIR, where non-trivial simply
means that the total communication between the parties is strictly smaller than the size
of the database. Although the protocol requires multiple rounds of interaction, the basic
construction remains fairly simple in the case of an honest but curious server. In case
of a malicious server the construction is more complicated and the reader is referred to
the original paper for details. Here, we only illustrate the basic idea of the honest-but-
curious case.

4.1 Preliminaries

For this construction, the existence of one way trapdoor permutations (f, f−1) is as-
sumed, as well as Goldreich-Levin hard core bits.

Another tool (used in the honest-but-curious case) is the universal one way hashing
of Naor and Yung [29]. For the dishonest case, universal way-way hash functions are
replaced with an interactive hashing protocol [33], and on top of that some additional
machinery is needed. However, for the honest but curious case the proof is far more
simple. Recall that universal one way hash functions satisfy a slightly weaker type of
collision-resistance. Basically, if one first picks any input x from the domain, and a then
independently a hash function h from a universal one way family, it is computationally
infeasible to find x′ �= x ∈ h−1(h(x)).

The PIR protocol we’ll discuss here uses universal one way hash functions which
are 2 to 1 (i.e., for all y in the codomain, |h−1(y)| = 2) and each function will map
{0, 1}k −→ {0, 1}k−1 for some integer k.

4.2 Outline of the Protocol

At a very high level, the protocol revolves around the following idea: The server takes
an n bit database and partitions it into consecutive blocks of length k (k will be the
input length to a trapdoor permutation f ). It collapses every block of the database by
one bit, and sends this (slightly) reduced-size database back to the user. The user then
selects and sends to the server some information that will allow him to determine the
one missing bit of information for the block in which he or she is interested. Now, using
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communication balancing techniques similar to what we’ve described in the introduc-
tion, we can hold on to the constant advantage (below n) given to us by the server
collapsing the one bit of every database block. The trick, of course, is to avoid reveal-
ing information about which block the user is interested in when recovering this last bit.
The solution is quite simple. As mentioned, the database collapses a bit of each database
block before sending this information to the user. There are many obvious ways to do
this, for example just sending all but one bit of each block. However, in these situations,
the database knows exactly the two possibilities that arise from the collapsed data sent
to the user, as well as knowing the actual value in the database. This would seemingly
make it quite difficult for the user to determine which of the two possibilities exist in the
database without the database gaining information. So instead, a method is devised in
which the database collapses a bit of each block without knowing the other possibility.
This will enable the user to determine which possibility exists for a given block without
revealing what block he or she is interested in.

4.3 Sketch of Protocol Details

As we alluded to in the outline, we need to provide a way for the database to collapse
a bit of each block, but without knowing the other possibility. This is accomplished
precisely via a family F of universal one way hash functions, and in fact, the orginal
construction of such a family by Naor and Yung [29] is used. The important point, is
that the only assumption needed to build this family of universal one way hash func-
tions was the existence of one-way permutations, and furthermore, because they were
constructed via one-way permutations, a party holding the trapdoor can find collisions.
To summarize, here are the important properties we need from the family F :

1. Each function of F is efficiently computable.
2. Each function has the property of being 2 to 1.
3. Given only x, f(x) for f ∈ F , it is computationally infeasible to find x′ �= x ∈

f−1(f(x)) without trapdoor information.
4. With trapdoor information, it is feasible to find collisions in every function f ∈ F .

The protocol proceeds as follows:

The database is divided into blocks of size K , one of which the user is interested
in. Furthermore, the database is organized into pairs of blocks, denote them by zi,L

and zi,R (L, R standing for “left” and “right”). A query consists of two descriptions of
universal one way hash functions, fL, fR, to which the user has the trapdoors. Upon re-
ceipt of the query, the database computes the values of fL(zi,L) and fR(zi,R) for each
block of the database, and returns these values to the user. The user, who has trapdoors,
can compute both possible pre-images (z, z′) that may correspond to the block of the
database of interest. It only remains to have the database communicate which one, while
maintaining privacy. This is accomplished via hardcore predicates. Without loss of gen-
erality, suppose the user wishes to retrieve the left block, say zs,L. Then, the user selects
two hardcore predicates, rL, rR according to the conditions that rL(zs,L) �= rL(z′s,L),
yet rR(zs,R) = rR(z′s,R). These predicates are sent to the database, who responds with
rL(zi,L) ⊕ rR(zi,R) for every pair of blocks. Now, regardless of the possibilities of the
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right block, the hardcore predicates will be the same, hence the user can solve for the
left hardcore predicate, and hence the left block, as we assumed the predicates evaluated
on the two choices to be distinct. This completes a basic description of the protocol.

The descriptions of fL, fR, rL, rR are all O(K), which is the only communication
from the user to the database. The communication from the database to the user is eas-
ily seen to be n − n

2K bits in the initial round, and one more bit in the final response.
Hence, the protocol does achieve smaller than n communication, for n > O(k2). Next
we argue that the protocol is also secure. The only information sent to the database
which contains any information about what block the user is interested in, is that of the
hardcore predicates, rL, rR. The value of the hardcore predicates on the two possible
pre-images of a hash value is exactly what gives us the information regarding the user’s
selection. We only need to show that given such predicates, they do not reveal informa-
tion about the selected block. Informally, this is the right approach, as the definition of
hardcore predicate states that the outcomes are hard to predict better than random when
only given the output of a function. Indeed, as fairly straightforward hybrid argument
shows, this is the case.

5 Conclusions

In this paper, we have given a general survey of Single-Database PIR and it’s many
connections to other cryptographic primitives. We also discussed several implementa-
tions of single-database PIR, including a very generic construction from homomorphic
encryption. As well-studied as single database PIR seems to be, many open problems
remain. For example, reducing the communication complexity of a PIR protocol based
on general trapdoor permutations, as well as exploring the connections PIR has to other
communication-efficient protocols both in cryptography and complexity theory.
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Abstract. For RSA, May showed a deterministic polynomial time equiv-
alence of computing d to factoring N(= pq). On the other hand, Takagi
showed a variant of RSA such that the decryption algorithm is faster
than the standard RSA, where N = prq while ed = 1 mod (p−1)(q −1).
In this paper, we show that a deterministic polynomial time equivalence
also holds in this variant. The coefficient matrix T to which LLL algo-
rithm is applied is no longer lower triangular, and hence we develop a
new technique to overcome this problem.

Keywords: RSA, factoring, LLL algorithm.

1 Introduction

1.1 Background

Is the key-recovery attack on RSA equivalent to factoring? This is one of the
fundamental questions on RSA. Remember that in RSA, a public-key is N(= pq)
and e, where p and q are large primes, and the secret-key is d, where ed =
1 mod (p − 1)(q − 1). Given (N, e), it is not easy to factor N from d while
computing d is easy if factoring N is easy. More specifically, our problem is to
find a deterministic polynomial time algorithm which can factor N on input the
RSA parameter (N, e, d).

For this problem, there exists a probabilistic polynomial time algorithm [12]
based on the work by Miller [10]. Miller further proved that under the Extended
Riemann’s Hypothesis, there exists a deterministic polynomial time algorithm.
However, it is a strong assumption.

At Crypto 2004, May showed the first deterministic polynomial time algorithm
for this problem [9] for ed ≤ N2 and |p| = |q|, where |x| denotes the bit length of
x. Coron and May extended this result to unbalanced p and q [4]. These results
mean that the key-recovery attack on RSA is deterministically equivalent to
factoring as far as ed ≤ N2.

On the other hand, Takagi proposed a variant of RSA [13] such that N =
prq while ed ≡ 1 mod (p − 1)(q − 1). He observed that the decryption can be
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significantly faster in this variant. Hence it is important to study if there exists
a deterministic polynomial time equivalence even in this variant.

1.2 Our Contributions

In this paper, we show a deterministic polynomial time equivalence between the
key-recovery attack on Takagi’s variant of RSA and factoring. More precisely,
we show a deterministic polynomial time algorithm which can factor N(= prq)
from (N, e, d) such that ed ≡ 1 mod (p − 1)(q − 1) if ed ≤ N

4
r+1 , |p| = |q| and

r = O(log log N). It is interesting to see that May’s result is obtained as a special
case for r = 1. Hence, our result is a natural generalization of May [9].

Lenstra et al. developed an efficient lattice reduction algorithm known as
LLL algorithm [8]. Based on it, Coppersmith showed a method of finding small
roots of univariate modular polynomials [3] which was simplified by Howgrave-
Graham [7].

May [9] and Coron and May [4] used the simplified version of Howgrave-
Graham [7] to show the deterministic polynomial time equivalence on RSA.
These methods first find a set of polynomials, and then apply the lattice re-
duction algorithm to the coefficient matrix T . It works well because T is lower
triangular and hence it is easy to compute det T .

We use the same approach. One of main issues of using Coron-May’s strategy
in the case of Takagi’s RSA is the fact that the matrix T is not triangular,
which makes computing the determinant a problem. We overcome this problem
by using another matrix M containing polynomials g(x, y), whereas the matrix
T contains the polynomials t(x, y) = g(x+A, y+B). We prove that determinant
of T is equal to that of M . We develop a new technique to prove it and believe
that our new technique will be useful for many other lattice related problems.

1.3 Related Works

Boneh, Durfee and Howgrave-Graham studied how to factor N = prq by using
lattice reduction [2]. This type of composite N is very important since it is used
in EPOC [11] and ESIGN [6]1 in addition to Takagi’s variant of RSA. They
showed a deterministic algorithm of finding p in time O(p

2
r+1 ). They also proved

that p can be recovered in polynomial time if we can find an integer P such that
|P − p| < p

r−1
r+1 .

At Eurocrypt2005 [1], Blömer and May proposed a general method of finding
small roots of bivariate polynomials over integers, and improved Boneh et al.’s
result.

1.4 Organization

The rest of paper is organized as follows. The next section contains the prelimi-
naries. First, we review LLL algorithm and Howgrave-Graham’s Lemma. Then
1 In EPOC and ESIGN, r is restricted in 2. And, our results give no influence to the

security of EPOC and ESIGN.
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we explain Takagi’s variant of RSA and describe the motivation of this research.
In section 3, we introduce and prove our main theorem. In particular, we show
that the deterministic polynomial time equivalence holds for ed ≤ N

4
r+1 and

r = O(log log N). Finally, Section 4 concludes the paper.

2 Preliminaries

This section describes LLL algorithm, Howgrave-Graham’s lemma and Takagi’s
variant of RSA.

2.1 Notation

For a vector b, ||b|| denotes the Euclidean norm of b. For a bivariate polynomial
h(x, y) =

∑
hijx

iyj , define

||h(x, y)|| =
√∑

h2
ij .

That is, ||h(x, y)|| denotes the Euclidean norm of the vector which consists of
coefficients of h(x, y).

2.2 LLL Algorithm and Howgrave-Graham’s Lemma

Let M = {aij} be a nonsingular w×w matrix of integers. The rows of M generate
a lattice L, a collection of vectors closed under addition and subtraction; in fact
the rows forms a basis of L. The lattice L is also represented as follows. Letting
ai = (ai1, ai2, . . . , aiw), the lattice L spanned by 〈a1, . . . , aw〉 consists of all
integral linear combinations of a1, . . . , aw, that is :

L =

{
w∑

i=1

niai|ni ∈ ZZ

}

. (1)

LLL algorithm outputs a short vector in the lattice L. This algorithm works
in deterministic polynomial time.

Proposition 1 (LLL [8]). Let M = {aij} be a nonsingular w × w matrix of
integers. The rows of M generate a lattice L. Given M , LLL algorithm finds a
vector b ∈ L such that

||b|| ≤ 2(w−1)/4(det M)1/w

in polynomial time in (w, B), where B = max log2 |aij |.
Lemma 1 (Howgrave-Graham [7]). Let h(x, y) ∈ ZZ[x, y] be a polynomial,
which is a sum of at most w monomials. Let m be an integer. Suppose that

1. h(x0, y0) = 0 mod φm, where |x0| < X and |y0| < Y .
2. ||h(xX, yY )|| < φm/

√
w.

Then h(x0, y0) = 0 holds over integers.
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2.3 Takagi’s Variant of RSA

Takagi proposed a variant of RSA such that N = prq and showed that a faster
decryption algorithm can be obtained [13,14]. For example, for r = 2, it is 42%
faster than the original RSA decryption algorithm.

Key Generation. Generate two distinct primes p and q. Let N = prq. Find e
and d such that

ed ≡ 1 mod (p − 1)(q − 1). (2)

Let dp = d mod p−1 and dq = d mod q−1. Then, e and N are the encryption
keys and dp, dq, p, q are the decryption keys.

Encryption. For a plaintext M ∈ ZZ∗
N , the ciphertext is computed as

C = M e mod N. (3)

Decryption. Given a ciphertext C, do:
1. Compute Mq = Cdq mod q, where Mq = M mod q.
2. Compute Mp = Cdp mod p, where Mp = M mod p.
3. Find M

(r)
p such that M

(r)
p = M mod pr by using Hensel lifting.

4. Compute M by applying Chinese remainder theorem to Mq and M
(r)
p .

3 Deterministic Polynomial Time Equivalence in Takagi’s
RSA

In this section, we show a deterministic polynomial time equivalence between
the key recovery attack on Takagi’s variant of RSA and factoring.

3.1 Main Theorem

We say that (r, N, e, d) is a Takagi’s RSA parameter2 if

N = prq, ed = 1 mod (p − 1)(q − 1) and |p| = |q|.
We then present a deterministic polynomial time algorithm which can factor
N = prq on input such a parameter.

Theorem 1. Suppose that a Takagi’s RSA parameter (r, N, e, d) is given such
that ed ≤ N

4
r+1 . Then we can factor N in deterministic polynomial time in

(log N, 2r).

Corollary 1. Suppose that a Takagi’s RSA parameter (r, N, e, d) is given such
that ed ≤ N

4
r+1 and r = O(log log N). Then we can factor N in deterministic

polynomial time in log N .
2 We omit the discussion of unbalanced prime factors due to limitations of space. We

can easily extend our analysis to unbalanced case as Coron-May’s paper [4]. In the
Takagi’s original paper[13], e and d are set as ed ≡ 1(mod lcm(p − 1, q − 1)). In this
case, we have the same result if gcd(p − 1, q − 1) is small or known.
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Proof (of Corollary 1). Since r = O(log log N), 2r < (log N)c for some constant
c. Then the running time of the factoring algorithm given by Theorem 1 is
bounded by a polynomial time in log N . �	
Remark 1. Let r = 1 in Theorem 1. Then we obtain the following corollary:
Given (N, e, d), N = pq can be factorized in deterministic polynomial time in
log N if ed ≤ N2. This corollary coincides with the result of May [9] and Coron
and May [4] for balanced p and q. Hence, our result is a natural generalization
of their result on RSA.

Remark 2. In Takagi’s variant of RSA, since ed = 1 mod (p − 1)(q − 1), e and d
are usually chosen in such a way that e < (p − 1)(q − 1) and d < (p − 1)(q − 1).
In this case, it holds that

ed < ((p − 1)(q − 1))2 ≤ (pq)2 ≈ N
4

r+1 .

Therefore, our bound is achieved for e and d that are chosen in the usual way.

Remark 3. The condition r < c log log N leads to another equivalent condition:
r < c′(log log p + log log log p) for some c′. On the other hand, Boneh et al.
proved that if r > c′′ log p, N can be factorized in deterministic polynomial time
of log N without the knowledge of d [2]. Consequently, the computational cost
is not known when c′(log log p+log log log p) < r < c′′ log p. But, this is a purely
mathematical interest.

3.2 Affine Transform Lemma

We now prove an elemental lemma which plays an important role in the proof
of Theorem 1. We believe that this lemma will be useful for many other lattice
related problems.

Lemma 2. Let g1(x), · · · gr(x) be r polynomials of degree r − 1. For each gi(x),
define ti(x) as

ti(x) = gi(x + α),

where α is an arbitrary constant. Let M = (gij) be the r × r coefficient matrix
of g1(x), · · · gr(x), where

gi(x) =
r∑

j=1

gijx
r−j ,

and let T = (tij) be the r × r coefficient matrix of t1(x), · · · tr(x), where

ti(x) =
r∑

j=1

tijx
r−j .

Then it holds that
detT = detM.
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Proof. It holds that

ti(x) = gi(x + α) =
r∑

u=1

giu(x + α)r−u =
r∑

u=1

r−u∑

v=0

giu × r−uCvαr−u−vxv

=
r∑

u=1

r∑

j=u

giu ×r−u Cj−uαj−uxr−j

Therefore, we obtain that

tij =
j∑

u=1

giu × r−uCj−uαj−u. (4)

Next, define an upper triangular r × r matrix A = (aij) as follows.

aij =
{

r−iCj−iα
j−i if i ≤ j

0 if i > j.

Then we can see that T = MA. Further, we have detA = 1 because aii =
r−iC0 × α0 = 1. Consequently we obtain that detT = detM × det A = detM .

�	
3.3 Proof of Theorem 1

We will factor N by using the following strategy. Let X, Y, m, t be positive inte-
gers which will be determined later.

Step 0. Let p = p0X + x0 and q = q0Y + y0, where x0 < X and y0 < Y .
Suppose that p0 and q0 are known, and we want to compute x0 and y0.

Step 1. Construct a set of polynomials tijk(x, y) such that

tijk(x0, y0) ≡ 0 mod (((p − 1)(q − 1))m).

Step 2. Apply LLL algorithm to the coefficient matrix of {tijk(x, y)} to obtain
h(x, y), where h(x, y) is a non-zero integer combination of tijk(x, y) with
small coefficients.

Step 3. Let

h′(x) = h

(
x,

N

(p0X + x)r
− q0Y

)

Then x0 is a solution of h′(x) = 0.

We will find p0 and q0 by exhaustive search in Step 0. In what follows, we will
show how to construct polynomials tijk, how to compute the determinant of the
coefficient matrix of {tijk} and how to determine X, Y, m, t. It will be seen that
the above algorithm runs in polynomial time in (log N, 2r) if max(p/X, q/Y )
is polynomially bounded because Step 1 ∼ Step 3 are computed in polynomial
time and p0 and q0 are bounded by max(p/X, q/Y ).

Remark 4. h′(x) is not identically zero since h(x, y)is not identically zero.
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How to construct tijk. Let

f(x, y) = (x − 1)(y − 1).

Note that f(p, q) = (p − 1)(q − 1) is the modulus of Eq.(2). Let

U = ed − 1, S = (p − 1)(q − 1).

Define
gijk(x, y) = xiyjf(x, y)kUm−k.

Then it is easy to see that

gijk(p, q) = piqjf(p, q)kUm−k = 0 mod Sm

for any (i, j, k). In gijk(x, y), we will replace each occurrence of xry by N because
N = prq (based on the Durfee-Nguyen technique [5]). Therefore, the resulting
gijk(x, y) contains monomials of the form xa, yb and xyc1 , x2yc2 , . . . , xr−1ycr−1

for some a, b, c1, . . . and cr−1.
Construct a list of polynomials G = (gijk) as follows, where s, t will be deter-

mined later.

G ← ∅
for k = 0, · · · , m − 1, do;

append g0,0,k and g1,0,k into G in this order.
for i = r − 1, · · · , 1, do; append gi,1,k to G.

for i = 0, · · · , s, do; append gi,0,m to G.
for j = 1, · · · , t, do;

for i = r − 1, · · · , 0, do; append gi,j,m to G.
return G.

Express each gijk as follows, where the leading monomial appears in the right
most term of the right hand side. (For more details, see Appendix A.)

g0,0,0(x, y) = Um

g1,0,0(x, y) = ∗ ∗ ∗ + xUm

gr−1,1,0(x, y) = ∗ ∗ ∗ + xr−1yUm

...

g1,1,0(x, y) = ∗ ∗ ∗ + xyUm

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
...

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
g0,0,m−1(x, y) = ∗ ∗ ∗ + ym−1U

g1,0,m−1(x, y) = ∗ ∗ ∗ + xmUXm

gr−1,1,m−1(x, y) = ∗ ∗ ∗ + xr−1ymU
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...

g1,1,m−1(x, y) = ∗ ∗ ∗ + xymU

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
g0,0,m(x, y) = ∗ ∗ ∗ + ym

g1,0,m(x, y) = ∗ ∗ ∗ + xm+1

...

gs,0,m(x, y) = ∗ ∗ ∗ + xm+s

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
gr−1,1,m(x, y) = ∗ ∗ ∗ + xr−1ym+1

...

g0,1,m(x, y) = ∗ ∗ ∗ + ym+1

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
...

− − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − −
gr−1,t,m(x, y) = ∗ ∗ ∗ + xr−1ym+1

...

g0,t,m(x, y) = ∗ ∗ ∗ + ym+t

Next define
tijk(x, y) = gijk(p0X + x, q0Y + y). (5)

It is easy to see that

tijk(x0, y0) = gijk(p0X + x0, q0Y + y0) ≡ gijk(p, q) ≡ 0(modSm).

We have now finished Step 1.

How to compute det T . Let M be the coefficient matrix of {gijk(xX, yY )}
and T be the coefficient matrix of {tijk(xX, yY )}. Tables 1 and 2 show small
examples.

We want to apply Proposition 1 to T , where we need to know det T . However,
computing detT is not easy because T is not lower triangular. (See from Table 1.)
This is the big difference from the previous works [4,9]. We prove the following
lemma based on Lemma 2.

Lemma 3. It holds that
detT = detM. (6)

Proof. For 1 ≤ j ≤ m + t, define r polynomials f1,j , · · · , fr,j of degree r − 1 as
follows.

