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1 Introduction

Rough sets were introduced by [29]; they served well as a vehicle for expressing depen-
dencies in datatables, as well as for attribute reduction that depends on the equivalence
classes induced by the attribute mappings. The information systems of the rough set
model were single valued and could only express deterministic information. Already
[15,16] had considered information systems where an object under an attribute func-
tion was allowed to take a set of values, which could also be empty; a similar road was
taken by [26]. Common to both approaches is the replacement of an attribute function
between objects and a single value of an attribute domain by an attribute relation where
an object can be related to any set of attribute values. In [8] we have supplemented the
notion of an indeterministic information system to a model of data called relational at-
tribute system (RAS) in the spirit of non–invasive data analysis [7]. Its distinguishing
feature is the provision of a semantical framework for the data table: Given an attribute
a, an object x, and a set a(x) of values which are associated with x, there are various
ways in which a(x) can be interpreted; for instance, as exemplified in [8],

1. a(x) is interpreted conjunctively and exhaustively. If a is the attribute “speaking a
language”, then,

a(x) = {German, Polish, French}
can be interpreted as

x speaks German, Polish, and French and no other languages.
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2. a(x) can also be interpreted conjunctively and non-exhaustively as in

a speaks German, Polish, and French and possibly other languages.

3. a(x) is interpreted disjunctively and exclusively. For example, a witness states that

The car that went too fast was either a Mercedes or a Ford.

Here, exactly one of the statements
– The car that went too fast was a Mercedes.
– The car that went too fast was a Ford.

is true, but it is not known which one.

4. a(x) is interpreted disjunctively and non-exclusively. If a is “cooperates with”, then

a(Ivo) = {Günther, Ewa}
means that Ivo cooperates with Günther, or Ewa, or both.

The desired semantics can be given in the form of relational constraints, using machin-
ery from the theory of relation algebras [33]. We have indicated the usefulness of the
approach by two examples, one pertaining to interrater reliability, the other one to soft-
ware usability. In a subsequent paper we will use the RAS model and the inference
techniques described below to address in detail the practical aspects of our approach.

In this paper, our task is to develop a reasoning mechanism for the RAS model. We
follow the general methodology for developing inference tools for information struc-
tures based on the object-property assignments, as surveyed in [5]. The specific feature
of the methods presented in this paper is that, firstly, we define a class of algebras of
relations suitable for the information structure under consideration, and, secondly, we
develop deduction rules for this class of algebras. In applying this methodology we ob-
serve that in fact several other information structures besides our RAS model can be
dealt with in a similar way. Thus, we present deduction systems for various information
structures:

– Information systems with incomplete information and no semantics,
– Relational attribute systems,
– Fuzzy information systems,
– Temporal information systems.

Once an object–property assignment is given, with each object from the information
structure under consideration there is associated a finite set which, in particular, may
be empty or contain more than one value . Consequently, each information structure
determines a family of sets specific for the structure, resulting from the assignment of
the properties to the objects. The relationships among the objects can be articulated
by comparing their sets of properties. The comparison is usually expressed in terms of
binary set relations. This leads to the concept of information relations.

There are three fundamental ingredients of a definition of any information relation:

– A specification of a family of sets of properties of objects,
– A specification of set relations meaningful for this family,
– A specification of the information relation itself in terms of these set relations.
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For the information structures listed above, we present deduction mechanisms for ver-
ification of constraints holding for those information relations. The deduction systems
presented here belong to the family of Rasiowa–Sikorski (RS or dual tableau) style
relational proof systems [31]; systems of such type were developed for a number of
theories, for example, [11,17,9,25]. There are various implementations of RS systems:
Relational attribute systems have been implemented in [3]; an implementation of more
general relational proof systems can be found at [4]. The system presented there con-
tains rules for deduction with binary relations as well as with typed relations, and thus,
it is suitable for reasoning in relational databases [19]. The system is modular – a
general feature of the RS style –, and the user can include specific deduction rules
if needed. In particular, the deduction rules presented in the present paper can be incor-
porated. Some other implementations of relational deduction in nonclassical logics are
presented in [10].

2 Deduction System for Standard Algebras of Binary Relations

In this Section we recall basic principles of relational proof systems and the deduc-
tion rules for standard algebras of binary relations [23]. The operations of Tarski’s
algebra of binary relations [33] are Boolean set operations of union (∪), intersection
(∩) and complement (−), and relational operations of product ( ; ), converse (−1),
and the constants 1′ of the identity and 1 of universal relation. For binary relations
R and S on a set U, R ; S = {(x,y) ∈ U ×U : ∃z ∈ U(x,z) ∈ R ∧ (z,y) ∈ S}1 and
R−1 = {(x,y) ∈U×U : (y,x) ∈ R} A relational term is any expression built from rela-
tion variables and constants with these operations. If x,y are object variables and P is a
relational term, then any expression of the form xPy is a relational formula.

The semantics of relational formulas is determined in terms of the notion of model
and satisfiability of formulas. A model is a system M = (U,m), where U is a nonempty
set (of objects) and m is a meaning function that provides an interpretation of relational
terms, i.e. m(P)⊆U×U for any relation variable P, m(1′) is the identity relation on U ,
m(1) = U×U , and m extends homomorphically to all terms. By a valuation in a model
M we understand a function v that assigns objects from U to object variables, that
is, v(x) ∈U for any object variable x. The satisfiability relation is defined by M ,v |=
xPy iff (v(x),v(y)) ∈ m(P). A formula xPy is true in a model M whenever M ,v |=
xPy for every valuation v in M , nd it is valid whenever is true in all models. Hence,
validity of xPy amounts to saying that P = 1 holds in every algebra of binary relations. A
finite sequence of relational formulas is said to be valid whenever universally quantifird
disjunction of its members is valid in the classical first order logic.

The proof system consists of two groups of rules, namely, decomposition rules and
specific rules. Decomposition rules enable us to decompose formulas into a finite se-
quence of (usually syntactically simpler) formulas, or a pair of finite sequences of for-
mulas (and then we separate the sequences with — in a definition of the rule) while
the specific rules enable us to modify a sequence to which they are applied; they have

1 Using Tarski’s existential quantifier E (i.e., some) [34], the assertion ∃z ∈U(x,z) ∈ R can also
be written E

z
(z ∈U(x,z) ∈ R).
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Table 1. Decomposition rules

(∪)
K,x(P∪Q)y,H
K,xPy,xQy,H

(−∪)
K,x− (P∪Q)y,H

K,x(−Q)y,H | K,x(−Q)y,H

(∩)
K,x(P∩Q),H

K,xPy,H | K,xQy,H
(−∩)

K,x− (P∩Q)y
K,x(−P)y,x(−Q)y,H

(−1)
K,xP−1y,H
K,yPx,H

(−−1)
K,x(−P−1)y,H
K,y(−P)x,H

(−−)
K,x(−−P)y,H

K,xPy,H

( ; )
K,x(P;Q)y,H

K,xPz,H,x(P;Q)y | K,zQy,H,x(P;Q)y
z is an object variable

(− ; )
K,x− (P;Q)y,H

K,x(−P)z,z(−Q)y,H
z is restricted

Table 2. Specific rules

1′1
K,xPy,H

K,x1′z,H,xPy | K, zPy,H, xPy
z is an object variable

1′2
K,xPy,H

K,xPz,H,xPy | K, z1′y, H,xPy

sym 1′ K,x1′y,H
K,y1′x,H

the status of structural rules. The role of axioms is played by what is called axiomatic
sequences.

A proof system for Tarski’s algebras of binary relations consists of the decomposi-
tion rules given in Table 1, where K and H denote finite, possibly empty, sequences
of relational formulas; the specific rules are presented in Table 2. There, a variable is
said to be restricted in a rule whenever it does not appear in any formula of the upper
sequence in that rule. This system has been developed in [21].

The specific rules characterize the identity relation 1′. Namely, (1′1) corresponds to
the property that 1′;R⊆ R for any relation R. Similarly, (1′1) says that R;1′ ⊆ R. Observe
that the reverse inclusions also hold, since 1′ is reflexive; thus, no more rules are needed
for guaranteeing that 1′ is a unit element of relational composition. (sym 1′) expresses
the symmetry of 1′, and transitivity of 1′ is an instance of (1′1).

A sequence of relational formulas is said to be axiomatic if it contains formulas of
the following forms; here, P is a relational term, and x,y are object variables.

a1. xPy,x(−P)y.
a2. x1y.
a3. x1′x
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(a2) reflects the fact that 1 is the universal relation, and (a3) says that 1′ is reflexive. The
rules listed in Table 1 and Table 2 are correct i.e., they preserve and reflect validity of
the sequences of formulas: the upper sequence of the rule is valid if and only if all the
lower sequences of this rule are valid. Axiomatic sequences are valid.

Although these rules and axiomatic sequences enable us to prove only that 1′ is an
equivalence relation, the given deduction system is complete with respect to the class
of standard algebras of relations, where 1′ is the identity. The proof uses the usual
argument well known from first order logic. Namely, it can be shown that for every
model of the relational language with 1′ interpreted as an equivalence relation there is
a model where 1′ is an identity and both models verify the same formulas.

To check the validity of a relational formula, we successively apply decomposition
and/or specific rules to it, thus obtaining a tree whose nodes consist of finite sequences
of formulas. Such a tree is referred to as a decomposition tree. We stop applying the
rules to the formulas of a node whenever the node contains an axiomatic sequence
of formulas. A branch with such a node is declared closed. A decomposition tree is
said to be closed whenever all of its branches are closed. The following soundness and
completeness Theorem is well known (see e.g. [23,13]).

Theorem 1. A relational formula is valid iff it possesses a closed decomposition tree.

Hence, possession of a closed decomposition tree may be understood as provability.
The proof of this theorem is based on the three lemmas. First of all, we assume that
a decomposition tree of a formula is complete: if a rule is applicable to a node of the
tree, then it has been applied. Then we prove a closed branch theorem which says that
if a branch of the complete decomposition tree includes a node with the formula xRy
and a node with the formula x(−R)y, where R is a relational term, and x,y are object
variables, then this branch has also a node with and axiomatic sequence. This follows
from the fact that the rules appropriately transfer the formulas from the upper sequence
to the lower sequences. Next, for an open branch, say b, of a complete decomposition
tree we construct what is called a branch model, Mb. It is constructed from the syntac-
tic resources of the relational language. Its universe is the set of object variables. The
meaning of a relation variable or a relation constant, say R, is a binary relation defined
as (x,y) ∈ mb(R) iff formula xRy does not appear in any node of branch b. The sec-
ond important lemma, referred to as a branch model theorem, says that a branch model
constructed as above is a model of the relational language i.e., the relational constants
admitted in the language are appropriately interpreted: mb(1) is the universal relation
and mb(1′) is an equivalence relation. The third lemma, referred to as a satisfaction
in branch model theorem, says that if a formula is satisfied in a branch model Mb by
an identity valuation vb such that vb(x) = x for any object variable x, then it does not
appear in any node of branch b. With these lemmas the completeness (validity implies
provability) can be proved. The soundness (provability implies validity) follows from
the correctness of the rules and from validity of axiomatic sequences.