– For 1 ≤ j ≤ m,
• fa,j(x) is the coefficient of yj in gr−a,1,j−1(xX, yY ) for 1 ≤ a ≤ r − 1.
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Table 1. Example of T for r = 2, m = 3, s = 2, t = 2

1 x xy y x2 xy2 y2 x3 xy3 y3

t000(xX, yY ) U3

t100(xX, yY ) * U3X
t110(xX, yY ) * * U3XY U3XY p0

t001(xX, yY ) * * U2XY U2(p0X − 1)Y
t101(xX, yY ) * * * * −U2X2

t111(xX, yY ) * * * * * −U2XY 2 −U2XY 2p0

t002(xX, yY ) * * * * * −2UXY 2 UY 2(1 − 2p0X)
t102(xX, yY ) * * * * * * * UX3

t112(xX, yY ) * * * * * * * * UXY 3 UXY 3p0

t003(xX, yY ) * * * * * * * * 3XY 3 Y 3(3p0X − 1)

1 · · · y3 x4 x5 xy4 y4 xy5 y5

t103(xX, yY ) * −X4

t203(xX, yY ) * * −X5

t113(xX, yY ) * * * −XY 4 −p0XY 4

t013(xX, yY ) * * * 3XY 4 (3p0X − 1)Y 4

t123(xX, yY ) * * * * * −XY 5 −p0XY 5

t023(xX, yY ) * * * * * −4XY 5 (1 − 4p0X)Y 5

Table 2. Example of M for r = 2, m = 3, s = 2, t = 2

1 x xy y x2 xy2 y2 x3 xy3 y3 x4 x5 xy4 y4 xy5 y5

g000(xX, yY ) U3

g100(xX, yY ) * U3X
g110(xX, yY ) * * U3XY
g001(xX, yY ) * * * −U2Y
g101(xX, yY ) * * * * −U2X2

g111(xX, yY ) * * * * * −U2XY 2

g002(xX, yY ) * * * * * * UY 2

g102(xX, yY ) * * * * * * * UX3

g112(xX, yY ) * * * * * * * * UXY 3

g003(xX, yY ) * * * * * * * * * −Y 3

g103(xX, yY ) * * * * * * * * * * −X4

g203(xX, yY ) * * * * * * * * * * * −X5

g113(xX, yY ) * * * * * * * * * * * * −XY 4

g013(xX, yY ) * * * * * * * * * * * * * −Y 4

g123(xX, yY ) * * * * * * * * * * * * * * −XY 5

g023(xX, yY ) * * * * * * * * * * * * * * * −Y 5

• fr,j(x) is the coefficient of yj in g0,0,j(xX, yY ).
– For m + 1 ≤ j ≤ m + t,

• fa,j(x) is the coefficient of yj in gr−a,j−m,m(xX, yY ) for 1 ≤ a ≤ r.

Similarly, define r polynomials e1,j , · · · , er,j of degree r − 1 as follows.

– For 1 ≤ j ≤ m,
• ea,j(x) is the coefficient of yj in tr−a,1,j−1(xX, yY ) for 1 ≤ a ≤ r − 1.
• er,j(x) is the coefficient of yj in t0,0,j(xX, yY ).

– For m + 1 ≤ j ≤ m + t,
• ea,j(x) is the coefficient of yj in tr−a,j−m,m(xX, yY ) for 1 ≤ a ≤ r.

Let Mj be the r × r coefficient matrix of f1,j , · · · , fr,j, and Tj be the r × r
coefficient matrix of e1,j, · · · , er,j.
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For example, T1, M1, T2 and M2 of Table 1 and 2 are as follows.

T1 =
(

U3XY, U3XY p0
U2XY, U2Y (p0X − 1)

)
, M1 =

(
U3XY, 0
U2XY, −U2Y

)
.

T2 =
( −U2XY 2, −U2XY 2p0

−2UXY 2, UY 2(1 − 2p0X)

)
, M2 =

( −U2XY, 0
−2UXY 2, UY 2

)
.

From Eq.(5), we obtain that

tijk(xX, yY ) = gijk(p0X + xX, q0Y + yY ) = gijk(X(x + p0), Y (y + q0)).

Hence, it is easy to see that ei,j(x) = fi,j(x + p0) because yj is the highest term
in gr−a,1,j−1(xX, yY ), g0,0,j(xX, yY ) and gr−a,j−m,m(xX, yY ). Therefore, from
Lemma 2, we obtain that det Tj = detMj for 1 ≤ j ≤ m + t. Consequently, we
can see that detT = detM . �	
Since M is a triangular matrix, we can compute detM easily as follows3.

detM = U (r+1)m(m+1)/2 · X(m+s)(m+s+1)/2+r(r−1)(m+t)/2 · Y r(m+t)(m+t+1)/2

Applying LLL. Note that T and M are w × w matrices, where

w = (r + 1)m + (s + 1) + rt = (r + 1)m + s + rt + 1.

Now by applying LLL algorithm to T , we can obtain

h(x, y) =
∑

aijktijk(x, y)

such that
||h(xX, yY )|| ≤ 2(w−1)/4(detM)1/w

for some integers aijk. From the definition of tijk(x, y), it holds that

h(x0, y0) =
∑

aijktijk(x0, y0) = 0 mod Sm.

Therefore, if ||h(xX, yY )|| < Sm/
√

w, then from Howgrave-Graham’s lemma,
we have h(x0, y0) = 0 over integers. Therefore, it is sufficient to show that

2(w−1)/4(det M)1/w <
Sm

√
w

. (7)

Since p and q are the same bit length, it satisfies that S = (p − 1)(q − 1) >
pq/2 > max(p2, q2)/4 > N2/(r+1)/4. Using the inequality

√
w ≤ 2(w−1)/2, we

obtain the following sufficient condition:

detM < N
2mw
r+1 2−(2mw+ 3

4 w(w−1)). (8)

3 In what follows, we omit the sign of detM .
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How to determine X and Y . By setting X = Y and s = t, det M can be
simplified as

det M = U (r+1)m(m+1)/2 · X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2. (9)

The dimension of the lattice is given as w = (r + 1)(m + s) + 1.
Since it holds that U ≤ N

4
r+1 from our assumption, we obtain

detM ≤ N
(r+1)m(m+1)

2 · 4
r+1 · X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2

= N2m(m+1) · X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2. (10)

From inequalities (8) and (10) we obtain

N2m(m+1) · X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 ≤ N2mw/(r+1) · 2−(2mw+ 3
4 w(w−1))

X(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 ≤ N2m(s+ 1
r+1 −1)2−(2mw+ 3

4 w(w−1)).

The above inequality can be transformed into

X ≤ N2m s+1/(r+1)−1
(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 ·2− 2mw+3w(w−1)/4

(r+1)(m+s)(m+s+1)/2+r(r−1)(m+s)/2 . (11)

Letting

γ(m, s; r) = 2m
s + 1/(r + 1) − 1

(r + 1)(m + s)(m + s + 1)/2 + r(r − 1)(m + s)/2

and

δ(m, s; r) =
2mw + 3w(w − 1)/4

(r + 1)(m + s)(m + s + 1)/2 + r(r − 1)(m + s)/2
,

we can express inequality (11) as

X ≤ Nγ(m,s;r)2−δ(m,s;r). (12)

The next thing to do is to find s which maximize γ(m, s; r) for a fixed m
to maximize the bound X on x0. Such s is given by s = m. In this setting,
γ(m, m; r) is calculated as follows.

γ(m, m; r) = 2
m + 1/(r + 1) − 1
2(r + 1)m + r2 + 1

=
1

r + 1
− r + 1

2(r + 1)m + r2 + 1

δ(m, m; r) is calculated as

δ(m, m; r) =
2mw + 3w(w − 1)/4

(r + 1)(m + m)(m + m + 1)/2 + r(r − 1)(m + m)/2

=
(2(r + 1)m + 1)(3

2 (r + 1) + 2)
2(r + 1)m + 1 + r2 <

1
2
(3r + 5).

From the above discussion, we obtain

X ≤ 2−
(3r+5)

2 N
1

r+1− r+1
2(r+1)m+r2+1 . (13)
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Total Computational time. Taking the largest integer X of inequality (13),
we obtain

p

X
<

2N1/(r+1)

X
≤ N

r+1
2(r+1)m+r2+1 · 2

3r+7
2 . (14)

By setting m = �log N�, we obtain

p

X
< O(1) · 2 3r+7

2 . (15)

Hence, the number of repetition for selection of p0 is upper bounded by a poly-
nomial of 2r.

The dimension of the lattice is given by w = (r + 1)m + s + rt + 1 = 2(r +
1)m+1 = O(log N). The maximum entry of the lattice is given by N

4m
r+1+1. This

implies that the logarithm of the maximum entry is given by O(log N
4m
r+1 ) =

O(m log N) = O((log N)2). Hence, the total computation cost for the bivariate
polynomial h(x, y) is given by the polynomial of (log N, 2r). Note that LLL
algorithm works deterministically.

The rest of our algorithm works in deterministic polynomial time of log N .
From the above discussion, N can be factorized in deterministic polynomial time
of log N and 2r. �	

4 Concluding Remarks

We used the same approach as Coron-May[4]. But, Theorem 1 cannot be ob-
tained trivially from[4]. We had to overcome the following two difficulties in
order to prove our theorem.

1. How should we arrange the order of polynomials gijk and monomials so that
M is triangular?

2. How should we calculate det T ? Since T is not triangular, calculation of
determinant seems difficult.

First, we explain how to overcome the first difficulty. In the analysis of stan-
dard RSA [4], each occurrence of xy is replaced by N because N = pq. Hence only
xa or yb appears in the resulting gi,j,k which makes it easy to form a triangular
matrix.

On the other hand, we replace each occurrence of xry by N because N = prq
in Takagi’s RSA. Then the resulting gijk(x, y) contains monomials of the form
xa, yb and xyc1 , x2yc2 , . . . , xr−1ycr−1 for some a, b, c1, . . . and cr−1. A technical
difficulty is how to make a triangular matrix M from these gi,j,k. We have given
an efficient solution for this problem.

Remark 5. We can apply Blömer-May’s method [1] to our problem. In this
method, however, the lattice is uniquely determined by the Newton polygon
of the target polynomial f(x, y), and hence there is no room for replacing xry
with N . Consequently we would get a smaller range of ed.
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Next, we explain how to overcome the second difficulty. Since the only mono-
mials xa and yb appear in Coron-May’s gijk, the matrix generated from tijk is
naturally triangular. Hence, in Coron-May’s case, the determinant of T can be
easily obtained. However, in our polynomials gijk, the monomial xiyj appears.
Hence, our matrix T cannot be triangular (for example, see Table 1). By showing
Lemma 3 (that is det T = detM), we overcome this problem. In the proof of
Lemma 3, Lemma 2 plays an important role. Note that in proof of lemma 3,
we did not use the property that M is triangular. We enjoy this property in
calculating det M . We believe that our new technique will be useful for many
other lattice related problems.
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1. J. Blömer and A. May, “A Tool Kit for Finding Small Roots of Bivariate Polyno-
mials over the Integers,” Proc. of Eurocrypt2005, LNCS 3494, pp. 251–267, 2005.

2. D.Boneh, G.Durfee and N.Howgrave-Graham, “Factoring N = prq for Large r,”
in Proc. of Crypto’99, LNCS 1666, pp. 326–337, 1999.

3. D. Coppersmith, “Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities,” J. Cryptology 10(4): 233-260, 1997.

4. J.S. Coron and A.May, “Deterministic Polynomial Time Equivalence of Computing
the RSA Secret Key and Factoring,” IACR ePrint Archive: Report 2004/208, 2004,
to appear in Journal of Cryptology.

5. G. Durfee and P. Nguyen, “Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt’99,” Proc. of Asiacrypt2000, LNCS 1976, pp. 14–29,
2000.

6. A. Fujioka, T. Okamoto and S. Miyaguchi, “ESIGN: An Efficient Digital Signature
Implementation for Smart Cards,” In Proc. of Eurocrypt’91, LNCS 547, pp.446-
457, 1992.

7. N.Howgrave-Graham, “Finding Small Roots of Univariate Modular Equations Re-
visited,” IMA Int. Conf., pp.131–142 (1997)

8. A.K. Lenstra, H.W. Lenstra, L. Lovász, “Factoring polynomials with rational co-
efficients,” Mathematische Annalen 261, pp.515–534, 1982.

9. A. May, “Computing the RSA Secret Key Is Deterministic Polynomial Time Equiv-
alent to Factoring,” in Proc. of Crypto2004, LNCS 3152, pp. 213–219, 2004.

10. G. L. Miller, “Riemann’s Hypothesis and Tests for Primality,” Seventh Annual
ACM Symposium on the Theory of Computing, pp. 234–239, 1975.

11. T. Okamoto and S. Uchiyama, “A New Public Key Cryptosystem as secure as
factoring,” in Proc. of Eurocrypt’98, LNCS 1403, pp. 310–318, 1998.

12. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21(2), pp. 120–
126, 1978.



Deterministic Polynomial Time Equivalence 425

13. T. Takagi, “Fast RSA-Type Cryptosystem Modulo pkq, ” in Proc. of Crypto’98,
LNCS 1462, pp.318–326, 1998.

14. T. Takagi, “A Fast RSA-Type Public-Key Primitive Modulo pkq Using Hensel
Lifting,” IEICE Trans. Fundamentals, Vol. 87-A, no. 1, pp. 94–101, 2004.

A Our Matrix M Is Triangular

In this section, we describe the matrix M of Sec.3.2 more formally, and show
that it is a lower triangular matrix.

We say that gi,j,k is the �th polynomial of G if it is the �th polynomial that
is appended to G by the algorithm of Sec.3.2. For a monomial xayb which is
included in the �th gi,j,k, we say that xayb appears here first if it does not
appear in the first (� − 1) polynomials of G. Let dk = (k − 1)(r + 1). (Note that
each occurrence of xry is replaced by N .)

Lemma 4. g0,0,k is the (dk + 1)th polynomial of G, and yk appears here first
for 1 ≤ k ≤ m.

Lemma 5. g1,0,k is the (dk + 2)th polynomial of G, and xk+1 appears here first
for 0 ≤ k ≤ m.

Lemma 6. gr−i,1,k is the (dk + i + 2)th polynomial of G, and xr−iyk+1 appears
here first for 1 ≤ i ≤ r − 1 and 0 ≤ k ≤ m − 1.

Lemma 7. gi,0,m is the (dm + i + 1)th polynomial of G, and xi+m appears here
first for 1 ≤ i ≤ s.

Lemma 8. g0,j,m is the (dm + s+ j)th polynomial of G, and xj+m appears here
first for 1 ≤ j ≤ t.

Consider an expression of gi,j,k as follows.

– The leading monomial of g0,0,k is yk for 1 ≤ k ≤ m.
– The leading monomial of g1,0,k is xk+1 for 0 ≤ k ≤ m.
– The leading monomial of gr−i,1,k is xr−iyk+1 for 1 ≤ i ≤ r − 1 and 0 ≤ k ≤

m − 1.
– The leading monomial of gi,0,m is xi+m for 1 ≤ i ≤ s.
– The leading monomial of g0,j,m is xj+m for 1 ≤ j ≤ t.

Lemma 9. In the �th gi,j.k, all the monomials other than the leading one ap-
pears in some polynomial of G�−1.

Let M be a w×w matrix such that �th row consists of the coefficients of the �th
gi,j,k of G, where the leading monomial of each gi,j,k is given as above. Then it
is easy to see that M is a lower triangular matrix from the above lemmas.

The proofs of the lemmas will be given in the full version.
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Abstract. A family of pseudorandom generators based on the decisional
Diffie-Hellman assumption is proposed. The new construction is a mod-
ified and generalized version of the Dual Elliptic Curve generator pro-
posed by Barker and Kelsey. Although the original Dual Elliptic Curve
generator is shown to be insecure, the modified version is provably secure
and very efficient in comparison with the other pseudorandom generators
based on discrete log assumptions.

Our generator can be based on any group of prime order provided
that an additional requirement is met (i.e., there exists an efficiently
computable function that in some sense enumerates the elements of the
group). Two specific instances are presented. The techniques used to
design the instances, for example, the new probabilistic randomness ex-
tractor are of independent interest for other applications.

1 Introduction

A pseudorandom generator is a deterministic algorithm that converts a short se-
quence of uniformly distributed random bits into a longer sequence of bits that
cannot be distinguished from uniformly random by a computationally bounded
algorithm. It is known that a pseudorandom generator can be constructed from
any one-way function [13]. Thus, intractability of the discrete logarithm prob-
lem suffices to construct a pseudorandom generator. Such a construction was
first proposed by Blum and Micali [2]. However, the Blum-Micali pseudorandom
generator and similar ones are inefficient in the sense that only a single bit is
output per modular exponentiation. In this paper, we show that the stronger
assumption that the decisional Diffie-Hellman problem is hard to solve (DDH
assumption) gives rise to much more efficient pseudorandom generators.

Using strong assumptions in order to improve performance of cryptographic
schemes is a common practice nowadays. In particular, several pseudorandom
generators based on strong number theoretic assumptions have been proposed
during the last decade. For instance, Patel and Sundaram [25], Gennaro [8] show
that efficient pseudorandom generators can be built if one assumes that comput-
ing discrete logarithms with short exponents is a hard problem. Steinfeld et al.
[29] propose an improved version of the well-known RSA generator assuming the
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intractability of a strong variant of the RSA problem. In comparison with many
other assumptions, the DDH assumption is thoroughly studied (for more details
about intractability of the DDH problem, refer e.g. to [24]) and has become a
basis for a wide variety of cryptographic schemes.

Security of our construction is tightly related to the intractability of the DDH
problem.

1.1 Related Work

Our work is inspired by the publication of Barker and Kelsey [1], in which the
so-called Dual Elliptic Curve generator is proposed. Let P and Q be points on
a prime order elliptic curve over a prime field Fp such that p is close to 2256.
Let q denote the order of the curve. On input s0 chosen uniformly at random
from Zq the Dual Elliptic Curve generator produces two sequences of points
siP and siQ such that si is set to be the x-coordinate of si−1P , i = 1, 2, . . . , k.
The generator outputs k binary strings each string consisting of the 240 least
significant bits of the x-coordinate of siQ. The sequence of points siQ is shown
to be indistinguishable from the sequence of uniformly random points of the
elliptic curve under the assumption that the DDH problem and the non-standard
x-logarithm problem are intractable in E(Fp) [3]. However, the binary sequence
produced by the generator turns out to be distinguishable from uniform. The
reason is that points of the elliptic curve are transformed into random bits in an
improper way [10,27].

Some ideas of the Dual Elliptic Curve generator are present in the earlier
work by Naor and Reingold [24]. Let p be a prime and let g be a generator
of a subgroup of Z

∗
p of prime order q. Let a ∈ Zq be a fixed number. Naor and

Reingold [24] propose a simple function G that on input b ∈ Zq outputs (gb, gab).
If b is chosen uniformly at random, the output of the function is computationally
indistinguishable from uniform under the DDH assumption in the subgroup.
Note, however, that function G produces random elements of the subgroup rather
than random bits and therefore it is not a pseudorandom generator in the sense
of Definition 1 (converting random elements of the subgroup into random bits
is a nontrivial problem). Moreover, although function G doubles the input it
cannot be iterated to produce as much pseudorandomness as required by the
application. Namely, it is not clear how to produce a new value of b given two
group elements gb and gab. Accordingly, the goal of Naor and Reingold [24] is
to construct not a pseudorandom generator but a pseudorandom function, for
which function G turns out to be a suitable building block.

1.2 Our Contributions

We modify and generalize the Dual Elliptic Curve generator such that the mod-
ified version is provably secure under the DDH assumption. In comparison with
the original Dual Elliptic Curve generator, our generator can be based on any
group of prime order meeting an additional requirement (i.e., there exists an
efficiently computable function that in some sense enumerates the elements of
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the group). The new generator is more efficient than all known pseudorandom
generators based on discrete log assumptions.

We present two specific instances of the new pseudorandom generator.
The first instance is based on the group of quadratic residues modulo a safe

prime p = 2q+1. This instance uses an elegant idea of Cramer and Shoup [5] who
show that there exists a simple bijective function that maps quadratic residues
modulo p to Zq.

The second instance is based on an arbitrary prime order subgroup of Z
∗
p,

where p is prime but not necessarily a safe prime. To construct this instance, we
first propose a surprisingly simple probabilistic randomness extractor that pro-
vided with some extra randomness converts a uniformly random element of the
subgroup of order q into a uniformly random number in Zq, which in turn can be
easily converted into a string of uniformly random bits using, for instance, algo-
rithm Q2 from [15] (for an overview of probabilistic randomness extractors, refer
to [28]). Note that all (probabilistic and deterministic) extractors known so far
can only convert random elements of the subgroup into bits that are statistically
close to uniform.

We derive the security parameters of the new pseudorandom generators from
the corresponding security reductions. For this purpose, we make practical as-
sumptions about intractability of the discrete logarithm problems in the corre-
sponding groups.

2 Preliminaries

In this section, we introduce some conventions and recall basic definitions.

2.1 Notation

Let x and y be random variables taking on values in a finite set S. The statistical
distance between x and y is defined as

Δ(x, y) =
1
2

∑

α∈S

| Pr[x = α] − Pr[y = α]|.

We say that algorithm D distinguishes x and y with advantage ε if and only if

| Pr[D(x) = 1] − Pr[D(y) = 1] | ≥ ε.

If the statistical distance between x and y is less than ε then no algorithm
distinguishes x and y with advantage ε (see, e.g., [20, Exercise 22]).

Throughout, we let Um denote a random variable uniformly distributed on
Zm. And, we say that an algorithm is T -time if it halts in time at most T .

2.2 Pseudorandom Generators

Consider a deterministic algorithm PRG : {0, 1}n �→ {0, 1}M , where M > n.
Loosely speaking, PRG is called a pseudorandom generator if it maps uniformly
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distributed input into an output which is computationally indistinguishable from
uniform. The input is called the seed and the output is called the pseudorandom
sequence. The precise definition is given below.

A T -time algorithm D : {0, 1}M �→ {0, 1} is said to be a (T, ε)-distinguisher
for PRG if

| Pr[D(PRG(U2n)) = 1] − Pr[D(U2M ) = 1] | ≥ ε. (1)

Definition 1 (Pseudorandom generator). Algorithm PRG is called a (T, ε)-
secure pseudorandom generator if no (T, ε)-distinguisher exists for PRG.

An important question is what level of security (T, ε) suffices for practical appli-
cations of pseudorandom generators. Unfortunately, the level of security is often
chosen arbitrarily. Knuth ([17], p. 176) sets ε = 0.01 and consider several values
for T up to 53.5 · 1012 Mips-Years1. In [6], the security level is set to T = 1
Mips-Year and ε = 0.01. In [8], T = 3.5 · 1010 Mips-Years, ε = 0.01.