If we extend the set of relational formulas to the first order language with binary
predicates, then the appropriate deduction system can be obtained by adding the deduc-
tion rules of first order logic developed in [31].

The above relational logic with its system of rules is complete both for the class RRA
of representable relation algebras and the class RA of relation algebras. The system can
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also be applied to solve the three major logical tasks for a number of logics and classes
of algebras, namely checking validity, entailment, satisfiability, and truth in a model
(often referred to as model checking). The details can be found in [13]. Once a represen-
tation of formulas of a logic or the terms over a class of algebras is provided in the form
of relational terms over a class, say C, of appropriate algebras of relations [22,24], the
relational representation of these logical tasks is as follows: Checking validity amounts
to verifying whether R = 1 holds in every algebra of relations from C, for some relation
term R. Entailment is the problem of checking whether from a finite number of identi-
ties of the form R1 = 1, . . . ,Rn = 1 we can infer that R = 1. According to the Tarski rule,
this problem can be reduced to checking the identity 1 ; − (R1∩·· ·∩Rn) ; 1∪R) = 1.
The satisfaction problem of checking whether 〈a,b〉 ∈ R for some relation R and some
objects a,b amounts to verifying whether A ; B−1 ⊆ R, where A and B are the point
relations representing the objects a and b, respectively, and they satisfy the usual point
axioms P ; 1 = 1, P ; P−1 ⊆ 1′, and P �= /0 [32].

3 Relations Derived from Information Systems

In this Section we recall the notion of an information system [16,28], and relations
derived from such a system; an exhaustive list of those relations can be found in [5].

By an information system we understand a structure S = (OB, Ω ,{Va : a ∈Ω}) such
that U is a nonempty set of objects, Ω is a finite nonempty set of attributes, each Va

is a nonempty set of values of attribute a. An attribute is a function a : U �→P(Va)
that assigns subsets of values of attributes to the objects. If for every a ∈ Ω , a(x) is a
singleton set, then system S is said to be deterministic, otherwise S is nondeterministic.

Any set a(x) can be viewed as a set of properties of an object x determined by attribute
a. For example, if attribute a is ’color’ and a(x) = {green}, then x possesses property of
’being green’. If a is ’age’ and x is 25 years old, then a(x) = {25} and this means that
x possesses property of ’being 25 years old’. If a is ’languages spoken’ and if a person
x speaks, say, Polish (Pl), German (D), and French (F), then a(x) = {Pl, D, F}, and x
possesses properties of ’speaking Polish’, ’speaking German’, and ’speaking French’.
In this setting any set a(x) is referred to as the set of a-properties of object x and its
complement Va−a(x) is said to be the set of negative a-properties of x.

Let S = (U,Ω ,{Va : a ∈Ω}) and A⊆ Ω . The following families of set information
relations on set U are the subject of investigation in a number of papers:

Strong (weak) indiscernibility (x,y) ∈ indA iff a(x) = a(y) for all (some) a ∈ A,
Strong (weak) similarity (x,y) ∈ simA iff a(x)∩a(y) �= /0 for all (some) a ∈ A,
Strong (weak) forward inclusion (x,y) ∈ finA iff a(x)⊆ a(y) for all (some) a ∈ A,
Strong (weak) backward inclusion binA iff a(y)⊆ a(x) for all (some) a ∈ A,
Strong (weak) negative similarity (x,y) ∈ nimA iff −a(x)∩−a(y) �= /0 for all (some)

a ∈ A,
Strong (weak) incomplementarity (x,y)∈icomA iff a(x) �=−a(y) for all (some) a∈A,
Strong (weak) diversity (x,y) ∈ divA iff a(x) �= a(y) for all (some) a ∈ A,
Strong (weak) disjointness (x,y) ∈ disA iff a(x)⊆−a(y) for all (some) a ∈ A,
Strong (weak) exhaustiveness (x,y) ∈ exhA iff −a(x)⊆ a(y) for all (some) a ∈ A,
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Strong (weak) right negative similarity (x,y) ∈ rnimA iff a(x) ∩−a(y) �= /0 for all
(some) a ∈ A,

Strong (weak) left negative similarity (x,y)∈ lnimA iff−a(x)∩a(y) �= /0 for all (some)
a∈A,

Strong (weak) complementarity (x,y) ∈ comA iff a(x) =−a(y) for all (some) a ∈ A.

In all the above definitions, complement is taken with respect to set VALa. If A = {a} is
a singleton set, then we write Ra instead of R{a} for any information relation R. Observe
that if (x,y)∈ disa, then a(x)∩a(y) = /0, and if (x,y)∈ exha, then a(x)∪a(y)=Va which
explains the names of the relations. In the earlier literature (e.g., [5]) the relations were
referred to as right (resp. left) orthogonality.

The strong relations satisfy the following conditions for all P,Q⊆Ω :

S1. RP∪Q = RP∩RQ,
S2. R /0 = U×U .

The weak relations satisfy:

W1. RP∪Q = RP∪RQ,
W2. R /0 = /0.

A specific family of sets associated to an information system S = (U,Ω ,{Va : a ∈
Ω}) is the family {a(x) : a ∈ Ω ,x ∈U.}. It is easy to see that all the information rela-
tions defined above can be specified in terms of three families of set relations, namely,
⊆a, Σa, Na, where a ∈Ω and

x⊆a y⇐⇒ a(x)⊆ a(y),
xΣay⇐⇒ a(x)∩a(y) �= /0,

xNay⇐⇒ a(x)∪a(y) �= Va.

These relations can be extended in the usual way to the relations indexed with subsets of
set Ω . Now, an information relation derived from an information system is any relation
generated from⊆a,Σa,Na, for a ∈Ω , with the standard relational operations.