The fact that a pseudorandom generator is (T, ε)-secure does not automat-
ically mean that the generator is (T ′, ε′)-secure for all T ′ and ε′ such that
T ′/ε′ ≤ T/ε. For instance, if a pseudorandom generator is (T, 0.01)-secure it
does not necessarily mean that the generator is (T ′, 0.009)-secure even if T � T ′.
The reason is that a (T ′, 0.009)-distinguisher cannot always be transformed into
a (T, 0.01)-distinguisher. Indeed, the only way to improve the success probability
of the distinguisher is to run it several times on the same input. However, the
latter does not always help since there might be ”bad” inputs, that is, inputs for
which the success probability of the distinguisher is very low or equals 0.

It is reasonable to require that a pseudorandom generator is secure for all pairs
(T, ε) such that the time-success ratio T/ε is below a certain bound that is set
to be 280 time units throughout this paper (the time unit is defined in Section
2.4). Time-success ratio is a standard way to define security of cryptographic
schemes [20,13].

2.3 Decisional Diffie-Hellman Problem

Let G be a multiplicative group of prime order q. For x, y ∈ G and s ∈ Zq such
that y = xs, s is called the discrete logarithm of y to the base x. We write
s = logx y. The discrete logarithm (DL) problem is to find s given x and y.

Definition 2 (DDH problem). Let XDDH ∈ G
4 be a random variable uni-

formly distributed on the set consisting of all 4-tuples (x, y, v, w) ∈ G
4 such that

logx v = logy w and let YDDH ∈R G
4. Algorithm D is said to solve the deci-

sional Diffie-Hellman (DDH) problem in G with advantage ε if it distinguishes
the random variables XDDH and YDDH with advantage ε, that is,

| Pr[D(XDDH) = 1] − Pr[D(YDDH) = 1] | ≥ ε.

1 A Mips-Year is defined as the amount of computation that can be performed in one
year by a single DEC VAX 11/780 (see also [19]).
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Related to the decisional Diffie-Hellman problem is the computational Diffie-
Hellman (CDH) problem (given x, y and xs, compute ys).

Clearly, the DL problem is at least as hard to solve as the CDH problem.
The CDH problem is proved to be equivalent to the DL problem under certain
conditions [21,22]. Moreover, no groups are known such that the CDH problem is
strictly easier to solve than the DL problem. The common practice is to assume
that these two problems are equally hard.

On the other hand, there exist groups (e.g., Z
∗
p) in which a random instance

of the CDH problem is believed to be hard while the DDH problem is easy. The
latter groups are referred to as the non-DDH groups [9]. Furthermore, Wolf [30]
shows that for all groups G an algorithm that solves the DDH problem in G is
of no help for solving the CDH problem in G. However, the computational gap
between the DDH problem and the CDH problem is difficult to estimate. It is
believed that except for the non-DDH groups, there is no way to solve the DDH
problem rather than to solve the CDH problem.

We do not use non-DDH groups in this paper. To compute security parameters
for the pseudorandom generators, we assume that the DDH problem and the DL
problem are equally hard, in agreement with common practice. We formalize this
as follows.

Let TDL be the running time of the best known algorithm for solving a random
instance of the DL problem in a group G. Of course, TDL depends on the group G,
that is, TDL = TDL(G). For instance, in the case of finite fields, TDL corresponds
to the running time of the discrete logarithm variant of the Number Field Sieve,
while for most of the ordinary elliptic curves the best known algorithms are the
exponential square root attacks.

Assumption 1. Unless G is a non-DDH group, no T -time algorithm solves the
DDH problem in G with probability ε if T/ε ≤ TDL(G).

2.4 Conventions

Time Units. A unit of time has to be set to measure the running time of the
algorithms. Throughout this paper, the unit of time is one DES encryp-
tion. According to the data from [19], a software implementation of DES is
estimated to take about 360 Pentium clock cycles. Therefore, we assign

1 time unit = 360 Pentium clock cycles.

Security level. The table by Lenstra and Verheul [19] implies that 280 DES
encryptions will be infeasible for classical computers until the year 2013.
Therefore, we set 280 time units as the security level to be reached.

Modular multiplication cost. In [19], it is reported that multiplication mod-
ulo p takes about (log2 p)2/24 Pentium clock cycles, that is,

(log2 p)2/(24 · 360) time units.

Complexity of discrete logarithm variant of the NFS. The discrete log-
arithm variant of the Number Field Sieve (NFS) algorithm solves the dis-
crete logarithm problem in a n-bit prime field in expected time L(n) =
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A exp((1.9229 + o(1))(n ln 2)1/3(ln(n ln 2))2/3), where A is a constant. Fol-
lowing [19], we assume that the o(1)-term is zero and estimate the constant
A from experimental data. Unfortunately, practical experience with the dis-
crete logarithm variant of the NFS is limited. On the other hand, there are
several data points for the Number Field Sieve factoring algorithm. For in-
stance, factoring a 512-bit integer is reported to take about 3 · 1017 Pentium
clock cycles [19]. Since computing discrete logarithms in n-bit fields takes
about the same amount of time as factoring n-bit integers for any n in the
current range of interest (cf. [19]), this suggests that A ≈ 4.7 ·10−5 and thus

L(n) = 4.7 · 10−5 exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3) time units.

It is believed that the discrete logarithm problem in the extension field is as
hard as the discrete logarithm problem in the prime field of similar size (cf.
[18]).

3 DDH Generator

In this section, our main result is presented. We propose a new provably secure
pseudorandom generator. We call it the DDH generator, since the security of this
generator relies on the intractability of the DDH problem in the corresponding
group. In contrast with the Dual Elliptic Curve generator [1], the DDH gen-
erator can be based on any group of prime order provided that an additional
requirement is met (i.e., there exists an efficiently computable function enum
that ”enumerates” the elements of the group).

3.1 Construction of the Generator

Let G be a multiplicative group of prime order q and let enum : G × Zl �→
Zq × Zl, l > 0, be a bijection. Thus, on uniformly distributed input, function
enum produces uniformly distributed output. Typically, but not necessarily, l is
chosen to be small. The advantage of a smaller l is that the seed of the generator
is shorter.

Let x, y ∈R G. The seed of the DDH generator (Algorithm 1) is s0 ∈R Zq and
randp0, randq0 ∈R Zl. The DDH generator transforms the seed into the sequence
of k pseudorandom numbers from Zq.

Note that the random elements x and y are not part of the seed. These
two elements are system parameters that are not necessarily kept secret. In the
security analysis of the generator we assume that x and y are known to the
distinguisher.

3.2 Security Analysis

The following theorem implies that under the DDH assumption for group G an
output sequence of the DDH generator is indistinguishable from a sequence of
uniformly random numbers in Zq.
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Algorithm 1. DDH generator
Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, k > 0
Output: k pseudorandom integers from Zq

for i = 1 to k do
Set (si, randpi) ← enum2(x

si−1 , randpi−1)
Set (outputi, randqi) ← enum2(y

si−1 , randqi−1)
end for
Return output1, . . . , outputk

Theorem 2. Suppose there exists a T -time algorithm that distinguishes the out-
put of the DDH generator from the sequence of independent uniformly distributed
random numbers in Zq with advantage ε. Then the DDH problem in G can be
solved in time T with advantage ε/k.

Proof. Suppose there exists a T -time algorithm D that distinguishes the output
of the DDH generator from a sequence of independent uniformly distributed
random numbers in Zq with advantage ε, that is,

| Pr[D(output1, . . . , outputk) = 1] − Pr[D(U) = 1] | ≥ ε,

where U = (u1, . . . , uk), ui ∈R Zq, i = 1, . . . , k. Let j ∈R {1, 2, . . . , k}. Due to
the classical hybrid argument (see, e.g., [11, Section 3.2.3]),

| Pr[D(Zj) = 1] − Pr[D(Zj+1) = 1] | ≥ ε/k,

where

Zj =(u1, . . . , uj−1, output1, . . . , outputk−j+1),

Zj+1 =(u1, . . . , uj−1, uj , output1, . . . , outputk−j),

the probability is taken not only over internal coin flips of D but also over the
choice of j. Now, we show how to solve the DDH problem in G using the dis-
tinguisher D as a building block. Let (x, y, v, w) ∈ G

4. A solver for the DDH
problem decides if logx v = logy w or v and w are independent uniformly dis-
tributed random elements of G as follows.

Select j ←R {1, 2, . . . , k}
Select r1, . . . , rj−1 ←R Zq, randp0 ←R Zl, randq0 ←R Zl

Set (s1, randp1) ← enum(v, randp0)
Set (rj , randq1) ← enum(w, randq0)
for i = 2 to k − j do

Set (si, randpi) ← enum(xsi−1 , randpi−1)
Set (ri+j−1, randqi) ← enum(ysi−1 , randqi−1)

end for
Set Z ← (r1, . . . , rk)
Return D(Z)
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If there exists s0 ∈ Zq such that v = xs0 and w = ys0 then rj and rj+1 are
distributed as the first and the second outputs of the DDH generator respectively,
so Z is distributed as Zj.

Otherwise, if v and w are independent uniformly distributed random elements
of G then rj+1 is distributed as the first output of the DDH generator while rj

is uniformly distributed over Zq and independent of rj+1, so Z is distributed as
Zj+1.

Therefore, the above algorithm solves the DDH problem in G in time at most
T with advantage ε/k.

The DDH generator is not a pseudorandom generator in terms of Definition 1. It
outputs numbers in Zq rather than bits. However, converting random numbers
into random bits is a relatively easy problem. For instance, one can use Algorithm
Q2 from [15], which was presented without analysis. It can actually be shown,
however, that Algorithm Q2 produces on average n − 2 bits given a uniformly
distributed random number Uq, where n denotes the bit length of q. In the latter
case, the average number of bits produced by the generator is k(n − 2).

For the sake of simplicity, throughout this paper, we assume that q is close to
a power of 2, that is, 0 ≤ (2n − q)/2n ≤ δ for a small δ. So, the uniform element
Uq is statistically close to n uniformly random bits.

The following simple lemma is a well-known result (the proof can be found,
for instance, in [4]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between Uq and U2n is bounded above by δ.

The next statement implies that if q is close to a power of 2, the DDH generator is
a cryptographically secure pseudorandom generator under the DDH assumption
in G.

Corollary 1. Let 0 ≤ (2n−q)/2n ≤ δ. Suppose the DDH generator is not (T, ε)-
secure. Then there exists an algorithm that solves the DDH problem in G in time
at most T with advantage ε/k − δ.

Proof. Suppose there exists a distinguisher D : {0, 1}kn �→ {0, 1} that runs in
time at most T and

| Pr[D(output1, . . . , outputk) = 1] − Pr[D(U2kn) = 1] | ≥ ε.

Let ui ∈R Zq, i = 1, . . . , k, and U = (u1, . . . , uk). Lemma 1 implies that the
statistical distance Δ(U, U2kn) ≤ kδ. Thus,

| Pr[D(output1, . . . , outputk) = 1] − Pr[D(U) = 1] | ≥ ε − kδ.

Now, the statement follows from Theorem 2.

4 Specific Instances of the DDH Generator

To implement the DDH generator, one has to choose the group G of prime order
q and function enum that enumerates the group elements. In this section, we
propose two specific instances of the DDH generator.
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Throughout this section we assume that q is close to a power of 2, that is,
0 ≤ (2n − q)/2n ≤ δ for a small δ and some integer n. We like to emphasize
that this assumption is made for the sake of simplicity only. M denotes the total
number of pseudorandom bits produced by the generator.

4.1 Group of Quadratic Residues Modulo Safe Prime

To construct the first instance of the DDH generator, we use an elegant idea of
Cramer and Shoup [5] who show that there exists a simple deterministic function
that enumerates elements of the group of quadratic residues modulo safe prime p.

Let p be a safe prime, p = 2q + 1, where q is prime. Let G1 be a group of
nonzero quadratic residues modulo p. The order of G1 equals q. Consider the
following function enum1 : G1 �→ Zq,

enum1(x) =

⎧
⎪⎨

⎪⎩

x, if 1 ≤ x ≤ q;
p − x, if q + 2 ≤ x < p;
0, otherwise.

It is shown in [5] that function enum1 is a bijection. Moreover, enum1 does not
require any additional input, so in terms of Section 3.1 l = 1.

Let x, y ∈ G1. Let s0 ∈R Zq be the seed. Generator PRG1 (Algorithm 4.1)
is a deterministic algorithm that transforms the seed into the sequence of kn
pseudorandom bits.

Algorithm 2. Generator PRG1

Input: s0 ∈ Zq, k > 0
Output: kn pseudorandom bits

for i = 1 to k do
Set si ← enum1(x

si−1)
Set outputi = enum1(y

si−1)
end for
Return output1, . . . , outputk

The next statement follows from Corollary 1.

Proposition 1. Suppose pseudorandom generator PRG1 is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G1 in time at
most T with advantage ε/k − δ.

The seed length n plays the role of security parameter of the generator. Clearly,
smaller n gives rise to a faster generator. On the other hand, for larger n the
generator is more secure. Our goal is to select n as small as possible such that
the generator is (T, ε)-secure for all T, ε such that T/ε < 280 time units.

For δ = ε/(2k), the generator is (T, ε)-secure if

2kT/ε < TDL(G1), (2)
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where TDL(G1) is the running time of the fastest known method for solving the
discrete logarithm problem in G1. According to the current state of the art, we
set TDL(G1) to be the running time of the discrete logarithm variant of the
Number Field Sieve L(n) (see Section 2.4). Note that k = M/n. Then, (2) holds
if 2MT/(nε) < L(n). For M = 220 and T/ε = 280, the smallest parameter n
that satisfies the above inequality is n ≈ 1600.

Recall that q satisfies 0 ≤ (2n − q)/2n ≤ δ. We have assumed that δ = ε/(2k).
For M = 220, n = 1600, and ε = 2−80, this condition implies that 0 < 2n − q <
21500. There are plenty of safe primes p = 2q +1 such that 0 < 21600 − q < 21500.

4.2 Arbitrary Prime Order Subgroup of Z
∗
p

In this section, we show that the DDH generator can be based not only on
the group of quadratic residues modulo a safe prime but on any prime order
subgroup of Z

∗
p, where p is a prime but not necessarily a safe prime.

Let q be a prime factor of p−1, p−1 = lq, l ≥ 2, such that gcd(l, q) = 1. If p is
a safe prime then l = 2. Denote by G2 a subgroup of Z

∗
p of order q. Throughout

this section, multiplication of integers is done modulo p.
Let split2 : Z

∗
p �→ Zq × Zl denote a bijection that splits an element of Z

∗
p into

two smaller numbers. An example of split2 is a function that on input z ∈ Z
∗
p

returns (z − 1) mod q and 
(z − 1)/q�. Let t ∈ Z
∗
p be an element of order l. Let

enum2 : G2 × Zl �→ Zq × Zl be the following function:

enum2(x, rand) = split2(xtrand),

where x ∈ G2, rand ∈ Zl. The following lemma shows that enum2 is a bijection
and thus it is suitable for building the DDH generator.

Lemma 2. Function enum2 defined above is a bijection.

Proof. Let f : G2 × Zl �→ Z
∗
p be defined as f(x, rand) = xtrand mod p for x ∈ G2

and rand ∈ Zl. To prove the statement of the lemma, we first show that f is a
bijection.

Suppose that x1t
rand1 = x2t

rand2 for xi ∈ G2, randi ∈ Zl, i = 1, 2. Since x2 ∈
G2, x2 �= 0. Then, x1/x2 = trand1−rand2 ∈ G2, so tq(rand1−rand2) = 1. Therefore, l
divides q(rand1−rand2). Since gcd(q, l) = 1, it implies that l divides rand1−rand2.
The latter implies that rand1 = rand2 and thus x1 = x2.

Therefore, f is indeed a bijection and thus enum2 is also a bijection as a
composition of two bijective functions.

Let PRG2 denote the instance of the DDH generator that uses the group G2 and
the function enum2 defined above. The next statement follows from Corollary 1.

Proposition 2. Suppose pseudorandom generator PRG2 is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G2 in time at
most T with advantage ε/k − δ.
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Let m denote the bit length of p. At each step i = 1, . . . , n, pseudorandom
generator PRG2 computes xsi−1 and ysi−1 and then uses these elements to evalu-
ate the corresponding outcomes of function enum2. Therefore, each step implies
two modular exponentiations with n-bit exponents and two modular exponen-
tiations with (m − n)-bit exponents. Since PRG2 outputs n bits per step the
computational effort per output bit is proportional to m3/n. Our goal is now
to determine parameters m and n that minimize the computational effort under
the condition that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280.

For δ = ε/(2k), generator PRG2 is (T, ε)-secure if

2kT/ε < TDL(G2), (3)

where TDL(G2) is the running time of the fastest known method for solving the
discrete logarithm problem in G2. The best algorithms for solving the discrete
logarithm problem in G2 are Pollard’s rho method in G2 and the discrete loga-
rithm variant of the Number Field Sieve in the full multiplicative group Z

∗
p. The

running time of Pollard’s rho method is estimated to be 0.88
√

q group operations
(cf. [19]). Since k = M/n, condition (3) implies that

2MT/(nε) < min[L(m), 0.88 · 2n/2m2/(24 · 360)].

For M = 220, T/ε = 280, the above condition is satisfied for m � 1600, n � 160.
The computational effort is minimized if n ≈ m.

In comparison with PRG1, the seed of PRG2 is somewhat longer, although if
n ≈ m it is roughly of the same size. Moreover, PRG2 is less efficient than PRG1
in terms of computational effort since computation of enum2 implies a modular
exponentiation while enum1 implies at most 1 integer subtraction. A significant
advantage of PRG2 versus PRG1 is that the former can be based on any prime
order subgroup of Z

∗
p for any prime p provided that the size of the subgroup is

sufficiently large to resist Pollard’s rho attack.

4.3 Discussion

Function enum2 used as a building block of generator PRG2 is of independent
interest. The reason is that this function can be viewed as a probabilistic ran-
domness extractor (for an overview of probabilistic randomness extractors, refer
to [28]). Provided with some extra randomness, it converts a uniformly random
element of a subgroup of Z

∗
p of order q into a uniformly random number in Zq,

which in turn can be easily converted into a string of uniformly random bits
using, for instance, algorithm Q2 from [15]. Note that all (probabilistic and de-
terministic) extractors known so far can only convert random elements of the
subgroup into bits that are statistically close to uniform.

The new extractor can be used not only for designing pseudorandom gener-
ators but also for key exchange protocols to convert the random group element
shared by the parties involved into the random binary string.

If the size of the subgroup q is sufficiently large, our extractor is more efficient
than the general purpose probabilistic randomness extractors (e.g., the universal
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hash functions [13]) in terms of the number of extra random bits required. For
instance, if the statistical distance to be reached is 2−80 our extractor requires
less extra randomness than universal hash functions if the size of the subgroup
is at least p/2160. If the size of the subgroup is close to the size of the group p,
our extractor requires just few extra random bits.

The recently proposed deterministic extractor by Fouque et al. [7] does not
require any extra randomness to produce the output. However, it extracts sub-
stantially less than half of the bits of a uniformly distributed random element
of the subgroup. Our extractor does require extra randomness rand ∈ Zl, l ≥ 1,
but one gets this randomness back in the sense that the extractor outputs not
only the integer from Zq but also an element of Zl. The crucial advantage of our
extractor is that it extracts all the bits of the subgroup element.

5 Generator PRG1 Versus Gennaro’s Generator

In this section, we compare PRG1 with the well-known Gennaro’s generator [8]
in the setting of concrete security. For both generators, we determine parameters
(e.g., the size of the seed) such that a desired level of provable security is reached,
while minimizing the computational effort per output bit.

Security of Gennaro’s generator is based on a variant of the discrete logarithm
problem, that is, the discrete logarithm with short exponent (DLSE) problem.
Let x, y be elements of a multiplicative group G. The c-DLSE problem is to
find s, 0 ≤ s < 2c, such that y = xs given x, y and the parameter c. Clearly,
the DLSE problem is not harder to solve than the original discrete logarithm
problem.

Now, we recall the basic results of [8].
Let g be a generator of Z

∗
p, where p is an n-bit safe prime. For a nonnegative

integer x let �j(x) ∈ {0, 1} denote the j-th least significant bit of x:

x =
∑

j

�j(x)2j−1.

Let x1 ∈R Zp−1 be the seed. Gennaro’s generator (Algorithm 3) transforms
the seed into the pseudorandom sequence of length k(n − c − 1).

The following statement is the concrete version of Theorem 2 of [8].

Theorem 3 (Gennaro). Suppose Gennaro’s pseudorandom generator is not
(T, ε)-secure. Then there exists an algorithm that solves the c-DLSE in Z

∗
p in

time 8c(ln c)(k/ε)3T with probability 1/2.

Gennaro’s generator outputs (n − c − 1) bits per modular exponentiation with
c-bit exponent. The standard right-to-left exponentiation costs on average c/2
multiplications and c squarings. Assume that a squaring modulo p takes about
80% of the time of a multiplication modulo p (cf. [18]). Then, the average com-
putational effort is 1.3cn2/(24 · 360(n − c − 1)) time units per output bit. Our
goal is now to determine n and c that minimize the computational effort under
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Algorithm 3. Gennaro’s pseudorandom generator
Input: x1 ∈ Zp−1, k > 0
Output: k(n − c − 1) pseudorandom bits

for i = 1 to k do
Set outputi ← �2(xi), �3(xi), . . . , �n−c(xi)

Set xi+1 ← g
∑n

j=n−c+1 �j(xi)2
j−1+�1(xi)

end for
Return output1, . . . , outputk

the condition that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280

with a natural limitation T ≥ 1 time unit.
Theorem 3 implies that Gennaro’s generator is (T, ε)-secure if

16c(ln c)(k/ε)3T < TDLSE(Z∗
p),

where TDLSE(Z∗
p) is the running time of the fastest algorithm for solving the

c-DLSE problem in Z
∗
p. The fastest algorithms for solving the DLSE problem

are the discrete logarithm variant of the NFS and the Pollard’s lambda method.
The complexity of the latter is close to 2 · 2c/2 multiplications in Z

∗
p, that is,

2c/2+1n2/(24 · 360) time units (cf. [26]). Note that k = M/(n − c − 1), where
M is the total number of pseudorandom bits produced by the generator. Thus,
Gennaro’s generator is (T, ε)-secure if

16c(ln c)M3T

ε3(n − c − 1)3
< min[L(n), 2c/2+1n2/(24 · 360)].

For M = 220, T/ε < 280 with a natural limitation T ≥ 1 the optimal parameters
are n ≈ 18000, c ≈ 520.

The secure length of the modulus turns out to be quite large. Recall that
generator PRG1 is provably secure for much smaller parameter n, namely, n ≈
1600. The reason is that the reduction in Theorem 3 is not tight in the sense that
a distinguisher for Gennaro’s generator is transformed into the far less efficient
solver for the DLSE problem (note that ε is raised to the power of 3 in the
statement of Theorem 3). On the contrary, the reduction in Theorem 2 is much
tighter.

To compare Gennaro’s generator with generator PRG1, we determine the com-
putational effort for both generators.

1. The average computational effort of Gennaro’s generator is 1.3cn2/(24 ·
360(n − c − 1)) time units per output bit. For n = 18000, c = 520, we
get about 1500 time units per output bit.

2. The generator PRG1 outputs n bits at the cost of 2 modular exponentia-
tions with n-bit exponent. The average computational effort for n = 1600 is
2.6n2/(24 · 360) ≈ 770 time units per output bit.

Thus, for M = 220 bits to be produced and for the level of security of 280

time units, generator PRG1 is about 2 times faster than Gennaro’s generator.
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Furthermore, the seed length of generator PRG1 is more than 10 times shorter
(1600 bits versus 18000 bits).

We draw the attention of the reader to the way the comparison is done. At
first sight, it seems that Gennaro’s generator is more efficient than generator
PRG1 since Gennaro’s generator outputs almost n bits per modular exponenti-
ation with a short c-bit exponent, while generator PRG1 outputs n bits per 2
exponentiations with a full-size exponent. However, it should not be neglected
that the n’s in these two cases are different. Due to the tighter reduction, gen-
erator PRG1 is provably secure for much smaller n. This is the main reason why
generator PRG1 turns out to be more efficient for the same level of security.

6 Concluding Remarks and Open Problems

Independent of our work, Jiang recently proposed a pseudorandom generator
which is also provably secure under the DDH assumption [14]. The security
properties of Jiang’s generator are similar to ours (hence his generator compares
similarly to Gennaro’s generator). On the other hand, in comparison with our
construction Jiang’s generator has two major disadvantages. Firstly, Jiang’s gen-
erator can be based only on the group of quadratic residues modulo a safe prime
while our construction extends to many other groups of prime order. Secondly,
the seed of our generator PRG1 is twice as short as the seed of Jiang’s generator.

The seed length is a critical issue for pseudorandom generators. For instance,
if a pseudorandom generator is used as a keystream generator for a stream cipher
the seed length corresponds to the length of the secret key. Also, from a theoret-
ical point of view, the seed length is perhaps the most important parameter of
a pseudorandom generator, as discussed in detail in the recent paper by Haitner
et al. [12].

In this respect, we make the following observation. The seed of Jiang’s gener-
ator can be reduced in length by a factor of two, making it as short as the seed
of our generator PRG1, provided one assumes the intractability of the so-called
square decisional Diffie-Hellman problem (see, e.g., [31]). The modification to
Jiang’s generator is to update the state At as follows: set At = g|At−1|2p , using
the notation of [14], rather than setting At = g|At−2|p|At−1|p . Note, however, that
the square decisional Diffie-Hellman problem has not been studied as extensively
as the standard DDH problem.

Finally, we note that constructing an efficient provably secure pseudorandom
generator based on the intractability of the DDH problem on an ordinary elliptic
curve is an interesting open problem. For most ordinary elliptic curves, the best
known methods for solving the elliptic curve discrete logarithm problem are the
exponential square root attacks, so to reach a security level of 280 time units it
suffices to let the size of the group be about 160 bits. Hence, such an elliptic
curve based generator would allow for a considerable reduction of the seed length,
potentially to a seed of 160 bits only.

To implement the DDH generator based on an elliptic curve, one has to con-
struct an efficiently computable function that bijectively maps the points of the
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curve to Zq, where q is the order of the group. This function seems to be difficult
to construct for ordinary elliptic curves. For some supersingular elliptic curves,
the function can be constructed (see, e.g., [16]). However, the latter curves can-
not be used for the DDH generator since the DDH problem in these curves can
be easily solved by computing Weil pairings [23].
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Abstract. We propose an efficient batch verification of multiple signa-
tures generated by different signers as well as a single signer. We first
introduce a method to generate width-w Non-Adjacent Forms (w-NAFs)
uniformly. We then propose a batch verification algorithm of exponentia-
tions using w-NAF exponents, and apply this to batch verification for the
modified DSA and ECDSA signatures. The performance analysis shows
that our proposed method is asymptotically seven and four times as fast
as individual verification in case of a single signer and multiple signers,
respectively. Further, the proposed algorithm can be generalized into τ -
adic w-NAFs over Koblitz curves and requires asymptotically only six
elliptic curve additions per each signature for batch verification of the
modified ECDSA signatures by a single singer. Our result is the first
one to efficiently verify multiple signatures by multiple signers that can
introduce much wider applications.

Keywords: Batch verification, exponentiation, sparse exponent,
non-adjacent form, elliptic curve, Koblitz curve, Frobenius map.

1 Introduction

Batch verification was introduced by Naccache et al. to verify multiple signatures
more efficiently [NMVR94]. Their method is to use a set of small exponents to
verify multiple exponentiations simultaneously: Let G be an abelian group with
a generator g. Given a batch instance of n pairs {(x1, y1), (x2, y2), . . . , (xn, yn)}
with xi ∈ Z and yi ∈ G, the algorithm checks if g

∑n
i=1 xisi =

∏n
i=1 ysi

i for ran-
domly chosen si ∈ S, where the exponent set S is taken to be the set of e-bit
prime integers for small e. This test was improved by adopting small exponent
set {0, 1}� by Yen and Laih [YL95] and Bellare et al. [BGR98]. Another improve-
ment [CL06] was obtained by taking longer integers of small weights, so called
sparse exponents, as elements of S rather than small integers.

In this paper, we improve the previous results by employing generalized sparse
exponents, so called width-w non-adjacent forms (w-NAFs for short). A w-NAF
of weight t is a radix 2 representation satisfying: (1) each nonzero digit is an
odd integer less than 2w, (2) at most one of any w consecutive digits is nonzero,

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 442–457, 2007.
c© International Association for Cryptologic Research 2007
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and (3) the number of nonzero digits is t. We first introduce a method to gen-
erate w-NAFs uniformly and then propose a batch verification algorithm of
exponentiations using w-NAF exponents. The performance analysis shows that
N exponentiations can be verified with 16N + 241 multiplications over a finite
field. In the previous method, it was 40N + 241 and 19N + 241 using small
exponent test [BGR98] and sparse exponent test [CL06], respectively. Our ver-
ification cost becomes 14N + 235 elliptic curve additions over elliptic curves in
which a subtraction is as efficient as an addition.

To apply batch verification technique to DSA [DSA], one needs to slightly
modify the signature scheme as in [NMVR94]. We apply the proposed algorithm
for batch verification of the modified DSA and ECDSA signatures. The verifica-
tion can be asymptotically 7.1 and 8.3 times as fast as individual verifications in
a finite field and an elliptic curve with 160 bit security, respectively. Furthermore,
for digital signatures by the multiple signers with the same system parameters
the proposed verification performs asymptotically 4.3 and 4.8 times faster than
the individual verifications in a finite field and an elliptic curve, respectively.
Our result is the first one about the batch verification of signatures by different
signers.

We further generalize our method to τ -adic w-NAFs over Koblitz curves. In
[CL06], the authors proposed a batch verification algorithm for the modified
ECDSA signatures by one signer, in which only 9 elliptic curve additions are
required for one additional signature. Using τ -adic w-NAFs, we reduce it to 6
elliptic curve additions. It is very surprising that only 6 elliptic curve additions
are required asymptotically to verify one signature.

Applications. Batch verification will be useful in any settings where multi-
ple signatures need to be verified at once. We have a variety of applications in
which our proposed method can be employed. In some cases, we may need to
adjust our techniques. For example, in e-cash applications, merchants and/or
consumers need to verify the validity of lots of electronic coins signed by the
bank. E-voting systems need to verify huge number of signed ballots as fast as
possible. In the outsourced database applications [MNT04], numbers of clients’
query request messages need to be authenticated by servers. Another example
is authenticated routing based on public key cryptography, in which network
packets are signed and verified in each node and each router has to verify many
signatures. We also are able to apply to Mixnet [Abe99] for making systems or
protocols privacy-preserving, and VSS (Verifiable Secret Sharing) [Fel87] scheme
which is a fundamental technique for fault-tolerant and secure distributed com-
putations such as reliable broadcast, peer group membership management, and
Byzantine agreement.

Organization. The rest of paper is organized as follows: we first define batch
verification and introduce fast exponentiation methods in Section 2. An efficient
batch verification algorithm is proposed in Section 3, and its applications to
signature schemes are described in Section 4. We then present more efficient
algorithm over Koblitz curves in Section 5 and conclude in Section 6.
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2 Preliminary

2.1 Batch Verification

Let G be a cyclic group of prime order p with a generator g. Given a subset S
of Zp, we define a batch verifier VS following [BGR98, CL06]:

1. Input a batch instance {(xi, yi) ∈ Zp × G|i = 1, 2, . . . , N}
2. VS takes N elements c1, c2, . . . , cN uniformly from the exponent set S
3. VS computes x =

∑N
i=1 cixi and y =

∏N
i=1 yci

i

4. If gx = y output 1 and otherwise output 0

We say a batch instance {(xi, yi) ∈ Zp × G|i = 1, 2, . . . , N} is correct if gxi = yi

for all i and incorrect otherwise. Note that the verifier VS outputs 1 for a correct
instance regardless of S. We define the Fail(VS) to be the maximum probability
that an incorrect batch instance passes the test. That is,

Fail(VS) = max
A batch instance X

{Prob[VS(X) = 0]}, (1)

where probability is over the random choice of c1, . . . , cN uniformly from S.
Then, if c1, c2, . . . , cN are uniformly chosen from S, we have

Fail(VS) = max
α∈ZN

p \{(0,...,0)}
|{(c1, . . . , cn)|c1, . . . , cn ∈ S, gc1α1+···+cnαn = 1}|

|{(c1, . . . , cn)|c1, . . . , cn ∈ S}| .

(2)
Theorem 1 in [CL06] shows that it is upper-bounded by 1/|S|; that is, we

have gxi = yi for all i with probability at least 1 − 1/|S|.

2.2 Fast Exponentiations

To evaluate the performance of the proposed algorithm, we apply the most
up-to-date fast exponentiation methods to our batch verification and individ-
ual ones. Following [HHM00], Lim-Lee method (fixed based comb) and the
window method appeared to be most efficient methods for a fixed base and
a non-fixed base, respectively. We consider an exponentiation on a group of
m-bit prime order. Lim-Lee method with window size w requires at average
(m/w − 1) doublings and (m/w − 1)(1 − 2−w) additions. Window method with
window size w requires at average (m/(w + 1) + 2w−1 − s) multiplications and
(m + 1) squarings over a finite field, and (m/(w + 1) + 2w−1 − s) additions
and (m + 1) doublings over an elliptic curve. Refer to [LL94, HHM00] for more
details.

In this paper, we will consider a finite field of 160 bit order, an elliptic curve
of 160 bit order and Koblitz curve K163 as a base group G. K163 is given by
E : y2 +xy = x3 +x2 +1 over F2163 and has 162 bit order (cofactor=2). Notation
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Table 1. Notation

w window size
m bit length of exponents
t Hamming weight
Mem number of finite field elements or elliptic curve points to be stored
Ef finite field exponentiation
Mf finite field multiplication
Sf finite field squaring
Me scalar multiplication in elliptic curves
Ae elliptic curve addition
De elliptic curve doubling

Table 2. Performance of Fast Exponentiation Algorithms

Group Method w Mem Mf or Ae Sf or De

Finite Window NAF 4 7 39 161
Field Lim-Lee 4 14 38 40

Elliptic w-NAF 4 3 36 161
Curve Lim-Lee 4 14 38 40

Koblitz τ -adic w-NAF 5 7 34 0
Curve Fixed-based τ -adic w-NAF 6 15 23 0

used in the rest of paper is summarized in Table 1. We present the number of
group operations for fast exponentiations in Table 2.

3 Batch Verification of Exponentiations on Abelian
Groups

Let w ≥ 2 be an integer. A radix 2 representation is called a width-w nonadjacent
Form (w-NAF, for short) if it satisfies: (1) each nonzero digit is an odd integer
with absolute value less than 2w−1, and (2) for any w consecutive digits, at most
one is nonzero [MS06].

Although w-NAF gives an efficient exponentiation on a group admitting fast
inversion, it is not useful for a group such as a multiplicative subgroup of a
finite field in which an inversion is much slower than a multiplication. We here
introduce a generalized version of w-NAF with a digit set D.

Definition 1. Let w be an integer ≥ 2 and D = {α1, α2, . . . , α2w−1} where αi’s
are nonzero odd integers and distinct modulo 2w. A w-NAF with the digit set D
is a sequence of digits satisfying the following conditions:

1. Each digit is zero or an element in D.
2. Among any w consecutive digits, at most one is nonzero.

A w-NAF with the digit set D is denoted by a = (am−1 · · · a1a0)2 or a =∑m−1
i=0 ai2i where ai ∈ D ∪ {0}.
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Definition 2. Let a = (am−1am−2 . . . a0)2 be a w-NAF with the digit set D.
Then the length of a, denoted by len(a), is defined to be the smallest i such that
ai−1 �= 0. By notation, we let len(0) = 0. The number of nonzero digits in its
representation is called the weight of a and denoted by wt(a).

The uniqueness of the representation can be easily shown as follows. The argu-
ment is a simple generalization of Proposition 2.1 in [MS06].

Theorem 1. Let q be a positive integer. All w-NAFs of length ≤ m with the
digit set D are distinct modulo q if m ≤ log2(q/C) where C = max{|x − y| :
x, y ∈ D ∪ {0}}.
Proof. Suppose there are two different w-NAFs which represent the same integer.
Let (a�−1a�−2 · · · a0)2 and (b�′−1b�′−2 · · · b0)2 are different representation such
that

a =
�−1∑

i=0

ai2i =
�′−1∑

i=0

bi2i. (3)

Assume � is the smallest integer satisfying the above property.
If a0 = b0, we have two different and shorter w-NAFs which stand for the

same integer. Thus it should be a0 �= b0. If a is even, both of a0 and b0 should
be zero and a0 = b0. It therefore should be odd and both of a0 and b0 should
be nonzero. Since the representations are w-NAFs, a0 �= 0 and b0 �= 0 implies
a1 = · · · = aw = 0 and b1 = · · · = bw = 0. From the equation (3), we have
a0 ≡ b0 mod 2w. Since all elements in D are distinct modulo 2w, we must have
a0 = b0, which contradicts with the minimality of �. Thus each integer has only
one w-NAF with the digit set D.

Moreover, let C1 and C2 be the maximal and minimal element in D ∪ {0}.
Then C = C1 − C2. The largest w-NAF of length ≤ m is less than C12m. The
smallest w-NAF of length ≤ m is greater than C22m. Thus the difference of any
two w-NAFs is less than (C1 − C2)2m = C2m ≤ q for m ≤ log(q/C). Therefore
any two w-NAF of length ≤ m must be distinct modulo q or identical.

Theorem 2. The number of w-NAFs of length ≤ m and weight t with the digit
set D is (

m − (w − 1)(t − 1)
t

)
2(w−1)t.

Proof. Consider an algorithm to choose t positions out of m − (w − 1)(t − 1)
positions and fill each of them by w−1 consecutive zeros followed by an element
in D. This algorithm gives a w-NAF of length m+(w−1). Then its first (w−1)
positions should be always zero since each nonzero digit is preceded by (w − 1)
consecutive nonzeros. By discarding the first (w − 1) zeros, we get a w-NAF
of length ≤ m. Since the algorithm covers all w-NAFs of length ≤ m and the
algorithm outputs one of

(
m−(w−1)(t−1)

t

)
2(w−1)t strings, we have the theorem.

From the proof of Theorem 2, we introduce Algorithm 1 to produce a random
secret exponent in a finite field of 2n elements.
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Algorithm 1. (Generation of w-NAF exponents of weight t)

Input: m, w, t and the digit set D
Output: w-NAF of length ≤ m

1: Choose t positions out of n − (w − 1)(t − 1) positions.
2: Fill each position by (w − 1) consecutive zeros followed by an element in D.
3: Discard the first (w − 1) positions of the string.
4: Print the string which is a w-NAF of length ≤ m

Algorithm 2. (Batch Verification of Exponentiations using w-NAF Ex-
ponent)

Input: m, w, t, D, and N exponentiation pairs (xi, yi) ∈ Zq × G for an abelian group
G of order q with a generator g

Output: True or false

1: Take N random exponents c1, c2, . . . , cN from the set of w-NAFs of length ≤ m
and weight t, where ci =

∑m
j=0 cij2

j and cij ∈ D ∪ {0}.
2: for α ∈ D do
3: yi,α ← yα

i /* precomputation */
4: end for
5: y ← 1
6: for j = m − 1 downto 0 do
7: y ← y2

8: for i = 1 upto N do
9: if cij = α ∈ D then

10: y ← y · yi,α

11: end if
12: end for
13: end for
14: Compute gx for x =

∑N
i=1 cixi mod q.

15: if y = gx then
16: Accept all of N instances
17: else
18: Reject
19: end if

Using the set of w-NAFs, we can perform efficient batch verification of expo-
nentiations on a group as in Algorithm 2. Here we use simultaneous multiplica-
tion methods and online precomputation method.

We need to take an appropriate digit set for each of specific groups. For a
multiplicative subgroup of a finite field in which an inversion is much slower
than a multiplication, we take D = {1, 3, . . . , 2w − 1}. It then requires the pre-
computation that takes one squaring and 2w−1 multiplications. Steps 6-13 take
m − 1 squarings and tN − 1 multiplications since each exponent has t nonzero
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digit. Hence the total complexity is m squarings and N(t+2w−1) multiplications
plus one exponentiation using memory for 2w−1 − 1 group elements.

For an elliptic curve group in which a subtraction is as efficient as an ad-
dition, we take D = {±1, ±3, . . . , ±(2w−2 − 1)}. In this case, the precomputa-
tion cost reduces to one elliptic doubling and 2w−2 elliptic additions. Hence
the total complexity is m elliptic doublings and N(t + 2w−2) elliptic addi-
tions plus one scalar multiplication using memory for 2w−2 − 1 elliptic curve
points.

Table 3. Number of Multiplications for Batch Verification on Abelian Groups

Common Finite Field Elliptic Curve

w m t Security Mem Complexity Mem Complexity

1 159 19 280.6 0 19NMf+159Sf +1Ef 0 19NAe+159De+1Me

2 158 15 281.2 1 17NMf+158Sf +1Ef 0 15NAe+158De+1Me

3 157 12 279.4 3 16NMf+157Sf +1Ef 1 14NAe+157De+1Me

4 156 11 283.9 7 19NMf+156Sf +1Ef 3 15NAe+156De+1Me

5 155 9 279.6 15 25NMf+155Sf +1Ef 7 17NAe+155De+1Me

Table 4. Comparison of Batch Verification of Exponentiations

Method Finite Field Elliptic Curve

Individual N(39Mf+161Sf ) N(36Ae+161De)

[YL95, BGR98] N(40Mf )+80Mf+161Sf N(40Ae)+74Ae+161De

[CL06] N(19Mf )+80Mf+161Sf N(15Ae)+74Ae+161De

Proposed N(16Mf )+80Mf+161Sf N(14Ae)+74Ae+161De

Table 3 presents the performance of batch verification over a finite field and
an elliptic curve and shows appropriate weight t on a group of 160-bit prime
order q for various w. We take m = 160 − w to guarantee the uniqueness of
exponents by Theorem 1. For example, we can use 3-NAF for a finite field,
which requires only 16N multiplications, 157 squarings and one exponentiation.
For an elliptic curve, we can use 2-NAF requiring only 15N multiplications,
158 squarings and one exponentiation. Note that security in Table 3 implies the
security of the batch verification with the given parameters, which is computed
as

(
m−(w−1)(t−1)

t

)
2(w−1)t by Theorem 2.

4 Batch Verification of Multiple Signatures

To apply the batch verification of exponentiations to verification of signatures, one
need to modify signature schemes. Naccache et al. presented a modified DSA for
batch verification [NMVR94]. Our batch verification is also applicable to this mod-
ified DSA. But, considering the attack by Boyd and Pavlovski [BP00], we made
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a little change to the verification procedure. The performance of the batch verifi-
cation algorithm is evaluated based on the screening parameter � = 80.

4.1 Modified DSA

Let p be a 1024 bit prime and q a 160 bit prime dividing p − 1. We assume that
(p − 1)/(2q) has no divisor less than q to resist the attack in [BP00]. Let g be a
generator of a subgroup G of order q in Fp. Take a random x ∈ Zp. The private
key is x and the corresponding public key is y = gx. A signature for a message
m ∈ Zp is given by

(r = gk mod p, σ = k−1(m + xr) mod q)

for a random k ∈ Zp. It is verified by checking if r = ±gayb mod p for a =
mσ−1 mod q and b = rσ−1 mod q. Note that r = ((gk mod p) mod q) is used in
the original DSA. The verification admits only r = gayb mod q, but here we
relax the verification to admit r = ±gayb mod q due to Boyd and Pavlovski
attack, in which the security loss is only one bit.