For example, the information relations relations determined by an attribute a are
defined as follows:

inda =⊆a ∩⊆−1
a ,sima = Σa,fina =⊆a,bina =⊆−1

a ,nima = Na, icoma = Σa∪Na,
diva =− ⊆a ∪− ⊆−1

a ,disa =−Σa,exha =−Na, rnima =− ⊆, lnima =− ⊆−1
a ,coma =

−Σa∪−Na.

In an abstract setting, by an IS-frame (information system frame) we mean a system
(U,{≤P: P⊆ A},{σP : P⊆ A},{νP : P⊆ A}), where U and A are nonempty sets, A is
finite, and the following conditions are satisfied for all x,y,z ∈U and for every p ∈ A.
For the sake of simplicity we write ≤,σ ,ν instead of ≤p,σp,νp:

IS1. ≤ is reflexive, transitive , and antisymmetric.
IS2. σ is symmetric, and 1′ ∩ (σ ; 1)⊆ σ (weakly reflexive, i.e., xσy implies xσx).
IS3. σ ; ≤ ⊆ σ , i.e., xσy and y≤ z imply xσz.
IS4. xσx or x≤ y.
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IS5. ν is symmetric and weakly reflexive.
IS6. ≤−1 ; ν ⊆ ν , i.e., x≤−1 y and yνz imply xνz.
IS7. xνx or x≤−1 y.
IS8. −σ ; −ν ⊆≤ i.e., x≤ y or xσz or yνz.
IS9. xσx or xνx.

IS10. −ν ; ≤⊆−ν

The above list of axioms is based on the axioms presented in [36]. Furthermore, we
have to declare whether the relations are strong or weak by postulating the axioms (S1)
and (S2) or (W1) and (W2).

By an IS-relation algebra we understand an algebra of relations generated by {≤p:
p ∈ A}∪ {σp : p ∈ A}∪ {νp : p ∈ A} for some IS-frame (U,{≤P: P ⊆ A},{σP : P ⊆
A},{νP : P⊆ A}). In the following Section we present a deduction system for reasoning
about properties of relations in IS-relation algebras.

4 Deduction in IS-Relation Algebras

The majority of deductive systems for reasoning about information relations derived from
an information system are the appropriate systems of modal logics (for a survey see [5]).
Modal approach enables us to study information operators, e.g., approximation operators
or knowledge operators determined by information relations (see e.g. [35], [36], [37]).
Here our aim is to develop a reasoning mechanism for verification of properties of plain
information relations. The strategy is to design deduction rules for IS-frames and to ad-
join them to the system of rules for the standard algebras of binary relations presented in
Section 2, thus obtaining a deduction system for IS-relation algebras.

The formulas processed by the deduction system for IS-relation algebras are of the
form xRy, where x,y are object variables and R is a term of an IS-relation algebra. For
each p ∈ A and for every ≤p,σp,νp we assume the following rules. As usual we omit
the index p in the names of the relations.

(ref ≤)
K,x≤ y,H

K,x1′y,H,x≤ y

(tran ≤)
K,x≤ y,H

K,x≤ z,H,x≤ y | K,z≤ y,H,x≤ y
z is any object variable

(antisym ≤)
K,x(− ≤)y,y(−≤ x),H

K,x(−1′)y,H

(sym σ )
K,xσy,H
K,yσx,H

(wref σ )
K,xσy,H

K,x1′y,H,xσy | K,xσz,H,xσy
z is any object variable
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(rIS3)
K,xσy,H

K,xσz,H,xσy | K,z≤ y,H,xσy
z is any object variable

(rIS4)
K,xσy,H

K,x1′y,H,xσy | K,x(− ≤)z,H,xσy
z is any object variable

(sym ν) and (wref ν) are analogous to (sym σ ) and (wref σ ), respectively.

(rIS6)
K,xνy,H

K,z≤ x,H,xνy | K,zνy,H,xνy
z is any object variable

(rIS7)
K,xνy,H

K,x1′y,H,xνy | K,x(− ≤)z,H,xνy
z is any object variable

(rIS8)
K,x≤ y,H

K,x(−σ)z,H,x≤ y | K,z(−ν)y,H,x≤ y
z is any object variable

(rIS9)
K,xσy,xνy,H

K,x1′y,H,xσy,xνy

(rIS10)
K,x(−ν)y,H

K,x(−ν)z,H,x(−ν)y | K,z≤ y,H,x(−ν)y
z is any object variable

For R ∈ {≤P: P ⊆ A}∪ {σP : P ⊆ A} ∪ {νP : P ⊆ A}, the characterization of strong
relations is provided by the rules (rS1), (r-S1), and the axiomatic sequence (aS2):

(rS1)
K,xRP∪Qy,H

K,xRPy,H | K,xRQy,H

(r-S1)
K,x(−RP∪Q)y,H

K,x(−RP)y,x(−RQ)y,H

(aS2) xR /0y

The characterization of weak relations is given by the rules (rW1), (r-W1), and the ax-
iomatic sequence (aW2):

(rW1)
K,xRP∪Qy,H

K,xRPy,xRQy,H

(r-W1)
K,x(−RP∪Q)y,H

K,x(−RP)y,H | K,x(−RQ)y,H

(aW2) x(−R /0)y
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It is easy to verify that the rules presented above are correct in view of the properties
of relational constants assumed in the models. The definition of a branch model is the
same as described in Section 2. A completeness theorem analogous to Theorem 1 can
be proved following the principles presented in Section 2, see also the general method
described in [18].