Signatures by Multiple Signers. Given N signatures (mi, ri, σi), each of
which is signed by a signer with the public key yi, we apply the batch verifi-
cation by 3-NAFs with the digit set D = {1, 3, 5, 7}, which gives best perfor-
mance as in Table 3. First, take random w-NAFs c1, . . . , cN . Next, compute
a = − ∑N

i=1 aici mod q and bi = −riσ
−1
i ci mod q for each i. Finally compute

ga
N∏

i=1

y
b′

i

i

N∏

i=1

rci

i mod p, (4)

and if it is 1 or p − 1, accept all N signatures.
We now evaluate the verification cost. For simplicity, we only count Fp opera-

tions. Since g is fixed, we apply Lim-Lee method of window size w = 4 to compute
ga, and each of gb or g

b′
i

i is computed by 4-NAF. Thus an individual signature
verification consists of one Lim-Lee, one 4-NAF method and one multiplication.
On the other hand, the batch verification consists of one Lim-Lee, N 4-NAF,
16N multiplications and N multiplications. Table 5 shows the achieved gains as
ratio of the proposed method and individual one. Note that the measurement
is conducted only in case of Sf=Mfand Sf=0.8Mf . Following [BHLM01], it is
between 0.8 and 0.86.

Signatures by A Single Signer. We consider N signatures (mi, ri, σi) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {1, 3, 5, 7}. First, take random w-NAFs c1, . . . , cN . Next, compute a =
− ∑N

i=1 aici mod q and b = − ∑N
i=1 riσ

−1
i ci mod q. Finally compute

ga
N∏

i=1

yb
N∏

i=1

rci

i mod p, (5)

and if it is 1 or p − 1, accept all n signatures.
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Now we evaluate the verification cost. Since both of g and y are fixed, we may
apply Lim-Lee method to compute ga and yb. The individual verification consists
of two Lim-Lee and one multiplication. On the other hand, the batch verifica-
tion consists of two Lim-Lee and 14N additions. The performance is given in
Table 5.

Table 5. Performance of Batch Verifications of Signatures over a Finite Field

Signers Individual Proposed Ratio(Sf=Mf ) Ratio(Sf=0.8Mf )

Multi. N(78Mf+161Sf ) N(55Mf )+40Mf+161Sf 0.23 + 0.84/N 0.27 + 0.82/N

Single N(76Mf+40Sf ) N(16Mf )+76Mf+40Sf 0.14 + 2.04/N 0.15 + 1.90/N

4.2 Modified ECDSA

ECDSA is an elliptic curve analogue of DSA [ECDSA]. Our batch verification al-
gorithm is applied to the modified ECDSA [ABGLSV05] as in DSA case. The secu-
rity of the modified ECDSA is equivalent to the standard ECDSA [ABGLSV05].

Let E be an elliptic curve. Assume that the order q of E is prime and G ∈ E a
generator (If E has a cofactor �= 1, the signature scheme should be modified due
to [BP00]). The private key is x and the corresponding public key is Q = xG. A
signature for given message m ∈ Zp is

(R = kG, σ = k−1(m + xr) mod q)

where R = (x1, y1) and r = x1 mod q for a random k ∈ Zp. The verification is
done by checking if R = aG + bQ for a = mσ−1 mod q and b = rσ−1 mod q.

Given N signatures (mi, Ri, σi), we compute ti = σ−1
i mod q first, and then

ai = miti mod q and bi = riti mod q for each i. Next, take random si ∈ S and
compute a = − ∑n

i=1 aisi mod q and b = − ∑n
i=1 bisi mod q. Finally compute

aG + bQ +
n∑

i=1

siRi,

and if it is a point at infinity O, accept all n signatures.

Signatures by Multiple Signers. Given N signatures (mi, Ri, σi), each of
which is signed by a signer with the public key Qi, we apply the batch verifica-
tion by 3-NAFs with the digit set D = {±1, ±3}. First, take random w-NAFs
c1, . . . , cN . Next, compute a = − ∑N

i=1 aici mod q and b′i = −riσ
−1
i ci mod q for

each i. Finally compute

aG +
N∑

i=1

b′iQi +
N∑

i=1

ciRi, (6)
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and if it is the point at infinity O, accept all N signatures. Remark that if we
take an elliptic curve whose order is prime as above, the Boyd and Pavlovski
attack [BP00] can not be applied.

Signatures by A Single Signer. We consider N signatures (mi, Ri, σi) by
a single signer. We apply the batch verification by 3-NAFs with the digit set
D = {±1, ±3}. First, take random w-NAFs c1, . . . , cN . Next, compute a =
− ∑N

i=1 aici mod q and b = − ∑N
i=1 riσ

−1
i ci mod q for each i. Finally compute

aG + bQ +
N∑

i=1

ciRi, (7)

and if it is the point at infinity O, accept all N signatures.

Performance comparison of individual and batch verifications of ECDSA is
given in Table 6. The performance of individual verifications is evaluated based
on the standard verification equation. Note that the cost can be reduced by 40
% using some special method in [ABGLSV05].

Table 6. Performance of Batch Verification of Signatures over an Elliptic Curve

Signers Individual Proposed Ratio(Sf=Mf ) Ratio(Sf=0.8Mf )

Multi. N(78Mf+161Sf ) N(55Mf )+40Mf+161Sf 0.23 + 0.84/N 0.27 + 0.82/N

Single N(76Mf+40Sf ) N(16Mf )+76Mf+40Sf 0.14 + 2.04/N 0.15 + 1.90/N

5 Batch Verification on Koblitz Elliptic Curves

Consider an ordinary elliptic curve E defined over Fq with #E(Fq) = q + 1 − t
and gcd(q, t) = 1. The Frobenius map τ is defined as follows:

τ : E(Fq) → E(Fq); (x, y) 	→ (xq, yq),

where Fq is the algebraic closure of Fq. The Frobenius map τ is a root of the
characteristic equation χE(T ) = T 2 − tT + q in the ring of endomorphisms
End(E). We denote E(Fqn) by the subgroup of E(Fq) consisting of Fqn -rational
points. Let G be the subgroup of E(Fqn) generated by P with a prime order �
satisfying �2

� #E(Fqn) and � � #E(Fq).
We now introduce a generalization of τ -adic NAF into τ -adic w-NAF, which

was introduced in [Sol00] on Koblitz curves.

Definition 3. Let w be an integer ≥ 2. A τ-adic w-NAF is a sequence of digits
satisfying the following two conditions:
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1. Each non-zero digit is an integer which is not divisible by q and whose ab-
solute value is less than qw/2.

2. Among any w consecutive digits, at most one is non-zero.

A τ-adic w-NAF is denoted by a = (am−1 · · · a1a0)τ or a =
∑m−1

i=0 aiτ
i.

The length and the weight of a τ -adic w-NAF are defined similarly to w-NAFs.
Note that given a τ -adic w-NAF a = (am−1 · · · a1a0)τ and a point Q ∈ E, aQ is
computed as aQ =

∑m−1
i=0 aiτ

i(Q).

Theorem 3. Let a = (am−1, . . . , a0)τ and b = (bm′−1, . . . , b0)τ be two τ-adic
w-NAFs. Then aQ = bQ for some nonzero Q ∈ G implies that m = m′ and
ai = bi for all i if

max{m, m′} ≤ Mq,�,w = logq

(
�

(qw/2 + 1)2

)
− (w − 1). (8)

Proof. Assume there is a nonzero point Q ∈ G such that aQ = bQ for two
distinct τ -adic w-NAFs a = (am−1, . . . , a0)τ and b = (bm′−1, . . . , b0)τ . By adding
zero digits to the front of the strings, we may assume m = m′. Then we have
O = aQ − bQ =

∑m−1
i=0 diτ

i(Q) for di = ai − bi.
Let F (T ) =

∑m−1
i=0 diT

i. Since End(E) is an order of the imaginary quadratic
field, F (τ) can be considered as an element of Z[i] divisible by �. Since χE(τ) = 0,
F (T ) and χE(T ) must have a common root in the algebraic closure of F�. Thus
the resultant R = Res(T 2 − tT + q, F (T )) satisfies R ≡ 0 mod �.

Let τ1 and τ2 be the roots of χE . Then R = F (τ1)F (τ2) and |τ1| = |τ2| =
√

q.
For each τ ∈ {τ1, τ2}, we have

|F (τ)| ≤
m−1∑

i=0

|di||τ |i ≤
m−1∑

i=0

|ai||τ |i +
m−1∑

i=0

|bi||τ |i

≤ 2
(⌈

qw

2

⌉
− 1

)
(
√

q
m−1 +

√
q

m−1−w + · · · +
√

q
m−1 mod w)

= 2
(⌈

qw

2

⌉
− 1

)
(q(m+w−1)/2 − 1)

qw/2 − 1
< q(m+w−1)/2(qw/2 + 1).

Thus, |R| < qm+w−1(qw/2 + 1)2 ≤ �. Hence R = 0. Because χE is irreducible
over Z, this implies χE |F (T ) over Z.

Assume that di0 is the lowest nonzero coefficient of F . Then we can write

T−i0F (T ) = (g0 + g1T + · · · + gm−3−i0T
m−3−i0)χE(T )

for some gi ∈ Z. By equating the coefficients, we know di0 = qg0 and di0+j =
qgj − tgj−1 + gj−2 for 1 ≤ j ≤ w −1, where we set g−1 := 0 by convention. Since
each of ai0 and bi0 is not divisible by q, both ai0+1 and bi0+1 is nonzero. Hence
di0+1 = · · · = di0+w−1 = 0. That is,

Eqn(j) = qgj − tgj−1 + gj−2 = 0 for 1 ≤ j ≤ w − 1. (9)
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From di0+1 = 0 and g−1 = 0, we have q|g0 since gcd(q, t) = 1. By repeating this
procedure, we have g0, g1, . . . , gw−2 are divisible by q.

After replacing gi by gi/q in the Eqn(1), . . . , Eqn(c− 1), we repeat the above
procedure to obtain q2|g0, g1, . . . , gw−3. At the end, we have qc|g0. Therefore, we
have qw|di0 . However, this is impossible since |di0 | < qw.

The above theorem tells us that distinct τ -adic w-NAFs of length m < Mq,�,w

play an role of distinct group homomorphisms of G. Moreover, if a = b in End(E),
we have R = Res(T 2 − tT + q,

∑m−1
i=0 (ai − bi)T i) satisfies R = 0. By the same

argument with Theorem 3, we have ai = bi for all i regardless of k, which implies
that every endomorphism of E has at most one τ -adic w-NAF.

Theorem 4. The number of τ-adic w-NAFs of length ≤ m and weight t is

(
m − (w − 1)(t − 1)

t

)
2t

(⌊
qw

2

⌋
−

⌊
qw−1

2

⌋)t

.

Proof. As in Theorem 2, we consider an algorithm to choose t positions out of
m + (w − 1) − wt positions and fill each of them by w − 1 consecutive zeros
followed by an integer not divisible by q whose absolute value is less than qw/2.
By discarding the first (w − 1) zeros, we get a τ -adic w-NAF of length ≤ m
with weight t. Conversely, any string with the property can be produced by the
algorithm.

Now we count the number of cases. First we have
(
m−(w−1)(t−1)

t

)
choices for t

positions. Next, each position is filled by an integer x such that x is not divisible
by q and |x| < qw/2. The number of such integers is

2t

(⌊
qw

2

⌋
−

⌊
qw−1

2

⌋)t

,

which completes the proof.

We introduce an algorithm to output a random secret exponent in a subgroup G
of order � in an elliptic curve E(Fqn). Algorithm 3 produces uniformly distributed
w-NAFs of length ≤ m with weight t if m ≤ Mq,�,w

Algorithm 3. (τ-adic w-NAF Exponent of weight t)

Input: q, m, w, and t
Output: τ -adic w-NAF of length ≤ m

1: Choose t positions out of m − (w − 1)(t − 1) positions
2: Fill each position by (w − 1) consecutive zeros followed by an integer not divisible

by q whose absolute value is less than qw/2
3: Discard the first (w − 1) positions of the string
4: Print the string which is a τ -adic w-NAF of length ≤ m
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Algorithm 4. (Batch Verification using τ-adic NAF on Koblitz Curves)

Input: (xi, Qi) for 1 ≤ i ≤ N
Output: True or false

1: Choose N random elements ci =
∑e

j=0 cijτ
j (1 ≤ i ≤ N) from the set of τ -adic

w-NAF of length ≤ m and weight t, where cij is an integer not divisible by q whose
absolute value is less than qw/2 and εij = cij/|cij | for nonzero cij for each i, j.

2: for 1 ≤ k ≤ 2w−2 do
3: R[2k − 1] ← O
4: end for
5: for j = 0 to e do
6: for i = 1 to N do
7: if cij �= 0 then
8: R[|cij |] ← R[|cij |] + εijτ

j(Qi)
9: end if

10: end for
11: end for
12: Q ← R[2w−1 − 1]
13: T ← R[2w−1 − 1]
14: for k = 2w−2 − 1 to 2 do
15: T ← T + R[2k − 1]
16: Q ← Q + T
17: end for
18: Q ← 2Q + T + R[1]
19: if Q = cP then
20: Accept all of N instances
21: else
22: Reject
23: end if

Algorithm 4 describes batch verification using τ -adic NAF on Koblitz Curves,
given (xi, Qi) for 1 ≤ i ≤ N . For ease of notation, we describe the algorithm
in case of q = 2, but it can be easily extended into the general case. For more
details, Steps 2-11 compute

Rk =
N∑

i=1

m−1∑

j=0,cj=k

sign(cj)τ j(Qi)

for each odd integer 1 ≤ k ≤ 2w−1 − 1. Steps 12-18 compute

Q =
2z−1∑

k=1,2�k

kQk = (R2z−1+ · · ·+R1)+2((z−1)R2z−1+(z−2)R2z−3+2R5+R3)

for z = 2w−2 where the last term is computed using BGMW method [BGMW93].
From complexity point of view, Step 1 requires tN − 2w−2 additions at average
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and Steps 5-11 require at most 3 + 2(z − 1) = 2z + 1 = 2w−1 + 1 additions.
Hence the total complexity is at average tN + 2w−2 + 1 additions with 2w−2 − 1
memory.

Table 7 presents an appropriate weight t and the corresponding attack com-
plexity for each w over Koblitz curve. The length m is taken to be the largest
integer to preserve the uniqueness as in Theorem 3. Additions is the number of
additions to be required for batch verification, where #AMe is the number of
additions for one scalar multiplication. For example, #AMe can be 34 using τ -
adic 5-NAF. Note that when enumerating the number of elliptic curve additions,
we ignore the τ operations since their cost is negligible; they are implemented
merely by a circular shift and very efficient even in polynomial basis.

Table 7. Number of Additions for Batch Verification over a Koblitz Curve

w m t Mem Additions Complexity

2 159 15 0 15N + 2 + #AMe 281.4

3 156 13 1 13N + 3 + #AMe 284.5

4 154 11 3 11N + 5 + #AMe 283.6

5 152 10 7 10N + 9 + #AMe 286.2

6 150 9 15 9N + 17 + #AMe 287.1

7 148 8 31 8N + 33 + #AMe 286.1

8 146 7 63 7N + 65 + #AMe 283.3

9 144 6 127 6N + 129 + #AMe 278.5

10 142 6 255 6N + 257 + #AMe 283.9

Table 8 gives a comparison with other methods. We apply the fixed-based
τ -adic w-NAF method for fixed base computation with the precomputation. In
a single signer case, the proposed method is asymptotically 9 times faster than
the individual one.

Table 8. Comparison of Batch Verifications over Koblitz Curve

Method Exponentiation Single Signer Multiple Signers

Individual 23N 57N 57N

[CL06] 9N + 84 9N + 118 -

Proposed 6N + 163 6N + 186 30N + 152

Proposed/Ind 0.26 + 7.09/N 0.11 + 3.26/N 0.53 + 2.67/N

6 Conclusion

We propose an efficient batch verification method of exponentiation. By apply-
ing the proposed algorithm, we can improve the efficiency of batch verification
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of digital signatures. To the best of our knowledge, we firstly propose a batch
verification of signatures by multiple signers so that we can speed up verification
of digital signatures about four times faster than individual verification thereof.
In particular, our method can be applied to any servers or devices that need to
verify multiple signatures at once. It would be an interesting problem to apply
our algorithm to various applications involving many exponentiations including
Mix-Net [Abe99], proof of knowledge, anonymous authentications, and authen-
ticated routing.

Acknowledgements. The authors thank the anonymous reviewers for their
valuable comments.
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Abstract. In this paper we take a closer look at the security and effi-
ciency of public-key encryption and signature schemes in public-key in-
frastructures (PKI). Unlike traditional analyses which assume an “ideal”
implementation of the PKI, we focus on the security of joint construc-
tions that consider the certification authority (CA) and the users, and
include a key-registration protocol and the algorithms of an encryp-
tion or a signature scheme. We therefore consider significantly broader
adversarial capabilities. Our analysis clarifies and validates several
crucial aspects such as the amount of trust put in the CA, the ne-
cessity and specifics of proofs of possession of secret keys, and the se-
curity of the basic primitives in this more complex setting. We also
provide constructions for encryption and signature schemes that prov-
ably satisfy our strong security definitions and are more efficient than
the corresponding traditional constructions that assume a digital certifi-
cate issued by the CA must be verified whenever a public key is used.
Our results address some important aspects for the design and stan-
dardization of PKIs, as targeted for example in the standards project
ANSI X9.109.

1 Introduction

Public key cryptography implicitly relies on the existence of a public-key infras-
tructure (PKI), where each user has a pair of public and secret keys for the
cryptosystem, and that this association is publicly available. The designers of
public-key cryptosystems always define how the public and the secret keys are
generated and used, but almost never carefully specify how the binding between
keys and user identities takes place. The tacit assumption is that this binding is
established a priori through PKI management operations.

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 458–475, 2007.
c© International Association for Cryptologic Research 2007
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1.1 Motivation

The policies and the procedures regarding PKIs are continuously changing and
detailed descriptions are invariably long and tedious.1 Unfortunately, existing
literature still does not answer several important questions. What exactly is
the certification authority (CA), the entity that links public keys to identities,
trusted not to do? Can and should some degree of security be ensured even when
the CA is malicious or becomes compromised? Proofs of possession (POP) —in
which a user proves possession of the secret key when registering a public key
with the CA— are a defense mechanism for protecting against rogue-key and
key-substitution attacks, but what exactly should they be and, more importantly,
are they really necessary?

A question that is perhaps even more important is whether provably-secure
encryption and signature schemes are indeed secure when used in a particular
PKI. Although it is largely believed to be the case, the question is far from moot
since most existing schemes are analyzed in settings where compositional aspects
are neglected. In particular, the security of the combination of a key-registration
protocol with existing encryption or signature schemes does not immediately
follow from the security of the individual components. In principle, by cleverly
combining its ability to attack the key-registration protocol and its ability to
attack the primitive (encryption or signatures), an adversary could mount a
successful attack against the joint construction.

Limitations of security analyses that do not explicitly include the behavior of
the CA or the key-registration protocol have been previously pointed out in other
contexts. In the case of key exchange, Shoup [41] suggests that registration of
public keys should be considered explicitly as part of the key agreement protocol
to be analyzed. Kaliski [27] exemplifies the importance of such measures by
presenting unknown key-share attacks on the MQV key exchange protocol [34].
These attacks could have been discovered with a thorough analysis that considers
the CA as an active party participating in the protocol. We review further related
work at the end in Section 5.

1.2 Contributions

In this paper we initiate a study of PKIs with respect to security of the two
most important public-key primitives: encryption and digital signature schemes.
Our main motivation is to answer the questions raised above and other related
issues.

Models. Security arguments in the absence of rigorous models do not provide
strong security guarantees, and such models are conspicuously absent in the case
of PKIs. Our first contribution are rigorous definitions for primitives when used
in this setting together with appropriate security notions. The inherent complex-
ity of the PKI settings, the non-typical adversarial powers, and the difficulty of

1 See for example the document that describe the current state-of-the-art: ”Internet
X.509 Public Key Infrastructure – Certificate Management Protocol (CMP)” [1].
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precisely identifying the situations that constitute a security breach make the
design of such models an entirely non-trivial task.

Since security goals depend on the primitive used, we treat the cases in which
keys are used for encryption and for signing separately. Specifically, we define
two primitives, called certified encryption and certified signature schemes, and for
each primitive we define a notion of security. Besides the standard algorithms for
encryption and signing, we model explicitly interactive protocols for registering
the public keys with a CA. Consequently, our security notions are against an
adversary with broad capabilities that take into account threats arising from
the key-registration protocol, possibly run concurrently, the presence of several
parties, including the users and the (possibly corrupt) CA. The details are in
Sections 2, 3 and 4.

Our security definitions are general and powerful. The models we propose di-
rectly capture settings where users have multiple public keys, and where keys
have additional attributes, such as an expiration date. They easily extend to han-
dle hierarchical certification and certificate revocation. Moreover, while we cap-
ture the original goal for which PKI was invented we make flexible assumptions
on how certification is achieved. In particular, schemes that aim at achieving
certification but avoid the original mechanism of explicit certificates specific to
the traditional PKIs (e.g. schemes similar to those in [21,2]) can still be analyzed
in our models. We provide a detailed discussion in Sections 3 and 4.

The design of our models in general and that of the security goals in particular
are motivated by the “core” properties of the primitives, namely, confidentiality
for encryption and integrity and authenticity for signatures. For protocols in
which encryption schemes or signatures are used beyond these basic properties,
e.g., encryption schemes used as commitments, additional analysis in light of
the new goals is required. Yet, our attack model should be easily transferable to
those scenarios, and only the security definitions would need to be adapted.

Analysis of Traditional Schemes. Next we focus on constructions that
satisfy the proposed notions of security. We start with an analysis of “traditional”
certified encryption and certified signature schemes. In these constructions, the
CA uses a signature scheme to issue digital certificates, and then parties produce
ciphertexts (resp., signatures) using a standard encryption (resp., signature)
scheme. These schemes are defined in detail in Sections 3 and 4, respectively.

Although it seems folklore that the traditional approach is “secure”, to the
best of our knowledge no formal validation in a sound model with respect to
clearly expressed security goals has been devised prior to our work. We offer a
rigorous analysis that shows that these schemes are indeed secure in the appro-
priate security model we design. Our proof gives concrete security bounds that
support recommendations for practical parameter choices. While expected, these
results are important to increase confidence in the use of the schemes and allow
to make security statements based on solid foundations. Our concrete security
results are in Sections 3 and 4.

The results that we obtain regarding the design of proofs of possession are
less expected, if not surprising. Our investigation shows that formal proofs of
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knowledge are not necessary for basic security of the certified encryption and
signature schemes, and that simpler challenge-response protocols suffice. For sig-
natures, the user simply signs a distinct message2 provided by the CA. Perhaps
surprisingly, we show that for basic encryption no proof of possession is required.
Intuitively, in the case of encryption, this means that data privacy is not com-
promised if a user does not have the secret key associated to the public key it
registers. We note that these results do not eliminate the proof-of-knowledge re-
quirements imposed on these primitives in other settings (e.g., [4,11,9,24,32,36])
and only concern the security of certified encryption and signatures.

More efficient constructions. Since our models do not require that solu-
tions use explicit certificates as in the traditional constructions, it is natural to
ask if it is possible to obtain improvements over the traditional solutions, e.g., in
terms of efficiency. We answer this question affirmatively. We present more effi-
cient constructions for certified encryption and certified signature schemes that
use implicit certificates therefore avoiding the explicit verification of the binding
between public keys and identities.

Our certified encryption scheme uses a variant of ElGamal encryption [19]
combined with implicit certificates realized through Schnorr signatures, and is
proven secure according to our definition in the random oracle model [6] under
the Computational Diffie-Hellman assumption. This scheme is more efficient than
the traditional certified encryption scheme where the CA uses Schnorr signatures
to issue explicit certificates and users employ ElGamal encryption3. For security
parameter k the latter requires 4.75k modular multiplications to encrypt (us-
ing the square-and-multiply exponentiation method combined with well-known
speed-up techniques for multi-exponentiations) while our scheme only requires
3.25k multiplications, coming thus quite close to the performance of regular
ElGamal encryption without certification.

For signatures, we propose a construction based on Schnorr signatures [38],
provably secure according to our definition in the random oracle model under the
Discrete Logarithm assumption. Compared to the traditional approach of using
such signatures as explicit certificates, our solution reduces the average number
of modular multiplications for verification from 3.5k to 1.875k, and thus achieves
almost the same efficiency as regular Schnorr signatures without certification.
Notice that the increase in efficiency comes at the expense of a loss in provable
security due to looser reductions. It is an open problem to find tighter reductions.

We define the schemes and provide concrete security results in [10]. We note
that in the stateful settings where valid certificates of the other parties are stored
permanently, traditional schemes are the expedient choice. For the stateless
case, however, our constructions offer computational savings over the traditional
approach.

2 It is necessary to ensure that this message will not be signed by this user later.
One way to achieve this, which is also our approach, is to prepend the “challenge”
messages chosen by the CA with 0, and the messages the user signs with 1.

3 Or a version of ElGamal that is IND-CCA secure in the random oracle model.
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2 Modeling Public-Key Infrastructures

To model public-key infrastructures we assume that there is a designated party,
the certification authority (CA), and a set of users. Each user has a unique
identity ID ∈ {0, 1}∗ in form of an X.509 entry, an e-mail address or a similar
distinguished name. The identity may also contain auxiliary information like an
expiration date which refers for example to the contract period of an employee
or to the validity period of the certificate.

Certification Authority. The CA holds a public key pkCA and a correspond-
ing secret key skCA. We presume that the public key is authenticated and known
to all parties, i.e., once it is published it cannot be changed by the adversary.
This is usually accomplished by a hierarchical arrangement of CAs, each inter-
mediate CA certifying the validity of the public key of its successor. Only the
key of the root CA has to be authenticated by other means. Here we focus on
the the simpler one-tier approach of having only one CA, i.e., our model can be
viewed as a condensed hierarchy with our single CA as the root CA. We discuss
the more general case of hierarchical CAs in [10].

Registration of Keys. Each user can register keys with the CA by running
the registration protocol. The required validation of the user’s identity ID is usu-
ally done before by the so-called registration authority (RA), which sometimes
coincides with the CA. Checking the identity of the user wishing to register its
public key is typically performed by the RA through personal identification and
physical validation (e.g., with help of a passport or a driver license). Hence, this
part is beyond our computational model and we simply assume that bindings
between user identities and their public keys are authentic.

We do not assume the existence of private channels. We do, however, presume
authenticated channels between the CA and the users, even though the user most
likely does not have a certified signature key when the registration starts. With-
out this minimal assumption about authenticated communication achieving any
reasonable security guarantee seems to be impossible. The assumption can be
enforced by a variety of means that include for example having the certifica-
tion authority confirm the registration of a key through regular mail, signed
electronic mail (with the signature verification key included in pkCA), legally
binding documents, or simply meeting in person.

The registration protocol itself is defined very generically. In this process the
user derives a public key pk which may be used for encryption or signature veri-
fication and a secret key sk for decrypting or signing. We do not specify how the
keys are generated (i.e., picked by the user alone or generated jointly between
the user and the CA), yet we postulate that the CA should not be able to learn
the corresponding secret key of the user. This inevitably requires interaction be-
tween both parties. The user also obtains a certificate cert which, classically, is
an explicit certificate of type X.509, including the CA’s signature. But since we
also use other approaches like implicit certificates cert should be rather thought
of as an arbitrary, possibly empty string. We assume, however, that each pair
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(ID, pk), where pk is registered, is unique; this can be achieved as is done for
X.509 certificates by issuing serial numbers or other auxiliary information.

Revocation. For simplicity, we do not introduce revocation techniques in our
basic model. Due to the lack of space the discussion on how to augment our
definitions and schemes to address revocations is delegated to the full version
of the paper [10].

3 Secure Encryption in Public-Key Infrastructures

Syntax of Certified Encryption Schemes. A certified encryption scheme
is a tuple CS = (EG, K, (C, U), E , D) of probabilistic polynomial-time algorithms:

• EG is a randomized parameter-generation algorithm. It takes input 1k, where
k is the security parameter, and outputs some global parameters I , available
to all parties. For sake of readability we omit I from the input of the parties.

• K is a randomized key-generation algorithm. It takes input I , and outputs a
pair (pkCA, skCA) consisting of a public key and a matching secret key.

• (C, U) is a pair of interactive randomized algorithms forming the (two-party)
public-key registration protocol. C takes input a secret key skCA. U takes input
the identity ID of a user and the public key pkCA corresponding to skCA. As
result of the interaction, the output of C is (ID, pk, cert), where pk is a public
key and cert is an issued certificate. The local output of U is (ID, pk, sk, cert),
where sk is a secret key that user ID uses to decrypt ciphertexts. We write
((ID, pk, cert), (ID, pk, sk, cert)) $← (C(skCA), U(ID, pkCA)) for the result of
this interaction. Either party can quit the execution prematurely, in which
case the output of the party is set to ⊥.

• E is a randomized encryption algorithm that takes input a user’s identity ID,
a public encryption key pk, a certificate cert, the authority’s public key pkCA,
and a message M ∈ MsgSp(I), and outputs a ciphertext C ∈ {0, 1}∗ ∪ {⊥}.

• D is a deterministic decryption algorithm which takes input a user’s identity
ID, a secret decryption key sk, a certificate cert, the authority’s public key
pkCA, and a ciphertext C, and outputs M ∈ MsgSp(I) ∪ {⊥}. If M = ⊥ we
say that the ciphertext C is invalid (relative to ID, sk, cert, pkCA).

The scheme is correct iff for any parameters I , any pkCA, any message M ∈
MsgSp(I), any user ID, and any ((ID, pk, cert), (ID, pk, sk, cert)) $← (CA(skCA),
U(ID, pkCA)), and any C

$← E(ID, pk, cert, pkCA, M)], it holds that D(ID, sk,
pkCA, cert, C) = M .

Remark 1. Our syntax does not explicitly deal with verifying the certificates,
even though this may be necessary for security of the scheme. We assume that
the constructions include such checks as part of their encryption algorithms.

Remark 2. The certificateless encryption schemes of [21, 2] are special cases of
certified encryption schemes where the certificate cert is empty.
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Security of Certified Encryption Schemes. We start with an informal
discussion of the more interesting aspects of our model for secure certified en-
cryption, and motivate some of the design choices that we made.

We envision a powerful adversary that is allowed to even corrupt the CA (i.e.
learn its secret key and act on its behalf). At a superficial glance it may seem
that no security requirements would make sense in this case since under these
circumstances the adversary could create new keys with valid certificates on
behalf of honest users, and then decrypt any ciphertext created with these keys.
We wish however to ensure that even if the CA is corrupt, the communication
encrypted with keys truly registered by honest users is still protected. At least
that requires the CA not to have users’ secret keys. This requirement is somewhat
akin to forward security. Without loss of generality, we treat the case when the
corruption of the CA is static, i.e., the adversary decides at the beginning of its
execution whether to control the CA or not. Indeed, we are able to show that
our definition is equivalent (up to a constant factor in the security statement) to
the analogous definition where the adversary can corrupt the CA at any point
(see [10]).

Naturally the fundamental security requirement for certified encryption is
privacy of encrypted data. However, as discussed in the introduction, we take
into account potential threats arising from the use of the registration protocol.
In particular, we require that an adversary cannot pass as genuine (registered)
an unregistered key upon an honest user, in a way that allows the adversary
to recover messages encrypted with this key. In other words, encryptions with
unregistered keys can not be decrypted by the adversary.

Our model uses the standard definitional idea of indistinguishabiliy [22] cap-
tured via left-right encryption oracles [5]. The left-right encryption oracle is
initialized with a secret bit b and encrypts either the left message M0 or the
right message M1 of the two messages submitted by the adversary. The oracle
is universal in the sense that the adversary can query it about any party ID and
for any (not necessarily valid) key/certificate pair pk, cert. We restrict the kind
of queries that are allowed in order to exclude trivial attacks. We demand that
either (1) user ID is honest and (ID, pk, cert) has been registered before with the
CA, or (2) (ID, pk, cert) is not registered but the CA is still honest.

The first condition covers the case of “standard” queries for proper keys of
honest users, and encompasses the case when the CA might be corrupt. The
second restriction prevents the adversary to register a key for some honest user
(after corrupting the CA) and to determine the bit b easily. Also, if the CA is
corrupt then the adversary can generate a certificate for any user locally, without
invoking the registration protocol. This would also allow the adversary to create
unregistered keys for which the oracle produces a valid ciphertext and which the
adversary can still decrypt. Hence, we only permit queries where the key of the
user has not been registered with the honest CA.

Finally, we emphasize that in our model we do not assume that the com-
munication between the users and the CA is encrypted, i.e., we assume pub-
lic channels. We therefore avoid the “chicken-and-egg”-like problem: how to
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assume secret transmissions if one is still trying to establish a public encryp-
tion key through this communication?

Definition 1. [Security of Certified Encryption Schemes] Let CE=(G, K,
(C, U), E , D) be a certified encryption scheme. We associate to scheme CE, an
adversary A, and a bit b the experiments Expcenc-ind-atk

CE,A,b (k) for atk ∈ {cpa, cca}.
In both experiments A is given as input I $← G(1k). The experiment maintains
two virtual arrays RegListPub, RegListSec used to store public and secret infor-
mation pertaining to users (respectively). We note that A knows the elements
of RegListPub but not those of RegListSec. Also the adversary has access to all
transcripts of the protocols executed during the experiment.

• Corruption of certification authority: First, A decides if to corrupt the CA. If
so, A chooses the key pkCA of the CA, else pkCA is generated via (pkCA, skCA) $←
K(I) and given to A.

• Registering keys of users: During the experiment, A can specify a user ID
from the set of identities, to initiate a run of the public-key registration pro-
tocol with the honest or corrupt certification authority. If this is the first time
the user ID is activated then A first decides whether to corrupt this user or
not. In the execution with the CA we assume wlog. that at least one party is
honest. At the end of the execution, when C outputs values (ID, pk, cert) and U
outputs (possibly different) values (ID′, pk′, sk′, cert′), we store (ID′, pk′, cert′)
in RegListPub and (ID′, pk′, sk′, cert′) in RegListSec if U is honest, or merely
(ID, pk, cert) in RegListPub if only C is honest. If one of the parties is dishon-
est or stops prematurely then ⊥ is stored in the corresponding array. Notice
that all steps in the experiment, including steps of this interactive protocol
may be arbitrarily interleaved.

• Encryption queries: A can query UECE(b, pkCA, ·, ·, ·), a universal left-right
encryption oracle. It takes as input a tuple (ID, pk, cert) and two messages
M0, M1 ∈ MsgSp(I) of equal length and returns a ciphertext C

$← E(ID, pk,
cert, pkCA, Mb). We impose the restriction that user ID is honest and at this
point (ID, pk, cert) is listed in RegListPub, or that the certification authority
is still honest but (ID, pk, cert) does not appear in RegListPub at this point.

• Decryption queries: In experiment Expcenc-ind-cca
CE,A,b (k) the adversary is also

given access to a universal decryption oracle UDCE(pkCA, · · · ) which has ac-
cess to the array RegListSec. The queries to the oracle are tuples (ID, pk, cert,
C) where we require that C has not been previously returned by oracle UECE(b,
pkCA, · · · ) as answer to some query ((ID, pk, cert), M0, M1). If (ID, pk, sk, cert)
occurs in RegListSec the oracle returns D(ID, sk, cert, pkCA, C); otherwise, it
returns ?⊥.

The adversary eventually stops and outputs a guess bit d which is also consid-
ered to be the output of the experiment. For atk ∈ {cpa, cca} the adversary’s
advantages in attacking the scheme are defined as follows.

Advcenc-ind-atk
CE,A (k) = Pr[Expcenc-ind-atk

CE,A,1 (k) = 1] − Pr[Expcenc-ind-atk
CE,A,0 (k) = 1] .
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CE is said to be IND-CPA (resp. IND-CCA) secure if the corresponding advan-
tage of any poly(k)-time adversary A is negligible.

“Traditional” Certified Encryption Schemes. We confirm that the clas-
sical approach of using signature-based certificates for the encryption scheme
yields a secure certified encryption scheme. We show this to be the case even
when during a public key registration a user does not prove that it knows the
corresponding secret key. The schemes that we use in our construction satisfy
standard security notions (see the full version [10] for precise definitions of syntax
and security). We now give the scheme (Construction 1) and state our security
result (Theorem 1). The proof is in the full version [10].

Construction 1. [Traditional Certified Encryption Scheme] Let DS =
(SGs, SKs, Ss, Vs) be a digital signature scheme, and AE = (EGe, EKe, Ee, De)
be an asymmetric encryption scheme. Define TCE = (EG, K, (C, U), E , D):

• Parameter generation: Algorithm EG(1k) executes Is
$← SGs(1k), Ie

$←
EGe(1k) and outputs I = (Is, Ie).

• Key generation: Algorithm K generates a key pair (pkCA, skCA) $← SKs(Is).
• Registration: In order to register a key user, ID first generates a key pair

(pk, sk) $← EKe(Ie) and sends (ID, pk) to C who computes s
$← Ss(skCA, ID||

pk) and outputs (ID, pk, s). The user sets cert = s and outputs (ID, pk, sk,
cert).

• Encryption: To encrypt a message M under identity ID, public key pk, cer-
tificate cert and key pkCA the encryption algorithm E first verifies with Vs

that cert is a valid signature for ID||pk under key pkCA. If not then return
⊥. Else compute C

$← Ee(pk, M) and return C.
• Decryption: To decrypt a ciphertext C with (ID, sk, cert) and pkCA run

algorithm De(sk, C) and return the answer.

Theorem 1. Let DS be a secure signature scheme and let AE be an IND-CPA
secure (resp. IND-CCA secure) encryption scheme. Then the certified encryption
scheme in Construction 1 is IND-CPA secure (resp. IND-CCA secure).

The proof idea is as follows. We turn a successful adversary A on the certified
encryption scheme into an adversary BAE on the underlying encryption scheme.
This algorithm BAE tries to guess in advance which of the registered keys ad-
versary A will use to break the security of the certified scheme. This simulation
works as long as adversary A does not use an unregistered but valid key, in
which case we derive a successful attack on the signature scheme used in the
certification procedure.

Efficient Certified Encryption Scheme. In the sequel we present our
ElGamal-based encryption scheme with implicit certificates. We show that if
the computational Diffie-Hellman problem is hard (see [10] for a precise state-
ment of this assumption), our scheme guarantees IND-CCA security. At the same
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time, the efficiency of our scheme is close to that of the basic ElGamal encryp-
tion without certificate verifications. The security of the following construction
is captured by Theorem 2. Its security is also provided in [10].

The idea of our scheme is to let the CA issue certificates in forms of Schnorr
signatures for identity ID and to use these values for a CCA2-version of the ElGa-
mal encryption. That is, for the CA’s public key pkCA = Z = gz the CA hands
the user the values R = gr and logg RZc for c = H(R, ID). To send the user en-
crypted messages one uses the value RZc as the public ElGamal key, and the user
can decrypt with his decryption key sk = logg RZc. Below we use a slightly differ-
ent variant in which the user contributes to the Schnorr signature via a random
value S = gs, in order to deny the CA knowledge of the decryption key.

Construction 2. [Certified ElGamal Encryption] We construct the certi-
fied ElGamal encryption scheme CE = (EG, EK, (C, U), E , D) as follows:

• Parameter generation: Algorithm EG on input 1k generates a (description
of a) group G of prime order q = q(k), as well as a generator g of this
group. Let 2k ≤ q < 2k+1. Algorithm EG also picks (descriptions of) hash
functions F = {0, 1}∗ → Zq, G : {0, 1}∗ → {0, 1}t+k, H : {0, 1}∗ → Zq. It
returns I = (G, q, g, F, G, H). The associated message space is {0, 1}t. These
parameters are given to all parties and algorithms as additional input.

• Key generation: Algorithm EK on input I selects z
$← Zq and computes

Z = gz. It returns (pkCA, skCA) = (Z, (Z, z)).
• Key registration: The pair (C, U) of interactive algorithms is defined by the

following steps. C gets as input skCA = (Z, z), while U gets some identity
ID and pkCA = Z. The authority C first picks r

$← Zq, computes R = gr

and and sends R to U . User U chooses s
$← Zq, computes S = gs and sends

(S, ID) back to C. Upon receiving (S, ID) algorithm C sets c = H(R, S, ID) and
y = r + cz mod q. Let pk = (R, S) and cert = ε be empty. C returns (R, y)
to U and outputs (ID, pk, cert). U verifies that gy = RZc for c = H(R, S, ID),
computes sk = s + y mod q and outputs (ID, pk, sk, cert). Note that sk =
logg RSZc.

• Encryption: For input ID, pk = (R, S), cert = ε, pkCA = Z and message
M ∈ {0, 1}t the encryption algorithm picks α

$← {0, 1}k, computes a =
F (ID, pk, cert, α||M), A = ga and B = G( ID, pk, cert, (RSZc)a ) ⊕ α||M
where c = H(R, S, ID). It outputs C = (A, B).

• Decryption: For input ID, sk, cert = ε, pkCA = Z and C = (A, B) the decryp-
tion algorithm computes α||M = B ⊕ G(ID, pk, cert, Ask) and verifies that
A = gF (ID,pk,cert,α||M). In this case it returns M , else it returns ⊥.

Theorem 2. Suppose that the parameter generator EG in the encryption scheme
in Construction 2 generates CDH-secure groups, and that F, G, H are modeled
as random oracles. Then the scheme CE in Construction 2 is IND-CCA secure
in the random oracle model.

The efficiency of our scheme is comparable to the one of regular ElGamal
encryption without certificate verification. With the square-and-multiply
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exponentiation method, basic ElGamal encryption without certification needs
3k expected multiplications, our scheme based on implicit certificates requires
3.25k multiplications on the average, whereas regular ElGamal encryption with
explicit Schnorr signature certificates would require 4.75k expected modular
multiplications.

4 Secure Signatures in Public-Key Infrastructures

Syntax of Certified-Signature Schemes. A certified-signature scheme is
a tuple CS = (SG, K, (C, U), S, V), where the constituent algorithms run in poly-
nomial time and are defined as follows.

• Algorithms SG, K and registration protocol (C, U) are as in the definition of
certified encryption schemes (here, SG replaces EG).

• S is a (possibly) randomized signing algorithm. It takes input an identity
ID, a secret key sk, a certificate cert, the authority’s public key pkCA and a
message M ∈ {0, 1}∗, and outputs a signature σ.

• V is a deterministic verification algorithm. It takes input an identity ID,
a public key pk, a certificate cert, a public key pkCA, a message M and a
signature σ, and outputs 0 or 1. In the latter case, we say that σ is a valid
signature for M relative to (ID, pk, cert, pkCA).

We require that for all M ∈ {0, 1}∗ and all users ID, if (pk, sk) is a key pair for
user ID with cert, i.e., ((ID, pk, cert), (ID, pk, sk, cert)) $← (C(skCA), U(ID, pkCA))
for (pkCA, skCA) generated by K(I) and I output by G(1k), then, for verification,
V(ID, pk, cert, pkCA, M, S(ID, sk, cert, pkCA, M)) = 1.

Security of Certified-Signature Schemes. Our model is for the basic set-
ting outlined in Section 2. Users register public-keys by interacting with a certi-
fication authority on public, authenticated channels. After registration, parties
can sign messages using the secret keys associated to the public key the have reg-
istered. Signatures can then be verified, and we emphasize that the verification
process involves both the public key of the CA and that of the user.

We consider again a powerful adversary whose capabilities combine the more
standard chosen-message attacks with additional capabilities specific to our set-
ting. The adversary attempts a forgery by outputting a user identity, a public
key, a message and a signature. Roughly, the adversary wins if the signature is
valid with respect to the chosen public key, and either (1) the honest user has
registered the public key and has not priorly signed the message, (2) the public
key has not been registered, or (3) the same public key has been registered by
a different (honest) user. Condition (1) corresponds to the notion of existential
unforgeability [23] for standard digital signature schemes, and we require that
it holds even if the CA is corrupt. Condition (2) guarantees that signatures for
keys that are not bound to identities of the users (i.e., “outside of the PKI”)
are not valid. Condition (3) prevents attacks where for example a malicious user
claims authorship of a message signed by another user.
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Definition 2. [Security of Certified-Signature Schemes] Let CS = (SG, K,
(C, U), S, V) be a certified-signature scheme. We associate to scheme CS, an ad-
versary A, and security parameter k an experiment Expcs-uf

CS,A(k). The experiment
maintains arrays RegListPub, RegListSec which are as in the experiments defin-
ing security for certified encryption schemes. In the beginning of the experiment,
public parameters are generated via I $← G(1k) and are given as input to the
adversary, and then, A can make the following requests or queries:

• Corruption of certification authority: This stage is as in the experiment defin-
ing the security of certified encryption.