Example 1
We show that−σ ; ν ⊆≤. Since for any binary relations R,S we have R⊆ S iff−R∪S = 1,
we need to prove the formula (1) below:
(1) x(−(−σ ; −ν)∪ ≤)y.
Applying rule (∪) to (1) we get:
(2) x(−(−σ ; −ν))y, x≤ y.
Applying rule (− ; ) with a restricted variable z, and rule (–) to (2) we obtain:
(3) xσz, zνy, x≤ y.
Now we apply rule (rIS8) to x ≤ y choosing z as the new variable and we obtain two
sequences (3.1) and (3.2):
(3.1) x(−σ)z, xσz, zνy, x≤ y,
(3.2) z(−ν)y, xσz, zνy, x≤ y.
Both of them are axiomatic of the form (a1).

Example 2
We show that −ν ; −σ ; −ν ⊆−ν .
(1) x(−(−ν ; −σ ; −ν)∪−ν)y.
We apply rule (∪) and we get:
(2) x(−(−ν ; −σ ; −ν))y, x(−ν)y.
Now we apply twice the rule (− ; ) with restricted variables z and t, and then rule (–):
(3) xνz, zσ t, tνy, x(−ν)y.
Rule (rIS10) applied to x− νy with a new variable z yields two sequences (3.1) and
(3.2):
(3.1) x(−ν)z, xνz, zσ t, tνy, x(−ν)y,
(3.2) z≤ y, xνz, zσ t, tνy, x(−ν)y.
Sequence (3.1) is axiomatic of the type (a1). To the sequence (3.2) we apply rule (rIS8)
with a new variable t and we get the following two sequences:
(3.2.1) z(−σ)t, z≤ y, xνz, zσ t, tνy, x(−ν)y,
(3.2.2) t(−ν)y, z≤ y, xνz, zσ t, tνy, x(−ν)y.
Both of these sequences are axiomatic.

Example 3
Let {RP}P⊆A be a family of strong relations and let Rp and Rq be transitive, that is the
rules (tran Rp) and (tran Rq) analogous to the rule (tran≤) presented above are admitted
in a proof system. For the sake of simplicity we write Rp and Rq instead of R{p} and
R{q}, respectively. We show that R{p,q} is also transitive, i.e., R{p,q} ; R{p,q} ⊆ R{p,q}.
Hence, we have to prove the formula:
(1) x(−(R{p,q} ; R{p,q})∪R{p,q})y
Applying rule (∪) we have:
(2) x(−(R{p,q} ; R{p,q}))y, xR{p,q})y
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Now we apply rule (− ; ) with a restricted variable z:
(3)x(−(R{p,q})z, z(−(R{p,q})y, xR{p,q}y.
Applying rule (r-S1) twice we obtain:
(4) x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y.
Now we apply rule (rS1) and we get two sequences:
(4.1) xRpy, x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y,
(4.2) xRqy, x(−Rp)z, x(−Rq)z, z(−Rp)y, z(−Rq)y, xR{p,q}y.
We apply the rule (tran Rp) with a new variable z to the formula xRpy of (4.1) and
the rule (tran Rq) also with variable z to the formula xRqy of (4.2) which yield four
sequences each of which is axiomatic of the form (a1).

5 Relations Derived from Temporal Information Systems

A temporal information system is an information system (U , {time}, VALtime) whose
set of attributes consists of a single attribute ’time’, the set of values of this attribute
is a set with a strict dense linear ordering < without endpoints on it, and to every ob-
ject x there is associated a closed time interval time(x) = [t, t ′], where t < t ′. Temporal
information systems are useful, for example, in temporal scenario specification of mul-
timedia objects, where the execution of a multimedia object is usually considered to be
a temporal interval.

The family of sets specific for the temporal information systems is the underlying
family of time intervals:

{[t,t ′] : t,t ′ ∈Vtime, time(x) = [t, t ′] for some x ∈U and t < t ′}.

The typical relations defined on this family of sets are the following [1]:

1′ (equals): [t, t ′] 1′ [u,u′] iff t = t ′ and u = u′,
P (precedes): [t,t ′] P [u,u′] iff t ′ < u,
D (during): [t,t ′] D [u,u′] iff u < t and t ′ < u′,
O (overlaps): [t, t ′] O [u,u′] iff t < u and u < t ′,
M (meets): [t, t ′] M [u,u′] iff t ′ = u,
S (starts): [t,t ′] S [u,u′] iff t = u and t ′ < u′,
F (finishes): [t,t ′] F [u,u′] iff t ′ = u′ and u < t.

By a TIS-frame (temporal information system frame) we mean a system (U,<,1′,P,
D,O,M,S,F), where < is a strict dense linear ordering on U without endpoints, and
1′,P,D,O,M,S,F are the binary relations on the set {[t, t ′] : t, t ′ ∈U, t < t ′} as defined
above.

By a TIS-relation algebra we understand a relation algebra generated by 1′,P,D,O,
M,S, and F for some TIS-frame (U,<,1′,P,D,O,M,S,F). A TIS relation algebra has
13 atoms, namely the relations from the corresponding TIS-frame and their converses.
Observe that 1′−1 = 1′. Any TIS-relation algebra is isomorphic to the TIS-relation alge-
bra whose universe is the set of real numbers. Detailed discussions of relation algebras
for reasoning about time (and space) can be found in [20] and [6].
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6 Deduction in TIS-Relation Algebras

Deduction system for TIS-relation algebras processes formulas built either with rela-
tions 1′,P,D,O,M,S,F , acting on temporal intervals or with relation < acting on time
points. For the sake of uniformity, we can preprocess the interval formulas by replacing
1′ (acting on temporal intervals), P,D,O,M,S,F by their definitions in terms of 1′ (act-
ing on time points) and <. A deduction system for TIS-relation algebras consists of the
deduction rules and axiomatic sequences for point relations presented in Section 2, the
rules of the same form for interval relations, and the following specific rules:

(irref <)
K,x(−1′)y,H

K,x < y,H,x(−1′)y

(lin <)
K

K,x(−1′)y | K,x(−<)y | K,y(−<)x
, x,y are any variables

(tran <)
K,x < y,H

K,x < z,H,x < y | K,z < y,H,x < y
, z is any variable

The following rules reflect the property that < does not have endpoints and is
discrete:

(nomin <)
K

K,x(− <)z
, z is a restricted variable

(nomax <)
K

K,z(− <)x
, z is a restricted variable

(dense)
K

K,x < y | K,x(−<)z,z(− <)y
, z is a restricted variable

The rules that provide definitions of the relations 1′ acting on the intervals
P,D,O,M,S, and F in terms of < and 1′ acting on time points are:

(1′)
K, [t,t ′] 1′ [u,u′],H

K,t1′u,H | K,t ′1′u′,H
(−1′)

K, [t, t ′] (−1′) [u,u′],H
K, t(−1′)u, t ′(−1′)u′,H

(P)
K, [t,t ′] P [u,u′],H

K,t ′ < u,H
(−P)

K, [t,t ′] (−P) [u,u′],H
K,t ′(− <)u,H

(D)
K, [t, t ′] D [u,u′],H

K,u < t,H | K,t ′ < u′,H
(−D)

K, [t.t ′] (−D) [u,u′],H
K,u(−<)t, t ′(−<)u′,H

.

(O)
K, [t,t ′] O [u,u′],H

K,t < u,H | K,u < t ′,H
(−O)

K, [t,t ′] (−O) [u,u′],H
K, t(−<)u,u(−<)t ′,H

(M)
K, [t, t ′] M [u,u′],H

K,t ′1′u,H
(−M)

[t, t ′] (−M) [u,u′]
K, t ′(−1′)u,H
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(S)
K, [t, t ′] S [u,u′],H

K,t1′u,H | K,t ′ < u′,H
(−S)

K, [t, t ′] (−S) [u,u′],H
K, t(−1′)u, t ′(−<)u′,H

(F)
K, [t,t ′] F [u,u′],H

K,t ′1′u′,H | K,u < t,H
(−F)

K, [t,t ′] (−F) [u,u′],H
K,t ′(−1′)u′,u < t,H

The decomposition rules for the compound interval relations generated by the rela-
tions listed in Section 4 with the standard relational operations and the specific rules for
1′ on the set {[t,t ′] : t,t ′ ∈U,t < t ′} and for 1′ on U are analogous to the corresponding
rules in Section 2. Abusing the notation is harmless, because the arguments of the rela-
tion indicate on which set it is defined. A completeness Theorem analogous to Theorem
1 holds for the deduction system presented here. The details can be found in [2].

Example 4
We show that F ; P⊆ P.
(1) [t, t ′] (−(F ; P)∪P) [u,u′].
After application of rule (∪) we obtain:
(2) [t, t ′] (−(F ; P)) [u,u′], [t,t’] P [u,u’].
Now we apply rule (− ; ) with a restricted interval [z,z′]:
(3) [t.t ′] (−F) [z,z′], [z,z′] (−P) [u,u′], [t,t ′] P [u,u′].
To (3) we apply rules (P) and (-P) which yield:
(4) [t,t ′] (−F) [z,z′], z′(−<)u, t ′ < u.
After application of rule (-F) we have:
(5) t ′(−1′)z′, z < t, z′(−<)u, t ′ < u.
Applying rule (tran <) with a new variable z′ to z < t we get two sequences:
(5.1) t ′1′z′, t ′(−1′)z′, z < t, z′(−<)u, t ′ < u,
(5.2) z′ < u, t ′(−1′)z′, z < t, z′(−<)u, t ′ < u.
Both of them are axiomatic of the form (a1).

7 Information Relations Derived from Relational Attribute
Systems

Relational attribute systems [8] expand the notion of an information system in order to
make explicit various conditions that are implicitly assumed in connection with infor-
mation systems. By a relational attribute system (RAS) we mean a system (U,Ω ,{Va :
a ∈Ω},{Rela : a ∈Ω},Δ), where

– U is a nonempty set of objects,
– Ω is a finite nonempty set of attributes, and, for each a ∈ Ω , Va is a nonempty set

of values of attribute a,
– Each attribute is a function a : U �→P(Va).
– Each R ∈ Rela is a binary relation R⊆U×Va, and
– Δ is a set of constraints on relations from Rela’s.

An appropriate choice of the families Rela of relations and constraints Δ enables us to
explicitly specify various types of information structures.

For example, if an information system is assumed to be deterministic, then we pos-
tulate that for each attribute a ∈ Ω there is a relation Ia ⊆ U ×Va with the intuition
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that xIav iff v ∈ a(x) and whenever xIav and xIav′ hold, then v = v′. If we additionally
postulate that for every x ∈U there is exactly one v ∈ Va such that xIav, then such an
information system does not have missing values. To represent these constraints rela-
tionally, we additionally introduce relations 1′a of identity on Va and 1a = U ×Va for
each a ∈Ω . Then, our constraints can be represented as the following two properties:

(Δ1) I−1
a ; Ia ⊆ 1′a, Ia is functional,

(Δ2) Ia;1a = 1a, Ia is total.

The family of sets specific to deterministic relational attribute systems is {Ia(x) : a ∈
Ω ,x ∈U}.