• Registering keys of users: This is handled as in the model for defining security
of certified encryption.

• Signature queries: A can make signature requests to a universal signing oracle
USpkCA

CS : on a query (ID, pk, cert, M) the oracle verifies that user ID is honest,
and if so it looks up the corresponding entry (ID, pk, sk, cert) in RegListSec
and returns to A a signature S(ID, sk, cert, pkCA, M). Otherwise, the answer
of the oracle is ⊥.

Eventually, A stops and outputs an attempted forgery (ID, pk, cert, M, σ). The
experiment returns 1 if V(pkCA, ID, pk, cert, M, σ) = 1 and the following condi-
tions are satisfied (otherwise it returns 0):

1. ID is honest, and no valid signing query (ID, pk, cert′, M) was made for any
cert′, or

2. CA is honest and (ID, pk, cert′) 	∈ RegListPub, for any cert′ (i.e. the user
ID never registered the key pk), or

3. CA is honest and (ID′, pk, cert′) ∈ RegListPub for some honest user ID′ 	=
ID (i.e. some honest user registered pk),

We define the advantage of adversary A as

Advcs-uf
CS,A(k) = Pr

[
Expcs-uf

CS,A(k) = 1
]
.

We say that CS is a secure certified-signature scheme if the function Advcs-uf
CS,A(·)

is negligible for all poly(k)-time adversaries A.

“Traditional” certified signature schemes. Here we analyze the tradi-
tional approach to certified signatures, where the public-keys of users are certified
by the certification authority using a a digital signature scheme. In turn, users
produce signatures by using the secret keys associated with their certificated
public-keys. Signature verification consist in verifying the signature of the user
and the validity of the certificates for the users’ public-keys. An interesting as-
pect that we clarify is that proofs of knowledge of the secret key associated to
the public key of the user are not necessary to ensure security of the scheme.
We show that simply signing a designated message in a proof of possession is
sufficient for security. We now give the scheme (Construction 3) and state our
security result (Theorem 3). The proof is in [10], along with the concrete security
result.
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Construction 3. [Traditional Certified Signature Scheme] Let DS = (SG,
SK, S1, V1) be a digital signature scheme4. The first two algorithms of a certified-
signature scheme TCS = (G, K, (C, U), S, V) are those of DS, and the rest of
polynomial time algorithms are defined as follows.

• Parameter and key generation: G ≡ SG, K ≡ SK.
• Registration: To register pk, a user ID sends pk to the CA. CA sends to the

user a random “challenge” message5 M ′ $← {0, 1}k. The user computes σ′ $←
S(sk, 0||M ′) and sends it to CA. If V(pk, 0||M ′, σ′) = 1 then CA computes
cert $← S(skCA, (ID, pk)), sends cert to the user and outputs (ID, pk, cert).
The user outputs (ID, pk, sk, cert).

• Signing: S on input (ID, sk, cert, pkCA, M) outputs σ
$← S1(sk, 1||M).

• Verification: V takes (ID, pk, cert, pkCA, M, σ). It outputs 1 iff V1(pkCA, (ID,
pk), cert) = 1 and V1(pk, 1||M, σ) = 1.

Theorem 3. Let DS = (SG, SK, S, V) be a digital signature scheme. Then if
DS is secure (existentially unforgeable under chosen-message attack), then TCS
is a secure certified signature scheme.

The proof idea is to transform an attacker against the certified signature scheme
into one against the underlying signature scheme (by guessing the right target
key in advance). It is not hard to see that each successful attack on the certified
scheme (new signatures under keys of honest users, generating an unregistered
but valid key, and registering keys of honest users under different names) imme-
diately yields a forgery for the signature scheme.

Efficient certified signature schemes. Here we give a construction of an
efficient, provably secure certified signature scheme based on Schnorr signatures.
Its security, captured by Theorem 4, is based on the discrete logarithm assump-
tion (a precise definition is given in [10]). The idea is similar to the encryption
case, where the CA issued Schnorr signatures to be used as the secret and public
ElGamal keys by users, only this time we let the users deploy the key pairs for
Schnorr signatures themselves.

Construction 4. [Schnorr-based Certified Signature Scheme] We define
scheme CS = (SG, K, (C, U), S, V) by the algorithms:

• Parameter generation: Algorithm SG on input 1k generates a (description of
a) group G of prime order q = q(k), as well as a generator g of this group.
Let 2k ≤ q < 2k+1. Algorithm SG also picks (descriptions of) hash functions
G : {0, 1}∗ → Zq, H : {0, 1}∗ → Zq. It returns I = (G, q, g, G, H). These
parameters are given to all parties and algorithms as additional input.

4 For simplicity we consider a case when the certification authority and a user use a
single signature scheme. The definition and other results can be easily modified to
accommodate a case when different signatures are used by the parties.

5 We need that all challenge messages be different with overwhelming probability. An
alternative approach would be to include a current date and time in the challenge
message.
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• Key generation: Algorithm EK on input I selects z
$← Zq and computes

Z = gz. It returns (pkCA, skCA) = (Z, (Z, z)).
• Key registration: The pair (C, U) of interactive algorithms is defined by the

following steps. C gets as input skCA = (Z, z), while U gets some identity
ID and pkCA = Z. The authority C first picks r

$← Zq, computes R = gr

and sends R to U . User U chooses s
$← Zq, computes S = gs and sends

(S, ID) back to C. Upon receiving (S, ID) algorithm C sets c = H(R, S, ID)
and y = r+cz mod q. Let pk = (R, S) and cert = ε. C returns (R, y) to U and
outputs (ID, pk, cert). U verifies that gy = RZc for c = H(R, S, ID), computes
sk = s + y mod q and outputs (ID, pk, sk, cert). Note that sk = logg RSZc.

• Signing: For input ID, sk, cert = ε, (R, S), certificate ε and Z the signing
algorithm picks a

$← Zq and computes A = ga and B = a + sk · G(ID, A, M).
The signature is σ = (A, B).

• Verification: For input ID, pk = (R, S), ε, pkCA = Z, a message M and
a signature σ = (A, B) the verification algorithm outputs 1 if the equation
gB = A(RSZc)d holds, where c = H(R, S, ID) and d = G(ID, A, M). Other-
wise it outputs 0.

Theorem 4. The certified-signature scheme of Construction 4 is secure in the
random oracle model if the parameter generation algorithm generates DL-secure
groups.

For the above scheme, signing is exactly as in standard Schnorr signature schemes
and thus as efficient. Verification of a signature, however, now requires on the av-
erage only 1.875k modular multiplications with the square-and-multiply method,
as opposed to 3.5k modular multiplications as required to verify two separate
Schnorr signatures.

5 Related Work

Here we review several PKI-related works in the literature and put our results
in the context [21, 2, 15, 16, 28, 29, 41, 27, 34, 30, 40, 17, 7, 18, 42, 43, 25, 31].

Gentry [21], Al-Riyami and Paterson [2] and subsequent works [30, 40, 17,
7, 18, 3, 42, 43, 25, 31] recently proposed public-key encryption schemes that do
not assume a standard PKI. Similarly to our efficient scheme, certificates are
implicit, that is, a sender does not have to verify the certificate before sending an
encrypted message, yet only the user who properly registered its public key is able
to decrypt. The goals of their schemes and ours, however, differ. The motivation
for the works of [21, 2, 30, 40, 17, 7, 18, 42, 43, 25, 31] is to overcome the main
weakness of identity-based encryption (IBE) [39, 12], namely, the requirement
that the trusted party called a private key generator (PKG) knows the secret keys
of the users, while preserving the advantage of IBE of simplified management
of expired and revoked public keys. Gentry also eliminates the requirement of
a secure channel between a user and the PKG. On the other hand, the goal of
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our scheme is to achieve an efficiency improvement over “traditional” discrete-
logarithm-based certified encryption schemes and, similar, for certified signature
schemes. While our schemes require the key management support of a traditional
PKI, they come with computational savings.

Security of implicit certificates in the context of digital signatures had been
priorly investigated by Brown, Gallant, and Vanstone [13]. Their security model
is only concerned with the certification process and does not consider the usage
of the resulting keys. However, for the particular application analyzed in the
paper, the resulting security model (which is strictly weaker and less general
than the one we introduce here) appears to suffice.

Canetti [15] recently presented a universally composable certification proto-
col, that uses traditional signature-based certificates. And while universal com-
position provides very strong security guarantees, his approach falls again short
of investigating the combined certification and encryption or signature process,
neither does his model take CA corruptions and the broader adversarial capa-
bilities into account. In contrast to our more efficient solutions based on implicit
certificates, alternatives to the traditional approach are not discussed in [15].

Stronger security requirements on signatures are imposed by the model sug-
gested by Menezes and Smart [35] for the use of signatures in the “multi-user
setting”. Condition (3) of our definition of security for signature schemes is rem-
iniscent of their security requirement. However, the framework proposed in [35]
does not explicitly consider the registration protocol.

Since our basic model is concerned with security under one-level of certifica-
tion, some of the issues specific to hierarchical PKIs do not show up explicitly.
When tackling such settings (which naturally arise in practice, e.g. when using
PGP [44]), special attention needs to be payed to the trust that parties put
in certificate chains, given that one or several of the CAs could have been cor-
rupted. Prior research that could prove useful in extending our framework to
these settings include various models for trust in key authenticity [33, 14, 26],
quantitative trust evaluation [8], as well as various defenses against multiple CA
corruption (e.g. multi-certificate chains [37]).

Our efficient certified encryption scheme resembles the PKI-enabled CA-Obli-
vious encryption scheme independently proposed by Castelluccia et al. in their
recent work [16] as a building block for a secret handshake protocol. The authors
analyze their schemes with respect to a significantly weaker security notion,
namely one-wayness. Moreover, in their scheme the CA knows the secret keys
of the users and is trusted to behave honestly. In their model, it is also assumed
that the CA is trusted not to use the knowledge of the secret keys. Moreover, no
standard outsider attacks are considered, that is a scheme where an adversary
can decrypt messages addressed to the registered users can be proven secure!
The authors prove that their scheme satisfies their security notion in the RO
model. The authors suggest how to modify the scheme to allow the CA to be less
trusted, but the security of the resulting scheme is unclear. It is also suggested
in [16] that the scheme can be made IND-CCA secure using the Fujisaki-Okamoto
transform [20]. We note, however, that it is not immediate without a new proof
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that this would work, since the Fujisaki-Okamoto transform can be provably
applied to basic encryption schemes that assume a standard PKI with explicit
certificates. The primitive of [16] is different; it employs implicit certificates.
Therefore, a new security definition and a proof will be necessary to validate
this suggestion. On the other hand, our scheme provably satisfies a very strong
security definition discussed above, where the CA is only trusted not to register
new keys for users without their permission. Our results also show that the
Fujisaki-Okamoto transform is not needed as our scheme is very simple and yet
IND-CCA secure.

Our efficient certified signature scheme resembles the proxy signature scheme
of Kim, Park and Won [28] and the self-certified signature scheme of Lee and
Kim [29]. Unlike our scheme, the proxy signature scheme assumes a PKI where
each user already holds a public key and a digital certificate. Neither of these
papers provides formal security definitions and analyses. A modification of the
proxy signature scheme of [28] has been proven secure in [11], but their proof is
for a primitive that differs from ours in that it assumes a PKI, explicit certificates,
and involves a different security notion.
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Abstract. Certificateless Public Key Cryptography (CL-PKC) has very
appealing features, namely it does not require any public key certification
(cf. traditional Public Key Cryptography) nor having key escrow problem
(cf. Identity-Based Cryptography). However, it does suffer to the Denial-
of-Decryption (DoD) Attack called by Liu and Au [1], as its nature is
similar to the well known Denial-of-Service (DoS) Attack. Based on CL-
PKC, they introduced a new paradigm called Self-Generated-Certificate
Public Key Cryptography (SGC-PKC) that captured the DoD Attack
and proposed a first scheme derived from a novel application of Wa-
ter’s Identity-Based Encryption scheme. In this paper, we propose a new
SGC-PKE scheme that does not depend on the bilinear pairings, which
make it be more efficient and more short public keys than Liu and Au’s
scheme. More importantly, our scheme reaches Girault’s trusted level 3
(cf. Girault’s trusted level 2 of Liu and Au’s scheme), the same level as
is enjoyed in a traditional PKI.

Keywords: Certificateless Public Key Cryptography, Self-Generated-
Certificate Public Key Cryptography, Self-Certified-Key.

1 Introduction

In traditional Public Key Cryptography (PKC), each user selects his own private
key and computes the corresponding public key, which is published. If a user
wants to send an encrypted message to other user, he needs to know the user’s
public key. However, it is easy to suffer from the man-in-the-middle attack. To
address this threat, there is a need to provide an assurance to the user about the
relationship between a public key and the identity (or authority) of the holder of
the corresponding private key. In a traditional Public Key Infrastructure (PKI),
this assurance is delivered in the form of certificate, essentially a signature by
a Certification Authority (CA) on a public key. However, a PKI faces with
many challenges in the practice, such as revocation, storage and distribution of
certificates.
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Identity-Based Public Key Cryptography (ID-PKC), first proposed by Shamir
[13], tackles the problem of authenticity of keys in a different way to traditional
PKI. In ID-PKC, a user’s public key is derived directly from certain aspects
of its identity, for example, an IP address belonging to a network host, or an
e-mail address associated with a user. Private keys are generated for entities
by a trusted third party called a Private Key Generator (PKG). In this way,
the certificate is provided implicitly due to the fact that the user will not have
the ability of performing any cryptographic operations, if he hasn’t obtained a
correct private key associated with the published identity. The only disadvantage
of ID-PKC is an unconditional trust to the PKG, which results that PKG can
impersonate any user, or decrypt any ciphertext.

In order to solve for the above problem, Certificateless Public Key Cryp-
tography (CL-PKC) was introduced by Al-Riyami and Paterson [2,3]. It is a
new paradigm which lies between Identity-Based Cryptography and traditional
Public Key Cryptography. The concept is to eliminate the inherent key-escrow
problem of Identity-Based Cryptography (IBC). At the same time, it preserves
the attractive advantage of IBC which is the absence of digital certificates (issued
by Certificate Authority) and their important management overhead. Different
from IBC, the user’s public key is no longer an arbitrary string. Rather, it is
similar to the public key used in the traditional PKC generated by the user. A
crucial difference between them is that the public key in CL-PKC does not need
to be explicitly certified as it has been generated using some partial private key
obtained from the trusted authority called Key Generation Center (KGC). Note
here that the KGC does not know the user’s private keys since they contain se-
cret information generated by the users themselves, thereby removing the escrow
problem in IBC.

It seems that CL-PKC can solve the problem of explicit certification. Never-
theless it suffers Denial-of-Decryption (DoD) Attack called by Liu and Au [1].
Suppose Alice wants to send an encrypted message to Bob. She takes Bob’s
public key and his identity (or personal information) as input to the encryp-
tion function. However, Carol, the adversary, has replaced Bob’s public key by
someone’s public key. Although Carol cannot decrypt the ciphertext, Bob also
cannot decrypt the message while Alice is unaware of this. This is similar to
Denial of Service (DoS) Attack in the way that the attacker cannot gain any
secret information but precluding others from getting the normal service.

Liu and Au [1] propose a new paradigm called Self-Generated-Certificate Pub-
lic Key Cryptography (SGC-PKC) to defend the above attack while preserving
all advantages of Certificateless Public Key Cryptography. Similar to CL-PKC,
every user is given a partial secret key by the KGC and generates his own secret
key and corresponding public key. In addition, he also needs to generate a cer-
tificate using his own secret key. The purpose of this self-generated certificate is
similar to the one in traditional PKC. That is, to bind the identity (or personal
information) and the public key together. The main difference is that, it can be
verified by using the user’s identity and public key only and does not require
any trusted party. It is implicitly included in the user’s public key. If Carol uses
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her public key to replace Alice’s public key (or certificate), Bob can be aware of
this and he may ask Alice to send him again her public key for the encryption.

Related Work. Al-Riyami and Paterson [2,3] introduced Certificateless Public
Key Cryptography and proposed a CL-encryption scheme and a CL-signature
scheme. Some concrete efficient implementations were proposed in [8,9]. In ad-
dition, some generic construction were proposed in [7,5,6].

In [4], Baek et al. proposed a CL-encryption scheme without pairing, which
was related to the early works on the self-certified keys [10,11]. However, their
scheme can’t be converted to SGC-PKE directly and only reaches Girault’s
trusted level 2. We modify their scheme to get a new CL-encryption scheme
without pairing. Our scheme can be converted to SGC-PKE directly and reaches
Girault’s trusted level 3, which makes our scheme more appealing. Our works
are related to the works on Self-Certificate-PKI [12].

Liu and Au proposed the first SGC-PKE scheme in [1], which defends the
DoD attack that exists in CL-PKE. However, their scheme is based on a CL-
encryption scheme and a CL-signature scheme that are using the same set of
public parameters and user key generation algorithm. In addition, their scheme
has long public keys due to their CL-PKC derived from a novel application of
Water’s Identity-Based Encryption scheme and only reaches Girault’s trusted
level 2. All there make their scheme impractical.

Contribution. In this paper, we propose a SGC-PKE scheme without pairing
and prove that it is secure in a fully adaptive adversarial model, provided that
the standard Computational Diffie-Hellman (CDH) problem is hard. Compared
with the first scheme, our scheme is more efficient, has short public keys and
reaches Girault’s trusted level 3, which makes our scheme more practical.

Organization. The rest of the paper is organized as follow. We give some de-
finitions in Section 2. We propose a CL-encryption scheme in Section 3. The
proposed SGC-PKE scheme is presented in Section 4. We compare our SGC-
PKE scheme to Liu and Au’s scheme in Section 5. Finally a concluding remark
is given in Section 6.

2 Definition

In this section we first introduce our model of CL-PKE and its security definition.
Next, we recall the security definition of SGC-PKE defined by Liu and Au [1].

2.1 Certificateless Public Key Encryption

Our model of CL-PKE is similar to that of Baek et al. [4]. Only slight difference
lies in our model. However, it is the crucial point that makes our scheme reach
Girault’s trusted level 3 and is easy to be converted to SGC-PKE. Below, we
formally describe our model of CL-PKE.
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Definition 1 (Certificateless Public Key Encryption). A generic Certifi-
cateless Public Key Encryption scheme, denoted by Π, consists of the following
algorithms:

- Setup: is a probabilistic polynomial time (PPT) algorithms run by a Key
Generation Center (KGC), given a security parameter k as input, outputs a
randomly chosen master secret mk and a list of public parameter param.
We write (mk, param) = Setup (k).

- UserKeyGeneration: is PPT algorithm, run by the user, given a list of
public parameters param as inputs, outputs a secret key sk and a public
key pk. We write (sk, pk) = UserKeyGeneration (param).

- PartialKeyExtract: Taking param, mk, a user’s identity ID and pk re-
ceived from the user, the KGC runs this PPT algorithm to generate a partial
private key DID and a partial public key PID. We write (PID, DID) = Par-
tialKeyExtract (param, mk, ID, pk).

- SetPrivateKey: Taking param, DID and sk as input, the user runs this
PPT algorithm to generate a private key SKID. We write SKID = SetPri-
vateKey (param, DID, sk).

- SetPublicKey: Taking param, PID and pk as input, the user runs this PPT
algorithm to generate a public key PKID. We write PKID = SetPublicKey
(param, PID, pk).

- Encrypt: Taking a plaintext M, list of parameters param, a receiver’s iden-
tity ID and PKID as inputs, a sender runs this PPT algorithm to create a
ciphertext C. We write C = Encrypt (param, ID, PKID, M ).

- Decrypt: Taking param, SKID, the ciphertext C as inputs, the user as a
recipient runs this deterministic algorithm to get a decryption δ, which is
either a plaintext message or a “Reject” message. We write δ = Decrypt
(param, SKID, C ).

For correctness, as usual we require that Decrypt (param, SKID, C ) = M
whenever C = Encrypt (param, ID, PKID, M ).

The function of UserKeyGeneration algorithm is the same as the SetSe-
cretValue algorithm in Baek’s definition. However, note that the UserKey-
Generation algorithm in our definition must run precede the PartialKeyEx-
tract algorithm, compared with the PartialKeyExtract algorithm can run
precede SetSecretValue algorithm in Baek’s definition. We emphasize that
this is the crucial point to make our scheme desirable.

Security Model. According to the original scheme in [2], there are two types of
adversaries. Type I adversary does not have the KGC’s mater secret key but it
can replace public keys of arbitrary identities with other public keys of its own
choices. It can also obtain partial and full secret keys of arbitrary identities.

Type II adversary knows the master secret key (hence it can compute partial
secret key by itself). It is still allowed to obtain full secret key for arbitrary
identities but is not allowed to replace public keys at any time.
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Definition 2 (IND-CCA Security). A Certificateless Public Key Encryption
scheme Π is IND-CCA secure if no PPT adversary A of Type I or Type II has
a non-negligible advantage in the following game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting system parameters param. If A is of Type I, the
challenger keeps the master secret key mk to itself, otherwise, it gives mk
to A.

2. A is given access to the following oracles:
- Public-Key-Request-Oracle: on input a user’s identity ID, it com-

putes (sk, pk) = UserKeyGeneration (param) and (PID, DID) =
PartialKeyExtract (param, mk, ID, pk). It then computes PKID =
SetPublicKey (param, PID, pk) and returns it to A.

- Partial-Key-Extract-Oracle: on input a user’s identity ID and pk, it
computes (PID, DID) = PartialKeyExtract (param, mk, ID, pk) and
returns it to A. (Note that it is only useful to Type I adversary.)