If the system is nondeterministic, a set of attribute values assigned to an object may
have several intuitive meanings, as mentioned in the Introduction. For example, to dis-
tinguish between disjunctive and conjunctive interpretation of nondeterministic infor-
mation we consider relations Ia,Ba ⊆ U ×Va for each a ∈ Ω with the intuition that
xIav iff object x certainly possesses property v and xBav iff object x possibly possesses
property v (see also [8]). For every a ∈ Ω , these relations are assumed to satisfy the
constraint

(Δ3) Ia∩Ba = /0,

which says that Ia and Ba are incompatible. The family of sets specific to nondetermin-
istic relational attribute systems is {Ia(x) : a ∈Ω ,x ∈U}∪{Ba(x) : a ∈Ω ,x ∈U}.

Concerning information relations derived from the RAS’s defined above we note that
the building stones are the relations {1′,�,�,P,D}, each of which is defined on 2VAL

for VAL =
⋃{Va : a ∈ Ω}. The relations P (partial overlap) and D (disjointness) are

defined by

xPy⇐⇒ x∩ y �= /0, x �⊆ y, y �⊆ x, and xDy⇐⇒ x∩ y = /0.

An information relation derived from a RAS = (U,Ω ,{Va : a ∈Ω},{Rela : a ∈Ω},Δ)
is a binary relation on U having the form

R′;ρ ;S′−1,

where ρ ∈{1′,�,�,P,D}, and R′,S′ are extensions of R,S∈Rela, defined on U×2VALa

by

xR′aA⇐⇒ Ra(x) = A.

Hence, xR′;ρ ;S′−1y iff 〈R(x),S(y)〉 ∈ ρ .
By an (abstract) RAS-frame we understand a relational system

(U,V,{Rela : a ∈ A},1′,<,>,π ,δ ),

where

– U,V and A are nonempty sets,
– Rela ⊆ 2U×V ,
– <,>,π ,δ are binary relations on V ,
– 1′ is the identity on V ,

and the following constraints are satisfied:
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(Δ4) 1′∪< ∪> ∪π ∪δ = 1,
(Δ5) Any two of 1′,<,>,π ,δ are disjoint,
(Δ6) δ is irreflexive and symmetric,
(Δ7) < and > are irreflexive, transitive, and >=<−1.

Clearly, the relations 1′,⊂,⊃,P,D satisfy the constraints (Δ4), . . . ,(Δ7).
By a RAS–relation algebra we understand an algebra of relations generated by the

relations of the form
R;ρ ;S−1,

where R,S ∈ Rela, and ρ ∈ {1′,<,>,π ,δ}. Any particular class of RAS–relation alge-
bras is obtained by specifying axiomatically the family {Rela : a ∈ A}.

8 Deduction in RAS-Relation Algebras

The deduction system for RAS-relation algebras processes formulas built with rela-
tional terms involving both the relations from the families Rela,a ∈ A, and relations
1′,<,>,π ,δ . Depending on the corresponding relations, the variables in the formulas
may be either variables from U or variables from V .

The system consists of the rules for standard algebras of binary heterogenous rela-
tions and the rules reflecting the constraints from Δ . The rules for the operations of the
algebras of heterogenous relations are analogous to the rules for the standard algebras
of binary relations presented in Section 2 with an obvious restriction on domains of
the left and right arguments of the relations. Below we present the exemplary rules re-
flecting the constraints discussed above. The rules for the constraints (Δ1),(Δ2), (Δ3),
(Δ4), and (Δ5) are as follows. We assume that U-variables range over elements of set
U , and V -variables over elements of V .

(rΔ1)
K,v1′v′,H

K,xIav,H,v1′v′ |K,xIav′,H,v1′v′
x is any U-variable

(rΔ2)
K

K,x− Iav
x is any U-variable, v is a new V -variable

(rΔ3)
K

K,xBav, |K,xIav′
x is any U-variable, v,v′ are any V -variables

(rΔ4)
K

K,x−1′y | K,x(− <)y | K,x(−>)y | K,x−πy | K,x− δy
where x,y are any V -variables

(rΔ5)
K

K,xRy |K,xSy
where R,S ∈ {1′,<,>,π ,δ}, R �= S, and x,y are any V -variables

The rules corresponding to the constraints (Δ6) and (Δ7) are analogous to the re-
spective constraints for the relations of the preceding sections. Irreflexivity of δ , <, and
> is reflected by the rules obtained as the irreflexivity rule in Section 6. Symmetry of
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δ is as in Section 4. The transitivity of < and > is as in Section 4. It is easy to ex-
tend the proof of completeness of the basic system described in Section 2 to the system
expanded with the rules presented above. Namely, we check that the specific rules re-
flecting properties of the constants Rela,a ∈ A, and 1′,<,>,π ,δ are correct. Next, the
definition of branch model is extended to include the meaning of these constants and
the branch model theorem and the satisfaction in branch model theorem are proved in
a standard way. These lemmas enable us to prove soundness and completeness of the
RAS-theory whose family {Ra : a∈Ω} consists of relations Ia,Ba for a∈Ω , satisfying
the axioms Δ1, ...,Δ7. Any other RAS-theory can be obtained by choosing a family
{Ra : a ∈ Ω} of relations and by postulating some axioms on the relations from that
family.

Example 5
We show that in our exemplary RAS-theory if Ia ; 1′ ; I−1

a = 1, then Ia ; −δ ; I−1
a = 1.

We use the principle of proving entailment explained in Section 2. According to that
principle we have to prove the following formula:
(1) x(1 ; (−(Ia ; 1′ ; I−1

a )) ; 1∪ Ia ; − δ ; I−1
a )y.

We apply the rule (∪), then twice the rule ( ; ) with new variables x and y, and then
twice the rule (− ; ) with restricted variables z and t, and we get:
(2) x(−Ia)z, z(−1′)t, t(−Ia)y, x(Ia ; −δ ; I−1

a )y and two axiomatic sequences contain-
ing formulas x1x and y1y.
We apply rule ( ; ) with new variable z to the first composition and we obtain two se-
quences:
(2.1) containing xIaz and x(−Ia)z, so it is axiomatic, and
(2.2) containing z(−δ ; I−1

a )y.
Decomposing the composition in (2.2) with rule ( ; ) with new variable t we obtain two
sequences:
(2.2.1) containing z(−δ )t, z(−1′)t,
(2.2.2) containing tI−1

a y, yIat, y(−Ia)t which is axiomatic.
We apply rule (irref δ ) to (2.2.1) obtaining a sequence with zδ t and z(−δ )t which is
axiomatic.

9 Information Relations Derived from Fuzzy Information Systems

Fuzzy information systems differ from the ordinary information systems in that the sets
of properties assigned to the objects are fuzzy sets. To define fuzzy sets we need, first of
all, to establish a range of fuzziness, that is an algebra whose elements serve as degrees
of membership of the elements to fuzzy sets. In this paper we assume that the range of
fuzziness is modelled by a class of commutative doubly residuated lattices ([27], [5]).

A commutative doubly residuated lattice is a structure of the form

(W,∨,∧,⊗,→,⊕,←,1,0),

where

– (W,∨,∧,1,0) is a lattice with the top element 1 and the bottom element 0;
– (W,⊗,1) and (W,⊕,0) are monoids;
– ⊗ and ⊕ are commutative;
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– → is a residuum of ⊗, that is z≤ x→ y iff x⊗ z≤ y for all x,y,z ∈W ;
– ← is a dual residuum of⊕, that is x← y≤ z iff y≤ x⊕ z for all x,y,z ∈W .

The operations ⊗ and ⊕ are referred to as product and sum, respectively. They are
intended to be abstract counterparts to t-norms and t-conorms, respectively. Condition
(4) is referred to as a residuation condition and condition (5) is a dual residuation con-
dition. Clearly,→ and← are uniquely determined by the residuation condition and the
dual residuation condition, respectively. Furthermore, it follows from these conditions
that x→ y is the greatest element in the set {z : x⊗ z≤ y} and x← y is the least element
in the set {z : y≤ x⊕ z}.

Given a doubly residuated lattice L = (W,∨,∧,⊗,→,⊕,←,1,0) and a universe U
of objects, any mapping X : U �→ L is an L-fuzzy subset of U . The family of L-fuzzy
subsets of U is denoted by FLP(U). By a fuzzy set we understand an L-fuzzy set for
some doubly residuated lattice L. The operations on L-fuzzy sets are defined in the
following way. Let X ,Y ∈ FLP(U), then:

(X ∪L Y )(x) = X(x)⊕Y(x),

(X ∩L Y )(x) = X(x)⊗Y(x).

The empty fuzzy set is defined as /0L(x) = 0, and the full set is 1L(x) = 1.
L-inclusion and L-equality of L-fuzzy sets are defined as follows:
X ⊆L Y iff for every x ∈ U,X(x) ≤ Y (x), where ≤ is the natural ordering of

lattice L;

X =L Y iff X ⊆L Y and Y ⊆L X .

An L-fuzzy binary relation on U is a mapping R : U ×U �→ L. The family of all L-
fuzzy binary relations on U is denoted by FLRel(U). By a fuzzy relation we understand
an L-fuzzy relation for some doubly residuated lattice L. Clearly, every fuzzy relation
on a set U is a fuzzy subset of U ×U , so the operations on fuzzy sets apply to fuzzy
relations.

A fuzzy information system is a structure of the form

(U,L,Ω ,{Va : a ∈Ω}),
where U is a non-empty set of objects, L is a commutative doubly residuated lattice,
every attribute a ∈Ω is a mapping a : U �→ FLP(Va) which assigns an L-fuzzy subset
of Va to an object. Intuitively, a(x)(v) is a degree to which an object x assumes the value
v of the attribute a.

We define several L-fuzzy binary relations on a family FLP(U), for any set U . These
relations provide patterns for information relations derived from a fuzzy information
system. Let X ,Y ∈ FLP(U), then:

InL (L-inclusion): InL(X ,Y ) = inf{X(x)→ Y (x) : x ∈U},
NiL (L-non-inclusion): NiL(X ,Y ) = sup{Y (x)← X(x) : x ∈U},
SimL (L-similarity): SimL(X ,Y ) = sup{X(x)⊗Y(x) : x ∈U},
ExhL (L-exhaustiveness): ExhL(X ,Y ) = inf{X(x)⊕Y(x) : x ∈U},
For a discussion of fuzzy information relations see also [30].
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A specific family of fuzzy sets associated to a fuzzy information system
S = (U,L,Ω ,{Va : a ∈Ω}) is the family:

{a(x) : a ∈Ω and x ∈U}.

A most basic algebra of fuzzy relations is just an algebra (FLRel(U),∪L,∩L, /0L,1L).
FIS-relation algebra (relation algebra of fuzzy information systems) is an algebra of
fuzzy relations generated by the set relations InL,NiL,SimL, and ExhL defined above.

A construction of a Rasiowa–Sikorski style or a Gentzen style deduction system
for fuzzy relations, and in particular for FIS-relation algebras is an open problem. So
the only available means of reasoning about these relations is the equational reason-
ing within doubly residuated lattices. For the arithmetic of doubly residuated lattices
see [27].

In an abstract setting, fuzzy algebras and fuzzy relation algebras are presented and
investigated, among others, in [12,14,38,39].
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