- Private-Key-Request-Oracle: on input a user’s identity ID, it com-
putes (sk, pk) = UserKeyGeneration (param) and (PID, DID) =
PartialKeyExtract (param, mk, ID, pk). It then computes SKID =
SetPrivateKey (param, DID, sk) and returns it to A. it outputs ⊥ if
the uesr’s public key has been replaced (in the case of Type I adversary.)

- Public-Key-Replace-Oracle: (For Type I adversary only) on input
identity and a valid public key, it replaces the associated user’s public
key with the new one.

- Decryption-Oracle: on input a ciphertext and an identity, returns the
decrypted plaintext using the private key corresponding to the current
value of the public key associated with the identity of the user.

3. After making oracle queries a polynomial times, A outputs and submits
two message (M0, M1), together with an identity ID∗ of uncorrupted secret
key to the challenger. The challenger picks a random bit β ∈ {0, 1} and
computers C∗, the encryption of Mβ under the current public key PKID∗

for ID∗. If the output of the encryption is ⊥, then A immediately losses the
game. Otherwise C∗ is delivered to A.

4. A makes a new sequence of queries.
5. A outputs a bit β

′
. It wins if β

′
= β and fulfills the following conditions:

- At any time, ID∗ has not been submitted to Private-Key-Request-
Oracle.

- In Step (4), C∗ has not been submitted to Decryption-Oracle for the
combination (ID∗, PKID∗) under which Mβ was encrypted.

- If it is Type I, ID∗ has not been submitted to both Public-Key-Replace-
Oracle before Step (3) and Partial-Key-Extract-Oracle at some step.

Define the guessing advantage of A as AdvIND-CCACLE (A) = |Pr[β
′

= β] − 1
2 |.

A Type I adversary AI breaks a IND-CCA secure CL-PKE scheme Π with



Self-Generated-Certificate Public Key Encryption Without Pairing 481

(t, qpar, qpub, qprv, qD, ε) if and only if the guessing advantage of AI that accesses
qpar times Partial-Key-Extract-Oracle, qpub times Public-Key-Request-
Oracle, qprv times Private-Key-Request-Oracle and qD times Decryption-
Oracle is greater than ε within running time t. The scheme Π is said to be
(t, qpar, qpub, qprv, qD, ε)-IND-CCA secure against Type I adversary if there is no
attacker AI that breaks IND-CCA secure scheme Π with (t, qpar , qpub, qprv, qD, ε).
There is the similar definition about Type II adversary.

2.2 Self-Generated-Certificate Public Key Encryption

The definition of SGC Encryption is the same as the definition of CL-encryption
given in Definition 1, except for SetPublicKey in which the user generates a
certificate using his own secret key.

For security, in addition to IND-CCA, we require the scheme to be DoD-Free,
which is formally defined as follow as a game played between the challenger
and a PPT adversary (DoD Adversary), which has the same power of a Type I
adversary defined in CL-encryption.

Definition 3 (DoD-Free Security). A SGC Encryption scheme is DoD-Free
secure if no PPT adversary A has a non-negligible advantage in the following
game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting systems parameters param. The challenger keeps
the master secret key mk to itself.

2. A is given access to Public-Key-Request-Oracle, Partial-Key-Extract-
Oracle, Private-Key-Request-Oracle and Public-Key-Replace-
Oracle.

3. After making oracle queries a polynomial times, A outputs a message M∗,
together with an identity ID∗ to the challenger. The challenger computes
C∗, the encryption of M∗ under the current public key PKID∗ for ID∗. If
the output of the encryption is ⊥, then A immediately losses the game.
Otherwise it outputs C∗.

4. A wins if the following conditions are fulfilled:
- The output of the encryption in Step (3) is not ⊥.
- Decrypt (param, SKID∗ , C∗) = M∗.
- At any time, ID∗ has not been submitted to Partial-Key-Extract-

Oracle.

Define the advantage of A as AdvDoD-FreeSGCE (A) = Pr[A wins]

3 Our CL-PKE Scheme Without Pairing

Our scheme modifies from the first CL-PKE Scheme without pairing [4].
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3.1 Construction

Setup(k): Generate two large primes p and q such that q|p − 1. Pick a gener-
ator g of Z

∗
p. Pick x ∈ Z

∗
q uniformly at random and compute y = gx. Choose

hash functions H1 : {0, 1}∗ × Z
∗
p × Z

∗
p → Z

∗
q , H2 : {0, 1}l0 × {0, 1}l1 → Z

∗
q and

H3 : Z
∗
p → {0, 1}l, where l = l0 + l1 ∈ N . Return param =(p, q, g, y, H1, H2, H3)

and mk =(p, q, g, x, H1, H2, H3).
UserKeyGeneration(param): Pick z ∈ Z

∗
q at random and compute μ = gx.

Return (sk, pk) =(z, μ).
PartialKeyExtract (param, mk, ID, pk): Pick s ∈ Z

∗
q at random and com-

pute w = gs and t = s + xH1(ID, w,pk) = s + xH1(ID, w, μ), Return (PID, DID)
=(w, t).
SetPrivateKey (param, DID, sk): Set SKID = (sk, DID) = (z, t). Return
SKID.
SetPublicKey (param, PID, pk): Set PKID = (pk, PID) = (μ, w). Return
PKID.
Encrypt (param, ID, PKID, M ) where the bit-length of M is l0: Parse PKID

as (μ, w), Pick σ ∈ {0, 1}l1 at random, and compute r = H2(M, σ). Compute
C = (c1, c2) such that c1 = gr;c2 = H3((μwyH1(ID,w,μ))r) ⊕ (M‖σ).
Decrypt (param, SKID, C ): Parse C as (c1, c2) and SKID as (z, t). Compute
M‖σ = H3((c1)z+t) ⊕ c2. If gH1(M,σ) = c1, return M. Else return “Reject”.

Due to gz+t = gz · gt = μgs+xH1(ID,w,μ) = μwyH1(ID,w,μ), it can be easily seen
that the above decryption algorithm is consistent.

Note that in PartialKeyExtract algorithm, it includes pk generated by the
user as input. It is the same binding technique used by the original certificateless
encryption scheme [2,3] which raises our scheme to trust level 3 in the trust
hierarchy of [10]. Now, with the binding technique in place, a KGC who replaces
an entity’s public key will be implicated in the event of a dispute: the existence
of two working public keys for an identity can only result from the existence of
two partial private keys binding that identity to two different public keys; only
the KGC could have created these two partial private keys. Thus this binding
technique makes the KGC’s replacement of a public key apparent and equivalent
to a CA forging a certificate in a traditional PKI.

3.2 Security Analysis

The security proofs of our scheme is similar to the first CL-PKE Scheme without
Pairing [4]. Basically, the main idea of the security proofs given in this section
is to have the CDH attacker B simulate the “environment” of the Type I and
Type II attackers AI and AII respectively until it can compute a Diffie-Hellman
key gab of ga and gb using the ability of AI and AII .

For the attacker AI , B sets ga as a part of the challenge ciphertext and gb as
a KGC’s public key. On the other hand, for the attacker AII , B set ga as a part
of the challenge ciphertext but uses gb to generate a public key associated with
the challenge identity.
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The following two theorems show that our scheme is IND-CCA secure in the
random oracle, assuming that the CDH problem is intractable. We will give the
proofs of Theorem 2 and omit the certification process of Theorem 1 due to the
similarity of Theorem 2.

Theorem 1. TheCL-PKEscheme is (t, qH 1, qH 2, qH 3, qpar, qpub, qprv, qD, ε)-IND-
CCA secure against the Type I attacker AI in the random oracle assuming the CDH
problem is (t

′
, ε

′
)-intractable, where ε

′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ) and

t
′
> t + 2(qpar + qpub + qprv)tex + 2qDqH2qH3tex + 3tex where tex denotes the time

for computing exponentiation in Z
∗
p.

Theorem 2. TheCL-PKEscheme is (t, qH1 , qH2 , qH3 , qpub, qprv, qD, ε)-IND-CCA
secure against the Type II attacker AII in the random oracle assuming the CDH
problem is (t

′
, ε

′
)-intractable, where ε

′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ) and

t
′

> t + 2(qpub + qprv)tex + 2qDqH2qH3tex + 3tex where tex denotes the time for
computing exponentiation in Z

∗
p.

Proof. Assume there is a Type II adversary AII exists. We are going to construct
another PPT B that make uses of AII to solve the CDH problem with probability
at least ε

′
and in the time at most t

′
.

B is given (p, q, g, ga, gb) as an instance of the CDH problem. In order to use
AII to solve for the problem, B needs to simulates a challenger and all oracles
for AII . B does it in the following way.

Setup. B picks x ∈ Z
∗
q uniformly at random and computes y = gx, then sets

param =(p, q, g, y, H1, H2, H3) and mk =(p, q, g, x, H1, H2, H3). Finally gives
AII param and mk.

We suppose that H1, H2, H3 are random oracles [14]. Adversary AII may
make queries of all random oracles at any time during its attack. B handles as
follows:
H1 queries: On receiving a query (ID, w, μ) to H1:

1. If 〈(ID, w, μ), e〉 exists in H1List, return e as answer.
2. Otherwise, pick e ∈ Z

∗
q at random, add 〈(ID, w, μ), e〉 to H1List and return

e as answer.

H2 queries: On receiving a query (M, σ) to H2:

1. If 〈(M, σ), r〉 exists in H2List, return r as answer.
2. Otherwise, pick r ∈ Z

∗
q at random, add 〈(M, σ), r〉 to H2List and return r

as answer.

H3 queries: On receiving a query k to H3:

1. If 〈k, R〉 exists in H3List, return R as answer.
2. Otherwise, pick R ∈ {0, 1}l at random, add 〈k, R〉 to H3List and return R

as answer.
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Phase 1. AII can issue the following oracle queries.
Public-Key-Request: On receiving a query ID:

1. If 〈ID, (μ, w), coin〉 exists in PublicKeyList, return PKID = (μ, w) as
answer.

2. Otherwise, pick coin ∈ {0, 1} at random, so that Pr[coin = 0] = δ. (δ will
be determined later.)

3. If coin = 0, pick z, s ∈ Z
∗
q at random and compute μ = gz, w = gs, and t =

s + xH1(ID, w, μ); add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (μ, w), coin〉
to PublicKeyList; return PKID = (μ, w) as a answer.

4. Otherwise (if coin = 1), pick z, s ∈ Z
∗
q at random and compute μ = gz, w =

(gb)s; add 〈ID, (z, ?)〉 to PrivateKeyList and 〈ID, (μ, w), coin〉 to PublicK-
eyList; return PKID = (μ, w) as a answer.

Private-Key-Request: On receiving a query ID:

1. Run Public-Key-Request on ID to get a tuple 〈ID, (μ, w), coin〉 ∈ Pub-
licKeyList.

2. If coin = 0, search PrivateKeyList for a tuple 〈ID, (z, t)〉 and return
SKID = (z, t) as answer.

3. Otherwise, return “Abort” and terminate.

Decryption queries: On receiving a query (ID, PKID, C ), where C = (c1, c2)
and PKID = (μ, w):

1. Search PublicKeyList for tuple 〈ID, (μ, w), coin〉. If coin = 0, search Pri-
vateKeyList for a tuple 〈ID, (z, t)〉. (Note that 〈ID, (μ, w), coin〉 must exist
in PublicKeyList and when coin=0, 〈ID, (z, t)〉 exist in PrivateKeyList.)
Then set SKID = (z, t) and run Decrypt (param, SKID, C ). Finally, return
the result of Decrypt algorithm.

2. Otherwise (if coin = 1), run H1 query to get a tuple 〈(ID, w, μ), e〉. If there
exist 〈(M, σ), r〉 ∈ H2List and 〈k, R〉 ∈ H3List such that c1 = gr, c2 =
R ⊕ (M‖σ) and k = (μwye)r, return M and “Reject” otherwise.

Challenge. AII then output two message (M0, M1) and a challenge identity ID∗.
B run Public-Key-Request taking ID∗ as input to get a tuple 〈ID∗, (μ∗, w∗),
coin〉 ∈ PublicKeyList.

1. If coin = 0 return “Abort” and terminate.
2. Otherwise, do the following:

(a) Search PrivateKeyList for a tuple 〈ID∗, (z∗, ?), s∗〉.
(b) Pick σ∗ ∈ {0, 1}l1, c∗2 ∈ {0, 1}l and β ∈ {0, 1} at random.
(c) Set c∗1 = ga and e∗ = H1(ID∗, w∗, μ∗).
(d) Define a = H2(Mβ , σ∗) and H3((μ∗w∗ye∗

)a). (Note that B does not know
“a”, (μ∗w∗ye∗

)a = (ga)z∗ · (gab)s∗ · (ga)xe∗
.

3. Return C∗ = (c∗1, c
∗
2) as a target ciphertext.
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Phase 2. B repeats the same method it used in Phase 1.

Guess. Finally, AII output a guess β
′
. Now B choose a tuple 〈k, R〉 form the

H3List and outputs ( k
(ga)z∗ ·(ga)xe∗ )1/s∗

as the solution the the CDH problem.

Analysis : From the construction of H1, it is clear that the simulation of H1

is perfect. As long as AII does not query (Mβ, σ∗) to H2 nor (μ∗w∗ye∗
)a to

H3, the simulations of H2 and H3 are perfect. By AskH∗
3 we denote the event

that (μ∗w∗ye∗
)a has not been queried to H3. Also, by AskH∗

2 we denote the
event that (Mβ , σ∗) has been queried to H2. If happens then B will be able
to solve the CDH problem by choosing a tuple 〈k, R〉 form the H3List and
computing ( k

(ga)z∗ ·(ga)xe∗ )1/s∗
with the probability at least 1

qH3
. Hence we have

ε
′ ≥ 1

qH3
Pr[AskH∗

3].
It is easy to notice that if B does not abort, the simulations of Public-

Key-Request, Private-Key-Request and the simulated target ciphertext is
identically distributed as the real one from the construction.

Now, we evaluate the simulation of the decryption oracle. If a public key
PKID has been produced under coin = 0, the simulation is perfect as B knows
the private key SKID corresponding to PKID. Otherwise, simulation errors may
occur while B running the decryption oracle simulator specified above. Let De-
cErr be this event. We compute the probability of this event: Suppose that
(ID, PKID, C ), where C = (c1, c2) and PKID = (μ, w), has been issued as a
valid decryption query. Even if C is valid, there is a possibility that C can
be produced without querying (μwye)r to H3, where e = H1(ID, w, μ) and
r = H2(M, σ). Let Valid be an event that C is valid. Let AskH3 and AskH2
respectively be events that (μwye)r has been queried to H3 and (M, σ) has been
queried to H2 with respect to C = (c1, c2) = (gr, H3((μwyH1(ID,w,μ))r)⊕(M‖σ))
and PKID = (μ, w), where r = H2(M, σ) and e = H1(ID, w, μ). We then have
Pr[DecErr] = qDPr[Valid|¬AskH3]. But

Pr[Valid|¬AskH3] ≤ Pr[Valid ∧ AskH2|¬AskH3]
+ Pr[Valid ∧ ¬AskH2|¬AskH3]

≤ Pr[AskH2|¬AskH3]
+ Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1
q

So, Pr[DecErr] ≤ qDqH2
2l1 + qD

q .
Now,the event (AskH∗

3 ∨ (AskH∗
2|¬AskH∗

3)∨DecErr)|¬Abort denoted by
Good, where Abort denotes an event that B aborts during the simulation. The
probability ¬Abort that happens is given by δqprv (1− δ) which is maximized at
δ = 1 − 1/(qprv − 1). Hence we have Pr[¬Abort] ≤ 1

e(qprv+1) , where e denotes
the base of the natural logarithm.
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If Good does not happen, it is clear that AII does not gain any advantage
greater than 1/2 to guess β due to the randomness of the output of the random
oracle H3. Namely, we have Pr[β

′
= β|¬Good] ≤ 1

2 .
By definition of ε, we then have

ε < |Pr[β
′
= β] − 1

2
|

= |Pr[β
′
= β|¬Good]Pr[¬Good] + Pr[β

′
= β|Good]Pr[Good] − 1

2
|

≤ |1
2
Pr[¬Good] + Pr[Good] − 1

2
|

≤ 1
2
Pr[Good]

≤ 1
2Pr[¬Abort]

(Pr[AskH∗
3] + Pr[AskH∗

2|¬AskH∗
3] + Pr[DecErr])

≤ e(qprv + 1)
2

(qH3ε
′
+

qH2

2l1
+

qDqH2

2l1
+

qD

q
)

Consequently, we obtain ε
′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ). The running

time of the CDH attacker B is t
′
> t + 2(qpub + qprv)tex + 2qDqH2qH3tex + 3tex

where tex denotes the time for computing exponentiation in Z
∗
p.

4 Our SGC-PKE Scheme Without Pairing

We give our Self-Generated-Certificate (SGC) encryption scheme without pair-
ing based on the above Certificateless encryption scheme. The most algorithms
are the same as the algorithms of Certificateless encryption scheme, except for
SetPublicKey and Encrypt.

In order to distinguish the algorithm of CL-encryption, we will add the prefix
“CL.” to the corresponding algorithms. For example, we use “CL.Setup” to
denote the encryption algorithm of the CL-encryption scheme. The proposed
SGC-encryption scheme is described as follow:

Setup: Same as CL.Setup, outputs parameters param = (p, q, g, y = gx, H1,
H2, H3) and master secret key mk = (p, q, g, x, H1, H2, H3).
UserKeyGeneration: Same as CL.UserKeyGeneration, outputs (sk, pk)
= (z, gz).
PartialKeyExtract: We modify CL.PartialKeyExtract slightly. Taking
param, mk, ID and pk as input, it outputs (PID, DID) = (w = gs, t = s +
xH1(ID, w ∗ pk) = s + xH1(ID, wμ)). In order to make this changes, it must
modify the domain of hash function H1 : {0, 1}∗ × Z

∗
p → Z

∗
q .

SetPrivateKey: Same as CL.SetPrivateKey, outputs SKID = sk+DID =
z + t.
SetPublicKey: Except for taking param, PID and pk as input, it includes ID
and SKID as inputs. Chooses a new hash function H0 : {0, 1}∗ ×Z

∗
p ×Z

∗
p ×Z

∗
p →
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Z
∗
q , then computes PK1

ID = pk∗PID = μw and PK2
ID = pk∗PID∗yH1(ID,pk,PID) =

μwyH1(ID,μ,w) = gz+t = gSKID . Next, it does the following performances to sign
the user’s identity ID and PK1

ID, PK2
ID using the user’s private key SKID and

Schnorr’s signature scheme [15]. (1) choose a random r ∈ Z
∗
q , (2) compute

R = grmod p, and (3) set the signature to be (R, σ), where σ = r + SKID ∗
H0(ID, PK1

ID, PK2
ID, R). Finally, returns PKID = (PK1

ID, PK2
ID, (R, σ)).

Encrypt: Parses PKID as (PK1
ID, PK2

ID, (R, σ)). If PK2
ID �= PK1

ID ∗ yH1(ID,PK1
ID)

or gσ �= R ∗ (PK2
ID)H0(ID,PK1

ID,PK2
ID,R), it returns ⊥, else outputs CL.Encrypt(

param, ID, PKID, M ).
Decrypt: Same as CL.Decrypt, outputs a plaintext M for a valid ciphertext
C, or “Reject” otherwise.

Security Analysis
The IND-CCA security depends on our CL-encryption scheme (defined in Sec-
tion 3). In addition to IND-CCA, we require the scheme to be DoD-Free. Here
we analyze the DoD-Free Security.

Theorem 3. The SGC-encryption scheme proposed in this section in secure
against DoD adversary, assuming that the Schnorr’s signature scheme is secure
against the adaptively chosen message attack in the random oracle model [16].

Proof. Assume there is a DoD adversary A exists. We are going to construct
another PPT B that makes use of A to break the Schnorr signature scheme.

B is now the schnorr’s signature adversary. Note that in fact, the PartialKey
Extract algorithm in our SGC-encryption scheme signs the user’s identity ID
using the schnorr’s signature scheme. So using his signing-oracle, B can answer
all oracle queries for A. After a polynomial number of oracle queries, A outputs
a message M∗ and an identity ID∗. A wins if the following conditions fulfill:

1. The public key PKID∗ of ID∗ is valid.
2. Decrypt(param, SKID∗ , C∗) �= M∗ where C∗= Encrypt (param, ID∗,

PKID∗ , M∗).
3. A does not query the Partial-Key-Extract-Oracle for ID∗.

If the public key of ID∗ has not been replaced, due to correctness we always
have Decrypt(param, SKID∗ , C∗) = M∗. Condition (2) implies the public key
of ID∗ has been replaced. Together with condition (1) and (3), it implies that
σ∗ = (PK1

ID∗ , PK2
ID∗) is a successful forgery for ID∗. B outputs it.

5 Comparison to Previous Work

Our scheme is the second SGC-encryption scheme. In this section, we compare
the scheme we have presented to the first scheme in [1].

1. Our scheme has more short public keys due to their scheme based on the
Water’s Identity-Based Encryption scheme [17].
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2. Our scheme is more efficient due to our scheme without pairing computa-
tion. In spite of the recent advances in implementation technique, the pairing
computation is still considered as expensive compared with “standard” op-
erations such as modular exponentiations in finite fields.

3. Our scheme reaches Girault’s trusted level 3 (same as the traditional PKI),
but their scheme only reaches Girault’s trusted level 2 (a cheating KGC
could replace an entity’s public key bye one for which it knows the secret
value without fear of being identified).

4. Their scheme is IND-CCA− (the challenger is forced to decrypt ciphertexts for
which the public key has been replaced) and DoD-Free secure in the standard
model. Our scheme is IND-CCA and DoD-Free secure in the random oracle
model.

6 Concluding Remarks

We have presented the first SGC-encryption scheme that does not depend on the
pairing. We have proven in the random oracle that the scheme is IND-CCA and
DoD-Free secure, relative to the hardness of the standard CDH problem and DL
problem.

However, we can only achieve security in the random oracle although our
scheme has many appealing properties. It is still an open problem to design a
CL-PKC and SGC-PKC scheme without pairing that is secure in the standard
model.
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